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Preface

This volume contains selected scientific papers of the 17th edition of the Interna-
tional Meeting on Computational Intelligence Methods for Bioinformatics and Bio-
statistics (CIBB 2021), which was the first online edition since its foundation. This
scientific conference gathered scientists, researchers, scholars, and students working on
computational intelligence, bioinformatics, biostatistics, and medical informatics from
all over the world. More than in the previous editions, the virtual format of this CIBB
2021 allowed the participation of attendees from all habited continents of the planet,
creating a unique transdisciplinary and international forum to discuss new challenges
and trends in computational biology, biostatistics, and health informatics.

The conference program included only oral presentations, amongwhich cutting-edge
plenary keynote lectures were given by five preeminent keynote scientific speakers:
Karsten Borgwardt (ETH Zürich, Switzerland) who talked about machine learning
applied to data of patients in the intensive care unit, Ombretta Melaiu (Ospedale
Pediatrico BambinoGesù, Italy) who talked about application of computational statistics
and machine learning to bioinformatics data of patients with neuroblastoma, André M.
Carrington (Ottawa Hospital and Region Imaging Associates, Canada) who presented a
new partial ROC AUC measure, Jacques Balayla (McGill University, Canada) who
introduced the prevalence threshold metric, and Dmytro Fishman (Tartu Ülikool,
Estonia) who presented the DOME recommendations for validation of machine learning
results.

Moreover, our conference included two invited talks regarding themes functional
to scientific research: Stefano Tonzani (lead editor at iScience, Cell Press, USA)
presented some current editorial trends and challenges of modern scientific journals,
while Olaf Wolkenhauer (Universität Rostock, Germany) gave a talk about successful
grant writing. We organized the conference program with a main conference track,
including short papers dealing with heterogeneous open problems at the forefront of
current research, and four special sessions on specific themes: Artificial Intelligence and
Statistical Methods for Neurodegenerative Diseases (in collaboration with the Horizon
2020 BRAINTEASER project), Modeling and Simulation Methods for Computational
Biology and Systems Medicine, Towards Standardizing Machine Learning in Life
Sciences: the FAIR Principles and the DOME Recommendations (in collaboration with
the ELIXIR Europe Machine Learning Focus Group), and Machine Learning in Health-
care Informatics and Medical Biology. More information about the program is available
on the conference website at http://www.isa.cnr.it/cibb2021/ or https://davidechicco.git
hub.io/cibb2021/index.html.

The organization of the CIBB 2021 conference was supported by the IEEE Italy
Section, the Italian chapter of the IEEE Computational Intelligence Society, and the
Italian chapter of the IEEE Systems, Man, and Cybernetics Society.

The conference was held online on the WeConf.eu platform, during November
15–17, 2021, thanks to the synergistic effort of the general chairs, the advisory board,

http://www.isa.cnr.it/cibb2021/
https://davidechicco.github.io/cibb2021/index.html


vi Preface

the Program Committee, and the technical chairs. The conference was attended by
approximately 150 unique participants per session on average.

Following the principles for open science, we invited the authors of all short papers
to release their manuscripts as preprints on preprint web servers (bioRxiv, medRxiv, and
arXiv), to publish their software code on software code repositories (GitHub, GitLab,
SourceForge, or others), and to openly release their datasets online on public data repos-
itories (FigShare, Zenodo, Kaggle, University of California Irvine Machine Learning
Repository, or others), to make their computational analyses reproducible and their data
reusable.

For authorship, we invited the CIBB authors to follow the authorship guidelines of
the International Committee of Medical Journal Editors (ICMJE), as recommended by
the University of Toronto Faculty of Medicine.

A total of 68 short papers were submitted for consideration to CIBB 2021 and, after
a round of reviews handled by the members of the Program Committee, 51 short papers
were accepted for an oral presentation. After the conference, the authors of all accepted
short papers were invited to submit an extended version of their manuscript to a supple-
ment of two scientific journals (BMC Bioinformatics or BMC Medical Informatics and
Decision Making) or to this Springer LNBI volume. This volume received 26 submitted
chapters, and each chapter received three independent reviews; eventually 19 chapters
were accepted for publication.

The editors warmly thank the conference participants, the authors, the keynote
speakers, the Program Committee members, the advisory board delegate Roberto Tagli-
aferri, the reviewers, the CIBB 2019 general chair Paolo Cazzaniga, the special sessions’
organizers, and anyone involved for their contributions to the success of CIBB 2021.
The editors would like to send a special thank you to the general chairs and organizers
of all the previous CIBB conference editions, from CIBB 2004 to CIBB 2019: their hard
work, devotion, and patience built the foundations for CIBB 2021 and for all the future
conference editions (“If I have seen further it is by standing on the shoulders of giants”,
Isaac Newton).

September 2022 Davide Chicco
Angelo Facchiano
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Chemical Neural Networks and Synthetic
Cell Biotechnology: Preludes

to Chemical AI

Pasquale Stano(B)

Department of Biological and Environmental Sciences and Technologies (DiSTeBA),
University of Salento, 73100 Lecce, Italy

pasquale.stano@unisalento.it

Abstract. Synthetic Biology and Artificial Intelligence are two relevant
fields in modern science. Together with Robotics, they have either practi-
cal scopes, or can be used for modeling organisms’ features and behaviors.
The recent Synthetic Biology advancements in the so-called “synthetic
cells” area allow the construction of cell-like systems with non trivial
complexity, paving the way to a novel direction: the realization of chem-
ical artificial intelligence. One possible path foresees the “installation”
of chemical versions of artificial intelligence devices in synthetic cells. In
this article we present this new scenario, focusing on chemical mecha-
nisms and systems that are topologically organized as neural networks,
highlighting their possible role in synthetic cell biotechnology. Future
directions, challenges and requirements, as well as epistemological inter-
pretations are also briefly discussed.

Keywords: Synthetic Biology · Synthetic cells · Chemical
computation · Neural networks · Embodiment

1 Can “Synthetic Cell” Biotechnology Become a Useful
Platform for Chemical AI?

The “Sciences of the Artificial” [1–3] aim at constructing artifacts capable of
behaving like biological systems, in order to gain new scientific knowledge by
the synthetic method. The latter is based on the construction of models (arti-
facts) that reproduce biological organization and behavior. Fields as Artificial
Intelligence (AI), Robotics, and Synthetic Biology (SB) represent three differ-
ent approaches, respectively, in the software, hardware, and wetware domains.
Prompted by recent advancements in SB, here we intend to highlight the pos-
sible (but probably not so near) developments in this new wetware domain of
tools and strategies, which have been traditionally explored in AI.

Biologically inspired methods have literally revolutionized AI. Approaches
such as neural networks (NNs), genetic algorithms, and membrane computing
– just to mention a few names – are typical examples of bio-inspired comput-
ing. No doubts that these approaches have contributed to the impressive success
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Chicco et al. (Eds.): CIBB 2021, LNBI 13483, pp. 1–12, 2022.
https://doi.org/10.1007/978-3-031-20837-9_1
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of present-day computational methods in AI. On the other hand, the current
advancements in SB have generated a completely new biotechnology based on
the so-called “synthetic cells” (SCs, also known as “artificial cells”, and some-
times “protocells”). Thanks to the efforts of an ever increasing number of prac-
titioners [4,5], the experimental horizon on SCs paves the way to unprecedented
approaches, possibly leading to SCs capable of AI-like bio/chemical computa-
tion. In other words, a new generation of SCs could be endowed with capabilities
which can be defined “intelligent” to a similar extent we do with AI artifacts.1

These forms of bio/chemical computation can be of two types. It is known
that the operations carried out by metabolic, genetic, sensorial, and intercel-
lular communication networks in biological cells can be interpreted as a form
of analogical computing. Therefore, SCs – just because they are endowed with
reconstructed biochemical networks – are computing machines by definition. This
first approach is based on a plain imitation of biological counterparts. The second
approach derives, instead, from a sort of reversal process, whereby current AI
tools and strategies (which in turn can be bioinspired or not) are implemented
in SCs, by properly designing ad hoc artificial chemical computation devices.
This second way would lead to wetware systems with AI-inspired functions or
modules that could display unique features when compared to the silicon coun-
terparts. However, the potential developments here described are probably far
from an imminent experimental reach. Nevertheless we believe that the current
discussion can prompt further attention and drive the field into exciting direc-
tions.

The emerging reciprocal influence between SB and AI constitutes an inter-
esting case for inquiring novel aspects of computation, and perhaps it can help
exploring in original way the generative mechanisms of life and cognition. While
Artificial Life (ALIFE) practitioners have traditionally studied these problems
by means of hardware and software approaches, the wetware arena is still at
its infancy. We therefore believe that the theoretical, computational, biological,
chemical, epistemological aspects of this scenario (in our opinion rather immi-
nent) are completely open to discussion, categorization, and criticism. Moreover
they are particularly open to brilliant and creative proposals. More specifically,
we envision several positive contributions stemming from the development of
chemical AI devices grafted into SCs. The ultimate goal will be embarking on
the path towards rudimentary forms of intelligent/cognitive SCs [6–8].

2 Scientific Background - What Exactly are SCs?

Pioneer efforts carried out in the 1990s have made it clear that it is possible
to build cell-like systems from scratch, i.e., via guided-assembly and/or self-
assembly processes applied to bio-organic or artificial molecules [9–12]. SCs
1 Because current SCs still lie at a far lower complexity level when compared with

living organisms (even the simplest ones), by “intelligent” SCs we mean systems
that most resemble machines rather than organisms. It seems appropriate, for the
moment, referring to SC “intelligence” in this narrow sense. See also Sect. 2.1.
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consist in self-bounded systems constituted by a determined set of interacting
molecules encapsulated in a compartment with a semi-permeable membrane [13],
as shown schematically in Fig. 1a. Liposome technology, in particular, plays an
important role because typical SCs are made of liposomes filled with bio-organic
molecules such as enzymes and nucleic acids. Moreover, the SC membrane can
host membrane proteins, especially when it is made of phospholipids. Finally,
SC sizes typically range from ca. 0.1 to 10 µm.

Fig. 1. Synthetic cell technology. (a) SCs can be constructed from separated molecules
by techniques based on self- or guided-assembly. In particular, a common design starts
from a selected set of biomolecules, such as enzymes, tRNAs, ribosomes, DNA genes
(very often: plasmids), and other small molecule, which become co-encapsulated in a
lipid vesicle. Many techniques, originated in liposome technology, are available. (b)
A non-exhaustive list of reconstituted functions by means of SCs. It is important to
mention that several studies report the success of reconstituting an individual function,
while the integration of more function is still challenging. Nevertheless it is possible to
imagine that SCs with complex behavior will be achieved in the near future.

SCs are built to mimic fundamental cellular functions, such as simplified
forms of metabolism, DNA duplication, DNA transcription, protein synthesis,
chemical signaling, and so on. The list of separately achieved functions is con-
siderable, but commenting on them lies outside the scope of this article. It is
sufficient to say that non-trivial systems can be constructed and that there is
a consensus about the future expansion of this technology. However, while SCs
share some similar – yet very simplified – features with biological cells, it is fair
to say that current SCs are far from being alive, despite the above-mentioned
advancements. For example, many SC functions have been constructed sepa-
rately, and major efforts should be now devoted to their integration [14]. SCs
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are currently unable to sustain the whole-cell reaction network capable of pro-
ducing all own components (membrane included): they cannot undertake the
autopoietic (self-producing) dynamics [15], even if some aspects of homeostasis,
growth, reproduction have been achieved, separately and in a very simplified
form [16]. Moreover, most of current SCs are not energetically autonomous; in
the large majority of studies, SCs operate like a “spring-toy”. Their functioning
depends on a pre-given high-energy molecular reservoir. Only very recently it
has been shown that SCs can generate ATP via photo-phosphorylation [17,18].

It is also useful to clarify that SCs are developed both for basic and applied
research. In origins-of-life studies, SCs are intended as models of primitive cells,
and therefore they are built with plausible primitive chemicals, aiming at under-
standing and clarifying some aspects of the emergence of life from inanimate
matter. In biotechnology, SCs represent simplified versions of biological cells
(made of bio-organic molecules and/or synthetic molecules, for example, poly-
mers) and the goals span from the better understanding of biological processes
in a simplified setting, to the exploration of novel bio-engineered versions of pro-
cesses like sensing, protein synthesis, enzyme catalysis. They are also considered
tools for nano-medicine (advanced and “smart” drug delivery systems [19,20]).
Finally, as mentioned in Sect. 1, SCs are privileged tools for gaining knowledge
about life and cognition within the Sciences of the Artificial (the wetware ALIFE
approaches), following the motto of the synthetic methodology: ‘What I cannot
build, I cannot understand’.

Because the current constructive capacities are progressing very quickly it is
possible to imagine, albeit with the necessary caution, interesting around-the-
corner scenarios focused on AI-related implementations, which we can properly
recognize as chemical AI approaches. Before moving to Sect. 3, however, it is
necessary a clarification related to the description of what SCs, intended as orga-
nized dynamical systems, are. Such a specification is needed because it mirrors
our attitudes towards the way we understand operations in SCs, in particular
with respect to the subject of information – a pivotal concept in AI.

2.1 Computer Gestalt [21] vs. Autopoiesis & Autonomy

One of the theories that most influences the research on SC is autopoiesis: a sys-
temic theory, introduced by H. Maturana and F. Varela in the 1970s, which
provides an operational definition of any living systems, describing them as
“autopoietic machines”, and equating life to cognition [15]. As mentioned, cur-
rent SCs are not autopoietic, thus not alive. Very rarely it has been reported
about SCs displaying forms of minimal autonomy, circular organization, and self-
regulative processes. Understanding the still-missing features of SCs is indeed
crucial for a correct epistemological framing of what current SCs actually are,
and how typical AI themes such as the concept of information, its manipula-
tion and communication, can be dealt with. The interpretation of SC operations
within the information/communication domains in the machine or “computer
Gestalt” perspective [21] (Fig. 2a) is indeed very common in the literature of
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living systems and SCs as well. In the cases of SCs and in the possible implemen-
tations of chemical AI devices, we believe it is still acceptable, as it clashes only
at a minor extent with more encompassing (but still not owned) aspects of liv-
ing and cognitive systems, i.e., organizational closure, autonomy & autopoiesis,
which endow dynamical systems with a mind-like character [21] (Fig. 2b). The
situation, however, is not so simple. The embodied feature of chemical AI systems
could allow, at least in principle, to a realization of organizationally closed net-
works (or parts of them) whereby (i) the generation of the network components,
and (ii) the relations of reciprocal production between the network components,
become de facto self-entailing.

Fig. 2. Epistemic interpretations and chemical neural networks in SC research. (a)
SCs seen from the perspective of “computer Gestalt”, whereby information plays an
instructive role. (b) SCs seen from the perspective of autonomy & autopoiesis, whereby
SCs and the environment undergo structural coupling, and SC organization adapts –
thanks to its plasticity – to environment. Information becomes co-constructive of the SC
organization. (c) Chemical neural networks made of SCs interconnected to each other.
Arrows indicate the exchange of chemicals, intended as input/output signals. (d) Chem-
ical neural networks inside SCs. The shown example refers to two-components bacterial
systems, made of membrane sensors (first layer) and response regulators (second layer).
The latter play the role of regulators for gene activation, via TX-TL processes. Nor-
mal arrows indicate the transmission of information, in form of causal relations of
transformation (i.e., phosphorylation). Dashed arrow indicate relations of production.

3 Bio-Chemical Neural Network

Artificial Neural Networks (NNs) are probably the most popular and successful
approach in bioinspired AI. The history of NNs is well known [22]. In the 1940s
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McCulloch and Pitts proposed that neurons could be modeled as simple logical
circuits; in the 1950s Rosenblatt refined that model by creating a NN called
perceptron, endowing neuronal inputs with a weight, and each artificial neuron
with an activation threshold. However, it became clear that to replicate the
highly interconnected structure of brain neurons, NNs need to be better designed
as multiple layers (multi-layer perceptron), in a way that the outputs of first
layer neurons feed the second layer neurons, and so on. Later on, research on
NNs was somehow hindered and delayed due to the criticisms raised by Minsky
in 1969. However, in the 1980s it raised again, also thanks to the introduction
of back-propagation algorithms that facilitated the NN “training”, and to other
improvements. When, in the following decades, powerful computers were made
available, more complex NNs (with an increasing number of neurons and layers)
could be realized, and research in the field literally underwent to an exponential
growth. It has led to the well known “deep learning” methods.

This is the successful story of artificial NNs, which operate in the logical
domain of software instances and function in the electronic domain of a com-
puter hardware. What about “Chemical Neural Networks” (CNNs)? Is it possible
to devise wetware AI systems operating in the bio-chemical domain? Here we
will recapitulate some selected examples, taken from the literature (for a more
detailed summary, see [28]).

3.1 Selected Examples of Potentially Interesting CNNs for SCs

The concept of a chemical “diode” was firstly suggested by Okamoto et al. in
1987 [23], and further developed by Ross and collaborators [24]. The Authors
performed numerical simulations (not experiments) of CNNs based on mass-
action kinetics. In particular, these CNNs are made of hypothetical chemical
reactions operationally (but not materially) “segregated” as a chemical neurons,
which are able to modify the reactions of other chemical neurons.

Each i -th chemical neuron consists in a chemical network being in a steady
state. The latter is achieved when some chemicals – marked with the asterisk in
the scheme below – have constant concentrations (due to buffering or flowing).
It results that the steady state concentrations of two key species in the network
(Ai and Bi) strictly depend on the concentration of the catalyst Ci.

Reactions of the i -th chemical neuron:

The i -th chemical neuron can affect the dynamics of the j -th chemical neuron
because Ai and Bi are allowed to activate or inhibit Cj . However, the j -th
chemical neuron can be also affected by another (k -th) chemical neuron in similar
way (Cj being activated or inhibited by Ak and Bk too, independently and
additively with respect to the i -th neuron).
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Ross and collaborators further explored the model to derive conditions for
the construction of the logic gates AND, OR, j AND NOT k, NOR, as well as a
chemical mechanism for synchronization in temporally discretized networks.

DNA strand displacement has been proposed as a convenient, predictable,
and “universal” approach to molecular computing (universal because it can emu-
late the dynamics of any abstract chemical reaction network). DNA strand dis-
placement experiments have been carried out. Single stranded DNA species can
bind/unbind to DNA templates. Input strands are those that bind to the tem-
plate, displacing the bound strands that function as output. Input and output
strands can be connected to each other by means of a judicious choice of the tem-
plates and of the strands sequences, so that a DNA strand displacement network
would emerges. Recent computational results have shown that these networks
can become adaptive thanks to the so-called buffering strategy [25].

Theoretical work has demonstrated that synthetic gene networks are capable
of associative learning [26], according to which simultaneous triggering of inputs
strengthens the connection between those inputs, and – in this way – the system
learns that they are associated. This has been realized in silico, by modelling a
three-gene system regulated by three transcription factors and two repressors.
Two input molecules can binds with the repressors, leading to loss of repression.
The circuit “learns” to associate the two inputs together.

Interestingly, the same Authors have shown that the associative learning
circuit can also be implemented via phosphorylation networks (see below); the
basic requirement being the presence of proteins that can be single- or double-
phosphorylated, such as MAPK protein kinases [26].

