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Chapter 3
Impact of Climate Change 
on Nutraceutical Properties of Vegetables

Meenakshi Kumari, Shashank Shekhar Solankey, D. P. Singh, and Rajiv

Abstract Due to the fact that vegetables are the only cheapest source of nutrients, 
vitamins, and minerals, hence they are a crucial part of the human diet. They pro-
vide good remunerative to the growers as they fetch more money from market. The 
effects of climate change, such as global warming, modifications to seasonal and 
monsoon patterns, and biotic and abiotic variables, are also having an impact on 
these crops, just like they do on other crops. Crop failures, low yields, declining 
quality, and an increase in pest and disease issues are frequent under climate change- 
related conditions, which make unprofitable to cultivate vegetables. Because of 
many physiological and enzymatic processes depend on temperature, they will be 
significantly impacted. The two most significant effects of temperature rise on veg-
etable cultivation are drought and salt. Crop yields may improve as a result of 
increased CO2 fertilisation; however, this positive effect decreases after certain 
point. Greenhouse gases produced by human activity, such as CO2, CH4, and CFCs, 
are a major factor in global warming, while sulphate and nitrogen dioxides weaken 
the ozone layer and allow dangerous UV rays to enter the atmosphere. These cli-
mate change effects also have severe impact on the prevalence of pests and diseases, 
as well as on the nutritional value (vitamins, minerals, proteins, etc.) and aesthetics 
of vegetable crops. Iron and zinc levels, as well as the amount of protein in vegeta-
ble crops, were dramatically lowered by higher CO2 levels. In the end, the quality 
and volume of global vegetable output are falling due to climate change.
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3.1  Introduction

The main cause of abiotic stress in today’s vegetable cultivation is climate change. 
The cropping systems of vegetable should be climate change resistant, so that the 
vegetable production technology can achieve both economically successful and 
environmentally sustainable. The productivity of vegetable crop is severely threat-
ened by environmental stresses including flooding, drought, and excessive tempera-
tures which finally results in complete crop failures (Singh et al. 2020). The head of 
the Foundation for Innovation in Medicine (FIM) and executive Director Dr. 
Stephen L. De Felice, invented the term “nutraceutical” in 1979 as a combination of 
the phrases “nutrition” and “pharmaceutical” (Crawford, New Jersey) (Kalra 2003). 
It is a food item or food-related product that provides both medicinal and health 
advantages, such as illness prevention and therapy. They are products that have been 
separated or purified from foods, usually offered in therapeutic forms unrelated to 
food, and have been shown to provide physiological benefits or offer protection 
from chronic illness (Singh and Devi 2015). Due to an unbalanced diet, approxi-
mately worldwide 3 billion people suffer from malnutrition. A balanced diet must 
include vegetables because they are an excellent source of nutraceutical substances 
and phytonutrients. Climate change has a significant negative impact on the produc-
tion, quality, and productivity of vegetable  crops (Kumari et  al. 2021). Under 
adverse environmental stress, such as heat, cold, drought, flood, and salinity, many 
plant species’ genes are activated, enabling them to withstand a variety of stress 
conditions (Solankey et al. 2021a). Vegetables are recognised as protective foods 
since they are a great supply of vitamins, minerals, carbs, and proteins. They also 
offer health protection because of the presence of secondary metabolites with 
medicinal value. The most prominent phytonutriceuticals in vegetables with bio-
logical activity against chronic diseases include vitamins, minerals, dietary fibre, 
organosulfur compounds (glucosinolates and thiosulfides), and flavonoids. Among 
all crops, potatoes are particularly sensitive to climate change since they need a 
certain environment for a number of physiological processes (Singh and Devi 2015). 
Fighting against hunger and malnutrition are now two main priorities of developing 
nations. In India, around 43.5% children under the age of 5-year-old are chronically 
undernourished. Vegetable consumption is usually thought to have a number of ben-
eficial impacts on health. Risk of cancer and other cardiovascular disease are directly 
linked with low consumption of fruit and vegetables Martinez-Gonzalez et  al. 
(2011); Krebs and Kantor (2001); Lock et  al. (2005); and Mosby et  al. (2011). 
Vegetables with a wide variety and high nutritional value are crucial for reducing 
malnutrition. As mentioned in below Table 3.1, each vegetable includes a distinct 
combination of phytonutrients.

