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Preface

Coordination, organizations, institutions, norms and ethics (COINE) are five key gov-
ernance elements that regulate the functioning of open multi-agent systems. The goal
of the COINE workshop series that began in 2006 is to bring together researchers in
autonomous agents and multi-agent systems (MAS) working on these five topics. The
workshop focuses on both scientific and technological aspects of social coordination,
organizational theory, artificial (electronic) institutions, normative and ethical MAS.

This edition of the COINE workshop, co-located with the 21st International Confer-
ence on Autonomous Agents and Multi-Agent Systems (AAMAS), was held virtually
(through Zoom) due to the COVID-19, on May 9, 2022. A total of 15 papers were sub-
mitted to the workshop and 14 were accepted after peer review (11 full and three short).
These papers were reviewed by three Program Committee members using a single-blind
review method.

The papers were presented in three sessions. About 30 participants attended the
workshop. This workshop also featured an invited talk on “Consent as a Foundation
for Responsible Autonomy” from Munindar P. Singh, North Carolina State University,
USA. The abstract of the talk is included in this volume.

This volume contains extended and revised versions of the 14 papers accepted to the
workshop. The revisions made to the papers were reviewed by one reviewer, and this
formed the second round of peer review. We are confident this process has resulted in
high-quality papers.

The workshop could not have taken place without the contribution of many people.
We are very grateful to our invited speaker as well as to all the COINE 2022 partic-
ipants who took part in the discussions. We thank all the members of the Program
Committee for their hard work (who are listed after this preface), and the guidance
offered by the COIN(E) Champions. We also thank EasyChair for the use of their
conference management system. Thanks also goes to the Springer for publishing the
post-proceedings.

September 2022 Nirav Ajmeri
Andreasa Morris Martin

Bastin Tony Roy Savarimuthu
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Consent as a Foundation for Responsible Autonomy
(Abstracts)

Munindar P. Singh

North Carolina State University, Raleigh NC 27695, USA
mpsingh@ncsu.edu

Abstract.This talk focuses on a dynamic aspect of responsible autonomy,
namely, to make intelligent agents act responsibly at run time. That is, it
considers settings where decision making by agents impinges upon the
outcomes perceived by other agents. For an agent to act responsibly, it
must accommodate the desires and other attitudes of its users and, through
other agents, of their users.

The contribution of this talk is twofold. First, it provides a concep-
tual analysis of consent, its benefits and misuses, and how understanding
consent can help achieve responsible autonomy. Second, it outlines chal-
lenges for AI (in particular, for agents and multiagent systems) that merit
investigation to form a basis for modeling consent in multiagent systems
and applying consent to achieve responsible autonomy.
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Designing International Humanitarian
Law into Military Autonomous Devices

Jonathan Kwik1 , Tomasz Zurek2(B) , and Tom van Engers3
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2 T.M.C. Asser Institute, R.J. Schimmelpennincklaan 20-22, 2517 JN The Hague,
The Netherlands
t.zurek@asser.nl

3 Complex Cyber Infrastructure, Informatics Institute, University of Amsterdam,
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Abstract. This position paper presents a discussion on the problem of
implementing the rules of International Humanitarian Law in AI-driven
military autonomous devices. We introduce a structure of a hybrid data-
and knowledge-driven computational framework of a hypothetical target-
ing system built from the ground up with IHL compliance in mind. We
provide a model and a discussion of necessary legal tests and variables.

Keywords: Military AI · International Humanitarian Law ·
Autonomous devices · Autonomous weapon

1 Introduction

The application of artificial intelligence (AI) in weapon systems has become a
major point of contention in the past decade. While many States have embraced
the potential that AI brings for increasing precision and speed, improving their
warfighting capacity, and reducing unneeded casualties [30,46], a significant
opposition group has also formed which contests whether AI can ever be used
in military contexts in a lawful and ethical manner [44].

One point which is not in debate is the applicability of international human-
itarian law (IHL), the body of international law which governs the conduct of
parties to an armed conflict. In particular, IHL [2] provides that belligerents
do not have full freedom in their choice of means of warfare, i.e., the weapons
they deploy. Any new weapon adopted by belligerents must be in compliance to
IHL, and any new technology introduced must conform itself to these existing
rules [25]. This includes AI. States [6,48], international organisations and NGOs
[24,34] and commentators [39,46] universally agree that any weapon system
which incorporates AI must uphold IHL.

Tomasz Zurek received funding from the Dutch Research Council (NWO) Platform
for Responsible Innovation (NWO-MVI) as part of the DILEMA Project on Designing
International Law and Ethics into Military Artificial Intelligence.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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In light of this universal point of departure, there has been disagreement
whether AI can actually be designed to comply with the legal rules. Many have
expressed doubt that this can be done, arguing that AI will never be able to
replace humans in this regard [42]. Those that elaborate usually point to the
many (subjective) variables involved in IHL decisions and that these legal eval-
uations can only practically be effectuated by humans, not by the narrow AI of
today [9]. In particular, the principles of distinction and proportionality in IHL
are frequently cited as examples of rules which would be impossible to imple-
ment through AI [43]. Indeed, if a system is unable to properly execute these
tests but is deployed regardless for tasks which would require it to conduct such
legal assessments, it would be deployed unlawfully.

In this article, we counterbalance this perspective by proposing a structure of
a hypothetical system which is constructed from the ground up with IHL rules
in mind. The basic structure of the system is based on a commander’s targeting
cycle. During this process, commanders rigorously conduct several evaluations
derived from IHL, and it is one of the primary mechanisms which ensure that
principles such as distinction and proportionality are upheld in the field [8]. By
translating this process into an equivalent in AI form, we provide one potential
way IHL can be designed directly into an AI weapon system, and demonstrate
that the demands for an IHL-compliant AI weapon system can theoretically be
met. Our proposal aims at filling the gap between legal research on IHL and
research on AI-driven autonomous decision-making systems.

Our system is deliberately built optimistically, in the sense that we capture
all relevant legal tests required during targeting directly into one system. This
includes target selection and sorting, distinction, proportionality calculation,
and harm minimisation. It reflects what some define as a (fully) autonomous
weapon system [38], i.e., where AI takes over all the functions of a commander.
However, not all AI-controlled weapon systems will necessarily perform all of the
steps described in our framework. A decision-making aid might only need the
target sorting and collateral damage calculation functions, while a smart missile
might only execute the proportionality calculation functionality. We make no
statements on how, in detail, particular modules would be built in practice and
the feasibility of such a system [30]. Rather, our main aim is explorative, i.e.,
to demonstrate that purely from a programming perspective, such a task can
be undertaken. Another reason for including all legal tests into one framework
is that variables such as military advantage and harm reduction are utilised
throughout the various steps of the cycle. By capturing the entire targeting
process at once, we are able to illustrate how different legal tests interlink and
draw from the same variables and inputs.

Another distinctive feature of our framework is its hybrid nature which com-
bines knowledge-driven and data-driven reasoning. One major dilemma often
raised in the debate concerning AI and weapons is the dual problem that, on
the one hand, the complexity and dynamicity of the modern battlefield practi-
cally requires resort to data-driven techniques such as deep neural networks for
adaptability [12,41], while on the other hand, a level of decision-making trans-
parency is required in IHL for the purposes of predictability and accountability
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[20,27]. Through the use of a hybrid system, we draw on the strengths of both
techniques while addressing both these challenges.

While we focus exclusively on the legal duties in IHL as the basis for our
framework, it should be noted that in practice, many other factors - such as
political and ethical perspectives - will also be important when defining the
system’s design requirements. [7,11,16,21,33] provide useful overviews of such
considerations in the field of AI and weapon systems. We do not integrate these
factors into our system at this point to maintain the framework’s generality, as
each State and military organisation will have different policies in force. By focus-
ing primarily on the legal requirements, which are universal and non-derogable,
we present a framework that is at a minimum IHL-compliant, after which organ-
isations can adopt additional ethical, organisational and political requirements
in accordance with their respective preferences and policies.

This paper proceeds as follows. We begin with a brief comment on the
law applicable to military systems and the targeting cycle in general. We then
explore, in depth, the military targeting cycle upon which our system’s frame-
work was built. This includes two aspects. First, we discuss the formal steps
of the targeting process and how these are implemented during military oper-
ations. Second, we discuss what IHL principles are relevant for the targeting
stage and their respective timings. We then integrate the law into the targeting
process and present formalisations of specific rules of IHL, such as proportional-
ity and minimisation, thereby also highlighting the variables which are the most
important as inputs for these tests. On this basis, we subsequently introduce
the framework of our system, briefly discuss the necessary functionalities of the
system, its structure, and required data.

2 The Law and the Operational Framework

Limitations on the use of particular weapons are among the oldest provisions in
the law of war and are inextricably woven into the fabric of modern IHL [50].
While there have been specific conventions restricting or prohibiting particular
weapons such as chemical weapons or landmines, IHL also contains general prin-
ciples such as the principle of distinction and proportionality which apply as a
matter of customary international law [19]. For our framework, we will primarily
rely the latter for two reasons. First, there evidently is no specialised normative
convention as of yet for AI weapons, as the matter is still under discussion before
the CCW Conferences in Geneva at the time of writing. Second, even if such a
convention would exist, it is highly unlikely that all States would accede to it
[51]. It is therefore in any situation relevant to consider more general IHL as a
unifying normative standard applicable to all States.

As referenced in the introduction, there is little doubt that IHL applies to
AI weapons. While modern IHL was born in the twentieth century and many
new technologies have been introduced since then (e.g. precision weapons, cyber-
weapons, AI), any new weapon is to conform itself to the applicable rules, and
not vice versa [25]. IHL is applicable “without regard to the kind of technology
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in question” [17]. This is confirmed consistently throughout the debate on AI
weapons. While there is some contention on whether existing IHL is necessarily
sufficient to regulate all challenges that arise from AI in weapon systems [24], it
is uncontroversial that IHL continues to apply for the use of military AI [18]. We
echo Canada’s [6] position that ensuring the lawfulness of AI weapons should be
“constant reference points” for any discussion on the matter.

The ability of weapons to fulfil IHL requirements must be tested as early
as the development, testing and adoption stages [23]. For parties to Additional
Protocol I (API), this is explicitly provided in the form of a duty to conduct an
‘Article 36’ legal review [2]. Nevertheless, in our discussion, we will focus more on
the operational half of the weapon’s lifecycle. The reason for this is that reviews
are conducted with respect to the envisaged tasks and circumstances of use for
that particular weapon, and not in abstracto [37]. An example can be drawn from
legacy weapons. During the Gulf War, Iraq was broadly condemned for the use
of SCUD missiles, which had rudimentary guidance systems (i.e., a low accuracy
rate), against Israeli population centres. However, such a weapon might validly
pass a legal review if it was designed to be deployed only in civilian-free locations
[40]. Similarly, an AI weapon with a very low specificity rate for distinguishing
between military and civilian objects is not necessarily indiscriminate if, for
instance, it is designed to operate underwater [46]. We argue, for this reason, that
it is of particular importance to highlight the deployment phase of an AI weapon,
i.e., the law that applies to military operations. Any generalised conclusions
that may be drawn for the purposes of legal review (e.g. accuracy rates) can
subsequently be drawn from the principles applicable to operations.

When we speak of the operational half of a weapon’s lifecycle (i.e., deploy-
ment and use), the targeting cycle becomes our primary reference point. The
aim of this process is to synchronise the choice of weapon, target and operational
constraints to obtain the desired military effect [10]. Crucially, this effect must
be achieved while ensuring compliance with IHL [8]. For this reason, militaries
directly integrate legal tests into the targeting process to ensure that any weapon
that is being considered meets the standards required for lawful use. Unfortu-
nately, this operational perspective has not garnered the attention it deserves:
Ekelhof [15] notes that much of the discussion on AI in weapon systems fails to
properly take into account the military targeting process. We will therefore place
greater scrutiny on this military art of targeting and the way IHL principles are
implemented in practice during concrete operational circumstances.

2.1 The Targeting Cycle

In this section, we summarise the key steps of the targeting cycle based on the
US military and NATO standard. While specific details and protocols may differ
between military organisations, there the six steps explained below are generally
applicable to most military operations.1

1 The following overview is drawn from [13,15,32,35].
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(1) Goal analysis involves the commander analysing the broader goals previ-
ously set at the strategic or operational levels. For instance, in the NATO
context, goals, target sets and guidance are generally provided by the Joint
Force Commander. The commander considers the desired end state described
by the broader goals and how to best achieve it.

(2) Target analysis, also called target development, involves the identification
and specification of eligible targets. From this analysis, a general calculus is
made of the action, time, and resources required to engage this target, to what
extent this would contribute toward achieving the goals determined in Step
(1), and whether there is a risk of collateral damage in view of its location,
function, or characteristics.

(3) Capability analysis involves an assessment of the means and methods of
warfare available to the commander [8]. It is during this phase that a weapon
or weapons mix is selected which would best achieve the desired effects in light
of details of the potential targets identified in Step (2). The art of comparing
different alternatives and assigning the optimal combination, quantity and
delivery of weapons (systems) to minimise collateral damage to the furthest
extent possible while still achieving the desired objective is frequently referred
to as weaponeering [44].

(4) Capability assignment features the definitive matching of the cho-
sen capability mix to the targets. If necessary, the commander can order
additional operational safeguards or considerations to be implemented. The
assigned order is then forwarded to component commanders for final planning
and execution.

(5) Execution takes place at the tactical level and features the operation being
carried out based on the considerations made during all previous phases. A
miniature version of the targeting cycle is performed here by the component
commander. At some point, a decision to use force is made that cannot be
undone, such as the drawing of the trigger on a sniper rifle or the launching of
a weapon that cannot be recalled [35]. This is called the execution moment.

(6) Assessment is a crucial element in the iterative targeting procedure. Any
change in the environment as a result of Step (5) is assessed, noted, and reported
back to determine the impact of the use of force both in terms of achieving
the desired military effect and damage to civilians. From this new information,
the operational goals are re-assessed and the process begins anew in Step (1)
until the desired military objective is achieved [22]. Additionally, even if no new
engagements are planned, results from Step (6) are still recorded for the pur-
poses of general after-action reviews and lessons learnt, both important pro-
cesses for preventing the repetition of mistakes in future operations [32].

A graphical representation of this process can be found in Fig. 1.

2.2 Integrating the Law into the Cycle

Certain obligations in IHL are considered to be inextricably linked to the target-
ing process. These requirements are for a major part to be found in Article 57
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Fig. 1. Graphical illustration of the targeting cycle

of API. For instance, the UK Ministry of Defence [47] notes that “any system,
before an attack is made, must verify that targets are military entities, take
all feasible precautions to minimise civilian losses and ensure that attacks do
not cause disproportionate incidental losses”. In Thurnher’s [45] view, targeting
requires “examination of three key requirements of the law of armed conflict: dis-
tinction, proportionality, and precautions in the attack”. A summation of these
obligations, however, does not provide us with an indication of when and how
they are exactly applied within the operational context. For this reason, we take
a closer look at how militaries implement these legal tests when executing the
targeting cycle.

As with the individual steps of the targeting cycle itself, there is no universal
template to fall back upon, but there is usually an efficient order adopted by
most militaries. Some authors, such as Corn [8] and Ducheine and Gill [14], have
proposed flowcharts to this effect as shown in Fig. 2. Corn’s approach is more
akin to a decision tree, while Ducheine and Gill’s approach better illustrates how
individual legal tests are timed within the 6 steps illustrated in Fig. 1. The latter
also demonstrates well the effects of different variables such as collateral damage
and military advantage and that the process can skip tests or loop around,
depending on the applicable inputs.

Fig. 2. Proposed flowcharts by Corn [8] and Ducheine and Gill [14]

While such flowcharts are useful for human commanders, for our hypothetical
AI system, we need to extract more clearly the specific legal tests, how they are
executed, and what inputs are required for each. We expand on this now.
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3 Timing and Application of Legal Tests

No particular legal test is applied during (1) Goal analysis. However, the goal
and rationale of the operation itself may have ramifications in terms of defining
the importance of particular objectives or targets, i.e., the military advantage
that can be gained. We will thus refer back to these goals in later phases when
their legal relevance becomes more apparent.

(2) Target analysis features several important legal requirements. First,
the principle of distinction (API Art.48) requires the collection of information
and intelligence to ensure that the envisaged target(s) are indeed valid objec-
tives. IHL asks attackers to “verify that the objectives to be attacked are neither
civilians nor civilian objects and are not subject to special protection but are
military objectives” (API Art.57(2)(a)(i)). Step (2) is usually deemed the ideal
moment to apply this test [14]. Militaries also conduct collateral damage esti-
mation at this phase, i.e., whether there is risk of incidental civilian harm tied
to the target [32,44].

A specific form of precautions found in API Art.57(3), and our first main
legal test, can be applied at this stage [35]. This paragraph requires the follow-
ing: “When a choice is possible between several military objectives for obtaining
a similar military advantage, the objective to be selected shall be that the attack
on which may be expected to cause the least danger to civilian lives and to civil-
ian objects”. This test involves two variables: military advantage and collateral
damage, both of which can be derived from Step (1) and Step (2) respectively.
While both variables are complex to quantify, the rule itself is relatively straight-
forward. If by D = {D1,D2, ...} we denote a set of possible Decisions (in casu,
attacking a particular target), and we define the Military Advantage gained from
decision Dt as MAt and the collateral damage involved from decision Dt as IHt

(from ‘Incidental Harm’), then in a binary situation between D1 and D2, we
could formalise the rule as follows:

if ∃Dx∈D∀Dy∈D\Dx
s.t.MAx ≈ MAy ∧ IHx < IHy then select Dx (1)

(3) Capability analysis is the most involved step in terms of legal tests.
The two most important principles addressed at this stage concern proportion-
ality and minimisation, which both relate to collateral damage. First, propor-
tionality prohibits any Decision (i.e., a combination of a target, capability and
method of delivery) which causes incidental civilian harm excessively dispropor-
tionate to the concrete military advantage anticipated (API Art.57(2)(a)(iii)).
As with the test in Art.57(3) above, this involves a comparison between military
advantage and collateral damage. Multiple options can be considered ‘propor-
tionate’ as long as the threshold of excessiveness is not exceeded [31]; in other
words, proportionality effectively sets a maximum threshold of how much col-
lateral damage remains acceptable vis-à-vis the anticipated military advantage.
If we define this threshold as p, we can formalise2 the rule as:

2 A similar approach to the modeling of proportionality rule can be found in [52].
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if ∃Dx∈D s.t.
IHx

MAx
≤ p then status(Dx) = legal else status(Dx) = illegal

(2)
It is not sufficient to only look at proportionality. IHL also mandates that

incidental harm to civilians must be minimised to the furthest extent feasible
(API Art.57(2)(a)(ii)). Essentially, “[i]f there is a choice of weapons or methods
of attack available, a commander should select those which are most likely to
avoid, or at least minimize, incidental damage” [26]. This obligation involves
comparing different options in terms of capabilities, operational constraints and
methods of delivery. For instance, applying this test may result in less accu-
rate weapons being discarded, altering the timing of attack, or selecting a less
destructive damage mechanism [37]. Commanders are not expected to do the
impossible: the corollary of feasibility empowers commanders to take into con-
sideration all relevant circumstances, including those relevant to the success of
military operations [37]. If too much military advantage is lost due to a particu-
lar minimisation measure, they are permitted to select a more reasonable option
that better balances the humanitarian and military considerations in play [40].
In a binary comparison therefore, this rule would be formulated:

if ∃Dy∈D∀Dx∈D\Dy
:

IHy

MAy
<

IHx

MAx
then select Dy (3)

It must also be emphasised that because proportionality and minimisation
are both concerned with the variable of collateral damage (IH), the tests can
be disregarded in cases where this variable does not factor [14]. If the weapon
is projected to function only in a military-exclusive environment, for example,
these tests may be skipped.

Finally, there is one additional requirement that must be mentioned at this
stage related to weapons which are inherently illegal . Customary law generally
recognises two aspects which make a weapon unlawful per se: that of causing
unnecessary suffering and of being inherently indiscriminate [37,45]. In addi-
tion, weapons treaties may be in force for the belligerent which limit the use
of certain weapons beyond what customary law requires [4]. While these are
important legal restrictions, it is irregular for these weapons to reach the target-
ing stage: It is the role of weapons reviewers to filter out such weapons during
development and adoption [23,48]. Nevertheless, it cannot be ruled out that a
weapon fulfilling such criteria actually reaches the front lines at some point. To
guard against this possibility and maintain IHL-compliance, we add this func-
tion to allow the AI to deny its own use if its deployment would be unnecessarily
injurious, inherently indiscriminate or prohibited by treaty.

During (4) Capability assignment up to the execution moment, a series
of final precautionary measures are enacted. In part these involve continuous re-
tests of all previous obligations on a more detailed level [35]. The reason for this
is to ensure that all input assumptions related to the classification of the target,
its military worth and the collateral damage estimations underlying the previ-
ous decisions remain applicable. Related to this, IHL also requires cancelling
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the ordered attack if it becomes known throughout this period that any of these
assumptions are no longer valid (API Art.57(2)(b)). In addition, advance warn-
ing must be provided in cases where civilians can be affected (API Art.57(2)(c)),
although this duty only applies in cases where this is reasonable, i.e., where it
would not compromise the success of the attack [37].

Finally, during (6) Assessment, a legal obligation that could be relevant
is the duty to suppress and repress. It is part of the broader obligation to
respect and ensure respect for IHL at all times [1], and involves both general
measures to prevent and address violations of IHL (‘suppression’) and, in case
a serious breach has occurred, that the persons responsible for such violations
be held criminally responsible (‘repression’) [1]. Thus, requirements related to
foreseeability, understandability, traceability and the keeping of digital records
may become relevant at this stage [27].

Fig. 3. Overview of legal tests and inputs during the targeting cycle

A graphical summary of targeting phases and the corresponding legal tests,
in addition to supporting actions that contribute toward the fulfilment of these
legal obligations, are depicted in Fig. 3. Legal tests are represented by orange
boxes, important inputs by purple boxes, and the formulae described above by
black circles. The framework is intended to be function-agnostic, but whether
each test is to be applied by a human or an AI will depend on the specific AI
under consideration. If the execution of a particular phase is left to an AI, then
it must be demonstrated that the AI in question is capable of executing the legal
tests necessary for that phase [4].
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4 The General Framework of the Autonomous Targeting
System

In the previous section, we described the general targeting sequence and the
legal tests that must be applied during each step for lawful use of force. In this
section, we are going to present the general structure of our autonomous tar-
geting system which incorporates these legal tests into its functionality. Note
that we will not discuss any particular targeting scenario, but rather introduce
a general (function agnostic) framework which is IHL-compliant. Moreover, we
will not discuss the technical details of the machinery which can be used to
implement the targeting system, but only propose a structure and possible tech-
niques which may allow for creation of a targeting system which can observe the
legal requirements identified in Sect. 2. Further technical details of this system
will be discussed in future papers. We realize that some functionalities may still
be very difficult to implement in real life systems (e.g. distinguishing between
combatants and civilians) [43]. However, we can expect that such modules, at
least for some tasks (e.g. distinguishing military and civilian aircraft), will be
feasible in the near future.

One of the most important assumptions on the basis of which we designed our
model is rooted in the observation that although the transparency and explain-
ability requirements are crucial for many legal tests [27], the requirements for
the cognitive elements of the decision process are less restrictive. IHL is a purely
normative framework and does not provide rigid requirements or standards for
commanders when conducting tests which involve MA (military advantage) and
IH (incidental harm) as variables. In fact, the opposite is true: these assessments
are frequently described as eminently qualitative and subjective in nature [3].
On the basis of the above, we can assume that at least some functions of the
cognitive part can be created with the use of much less transparent data-driven
approaches, especially deep learning neural networks.

One prominent element of the procedure described in the previous section
is the comparison between anticipated military advantage and anticipated inci-
dental harm. Obviously, while making his decision, a human commander does
not represent either variable in a quantifiable form. An autonomous AI-driven
model, however, requires not only a quantifiable representation, but also a rep-
resentation which allows for their formal comparison [5].

We will use values as a central concept allowing for representation of both
military advantage and incidental harm. Values we understand as an abstract
(trans-situational) concept which allows for the estimation of a particular action
or a state of affairs and which influences one’s behavior. Consequently, on the
basis of such a definition, we assume that particular values can be satisfied to a
certain degree [53]. Such a definition of value can be seen as a kind of abstraction
of concrete results of an action, and allows us to use them as a central concept
in our model where they play an important role as an intermediate concept
representing an abstraction of a targeting situation.

On the basis of the above, we provide a discussion of how, from a technical
viewpoint, the requirements of each stage of the targeting process can be fulfilled.
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Since this is a position paper presenting the overall structure of the system, we
will not enter into the technical details of particular functions used in the model,
unless it is necessary to make the model understandable or when it constitutes
a key element of the discussion. More detailed presentations of the technical
nuances will be included in future work.

A battlefield is a multiagent environment par excellence featuring many
allied, neutral and adversarial agents which the system must be able to under-
stand and account for [36]. In our framework, we present all functions as if they
are fulfilled by a single agent for simplicity. In actual systems, it is possible that
several agents are involved which contribute together toward the execution of
the framework’s different functions, or that particular functions are performed by
distinct agents working together. Additionally, input data such as signal intel-
ligence may be obtained from an allied agent, which can either be a human
observer or another AI unit such as a reconnaissance drone [49]; similarly, the
final decision resulting from our framework can be effectuated by an agent on the
frontlines such as a human squad or combat robot. These permutations do not
affect the viability of our framework as long as all functions are executed correctly
by the agents involved and, in the case of collaborating agents, all necessary tests
take into consideration all involved agents. With regard to adversarial agents,
sufficient robustness and adaptability against opponents’ efforts to disrupt the
system’s proper functioning must be made into important design requirements
[12].

5 The Structure of the System

In this section we introduce the general structure of the proposed system.

5.1 The Basics of the Model

Firstly, we discuss the basics:

– Introduction of goals. In the first stage of the targeting process, the com-
mander performs the analysis of the desired state on the strategic and opera-
tional levels. Since such an analysis is performed from a broader perspective,
taking into account the general goals of military operations, we argue that for
the autonomous device, such a goal can be represented as a set of thresholds
of a group of values which constitute a more general value military advantage.

– Input data. In order to perform all required tests and to decide which
decision should be made, some necessary data has to be prepared. Firstly,
the agent should distinguish a set of available actions with their anticipated
results and evaluate them in the light of MA and IH. In order to fulfill this
stage, a set of preparatory tasks should be performed:

• Generation, on the basis of signal intelligence and the general circum-
stances of the case (denoted by S), of the set of decisions which can pos-
sibly be made in given circumstances. By D we denote a set of available
decisions.
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• Prediction of the result of every decision from the set. Note that for the
tests described in the previous section, the levels of MA and IH relate to
the anticipated results of decisions, which means that they are by nature
uncertain. Let R be a set of all possible results of actions (decisions from
set D) and let PR be a set of conditional probabilities of those results,
given a particular situation and decision.

• Evaluation of the decision results in the light of the set of relevant values.
Suppose a set of decision results R and a set of functions ΦV which returns
the level of satisfaction of a particular value vx by result ry. By V R we
denote a set of levels of satisfaction of all values by the results of all
available decisions.
Since function Φ has a crucial character for our model, we briefly present
here how it can be obtained. The goal is to find a function which for
every possible result (r ∈ R) can predict the level of satisfaction of every
value (the level to which a predicted result of a decision would satisfy
the relevant value, e.g. military advantage, life of civilians, etc.). Suppose
that every result from set R (possible results of actions) will be evaluated
and labelled by human annotators in the light of every value (by assigning
a number representing the level of satisfaction of a given value). On the
basis of such data and a ML-based regression mechanism, a regression
function can be trained which can predict the level of satisfaction of a
given value on the basis of a particular result. A more detailed analysis
and discussion of this approach will be presented in future work.

• Calculation of the expected level of satisfaction of a particular value (it
can be calculated on the basis of probabilities of results PR and evalu-
ation of the decisions’ results V R.) By EV we denote a set of levels of
satisfaction of all values by all available decisions.

5.2 The Structure

In this section we present the structure of the proposed system:

– Extraction of available decisions is responsible for obtaining a set of available
decisions (S is an input, D is an output of the module).

– Result prediction module is responsible for predicting results of decisions with
their probabilities (D and S are inputs to the module, while PR and R are
outputs).

– Evaluation module is responsible for performing function φ (G, S, and R are
inputs to the module, V R is an output).

– Parameters’ extraction module is the module which returns the set of param-
eters of decisions. By the parameters of a decision we understand details of a
decision such as type of weapon, timing, etc. D is an input, PAR is an output
of the module.

– Expected evaluation module is responsible for calculating the expected evalu-
ation of decisions in the light of values (V R and PR are an input, EV is an
output of the module).
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– Treaties fulfillment module is responsible for performing function filtering
decisions which do not fulfill treaties (PAR and FPAR are inputs, DTR is
an output of the module). If by FPAR we denote the set of requirements
imposed by treaties, then the module can work as a logic-based reasoning
mechanism.

– Goals fulfillment module is responsible for performing function filtering deci-
sions which do not fulfill the commander’s goals (G and EV is an input, DG
is an output of the module). If by a goal we understand the minimal accept-
able levels of values’ satisfaction (see [53]), then a given decision will fulfill
the goal if the expected level of satisfaction of relevant values will be above
the thresholds assumed in G.

– Harm minimization filter is responsible for the process of minimization of
incidental harm (EV is an input, DMH is an output). A given decision will
pass the test if for this decision formula 3 will be fulfilled.

– Proportionality test is responsible for performing the proportionality test (EV
is an input, DP is an output). A given decision will pass the test if for this
decision formula 2 will be fulfilled.

– Article 57(3) Filter is responsible for the process of filtering decisions which
for the same military advantage causes greater harm to civilians (Article
57(3), EV is an input, DT is an output). A given decision will pass the test
if for this decision formula 1 will be fulfilled.

– Fulfillment of requirements is responsible for joining together results of the
above tests (DT , DP , DMH, DG, and DTR are inputs and DAV is an
output). A given decision will fulfill this requirement if all tests have been
passed.

– Decisions ordering is responsible for ordering available decisions (those ful-
filling the above tests) on the basis of the level of satisfaction of Military
Advantage (DAV and V R is an input, Decisions is an output of the mod-
ule).

The structure of the proposed model is presented in Fig. 4. The model features a
clear distinction between (1) the cognitive part of the decision process, including
functions extracting available decisions, their results, and evaluation (the upper
part of the scheme) and (2) the reasoning part of the decision process, including
legal tests, goal test, treaties test, etc. (lower part of the scheme). This distinction
between the parts of the decision process is a notable strength of the framework
we propose because it provides some degree of transparency and explainability.
These attributes have been identified as crucial both for the lawful use of AI
weapon systems and upholding the responsibility of its users [27].

As such, the structure we propose relies on the conviction that for the sake
of transparency, legal tests should be performed in an explainable way, i.e. the
system should explicitly check whether a given decision passes all necessary
tests, while the other elements of the decision process can utilize data-driven
approaches. Such an approach is compliant with the general approach regarding
hybrid systems, in which the data-driven part is used for extraction of the input
data for a knowledge-based system, and generally allows for filling the so-called
semantic gap between data and knowledge [29].
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Fig. 4. Graphical illustration of the system’s structure

6 Discussion and Conclusions

The paper introduces a framework for creating an AI-based hybrid targeting
system for military autonomous agents capable of operating within the bounds
of IHL. The main goal was to present a way how IHL can be integrated from
the ground up into a military AI system in order to better guarantee IHL-
compliance. We present the main stages of the targeting process, identify which
legal requirements are imposed by IHL and what variables and elements these
tests encompass, and introduce a mechanism which allows for the development
of a system fulfilling those requirements.

To achieve this, we introduced a model of a hybrid system which combines
data-driven parts (possibly created with the use of deep learning neural net-
works) and knowledge-driven parts. This type of system composition allows us
to draw from the advantages of both AI paradigms, while also compensating
for at least part of their respective disadvantages. In particular, one major dis-
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advantage of data-driven AI, lack of transparency, is overcome to some extent,
which is a boon for IHL compliance.

Further development of our framework requires the verification of the model.
Since this paper presents a general model of the decision-making process only,
we cannot introduce here a fully-fledged, technical verification of our proposal.
Instead we briefly sketch how the verification of the model can be performed.

Since our framework consists of two parts - cognitive and reasoning ones -
the verification should be performed twofold:

– The cognitive part should be verified on the basis of statistical quality of all
modules. For example, the quality of sensors, the accuracy of predictions and
evaluations, etc. The verification of this part is task-dependent. For example,
signal intelligence should be verified in the light of accuracy of object detection
related to the specific sensors: cameras, recorded sound, satellite pictures
etc.; the prediction module should be evaluated in the light of accuracy of
predictions made; etc. Every module should be verified in the context of the
concrete intended purpose for which the device is designed [28].

– The reasoning part requires formal and legal verification of all tests (see Sect. 3
where we discuss some legal aspects concerning the model) and the whole
reasoning process and the formal and experimental analysis of the reasoning
machinery used to performing necessary tests, which will be presented in our
future works.

Our hypothetical framework was developed with the aim of identifying and
elaborating the functionalities which would be necessary for AI-driven systems
to conform to IHL. We make no practical pronouncements concerning technical
implementation or in what type of weapon this framework would be incorpo-
rated, as these details would depend on the military organisation’s specific needs.
In addition, it is possible that comparable systems are currently under devel-
opment by militaries. These systems are likely to remain confidential and thus,
it is difficult for us to test our framework vis-à-vis those systems. Our proposal
nevertheless can be used as a reference or guideline for both current and future
constructors intending to build systems with IHL compliance in mind.
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Abstract. A common problem facing an organisation of autonomous agents is
to track the dynamic value of a signal, by aggregating their individual (and possi-
bly inaccurate or biased) observations (sensor readings) into a commonly agreed
result. A meta-problem is to explain the observation of the value: to say what
rules produced the signal value that has been observed. In this paper, we use the
Regulatory Theory of Social Influence and self-organising multi-agent systems
to simulate a Distributed Information Processing unit (DIP) trying to solve such
a meta-problem. Specifically, we examine what configuration of initial condi-
tions on the DIP produce what type of epistemic condition for the collective, and
determine the explanatory adequacy of this condition, i.e. to what extent does the
DIP’s explanation of the rules match the actual rules. The results offer some fur-
ther insight into the need for epistemic diversity for self-improvement in dynamic
self-organising systems.

Keywords: Distributed information processing · Explanatory adequacy ·
Knowledge processing · Social influence · Multi-agent systems

1 Introduction

A commonly recurring problem confronting an organisation, composed of autonomous
agents connected by a (social) network but lacking a central authority, is to map a set
of individual measurements, judgements, votes, opinions or preferences into a single
collective output. This problem is typically encountered in social systems (e.g. jury
trials, deliberative assemblies, etc.) as well as cyber-physical systems (e.g. cybernetic
systems, sensor networks, etc.)

An instance of this general problem is truth tracking, when the task of an organi-
sation of autonomous agents is to track the dynamic value of a signal, by aggregating
their individual (and possibly inaccurate or biased) observations (sensor readings) into
a commonly agreed result. In this sense, the organisation can be seen as a Distributed
Information Processing (DIP) unit. However, such a DIP can also face a meta-problem:
to explain the observation of the value – i.e. to say what rules produced the signal value
that has been observed. In this case, the DIP is not trying to pool its diverse opinions
to order to produce a social choice, but to pool its diverse knowledge to produce a
‘plausible’ explanation.
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This paper investigates a solution to this problem using the Regulatory Theory of
Social Influence (RTSI) [12]. RTSI is chosen because it has two unique propositions:
firstly, that social influence is bilateral, i.e. that as well as sources seeking targets to
influence, targets are seeking sources by whom to be influenced; and secondly that in
addition to exchanging opinions, people also exchange information processing rules.
Both of these propositions are essential for addressing the problem: the first because
we want experts or ‘specialists’ to emerge, because they know more and are better at
solving the problem; and the second because we want their knowledge (of the rules) to
flow over the social network.

Therefore, we implement an algorithmic model of RTSI within a self-organising
multi-agent systems’ to simulate a DIP trying to solve such a meta-problem by propos-
ing (collectively) a set of rules to explain the observed value that may (or may not)
match the actual rules that produce the value. Specifically, we experimentally investi-
gate what configuration of initial conditions on the DIP produce what type of epistemic
condition of the DIP.

We then want to evaluate the explanatory adequacy of the DIP’s solution. The term
‘explanatory adequacy’ is used in linguistics to describe an analysis which provides
a ‘reasonable’ account of a linguistic phenomenon [18]. We want to know if the DIP
can produce a ‘reasonable’ or ‘plausible’ explanation, based on the extent to which its
collective explanation matches the actual cause (i.e. the ground truth). We measure the
difference using a suitable metric (cosine similarity) and use that as an indicator of
explanatory adequacy.

Accordingly, this paper is structured as follows. Section 2 establishes the back-
ground of DIP and RTSI, and gives a formal specification of the problem. Section 3
describes the experimental design, Sect. 4 defines the multi-agent simulation, and
Sect. 5 presents a set of experimental results. After a consideration of related and further
work in Sect. 6, Sect. 7 concludes that these results offer some further insight into the
need for epistemic diversity for self-improvement in dynamic self-organising systems.

2 Background: DIP, RTSI and Plato’s Cave

In this section we review the background to this work: organisations as distributed infor-
mation processing units (DIP), a theory of social influence in such units, the Regulatory
Theory of Social Influence (RTSI), and a specification of the problem we are trying to
solve, which has similarities, at an abstract level, to the problem posed in the allegory
of Plato’s Cave (see http://classics.mit.edu/Plato/republic.mb.txt).

2.1 Distributed Information Processing Units (DIPs)

Many organisations, in the form of complex cyber-physical, socio-technical or social
systems, often have to function as Distributed Information Processing units (DIPs), i.e.,
although composed of many different autonomous components, the components have
to act as a collective to transform a set of data inputs into a single output. Although,
depending on the context, the precise definition differs (cf. [23] vs. [12]), in this paper
the term DIP refers to an organisation of autonomous, (socially) networked agents

http://classics.mit.edu/Plato/republic.mb.txt
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encountering a requirement to self-manage their diverse, dispersed, and potentially
incomplete and inconsistent knowledge.

In general, successful knowledge management enables a DIP to make correct deci-
sions, identify expertise, maintain collective memory, provide education, spark innova-
tion and even accumulate “wisdom”. A more mundane function, perhaps, is to converge
on a ground truth from a set of observations that may have been influenced by environ-
mental or community bias (cf. [20]). Here, though, rather than converging on the truth,
we want to study how a DIP can produce explanatory adequacy: can the DIP converge
on the rules that produced that truth, rather than the truth itself. In this situation, we need
a theory which considers social influence not just in terms of the exchange of opinions,
but also in the exchange of processing rules. The theory we use is the Regulatory Theory
of Social Influence.

2.2 Regulatory Theory of Social Influence (RTSI)

RTSI is a psychological theory proposed by Nowak [12] that focuses on the target’s per-
spective of social influence, and specifically, examines how the targets look for sources
by whom to be influenced. This theory emphasises a target’s intentions and strategies,
and posits that targets actively monitor others’ opinions and behaviours, and are fully
engaged in the controlling the influence process.

In this way, a target tries to optimise its decision-making and conserve its own
resources by delegating the tasks of information gathering and/or information process-
ing to individuals that they credit for the such tasks. This enables targets to leverage
others’ network, processing capacity or knowledge, maximising their access to infor-
mation and information processing rules. Therefore, social influence becomes an instru-
ment of targets to maximise their individual cognitive efficiency and quality of their out-
comes, which are reflected by improvements in individual and collective performance
over time.

2.3 Problem Specification

In this study, the situation to be addressed by a DIP, using RTSI, is illustrated in Fig. 1.
The DIP is embedded in an environment, in which there is a process P that converts
some set of inputs into an output. The process P is parameterised by a set of n process-
ing rules, each with an associated weight in [0..1]. This set of rules, denoted by K, is
the ground truth knowledge given by:

K = {(ri, wi) | i ∈ [1..n] ∧ Σn
i=1wi = 1.0}

We denote by Kr the set of rules in K (without the weights).
Each agent a in the DIP ‘knows’Ka, which is some subset ofm rules ofKr,m ≤ n.

Each agent associates a random weight with each of its rules, with the weights nor-
malised to sum to 1.0, so that the knowledge of agent a is:

Ka = {(r1, w1), . . . , (rm, wm)} such that ∀i, 0 ≤ i ≤ m.ri ∈ Kr

Note, that if i = 0, then the agent knows nothing.
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P
K

K = {(r1, w1), (r2, w2), . . . , (wn, rn)}

K(self )
r ⊆ Kr

a1

K(self )
r ⊆ Kr

a2 K(self )
r ⊆ Kr

aN

DIP

inputs output

KDIP

Environment

Fig. 1. The Problem: Is KDIP an ‘adequate explanation’ for output of P(K)?

The problem for the N agents comprising the DIP is to use their partial and dis-
tributed knowledge to ‘explain’ the solution to process P as parameterised by K. This
is done by each agent offering its own explanation Ka for parameters to process P , and
these are ‘aggregated’ into a collective explanation KDIP . In addressing this task, the
agents have three ‘tools’ at their disposal:

– sharing: using RTSI, an agent can ask one of the neighbouring agents in its social
network, for a processing rule (or rules) that it (the neighbouring agent) used in its
‘explanation’ of K.

– feedback: each agent receives feedback from the environment on the quality of the
collective knowledge and their own contribution, which is used to update ‘attitudes’
to itself and a neighbouring agent (if it asked one); and

– ‘discovery’: new agents joining the system may bring new knowledge to the system,
which may then be shared as above, using RTSI.

Given this context, we investigate:

– what different initial conditions of the DIP, including population variation (e.g.
static, dynamic), rate of social learning, and rate of ‘discovery’, . . .

– . . .produce what different epistemic condition on the individual knowledge bases,
i.e. the similarity of {Ka | a ∈ N}, which we identify as either diversity, incongru-
ence, or stagnation, and. . .

– . . .evaluate explanatory adequacy of KDIP , i.e. the (dis)similarity of KDIP to K.

In passing, we note that this problem can be seen, at its most abstract, as a form
of Plato’s Cave, wherein a group of people in a cave try to derive the true nature of an
object from the shadow it casts on the cave wall. Note, though, there are three perspec-
tives on knowledge: K, the ground truth knowledge, KDIP , the aggregated knowledge
of the DIP, and the “knowledge potential” K∪, which is an epistemological limit on
what it is possible for an agent to know, because this knowledge exists somewhere in
the DIP.

However, as in Plato’s Cave, this is not a once-off, one-shot problem. The overall
situation is as illustrated in Fig. 2, where it can be seen that the DIP composition is
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Fig. 2. The DIP unit and knowledge changing over time

dynamic (agents may leave and join), and the knowledge made available (“discovered”,
or introduced along with new agents) also varies.

Therefore, “expertise” in the group is also temporary, and knowledgeable agents
who may be good at the task may also be lost to the group. As such, there are two
perspectives on the collective: one being a functional perspective as a DIP, where the
collective pool knowledge and identify expertise in order to accomplish a common goal
(cf. [1]), and the other being a societal perspective, where the group is using social
influence as a way to persuade and change attitudes about a common problem (cf. [13]).
Accordingly, we will use the terms ‘experts’ or ‘specialists’ in the DIP and the sources
of influence in RTSI inter-changeably, and equate knowledge with the processing rules;
likewise the terms DIP, community and collective are all inter-changeable.

3 Experimental Design

To address the problem defined in the previous section, this section details the experi-
mental design, firstly specifying the initial conditions on the DIP, (i.e. the independent
variables), and secondly specifying a metric for computing the DIP’s epistemic condi-
tion and explanatory adequacy (i.e. the dependent variables).

3.1 Initial Conditions for the DIP (Independent Variables)

For specifying the initial conditions on the DIP, we define two independent experimental
variables, F and R. The former determines the rate of change of the population and rate
of change of knowledge. The latter defines a constraint on the RTSI algorithm which
affects how the agents communicate the processing rules and how they influence one
another.

The DIP will operate in a succession of T epochs, and every t < T epochs (except
in the static condition) some new agents are added and some are removed. In each epoch
the DIP will produce and evaluate KDIP against K, so F can have one of eight values:
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– static: The population consists of N agents, they remain active throughout all T
epochs. Each agent a is initialised with knowledge Ka being any subset of K.

– dynamic: The population consists of N agents, and every t epochs a new generation
of N

10 agents joins the network and N
10 of the existing agents leave. The agents are

initialised having any subset of the eight processing rules.
– restart: The population consists of N agents, and every t epochs N

10 new agents join
the network and N

10 leave. The 1st generation of N agents is initialised so that each
agent’s a knowledge is a subset of {(r1, w1), (r2, w2)}. The next generation, which
consists of N

10 agents, is initialised knowing either a new rule or no rule, so each new
agent’s knowledge Ka is either {(r3, 1)} or {}, and so on till the generation the gen-
eration that knows {}, or {(r8, 1)}. After that generation, the upcoming generations
are initialised with knowledge Ka being any subset of K.

– iterate: The population consists of N agents, and every t epochs N
10 new agents

join the network and N
10 leave. The 1st generation is initialised knowing {(r1, 1)},

the next knows a new rule, so their knowledge is {(r2, 1)}, and so on, so every
new generation knows only a new processing rule and the only way to access past
knowledge is to interact with others.

– add rapid: The population consists of N agents, and every t epochs N
10 new agents

join and N
10 leave. The 1st generation of N agents is initialised so that each agent’s a

knowledge is a subset of {(r1, w1), (r2, w2)}. The next generation knows what their
ancestors knew and a new processing rule, so the knowledge of each new agent a is
a subset of the rules {(r1, w1), (r2, w2), (r3, w3)}, and so on. So, new knowledge is
progressively added to the population through the new generations.

– add slow: The is scenario is similar with add rapid, but, in this setting, the new
generations are added every t ∗ 1.6 epochs instead of t.

– add rapid/slow long: New generations are added every t/t ∗ 1.6 epochs as per add
rapid/slow, but the simulator runs for T ∗ 2 epochs.

Additionally, for each of the different values of F we specify two ways of commu-
nicating the processing rules R:

– max: The sources can only share only one processing rule, therefore they select the
rule with greatest weight, which corresponds to the rule that they perceive as the
most important piece of knowledge.

– all: The sources share their knowledge base, so the target gains access to all the rules
that the source knows.

3.2 Epistemic Condition and Explanatory Adequacy

To ‘measure’ the epistemic condition and the explanatory adequacy of the DIP under
different initial conditions, we require a metric to measure diversity in two dimensions:

– the epistemic diversity, i.e. how different the agents’ knowledge bases are from each
other, given by

∑N
i=1

∑N
j=1 diff(i, j); and

– the explanatory adequacy, i.e. the divergence of the DIP’s knowledge from the
ground truth knowledge, given by diff(KDIP ,K).
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For the diff function, there are many metrics to measure diversity, such as Euclidean
Distance, Manhattan Distance, KL divergence etc. We use cosine similarity, because
we want to identify the variations between the vectors of weights on processing rules –
which represent agents’ knowledge and ground truth of the environment – and therefore
need a metric that focuses on the orientation rather than the magnitude.

Cosine similarity is a metric used for the comparison of the similarity between two
non zero vectors A and B in R

n. Specifically, it measures the cosine of the angle
between the two vectors, and its value is given by Eq. 1:

cos sim(A, B) = cos(θ) =
A · B

‖A‖‖B‖ =
∑n

i=1 AiBi
√∑n

i=1 Ai
2
√∑n

i=1 Bi
2

(1)

After defining the metric for evaluating the performance of the collective and the
individuals, we need then to define the two groups of the population being observed.
The first group is the participantswhich refers to all the agents that have been randomly
selected to participate to the next epoch. The other group, who are the ‘specialists’, is a
subset of the participants and identifies the sources of processing rules. In particular, in
this context, if agent i asks for processing rules agent j, and j asks agent k, then specialist
is considered the agent k which constitute the actual source of influence. These agents
don’t have any notion of expertise, but they are the ones credited by their network.

In the beginning of the experiments, all the agents give equal credence for process-
ing rules to all the agents of their network, they are initialised with different knowledge,
and consequently, they give different processing rules to the agents that ask them, and
the credence that others give to them is adjusted overtime based on the utility of the
information that they offer.

Aiming to identify the capability of the agents to adequately explain the environ-
ment (explanatory adequacy), we computed the cosine similarity of the knowledge
bases Ka of agents with the ground truth K, which we denote with CE1 as well as
the cosine similarity of the knowledge bases Ka of specialists with the ground truth K,
which we denote with CS1. Moreover, to observe knowledge distribution and diversity
through the exchange of processing rules (epistemic diversity), we measured the differ-
ence between the pairwise comparison of the cosine similarity of the knowledge bases
Ka of the agents and the number of participants divided by the difference between the
square of the number of participants and the number of participants which we denote
by CE2, and difference between the pairwise comparison of the cosine similarity of
the knowledge bases Ka of the specialists and the number of specialists divided by the
difference between the square of the specialists and the number of specialists, which
we denote by CS2. Moreover, the calculation of CE1 and CE2 is given by Eqs. 2 and 3
respectively, and the calculation of CS1 and CS2 can be computed by substituting par-
ticipants with specialists on those equations.

CE1 =
∑participants

i=1 cos sim(Ki,K)
∑participants

i=1 i
(2)

CE2 =

∑participants,
i=1

∑participants,j �=i
j=1 cos sim(Ki,Kj) − ∑participants

i=1 i

(
∑participants

i=1 i)
2 − ∑participants

i=1 i
(3)
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4 Formal Specification

This section provides the formal specification of the multi-agent model. This section
defines the agents of the system, the environment in which they exist as well as the RTSI
algorithm for knowledge processing based on which the agents act in this environment.

4.1 The Environment

The environment E consists of a network of agents which try to identify the complete
knowledge base K corresponding to the ground truth. The agents are connected through
a network G(N ,m, μ) which is a Klemm-Eguiluz network [8] with N nodes (where
each node is a agent), m the number of fully connected agents used for the generation
of the network and characterised as “active”, and μ the probability of a new agent to be
attached to one of the “active” agents (otherwise the agents attaches to an inactive agent
and becomes active, substituting a randomly selected agent from the active agents) as
described in [17]. This network type was selected because it combines all three prop-
erties of many “real world” irregular network, that is high clustering coefficient, short
average path length, and scale-free degree distribution.

4.2 Agent Specification

The autonomous networked units of the population are described by the term “agents”.
The specification of the agents is based on the specification in [15], and is given by the
6-tuple defined in Eq. 4:

i = 〈SN ,Ki, sci,TNi , a, b〉 (4)

where SN i is its social network (connected neighbours), Ki its knowledge, which is a
subset of the knowledge in the environment K (possibly with different weights), sci is
a measure of self-confidence of its knowledge (relative to its neighbours), in whom it
also gives credence τi,j for each agent j ∈ SN i (cf. [3]). These values are stored in an
ordered list of credence to neighbours TNi , and are updated each time agent i asks a
neighbour j for knowledge (i.e. for a processing rule or rules) depending on how well
(similarly) this neighbour approximates the complete knowledge of the environment K.
Each agent orders its neighbours in descending order of credence. Each agent has also
two reinforcement coefficients a, b which define the rate of change of self-confidence
and credence to the network after each epoch.

4.3 Algorithm

The algorithm is an iterative process of T epochs, and in every epoch each participating
agent goes through the steps described in Algorithm 1. Therefore, in every epoch, a
subset of agents A is randomly selected to participate in the next epoch participants ⊂
A. The aim of the agents is to manage to produce a good approximation of the complete
knowledge base of the environment K, while they are only given only a subset of this
knowledge.
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Throughout the epochs each agent looks for sources in the DIP that can provide the
processing rules that produce the best approximation of the complete knowledgeK. The
knowledge of theDIP can be accessed by asking a neighbouring agent. Therefore, in each
epoch, each agent iterates over its social network SNi according to the order of credence
TNi , to find the source to ask. The neighbour selected j is questioned how similar is its
knowledgewith the complete knowledge baseS∪ and also the agent asking computes the
similarity of its own knowledge with the ground truth S(self). If the neighbour asked can
offer a better approximation of the ground truth than the agent asking has, then the agent
proceeds in asking the neighbour for processing rules. Depending on the value of the
independent variable R, the agent that asked for processing rules (target) either receives
as a reply a processing rule with a weight (which is the processing rule of the neighbour
j that has the greatest weight for j), if R = max , otherwise it receives all the processing
rules and their weights. Then, i is integrating this knowledge K∪ to its knowledge Ki.
After that follows the process of reflection, in which each agent updates its credence to
the neighbour selected τij and its self-confidence sci depending on whether it can more
adequately explain the environmental knowledge than its neighbour.

wriavg =

∑participants
j=1 wrij
∑participants

j=1 j
(5) wric =

wriavg∑n
i=1 wriavg

(6)

In this way, the collective forms a knowledge KDIP which is the outcome of the
aggregation of the participating agents’ knowledge and normalising the weights, as
shown in 5 and 6. The collective/DIP knowledge is defined as in 7.

KDIP = {(r1, wr1c), ..., (rr , wrrc)} (7)

Algorithm 1: RTSI for knowledge seeking: for each agent i

j = selected neighbour from network ;
S(self ) = cos sim(K(self ),K);
S∪ = cos sim(K∪,K);
if S(self ) < S∪ then

if R = max then
K∪ = {(rx, wrx)|(rx, wrx) ∈ Kj ∧ ¬∃(ry, wry ) ∈ Kj .wry > wrx} ;

else
K∪ = Kj ;

end
end

if S(self )
i > S∪ then
sci = sci + a ∗ (1 − sci);
τi,j = τi,j − b ∗ τi,j ;

end
if S(self ) < S∪ then

sci = sci − b ∗ sci;
τi,j = τi,j + a ∗ (1 − τi,j);

end
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According to this formal specification, a multi-agent simulator has been imple-
mented in Python3, which is an extension of the system presented in [14] to include the
exchange of processing rules. This simulator was used to run a series of experiments,
the results of which are present in Sect. 5.

Table 1 presents the simulator parameters for the agents and the RTSI algorithm.
This specifies either a fixed representative value used in the experiments (e.g. the num-
ber or agents, reinforcement coefficients, etc.) or a range of values for those that are
randomly assigned (e.g. the individual agent knowledge bases). Other experiments
could examine different combinations of initialisation of these variables, e.g. to look
for effects of scale, but this is left for further work.