Kim et al. (2004) [27] proposed a biochemical model system that is a simpli-
fied analog of genetic regulatory circuits, based on the concept of the transcrip-
tional switch. The model employs DNA templates, RNA polymerase to produce
mRNA, and RNase to destroy mRNA. The network consists in a set of DNA tem-
plates and mRNA sequences interconnected via mRNA ‘signals’, which operate
on the templates by switching them on/off. The study was based on simulations,
and led to the conclusion that – with a few assumption – the biochemical net-
work was mathematically equivalent to recurrent (Hopfield) neural networks. In
this model, transcriptionally controlled DNA switches are treated as synapses,
and the concentrations of mRNA species as the states of neurons.

An attempt to overcome the limitations of some models like those listed above
(networks which are ‘static’ in their behavior, incapable of learning), Blount and
collaborators devised a feedforward chemical neural network – based on chemical
reaction networks – consisting of a network of cell-like compartments (in a nested
topology), each containing a “chemical neuron” as a module. Some molecular
species can permeate through the compartments boundaries, triggering the feed-
forward and back-propagation mechanisms [28]. The model is reminiscent of P
systems, but reaction rates are modeled by realistic functions (mass action or
Michaelis-Menten). The learning goal was focused on the binary XOR function,
which was successfully implemented.
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Finally, it is worthy of note the study by Hellingwerf and collaborators (1995)
[29], who focused on phosphorylation pathways in E. coli, suggesting that phos-
phorylation networks actually resemble NNs in their connectivity. In particu-
lar, two-component regulatory systems were analyzed, highlighting the fact that
although phosphoryl transfer pathways typically (but not always) take place in
parallel, cross-talk is possible – in convergent and divergent manner – and it rep-
resents a useful mechanism for a NN design. The Authors maintain that these
networks “may well lead to signal amplification, associative responses and mem-
ory effects, characteristics which are typical for neural networks”. In our opinion,
this sort of “phosphoneural networks” are approachable within SC technology.

In conclusion, we have reviewed, though not exhaustively, some possible
CNNs for SC research. No claims have been made about the best design, although
the “phosphoneural networks” seems quite resonant with current SC technol-
ogy. Future numerical modeling and wet-lab experiments will be helpful in this
respect.

4 Concepts and Experimental Perspectives on Chemical
Neural Networks and Synthetic Cells

This paper is an opportunity to envision next-generation SCs as those structures
endowed with a sort of minimal chemically embodied AI module(s), based on
the implantation of CNNs (or “chemical perceptrons”) in their dynamical orga-
nization. As a proof of concept, initial interest could be directed toward CNNs of
minimal complexity. Consequently, the scenario we propose owes its interest and
relevance mainly to the novelty of SC technology, and not to the performances of
CNNs when compared to the ones working in the software domain. CNNs can be
intended and designed as between-SCs (Fig. 2c) or within-SCs (Fig. 2d). While
the first consists in high-order architectures whereby SCs themselves constitute
the NN nodes (thus resembling the actual neuronal architecture) – exchanging
chemicals as input/output signals, the latter refers to CNN made of reaction
networks occurring inside SCs.

Here we will focus on CNNs inside SCs (Fig. 2d). Why are they important
to progress SC technology? Let us present a tripartite discussion, focused on
machine learning, meaning, embodiment.

4.1 Machine Learning

Artificial NNs are generally associated to the concept of machine learning. The
goal of NN operations is pre-fixed by the designer (for example, recognizing a dog
in a picture) and the ‘learning’ operation actually means the stepwise reduction
of output errors, given a set of input data, by optimizing the neuron-neuron inter-
action strength and the activation threshold of each individual neuron. CNNs
will be very different than NNs in machine learning. In particular, they will not
be easily “trainable”. Given a certain connectivity, the parameters of the CNNs
(weights, thresholds) cannot be easily tuned. Ultimately these features depend
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upon intermolecular forces, molecular recognition, electrostatic and sterical fits.
In turn, these physical factors are exquisite functions of 3D molecular structures
and of the potential presence of effectors in the background (ions, solvent polar-
ity, pH etc.). For example, when considered as a NN analogous, two-component
regulatory systems in bacteria [29] have been submitted to a ‘machine learn-
ing phase’ (if we can call it in this way) during evolution, the resultant sys-
tem being optimized to match certain environments and certain needed cellular
responses, according to an adaptive dynamics. Is it possible to engineer two-
component regulatory systems by at least rewiring the CNN connectivity? For
example, the system could be rewired by directing the “output” of a first layer
element (a kinase) toward a different response regulator in the second layer,
rather than toward its own one (the cognate one). The modification of the inter-
actions’ strength is another option. Recent reviews are the good starting point
for an up-to-date discussion about the technical possibilities, based on chimeric
molecules, modular swapping, mutants [30,31]. A further mechanism could be
based on time-delayed phosphorylation kinetics, which disfavors sensor-regulator
specificity [32]. Similarly, the information flow in transcriptional NNs could be
engineered by a proper reshuffling of promoters and genes.

4.2 Meaning

Referring again to two-component regulatory systems, it can be said that their
function allows the integration of external and internal changes experienced by
the dynamical system we call SC. When such a AI-device would be implanted in
SCs, SC technology would progress because of the improved capability of infor-
mation processing. A patter of signals (a ‘situation’) becomes the new ‘input’
signal, to be processed in order to lead to specific behavior (a pattern of gene
expression). This perspective fits with the ‘computer Gestalt’ interpretation,
or SCs as machines, and will mark a major step toward next-generation SCs,
because SCs would be endowed with features that allow a mapping of environ-
mental changes to specific internal patterns. This is equivalent to assigning (i.e.,
to design) meaning to certain situations. Accordingly, CNNs could play a role for
the implementation of semantic information theories in SC research. We have
already compared the application of Shannon- and semantic information theories
in SC studies [33]. A first interesting direction that deserves further exploration
refers to Donald M. MacKay operational definition of meaning (the selective
function, exerted by a signal to a given receiver, on the set of possible transition
probabilities between the states of readiness of an agent) [34]. A second direction
is based instead on models and interpretations that highlight the co-dependent
trajectories, expressed in probabilistic terms, of an agent in an environment,
based on the internal organization of the first and on patterns that exist in the
second [35].
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4.3 Embodiment

But it is the profound difference between logical NNs and CNNs that has an
additional, and more theoretical interest, because it contributes to model life
and cognition according autopoiesis [15]. Even if we can analyze CNNs under
the lens of Boolean logic and representations, their activity does not reside in
the logical domain, because they do not operate on symbols, but on matter
and structures. The CNN operations lie in the molecular (material) domain, a
domain that also hosts the computing machine itself (the SC). Being molecular
in their own nature, the CNN components can be in principle generated by the
SC constitutive processes and thus being themselves the product of their own
computation.2 In other words, intra-SC CNNs would blur the classical distinc-
tion between instructions and data, or between computer and computed, and
ultimately between mind and body – flooding into one of the most fascinating
topic in the biology of cognition, self-referentiality, and second-order cybernetics
[15]. Then, it would also incisively impact on wetware approaches to embodied
AI, representing pioneering attempts to build chemical systems with features
that are intrinsically not achievable in software and hardware implementations.
For us, this would bring embodied AI one step closer to achieving artificial intel-
ligent systems grounded on biological organization, moving beyond the mere
behavioral imitations [7,8,36]
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Abstract. Extensive dataset availability for neurological disease, such asmultiple
sclerosis (MS), has led to new methods of risk assessment and disease course
prediction, such as usingmachine learning and other statistical methods. However,
many of these methods cannot properly capture complex relationships between
variables that affect results of odds ratios unless independence between risk factors
is assumed. This work addresses this limitation using a Bayesian network (BN)
approach to MS risk assessment that incorporates data from UK Biobank with a
counterfactual model, which includes causal knowledge of dependencies between
variables. We present the results of more traditional Bayesian measurements such
as necessity and sufficiency, along with odds ratios for each of the risk factors in
the model. The greatest risk is produced by the genetic factor DRB15 (2.7 OR)
but smoking, vitamin D levels, and childhood obesity may also play a role in MS
development. Further data collection, especially in infectious mononucleosis in
the population, is needed to provide a more accurate measure of risk.

Keywords: Bayesian networks · Risk assessment · Multiple sclerosis

1 Introduction

Multiple sclerosis (MS) is a neurological condition that causes lesions to form in the
brain, brain stem, spinal cord, or optic nerve [1]. Since 1990, the prevalence of MS
has increased by 10% with heightened numbers of cases reported in the United States,
Canada, and Norwegian countries [2]. This general rise in MS cases, particularly in
women, along with uncertainty around the pathogenic pathway and increasing availabil-
ity of large datasets has increased research interest and efforts into the study of potential
causes and triggers. Improved testing could account for the MS case increase, which
further justifies using an approach that can model additional confounding variables.

Many medical decisions made under conditions of uncertainty can be modeled by
creating a Bayesian Network (BN) [3–6]. Such medical application of BNs can involve
conditionmonitoring, symptommanifestation, treatment effects, or diagnostics. A paper
by Kyrimi et al. [7] focuses on creating BNs for different “idioms” or structures that are
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common in medical reasoning. This paper focuses on a different idiom, the modeling
of risk factors, which are exposures, habits, or demographic status of a patient that
later increase the likelihood of developing a medical condition or disease, using MS
as a specific example. Using a BN, interactions between variables are examined for
their potential influence on MS development. Additionally, these variables often act as
confounding influences,which can lead to some erroneously classified as risk-producing.

The goal of this analysis is tomodel genetic and environmental risk factors that could
influence the risk of developing MS. To achieve this, an initial survey of risk factors and
machine learning (ML) methods already used in MS research was conducted to identify
variables to include in the network, which is discussed in Sect. 2. Section 2 also discusses
the background of how BNs have previously been used an epidemiological tool. This
leads to a larger explanation in Sect. 3 of how this BN was developed, including how the
structure is determined and data integrated. This is extended to include an explanation
of the measurements of necessity, sufficiency, and interaction, and how an odds ratio
can be derived from BN observations. Finally, the results of the analysis are discussed
in Sect. 4, where equivalent odds ratios found using the BN are compared to previous
work.

2 Previous Work

2.1 Artificial Intelligence (AI) and Machine Learning (ML) in MS Research

A recent review was conducted on AI/ML methods that have been used in MS applica-
tions [8]. Most MS research using these methods involves lesion detection, prediction
of clinical prognosis, and the analysis of immunological signatures. Recent work using
MRI images as input to machine learning methods such as support vector machine,
Naïve Bayes, and regression has been successful in classifying lesions versus brain mat-
ter. Similar methods have also been used to predict MS course type or future disability
levels based onMRI scans and cognitivemeasures.Genetic risk factors have been studied
using clustering, learning, and regression, but non-genetic factors have been neglected.

Bayesianmethods have previously been used in a limited number ofMS applications,
including MS subtype prediction [9], treatment effects [10], and disease progression
[11]. These papers all demonstrate the utility of Bayesian approaches, but do not include
models that were derived from domain knowledge and logic. Overall, very little research
using machine learning is used to analyze risk factors, and of those that do, none so far
use Bayesian networks to show dependencies between variables.

2.2 Alignment with Epidemiology

Bayesian networks are not a standard tool for epidemiological studies, but by compar-
ing the statistical concepts to epidemiological concepts and measures, it is possible to
relate the two areas. The concept of directed causal diagrams for epidemiology was
first proposed in 1999 by Greenland, Pearl, and Robins [12]. These diagrams, called
directed acyclic graphs (DAGs), enable us to identify variables that contribute to con-
founding effects, but cannot represent interactions among variables. Based onRothman’s
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sufficient-component causes (SCC) framework, further work has been carried out to
extendDAGs to represent sufficient cause structures [13]. However, anyDAGs generated
based on statistical equivalence do not necessarily represent causal relationships.

Traditionally, when attempting to find evidence for a causal relationship, epidemi-
ologists look to the Bradford Hill (BH) criteria [14]. These rules require a proposed risk
factor to have a temporal relationship with the disease, along with biological plausibility
and other requirements based on cause and effect. A recent paper [15] highlighted the
need for including these guidelines into causal diagrams and explains how DAGs are
closely aligned with these. In a later section, this work will go through the criteria and
show how these will be integrated into the BN model. Another paper [16] went further
by combining the BH guidelines with graphical models (DAGs) to untangle the web
of interactions amongst several exposures and genetic characteristics with Parkinson’s
disease. The authors go into great detail about possible DAG structures and analyse
their plausibility within the guidelines. However, genetic confounding is different from
exposure-related confounding and has a slightly different version of guidelines.

Bayesian Networks (BNs) are also a type of DAG, but they include probability
tables that quantify the strength of dependencies between nodes. It is the goal of this
work to show that, although BNs are not a standard tool for epidemiological studies,
by comparing the statistical concepts to epidemiological concepts and measures, it is
possible to relate the two areas. The publication upon which this work is based proposed
a BN approach to modelling MS risk, and further explains the drawbacks of traditional
epidemiological approaches and benefits of using BNs [8]. This work, authored by the
same individuals of this paper, differs from [8] sinceUKBiobankdata has been integrated
into the model and epidemiological measures have been computed. Section 2 explains
the structure of the BN model, the reasoning behind the encoded variable relationships,
and how an odds ratio is derived from the counterfactual BN. Section 3 details the relative
risk and odds ratio results obtained by running the model.

3 BN Development

A Bayesian network is an acyclic graph with an associated set of probability tables
for each node [12]. A BN has three distinct components that make up the model—
nodes and edges (which together define the graph structure) and node probability tables
(NPTs). Nodes represent the variables included in the analysis, while the edges show
direction of causal or statistical effect. Each node has an associated NPT which, for
a node with parents, describes the probabilistic relationship between the node and its
parents. In Fig. 1, the arrow (arc) from ‘Smoking’ to ‘Multiple Sclerosis’ represents a
causal influence of smoking on MS risk. Before observations are entered, a Bayesian
network contains only marginal probabilities based on the information entered in the
NPTs and Bayesian inference methods. The basis for Bayesian networks is the ability
to update prior probabilities based on evidence observed.
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Fig. 1. A simple BN showing relationships between MS, Smoking, and Genetic Risk Factor
DRB15 with associated probability tables

3.1 Relevant Risk Factors

The variables included in the model have been chosen since all have solid evidence
as risk factors in MS literature. This is shown as a direct line from the risk factor to
the ‘MS’ node in Fig. 2. See [17] for more detail on evidence for each risk factor
presented. Ethnicity, Sex, and DRB15, a genetic factor in MS development, are the
non-modifiable risk factors. In addition to genetic factors, it is believed that there are
environmental triggers or influences that may affect the risk of developing MS. Risk
factors included that can be modified to potentially alter the course of MS development
are: infectious mononucleosis (IM), childhood body size, smoking, and vitamin D level.
Some connections represent the non-biological connections that are due to confounding
in the dataset. For example, cultural norms often influence whether a person smokes
or how much vitamin D they receive through diet and sun exposure. Research by the
Office of National Statistics published in 2019 revealed that the percentage of smokers
among Asian (8.3%) and Black (9.7%) ethnic groups was lower than average compared
to White (14.4%) and Mixed (19.5%) ethnic groups [18]. The same source also found
that more men (15.9%) than women (12.5%) smoked. Due to these confounding factors,
the NPTs for the Smoking and Vitamin D nodes depend on ethnicity and/or sex. The
connection between ethnicity and the genetic risk factor, HLA DRB15, is based on
biological evidence that individuals from White ethnic backgrounds are more likely to
have this haplotype than non-White [19]. Guidance on monitoring vitamin D deficiency
in London published by Barts and The London School of Medicine and Dentistry found
that in a diverse east London population, a greater percentage of Black (47%) and
South Asian (42%) individuals were deficient than White (17%) [20]. Based on these
relationships, biological or not, are connected to each other and/or the MS node.
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Fig. 2. Diagram of BN showing confounding influences (blue) and biological influences (black)
(Color figure online)

3.2 Structure

Nodes can either be considered a direct risk factor for MS or a confounding factor that
affects other risks. These specific factorswere chosen based on a reviewof environmental
and genetic factors contributing to MS risk [17] combined with data availability in
UK Biobank. The relationships between these factors are outlined in Fig. 2. These
connections that can be classified as biological in nature or have substantial literature
backing are depicted in the black. If a relationship comes about through a non-biological
effect, such as societal differences, the edge connection is in blue. There is only one black
dotted connection, which signifies a weak association. However, it is included based on
previous research findings and biological plausibility. The colour of the connection does
not change any internal properties of the nodes; rather, it is simply for visualisation.
The variables in gray represent the counterfactual world needed for the sufficiency and
necessity measurements, which will be discussed further in the next section. NPTs were
populated based on data directly from UK Biobank [21].

The data was filtered using Python scripts in the High Performance Compute cluster
(HPC) supported by QMUL Research-IT. Figure 3 shows the result of training the BN
on UK Biobank data. It is important to note that the MS node in this model is based on
data on confirmed diagnoses of MS and will have some uncertainty due to unconfirmed
cases. Similarly, the data used in model training for ethnicity, smoking, and childhood
body size are self-reported and therefore might reflect recall bias. Figure 3 contains the
marginal probabilities for each of the variables, which represented the percentages for
the entire Biobank population when no characteristics are set to “True.”
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Fig. 3. Full BN structure containing marginal probabilities

3.3 Measurements

The next step is to estimate the effect of individual variables on the development of MS
using the BN. To do this, we can merge basic concepts of epidemiological causation,
such as sufficiency, necessity, and attribution, with Bayesian inference. By answering
questions about the necessary and sufficient causes of MS, we can determine the most
critical risk factors. This leads to an investigation into interaction, which occurs when
the risk of developing a disease between individuals exposed and those not exposed to a
given risk factor differs as a function of a third variable. For example, based on previous
knowledge of MS risk factors, we would expect to see interaction between the genetic
factor DRB15 and environmental risk factors.

Given the set of variables we have picked for MS risk, it can be shown through the
BN that these are sufficient and/or necessary based on these definitions. However, these
are both counterfactual questions, and therefore need a counterfactual model to address
them. Since the UK Biobank data is an observational study, we can only perform this in
a data analysis sense rather than a strict structural sense. The probability of sufficiency
(PS) and the probability of necessity (PN) are defined by Judea Pearl in Causality [12].
The probability of sufficiency, which is the chance that any unexposed individual without
the disease would have become affected had he or she been exposed can be represented
in Eq. 1 below where d is the presence of disease, e is the exposure, while d’ and e’ are
the absence of each, respectively. Similarly, Eq. 2 shows the probability of necessity.
This refers to the chance that an exposed individual who developed a disease would have
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not developed the disease had he or she not been exposed. The counterfactual portion
of each equation is contained in the first part of the probability. For example, dein Eq. 1
represents the counterfactual world probability that someone has the disease and were
exposed to the risk factor given that in reality, they did not have the disease (d’) and was
not exposed (e’).