Vegetables with high amount of anthocyanin (broccoli, black/ purple carrot, pur-
ple brinjal and purple cauliflower) are becoming more or more popular day-by-day 
due to their increased activity of antioxidant (Table 3.2). The colour features of rad-
ish and potato extracts are quite comparable to those of Allura red (Shipp and 
Abdel 2010).
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Table 3.1 Biochemical compound that have nutritional importance found in vegetables

Nutraceuticals Vegetables

Glucosinolates, Sulforaphane Cole crops
Lycopene Solanum lycopersicum & various Nightshade family 

crops, Citrullus lanatus

Silymarin Cynara cardunculus var. scolymus

Ascorbic acid Brassica oleracea var. capitata, Brassica oleracea var. 
italica, green leafy vegetables

Tocopherol Green leafy vegetables
Allyl sulphides Alliaceae family crops
Retinol Daucus carota, Cucurbita moschata, Cucumis melo var. 

cantalupensis

Ascorbic acid Momordica charantia, Capsicum annuum var. grossum

Folates Green leafy vegetables
Alliin, Methiin Allium species

Quercetin Allium cepa & Allium sativum

Kaempferol, Myricetin, Fisetin Allium cepa, Lactuca sativa, endive, Armoracia 
rusticana

Luteolin Apium graveolens, Brassica oleracea var. italica

Apigenin Apium graveolens, Brassica oleracea var. capitata and 
Lactuca sativa

Isoflavonoids Legume vegetables, Brassica oleracea var. italica and 
Abelmoschus esculentus

Genistein and Daidzein Glycine max

Glucoraphanin Brassica oleracea var. capitata f. rubra and Brassica 
oleracea var. italica

Glucobrassicin, Progoitrin, 
Gluconasturtiin

Brassica oleracea var. italica

Glucoerucin, glucoraphanin Brassica rapa and Brassica napus var. napobrassica

Lysine, Chlorgenic acid Solanum tuberosum

Caffeic acid, Chlorgenic acid Solanum melongena

Nasunin Solanum melongena

Angelicin, Xanthotoxin Pastinaca sativa

Ferulic acid, Betanin Beta vulgaris

Anthocyanin and Chlorgenic acid Ipomoea batatas

Rutin Asparagus officinalis, Capsicum annuum (green color)
Patuletin, Spinacetin Spinacea oleracea

2″-xyloside vitexin and 6″-malonyl- 
2″-xyloside vitexin

Swiss Chard

Betanin Beta vulgaris

Capsaicin Capsicum annuum (red color)
Carnitine Asparagus officinalis

Curcumin Curcuma longa

Hesperitin Green leafy vegetables
Lignan Glycine max and Brassica oleracea var. italica

Resveratol Allium cepa (red)

Adapted from Singh and Devi (2015)
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Table 3.2 Anthocyanin concentration in different vegetables

Vegetable Anthocyanin (mg/100 g) References

Brassica oleracea var. capitata f. rubra 322 Wu et al. (2006)
Raphanus sativus (red) 100–154 Wu et al. (2006)
Allium cepa (red) 23.3–48.5 Ferreres et al. (1996)
Solanum melongena 8–85 Koponen et al. (2007)

Adapted from Singh and Devi (2015)

3.2  Improvement of Nutrition in Vegetables

As we go into the twenty-first century, improving the nutritional quality of horticul-
ture products, particularly the nutraceutical importance of green veggies will make 
plant breeder’s efforts profitable. It is becoming increasingly clear that eating 
healthful meals may help maintain a healthy lifestyle and that eating is not only for 
body growth and subsistence in industrialised nations when the majority of the pop-
ulation has access to enough food. People are starting to eat more nutritious foods 
that can help with “diseases of excess” and chronic diseases linked to diet, such 
some forms of obesity, heart disease, and some types of cancer. Along with other 
agricultural professionals and extension agents, plant breeder’s services, are primar-
ily responsible for the world’s population’s access to an abundance of food, better 
health and nutrition, and stunning landscapes. Breeding plants to increase their min-
eral and vitamin content has a number of beneficial advantages. The majority of 
breeding and genetic work has been focused on crops like Daucus carota, Ipomoea 
batatas, Capsicum annuum, Solanum lycopersicon, Cucurbita moschata, and 
Cucumis sp. that are already reasonably rich suppliers of vitamins (Singh and Devi 
2015). In Tomato, dominant gene (Aft) Anthocyanin fruit responsible for purple 
colour, which generates restricted pigmentation upon stimulation by high light 
intensity was introduced into tomato by crossing domestic tomato plants with 
S. chilense (Mes et al. 2008; Jones et al. 2003). A robust and varied pigmentation 
may also be induced in the tomato peel from Solanum lycopersicoides Dunal by the 
gene Aubergine (Abg). Red cabbage’s anthocyanin production and accumulation 
are mediated by the transcriptional activation of the anthocyanin structural genes by 
the bHLH and MYB transcription factors (Yuan et al. 2009).