Table 1. Simulator Parameters and Variables

Symbol Description: factor of agent i Initial Condition/Range

N Network of agents 100

m Total number of edges N
10

μ Number of edges to ‘active’ agents 0.75

participants Agents participating in the next epoch N
2

Ki Individual knowledge base {(r1, w1), . . . , (rm, wm)}, ∀i, 0 ≤ i ≤ m.ri ∈ Kr

rk Processing rule k k = {1,2,...,r}
wrk

Weight of rule rk 0 ≤ wrk
≤ 1

sci Self-confidence for similarity of knowledge 0.5

a, b Self-confidence & credence reinforcement coefficients 0.1, 0.1

SNi Social network 1 to N agents

TNi Ordered list of credence to social network list length from 1 to N
τij Credence to agent j 0 ≤ τij ≤ 1

S(self) cos sim between self and environmental knowledge 0 ≤ S(self) ≤ 1

S∪ cos sim between knowledge of agent (neighbour) asked
and ground truth

0 ≤ S∪ ≤ 1

r∪ Rule proposal of (neighbour) agent asked rk. ∈ Kr

w∪ Weight proposal of (neighbour) agent asked 0 ≤ w∪ ≤ 1

K∪ Knowledge proposal of (neighbour) agent asked {(r1, w1), . . . , (rm, wm)}, ∀i, 0 ≤ i ≤ m.ri ∈ Kr

KDIP Collective knowledge {(r1, w1), . . . , (rm, wm)}, ∀i, 0 ≤ i ≤ m.ri ∈ Kr

wriavg Average weight of rule ri 0 ≤ wriavg ≤ N
2

wric
Normalised average weight of rule ri 0 ≤ wric

≤ 1

5 Experimental Results

This section describes three experiments which investigate what initial conditions on
the DIP produce what type of epistemic condition, and how ‘adequately’ does that epis-
temic condition explain the ground truth knowledge. The experiments range over the
variables F and R of Sect. 3.1 under the initial conditions specified in Table 1, with
T = 5000, t = 300:

– Experiment 1: Static population of agents, with complete fixed knowledge, and
dynamic population with complete fixed knowledge (all the knowledge is available
from the first epoch of the simulation).
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– Experiment 2: Dynamic population with progressive addition of new knowledge but
non-persistence of ‘discovered’ knowledge.

– Experiment 3: Dynamic population with progressive addition of new knowledge and
with persistence of already ‘discovered’ knowledge.

The following subsections describe the results of each experiment in turn, before dis-
cussing some over-arching results in Sect. 5.4.

5.1 Experiment 1: Static and Dynamic Populations

In the first set of experiments, we explore the dynamics of the system for F being set
to static and dynamic, and agents are initialised with any combination of the available
processing rules.

Figure 3 illustrates the evolution of common and specialists knowledge for the dif-
ferent settings. Specifically, the 1st column illustrates the results for static and the 2nd

for dynamic for R being max and all. The black line is calculated according to CE1, the
red based on CS1, the green according to CE2, and, finally, the blue line based on CS2.

Therefore, the black line indicates how ‘adequately’ the DIP identifies the ground
truth K, while the red line indicates whether how ‘adequately’ the specialists identify
the ground truth K. The green and blue lines demonstrate the diversity of knowledge
within the collective and within the specialists, showing the (dis)similarity between the
knowledge of each group.

R static dynamic

max

all

Fig. 3. Exp. 1: Knowledge dynamics for static and dynamic population.

Starting with the static condition, when R = max , the similarity between the pro-
cessing rules of the agents is high, since the group as a whole is influenced by the
specialists to promote a single rule. By contrast, when the sources share all their knowl-
edge (R =all), the community and the specialists similarity is decreased. However, the
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lines corresponding to how well do specialists and community track the environmental
knowledge (red and black) remain low in both cases. This is because the population
is static, therefore the community is prone to ask the sources credited during the first
epochs, regardless of whether they maintained their knowledge. Static populations are
stable but also stagnant and agent don’t increase significantly their processing capacity
although they could (since all the knowledge is discovered).

With the dynamic condition, for both max and all, the agents can better explain the
environmental knowledge. In the former case, the knowledge of the specialists and the
community is continuously modified as illustrated by the fluctuating green and blue
lines. This demonstrates that different epistemes are generated in this condition, and the
system could be characterised as quasi-stable and moving from one temporary equi-
librium to another with different values for its control variables (cf. [16]). In the latter
case, the specialists are well-identified and have significantly higher similarity with the
environmental knowledge than the community; however it seems that the other agents
cannot assimilate this knowledge and the DIP knowledge seems stagnant.

5.2 Dynamic Population, Progressive Addition, non-Persistence

In this experiment, we observe how the system works with a dynamic population (in
which the specialist sources are not so easily identified), there is progressive addition
of new knowledge brought by joining agents, but knowledge is non-persistent (i.e. new
agents only bring new ‘discovered’ knowledge).

Figure 4 illustrates the results for restart and iterate in the first and the second col-
umn respectively.

R restart iterate

max

all

Fig. 4. Exp. 2: Knowledge dynamics for DIP with non-persistent knowledge

In the restart condition, the first generation is initialised with two rules available,
the next joins with the third rule, and so on until the 8th generation that has all the rules
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available (as defined in Sect. 3.1). For R = max , the similarity of processing rules
within the community is high since agents are given only one rule from the sources.
This phenomenon is less striking for R = all , where agents quickly assimilate new
knowledge. Note that when new generations possess only one processing rule (only the
new piece of knowledge), agents consider that they cannot learn from others, and their
knowledge remains narrow (low similarity with the environmental knowledge). How-
ever, after epoch 2100, when all the processing rules are made available for the new
generations, there is a significant increase in the community and specialists’ knowl-
edge because agents have different levels of knowledge (i.e. different similarity with
environmental knowledge) and they seek sources to provide them with missing bits of
knowledge.

The phenomenon of agents not asking for processing rules because they perceive
others as having similar knowledge is even clearer under the iterate condition. Par-
ticularly, in both max and all, most agents seem to have equal knowledge (i.e. equal
similarity of own processing rules and environmental processing rules), due to the fact
that they all have either zero or one processing rule, and consequently only agents hav-
ing an empty knowledge base ask for knowledge. This variation between the empty
knowledge base and the knowledge base containing one processing rule generates the
difference in the similarity of the knowledge of the sources and the community (red and
green lines), with the specialists. Additionally, the fluctuation of the intrinsic similarity
of the collective as well as the group of specialists is caused by the randomness in the
selection of agents to leave and join the network.

5.3 Dynamic Population, Progressive Addition, Persistence

In this experiment, we observe the behaviour of the system under progressive addition
of knowledge, but new agents may bring any discovered knowledge. Figure 5 demon-

add rapid add slow add rapid long add slow long

(1).jpg

(1).jpg

Fig. 5. Exp. 3: Knowledge dynamics for progressively added knowledge.
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strates CE1, CS1, CE2, and CS2 for the add rapid/slow (long) scenarios, for R max in
the first row and all in the second.

The rapid progressive addition of knowledge allows minor improvement both in
short-term and long-term (add rapid and add rapid long). Particularly, in both max
and all, the specialists and community knowledge remains low (red and black lines)
because new rules cannot be assimilated. By contrast, the slow addition fosters epis-
temic improvement (add slow and add slow long). Moreover, in all these scenarios,
when R = max different epistemes are produced because sources share parts of their
knowledge and both the community and the sources develop different beliefs over time.

5.4 Summary of Experiments

To conclude this section, Table 2 summarises what configuration of initial conditions
for the DIP produces what type of epistemic condition of the DIP, and assesses the
capability of the DIP to explain adequately the environment.

Table 2. Summary of experimental results

F R Epistemic condition Explanatory adequacy

Static Max Epistemic stagnation KDIP
� K

Static All Epistemic stagnation KDIP
� K

Dynamic Max Epistemic incongruence Conditionally KDIP ∼= K
Dynamic All Epistemic incongruence Conditionally KDIP ∼= K
Restart Max Epistemic diversity KDIP ∼= K
Restart All Epistemic diversity KDIP ∼= K
Iterate Max Epistemic stagnation KDIP

� K
Iterate All Epistemic stagnation KDIP

� K
Add rapid Max Epistemic incongruence Conditionally KDIP ∼= K
Add rapid All Epistemic incongruence conditionally KDIP ∼= K
Add slow Max Epistemic diversity KDIP ∼= K
Add slow All Epistemic diversity KDIP ∼= K

Starting from static, we observe that with a static population the DIP has a high
similarity of knowledge, and therefore they seem to be congruent, but knowledge does
not seem to be exchanged over the social network. This does not allow further improve-
ment in the system and potential adaptation to a dynamic environment. Moreover, the
collective has a low similarity of knowledge with the environment, which means that
they are not adequately explaining the knowledge K. In contrast, dynamic populations
that have all the knowledge available from the first epochs (dynamic) seem to be more
diverse, and they transition from a status of higher to lower congruence and vice-versa.
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Although for certain periods of time they manage to accurately explain the environment,
there are other periods that they do not succeed in identifying the ground truth.

Moreover, when agents perceive their knowledge to be similar to others knowledge,
they do not ask for processing rules and the collective knowledge stagnates. Specifically,
in the restart condition, during the first epochs where they are given only one processing
rule, agents do not communicate their knowledge. This is also the case for the iterate
condition, where knowledge remains stagnant while the collective is fragmented. There-
fore, we argue that knowledge remains static and the agents do not manage to model
the phenomenon which they observe in the environment, when they consider that oth-
ers are incapable of helping them (perceiving their knowledge similar with their own
knowledge), although they might have different knowledge that is useful for them.

This would suggest that systemic evolution and epistemic diversity require both
knowledge differentiation and the capability of agents to perceive this differentiation.
However, in restart, when all the knowledge becomes available (after 2500 epochs), the
agents quickly increase the utility of the collective knowledge with respect to explana-
tory adequacy and they produce a collective knowledge that is a better approximation
of the knowledge situated in the environment. It is worth noting that the sources seem
to ‘emerge’, i.e. to increase the utility of their knowledge, significantly more than the
community, which shows that the ones identified by the collective as specialists are also
more likely to assimilate new knowledge.

Furthermore, the rapid addition of new processing rules fosters diversity, but the
agents do not have enough time to adapt and assimilate new knowledge; therefore they
can be congruent in the short term but incongruent in the long-term. This cannot guar-
antee that the DIP will manage to produce an adequate explanation of the environmental
knowledge for an extended period. In this case, we observe different epistemes being
generated, which could be considered a demonstration of Foucault’s Theory of Knowl-
edge & Power in cyber-physical systems. However, when agents share all their knowl-
edge (all) the population becomes more congruent with the environment and has the
potential to evolve since it can provide an adequate explanation of the environment.

6 Related and Further Research

Related research has extensively studied issues of consensus formation in complex sys-
tems [11]. More specifically, previous work has focused on the conditions which lead
to the alignment of the network [4], as well as the division of it into multiple opin-
ions [7]. Much effort has also been made to identify the probability of forming a major-
ity depending on the network topology [5].

A baseline for using RTSI as a model of distributed information processing, propos-
ing the exchange of subjective opinions for the formation of a collective decision and
the self-organisation have been established in [15]. This work extends this model of
RTSI in a different direction, and specifically proposes the communication of process-
ing rules not for forming a collective opinion but for developing a collective knowledge
and social explanations. Lopez-Sanchez and Müller [10] suggest that social influence
in the form of hate speech can propagate through the whole virtual community and pro-
pose countermeasures such as education, deferring hateful content and cyber activism
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as mechanisms for altering it. In this research, we argue that social influence can be also
used as an instrument for spreading knowledge and providing explanations instead of
propagating hate and negative opinions.

Additionally, there is a substantial body of literature in topics of information sharing
and norm emergence. Villatoro et al. [22] proposed the use of social instruments to facil-
itate norm convergence and proved that the subconventions delay global convergence
and jeopardise stability. Incremental social instruments and creating ties between agents
has also provided a mechanism for dissolving self-reinforcing structures and facilitat-
ing global norm emergence [9]. Norm or convention emergence can be also achieved
though social learning [19], and under various topologies [2]. Although these works
offer deep insight into the emergence of a collective property (socially-constructed
behaviours) from local interactions, our approach differs by proposing RTSI as a mecha-
nism for producing ‘adequate’ collective explanations for external properties from local
interactions.

Further research could establish a set of evaluation criteria and metrics for multi-
agent populations that face problems of producing social and environmental explana-
tions. Additionally, further work on different conditions in the population such as agents
having personalities or intentionally sharing only that part of their knowledge they want
to, in order to direct opinions and thoughts, or more advanced methods for develop-
ing self-confidence and credence to the network, such as models of costly signaling or
block-based approaches. Moreover, future research could extend the communication of
the network and allow not only the exchange of processing rules but also the exchange
of the reasons for selecting these processing rules.

Furthermore, the present setting could be modified so that not only can the com-
munity adapt its knowledge but also the environmental knowledge can change, towards
or away from to the knowledge of the collective. Moving towards the might cause a
loss of expertise that becomes critical when the environmental knowledge moves away
from the DIP knowledge. Finally, a really ambitious step is to move from explanation
to innovation, how knowledge of the rules can be used to shape the environment for
purposes of self-improvement.

7 Summary and Conclusion

In summary, the contributions of this paper are:

– We have specified a problem of explanatory adequacy for self-organising multi-
agent systems, as disparate agents use their social network to aggregate their possi-
bly incomplete and inconsistent knowledge bases to ‘explain’ some observed phe-
nomenon;

– We have implemented an algorithm based on the Regulatory Theory of Social Influ-
ence (RTSI), which includes bilateral influence between targets and sources and the
exchange of information processing rules, and implemented it in a simulator for a
Distributed Information Processing unit (DIP); and

– We have run three experiments to explore what initial conditions of the DIP and
the RTSI algorithm lead to what type of epistemic condition for the collective, and
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use a similarity metric to determine how well these conditions do indeed provide
explanatory adequacy.

In conclusion, these experiments point to the following postulates that will be
explored in further work, but we regard as crucial for developing DIP for socio-technical
and cyber-physical systems embedded in dynamic environments. These postulates are
that systemic self-improvement through epistemic evolution requires diversity, a will-
ingness to learn, and having good intentions.

Primarily, we argue that systemic self-improvement epistemic evolution requires
diversity. We observed that DIP composed of almost identical agents, in terms of having
the same knowledge, could not improve their explanatory adequacy. It is also important
that knowledge should be preserved somewhere in the network, because this knowledge
might yet be relevant and useful at a later time. Moreover, not only should the knowl-
edge of the agents be diverse, but the agents should be capable of understanding the
diversity of knowledge sources, and be able to identify from whom or where they can
reliably acquire or consult expertise.

Secondly, systemic evolution requires each individual to be willing to learn. Epis-
temic evolution requires agents who are, in the first place, willing to make the effort to
ask and to answer, but are also willing to make the effort to assimilate the answer. Both
of these are assumptions made by the RTSI algorithm, and factoring in obdurate agents
(who will not ask) or intentionally disruptive agents (who block or break communica-
tion chains) are scenarios that require further experimentation.

Finally, two further requirements for RTSI to enable a DIP to solve the explana-
tory adequacy problem are that both sources and targets must have good intentions
against a background of popular legitimacy. For example, the DIP might have to deal
with intentionally deceptive agents: for example, a single knowledge source, which is
responsible for transferring knowledge, should not try to manipulate a target, or worse,
to perturb the value of KDIP for its own interests rather than the collective (public)
interest; or, for another example, ‘denialist’ cliques, in the form of a group of mutu-
ally self-supporting agents whose inaccurate knowledge is altered by neither evidence
nor argument but whose ‘noisy’ presence has a detrimental impact on effective overall
performance. These situations require rules, which implies both institutions capable of
constraining behaviour and popular legitimacy (i.e. general acceptance of those institu-
tions and their rules and punishments) [21].

To highlight the importance of good intentions and popular legitimacy, from the
source’s side, we note that all the experiments implicitly share a common characteris-
tic: the strong relationship between knowledge and power. In particular, under all con-
ditions, the DIP does manage to identify the ‘specialist’ individuals (who are best, or
least bad, at the task) and credits them for sharing their knowledge. Consequently, the
most knowledgeable agents are also the ones who could, in effect control and manipu-
late common knowledge and public opinion. This way, these agents can not only occupy
the prosocial role of knowledge gatekeeper, but could also become an antisocial ‘knowl-
edge dictator’. This dynamic is clearly illustrated in Foucault’s [6] observation that
power is based on and reproduces knowledge, while knowledge in turn begets power.
Therefore, if the sources have other motives for sharing their knowledge, the expertise
of the network can degenerate into an oligarchy (a ‘knowligarchy’).
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Abstract. Norms have been widely proposed as a way of coordinating and con-
trolling the activities of agents in a multi-agent system (MAS). A norm specifies
the behaviour an agent should follow in order to achieve the objective of the MAS.
However, designing norms to achieve a particular system objective can be diffi-
cult, particularly when there is no direct link between the language in which the
system objective is stated and the language in which the norms can be expressed.
In this paper, we consider the problem of synthesising a norm from traces of agent
behaviour, where each trace is labelled with whether the behaviour satisfies the
system objective. We show that the norm synthesis problem and several related
problems are NP-complete.

1 Introduction

There has been a considerable amount of work on using norms to coordinate the activ-
ities of agents in a multi-agent system (MAS) [11]. Norms can be viewed as standards
of behaviour which specify that certain states or sequences of actions in a MAS should
occur (obligations) or should not occur (prohibitions) in order for the objective of the
MAS to be realized [9]. We focus on conditional norms with deadlines which express
behavioral properties [35]. Conditional norms are triggered (detached) in certain states
of the MAS and have a temporal dimension specified by a deadline, which is also a
state property. The satisfaction or violation of a detached norm depends on whether the
behaviour of the agent brings about a specified state before a state in which the deadline
condition is true. Conditional norms are implemented in a MAS through enforcement.
That is, violation of a norm results in either the behaviour being pre-empted (regi-
mented, [5]), or in the violating agent incurring a sanction, e.g., a fine. See, e.g., [14]
for how to determine an appropriate level of sanction.

For many applications it is assumed that the MAS developer will design an appro-
priate norm to realise the system objective. However, this can be difficult, particularly
when the internals of the agents are unknown, e.g., in the case of open MAS [6], and
when there is no direct connection between the language in which the system objective
is stated and the language in which norms can be expressed. For example, one objective
of a traffic system may be to avoid traffic collisions, but ‘not colliding’ is not a prop-
erty under direct agent control, and prohibition of collisions cannot be stated as a norm.
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A poorly designed norm may fail to achieve the system objective, or have undesirable
side effects, e.g., the objective is achieved, but the autonomy of the agents is restricted
unnecessarily.

The increasing availability of large amounts of system behaviour data [1,23] intro-
duces the possibility of a new approach to the design of norms, namely the synthesis
of norms directly from data collected during the execution of the system. For exam-
ple, data may show that collisions always happen when an agent’s speed is very high,
allowing us to state a norm prohibiting agents from speeding too much. In this paper,
we consider the problem of synthesising conditional norms with deadlines from traces
of agent behaviour, where each trace is labelled with whether the behaviour satisfies the
system objective.

The contributions of this paper are the following.

– We show that synthesising a conditional norm with deadline (i.e., an obligation or
a prohibition) that correctly classifies the traces (i.e., the norm is violated on traces
where the behaviour does not satisfy the system objective, and is not violated on
other traces) is an NP-complete problem.

– We show that analogous complexity results (NP-completeness) also hold for the
problem of the synthesis of sets of conditional norms with deadlines.

– We also consider the problem of synthesizing a norm that is “close” to a target
norm. This problem is relevant where there is an existing norm that does not achieve
the system objective, but which is accepted, e.g., by human users of a system, and
we wish a minimal modification that does achieve the objective. We show that the
minimal norm revision problem is also NP-complete.

This paper is organized as follows. Section 2 provides the necessary formal back-
ground on conditional norms and on traces of agent behaviours. Section 3 discusses
the complexity of the problem of synthesising a single conditional norm. Section 4 dis-
cusses the complexity of synthesising a set of conditional norms. Section 5 discusses the
complexity of the minimal norm revision. Section 6 discusses related work and Sect. 7
presents conclusions and future work.

2 Preliminaries

In this section we give formal definitions of the behaviour of agents in the MAS and of
conditional norms.

We assume a finite propositional language L that contains propositions correspond-
ing to properties of states of the MAS. A state of the MAS is a propositional assignment.
A conjunction of all literals (propositions or their negations) in a state s will be referred
to as a state description of s. For example, for L = {p, q, r}, a possible state description
is p ∧ ¬q ∧ r (a state where p is true, q is false, and r is true).

A propositional formula is a boolean combination of propositional variables. The
definition of a propositional formula φ being true in a state s (s |= φ) is the standard
classical one. We use � for a formula that is true in all states and ⊥ for the formula
which is false in all states.
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A trace is a finite sequence of states. We use the notation ρ = (s1, . . . , sk) for a
trace consisting of states s1, . . . , sk. For example, a trace could be generated by the
actions of all vehicles involved in a traffic accident. We denote the i-th state in a trace ρ
by ρ[i]. We assume that the behaviour exhibited by the agents in the MAS is represented
by a set of finite traces Γ . We denote by S(Γ ) or simply by S the set of states occurring
in traces in Γ . Each subset X of S(Γ ) is definable by a propositional formula φX (a
disjunction of state descriptions of states in X). Note that the size of φX is linear in
the size of X (the sum of sizes of state descriptions of states in X). For example, if
X = {s1, s2} where s1 = p ∧ q ∧ r and s2 = ¬p ∧ ¬q ∧ ¬r, the description of X is
(p ∧ q ∧ r) ∨ (¬p ∧ ¬q ∧ ¬r). Γ is partitioned into two sets ΓT (‘good’, or positive,
traces) and ΓF (‘bad’, or negative, traces). The partition is performed with respect to
the system objective, which typically does not correspond directly to the properties
expressible in L. We note that the assumption that each trace describing the behavior
of the agents can be labeled as either good or bad is realistic in several contexts and for
different kinds of MAS objectives. For example, instances of a process can be deemed
as compliant or non-compliant w.r.t. a model [24]; in the traffic domain, traces can
be labeled individually w.r.t. the expected travel time or emissions, or based on the
occurrence of a collision.

The problem we wish to solve is how to generate a conditional norm which is
expressed using propositions from L, and that is obeyed on traces in ΓT and violated
on traces in ΓF .

Definition 1 (Conditional Norm). A conditional norm (over L) is a tuple (φC , Z(φZ),
φD), where φC , φZ and φD are propositional formulas over L, and Z ∈ {P,O} indi-
cates whether the norm is a prohibition (P ) or an obligation (O).

We refer to φC as the (detachment) condition of the norm, and φD as the deadline. φZ

characterizes a state that is prohibited (resp. obligated) to occur after a state where the
condition of the norm φC holds, and before a state where the deadline of the norm φD

holds. We define the conditions for violation of norms formally below.

Definition 2 (Violation of Prohibition). A conditional prohibition (φC , P (φP ), φD)
is violated on a trace (s1, s2, . . . , sm) if there are i, j with 1 ≤ i ≤ j ≤ m such that
φC is true at si, φP is true at sj , and there is no k with i < k < j such that φD is true
at sk.

In other words, a conditional prohibition is violated on a trace if the states in the
trace exhibit a pattern of the following type: a state where the norm is detached (orange
in Fig. 1) is followed by a number of states (possibly none) where neither the prohibition
is violated nor the deadline is reached (the yellow states), after which there is a state
where the deadline is still not reached but the prohibition is violated (the blue state).
Note that the state where the prohibition is violated may be the same state where the
norm is detached (not shown in Fig. 1, which considers the case where the three types
of states are distinct).

Definition 3 (Violation of Obligation). A conditional obligation (φC , O(φO), φD) is
violated on a trace (s1, s2, . . . , sm) if there are i, j with 1 ≤ i ≤ j ≤ m such that φC
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. . . φC ,¬φD,¬φP ¬φD,¬φP . . . ¬φD,¬φP ¬φD, φP . . .

Fig. 1. Example of violation of a prohibition (Color figure online)

is true at si, φD is true at sm, and there is no k with i ≤ k ≤ j such that φO is true at
sk.

In other words, a conditional obligation is violated on a trace if the states in the trace
exhibit a pattern of the following type: a state where the norm is detached (light blue in
Fig. 2) is followed by a number of states (possibly none) where neither the obligation is
satisfied nor the deadline is reached (the pink states), after which there is a state where
the obligation is still not satisfied but the deadline is reached (the gray state). Note that,
as in the case of conditional prohibitions, the state where the obligation is violated (the
gray state) may be the same state where the norm is detached (not shown in Fig. 2,
which considers the case where the three types of states are distinct).

. . . φC ,¬φD,¬φO ¬φD,¬φO . . . ¬φD,¬φO φD,¬φO . . .

Fig. 2. Example of violation of an obligation (Color figure online)

Note that the violation of a conditional prohibition or obligation does not distin-
guish between a single or multiple violations, i.e., a trace violates a norm if at least one
violation occurs.

A conditional norm is obeyed on a trace if it is not violated on that trace. Violation
conditions of conditional norms can be expressed in Linear Time Temporal Logic (LTL)
and evaluated on finite traces in linear time [4].

Example 1. Consider the following simple example. Let L = {p, q, r} be a language
where p means that a vehicle is on a particular stretch of a street, q means that it is a
large goods vehicle, and r means that its speed exceeds 15 mph. The p stretch is a steep
incline with a blind corner, and heavy vehicles sometimes crash into a barrier at the
bottom of the street. The system objective is that such crashes are avoided. An example
set of positive and negative traces is given below.

ΓT = { ρ1 = (s1 = p ∧ q ∧ ¬r, s1 = p ∧ q ∧ ¬r, s2 = ¬p ∧ q ∧ ¬r),
ρ2 = (s3 = ¬p ∧ ¬q ∧ ¬r, s4 = p ∧ ¬q ∧ r, s4 = p ∧ ¬q ∧ r),
ρ3 = (s5 = ¬p ∧ q ∧ r, s5 = ¬p ∧ q ∧ r) }

ΓF = { ρ4 = (s1 = p ∧ q ∧ ¬r, s6 = p ∧ q ∧ r, s2 = ¬p ∧ q ∧ ¬r),
ρ5 = (s1 = p ∧ q ∧ ¬r, s6 = p ∧ q ∧ r) }
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Intuitively, positive traces involve only slowly driving trucks when p is true, and arbi-
trary speeds otherwise. The following conditional prohibition is violated on all negative
traces: (p ∧ q, P (p ∧ q ∧ r),¬p).1

3 Complexity of Norm Synthesis

Given a set of agent behaviour traces Γ partitioned into ΓT and ΓF , we wish to synthe-
size a norm that correctly classifies each trace (that is, the norm is violated on all traces
in ΓF , and is not violated on any trace in ΓT ). Clearly, this is not always possible; two
sets of traces may not be distinguishable by a single conditional norm (or even by a set
of conditional norms). For example:

ΓT = {(s1, s2, s3)}, ΓF = {(s1, s1, s2, s3)}

cannot be distinguished by a conditional norm.

3.1 Prohibition Synthesis

We first define formally the decision problem we call prohibition synthesis.

Definition 4. The prohibition synthesis problem is the following decision problem:

Instance A finite set of propositions L; a finite set of finite traces Γ partitioned into ΓT

and ΓF , each trace given as a sequence of state descriptions over L.
Question Are there three propositional formulas φC , φP , and φD over L such that

Neg every trace in ΓF violates (φC , P (φP ), φD)
Pos no trace in ΓT violates (φC , P (φP ), φD)

The correspondence between sets of states and formulas over L allows us to restate
the prohibition synthesis problem as follows: given a set of positive traces ΓT and neg-
ative traces ΓF , find three sets of states XC , XP , XD such that:

Neg For every trace ρ ∈ ΓF , there exists i and j with i ≤ j such that ρ[i] ∈ XC ,
ρ[j] ∈ XP , and there is no k with i < k < j such that ρ[k] ∈ XD.

Pos For every trace ρ ∈ ΓT , if for some i and j, i ≤ j, ρ[i] ∈ XC , ρ[j] ∈ XP , then
there exists k such that i < k < j and ρ[k] ∈ XD.

Theorem 1. The prohibition synthesis problem is NP-complete.

Proof. The prohibition synthesis problem is clearly in NP (a non-deterministic Turing
machine can guess the three sets and check in polynomial time that they satisfy the
conditions). To prove that it is NP-hard, we reduce 3SAT (satisfiability of a set of clauses
with 3 literals) to prohibition synthesis.

1 Clearly, alternative definitions of norms are also possible. For example, since trucks do not
cease being trucks while driving along the street, we can also state the prohibition as (p ∧
q, P (r),¬p), or we can prohibit a truck driving fast on p: (�, P (p ∧ q ∧ r),⊥).
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3SAT is an NP-complete problem. An instance of 3SAT is a set of clauses, where
each clause is a disjunction of at most 3 literals, for example, {(x1 ∨x2 ∨¬x3), (¬x1 ∨
¬x2 ∨ x4)}. The question is whether the set of clauses is satisfiable, that is, whether
there is an assignment of truth values 0 and 1 to the propositional variables that makes
all the clauses true; in other words, is there an assignment such that each clause contains
at least one true literal. In the example above, assigning 0 to x3 and 1 to x4, and, for
example, 0 to x1 and to x2, makes both clauses true.

To start the reduction from 3SAT to prohibition synthesis, suppose an instance of
3SAT is given; that is, we have a set of clauses C1, . . . , Cn over variables x1, . . . , xm.
We generate an instance of the prohibition synthesis problem such that it has a solution
if, and only if, C1, . . . , Cn are satisfiable (each clause contains at least one true literal).
We construct the corresponding instance of the prohibition synthesis problem as fol-
lows. The set of states in the prohibition synthesis problem consists of two states s and
t (s and t are a technical device; intuitively they serve as the detachment condition and
the violation of the prohibition), and for each variable xi, we need two states ui and
vi. When we ‘translate’ a clause into a trace, we insert ui into the trace if xi occurs
positively in the clause, and vi if it occurs negatively. Intuitively, ui in XD will be a
proxy for ‘xi should be assigned 1’, and vi in XD will be a proxy for ‘xi should be
assigned 0’. We give the rest of the construction below. Comments in square brackets
explain the intuition for each step in the construction.

The set of negative traces ΓF contains:

– a two state trace (s, t) [together with s, t �∈ XC ∩XP below, this forces s ∈ XC and
t ∈ XP ];

– for every variable xi in the input, a trace (s, vi, t, s, ui, t) [this ensures that either vi
or ui are not in XD].

The set of positive traces ΓT contains:

– a single state trace (s) [so s cannot be in XC ∩ XP ];
– (t) [so t cannot be in XC ∩ XP ];
– for every variable xi in the input: (s, vi, ui, t) [this means that either vi or ui are in

XD]; (vi); (ui); (vi, t); (ui, t); (s, vi); (s, ui);
– for every pair of variables xi, xj in the input: (vi, uj); (uj , vi) [this together with

preceding traces ensures that vi and ui are not in XC or XP ];
– for each clause C in the input over variables xj , xk, xl: (s, zj , zk, zl, t) where zi is

ui if xi occurs in C positively, and vi if it occurs negatively.

It is easy to see that the reduction from the 3SAT instance to the prohibition synthe-
sis instance is polynomial in the number m of variables (quadratic) and in the number
n of clauses (linear).

We claim that there exists an assignment f of truth values 0, 1 to x1, . . . , xm such
that all the clauses C1, . . . , Cn are true if, and only if, there is a solution to the prohibi-
tion synthesis problem above, where XC = {s}, XP = {t}, and for every i, ui ∈ XD

iff f(xi) = 1 and vi ∈ XD iff f(xi) = 0.
‘only if’ direction: Assume that an assignment f that makes C1, . . . , Cn true exists.

Let XC = {s} and XP = {t}. For every i, place ui in XD if f(xi) = 1 and vi ∈ Xd if
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f(xi) = 0. This produces a solution to the prohibition synthesis problem because: s, t
satisfies Neg; for every i, either ui or vi are not in XD, so s, vi, t, s, ui, t satisfies Neg.
Positive traces satisfy Pos: either s followed by t does not occur on a trace, or ui, vi
occur between s and t and one of them is in XD, or (from the clause encoding) one of
the literals in the clause is true, so for positive xi it means that ui is in XD and Pos is
satisfied, or for negative ¬xi it means that vi is in XD and again Pos is satisfied.

‘if’ direction: Assume there is a solution to the prohibition synthesis problem. It is
clear (see the comments in square brackets above) that it has to be of the form XC =
{s}, XP = {t} and XD containing some uis and vis. In particular, since (s, vi, ui, t)
is a positive trace, for every i either ui or vi must not be in XD. Set f(xi) to be 1 if
ui in XD and 0 otherwise. Then each clause C = {∼ xj ,∼ xk,∼ xl} (where ∼ xj

denotes xj if it occurs positively or ¬xj if it occurs negatively) is satisfied by f since
for every clause there will be one literal which is true. This is because (s, zj , zk, zl, t) is
a positive trace, and either for some positive literal xi, ui is in XD, or for some negative
literal ¬xi, vi is in XD, so ui is not in XD, so f(¬xi) = 1.

3.2 Obligation Synthesis

We now consider the obligation synthesis problem.

Definition 5. The obligation synthesis problem is the following decision problem:

Instance A finite set of propositions L, a finite set Γ of finite traces partitioned into ΓT

and ΓF , where each trace is given as a sequence of state descriptions.
Question Are there three propositional formulas φC , φO, and φD over L such that

Neg every trace in ΓF violates (φC , O(φO), φD)
Pos no trace in ΓT violates (φC , O(φO), φD)

Analogously to the prohibition synthesis problem, the obligation synthesis problem
can be equivalently restated in terms of states: are there three sets of states XC , XO and
XD such that:

Neg For every trace ρ ∈ ΓF , there exist i and j with i ≤ j such that ρ[i] ∈ XC ,
ρ[j] ∈ XD, and there is no k with i ≤ k ≤ j such that ρ[k] ∈ XO

Pos For every trace ρ ∈ ΓT , if for some i and j, i ≤ j, ρ[i] ∈ XC , ρ[j] ∈ XD, then
there exists k such that i ≤ k ≤ j and ρ[k] ∈ XO.

Theorem 2. The obligation synthesis problem is NP-complete.

Proof. The obligation synthesis problem is clearly in NP. To prove that it is NP-hard,
we again use a reduction from the 3SAT problem.

As before, consider a set of clauses C1, . . . , Cn over variables x1, . . . , xm, which is
an instance of 3SAT. We generate an instance of the obligation synthesis problem such
that it has a solution iff C1, . . . , Cn are satisfiable. The idea of the reduction is similar
to that for prohibitions. We use two auxiliary states s and t, intuitively to serve as the
detachment condition and the deadline, and make sure that neither of them is also the
obligation, but now instead of inserting a deadline between s and t in positive traces,
we insert an obligation. We want to make some subset of {vi : i ∈ [1, ...m]} ∪ {ui :
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i ∈ [1, ...m]} to be the obligation (XO), so that exactly one of vi, ui for each i is in
XO. Then ui ∈ XO can encode that xi is true, and vi ∈ XO that xi is false, and we
can make the encoding work by creating a positive trace corresponding to each clause
so that at least one of the literals in the clause should be true.

The set of negative traces contains:

– a 2 state trace (s, t) [this forces either s ∈ XC ∩ XD ∩ XO, t ∈ XD ∩ XC ∩ XO, or
s ∈ XC ∩XD ∩XO, or t ∈ XC ∩XD ∩XO. To rule out the latter two possibilities,
we require below that s and t on their own are positive traces.]

– for every variable xi in the input, a trace (s, vi, t, s, ui, t) [this ensures that either vi
or ui are not in XO, because there is one (s, .., t) sub-trace that does not contain a
state from XO].

The set of positive traces contains:

– a one state trace (s) [so s cannot be in XC ∩ XD ∩ XO]
– a one state trace (t) [so t cannot be in XC ∩ XD ∩ XO]
– for every variable xi in the input, a trace (s, vi, ui, t) [this ensures that either vi or

ui are in XO]
– for each clause C in the input over variables xj , xk, xl, a trace (s, zj , zk, zl, t) where

zi is ui if xi occurs in C positively, and vi if it occurs negatively.

The reduction is linear in the number of variables and clauses.
We claim that there exists an assignment f of 0, 1 to x1, . . . , xm satisfying

C1, . . . , Cn if, and only if, there is a solution to the obligation synthesis problem above
where s ∈ XC , t ∈ XD, and for every i, ui ∈ XO iff f(xi) = 1 and vi ∈ XO iff
f(xi) = 0. The proof of this claim is analogous to that of Theorem 1.

Assume that an assignment f satisfying C1, . . . , Cn exists. Let XC = {s} and
XD = {t}. For every i, place ui in XO iff f(xi) = 1 and vi ∈ XO iff f(xi) = 0. It is
easy to check that this is a solution to the obligation synthesis problem.

Assume there is a solution to the obligation synthesis problem. It is clear (see the
comments in brackets above) that any solution should satisfy s ∈ XC ∩ XD ∩ XO and
t ∈ XD ∩ XC ∩ XO. Since (s, vi, t, s, ui, t) is a negative trace for every i, this means
that it contains an unsatisfied conditional obligation. This means that for every i, either
vi or ui is not in XO. Since (s, vi, ui, t) is a positive trace, then in any solution, for
every i, either ui or vi has to be in XO. Hence we can use the membership in XO to
produce a boolean valuation of variables xi (1 if ui ∈ XO, and 0 if vi ∈ XO). Since
for every clause C = {∼ xj ,∼ xk,∼ xl}, the trace (s, zj , zk, zl, t) (where zi is vi if
∼ xi = ¬xi, and ui if ∼ xi = xi) is a positive trace, at least one of zi is in XO. This
means that the valuation based on the membership in XO satisfies all the clauses (since
at least one literal in each clause will evaluate to 1).

4 Complexity of Synthesising a Set of Norms

In this section, we consider the problem of synthesising a set of norms. To motivate
the problem, we first give an example where classifying positive and negative traces
correctly requires more than one norm.
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Example 2. Let the language L be {p, q1, q2, r1, r2} where, for the sake of intuition, p
denotes a particular kind of customer who needs to be greeted in a particular way (r1)
before they pass the greeter (q1) and ¬p is all other customers who need to be greeted
in a different way (r2), before q2.

ΓT = { ρ1 = (s1 = p ∧ ¬q1 ∧ ¬q2 ∧ ¬r1 ∧ ¬r2, s2 = p ∧ ¬q1 ∧ ¬q2 ∧ r1 ∧ ¬r2,

s3 = ¬p ∧ q1 ∧ ¬q2 ∧ ¬r1 ∧ ¬r2, s4 = ¬p ∧ ¬q1 ∧ ¬q2 ∧ ¬r1 ∧ r2) }
ΓF = { ρ2 = (s1 = p ∧ ¬q1 ∧ ¬q2 ∧ ¬r1 ∧ ¬r2),

ρ3 = (s3 = ¬p ∧ q1 ∧ ¬q2 ∧ ¬r1 ∧ ¬r2) }
This example can only be solved by two norms, because a trace consisting only of
state s1 is a violation (ρ2), but s1 alone cannot be prohibited because the trace ρ1 =
(s1, s2, s3, s4) is in ΓT . So, the trace (s1) must be ruled out by an obligation: after s1,
there should be s2 or s3 or s4. From trace ρ4 in ΓF , (s3) is a violation, so s3 must
either be prohibited, or it must be ruled out by an obligation, that is, after s3, s4 should
happen. If s3 is prohibited, then ρ1 = (s1, s2, s3, s4) would be a violation, but it isn’t.
So after s3, s4 should happen. Therefore two obligations are required, for example,
(p,O(r1), q1) and (¬p,O(r2), q2).

Similarly, two or more prohibitions may be required if different things are prohibited in
different contexts.

If there is a set of norms separating ΓT and ΓF , then its size is trivially bounded by
the number of all different non-equivalent norms given the language L. Since L is finite,
there are 2×3×22

|L|
possible conditional norms (there are 2|L| state descriptions, 22

|L|

possible formulas in disjunctive normal form that can be parts of the norm, 3 positions

on which they can occur, and 2 types of conditional norms). There are O(22
2|L|

sets
of non-equivalent norms. However, it is possible to produce a much better bound on
the maximal size of the set of norms correctly classifying ΓT and ΓF than a triple
exponential in |L|.
Theorem 3. If it is possible to correctly classify ΓT and ΓF by a set N of norms, then
this can be done by a set of norms of size at most |ΓF |.
Proof. First, observe that we do not need more than one norm to exclude each trace in
ΓF . So we need to have at most |ΓF | norms. Second, if a set N of norms is not violated
on any of ΓT traces, then no norm from N ′ ⊆ N is violated on a ΓT trace.

Definition 6. The multiple conditional norm synthesis problem is the following deci-
sion problem:

Instance A finite set of propositions L; an integer m; a finite set of finite traces Γ
partitioned into ΓT and ΓF , each trace given as a sequence of state descriptions
over L.

Question is there a set N of conditional prohibitions and obligations over L with |N | ≤
m such that
Neg every trace in ΓF violates one of the norms in N



The Complexity of Norm Synthesis and Revision 47

Pos no trace in ΓT violates any of the norms in N .

Theorem 4. The problem of synthesising a set of conditional prohibitions or condi-
tional obligations is NP-complete.

Proof. For membership in NP, observe that it is possible to guess a set m ≤ |ΓF | norms
and check in polynomial time that they correctly classify the traces.

Hardness follows from the NP-hardness parts of Theorems 1 and 2.

5 Complexity of Minimal Revision

In this section, we consider the problems of (minimally) revising conditional prohi-
bitions and obligations. These problems are relevant when there is an existing norm
that does not achieve the system objective, and we wish a minimal modification of the
existing norm that does achieve the objective.

Assume we are given a set of traces and a conditional norm (φC , Z(φZ), φD),
(where Z ∈ {P,O}) and need to change it in a minimal way so that it classifies the
traces correctly. The editing distance between conditional norms can be defined in var-
ious ways, e.g., for formulas φC , φZ , φD in disjunctive normal form, this could be the
sum of the numbers of added and removed disjuncts for all three formulas. Note that
the set of non-equivalent propositional formulas built from the set L is finite, and so
is the number of possible different conditional prohibitions or obligations. Regardless
of how the distance between different conditional norms is defined, for a fixed set of
propositional variables L there is a maximal editing distance max(L) between any two
norms using formulas over L.

5.1 Complexity of Minimal Prohibition Revision

Given some distance measure dist defined for any two conditional prohibitions α1 and
α2 over L, the decision problem for minimal prohibition revision can be stated as:

Definition 7. The (decision form) of the minimal prohibition revision problem is as
follows:

Instance A finite set of propositions L; a number m; a finite set Γ of finite traces parti-
tioned into ΓT and ΓF ; a conditional prohibition (φC , P (φP ), φD) over L.

Question Are there three propositional formulas φ′
C , φ

′
P , and φ′

D over L such that
Dist dist((φC , P (φP ), φD), (φ′

C , P (φ′
P ), φ

′
D)) ≤ m

Neg every trace in ΓF violates (φ′
C , P (φ′

P ), φ
′
D)

Pos no trace in ΓT violates (φ′
C , P (φ′

P ), φ
′
D)

Theorem 5. Let dist(α1, α2) be computable in time polynomial in the size of α1 and
α2, and the range of dist over norms built over propositions from L be bounded by
max(L). Then the minimal prohibition revision problem is NP-complete.

Proof. The membership in NP follows from the fact that a solution can be guessed and
checked in polynomial time.

NP-hardness is by reduction from the prohibition synthesis problem. Note that if
a solution to the prohibition synthesis problem exists, it will be at most at distance
max(L) from the input norm. So to solve the prohibition synthesis problem, we can
ask for a solution to the minimal prohibition revision problem with m = max(L).
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5.2 Complexity of Minimal Obligation Revision

Given some distance measure dist defined for any two conditional obligations α1 and
α2 over L, the decision problem for minimal obligation revision can be stated as:

Definition 8. The (decision form) of the minimal obligation revision problem is as fol-
lows:

Instance A finite set of propositions L; a number m; a finite set Γ of finite traces parti-
tioned into ΓT and ΓF ; a conditional obligation (φC , O(φO), φD) over L.

Question Are there three propositional formulas φ′
C , φ

′
O, and φ′

D over L such that
Dist dist((φC , O(φO), φD), (φ′

C , O(φ′
O), φ

′
D)) ≤ m

Neg every trace in ΓF violates (φ′
C , O(φ′

O), φ
′
D)

Pos no trace in ΓT violates (φ′
C , O(φ′

O), φ
′
D)

Theorem 6. Let dist(α1, α2) be computable in time polynomial in the size of α1 and
α2, and the range of dist over norms built over propositions from L be bounded by
max(L). Then the minimal obligation revision problem is NP-complete.

Proof. The membership in NP follows from the fact that a solution can be guessed and
checked in polynomial time. Analogously to the minimal prohibition revision problem,
NP-hardness is by reduction from the obligation synthesis problem; if a solution to the
obligation synthesis problem exists, it will be at most at distance max(L) from the
input norm. So to solve the obligation synthesis problem, we can ask for a solution to
the minimal obligation revision problem with m = max(L).

6 Related Work

There has been a considerable amount of work on the automated synthesis of norms. In
this section, we briefly review some of the main approaches, focussing on work that is
most closely related to our approach.

We first review ‘offline’ approaches, in which norms are synthesised at design time.
Shoham and Tennenholtz [34] (see also [16]), consider the problem of synthesising a
social law that constrains the behaviour of the agents in a MAS so as to ensure that
agents in a focal state are always able to reach another focal state no matter what the
other agents in the system do. They show that synthesising a useful social law is NP-
complete. Van der Hoek et al. [18] recast the problem of synthesising a social law as an
ATL model checking problem. The authors show that the problem of whether there exists
a social law satisfying an objective expressed as an arbitrary ATL formula (feasibility) is
NP-complete, while for objectives expressed as propositional formulae, feasibility (and
synthesis) is decidable in polynomial time. Bulling and Dastani [10] consider norm syn-
thesis for LTL objectives. In their approach, agents are assumed to have LTL-defined
preferences with numerical values, and the aim of the synthesis is to produce a norm
that enforces the objective for some Nash equilibrium. The problems they consider are
weak and strong implementation, and norm-based mechanism design. A norm weakly
implements a normative behaviour function if there exists a Nash equilibrium that satis-
fies the LTL formula. A norm strongly implements a normative behaviour function iff all
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Nash equilibria satisfy the formula. Weak implementation is ΣP
2 -complete in the size of

the CGS, preferences, objective and norm. The strong implementation problem can be
solved by a deterministic polynomial-time oracle Turing machine that can make two non-
adaptive queries to an oracle in ΣP

2 and is both ΣP
2 -hard and ΠP

2 -hard. Weak implemen-
tation existence is ΣP

2 -complete. Strong implementation existence is ΣP
3 -complete. In

[19], the synthesis of dynamic prohibitions (that is, prohibitions corresponding to Mealy
machines) for CTL objectives is shown to be EXPTIME-complete. In [32], the synthesis
of dynamic norms for LTL objectives and Nash equilibria is shown to be 2EXPTIME-
complete when considering the existence of a Nash equilibrium satisfying the objective,
and in 3EXPTIME for enforcing all Nash equilibria to satisfy the objective. Other work
on norm synthesis using logical specifications of objectives includes [2,36]. Alechina
et al. [4] introduce the concept of norm approximation in the context of imperfect moni-
tors. A conditional norm is synthesized to approximate an ‘ideal’ norm in order to maxi-
mize the number of violations that an imperfect monitor can detect. We assume, however,
perfectly monitorable norms, and we aim at synthesizing norms that are better aligned
with the MAS objectives by using execution data. In contrast to the approach we present
here, these approaches assume a complete model the agents’ behaviour is available, e.g.,
in the form of a transition system or a Kripke structure.

Morales et al. present LION [28], an algorithm for the synthesis of liberal normative
systems, i.e., norms that place as few constraints as possible on the actions of agents. To
guide the synthesis process, LION makes use of a normative network: a graph structure
that characterises the generalisation relationship between different norms, which is used
to synthesise more general, that is, more liberal, norms when possible. The norms syn-
thesised by LION are so-called action-based norms, which prohibit agents to perform
actions in certain states [5]. In our work, we focus on the problem of revising condi-
tional norms with deadlines, which are behaviour-based, or path-based, norms, prohibit-
ing (or obliging) agents from exhibiting certain behaviours. While both our work and
LION synthesise norms to avoid undesirable system states, in our work we focus on the
problem of synthesising norms from data collected during the execution of the system
(i.e., traces of agent behaviour), while in [28], the synthesis considers properties of the
normative system (e.g., liberality) which are independent of the behaviour of the agents
in the MAS. We consider the liberality of norms an interesting possible extension of our
work that could be integrated as a criterion when selecting a new norm among possible
revisions. Christelis et al. [12] present an EXPTIME algorithm based on AI planning
for synthesising state-based prohibitions that set preconditions to the actions the agents
can perform in a regimentation setting. In our work, we do not assume that norms can
be regimented.

Another strand of work focuses on the ‘online’ synthesis of norms, where norms
emerge from the interactions of agents in a decentralised way, e.g., [3,33]. Unlike our
approach, such approaches typically assume that the agents are cooperative, and/or that
some minimal standards of behaviour can be assumed. However, cooperation between
agents cannot be always assumed, particularly in open MAS.

Closer to our work are online approaches that use agents’ behaviour to guide cen-
tralised norm synthesis. For example, Morales et al. [27] present algorithms for the
online synthesis of compact action-based norms when the behaviour of agents leads to
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undesired system states. In contrast, we consider conditional norms with deadlines that
regulate patterns of behaviour. In other work, Morales et al. have used game theoretic
concepts to guide norm synthesis [29,30]. Their control loop includes game recogni-
tion, payoff learning, and norm replication. Their approach to norm synthesis makes use
of evolutionary processes to determine, off-line and via simulation, effective and evolu-
tionary stable norms, which are then enforced at run-time. However, while the resulting
norms are evolutionary stable, their approach requires sufficient knowledge about the
agents, their goals and the environment in which they operate, to permit simulation of
their interactions. In our work, instead, we focus on a setting where the only labeled
traces of agent behaviors are available. Miralles et al. [26] present a framework for the
adaptation of MAS regulations at runtime. They consider norms expressed via norm
patterns (i.e., IF-THEN rules associated with constraints on the operators and on the
values that the norm components can take). The authors describe an adaptation mecha-
nism based on Case Based Reasoning. Adaptation is performed at runtime individually
by a number of assistant agents and then, via a voting mechanism, a final adaptation
is approved. The decision on how to adapt norms is taken based on similar previously
seen cases. On similar lines, Dell’Anna et al. [14] propose a framework for the runtime
selection of alternative norms based on runtime data and for the revision of the sanc-
tions of norms based on the knowledge of agents preferences. Unlike these approaches,
we do not assume knowledge of the agents’ internals, e.g., their preferences [14] or
their reasoning and communication capabilities [26]. Corapi et al. [13] and Athakravi
et al. [7] discuss the application of Inductive Logic Programming (ILP) [15] to norm
synthesis and norm revision. In their work, the desired properties of the system are
described through use cases (event traces associated to a desired outcome state), and ILP
is used to revise the current norms so to satisfy the use-cases. In their approach, norms
and desired outcome are strictly coupled: the desired outcomes of execution traces are
expressed in the same language of the norms and, therefore, are directly enforceable.
In our approach we consider MAS objectives that cannot be directly enforced, and we
use norms as a means to achieve such objectives (e.g., a speed limit norm is a means
to achieve vehicles’ safety, but it is not possible to directly enforce safety on vehicles:
“no accidents should occur” is not directly enforceable on drivers). In our work, the
only knowledge of the MAS objectives available to the revision mechanism, is a given
boolean labeling of the execution traces. The causal relation between norms and MAS
objectives is not given. Because we do not assume that the underlying causal structure
of the domain is known to our revision mechanism, we are unable to generate prov-
ably correct norm revisions as in ILP-based approaches like those of Corapi et al. [13]
and related ones (e.g., [21,31]). ILP-based approaches and our approach can therefore
be seen as representing different trade-offs between the amount of background knowl-
edge assumed about the possible causes of norm violations, and the guarantees that
can be given regarding a particular (candidate) revision. Mahmoud et al. [25] propose
an algorithm for mining regulative norms that identifies recommendations, obligations,
and prohibitions by analyzing events that trigger rewards and penalties. They focus on
agents joining an open MAS who have to learn the unstated norms; we, instead, study
how to alter existing norms from the point of view of a centralized authority.
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Finally, our work is influenced by research on norm change, including logics for
norm change [8,22], the study of the legal effects of norm change, analyzed and for-
malized by [17], and the contextualization of norms [20], which studies how to refine
norms to make them suitable for specific contexts. In our framework, this corresponds
to modifying the detachment condition and the deadline of the norms.

7 Conclusions

We considered the problem of synthesising and minimally revising norms to achieve
a system objective from labelled traces of agent behaviour in a multi-agent system
(MAS). We considered a setting where the internals of the agents in the MAS are
unknown and where norms are expressed in a different language from that of the system
objective that they intend to bring about. In such setting, explicit knowledge about the
relationship between the enforced norms, the agents’ behavior and the MAS objective is
not given, and the norm synthesis and revision rely on traces of agent behaviour labeled
as positive or negative, depending on whether each satisfies or not the system objective.
We showed that the problems of norm synthesis and minimal revision are NP-complete.
In future work, we plan to investigate the synthesis of approximate norms (i.e., norms
that do not classify all traces perfectly), and more tractable heuristic approaches to
norm synthesis and revision where, for instance, only a bounded number of candidate
revisions of a norm are synthesized based on the available data and the semantics of
conditional norms, and the most accurate norm (i.e., the norm with highest accuracy
w.r.t. the labeled traces) is selected.
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Abstract. This paper presents the AWKWARD architecture for the
development of hybrid agents in Multi-Agent Systems. AWKWARD
agents can have their plans re-configured in real time to align with
social role requirements under changing environmental and social circum-
stances. The proposed hybrid architecture makes use of Behaviour Ori-
ented Design (BOD) to develop agents with reactive planning and of the
well-established OperA framework to provide organisational, social, and
interaction definitions in order to validate and adjust agents’ behaviours.
Together, OperA and BOD can achieve real-time adjustment of agent
plans for evolving social roles, while providing the additional bene-
fit of transparency into the interactions that drive this behavioural
change in individual agents. We present this architecture to motivate
the bridging between traditional symbolic- and behaviour-based AI com-
munities, where such combined solutions can help MAS researchers in
their pursuit of building stronger, more robust intelligent agent teams.
We use DOTA2—a game where success is heavily dependent on social
interactions—as a medium to demonstrate a sample implementation of
our proposed hybrid architecture.