PS � P
(
de|d ′

, e
′)

(1)

PN � P
(
d

′
d ′ |d , e

)
(2)

Odds Ratio is defined in Eq. 5 where q+ and q− are the incidence rates in the exposed
and unexposed populations, respectively. The equivalent expressions in probability terms
that relate to this application are represented in Eqs. 3 and 4. The derived BN odds ratio
(Eq. 5) is obtained by replacing q+ and q−with their equivalent probabilistic expressions
from Eqs. 3 and 4. Here the second term is considered the “bias” term; it represents the
comparison between the probability that someone who is exposed does not have the
disease and the probability that someone not exposed does not have the disease. In
our study, the bias term is negligible since the prevalence of MS in the UK Biobank
population is very low. This means that the probability odds ratio of developing MS
approximates the relative risk.

q+ ∼= P(disease|exposed) = P(d |e) (3)

q− ∼= P(disease|notexposed) = P(d |¬e) (4)

OR = q+
q−

× 1 − q−
1 − q+

(5)

4 Results and Discussion

Using the measurements presented in Sect. 3.3, a clearer picture of how MS risk factors
interact with each other and produce risk can be seen. This analysis starts with the
Bayesian measures of sufficiency and necessity. These measurements can explain which
risk factors are most influential in producingMS risk on their own and therefore offering
insight into best targets for modification. Part 2 of this section includes the derived odds
ratios and how they compare to previous work in the same dataset.

4.1 Interaction, Sufficiency, Necessity

In this section, the BNmeasurements of sufficiency and necessity (presented in Sect. 3.3)
are assessed in this particular case. It might be argued that the risk factors included in
the BN are, individually, very weak in terms of necessity or sufficiency. This is expected
sinceMS is thought to be caused by a combination of factors rather than one single cause.
It is important to note however that these weaker, more distal causes might be the most
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practical way to prevent MS development in terms of the UK population. To present an
example of one such calculation, the haplotype DRB15 can be analyzed in terms of its
necessity and sufficiency in producingMS on its own (shown in row 1 of Table 1 below).
PS corresponds to the chance that any DRB15 negative individual without MS would
have become affected had they instead been born with the DRB15 haplotype. PN value
corresponds to the chance that an individual with DRB15 haplotype(s) who developed
MS would have not developed MS had they not been born with this haplotype. Figure 4
shows a sample observation of how we obtain PN for the case DRB15, where the left-
hand portion of the model shows the observations d and e needed for the calculation.
The right-hand box shows the counterfactual world, which contains the observation e’
and the resulting probability of necessity. There are some differences between the risk
estimate obtained by the counterfactual BN and a typical measure such as relative risk
or odds ratio. By using the BN, real-world observations can update probabilities of all
unobserved risk factors (such as Smoking or Vitamin D status) which then are applied
to the counterfactual world.

Fig. 4. BN with DRB15 counterfactual model

The concepts of sufficiency and necessity can be extended to Table 1 which shows
the measures of necessity and sufficiency in developingMS. Since the risk of developing
MS is very low to begin with, it can help to compare the sufficiency and necessity to the
baseline risk ofMS. ThemarginalMSprobability (P(MS)) and its reciprocal (P(notMS))
are 0.46 and 99.54 percent, respectively. Therefore, from this dataset, we can conclude
that each one of these variables are not at all necessary in developing MS. Some, like 2
DRB15 genes, may be sufficient on their own to produce MS. According to this model,
none of these risk factors are necessary, and is most likely acting in conjunction with
other component causes to promote MS.
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Table 1. Sufficiency and necessity calculations for MS risk factors

Risk factor PS (%) Increase from marginal
P(MS) (%)

PN (%) Increase from marginal
P(not MS) (%)

DRB15 (2 genes) 2.4 422.6 99.59 0.05

DRB15 (1 gene) 0.84 83.4 99.48 −0.06

Smoking 0.56 21.5 98.79 −0.75

IM 3.35 627.7 99.44 −0.097

Sex 0.64 38.1 99.15 −0.4

Childhood body size 0.55 19.3 98.69 −0.9

Vitamin D (deficient) 0.81 75.3 97.68 −1.9

Vitamin D (insufficient) 0.42 −7.9 98.67 −0.9

4.2 Equivalent Odds Ratios

The final step in exploring MS risk factor relationships is to compare the odds ratios
the BN produces to the odds ratios produced by traditional epidemiological techniques.
The source of odds ratios comes from a recently published UK Biobank study assessing
gene-environment interactions [22]. We compare IM status, smoking, and adolescent
body size odds ratios to the results obtained from the BN. The calculations for the odds
ratios use values that come directly from the BN after observations are entered. There
are some differences between the risk estimate obtained by the BN and a more typical
measure such as relative risk or odds ratio. Using the result of P(MS|x), which is the
probability of MS given that a variable x is observed, taken directly from the BN, the
equivalent relative risk and odds ratio can be calculated for each risk factor. In this case, x
refers to each variable in column 1 in Table 2. This measurement differs from traditional
epidemiological methods since it takes into account the dependencies between the risk
factors. Tables 2 and 3 show the results of these two methods’ calculations as well as
a comparison between previous published results. No value for DRB15 is contained in
the previous results since it was determined to be a confounding covariate.

4.2.1 Method 1

Method 1 uses each variable’s relative risk (RR) and odds ratio (OR). The next step in
verifying this relationship is to test whether the odds ratios the BN produces are approxi-
mately equal to the odds ratios produced by traditional epidemiological techniques. The
source of odds ratios comes from a recently publishedUKBiobank study assessing gene-
environment interactions [22]. We compare IM status, smoking, and adolescent body
size odds ratios to confirm that similar results can be obtained from the BN. The calcu-
lations for the odds ratios use values that come directly from the BN after observations
are entered. The large discrepancy in OR derived from the BN and through traditional
means is similar in most cases, except for IM status. This could be due to extensive
missing values in this field and over-reporting in MS cases. Table 2 summarizes these
results.
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Table 2. Odds ratio calculations using method 1

x State P(MS|x) RR OR
(BN)

OR
[22]

Smoking True .00527 1.291 1.293 1.21 (1.08–1.34)

False .00408

Childhood body size Plumper .005538 1.243 1.244 1.36 (1.2–1.55)

Normal/Thinner .004455

IM Positive .0335 7.351 7.571 1.82 (1.03–3.22)

Negative .004557

DRB15 0 .003082 2.708 2.723 —
1 .008349

4.2.2 Method 2

Asecondway of determining an odds ratio from aBN is by using theAgenaRisk software
tomodel each variable by itself outside of the relationships determined above. Thiswould
give an odds ratio that assumes independence with other variables. Two different models
are needed to test the hypothesis of dependence between the proposed risk factor and
MS development. The first model tests the likelihood that MS is dependent on the risk
factor’s presence. There are two estimates, one for the population with the risk factor and
one for the population without. Once both likelihoods are found, the product of these
is used as the likelihood estimate of the dependent hypothesis being true. The second
model represents the scenario that the risk factor is independent from the outcome. The
probability comparison for both hypotheses is found in columns three and four of Table 3.
Through this analysis, we find that since the probability of the dependent hypothesis is

Table 3. Odds ratio calculations using method 2

r State Dependent Independent Risk ratio
(Via BN)

OR
([22])

Smoking True .0044 .0027 0.922
(0.89–0.95)

1.21
(1.08–1.34)False

Childhood
body size

Plumper .0014 .000019 0.762
(0.73–0.79)

1.36
(1.2–1.55)Normal/Thinner

IM Positive .0043 .00201 0.385
(0.31–0.44)

1.82
(1.03–3.22)Negative

DRB15 0 .0022 3.3E–7 1.43
(1.38–1.47)

—
1
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greater in each case, it is assumed that each of the tested variables contribute to MS risk.
The second part of this analysis is finding an estimate of the odds ratio from the BN.

From these results, it can be concluded that the clearest difference between exposed
and non-exposed individuals is the genetic factor DRB15. This agrees with current
Northern European studies, which have defined this factor as one of the most important
genetic risk factors [17].However, it is a possibility that smoking and childhood body size
could also have a contribution toMS development according to this method. In literature,
smoking has mixed results as a possible risk factor. Therefore, the result obtained here
seems to agree with previous evidence as a weaker factor. The dependency between
childhood body size and MS found in this paper agrees with a publication confirming
an association between genetic predisposition to obesity and MS [23]. It is normal to
see differences in the risk ratio and odds ratio since the risk ratio is the ratio of two
probabilities whereas the odds ratio is the comparison of two events (e.g. MS versus no
MS). Often the odds ratio will slightly overestimate the effect of an exposure. Method
1 provides a picture of MS risk in terms of the whole network of interacting factors,
whereasMethod 2 presents a way to determine whether a factor truly influencesMS risk.
The next step in this project will be validating with an external dataset and presenting
the results.

5 Conclusions

By incorporating dependency relationships between variables, the BN adds an additional
dimension to MS risk assessment. Inevitably, this results in difference between the risk
measurements compared to previous estimates. A deeper look into the mechanisms
within the BN that produce the large difference in OR for IM status is needed next, as
well as a general look into how this measure can be translated into usable knowledge for
decision making. This work can also be extended to a unique assessment of interaction
between one or more risk factors.
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romane.scherrer@hotmail.fr, nazha.selmaoui@unc.nc
2 Ifremer, UMR9220 Entropie, Nouméa, New Caledonia
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Abstract. Digital holography is an imaging process that encodes the
3D information of objects into a single intensity image. In recent years,
this technology has been used to detect and count various microscopic
objects and has been applied in submersible equipment to monitor the in
situ distribution of plankton. To count and classify plankton, conventional
methods require a holographic reconstruction step to decode the hologram
before identifying the objects. However, this iterative and time-consuming
step must be performed at each frame of a video, which makes it difficult
to support real-time processing. We propose a real-time object detection
based approach that simultaneously performs the detection, classification
and counting of all plankton within videos of raw holograms. Experiments
show that our pipeline based on YOLOv5 and SORT is fast (44 FPS) and
can accurately detect and identify the plankton among 13 classes (97.6%
mAP@0.5, 92% MOTA). Our method can be implemented to detect and
count other microscopic objects in raw holograms.

Keywords: Object detection · Multiple Object Tracking · Deep
learning · Plankton · Digital holography

1 Introduction

The observation, counts and classification of marine plankton are essential to
measure the health of our oceans. In recent years, several submersible equip-
ment [8] (ISIIS, LISST-Holo, eHoloCam) have been deployed as part of large-
scale campaigns to acquire in situ images of plankton. Some of these systems use
digital holography [14], a method that enable high resolution images acquisition
over a large water column and at high flow rates. Since a hologram encodes the
3D information of all plankton as a single intensity image, a decoding process,
called holographic reconstruction, is required to retrieve the sample image from
its hologram. Unfortunately, the methods used to process holograms and then
count and classify the species are still very time-consuming and manual.
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With the multiplication of collected images, various efforts have been made to
accelerate and improve the holographic reconstruction, for instance, by adopting
a convolutional neural network (CNN) to automatically find the focus [18] or to
reconstruct a de-focused hologram without performing an auto-focusing or phase
recovery routine [16,21]. Even though those approaches greatly accelerate the
holographic reconstruction, the detection and classification of the objects need
to be performed afterwards.

To count and identify the objects in a live video stream, three different tasks
are necessary: (i) a classification task to identify the objects, (ii) a detection task
to locate them and (iii) a tracking task to determine their respective trajecto-
ries to avoid counting the same objects several time during the video life span.
However, these three distinct, yet complementary, tasks are often performed
independently on holograms. The classification is often done on cropped holo-
grams with, for example, a trained CNN as in [4,22] but a preliminary detection
is necessary to determine those regions of interest (ROIs) that are then feed into
the model. To detect the objects, some works have implemented a CNN-based
sliding window algorithm [19] that perform a binary classification on different
regions in the holograms to detect and count cells. Other studies propose to per-
form the detection with a segmentation-based method. The segmentation can
be carried out with a threshold as in [17] that proposes to filter the intensity
of the reconstructed holograms with a bandpass filter before applying a thresh-
old to generate a binary mask. The segmentation can also be done with a deep
learning model as in [7] where a Segnet model coupled with a circular Hough
transform are applied on the holograms to locate the objects. However, detec-
tion by segmentation often requires a prior holographic reconstruction, as the
diffraction patterns on raw holograms do not allow the object’s boundaries to
be precisely determined. Concerning the tracking task, which is performed to
determine the objects trajectories, the existing methods are generally based on
a frame-by-frame detection of the objects that are then associated through the
sequences [10]. In the framework of holography, the detection assignment can be
carried out with the calculation of the cross-correlation between two consecutive
frames [13] which is effective when there is little variation in object morphology
or noise between the images. When the motion of the objects causes a variation
of their morphology (spin, rotation) between frames, other more robust algo-
rithms, such as the minimum boundary filter (MBF) [9], have been successfully
applied. However, these methods rely on a detection pipeline that requires a
holographic reconstruction at each frame of the video.

Even if several approaches have been proposed in the last few years to detect
and classify objects on holograms, the methods often focus on only one aspect,
either a classification or a detection/tracking task. Moreover, most of the existing
methods require a prior holographic reconstruction to detect the objects [20].
However, conventional algorithms [5] used to search each object’s focus plane
and remove twin image artifacts are iterative and computationally intensive and
therefore not always compatible with real-time processing. Therefore, the use of
an object detection model such as [12] Faster-RCNN, YOLO, SSD or RefineDet,
offers an alternative by performing in real time the localization and classification
of all objects on a frame in a single pass. Applied to raw holograms, these
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real-time models could greatly improve the applicability of digital holography
and are compatible with other tracking algorithm to accurately count and classify
the objects.

The aim of the paper is to demonstrate that the classification, localization
and tracking of plankton can be simultaneously performed in real-time on raw
holograms with an object detection model. For that purpose, two datasets of
labeled in-line holograms will be simulated with 13 different plankton species.
The paper is organized as follows. In the next section, the generation of holo-
graphic datasets and the object detection models are described. Section three
shows the performances of the models. Conclusions and perspectives are given
in the last section.

2 Materials and Methods

2.1 Hologram Formation

Fig. 1. In line-holography.

For an in-line holographic setup (see Fig. 1), the reference and object waves share
the same optical axis and an object can be described by a complex transmission
function [6] at a given z plane:

tz(x, y) = exp[−a(x, y)] exp[iφ(x, y)] (1)

where a(x, y) describes the absorption of the object and φ(x, y) is the phase
distribution. The transmission function can be used to calculate the wavefront
just behind the object Uz+(x, y):

Uz+(x, y) = tz(x, y)Uz−(x, y) (2)
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where Uz−(x, y) is the incident wave that can be either plane or spherical.
Considering that the object is located at z = 0, the exit wave given by

Eq. 2 can be rewritten as U0+(x, y) = t0(x, u)U0−(x, y) and is propagated to the
detector/hologram plane which is located at z = z2 along the optical axis. This
propagation is simulated by the angular spectrum method by calculation of the
following transformation:

Uz2(X,Y ) = TF−1

[
TF (U0+(x, y)) × exp

(
2πiz2

λ

√
1 − (λu)2 − (λv)2

)]
(3)

where λ is the wavelength and (u, v) are the Fourier domain coordinates. TF−1

and TF denoted the inverse and the direct Fourier transform, respectively. Note
that Eq. 3 is often expressed as Uz2(X,Y ) = R(X,Y ) + O(X,Y ) where R and
O are the reference and the object waves that interfere at the surface of the
recording medium. The recorded hologram at z = z2 is the intensity calculated
by:

Hz2(X,Y ) = |Uz2(X,Y )|2 = Uz2(X,Y )U∗
z2(X,Y ) (4)

where ∗ denotes the complex conjugate. As a result, a hologram can be simulated
once λ, z2, U0−(x, y) and t0(x, y) are known or set.

2.2 Dataset

Plankton Images. To generate a dataset of labeled holograms for an object
detection task, the complex transmission function t0(x, y) of several objects in
a plane (x, y, z = 0) must be simulated first. For that purpose, two labeled
datasets of plankton images will be used as objects. The first dataset consists of
shadow images collected by the In Situ Ichthyoplankton Imaging System (ISIIS),
which was the subject of a competition on Kaggle1. This open source dataset
consists of 121 marine plankton species, among which 10 species with a number
of images greater than 1000 were selected for our simulations. The second dataset
(custom) consists of optical microscopy images of 3 phyto-plankton species from
New Caledonia (Haslea sp., Pleurosigma sp. and Mastogloia sp. noted P1, P16
and P17, respectively). The plankton was imaged with a bright-field microscope
at a ×10 magnification. The images were automatically thresholded, segmented
into ROIs using an edge detection based algorithm (Sobel) and manually labeled.
Figure 2 presents the number of images per species. Note that for each dataset,
the ROI segments are labeled per class and saved as grayscale images. Moreover,
the images were processed so that background has a constant value equal to 1
and only the pixels inside the object support have a value between 0 and 1. This
particularly allow us to simulate the absorption a(x, y) and the transmission
function t(x, y) of the objects. In particular, we converted a ROI segment I(x, y)
into an absorption with a(x, y) = −1 × I(x, y) + 1 so that the transmission
function is t0(x, y) = exp[−a(x, y)] exp[iφ(x, y)] inside the object support and
t0(x, y) = 1 where there is no object (a(x, y) = 0 and φ(x, y) = 0). Note that

1 https://www.kaggle.com/c/datasciencebowl/.

https://www.kaggle.com/c/datasciencebowl/
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t0(x, y) = 1 only implies that the incident wave that illuminates the sample
remains undisturbed where there is no plankton (U+

0 (x, y) = U−
0 (x, y)).

Fig. 2. Number of images per species.

To simulate t0(x, y) with various objects, the transmission functions of sev-
eral plankton images can be randomly placed on a N×N empty (all-ones) image.
By doing so, the (x, y)-axis coordinates of the bounding boxes are randomly set.
Moreover, the plankton images are already saved as ROIs so that the bounding
boxes width and height are the images dimensions. Since the images are classi-
fied per species, the labels of a simulated t0(x, y) for an object detection task
(classes and bounding boxes coordinates) can be completely set. Once t0(x, y)
is simulated, the corresponding hologram can be computed with the Eq. 3 and
Eq. 4.

Holograms Simulation. To demonstrate that it is possible to classify and
track objects on raw holograms in real time, we have simulated two datasets.
The first dataset, used to train and test the detection model, consists of 10,000
simulated holograms. The second dataset, used to evaluate the tracking perfor-
mance of the model, is composed of 100 simulated videos in which plankton are
moving in a laminar flow in a two-dimensional plane channel. In this section, we
describe in more detail the simulation of these two datasets.

Object Detection Dataset. Before simulating the transmission functions and the
corresponding holograms to train the detection model, the plankton images from
the two sample image datasets (ISIIS and Custom) were randomly split, per
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class, in a 80:20 ratio for training and testing, respectively. We have considered
that the plankton are pure amplitude objects so that φ(x, y) = 0. The simula-
tion of t0(x, y) proceeds as follows. First, for each simulated t0(x, y), 13 plankton
images (one per species) are randomly selected. The images are then randomly
rotated and flipped with 4 possible rotations (0◦,90◦,180◦ or 270◦) and 3 possible
flips (None, horizontal or vertical). Then, the plankton transmission functions
are individually modified so that tplankton(x, y) = exp[−C × a(x, y)] where C
is a random constant and C ∈ [0.5, 1]. Next, the 13 transmission functions are
randomly placed without overlapping on a 512 × 512 empty image to gener-
ate t0(x, y). Finally, the hologram Hz2(X,Y ) is simulated with Eq. 3 and Eq. 4.
Both the holograms and the t0(x, y) are normalized between 0 and 1 and saved.
8,000 and 2,000 holograms were simulated for training and testing, respectively.
Figure 3 presents an example of a simulated and labeled t0(x, y) and its corre-
sponding hologram. During training, the object detection model learns to locate
all the plankton on the raw holograms. The model should be able to predict the
bounding boxes of the objects (x,y,w,h) and the class.

Fig. 3. Simulation example. 13 plankton images are used to generate a labeled holo-
gram for a object detection task.