An intriguing genetic mutation known as spontaneous reported in Cauliflower 
(Brassica oleracea var. botrytis) which is responsible for semi dominant Orange 
(Or) mutant that causes carotenoid deposition in typically unpigmented tissues 
(Dickson et al. 1998). The Or gene causes the plant‘s tissues to accumulate large 
quantities of β-carotene, which is responsible for orange colour. This is especially 
noticeable in the plants with white edible curd and shoot apical meristem. Mano 
et al. (2007) reported the finding of a new R2R3-type MYB gene, IbMYB1, and its 
predominant expression in the root of tuberous vegetable of purple-fleshed cultivars 
using a purple-fleshed sweet potato cDNA library. Purple colour of Ipomoea bata-
tas tuberous roots in the flesh is caused by the gene IbMYB1. A ripening-inducible 
E8 promoter and a yeast S-adenosylmethionine decarboxylase gene (ySAMdc; 
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Spe2) in tomato fruit were coupled to raise the polyamines spermidine and sperm-
ine levels. By increasing the conversion of putrescine into higher polyamines, the 
ySAMdc gene promoted spermidine and spermine, which are ripening-specific 
compound. According to these results, the overall quality of fruit juice was improved 
due to increase in lycopene and shelf life of vine. Since cultivated tomatoes contain 
generally low amounts of lycopene and raising lycopene levels will improve the 
fruit’s nutritional value. Romer et al. (2000) boost the carotenoid content and profile 
of tomato fruit, trans-genic lines have been created that express the bacterial carot-
enoid gene (crtI), which makes the enzyme phytoene desaturase, which converts 
phytoene into lycopene. However, the amount of β -carotene more than tripled, 
reaching 45% of the total carotenoid content. Chromosome fragments of Brassica 
villosa, a wild progenitor has been introgressed to increase the amount of glucosino-
lates. Depending on the B. villosa allele, indole-3-carbinol or sulphoraphane is pro-
duced during hydrolysis. Brassica  rapa is a root  vegetable that is most often 
consumed in Asia. As compared to B. oleracea, B. rapa contain different types of 
isothiocynates and a new research shows that it also gives protective benefits to 
people who lack GSTM1 (Gasper et al. 2005). Table 3.3 list of gene which is respon-
sible for enhancing various nutraceutical components in various vegetables.

3.3  Quality of Vegetables/Fruits and Elevated CO2

Additionally, it has been noted that in various vegetables, increased CO2 raises the 
concentrations of some bioactive substances. The impact of elevated CO2 on physi-
ology of vegetables/fruits have been summarised by Moretti et al. 2010. In their 
research, it was found that several vegetables/fruits had reduced alkaloids and 
organic acids while increased ascorbic acid, flavonoids, sugars, phenols, starch 
anthocyanin and also firmness and colour (Shivashankara et al. 2013). According to 
Zhang et al. (2014), tomato fruits with increased CO2 had significantly higher con-
centrations of compounds like Vitamin A, lycopene, Vitamin C, which are essential 
for development of our health and also had high amount of chemicals like titrable 
acidity, total soluble solids and sugar/acid ratio which is known as flavor-enhancing 
chemicals. The tomato fruit firmness, colour, fragrance, and sensory qualities were 
also markedly improved by CO2 enrichment. Yield contributing characters like 
fruits per plant and average weight of fruits were main contributing characters for 
yield n tomato under heat stress (Solankey et al. 2017).