Keywords: Reactive planning · Normative agents · Hybrid systems ·
Multi-agent systems · Games AI

1 Introduction

In a Multi-Agent System (MAS) the ability for individual agents to adjust their
behaviour when interacting with each other and their environment is critical
to the system’s success [18]. Yet, agents in MAS need to dynamically re-orient
their priorities away from their individual—often selfish—goals and towards the
system’s collective goals and vice versa as their environment changes.

One technique used to develop agents in highly dynamic environments is
Behaviour-Based Artificial Intelligence (BBAI) [11]. Instead of trying to model
the environment, BBAI strictly focuses on the actions that an agent can take
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and limiting search within a predefined plan for responsive and robust goal-
oriented behaviour [15,22]. While this approach does indeed increase the search
speed, it reduces the flexibility of the system as it is able to react only to what its
developers have specified. Moreover, BBAI on its own is insufficient when applied
to MAS. It does not account for social interactions between agents or any team
work explicitly, and thus fails any consideration of real-world challenges where
accounting for social behaviours is required.

In this paper, we combine BBAI with formal approaches to get the ‘best
of both worlds’ by developing a hybrid architecture: Agents With KnoWledge
About Real-time Duties (AWKWARD). We integrated the OperA framework
[19] with Behaviour-Oriented Design (BOD) [15] for their individual and com-
bined strengths in order to produce socially-aware BBAI agents. With OperA,
we model the interactions between agents, which contributes towards both gov-
erning social behaviour as well as increasing transparency of emerging system
behaviour. Transparency could help developers debug the system more effectively
and help naive users understand the model [35]. With BOD, we can build reac-
tive planning agents that are suited to interact within uncertain and dynamic
environments. We have implemented a ‘toy example’, presented in this paper,
for the popular video game DOTA2. Video games have traditionally been used
to test AI solutions due to their highly dynamic virtual worlds, which DOTA2
offers as a test bed. Note, we do not consider the specifics of the DOTA2 imple-
mentation as our contribution; our focus and contribution is the AWKWARD
architecture.

The paper is structured as follows: in Sect. 2, we discuss Behaviour Oriented
Design and OperA as the backbone of our architecture, outlining the relevant
characteristics of each. In Sect. 3, we introduce the AWKWARD architecture,
followed by a sample implementation of the architecture in Sect. 4 and results
presented in Sect. 5. In the penultimate Sect. 6, we look at related work done in
normative agents, comparing and contrasting those architectures with our own.
Finally in Sect. 7, we summarise our contributions and identify future work.

2 Background

2.1 Behaviour Oriented Design

BOD is a BBAI approach that uses hierarchical representations of an agent’s
priorities [15]. These representations express both the priority of the agent in
terms of the goals it needs to achieve, and the contexts in which sets of actions
may be applicable [12]. Another important feature is the usage of the parallel-
rooted hierarchy, which allows for the quasi-parallel pursuit of behaviours and a
hierarchical structure to aid the design of the agent’s behaviour. On each plan
cycle, the planner alternates between checking for what is currently the highest-
level priority that should be active and then progressing work on that priority.
Wortham et al. [36] detail the building blocks of a reactive plan in BOD, which
are summarised as follows:
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1. Drive Collection (DC): The root node of the plan’s hierarchy: contains
a set of Drives. The DC is responsible for giving attention to the highest
priority Drive as at any given cycle only Drive can be active.

2. Drive: Allows for the design and pursuit of a specific behaviour. Each Drive
has its own release condition of one or more Senses. Even when it is not
the focus of the planner attention, each Drive maintains its execution state
allowing the quasi-parallel execution of multiple drives.

3. Competence: A self-contained basic reactive plan representing the priori-
ties within the particular plan. Each Competence contains at least one non-
concurrent Competence Element (CE). Each of these elements is associated
with both a priority relative to the other elements and a context which can
perceive and report when that element can execute. The highest-priority
action that can be executed will do so when the Competence receives atten-
tion.

4. Action Pattern: Fixed sequences of actions and perceptions used to reduce
the design complexity, by determining the execution order in advance.

5. Action: A possible ‘doing’ of the agent, such the use of an actuator to interact
with the environment; i.e. the means of altering the world and self.

6. Sense: A reading of the world or internal status from a sensor of the agent,
such as measuring distance between specified units in the world; i.e. the means
of reporting environmental and agent status.

BOD aims to enforce the good-coding practice ‘Don’t Repeat Yourself’ by split-
ting the behaviour into two core modules: the planner and the behaviour library
[14]. The former reads and ‘runs’ the plan at set intervals. The latter contains
the blocks of code used by the two primitive plan elements, Actions and Senses.
The rest of the plan elements are textually listed in dedicated files, written in
Lisp-like format [15], read by the planner. A plan file contains descriptions of
both the plan elements and of the connections between the elements.

2.2 OperA

OperA is an agent organisation framework for the design and development of
MAS consisting of three intermingling models [19]:

1. Organisational Model (OM): Describes objectives and the concerns of
the organisation from a social perspective. The development of an OM is
approached from a top down perspective, that is, with overarching goals and
a means to reach them.

2. Social Model: Outlines the agent’s role enactment in the form of social con-
tracts. These social contracts describe what capabilities and responsibilities
each role demands.

3. Interaction Model: Defines interaction agreements between role-enacting
agents in the form of interaction contracts. These contracts serve as verifi-
cation for the fulfilment of interaction agreements between relevant actors
specified by organisational objectives as defined in the OM.
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OperA requires that all interactions are expressed as scene scripts. A scene
is a formal specification defining which roles within the organisation partake
in the interaction, what landmarks from the environment indicate the scene’s
start, and what resulting signals describe its termination. More importantly,
the specification contains a set of rules describing the social norms that the
participating agents are expected to follow for the scene’s full duration. OperA
norms use the deontic expressions of obligation, prohibition and permission as a
means of describing an agent’s social behaviour and further validating whether
it satisfies or violates organisational expectations.

The OperA framework provides a formal specification that depends on organ-
isational structures and global objectives of the organisation as a whole [19].
Moreover, OperA offers an interaction model between agents without requiring
knowledge of the internal architecture of the individual agent itself; this qual-
ity in particular is our primary motivation for selecting OperA as a normative
MAS framework. Further motivation is offered in Sect. 6 where we compare our
selection with other related methodologies.

3 The AWKWARD Architecture

The AWKWARD architecture, depicted in Fig. 1, is a hybrid-systems architec-
ture designed for agents operating in multi-agent systems. It consists of three
modules, each with a distinct purpose: 1) the reactive planner; 2) the OperA
module; and 3) the behaviour library. Our solution, inspired by the dual-process
theory presented by [26], employs a ‘fast’ system 1 and a ‘slow’ system 2 working
in tandem for efficient decision making while taking into consideration its wider
environmental and social context.

3.1 The AWKWARD Planner

The ‘fast system’ consists of the reactive planner. The planner allows the agent
to act upon its intuitions: plans with multiple drives are triggered based on
its environmental and internal changes. Each change may enable short-term or
long-term goals for the agent to achieve. Reactive planning has the advantage
of faster action-selection and the ability to manage dynamic and unpredictable
environments [11,15]. Most specifically, we use the BOD paradigm due to its
proven use in virtual environments, e.g. games [9,21,34] and simulations [13].
BOD, unlike other BBAI approaches, allows the execution of multiple behaviours
in pseudo-parallel and has a strong emphasis on modularity and reusability.

BOD plans form a hierarchical tree structure that is traversed from the root
to the leaves in order of priority. This order determines the agent’s behaviour
given the world circumstance it finds itself in. The hierarchy is predetermined
by the plan developer and indicated in the plan. In AWKWARD, plans are
written as JSON files. At its initiation, the Plan Parser component parses the
plan to memory, accessed through the Plan Manager component, storing the
relationships between the plan elements and the hierarchical order of those plan
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Fig. 1. Conceptual diagram of the AWKWARD architecture. The diagram is colour
coded; in yellow, representing our System 1, are the parts of the OperA module, in
blue are the components of system 2, i.e. the reactive planner; and in green the code
components and files shared during execution by multiple agents. (Color figure online)

elements. Each agent’s DCs can be constructed from the same drive elements,
but will differ only in the order of execution, resulting in different expressed
behaviours per agent. By initiating all roles with the same plan (i.e. same drive
collection hierarchy) and enforcing social norms on agents who violate interaction
agreements by explicitly re-prioritising drives, we can shape role- and interaction-
dependent plans as needed by the current environment state.

At set intervals, referred to as ticks, the planner’s Cycle Manager prompts
the Action Selector component to re-evaluate the agents’ perceived conditions
to check if a new plan element needs to be executed or the currently running
one should continue doing so. This continuous re-evaluation of the current plan
elements, called the plan cycle, requires access from the planner to the behaviour
library. That is, during each cycle, the planner retrieves the sensory inputs in
the form of Sense plan elements, and may trigger actuators in the form of Action
plan elements. The plan cycle is set on a fixed frequency based on an external
update signal; for example, in our toy implementation, the plan cycle is set on
every frame update inline with previous implementations of BOD in games [21].

On every tick, the Action Selector component retrieves the plan from memory
and checks the Drive Collections (DCs) in a hierarchical order. If the conditions
of a DC are satisfied, as determined by its corresponding Sense elements, it is
executed. The planner then traverses through the drive elements of the DC,
checking if they are eligible to be executed or not. These comparisons are done
by checking by comparing current sensory reading against a set of preconditions,
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expressed as sense elements, to determine if the behaviour should be pursued or
not by using simple boolean logic. If a drive fires, the planner stops its search at
the current tick. This approach of local search enables agents to produce complex
behaviours with minimal computational resources as there is no need to explore
every possible behaviour at each time [22]. If the drive fired is a different one from
the previous cycle, then the existing one ‘pauses.’ In other words, at the DC level,
different drives can be in different states of execution enabling a quasi-parallel
pursuit of multiple behaviours. Instead, the agent focuses—like our system 1
does—on whatever the highest priority behaviour that should be triggered is,
e.g. staying alive, instead of unnecessarily checking if lower priority behaviours
could also be triggered [15,36].

3.2 The OperA Module

In AWKWARD, the ‘slow’ system is the OperA module. It validates the social
behaviour of the agent and provides direction to the reactive planner upon the
completion—either with a success or failure—of a drive’s execution. As discussed
in Sect. 2, OperA is instantiated with a collection of Interaction Scenes, i.e. formal
specification defining which roles within the organisation partake in the defined
interaction. Using the senses found in the behaviour library module, the Cycle
Manager component prompts the OperA module to check whether a scene has
been initiated or terminated.

While a scene is running, the OperA module verifies that the agent’s
behaviour fulfils all social obligations that the agent has towards the other
agents participating in the same scene. If the agent does not fulfil its obliga-
tions, then the OperA module instructs the planner to rearrange the priority of
the drives in the currently running Drive Collection. This rearrangement is done
by pushing upwards in the hierarchy any drive that corresponds to the desirable
social behaviour. The OperA module is informed through formal specifications
about which drive should correspond to which social behaviour. It identifies
them within the current in-memory version of the plan by using a string equal-
ity operation. When the adjustment of drives is done, the new plan is stored
in the system’s memory, overwriting the old version. The OperA module checks
if the re-prioritisation has produced behaviour that falls within the social and
organisational norms the agent needs to comply with. If not, the OperA module
continues to adjust the plan’s drives further until the expected social behaviour
is achieved. For this social norm validation, OperA uses the same senses as the
planner component does to check which plan elements should be executed.

In its past implementations, a single instance of OperA operated at a global
level [2,3], i.e. it was responsible for agents and interactions in the model. In
AWKWARD, each agent contains its own local instance of OperA; i.e. each
AWKWARD agent only checks its own behaviour in its current interaction scene.
An advantage of this approach is that it allows us, at least in larger environments,
to keep track of the multiple localised interaction scenes that the agent can be
in simultaneously.
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The use of a localised instance of OperA takes inspiration from Dennett’s
description of social constructs, where local efforts are made by agents to “steer
their part of the whole contraption while [remaining] blissfully ignorant of the
complexities on which the whole system depends” [17]. That is to say, each agent
does not need to have any conceivable notion of the global system’s intricacies,
but rather a partial comprehension which may suffice for competence. In prac-
tical terms, as demonstrated in our toy example that is further discussed in
Sect. 4, by having local copies of OperA carried with each agent also means that
an AWKWARD agent is not constrained to interacting with other AWKWARD
agents only. Rather, the agent can consider and interact with any agent archi-
tecture, as well as humans. Moreover, an AWKWARD agent does not require
perfect knowledge of all agents in the same environment—which is impossible
to maintain in certain scenarios, e.g. competitive games—to continuously adjust
and moderate its behaviour within a defined socio-organisational role.

3.3 Behaviour Library

While each agent has its own individual plan structure, a single instance of the
behaviour library can be shared across all agents. It is the collection of all pos-
sible primitives (i.e. Senses and Actions) as discussed in Sect. 2.1. It is accessed
through global function calls in the primitives’ tick functions. The behaviour
library must therefore maintain a direct pointer to the agent that makes any
particular function call in order to return values appropriate to the agent that
requested them. By having a single behaviour library for all agents, we not only
enable code reusability, but also reduce memory footprint of the agents and sup-
port the hosting of a remote behaviour library that runs complex actions and
senses [14].

As discussed above, the behaviour library is accessible by both the planner
and the OperA modules as they each provide control over the agent’s means
of environmental perception, internal status, and any actuators available. This
decision to reuse the same Senses enables code reusability but also constrains
OperA’s knowledge to that of the agent, which it uses for the action-selection
process. Arguably, this is also a more realistic implementation of Kahneman’s
dual-system theory [26]: our system 1 acts reactively and system 2 acts deliber-
ately, but the embodiment with its sensors and actuators, i.e. behaviour library,
is shared by both systems.

4 Implementation in DOTA2

We developed a ‘toy example’ in DOTA2, a popular game characterised by its
extremely steep learning curve and complex emerging behaviour through the
interactions of the different actors between themselves and their environment.
We selected this game due to its complexity, inherent need for a MAS approach,
recognition in the AI research community, and access to a public API for AI
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researchers1. Moreover, DOTA2 has been used in the past by the AI commu-
nity; OpenAI [7] developed agents that were able to outperform 99% of the
DOTA2 player base. Our interest, unlike OpenAI, extends beyond the scope of
the individual agent and creating human-beating agents. Instead, we used this
highly dynamic environment to demonstrate how AWKWARD can be imple-
mented and have BBAI agents working together in a team by using OperA to
model and validate their social interactions.

4.1 DOTA2

In the game, two opposing teams of five players (i.e. agents) navigate through ter-
rain, striving to destroy a structure in their enemy’s base known as the Ancient,
while also defending their own. There are five roles—or positions—to fill per
team. Each team agent is a hero that is assigned a position complementary to
their given skill-set. For instance, a hero with healing capabilities can fulfil the
responsibilities of a Position 5 role, which includes supporting a hero in the Posi-
tion 1 role. In the early game, the Position 1 role is one of the weakest members.
As the match progresses, Position 1 typically becomes the strongest on the team.
However, to reach that state, a social norm exercised in most games involves giv-
ing Position 1 priority, at least in certain scenes, to perform the self-advancing
activity known as farming. However, given specific circumstances, supporting
roles may break that norm to farm in favour of advancing themselves. Hence, it
is important to alternate strategies between pursuing behaviours for the benefit
of others on the team and for your own personal performance. The resulting
team of agents demonstrate emergent behaviour in the arena as they interact.
This emergent behaviour can be difficult to perfectly model or even understand
from the observer’s perspective.

4.2 The Reactive Planner Module and Behaviour Library

As we discussed in the previous section, AWKWARD consists of a planner mod-
ule and a behaviour library. In order for each agent to behave in compliance with
its assigned role, its dedicated plan must consist of a distinctly ordered collec-
tion of drives (i.e. DCs). In our DOTA2 implementation, the plan is described
in a JSON string that is parsed by the planner. We synchronised the planner
update frequency with the game’s internal execution update; i.e. the planner
ticks the DC to check its drives on every frame update. In our toy example, we
implemented a sample DC with multiple drives.

One of our implemented drives is the DE-FarmLane, represented in Formal-
ism 1. The drive prompts the behaviour of seeking out enemy units called creeps
in the hero’s assigned lane in the environment and striking them when they are
low on health in order to achieve what is referred to as a last hit. Last hits result
in a kill and a gold bounty for the hero to collect. Gold is the currency used to
purchase items in-game providing heroes with added attributes and abilities in
1 Available at: https://developer.valvesoftware.com/wiki/Dota_Bot_Scripting.

https://developer.valvesoftware.com/wiki/Dota_Bot_Scripting
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battle. For example, a healing salve can be purchased and consumed to aid in
health regeneration.

The option for health regeneration is captured by Formalism 2. This drive is
executed in response to the agent’s internal state: a measure of low health, as
defined by the agent designer. It is important to note that two drives such as
the external state of farm time in DE-FarmLane and internal state of low health
in DE-Heal, could be true at the same time. In our current implementation,
which behaviour is expressed is determined by plan structure; namely the order
of executing drives. For example, if DE-Heal is prioritised over DE-FarmLane,
then it will execute for as long as the world satisfies its low health condition, or
until a drive of higher priority is able to run. For instance, if the agent has low
health while simultaneously taking damage the plan designer might prioritise a
behaviour that more urgently involves retreating.

farm time ⇒

�
⏐
⏐
⏐
⏐
⏐
⏐
⏐

〈 laning phase ended?⇒ goal
creep can be last hit?⇒ lastHitCreep

creep wave far?⇒ goToCreepWave
⇒ goToAssignedLane

〉

(1)

low health ⇒

�
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐

〈
full health?⇒ goal

healing ability?⇒ use healing ability
healing item?⇒ use healing item
enough gold?⇒ buy healing item

⇒ retreat

〉

(2)

The drive element DE-Retreat, represented in Formalism 3, prompts the
behaviour of seeking refuge in the occurrence of declining health. This drive,
as it is currently implemented, only fires when the hero is below 30% health
and directs the hero towards their home base where their fountain resides and
provides protection while regenerating health.

under attack ⇒
�
⏐
⏐
⏐

〈

full health?⇒ goal
low health AND taking damage? ⇒ retreat

〉

(3)

Drives may fire Competences or Action Patterns. The competences consist
of an ordered list of competence elements that fire other competences or action
patterns. The action patterns consist of a sequence of one or more actions—a
primitive element found in the behaviour library along with senses. For instance,
Formalism 1 depicts DE-FarmLane and lists lastHitCreep as a competence ele-
ment that fires the action pattern shown in Formalism 4. The action patterns
consist of selectTarget followed by rightClickAttack, which are defined in
the behaviour library.

〈selectTarget → rightClickAttack〉 (4)

An agent’s individual behavioural desire is shaped by how its plan element are
arranged and executed. Consider again the drive element DE-FarmLane, which
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encourages a hero to individually collect as much bounty from last hitting lane
creeps as possible. All heroes have this drive in their plans, and while it is a
common desire for all members of the organisation to maximise their individual
farm, it would not benefit the collective team if all members were to continuously
act selfishly. For instance, in the early game a hero with the role of Position 1
is often vulnerable and weak with little of the gold needed to mature their
abilities and grow their arsenal. It is therefore the duty of the Position 5 role to
sacrifice farm for the sake of their allied member who requires it more at this
early stage. Social interactions become particularly interesting and important
for us to capture here. This is also where the OperA framework shines, as it
enables the definition of social role assignments and interaction agreements for
the advancement of the whole team unit.

4.3 The OperA Module Implementation

We use social interactions to alter the order in which a reactive agent’s drives
are fired. Accomplishing this real-time adjustment should demonstrate successful
expression of social behaviour. That is, altering selfish priorities for the collective
good of the organisation the individual hero is a member of. The OperA mod-
ule requires a record of the relevant members and their associated roles within
the society. Currently, each hero’s role assignment also determines their lane
assignment in the environment, which further characterises their “right”.

For example, Table 1 outlines the role of Position 1, indicating that their
ultimate objective is to ensure their team’s victory, which can only be done by
collecting enough items to become powerful. Their sub-objectives are therefore
to farm as much as possible, buying items with earned gold from farm. They
have the right to do so in their assigned zone: the safe lane—named as such due
to its proximity to safety zones. An example norm that applies to a Position 1
hero is the obligation to farm enemy creeps when they are close by. In contrast,
Table 2 shows the role table for Position 5, who is not permitted to farm while
Position 1 is nearby. This sacrifice is to ensure Position 1 gains enough gold to
quickly advance their role and carry the team in the later phases of the game.

Table 1. Position 1 role defined using the OperA framework

Role id Position 1

objectives Carry team to victory
sub-objectives Farm and buy items
rights High priority in safe lane
rules IF enemy creep around THEN

OBLIGED to farm

In the OperA module, relevant norms are constructed by parsing JSON
strings with their descriptions. Each norm has a name identifier, an associated
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Table 2. Position 5 role defined using the OperA framework

Role id Position 5

objectives Support team to victory
sub-objectives Heal allies and take fights
rights Low priority in safe lane
rules IF Position 1 nearby THEN

NOT PERMITTED to farm

Table 3. Interaction Scene for Priority Lane Farming

Scene Priority lane farming

roles Carry and support

landmarks Partner and creeps nearby

results Partner not nearby

rules IF highest priority around THEN
OBLIGED to farm

ELSE
NOT PERMITTED to farm

behaviour, and a deontic operator. The behaviour corresponds to the suitable
drive element of the agent’s planner. The deontic operators we focus on for this
implementation are NOT PERMITTED and OBLIGED. The PERMITTED operator is a
softer norm that induces no change to the plan in the current implementation. A
norm also has a reference to an assigned agent’s plan. It is validated by checking
the agent’s active drive against the expected (norm) behaviour, and whether it
is permissible or required within a given circumstance. If a norm is violated,
sanctions should be applied. In our implementation, a norm can alter the plan
in response to a violation. Recall that our planner implementation allows for the
removal and insertion of drive elements at runtime.

While norms can—and should—be associated with the individual agent, what
is most interesting for our purposes is the use of norms to characterise interaction
scenes between agents. An OperA interaction scene has a unique name identifier,
a list of roles involved in the scene, a list of landmarks that indicate the start
of a scene, a list of results that indicate the end of a scene, and the rules that
indicate the norms that constrain the agents’ behaviours such that they remain
within the social expectations of the team (Table 3). In our implementation of
scene objects, the landmarks and results correspond to sense primitives that were
re-used from the reactive plan elements, as do the rule conditions that determine
the appropriate norm to apply in the scene.

Consider again the agent’s DE-FarmLane (Formalism 1). This drive is fired
when the senses isFarmingTime and isSafeToFarm return true. We have defined
farming time as the early game (approximately the first 10 min.) and safety
corresponds to the fight activity and whether any enemy heroes are threatening
the agent’s farm ability. For the purposes of this demonstration, we assume it
is always safe to farm and the sense will return true. The competence elements
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that the farming drive consists of checks conditions in a prioritised order: if the
agent is not at the creep wave, they must move there. (Unlike action patterns
which always execute in the same order, competences will skip this element if
the condition returns false). If the agent is already at the creep wave, then the
next condition check is whether any enemy creep around can be last hit. A creep
can be last hit when their health is lower than the hero’s attack damage and
is located within attack range. If this condition is true, the agent will select
the appropriate target and attempt to land the last hit. Notice that the drive
is entirely self-directed and lacks any social consideration. That is, each agent,
while expressing farming behaviour, will pay no mind to whether they have the
highest priority around or not. An agent pair farming in the same lane is not
optimal behaviour from a social perspective. The agents must abide by social
norms for this given circumstance, and OperA can facilitate this interaction using
scene scripts. The result is preservation of interaction agreements and altered
plans that better suit each agent’s role requirements.

While this farm priority check is a simple example that can just as easily be
incorporated into each agent’s plan, we argue that it will become limiting and
wasteful over the course of the game. We observed that when social awareness
was incorporated into an individual agent’s plan, the structure not only became
longer to read and more complicated to understand, but also resulted in increased
idle time while an agent was attempting to express farming behaviour. When an
agent of higher priority is farming, the agent should not continue to attempt to
farm, but should instead fire a different drive for productivity. This coordination
is best handled by an organisational/social-aware structure, like OperA. We
argue that the individual agent itself should not have too many intricate details
about interactions, especially considering the long-time horizons of a game like
DOTA2 where social behaviour itself is expected to shift along with the various
game phases. In fact, OperA scene scripts very nicely accommodate this game
attribute. If behaviour can be altered by OperA, then the reactive planners
become simpler to construct. The complexity is captured and described by the
OperA interaction models.

5 Results

In this paper, we are exclusively concerned with developing a system that can
alter agent plans in response to social interactions, regardless of whether other
entities in the society have a similar architecture or not. Hence, we designed the
evaluation of our sample implementation to reflect that. For the scope of this
project, we focus only on the first 10 minutes of the game; within this time in
particular, farming priority is important in terms of behaviour adjustment due
to expected social norms.

The interaction under evaluation is described by the Priority Farm scene as
defined by an interaction scene object. The particular behaviour that is expected
is for the Position 5 agent—the AWKWARD bot—to give up its own farm for the
benefit of the ally of higher priority in the same lane. In this case, the relevant
ally is the Position 1 agent—the default bot.
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Fig. 2. (Left) Similar rate of gold acquisition between Position 5 (orange) and Position
1 (blue) DOTA2 agents when OperA makes no alterations to Position 5’s plan during
the Priority Farm interaction scenes. (Right) Diverging rate of gold acquisition between
Position 5 and Position 1 DOTA2 agents as a result of AWKWARD rearranging the
plan for the agent in the Position 5 role. Trend lines represent average over N = 5
trials. (Color figure online)

To demonstrate how these changes in the plan impacts the performance of
agents, we used gold acquisition as a quantitative metric. This is the standard
metric used for players’ performance evaluation in DOTA2 tournaments. The
agent’s value of gold is measured over the course of the first 10 min. of the
game. The right subplot in Fig. 2 shows the divergence in gold acquisition over
time between the AWKWARD bot of position 5 and the default DOTA2 bot of
position 1 over five trials. This divergence can be explained by the AWKWARD
bot’s social behaviour change; OperA banning farm will result in the role sac-
rificing its own gain and promoting its ally’s acquisition of gold instead. The
AWKWARD bot’s social adjustment is to deny itself from farming when the
priority ally (Position 1) is around.

In this scenario, we mark the moments in time where plan changes are
expected to occur due to social interactions, but OperA is not inducing the
change in order to see the difference in each bot’s gain. While both roles still
acquire gold, Position 1 has acquired less than expected, and both agents approx-
imately match each other’s gain.

In contrast, the left subplot in Fig. 2 illustrates a different trend when the
AWKWARD bot does not change its plan within the social context. These plots
show the two roles on par with one another in terms of gold acquisition over time.
When the AWKWARD bot does not alter its plan and continues to attempt to
farm, even while the ally of higher priority (Position 1) is also farming in the
same lane. The difference in gold acquisition between scenarios can be seen over
numerous trials (the dotted lines shows the average linear trend over 5 trials).
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The data varies in time and gold value due to added randomness across game
instances, but the overall trends remain similar.

6 Related Work

The AWKWARD architecture combines the normative framework OperA with
the Behaviour-Based AI architecture BOD. In this section, we review and com-
pare our architecture to relevant approaches found in the literature. As a com-
plete survey of the literature is beyond the scope of this article, we focus on the
most relevant approaches that we considered during the conceptualisation of the
AWKWARD architecture.

6.1 Behaviour-Based AI

Various approaches of Behaviour-Based AI have been proposed for achieving
real-time performance in embodied—physical or virtual—agents including the
Subsumption Architecture [10], Pengi [1], and ANA [29]. These bottom-up reac-
tive planning approaches use condition-action pairs without—or with minimal—
internal state; i.e. a simple functional mapping between perceived environmental
stimuli and their appropriate responses. Such reactive approaches have proven
highly effective for a variety of problems [30]. However, in comparison to BOD,
these approaches expect little regularity in the arbitration of behaviour; i.e. all
possible behaviours must be considered at all times. Moreover, they cannot store
information dynamically, thus putting the onus on the developer to predict possi-
ble stimuli and develop the appropriate behaviours. BOD overcomes these issues
by further decomposing behaviours into “things that need to be checked regu-
larly, things that only need to be checked in a particular context, and things
that one can get by not checking at all” [15].

While BOD also originated as a robotics cognitive architecture with its POSH
implementation [15]—and most recently Instinct [36]—it has made its way to
virtual environments such as games, e.g. pyPOSH in Unreal Tournament [9],
POSH-Sharp in StarCraft [21], and UNPOSH in Unity [34]. However, in these
implementations of BOD, there was no mechanism to verify that the agents
adhere to their social roles. Instead, unlike our AWKWARD implementation, the
plan developer had to ensure that any social norms were accounted for during
the plan’s development, limiting the possible interactions between agents and
team-level performance of the agents.

6.2 Normative Agents and Self-organisation

The AWKWARD architecture is related to previous work done in the devel-
opment of normative agents. Early work in the literature for normative agents
proposes architectures that extend Belief, Desire, Intention (BDI) models with
norms [16,27,28]. These agents deliberate around the generation and selection
of both goals and plans. For instance, [8] describe their (Beliefs, Obligations,
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Intentions, and Desires) BOID agent architecture that appends obligations as a
mental attitude in addition to its beliefs, desires and intentions. However, as [20]
argue, BDI agents focus towards their own goals instead of social interactions—
both with other artificial and human agents—making such approaches unsuitable
for multi-agent systems where cooperation between agents is necessary.

Another related approach is N-Jason, a norm-aware BDI agent interpreter
equipped with the programming language for agent norm compliance at run-
time [28]. It extends Jason/AgentSpeak(L) with addition of normative concepts
such as obligations, permissions, prohibitions, deadlines, priorities, and duration.
Similar to N-Jason, N-2APL is also a BDI agent architecture that supports norm-
aware deliberation [4]. N-2APL allows agents to adopt normative behaviour in
the form of deontic obligations and prohibitions with specified deadlines. OperA
being a framework for formal specifications of social interactions instead of a
complete architecture, enables us to define explicitly the social interactions in
the form of scene specifications while also keeping the reactive planner compo-
nent independent; i.e. operational without the OperA module.

Relevant work also includes existing methodologies for the development of
normative agents in multi-agent organisations such as Moise [23] and its exten-
sion Moise+ which adds an inheritance on the roles and structural verifica-
tion features [24,25]. Moise+ is based on notions of roles, groups, and missions,
enabling explicit specification of MAS organisations that agents can reason about
and organisational platforms can enforce [25]. Moise+ offers an implicit descrip-
tion of an interaction protocol through deontic links that specify agent permis-
sions and obligations within their assigned missions. An agent belongs to groups
where they are offered a set of permitted roles and missions. Thus, upon changing
roles and missions, groups are also subject to change, allowing for task-oriented
coalitions to be defined. While interactions in Moise+ are task-driven, OperA
leads by social expectation in the form of explicit contracts; a main motivation
for its adoption in the work presented here.

All of these approach capture and represent social norms in order to enable
agents to self organise. However, they rely on integrating the social norm
enforcement directly into the decision making system. In our architecture, we
allow for both reactivity and social deliberation as the situation demands. This
ensures that our agents can act efficiently in their environment on their own,
i.e. act as complete complex agents, while also organising themselves based on
their social roles—and corresponding responsibilities—when they are a part of
a larger organisation. Moreover, our decision to use a distributed version of
OperA ensures that our AWKWARD agents can interact with other AWKWARD
agents, non-AWKWARD agents, and even humans.

Finally, AWKWARD considers that all agents have the capacity to act self-
ishly and altruistically to varying degrees determined by their roles and social
interactions. In contrast to above approaches, we use a reactive planning archi-
tecture for the individual agent motivated by its ability to handle uncertainty
and dynamic environments. We assign obligations via external expectations that
may be subject to change. This approach of global coordination also differs
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from other work proposed for developing normative reactive planning agents,
such as the NoA architecture [27]. While NoA adopts norms and deliberates
over their activation, our proposed framework concerns itself with dynamically
imposing, monitoring and enforcing norms through global coordination, and then
distributed enforcement, rather than individual deliberation.

6.3 Hybrid Approaches with Reactive Planning

AWKWARD combines formal reasoning, in the form of the OperA module, with
reactive planning. A related approach is the logic-based subsumption architec-
ture, where the different control layers that make up a subsumption system have
been axiomatised using first-order logic [5,6]. The benefit of this approach is
the introduction of non-monotonic reasoning into reactive planning; i.e. devel-
opers can understand and easily add control layers to the subsumption plan-
ner at run time [6]. Similarly, the Layered Argumentation System combines—
at hardware level—fuzzy reasoning and non-monotonic reasoning for run-time
generation of reactive plans [32,33]. These combinations of reactive and formal
reasoning approaches bridge together communities—one of our goals—but their
focus has been to improve the overall performance of the agent by combining
the two paradigms instead of enabling cooperation between multiple agents.

With the latter goal in mind, ABC2 architecture combines classical plan-
ning with reactive approaches [31]. ABC2, similar to AWKWARD, emphasises
cooperation between agents. In ABC2 each agent has to define and broadcast
their own ‘skills’; i.e. it requires active communication and coordination instead
of promoting self-coordination as AWKWARD’s OperA implementation does.
AWKWARD keeps the reactive and formal parts of the system completely sep-
arate from each other; i.e. our reactive planner—sans social consideration—can
operate without the OperA module.

AWKWARD uses both formal reasoning and reactive planning as comple-
mentary approaches to each other. However, unlike past approaches, this combi-
nation is done on an architectural level. By keeping the reactive planner separate
from the normative system, our reactive planner can operate without the nor-
mative reasoning module—even if the agent is not behaving within the limits of
its socio-organisational role.

7 Conclusions and Future Work

In this paper, we presented the AWKWARD architecture for hybrid systems:
agents that combine normative reasoning, in the form of OperA, and behaviour-
based AI methods, in the form of BOD, at an architectural level. Combining the
advantages of BOD and OperA, AWKWARD achieves real-time adjustment of
agent plans for evolving social roles as it verifies—and adjust plans to ensure—
adherence to any socio-organisational role prescribed to the agent. We provided
a toy example, implemented in the game DOTA2, where we demonstrated how
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AWKWARD enables continual manipulation of agent’s behaviour over changing
environmental and social circumstances.

With the planner and OperA module implemented in DOTA2, we have
demonstrated how OperA can influence the behaviour of reactive planners under
defined social circumstances. However, manually designing and building reactive
plans can be inefficient and time consuming for system developers, especially as
plans scale. As a next step, we intend to investigate methods of optimising plan
structure automatically. To do this, Reinforcement Learning techniques can be
employed to guide the discovery of an optimal ordering and OpenAI Gym acts
as a favourable toolkit for this task. Additionally, we are interested in extending
the scope to cover variable autonomy, where varying levels of decision-making
control can be passed between a human player—who either directly controls a
hero in the game or oversees a team of bots—and artificial agents.
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Abstract. Agents in Multi-Agent Systems (MAS) are not always built
and controlled by the system designer, e.g., on electronic trading plat-
forms. In this case, there is often a system objective which can differ
from the agents’ own goals (e.g., price stability). While much effort has
been put into modeling and optimizing agent behavior, we are concerned
in this paper with the platform perspective. Our model extends Stochas-
tic Games (SG) with dynamic restriction of action spaces to a new self-
learning governance approach for black-box MAS. This governance learns
an optimal restriction policy via Reinforcement Learning.

As an alternative to the two straight-forward approaches—fully cen-
tralized control and fully independent learners—, this novel method
combines a sufficient degree of autonomy for the agents with selective
restriction of their action spaces. We demonstrate that the governance,
though not explicitly instructed to leave any freedom of decision to the
agents, learns that combining the agents’ and its own capabilities is
better than controlling all actions. As shown experimentally, the self-
learning approach outperforms (w.r.t. the system objective) both “full
control” where actions are always dictated without any agent autonomy,
and “ungoverned MAS” where the agents simply pursue their individual
goals.

Keywords: Multi-Agent System · Governance · Self-learning system ·
Reinforcement Learning · Electronic institution

1 Introduction

1.1 Motivation

Multi-Agent Systems (MAS) are widely used as a general model for the interac-
tion of autonomous agents, and have been applied to a vast range of real-world
settings, for example Algorithmic Trading [1], Traffic Management [33], and
Multi-Player Video Games [25] (see [42] for a recent survey of MAS applica-
tions).
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Example 1. Consider a stock market where high-frequency trading algorithms
typically generate the vast majority of orders. Obviously, agents in this setting
act autonomously and in a self-interested manner in order to maximize their
profit. As is known, this behavior leads to problems like high volatility and
extreme stock price behavior [26]. It is therefore crucial for regulators to pro-
vide both stability (i.e., ensure that extreme price movement flash crashes will
not happen) and opportunity (i.e., ensure that investors can still use intricate,
proprietary strategies to make profit).

In this example—as in many other applications areas—the agents cannot (or
should not) be fully controlled, but must have a sufficient degree of freedom
regarding their actions. At the same time, some level of control needs to be
imposed on the agents such that a system objective can be achieved.

The scope of this paper is therefore a subclass of MAS with three more
assumptions, inspired by the concept of Electronic Institutions (EI) [4] as
described in Sect. 2:

(a) The agents are truly autonomous entities whose goals and strategies cannot
be known (“black boxes”), but only observed through their actions,

(b) in addition to the agents’ individual goals, there is a system objective which
does not necessarily coincide with any of the former goals, and

(c) agent actions can be restricted by a governance which has the power to
enforce such restrictions.

We propose a novel approach to governing an MAS which combines the
restriction concept of EI with dynamic rule-setting, provided by a Reinforce-
ment Learning (RL) component (the governance). This governance observes the
public information of the MAS, i.e., actions and transitions, and learns opti-
mal restrictions, which depend on the system state and the respective agent’s
observation.

A common method for governing agents in an EI is the use of norms with
a focus on rewards and sanctions as the means of influencing agent behavior,
while the action space itself is not affected. This makes two essential assump-
tions about the agents: First, “the effectiveness of these norms depends heav-
ily on the importance of the affected social reality for the individual” [6], and
second, the normative awareness needs to be comparable for all participating
agents (interpersonal utility comparison). For unknown agents, we argue that
these assumptions cannot be expected to hold true, which is why we base our
governance on (mandatory) restrictions of the agents’ action sets. The dynamic
nature of the rule-setting process (rule synthesis) is due to the fact that agents
themselves can act strategically and are therefore able to exploit any static rule
set.

Of course, the governance’s “power to restrict” requires some sort of physical
control over the MAS. This requirement is satisfied in a wide range of applica-
tions, for example by any digital platform where agents are software components,
and actions are chosen by exchanging messages. Therefore, we assume the adher-
ence to restriction to be given in this work.
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1.2 Illustration of the Governance Approach

The simultaneous execution and learning of a Governed Multi-Agent System
(GMAS) is shown in Fig. 1 (see the formal model in Sect. 3 for the definition and
explanation of the variables, and Algorithm1 for the actual run-time loop). The
governance is used, i.e., its restriction policy is queried, at every execution step
of the MAS to determine the set of allowed and forbidden actions, whereas the
learning happens in between those execution steps.

In each learning step, the governance optimizes its restriction policy in order
to maximize the system objective, given the observation of the last step. At the
same time, the agents can update their own action policies, but this is not part
of the GMAS (black-box agents).

Fig. 1. Sequence of execution and learning steps in a Governed Multi-Agent System

1.3 Contribution

We show in this paper how a self-learning governance with the ability to restrict
action spaces can add value to an MAS. This is demonstrated by comparing its
performance to two natural alternatives (see also [37]):

– Ungoverned MAS (UMAS), in which the agents alone decide on their actions,
such that coordination or cooperation (if any) evolves on its own, and

– Fully Controlled MAS (FMAS), where the governance prescribes all agent
actions, leaving no room for autonomous decisions.

The main contributions of this work are: We give a formal definition of a
Governed Multi-Agent System (Sect. 3), we conceptualize an RL governance for
this model, analyzing the assumptions made in the model and describing the
governance’s learning behavior (Sect. 4), and we present experiments (Sect. 5)
to demonstrate that this method can significantly outperform both alternatives:
UMAS and FMAS.

2 Related Work

Most MAS literature focuses on the agents’ perspective, attempting to improve
their learning behavior [32,35]. The underlying model, the Stochastic Game
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(SG), is both an extension of a Markov Decision Process (MDP) to multiple
agents, and an extension of a Normal-Form Game to multiple states. Hence,
methods from both Stochastic Processes and Game Theory have been adapted
to this setting. Both in Game Theory and in Machine Learning, it is very common
to assume discrete time steps and therefore a synchronized interaction between
agents. We will make use of this assumption for the interaction between envi-
ronment, agents and governance (see Sect. 3).

For a single-agent (stationary) MDP, the most common approach—
Reinforce-ment Learning—includes a variety of algorithms which have been
proven to converge to an optimal strategy [38]. What makes it hard to transfer
these algorithms to multi-agent settings is the fact that the rewards and transi-
tions in an SG depend on the joint action of all agents, making the system non-
stationary from the perspective of each agent. Coming from the game-theoretic
side, the extension of solution approaches for normal-form games (mostly based
on the notion of equilibrium strategies) to SG is no less challenging.

Nevertheless, there have been many successful approaches to the multi-agent
learning problem by introducing new concepts for equilibria (e.g. correlated equi-
libria [19] and cyclic equilibria [43]) or by making additional assumptions: Among
others, agents can learn optimal strategies if all agents receive the same rewards
(Team Markov Games [39]), if the game is a Zero-Sum Game [23], if all oppo-
nents are stationary [13], or if the “rate of non-stationarity” is bounded by a
variation budget [12]. The general problem of finding an optimal strategy in a
model-free, general-sum SG, however, is still an open challenge [42].

As a consequence, researchers have introduced additional support for the
learning agents. This support can be either restricted to the interaction between
the agents, or it can involve another entity besides the agents.

For the first type, agents are usually allowed to exchange additional infor-
mation in order to find optimal strategies [11,21] (see also the recent MARL
surveys of Zhang et al. [42] and Gronauer and Diepold [20]).

The second type relies on non-agent components to solve the learning prob-
lem: In its most general notion, the concept of Environment-Mediated Multi-
Agent Systems (EMMAS) states: “When designing a system that is based only
on local interactions in the environment and the emergent properties resulting
from these interactions, it is a difficult research problem on the one hand to
obtain the required global behavior of the system and on the other hand to
avoid undesired global properties”, and therefore suggests to “off-load some of
the agent complexity into the processes of the dynamic agent environment” [40].

Electronic Institutions (EI) [16,30] provide an institution as the entity which
regulates agent interactions, among many other features. The framework con-
tains an “implementation of the control functionality of the institution infras-
tructure [which] takes care of the institutional enforcement”, which can refer
to both norms—which can be violated—and enforced rules. While these two
terms are not always used consistently, we use here the convention that rules are
“norms that can be effectively controlled and thus enforced, such that violation
is impossible” [27].
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The EI framework itself does not only describe rule-setting capabilities, but
also Agents, Roles, a Performative Structure, and Normative Rules, among oth-
ers [16]. The same holds for alternative models for social coordination, e.g.,
ANTE [24], or INGENIAS [18] ([3] includes details of all these frameworks).
However, we use only one feature of EI: The ability to restrict the space of avail-
able actions for the participating agents. This has been described as an important
part of an EI by Esteva et al.: “An electronic institution defines a set of rules
that structure agent interactions, establishing what agents are permitted and
forbidden to do” [15]. Aldewereld et al. emphasize that “organisational objec-
tives are not necessarily shared by any of the individual participants, but can
only be achieved through their combined action” [3], and that “one cannot make
any assumptions about the inner workings of participants. [...] Rather, external
aspects of the participants (actions, interactions, etc.) have to be leveraged to
create the required coordination structures” [3].

Norms are a very common approach for achieving system goals in MAS. The
distinction between norms and rules (“[Norms] are a concept of social reality [...]
Therefore, it is possible to violate them” [6]) has been made many times in the
literature; they have been called “social conventions” and “explicit prescriptions”
[14], “legalistic view of norms” and “interactionist view of norms” [9], “norms”
and “regimented norms” [6], or “norms” and “hard constraints” [17,27].

Normative Multi-Agent Systems (NorMAS) [8,14] embrace the idea that
agent communities can self-regulate their interactions without a controlling force.
Therefore, the field focuses on (violable) norms, their creation or emergence,
observation, revision, adherence or violation, and sanctioning mechanisms. How-
ever, this requires the two assumptions mentioned in Sect. 1.1: Norm-awareness
and inter-agent utility comparability. In our opinion, these requirements do not
hold for black-box agents with individual goals (“How to deal with a lack of nor-
mative awareness and if it is being considered, how to check the lack of normative
awareness if an agent’s knowledge base is not accessible?” [6]). In consequence,
our focus lies on the other type of institutional enforcement: Rules for allowed
and forbidden actions.

The original implementation of EI (and its development environment EIDE
[31]) envisaged a clear distinction between rule/norm creation at design-time
and agent interaction at run-time (i.e., all rules/norms are given independently
of the agents and do not change during execution). A logical next step was
the Autonomic Electronic Institutions (AEI) approach [5,10]: Acknowledging
the fact that static norms are not always sufficient for dealing with self-adapting
agents, it moved norm creation from the design time to the run-time and allowed
for dynamic changes. EI was therefore extended to include an evolutionary norm
adaptation mechanism (e.g., a genetic algorithm). As we will see later, this is
somewhat similar to our governance (defining and updating institutional rules
at run-time).

Like multi-agent learning in general, normative capabilities in MAS can either
be part of the agents [34], or part of an additional entity [2] (or both). While
early work defined static norms at design-time [7,37], the field has since evolved
towards run-time norm creation, synthesis and adaptation [28], applying meth-
ods like Automated Theorem Proving [29] or Deep Learning [2] to NorMAS.
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This development towards dynamic norm creation and adaptation has, to
our knowledge, not yet been examined for rules (i.e., hard constraints). In this
paper, we fill the gap by demonstrating that dynamic rules do have the potential
to enhance the capabilities of an MAS. Moreover, the RL approach employed
here for the governance component is shown to be well-suited for on-line learning
of a restriction policy in an environment where the agents and their behavior
can only be observed from outside.

3 Model

3.1 Notation

Vectorized Variables. Let S be a set, and I be an index set. A single variable
s ∈ S is written in regular face, whereas a vector s = (si)i∈I ∈ SI is written in
bold face. The index set is usually omitted when the context is clear. Variables
that change over time always have the current time step as a superscript, as
in s(t) or π

(t)
i .

Categorical Distribution. Given a finite set S, Δ(S) denotes the set of all
discrete probability distributions over S, i.e., the set of all functions p : S →
[0, 1] with

∑
s∈S p(s) = 1.

Image and Support. Let f : A → B be a function. Then im(f) := {f(x) : x ∈
A} is the image of f . If B = R, supp(f) := {x ∈ A : f(x) �= 0} is the support
of f .

3.2 Multi-Agent System

Consider a Partially Observable Stochastic Game (POSG) over discrete time
steps t ∈ N0, i.e., a 7-tuple (I,S,O,σ,A, r, δ) with agent set I = {1, ..., n}, state
set S, observation set O, observation functions σi : S → O ∀i ∈ I, fundamental
action set A with k := |A| ∈ N, agent reward functions ri : S × AI → R ∀i ∈ I
and a probabilistic transition function δ : S × AI → Δ(S).

Each agent has an (unknown) stochastic action policy πi : O × 2A → Δ(A)
which defines its behavior. These policies take as input not only the agent’s
current observation, but also a set A ⊆ A of allowed actions. Referring to the
assumption of non-violable rules (see Sect. 1.1), we take as a given that forbidden
actions are never chosen, hence suppπi(s,A) ⊆ A∀i ∈ I, s ∈ S.

An action policy is called static if it is constant in t; otherwise it is called
dynamic. Note that a static policy π can still be non-deterministic, since the
concrete action is sampled from the categorical distribution π(o,A) ∈ Δ(A).

3.3 Governance

The governance component returns a set A ⊆ A of allowed actions when given
an input pair consisting of the overall environmental state and an agent’s obser-
vation. This function is called the governance policy πG : S × O → 2A. Note
that the set of allowed actions can never be empty, i.e., ∅ /∈ im(πG).
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In contrast to a standard MAS, where the environment provides all the input
for the agents’ action policies, there is now an intermediary step in which the
governance computes the set of allowed actions for each agent, which is then
passed to the agent’s policy in addition to its observation.

The system objective is given as a reward function rG : S × AI → [0, 1],
allowing the governance to directly measure the success of its restrictions after
each environment step. The normalized range of rG is chosen for ease of compa-
rability.

Definition 1. A Governed Multi-Agent System (GMAS) is the 9-tuple

(I,S,O,σ,A, r, δ, πG, rG) .

The governance is a centralized controller insofar as it observes the entire
MAS and defines restrictions in a centralized way. However, the fundamental
difference to the usual notion of “centralized control” is that the governance
leaves a substantial amount of autonomy to the agents. This is not enforced by
its design, but emerges naturally: The synergy between the governance’s and the
agents’ capabilities gives a performance advantage over full control, causing the
governance to allow multiple actions at most times (see Sect. 5).

3.4 Sequence of Actions in a GMAS

Fig. 2. Execution step of a GMAS

Figure 2 shows the exchange of data
in one execution step (see Fig. 1)
of a GMAS: The environment pro-
vides the agents with their respective
rewards and observations, while pass-
ing to the governance the environ-
ment state, the governance reward
and agent observations 1 . The gov-
ernance then calculates the sets
of allowed actions for each agent,
and passes them to the respective
agent 2 . Finally, the agents choose
their actions and communicate them
back to the environment 3 which executes the transition. For simplicity and
clarity of presentation, all n queries to the governance have been wrapped up
into one arrow.

In pseudocode (see Algorithm 1), the run-time loop is very similar to the stan-
dard execution of an RL environment (e.g., in OpenAI Gym), with an additional
governance step.
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Algorithm 1: Run-time loop of a governed MAS

Data: GMAS G =
(
I, S, O, σ, A, r, δ, π

(0)
G , rG

)

Choose initial environmental state s(0) ∈ S ;

for t ∈ {0, ..., T} do
// Execution step

for i ∈ I do

o
(t)
i ← σi(s

(t)) // Compute agent observation from state

A
(t)
i ← πG(s(t), o

(t)
i ) // Get allowed actions from governance

a
(t)
i ← πi(o

(t)
i , A

(t)
i ) // Get chosen action from agent

end

r(t) ← r(s(t), a(t)) // Get rewards

s(t+1) ← δ(s(t), a(t)) // Execute transition

// Learning step

π
(t+1)
G ← train(π

(t)
G ) // Train governance

for i ∈ I do

π
(t+1)
i ← train(π

(t)
i ) // Train agent

end

end

3.5 Degree of Restriction

There is a natural trade-off between achieving the system objective and preserv-
ing agent freedom: The more actions the governance forbids, the higher its level
of control over the agents—in the extreme case, only a single action is allowed
for any given observation, resulting in a fully deterministic trajectory. On the
other end of the spectrum, the governance always allows all actions, reducing
the GMAS to an ordinary MAS.

It is therefore reasonable to measure the degree of restriction, i.e., the percent-
age of forbidden actions, and to assess this metric in relation to the governance’s
performance:

Definition 2. For an individual agent i ∈ I and time step t ∈ N0, the degree
of restriction is defined as

ρ
(t)
i := 1 −

∣
∣πG

(
s(t), oi

(
s(t)

))∣
∣

|A| ∈ [0, 1].

The overall degree of restriction ρ(t) := 1
n

∑
i∈I ρ

(t)
i is simply the mean over

all agents. The higher the degree of restriction, the lower the autonomy of the
agents.

It should be noted that real-world agents oftentimes cannot choose every
action at every step. Instead, only a subset of actions is feasible, depending on
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the environmental state (parametric action spaces). In this case, the degree of
restriction should be defined as the ratio between forbidden actions and feasible
actions.

4 Model Analysis

4.1 Fairness

Agents who make the same observation o ∈ O at a time step t are always
allowed to perform the same actions πG

(
s(t), o

)
. This is in line with a common-

sense definition of fairness: The governance treats all agents the same way. To
achieve this, learning (i.e., a change of the governance policy) cannot take place
within a time step, but only after all agents have been given their action sets.

4.2 Learning

The GMAS model does not specify any particular learning algorithm, but only
requires a governance policy πG to be available for querying at all times. The
restriction policy can be any function S × O → 2A, but, of course, the gover-
nance’s goal is to find a restriction policy which maximizes the reward rG, given
the agents’ behavior. Since the governance interacts with the ungoverned MAS
in a cycle of information, reward and action, RL seems to be the natural way to
optimize this policy.

From this perspective, the governance itself is a Reinforcement Learning
agent which acts on the entire MAS as its environment: The governance inter-
acts with the MAS environment and the agents, but only sees how its own
actions (i.e., defining sets of allowed actions) influence its reward and the envi-
ronmental state. Therefore, it can be treated as a reinforcement learner with
action policy πG and reward rG. Its environment has the transition function
δ′ : S ×(

2A)I → Δ(S) with δ′(s,A) := δ (s,π(σ(s),A)), which is a composition
of observation functions σ, agent policies π and MAS transition function δ.

δ′ is not explicitly known to the governance, such that a model-free algorithm
must be used. Moreover, since the governance policy is the action policy of the
governance, standard model-free RL algorithms like A3C, DQN or PPO can
be directly applied. The governance is structurally equivalent to a multi-label
classifier: Its policy outputs a subset of the (finite) fundamental action set. Thus,
specialized network architectures for this type of classifier could also be applied
in order to build a more effective governance policy.