Tracking Dataset. To evaluate the tracking performances, we have simulated 100
videos that consist of 50 frames in which several plankton are moving in a 2D
channel. For each simulated video, 10 plankton images were randomly selected
from the ROIs used to test the detection model. For each selected plankton, we
have simulated the transmission function tplankton(x, y) = exp[−C×a(x, y)], C ∈
[0.5, 1] which remained constant throughout the video. The plankton was then
randomly placed on a 512×512 all-ones image with a non-overlapping constraint,
so that the plankton does not initially occluded a previously placed plankton.
Its velocity was then initialized with the calculation of the Poiseuille equation
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between two planes. Note that, for each video that lasts 50 frames, the 10 plank-
ton are appearing or disappearing at different frame index according to their
respective speed and frame of appearance (see Fig. 4).

Fig. 4. Tracking dataset example. 10 plankton are moving in a 2D channel.

For the simulations of the two datasets, we have considered λ = 530 nm
(green), z2 = 0.8 mm and a pixel size, which limits the final resolution, of 1.12
μm. The incident plane wave, described by a distribution U(z) = exp[i(kxx +
kyy + kzz)] where (kx, ky, kz) are the wave vector components, was simulated
with U−

0 (x, y) = 1 by choosing the position of the object at z = 0 and by
selecting the optical axis along the propagation of the wave (kx = ky = 0) [6].
Note that since the plankton are placed close to the camera plane (z2 < 1 mm),
the simulated holograms are captured with a unit magnification [11]. As a result,
the models trained on 512× 512 images should be able to detect plankton over a
field of view equal to 0.33 mm2. The source code is available at https://github.
com/romanescherrer/HoloTrack.

2.3 Object Detection Models and Tracking

Two tasks are to be considered in this paper. The first is the detection of objects
on raw holograms which is performed frame by frame on a video. By detection,
we mean the localization of all objects i.e. the determination of bounding boxes
of coordinates (x, y, w, h) and the classification of objects (one among the
considered 13 classes). The second task is the tracking of the objects throughout
the video. This task, which aims at associating/linking detections across frames,
allows, among other things, to determine the objects trajectories in order to
precisely count the plankton that appear and disappear in the video without
generating any duplicate.

Detection. To perform object detection task on raw holograms, we chose two
YOLOv5 [3,15] models that were pre-trained on the COCO dataset, namely

https://github.com/romanescherrer/HoloTrack
https://github.com/romanescherrer/HoloTrack
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YOLOv5s2 (the smallest) and YOLOv5x (the largest) with 7.3M and 87.7M
parameters, respectively. YOLO is a one-stage detector that integrates the detec-
tion of objects and their respective classification into a single process and has
achieved state-of-the-art performances in term of speed and accuracy in many
object detection problems. The model is composed of 3 parts (Fig. 5): a backbone
(CSPDarknet), a neck (PANet) and a head (Yolo) that collect features from dif-
ferent stages of a N × N input images and encode/decode them into 3 output
tensors of size S × S × (B ∗ (5 + nc)) where S = (N/32, N/16, N/8), B is the
number of anchors per grid cell and nc is the number of classes. The anchors are
generic bounding boxes dimensions (w,h) that are determined using a clustering
algorithm (k-means) on the training dataset. Each cell in an output tensor is
responsible for detecting objects within itself and after various post-processing
steps (non-max suppression, among other, to only retain the candidate bound-
ing boxes with higher response [3]), YOLO produces an output prediction vector
p = (b, o, c) where b = (x, y, w, h) are the objects bounding boxes, o is the object-
ness i.e. a confidence score that the bounding boxes captures real objects and c
is the class of the objects.

The models were trained on 8,000 holograms during 400 epochs with a batch
size of 8 and tested on 2,000 holograms. The SGD optimizer was used with
an initial learning rate equal to 0.01. To further evaluate the object detection
performances on raw holograms, two models were also trained on the transmis-
sion functions t0(x, u) with the same hyperparameters. Note that t0(x, y) is the
perfect image (artifact-free) that the holographic reconstruction steps seeks to
obtain. Comparing the detection results on the holograms with those obtained
on transmission function allow to determine whether the holographic reconstruc-
tion steps, which are iterative and time consuming, are avoidable to accurately
classify and locate the objects with precision. The experiments were carried out
on a 2.9 GHz Intel Core i7 PC with 64 GB of RAM and a Nvidia GTX 2060
GPU. The training took 8 h for the small model and 2 days for the larger one.

Tracking. Yolo is a real-time object detector [3] and thus can predict the bound-
ing boxes and the classes of the objects at every frame of the video. In order
to associate/link the detections across frames, we used the SORT algorithm
proposed by [2]. The method works as follows (Fig. 6): During the algorithm ini-
tialization at the first frame noted k, each bounding box dk detected by YOLO
is associated with an unique tracker which is composed of a kalman filter. We
denote tk#n the bounding boxes of the trackers at the frame k where n is
an unique identifier. For the next frame k + 1, the new bounding boxes dk+1

detected by YOLO must be associated to the existing trackers or new track-
ers must be created if the objects were not detected at the previous frame.
For this, the kalman filters of the trackers predict the state of the bounding
boxes at frame k + 1 by knowing the state of the bounding boxes at frame k.
Then, the association of dk+1#m,m ∈ [1, 2, ...,M ] with the bounding boxes of

2 https://github.com/ultralytics/yolov5.

https://github.com/ultralytics/yolov5
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Fig. 5. YOLOv5 architecture.

the trackers tk+1#n, n ∈ [1, 2, ...N ] is performed by computing a cost matrix
C =

( − IoU(dk+1#m, tk+1#n)
) ∈ IRM×N where IoU is the Intersection over

Union expressed by :

IoU(dk+1, tk+1) =
dk+1 ∩ tk+1

dk+1 ∪ tk+1
(5)

The assignment is solved using the Hungarian algorithm and once a detection
is associated to a target, the detected bounding box dk+1 is used to update the
target state via the associated Kalman filter. The SORT algorithm is applied
sequentially, frame by frame after the YOLO inference, on the whole video stream
and the tracking can be done in real time because the state of the system at
frame k is predicted by its previous state at frame k − 1.

2.4 Metrics

To evaluate YOLO, we report the object detection performances with the well-
known average precision (AP) metrics [12]. We recall that the AP@.5 and
AP@.75 are the average precision computed with an intersection over union
threshold t = 0.5 and t = 0.75, respectively. The AP@[.5:.95] is reported by
computing the mean AP@ with 10 different IoU thresholds [.5:.05:.95].
To evaluate the tracking performances, we report the CLEAR MOT metrics [1],
with in particular:

– MOTA: The Multiple Object Tracking Accuracy metric that combines the
false negative rate (FN), false positive rate (FP ) and the mismatch rate
(IDSW ) into a single score :

MOTA = 1 −
∑

t(FNt + FPt + IDSWt)∑
t GTt

(6)
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Fig. 6. SORT multiple object detection algorithm.

where t is the frame index and GT is the number of ground-truth objects.
– MOTP: The Multiple Object Tracking Precision that describes how precisely

the objects are tracked by measuring and averaging the IoU between the
objects and their corresponding hypothesis.

MOTP =

∑
t,i dt,i∑
t ct

(7)

where dt,i is the bounding boxes overlap between the target i and its assigned
ground-truth objet and ct is the number of matches.

– MTR: The Mostly Tracked Rate which is the percentage of ground-truth
tracks that have the same label for at least 80% of their life span.

– MLR: The Mostly Lost Rate which is the percentage of ground-truth tracks
that are tracked for less that 20% of their life span.

3 Results

3.1 Detection Performances

In this section, we report the object detection performances on 2000 test holo-
grams and the mean inference time that includes FP16 inference, postprocessing
and non-max suppression on a GTX 2060 GPU. Table 1 summarizes the perfor-
mances of the object detection tasks performed on the raw holograms and on
the transmission functions t0(x, y).

For the models trained on the holograms, the AP@.5 are 0.976 and 0.981 for
YOLOv5s and YOLOv5x, respectively. For the models trained on the transmis-
sion functions, the AP@.5 are slightly better with 0.985 and 0.993 for YOLOv5s
and YOLOv5x, respectively. The AP@[.5:.95] are significantly higher on t0(x, y)
than on holograms (eg. 0.980 vs. 0.855 for YOLOv5x) but the AP@.75 are still
high on holograms (0.928 and 0.955 for YOLOv5s and YOLOv5x, respectively).
Those results suggest that the detectors trained on the holograms are efficient
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Table 1. Detection performances.

Model Inputs AP@.5:.95 AP@.5 AP@.75 Speed

YOLOv5s Holograms 0.820 0.976 0.928 4 ms

t0(x, y) 0.967 0.985 0.985

YOLOv5x Holograms 0.855 0.981 0.955 14 ms

t0(x, y) 0.980 0.993 0.989

for a IoU threshold ≤ .75 but that their performances start to decline at a
higher threshold. Figure 7 shows the confusion matrix of YOLOv5x at IoU@.5
on the test holograms and an example of its predictions. One can notice that the
diffraction pattern of an object spreads beyond its bounding box. In fact, the
further away the object is from the camera, the more this effect will be visible on
the hologram. Because of this and the lack of sharp edge, a detector trained on
holograms was expected to have difficulty in determining the object boundaries
with a high IoU.

Fig. 7. Confusion matrix at IoU.5 and model predictions (blue: ground-truth, red:
predicted). (Color figure online)
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3.2 Tracking Performances

In this section we report the tracking performances performed by YOLO+SORT.
We also computed the mean computation time of the whole pipeline when the
real time detection (frame by frame) is performed by the smallest (v5s) and
largest (v5x) versions of YOLOv5. The results of our evaluation are shown on
Table 2. The pipeline YOLOv5s+SORT can be used up to 44 FPS while the
extra large version can be used up to 23 FPS. This difference is explained by the
fact that the model has to make its inference at each frame and that for very
large models it is often more optimized in term of speed to generate predictions
on a batch of observations. The results suggest that the performances difference
between the small and large version of YOLO is negligible when the input images
are t0(x, y). When the input images are holograms, the use of a larger model
improves the performances but the number of lost tracks remains higher than
that of the models trained on transmission functions. However, the tracking
performance on holograms remains high with for example a MOTA of 94.34%
and 92.03% for YOLOv5x and YOLOv5s, respectively. An exemplary output of
our pipeline is shown in Fig. 8. At each frame of the video, the total number
of plankton per species can be updated. Note that we have slightly modified
SORT, which is initially not class-aware, so that the predicted class of the object
is saved as soon as a YOLO detection is associated with its tracker. To update
the plankton count by class at a frame k, only plankton that were not detected
in the past frames are added to the total count. When a plankton leaves the
field-of-view of the video, the total count is not modified. For a plankton already
detected in the previous frames, it is possible that YOLO predicts the wrong
class during its trajectory. We therefore update the count by class by considering
that the detected object has the class that obtained the maximum occurrence
between frames 0 to k − 1.

Table 2. Tracking performances.

Inputs Model MOTA MOTP MTR MLR FPS

Holograms Yolov5s 92.03 84.76 92.54 1.94 44

Yolov5x 94.35 86.33 95.30 1.43 23

t0(x, y) Yolov5s 96.16 88.89 96.32 0.72 –

Yolov5x 96.05 90.66 96.63 0.92 –
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Fig. 8. Planckton tracked on a simulated video.

4 Conclusion and Perspectives

In this paper, we propose a pipeline that allows to detect, classify and count
objects on raw holograms without going through the conventional holographic
reconstruction/phase recovery steps. Our pipeline is composed of a real-time
object detection model that performs the localization and classification of all
objects present on the holograms and the SORT algorithm that links the detec-
tions through the video frames. We evaluated the object detection and tracking
performances on simulated datasets that were generated with cropped plankton
images obtained with a bright-field microscope and a shadow imager (ISIIS).
Thirteen different species were considered for the simulations.

Two versions of YOLOv5 are trained to evaluate their detection perfor-
mances on raw holograms. The results are compared with the detection per-
formance obtained on transmission functions, which are the perfect images that
the holographic reconstruction routine seeks to obtain. Note that in practice,
obtaining a reconstructed holographic image of the same quality as our t0(x, y)
in this paper is very complicated due to various noises and interferences on
the hologram that can affect the conventional algorithms (focus/phase recov-
ery) robustness. If anything, the presented comparison favors the holographic
reconstruction/detection pipeline over the detection on raw hologram. However,
although the results demonstrate that detection performances are slightly better
on t0(x, y) than on holograms, the difference in AP@.5 is only 1.2%. These results
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suggest that the prior realization of a holographic reconstruction, even perfectly
conducted, does not significantly increase the performance of the object classifi-
cation and detection tasks. With a AP@.5 score of 0.981, a YOLOv5x model can
perform detection and classification of all plankton groups within a 512× 512
raw hologram (FOV ∼ 0.33 mm2) in a single pass in 14 ms. The tracking results
show that the whole pipeline YOLOv5s+SORT can be performed in real-time
(44 FPS) whereas YOLOv5x+SORT is slower (23 FPS) due to the large size of
the model that required more floating-point operations suggesting that its usage
could be more appropriate with batch (offline) tracking approaches.

Although the proposed method was validated with plankton images, it can
be implemented to localize, count and identify other microscopic objects in
raw holograms. Note that in practice, the object/camera distance was fixed at
z2 = 0.8 mm during our simulations. For three-dimensional imaging, the dis-
tance z2 can vary from one plankton to another. This aspect is not addressed
in this paper, which simply aims to show that holographic reconstruction is
not necessary to detect, classify and track objects. With its current architec-
ture, YOLOv5 is able to determine the (x, y, w, h) coordinates and the class of
objects whose size may vary from a few pixels to a hundred pixels. To obtain
the z-coordinate, the structure of the model could be modified. Otherwise, our
pipeline is compatible with the recording of holograms. The bounding boxes pro-
vided by YOLOv5+SORT have the potential to facilitate the determination of
the z-coordinate by any autofocusing algorithm.

While the results on simulated holograms are promising, it is often compli-
cated and time consuming to put together a large dataset of real labeled holo-
grams to train a detector. When a small labeled dataset is available, it might
be beneficial to pre-train a detector with a large amount of simulated holograms
and then use a transfer learning method to fine tune the model on the small
dataset. Another approach would be to rely on an intensive data augmenta-
tion. Some works in the literature use de-focused back-propagated holograms as
inputs of a deep learning model rather than raw holograms. By back-propagated
the holograms on several planes near the correct global focus, the dataset could
be significantly enlarged.
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Abstract. We developed the first model simulator of leg movements
activity during sleep. We designed and calibrated a phenomenological
model on control subjects not showing significant periodic leg move-
ments (PLM). To test a single generator hypothesis behind PLM—
a single pacemaker possibly resulting from two (or more) interacting
spinal/supraspinal generators—we added a periodic excitatory input to
the control model. We describe the onset of a movement in one leg as
the firing of a neuron integrating physiological excitatory and inhibitory
inputs from the central nervous system, while the duration of the move-
ment was drawn in accordance with statistical evidence. The period and
the intensity of the periodic input were calibrated on a dataset of sub-
jects showing PLM (mainly restless legs syndrome patients). Despite its
many simplifying assumptions—the strongest being the stationarity of
the neural processes during night sleep—the model simulations are in
remarkable agreement with the polysomnographically recorded data.

Keywords: Leg movement activity · Periodic leg movements ·
Restless legs syndrome

1 Scientific Background

Leg movement activity (LMA) during sleep refers to all tibialis anterior muscle
activity events of one leg compliant with onset, offset, and amplitude criteria set
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by the World Association of Sleep Medicine (WASM) [1]. LMA is detected by
recording both tibialis anterior muscles by means of surface electromyography in
the context of polysomnography. Periodic leg movements (PLM) are particular
involuntary LMA, typically occurring during sleep (PLMS). PLM are a frequent
phenomenon present in the majority of patients with restless legs syndrome
(RLS), in a significant percentage of patients with other sleep disorders, and
even in healthy subjects especially elderly [2,3].

Based on WASM criteria, PLM consist of series of at least four monolateral
or bilateral candidate leg movements (CLM), each of them longer than 0.5 and
shorter than 10 s (or 15 s for bilateral movements) and separated by 10–90 s.
When two left and right movements overlap or are separated by less than 0.5
s they are considered as one bilateral leg movement; otherwise as two distinct
monolateral movements [1]. The severity of PLM is quantified by the PLM index,
indicating the PLM number per hour, and considered abnormal, by consensus,
when it exceeds the value of 15 during sleep [4].

PLM might affect sleep quality for their association with cortical arousals
and, in the long term, cardiovascular system, because of the repetitive induced
increase of heart rate and blood pressure [5]. However, the mechanism and the
neuroanatomic pathways behind PLM are largely unknown, as well as the origin
of their periodicity. PLMS also occur in patients with complete transverse lesions
indicating that the spinal cord contains the fundamental network to generate
them [6,7]. In particular, since PLM might occur in one or both legs, one unsolved
question is whether the network is generating one or two excitatory rythms
(pacemakers).

The model is calibrated on data from both control and PLM subjects (sub-
jects with significant/abnormal PLM index, in particular RLS patients). It allows
to generate populations of virtual subjects, both control and PLM, and to sim-
ulate in-silico LMA. This goes beyond a speculative exercise: besides under-
standing the PLM cause, it has potential implications for the clinical practice.
Indeed, this work is the first step in developing an in-silico laboratory that can
bring tremendous benefits to doctors and patients, e.g., including pharmacolog-
ical effects to investigate the fundamental decision to treat or not PLM [8], and,
in case, how to optimally treat PLM. Moreover, a mathematical in-silico LMA
model has indisputable advantages with respect to animal models, from both
the ethical and economic viewpoints [9].

This work is a preliminary and modeling oriented version of the article
recently appeared in the Journal of Sleep Research [10].

2 Materials and Methods

2.1 The LMA Model

We drastically simplify the underlying physiology (Figure 1 shows a schematic
representation and an example of in-silico LMA generation) and assume that
each leg is controlled by a single motor neuron (circular nodes in the figure),
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Fig. 1. Schematic representation of the model together with an example of in-silico
LMA generation. The left and right motor neurons (red and blue circular nodes) imple-
ment the Stein integrate-and-fire model, with membrane potentials vL(t) and vR(t) at
time t and the same rest potential V0 and fire threshold Vth (see Eq. (1)). Leg spe-
cific and common physiological inputs from the central nervous systems (red, blue,
and magenta rectangular source nodes) are modeled by spikes of synaptic current with
Poissonian arrival times causing steps of equal amplitude a in the membrane potentials
(positive/negative steps for excitatory/inhibitory spikes; arrival rates are indicated next
to the input arrow). The assumed single PLM generator (brown) produces a periodic
train of excitatory spikes with period T and potential step amplitude A. Example of
simulated LMA: given the input spikes (stochastically drawn in accordance with their
arrival rates), the left/right neuron membrane potential evolves according to Eq. (1);
when the neuron fires, an LM starts on its controlled leg, with duration drawn from
a data-fitted distribution (see in model calibration the Sect. 2.2.2). Single-leg LMA
are combined in monolateral and bilateral LM according to the standard rule [1]: two
monolateral and one bilateral LM (composed by one left LM and one right LM) are
indicated in the top panel. (Color figure online)
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representative of the central nervous system complex pathways ultimately deter-
mining contractions of the leg muscles. The two neurons are modeled with the
well-known Stein integrate-and-fire (IF) model [11] (see [12] for a review).