3.4  Vitamin C, Sugars and Acidity

Protective antioxidant substances like ascorbate and phenolics are created by plants 
by extra carbon which is fixed during enrichment of CO2. In Tomato fruits, when 
enhanced CO2 was provided at various degrees of maturity, some quality metrics 
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Table 3.3 Vegetable gene list responsible for nutraceutical enhancement

Vegetable crop Gene Nutrient enhancement

Solanum tuberosum Or β-carotene
Brassica oleracea var. botrytis Or β-carotene
Solanum tuberosum AmA1 Protein
Solanum tuberosum Crt B β-carotene
Solanum lycopersicum B β-carotene
Ipomoea batatas asp-1 High protein
Solanum lycopersicum Phytoene synthase − 1(Psy-1) Carotenoids
Solanum lycopersicum chi-a High flavonols
Solanum lycopersicum LC and C1 Kaempferol
Solanum lycopersicum Aft, Abg Anthocyanin
Cucumis sativus Ore β-carotene
Brassica oleracea var. capitata f. rubra MYB Anthocyanin
Brassica oleracea var. botrytis (purple) Pr Anthocyanin
Ipomoea batatas IbMYB1 Anthocyanin
Solanum lycopersicum Cry-2 Lutein
Solanum lycopersicum ySAMdc; Spe2 Lycopene
Solanum tuberosum Dxs Phytoene
Solanum lycopersicum GCH1 Folate
Lactuca sativa Gch1 Folate
Lactuca sativa Pfe Iron
Lactuca sativa Gul oxidase Ascorbate
Solanum lycopersicum hmgr-1 Tocopherols

Adapted from Singh and Devi (2015)

like organic acids were lower whereas, ascorbic acid and sugars were maximum 
(Islam et al. 1996). The increased CO2 improved fruit colour and development. In 
tomato at the pink stage, acidity and ascorbic acid levels are maximum whereas, 
slightly going down during ripening stage. In bean sprouts, ascorbic acid levels 
were also found to increase by two folds even with a CO2 concentration that was 
doubled for 1 h each day for 7 days (Tajiri 1985). High CO2 increased total sugars 
and acidity in grapes, although the impact was only noticeable during middle stage 
of ripening (Kurooka et al. 1990 and Bindi et al. 2001).

3.5  Total Phenols, Anthocyanins and Flavonoids

Under high CO2 concentrations, tomato antioxidant levels increased at very slow 
rate (Barbale 1970; Madsen 1971, 1975; Kimball and Mitchell 1981).
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3.6  Volatile Aroma Compounds

In field-grown strawberries (Fragaria ananassa Duch), Wang and Bunce (2004) 
examined how elevated CO2 affected the volatile aroma composition and fruit qual-
ity. Under high CO2 levels, ethyl hexanoate, ethyl butanoate, methyl hexanoate, 
methyl butanoate, hexyl acetate, hexyl hexanoate, furaneol, linalool, and methyl 
octanoate content of these key strawberry scent esters increased significantly 
(Shivashankara et al. 2013).

3.7  Mineral Nutrients

It has been suggested that increased CO2 has an impact on nutrients supply of veg-
etable and fruits. Lettuce produced in high CO2 environments reported lower ash 
content (McKeehen et al. 1996). In a number of types of woody and herbaceous 
plants, significant reductions in minerals including Iron, nitogen, sulphur, 
Magnesium, Calcium, Zinc (15–25%) were observed when CO2 levels were high 
(Loladze 2002). Chronic exposure to high CO2 levels may also have an impact on 
product quality (Gruda 2005), with total soluble solids, Vitamin C and capacity of 
antioxidant being enriched, while other macronutrients and micronutrients in green 
vegetables, such magnesium, iron, and zinc, may be depleted (Dong et al. 2018).

3.8  Effect of High Temperature on Quality

Heat waves may significantly affect plant growth, production, and product quality 
in horticulture. Open field crops are extensively exposed to sunlight and high tem-
peratures during heat waves. Physiological problems associated with calcium (Ca) 
uptake are frequently brought on by a lack of protection against stress. Plants tran-
spire a lot of water when it’s hot outdoors, which causes all the calcium in the tran-
spiration stream to flow directly to the leaves (Bisbis et al. 2019). Since Ca doesn’t 
reach the developing tip and the enclosing leaves in lettuce, this commonly results 
in tip burn, which results in necrosis on the margins of new leaves (Collier and 
Tibbitts 1982). Low transpiration results in insufficient Ca being allocated to the 
fruits, which results in blossom end rot in fruiting plants like tomato or pepper. 
Under the influence of global warming, winter dormancy may be hindered, which 
may have an impact on the output of perennial vegetables. For instance, during the 
cold season, asparagus becomes dormant and accumulates frigid temperatures of 
0–7 °C (Nie et al. 2016). Since cauliflower starts curd formation only at a tempera-
ture of 7–10 °C, therefore, higher temperatures might delay the process. When the 
temperature was increased by 2.9  °C above ambient the head development took 
place 49 days later in cauliflower (Wurr et al. 1996). Heat stress alters the physical 
characteristics of biomolecules directly (Solankey et al. 2021b).