Since agents can (and probably will) change their behavior according to the
current restriction policy, a GMAS is inherently dynamic and therefore an on-
line learning problem: Both sides (agents and governance) react to the other
side’s actions and strategies by continuously adapting their own action policies.
The initial restriction policy can be a random function, or it can be set to simply
allow all actions, i.e., π

(0)
G (s, o) := A ∀s ∈ S, o ∈ O. At run-time, the governance

needs to learn continuously in order to keep up with changing agent behavior.
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Therefore, there is no distinction between traning and evaluation as in classical
RL, but the governance learning process continues throughout the lifecycle of
the GMAS.

4.3 Stationarity

It is known [12] that, for a stationary MDP, near-optimal regret bounds can
be achieved via RL. The situation is more complicated in the non-stationary
case, depending on whether non-stationarity occurs in discrete steps (piece-wise
stationarity) or continuously (among other criteria).

The transition function δ is assumed to be stochastic, but stationary. There-
fore, the defining factor for the stationarity of a GMAS, seen from the gover-
nance’s view, is the set of agent policies π: δ′ is stationary if and only if all agent
policies are static.

While using static pre-trained models is very common for NLP, Computer
Vision and Speech Recognition [41], this is unusual for agent models, since on-line
learning lies at the heart of useful behavior in an unknown world. Nevertheless,
safety-critical agent-based systems like fully autonomous cars will likely require
some sort of certification ensuring that they behave (exactly or approximately)
in a certain way, which means that their policy should not, even when learning
how to deal with unforeseen situations, be allowed to deviate too far from the
approved policy.

Hence, we cannot generally assume that a GMAS is stationary, but in some
domains there can be (quasi-)stationary agents, which means that the gover-
nance is likely to perform better than in a setting where the agents adapt their
strategies arbitrarily fast.

5 Experimental Evidence

Fig. 3. The dining diplomats’ problem

The goal of the experiments is to
investigate the effect of the gover-
nance. For this purpose, we define
a game in which the agents need to
agree on an action, and then compare
three types of systems: Ungoverned
MAS (UMAS) which does not have
a governance component at all, Fully
Controlled MAS (FMAS), and Gov-
erned MAS (GMAS).

5.1 The Dining Diplomats’
Problem

Consider an MAS with agent set I =
{1, ..., n} and action set A = {1, ..., k} for all agents. The agents are positioned in
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a circle such that each agent can only see their immediate neighbors (see Fig. 3).
At each step, the agents play a card corresponding to one of their available
actions. The environmental state represents the currently played cards, i.e., S =
An and O = A3.

The agents’ goal is to learn to coordinate their actions in order to play the
same cards. In the style of the famous dining philosophers’ problem, we call
this problem the dining diplomats’ problem, requiring the participating agents
to come to an agreement under imperfect information.

5.2 Reward Functions

Consider two reward functions—a state-based reward and an observation-based
reward:

rs : S → R, rs(s) =

{
1 if s1 = · · · = sn

0 else

ro : O → R, ro(o) =

{
1 if o1 = o2 = o3

0 else

The state-based reward function only differentiates between “no coordina-
tion” and “full coordination”, while the observation-based reward also shows
local coordination between three agents (i.e., the observation space of one agent).
The three system types use these reward functions as follows:

Agents Governance

UMAS ro –

FMAS rs rs

GMAS ro rs

In the FMAS type, agents and governance have the same information about
achieving their goals, so the governance cannot use the agents as an additional
source of intelligence. In GMAS, however, the agents have access to more detailed
information through ro. Hence, the two pivotal dimensions are (a) access to low-
level/high-level information and (b) dense and sparse rewards.

5.3 Configurations

We compare the three types for four different problem sizes: Tiny (n = 5, k = 3),
small (n = 10, k = 5), medium (n = 15, k = 7) and large (n = 20, k = 10). This
allows us to see clearly at which complexity the non-GMAS types fail to achieve
coordination, and therefore highlights the value added by the synergy.

The size |S| = kn of the state space grow polynomially in the number of
actions, but exponentially in the number of agents: In the tiny configuration,
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there are 35 = 243 states, while this number is 510 ≈ 107 for the small con-
figuration, 715 ≈ 4 · 1012 for the medium configuration, and 1020 for the large
configuration.

5.4 Frameworks and Algorithms

For our experiments, we used the RLlib library [22] for multi-agent learning,
which is based on the Ray distributed computing framework. Both agents and
governance use a standard configuration of the Proximal Policy Optimization
(PPO) algorithm [36].

The interaction between agents, governance, and environment requires a
sequential MAS execution: The governance needs to act (i.e., produce a set
of allowed actions) before an agent can choose from this set. All agent actions,
in turn, cause the environment to proceed to the next state. Therefore, the gov-
ernance is queried n times for each environmental step, while the agents each
only act once during the same period.

All experiments were run in ten independent samples for 5 · 106 steps each
(empirically determined to ensure sufficient convergence of the action policies).

5.5 Reproducibility

The source code to perform the experiments and generate the graphs is publicly
available as a Jupyter notebook, allowing for simple reproduction of the results.
The exact results shown in Fig. 4 are stored as Tensorboard log files in the same
public repository.

5.6 Results

The results of the experiments can be found in Fig. 4. The governance reward rG,
as the main performance indicator, is shown on the left side, while the graphs
on the right depict the corresponding degree of restriction ρ (see Definition 2).

Since the reward at every step is either 0 or 1, the governance reward r
(t)
G is

the average reward over time, i.e., the percentage of steps where full coordination
of all agent actions has been achieved.

In each graph, the mean of the ten samples (thick line) and the individual
samples (thin lines) are plotted. The numbers vary strongly between samples,
i.e., the mean should be seen as a general trend, but not as the “average run”.

Since the governance policy is initialized randomly, all governed types start
with ρ(0) ≈ 1

2 . The progression of ρ depends on whether the governance is able
to learn a “fully controlling” way to create a high reward. If it succeeds, ρ goes
up to k−1

k and stays there. Otherwise, the governance must utilize the agents’
freedom, and therefore allows more than one action. Notably, the degrees of
restriction turn out to be roughly equal in the FMAS and GMAS types.
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Fig. 4. Experimental results. Thick lines show the mean of r
(t)
G and ρ(t) over ten inde-

pendent samples, while thin lines are the results of the individual samples.
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Tiny Configuration. Both FMAS and GMAS achieve an almost perfect
reward. While the FMAS solves the task by simply allowing a single action
for each observation (ρ(t) → k−1

k = 2
3 ), the GMAS uses a slightly lower degree

of restriction. The problem is relatively easy, so that the agents in the UMAS
can also find a solution, albeit not a perfect one.

Small Configuration. This is challenging for the UMAS, but FMAS and
GMAS both achieve similar, good results. Sometimes the GMAS uses the
maximum degree of restriction, but mostly, agents are given two or three
actions.

Medium Configuration. The difference becomes larger: The UMAS cannot
find a system state that results in a nonzero reward at all, and the FMAS
performs approximately half as well as the GMAS. We can see from ρ that
even the FMAS governance does not use a maximally restrictive policy, since
it cannot find the optimal actions for each observation.

Large Configuration. Finally, both UMAS and FMAS are not able to get any
rewards. In contrast, the GMAS still achieves a reward of more than 15–20%
in four out of ten samples, using a degree of restriction around 50%.

The results show that the GMAS type succeeds in achieving full coordination
of the agent actions in a substantial number of time steps. As expected, the
average reward decreases with increasing complexity of the setting, but it can
handle systems where neither UMAS nor FMAS are able to get any rewards.

5.7 Discussion

Qualitatively, we make the following observations of the three types:

Tiny Small Medium Large

UMAS � �
FMAS � � �
GMAS � � � �

The hypothesis that the synergy of agents and governance significantly out-
performs the conventional approaches of ungoverned agents and centralized con-
trol, indeed holds true. Notably, the agents simply apply their own (self-learning)
strategies, have no normative awareness, and their rewards are not influenced
by the governance.

In this section, we give an interpretation of the observed results:

System Objective and Degree of Restriction. The governance in the
GMAS type has the power of fully controlling the MAS—it could simply allow
only one action for any state and observation. Therefore, the crucial observation
in the experiments is that the degree of restriction does not converge to k−1

k .
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Instead, the right side of Fig. 4 clearly shows that the governance leaves a
substantial amount of freedom to the agents, and that this freedom causes the
governance reward to be much higher than using full control (i.e., the FMAS
type).

The balance between governance control and agent freedom is constantly
changing, depending on how well the system objective (as measured by the
governance reward function) is achieved. It is a crucial feature of our approach
that the optimal balance is determined via RL and not defined in advance.

Micro-level and Macro-level Knowledge. There are different types of
knowledge in the GMAS: The governance can see the entire environmental state
and knows which states are most desirable, but does not know effective actions
to get there, since its reward function only indicates whether the system objec-
tive has been fully achieved. The agents, on the other hand, lack a view of the
big picture, but have a better grasp of how to act on a lower level, since their
reward function tells them when they are locally coordinated.

In the UMAS, the overall state is not available to the agents at all, not
even through the governance. This prevents the agents from finding a globally
coordinated solution, even though they can coordinate locally. In the FMAS, the
governance sees the big picture, but cannot figure out the necessary actions for
the agents to move in the right direction.

The combination of these two levels allows the GMAS to reach global coordi-
nation—without ever being instructed how to combine agent and governance
knowledge. This setting was chosen since it represents a common pattern in
MAS: Individual agents are situated at a specific location in the environment
and only able to perceive their surroundings, i.e., a small part of the environment.
On the other hand, this small part is where their actions have the biggest impact.
The system designer or operator, in contrast, sees the environment as a whole,
but does not have the micro-level knowledge about optimal or even useful agent
actions. Therefore, the goal is clear, but the way to get there is unknown.

Incentives for Autonomy and Restriction. The governance can freely
choose the restrictions without being penalized for high degrees of restriction.
Consequently, there is no real incentive for the governance to allow multiple
actions: The chosen degree of restriction directly reflects the highest expected
reward. In the small scenarios, we observe that allowing only one action per
observation is a feasible strategy which leads to high rewards. As the scenarios
get more complex, however, the governance policy is not maximally restrictive
anymore: The governance learns that the autonomous decisions of the agents are
more helpful than centralized control. Still, by selectively forbidding actions, the
governance can support the agents’ action policies.

Penalties for Restrictions. A reasonable goal for the governance is to use
the least amount of restrictions to achieve its objective, and therefore strive to
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reduce the degree of restriction whenever this does not counteract the system
objective. To this end, we experimented with giving the governance a penalty in
proportion to the current degree of restriction by redefining its reward function
as r′

G := rG − α · ρ with a constant weighting parameter α. This resulted in
a much lower reward (even when ignoring the penalty), making the governance
drop nearly all restrictions early in the training, before it then defined new, more
effective restrictions. However, the penalty often prevented the governance from
sufficiently exploring the possible restrictions, so there were many samples where
there was never any reward, even in small scenarios.

6 Conclusion and Future Work

In this paper, we have motivated the need for governed MAS, a synergy-based
approach for black-box MAS with an additional system objective. We have
demonstrated that full control as well as ungoverned learning agents fail to
achieve their goals even in simple scenarios; a challenge solved considerably bet-
ter by GMAS.

The model and experiments give rise to several questions for future work:

– In the experiments presented here, the objectives of agents and governance
were strongly correlated. How can the approach be applied to an arbitrary
combination of goals, and how do conflicts in the objective functions influence
learning?

– What does an extension of the restriction policy to continuous action spaces
look like?

– How do action space restrictions compare (empirically and theoretically) to
other forms of governance, e.g., norms or inter-agent communication?

– Is the approach viable for asynchronous MAS (e.g., cyber-physical systems)?

Acknowledgements. This work is supported by the German Federal Ministry for
Economic Affairs and Energy (BMWi).
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25. Maŕın-Lora, C., Chover, M., Sotoca, J.M., Garćıa, L.A.: A game engine to make
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Abstract. In everyday life, people often depend on their theory of mind,
i.e., their ability to reason about unobservable mental content of others
to understand, explain, and predict their behaviour. Many agent-based
models have been designed to develop computational theory of mind and
analyze its effectiveness in various tasks and settings. However, most
existing models are not generic (e.g., only applied in a given setting),
not feasible (e.g., require too much information to be processed), or
not human-inspired (e.g., do not capture the behavioral heuristics of
humans). This hinders their applicability in many settings. Accordingly,
we propose a new computational theory of mind, which captures the
human decision heuristics of reasoning by abstracting individual beliefs
about others. We specifically study computational affinity and show how
it can be used in tandem with theory of mind reasoning when designing
agent models for human-agent negotiation. We perform two-agent simu-
lations to analyze the role of affinity in getting to agreements when there
is a bound on the time to be spent for negotiating. Our results suggest
that modeling affinity can ease the negotiation process by decreasing
the number of rounds needed for an agreement as well as yield a higher
benefit for agents with theory of mind reasoning.

Keywords: Social cognition · Communication · Affinity ·
Abstraction · Heuristics · Negotiation · Human-inspired computational
model

1 Introduction

Theory of Mind (ToM) is the ability of reasoning about the mental content of
other people, such as their beliefs and desires, making it possible to understand
and predict their behaviour [9,25,27]. Being an important part of social cog-
nition, the capability of ToM develops early in life and bestows on humans a
plethora of social skills such as negotiating, teaching, and tricking. Recursively
employing ToM provides a direct path to reason about how others use ToM,
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which is widely known as “higher-order ToM” (e.g., “I believe that Alice does
not know that Bob is planning a baby shower for her”), and is particularly
helpful for adapting to the complex dynamics of social life.

Agent-based computational models have previously been used to analyze
the effectiveness of ToM in competitive [11,13] and cooperative [14] games and
mixed-motive situations [15,16,21] in which the models are based on recursive
reasoning and behaviourally limited by the complexity and rules of the games.
Baker et al. [5] model ToM within a Bayesian framework using partially observ-
able Markov decision processes and test its performance in a simple spatial set-
ting. Osten et al. [26] propose a multiagent ToM model that extends the model
described in [11] and evaluates its performance in a multiplayer stochastic game.
Winfield [35] shows how robots can use a ToM model in improving their safety,
making decisions based on simple ethical rules, and imitating other robots’ goals.
In most of the studies around computational ToM models, the results are gen-
erally promising and demonstrate that the use of ToM leads to better outcomes
for the studied tasks. Still, the existing models have not been widely adopted as
a computational tool in many real-life settings. We argue that for a ToM model
to be applicable, it needs to adhere to the following criteria:

Generic: Most of the existing models (see [11–15,26,32]) are built for a specific
game-theoretic setting in mind. The models thus are based on the rules of the
game as well as interpreted semantics of the strategies. This creates a limitation
because it is not straightforward to use these models outside of these settings.
We argue that real-life social interaction is generally more complex and for a
more comprehensive model of ToM, agents should take into account a variety of
both context-dependent and context-independent information such as traits, as
well as social frames of reference such as roles, norms, and values [6,30]. Ideally, a
computational ToM model should be generic; i.e., independent of the particular
setting to which it is applied so that it can be used in a variety of settings.

Feasible: In general terms, ToM is about beliefs and knowledge an agent has
or can derive about the mental attitudes of other agents. Without a proper con-
trol, the number of elements in an agent’s belief and knowledge set can increase
rapidly over time. This has two immediate disadvantages. First, it will not be
clear to the agent which beliefs about the other agents would be useful to consider
in a given context, leading to complex decision processes. Second, the volume
of information will make it more difficult for the agent to make fast and accu-
rate inferences about others. On the other hand, the agent can benefit from a
control mechanism which can sort out the relevant and important information
according to the context that the agent operates in. Thus, for a more efficient
computational model, it is necessary to ensure that the agent can abstract from
existing information to yield feasible computation of ToM.

Human-Inspired: In various social contexts, humans are known to rely on
social skills that are based on more automatic and fast-working heuristics and
require less conscious effort, such as repetition (i.e., repeating behaviours that
yield desirable results), imitation (i.e., mimic others) [20], and stereotypes [17].
These agile mechanisms can be especially helpful for humans in social interac-
tions where the time spent on reasoning and/or the cognitive resources allocated
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are vital concerns. For an agent to better explain the behaviour of humans that
it interacts with, its ToM should be human-inspired, such that it should be able
to capture and interpret the heuristics that humans use in every day dealings.

An important area where ToM could be of particular use is hybrid intelli-
gence [1], where an agent can coordinate with a human towards a particular
goal, where the agent would have varying capabilities that could complement
those of the human to yield the goal. As an example, consider a wearable phys-
ical activity monitor agent à la Fitbit that works with a human to ensure that
the human establishes a healthy life. Typical interactions with such devices take
the form of information passing, such as that the device periodically informs
the human what more she has to do (e.g., “take another 200 steps”), milestones
she has achieved (e.g., “you received a Tiger badge”); or it requests informa-
tion (e.g., “enter the foods consumed today”). Take the first type of interaction.
This necessitates the human to take an action that is not easy to do and thus
requires nudging from the agent. Ideally, if the agent could have a ToM for the
human, it could create strategies as to how to proceed with such requests. The
long-term goal of our research is thus to design and develop a generic, feasible,
and human-inspired ToM that could be applicable in such settings to improve
human-agent coordination and thus to facilitate hybrid intelligence.

As an initial step towards this goal, we develop an abstraction framework for
ToM over which we construct an abstraction heuristic. The underlying idea is
to employ an agent’s belief and knowledge set to produce a more abstract, com-
plex interaction state that can be readily used by the agent. To investigate the
principle of abstraction we use the concrete concept of affinity that summarizes
how we relate to someone based on many things we know about that person
and our history of interactions. Computational affinity captures how humans
use affinity in their interactions and can be used in tandem with ToM reasoning
when designing agent models. To demonstrate its usage and power in human-
agent interaction, we employ it in two-agent negotiation. Our results show that
capturing affinity improves agent-agent coordination and agents who perform
ToM reasoning obtain outcomes that are better than agents who do not.

The rest of this paper is organized as follows. Section 2 describes abstraction
heuristics and computational affinity. Section 3 explains our framework and how
we integrate ToM with affinity in negotiation. Section 4 evaluates our proposed
model over two-agent simulations. Section 5 discusses our results, addresses
related research in the literature, and points to future research directions.

2 Abstraction Heuristics and Affinity

Humans are known to use behavioural simplification mechanisms in their
decision-making processes (e.g., stereotypes, biases) [34]. Inspired by this idea,
we envision an abstraction-guided ToM agent paradigm that simplifies its beliefs
and knowledge into compact representations that can serve for heuristics. Com-
putationally, what we call an “abstraction mechanism” is an agent apparatus
that does the following (Fig. 1):



Computational Theory of Mind for Human-Agent Coordination 95

Fig. 1. Abstraction procedure: Individual beliefs (Li) and knowledge (Kj) are used to
create abstractions Mk that are then used in interactions Sn.

1. It takes a set of beliefs and knowledge as input.
2. Using a shared prominent characteristic of such input, it produces an inter-

mediate output in the form of a simple yet more abstract belief or piece of
knowledge, or simply an abstraction, which shares the same characteristic.

3. Applying rules that govern the role of the intermediate output, it produces
interaction states for the agent to operate in.

We claim that such an abstraction procedure embedded in a ToM agent
should produce interaction states that can be used in a variety of settings, are
simple enough to easily mesh with the agent’s decision-making processes, and
capture and interpret the related human behaviour. Figure 1 shows our layered
approach to such an abstraction mechanism. The first layer holds the set of
beliefs and knowledge about others that could come from different sources, such
as observations or explicitly stated information from others. While the agent can
keep this set, it does not operate at that level but instead creates abstractions
in the second level. The first level influences the second level; thus, if the agent
observes more information at the first level, the abstractions in the second level
might change. The abstractions in the second level influence how the agents
operate in the third level. One can think of the third level as pertaining to
the application in question. Figure 1 also shows that beliefs and knowledge can
have multiple characteristics Ck, Cl, etc. which guide the production of the
corresponding abstractions Mk, Ml etc.; multiple abstractions can be used to
produce an interaction state Sn with respect to the corresponding rule Rn.

Note that abstractions are not designed to prevent agents from using their
beliefs and knowledge directly. Instead, abstractions act as additions that require
low maintenance and that are used whenever possible to avoid having to use too
much information. Here, we do not intend to provide a full-fledged abstraction
model that addresses and gives possible solutions to all kinds of challenges a
ToM agent may face during its lifetime. We will discuss some important points
that can help us further develop our abstraction mechanism in Sect. 5.
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2.1 Computational Affinity

We propose that in principle, this abstraction approach can be used with complex
human notions. We demonstrate our intuition in a specific type of abstraction
mechanism, which captures affinity : “a feeling of closeness and understanding
that someone has for another person because of their similar qualities, ideas,
or interests” [24]. People are inclined to get along with and gravitate to others
that are similar to them [22,33]. One practical outcome of this feeling is gener-
ating generous behaviour: People tend to do favors for others they like [2]. We
claim that affinity can be captured within an abstraction mechanism in which
one can merge many beliefs and pieces of knowledge (e.g., “I believe that he
leads a healthy life like me.”) into a more abstract belief that shares the same
characteristic (“I believe that he is very similar to me.”) and then to an inter-
action state (“I feel a strong affinity towards him because I believe that he is
very similar to me.”) which can be more effectively used within a rule set when
making decisions (“I feel a strong affinity towards him. I can do small favors to
people that I feel strong affinity towards. Thus, I will do a small favor for him.”).

Observing a similarity is essential for affinity [7]. In our computational frame-
work, we limit similarity to interacting agents having the same opinions on a
subject and use opinions as comparable tokens that are Boolean in nature (e.g.,
healthy living is important: yes/no). Moreover, we limit observation to commu-
nication, meaning that opinions are private and unobservable unless the agent
shares them with another agent. Following this intuition, we provide three differ-
ent definitions of computational affinity that pertain to how it is brought about.
Note that the aim is not to come up with the most precise definition but with
reasonable, alternative definitions that an agent might adopt.

All definitions are based on the agents exchanging opinions. Thus, we consider
each agent A to have a set of fixed opinions on various subjects.

Definition 1. For an agent A to have a type-1 affinity towards another agent
B, at least one of the opinions B tells A must match with that of A.

The most important aspect of this form of affinity is that it is static, meaning
that after A establishes affinity towards B, even if B later tells its opinion on
another subject that does not match with that of A, A does not lose its affinity.
However, in real life, affinity is not always static; thus, we define another type
of affinity to capture its dynamic nature:

Definition 2. For an agent A to have a type-2 affinity towards another agent
B, the most recent opinion B tells A must match with that of A.

Still, affinity does not have to depend only on the latest matching opinion.
For example, agents can do multiple comparisons before establishing affinity.
Thus, we give another, more concrete way to define affinity computationally:

Definition 3. For an agent A to have a type-3 affinity towards another agent
B, the majority of opinions B tells A must match with those of A (i.e., the
number of matching opinions is bigger than zero and not smaller than the number
of non-matching opinions).
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Note that the abstraction mechanism that the agents employ is relatively
simple: Comparing just one pair of opinions is enough to produce (or change)
the abstract belief of similarity which agents further employ to decide whether
to establish affinity or not. Even with this simple mechanism, we observe that
computational affinity as an abstract entity that has a life-cycle: it is born, lives,
and dies (and can be brought from the dead again). It can be active or passive,
subject to the situation the agent is in. Plus, it holds basic information about
the relationship between agents. Depending on the communication history of
the agents, it can be reciprocal or not since both agents should tell each other
their opinions for both of them to have affinity towards the other. Other features
that we have not incorporated here can include the duration (e.g., how long it
affects the agent’s decision) and strength (e.g., how strongly it affects the agent’s
decision). Next we demonstrate how even a simple abstraction mechanism as
described can be useful in human-agent interactions.

2.2 Computational Affinity and ToM

In its core, we observe that a person who has affinity towards another person can
act in ways that would be helpful to the second person. This can mean different
things depending on the context; here we define it in a two-agent setting and as
generic as possible. In simplest terms, an agent A that has an affinity towards
another agent B can do a thing that is more favorable to B than the thing
A normally does when it does not have affinity towards B. For example, in a
negotiation, a seller A with an affinity towards a buyer B can make an offer that
is more favorable for B than the offer A makes when it does not have affinity.

In addition, we want our agents to not just establish affinity but also attribute
it as a mental state to others, as people do. Essentially, we also design agents
that have ToM about other agents and reason whether another agent has an
affinity towards a certain agent or not (e.g., “I believe B has an affinity towards
me”). The reasoning mechanism shall rely on basic perspective-taking and the
condition that both agents share their opinions (remember that affinity is not
inherently mutual). Later on, we will explain how such an agent with ToM can
also use this affinity attribution mechanism to its benefit.

In this body of work, we call the ToM agents that can have type-x affin-
ity towards others “type-x affinity agents with 1st order ToM” or shortly “Ax

1

agents”. Similarly, we denote the agents that do not have ToM as “type-x affinity
agents with 0th order ToM” or shortly “Ax

0 agents”.

3 Negotiation with Computational Affinity and ToM

Now, we discuss how our proposed model can be used for human-agent negoti-
ation. We return to our example in Sect. 1 where a wearable physical activity
monitor agent is working with a human to increase the number of steps the
human takes. As the underlying mechanism, we choose two-agent negotiation,
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because it is a robust mixed-motive setting that also provides a good context for
exploring behavioural capabilities of ToM agents.

To make our setup concrete, we define an agent as an autonomous entity
which can either be an activity monitor agent or a human agent, where the
former is working to increase the number of steps taken by the human while the
human is reluctant to walk. To achieve its goal, each agent can make an offer
or accept an offer made by the other agent. Furthermore, an agent has fixed
opinions on various subjects (e.g., healthy living is important: yes/no). It can
tell the other agent its opinions, including those about the negotiation outcomes
themselves, and compare a told opinion with its own opinion (same subject).

3.1 Negotiation Framework

The subject matter of negotiation is agreeing on the number of steps to be taken.
The negotiation protocol can be briefly described as alternating monotonic con-
cession with communication, a variant of the monotonic concession protocol [31].
Basically, it is a rule set for two agents to negotiate and communicate in alter-
nating rounds. An agent can both negotiate and communicate with the other
agent in the same round in which it can either make a new offer or accept the
latest offer made by the other agent (negotiation part) and can tell the other
agent its opinions (communication part). Furthermore, negotiations should be
done in the form of monotonic concession: No agent can make an offer that
is less preferred by the other agent than an earlier offer that it made. Lastly, a
negotiation ends when an agent accepts the latest offer made or a fixed number
of rounds pass without an agreement (e.g., 10 total rounds).

Negotiating agents’ offers and counter-offers are generally governed by their
strategies: a prepared plan of action to achieve a goal under conditions of uncer-
tainty. The negotiation literature is rich with sophisticated strategies [4,28]. In
order to focus only on the effects of computational affinity and ToM, we opt for
a simple strategy for agents such that each agent makes an offer and adjusts
the number of steps with a constant, predetermined value until it goes beyond
the reserve value (or reserve price). For example, a human agent starts the
offer at 5000 and increases it with 100 every round until it goes beyond 5500.1

We call this value of 100 the unit increment/decrement value of agents and
make all agents use this strategy as the baseline strategy when making offers.

3.2 Negotiating with Affinity and ToM

Agent A that has affinity towards another agent B can give an offer that can be
more favorable for B than the offer A gives when it does not have affinity towards
B, as we have stated earlier. More specifically, we utilize computational affinity
as a regulator for unit increment/decrement values that agents use when making
offers. As a design decision, we make reserve values not affected by affinity in
our framework. Here, we give an example.
1 In this case, for example the activity monitor agent could start with an offer of 5700

and decrease it with 100 until it goes beyond 5300.
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Table 1. Four negotiation scenarios Sc1, Sc2, Sc3 and Sc4 are given (Example 1).

(a) Opinions do not match in Sc1, but match

in Sc2. Only A tells its opinion.

Sc1 Sc2

R A B R A B

1 1500 1 1500

1 Oyes 1 Oyes

2 2100 2 2100

3 1600 3 1600

4 2000 4 1990

5 1700 5 1700

6 1900 6 1880

7 1800 7 1800

8 Accepts 8 Accepts

(b) Opinions match and A (resp. B) starts in

Sc3 (resp. Sc4). Both tell opinions.

Sc3 Sc4

R A B R A B

1 1500 1 2100

1 Oyes 1 Oyes

2 2100 2 1500

2 Oyes 2 Oyes

3 1610 3 1990

4 1990 4 1610

5 1720 5 1880

6 1880 6 1720

7 1830 7 1770

8 Accepts 8 Accepts

Example 1. A human agent A of type A1
0 and an activity monitor agent B of

type A1
0 are negotiating. The reserve values of A and B are set to be 1850 and

1750, respectively. Their respective unit increment/decrement values are both
100 and affinity increases it with 10. Each agent has a Boolean opinion on the
same subject O: It can be either Oyes or Ono. In Tables 1a and 1b, we give four
different scenarios (Sc1, Sc2, Sc3, and Sc4).

Example 1 depicts two crucial points. First, affinity does not always produce
a different result (e.g., Sc1 and Sc2) and second, either agent can benefit from
the result when affinity is reciprocal (e.g., Sc3 and Sc4), since the final situation
depends on other factors as well (e.g., the reserve values, the starting agent).
Additionally, one can see that although reciprocal affinity introduces variance in
the agreements (e.g., Sc3 and Sc4 in which the accepted offers are 1770 and 1830,
respectively), it stays the same on average (e.g., 1800) due to the symmetry in
the provided benefits for both agents.

In the previous section, we have noted that an Ax
1 agent can use its ToM abil-

ity to its benefit when making offers. In particular, when an Ax
1 agent concludes

that there is a mutual affinity, it can change its unit increment/decrement value
so that its offer adjustments (not offers themselves) are not as generous as its
opponent’s adjustments. For example, if an Ax

1 activity monitor agent decides
that there is a mutual affinity and observes that its opponent’s current increment
value (i.e., the difference between the latest two offers of the opponent) is 110, it
can change its own to a value lower than 110, say 105. With this improvement,
it is guaranteed that a reciprocal affinity between an Ax

1 and an Ay
0 will result

in an offer that Ax
1 prefers more than Ay

0. Here, we give an illustrating example.

Example 2. A human agent A of type A1
1 and an activity monitor agent B of

type A1
0 are negotiating. The reserve values of A and B are set to be 1850 and

1750, respectively. Their respective unit increment/decrement values are both
100. Affinity increases it by 10 but mutual affinity increases it only by 5. Each
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Table 2. Two negotiation scenarios Sc5 and Sc6 are given for A and B. Both tell their
opinions in both scenarios (Example 2).

Sc5: Opinions match, A starts. Sc6: Opinions match, B starts.

R A B R A B

1 1500, Ono 1 2100, Ono

2 2100, Ono 2 1500, Ono

3 1610 3 1990

4 1990 4 1605

5 1715 5 1880

6 1880 6 1710

7 1820 7 1770

8 Accepts 8 Accepts

agent has a Boolean opinion on the same subject O: It can be either Oyes or
Ono. In Table 2, two different scenarios (Sc5 and Sc6) are given.

One can notice in Example 2 that Ax
1 is designed to limit its own affinity-

induced generousness using ToM. The superiority of Ax
1 over Ax

0 can be seen in
the newly introduced asymmetrical variance in the agreements (e.g., Sc5 and
Sc6 in which the accepted offers are 1770 and 1820, respectively) and the new
average (e.g., 1795 < 1800), benefiting Ax

1 agent A more than Ax
0 agent B.

4 Experiments and Results

We are interested in understanding the role of affinity in getting to agreements
when there is a bound on the time spent for negotiating. To answer this general
question in detail, we have created an experimental setup with four simulation
experiments. We configure our negotiation framework (including the reserve val-
ues, starting offers, and unit increment and decrement values) so that an agree-
ment can be achieved in a maximum of 12 rounds, even without affinity. In
all simulations, activity monitor agents’ and human agents’ starting offers are
set to 2000 and 1000 and reserve values are 1450 and 1550, respectively. Unit
increment and decrement values are both set to 100 at the beginning and it is
common knowledge that agents do not decrease these values below 100 (agents
can increase them in case of affinity). The worst offer an agent can make for itself
is with its reserve value. A negotiation begins with two newly created agents,
namely, an activity monitor agent and a human agent, where every opinion of
agents is created randomly: it can be a “yes” or “no” with the same probability.
One of the agents is randomly chosen to start the process and the other agent
continues accordingly. In the first two rounds, each agent gives its starting offer.

There are two additional restrictions in the protocol we use. First, an agent
tells all of its opinions in the negotiation process. Second, opinions are told in a
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pre-arranged order (i.e., subject 1, subject 2, subject 3...) where an agent tells
only one opinion per round in a conversational flow. This is because we intend to
keep the communication as simple as possible and do not want to analyze how
different communication patterns affect the life-cycle of affinity. We also want to
ensure that affinity can be formed reciprocally in the negotiations.

Every round, an Ax
0 agent first checks if the latest offer is acceptable. If yes,

it accepts and ends the negotiation. If not, it compares the shared opinion(s) to
check whether affinity ensues or not, following the criteria of its affinity definition.
If it does not establish affinity, it gives an offer that is 100 higher (resp. lower)
than its previous offer, if it is a human (resp. activity monitor) agent. On the
other hand, if the agent establishes affinity, it changes 100 to a multiple of 5
between 100 and 150 (including the boundaries) and makes an offer accordingly.
Then, it ends its turn by telling one of its opinions according to the sharing
order until all are shared. We introduce this randomness into Ax

0 agent’s offer-
making mechanism to make it more dynamic. It is worth to note that this can
also indirectly change the agent that gives the final offer.

Every round, an Ax
1 agent also checks if the latest offer is acceptable. If yes,

it accepts and ends the negotiation. If not, it compares the shared opinion(s) to
check whether affinity ensues or not, following the criteria of its affinity defini-
tion. Additionally, it also decides whether the other agent has established affinity
or not. If the Ax

1 agent does not establish affinity or decides that its opponent
does not have affinity, it gives an offer that is 100 higher (resp. lower) than its
previous offer, if it is a human (resp. activity monitor) agent, like Ax

0 agents. Oth-
erwise, it changes 100 to a multiple of 5 between 100 and X (including X) and
makes an offer accordingly, where X is equal to the difference between the latest
two offers of its opponent (i.e., the opponent’s currently observed unit incre-
ment/decrement value). It ends its turn by telling one of its opinions according
to the sharing order until all are shared. Again, we introduce this opponent-
dependent randomness into the offer-making mechanism of an Ax

1 agent to make
it more dynamic and limit the agent’s own affinity-induced generousness.

There are four different experimental variations in which we use only A1
m

(V1), only A2
m (V2), only A3

m (V3), and all types of agents (V4), where
m ∈ {0, 1} unless told otherwise. Every experimental variation consists of four
different opinion settings: In the n-opinion setting, every agent has n opinion(s)
on the same n subjects, where n ∈ {1, 2, 3, 4}. Per setting, we perform sim-
ulations with 10, 000 different agent pairs where every agent negotiates once.

4.1 The Effect of Affinity on Agreements

In the first experiment, our aim is to find how affinity affects the number of
agreements made when A1

0, A
2
0, and A3

0 agents negotiate with each other (V4).
An agent is created as an A1

0, A
2
0, or A3

0 agent with the same probability. We limit
the maximum number of rounds of negotiation to 12. Through the simulation,
we also keep track of the final rounds in which agreements are settled.
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Fig. 2. Affinity helps coordination.

The stacked bars in Fig. 2a show the number of successful negotiations that
are done by Ax

0 in the simulation. All different opinion settings are given in the
x-axis (i.e., 0-4), while the y-axis shows the total number of achievable agree-
ments; colors and hatches together represent the final round information of the
agreements (i.e., 8-12).

When no opinion is shared, all 12 rounds are necessary for reaching an agree-
ment in all simulations. However, even sharing one opinion makes a big difference.
We can see in Fig. 2a that nearly half of the agreements are done in 10 rounds
in the 1-opinion setting. Other settings also show similar results: The number of
agreements that need 12 rounds decreases when the number of shared opinions
increases. Hence, we can conclude that when Ax

0 agents negotiate, the number of
agreements that are settled on earlier than 12 rounds increases with the number
of shared opinions. This shows that by modeling affinity explicitly, the agents
can reduce the number of interactions needed to agree.

4.2 Affinity Types and Agreement Rates

In the second experiment, our aim is to find how affinity type and number of
shared opinions affect the number of agreements made when Ax

0 agents negotiate.
The experiment consists of the first three variations V1, V2, and V3. We limit the
maximum number of rounds of negotiation to 10 to get a better understanding
of how different affinity types get to early agreements.

The line plots in Fig. 2b show the percentage of successful negotiations that
are achieved by Ax

0 in 10 rounds over all negotiations per affinity type.
When no opinion is shared, the number of agreements that can be achieved

in 10 rounds is zero. Figure 2b shows that for the experiment’s V1 variation
with 1-opinion setting, we can see that agents sharing just one opinion makes a
significant difference in the number of agreements. When A1

0 agents negotiate,
nearly 0.50 of all simulations end with an agreement. The number increases to
0.68 and 0.75 for 2-opinion and 3-opinion settings. This increase can be explained
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Fig. 3. Agreement rates depend on both ToM and affinity type.

by the fact that when the agents exchange more opinions, the probability of
finding a negotiating agent pair that has at least one matching opinion increases.
In the 4-opinion setting, however, it does not go higher since we set hard limits
on the unit increment/decrement values and also due to the overall randomness
in the agent creation and offer-making procedures. Thus, it shows that Type-1
affinity affects the agents in such a way that the number of agreements made
increases more slowly when the number of rounds is fixed.

When A2
0 agents negotiate, we see a different pattern. For every opinion set-

ting of the experiment’s V2 variation, nearly 0.50 of all simulations end with an
agreement. This is mainly because Type-2 affinity is not static like Type-1 affin-
ity and every agent can lose its affinity during the opinion comparison process.
Thus, Type-2 affinity affects and changes the average unit increment/decrement
value that an agent uses before reaching an agreement, but not as much as Type-
1 affinity. On the other hand, A3

0 agents generate a different pattern that is a
mixture of the previous ones. Excluding the 0-opinion setting, the agreement
rate in the experiment’s V3 variation is on average greater than 0.5 but not as
much as the average we see in V1. Hence, we can say that Type-2 and Type-3
affinity types do not create agreements as much as Type-1 affinity.

4.3 Roles of ToM and Affinity in Agreements

In the third (resp. fourth) experiment, our aim is to find how ToM reasoning and
affinity together affect the number of agreements made when human agents of
type Ax

0 (resp. Ax
1) and activity monitor agents of type Ay

1 negotiate. Both exper-
iments consist of variations V1, V2, and V3, similar to the second experiment.
The maximum number of rounds is set to 10.

The line plots in Fig. 3a (resp. Fig. 3b) show the percentage of successful
negotiations that are achieved by Ax

0 (resp. Ax
1) human agents and Ay

1 activity
monitor agents in 10 rounds over all negotiations per affinity type.
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Comparing with Fig. 2b, Fig. 3a shows a general decrease in the agreement
rates by shared opinions and affinity types. For example, when Ax

0 human agents
negotiate with Ay

1 activity monitor agents, nearly 0.40 of all simulations end with
an agreement in the 1-opinion setting, instead of 0.50. This number increases up
to 0.60 for the 4-opinion setting which is lower than the corresponding agreement
rate given in Fig. 2b (0.76). The drop in the agreement rates is drastic when Ax

1

human agents negotiate with Ax
1 activity monitor agents, as plotted in Fig. 3b.

This is on par with what we have expected from the negotiating behaviour of
ToM agents since it is affected by opponents’ offer-making behaviour as well:
ToM can have a relatively negative effect in the number of agreements when the
number of rounds is fixed.

We have done additional simulations to provide more depth to the negoti-
ations in which ToM agents negotiate with agents that do not have ToM. In
Fig. 4a, we analyze Ax

0–Ay
1 negotiations where all affinity types are used and

only one opinion is shared. The x-axis shows the number of agreements done in
10 rounds and the y-axis shows the agreeable offer range (1450−1550). We can
see more agreements on the right side of the figure (>1500) than the left side
(<1500), implying that Ay

1 activity monitor agents end up with offers that are
on average better for them (the average offer is approximately equal to 1512).
In Fig. 4b, we analyze how an increase in the number of shared opinions changes
this asymmetrical benefit. Every line plot shows how number of agreements cor-
relates with the final offers in a specific opinion setting. We can see that the
Ax

0 human agents in many-opinion settings end up with better offers on average
than the Ax

0 human agents in few-opinion settings (still not better than their Ay
1

monitor agent counterparts). It shows that when more opinions are shared, the
superiority of ToM agents over non-ToM agents decreases in negotiations where
we explicitly model affinity. This emergent phenomenon reminds us that it is not
so easy to develop and maintain affinity with sheer communication (i.e., it also
needs a strategy) and it is even harder to benefit from it (i.e., ToM’s advantage
diminishes).

5 Discussion and Future Work

Within our computational ToM framework, founded on the abstraction mech-
anism defined in Sect. 2, we propose a human-inspired heuristic called compu-
tational affinity for agents to improve coordination in hybrid interactions. We
use agents to simulate a human-agent negotiation in the context of activity
monitoring. Our findings demonstrate that explicitly modeling affinity can ease
the agreement process. We show how sharing more information can also help
the activity monitoring agents forge more agreements, albeit depending on the
agent’s affinity type. Our results indicate that when negotiating with human
agents that do not have a ToM, activity monitoring agents that have a ToM
end up with agreements that is more favorable to them than to their opponents.
Although the communication part of negotiations needs further analysis and
strategies on its own [28], the results provide the motivation to develop more
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Fig. 4. ToM with affinity benefits agents.

sophisticated ToM agents that can generate affinity and benefit from it, and test
them in real-life negotiations to see if and how they can improve human-agent
coordination.

Research on computational ToM models suggests that ToM reasoning ben-
efits agents in different ways and even more in the higher orders. De Weerd et
al. [11] show that agents benefit from higher-order ToM reasoning in competitive
game-theoretic settings, although with diminishing returns beyond third-order
ToM. Further, they investigate how higher-order ToM can be beneficial for agents
in a strictly cooperative game [14] and show that communication can be set up
more quickly when agents beyond zero-order ToM play the game. De Weerd et
al. [15] determine to what extent agents benefit from higher-order ToM reasoning
in a mixed-motive situation called the “Colored Trails”. The results indicate that
there is a considerable benefit in using second-order ToM; however, first-order
ToM has a limited effectiveness. Kröhling and Mart́ınez [21] investigate the role
of ToM in single-issue negotiations between “context-aware” agents where the
negotiation context is modeled by two variables, summarized as necessity and
risk. Görür et al. [18] propose a ToM agent model for estimating humans’ inten-
tions in a shared human-robot task. Brooks and Szafir [8] show how robots can
create second-order ToM models by using humans’ actions in spatial settings.

Observing and communicating are crucial components of human social
behaviour. Our long-term goal is to design socially intelligent agents that can
understand how humans “tick” and work with them in synergy. Computationally
modeling ToM ability with the abstraction heuristics that we defined in Sect. 2 is
a first step toward this goal. Unlike the studies we mention above, we design our
human-inspired abstraction procedure to be as generic as possible and generate
interaction states which emulate how humans develop and maintain the mental
states they experience through their lives. The procedure also provides a use-
ful simplification technique for abstracting information for social agents to yield
feasible ToM models of humans they interact with. Affinity, which is essentially
based on abstracting observed and communicated similarities, is one particular
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interaction state we use in this paper. It presents a good starting point, being
a human mental state which is also a valuable heuristic in decision-making, and
inspires us to computationally formalize other useful interaction states as well.

As a follow-up work, we aim for a more complete model that captures the
ways humans abstract their beliefs and knowledge. We will start with a formal-
ization from tip to toe (i.e., beliefs, abstractions, procedure etc.). For that, we
need to answer a couple of fundamental questions such as which beliefs to use
when abstracting, when to stop the procedure, what to do in case of a belief
update, and which interaction states to activate after abstracting. In addition to
these issues, a ToM agent should also be able to correctly attribute this abstrac-
tion process to others. As we aim to design higher-order ToM agents that can
also take into account how their own artificial minds are perceived by others, we
plan to benefit from mind perception theory [19,23] when investigating the roles
of observation and communication in recursive ToM reasoning. Additionally, we
consider benefiting from value-based reasoning [3,10,29] to develop agents that
takes others’ values into account when doing ToM reasoning. With a more com-
prehensive, formalized model, we will further analyze how affinity can be used
within other negotiation and communication protocols and strategies as well as
get a broader view of its effects in multi-issue negotiations.
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Abstract. The financial sector continues to experience wide digitaliza-
tion; the resulting transactional activity creates large amounts of data,
in principle enabling public and private actors to better understand the
social domain they operate on, possibly facilitating the design of inter-
ventions to reduce illegal activity. However, the adversarial nature of
frauds and the relatively low amount of observed instances make the
problem especially challenging with standard statistical-based methods.
To address such fundamental issues to non-compliance detection, this
paper presents a proof-of-concept of a methodological framework based
on automated discovery of instances of non-compliant behaviour in a
simulation environment via grammatical evolution. We illustrate the
methodology with an experiment capable of discovering two known types
of Ponzi schemes from a modest set of assumptions.

1 Introduction

Financial crime occurs at many levels of society, from credit card fraud, to tax
fraud, money laundering, terrorist financing, financial market manipulation, up
to the corruption of the highest representatives of individual countries or interna-
tional political bodies. A unifying aspect of all these instances of non-compliance
is that the transaction of assets with the aim of illegal profit is typically con-
ducted in such a way that no suspicion of illicit activity arises. In order to detect
non-compliant activity from available evidence, researchers and analysts have
applied over the years various computational methods, ranging from rule-based
systems, knowledge graphs, machine learning models, to executable models of
social systems. Although these applications have shown various levels of success,
several issues remain at present, still exploited by non-compliant actors [4,17].

Research Background. Synthetizing non-compliant behaviour into a set of
patterns, either explicitly via a set of logical rules, or implicitly by some
machine learning method, typically face difficulties as e.g. explainability (for
ML-based methods), unavailability of data, high false positive rate, or overlook-
ing the adaptability of non-compliant agents. All these issues make traditional
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Ajmeri et al. (Eds.): COINE 2022, LNAI 13549, pp. 109–120, 2022.
https://doi.org/10.1007/978-3-031-20845-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20845-4_7&domain=pdf
https://doi.org/10.1007/978-3-031-20845-4_7


110 P. Fratrič et al.

approaches both ineffective and inefficient, particularly on the medium-longer
term. We will elaborate therefore on three other trends observed in the litera-
ture. According to a recent review [3], network analysis tools have been slowly
finding their way into prominence. These tools capitalize on the ability of net-
works to represent complex relationships, and at the same time being both inter-
pretable and easy to visualize. Once the transaction graph is formed, the main
goal becomes essentially to detect non-compliant individuals, suspicious events,
or anomalous structures [1,2]. Several methods of this type have already been
proposed in the area of financial fraud detection [23]. Comparatively, approaches
based on modeling and simulation are covered by a much smaller number of
studies [6,18], most of which focus on the possibility of training detection mod-
els on simulated data, also to mitigate the issue of high false negatives. Only a
few simulation environments were developed in the literature to generate illicit
transaction activity. Instead, the issue of adaptivity is addressed mostly in the
context of adversarial machine learning [12,14,16,25]. However, this approach
targets the local fraud space defined by the parametric model determined by the
dataset, so it can hardly generalize to illicit behaviour in a global sense, i.e. not
included in the data or encoded in the classifier. If we target the design of intel-
ligent agents autonomously learning frauds by interacting with the environment
(and so capable of generating new illicit behaviours), the number of studies is
even lower, e.g. co-evolutionary methods to discover tax frauds tested in a trans-
action tax network environment in [15]; reinforcement learning [19] to design an
agent learning credit card fraud in an adversarial environment.

Generalizing to any kind of adversarial system where the detection model
is tested against a model of an adaptive perpetrator, the research seems to be
progressing faster in other areas. For instance, adversarial systems are more
extensively studied in the area of artificial intelligence [7], although still on a
relatively low scale level. The area of cybersecurity is advancing comparatively
faster than the socio-legal domain, probably because the implementation of a
model of cyber environment is less of a challenge compared to social systems,
which means model-based testing methods can be effectively implemented [24].

Aims and Contribution of the Paper. Fraud schemes target specific vulnera-
bilities of a socio-legal system and/or psychological weaknesses of its victims,
and very often exhibit a modular structure: more complex schemes tend to be
modifications of simpler ones. This short paper presents and elaborates on this
intuition, focusing on Ponzi schemes (PSs) implemented on distributed ledger,
i.e. smart contracts. The reason why we choose specifically smart contract PSs is
that the complex legal terminological nuances involved in arbitrary contracts are
mitigated with smart contracts because of their mechanistic transaction environ-
ment. This, and public availability of data, makes the distributed ledger suitable
for the type of investigations. Moreover, due to popularization of this technology,
the question of smart contract PS detection is a pressing issue [8,9].

In our study, we pursue a long term goal of developing a fraud discovery assis-
tant, where illicit behaviour can be generated depending on presumed observ-
ables, socio-psychological modules of the simulation model, or potentially even
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the implemented countermeasures. At this point of research, we focus on the first
(generation) and briefly discuss the second (internal socio-psychological modules)
and third (couuntermeasures) aspects. Depending on observables considered, two
known types of PSs will be discovered using grammatical evolution. The illicit
activity discovered and simulated in the model will be visualized as a series of
snapshots of the transaction network.

Case Study: Types of Ponzi Schemes. Various types of smart contract PSs
already exist on the Ethereum blockchain [5]. In its basic version, each time a
new participant enters the scheme, the entry fee is redistributed equally among
other participants. A modification that aims to create a community of highly
profitable users can be implemented by imposing a preference ordering on the
capital redistribution. For example, to exploit risk-appetite and deceivability of
society, early-stage investors can be benefited by repaying the premium chrono-
logically; therefore, the participants that joined later might not be repaid once
the capital is depleted. This type of smart contract PS is known as waterfall
type. Another type, that is in a way a modification of the previous two types, is
the array type. In this case, the redistribution mechanism keeps track of which
participant was paid last in order to equalize the frequency of payments, but at
the same time pays the next participant only if there is enough capital to send a
payment exceeding the entry fee of the participant. This means that it prioritizes
the size of the user base that is already in profit, therefore it is more likely the
scheme will be perceived as a valid investment in the society. Clearly, there can
be more sophisticated variations of smart contract PSs, for example including a
reward for participants recruiting new users; however, for our current aims, the
two previous schemes are sufficient.

2 General Framework

In order to generate and evaluate possible fraud schemes, we propose a frame-
work for (re)construction of non-compliant behaviour that requires four opera-
tional components. These are: (i) a search space defined by an action space (in
which a fraud scheme can be constructed); (ii) a simulation environment to exe-
cute actions of agents including a non-compliant (or fraudulent) agent, in which
(iii) a fitness function can be calculated to determine how good each scheme is
by evaluating its outcome; (iv) a search algorithm to explore the search space,
that we typically identify with the reasoning mechanism of the non-compliant
agent. If all four instruments are well-defined, then it is possible to (re)create
the fraudulent behaviour as illustrated on Fig. 1.

Expert knowledge is used to formulate hypotheses about the functioning of
the simulation environment and representation of the search space, including
relevant observables for the non-compliant agent (search algorithm). The inner
loop (continuous lines) searching the space of non-compliant schemes produces
a dataset of transaction schemes. The set of hypotheses can be subsequently
extended with assumptions that give rise to new instances of non-compliant
behaviour (dashed lines).
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Fig. 1. Overview of methodology to (re)construct non-compliant behaviour

Arguably, a detection algorithm is also an important part of the theoretical
framework. However, at the current stage of research, we consider it as essentially
a different research question subsequent to the generation problem (see the dis-
cussion section for insights on future directions). Moreover, note that simulation
environment can be also combined with additional goals as assessing algorithmic
fairness (see e.g. [11]).

3 Generation of Ponzi Schemes

In general, a simulation model generates a sequence of transactional graph snap-
shots G0, ..., GT as a record of agents interacting in the environment for a finite
number of steps T . The fraudulent subgraph sequence H0, ..,Ht for t < T is gen-
erated during the simulation process, in association with non-compliant activity.
For the sake of this study, the agent-based model will be designed to be min-
imalistic, which means that only the minimal set of assumptions necessary to
approximate PS mechanism will be employed. Since PSs do not in principle
depend on transactions that are happening outside the scheme, it is not needed
to assume any direct transactional interactions between the agents. While this
might intuitively seem an unsound manner to model social systems, it turns
out to be an advantage, because it allows us to generate data related to illicit
behaviour only by using the assumptions necessary for the illicit behaviour to
arise. Obviously, it is true that other forms of interactions happen in the real
world during a PS spread, but this extension is needed only for more sophisti-
cated types of schemes (see p. 9).

In practice, no additional economic activity producing value is assumed in
the model, which means except for trivial cases every transaction sequence is a
PS. This simplifies the modelling as there is no need to define a PS either on
a phenomenological or a logical basis. Yet, the adaptation mechanism to find
profitable schemes will plausibly work for more complex settings (e.g. societal
policies, physical constraints, additional economic actions). Consequently, by
relaxing this assumption, more sophisticated schemes can be addressed.

Contract Mechanism. We assume that the initial transaction graph G0 is an
empty graph with N + 2 nodes; one node represents the contract, one node
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Fig. 2. Initial state is an empty transaction graph G0 (blue nodes) and subgraph H0

(red nodes). In G1 a transfer of 11.15 cash is made between the node 1 and the contract
node. In the state G2 the subgraph H2 has three nodes. (Color figure online)

represents the initiator of the contract, and N nodes represent the agents that
can join the contract. The contract and its members constitute the subgraph
sequence H0, ...,HT and therefore the initial subgraph H0 will consist only of
two nodes (the contract node and the initiator) and zero edges.

The contract has two attributes: a deposit account and a list of members. In
order to join the contract, an agent needs to send an entry fee, that is initialized
for each agent randomly from a prespecified distribution. If an agent decides
to join the contract, the entry fee is sent to the contract deposit address. The
mechanism, specified in the following excerpt, is illustrated on Fig. 2.