The IF mechanism is quite simple. The neuron state is characterized by its
membrane potential (middle in Fig. 1), which evolves according to the neuron
synaptic inputs. Excitatory (E)/inhibitory (I) inputs (bottom panel in Fig. 1)
increase/decrease the membrane potential (middle panel in Fig. 1), while a time
constant τ rules the potential discharge toward a resting value V0. The neuron
is leaky since the summed contributions to the membrane potential decay with
τ . When the potential reaches a fire threshold Vth, an output spike is generated,
which causes the potential to reset at a basal value that we take, for simplicity,
to be the resting value V0. The output spike represents, in our model, the leg
movement onset, while the duration of the movement is drawn from a distribu-
tion fitted on clinical data (see next section and the top panel in Fig. 1). We
neglect the neuron refractory period, i.e., after firing the neuron immediately
restarts integrating inputs (firing in the course of a LM is a rare event in our
model, ≤ 3%, and are disregarded with no significant effect on our results).

Each of the two neurons receive E/I inputs from the physiological activity of the
central nervous systems, a proportion p of which equally affect both legs (colored
in magenta in Fig. 1), while the remaining fraction (1−p) is leg-specific (see the
rectangles and their firing rates in Fig. 1, red color for the left leg and blue for the
right one). For subjects showing significant PLM (subject typically characterized
by a bimodal distribution of the intermovement interval (IMI) [3,13] and by a large
PLM index), we add a periodic input common to both legs that implements our
hypothesis of a single phenomenological PLM pacemaker (brown PLM generator
in Fig. 1). The period and intensity of the periodic input are patient-specific.

We model the physiological inputs as series of synaptic current spikes, with
Poissonian arrival times, each causing the membrane potential to instantaneously
step by a small fraction a of the rest-to-fire interval Vth − V0. We denote by λE

and λI the arrival rates of E and I inputs, divided into common (rate p λX)
and leg-specific (same rate (1−p)λX for both legs, X = E, I) (lower part of
Fig. 1). The three Poisson arrival processes (common and left-/right-specific)
are independent. The PLM pacemaker is a series of T -periodic synaptic spikes,
each spike causing an upward potential step A.

Denoting by vl(t) and vr(t) the left and right neurons membrane potential at
time t (red and blue curve in Fig. 1 middle panel), their time evolution is ruled
by the following ordinary differential equation:

d

dt
vx(t) = −vx(t) − V0

τ
+ a SE(t) + a SE,x(t) − a SI(t) − a SI,x(t) + ASP(t), (1)

x = l, r, where SE(t), SE,x(t), SI(t), and SI,x(t) are the series of unitary spikes of
the physiological inputs (common to both legs and leg-specific), and SP(t) is the
periodic series of unitary spikes of the PLM pacemaker (a unitary spike causing a
1-Volt upward step in the membrane potential). Between two consecutive inputs,
the potential vx(t) exponentially decays toward V0 (the evolution is only ruled
by the discharge term in Eq. (1)). At the arrival of the new input spike, the
potential is updated by adding the spike contribution.
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2.2 Model Calibration

Data were obtained from subjects previously enrolled in different studies on PLM
published by some of the authors of this work (M.M. and R.F.) [6,14,15]. The
LMA duration is fitted on all control LMA recordings (32 subjects characterized
by unimodal IMI distribution; max PLM index = 5.9; mean age 48.03 years (SD
20.75) and 56.25% women). Parameters λE, λI, p, τ characterize control subjects.
Their calibration result is a statistical fitting that can be used to generate virtual
control subjects populations. The distributions of the PLM generator parameters
T and A are fitted using the PLM dataset (65 subjects, mainly RLS affected,
characterized by bimodal IMI distribution; PLM index > 15 except for a few
cases; mean age 58.52 years (SD 13.09) and 66.15% women). All parameters
are supposed constant during the night (8 h). All calibration procedures are
implemented in Matlab. Figure 2 shows the results for the control model, whereas
the calibration result of the PLM generator parameters is shown in Fig. 3. More
details on the calibration follow.

2.2.1 Scaling Parameters

From a phenomenological standpoint, the membrane potential rest and threshold
values, V0 and Vth, are scaling parameters. We set V0 = 0 and Vth = 1 and express
the intensities a and A of the physiological and pathological synaptic inputs as
fractions of the rest-to-fire interval (V0, Vth, a, and A can therefore be considered
adimensional). In particular, the intensity a played a scaling role affecting the
calibration of the arrival rates λE and λI. With no loss of generality, we fixed
a = 0.1 ((Vth − V0)/10), i.e., one-tenth of the rest-to-fire interval.

2.2.2 LMA Duration

We collected the durations of all LMA recorded on each single leg in the con-
trol dataset. We fitted the obtained LMA samples with all parametric distribu-
tions provided in Matlab. None however showed statistical agreement with the
LMA data (Kolmogorov-Smirnov test (K-S) p-value < 0.01). We then used a
non-parametric technique [16] (kernel density estimation, mean 2.47, SD 2.43,
Fig. 2A; K-S p-value ≈ 0.15) and used the obtained distribution to indepen-
dently draw the durations of all virtual LMA at the firing of the corresponding
leg neuron. Because no significant correlation is documented between LMA dura-
tion and subject’s PLM index, we use the LMA duration distribution fitted on
controls also to generate the LMA of virtual PLM subjects.

2.2.3 Arrival Rates of Physiological Input Spikes

We jointly calibrated the arrival rates of the physiological input spikes on sin-
gle leg recordings of the control subjects. Not distinguishing common from leg-
specific inputs, E and I spikes arrive at rate λE and λI on each single leg, indepen-
dently on the value of the proportion parameter p. The membrane time constant



The First in-silico Model of Leg Movement Activity During Sleep 45

Fig. 2. Samples histograms (blue) and fitted distributions (red curve) of LMA duration
(A), E inputs arrival rate λE (C), common/specific proportion parameter p (D). (λI, λE)
correlation is shown in panel B. IMI distribution of the population of real (E) and
virtual (F) control subjects. (Color figure online)
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τ , however, affects the calibration of λE and λI. We now describe the calibration
for an assigned value of τ .

For each single leg recording, we added to the sample joint distribution of
(λE, λI) the pair that matches the observed mean and variance of the IMI (blue
circles in Fig. 2B). Note that we considered the intervals between all LMA (recall
that a leg activity shorter than 0.5 s is not scored as LM [1]), because our model
aims at reproducing the full LMA. As the difference λE−λI and the sum λE+λI

respectively controlled the IMI mean and variance of a virtual control subject
[12], we adjusted them to match the observed values over a one-night simulation
(accuracy 5%). As we found a strong correlation between λE and λI, we chose
to fit the sample distribution of λE and a relation binding λI to λE.

For the selected value τ = 75 s (see section below 2.2.5), we found a nearly-
linear correlation between λE and λI that we fitted with the least-square-error
quadratic polynomial (red curve in Fig. 2B) with the addition of a small Gaussian
term to account for the data variability (the variance of the Gaussian was set
equal to the polynomial square error). We obtained λI = 1.031λE + 0.1187 +
0.002136λ2

E+0.05N(0, 1) and we best fitted λE to the generalized extreme value
(GEV) (3.10, 1.22, 0.89) (Fig. 2B–C). To avoid unrealistic values, we truncated
the obtained GEV at λE = 20 (truncated GEV mean 4.73, SD 3.14; K-S p-value
≈ 0.3).

2.2.4 Proportion of Common and Leg-Specific Inputs
For assigned τ , λE, λI, we built the sample distribution of the proportion param-
eter p between common and leg-specific physiological inputs as follows. For each
control subject, we obtained a sample of p by matching the proportion of bilat-
eral LMs shown by the subject with the one produced by the virtual subject
characterized by rates λE and λI equal to the corresponding averages of the val-
ues identified for the subject’s left and right legs. At each value of p during the
search (we used bisection from the two extremes p = 0 and p = 1, with accuracy
3%), we simulated 10 nights of the virtual subject and compared the obtained
fraction of bilateral LMs with the value shown by the real subject. The obtained
samples of p are fitted with all common parametric distributions. The best para-
metric distribution fit for τ = 75 s was the Beta (11.82, 0.82) (Figure 2D; K-S
p-value ≈ 0.71).

2.2.5 The Membrane Time Constant
We calibrated the membrane time constant τ to match the shape of the IMI
distribution of control subjects. Note that, thanks to the τ -dependent calibra-
tion of the input arrival rates λE and λI and of the common/specific proportion
parameter p, the mean and variance of the IMI distribution of a virtual popu-
lation well matched the experimental values, independently of τ . However, if τ
was too small, the neuron discharge was too fast, so that firing required a burst
of E inputs. This resulted in large input rates λE and λI and in a quite erratic
dynamics of the neuron potentials, thus yielding a rather flat IMI distribution
for the virtual population.
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Since the characteristic IMI of control subjects is in the interval 0.5-10 s, we
considered, as shape index, the ratio between the hourly number of IMI < 10 s,
averaged over the population, and the average LMA index (the hourly number
of LMA). The reason for considering the LMA index in the ratio, instead of the
total hourly number of IMI, was that the input arrival rates were calibrated to
match the subject LMA.

Summarizing, to evaluate a specific value of τ , we proceeded as follows: cal-
ibrate the distribution of λE and fit its correlation with λI; calibrate the dis-
tribution of p; generate a population of 100 virtual controls; simulate one night
for each control and compute the IMI distribution shape index of the virtual
population. As expected, the shape index increased with τ and got close to the
experimental value (20%) at about τ = 75. Figure 2E, F show the IMI distribu-
tion (restricted to the interval 0-100 s) of real and simulated control populations,
respectively.

2.2.6 The Period of the PLM Generator
We relied on the fact that patients with significant PLM are characterized by a
bimodal IMI distribution, where the first peak is typical of healthy subjects, while
the second characterizes the PLM disorder [3,13]. We therefore built the sample
distribution of the period T by taking the IMI of the second peak of each PLM
subject’s IMI distribution. We found the best fitting with the GEV (21.87, 3.49,
0.17) (left panel of Fig. 3; K-S p-value ≈ 0.55). Relaying on medical experience,
we truncated the GEV below 17 and above 50 s (truncated GEV mean 24.42,
SD 5.16; K-S p-value ≈ 0.59).

2.2.7 The Intensity of the PLM Generator
For each PLM subject, we drew 10 virtual control models, to each of which we
added the PLM input with the subject-specific period T and amplitude A to
be selected to match the subject’s LM index. PLM subjects show more LMs
than control ones, so that with A=0 the LM index, averaged on the 10 virtual
subjects (each simulated for one night), falls below the value of the real subject.
On the other extreme, if A is large, each PLM input spike triggers the firing of
the neuron and the LM index of the virtual subjects exceeds the clinical value.
We proceed via bisection to find the sample of A matching the subject’s LM
index (with accuracy of 3 movements/hr). We best fitted the LogNormal (0.78,
0.8) (K-S p-value ≈ 0.31; right panel of Fig. 3). To avoid unrealistic virtual PLM
subjects, we truncated the distribution below 0.2 (truncated LogNormal mean
0.72, SD 0.60; K-S p-value ≈ 0.3).

3 Results and Discussion

Our model can be used to generate in-silico populations of both control and
PLM subjects. We create populations of equal size to the datasets used for the
model calibration (32 control and 65 PLM subjects) and compare the obtained
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sample distributions of typical clinical indicators against polysomnographically-
recorded data. A limitation of this study is that we use for the comparison the
same datasets used for calibration. On one hand, the datasets are too small to
be split into calibration and validation. Moreover, the model parameters show
a remarkable variability among the subjects, so that a correct validation would
require more recordings of the same subjects. On the other hand, our model does
not simulate the specific parameter values identified for single real subjects, but
randomly draw virtual subjects from the statistics of the real control and PLM
populations. Finally, the model is not aimed at forecasting the LMA of new
subjects. Our primary aim in this work is to test the single-generator hypothesis
behind PLM. For these reasons, it is acceptable to use the same dataset for
calibration and assessment.

Fig. 3. Samples histograms (blue) and fitted distributions (red curve) of the PLM
generator period T (panel left) and of the PLM generator intensity A (right panel).
(Color figure online)

In calibration, we have identified the distributions of the model parameters
that best fit the LMA of control and PLM subjects. In validation, we compare
important features of virtual populations drawn from the identified statistics
against the real populations.

Table 1 and Table 2 summarize the comparison, reporting mean and standard
deviation of the principal LM features [14], durations, and composition of bilat-
eral LM [15], together with their statistical agreement with real data, for control
and PLM subjects respectively. We find a remarkable good agreement for LMA,
LM, CLM, and the old PLM indeces [1,14] for both control and PLM popula-
tions. We also find accordance in the characteristics of monolateral and bilateral
LM [15]. Noting that a virtual PLM subject is nothing but a virtual control
subject with the only addition of the PLM periodic input, the latter being cal-
ibrated by fitting LMA indexes, rather than PLM indicators, we conclude that
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Table 1. LM features in real (recording) and virtual (simulation) control subjects.
Statistical agreement: T, Student’s t-test; Tl, t-test on log-transformed data; U, Mann-
Whitney U test.

Control subjects (32)

Recording Simulation Statistics

LM features mean (SD) mean (SD) p-value

LMA index 13.57 (±6.34) 13.74 (±6.45) 0.8804 (T)

LM index 13.44 (±6.29) 13.54 (±6.38) 0.9289 (T)

CLM index 12.88 (±5.58) 13.00 (±6.12) 0.9040 (T)

old PLM index 5.11 (±3.51) 4.34 (±1.48) 0.3611 (U)

PLM index 1.54 (±1.59) 0.65 (±0.73) 0.0193 (U)

Short-IMI index 2.71 (±2.15) 2.84 (±1.66) 0.4684 (U)

Mid-IMI index 4.89 (±2.71) 4.40 (±2.34) 0.6576 (U)

Long-IMI index 4.56 (±1.75) 5.02 (±1.70) 0.4051 (U)

Monolateral LMs median (IQR) median (IQR) p-value

dunuration (s), min 0.53 (0.51–0.57) 0.52 (0.51–0.55) 0.9998 (T)

max 8.50 (6.42–9.72) 8.69 (7.53–9.29) 0.6255 (T)

mean 2.01 (1.76–2.28) 2.08 (1.93–2.21) 0.3178 (T)

median 1.59 (1.29–1.70) 1.54 (1.46–1.69) 0.4118 (T)

Bilateral LMs median (IQR) median (IQR) p-value

# single LM, min 2.0 (2.00–2.00) 2.0 (2.00–2.00) –

max 3.0 (2.00–3.00) 3.0 (2.00–3.00) 0.9158 (U)

mean 2.05 (2.00–2.11) 2.04 (2.00–2.10) 0.9561 (U)

median 2.0 (2.00–2.00) 2.0 (2.00–2.00) –

duration (s), min 1.01 (0.82-1.13) 0.96 (0.81–1.22) 0.4573 (T)

max 9.19 (8.26–9.69) 9.67 (8.37–11.82) 0.0531 (T)

mean 3.91 (3.52–4.35) 4.09 (3.57–4.59) 0.2346 (T)

median 3.34 (2.98-3.91) 3.28 (2.85–3.74) 0.4109 (T)

Bilateral LMs (%) 31.45 (23.50–40.00) 30.94 (15.45) 0.8505 (T)

the statistical agreement gives support to the single-generator hypothesis behind
the PLM phenomenon.

As expected, the agreement is strong in monolateral LM for control subjects,
since the LM duration is fitted on all single-leg recordings of control subjects.
Remarkably, the agreement remains very good also for the bilateral LM features
validating the model for control subjects. Regarding PLM subjects, the obtained
results support our model and thus the view of the single periodic generator.
Indeed, not only the in-silico monolateral LM features statistically agree with
the in-vivo ones, but also the bilateral ones, in particular the right increase of
the proportion of bilateral LM in PLM subjects.
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Table 2. LM features in real (recording) and virtual (simulation) PLM subjects. Sta-
tistical agreement: T, Student’s t-test; Tl, t-test on log-transformed data; U, Mann-
Whitney U test.

PLM subjects (65)

Recording Simulation Statistics

LM features mean (SD) mean (SD) p-value

LMA index 57.12 (±46.40) 61.36 (±45.48) 0.2436 (Tl)

LM index 56.90 (±46.22) 60.69 (±45.15) 0.2865 (Tl)

CLM index 55.31 (±42.67) 57.52 (±42.21) 0.5108 (Tl)

Old PLM index 44.22 (±32.02) 39.48 (±41.04) 0.0749 (U)

PLM index 29.17 (±19.78) 14.21 (±22.81) ≤ 0.0001 (U)

Short-IMI index 12.45 (±24.69) 17.15 (±11.67) 0.2573 (U)

Mid-IMI index 37.12 (±22.10) 35.08 (±31.61) 0.3899 (U)

Long-IMI index 4.05 (±1.76) 8.58 (±2.85) ≤ 0.0001 (U)

Monolateral LMs median (IQR) median (IQR) p-value

dunuration (s), min 0.51 (0.51–0.53) 0.51 (0.51–0.52) 0.5943 (U)

max 9.30 (7.35–9.77) 9.42 (8.78–9.74) 0.5311 (U)

mean 2.15 ( 1.80–2.39) 2.06 (1.94–2.11) 0.3614 (U)

median 1.69 (1.40–2.14) 1.51 (1.42–1.57) 0.2269 (U)

Bilateral LMs median (IQR) median (IQR) p-value

# single LM, min 2.0 (2.00–2.00) 2.0 (2.00–2.00) –

max 3.0 (3.00–4.00) 4.0 (3.00–4.00) 0.1312 (U)

mean 2.03 (2.01–2.06) 2.05 (2.03–2.07) 0.0973 (U)

median 2.0 (2.00–2.00) 2.0 (2.00–2.00) –

duration (s), min 0.92 (0.73–1.10) 0.83 (0.66–0.97) 0.1153 (U)

max 9.71 (9.47–9.91) 12.99 (11.56–13.87) ≤ 0.0001 (Tl)

mean 3.70 (3.34–4.31) 3.90 (3.67–4.09) 0.0502 (Tl)

median 3.32 (2.84–3.96) 3.18 (2.86–3.47) 0.1176 (Tl)

Bilateral LMs (%) 39.65 (28.11–53.90) 37.63 (29.96–50.52) 0.6965 (Tl)

The statistical agreement fails for the indicators requiring some temporal
structure among LM. This is the case of the current PLM index [1] (Table 2).
The PLM index considers only sequences of at least four consecutive LM sepa-
rated by IMI in the interval 10–90 s and interrupted by IMI shorter than 10 s
or longer than 90 s. The disagreement reason is rooted in the stationarity of the
model parameters during the night, especially between the various sleep phases.
Indeed, without requiring sequencing, we find a good agreement in the numbers
of IMI in each of the three characteristic medical interval, i.e., 0–10 s (short-IMI,
characteristic of healthy individuals), 10–90 s (mid-IMI, characteristic of PLM
subjects), and 90 or more seconds (long-IMI). Only the number of long-IMI is
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larger in our simulations, but this is again an artefact of the model stationar-
ity. Indeed, there is medical evidence that PLM decrease along the night, i.e.,
mid-IMI are concentrated at the beginning of the night, while few very long
IMI characterizes phases with no PLM. However, calibrating a stationary PLM
generator that matches, on average, the subject’s number of LM (see calibration
in Sect. 2.2) gives several long-IMI in lieu of less but longer ones.