3 Impact of Climate Change on Nutraceutical Properties of Vegetables
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In an experiment with broccoli, Kaluzewicz et al. (2009) found that the higher 
the temperature was maintained for longer periods of time throughout the initial 
phase of growth that occurs after sowing as well as the period just before harvest, 
the greater the yield. If broccoli heads were exposed over 20 °C temperature for a 
longer period then the resulting yields were lower. The proportion of broccoli heads 
with an uneven surface decrease with the amount of time spent at temperatures 
between 5 and 15 °C during harvest and between 20 and 25 °C during the growth 
period before harvest. At the time of harvest, if broccoli heads exposed over 20 °C 
temperatures for a longer time results in development of loose heads.

3.9  Vitamin C, Sugars and Acidity

The healthy growth and development of plants, as well as the determination of the 
phonological phases, depend greatly on temperature. Among various fruit crops 
Vitis venifera are the most significant which are impacted by high temperatures for 
prolonged periods of time. In Tomato, due to high temperature biochemical com-
pounds like sugar, acidity and dry weight are reduced (Bikash Khanal 2012).

3.10  Phenols, Flavonoids and Anthocyanins

Increases in temperature hinder the colour development. The anthocyanin concen-
tration is more sensitive to night temperatures than to day temperatures (Mori et al. 
2005). The polyphenol content of several tomato varieties ranged from 104 to 
400 mg kg−1, according to George et al. (2004). This behaviour may be viewed as 
the plant‘s acclimatisation to heat stress (Rivero et al. 2001). Fruits lose some of 
their antioxidant capacity at lower temperatures (Wang and Zheng 2001). Even at 
25 °C temperatures, heat in broccoli can result in diseases and deformities such as 
uneven heads and oversized flower buds (Kaluzewicz et al. 2009). Heat triggered 
bracting in sensitive cultivars during this stage of head development (Wiebe 1972), 
and harvest temperatures exceeding 25 °C caused loose heads and early ripening 
(Kaluzewicz et al. 2009). High temperatures also resulted in uneven and less sweet 
heads, but they also raised the flavonol content and changed the composition of the 
glucosinolates in the florets (Molmann et al. 2015).

3.11  Lycopene and Carotenoids Content

High temperatures typically result in smaller size of tomato fruit and higher dry 
matter content. Lycopene content is also impacted by the high day/night tempera-
ture treatments (30°/25 °C) in tomato (Lycopersicon esculentum Mill., cv. “Laura”) 
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compared to the control temperature (28°/23 °C) (Fleisher et al. 2006). The amount 
of lycopene and other nutritional value components in tomatoes are further dimin-
ished by high sun radiation and temperature (Dumas et al. 2003; Helyes et al. 2003; 
Rosales et al. 2006). It has been shown that beyond 40 °C, ß-carotene content and 
synthesis decreases (Gautier et al. 2005). The quality of the fruit is greatly influ-
enced by the high temperature caused by direct solar exposure rather than plant 
temperature due to lycopene degradation. Instead of plant temperature, direct solar 
radiation-induced high temperature on the fruit surface has a significant impact on 
the fruit’s quality because lycopene is degradable (Dumas et al. 2003). As a result, 
tomato fruits produced in greenhouses have 40% more lycopene than tomatoes 
grown in fields as a result (Helyes et al. 2007).

3.12  Terpenoids

High temperatures change the volatile fragrance molecules in many vegetables in 
addition to the bioactive components. The effect of high temperature on the soybean 
isoflavone quality was observed to fluctuate with increased CO2 and water stress 
(Caldwell et al. 2005).