1 if contract.isTrustworthy(agent.threshold):
2 G.addEdge(agent , contract , agent.entryFee)
3 G.executeTransactions ()

In the simulation environment, the method addEdge adds a directed edge from
the node in the first argument to the node in the second argument. The method
executeTransactions is called on a graph object by an agent to execute trans-
actions defined by the edges. The threshold attribute of an agent and the
contract method isTrustworthy serve to model the agents’ attitude, and will
be explained in the next section.

Contract Trustworthiness and Agent Trust. During the simulation, the trustwor-
thiness of the contract is calculated as a numerical value in the zero-one interval.
There is no general agreement what exactly makes a contract trustworthy to peo-
ple; for the sake of example we consider two plausible basic assumptions, and
define a function based on these assumptions1. The trustworthiness Tr of a con-
tract is (a) proportional to the relative amount of agents in profit n+ compared
to the number of agents n that have already joined; (b) inversely proportional
to the root of the density of agents that joined the contract. Following these two
assumptions, we can define the function:

1 The model of trust used in this study is simplistic and serves only for the purpose
of demonstration. For overviews on trust models see, e.g. [10,22].
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Tr(n+, n) =
1 + n+

n
·
( n

N

) 1
K

(1)

where K > 1 is a societal coefficient, that controls the interplay between the two
assumptions.

Each agent has an internal threshold that determines if an agent joins the
contract. The method isTrustworthy returns True if the trustworthiness of the
contract is higher than the threshold of the agent, and False otherwise. We
assume that the internal threshold parameter of each agent is proportional to
the entry fee the agent is willing to pay to join the contract, because we deem
a plausible assumption that the agents considering to pay more will be equally
more skeptical of their investment.

Fitness. Clearly, the profit attained by the PS heavily depends on the Eq. (1),
and therefore the scheme initiator needs to decide the optimal redistribution of
capital such that the scheme is attractive for the agents in the environment.
This means that the initiator needs to balance out short-term profit with long-
term sustainability of the scheme. This is a core parameter for this type of
non-compliant behaviour. The fitness of a PS is then defined as the amount of
capital generated for the initiator, that is, the amount of redistributed capital
that ends up in the deposit address of the initiator node.

Search Space Representation. Once the graph G0 and the subgraph H0 are
initiated, the scheme is defined by its specific capital redistribution structure.
This redistribution structure consists of a set of logical rules that evolve the
transaction graph, deciding which members should be paid. In our framework,
the characteristic form of the PS is expressed as illustrated below:

1 if contract.FeeReceived(new_user):
2 H.addNode(new_user)
3 H.addEdge(new_user , contract , new_user.entryFee)
4 G.executeTransactions ()
5 try:
6 H.evaluate(instructionSequence)
7 G.executeTransactions ()
8 else:
9 exit()

The set of instructions instructionSequence consists of instruction that modify
the payment scheme Ht−1. Then the payments defined by the modified graph
Ht are carried out by the executePayments() method2. Note that an entry
condition can be considered for potential new users, e.g. a minimal entry fee.
For simplicity, we assume no special conditions are in place: anyone can join.

2 It can be argued whether executePayments should be called after every instruction,
or after graph modifications, e.g. AddNode already applied during the evaluation of
instructionSequence; however, this choice does not affect the model profoundly.
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The syntax of the instructions instructionSequence will be defined by a
context-free grammar, defined in Backus-Naur form below:

<instruction> ::= <clause> ; <instruction> | <clause>
<clause> ::= if (<premise>) <action>
<action> ::= H.addNode(<node>) | H.addEdge(contract, <node>, <weight>)

| H.removeEdges(contract, <node>)

The actions addNode, addEdge, and removeEdges, add node, edge, and remove
edges of the subgraph Ht respectively. The rest of the terminal symbols will
be formulated later to illustrate how specific assumptions of observables depend
on what kind of scheme is generated. In the trivial case displayed on Fig. 2,
the instruction sequence would consist of three instructions: H.addNode(1),
H.addEdge(contract, 1, 11.15), and H.removeEdges(contract, 1), where
11.15 is the weight of an edge that corresponds to the amount of currency trans-
ferred. As will be defined later, the symbol <node> can be replaced by a variable,
which means the instruction sequence of the initiator essentially acts as an open
formula that is grounded in an event of a new agent joining the PS3.

Note that not all words generated in the exploration are semantically correct
(e.g. adding a node that was already added), which is why the code above requires
try method to call the exit() method if an error is detected on runtime.

4 Experiments and Results

The present work empirically demonstrates how two PS types can be discovered
based on the introduction of hypothetically relevant observables, as following the
methodology described in Fig. 1. In practice, the context-free grammar presented
above is extended with further terminal symbols (standing for the hypothetical
relevant predictors), i.e. dedicated query-methods (used by agents to perceive
some property from the environment), and premises (used by agents to condition
performance).

In our experiments, the search algorithm used by the agent to discover new
instances of illicit schemes from the given set of predictors is grammatical evolu-
tion [21].4 For the simulation environment, we will consider N = 100 agents and
the societal coefficient K of the trustworthiness function will be set to 10. The
distribution of the entry fees follows a Beta distribution with both first and sec-
ond shape parameter equal to two, which means the distribution approximates
a Gaussian. The sampled value from the Beta distribution is scaled by a factor
of 10 for better readability.
3 This reflects the event-driven architecture integrated into the smart contract pro-

gramming language Solidity. In general, it captures the cyclic characteristic of fraud-
ulent business models.

4 In general, grammatical evolution is an evolutionary algorithm where words of a
grammar are mapped to integer vectors, and an evolutionary optimization procedure
is used to optimize the fitness function. Then integer vectors are mapped back to
words.
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Waterfall-Type Topology. The basic Waterfall type of PS can be found by includ-
ing a set of rather trivial terminal symbols into the grammar. In the instruction
sequence, it must be indicated who is the initiator of the scheme and who is
the new user that wants to join. The getFee method returns the entry fee of
the agents that already joined. Further on, the possible percentages of either
the entry fee or the contract balance to be paid to the contract participants are
assumed. A handy piece of information to include is the NUsers query-method,
that takes as an argument an integer and returns true if the number of market
participants is equal to the argument.

By visually analysing the best 20 generated transaction graph sequences, we
have observed that all of them had a star graph structure, that is typical for the
waterfall type (Fig. 3). The only deviation from this pattern occurred when the
algorithm decided to send capital to the initiator only after a sufficiently high
number of contract participants was reached. This means that the evolutionary
algorithm discovered that the spread of the PS is greater, and therefore also the
amount of capital accumulated, if the capital is redistributed more generously
at the beginning.

Array Topology. As already discussed, the waterfall type can be made more
efficient if the scheme will have a concept of who was paid last and who should
be paid next. Indeed, each time the method executeTransactions is called for
the waterfall scheme, many of the transactions cannot be executed because the

Fig. 3. Snapshots of the transaction graph for the waterfall type (upper row) and the
array type (lower row) of Ponzi Schemes (PS).
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capital of the contract is depleted. This issue can be resolved by including three
more query-methods into the grammar, modifying it as such:

<premise> ::= TRUE | NUsersEq(<int>)
| BalanceFeeHigherAndNotConnected(<node>, <weight>)

<node> ::= new_user | initiator | getNextToPay() | getLastPaid()

where getNextToPay and getLastPaid keep track of which agent was paid last
and which agent is next in order; BalanceFeeHigherAndNotConnected returns
true if the contract node is not connected to the node provided by the first
argument and the capital balance of the contract is higher than the second
argument. Running the search procedure over the extended search space yields
the array type of PS. The typical “clock” pattern is depicted on Fig. 3. As in
the waterfall case, a number of different transaction patterns were discovered.
These mutants differ slightly in the transaction topology, usually adding one or
two instructions more into the instruction sequence.

5 Discussion

Convergence. Computation-wise, the evolutionary algorithm for a population of
size 100 with other parameters kept default [21] can easily find profitable PSs of
Waterfall type in less than 200 iterations. In order to discover the Array-type,
the algorithm had to be extended with an adaptive mutation chance parame-
ter to avoid getting trapped in local optima5 of the Waterfall-type. Moreover,
the maximum depth parameter, required to ensure termination of the recursive
grammar defined above, is increased due to the higher complexity of the scheme.

Extending to Other Types of Ponzi Schemes. Other types of PS can be explored
similarly. For instance, to include a PS spread mechanism as those observed
in social systems [20], a simple network spread model [13] can be imple-
mented, extending the grammar accordingly. Participants to the scheme has
to be rewarded by how many new members they have recruited. Adding to the
grammar a query-method that returns the number of new contract participants
recruited by an agent would be sufficient in terms of predictors. However, a mech-
anism that motivates the individual agent to recruit new participants would also
need to be present.

Detection supported by generation Without loss of generality, assume we use a
certain neural network to decide whether a certain behaviour is compliant or
not. This detection model can be trained on labelled data records of a given
socio-economic system, and then tested also on labelled data obtained via the
simulation environment. The training dataset can be subsequently extended by
generated instances of non-compliant behaviour to enhance the performance of
the classifier, mitigating the issue of unbalanced datasets as motivated in the
introduction. Note that these instances can correspond to previously unobserved
5 See the source code: https://github.com/fratric/Ponzi-Scheme-Discovery.

https://github.com/fratric/Ponzi-Scheme-Discovery
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types of non-compliant behaviour. More interestingly, since the noncompliant
agents are assumed to be capable to adapt, the detection model can be also used
to incentivize the discovery of new schemes, producing co-evolutionary adver-
sarial dynamics (see e.g. [15]).

Beyond Grammatical Evolution. Grammatical evolution can be challenging to
use for more complex applications, both regarding the computational complex-
ity and the representation by a context-free grammar. In systems consisting of
several transactional sub-systems, where a variety of transaction operations can
occur, the search space represented by a context-free grammar would be too large
to be explored using evolutionary operators. In such case, the search algorithm
associated with the noncompliant agent (or a group of agents) would require a
more sophisticated type of reasoning, e.g. bringing some context into the gram-
mar, such that the noncompliant agent(s) are capable to plan ahead depending
on the environment and the actions of other agents, thus allowing modularization
of the search space. Moreover, the behaviour of the noncompliant agent ought
not to be deterministic, which is also important for generation of rich synthetic
data. However, this challenge is similar to planning and cooperation in complex,
diverse and stochastic environments which remain still open questions.

6 Conclusions

Our present research deals with exploration of non-compliant behaviours in the
context of policy-making. The paper sketched a general computational frame-
work to generate instances of transaction-based financial crime and illustrated its
application on a well known case of smart contract Ponzi schemes. It was demon-
strated that with only a modest set of assumptions it is possible to generate a
sequence of transaction graphs that captures the functional and modular aspects
of two well-known types of Ponzi schemes, that differ in their dynamic topology
defining the redistribution of capital. We argue that the lines of research revis-
ited in this paper are relatively unexplored and deserve much more attention, as
they have the potential to successfully address certain important issues present
in the contemporary research on fraud detection. However, more examples of
fraud generated in simulation environment needs to be provided before creating
a sound basis for deployment into real socio-economical systems.
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Abstract. Mixed-motive games comprise a subset of games in which indi-
vidual and collective incentives are not entirely aligned. These games are
relevant because they frequently occur in real-world and artificial soci-
eties, and their outcome is often bad for the involved parties. Institutions
and norms offer a good solution for governing mixed-motive systems. Still,
they are usually incorporated into the system in a distributed fashion, or
they are not able to dynamically adjust to the needs of the environment at
run-time. We propose a way of reaching socially good outcomes in mixed-
motive multiagent reinforcement learning settings by enhancing the envi-
ronment with a normative system controlled by an external reinforcement
learning agent. By adopting this proposal, we show it is possible to reach
social welfare in a mixed-motive system of self-interested agents using only
traditional reinforcement learning agent architectures.

Keywords: Mixed-motive games · Centralized norm enforcement ·
Multiagent reinforcement learning

1 Introduction

Mixed-motive games, comprise a subset of games in which individual and collec-
tive incentives are not entirely aligned. These games describe situations in which
the combined effects of every individual’s selfishness do not yield a good outcome
for the group, a problem also known as the collective action problem [24]. Two
basic properties define this type of games [8]: a) every individual is incentivized
to socially defect and b) all individuals are better off if all cooperate than if all
defect.

Olson develops the notion of a collective action problem starting from the
raison d’etre of organizations [24]. These, as he describes, are groups that serve
to further the interests of their members. The problem emerges when the indi-
viduals of such groups also have antagonistic incentives to those common to the
collective. Individuals, in this case, are left to choose between harming the orga-
nization as whole in favor of their own benefit, or to pass on the opportunity
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for bigger gains in favor of the group. A collective action problem happens when
the former is systematically preferred over the latter.

Global warming is a real-world case of the collective action problem. In it,
most players—be it an individual, institution, or government—have an incentive
to emit as much greenhouse gases as desired—for matters of comfort, financial
gains, or popularity—, regardless of how much others are emitting. If collective
emissions surpass some threshold to these ends, the system increasingly dips into
an undesirable state that is bad for all involved.

It has been noted that real-world communities are capable of circumventing
this problem with varying success, conditioned on variables such as group size,
the existence of a communication channel, etc. [25,26]. These are tied and serve
to strengthen the idea of social norms; a guide of conduct, or the expectation
individuals hold of others in certain situations [22].

Social norms and norm enforcement mechanisms can be a useful tool in guid-
ing groups of people out of social dilemmas [17], but they can also be incorpo-
rated into multiagent systems (MAS) [5,6]. This institutional machinery provides
ways of governing mixed-motive games either via centralized solutions—when a
central governing body is tasked with running the institutional apparatus by
itself—or decentralized solutions—when the normative system is conducted by
the agents in the system.

Decentralized norm-enforcement approaches have been used to deal with
degrading system properties in MASs [9,15], such as the collective action prob-
lem. However, these decentralized solutions either imply a) pro-social behavior
from the agents or b) some form of direct or indirect retaliatory capacity—e.g.
having the choice not to cooperate in future interactions—that is at least similar
in intensity to the harm caused by the aggressor. We acknowledge the effective-
ness of these solutions in some cases but also recognize they are no panacea.

For instance, how can one—agent or group of agents—successfully drive a
complex MAS towards social order [5] from within without assuming anything
about others’ beliefs, intentions, or goals, and given that punishing uncompliant
behavior is not desirable or allowed? This problem is akin to many situations
in modern society; thus far is impossible to know the beliefs and intentions of
every person we might interact with, and not every problem we face is ideally
solvable by a “taking matters into own hands” approach.

Consider as an example the problem with burglary. We—as society—don’t
expect social norms and good moral values to completely solve the problem—
although they certainly change the rate to which it happens—and when a bur-
glary does happen, we don’t expect the victim to return the favor with a response
of similar intensity—like stealing from the aggressor’s house.

A similar issue may also occur in MASs. Consider a system of self-driving
autonomous vehicles. Every vehicle in it might have an incentive to get to its
destination as fast as possible. Suppose that, to this end, a vehicle engages in
careless maneuvers and risky overtakes to gain a few extra seconds, harming
others—safety and/or performance—close to it in the process. Could we safely
assume agents in this system are pro-social to the degree that such a situation
would never happen?
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This might not always be a good premise. In this example, the system itself
is embedded in a competitive environment of firms fiercely fighting for market
share. Performance, in the form of getting to the final destination faster, might
represent getting a bigger slice of the pie. Does the designer behind the agent
have the right incentives to design pro-social agents? Social defection for the sake
of financial gains is not unthinkable by any means in the automobile industry1.

Now, suppose that an uncompliant behavior has been identified by another
vehicle close by. Could any form of punishment by the latter be accomplished
without compromising the safety of passengers riding in both vehicles? Further-
more, even if we agree on the safety to reciprocate, there are many situations
where direct retaliation might be undesirable. For instance, how do we address
fairness in these systems? If highly interconnected, even a small violation could
be met with a huge wave of public bashing, similar to the problem of internet
cancel culture2.

In case it is not safe to assume other agents will cooperate and it is not
desirable that agents directly or indirectly punish each other, we may need to
resort to centralized governance of some kind. Jones and Sergot (1994) propose
two complementary models of centralized norm enforcement [16]:

1. Regimentation: Assumes agents can be controlled by some external entity,
therefore non-compliant behavior does not occur.

2. Regulation: Assumes agents can violate norms, and violations may be sanc-
tioned when detected.

A drawback of the former is that it constrains agents’ autonomy [22]. Fur-
thermore, implementing a regimentation system is not necessarily trivial; edge
cases may arise such that violations may still occur [16]. On the other hand, the
latter preserves—to some degree—agents’ autonomy by allowing their actions to
violate norms.

This work proposes a way out of the collective action problem in mixed-
motive multiagent reinforcement learning (MARL) environments through cen-
tralized regulation. The proposal involves enhancing regular mixed-motive envi-
ronments with a normative system, controlled by a reinforcement learning (RL)
agent playing the role of a regulator; able to set norms and sanctions of the
system according to the ADICO grammar of institutions [7]. The primary aim
of this proposal is to solve the collective action problem in mixed-motive MARL
environments given two assumptions:

1. We have no prior knowledge about the agents’ architectures, thus it’s impos-
sible to predict their incentives and behaviors.

2. It’s not desirable for agents in the system to punish each other.

1 https://www.bbc.com/news/business-34324772.
2 https://nypost.com/article/what-is-cancel-culture-breaking-down-the-toxic-

online-trend/.

https://www.bbc.com/news/business-34324772
https://nypost.com/article/what-is-cancel-culture-breaking-down-the-toxic-online-trend/
https://nypost.com/article/what-is-cancel-culture-breaking-down-the-toxic-online-trend/
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We also show that, by employing this method, social control can be achieved
using only off-the-shelf, traditional RL agent architectures3,4.

2 Related Work

Many studies have addressed the collective action problem in mixed-motive
MARL environments [9,15,18,20,27]. Still, most of them have tackled this prob-
lem from an agent-centric perspective; their solutions involve modifying an RL
architecture to the specific needs of multiagent mixed-motive environments. This
has been accomplished in different ways, such as allowing agents to have pro-
social intrinsic motivation [15,20,27], coupling agents with a reciprocity mecha-
nism [9,18], and deploying agents with a normative reasoning engine [23].

This very same problem—and others—has also been addressed in MASs
through the adoption of electronic institutions (EI) [10,11], which specifies
among other definitions, a set of rules that determines what the agents in the
system ought to do or not under predefined circumstances, similar to the role
traditional institutions play [1]. Likewise, the autonomic electronic institution
(AEI) is also a framework that can be used to govern MASs and may be better
suited to cope with the dynamism of complex systems of self-adapting agents
due to its autonomic capabilities (norm-setting at run-time) [1,2].

Our work here presented is similar to the AEI framework in the sense that it
also proposes to overcome a system-level problem by dynamically regulating the
system’s norms at run-time. Still, it differs from such framework by leveraging
in a single agent the learning capabilities RL together with the normative con-
cepts spread across a broad literature. Our work also broadly resembles the AI
Economist framework proposed by Zhen et al. [33], that allows for the training of
RL social planners, that learn optimal tax policies in a multiagent environment
of adaptable economic actors by observing and optimizing for macro-properties
of the system (productivity and equality).

In summary, to the best of our knowledge, none of the studies cited above
have: a) proposed a centralized norm enforcement solution to mixed-motive
MARL environments using another RL agent as a central governing author-
ity, and b) proposed a solution that uses only traditional RL architectures when
peer retaliation is not allowed.

3 Normative Systems and the ADICO Grammar of
Institutions

One way of preventing MASs from falling into social disorder [5] is to augment
the system with a normative qualifier. Thus, a normative system can be simply

3 By traditional RL agent architectures we mean commonly used in other RL tasks
such as A2C [21].

4 All relevant code and data for this project is available at https://github.com/
rafacheang/social_dilemmas_regulation.

https://github.com/rafacheang/social_dilemmas_regulation
https://github.com/rafacheang/social_dilemmas_regulation
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defined as one in which norms and normative concepts interfere with its outcomes
[22]. In these settings, despite not having an unified definition, a norm can be
generally described as a behavioral expectation the majority of individuals in a
group hold of others in the same group in certain situations [31].

In normative systems, norms that are not complied with might be subject
to being sanctioned. Sanctions can be generally classified into direct material
sanctions, that have an immediate negative effect on a resource the agent cherish,
such as a fine, or indirect social sanctions, such as a lowering effect on the agent’s
reputation, that can influence its future within the system [4]. Nardin [22] also
describes a third type of sanction; psychological sactions are those inflicted by
an agent to himself as a function of the agent’s internal emotional state.

The ADICO grammar of institutions [7] provides a framework under which
norms can be conceived and operationalized. The ADICO grammar is defined
within five dimensions:

– Attributes: is the set of variables that defines to whom the institutional state-
ment is applied.

– Deontic: is a holder from the three modal operations from deontic logic: may
(permitted), must (obliged), and must not (forbidden). These are used to
distinguish prescriptive from nonprescriptive statements.

– Aim: describes a particular action or set of actions to which the deontic
operator is assigned.

– Conditions: defines the context—when, where, how, etc.—an action is
obliged, permitted or forbidden.

– Or else: defines the sanctions imposed for not following the norm

Example 1. The norm All Brazilian citizens, 18 years of age or older, must
vote in a presidential candidate every four years, or else he/she will be unable
to renew his/her passport as per defined in the ADICO grammar, can be broken
down into: A: Brazilian citizens, 18 years of age or older, D: must, I: vote in a
presidential candidate, C: every four years, O: will be unable to renew his/her
passport.

4 Reinforcement Learning (RL)

4.1 Single-Agent Reinforcement Learning

The reinforcement learning task mathematically formalizes the path of an agent
interacting with an environment, receiving feedback—positive or negative—for
its actions, and learning from them. This formalization is accomplished through
the Markov decision process (MDP), defined by the tuple 〈S,A,R,P, γ〉 where
S denotes a finite set of environment states; A, a finite set of agent actions; R,
a reward function R : S × A × S → R that defines the immediate—possibly
stochastic—reward an agent gets for taking action a ∈ A in state s ∈ S, and
transitioning to state s′ ∈ S thereafter; P, a transition function P : S ×A×S →
[0, 1] that defines the probability of transitioning to state s′ ∈ S after taking
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action a ∈ A in state s ∈ S; and finally, γ ∈ [0, 1], a discount factor of future
rewards [29].

In these settings, the agent’s goal is to maximize its long-term expected
reward Gt, given by the infinite sum E[rt+1 + γrt+2 + γ2rt+3 + ... + γnrt+n+1].
Solving an MDP ideally means finding an optimal policy π∗ : S → A, i.e., a
mapping that yields the best action to be taken at each state [29].

4.2 Multi-Agent Reinforcement Learning (MARL)

One critical difference between RL and MARL is that, instead of the environment
transitioning to a new state as a function of a single action, it does so as a function
of the combined efforts of all agents.

The MDP counterpart in MARL is the Markov Game (MG) [19] also known
as Stochastic Game, and it is defined by a tuple 〈N ,S, {Ai}i∈N , {Ri}i∈N ,P, γ〉,
where N = {1, ..., N} denotes the set of N > 1 agents, S, a finite set of environ-
ment states, Ai, agent’s i set of possible actions. Let A = A1 × ... × AN be the
set of agents’ possible joint actions. Then Ri denotes agent’s i reward function
Ri : S×A×S → R that defines the immediate reward earned by agent i given a
transition from state s ∈ S to state s′ ∈ S after a combination of actions a ∈ A;
P, a transition function P : S × A × S → [0, 1] that defines the probability
of transitioning from state s ∈ S to state s′ ∈ S after a combination of actions
a ∈ A; and γ ∈ [0, 1], a discount factor on agents future rewards [32].

5 Centralized Norm Enforcement in MARL

Here, we propose a norm-enhanced Markov Game (neMG) for governing mixed-
motive MGs by making use of an RL regulator agent and some added norma-
tive concepts. The proposal builds upon regular mixed-motive MGs. It involves
enhancing the environment’s states with the ADICO information introduced in
Sect. 3. The regulator is then able operate within this new ADICO information,
which is also available for other agents in the game and can be considered for
decision-making.

The method comprises two types of RL agents: N > 1 players and one
regulator. Players are simple RL agents, analogous to the ones that interact
with regular versions of MARL environments. These agents could be modeled
as average self-interested RL agents with off-the-shelf architectures such as A2C
[21]—which facilitates the engineering side.

The regulator, in turn, is able to operate on the environment’s norms repre-
sented by the ADICO five dimensions; it can modify one or more dimensions at
every period—a period consists of m time steps, m being a predefined integer
value. This agent senses the state of the environment through a social metric—
i.e. a system-level diagnostic—and the efficacy of its actions is signaled back by
the environment based on the social outcome of past institutions. The regulator
can also be modeled as a self-interested agent with off-the-shelf RL architectures.
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Definition 1. A norm-enhanced Markov Game (neMG) can be formally
defined by a 11-tuple 〈Np,Sp, {Ai

p}i∈Np
, {Ri

p}i∈Np
,Pp, γp,Sr,Ar,Rr,Pr, γr〉,

with Np,Sp,Ai
p,Ri

p,Pp, γp being the players’ original MG as per defined in
Sect. 4.2. Sr, denotes the regulator’s set of states; Ar, the regulator’s set of
actions; Rr, the regulator’s reward function Rr : Sr ×Ar ×Sr → R that deter-
mines the immediate reward earned by the regulator following a transition from
state sr ∈ Sr to s′

r ∈ Sr after an action a ∈ Ar; Pr, the regulator’s transition
function Pr : Sr × Ar × Sr → [0, 1] that defines the environment’s probability
of transitioning from state sr ∈ Sr to state s′

r ∈ Sr after an action ar ∈ Ar; and
γr ∈ [0, 1], the regulator’s discount factor.

In these settings, a neMG could be run following two RL loops; an outer one
relative to the regulator, and an inner one relative to the players. Algorithm1
exemplifies how these could be implemented.

Algorithm 1: neMG Pseudocode
algorithm parameters: number of players n, steps per period m;
initialize policy and/or value function parameters;
foreach episode do

initialize environment (set initial states sr0 and sp0);
foreach period do

regulator sets norm by consulting its policy πr in state sr;
for m/n do

foreach player do
player acts based on its policy πp in state sp, state transitions to
s′
p, player observes its reward rp, and updates its policy πp;

end foreach
end for
regulator observes next state s′

r, its reward rr and updates its policy πr;
end foreach

end foreach

6 Tragedy of the Commons Experiment

The method was tested on a mixed-motive environment that emulates the
tragedy of the commons problem described by Hardin (1968) [14]. The tragedy
of the commons describes a situation wherein a group of people shares a common
resource that replenishes at a given rate. Every person has the own interest to
consume the resource as much as possible, but if the consumption rate consis-
tently exceeds the replenishment rate, the common soon depletes.
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6.1 A neMG of a Tragedy of the Commons Environment

The environment built closely resembles that of Ghorbani et al. (2021) [12] and
was built using both the OpenAI gym [3] and pettingzoo [30] frameworks. An
episode begins with an initial quantity R0 of the common resource. Every n simu-
lation steps—n being the number of agents; five for this simulation—the resource
grows by a quantity given by the logistic function ΔR = rR(1 − R

K ), with ΔR
being the amount to increase; r, the growth rate; R, the current resource quan-
tity; and K, the environment’s carrying capacity—an upper bound to resources.
For this experiment, r was set to 0.3, R0 is sampled from a uniform distribution
U(10000, 30000), and K was set to 50000.

The environment also encodes the ADICO variables as described in Sect. 5.
The A, D, and I dimensions remain fixed for this experiment since a) the norm
applies to all players, b) the norm always defines a forbidden action, and c)
players have only one action to choose from—they can only decide how much of
the resource to consume and their rewards are proportional to their consumption.
The C and O dimensions, on the other hand, may be changed by the regulator
agent; i.e., every 100 steps the regulator may change how much of the resource
a player is allowed to consume (l)—sampled at the beginning of each episode
from a normal distribution N(375, 93.75)—and the fine applied to those who
violate this condition (f(c, l, λ))—by setting the value of λ, which is sampled at
the beginning of each episode from a normal distribution N(1, 0.2). Thus the
ADICO information that enhances this environment is made up of:

– A: all players;
– D: forbidden;
– I: consume resources;
– C: when consumption is greater than li;
– O: pay a fine of f = (ci − li)× (λ+1), with ci being the agent’s consumption

in step i; li the consumption limit in step i; and λ, a fine multiplier.

The fine is subtracted from the violator’s consumption in the same step the
norm is violated.

Before a new institution is set, the regulator can evaluate the system-level
state of the environment by observing how much of the resource is left, and a
short-term and long-term sustainability measurement, given by S =

∑t
j=t−p

rpj

cj

defined for cj > 0 and p ≥ 0, with p being the number of periods considered as
short-term and long-term—respectively one and four for this simulation —; rpj ,
the total amount of resources replenished in period j; cj , the total consumption
in period j; and t, the current period. At the end of the period, the success of
past norms is feed-backed to the regulator by the environment as a reward value
directly proportional to the last period’s total consumption.

At every simulation step, players in the environment can observe Ri, li, and
λi, and can choose how much of the resource to consume. An agent’s consumption
may vary from 0 to cmax, where cmax is a consumption limit that represents a
physical limit in an analogous real-world scenario. Here, this value was set to
1500. An episode ends after 1000 simulation steps or when resources are depleted.
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Agents in this simulation were built using traditional RL architectures—SAC
[13] for the regulator and A2C [21] for the players—using the Stable Baselines
3 framework [28], and players were trained on a shared policy. The learning
rates for all agents were set to 0.00039. A summary with all environment related
variables used in this experiment and their values is presented in Table 1.

Table 1. Summary of the variables used in the experiment, their abbreviations, and
values.

Variable name Description Value

n Number of players 5

m Number of steps in a period 100

R0 Initial quantity of common resource U(10000, 30000)

R Current quantity of common resource var

K Environment’s carrying capacity (resources upper bound) 50000

r Resources growth rate 0.3
ΔR Replenishment amount at a single step var

l Norm-set consumption limit var

c Single player consumption var

λ Norm-set fine multiplier var

S Sustainability metric var

p Number of periods considered for calculating S 1, 4

c Player(s) consumption var

cmax Players max consumption (hard limit) 1500

rp Period’s total replenishment var

6.2 Results and Discussion

Figure 1 shows the average total consumption per episode over a 10 simulation
run with and without the regulator agent acting on the environment. As pre-
dicted by the Nash equilibrium, we notice there isn’t much hope for generalized
cooperation in case selfish agents are left playing the game by themselves—i.e.
resources quickly deplete in the beginning of each episode.

Conversely, this is not the case when the regulator is put in place. After a
short period of randomness at the beginning of the simulation, players learn not
to consume from the resource since they frequently get punished when doing so.
Around episode 300, players progressively learn to consume around as much of
the resource as the set limit and the regulator increasingly learns to adjust such
limit so as to keep resources at a sustainable level. A comparison between an
episode at the beginning of a simulation and one at the end is shown in Fig. 2.

Every once in a while, the regulator overshoots by setting too big of a limit
at the beginning of the episode and players quickly deplete the resource. This
explains in parts the total consumption variation depicted in Fig. 1.
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Fig. 1. The total consumption per episode average over a 10 simulation run for the
tragedy of the commons experiment. The green line shows the total consumption for
when the regulator is active and the blue line for when it is inactive. The green shaded
area covers the region one standard deviation above and below the mean for the sim-
ulation with the active regulator. (Color figure online)

Fig. 2. Time step consumption vs. consumption limit set by the regulator at an earlier
episode a) and at a later episode b). The orange line shows the resource level at all time
steps and the dotted red line shows the resource level in which the replenishment rate
is greatest (25000). In a) players and the regulator act somewhat randomly and, for this
reason, resources are kept at a sustainable range but consumption is sub-optimal. Players
in b) learn to approximate their consumption to the norm-set consumption limit and the
regulator learns to decrease such limit at times when resources are lower and increase it
when resources are higher. Resources in this episode are still kept at a sustainable range
and consumption sharply increases in comparison to a). (Color figure online)



Centralized Norm Enforcement in Mixed-Motive MARL 131

Note the system gets relatively close to an upper consumption benchmark by
the end of the simulation—when agents’ combined consumption equals the maxi-
mum replenishment in every iteration. We can calculate this value by multiplying
the maximum replenishment (3750) by the maximum count of replenishments
in a given episode (200). In this case, the value is 750000 units of resource.

7 Conclusion

Delegating norm enforcement to an external central authority might seem
counter-intuitive at first, as we tend to associate distributed solutions with
robustness. It also might seem to go against the findings of Elinor Ostrom [25,26],
who showed that the collective action problem could be solved without the need
of a regulatory central authority and for that, won the nobel prize in economics
in 20095.

That being said, central regulation is still an important mechanism to govern
complex systems. Many of the world’s modern social and political systems use it
in some form or shape. With this work, we try to show that central regulation is
also a tool that could be useful in governing MAS and MARL, especially when
it is not desirable for actors in the system to punish each other.

Still, centralized norm enforcement brings about many other challenges that
are not present in decentralized norm enforcement. For instance, if poorly
designed (purposefully or not) the regulator himself, through the imposition
norms and sanctions, may drive the system to socially bad outcomes. What
if the designer behind the regulator does not have the good incentives? Con-
straints as such must be taken into consideration when judging the applicability
of centralized norm enforcement in MASs.

As further work, we plan to test this very same method in other mixed-motive
MARL environments.
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Abstract. In this paper we are considering multi-agent systems (MAS)
with agents that have both goals and anti-goals. Goals represent environ-
ment states that agents want to achieve and anti-goals represent environ-
ment states they want to avoid. To achieve their goals, agents perform
some actions that may have institutional consequences. Which could
potentially change the environment towards as a counter effect. Since
these consequences are institutional, they should be explicitly specified
so that agents are able take them into consideration in their decision
process. However, existing models of artificial institutions do not con-
sider such consequences. Considering this problem, this paper proposes
to extend the institutional specification making explicit the implications
of the institutional actions in the environment. The proposal is presented,
discussed and implemented using the JaCaMo framework, highlighting
its advantages for agents while reasoning about the consequences of their
action both in the institution and the environment.

Keywords: Purposes · Status-functions · Artificial institutions

1 Introduction

The achievement of the goals of an agent may depend on some status assigned
to the actions that it performs instead of depending on the actions themselves.
Consider a scenario where an agent called sBob has the goal of conquering a
new territory. The agent knows from some available guidelines that the goal
is achieved by performing a digital action (e.g. sending a message, posting on
a webservice) that has the status (or counts as) commanding an attack. This
action is supposed to produce in the environment the effects corresponding to
such status (e.g. destroying buildings, killing opponents, etc.). However, these
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effects may not be explicit to the agent. It can choose the action to perform
based solely on its status.

Inspired by human societies, some works propose models and tools to man-
age the assignment of statuses to the elements involved in the Multi-Agent Sys-
tem (MAS) [15]. In this paper, the element of the system in charge of managing
the assignment of status is called institution. Through the institution, agents
may have the status of soldiers, while some of their digital actions may have the
status of commanding an attack. These works focus on assigning status to the
elements that compose the MAS in a process called constitution. However, they
do not address the effects in the environment1 of such statuses. For example, a
digital action with the assigned status of commanding an attack can trigger a
series of consequences in the environment such as killing a soldier from allied
base, killing innocent people, etc. that may be unknown/unwanted to agents and
that would not happen if the action did not have the status.

There are some drawbacks of not specifying the consequences in the environ-
ment of actions that have a status (see more in [9]). This work focuses on actions
whose status leads to a goal achievement but whose effects in the environment
are undesirable for the agent. For example, consider an institutional specifica-
tion stating that sending a broadcast message has the status of commanding an
attack. In this case, sBob can use this specification to discover how to achieve its
goal, i.e., by broadcasting a message. However, if the institutional specification
does not express the effects in the environment of commanding an attack, sBob
can not rely on this specification to discover the consequences of broadcasting
the message. If sBob has the principle of not killing a soldier from the allied
base but commanding an attack can make this consequence possible, sBob may
violate its principle if not aware of these consequences.

Regarding these issues, the main contribution of this paper is a proposal of
a mechanism that allows agents to discover what are the consequences in the
environment of performing an action that has a status. This proposal is inspired
by the Construction of the social reality by John Searle [22,23] theory that seems
to be fundamental for comprehending the social reality.

This paper is organized as follows: Sect. 2 introduces the main background
concepts necessary to understanding our proposal and its position in the litera-
ture. It includes philosophical theory and related works. Section 3 presents the
proposed model, its definitions and functions and algorithms to use of the model.
Section 4 illustrates how the use of artificial institutions and purposes facilitates
the development of agents capable of reasoning about the implications of status
actions in the environment. Finally, Sect. 5 presents some conclusions about this
work and suggests future works.

1 In this paper, environment refers to the set of physical and digital resources which
the agents perceive and act upon [26].
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2 Artificial Institutions

The problem described in the introduction is rooted in the fact that concrete
elements of MAS may have statuses that are not necessarily related to their
design features. In MAS, these statuses are managed by Artificial Institutions.
Artificial Institutions are inspired by John Searle’s theory [22,23], which claims
that the social reality where human beings are immersed arises from the concrete
world (i.e., the environment) based on some elements, including status-functions
and constitutive rules. Status-functions are status that assign functions to the
concrete elements [22,23]. These functions cannot be explained through their
physical virtues. For example, the status buyer assigns to an agent some func-
tions such as perform payments, take loans, etc. Constitutive rules specify the
assignment of status-functions to concrete elements with the following formula:
X count-as Y in C. For example, a piece of paper count-as money in a bank,
where X represents the concrete element, Y the status-function, and C the con-
text where that attribute is valid. The attribution of status-functions through
constitutive rules to environment elements is called constitution and creates
institutional facts. The set of institutional facts gives rise to institutions [22].
Artificial Institutions (or simply institutions) are the component of the MAS
that is responsible for defining the conditions for an agent to become a buyer,
or an action to become a payment [22,23].

Works on Artificial Institutions are usually inspired by the theory of John
Searle [22,23]. Some works present functional approaches, relating brute facts
to normative states (e.g., a given action counts as a violation of a norm). These
works do not address ontological issues, and, therefore, it becomes even more
difficult to support the meaning of abstract concepts present in the institutional
reality. Other works have ontological approaches, where brute facts are related
to concepts used in the specification of norms (e.g., sending a message counts as
a bid in an auction). However, these works have some limitations.

Some approaches allow the agents to reason about the constitutive rules [1,
6,8,10,11,25]. However, generally the status-function (Y ) is a label assigned
to the concrete element (X ) that is used in the specification of the regulative
norms. Therefore, Y does not seem to have any other purpose than to serve as a
basis for the specification of stable regulative norms [1,24]. Some exceptions are
(i) in [11–14] where Y represents a class formed with some properties as roles
responsible for executing actions, time to execute them, condition for execution,
etc.; (ii) in [24] where Y is a general concept, and X is a sub-concept that can
be used to explain Y. Although the exceptions contain more information than
just a label in the Y element, these data are somehow associated with regulative
norms.

In short, existing works in artificial institutions are mainly concerned with
specifying and managing the constitution. However, the constitution is based on
facts occurring in the environment that may even produce further environmental
consequences. While the constitution is explicit, it is implicit in these works the
environmental states that can be reached because an action constitutes a status-
function. In the previous example, while the constitutive rule specifies how to
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constitute commanding an attack, the effects in the environment of commanding
an attack are not explicit. Some agent cannot rely on the institutional specifica-
tion to evaluate the effects in the environment of achieving a goal that depends
on the constitution of a status-function. Designers make this association between
the constitution of a status-function and its environmental consequences in an
ad-hoc manner. The main disadvantage of an ad-hoc association is that the agent
works only in scenarios foreseen by the developer.

The limitation discussed indicates the need to develop a model that explains
the purposes of status-functions belonging to institutional reality. Aguilar et
al. [21] corroborate this conclusion by stating that institutions have not yet
considered how to help agents in decision-making, helping them to achieve their
own goals. The modeling of purposes of status-functions, described in the next
section, is a step to fill this open gap.

3 The Purposes of Status-Functions

The mentioned issues are associated with the relationship between constitutions
of status-functions and their consequences in the environment. While works on
MAS ignore these relations, Searle addresses them under the notion of Pur-
pose [22,23]. Functions related to statuses are called agentive functions because
they are assigned from the practical interests of agents [23, p.20]. These prac-
tical interests of agents are called purposes [22, p.58]. Thus, the purposes point
to the consequences in the environment of the constitution of status-functions
that are aligned with the agents’ interests. For example, someone has a goal
of inhabiting a piece of land when he broadcasts a message that institutionally
is considered as commanding an attack. In this example, inhabiting a piece of
land represents a state of the world that is pointed by a purpose. This state is
enabled (and will probably happen) when the status-function commanding an
attack is constituted. The states must reflect the interest of the agents involved
in that context. Moreover, the agents involved in the interaction should have a
common understanding of these facts and purposes and consider them in their
deliberation. Otherwise, none of them achieve their social goal2.

The essential elements of the proposed model are agents, states, institutions,
and purposes, depicted in the Fig. 1. Agents are autonomous entities that pursue
their goals in the MAS [28]. The literature presents several definitions of goal
that are different but complementary to each other (see more in [3,16–18,20,27]).
In this work, goals are something that agents aim to achieve (e.g. a certain state,
the performance of an action. According to Aydemir, et al. [2], anti-goal is an
undesired circumstance of the system. In this work, anti-goal represents states
that the agent does not wish to reach for ethical reasons, particular values,
prohibition by some regulative norm, etc. Moreover, agents can perform actions
that trigger events in the MAS. If this action produces events that may constitute
some status-function, this action is an institutional action. States are formed by
2 In this paper, a social goal is an goal that depends on other agents acting on the

system.
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one or more properties that describe the characteristics of the system at some
point of its execution [7].

State

System

Constitutive Rule Status-Function Agent

goal
1..* 1..*

1..*

Purpose
anti-goal

1..*

1..*

1..*

Event
action

EnvironmentInstitution

1..*
1..*

1..*
1..*

Fig. 1. Overview of the model.

Institutions provide the social interpretation of the environmental elements of
the MAS as usually proposed in the literature. This social interpretation occurs
through the interpretation of constitutive rules that assign status to environ-
mental elements, as described in Sect. 2. It is beyond the scope of this paper to
propose a model of artificial institution. Rather, it considers this general notion
of the institution as the entity that constitutes status-functions, that is adopted
by several models in the field of MAS.

While agents, states and institutions are known concepts, purposes are intro-
duced in this model. The functions associated with status-functions can satisfy
the practical interests of agents. From the institution’s perspective, these inter-
ests are called Purposes. From the agents’ perspective, these interests are their
goals or anti-goals. Then, we claim that (i) the goals or anti-goals of the agents
match with the purposes of the status-functions and (ii) goals, anti-goals and pur-
poses point to environmental states related to the status-functions. For example,
in the war scenario, an agent that performs an action that counts as commanding
an attack triggers intermediate events that bring the system to states such as
conquer a new territory (i.e., the agent goal) or killing a soldier from the allied
base (i.e., the agent anti-goal). The intermediate events (e.g. shoot someone)
between the constitution of the status-functions and the environmental states
reached are ignored in our proposal, since we consider that the agent is only
interested in the states that can be reached after the status-functions is consti-
tuted.

Shortly, this model provides two relationships: (i) between purposes and
status-functions and (ii) between purposes and agent goals and anti-goals. Thus,
if (i) there is a constitutive rule specifying how a status-function is constituted,
(ii) a purpose associated with that status-functions, and (iii) an agent that has a
goal or anti-goal that matches with the states pointed to by the purpose, then it
is explicit how the agent should act to achieve its goal or avoid an anti-goal. In
the previous example, sBob can know that if it constitutes the status-function
commanding an attack to satisfy its goal of conquering a new territory, some
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other states will be reached such as killing a soldier from the allied base, killing
innocent people, which may be undesirable to the agent.

3.1 Definitions

This section formally3 describes the model by specifying (i) the purposes associ-
ated with the status-functions and (ii) the purposes associated with the conse-
quences in the environment of constituting status-functions. These consequences
are states of the world that agents want to reach or prefer to avoid. Although
the concept of purpose is independent, it is used in conjunction with the states,
agents and institutions that make up the MAS.

Definitions 1 to 5 represent the MAS states, events, agents, agents goals and
anti-goals, and the relationships that exist between these concepts. These defini-
tions express the environmental elements that belong to the MAS (expressed in
the Environment rectangle in the Fig. 1). Definitions 6 and 7 are imported from
the Situated Artificial Institution (SAI) model [5,10] and represent the elements
that make up the institution and its connection with the environmental elements
(expressed in the Institution rectangle in the Fig. 1). The Definitions 8 to 11 rep-
resent the purposes and the relationships that exist between them and the institu-
tion and between purpose and the states of the world that agents wish to achieve
or avoid (expressed in the Purpose rectangle and its relations in the Fig. 1).

Definition 1 (States). Properties are characteristics of the system at some
point of its execution. The set of all properties that the system can present
is represented by T . The state of the system at some point of its execution
is the set of all the standing properties. S = 2T is the set of all the possi-
ble states of the MAS. For example, the sets s1 = {territory conquered} and
s2 = {killed from allied base} define states that exist in the MAS, where s1 ∈ S
and s2 ∈ S.

Definition 2 (Events). Event is an instantaneous occurrence within the sys-
tem [7]. Events may be both triggered by actions of the agents (e.g. sending of
a message) and spontaneously produced by some non autonomous element (e.g.
a clock tick). The set of all events that may happen in the system is repre-
sented by E. Each event is represented by an identifier. For example, the set
E = {broadcast a message} defines the event that can happen in the MAS.

Definition 3 (Agents). The set of all agents that can act in the MAS is
represented by A. Each agent is represented by an identifier. For example, the
set A = {sBob} defines the agent that exists in the MAS.

3 We formalize the model to make it more accurate and facilitate the development of
algorithms that can be used to improve the agents’ decision process.
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Definition 4 (Relationship between Agents and their goals). In this
work, agents goals are states of the world that agents desire to reach4. The set of
the goals of the agents acting in the system is given by G ⊆ A × S. For example,
the pair 〈sBob, territory conquered〉 ∈ G means that the agent sBob has the goal
territory conquered.

Definition 5 (Relationship between Agents and their anti-goals).
Anti-goals are states in the MAS that agents desire to avoid. The set of the
anti-goals of the agents is given by G ⊆ A × S. For example, the pair
〈sBob, soldier killedfrom allied base〉 ∈ G means that the agent sBob has the
anti-goal “soldier killed from allied base”. From a general point of view, there is no
difference between an anti-goal and the denial of a goal (the negation of a goal).
However, to avoid the addition of negated goals in the model, we opted to have
explicit anti-goals. The intersection between agent goal and anti-goal should be
empty (G ∩ G = ∅).

Definition 6 (Status-Functions). A status is an identifier that assigns to the
environmental elements an accepted position, especially in a social group. It allows
the environmental elements to perform functions (associated with the status) that
cannot be explained through its physical structure [22, p.07]. For simplicity, in this
formalization we only consider statuses assigned to events. The set of all the event-
status-functions of an institution is represented by F . For example, the set f =
{command an attack} defines a status that exists in the MAS, where f ⊆ F .

Definition 7 (Constitutive rules). Constitutive rules specify the constitution
of status-functions from environmental elements. Searle proposes to express these
rules as X count-as Y in C, explained in Sect. 2. Since the process of constitution
is beyond the scope of this paper, the element C can be ignored. For simplicity, a
constitutive rule is hereinafter expressed as X count-as Y. The set of all constitutive
rules of an institution is represented by C. A constitutive rule c ⊆ C is a tuple 〈x, y〉,
where x ∈ E and y ∈ F , meaning that x count-as y. For example, the set c =
{〈broadcast a message, command an attack 〉} defines a constitutive rule related
to the scenario.

Definition 8 (Purposes). The purposes are related to the agents’ practical
interests. We assume that the set of all purposes is represented by P. Each pur-
pose is represented by an identifier. For example, the set P = {new territory},
define the unique purpose that exists in the MAS.

Definition 9 (Relationship between status-functions and purposes).
Wedefine that purposes can be satisfied through the constitution of status-functions.
Thus, there must be a relationship between these two concepts. This relation is rep-
resented by FP ⊆ F ×P. For example, {〈command an attack, new territory〉} ∈
4 We focus on declarative goals (i.e., goals that describe desirable situations) because

we are interested in the effects of the constitution of status-functions that may even
produce further environmental consequences (i.e., new states of the world). There
are some other types of goals (e.g. procedural goal) that focus on the execution of
the action and therefore are not compatible with the concept of purpose.
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FP means that the constitution of the status-function command an attack satisfies
the purpose new territory.

Definition 10 (Relationship between purposes and agent’s goals and
anti-goals). The relationship between purpose and agent goal and anti-goal con-
siders that a purpose point to one or more states in the MAS that matches the
agents goals and anti-goals. The relationship GP is a tuple 〈p, agag〉 where p ∈ P
and agag ∈ 2G∪G. For example, the set GP = {〈new territory, {territory conque-
red}, {soldier killed from allied base}〉} defines the relation that exists between
the purpose and the states of the world that it points that match with agents’ goal
or anti-goal.

Definition 11 (Model). The model is a tuple 〈S, E ,A,AGA,F , C,P,FP ,GP 〉,
where S is the set of states that may be maintained in the MAS, E is the set of
events happen that may happen in the MAS, A is the set of agents that can act
in the MAS, AGA is the set of goals and anti-goals of agents (i.e., AGA = G∪G),
F is the set of status-functions, C is the set of constitutive-rules that may exists
in the MAS, P is the set of purposes, FP is set that expresses the relationship
between the F and P sets and GP is the set that represents the relationship
between P and AGA.

3.2 Functions and Algorithms

In this section we formalize some functions that can be used by an agent to discover
the environmental effects of performing an institutional action. For that, we need
the status-functions related to the events produced by an action (Definition 14),
the purposes of these status-functions (Definition 12), and the states of these pur-
poses (Definition 13). In the example of this paper, sBob knows by doing broadcast
amessage that it satisfies its goal.With the proposed functions, it can discover that
this action has other consequences (e.g., someone being killed) which are among
its anti-goals. It may thus avoid that action to achieve its goal.

Definition 12 (Mapping status-functions to purposes). Given a set F
of status-functions and a set P of purposes, the set of purposes that are enabled
when a status-function is constituted is given by the function fp : F → 2P s.t.
fp(f) = {p | 〈f, p〉 ∈ FP }.

For example, if FP = {〈command an attack, new territory〉}, then
fp(command an attack) = {new territory}.

Definition 13 (Mapping purposes to states). Given a set P of purposes
and a set AGA (AGA = G ∪ G) of agents goals and anti-goals, the set of agents
goals and anti-goals that are pointed by a purpose is given by the function fsw :
P → 2AGA s.t. fsw(p) = {aga | 〈p, aga〉 ∈ GP }.

For example, if GP = {〈new territory, {territory conquered}, {soldier
killed from allied base}〉}, then fsw(new territory) = {{territory
conquered}, {soldier killed from allied base}}.
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Definition 14 (Mapping events to status-functions). Given a set F of
status-functions and a set of events E, the status-functions that are constituted
by an event are given by the function fc : E → 2F s.t. fc(e) = {f | 〈e, f〉 ∈ C}.

For example, if C = {〈broadcast a message, command an attack 〉}, then
fc(broadcast a message) = {command an attack}.

Definition 15 (Mapping status-functions to events). Given a set F of
status-functions and a set of events E, the events that constitute the status-
functions are given by the function fca : F → 2E s.t. fca(f) = {e | 〈e, f〉 ∈ C}.

For example, if C = {〈broadcast a message, command an attack 〉}, then
fca(command an attack) = {broadcast a message}.

From these functions, the Algorithm1 can be used by the agent to find out
which are the environmental effects if some action is executed in an institutional
context. The algorithm can be summarized in some steps: (1) verify whether the
action is an institutional action, i.e., it its events constitutes something in the
institution (lines 4 and 5), if true, go to the next step, otherwise returns the
empty set (line 12); (2) consider all status-functions related to the action (line
6); (3) consider all purposes of such status-functions (line 7); and (4) for each
purpose, looks for the states it points to and add them in the answer of the
algorithm.

Algorithm 1. Find the effects of an action in the environment
1: Input: an action ac
2: Output: the set of possible states after ac
3: s ← {}
4: e ← event produced by action ac
5: if fc(e) �= {} then � if the event e may constitute a status-functions
6: for f ∈ fc(e) do � f is the set of status-functions that e count-as
7: for p ∈ fp(f) do � p is the set of purposes that are associated with f
8: s ← s ∪ fsw(p) � add states pointed to by p
9: end for

10: end for
11: end if
12: return s

To verify if some action can produce some state considered as an anti-goal,
we developed Algorithm 2. To illustrate it, in the case of sBob considering the
action broadcast a message to achieve some goal, the execution of the algorithm
for this action returns true, meaning that the action can also produce effects
considered as an anti-goal.



Supporting the Reasoning About Environmental Consequences 143

Algorithm 2. Verifies whether some action can produce states considered as
anti-goals.
1: Input: G, ac
2: Output: returns true if ac implies anti-goals and false otherwse
3: se ← algorithm 1(ac) � se is the set of states pointed to by ac
4: return ∃ag∈G ag ∈ se � checks whether anti goals are included in se

4 Implementing the Purpose Model

To illustrate the use of this model, we recall the example introduced at the begin-
ning of this paper: the scenario where sBob desires to reach its goal of territory
conquered. To this end, sBob knows that to achieve territory conquered, it needs
to perform an (institutional) action that count-as commanding an attack. From
the constitutive rule — broadcast a message count-as commanding an attack —
it knows that it needs to broadcast a message to achieve its goal. The purpose
model it is possible to specify that the status-function commanding an attack
is associated with the purpose new territory, which, on its turn, is associated
with a state with the following properties: territory conquered and soldier killed
from the allied base. Thus, sBob is now able to reason about the consequences
of performing the action broadcast a message in the institutional context. Such
an institution could include other status-functions but, for simplicity, we focus
only on those essential to illustrate the main features of the model proposed in
Sect. 3.

The example is implemented through the components depicted in Fig. 2. The
agent sBob is programmed in Jason [4] and the environment in CArtAgO [19].
To implement the artificial institution, we use an implementation of the Situated
Artificial Institution model (SAI) model [10]. It provides means to specify status-
functions and constitutive rules and to manage the constitution process. The
purpose model is implemented through an ontology encapsulated in a CArtAgO
artifact which is accessible to the agents. The query and persistence of data
in the ontology are enabled by the MasOntology5, a set of tools developed in
CArtAgO to interact with ontologies6.