4 Conclusion

We develop the first model to generate in-silico LMA, both for control and PLM
subjects, adding only a PLM generator for PLM subjects. We calibrate the model
parameters on recorded laboratory data and simulate control and PLM virtual
populations. In spite of its simplicity, our phenomenological model shows a good
statistical agreement between LMA features of in-silico and in-vivo populations.
The agreement supports the validity of our model and also endorses the single
generator hypothesis behind the PLM phenomenon. The main dissimilarities
are caused by the model stationarity, opening up for future developments aimed
at turning the model into a quantitative predicting tool to support medical
intervention.

It is never easy to establish the merit of a first in-silico model of a phys-
iopathological phenomenon, such as LMA, and to foresee possible future useful
employment. However, the interested reader can find some ideas in section 4.1
Future research in [10], where we have tried to speculate on some possible future
applications of our model, such as modeling the effects of drugs. E.g., by compar-
ing the results between recordings in real PLM patients treated with dopamine-
agonists (DA) and the corresponding virtual patients, the model might help in
understanding if DA act on the neurological network of the periodic generator, or
on another networks. Analogously, real and virtual datasets can be compared in
other pharmacological circumstances, e.g., to confirm the so-far observed scarce
effect on PLM of sedatives.

Considering also the patients’ metadata, it will be possible to perform clus-
ter analyses for the model parameters, favoring the important and still missing
mission of PLM phenotyping.

Finally, the parameters A (PLM generator intensity) and T (PLM generator
period) could be used as new indicators of the severity and temporality of PLM,
respectively, to be used in parallel with the recently introduced parameters, like
the periodicity index.
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Abstract. Combining neuroimaging technologies and deep networks has gained
considerable attention over the last few years. Instead of training deep networks
from scratch, transfer learning methods have allowed retraining deep networks,
which were already trained on massive data repositories, using a smaller dataset
from a new application domain, and have demonstrated high performance in sev-
eral application areas. In the context of a diagnosis of neurodegenerative disorders,
this approach can potentially lessen the dependence of the training process on large
neuroimaging datasets, and reduce the length of the training, validation, and test-
ing process on a new dataset. To this end, the paper investigates transfer learning
of deep networks, which were trained on ImageNet data, for the diagnosis of
dementia. The designed networks are modifications of the AlexNet and VGG16
Convolutional Neural Networks (CNNs) and are retrained to classify Mild Cog-
nitive Impairment (MCI), Alzheimer’s disease (AD) and normal patients using
Diffusion Tensor Imaging (DTI) and Magnetic Resonance Imaging (MRI) data.
An empirical evaluation usingDTI andMRIdata from theADNIdatabase supports
the potential of transfer learning methods in the detection of early degenerative
changes in the brain. Diagnosis of AD was achieved with an accuracy of 99.75%
and a 0.995 Matthews correlation coefficient (MCC) score using transfer learning
ofVGGmodels retrained onDTI scans. Early cognitive declinewas predictedwith
an accuracy of 93.88% and an MCC equal to 0.8602 by VGG models processing
MRI data. The proposed models can be used as additional tools to support a quick
and efficient diagnosis of MCI, AD and other neurodegenerative disorders.

Keywords: MRI · DTI · Transfer learning · Dementia · Deep learning

1 Introduction

Mild cognitive impairment (MCI) belongs to the group of neurocognitive disorders
characterized by minor problems with cognitive function, including memory, language,
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visual and spatial perception. DetectingMCI early is important since approximately 15%
of the 65-year-olds with MCI develop dementia within a year, and 30% of them develop
it within 5 years. The most common course of dementia is Alzheimer’s disease (AD).
Neuroimaging technology is one of the key diagnostic approaches for the detection of
early dementia. In this context, Magnetic Resonance Imaging (MRI) scans give detailed
characteristics of the anatomical properties of the brain and cover around 50%of imaging
data used for the diagnosis of brain diseases [1]. Also, Diffusion Tensor Imaging (DTI)
provides the complex anatomy of the fiber tracts at the microstructural level and creates
a brain-wide mapping of neuronal connections between the anatomical regions [2]. Both
methods are widely used in the diagnosis of MCI and AD. Previous research has pointed
out that in the early phases of the disease, white matter (WM) tract damage is happening
earlier than gray matter (GM) destruction and the progression of WM atrophy exceeds
the grey matter degeneration in patients with dementia [3, 4]. It has been highlighted
that there is a significant correlation between WM changes and regional GM atrophy in
patients with AD and this affects cognitive test performance [5]. At the same time, the
correlation between GM atrophy and the damage of most WM tracts was not found in
patients with the amnestic forms of MCI. In this vein, the study presented in this paper
uses both imaging techniques for the early diagnosis of dementia.

In the last decade, a significant number of studies used machine learning methods for
medical diagnosis [6, 7], with support vector machines (SVM), support vector regression
(SVR), and random forest (RF) classifiers being among the most popular methods [6].
Advances in deep neural networks have opened a wide diagnostic opportunity in the
classification and processing of medical imaging data offering additional benefits [7],
and among them, Convolutional Neural Networks (CNNs) have demonstrated great
potential in medical image analysis [8].

Transfer learning, which is at the core of this paper, became noticeable in medical
diagnostics only in recent years. Its popularity is growing as it is a fast and highly effective
approach [9]. Although deep neural networks can learn various combinations of features
from coarse to fine, they typically require a lot of training data and specialized computing
infrastructure to do so. Transfer learning strategies are based on thoroughly trained deep
networks which are retrained using a smaller dataset from a new application domain.
A popular strategy to implement transfer learning of pretrained networks is replacing
the last three layers of the network’s architecture. This allows adjusting the existing
network to the requirements of a new classification domain and has demonstrated in
several applications at least comparable performance with models trained from scratch.

The paper explores the classification potential of popular CNN architectures, such
as the AlexNet and the VGG16 networks, which have been trained on ImageNet data
(www.image-net.org). Transfer learning enables quick adaptation of these computa-
tional models to new classes of medical imaging data from MRI or DTI with minimal
image preprocessing. The aim is to understand how transfer learning with deep networks
can be used to inform the design of DTI or MRI-based diagnostic tools for binary or
multiclass classification of early mild cognitive impairment, Alzheimer’s disease and
Normal (healthy) Controls (NC). This approach could offer new opportunities for quick
and efficient diagnostics of different medical conditions including neurodegenerative
disorders.

http://www.image-net.org
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2 Deep Learning for Medical Diagnosis

Compared to the classical machine learning algorithms, deep neural networks can pro-
vide an end-to-end solution, automating the image preprocessing and feature engineering
stages, by considering those as part of the training process, and are able to achieve a
high prediction rate of brain pathology. For example, deep learning can be used as a
single classifier or in ensemble architectures for the diagnosis of brain degenerative dis-
eases [10]. Deep networks can handle 2D and 3D data in order to distinguish between
healthy and dement subjects [11]. At the same time, the advantages of deep learning
models can be used for limited datasets by applying a layer-wise transfer learning app-
roach [12] and image augmentation techniques [13]. Deep transfer learning models
propose an effective way of image segmentation and can automatically classify brain
scans focusing only on small brain regions [14]. Solutions proposed so far were tested
only one imaging technology with very few attempts to classify Alzheimer’s Disease
using joint sets of MRI plus DTI data [14]. The current research complements this effort
by focusing on the classification comparison of two transfer learningmodels. That is per-
formed on two imaging technologies which are tested separately to determine a suitable
image-algorithm combination for distinguishing between dementia stages.

2.1 Convolutional Neural Network for Image Classification

ConvolutionalNeuralNetworks, which are the center of our transfer learning scheme, are
a class of multilayer neural networks that adopt the Deep Learning paradigm [8]. Input
and output layers are tensors and are connected via several hidden layers of weighted
nodes. Hidden layers perform important functions, data transformations, calculations,
and analyses. The weights are learned and adapted by optimization algorithms. All
layers are chained together. The output layer collects the processed information and
generates the output, which can represent a prediction or a categorization depending on
the application context.

The CNN architecture was specially designed for imaging data [15]. In that case,
a two-dimensional grid of pixels typically represents each image. Each pixel value and
location might be associated with numerical values depending on the black-and-white,
grayscale or color images. While processing imaging data, a neural network architecture
must follow the relevant application requirements. The first of these requirements is
translational invariance. It means that the network layers should respond similarly to
the same area regardless of where it appears in the image. The second requirement is
based on the principle of “locality” when the earliest layers concentrate mainly on local
regions, simple features, and abstractions. The local area representations can aggregate
knowledge about the whole image.

Convolution Functions
Image processing with multilayer neural networks typically requires transforming
images into one-dimensional vectors. This kind of conversion impacts the relationship
between the image pixels andmakes a neural classifier less effective in image processing,
requiring a high number of parameters and extensive training time. In contrast, CNN can
receive a tensor at the input and can learn spatial relations between pixels of the image.
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One can exploit the benefits of CNNs by designing significantly deeper neural architec-
tures which, nevertheless, can learn fast complex relations from raw images. This allows
the CNN to detect useful features automatically during training and develop an internal
representation that classifies more complicated images than a normal multilayer neural
network with sigmoid activations.

The main structural element of a CNN is the convolutional layer that operates using
a convolutional function [16]. The convolution between two functions, measuring the
overlap between f and g as a function of X, can be defined as:

(f ∗ g)(X ) =
∫

f (z)g(X − z)dz, (1)

when one of the functions is flipped and shifted by the distance z.
For discrete objects such as, for instance, a set of infinite-dimensional vectors, the

formula takes the following form:

(f ∗ g)(i) =
∑
a

f (a)g(i − a). (2)

In the case of a 2D tensor, such as those used when for imaging, a corresponding
sum with indices (a, b) will look as follows:

(f ∗ g)(i, j) =
∑
a

∑
b

f (a, b)g(i − a, j − b). (3)

Pooling Layer
Pooling layers help to save a global image representation by keeping all the advantages
of the convolutional layers and other intermediate layers [16]. At the same time, the
pooling procedure makes the image size significantly smaller and might alleviate the
overfitting problem of the entire neural network.

The pooling operators are deterministic. They usually compute average or maximum
values and are called “averaging pooling” or “max pooling” respectively. These average
or maximum values are calculated at each layer location depending on the pooling
function employed. The pooling layer significantly reduces the network layers’ size
keeping themost significant spatial layer information, in an attempt to reduce overfitting.

ReLU Activation Layer
The activation layer uses differentiable operators to transform the weighted sum of the
inputs received by a neuron to outputs. There are several popular activation functions for
deep neural networks, such as Rectified linear unit (ReLU), sigmoid, hyperbolic tangent
(tanh), and Softmax [17].

The ReLU helps the neuronal network to learn fast and produce good performance
[18]. For a given element x, the function can be expressed as the maximum of that
element x and 0:

ReLU (x) = max(x, 0). (4)
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Dropout Layer
Dropout is an efficient way to prevent the neural network from overfitting by applying
a regularization technique [19]. A Dropout layer randomly sets some inputs to zero at
each update of the training circle, reducing the network’s capacity. All other inputs are
scaled up to 1 such that the sum of all inputs remains the same.

The dropout technique can be applied to most layered neural architectures, such as
models with convolutional layers, long short-term memory layers, recurrent layers, and
fully connected layers. Dropout can be applied to the input layer in some situations, but
it is never used with the output layer. The most advanced dropout technique specifies the
probability at which parameters perform the dropout procedure. A standard threshold
value for the retaining output is a probability of 0.5 for each hidden node of the layer,
which means that the network retains all values above this level. The role of the dropout
probability p can be explained with the following formula where each intermediate
activation of the hidden node H is replaced by the random variable H’:

H ′ =
{
0 with probability p
H
1−p otherwise.

(5)

After the dropout procedure, the network weights will become larger than before.
Therefore, the weights are usually scaled between zero and one before saving the model.

In summary, the CNN layers have the following functions: convolutional layers are
used for feature engineering, pooling layers reduce the dimensions of the feature maps,
activation layers normalize the feature maps by removing the negative values, output
layers produce the classification result, the dropout layer reduces the model overfitting,
and the fully connected layers compute a score of each class collected from convolutional
layers.

2.2 Pretrained Convolutional Neural Network

Several popular CNN architectures have been used as base models in research projects
and incorporated into modern machine learning packages. Most of them were originally
introduced in the context of the ImageNet competition, launched in 2010, and won the
first prize. ImageNet is the main forum for demonstrating advances in new supervised
learningmodels in the area of computer vision. The performance of the pretrainedmodels
varies depending on the architecture and the choices of hyperparameters. A common
transfer learning strategy consists of using pre-trained layers to construct a different
network that might have similarities to the first layers. Pretrained models are available
in many interesting configurations that can be grouped according to their architectural
similarities. One of the first successful models is the AlexNet network. Another group
of models is the Visual Geometry Group (VGG) networks, which were created from
repeating blocks of structural elements that were originally introduced in theVGGmodel
- a model built to detect geometric shapes. Another group is based on the GoogLeNet
and differs from the previously mentioned architectures in the use of “Inception” blocks,
which consist of parallel convolutional layers with filters of different sizes and max-
pooling layer whose outputs are concatenated. Other approaches include the Network
in Networks (NiN) which is based on small patch-wised convolutions, the Residual
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Networks (ResNet), which consist of different numbers of residual blocks and channels,
and the Densely connected networks (DenseNet) that extend further the concept of
residual blocks introduced in ResNet. An overview of the two models more relevant to
this work is presented next.

AlexNet
AlexNet has been named after the first name of his developer, Alex Krizhevsky, who
won the ImageNet competition in 2012 [20]. ImageNet competitors trained models on
one million images of one thousand object categories. The lowest layers of the model are
supposed to detect edges, texture, and colors, resembling the traditional image filters.
The hidden layers learn a compact representation of the image whose property can be
easily separated into the different data categories.

AlexNet requires an input image size of 224 × 224 pixels. The network was trained
using an image augmentation approach, such as image clipping, flipping, and usage of
color channels, which makes the model more robust, reducing overfitting. The AlexNet
consists of eight layers, includingfive convolutional, two fully connected hidden, and one
fully connected output layer. The network does not require manually designed features.
All the feature detection and extraction procedures are done automatically. The first
convolution filter (window) has a size of 11 × 11. It gives the possibility to capture
rather big objects. The second and third convolutional layers have reduced filter sizes of
5 × 5 and 3 × 3, respectively.

Furthermore, the network has max-pooling layers inserted after the first, second,
and fifth convolutional layers. All max-pooling layers have a window size of 3 × 3 and
slide through the layers with a stride of 2. AlexNet uses ReLU activation functions. The
network architecture is completed by two fully connected layers of 4096 output param-
eters (8192 parameters in total divided between dual GPUs). The model complexity is
controlled by adding the dropout layer to the fully connected layer.

VGG
A repeated block structure characterizes the VGG network architecture [21]. It can
be divided into two parts- integrated convolutional blocks and several fully connected
layers. Each building block includes a sequence of convolutional layers with the kernel
of size 3 × 3 and padding of 1 pixel, a max-pooling layer of size 2 × 2 and a stride of
2 pixels. The original VGG network (VGG-11) has five blocks of convolutions and 11
layers overall. The first two blocks of the network have one convolutional layer each,
and the following three blocks include two convolutional layers each. The number of
output channels of the first block is 64. This number doubles with each successive block
and reaches 512 in the final one. Like the AlexNet, the VGG uses the ReLU activation
function. Output parameters on the fully connected layer are equal to 4096, 4096 and
100 respectively. Compared to the AlexNet, the VGG-16 is computationally heavier.
The VGG network has several modifications with exceeded number of convolutional
layers, e.g., the VGG-16 and the VGG-19.

The two pretrained networks, AlexNet and VGG, are retrained and tested in the
current research, as discussed in Sect. 4.
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3 Imaging Data Repositories

Brain scans were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu) - a well-known repository of neuroimaging data.
The created datasets include T1-waited images of structural MRI and DTI data of frac-
tional anisotropy of 150 subjects. EMCI and NC patients were between 55 and 65 years
old, whilst AD patients were between 65 and 90 years old. Images were processed and
classified in Matlab using commodity hardware (Windows10 Enterprise, Intel (R) Core
(TM), i7–7700 CPU@ 3.60 GHz, 16 GB RAM).

4 Proposed Transfer Learning Pipeline

Initially, MRI and DTI datasets of 2D images from the ADNI3 database were created.
Images were taken from the same type of 3T scanners, Siemens Medical Solutions (see
details available on ADNI: http://adni.loni.usc.edu/methods/mri-tool/mri-acquisition).
For the MCI and NC classes, patient data from the age group 55 to 65 years old were
used to minimize the ageing effect on the imaging data. The MRI and DTI brain images
were normalized using the histogram stretching technique and resized to 256 × 256
pixels with RGB color channels as typically done for deep learning image processing
and classification. Then, the brain area in a single 2D imagewas segmented from the skull
and other surrounding tissues using region growing and double thresholding methods
(see Fig. 1). A set of 600 MRI and 600 DTI images (4 slices from each subject) were
obtained from the 150 subjects. Images were balanced across classes and were used for
binary and multiclass diagnosis.

(a)                            (b)

Fig. 1. (a) Segmented brain from MRI slice (b) Segmented brain from DTI slice.

The classification tasks were processed using transfer learning of two CNN archi-
tectures, the AlexNet and the VGG16, where the last three layers were replaced by a
fully connected layer, a Softmax activation layer and an output layer, which was config-
ured for binary or multiclass (three classes) classification depending on the type of the
diagnostic task. When the cross-entropy loss function is used for training, the outputs of

http://adni.loni.usc.edu/methods/mri-tool/mri-acquisition
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the Softmax layer can be interpreted as values of a probability distribution, which helps
to produce the diagnostic outcome.

The weights of the pretrained AlexNet and VGG16 are used as parameters when
adapting the pretrained models to the new task by retraining them using the MRI and
DTI sets. Figure 2 illustrates how transfer learning of these models was used for the
diagnosis of Mild Cognitive Impairment and Alzheimer’s Disease; notice that the last
three layers were replaced to adjust each model to the application domain.

Fig. 2. Deep transfer learning architectures for diagnosis of early cognitive decline and dementia.

In general, AlexNet has been found to provide a short training time,while theVGG16
has been proved able to produce low error rates. AlexNet and VGG16 were originally
configured and trained for 1000 classes using ImageNet data. AlexNet consists of 8
layers, has a size of 227MB and includes 61.0 million parameters. As mentioned in the
previous section, this network requires an input image size of 227 × 227 × 3 (227 wide,
227 high, 3 color channels). The size of VGG16 is much bigger, reaching 515MB. This
network has 16 layers, 138.0 million parameters, and requires an input image size of
224 × 224 × 3.

The following setup was used for retraining/finetuning both models on DTI andMRI
data. All brain images were resized to fit the two pretrained networks’ input sizes and
were fed into the models: 80% of the images were used for training, 10% for validation,
and an independent 10% of images were used for testing. Training parameters were set
as follows: N = 5 for the number of training epochs for each dataset; mini-batch size =
128; validation data frequency = 50. The stochastic gradient descent with momentum
(SGDM), with an initial learning rate = 0.0001, was used to train the models. All the
results below are presented for the test MRI and DTI image data.