3.13  Stress from Water’s Impact

The disruptions in Ca allocation brought on by heat are not the sole factor contribut-
ing to lettuce tip burn; Ca absorption is also a factor. Poor Ca absorption may also 
result from insufficient soil water uptake (Bisbis et  al. 2019). Additionally, too 
much water may result in buttoning, nitrate leaching, and a consequent decrease in 
output because the soil is depleted of nutrients (Kaiser et al. 2011). The flowering 
stalk’s elongation from the core causes bolting, which happens in lettuce right 
before bloom induction (Kumar et al. 2012; Chatterjee and Solankey 2015). Bolting 
in lettuce causes bitterer leaves and worse head development, which are undesirable 
in all except stem lettuce. High temperatures might also cause premature bolting 
(Simko and Hayes 2015).

3.14  Sugars, Ascorbic Acid and Acidity

Stress of water makes fruits less juicy, which raises their sugar content (Chartzoulakis 
et al. 1999). The consequences, however, depends mostly on the phenological stage 
of water stress and may render fruits utterly non-commercial (Romero et al. 2006). 
By applying the treatment at later phases of fruit maturity, deficit irrigation therapy 
is utilised in some fruit crops to boost the sugar content. Under deficit irrigation 
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circumstances, tomato showed higher total soluble solids and sugars (Mitchell et al. 
1991; Birhanu and Tilahun 2010). However, water stress causes a drop in tomato 
marketable yield.

3.15  Phenols, Flavonoids and Anthocyanins

Strawberries accumulated more proanthocyanidins and anthocyanins due to inade-
quate watering. The increased activity of phenylalanine ammonia-lyase under water 
scarcity condition is primarily responsible for the increase in anthocyanins and phe-
nolic compounds (Tovar et al. 2002). Mineral movement like nitrogen, potassium 
and phosphorus within the tree is going to be affected by the water stress. However, 
lack of water has a negative impact on the quality during fruit set and the early 
stages of fruit growth. The water stress affects the impact of transport of minerals 
like nitrogen, potassium, and phosphorus inside the tree (Kirnak et al. 2001). If this 
happens during the active period of fruit growth will have an impact on the quality 
of the fruit.

3.16  Lycopene and Carotenoids

The primary pigments in many fruits and vegetables are due to carotenoids, which 
is isoprenoids that are naturally occurring and have antioxidant characteristics.

3.17  Salinity Stress

One of the key environmental conditions that inhibits plant development, yield, and 
output is salt stress. It has been discovered that salt stress during fruit development 
stage limits the vegetative growth and fruit quality (Shivashankara et al. 2013).

3.18  Phenols, Flavonoids and Anthocyanins

Reactive oxygen species (ROS) and their scavengers, enzymes, or nonenzymatic 
low molecular mass antioxidants are known to arise in response to salt stress.
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3.19  Lycopene and Carotenoids

Antioxidants like lycopene, carotenoids and ascorbic acid accumulated in tomato 
fruits during salt stress. Reactive oxygen species (ROS) and their scavengers, 
enzymes, or nonenzymatic low molecular mass antioxidants are known to arise in 
response to salt stress (D’Amico et al. 2003). However, under salt stress, the leaves 
of Solanum lycopersicum plant exhibit a reduced expression of carotenoid biosyn-
thesis genes, which significantly slows down photosynthesis and lowers plant pro-
ductivity and yield (Merlene et al. 2011). Abiotic stressors have a significant impact 
on the antioxidant capacity of fruits.

3.20  Conclusion

Regular eating of a diet high in vegetables has undeniably beneficial benefits on health 
since the phytonutrients in vegetables can shield the body against many chronic ill-
nesses. Cruciferous vegetables, bulb crops, tomatoes, cucurbits, soybeans, carrots, 
okra, and underutilised vegetables including lettuce, coleus, sweet potatoes, yams, 
moringa, winged beans, basella, horse purslane, and cluster beans are rich sources of 
bioactive chemicals. Abiotic stress effects on antioxidant quality are further amplified 
by climate change. Adaptation tactics, including as the cultivation of robust crop vari-
eties, effective irrigation systems, unique pollination techniques, and agricultural 
technologies, will be needed to adjust to changing environmental circumstances and 
preserve the supply of foods that are crucial for human sustenance. As a result, efforts 
must be made to comprehend the impact of various abiotic stresses on various fruit 
crops as well as the critical stages of fruit growth at which the overall quality of the 
vegetables are adversely affected. Additionally, strategies must be developed to coun-
teract the negative effects of abiotic stresses.
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