Figure 3 depicts the agent program. Line 1 specifies an anti-goal of sBob. sBob
goal can be achieved by the plan illustrated in lines 3–11. This plan creates sub-
goals alg1 and alg2 that can be achieved by plans in lines 13–22, which are
the Jason implementation of Algorithms 1 and 2. Regarding the plan for alg1,
if the Action does not constitute a status-function, the States are empty (line
17). Otherwise, some operations are used to retrieve the list of States related
to the action in lines 14 and 15. Regarding the plan for alg2, it simply gets the
list of states from alg1 and tests if some anti-goal is member of this list. The
result is unified with variable R. The value of R is then used to decide whether to

5 https://github.com/smart-pucrs/MasOntology.
6 An initial implementation of this platform can be found in https://github.com/

rafhaelrc/psf model.

https://github.com/smart-pucrs/MasOntology
https://github.com/rafhaelrc/psf_model
https://github.com/rafhaelrc/psf_model


144 R. R. Cunha et al.

Fig. 2. Component diagram with the systems used to compose the example.

Fig. 3. Plan of the agent sBob.

execute broadcasting a message, if R is false it means that the action does
not promote some of the agent anti-goals.

The code snippet depicted in Fig. 3 illustrates how the algorithms and the
model proposed in this work can be used by the agent to check if the action to be
performed can constitute a status-functions and enable new states in the system
and verify if these new states are unwanted by the agent. We can notice that
the code from lines 6 to 11 are just an example of how the proposed model and
algorithms can be used. Of course, more complex solutions could be developed
for other applications.

5 Conclusions and Future Work

The problem motivating this paper is some difficulty for agents to reason about
the consequences in the environment when performing an action that has an
institutional interpretation (i.e., it has a status-function). To help agents with
this issue, we introduce the notion of purpose in artificial institutions. Pur-
poses connect two concepts: status-functions in the institutional side and goals
and anti-goals in the agent side. While status-functions represent how the envi-
ronment changes the institution, purposes represent how the institution can
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potentially change the environment. From an agent perspective, their goals and
anti-goals are also considered in the proposal: purposes point to states of the
world that are of interest to the agents. Thus, the model connects institutional
facts with the interests of the agents.

The main advantage of purposes in MAS regards the agents. We have an
improvement in agent decision-making, since it has more information available
to help it to decide whether to achieve its goals or avoid its anti-goals. With
the proposed model, agents can access and reason about the consequences of
institutional actions and adapt themselves to different scenarios. They can notice
that (a) some purposes point to states that are similar to their interests and
therefore useful to reach their goals or (b) avoid these purposes because they
point to states that are similar to their anti-goals. In both cases, the agent has
more information while deciding whether a particular action will help it or not.
This kind of reasoning is important for advances in agents autonomy [21].

As future work, we plan to explore additional theoretical aspects related to
the proposal, such as (i) investigations about how other proposed institutional
abstractions (e.g. social functions) fit on the model, and (ii) check if the purposes
related to status must be further detailed. We plan to also address more practical
points such as (i) the modeling of a status-functions purposes based on a real
scenario, (ii) the implementation of the proposal in a computer system (iii)
its integration in an computational model that implements the constitution of
status-functions in an MAS platform and (iv) evaluate the application of the
model in scenarios that involve ethical reasoning of agents.
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Semantic agent systems. SCI, vol. 344, pp. 25–45. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-18308-9 2

12. Fornara, N., Colombetti, M.: Ontology and time evolution of obligations and prohi-
bitions using semantic web technology. In: Baldoni, M., Bentahar, J., van Riems-
dijk, M.B., Lloyd, J. (eds.) DALT 2009. LNCS (LNAI), vol. 5948, pp. 101–118.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11355-0 7

13. Fornara, N., Colombetti, M.: Representation and monitoring of commitments and
norms using owl. AI Commun. 23(4), 341–356 (2010)

14. Fornara, N., Tampitsikas, C.: Using OWL artificial institutions for dynamically
creating open spaces of interaction. In: AT, pp. 281–295 (2012)
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Abstract. Cooperative survival games are a sub-class of resource com-
petition games wherein self-interest appears to be the rational choice
in the short-term, but if every ‘player’ always acts out of self-interest,
extinction is guaranteed in the long-term. The situation is dramatised
in the film The Platform (El Hoyo); in this paper, we implement a self-
organising multi-agent system that approximately recreates the coop-
erative survival game depicted in this film. In a series of experiments,
we investigate how communication, a pre-existing tendency to sociality
(characterised by social motives) and a capacity for social construction
(characterised by social contracts) enables a collective of random indi-
viduals to establish a stable institution that increases their overall life
expectancy. The experimental results provide some insight into how a
pro-social personality and the ability to bootstrap institutions enable a
random collective to find a psychologically and sociologically plausible
solution to what is effectively a cooperative survival game merged with
Rawl’s Veil of Ignorance.

Keywords: Multi-agent system · Social contracts · Collective action

1 Introduction

Cooperative survival games are a sub-class of iterative resource competition
games wherein self-interest appears to be the rational choice in the short-term,
but if every ‘player’ always acts out of self-interest, elimination or extinction
is inevitable in the long-term. The players need to maintain a critical mass
that can gather sufficient resources to survive this iteration to ensure that there
are sufficient players to survive the next iteration. Dropping below a certain
threshold means that “if one is lost, all are lost”.

Cooperative survival games are a popular form of entertainment in low- or
zero-stakes entertainment, as seen in board games (e.g. Ravine) and computer
games (e.g. Don’t Starve, Rust and Minecraft), and have been analysed exten-
sively in anthropological studies of collective behaviour in extreme environmen-
tal conditions [3,12]. Addressing anthropogenic climate change can be seen as a
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high-stakes cooperative survival game on a planetary scale with nation states as
the players.

Ostrom has shown how collectives have solved the common-pool resource
management (CPR) problem by using self-governing institutions [15], i.e. sets
of mutable, mutually-agreed conventional rules which the members voluntarily
regulate their behaviour. Considering a cooperative survival games as a form of
extreme, high-stakes CPR problem where any one individual maximising self-
interest or free-riding is an existential hazard to all, this paper addresses the
question of how to bootstrap the formation of such an institution from a start-
ing position of complete ignorance. In this initial situation, the players have no
knowledge of the other players, and there are no rules, no social network, and no
external authority. The players only have their personal psychological character-
istics (which we call social motives) and an ability for the social construction [2]
of social contracts (which we call treaties).

Accordingly, this paper is structured as follows. In Sect. 2, we first present
a scenario, which is based on the film The Platform (El Hoyo), and related
work that provides the background to the multi-agent simulator developed in
Sect. 3, and the social motives for agents specified in Sect. 4. Section 5 presents
the experimental results which show how communication, a pre-existing ten-
dency to sociality (characterised by social motives) and a capacity for social
construction (characterised by social contracts or treaties) enables a collective
of random individuals to establish a stable institution that increases their overall
life expectancy. Finally, Sect. 6 concludes with some observations on how pro-
social behaviour and the ability to bootstrap institutions enable a collective to
find a psychologically and sociologically plausible solution to what is effectively
a cooperative survival game merged with Rawl’s Veil of Ignorance [18].

2 Scenario and Related Work

For this paper, we consider the social dilemma presented the 2019 film ‘The
Platform’ (El Hoyo). This film envisions a tower consisting of N floors with a
pair of prisoners on each floor.

A platform laden with food descends through a central shaft in the tower,
starting from floor 1, at the very top, and stopping at consecutive floors. The
prisoners are allowed to eat as much as they want while the platform has stopped
on their floor, but cannot save food “for later”. At the beginning of each day,
the platform is replenished with food and descends again, always starting at the
top of the tower.

Obviously it is advantageous to be on a low-numbered (upper) floor to have
first access to the food on the platform; however there is a ‘reshuffle’ after D
days, with all the agents are randomly re-assigned to new floors, and with no
knowledge of which floor they will be re-assigned. When an agent dies due to the
lack of food, it is replaced by a new agent. The exact rules that our simulator
follows to replace the agents are introduced in Sect. 3.

It has been shown that by taking an approach inspired by moral philosophy
there are solutions to the social contract design problem [5]. This means that, for
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any non-cooperative game, it is theoretically feasible to define a social contract
which produces a modified game that optimises for a moral imperative. In our
paper, we distance ourself from the game-theoretic setting used in [5], and rather
focus on the effects of specific social contracts in our scenario.

Ostrom’s work, as previously mentioned [15], provides empirical evidence that
it is practically possible for groups of people to resolve collective action situations
through the social construction of self-governing institutions. Effectively, this is
identifying the institutions, understood as a set of rules, as the social contract,
and sustainability of the common-pool resource as the moral imperative.

The studied setting of this paper can be classified as an iterative game of
Rawl’s Veil of Ignorance [18]. Rawls’ Veil of Ignorance is a thought experiment
intended to expose the principles, preferences and thought processes that inform
the structure of a society. The experiment imagines asking someone, that if
they started from a blank slate and no knowledge beforehand of their eventual
position in a society, what sort social structures, form of governance, etc., would
be selected for such a society. The thought experiment is in many ways analogous
to the situation presented in the platform: if the players have no idea beforehand
to which tower level they will be assigned, then what sort of principles would
they prefer to manage access to the food on the platform.

The question addressed in this paper is under what conditions is it practi-
cally possible for groups of agents to resolve a collective action situation, specif-
ically that posed by The Platform scenario. In this scenario, we presume that
the motivation for creating a social contract comes from an abstraction of the
psychological concept of social motives [14,19], which Folmer describes as “the
psychological processes that drive people’s thinking, feeling and behavior in inter-
actions with other people.” Social motives are further identified as a potential
source of conflict, with Folmer also claiming that “the actions that are dictated
by one individual’s motives are incompatible with, or even harmful to, the inter-
ests of others,” creating what is termed a ‘social dilemma.’ In other words, the
social contract must not only solve this social dilemma, but must also resolve
any residual tension between potentially conflicting social motives.

Although, without loss of generality, we make some modifications to the
scenario from the film – for example, we assume one prisoner per floor rather
than a pair (although that is only required for dramatic effect), no movement
between floors, and direct communication allowed between adjacent floors only
(although a message may be propagated along multiple floors, assuming that
the prisoners are willing to cooperate). We are assuming strict constraints of
no prior knowledge, no pre-existing social network and no external authority,
with the additional complications of a dynamic population, where ‘new’ prison-
ers are ‘injected’ into the tower after death, and periodic floor re-assignment.
The challenge is then to determine whether, despite the combination of limited
communication and varied social motives, a propensity for social construction
enables the agents to ‘find’ a social contract which is a solution to the current
formulation of the game and perpetuates across subsequent re-formulations.
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3 Simulator Design

To simulate The Platform, we implement a self-organising, multi-agent system.
This system consists of a set of agents connected by a social network; each link in
the social network is associated with a weight. The social network is iteratively
constructed by proximity on adjacent levels of the tower through a predefined
communication language (not further discussed here). These agents are stored
inside a ‘tower’ data structure which acts a server, handling agent interactions
over the network and containing the setup parameters for the simulation.

External to the basic representation of agents in the tower, we further repre-
sent the infrastructure of the simulator by modelling the agents’ health, global
utility, and treaties.

3.1 Health Modelling

All agents have a health value that exists on a continuous spectrum with three
additional discrete levels of criticalLevel, weakLevel and maxHP. An agent is con-
sidered to have critical health if it falls between the criticalLevel, the minimum
possible health, and weakLevel, the cutoff for the critical region. An agent process
is terminated if they remain in this region for N days, equal to maxDaysCritical.

An agent’s health is updated through two mechanisms: agents eating food
(appropriating resources), which causes a positive change, and the cost of living,
which causes a negative change.

Mathematically, the mapping between food intake and health is parame-
terised as follows:

newHP = currentHP + w(1 − e
−foodTaken

τ ) (1)

with τ offered as a tuning parameter to either increase or decrease the magnitude
of health change from one unit of food and w a variable to represent the width
of the gap between the weakLevel and maxHP. This function is chosen similarly
to a step response function to replicate ‘diminishing returns’ and prevent rapid
changes in health. An agent in the critical region has a slightly different update
function:

newHP = currentHP + min
{
HPReqCToW , w(1 − e

−foodTaken
τ )

}
(2)

to ensure that a critical agent must first transition to weak, before applying
Eq. (1). Hence, HPReqCToW represents the change in health required to tran-
sition from the critical region to the weak level.

To offset an agent’s health gain, its health will also decay at the end of each
day according to the equation:

newHP = currentHP − [b + s(currentHP − WeakLevel)] (3)

where b and s are parameters that are set constant for all the simulations of this
paper. The agent’s health is subsequently bounded to the range [criticalLevel,
maxHP ]. We note that critical agents are affected differently by health decay. If
an agent is unable to achieve HPReqCToW, they will be reset to the criticalLevel.
Conversely, if they do appropriate this food, they will be reset to the weakLevel.
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3.2 Global Utility

To assess the performance of the agents in the tower as a group, we investigate
their social welfare, based on each agent’s individual utility [16].

In this scenario, each agent i ∈ {1, . . . , N} carries out four actions at each iter-
ation t ∈ {1, . . . ,∞}: it first determines the resources it has on the platform (gi),
then its need for resources (qi). After this, it receives an allocation of resources (ri)
from the treaties it has formed and finally makes an appropriation of resources (r′

i).
Since agents are programmed to be honest, we assert that r′

i = ri.
The need for resources qi, looks to reward agents who take food only when

necessary. Hence:

qi =
numberDaysInCriticalState
maxDaysInCriticalState

(4)

The total resources accrued at the end of an iteration, Ri, is then defined as:

Ri = r′
i + gi (5)

which gives the utility per agent:

ui =

{
αiqi + βi(Ri − qi) if Ri ≥ qi

αiRi − γi(qi − Ri) else
(6)

where αi, βi and γi are tuning parameters that follow the rule αi > γi > βi. In
our work, we use the values αi = α = 0.2, βi = β = 0.1, and γi = γ = 0.18.

Finally, we use (6) to compute an average global utility, which corresponds
to the social welfare SW divided by the number of agents:

U =
∑N

i ui

N
=

SW
N

(7)

3.3 Treaties

To successfully handle treaties, an agent must be able to propose, evaluate, and
propagate treaties. In addition, we enforce the agents act honestly, and therefore
comply with the treaties to which they agree. This section aims to describe the
general structure of treaties, whereas the actions related to the treaties (proposal,
acceptance, etc.) are described in Sect. 4.3.

Treaties are codified as data structures with three main parts: a condition,
a request concerning the amount of food to be “taken” or “left” and a dura-
tion. Whilst the condition for the validity of the treaty can be any variable,
for this paper only the health of the agent is concerned. One such example of
a treaty is: “if currentHP ≥ 60, take ≤ 5 food for 5 days.”. They serve as an
extension of message passing, wherein a treaty is proposed verbally either 1 floor
above or below the floor of the proposer. Such proposals happen asynchronously
in the tower and are implemented with concurrent channels, meaning that all
agents can send treaties simultaneously. When a treaty is proposed, it enters the
receiver’s ‘inbox’ to be processed.
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Table 1. Parameters held in the Treaty data structure.

Parameter Range

Condition HP

ConditionValue int

Request [Leave, Take]

RequestValue int

ConditionOp [>,≥,=,≤, <]

RequestOp [>,≥,=,≤, <]

SignatureCount int

Duration int

TreatyID UUID

ProposerID UUID

An agent may compile a treaty with newTreaty(t1, t2, . . . tn), which packages
the different treaty parameters, ti, into the data structure discussed in Table 1 to
be subsequently sent as a proposal to an agent. Upon agreeing with a treaty, both
agents involved will place this data into their respective activeTreaties arrays.
The treaties in this array are then processed iteratively to find constraints on
the agents’ consumption.

4 Agent Design

The N agents in the tower forms a group of agents we name A. Each agent
i ∈ A are implemented as a data structure with parameterisation to participate
in the various communication methods c ∈ C, resulting in a set of interactions
defined by I = <A,C>. Each agent inherits from the baseAgent structure and
also contains the fields contained in Table 2. We note only the most relevant
fields for quantifying the agent have been included.

Table 2. The Config (left) and Agent (right) data structures.

Parameter Range

BaseBehaviour int ∈ [0,10]

Stubbornness float ∈ [0,1]

MaxBehaviourSwing int ∈ [0,10]

ParamWeights { HPW :int, FW :int }
FloorDiscount float ∈ [0,1]

MaxBehaviour int = 10

Parameter Range

Config config{}
CurrBehaviour int

MaxFloorGuess int

AverageFoodIntake int

ShortTermMemory [int]

LongTermMemory [int]

ActiveTreaties [Treaty]

4.1 Social Motives

Social Motives Spectrum. The agent’s behaviour revolves around the concept
of social motives [14], which Folmer defines as “the psychological processes that
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drive people’s thinking, feeling and behavior in interactions with other people”
[19]. This in turn leads to a “mixed-motive” setting [20] in the tower. From this
concept, we abstract 4 distinct social motives:

Altruist: The disinterested and selfless concern for the well-being of others.
An altruist then acts in a way that purely benefits others, even if it means
harming themselves.

Collectivist: The practice or principle of giving a group priority over each
individual in it. A collectivist then acts in a way that benefits the group, them-
selves included, over purely the individual.

Selfish: Being concerned excessively or exclusively with oneself. A selfish
agent will act in a way to satisfy themselves, but not necessarily with the intent
to harm the other agents.

Narcissist: An excessive interest or admiration of oneself. A narcissistic agent
will act in a way that not only benefits themselves, but also hinders the collective.

For this implementation, we assert that all agents’ social motives can be
defined on a spectrum, with one end corresponding to pure altruism, and the
other to pure narcissism, which we codify as a continuous value between 0.0 and
10.0 respectively. Figure 1 illustrates the spectrum of social motives.

Narcissist

Selfish

Collectivist

Altruist

baseBehaviour

maxBehaviourSwing

nextBehaviourPrediction = w�p

behaviourUpdate
scaledUpdate

newBehaviour

0

1

2

3

4

5

6

7

8

9

10

Fig. 1. Illustration of a change in social motive.

Changing Social Motives. This paper proposes that it is both limiting and
unrealistic for an agent to express one social motive for its entire lifespan. For
this reason, agents are able to dynamically update their initially assigned social
motive to reflect the duality of “nature vs nurture” [11]: an agent’s genotype
does not necessarily match the agent’s phenotype.

To codify this idea, we use a ‘predictor’ that calculates a behaviourUpdate
from the feature transformations of the 1) current health of the agent (8) and 2)
floor that the agent is located on (9). These feature transformations map their
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respective features to a range [0, 1], with poorer performances (low health, low
floor) tending towards 1 to represent a skew towards narcissistic behaviour:

hpScore = 1 − currentHP
maxHP

(8)

Agents forecast the maxFloor by keeping track of the lowest floor they have
visited. The lower down the floor, the faster Eq. (9) tends to 1. This is to have
the agents tend towards narcissism faster as they reach lower floors. We take λ
as the floorDiscount variable from Table 2 to ‘tune’ the function.

floorScore =
e

λ·currentFloor
maxFloor

eλ
(9)

The predictor then weights these feature transformations with the ‘HP
weight,’ HPW and ‘floor weight,’ FW variables from Table 2 to yield a value in
the range [0, 10]:

p = [hpScore,floorScore]�, w = [HPW ,FW ]�

nextBehaviourPrediction = w�p
(10)

and we construct a vector illustrating the change in social motive as:

behaviourUpdate = nextBehaviourPrediction − currentBehaviour (11)

This paper further asserts that agents are unlikely to rapidly change their
social motive, instead requiring multiple similar experiences to alter their pheno-
type. We hence offer a concept of stubbornness, which limits the vectorial change
in behaviourUpdate:

scaledUpdate = behaviourUpdate · (1 − stubbornness) (12)
newBehaviour = currentBehaviour + scaledUpdate (13)

With the new social motive defined as the movement from the current
behaviour using the scaledUpdate vector. Finally, we propose that a genotyp-
ically altruistic agent, say, is unlikely to make a severe transition in personality
to full narcissism. This is solved by introducing a maxBehaviourSwing, which
bounds the total change in social motive that an agent can experience.

Agents are also able to dynamically update the weights in Eq. (10) in order
to make more permanent shifts towards narcissism if one of the parameters is
constantly evaluated poorly. If the agent’s health is below 20, we increase HPW
by 0.05 and decrease FW by 0.05. Alternatively, if the agent’s average food
intake is less than 1 per turn, we decrease HPW by 0.1 and increase FW by 0.1.
After this update, we ensure that the weights remain in the range [0, 1].

4.2 Food Consumption

Resources are conditionally appropriated depending on both the social motive
and environmental factors such as commitments to messages and treaties. The
baseline behaviours exhibited by the different social motives are as follows:
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Altruist: An altruistic agent always takes 0 food, as it is only concerned for
the well-being of others with a total disregard for itself.

Collectivist: A collectivist agent consume the food required to survive, and
consumes no food when not in danger of dying. To codify this, agents randomly
choose a day in the range [1, maxDaysCritical ] and take food once they have
remained at critical health for this period. This has the effect of staggering when
collectivists are able to take food, to prevent the entire tower simultaneously
depleting resources.

Selfish: A selfish agent always aims to stay at the healthyLevel. This means
that it will always appropriate the food required to reach this point.

Narcissist: A narcissistic agent takes maximum amount of food consumable,
since it is purely be concerned for its own well-being whilst sabotaging the others.

4.3 Handling Treaties

Evaluating Treaties. It is through the agents interacting with one another
that a social network is formed. Agents use techniques from risk assessment,
forecasting and utility theory to handle the acceptance or rejection of treaties.

Risk assessment is performed by agents evaluating the link weights against
a predefined threshold to decide whether or not to reject a treaty. This is a
rudimentary form of ‘trust’ which represents, in this simulation, an agent’s will-
ingness to expose itself to the risk from accepting or rejecting a treaty. Richer
computational models of trust are possible [17], but this is not primary focus of
the agent’s decision-making process.

Given that treaties do not have any immediate effect, but instead influence
the future consumption of an agent, agents forecast to assess the present value
of a treaty. This is codified by using two separate arrays corresponding to long-
term and short-term memory and storing the amount of food received each day
(Fig. 2), with the short-term memory reset after each reshuffle. The reason for
having two memory types is to allow agents to separately look at the current
reshuffle period and total experience in the tower, which aligns with the core
assumption in cognitive psychology that there are separate systems for long-
and short-term memory [13].
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Fig. 2. Illustration of different agent memory types.
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Since the reshuffle period is unknown to agents, they forecast this information
by averaging over all previous reshuffling periods.

Agents must also contrast the effect that a treaty will have on the future
food intake to assess if it is beneficial or not. Since the satisfaction of gaining or
losing wealth is non-linear [7], utility functions can account for this by mapping
the monetary value of a good or service to an individual’s preference [6].

Therefore, an agent calculates the expected utility both with and without a
treaty and subsequently maximises the estimated future benefit. The utility of
gaining an uncertain amount of food per turn, xi with probability pi (based on
past experience), is computed with:

E[U(x)] = p1 × U(x1) + p2 × U(x2) + ... + pn × U(xn) (14)

Prospect theory [10] is a well-established model of how a change in value is
perceived or, alternatively, how much utility is gained or lost from a change in
value. This model comprises four main principles:

Greediness: Agents are generally greedy, meaning that more of a resource is
at least beneficial. Utility functions are hence generally increasing.

Diminishing sensitivity: Marginal returns are strictly decreasing, thus the
greater the personal wealth of an agent, the less they value the resource.

Risk aversion: Agents generally try to avoid risk. With risk aversion, the
amount of food the agent perceives as equivalent to a random distribution (its
certainty equivalent C) is hence less than its mean.

U(C) = E[U(x)] < U(E[x]) (15)

Loss aversion: Losing some amount of food is generally perceived as worse
than gaining that same amount. Agents hence weight loss higher than gain

Using these concepts, we identify a gain (g) and cost (c) associated with each
unit of food received (x), as well as the risk aversion (r) to define the utility
of receiving a unit of food. The amount of food that the collectivist and selfish
agents would need to consume in order to maximise their utility varies depending
on the current health level. The peak of its total utility function thus needs to
be able to vary too. We account for this by introducing a scaling factor a as:

a =
1
z

(
cr

g

) r
1−r

(16)

yielding:

U(x) = g(ax)
1
r − cax (17)

with z being the desired food intake, falling at the maximum of this function.
The utility calculation for each different social motive has been parameterised

according to three insights: 1) the more selfish an agent is, the greedier it is, 2)
the more an agent cares for the greater good, the greater its social cost associated
with consumption and 3) more narcissistic people are generally less risk-averse
[4]. The resulting utility functions are shown in Fig. 3.
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Fig. 3. Different utility functions used to rate treaties according to the social motive
of the agents.

Agents also use the proportion of estimated days before the next reshuffle
period in order to weight how much they should focus on the short term. To
optimise survivability, agents ignore the expected long-term utility when their
health is on a critical level.

Let bshort and blong be the estimated short and long term benefit of a treaty,
respectively. Also, let the estimated days remaining on the current level be given
by dcurrent and the duration of a treaty by dtreaty . The total benefit, btot is then:

btot =
dcurrent
dtreaty

× bshort + (1 − dcurrent
dtreaty

) × blong (18)

Overall, the algorithm that agents follow when considering treaties is sum-
marised as follows:

1. Check if the link weight with the proposing agent is above a threshold
2. Check that the treaty does not conflict with treaties the agent already signed1

3. Calculate the expected short- and long-term utility according to Eq. (14)
4. Amplify the utility if it is negative to simulate loss-aversion.
5. Calculate the utility of the food it can feasibly take under the treaty
6. Compute the estimated benefits of signing the treaty as U(sign) −

U(don’t sign)
7. Choose to focus on the long- or short-term benefit according to Eq. (18)
8. Sign the treaty if its overall benefit is positive

Proposing and Propagating Treaties. Altruist agents wish to sacrifice them-
selves by taking 0 food and narcissist agents wish to sacrifice others by taking
all the food. This means that these agent types will never sign treaties, as it
goes against their strategy. The collectivist and selfish agents are therefore the
two social motives that propose treaties. These proposed treaties are taken from
a list of possible treaties, following the structure introduced in Table 1. For this
paper, we consider the three following treaties:

– T1: “If currentHP > 0.6 × maxHP , take 0 food.”
1 It is, for example, not possible for an agent to sign a treaty asking it to take 5 food,

when it has already signed a treaty requesting it to take 0 food.
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– T2: “If currentHP ≥ weakLevel , take 0 food.”
– T3: “If currentHP < weakLevel , take ≤ 2 food.”

T1 can be proposed by the selfish agents, whereas T2 and T3 can be proposed
by the collectivist agents. The three treaties are valid for a period of 2D days,
where D is the ‘reshuffling period’ as introduced in Sect. 2.

Once a treaty has been accepted or rejected, it is possible for the agent to re-
propose the same treaty to its neighbour. Logically, the best possible strategy is
to propagate one single treaty throughout the tower and have all agents behave
uniformly. Narcissist agents act to avoid this, hoping for the downfall of the
collective and hence refuse to propagate treaties. All other agents, however,
propagate the treaty five floors above and below if these floors exist.

5 Experimental Results and Discussion

In this section, we use the simulator and agent designs introduced in Sect. 3 and
Sect. 4 to assess the performance of the studied system.

We divide the simulations into 4 groups (A to D) characterised by having dif-
ferent initialisation parameters. Table 3 summarises the simulations parameters
for each simulation. The percentages of each social motive (first four rows of the
table) correspond to the initial distribution of the agents’ ‘types’. If not explic-
itly mentioned, we run experiments using 100 agents, with 100 food initially on
the platform for 60 days and with a reshuffle period D of 30 days. As mentioned
in Sect. 2, the agents are replaced upon death, following the distribution given
in Table 3. Our simulations results are given as the average over 30 repeated
simulations.

Table 3. Summary of the experiments.

A1 A2 A3 A4 B1 B2 C1 C2 C3 D1 D2

% Altruist 100 0 0 0 10 0 10 10 10 100 100

% Collectivist 0 100 0 0 40 80 40 40 40 0 0

% Selfish 0 0 100 0 40 20 40 40 40 0 0

% Narcissist 0 0 0 100 10 0 10 10 10 0 0

Stubbornness – – – – – – 0.2 0.2 0.2 0.8 0.8

MaxBehaviourSwing 0 0 0 0 0 0 8 8 8 6 6

Treaties T1–2 T1–2 T1–2 T1–2 T1–2 T1–2 T1–2 – T1–3 T1–2 T1–3

In addition, the treaties used in cases C3 and D2 are slightly different, includ-
ing all three treaties (T1, T2, T3) introduced in Sect. 4.3. C2 does not use any
treaty. The other cases use treaties T1 and T2.
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5.1 Simulation A

The first set of simulations we analyse are simulations that include agents that
all have the same social motive. Moreover, these agents do not have the ability
to change their social motive. The simulations results are shown in Fig. 4.

We observe that a system containing purely altruists (Fig. 4 (a)) effectively
self-destructs, since by acting purely selflessly, these agents never take any
resources. As the agents all die at the same time and are replaced by a new
group of altruists, we see a step pattern in the number of deaths over time.
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Fig. 4. Simulation results for a group of agents with uniform fixed social motive.

Similar to the altruist agents, the narcissists have a large number of deaths
among them every 10 days (Fig. 4 (d)). This is due to the agents on the upper
floors of the tower taking all of the food, leaving none for the agents below.

The main difference between the altruist and the narcissist agents can be
seen in their corresponding global utility. The patterns can be explained by (6),
which yields positive values only for A1, but leads to negative spikes for A4.

As a compromise between the two systems, a system including only selfish
agents present a lower number of deaths and a better global utility than A4
(Fig. 4 (c))

Finally, the collectivists instantaneously achieve a stable society in which
(almost) none of the agents die (Fig. 4 (b)). We also note a uniformly positive
curve for global utility over time that is smoother than for the other social
motives. This reflects the increased social cohesion between the agents and iden-
tifies the almost perfect allocation of resources, leading to no wasted utility.

5.2 Simulation B

Having assessed groups of agents of each social motive individually in Sect. 5.1,
we increase the complexity of the system by having agents with different fixed
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social motives in the tower. The inability for these agents to change their social
motive with time leads to the simulation results shown in Fig. 5.
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Fig. 5. Simulation results for a group of agents with different fixed social motives.

Through comparing B1 to B2, we see that the system comprising a larger
amount of collectivists (B2) outperforms the system with a comparatively
smaller amount of collectivists (B1). This is to be expected, as the more col-
lectivist agents there are, the more similar to Fig. 4 (b) the system will be.

A second result illustrated by this simulation is that the action of introduc-
ing treaties (Sect. 4.3) is not always relevant. The collectivist agents sign the
collectivist and selfish treaty (the collectivist one being more restrictive), but
the selfish agents only sign the selfish treaty. This way, the two agent types are
following their natural strategy concerning food intake (Sect. 4.2). Knowing this,
the system shows similar results with and without treaties, hence we only show
the results where communication is allowed.

5.3 Simulation C

This set of simulations builds on top of the framework set by simulation B,
instead investigating the behaviour of a system comprising different distributions
of fluid social motives. We utilise different levels of communication and treaties
to contrast the results using the treaties introduced in Sect. 4.3 (Fig. 6 (a–c)).
We simulate the system under two other configurations: without considering
any form of communication (Fig. 6 (d–f)), and by restricting the agents’ actions
further through the additional use of the treaty T3 (Fig. 6 (g–i)).

The treaty T3 restricts the amount of food its members can take when their
health drops below the weakLevel : “if currentHP < weakLevel, take ≤ 2 food.”

The overarching comment to draw from this set of results is the impact of
specific treaties on the global utility. Although thought to improve the global
utility, treaties might have a negative effect on it: the results C1, using the col-
lectivist treaty as introduced Sect. 4.3, are worst than the ones obtained without
communication (C2).

As the agents’ health falls, their social motives tend to change toward nar-
cissist. Instead of following the natural decision of this social motive, the agents
have to follow the treaties they signed (T1 and T2 for case C1). The moment
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Fig. 6. Simulation results for case C. C1 and C3 include communication, but C2 does
not. C3 includes a more restrictive treaty.

their health falls below the weakLevel, these treaties no longer apply and they
will follow their natural food intake rule defined in Sect. 4.2. However, this leads
to a lot of wasted resources at this critical health level. Notably, each food intake
greater than 2 will not offer additional utility to agents whose health falls below
the weakLevel : any food intake greater than or equal to 2 upgrades the agents
health to the weakLevel. The waste of common pool resources can also be visu-
alised in Fig. 6 (c), where the global utility becomes strongly negative every 10
days.

This waste of common resources induced by agents following the collectivist
treaty is arguably due to a poor treaty design. To contrast these results, we
can consider the addition of a different, more effective treaty. Simulation C3
introduced the treaty T3 that applies when the agents HP is below the weakLevel.
As can be seen in Fig. 6 (h) and (i), this treaty allows for better performance of
the system.
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5.4 Simulation D

In these experiments, we initialise the tower’s population with collectivist agents
only, but with the possibility for them to change their social motive over time.

The goal of these experiments is to evaluate if a society comprised solely of
collectivists is able to remain stable over time. In addition, we investigate the
effect of treaties on such a system. The simulation results are shown in Fig. 7.

Fig. 7. Simulation results different treaties acceptances.

The results of D1 are similar to the ones of C1 in terms of (high) number
of deaths and (low) global utility. The replacement of terminated agents by
collectivist agents leads to an oscillatory behaviour between 2 quasi-stable states,
with convergence to both a high concentration of collectivists and selfish agents
in inverse proportions. We hence deem this experiment as 2-phase polystable [1].

Using the more restrictive treaty T3 on a system initially composed solely
of collectivist agents leads to an impressive performance (Fig. 7 (e) and (f)). In
addition, the use of this treaty also allows for a stable distribution of the social
motives across the tower (Fig. 7 (d)). This stability can also be seen in Fig. 6 (g).
Despite the presence of selfish (and even narcissistic) agents in the tower, they
all follow the rule dictated by the treaties they signed whilst being collectivist.

In addition, we can also see the effect of the reshuffle period on the social
motives distribution in Fig. 7 (d). The reshuffle period is 30 days in this case and
we see a global shift toward collectivism at that moment.
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6 Summary and Conclusions

6.1 Summary

Our first set of experiments shows the natural strategies taken by agents of differ-
ent (fixed) social motives, and therefore gives us a baseline (A). The collectivist
strategy is by far the one achieving the highest global utility. Consequently, the
more collectivist agents in the tower, the higher the global utility (B).

However, the natural tendency of agents in an economy of scarcity is to make
a transition towards the narcissistic end of the spectrum. This leads to a higher
overall distribution of selfish agents, and therefore a higher number of deaths and
lower global utility (C, D). Such a drastic change is supported by the Conserva-
tion of Resources Theory (COR) [8,9], which suggests that “individuals seek to
create circumstances that will protect and promote the integrity of the individ-
ual.” This behaviour also parallels ‘Thorndike’s Law of Effect,’ [21] which states
that actions that produce a favourable outcome are likely to be repeated. The
agents’ behaviours combine these two observations, as the initial negative effects
of scarcity produce a selfish behavioural change, which persists until narcissism
is reached.

To counteract this fact, it is possible to design social contracts in the form of
treaties between the agents. Treaties serve as a stabilising self-organising mech-
anism, with appropriately constrictive treaties (C3, D2) even allowing for the
integration of narcissists into the population, despite their natural tendency to
destabilise a system. Treaties may also change a polystable system into a purely
stable system, when sufficiently strong as to enforce a collectivist mindset. Oscil-
latory distributions of social motives can be brought to a static distribution using
this mechanism (D1, D2). However, designing treaties that lead to a high global
utility is not a trivial task; agents using poorly designed treaties may even per-
form worse than agents only following their natural strategy without using any
sort of communication (C1, C2).

6.2 Future Work

Our future work would focus around adapting the ways in which we model the
agents’ changes in social motives. One such way is to make agents tend towards
altruism, rather than narcissism, when faced with adversarial conditions. This
could be interpreted as an understanding of the agent’s environment and the
long-term improvement of the individual utility through a short-term sacrifice,
thus bringing the system back to an equilibrium.

Furthermore, we might imagine a randomly distributed assignment of
behavioural weights (Table 2) across different agents. This would illustrate how
different agents react to their condition, from which the concept of agent person-
ality could be derived. For example, some agents may encounter a comfortable
situation (high HP, high floor) and take advantage of it by acting selfishly, while
another agent may encounter the same situation and take the opportunity to
make a positive impact for their fellow agents below by acting altruistically.
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The physical arrangement of the tower can also be investigated and leans
into the possibility of having different non-linear topologies. This would allow
for fully-connected graphs, where all agents can communicate with all other
agents or planar lattices, with connections between the four or eight closest
neighbouring agents, for example.

Finally, we want to analyse the effects of a larger number of treaties on global
utility. The choice of treaties which lead to an increase in the global utility is not
straightforward. Since treaties are expressed in a generic way, it may be possible
to tune the treaty parameters to find optimal treaties in a given scenario.

6.3 Conclusion

In conclusion, we observe that the scenario demands that the prisoners in the
tower are effectively faced with an iterated version of Rawls’ Veil of Ignorance:
they have to decide repeatedly what sort of society they would prefer if they
did not know what position they would occupy in such a society. This work
shows that even with limited communication and a population with diverse
social motives, the ability to construct social contracts leads to a stable society
which perpetuates across generations, arguably showing that there is some psy-
chological and sociological plausibility to Rawls’ theory, although there is still
work to be done on establishing whether or not, even if our agents establish a
stable and self-perpetuating social contract, it is the ‘best’ social contract.
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Abstract. With accelerated progress in autonomous agent capabilities,
mixed human and agent teams will become increasingly commonplace
in both our personal and professional spheres. Hence, further examina-
tion of factors affecting coordination efficacy in these types of teams are
needed to inform the design and use of effective human-agent teams.
Ad hoc human-agent teams, where team members interact without prior
experience with teammates and only for a limited number of interac-
tions, will be commonplace in dynamic environments with short oppor-
tunity windows for coordination between diverse groups. We study vir-
tual ad-hoc team scenarios pairing a human with an agent where both
need to assess and adapt to the capabilities of the partner to maximize
team performance. In this work, we investigate the relative efficacy of
two human-agent coordination protocols that differ in the team member
responsible for allocating tasks to the team. We designed, implemented,
and experimented with an environment in which virtual human-agent
teams repeatedly coordinate to complete heterogeneous task sets.

Keywords: Human-agent coordination · Team performance · Task
allocation

1 Introduction

Recent intelligent agent applications assume traditionally human roles in human-
agent teams, e.g., tutor [35] and trainer [22]. Agents can also coordinate with
people in critical tasks, including guiding emergency evacuations [33] and disas-
ter relief [32]. New environments have been developed recently to enable group
activities or coordination between people and agents, such as crowd-work and
multiplayer online games. Human and agent teams are increasingly common-
place where they play different team roles. Since human-agent teams are being
recognized as a routine and functionally critical important component of our
societies, researchers have been studying the interactions and dynamics within
these teams to understand and improve on their design [13]. Such human-agent
teams have been studied in physical (robotic) and virtual settings [34].

We are studying ad hoc coordination scenarios where humans start coordi-
nating with agents in a new environment with no prior interaction experience
with the agent. The agent also does not have prior knowledge about its human
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Ajmeri et al. (Eds.): COINE 2022, LNAI 13549, pp. 167–184, 2022.
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partners’ abilities and preferences. Such coordination environments correspond
to ad hoc teams: An ad hoc team setting is one in which teammates must work
together to obtain a common goal, but without any prior agreement regarding how
to work together [11]. Coordination in ad hoc teams is more challenging because
of absence of prior knowledge and established relationships. Ad hoc human-agent
coordination also raises critical new issues compared to ad hoc agent teams.

In this paper, we consider ad hoc teams trying to accomplish a set of tasks
chosen from diverse task types. We assume that different human users will have
different competence and expertise over various task types. We use a fixed agent
expertise distribution (simulated) over the task types. To optimize the perfor-
mance of a given human-agent team, therefore, it is necessary to have different
task allocation distributions to the team members based on the expertise of the
human team member. The allocation problem is exacerbated by the fact that a
team member does not know the expertise levels of its partner a priori. While
we allow for human and agent partners to share their estimated expertise over
different task types, the accuracy and consistency of such expressed estimates
by humans are unreliable [17].

Repeated interaction allows partners to refine the initial estimates provided,
but such opportunities are few due to (i) only a limited number of repeated
teamwork episodes and (ii) allocation decisions that determine what task types
are performed by a partner in an episode. The success of such ad hoc human-
agent teams in completing assigned team tasks, therefore, will critically depend
on effective adaptability in the task allocation process.

Task allocation have been studied extensively in agent teams [27] as well as
in human team and organizations literature [31]. However, we are not aware of
prior examination of autonomous agents with task allocation roles, compared to
humans, in virtual and ad hoc human-agent teams.

Some critical questions on task allocation decisions and human-agent ad hoc
team efficacy that we study in this paper are:

• Is the performance of human-agent teams influenced by who allocates the
tasks? If so, who produce higher team performance?

• How is the performance of human-agent teams affected by over/under-
confidence of humans in their performance on different task types?

• How quickly can the task allocator in an ad hoc human-agent team learn
about the relative capabilities of team members to optimize allocation of
tasks?

We designed a new human-agent team coordination framework for task allo-
cation and performance analysis: the Collaborative Human-Agent Taskboard
(CHATboard). We use CHATboard for ad hoc human-agent team coordination,
for repeated team task allocation scenarios, with human workers recruited from
the Amazon Mechanical Turk (MTurk) platform. We present some conjectures
as hypotheses about human confidence level in their expertise, about the rela-
tive effectiveness of human and agent task allocators, about the ability of agents
to learn about human capabilities and adapt task allocations, and the ability
of agents to harness human potential. We ran experiments involving repeated
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coordination using the Human and Agent Allocation protocols. We present the
results and our analysis to confirm our hypotheses and identify interesting phe-
nomena that suggests future research tasks.

2 Related Work

Human-agent teams have been studied in different domains such as space
robotics [13], therapy [1], deception-detection [20], programming [23] and
decision-making [3]. The focus has been on agents who play supportive roles
to human teammates [20], and they have been studied in robotic and simulation
settings [34].

We, however, focus on an ad hoc environment, whereas studies, such as [13],
incorporate training or interaction sessions with the agent and environment prior
to the study. We are also interested in agents that are autonomous; DeChurch
and Larson view an autonomous agent as a “team member fulfilling a distinct
role in the team and making a unique contribution” [21].

Task allocation has been studied extensively in multi-agent teams [12,14,18,
27,28]. In agent teams, the focus is on designing efficient mechanisms for agents
to distribute tasks within their society; current approaches include integer pro-
gramming [9], genetic [29], consensus and auction algorithms [6], and markets [8],
and in domains such as Search and Rescue [37]. There is a recent focus on ad
hoc environments [5] in which agents coordinate without pre-coordination. The
majority of agent teams work is focused on simulation and robotic environments,
and few have studied task allocation in ad hoc human-agent teams. Moreover,
there is a general lack of investigating environments that include human team-
mates; including humans in same agent teams may require new approaches, as
we do not know If the same mechanisms would produce similar results.

Task allocation is also studied in humans’ team and organization literature.
The mechanism of task allocation, which includes capabilities identification, role
specification, and task planning, is considered an important component of team-
work [10,24,25]. Any organization needs to solve four universal problems, includ-
ing task allocation, to achieve its goals [31]. In human teams, the focus is on
understanding human team characteristics to design the best possible task allo-
cation mechanism; however, there is little investigation of autonomous agents’
effects on human teams when they are included in teams’ allocation mechanisms.

Thus, the study of task allocation with combined human and agent team mem-
bers is promising [4,34]. The few existing work examine different dimensions. [34]
and [32] investigate an agent assisting humans’ control of robots in a simulation and
experiments; the focus is supporting operators. Some of this work do not empir-
ically investigate the area, focused on industrial settings, configure the agent in
supporting roles, and it is unclear whether human participants received training
prior to experiments, which means that the scenario not ad hoc.

In summary, studies that investigate task allocation within teams composed
of humans and autonomous agents in ad hoc environments over repeated inter-
actions are limited. We, therefore, study task allocation in ad hoc human-agent
teams while being informed by potential human miscalibration tendencies.
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3 Hypotheses Development

We now motivate and present a number of research hypotheses related to ad
hoc human-agent team task allocation and team performance that we will be
experimentally evaluating in this paper. We study two task allocation protocols
that govern the human-agent teamwork: Human Allocator Protocol and Agent
Allocator Protocol. The former assigns task allocator role to human teammate,
and the later to agent teammate (Section 5 presents more details).

We assume there is considerable variability in ability to complete tasks
amongst average citizens. If this was not the case, human expertise in tasks
can be gauged offline, and optimal task allocation can be performed, i.e., ad hoc
teams would be no different than teams with significant prior working experience.

Hypothesis 0a (H0a): Different human participants have different perception
and actual performance for different task types.

We also assume that humans are unable to accurately estimate or express their
performance (confidence levels) on different, somewhat routine task types. If
this was not the case, then again, we could simply ask the human about their
expertise levels for different task types and use that accurate information for task
allocation, i.e., ad hoc teams would be no different than teams with significant
prior working experience.

Hypothesis 0b (H0b): Human’s average confidence levels on task types are
not consistent with their performance on those task types.

We conjecture that the agent allocator has several advantages over the human
allocator for effectively allocating team tasks: (a) lack of personal bias or prefer-
ence for task types that is not performance motivated (for example, humans may
like to do certain tasks even though they may not be good at it), (b) agents will
have better estimates of their capabilities on known task types whereas humans
typically over or under-estimate their expertise or performance on task types,
(c) agents can consistently follow optimal allocation procedures given confidence
levels over task types, (d) agents can more consistently learn from task perfor-
mance of teammates in early episodes to update confidence level estimates and
adapt task allocation to improve performance. This lack of bias may also result
in the agent allocator allocating tasks such that together with higher team per-
formance we also observe better performance of the human team member, i.e.,
better realize the human potential, compared to when the humans allocate tasks
between team members! When the agent is assigned allocator role, it follows an
allocation strategy that search for allocations that maximize total performance
while learning about actual human performances (See Sect. 5.2 for more details).
We believe that agent allocation strategies that effectively embody advantages
(a)–(d) above will conform to following set of hypotheses:

Hypothesis 1 (H1): Agent Allocator Protocol produces higher teamwork overall
performance than Human Allocator Protocol.

Hypothesis 2 (H2): Agent Allocator can learn from ad hoc teamwork experi-
ence to quickly improve team performance through adaptation.
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Fig. 1. CHATboard showing allocation phase of human allocation protocol.

Hypothesis 3 (H3): Agent allocator will engender higher Human potential
realization compared to the Human Allocator.

4 Collaborative Human-Agent Taskboard (CHATboard)

For systematic experimentation to evaluate the above hypotheses, we needed a
domain that encapsulates the following characteristics:

• The team tasks used should be such that there would be significant variation
in expertise level in the general populace. Larger variability would allow for
more space for team adaptation and for human satisfaction with teamwork.
We should also have the latitude to easily and believably configure varying
agent capability distribution over the task types.

• The domain should allow an agent to be perceived as autonomous and playing
a distinct peer role in the team.

• The domain should not require significant prior knowledge or training for
human participants and should be accessible to non-experts for effectively
operating in an ad hoc team setting.

• There should be flexibility in sharing team information, including task allo-
cations and completions, with team members. The environment should be
configurable between perfect and imperfect information scenarios as necessi-
tated by the research question being investigated.

We developed CHATboard, an environment that facilitates human-agent,
as well as human-human, team coordination. CHATboard contains a graphical
interface that supports human-agent team coordination to complete a set of tasks
(see Fig. 1). CHATboard allows for displaying the task sets to be completed, sup-
ports multiple task allocation protocols, communication between team members
for expressing confidence levels, displaying task allocations and performance by
team members on assigned tasks, etc.
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Fig. 2. Instances of different task types.

The framework utilizes the concept of tasks posted on blackboards, often
used in coordination within human teams, to facilitate a human team member
perceiving an agent as a distinct team member. Blackboards have also been
effectively used in agent teams as a common repository for information sharing
between agents [16]. Figure 1 shows the shared taskboad on top, which includes
the set of team tasks organized by type, and two other boards respectively for
the tasks assigned to the human and the agent team member. Figure 2 presents
examples of task types. These task boards facilitate coordination, and act as
easily navigable repositories for team information allowing team members to
share and view information through these boards.

We define a set of n team members N : {p1, p2, ..., pn}, a set of m task types
M : {y1, y2, ..., ym}, a set of r tasks, Tjr: {tj1, tj2, ..., tjr}, for each task type
yj . Team member i can share their confidence levels pi(yj) over task types yj .
The set Ci: {pi(y1),pi(y2), ..., pi(ym)} represent confidence levels for different
task types for team player, pi. The team members will interact over E episodes,
where episode numbers range from 1 . . . E. Ai,e denotes the set of tasks allocated
to player i in episode e and we assume that all available tasks are exhaustively
allocated, i.e.,

⋃
i Ai,e =

⋃
j Tjr. The performance of player pi for a task tjk in

episode e is referred to as oijke ∈ {0, 1}. We define the performance of pi on task
type yj in episode e as μi,yj ,e =

∑
tjk∈Ai,e

oijke.

5 Methodology

We present details about the team interaction protocol, agent behavior, evalua-
tion metrics, and experiment design in this section.

5.1 Interaction Protocols

We describe the protocols that govern the human-agent ad hoc teamwork. Two
interaction protocols have been designed to guide task allocation process in an ad
hoc environment: (i) the Human Allocator Protocol and (ii) the Agent Allocator
Protocol. The former assigns the task allocator role to the human teammate,
and is illustrated as follows:
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1. The protocol asks agent teammate for its task types confidence levels.
2. The protocol passes the agent’s confidence levels to the human.

The following steps comprise an episode and are repeated N times
Episode starts: e ← 1

3. The protocol asks Human to provide task allocations for the team.
4. Allocated tasks are assigned to the team members.
5. The protocol receives human and agent task performance measures and computes

statistics.
6. The protocol displays team overall team performance as well as individual team

member performances for the episode on their respective task boards.
Episode ends
e ← e + 1; if (e < N), Go to step 3

The Agent Allocator Protocol is the flip side of the coin and assigns the
task allocator role to the agent. Team members repeatably interact over differ-
ent stages in both protocols: Task Allocation, Task Completion, and Taskwork
results (see Though these protocols provide a framework for team interaction
and task allocation, they do not dictate the allocation strategy used by the allo-
cator. For the current study, we use a perfect information scenario, where all
team information, such as set of team tasks, task assignments to team members,
and the task performance is fully observable for all team members.

5.2 Agent Characteristics

Expertise: We configure an agent team member with a fixed expertise profile
that has different expertise level for different task types, represented as a vector of
probabilities for successful completion of task types1. Agent Allocator Strat-
egy: In the current paper, we also use the following additional constraints within
the CHATboard framework that informs the allocator strategy. We assume each
task is allocated to and performed by a single team member and does not require
work from multiple individuals, i.e., Ai,e ∩ Aj,e = φ. We additionally required
that the total number of tasks assigned to each team member be the same, i.e.,
∀x, y, |Ax| = |Ay|. Different number of tasks can however be assigned to two
team members for different task types.

The primary allocation goal is to maximize utilization of the available team
capacity given the expertise of the team. Additionally, agent should account for
the constraint that team members have to do equal number of task items. Instead
of using task items for task division, the agent uses task types. The agent stores
and uses estimates of on task completion rates by task types for the human team
member in the allocation procedure.

Max
∑

y∈M

(xya(y) + (1 − xy)h(y)); s.t.∀y, xy ∈ 0, 1

1 Agent expertise is simulated in our experiments: given a expertise (confidence) level
Pt of the agent for task type t, a task of type t is considered successfully completed
if a coin flipped with probability Pt returns head; else failure is reported on the task.
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Algorithm 1. Agent Allocator Strategy
Input: N= {ph, pg}, M= {y1,. . . ,ym} , E

1: for e = 1....E do
2: if e = 1 then
3: Qi,yj ← pi(yj), ∀pi ∈ N, yj ∈ M
4: each Tyj is partitioned into n equal size subsets, which are randomly allo-

cated to agent i to form Ai,1, for each pi ∈ N
5: else
6: Ai,e ← getAllocations(Qi,e)
7: end if
8: if yj is allocated to pi then
9: Qi,yj ← (1 − α) · Qi,yj + α · μi,yj ,e

10: end if
11: end for

∑

y∈M

xy =
∑

y∈M

(1 − xy) =
|M |
2

.

In the above equations, xy is binary variable indicating whether a task type,
y, is assigned to human or agent, based on the current performance estimate
of the human, h(y), and agent, a(y), on that task type. As per requirement,
each team member is assigned exactly half of the task types. This is an unbal-
anced assignment problem, as number of task types is greater than number of
team members (m > n). It can be solved by transforming it into a balanced
formulation, e.g., adding dummy variables, and running, e.g., Hungarian algo-
rithm [19]. We utilize the SCIP mixed integer programming solver [30], repre-
sented by getAllocations() procedure in Line 6 of Algorithm1, to find the
allocation that maximizes utilization of team’s confidence levels.

In many task allocation formulations, e.g., matching markets, assignment
problems, and others, participants’ preferences or confidence levels are assumed
to be accurately known [36]. In our formulation, however, learning is needed as
we believe human participant’s estimates of their capabilities can be inaccurate.
The second goal that agent’s strategy should account for is related to learning
and adaptation. Since this is an ad hoc environment, the second goal of our agent
is to quickly learn about its partner’s expertise levels and quickly adapt the
allocations accordingly for improved team performance. After each interaction,
e, the agent updates the capability model, Qi,yj

, of team member, pi, for each
task type, yj , from the observed performances, μi,yj ,e, as follows: Qi,yj

← (1 −
α) · Qi,yj

+ α · μi,yj ,e. In the first episode, however, the agent allocator explores
team member’s capabilities by partitioning task items within each task type,
Tyj

, equally among team members, as shown in Line 4 in Algorithm1.