Transfer Learning and Magnetic Resonance Imaging Techniques 61

5 Experiments and Results

Experiments were conducted with the adapted configurations of AlexNet and VGG16,
as described in Sect. 4, using DTI and MRI data. Four classification problems were
tested: three binary classification tasks (EMCI vs. NC, AD vs. NC, and AD vs. EMCI)
composed of 400 images each, and one multiclass task (AD vs EMCI vs NC) using 600
images with a balanced number of AD, EMCI, and NC subjects.

Table 1. Average classification performance (over 25 independent runs) on test DTI test data
using transfer learning with VGG16

Model Multiclass
AD, EMCI, NC

Binary
AD vs EMCI

Binary
EMCI vs NC

Binary
AD vs NC

Datasets DTI DTI DTI DTI

Acc 0.8438 ± 0.020 0.7400 ± 0.030 0.9100 ± 0.015 0.9975 ± 0.001

Precision 0.8600 ± 0.023 0.7450 ± 0.024 0.9200 ± 0.010 1.0000 ± 0.000

Recall 0.8329 ± 0.030 0.7376 ± 0.018 0.9020 ± 0.019 0.9950 ± 0.005

F-score 0.8462 ± 0.017 0.7413 ± 0.034 0.9109 ± 0.011 0.9975 ± 0.002

Specificity 0.7975 ± 0.018 0.7234 ± 0.031 0.9020 ± 0.012 0.9950 ± 0.003

MCC 0.6899 ± 0.021 0.4781 ± 0.019 0.8202 ± 0.019 0.9950 ± 0.005

AUROC 0.9766 ± 0.010 0.8581 ± 0.012 0.9700 ± 0.010 0.9998 ± 0.001

Table 2. Average classification performance (over 25 independent runs) on MRI test data using
transfer learning with VGG16

Model Multiclass
AD, EMCI, NC

Binary
AD vs EMCI

Binary
EMCI vs NC

Binary
AD vs NC

Datasets MRI MRI MRI MRI

Acc 0.8950 ± 0.034 0.7813 ± 0.015 0.9300 ± 0.016 0.9350 ± 0.020

Precision 0.8900 ± 0.028 0.7950 ± 0.025 0.9200 ± 0.020 0.9200 ± 0.028

Recall 0.8990 ± 0.025 0.7737 ± 0.027 0.9388 ± 0.020 0.9485 ± 0.019

F-score 0.8945 ± 0.017 0.7842 ± 0.019 0.9293 ± 0.025 0.9340 ± 0.020

Specificity 0.8641 ± 0.019 0.7626 ± 0.030 0.9388 ± 0.016 0.9604 ± 0.017

MCC 0.7922 ± 0.023 0.5630 ± 0.022 0.8602 ± 0.020 0.8710 ± 0.023

AUROC 0.9800 ± 0.011 0.8787 ± 0.012 0.9800 ± 0.010 0.9756 ± 0.013

Tables 1 and 2 summarize the models’ classification performance in testing, after
applying the transfer learning process described in Sect. 4 for theVGGnetwork. Twenty-
five independent runs were conducted by repeating the training process with a different
random seed in each case. The metrics shown include accuracy rate (Acc), precision,
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recall, specificity, the area under the curve, which plots parametrically the true positive
rate vs the false positive rate (AUC), and the F-score, which is commonly used for
evaluating the performance of machine learning models. It is defined as the harmonic
mean of the model’s Precision and Recall (see Tables 1 and 2). Lastly, the Matthews
correlation coefficient (MCC) is also reported as a metric of the quality of classifications
which measures the correlation of the true classes with the predicted labels for binary
classification tasks. MCC for multiclassifier was computed from averaging values of
true positive (TP), true negative (TN), false positive (FP) and false negative (FN) results.

The highest performance is achieved for the binary datasets that include the AD and
NC classes. Metrics for the diagnosis of EMCI vs. NC also reveal positive performance
with MRI test images diagnosed more accurately than DTI test data. Distinguishing
between AD and EMCI is a more challenging task, and the VGG models perform lower
compared to the other binary tasks with a better performance onMRI images. Multiclas-
sification accuracy varies from 84% for DTI data to 89.5% for MRI images. Figure 3
visualizes the classification quality as represented by the MCC for DTI and MRI data
for multi- and binary classes.

0

0.2

0.4

0.6

0.8

1

Multiclass AD vs EMCI EMCI vs NC AD vs NC

DTI MRI

Fig. 3. VGG-based transfer learning MCC score in multiclass and binary classification of DTI
and MRI data.

It is worth noticing that, as shown in Fig. 3, transfer learning with the VGG classifier
detects early cognitive decline with an MCC of 0.82 using DTI images and 0.86 when
MRI scans are used.

Tables 3 and 4 summarize classification performance using transfer learning with
the AlexNet.

As with the VGG classifier, the classification quality between images of the AD and
EMCI classes is lower compared to EMCI (EMCI vs NC) or AD (AD vs NC) class data.
The classification performance for the detection of early brain changes (EMCI vs NC)
can vary but without significant differences between DTI and MRI data. The diagnosis
of Alzheimer’s Disease using DTI data is significantly higher (99%) than using MRI
data (86%) for transfer learning with the AlexNet. Comparative results in terms of MCC
score in binary and multiclass classification of DTI and MRI data are shown in Fig. 4.
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Table 3. Average classification performance (over 25 independent runs) on test DTI data using
transfer learning with AlexNet

Model Multiclass
AD, EMCI, NC

Binary
AD vs EMCI

Binary
EMCI vs NC

Binary
AD vs NC

Datasets DTI DTI DTI DTI

Acc 0.7088 ± 0.025 0.6900 ± 0.023 0.8500 ± 0.025 0.9900 ± 0.010

Precision 0.7000 ± 0.034 0.7200 ± 0.027 0.8700 ± 0.019 0.9900 ± 0.010

Recall 0.7125 ± 0.020 0.6792 ± 0.025 0.8365 ± 0.025 0.9900 ± 0.010

F-score 0.7062 ± 0.018 0.6990 ± 0.020 0.8529 ± 0.250 0.9900 ± 0.010

Specificity 0.6731 ± 0.015 0.6800 ± 0.023 0.8163 ± 0.028 0.9895 ± 0.013

MCC 0.4128 ± 0.012 0.3801 ± 0.018 0.7008 ± 0.030 0.9799 ± 0.017

AUROC 0.9052 ± 0.018 0.8900 ± 0.012 0.9000 ± 0.015 0.9957 ± 0.014

Table 4. Average classification performance (over 25 independent runs) on test MRI data using
transfer learning with AlexNet

Model Multiclass
AD, EMCI, NC

Binary
AD vs EMCI

Binary
EMCI vs NC

Binary
AD vs NC

Datasets MRI MRI MRI MRI

Acc 0.7200 ± 0.035 0.7463 ± 0.030 0.8500 ± 0.018 0.8600 ± 0.025

Precision 0.7050 ± 0.024 0.7376 ± 0.029 0.8600 ± 0.015 0.8600 ± 0.028

Recall 0.7268 ± 0.027 0.7525 ± 0.025 0.8431 ± 0.016 0.8600 ± 0.030

F-score 0.7157 ± 0.027 0.7450 ± 0.025 0.8515 ± 0.019 0.8600 ± 0.025

Specificity 0.7292 ± 0.030 0.7738 ± 0.023 0.8571 ± 0.025 0.8163 ± 0.031

MCC 0.4404 ± 0.025 0.4943 ± 0.020 0.7001 ± 0.020 0.7218 ± 0.030

AUROC 0.8550 ± 0.016 0.8900 ± 0.014 0.9200 ± 0.011 0.9600 ± 0.010

Figure 4 shows that the highest MCC score for the diagnosis of AD vs NC (0.98) is
achieved with DTI data, whilst almost equal detection of early brain changes (EMCI vs
NC) is achieved with both types of data.

Comparing the performance of the two transfer learning models one can observe that
the highest performance of 89.50% (0.98 of AUC, 0.89 of F-score, 0.79 of MCC) in the
multiclassification task is achieved with VGG-16 on MRI data. The best results in the
binary classification tasks are obtained by VGG-16 nets using MRI data: AD vs EMCI
(78% of accuracy, 0.88 of AUC, 0.78 of F-score); EMCI vs NC (93% of accuracy, 0.98
of AUC, 0.93 of F-score). The AD vs NC task is diagnosed better by transfer learning
with the VGG-16 classifier when DTI data are used. AlexNet-based transfer learning
also performs well on DTI data.
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Fig. 4. AlexNet-based transfer learningMCC score in multiclass and binary classification of DTI
and MRI data.

It is worth noticing that the time required for training and testing differs significantly
between theAlexNet-based and theVGG-based transfer learning architectures (the same
commodity hardware was used for all experiments as described in Sect. 3). AlexNet-
based transfer learning required approximately 1.3 h for multiclassification and 0.85 h
for binary classification, whilst transfer learning with the VGG-16 took 15.7 h and 9.7
h respectively.

6 Discussion and Conclusions

Deep transfer learning is a promising technique for the detection of cognitive decline
when MRI data are used, as demonstrated by the experimental study. Nevertheless, DTI
data appear to give an advantage to deep transfer learning when used for the diagnosis
of Alzheimer’s disease.

The performance of the classifiers used in the research indicates the advantage of the
VGG-16-based models over the AlexNet ones using the transfer learning approach. For
example, MCC coefficients are 0.995 (DTI set) and 0.871 (MRI set) for the diagnosis
of AD with VGG-16 in the binary case, and 0.6899 (DTI set) and 0.7922 (MRI set)
in the multiclass case. Also, MCC score with retrained AlexNet are as follows: 0.9799
(DTI set) and 0.7218 (MRI set) for the diagnosis of AD, and 0.7008 (DTI set) and
0.7001 (MRI set) for the diagnosis of MCI. However, the advantage of the VGG-16
comes at a price since these models take 8 to 15 times longer to train and test than
AlexNet. The exploration of the additional CNNarchitectures, pretrained or created from
scratch, can benefit further diagnosis of cognitive decline. From a medical perspective,
the findings align with previous research that showed degeneration of the white matter of
the brain is connected to and correlated with gray matter atrophy in cases of Alzheimer’s
disease. Axons of neurons can be affected earlier than the neurons themselves and can
symbolize the early onset of the disease. DTI can detect these changes quicker than
MRI and become the method of choice in the early diagnosis of Alzheimer’s forms of
dementia. Thewhitematter in patientswithMCI is affected significantly less. Thus, in the
diagnosis of MCI and the transformation of some of its forms to AD, MRI technologies
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help computational models perform better compared to DTI. This can be explained by
the fact that cognitive decline in the case of MCI might have different morphological
grounds when the destructive process does not involve white matter only. The nature
of MCI is more complex and might have another, vascular reason, for amnestic and
cognitive decline. Only 30% of MCI progress to AD.

Lastly, there is potential to extend this research by focusing on longitudinal studies
inside image classes, based on the evaluation and analysis of the changes of WM tracts
during the progression of dementia by means of transfer learning with Convolutional
Neural Networks. In this context, exploring the use of additional biomarkers (features)
can potentially enhance the diagnosis of MCI using Deep Learning methods.

A List of Abbreviations

Alzheimer’s disease (AD)
Convolutional Neural Networks (CNNs)
Densely connected networks (DenseNet)
Diffusion Tensor Imaging (DTI)
Gray matter (GM)
Matthews Correlation Coefficient (MCC)
Mild Cognitive Impairment (MCI)
Network in Networks (NiN)
Normal Controls (NC)
Random forest (RF)
Rectified linear unit (ReLU)
Residual Networks (ResNet)
Support vector machines (SVM)
Support vector regression (SVR)
Visual Geometry Group (VGG)
White matter (WM)
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Abstract. Bacterial small non-coding RNAs (sRNAs) are ubiquitous
regulatory RNAs involved in controlling several cellular processes by
targeting multiple mRNAs. The large diversity of sRNAs in terms of
their length, sequence, and function poses a challenge for computational
sRNA prediction. There are several bacterial sRNA prediction tools. Most
of them use sequence-derived features or rely on phylogenetic conser-
vation. Recently, a new sRNA predictor (sRNARanking) showed that
using genomic context features outperformed methods based on sequence-
derived features. Here we comparatively assessed the effect of using
sequence-derived features together with genomic context features for com-
putational sRNA prediction and generated a new model sRNARanking
v2 with increased predictive performance in terms of the area under the
precision-recall curve (AUPRC). sRNARanking v2 is available at:
https://github.com/BioinformaticsLabAtMUN/sRNARanking.

Keywords: Bacterial sRNA · Bioinformatics · Machine learning

1 Background

Bacterial small non-coding RNAs (sRNAs) are ubiquitous regulators of gene
expression, mostly acting by antisense mechanisms on multiple target mRNAs
and, as a result of this, they create complex regulatory networks [10]. Usually,
putative sRNAs are identified using RNA sequencing (RNA-seq) technologies
and their existence is validated by Northern blot analysis. Computational tools
for the identification of sRNAs can aid in the filtering of false sRNAs detected by
RNA-seq. Due to sRNAs’ diversity in length and sequence [10], computational
sRNA identification remains a challenging task even though the first tools to
tackle this problem were developed decades ago [2,16].

There are two main approaches for sRNA identification: a) comparative-
genomics-based approaches which identifies sRNAs based on sequence sim-
ilarity between putative sRNAs and known sRNAs (e.g., [12,21]); and b)
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D. Chicco et al. (Eds.): CIBB 2021, LNBI 13483, pp. 67–78, 2022.
https://doi.org/10.1007/978-3-031-20837-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20837-9_6&domain=pdf
http://orcid.org/0000-0002-0643-2547
https://github.com/BioinformaticsLabAtMUN/sRNARanking
https://doi.org/10.1007/978-3-031-20837-9_6


68 M. Sorkhian et al.

sequence-derived methods which compute features (such as k-mer frequen-
cies, and free energy of secondary structure) from the sRNA sequence and
use these features for classification (e.g., [1,3,23]). sRNAs often show large
sequence differences between species or are present in only one species (i.e.,
they are species-specific) [24]. The proportion of species-specific sRNAs found
per bacterium varies from one-fifth to nearly four-fifths [4,7,8], and comparative
genomics approaches fail to identify these sRNAs. A recently developed app-
roach, sRNARanking [6], proposed a third approach: the use of genomic context
features for sRNA identification. Genomic context features encode the distance
of a putative sRNA to other annotated genomic entities such as promoters, ter-
minators, and open reading frames (ORFs).

In 2011, Lu et al. [16] assessed four comparative-genomics-based tools to
identify sRNAs and found that on average their recall was between 20% to
49% with precisions of 6% to 12%. In 2014, Arnedo et al [1] selected seven
existing methods to identify sRNAs, aggregated their predictions by applying
union and intersection operations, optimized these aggregations to maximize
specificity and sensitivity (recall), and combined the optimal aggregations by a
majority voting strategy. Arnedo et al’s proposed method (sRNA_OS) outper-
formed in terms of specificity and sensitivity the seven individual methods they
used and the methods evaluated by Lu et al. Barman et al. [3] proposed a sup-
port vector machine (SVM) classifier using trinucleotide frequencies as features
for sRNA identification. Their method outperformed Arnedo et al’s method in
terms of sensitivity, specificity, and accuracy. Tang et al. [23] investigated a vari-
ety of sequence-derived features and proposed two ensemble learning classifiers
for sRNA identification. Their method has comparable predictive performance
to that of Barman et al. In 2019, we proposed sRNARanking which is a random
forest classifier using genomic context features for sRNA identification. More
recently, Kumar et al. [14] presented PredsRNA which uses sequence-derived
and secondary structure features to calculate a score. This score is used to dis-
criminate between sRNAs and non-sRNA sequences.

sRNARanking substantially outperformed state-of-the-art methods, such as
sRNA_OS and Barman et al’s SVM; however, some questions remained such
as a) whether sequence-derived features could approximate the performance
obtained with genomic context features when the same training data was used,
and b) whether a higher predictive performance could be obtained by combin-
ing sequence-derived and genomic context features. Here we answer these two
questions. To do that we assessed the performance of random forest classifiers
trained on the same data using different feature sets. Additionally we compared
the performance of our best model, sRNARanking v2, on a multi-species dataset
[16] and on a Salmonella enterica serovar Typhimurium LT2 (SLT2) dataset [3]
with the performance of three other recent algorithms for the identification of
sRNAs: PresRAT [14], sRNARanking [6], and Barman et al’s SVM [3]. Our
results show that combining both sequence-derived features and genomic con-
text features generates the classifier with the best discriminative power in terms
of area under the precision-recall curve (AUPRC).
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2 Materials and Methods

2.1 Data

For hyper-parameter optimization and classifier selection, we use the data col-
lected by [6]. These data contain sRNAs of five different bacterial species;
namely, Escherichia coli, Mycobacterium tuberculosis, Rhodobacter capsulatus,
Salmonella enterica and Streptococcus pyogenes. Positive instances of sRNAs
are either verified by Northern blot analysis [8,13,15,18], homologous of known
sRNAs [8], or listed in RegulonDB [22] as supported by literature with experi-
mental evidence. Negative instances are randomly-selected genomic regions that
do not overlap with the positive instances. To better reflect that out of all possible
genomic regions only a few of them encode sRNAs, eight negative instances were
generated for each positive instance. Negative instances were generated using
bedtools [20] in three steps: 1) random genomic regions matching the length of
the positive instances were generated using bedtools shuffle, 2) random genomic
regions overlapping positive instances were filtered out using bedtools intersect,
and 3) the negative instances’ sequences were extracted from the corresponding
bacterial whole genome using bedtools getfasta. After filtering negative instances
overlapping with positive ones there is a positive to negative instances ratio of
roughly 1:7. In total, our training data contain 341 positive instances and 2,462
negative instances for a total of 2,803 instances. As we have an imbalanced data
set, we use performance metrics such as the Area Under the Precision-Recall
Curve (AUPRC) which are suitable for imbalanced data.

For validating the performance of the classifiers, we use a multiple species
dataset provided in [16] (henceforth referred to as Lu’s data) and a Salmonella
enterica serovar Typhimurium LT2 dataset provided in [3] (henceforth referred
to as SLT2 data). Positive instances of Lu’s data are provided in Supplemen-
tary Table S1 of [16] and positive instances of SLT2 data are in Table S6 of
[3]. Negative instances were randomly-selected genomic regions from the corre-
sponding genome that do not overlap with the positive instances (generated as
described above). Using genomic regions not known to encode an sRNA instead
of using artificial sequences gives a more conservative estimate of a classifier’s
performance and reflects more closely on how the model will be used by biol-
ogists. Eppenhof and Peña-Castillo showed that the performance of classifiers
trained on artificial sequences substantially drops when used to distinguish sRNA
sequences from real genomic sequences [6]. For Lu’s data, there were three nega-
tive instances for each of the 754 positive instances, for a total of 3,309 instances.
For the STL2 dataset, there were 10 negative instances for each of the 182 posi-
tive instances, for a total of 1986 instances. The intersection between the training
data and the validation data is the empty set.