5.3 Evaluation Metrics

Human Teammate Miscalibration and Variability Trends: In our exper-
iments, human teammates coordinate with agent to accomplish tasks items from
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m task types (we have used m = 4 in our experiments). We measure the vari-
ability, over task types, of the difference between the human teammates’ stated
confidence levels and their actual performance.

The confidence levels shared by a human teammate for each task type are
used as estimated probability of success for the respective task types. The agent
maintains a moving average over the episodes of the team member’s performance
on a task type as the percentage of tasks of that type that the human successfully
completes. We measure miscalibration for a human player i for task type yj ,
based on the stated confidence level, pi(yj), and actual average performance
on that task type over all episodes, μi,yj

= 1
E

∑E
e=1 μi,yj ,e, as squared error:

Miscalibrationi,yj
← (pi(yj) − μi,yj

)2.

Team Performance: Human and agent collaborate as a team to complete the
set of tasks. We consider boolean task completion: a task allocated to a team
member is either successfully completed or a failure is reported. Team overall
performance is measured as the percentage of successful completion of assigned
tasks over all episodes: Unweighted Team Performance is measured as the aver-
age team performance over episodes, 1

E

∑E
e=1 Rteam,e, where Rteam,e is the team

performance in episode e, which is the average performance, μ, of all team mem-
bers over all task types in that episode Rteam,e ← 1

mn

∑n
i=1

∑m
j=1 μi,yj ,e.

Team Improvement and Learning: Since our scenario is ad hoc, it requires
quick learning and improvements in team performance from task allocators.
We investigate the differences in mean performance between episodes to gauge
improvements. We also measure the ability to improve as the weighted team
performance over episodes, with the performance of latter episodes are weighted
more than the earlier ones: Weighted Team Performance ← 1

E

∑E
e=1 ze ·Rteam,e,

where ze is the weight for episode e.

Potential Realization: An effective allocator will better utilize the capacity of
the team and realize as much of their teammate’s potential as possible. Potential
realization can be measured through the difference between available capacity
and utilized capacity. We have perfect knowledge of the agent’s capacity, which
is fixed at design time. We do not know, however, know of the available capacity
of human team members. We compare the difference in the capacity utilized
by human and agent allocators. We measure utilized capacity of humans as the
individual performance level within the team. The performance (success rate)
of an agent i over all episodes, referred to as Potential Realization of i, is Si =∑E

e=1

∑
yj∈M μi,yj ,e. We designate by Sh

i and Sa
i the performance (potential

realization) of agent i under human and agent allocator protocol respectively.

Weighted Likeability: The human-agent team is expected to accomplish m
task types over the interaction episodes. At the end of the study, we ask
human participants how much they liked each task type by asking them to
rate their likeability of each task type on a 10-point Likert scale. For each
participant, pi, we compute the weighted likeability over all allocated tasks as∑

yj∈M li,yj

∑E
e=1 |Ai,yj ,e|, where Ai,yj ,e is the set of tasks of type yj allocated
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to player pi in episode e and li,yj
is the human player pi’s stated likeability of

task type yj .

5.4 Experimental Configurations

We conduct experiments with teams of one human and one agent (n = 2), i.e.,
N = {pa, ph}. We use four task types (m = 4), i.e., M : {y1, y2,y4,y4}, which
are Identify Language, Solve WordGrid, Identify Landmark, and Identify Event
(examples of these task types shown in Fig. 2). The task types in this paper are
selected so that, for each type, sufficient expertise variations in recruited human
subjects are likely. For example, Identify Language is a task type in which team
are asked to identify the language, e.g. Japanese, in a text message from a number
of options, e.g., Japanese, German, Hebrew, Arabic.

We created 32 (r = 8) task item instances for each episode, and the total num-
ber of interactions is four, E = 4. The confidence levels are stated in a [1, 100]
range, which are then scaled by the agent internally into a [0, 1] to be inter-
preted as probabilities of completing tasks of that type. Also, we configure the
agent strategy with α = 0.4 since Ad hoc situations require allocation strategies
to quickly learn about team’s capabilities. Additionally, for the weighted per-
formance measure, we have used the following vector of weights over episodes:
z = [0.15, 0.20, 0.30, 0.35]; it assign more value to performance on latter episodes
(any weights that does that would qualitatively produce similar results).

We recruited 130 participants from Amazon Mechanical Turk, 65 for each
condition, as is recommended for a medium-sized effect [7]. We use a between-
subject, and each team is assigned randomly to one protocol or the other.
After participants agree to the Informed Consent Form, they read a descrip-
tion of the study, and then start the first episode. Each episode contains three
phases: taskwork allocation, taskwork completion, and taskwork results. After
each episode, the results are displayed to both human and agent teammates,
which include overall and per-type performance levels. Once participants com-
plete all four episodes, they are asked to complete a survey including their sat-
isfaction on various aspects of teamwork and their likeability for task types. We
incorporate random comprehension attention checks to ensure result fidelity [15].
Participants receive a bonus payment based on team performance.

6 Experimental Results

Human Variability and Miscalibration: We analyze human variability
and task type perceptions in their stated confidence levels and their perfor-
mance. We first analyze human variability in their stated confidence levels using
one-way ANOVA. We find that confidence level between task types (MA =
63.27, SDA = 23.16,MB = 57.01, SDB = 21.45,MC4 = 77.64, SDC =
19.06,MD = 41.49, SDD = 21.70) are significantly different, F=31, p < 0.001.
We similarity evaluate variability in humans’ actual performances and find that
actual performance levels between task types (MA = 77.52, SDA = 17.01,MB =
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Fig. 3. Human variability in stated confidence (right) and actual performance (Left).

Table 1. Stated levels and performances for task types.

Task Type Level
Stated Actual
Mean SD Mean SD

Identify Language (A) 63.27 23.16 77.52 17.01
Identify Landmark (B) 57.01 21.45 75.87 16.28
Solve WordsGrid (C) 77.64 19.06 95.0 6.4
Identify Event (D) 41.49 21.70 37.30 25.43

75.87, SDB = 16.28.45,MC4 = 95.0, SDC = 6.4,MD = 37.30, SDD = 25.43)
are significantly different, F=123, p < 0.001. As Fig. 3 and Table 1 show, humans
are exhibiting variability and different perceptions toward the task types. H0a
is supported.

We analyze confidence levels estimates stated by human teammates in the
Agent Allocator Protocol for the different task types: A, B, C, and D. We analyze
the average squared error of the difference between the stated confidence level
and actual performance over all task types, 0.08, and was found to be significantly
different from zero, t = 7.4, p < 0.001. We then compute the squared error for
each task type (MA = 0.07, SDA = 0.13, MB = 0.08, SDB = 0.13, MC =
0.06, SDC = 0.12, MD = 0.12, SDD = 0.14), and find that it is significantly
different from zero, tA = 4.37, pA < 0.001, tB = 5.28, pB < 0.001, tC = 4.16,
pC < 0.001, tD = 7.11, pD < 0.001 (See Fig. 4). Thus, human teammates are
showing miscalibration tendencies in all task types. H0b is supported.

To determine whether human teammates are over- or under-estimating their
stated confidence levels in different task types, relative to actual performance,
we run non-parametric Sign Tests. We found that, on average, human tend
to underestimate their capabilities relative to actual performance (Savg = 18,
pavg = 0.001). We then run Sign Test for each task type, and find that human
teammates are significantly underestimating their capabilities for task type A,
B, and C (SA = 15, pA < 0.001, SB = 13, pB < 0.001, SC = 7, pC < 0.001),
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Fig. 4. Density of squared estimation error for task types.

and over-estimating for task type D (SD = 38, pD = 0.018). We analyze task
type characteristics, and found that task type A, B, and C share one common
trait in which they are more general and familiar to typical human teammates,
whereas task type D, Identify Event, is more specialized [2].

Team Performance: The teams using Agent Allocator Protocol (M = 0.75,
SD = 0.04) compared to ones using Human Allocator Protocol (M= 0.69, SD
= 0.09) demonstrated significantly higher team performance, t = 4.4, p < 0.001,
with a large size effect, cohen’s d = 0.86 (See Table 2). H1 is supported.

Learning and Improvement: Since the teams are working in an ad hoc envi-
ronment, task allocators need to quickly learn about team capabilities and
increase team performance. First, we investigate if team performances over
episodes is different in each protocol. We find that it is significantly differ-
ent for the Agent Allocator Protocol (Meps1 = 0.59, SDeps1 = 0.10,Meps2 =
0.76, SDeps2 = 0.11,Meps3 = 0.82, SDeps3 = 0.10,Meps4 = 0.83, SDeps4 =
0.11), Fa = 167.17, pa < 0.001. We also find that it is significantly differ-
ent for the Human Allocator Protocol (Meps1 = 0.66, SDeps1 = 0.10,Meps2 =
0.67, SDeps2 = 0.13,Meps3 = 0.71, SDeps3 = 0.12, Meps4 = 0.71, SDeps4 =
0.12), Fh = 3.17, and ph = 0.024.

The agent allocator starts has lower performance, Meps1 = 0.59, than human
allocator, Meps1 = 0.66 in the first episode. This is due to the agent strategy
of exploration during the first episode. However, the agent improves quickly,
and outperforms human in the second, third, and fourth episodes. The agent
improves team performance by a significant margin going from episode 1 to
episode 2, and then by smaller margins going from episode 2 to episode 3, and
episode 3 to episode 4. The improvements over episodes by the Human allocator
is less pronounced.
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Table 2. Team performance (*p < 0.001).

Performance Allocator t
Human Agent
Mean SD Mean SD

Unweighted 0.69 0.09 0.75 0.04 4.4*
Weighted 0.70 0.10 0.78 0.04 5.8*

Fig. 5. Tukey’s HSD Test: differences in mean levels of four episodes (E1 to E4). Left:
Agent, Right: Human.

Moreover, we run Post hoc analysis, using Tukey’s HSD Test, to evaluate the
performance differences between episodes (See Fig. 5). When Human is allocat-
ing, we find no significant mean differences between the episodes, E2 − E1 =
0.007, p = 0.98, E3 − E1 = 0.05, p = 0.10, E4 − E1 = 0.05, p = 0.08, E3 − E2 =
0.04, p = 0.20, E4 − E2 = 0.42, p = 0.17, E4 − E3 = 0.001, p = 0.99. We
do, however, find significant mean differences between episodes with the Agent
Allocator, except for E4-E3, E2 − E1 = 0.17, p < 0.001, E3 − E1 = 023, p <
0.001, E4−E1 = 0.25, p < 0.001, E3−E2 = 0.06, p < 0.001, E4−E2 = 0.08, p <
0.001, E4−E3 = 0.02, p = 0.52. This shows that the agent is, indeed, improving
after each experience. One possible interpretation between the small difference
between episode 3 and 4, relative to the larger differences from episodes E1 to
E2, and from E2 to E3, is that the agent is getting close to the optimal allocation
of tasks based on the team member capabilities.

We also note that performance of teams using the Agent Allocator Protocol
(M = 0.78, SD = 0.04) are better than teams using the Human Allocator Protocol
(M = 0.70, SD = 0.10) in weighted performance, t = 5.8, p< 0.001. In other
words, the agent is showing better learning of its teammate’s capabilities and
adapting the task allocations accordingly to further improve team performance
in latter rounds. since weighted performance measures overall team performance
over the latter, rather than, earlier episodes. The agent allocator significantly
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outperforms the human allocator using the weighted performance measures (See
Table 2). H2 is supported.

Potential Realization: We compared teams based on how allocators realize
potential of teammates and themselves. The pertinent question is: which alloca-
tor utilizes human capacity better? We find that teams who have agents as task
allocators (M = 0.87, SD = 0.06) realize significantly more human potential than
Human Allocator (M = 0.81, SD = 0.10), t = 2.2, p = 0.02. H3 is supported.

Table 3. Self, teammate potential realization by allocators.

Performance Allocator
Human Agent
Mean SD Mean SD

Human 0.81 0.10 0.87 0.06
Agent 0.59 0.12 0.74 0.05

Fig. 6. Weighted likeability density for human and agent protocols.

We also analyze how team allocators effectively utilize agent capacity. We find
that agent capacity utilization or performance is significantly higher in teams
who have agents as task allocators (M = 0.74, SD = 0.05) compared to teams
with Human allocators (M = 0.59, SD = 0.12), t = 5.02, p< 001. Thirdly, we
investigate which allocator utilizes the capacity of their teammate better. We
find that teams who Agent allocators (M = 0.87, SD = 0.06) significantly realize
more performance from their teammates than Human Allocator (M = 0.59, SD
= 0.12), t = 13.4, p< 0.001.

We do not analyze self-realization between human and agent allocators since
human capacity in the Human Allocator Protocol is unknown. We also define
the level of agent capacity or confidence level structure prior to the interaction;
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thus, we cannot compare self-realization of human and agent allocators. We
posit, however, when allocators are agents, they realize more potential in the
team; both in themselves and in the human team member (See Table 3)2.

Weighted Likeability: To understand the performance differences between the
Human and Agent Allocator Protocols, we analyze the task types allocated to
human teammates. Do humans allocate more tasks of types they like to them-
selves? We find that Agent allocators (Ma = 6.77, SDa = 1.51) allocate more
items of liked task types to the human team member than does the human
allocator (Mh = 6.07, SDh = 1.80), tlike = 2.3, plike = 0.01 (See Fig. 6).

7 Discussion and Future Work

We introduced CHATboard, a flexible task allocation framework between human
and agent team members for ad hoc scenarios. While CHATboard can be config-
ured to support larger teams and more complex constraints between tasks, such
as multiple workers per task, in this paper we showed its efficacy in supporting
coordination between one human and one autonomous agent.

To understand team dynamics with respect to task allocation within human-
agent teams, we presented two interaction protocols and team designs in which
task allocator role is either assigned to human or agent team member: Human
and Agent Allocator Protocols. We ran experiments with these team designs and
showed human teammates often exhibit miscalibration, where they either over-
or under-estimate their capabilities.

We demonstrated that agent task allocators generally increase the quality of
team with respect to team performance and realizing potential of team compared
to human allocators. The agent allocators learn quickly about team capabilities,
and realize more potential in the team, both their own and of their human
teammate. Our analysis of the experiments also confirms various hypotheses we
had posed about such ad hoc human-agent team coordination.

Though finding the reason for the lower performance of human allocators
is beyond scope of this paper, we conjectured that it might be due to humans
allocating more tasks they like to themselves, even though they may not be good
at it. We find, however, that the agent is allocating more likeable tasks to the
human teammate. The lower performance might be explained by biases iden-
tified in behavioral economics, such as prospect theory, in which they perceive
performance gains or success differently than losses or failure rate. We leave this
line of investigation to future work.

While our work provides interesting insights into effective task allocation
protocols and strategies in human-agent teams, our current work has some lim-
itations. The first is concerned with the types of tasks the team allocates. The
team only allocates intellective tasks, and it is unclear how the results would
generalize if the team is responsible for other classifications of task types [26]. In

2 Humans outperform agents for both allocators as agents are endowed with medium-
level capabilities. Increasing agent expertise will change relative performances.
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addition, in the current study the protocol is configured to allow for only task
sharing. We do not know the effect of removing this constraint.

As future work, we will evaluate the effect of different agent expertise dis-
tributions on team performances. We also plan to experiment with different
environment and protocol configurations, including those where the constraint
of equal division of tasks is relaxed, and where allocator role is shared. Lastly, we
plan to study how the dynamics of human-agent teams change when the team
consists of more than two members.
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Abstract. By regulating agent interactions, norms facilitate coordina-
tion in multiagent systems. We investigate challenges and opportunities
in the emergence of norms of prosociality, such as vaccination and mask
wearing. Little research on norm emergence has incorporated social pref-
erences, which determines how agents behave when others are involved.

We evaluate the influence of preference distributions in a society on
the emergence of prosocial norms. We adopt the Social Value Orientation
(SVO) framework, which places value preferences along the dimensions
of self and other. SVO brings forth the aspects of values most relevant
to prosociality. Therefore, it provides an effective basis to structure our
evaluation.

We find that including SVO in agents enables (1) better social expe-
rience; and (2) robust norm emergence.

Keywords: Agent-based simulation · Norm adherence · Preferences ·
Social value orientation · Ethics

1 Introduction

What makes people make different decisions? Schwartz [23] defined ten funda-
mental human values, and each of them reflects specific motivations. Besides
values, preferences define an individual’s tendency to make a subjective selec-
tion among alternatives. Whereas values are relatively stable, preferences are
sensitive to context and constructed when triggered [25].

In the real world, humans with varied weights of values evaluate the outcomes
of their actions subjectively and act to maximize their utility [23]. In addition
to values, an individual’s social value orientation (SVO) influences the individ-
ual’s behaviors [30]. Whereas values define the motivational bases of behaviors
and attitudes of an individual [23], social value orientation indicates an individ-
ual’s preference for resource allocation between self and others [8]. Specifically,
social value orientation provides stable subjective weights for making decisions
[17]. When interacting with others is inevitable, one individual’s behavior may
affect another. SVO revises an individual’s utility function by assigning different
weights to itself and others. Here is an example of a real-world case of SVO.
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Example 1. SVO.
During a pandemic, the authorities announce a mask-wearing regulation

and claim that regulation would help avoid infecting others or being infected.
Although Felix tests positive on the pandemic and prefers not to wear a mask,
he also cares about others’ health. If he stays in a room with another healthy
person, Elliot, Felix will put the mask on.

An agent is an autonomous, adaptive, and goal-driven entity [22]. Whereas
many works assume agents consider the payoff of themselves, humans may fur-
ther consider social preferences in the real world. e.g., payoffs of others or social
welfare [5]. When humans are in the loop along with software, there are emerg-
ing need to consider human factors when building modern software and systems.
These systems should consider human values and be capable of reasoning over
humans’ behaviors to be realistic and trustworthy.

In a multiagent system, social norms or social expectations [2,21] are societal
principles that regulate our behavior towards one another by measuring our
perceived psychological distance. Humans evaluate social norms based on human
values. Most previous works related to norms do not consider human values and
assume regimented environments. However, humans are capable of deliberately
adhering to or violating norms. Previous works on normative agents consider
human values and theories on sociality [4,31] in decision-making process. SVO
as an agent’s preference in a social context has not been fully explored.

Contributions. We investigate the following research question.
RQSVO. How do the preferences for others’ rewards influence norm compli-

ance?
To address RQSVO, we develop Fleur, an agent framework that considers

values, personal preferences, and social norms when making decisions. Our pro-
posed framework Fleur combines world model, cognitive model, emotion model,
and social model. Since values are abstract and need further definition, we start
with social value orientations, the stable preferences for resource allocation, in
this work. Specifically, Fleur agents take into account social value orientation
in utility calculation.

Findings. We evaluate Fleur via an agent simulation of a pandemic scenario
designed as an iterated single-shot and intertemporal social dilemma game. We
measure compliance, social experiences, and invalidation during the simulation.
We find that the understanding of SVO helps agents to make more ethical deci-
sions.

Organization. Section 2 presents the related works. Section 3 describes the
schematics of Fleur. Section 4 details the simulation experiments we conduct
and the results. Section 5 presents our conclusion and directions for future exten-
sions.
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2 Related Works

Griesinger and Livingston Jr. [8] present a geometric model of SVO, the social
value orientation ring as Fig. 2. Van Lange [30] proposes a model and interprets
prosocial orientation as enhancing both joint outcomes and equality in the out-
comes. Declerck and Bogaert [6] describe social value orientation as a personality
trait. Their work indicates that prosocial orientation positively correlates with
adopting others’ viewpoints and the ability to infer others’ mental states. On the
contrary, an individualistic orientation shows a negative correlation with these
social skills. Fleur follows the concepts of social preferences from [8].

Szekely et al. [26] show that high risk promotes robust norms, which have
high resistance to risk change. de Mooij et al. [15] build a large-scale data-
driven agent-based simulation model to simulate behavioral interventions among
humans. Each agent reasons over their internal attitudes and external factors
in this work. Ajmeri et al. [3] show that robust norms emerge among interac-
tions where deviating agents reveal their contexts. This work enables agents to
empathize with other agents’ dilemmas by revealing contexts. Instead of shar-
ing contexts, values, or preferences, Fleur approximates others’ payoff with
observation. Serramia et al. [24] consider shared values in a society with norms
and focus on making ethical decisions that promote the values. Ajmeri et al. [4]
propose an agent framework that enables agents to aggregate the value prefer-
ences of stakeholders and make ethical decisions accordingly. This work takes
other agents’ values into account when making decisions. Mosca and Such [16]
describe an agent framework that aggregates the shared preferences and moral
values of multiple users and makes the optimal decisions for all users. Kalia et al.
[10] investigate the relationship between norm outcomes and trust and emotions.
Tzeng et al. [29] consider emotions as sanctions. Specifically, norm satisfaction
or norm violation may trigger self-directed and other-directed emotions, which
further enforce social norms. Dell’Anna et al. [7] propose a mechanism to regu-
late a multiagent system by revising the sanctions at runtime to achieve runtime
norm enforcement. Agrawal et al. [1] provide and evaluate explicit norms and
explanations. Winikoff et al. [33] construct comprehensible explanations with
beliefs, desires, and values. Kurtan and Yolum [11] estimate privacy values with
existing shared images in a user’s social network. Tielman et al. [27] derive
norms based on values and contexts. However, these works do not consider the
differences between agents and the influences of an individual’s behavior on oth-
ers. Mashayekhi et al. [13] model guilt based on inequity aversion theory for an
individual perspective on prosociality. In addition, they consider justice from
a societal perspective on prosociality. Whereas Mashayekhi et al. [13] assume
agents may be self-interested and their decisions may be affected by others’
performance, Fleur investigates the influence of social value orientations.

Table 1 summarizes related works on ethical agents. Adaptivity describes
the capability of responding to different contexts. Empathy defines the ability
to consider others’ gain. The information share indicates information sharing
among agents. The information model describes the applied models to process
information and states. Among varied information models, contexts describe the



188 S.-T. Tzeng et al.

situation in which an agent stands. Emotions are the responses to internal or
external events or objects. Guilt is an aversive self-directed emotion. Explicit
norms state causal normative information, including antecedents and conse-
quences. Values and preferences both define desirable or undesirable states.

Table 1. Comparisons of works on ethical agents with norms and values.

Research Adaptivity Empathy Information share Information model

Fleur ✓ ✓ ✗ Preferences & Emotions & Contexts

Agrawal et al. [1] ✓ ✗ ✓ Explicit norms

Ajmeri et al. [3] ✓ ✓ ✓ Contexts

Ajmeri et al. [4] ✓ ✓ ✓ Values & Value preference & Contexts

Kalia et al. [10] ✓ ✗ ✗ Trust & Emotions

Kurtan and Yolum [11] ✓ ✗ ✗ Values

Mashayekhi et al. [13] ✓ ✓ ✓ Guilt

Mosca and Such [16] ✓ ✓ ✓ Preferences & Values

Serramia et al. [24] ✓ ✗ ✗ Values

Tielman et al. [27] ✓ ✗ ✓ Values & Contexts

Tzeng et al. [29] ✗ ✗ ✗ Emotions

Winikoff et al. [33] ✓ ✗ ✗ Values & Beliefs & Goals

3 FLEUR

We now discuss the schematics of Fleur agents.
Figure 1 shows the architecture of Fleur. Fleur agents consists of five main

components: cognitive model, emotion model, world model, social model, and a
decision module.

3.1 Cognitive Model

Cognition relates to conscious intellectual activities, such as thinking, reason-
ing, or remembering, among which human values and preferences are essen-
tial. Specifically, values and preferences may change how an individual evaluates
an agent, an event, or an object. In Fleur, We start with including human
preferences. While preferences are the attitudes toward a set of objects in psy-
chology [25], individual and social preferences provide intrinsic rewards. For
instance, SVO provides agents with different preferences over resource alloca-
tions between themselves and others. Figure 2 demonstrates the reward distri-
bution of different SVO types. The horizontal axis measures the resources allo-
cated to oneself, and the vertical axis measures the resources allocated to others.
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Fig. 1. Fleur architecture.

Let
−→
R = (r1, r2, . . . , rn) represent the reward vector for a group of agents with

size n. The reward for agent i considering social aspect is:

rewardi = ri · cos θ + r−i · sin θ (1)

where ri represents the reward for agent i and r−i is the mean reward of all other
agents interacting with agent i. Here we adopt the reward angle in [14] and rep-
resent agents’ social value orientation with θ. We define θ ∈ {90◦, 45◦, 0◦,−45◦}
as SVO ∈ {altruistic, prosocial, individualistic, competitive}, respectively. With
the weights provided by SVO, the presented equation enables the accommoda-
tion of social preferences.

In utility calculation, we consider two components: (1) extrinsic reward and
(2) intrinsic reward. Whereas extrinsic rewards come from the environment,
intrinsic rewards stem from internal stats, e.g., human values and preferences.

We extend the Belief-Desire-Intention (BDI) architecture [20]. An agent
forms beliefs based on the information from the environment. The desire of
an agent represents having dispositions to act. An agent’s intention is a plan or
action to achieve a selected desire.

Take Example 1 for instance. Since Felix has an intention to maximize the
joint gain with Elliot, he may choose a strategy to not increase his payoff at the
cost of others’ sacrifice.
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Fig. 2. Representation of Social Value Orientation [8,14]. ri denotes outcome for oneself
and r−i denotes outcomes for others.

3.2 Emotion Model

We adopt the OCC model of emotions [19]. Specifically, our emotion model
appraises an object, an action, or an event and then triggers emotions. We con-
sider emotional valence and assume norm satisfaction or norm violation yields
positive or negative emotions if self behaviors align with the norms.

3.3 World Model

The world model describes the contexts in which Fleur agents stand and repre-
sents the general knowledge Fleur agents possess. A context is a scenario that
an agent faces. Knowledge in this model are facts of the world. In Example 1, the
context is that an infected individual, Felix, seeks to maximize the collective gain
of himself and a healthy individual, Elliot. In the meantime, Felix acknowledges
that a pandemic is ongoing.

3.4 Social Model

The social model of an agent includes social values, normative reasoning, and
norm fulfillment. Social values define standards that individuals and groups
employ to shape the form of social order [28], e.g., fairness and justice. Agents
use the normative-reasoning component to reason over states, norms, and possi-
ble outcomes of satisfying or violating norms. Norm fulfillment checks if a norm
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has been fulfilled or violated with the selected action. Sanctions may come after
norm fulfillments or violations.

3.5 Decision Module

The decision module selects actions based on agents’ payoffs and individual
values. We apply Q-Learning [32], a model-free reinforcement learning algorithm
that learns from trial and error, to our agents. Q-Learning approximates the
action-state value Q(s, a) (Q value), with each state and action:

Q′(st, at) = Q(st, at) + α ∗ (Rt + γ max
a′

Q(st+1, a) − Q(st, at)) (2)

where Q′(st, at) represents the updated Q-value after performing action a at time
t and st+1 represents the next state. α denotes the learning rate in the Q-value
update function, and Rt represents the rewards received at time t after acting a.
γ defines the reward discount rate, which characterizes the importance of future
rewards. Agents observe the environment, form their beliefs about the world,
and update their state-value with rewards via interactions. By approximating
the action-state value, the Q-Learning algorithm finds the optimal policy via the
expected and cumulative rewards.

Algorithm 1 describes the agent interaction in our simulation.

Algorithm 1: Decision loop of a Fleur agent
1 Initialize one agent with its desires D and preference P and SVO angle θ;
2 Initialize action-value function Q with random weights w;
3 for t=1,T do
4 Pair up with another agent pn to interact with;
5 Observe the environment (including the partner and its θ) and form beliefs

bt;
6 With a probability ε select a random action at

Otherwise select at = argmaxaQ(bt, a; w)
7 Execute action at and observe reward rt;
8 Observe the environment (including the partner) and form beliefs bt+1;
9 Activate norms N with beliefs bt, bt+1, and action at;

10 if N ! = ∅ then
11 Sanction the partner based on at and its behavior;
12 end

13 end

4 Experiments

We now describe our experiments and discuss the results.
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4.1 Experimental Scenario: Pandemic Mask Regulation

We build a pandemic scenario as an iterated single-shot and intertemporal social
dilemma. We assume that the authorities have announced a masking regulation.
In each game, each agent selects from the following two actions: (1) wear a
mask, and (2) not wear a mask. Each agent has its inherent preferences and
social value orientation. An agent forms a belief about its partner’s health based
on its observation. During the interaction, the decision an agent makes affects
itself and others. The collective behaviors among agents determine the dynamics
in a society. Each agent receives the final points from its own action and effects
from others: Rsum = Pi self + Pi other + Sj . Pi self denotes the payoff from the
action that agent i selects considering the reward distribution in Fig. 2 and self-
directed emotions. Pi other is the payoff from the action that the other agent
performs. Sj denotes the other-directed emotions from others towards agent i.

Table 2. Payoff for an actor and its partner based on how the actor acts and how its
action influence others. Column Actors show the points from the actions of the actor.
Column Partners display the points from the actions to the partner.

Health Actions

Actor Partner Mask No mask

Actor Partner Actor Partner

Healthy Healthy 0.00 0.00 0.00 0.00

Healthy Infected 1.00 0.00 −1.00 0.00

Infected Healthy 0.00 1.00 0.00 −1.00

Infected Infected 0.50 0.50 −0.50 −0.50

Table 3. Payoff for decisions on preferences

Type Decisions

Satisfy Dissatisfy

Preference 0.50 0.00

4.2 Experimental Setup

We develop a simulation using Mesa [12], an agent-based modeling framework
in Python for creating, visualizing, and analyzing agent-based models. We ran
the simulations on a device with 32 GB RAM and GPU NVIDIA GTX 1070 Ti.

We evaluated Fleur via a simulated pandemic scenario where agents’ behav-
iors influence the collective outcome of the social game. A game-theoretical set-
ting may be ideal for validating the social dilemma with SVO and norms. How-
ever, real-world cases are usually non-zero-sum games where one’s gain does not
always lead to others’ loss. In our scenario, depending on the context, the same



Fleur: Social Values Orientation for Robust Norm Emergence 193

Table 4. Payoff for decisions on norms

Actor Partner

Wear Not-Wear

Wear 0.10 −0.10

Not-Wear 0.00 0.10

action may lead to different consequences for the agent itself and its partner. For
instance, when an agent is healthy and its partner is infected, wearing a mask
gives the agent a positive payoff from the protection of the mask but no payoff
for its partner. Conversely, not wearing a mask leads to a negative payoff for the
agent and no payoff for its partner. The payoff given to the agent and its partner
corresponds to the X and Y axis in Fig. 2. When formalizing social interactions
with SVO in game-theoretical settings, the payoffs of actions for an agent and
others are required information.

We incorporated beliefs and desires, and intentions into our agents. An agent
observes its environment and processes its perception, and forms its beliefs about
the world. In each episode, agents pair up to interact with one another and
sanction based on their and partners’ decisions (Table 4).

Context. A context is composed of attributes from an agent and others and the
environment as shown in Table 2. We frame the simulation as a non-zero-sum
game where one’s gain does not necessarily lead to the other parties’ loss.

Preference. In psychology, preferences refer to an agent’s attitudes towards a
set of objects. In our simulation, we set 40% of agents to prefer to wear and
prefer not to masks individually. The rest of the agents have a neutral attitude
on masks. The payoffs for following the preferences are listed in Table 3.

Social Value Orientation. Social value orientation defines an agent’s prefer-
ence for allocating resources between itself and others. We consider altruistic,
prosocial, individualistic, and competitive orientations selected from Fig. 2.

4.3 Hypotheses and Metrics

We compute the following measures to address our research question RQSVO.

Compliance. The percentage of agents who satisfy norms
Social Experience. The total payoff of the agents in a society
Invalidation. The percentage of agents who do not meet their preferences in a

society

To answer our research question RQSVO, we evaluate three hypotheses that
correspond to the specific metric, respectively.
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HCompliance: Preferences for others’ rewards positively affect norm compliance
with prosocial norms

HSocial Experience: The distribution of preferences for others’ rewards positively
affect social experiences in a society

HInvalidation: Preferences for others’ rewards negatively affect the tendency to
meet personal preferences

4.4 Experiments

We ran a population of N = 40 agents in which we equally distributed our
targeted SVO types: altruistic, prosocial, individualistic, and competitive. Since
each game is a single-shot social dilemma, we consider each game as an episode.
The training last for 500,000 episodes. In evaluation, we run 100 episodes and
compute the mean values to minimize deviation from coincidence. We define our
five societies as below.

Mixed society. A society of agents with mixed social value orientation distri-
bution

Altruistic society. A society of agents who make decisions based on altruistic
concerns

Prosocial society. A society of agents who make decisions based on prosocial
concerns

Selfish society. A society of agents who make decisions based on selfish concerns
Competitive society. A society of agents who make decisions based on com-

petitive concerns

We assume all agents are aware of a mask-wearing norm. Agents who satisfy
the norm receive positive emotions from themselves and others, as in Table 4.
Conversely, norm violators receive negative emotions. Table 5 summarizes results
of our simulation.

Figure 3 displays the compliance, the percentage of agents who satisfy norms,
in the mixed and baseline-agent societies. We find that the compliance in the
altruistic and prosocial-agent society, averaging at 69.70% and 70.25%, is higher
than in the mixed (63.34%) and agent societies have no positive weights on
others’ payoff (65.10% and 54.08% for selfish and competitive-agent societies,
respectively). The differences in the results of altruistic and prosocial-agent soci-
eties are statistically significant with medium effect (p < 0.001; Glass’ Δ > 0.5).
Conversely, the competitive-agent society has the least compliance, averaging at
54.08%, with p < 0.001 and Glass’ Δ > 0.8. The results of the selfish-agent soci-
ety (65.10%) shows no significant difference with p > 0.05 and Glass’ Δ ≈ 0.2.

There are 25% of agents in the mixed-agent society are competitive agents.
Specifically, they prefer to minimize others’ payoff. A competitive infected agent
may choose not to wear a mask when interacting with other healthy agents in
this scenario. In the meantime, the selfish agents would maximize their self utility
without considering others. Therefore, the behaviors of selfish and competitive
agents may decrease compliance in the mixed-agent society.



Fleur: Social Values Orientation for Robust Norm Emergence 195

Table 5. Comparing agent societies with different social value orientation distribution
on various metrics and their statistical analysis with Glass’ Δ and p-value. Each metric
row shows the numeric value of the metric after simulation convergence.

Compliance Social experience Invalidation

Smixed Results 63.40% 0.448 3 0.296 0

p-value − − −
Δ − − −

Saltruistic Results 69.70% 0.554 3 0.3340

p-value < 0.001 < 0.001 < 0.001

Δ 0.660 2 0.611 6 0.463 5

Sprosocial Results 70.25% 0.5656 0.322 8

p-value < 0.001 < 0.001 < 0.05

Δ 0.717 8 0.677 1 0.326 3

Sselfish Results 65.10% 0.469 5 0.269 0

p-value 0.218 0 0.424 5 < 0.05

Δ 0.178 1 0.122 1 0.329 3

Scompetitive Results 54.08% 0.220 8 0.288 8

p-value < 0.001 < 0.001 0.541 2

Δ 0.977 2 1.313 1 0.088 4

Fig. 3. Compliance in training phase: The percentage of norm satisfaction in a society.

Figure 4 compares the average payoff in the mixed and baseline-agent soci-
eties. The social experience in the altruistic and prosocial-agent society, averag-
ing at 0.5543 and 0.5656, is higher than in the mixed (0.4483) and agent societies
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Fig. 4. Social Experience in training phase: The total payoff of the agents in a society.

have no positive weights on others’ payoff (46.95% and 22.08% for selfish and
competitive-agent societies, respectively). The differences in the results of altru-
istic and prosocial-agent societies are statistically significant with medium effect
(p < 0.001; Glass’ Δ > 0.5). On the contrary, the competitive-agent society
has the least social experience, averaging at 0.2208, with p < 0.001 and Glass’
Δ > 0.8. The results of the selfish-agent society (0.4695) shows no significant
difference with p > 0.05 and Glass’ Δ < 0.2.

The mixed-agent society shows similar results as the selfish-agent society.
Although 50% of the mixed-agent society agents are altruistic and prosocial,
the competitive agents would choose to minimize others’ payoff without hurting
their self-interests. Since the selfish agents do not care about others, they would
act for the sake of their benefit. The selfish and competitive behaviors diminish
the social experiences in society.

Figure 5 compares invalidation, the percentage of agents who do not meet
their preferences in the mixed and baseline-agent societies.

The invalidation in the altruistic and prosocial-agent society, averaging at
33.40% and 32.28%, is higher than in the mixed (29.60%) and agent societies
have no positive weights on others’ payoff (26.90% and 28.88% for selfish and
competitive-agent societies, respectively). The differences in the results of altruis-
tic and prosocial-agent societies are statistically significant with small or medium
effect (p < 0.001; Glass’ Δ > 0.2). On the contrary, the selfish-agent society has
the least invalidation, average at 26.90%, with p < 0.05 and Glass’ Δ > 0.2. The
results of the competitive-agent society (28.88%) shows no significant difference
with p > 0.05 and Glass’ Δ < 0.2.

While agents who consider others’ rewards positively achieve better compli-
ance and social experiences, these achievements are based on their sacrifice of
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Fig. 5. Invalidation in training phase: The percentage of agents who do not meet their
preferences in a society.

preferences. The altruistic and prosocial agent societies have the most percentage
of agents who do not meet their preferences.

4.5 Threats to Validity

First, our simulation has a limited action space. Moreover, different actions may
have the same payoff in some contexts. Other behaviors may better describe
different types of SVO, yet our focus is on showing how SVO influences normative
decisions.

Second, we represent actual societies as simulations. While differences in
preference and SVO among people are inevitable, we focus on validating the
influence of SVO.

Third, to simplify the simulation, we assume fixed interaction, whereas real-
world interactions tend to be random. An agent may interact with one another
in the same place many times or have no interaction. We randomly pair up all
agents to mitigate this threat and average out the results.

5 Conclusions and Directions

We present an agent architecture that integrates cognitive architecture, world
model, and social model to investigate how social value orientation influences
compliance with norms. We simulate a pandemic scenario in which agents make
decisions based on their individual and social preferences. The simulations show
that altruistic and prosocial-agent societies comply better with the mask norm
and bring out higher social experiences. However, altruistic and prosocial agents
trade their personal preferences for compliance and social experiences. The
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results between the mixed and selfish-agent societies show no considerable dif-
ference. The competitive agents in the mixed-agent society may take the respon-
sibility.

Future Directions

Our possible extensions include investigating an unequal distribution of SVO
in Fleur and applying real-world data in the simulation. Other future direc-
tions are incorporating values into agents, and revealing adequate information
to explain and convince others of inevitable normative deviations [1,18,34].
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Abstract. Solving the collective action problem is to understand how people
decide to act together for the common good when individual rationality would
lead to non-cooperative selfish behaviour. Two important features that can foster
collective action are achieving common knowledge about the problem faced and
the existence of a shared cooperative ethos. Based on the work of Ober, who
argued that the success of classical Athens was the result of its shared com-
mitments, social values and specific procedural rules, we define a probabilistic
model in Markov Logic of a specific prosecution against an Athenian trader who
neglected to contribute to the city when it was in a crisis. In order to join together
for a common good, our model focuses on a decision-making approach based on
reasoning about common knowledge. For example, knowledge about the ethos of
the court towards convicting traitors can be seen as common knowledge gained
from public monuments recording these verdicts. We expect that our computa-
tional model of this case study can be generalised to other problems of reasoning
about collective action based on common knowledge in future work.

Keywords: Common knowledge · Collective action · Markov Logic Networks

1 Introduction

Solving the collective action problem is to understand how people act together for the
common good. Collectively reducing the emission of greenhouse gases [19] and manag-
ing common pool resources [17] are two examples of environmental collective actions.
Solving collective action problems is important to overcome various social and environ-
mental problems. Collective action requires communication, organisation, and incen-
tives that motivate everyone to work together for the common good. Existing studies
[17,18] introduce strategies and solutions to tackle these problems. While traditional
solution concepts from game theory [14], such as the Nash equilibrium [9] suggest
that collective action is irrational, Holzinger [10] discusses various solutions includ-
ing norms, rules and sanctions. Besides common knowledge, expectations and credible
commitment also motivates people to join together for collective action.

Political scientist Josiah Ober [16] discusses the role of common knowledge in
making people join collective actions in classical Athens. He argues that Athens was
socially, politically and militarily successful compared to rival states because of a supe-
rior ability to achieve shared commitments, shared social values and procedural rules
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through common knowledge. In particular, a specific trial discussed by him has a lot
of richness and information regarding the cooperation and social structure in terms of
common knowledge. Therefore, we adopt this as a case study of the role of common
knowledge in achieving collective action.

The trial was against an Athenian trader named Leocrates. It was alleged that he
abandoned the city when it needed help to defend and reconstruct it after a battle had
been lost with the Macedonians. Lycurgus, a famous Athenian politician, prosecuted
this trial with the intention of convincing the jurors to convict Leocrates for the capital
charge of treason. A record exists of the narrative Lycurgus gave to persuade jurors of
the importance of convicting Leocrates.

The trial is an interesting case study in which we found the prosecutor’s points con-
vey the importance of common knowledge in fostering the collective goal of having a
secure city and how the result of this trial will impact the security of the city. Therefore,
we are interested in implementing a computational model using common knowledge
to find how agents would make decisions based on a logical encoding of some of the
arguments made by the prosecutor.

We consider several sources that lead to attaining common knowledge: the commu-
nity acceptance of a collective goal through observation of an alignment cascade [22],
measures of common knowledge about social attitudes to the collective goal through
empirical observations, and observing states of affairs that satisfy four conditions iden-
tified by Lewis [13] as giving rise to common knowledge.

As Markov logic networks (MLNs) [5] express knowledge explicitly, and also help
representing beliefs of a probabilistic nature, we use an MLN to model this trial. For
example, a belief that a certain proportion of citizens are cooperative with city-wide
goals is probabilistic in nature, based on an estimate of the percentage of cooperators.

The paper is structured as follows: The concept of common knowledge is discussed
in Sect. 2, along with how it will be helpful to achieve a common goal. The discussion
in Sect. 3 centers on points in terms of common knowledge made by Lycurgus during
the trial of Leocrates. As the trial is modelled using a Markov Logic Network (MLN),
Sect. 4 provides an overview of MLNs. A description of how this trial was modelled
as an MLN is provided in detail in Sect. 5. Section 6 discusses how the model can be
queried to inform the decision of a juror in the trial. Section 7 concludes the paper.

2 Common Knowledge

A range of studies discuss the importance of knowledge alignment in bringing people
together. In fact, knowledge and action are intimately connected. In most situations,
people act according to what they think. The term ‘common knowledge’ refers “knowl-
edge of what other people know about other people’s knowledge” [4]. According to
Kuhlman et al., [12] “Successful coordination requires that people know each others’
willingness to participate, and that this information is common knowledge among a suf-
ficient number of people”. This involves infinite information transmission levels which
can be explained [13] as:

– I know something; you know something
– I know that you know; you know that I know
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– I know that you know that I know
– You know that I know that you know; and so on ...

However, this infinite reflection is not how common knowledge is obtained in
practice. Achieving common knowledge requires collective awareness and collective
attention. Social coordination revolves around the achievement of common knowledge
through group attention. From knowing where to find your partners, to communicating
with them, to resolving public goods dilemmas, to following social norms, success in
social interactions often depends on collective awareness [21].

The emergence of common knowledge occurs when people receive information
simultaneously and publicly, when it becomes obvious that “we are attending” [20].
The places and events that make maximum eye contact [4] will create common knowl-
edge. Transparent information provides no reason to doubt others’ awareness of an
object or event. It refers especially to the dissemination of information in public con-
texts (e.g., dinner tables, amphitheaters, stadiums, and town squares), or through public
technologies (e.g., microphones, telephones, television, and social media) [21].

Ober [16] discusses how common knowledge was used in classical Athens to collect
people for a common goal. Public rituals for honouring war heroes and monuments
containing the list of traitors were a medium for spreading common knowledge that
every citizen should act for the good of the city. Athenians used certain specific signs
in temples to convey important messages to their citizens. Festivals were organized so
that every citizen was forced to pass through them. The assumption was that if the signs
were placed in public places, everyone will be able to see them.

During the construction of theaters and common halls, Athenians built circles fac-
ing inward. This allows people observe both speaker and the movement of other partic-
ipants. By letting people see each other clearly or creating maximum eye contact they
were better able to understand each other’s opinions.

In Athens, People’s Courts sat frequently, and the relatively long speeches of lit-
igants provided excellent opportunities for sharing knowledge. Court was one of the
places where collective knowledge was developed and used. The jury was drawn from
the citizens. Citizens attended the court to observe the jurors’ presentations during
which they observed the responses of others, like facial expressions and exclamations.
Prosecution points from the Leocrates trial argue for the importance of reaching collec-
tive action in terms of common knowledge.

Lewis [13] provided a game theoretic solution for coordination problems which con-
siders the relation between common knowledge and mutual expectation. In explaining
a choice of action, he says that the agent needs a reason to believe about what actions
will be chosen by others. Then an equilibrium is sustained due to mutual expectations
which come from common knowledge.

There are some properties that allow us to know when it is appropriate to recog-
nize common knowledge based on a certain principles. Lewis separates the concepts of
directly observable states of affairs and propositions that these states of affairs provide
a reason to believe. This is modelled as an “indicates” relationship (a state of affairs
indicates that a proposition holds). Lewis identified four properties that allow a state of
affairs (s) to be recognised as a “reflexive common indicator” of a proposition (p), i.e.
that observation of the state of affairs leads to common knowledge of the proposition.
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The state of affairs should be self revealing and public, everyone should be able to infer
p from observing s and every one should have reason to believe they share the same
inductive standards and background information.

In the context of the trial that we model, Lewis’s theory explains how common
knowledge of past traitors and their convictions can be reached without explicit log-
ical reasoning about infinitely nested knowledge operators. In addition, we consider
another source of common knowledge noted by Ober: a cascade of actions by citizens
to help rebuild the city’s walls at a time of crisis, in response to a public decree to act
collectively secure the city.

3 Points of Lycurgus During The Trial

During his time in Athens, Lycurgus, the prosecutor of the trial was a famous politician
who performed many social services. He had successful past prosecutions of citizens
who acted against security rules. During the trial of Leocrates, who was alleged to have
abandoned the city, Lycurgus’s speech focused on two main equilibria. The first one
is a shared belief that is common knowledge among the citizens that everyone should
cooperate to secure the city. As Athens’ security was viewed as a common pool resource
every citizen should play their part in ensuring it. Unless individuals give back to the
common pool, it leads to the tragedy of the commons [8].

The second equilibrium is that jurors should penalize citizens who violate the first
equilibrium through legal sanctions. As the city had been completely destroyed and lost
territory after the war with the Macedonians. Athenian’s cooperation was crucial during
the period when Leocrates was alleged to have abandoned it. Other citizens of Athens
committed themselves to rebuilding the city. For the common good to be achieved, there
was a need for cooperation among citizens at the time. However, it was alleged that
Leocrates had left the city by disobeying the generals and ignoring the shared interest
of citizens of the city.

The above points are taken from Lycurgus’s preserved speech [1,3]. We are inter-
ested in reconstructing the key arguments of Lycurgus as a case study in computational
reasoning about common knowledge and collective action in terms of MLNs. In partic-
ular, the focus of our model is on the reasoning that must be performed by the jurors.
They need to understand the effect that their decision about conviction will have on the
maintenance of the citizens’ cooperation with the group goal to keep the city secure.

4 Markov Logic Networks (MLNs)

Two important aspects of artificial intelligence (AI), expressing knowledge and uncer-
tainty, can be handled with first-order logic (FOL) and probabilistic modeling, respec-
tively. There are various approaches to combining probabilistic reasoning with explicit
logical knowledge encoding such as probabilistic relational models [7], Bayesian logic
programs [11], relational dependency networks [15].

Richardson and Domingos [5] proposed a logic framework Markov Logic Networks
(MLNs). While a first-order logic (FOL) knowledge base contains formulas that can be
seen as hard constraints on the possible worlds (assignments of truth values to ground
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atoms), in an MLN, each formula has an associated weight that reflects how strong
a constraint it is. The higher the weight, the greater the difference in log probability
between a world that satisfies the formula and one that does not, other things being
equal. That allows to model the probabilistic nature of the formulas.

An MLN can be seen as a template to generate a Markov network (a type of undi-
rected graphical model), given a finite set of constants, and this can be used to answer
queries about the conditional and unconditional probabilities of specified ground for-
mulas. An MLN contains a node for each possible ground atom, and has undirected
edges connecting nodes that appear together in at least one grounding of a formula in
the MLN. While MLNs are built from FOL formulas, inference is performed using the
generated Markov network.

We are motivated to use an MLN for the following reasons. It allows explicit mod-
elling of background knowledge and observed knowledge while presuming the full
expressiveness of graphical models. The undirected nature of a Markov network means
that the joint probability of ground atoms are defined without presuming ordered depen-
dencies between them.

For example, Fig. 1 shows that the probability of a citizen cooperating with a group
goal securing the city (coop(P, SC)) is interrelated with the probabilities of holding
certain attitudes towards the group cooperation, common knowledge they have about
the group goal and the attitude of the court towards punishing them (its ethos). This can
be modelled by an undirected graphical model.

Formally, an MLN is given by a set L of pairs (Fi, wi), where Fi is a formula in
first-order logic and wi is a real-valued weight. Given a finite domain of discourse (a
set of constants) the ground Markov network generates a probability distribution over
the set of possible worlds χ as follows,

P (χ = x) =
1
Z

exp

⎛
⎝

|L|∑
i=1

wini(x)

⎞
⎠ (1)

Z =
∑

x′ ∈χ exp(
∑

i wini(x
′
)) is a normalisation constant and ni(x) denotes the

number of groundings of Fi that are true in x.
Given a formula F , abbreviating the presentation of Jain [6], we define:

s(F ) =
∑

x∈χ, x |=F

exp

⎛
⎝

|L|∑
i=1

wini(x)

⎞
⎠ (2)

The outer sum is over possible worlds in which F is true and the exponentiated inner
sum is the unnormalized probability of the possible world x. Using s(F ) we can cal-
culate the probability of any ground formula F1 given any other ground formula F2

as

P (F1|F2) =
s(F1 ∧ F2)

s(F2)
(3)
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5 An MLN Model of Lycurgus’s Argument

In this section we present an MLN model of key aspects of Lycurgus’s prosecution
speech, which is shown in Listing 1. The model shows how a jury can decide whether
to prosecute Leocrates using the following two conditional probability queries Q1 and
Q2. These ask what is the likelihood of a random citizen Polites cooperating with a
collective goal to secure the city when Leocrates is convicted and not convicted, respec-
tively:

Q1 : P (cooperate(Polites,SecureCity) | convicted(Leocrates))
Q2 : P (cooperate(Polites,SecureCity) | ¬ convicted(Leocrates))

There are two levels of collective action in this scenario: the citizens securing the
city as a collective goal, and the jurors collectively agreeing to convict Leocrates. Our
model currently includes only the first level. Lycurgus believes that there are two equi-
librium conditions. Everyone should strive to secure the city as a common objective.
That is the first equilibrium. The second equilibrium is for those who violate the first
one to be punished. The jurors are responsible for maintaining the court’s ethos of con-
victing traitors, thereby maintaining the equilibrium of people cooperating towards a
common goal. It is specifically our concern that each juror can understand the prosecu-
tor’s arguments and realise that “if I convict Leocrates, I’m enhancing the collaboration
among citizens; otherwise I’m undermining it”.1

There is also a set of ground atoms accompanying Listing 1 representing firm
knowledge about the domain. It states that the named citizens (other than Polites) are
historic traitors. Among them, two (Hipparchus and Callistrus) of them were prose-
cuted and convicted while one (Leocrates) is prosecuted and waiting for the jurors’
decision. To evaluate Q1, Leocrates is declared convicted, for Q2 he is not convicted.
The details of traitors in these ground atoms can be found on monuments placed in
public places where the list of traitors are carved and hence these ground atoms are
common knowledge.

Listing 1 shows the structure of an MLN that represents the scenario, implemented
using ProbCog2 The listing uses nested function symbols, to represent a group goal as a
complex term within a common knowledge modality. However, since ProbCog does not
handle terms with nested function symbols our MLN uses a standard transformation [2]
to eliminate these functional terms. For brevity we do not show the transformed version
here.

Listing 1 starts with domain declarations that allow a set of constants to be associ-
ated with a named domain. Next, every predicate in the MLN is declared. A predicate
declaration consists of the predicate name followed by a comma-separated list of the
domain names of its arguments in brackets.

1 We do not attempt to model any reasoning about whether a citizen prosecuted for treachery
really is guilty. Instead we focus on the argument for conviction (assuming guilt) based on the
upholding of social order. In fact, in the real scenario, Leocrateswas not convicted, as evidence
of his guilt was not convincing to the court.

2 https://github.com/opcode81/ProbCog.

https://github.com/opcode81/ProbCog
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1

2 // Domain declarations
3 dom_citizen = {Polites, Leocrates, Hipparchus, Callistrus}
4 dom_institution = {Court}
5 dom_individual_ethos = {Ethos1, Ethos2}
6 dom_institutional_ethos = {Ethos3}
7 group = {Citizens}
8 goal = {SecureCity}
9

10 // Predicate declarations
11 individual_ethos(dom_citizen, dom_individual_ethos!)
12 institutional_ethos(dom_institution, dom_institutional_ethos!)
13 ck(group, goal)
14 group_goal(group, goal)
15 cooperate(dom_citizen, goal)
16 convicted(dom_citizen)
17 traitor(dom_citizen)
18 prosecuted(dom_citizen)
19 historic(dom_citizen)
20

21 // Background knowledge
22 ck(Citizens, group_goal(Citizens, SecureCity)).
23 ck(group, group_goal(group, goal)) => group_goal(group, goal).
24

25 cooperate(x, SecureCity) ˆ !historic(x) =>
26 individual_ethos(x, Ethos1) v individual_ethos(x, Ethos2).
27

28 log(0.12) individual_ethos(Polites , Ethos1) ˆ
29 cooperate(Polites , SecureCity)
30 log(0.48) individual_ethos(Polites , Ethos2) ˆ
31 cooperate(Polites , SecureCity)
32

33 traitor(x) <=> (EXIST g (group_goal(Citizens, g) ˆ
34 !cooperate(x,g) )).
35

36 // Definitions
37 individual_ethos(x, Ethos1) <=>
38 ( !historic(x) ˆ
39 ck(Citizens, group_goal(Citizen, SecureCity))
40 =>
41 cooperate(x, SecureCity)).
42

43 individual_ethos(x, Ethos2) <=>
44 ( !historic(x) ˆ
45 ck(Citizens, group_goal(Citizen, SecureCity)) ˆ
46 institutional_ethos(Court, Ethos3)
47 =>
48 cooperate(x, SecureCity)).
49

50 institutional_ethos(Court, Ethos3) <=>
51 !(EXIST x (traitor(x) ˆ prosecuted(x) ˆ !convicted(x))).

Listing 1.MLN encoding of Lycurgus’s arguments

We consider there to be a prototypical citizen named Polites. The Greek word Polites
refers to a general citizen in Athens [25]. Our aim is to infer the probability of an arbi-
trary current citizen (Polites) cooperating with the shared goal to secure the city, without
the known behaviour of a few past defectors having an undue influence on this infer-
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ence. Given that Polites is a single constant representing a large number of citizens
of Athens3, the past traitors (including Leocrates, who is being prosecuted in absentia
some time after leaving the city), are modelled as “historic” and the MLN clauses defin-
ing the current citizens’ ethoses regarding cooperation with the goal explicitly exclude
consideration of historic citizens.

Polites is observing the trial and he believes there is common knowledge of the exis-
tence of a group goal of the citizens to secure the safety of the city (e.g. by strengthening
its defences). This is shown in line 22 of Listing 1. Lycurgus argues that this common
knowledge comes about from a cascade [22] of action in cooperation with this goal
when the city was in danger. Line 23 express a deduction that can be made from com-
mon knowledge. It declares “When there is common knowledge that a group has a goal,
then the group has that goal”.

The reasoning agent (a juror listening to Lycurgus’s argument) needs to understand
how the group goal affects the actions of the citizens. According to Tuomela [24], when
members of a group are acting collectively in “we-mode”, “one adopts the group’s
constitutive goals, values, norms, and standards-briefly its “ethos” ”.4 We assume that
citizens may follow one of two possible ethoses in regards to securing the city (line 11
and lines 25 to 26). The ! in line 22 indicates a functional relationship: the indicated
argument is uniquely defined given the other arguments of the predicate. These anno-
tations in lines 11 and 12 means that an individual or institution can have at most one
ethos.

Polites observes these two competing individual ethoses that citizens have regarding
cooperation with the goal to secure the city. Ethos 1 (lines 37 to 41) is to unconditionally
cooperate with a group goal. Ethos 2 (lines 43 to 48) is more selfishly to cooperate only
if the court holds the ethos of convicting traitors.

Moreover, empirical knowledge about the proportions of cooperating agents in the
city, and the proportions of agents holding Ethos 1 and 2 amongst those agents5 is
encoded using weights on the mutually exclusive joint probabilities in lines 28 to 31.
Polites is capable of estimating the proportion of citizens who cooperate with the group
goal, and who hold each ethos based on the background knowledge of current status
of cooperation of the city. The background knowledge comes from the observation of
public interactions (building walls, public oath), shared cultural information (honoring
heroic warriors, celebrating war victories) and the present shared situation which all are
matter of common knowledge. We assume that Polites has observed 60% cooperation
with the group goal, a 20% incidence of Ethos 1 amongst cooperators, and an 80%
holding of Ethos 2 amongst them. We assume that observations of these proportions is
approximately the same across all citizens, and can be treated as common knowledge.

3 MLN inference does not scale well [23], so explicitly modelling a large number of citizens is
not feasible.

4 According to Toumela [24] there is a mutual belief that, if a group has set of ethoses, all its
members are collectively committed and accepted to that ethoses. Essentially this is common
knowledge.

5 Due to difficulties in expressing conditional probabilities in MLN clauses [6], this knowledge
is expressed in terms of joint probabilities of cooperation and holding a certain ethos.
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Abbreviations 
P: Polites;  Leo: Leocrates;  Hip: Hipparchus; 
Cs: Citizens;  Ct: Court;  E2: Ethos2;  E3: Ethos3; SC: SecureCity; 
ind_e: individual_ethos; inst_e: institutional_ethos; coop: cooperate;  gg: group_goal 
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Fig. 1. Part of the Markov network generated from Listing 1

Ethos 3 is defined as “No traitor who is prosecuted will not be convicted” (lines
48 to 49)6. The weight of Ethos 3 is determined empirically based on historic common
knowledge, which is expressed in the set of ground atoms. From public monuments,
Polites knows about some past traitors (Hipparchus, Callistrus) who were prosecuted,
and the outcomes of the trials. He can infer empirically how strongly the court has the
ethos of convicting or acquitting traitors based on those decisions.

Lines 33, 34 define the term traitor: “A traitor is someone who doesn’t cooperate
with the group goal”. This is also common knowledge which comes from the cultural
background and shared knowledge that everyone knows what a traitor is.

All the clauses in Listing 1 come either from common knowledge, or are assumed
to be common knowledge e.g., the observed proportion of cooperation and prevalence
of Ethos 1 and 2. Some clauses refer to common knowledge explicitly. In other cases,
the rules themselves are common knowledge. This is also common knowledge. As this
MLN was constructed exclusively from common knowledge then the conclusions of
reasoning with it are also common knowledge. If a juror believes that all this knowl-
edge is common, then the conclusions reached by the MLN queries can also be consid-
ered common knowledge amongst the jurors, thus encouraging a consensus decision to
convict or not.

Figure 1 shows an excerpt from the Markov network generated from the MLN and
the chosen set of constants. The left hand side shows a grounding of the clause defining
Ethos 2 (where x = Polites), while the right hand side is a partial depiction of the
single grounding for the clause defining Ethos 3 (for brevity, only citizens Leocrates
and Hipparchus are considered here). The nodes are annotated with F or T where their
truth values are fixed by the set of ground atoms, and ? where the truth value is not
fixed and may vary between possible worlds. The figure illustrates how the probability
of Polites cooperating with the goal to secure the city is influenced by the probabilities
of various other ground atoms.

6 ProbCog provides an “exist” operator but not a “for all” one.
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6 Results and Discussion

Fig. 2. Results obtained from ProbCog to compute queries Q1 and Q2 respectively

We are interested in finding the likelihood of Polites and thus the average citizen
cooperating due to the common knowledge he/she received from the observation of the
city. In particular, what is the probability that Polites will cooperate when Leocrates
is convicted and when he is not? Using conditional probability queries, we can draw
some conclusions as common knowledge, since all the input is associated with common
knowledge. The result of convicting Leocrates, will be to reinforce knowledge of the
court’s ethos of punishing traitors, and thus to increase cooperation due to the greater
probability of Ethos 2 holding. This will motivate a jury member to vote to convict
Leocrates to uphold cooperation with the citizens’ goal to keep the city secure.

Using the ProbCog tool with the exact inference mechanism, we obtained results of
a random citizen’s probability of cooperation (cooperate(Polites, SecureCity)) in both
situations of conviction and non conviction of Leocrates (Fig. 2a and Fig. 2b respec-
tively. When Q1 and Q2 are computed, in the case of the court convicting Leocrates,
Polites will cooperate with probability 1.00 and 0.12 for when he is not convicted. The
truth value for convicted (Leocrates) is defined differently for these two queries.

Given these predictions, a jury member can validate the argument of Lycurgus using
this reasoning and as the conclusion comes from common knowledge he can be confi-
dent his opinion will align with that of other jurors.

7 Conclusion and Future Work

People act collectively for various reasons, and we are interested in knowing what
makes them act as a group. Common knowledge plays an important role in bringing
people together at the social level. We provided a computational model to show how
cooperation will be achieved on the basis of common knowledge by investigating a spe-
cific trial of classical Athens. We used a Markov Logic Network (MLN) as it is capable
of combining logical and probabilistic reasoning. Based on Lycurgus’s argument we
assume that the clauses in our MLN are common knowledge including ethoses, back-
ground knowledge about the term traitor, and proportion of cooperation.
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Our future work will focus on building a simulation of this scenario in which com-
mon knowledge is created and assembled to form the MLN presented in this paper.
This will happen in three scenes: (1) extracting common knowledge of the existence
of the group goal from a public decree, followed by an observed cascade of action in
cooperation with that goal; (2) observations of information about historic convictions
of traitors on public monuments, which, due to a shared cultural and educational back-
ground can be seen as reflexive common indicators in Lewis’s theory; and (3) empirical
observations of the ethoses of the citizens towards the group goal. We will use notions
such as salience and counts-as relationships between concrete and institutional events
to determine which simulated events are candidates for common knowledge. Combin-
ing this simulation with MLN reasoning will allow us to show how Lycurgus’s complex
arguments about common knowledge an joint action can be realised in a computational
agent.
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Abstract. Amajor challenge in AI is designing autonomous systems that capture
the values of stakeholders, and do so in such away that one can assess the extent
to which that system’s behaviour is aligned to those values. In this paper we
discuss our response to this challenge that is both practical and built on clear
principles. Specifically, we propose eleven heuristics to organise the process of
making values operational in the design of particular class of AI systems called
online institutions. These are governed systems of interacting communities of
human and autonomous artificial agents.
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1 Introduction

In the Reith Lectures broadcast by the BBC at the end of 2021 [28], Stuart Russell spoke
about the challenges Artificial Intelligence (AI) research has in ensuring that AI works
for the benefit of human kind. There are several ways to address these challenges. One
way is to “put ethics into AI”; and more precisely, focus on the challenge of the value
alignment problem (VAP): “to build systems whose behaviour is provably aligned with
human values”. The VAP, in fact consists of two linked problems: how to embed human
values into AIS and how to assess if, or to what degree, the behaviour of the AIS is
aligned with those values.

We propose a principled and practical way of approaching the VAP, which we
call conscientious design, that consists of: (i) restricting the problem to one particu-
lar type of Artificial Intelligence Systems (AIS) that we call online institutions (OIs);
(ii) developing a conceptual framework—involving terminological distinctions, formal
constructs and properties— that delimit the interpretation of the VAP;(iii) developing
methodological guidelines and heuristics to guide the embedding of values in an online
institution and assessing the OI’s alignment with those values; (iv) developing test cases
which provide both a source of inspiration for the conceptual framework and to evi-
dence how our approach can be put into practice.

This paper is a contribution to component (ii) above. It contains some heuristics that
serve to guide the process of making values operational for an OI. The heuristics are
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intended to be as generic as possible in order to show what are the main practical issues
involved in embedding values and assessing alignment. It is work in progress (rather
than a completed design methodology) which builds on a decade long research effort
investigating online institutions and a conscientious design approach for building them
successfully (e.g., [34] and see for example references in [1,20,22]). In addition to that
long lasting interest, we draw also from experience from a different application of the
framework: policy sandboxes, where some of the concepts and constructs involved in
the heuristics we present here were first devised [24,25].

Online institutions (OI) are a subclass of artificial intelligent systems. They are
hybrid multiagent systems (that involve human and artificial participants), where all
interactions are regulated (only those actions that comply with the OI’s regulations
can have any effect within that OI), are online (interactions consist of messages—or
percepts—exchanged through the OI) and, finally, situated within a particular socio-
technical-legal context [18]. Online institutions capture several intuitions of classical
institutions: Searl’s notion of separate “crude” and “institutional reality” [30]; North’s
characterisation of institutions as artificial constraints that articulate agent interac-
tions [23]; Simon’s thinking of institutions as an interface between a collective objective
and the individual decision-making of participating agents [31]; and Ostrom’s criteria
for institutional persistence. Those similarities are shown as part of the WIT design
pattern in Fig. 1a.

Our focus on online institutions is based on two observations: first, the specific
features that distinguish them from other AIS provide the grounds for a principled app-
roach to the VAP; second, plenty of deployed AIS which belong to the OI class and
there will be more abundant in the future.

In addition to a precise characterisation of an OI, the main contributions to the con-
ceptual framework of the CD approach are (i) the WIT design pattern, (ii) the (design)
distinction between the isolated and the situated view of an OI; (iii) specifying three
properties of OIs that one should aspire to achieve in their design: cohesiveness (that
the three distinctive WIT aspects actually complement each other), integrity (that the
OI is stable, not corruptible and works as intended) and compatibility (with the legal,
technological and social constraints of the context where it is situated); and (iv) the pro-
posal of three conscientious design value categories: thoroughness, mindfulness and
responsibility. Needless to say, appropriate terminological distinctions and some spe-
cific constructs give substance to the three main contributions [18].

The main contribution of this paper is to show how each of these four concepts
can be translated into methodological guidelines in the form of heuristics for the actual
embedding of values. In order to achieve this, the next section provides an overview
of our contributions to date. In Sect. 3 we describe a running example to illustrate the
applicability of our heuristics. Sect. 4 presents the heuristics themselves and the paper
ends with some closing remarks on what we have achieved and future work.
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2 The Conscientious Design Story so Far

2.1 The WIT Design Pattern

The purpose of the WIT design pattern is to support the process of building online
institutions (OIs). The most recent description [22] is a relatively high-level one
intended for a non-specialist audience,while earlier iterations at previous COIN(E)
Workshops [20] and other published research [18,19,34] are more technical, and chron-
icle the evolution of our ideas.

The first significant difference between earlier work, before [22], and the work in
this paper is the use of the termWIT Design Pattern to refer to the range of concepts and
approaches needed for the ethical design of OIs, where we draw on the principles put
forward by Alexander [2,3] to capture the idea of habitable online spaces that evolve to
meet the changing needs and values of their inhabitants. This in turn draws on value-
sensitive design (VSD) [8–10] which provides the basis for the role of human values in
the design process of computational systems, and on Deming’s underpinnings for Total
Quality Management (TQM) [4] to account for the maintenance and evolution of the
online space.

The second significant difference is our use of the term “online institution” (OI)
instead of the previously used socio-cognitive technical systems or hybrid online sys-
tems. We next describe two distinct categories (or abstractions) of an OI as follows: (i)
the isolated OI in Fig. 1a, which enables the design of an OI to be considered from three
different but related perspectives: W , the OI as seen from the world perspective; I, the
institutional or governance perspective of the OI and T , the OI from its technological
perspective; and (ii) the situated OI in Fig. 1b, where the isolated OI connects with
the corresponding elements of the physical and social world to establish what “counts-
as” [14] in both directions and to anchor the online institutions with its physical world
counterparts.

For any isolated OI it is necessary to be able to demonstrate cohesiveness, which is
to say the three views work as intended, and integrity, which means it is a persistent,
well-behaved online system. In order to be fit for its purpose, the situated OI needs to
be effective in the context of its use. Consequently, the OI has to be compatible with the
technological, legal, social and economic requirements of its working environment.

2.2 Conscientious Design Value Categories (CD-VCs)

As part of the development of the WIT-DP framework we have developed the notion of
Conscientious Design value categories: thoroughness, mindfulness, and responsibility.
Here we summarise these to provide the reader with a sense of these below (the full
definitions can be found in [22]):

– Thoroughness: this refers to conventional technological values that promote the
technical quality of the system. It includes completeness and correctness of the
specification and implementation, reliability and efficiency of the deployed system.
Concepts such as robustness, resilience, accessibility, and security are all aspects of
thoroughness.
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– Mindfulness: is about engendering a wider awareness of the range of direct and
indirect needs of, and impacts on, humans (both users and non-users) which is so
often over-looked. Examples include data ownership, and the OIs accessibility and
usability, and this category has much in common with Schwartz’ “personal focus”
values.

– Responsibility: addresses both the effects of the system on stakeholders and the
context in which it is situated, as well as how indirect stakeholders and that context
may affect internal stakeholders. Examples include liability and prestige, and are
akin to the “social focus” values of Schwartz [29].

In our work on Ethically Aligned Design [22] we have shown how these CD value
categories can be mapped onto different ethical AI value frameworks such as the ini-
tiatives from the EU [11] on Trustworthy AI and the IEEE guidelines for imbuing val-
ues in AIS [32]. As meta-analyses of the multitude of frameworks show [7,17], many
have overlapping definitions and principles. However, the CD value categories have the
advantage of supporting more than one way of looking at the principles included in
these frameworks.

One final remark here concerns the stakeholders. Stakeholders are all those affected
by, or those affecting, the system during both development and deployment. Direct
stakeholders are those stakeholders who are responsible for the design and deployment,
or are direct users of the OI. In practice, in every OI there are always three categories
of direct stakeholders: owner, engineer and user and we will detail each of these in the
next section. Those stakeholders who are affected by the system, but are not part of the
decision-making and do not use the system directly, we call indirect stakeholders — as
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is the usual term in value sensitive design. The values of direct stakeholders need to be
explicitly accounted for in the design and use of the OI.

In order to identify those values of direct stakeholders and make them operational,
direct stakeholders can be separated in three different groups: owner, engineer and user.
This separation reflects the distinctive objectives of direct stakeholders in every OI: the
owner looks to deploy an OI that supports a collective endeavour “as well as possible”,
the users participates in the OI to achieve “as well as possible” their individual goals
with whatever means are provided by the OI, and the engineer builds “as well as pos-
sible” an OI that satisfies “as well as possible” the owner and the user objectives. The
point is that each “as well as possible” is guided by different values. Notice that since,
in every OI, those distinctive objectives of each of the direct stakeholders are similar,
the values that each of them holds are similar to some extent in every OI. See below,
Sect. 4.2, Heuristic 4.

3 The Easyrider Online Institution

To support the understanding of the theoretical and practical concepts involved in the
WIT-DP for ethical AIS, we introduce Easyrider, a rich enough toy example of an OI
for buying and selling train tickets online. Are we mentioned in the last section the
three categories of direct stakeholders are Owner, Engineer and Users and are detailed
as follows.

1. Owner: refers to the individual or organisation that commissions and operates the
OI. In this case the railway company is the Owner, because it commissions and
operates the OI in order to sell tickets online through travel agencies.

2. Engineer: refers to the individual or organisation responsible for ensuring the
requirements of the owner are satisfied in am effectively designed and deployed
OI that supports intended usage.

3. User(s): refers to the users who will use the system and satisfy their goals by inter-
acting with others. In Easyrider there are two categories of users: passengers (who
are human agents) that use Easyrider to buy, and possibly return train tickets, and
travel agencies (who are software agents) that buy tickets from the railway company
to re-sell them to passengers.

In Easyrider, the indirect stakeholders would include the commerce and transit
authorities that regulate the railway services, the banks and payment services that
support purchases, phone companies and, to some extent, the population —and the
environment— of those cities served by trains and affected by the travelling of people
back and forth.

3.1 Goals and Values

TheWIT DP approach to design we propose starts by identifying the ultimate objectives
of stakeholders —the rationales for the creation, engineering, and use the particular OI.
However, because we want to embed values in the OI we also need to make explicit
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the terminal (or intrinsic) values that motivate those objectives and those instrumental
values that determine the means provided by the OI to reach those objectives [27].

Table 2 illustrates those three elements in Easyrider. For brevity, we only include the
ultimate goal of the stakeholder groups, the key terminal values that guide those goals
and the most prominent instrumental values that motivate the stakeholders’ decisions
and means to achieve those goals. Next to each “instrumental value” we indicate the
type of CD category it belongs to (T for thoroughness, M for mindfulness, and R for
responsibility). In the next section we build on these examples to illustrate how CD
values can be embedded in Easyrider.

For example, the railway company who owns Easyrider develops an online ticketing
service in order to sell enough seats to amortize capital it has invested in the train
service, and it wants to achieve that objective guided by three terminal values: (i) a
sense of good management of the company capital and its operation; (ii) the provision
of a service through travel agencies that is profitable for these travel agencies which
in turn leads to attracting both existing and new passengers to use the system; and (iii)
an acknowledged positive impact because more persons travel in train instead of using
less ecological means of transportation and also because a public infrastructure is better
used.

Moreover, the specification of Easyrider should also reflect the railway company’s
criteria for instrumenting those terminal values. So, for instance, good management is
achieved by a thorough implementation of management policies and practices; respon-
sibly by achieving a healthy cash-flow. Alongside, the OI promotes an occupancy of
wagons that provides that cash-flow without being uncomfortable for passengers; while
enabling profitable margins to travel agencies.

We now move onto the issue of how to make values operational within our estab-
lished framework for designing ethical OIs.

4 Making Values Operational

The proof of developing a value-imbued system is in the pudding of making values
operational as well as choosing the values in order to be able to assess if the values
are indeed enhanced or supported by the system. According to [26], there are three
pre-requisites that need to be fulfilled to assess if certain values are embodied in an AI
system: (i) values are addressed in the design of the system, i.e., there is no such thing as
accidental value embedding;(ii) the AI system is seen as a sociotechnical system not an
isolated technological artefact, i.e. it is situated; and (iii) the AI system is not ascribed
any moral agency, differentiating it from human agents.

Since we want to embed values in a working system, we need to translate an intuitive
understanding of values into precise constructs that can be specified as part of a system
and then see whether or not they are supported by the working system. This is what we
call the process of making values operational. Since this is a complex process the first
thing to do is to make things manageable.
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4.1 Three Heuristics for Structuring Value Operationalisation

The point of the heuristics for structuring value operationalisation is threefold: (i) to
decompose the complex problem into subtasks, (ii) to facilitate the separation of design
concerns and (iii) to put design priorities in focus. We propose three design heuristics
for this purpose:

Heuristic 1. Making values operational is an iterative process.

Making values operational is a process of iterative approximation that converges to
whatever is “just enough” for whichever stage the system has reached, from preliminary
evaluation through to decomissioning. It also functions as the means to track the moving
target of the changing needs and value preferences of the participants. As sketched in
Fig. 2, the process starts with the choice of values and ends with a specification of an OI
that is aligned with those values. The first task consists of choosing a list of values that
are relevant for the OI. The task of the second stage is to make those values objectively
measurable, for which we use a two step process: they are interpreted by linking them to
concrete referents (“means” to support the value and “ends” that reflect its achievement)
that may then be represented within the system in readiness for the next stage. The third
stage consists in defining the value assessment models that establish (i) the precise ways
in which one can tell whether a value is being attained and to what degree, and (ii) how
to resolve value conflicts . The outcome of this process is to put the representation of
the values and the assessment into the specification of the OI.

Heuristic 2. Ethical design is a participatory effortwhere all direct stakeholders have
their say at different phases of the OI life-cycle.

The cycle of making values operational is active for the lifetime of the OI. However,
the involvement of stakeholders is different in different phases of that life-cycle. The
design of a value imbued process is started by the owner whose main goals and values
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are passed as design requirements to the engineer. The engineer is then responsible for
interpreting these values of the owner, and to elicit and interpret the values of users.
Based on these requirements, the engineer makes all the relevant values operational and
specifies and deploys the system as proficiently as possible. Although the decision to
deploy rests with the owner and their values take priority, its success rests with the users
and in the implementation. Therefore, in the evaluation and updating of the system, user
values take precedence, then the engineer takes over and the release of a new version is
up to the owner’s values again.

In practice (as mentioned in Sect. 3.1), the process of making values operational is
kick-started by the choice of terminal values (desirable end-states of existence) for the
ultimate goals of each stakeholder and a first take on the instrumental values (related to
modes of behaviour) [27]. In other words:

Heuristic 3. Value assessment drives the iterative process of making values opera-
tional.

The rationale is that it is helpful to sketch which are the values that each stakeholder
wants reflected in the OI and how stakeholder would assess whether the OI promotes or
protects those values before starting the detailed process of imbuing values.

4.2 Heuristics for the Choice of Values

A first heuristic is based on the acknowledgement that the choice of values needs to take
into account three frames of reference. First, the application domain, which determines
goals and makes some instrumental values relevant and others less so. In Easyrider
for example, values related to e-commerce and transportation become relevant, while
those associated with, say, health services do not. Second, the role of stakeholders influ-
ences the choice of values. Stakeholders choose values that are relevant for the domain,
however, regardless of the application domain, engineer values always reflect the goal
of developing an OI that handles a particular collective activity , owner values always
have to reflect the need of engaging users, and user values reflect their motivation and
preference for choosing to engage in the OI. The third frame of reference that influ-
ences the choice of values is to profit form the fact that the WIT design pattern induces
a natural separation of design concerns that remain valid throughout the OI life-cycle.

Regarding the use of the WIT design pattern, we argue that in order to embed the
terminal and instrumental values of each stakeholder in the OI, one needs to address
three main design requirements: (i) to enable collective interaction in a well-defined,
limited part of cyber-physical reality; (ii) to set up the rules of the game so that the
outcomes of those interactions are consistent with the values of the stakeholders; and
(iii) to implement these rules in such a way that the actual online system runs accord-
ing to those rules. The WIT pattern facilitates the analysis of those requirements by
establishing nine design contexts where specific values are involved. These contexts
are the six design concerns associated to the relationships between the W − I − T
components of the isolated OI (Fig. 1a) and the three design concerns arising from the
legal, technological, and social compatibility of the situated OI (Fig. 1b). Two points are
worth mentioning: first, all CD, terminal, and instrumental value labels may be localised
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as more specific labels for each stakeholder in each of the nine contexts; second, not
all the nine contexts are equally important for all stakeholders, hence one can rank the
degree of involvement —in the participatory design process— of the three stakeholders
for each context and each CD value class.

Table 1 illustrates value contextualisation for the OI engineer regardless of the OI
domain. The top part gives an interpretation of the CD-value categories and the bottom
part declares those contexts of the WIT design pattern where the engineer has the final
word on the choice and interpretation of the contextualisation.

Heuristic 4. Contextualisation: Value choice depends on the domain of the OI, the
actual stakeholder and the WIT-DP context where it is meant to be applied.

The second heuristic for choosing values suggests how to proceed in order to iden-
tify relevant values. The idea is quite straightforward: use the goals of the stakeholders
to search for values and keep the CD value categories present to prevent overlooking a
significant value.

Heuristic 5. Value selection: Define the ultimate goals of each direct stakeholder, then
associate with each stakeholder the corresponding terminal and instrumental values and
validate the selection of instrumental values with the CD value-categories.

In practice, each stakeholder is committed to an ultimate goal which ought to be
legitimised by an ultimate or intrinsic value. However, that goal needs to be decomposed
into means and ends that determine how the stakeholder may achieve its goal. In order
to choose the particular means and ends that lead to achieving that ultimate goal the
stakeholder will use its instrumental values1

The CD value categories serve a dual purpose, on one hand they are useful for
labelling instrumental values (something that will be essential for value assessment and
for the eventual termination of the operationalisation process); on the other hand, the
intuitive understanding of the three categories (and the experience of using them in
other OIs) is a practical way of validating that the instrumental values that have been
chosen truly constitute a good coverage of each of the three main categories.

Table 2 is a partial contextualisation of the terminal and instrumental values of the
owner and the users of Easyrider (the engineer’s values are summarised in Table 1). In
Table 2 we list only four instrumental values of the owner and users of Easyrider, and
refine these with more specific values; some of which are underlined because they are
used in Sects. 4.3 and 4.4, and in Table 3 to illustrate the interpretation and representa-
tion of value labels. Notice that each instrumental value is labelled with the CD value
category it more naturally belongs to.2

1 There are two ways of identifying ultimate and instrumental value labels. One is to ask the
users to name them [15,33]; another is to draw from available value taxonomies like [12,
13,29]. Following the second path, we propose the CD value categories mentioned earlier:
thoroughness, mindfulness and responsibility [20,22] that serve as intuitive catch-all labels
that become more meaningful as they are applied to different design concerns as the design of
the OI advances.

2 Although individual passengers and travel agencies may have different value interpretations,
the table stands for a consensus of what values to embed and how that is the result of the
participatory design process.
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Table 1. Engineer’s value contextualisation (independent of OI domain). (1) The generic ultimate
goal of an engineer is aligned with each of the CD-value categories, which are translated into
intuitive descriptions of their most salient means and ends. (2) The engineer holds the ultimate
responsibility for value imbuing in particular WIT pattern design contexts.

(1) Engineer’s terminal and instrumental values

Engineer’s ultimate goal: Design and build an OI proficiently

Thoroughness:

(i) Do the usual stuff to do a good job during the whole life-cycle of the system;

(ii) Adopt best practices and standards in the application domain;

(iii) Make the OI fit for the ultimate goals of direct stakeholders;

(iv) Validate cohesiveness and integrity

Mindfulness:

(i) Engineer all values of owner and users;

(ii) Be transparent about the quality and limits of the OI

Responsibility:

(i) Guarantee cohesiveness and integrity of the isolated OI;

(ii) Guarantee compatibility of the situated OI.

(2) Engineer’s leadership in the WIT design pattern:

(i) Integrity of isolated OI;

(ii) Cohesiveness of isolated OI;

(iii) Technological compatibility of situated OI;

(iv) Priority design sub-contexts: specification (I→T), implementation (T→I) and user interface (W↔T’)

Table 2. Ultimate goals and main instrumental values of the owner and users of the Easyrider OI.
Each goal is associated with four instrumental values that guide its achievement. Those instru-
mental values are in turn partially refined into more specific values – labelled with their cor-
responding CD-categories – that will be imbued in the system. Underlined values are used in
Table 3 and examples.

Railway company Passengers Travel agencies

Fill trains Buy train tickets Profitable trading business

Sound management Convenience Profit
adequate return on investment (M),

balanced cash-flow (M), ...
flexibility (M), abundant offer (M),

ease of use (M)
increase volume (M), increase

margin (M), lower costs (M,R), ...

Proficient OI Restraint Convenience
trustworthiness, (R) effectiveness

(M, R), impartiality (R), transparency
(R), legal compliance (M,R), ...

lower fares (M), ... easy to use (M), compatible with
in-house practices and systems (M),

reliable support (M), ...

Good customer relations Reliability Reliability
reliable support (R), accountability

(R), privacy (R), ...
secure transactions (M),

accountability (M), privacy (M), ...
transparent rules of operation (M),

fair competition (M, R),
secure transactions (M,R), ...

Good citizenship Pleasant travelling Good citizenship
support SDGs (R), corporate

responsibility (R), prestige (M), ...
comfort (M), conviviality (M,T), ... prestige (M), social recognition (R),

...
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One last remark about the choice of values. Since the process of making values
operational is gradual, the refinement of value labels is better served by the analysis of
only the most salient stakeholder values in the first pass. One need only come back to
this step of the operationalisation process when the value assessment process requires an
improvement of the alignment of the OI to the stakeholders’ values (see Heuristics 11).

4.3 Heuristics for Value Imbuing

Imbuing is a prerequisite for specification. Its objectives are to turn the intuitive under-
standing of a relevant value into an objective understanding that may be embedded into
the OI. This task of imbuing values in a system involves two efforts: interpretation
and representation of values. These two sub-processes are applied to each instrumental
value label and while all stakeholders are involved, the stakeholder who chooses a given
value leads the task.

1. Interpretation: Its purposes are to obtain an objective description of the the mech-
anisms and constraints that support (promote) or maintain (protect) each value, and an
objective description of how one can eventually assess whether a value is in fact being
protected or promoted. This can be articulated with two heuristics.

Heuristic 6. Value interpretation (1) is to articulate the meaning of a value as the
means and ends that are most typical of it in a given context.

The leading stakeholder for a given value, with inputs from the other stakeholders,
interprets it by looking at the concrete actions or objects that can afford its achievement
and maintenance (the means) and identifying the states of affairs that show that the
value is actually being promoted or protected (ends).

Once the means and ends are articulated, one needs to identify what the observable
features of the states of affairs are involved in those means and ends in order to use
them for measuring the attainment of a value and stating along those terms the degree
of satisfaction of the different stakeholders. Consequently, this heuristic provides the
essential elements for the definition of the value assessment models that we discuss in
the next section.

Heuristic 7. Value interpretation (2) consists in associating with each value observ-
able features involved in value means and ends, and discovering stakeholder priorities
and thresholds of satisfaction.

2. Representation: From these means and ends, and their observable features, the engi-
neer with input from the other stakeholders decides how to represent the instrumental
values so that they can be implemented as part of the physical and governance model
of the OI (or in the decision model of an artificial agent).

Heuristic 8. Value representation translates value interpretations into components of
the abstract representation of the OI, that will be the basis for its specification.
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Table 3. Imbuing of some instrumental values of Easyrider’s owner and users. Each value is
interpreted in these examples as one typical end that leads to the stakeholders’ ultimate goals in
alignment with the corresponding values, and some means that are conducive to the achievement
of that end. These means and ends would be represented with some instruments that embody the
means, in a way that one may objectively assess whether these values are satisfied or not in the
deployed system.

Passenger Users and owner Owner Owner

Values Flexibility Accountability and
transparency

Support SDGs Adequate return on investment

Ends Allow last-minute purchases, ... proof of action, ... promote the use of train to
support SDG 7, 9, 13, ...

high occupancy of carriages

Means Extend purchasing deadlines;
install ticketing machines at
station;

Reports of relevant
transactions, ...

marketing campaigns, ... attractive fares, ease of
purchasing, marketing, ...

Representation Norms and affordances Procedures for issuing
each report type

Banners and messages, poll Procedure and physical action;
add carriages when needed

Observable Number of tickets sold close to
departure; number of
machine-issued tickets

List of reports of each
type

Passenger and TA awareness of
the good impact of trains

Occupancy level

Thresholds more than 10% of total sales are
late purchases

at least all legally
required reports

increase of awareness and
acknowledged motivation

between 60% and 80% occupied
seats in a carriage

There are essentially three ways of translating value interpretations into value rep-
resentations: as norms and standard procedures, as affordances, and as information for
participants. Table 3 illustrates the interpretation and representation of some instrumen-
tal values included in Table 2).

1. Some values are represented directly as norms that promote, mandate, curtail, or dis-
courage behaviour; or prescribe the consequences of institutional actions. For exam-
ple, passengers’ flexibility may be interpreted as allowing ticket changes, which
may be represented with a norm that allows ticket purchase and devolution up to
five minutes before departure.
Sometimes a single norm is not enough and a value may have to be represented as a
standard procedure. For instance, Easyrider may include protocols for issuing differ-
ent reports. Such reports —say, tax-valid receipts for every final sale or a refusal to
accept a devolution—, are means that support the end of having evidence to achieve
the value of accountability and transparency for stakeholders.

2. A second way of going from interpretation to representation is through the introduc-
tion of new entities in the institutional reality that afford specific actions or outcomes
that promote or protect a value like accountability. For example, passengers’ value
of travel flexibility may also be supported by allowing the possibility of purchasing
and printing tickets in ticket dispensers at the station. In this case the physical model
(ofW) would need to include ticket dispensers and their use would be regulated with
norms that will be part of the “governance model” of Easyrider. In this example, the
affordance of using printed ticketsmay require other devices in the station or aboard
trains to validate tickets. The owner would have to decide whether the use of printed
tickets is worth the extra regulations and the cost of dispensers, or not.

3. The third mode of representing values is as a set of facts, recommendations
or arguments that are made available to users with the purpose of influencing
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their decision-making. For example, the railway company’s instrumental value
support sustainable development goal (SDG) can be promoted through banners or
messages that appear in the use of Easyrider or in marketing campaigns that make
users aware of the beneficial impact of traveling by train (and eventually also
increase the number of trips). The achievement of the value is observable, for exam-
ple, through a customer satisfaction poll and its degree of satisfaction measured
through the aggregate opinion users.

4.4 Heuristics for Value Assessment

We now turn our attention to the task of evaluating to what extent stakeholders val-
ues are reflected and met in the OI. The imbuing step that we proposed above entails
three claims: (i) that —since ends are observable— the alignment of values can be
“assessed” somehow (or measured); (ii) that stakeholders are capable of determining
whether they are satisfied or not with the degree to which the system is aligned with the
values they care about —since for each value interpretation, its satisfaction thresholds
can be elicited from stakeholders; (iii) that the engineer is able to transcribe measuring
and satisfaction into the specification of the OI. We make these claims operational with
the construct of value assessment models. The value assessment model of a stakeholder
s has three parts: a list of values, a way to measure each of those values, and a way to
combine them.

Heuristic 9. Value measurement consists of mapping the observable outcomes that
stand for the value and the thresholds expressed by the stakeholder on an ordered set
that reflects the degree of satisfaction of the user with that value.

We mention two extreme possibilities of value measuring to illustrate this heuristic.
As we saw in the previous section, the interpretation of a value commits to an observ-
able feature that stands for the value and, ideally, to some bounds or thresholds that
determine the degree to which the value is satisfied. one form of measuring values that
allows for a crisp assessment assumes that the observable feature is an “indicator” (or a
scale on a totally ordered set), boundaries determine thresholds that determine not only
if the value in question is being satisfied or not but also to what degree.3 For instance, in
Easyrider, a travel agency recognises secure transactions as a mindfulness and respon-
sibility value, which is being interpreted as “honouring deals”. This instrumental value
is interpreted, in particular, by guaranteeing that travel agencies pay all their dues to
the railway company and to other travel agencies. The means the institution has imple-
mented to maintain that value, are to require of travel agencies to post a bond that covers
potential harm, and levy a fine for any mishap. The observable outcomes are the costs
of the mishaps. The travel agency may use that representation of the value to measure
secure transactions and also the satisfaction of its own value of lower costs by the sum
of fines it pays over the year and prefer to pay no more than a fixed amount in a year.

3 Ideally, the totally ordered set is mapped onto a convex function whose range goes from -1
(totally unsatisfied) to 1 (perfectly satisfied) and the mapping of thresholds define a region of
“satisficing” scores.
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A minimalistic way of measuring value satisfaction, on the other hand, may consists
simply in mapping all the possible observable outcomes onto a finite set of proxy scores
that are each labelled with a degree of satisfaction that reflect the boundaries defined in
the interpretation of the value. For example, in Easyrider, the railway company wants to
fill trains but not too much if it wants to keep passengers satisfied. The owner satisfac-
tion depends not only on the number of unsold seats (few sold seats, not good; totally
full trains, not good either), but also in how the empty seats are distributed in each
carriage (few passengers but all stuck at the back, not good; groups of friends seated
together, good). Satisfaction of passengers’ comfort and conviviality as well as affect-
ing the railway company’s balanced cash-flow could be measured, for example with a
pairwise preference combination of density vs seat configurations and the degree of sat-
isfaction of each pair with a ranking, say, unacceptable, undesirable, satisfactory, very
satisfactory. Even more radical, the value accountability may be interpreted as respon-
sibility by the owner and in this case, if the same bonding mechanism is afforded, its
fulfillment duly regulated and its enforcement strict – all these conditions achievable at
implementation time – its assessment is ex-ante satisfactory.

The third component of the value assessment model is an aggregation function that
combines the stakeholder’s satisfaction with all and every value; and thus assess the
extent to which the OI aligns with the combined set of stakeholder’s values. The aggre-
gation function should take into account the priorities and trade-offs between values and
other features like their urgency, associated costs or expected evolution of the observ-
able features involved with those values.

Heuristic 10. An aggregation function combines the level of satisfaction of several
values into a single outcome that represents the aggregate satisfaction derived by the
stakeholder from the combination of those values.4

A thorough discussion of aggregation functions is beyond the scope of this paper
but one can get an idea with a simple version of the engineer’s aggregation function.
A top-down definition of the engineer’s aggregation function may be to aggregate the
degree of satisfaction of the engineer with each of its three CD values defined in Table 1,
as follows: (i) Assessment of satisfaction of thoroughness and responsibility is essen-
tially technical. The first will be the result of the aggregation of the degrees of satisfac-
tion of the four thoroughness goals and by assessing that mindfulness, responsibility,
integrity, cohesiveness and compatibility are dully validated. (ii) Likewise responsibility
is assessed through the assessment of the (technical) soundness of integrity and com-
patibility of the OI. (iii) However, satisfaction of mindfulness requires that all the val-
ues of users and owner have been properly “engineered” (specified and implemented)
but for that owner and users have to agree on the way their values are interpreted and
represented. Thus engineer’s mindfulness depends on users and owner agreeing that
their own values of throroughness, mindfulness, and responsibility are satisfied with
the observable features and thresholds that they agree upon.

4 Note that to determine the alignment of an OI with a set of values, which is the ultimate purpose
of making values operational, one needs a top level aggregation function that combines the
degrees of satisfaction of all stakeholders.
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This very last aggregation involving the satisfaction of the other stakeholders builds
on the process of participatory design of the OI and on the assessment of each separate
value in terms of the observable feature that stands for it (which is the same for every
stakeholder). The way these detailed assessment are aggregated may be different for
each stakeholder but in this case, the engineer has priority on some CD design contexts
(part b in Table 1) and thus its aggregation function of non-priority context will be that
of the other stakeholders but the engineer’s may be more demanding for the values in
its own priority contexts. The owner, as the stakeholder who is responsible for com-
missioning, deploying, updating and preserving the operation of the OI, has the last
word.

Note that the purpose of the aggregation function is two-fold: first to commit to an
encompassing measure of satisfaction that reflects value priorities and trade-offs for the
stakeholder; second to determine if the alignment of the OI with the set of values is
“good enough” for the stakeholder. Consequently, if the alignment is not good enough,
the aggregation function and the value assessment model in general can be used to pin-
point those values that are not properly embedded in the OI. If a global assessment
model is not satisfactory, a compromise can usually be reached by revising the aggre-
gation function, simplifying value measurement, and relaxing satisfaction thresholds.

Heuristic 11. Improvement of value alignment. When a value alignment is not satis-
factory, revise the steps of the operationalisation process backwards until stakeholders
are satisfied.

The idea behind this heuristic is the following: from a bottom up perspective, each
stakeholder chooses its own values, how to interpret them, and the observable features
that are used to determine whether the value is being satisfied (and to what degree)
(Heuristic 7). One underlying assumption of OIs is that there are observable features
which are common to all stakeholders. However, not all stakeholders will hold the same
values in general, and therefore not all observable features will be equally relevant for
different stakeholders. This means that each stakeholder will combine and prioritize
the observable features in different ways. This difference, is unproblematic unless a
conflict of the interpretation and assessment of values among stakeholders arises. When
this occurs, the conflict can be resolved by incorporating additional observable features
(and the new required means to achieve them) that are relevant for the stakeholder who
is unsatisfied with a specific interpretation of a value into means, ends and observable
features.

From a top-down perspective, we can assume all stakeholders aggregate values in
our three CD categories: thoroughness, mindfulness and responsibility. The aggregation
function of each stakeholder is unlikely to be the same in general, and agreement, or
some other form of reconciliation should take place, in order to the the OI to be aligned
with each of its stakeholders values. This is unproblematic as long as the stakehold-
ers agree on some trade-offs which may be reached if some stakeholders change the
weighting of some values in the aggregation function, or choose to relax their levels of
satisfaction with respect to certain values.

The final trade-off agreement may be reached by moving back and forth from the
aggregation at different levels of value decomposition within each category.
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5 Closing Remarks

In this paper we propose heuristics to make stakeholder values operational in online
institutions. These heuristics belong to a larger task to provide general methodological
guidelines for a principled approach to embedding values in AI systems. It seems clear
to us that any such approach requires that values are made explicit, that their interpre-
tation can be translated into a machine executable representation, and that their satis-
faction can be objectively assessed. We claim that while these conditions are necessary,
we do not impose any further requirements to value theory.

In the heuristics we propose, we remain neutral about the choice of formalisms
used for representation and for the assessment of values. (Though we are considering
using Z with its ability to capture both agent architectures, multi-agent systems and
design methodologies [5,6,16].) However, we believe that for certain types of online
institutions (and AIS in general) there are reasons to adopt specific interpretations of
each value in terms of a means and ends decomposition that give grounds to more
specific representation and assessment conventions, whilst recognising they might not
necessarily be unique.

Whilst focus of this paper has been on heuristics for making values operational
in governed multi-agent systems, we believe that heuristics could be similarly applied
to the embedding and assessment of values in the design of individual autonomous
agents. Nevertheless, there are specific aspects of the design process that would need
to address the role of values in designing artificial agents’ architectures and behaviour.
For instance, for an artificial agent that is intended to behave in an ethically-consistent
manner, the engineer may commit to some cognitive architecture that includes values
as an explicit and necessary construct in their inference-based decision-making models,
or make explicit use of value theories that explain ethical behaviour without assuming
rational ethical reasoners [24].

We mention elsewhere [21] that one could apply the conscientious design approach
to developing tools to prevent undesirable effects of existing third party software. The
heuristics we propose in this paper can be used to determine whether the behaviours of a
given system is aligned with any explicitly stated values. This leads us to the possibility
of adding, to such existing systems, new functionality that ensure they behave with
proper alignment with respect to any stated values. This is something we plan to address
in future work. In addition, our intentions include developing our approach to support
policy makers, evolving stronger good practices, and making use-cases readily available
to facilitate uptake.

The process of making values operational that we discuss in this paper is at the
core of the Value Alignment Problem, which concerns the embedding of values in arti-
ficial autonomous systems and assessing their alignment. However, our proposal can
be placed in a wider perspective of developing a theory of value with a distinctive AI
flavour. The value theory we foresee would be centered on the interplay of governance,
autonomy, and collective hybrid behaviour and because artificial autonomous entities
are involved, there are meta-ethical, normative ethics, and applied ethical problems that
other theories of values do not address. In fact, unlike other theories of value, such
an “artificial axiology” purports to embed ethical constructs into artefacts and assess
ethical questions associated with them. The approach we envision shares with AI and
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other sciences of the artificial a peculiar mix of science and engineering; it would draw
on constructs and methods from AI and other sciences of the artificial, and require a
serious interdisciplinary effort.

Acknowledgements. D’Inverno thanks IIIA-CSIC Barcelona for hosting him during a research
sabbatical and his host institution Goldsmiths, University of London for making that possible.
Noriega’s work is supported in part by the CIMBVAL project (Spanish government project
#TIN2017-89758-R).

References

1. Aldewereld, H., Padget, J., Vasconcelos, W., Vázquez-Salceda, J., Sergeant, P., Staikopoulos,
A.: Adaptable, organization-aware, service-oriented computing. IEEE Intell. Syst. 25(4), 26–
35 (2010). http://doi.ieeecomputersociety.org/10.1109/MIS.2010.93

2. Alexander, C.: A Pattern Language: Towns, Buildings, Construction. OUP, New York (1977)
3. Alexander, C.: The Timeless Way of Building, vol. 1. OUP, New York (1979)
4. Deming, W.E.: Quality, productivity, and competitive position. MIT Press (1982). https://

en.wikipedia.org/wiki/Total_quality_management, https://en.wikipedia.org/wiki/Kaizen,
https://en.wikipedia.org/wiki/Eight_dimensions_of_quality

5. d’Inverno, M., Luck, M.: Development and application of a formal agent framework. In:
First IEEE International Conference on Formal Engineering Methods, pp. 222–231 (1997).
https://doi.org/10.1109/ICFEM.1997.630429

6. d’Inverno, M., Luck, M., Noriega, P., Rodriguez-Aguilar, J.A., Sierra, C.: Communicating
open systems. Artif. Intell. 186, 38–94 (2012). https://doi.org/10.1016/j.artint.2012.03.004

7. Fjeld, J., Achten, N., Hilligoss, H., Nagy, A., Srikumar, M.: Principled artificial intelligence:
Mapping consensus in ethical and rights-based approaches to principles for AI. Technical
Report 2020–1, Berkman Klein Center Research Publication (2020)

8. Friedman, B.: Value-sensitive design. Interactions 3(6), 16–23 (1996)
9. Friedman, B.: The ethics of system design. In: Computers, Ethics and Society, pp. 55–63

(2003)
10. Friedman, B., Hendry, D.G., Borning, A.: A survey of value sensitive design methods. Found.

Trends Hum.-Comput. Interact. 11(2), 63–125 (2017)
11. High-Level Expert Group on Artificial Intelligence (AI HLEG): Ethics Guidelines

for Trustworthy AI (2019). https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-
trustworthy-ai

12. Hofstede, G., Hofstede, G.J., Minkov, M.: Cultures and Organizations - Software of the
Mind: Intercultural Cooperation and its Importance for Survival. McGraw-Hill, New York
(2010)

13. Inglehart, R.: Human beliefs and values: A cross-cultural sourcebook based on the 1999–
2002 values surveys. Siglo XXI (2004)

14. Jones, A.J.I., Sergot, M.: A formal characterisation of institutionalised power. Logic J. IGPL
4(3), 427–443 (1996)

15. Liscio, E., van der Meer, M., Siebert, L.C., Jonker, C.M., Mouter, N., Murukannaiah, P.K.:
Axies: identifying and evaluating context-specific values. In: Proceedings of the 20th interna-
tional conference on autonomous agents andMultiAgent systems, pp. 799–808. International
Foundation for Autonomous Agents and Multiagent Systems (2021)

16. Luck, M., D’Inverno, M.: Structuring a Z specification to provide a formal framework for
autonomous agent systems. In: Bowen, J.P., Hinchey, M.G. (eds.) ZUM 1995. LNCS, vol.
967, pp. 46–62. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60271-2_112

http://doi.ieeecomputersociety.org/10.1109/MIS.2010.93
https://en.wikipedia.org/wiki/Total_quality_management
https://en.wikipedia.org/wiki/Total_quality_management
https://en.wikipedia.org/wiki/Kaizen
https://en.wikipedia.org/wiki/Eight_dimensions_of_quality
https://doi.org/10.1109/ICFEM.1997.630429
https://doi.org/10.1016/j.artint.2012.03.004
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://doi.org/10.1007/3-540-60271-2_112


230 P. Noriega et al.

17. Morley, J., Floridi, L., Kinsey, L., Elhalal, A.: From what to how: an initial review of pub-
licly available ai ethics tools, methods and research to translate principles into practices.
Science and Engineering Ethics 26(4), 2141–2168 (2019). https://doi.org/10.1007/s11948-
019-00165-5

18. Noriega, P., Padget, J., Verhagen, H.: Anchoring online institutions. In: Casanovas, P.,
Moreso, J.J. (eds.) Anchoring Institutions. Democracy and Regulations in a Global and Semi-
automated World. Springer, Heidelberg (2022). in press

19. Noriega, P., Padget, J., Verhagen, H., d’Inverno, M.: Towards a framework for socio-
cognitive technical systems. In: Ghose, A., Oren, N., Telang, P., Thangarajah, J. (eds.) COIN
2014. LNCS (LNAI), vol. 9372, pp. 164–181. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25420-3_11

20. Noriega, P., Sabater-Mir, J., Verhagen, H., Padget, J., d’Inverno, M.: Identifying affordances
for modelling second-order emergent phenomena with the WIT framework. In: Autonomous
Agents and Multiagent Systems - AAMAS 2017 Workshops, Visionary Papers, São Paulo,
Brazil, 8–12 May 2017, Revised Selected Papers, pp. 208–227 (2017)

21. Noriega, P., Verhagen, H., d’Inverno, M., Padget, J.: A manifesto for conscientious design of
hybrid online social systems. In: Cranefield, S., Mahmoud, S., Padget, J., Rocha, A.P. (eds.)
COIN -2016. LNCS (LNAI), vol. 10315, pp. 60–78. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66595-5_4

22. Noriega, P., Verhagen, H., Padget, J., d’Inverno, M.: Ethical online AI systems through con-
scientious design. IEEE Internet Comput. 25(6), 58–64 (2021)

23. North, D.: Institutions. Institutional Change and Economic Performance, CUP (1991)
24. Perello-Moragues, A., Noriega, P.: Using agent-based simulation to understand the role

of values in policy-making. In: Verhagen, H., Borit, M., Bravo, G., Wijermans, N. (eds.)
Advances in Social Simulation. SPC, pp. 355–369. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-34127-5_35

25. Perello-Moragues, A., Noriega, P., Popartan, L.A., Poch, M.: On three ethical aspects
involved in using agent-based social simulation for policy-making. In: Ahrweiler, P., Neu-
mann, M. (eds.) ESSA 2019. SPC, pp. 415–427. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-61503-1_40

26. van de Poel, I.: Embedding values in artificial intelligence (AI) systems. Minds Mach. 30(3),
385–409 (2020)

27. Rokeach, M.: The Nature of Human Values. Free press (1973)
28. Russell, S.: Living with artificial intelligence (2021). https://www.bbc.co.uk/programmes/

b00729d9/episodes/downloads
29. Schwartz, S.H.: An overview of the Schwartz theory of basic values. Online Read. Psychol.

Cult. 2(1), 11 (2012)
30. Searle, J.R.: The Construction of Social Reality. The Penguin Press, Allen Lane (1995)
31. Simon, H.A.: Models of Man: Social and Rational. Wiley, Hoboken (1957)
32. The IEEE Global Initiative on Ethics of Autonomous and Intelligent System: Ethically

aligned design: A vision for prioritizing human well-being with autonomous and intel-
ligent systems, first edition (2019). https://standards.ieee.org/content/dam/ieee-standards/
standards/web/documents/other/ead1e.pdf

33. Umbrello, S., Van de Poel, I.: Mapping value sensitive design onto AI for social good prin-
ciples. AI Ethics 1(3), 283–296 (2021)

34. Verhagen, H., Noriega, P., d’Inverno, M.: Towards a design framework for controlled hybrid
social games. In: Social Coordination: Principles, Artefacts and Theories, SOCIAL.PATH
2013 - AISB Convention 2013, pp. 83–87 (2013)

https://doi.org/10.1007/s11948-019-00165-5
https://doi.org/10.1007/s11948-019-00165-5
https://doi.org/10.1007/978-3-319-25420-3_11
https://doi.org/10.1007/978-3-319-25420-3_11
https://doi.org/10.1007/978-3-319-66595-5_4
https://doi.org/10.1007/978-3-319-66595-5_4
https://doi.org/10.1007/978-3-030-34127-5_35
https://doi.org/10.1007/978-3-030-34127-5_35
https://doi.org/10.1007/978-3-030-61503-1_40
https://doi.org/10.1007/978-3-030-61503-1_40
https://www.bbc.co.uk/programmes/b00729d9/episodes/downloads
https://www.bbc.co.uk/programmes/b00729d9/episodes/downloads
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/ead1e.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/ead1e.pdf


Author Index

Abuhaimed, Sami 167
Ajmeri, Nirav 185
Alechina, Natasha 38
Antoniades, Andreas 54

Bartelt, Christian 73
Brandão, Anarosa A. F. 121

Cheang, Rafael M. 121
Cranefield, Stephen 201
Cunha, Rafhael R. 134

d’Inverno, Mark 213
Dalpiaz, Fabiano 38
Dastani, Mehdi 38
de Brito, Maiquel 134
Dell’Anna, Davide 38
Dignum, Frank 92
Dubied, Mathieu 148

Erdogan, Emre 92
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