2.2 Feature Sets

Tang et al. [23] compared 17 sequence-derived feature sets for sRNA identifi-
cation. The type of features evaluated by Tang et al. were spectrum profiles
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(k-mer frequencies), mismatch profiles, reverse-complement k-mer profiles, and
pseudo nucleotide composition. k-mer frequencies indicate the proportion of each
k-mer relative to all k-mers present in a sequence, where k indicates the num-
ber of nucleotides considered; e.g., 3-mer indicates tri-nucleotides. Mismatch
profiles are similar to k-mer frequencies but allow up to a certain number of
mismatches m (m < k) [23]. Pseudo nucleotide composition includes 2-mer
and 3-mer frequencies together with their physicochemical properties [23]. Mis-
match profiles and pseudo nucleotide composition have parameters that need
to be optimized. Additionally, Tang et al. found that random forest classifiers
trained with these two types of features (mismatch profiles and pseudo nucleotide
composition) do not outperform random forests trained with spectrum profiles
or reverse-complement k-mer profiles in terms of the area under the Receiver
Operating Characteristic curve (AUROC) [23]. Thus, we decided not to use
mismatch profiles and pseudo nucleotide composition. Among the k-mer fre-
quencies and reverse-complement k-mer frequencies, Tang et al’s results show
that the feature sets that generate the classifiers with the highest AUROC are
tetra-nucleotide frequencies (4-spectrum profile) and reverse-complement tetra-
nucleotide frequencies (i.e., the frequency of each tetra-nucleotide and its reverse
complement are added together) [23]. Here we assessed these two sets of fea-
tures: tetra-nucleotide frequencies (4-spectrum profile) and reverse-complement
tetra-nucleotide frequencies. There are 256 tetra-nucleotide frequencies and 136
reverse-complement tetra-nucleotide frequencies.

As in [6], the seven genomic context features used are:

1. free energy of the sRNA predicted secondary structure,
2. distance to the closest predicted upstream promoter site in the range of

[–1000, 0] nucleotides (if no promoter is predicted within this distance range
a value of –1000 is used),

3. distance to the closest downstream predicted Rho-independent terminator in
the range of [0, 1000] nucleotides (if no terminator is predicted within this
distance range a value of 1000 is used),

4. distance to the closest left ORF, which is in the range of (–∞, 0] nucleotides,
5. a Boolean value (0 or 1) indicating whether the sRNA is transcribed on the

same strand as its left ORF,
6. distance to the closest right ORF, which is in the range of [0, +∞) nucleotides

(nts), and
7. a Boolean value indicating whether the sRNA is transcribed on the same

strand as its right ORF.

A “left” ORF is an annotated ORF located at the 5’ end of a genomic sequence
on the forward strand or located at the 3’ end of a genomic sequence on the
reverse strand. A “right” ORF is an annotated ORF located at the 3’ end of a
genomic sequence on the forward strand or located at the 5’ end of a genomic
sequence on the reverse strand. Promoters are predicted using Promotech [5]
and terminators are predicted using TransTermHP [11].

We generated a model using each of the following feature sets: 1) tetra-
nucleotide frequencies, 2) reverse-complement tetra-nucleotide frequencies, 3)



Improving Bacterial sRNA Identification By Combining Genomic Context 71

genome context, 4) tetra-nucleotide frequencies plus genome context, and 5)
reverse-complement tetra-nucleotide frequencies plus genome context. To com-
pute these features per bacterium, we used sRNACharP [6].

2.3 Model Generation

Eppenhof and Peña-Castillo found that random forest outperformed adaptive
boosting, gradient boosting, logistic regression, and multilayer perceptron in the
task of identifying bacterial sRNAs [6]. Thus, we decided to use random forest
in this work.

Using grid-search stratified cross-validation on the training data, we opti-
mized the number of features to consider at each split node (max_features)
and the total number of trees in the forest (n_estimators). The values con-
sidered for max_features in the grid were ‘log2’, ‘sqrt’ and ‘0.33’; while the
values considered for n_estimators were 100, 300, 500, 600, and 700. For all
feature sets, the optimal max_features was the square root (‘sqrt’) of the total
number of available features and the optimal n_estimators was 500. All other
parameters were set to their default value.

Using the optimal values for max_features and n_estimators, we evaluated
the performance of each model using repeated 10-fold stratified cross-validation.
The number of repeats was five; i.e., each model was trained and tested 50
times. The model’s hyper-parameters with the highest mean average precision
(which approximates AUPRC) were used to generate our final model using all
the training data. All programs were run on Python 3.10.4 using the Python
libraries scikit-learn [19] version 1.0.2, pandas [17] version 1.4.2 and numpy [9]
version 1.22.3.

2.4 Comparative Assessment

AUPRC of our final model on Lu’s and SLT2 data was compared with that
of sRNARanking [6], PresRAT [14] and Barman et al’s SVM [3]. To gen-
erate predictions with Barman et al’s SVM method, we used the R code
and proposed best model provided by Barman et al’s to calculate the input
features and obtain the predictions. To generate PresRAT predictions, we
downloaded the PredsRNA software available at http://www.hpppi.iicb.res.in/
presrat/Download.html. PresRAT was unable to make a prediction for sequences
smaller than 30 nucleotides and sequences longer than 500 nucleotides. For these
sequences (174 and 124 in Lu’s and SLT2 data, respectively) we set the predicted
probability to be a bona fide sRNA to 0.5. To obtain sRNARanking predic-
tions, we used the R script provided by Eppenhof et al. [6]. All three methods
(sRNARanking, Barman et al’s SVM, and PresRat) were used as generated and
provided by their original authors (i.e., these methods were not re-trained on
our training data).

http://www.hpppi.iicb.res.in/presrat/Download.html
http://www.hpppi.iicb.res.in/presrat/Download.html
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Table 1. Cross-validation average-precision. Mean average-precision was obtained
using five repetions of 10-fold stratified cross-validation (i.e., 50 executions per fea-
ture set). Results are rounded up to two decimal places. GC refers to genomic context.
Highest mean average-precision are highlighted in bold.

Model Average AUPRC ±
standard deviation

Tetra-nucleotides 0.49 ± 0.08
Reverse-complement tetra-nucleotide frequencies 0.46 ± 0.07
GC 0.71 ± 0.07
GC plus tetra-nucleotide frequencies 0.78 ± 0.08
GC plus reverse-complement tetra-nucleotide frequencies 0.78 ± 0.08

3 Results and Discussion

3.1 Model Selection

The two models with the highest cross-validation average precision are those
generated with tetra-nucleotide frequencies plus genomic context features, and
reverse-complement tetra-nucleotide frequencies plus genomic context features
(Table 1). Using only sequence-derived features generates the models with the
lowest average precision. We selected as our final model the one generated with
the reverse-complement tetra-nucleotide frequencies plus genomic context fea-
tures (henceforth referred to as sRNARanking v2), as it has fewer features than
the model generated with the tetra-nucleotide frequencies plus genomic context
features (136 vs 256).

The final random forest classifier was trained on the whole training data with
the following hyper-parameters: max_features (number of features to consider
at each split) equal to ’sqrt’ (i.e., the number of features to consider is the square
root of the total number of available features), and n_estimators (number of
tree in the random forest) equal to 500. All other hyper-parameters were left to
the default value of the sklearn.ensemble.RandomForestClassifier function.

3.2 Variable Importance Analysis

We looked at which attributes are more important in our final random for-
est model by calculating the average decrease in accuracy caused by randomly
permuting each feature. To do this we used the scikit-learn function permuta-
tion_importance. Each feature was permuted ten times.

The five most important variables are all genomic context features; namely,
distance to the closest ORFs, distance to the closest terminator, distance to
the closest promoter, and free energy of the sRNA predicted secondary struc-
ture (Fig. 1). The average decrease in accuracy of the sequence-derived features
varies from zero to 0.0006 with a median value of zero and a mean value of
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Fig. 1. Variable importance by decrease in accuracy obtained by permuting each
feature ten times. The most important features are distances to the closest ORFs
(R_ORF_Dist and L_ORF_Dist), distance to the closest downstream terminator
(TerminatorDist), free energy of the sRNA predicted secondary structure (SS), and
distance to the closest upstream promoter (PromoterDist).

1.076 × 10−05. This indicates that sequence-derived features have a small pos-
itive effect on the accuracy of sRNARanking v2. As genomic context features
are the most important features, classification performance might be further
improved by adding other relevant genomic context features. As future work, we
will explore whether other genomic context features can be added to improve the
predictive performance of computational tools for the identification of sRNAs.

3.3 Comparative Assessment

We compared the performance of sRNARanking v2 in terms of AUPRC with
the AUPRC of PresRAT [14], Barman’s SVM model [3] and sRNARanking [6]
on two data sets: Lu’s (consisting of sequences from 14 bacteria) and SLT2.
No sequence on these two data sets was in the training data. sRNARanking v2
substantially outperformed PresRAT and Barman’s SVM model on both data
sets (Figs. 2 and 3). Additionally, sRNARanking v2 had an improvement of 0.04
and 0.13 in AUPRC on Lu’s data and SLT2 data, respectively, with respect to
sRNARanking’s AUPRC (Figs. 2 and 3). This indicates that indeed sequence-
derived features such as reverse-complement tetra-nucleotide frequencies improve
discriminative power on top of genomic context features.
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Fig. 2. Precision recall curves obtained on Lu’s data. The dashed horizontal line indi-
cates the performance of a random classifier.
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Fig. 3. Precision recall curves obtained on SLT2 data. The dashed horizontal line
indicates the performance of a random classifier.

We observed that the positive effect of adding sequences-derived features
was more marked in the SLT2 data than in Lu’s data. We hypothesized that
adding sequence-derived features had a larger beneficial effect on SLT2 data
because sequences on this data set have a more similar reverse-complement tetra-
nucleotide frequency distribution with those in the training data than some of



Improving Bacterial sRNA Identification By Combining Genomic Context 75

Fig. 4. Pairwise Spearman’s correlation coefficients between the average reverse-
complement tetra-nucleotide frequencies of bacteria in the validation data (rows) with
bacteria in the training data (columns). Value in the color key refers to the Spearman’s
correlation value.

the bacteria in Lu’s data. To explore this hypothesis, we obtained the aver-
age reverse-complement tetra-nucleotide frequencies per bacterium and calcu-
lated Spearman’s correlation coefficient between the reverse-complement tetra-
nucleotide frequencies per each pair of bacteria on the training data and the
validation data (Lu’s and SLT2 data sets) (Fig. 4). Positive pair-wise Spear-
man’s correlation values indicate that those two bacteria have similar reverse-
complement tetra-nucleotide frequency distribution. Negative pair-wise Spear-
man’s correlation values, for example, the one between L. monocytogenes and
M. tuberculosis (–0.48), indicate an inverse relationship. The bacterium with the
highest average Spearman’s correlation value (0.557) with those in the training
data was Salmonella enterica serovar Typhimurium LT2 (SLT2). The average
Spearman’s correlation value of the bacteria in Lu’s data with those in training
data goes from 0.028 (Staphylococcus aureus subsp. aureus N315) to 0.500 (E.
coli). This suggests that adding more diverse bacteria to the training data might
further improve the predictive performance of our model.

At a recall of 0.8, sRNARanking v2 achieves a precision of 0.76 and 0.63 in
Lu’s and SLT2 data sets, respectively (Figs. 2 and 3). In other words, sRNARank-
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ing v2 can identify 80% of actual sRNAs while still maintaining the number of
false positives relatively low (per 100 predicted sRNAs there will be less than 37
false positives). Even at a precision of 0.9, sRNARanking v2 can identify close to
half of the actual sRNAs. Thus, from a biologist’s point of view, sRNARanking
v2 predictions can be used to correctly inform further investigations. The results
obtained in Lu’s data, which contains sRNAs of 14 bacterial species, demon-
strate that sRNARanking v2 is suitable for a wide variety of bacterial species
and generalizes beyond the five bacteria used for training.

4 Conclusion

Here we have shown that genomic context features generate a classifier with
substantially higher predictive performance in terms of AUPRC than sequence-
derived features. Combining both types of features, genomic context and
sequence-derived, generates the classifier with the highest AUPRC. Addition-
ally, we have shown that training a classifier on multiple-species data produces a
classifier that can better identify sRNAs of a wide range of bacteria (as shown by
our results in Lu’s data set) than classifiers trained on single species data (e.g.,
Barman et al’s SVM). sRNARanking v2 can identify roughly half of the actual
sRNAs with a precision of 90%. We expect sRNARanking v2 will facilitate biol-
ogists to focus on bona fide sRNAs for further investigation. sRNARanking v2
is available at: https://github.com/BioinformaticsLabAtMUN/sRNARanking.
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Abstract. Multi-trait genome-wide association studies (GWAS) use
multi-variate statistical methods to identify associations between genetic
variants and multiple correlated traits simultaneously, and have higher
statistical power than independent univariate analyses of traits. Reverse
regression, where genotypes of genetic variants are regressed on multi-
ple traits simultaneously, has emerged as a promising approach to per-
form multi-trait GWAS in high-dimensional settings where the number
of traits exceeds the number of samples. We analyzed different machine
learning methods (ridge regression, naive Bayes/independent univariate,
random forests and support vector machines) for reverse regression in
multi-trait GWAS, using genotypes, gene expression data and ground-
truth transcriptional regulatory networks from the DREAM5 SysGen
Challenge and from a cross between two yeast strains to evaluate meth-
ods. We found that genotype prediction performance, in terms of root
mean squared error (RMSE), allowed to distinguish between genomic
regions with high and low transcriptional activity. Moreover, model fea-
ture coefficients correlated with the strength of association between vari-
ants and individual traits, and were predictive of true trans acting expres-
sion quantitative trait loci (trans-eQTL) target genes, with complemen-
tary findings across methods.

Keywords: Genome-wide association studies · Machine learning ·
Multi-trait GWAS · Gene expression · Genotype prediction

1 Background

Genome-wide association studies (GWAS) aim to find statistical associations
between genetic variants and traits of interest using data from a large num-
ber of individuals [1,2]. When multiple correlated traits are studied simultane-
ously, joint, multi-trait approaches can be more advantageous than studying the
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traits individually, due to increased power from taking into account cross-trait
covariances and reduced multiple-testing burden by performing a single test for
association to a set of traits [3–5].

The most commonly used multi-trait GWAS approaches are based on a multi-
variate analysis of variance (MANOVA) or canonical correlation analysis (CCA)
[3]. However, these are applicable only to studies where the number of traits
is relatively small, especially in comparison to the number of samples. When
analyzing the effects of genetic variants on molecular traits (gene or protein
expression levels, metabolite concentrations) or imaging features, we have to
deal with a large number, often an order of magnitude or more greater than
the sample size, of correlated traits simultaneously. For such studies, the stan-
dard procedure is still to conduct univariate linear regression or ANOVA tests
for each genetic variant against each trait separately. While efficient algorithms
exist to undertake this task [6–8], the massive multiple-testing problem results
in a significant loss of statistical power.

An alternative approach to multi-trait GWAS has been to reverse the func-
tional relation between genotypes and traits, and fit a multivariate regression
model that predicts genotypes from multiple traits simultaneously, instead of
the usual approach to regress traits on genotypes. The first study to do this
explicitly used logistic regression and showed a significant increase in power
compared to univariate methods, without being dependent on assuming nor-
mally distributed genotypes like MANOVA or CCA [9]. Although the method
as presented in [9] is still only valid when the number of traits is small, extending
multivariate regression methods to high-dimensional settings is straightforward.
Thus a recent study used L2-regularized linear regression of single nucleotide
polymorphisms (SNPs) on gene expression traits to identify trans-acting expres-
sion quantitative trait loci (trans-eQTLs), and showed that this approach aggre-
gates evidence from many small trans-effects while being unaffected by strong
expression correlations [10]. In a very different application domain, regularized
regression of SNP genotypes on longitudinal image phenotypes was used to iden-
tify time-dependent genetic associations with imaging phenotypes [11].

Despite these advances, several limitations and open questions remain unan-
swered in high-dimensional GWAS. Firstly, linear models search for the linear
combination of traits that is most strongly associated to the genetic variant, but
there is no a priori biological reason why only linear combinations should be con-
sidered. Secondly, while L2-regularization allows to deal with high-dimensional
traits, it does not address the problem of variable selection. For instance, in
the case of gene expression, we expect that trans-eQTLs are potentially associ-
ated with many, but not all genes. Indeed, in [10] a secondary set of univariate
tests is carried out to select genes associated to trans-eQTLs identified by the
initial multi-variate regression. Thirdly, a systematic biological validation and
comparison of the available methods is lacking.

Here we address these questions by considering a wider range of machine
learning methods (in particular, random forests (RF) and support vector
machines (SVM)) for reverse genotype prediction from gene expression traits.
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Hypothesizing that true trans-eQTL associations are mediated by transcrip-
tion regulatory networks, we use simulated data from the DREAM5 Systems
Genetics Challenge, and real data from 1,012 segregants of a cross between two
budding yeast strains [12] together with the YEASTRACT database of known
transcriptional interactions [13], to validate and compare these methods against
univariate linear correlation (naive bayes) and ridge regression.

2 Methods

2.1 Reverse Genotype and Trans-eQTL Prediction

For genotype prediction using machine learning models, the expression values
were treated as explanatory variables whereas the genotype value of a variant
was treated as a response variable. The prediction performance was measured
by computing the root mean squared error (RMSE) between the predicted and
the actual genotype value of variants.

Trans-eQTL target prediction was done using weights assigned to the fea-
tures by the machine learning methods: feature importance in case of random
forest regression (RFR), and coefficients for support vector regression (SVR)
and ridge regression (RR). We computed the area under the receiver operating
characteristic (AUROC) curve to measure prediction performance by comparing
the weights against the true targets in the ground truth for each variant.

2.2 Datasets

Simulated Data. The simulated data for our experiments was obtained from
DREAM5 Systems Genetic Challenge A1, generated by the SysGenSIM software
[14]. The DREAM data consists of simulated genotype and transcriptome data
of synthetic gene regulatory networks. The dataset consists of 15 sub-datasets,
where 5 different networks are provided and for each network 100, 300 and
999 samples are simulated. Every sub-dataset contains 1000 genes. We used the
networks with 999 samples only.

In the DREAM data, each genetic variant is associated to a unique causal
gene that mediates its effect. We therefore defined ground-truth trans-eQTL
targets for each variant as the causal gene’s direct targets in the ground-truth
network.

In the DREAM data 25% of the variants acted in cis, meaning they affected
expression of their causal gene directly. The remaining 75% of the variants acted
in trans. Since the identities of the cis and trans eQTLs are unknown, we com-
puted the P-values of genotype-gene expression associations between matching
variant-gene pairs using Pearson correlation and selected all genes with P-values
less than 1/750 to identify cis-acting eQTLs.

1 https://www.synapse.org/#!Synapse:syn2820440/wiki/.

https://www.synapse.org/#!Synapse:syn2820440/wiki/
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Yeast Data. The yeast data used in this paper was obtained from [12]. The
expression data contains expression values for 5,720 genes in 1,012 segregants.
The genotype data consists of binary genotype values for 42,052 genetic markers
in the same 1,012 segregants.

Batch and optical density (OD) effects, as given by the covariates provided
in [12], were removed from the expression data using categorical regression, as
implemented in the statsmodels python package. The expression data was then
normalized to have zero mean and unit standard deviation.

To match variants to genes, we considered the list of genome-wide significant
eQTLs provided by [12] whose confidence interval (of variable size) overlapped
with an interval covering a gene plus 1,000 bp upstream and 200 bp downstream
of the gene position. This resulted in a list of 2,884 genes and for each of these
genes we defined its matching variant as the most strongly associated variant
from the list.

Networks of known transciptional regulatory interactions in yeast (S. cere-
visiae) were obtained from the YEASTRACT (Yeast Search for Transcrip-
tional Regulators And Consensus Tracking) [13]. Regulation matrices were also
obtained from YEASTRACT2. We retrieved the ground-truth matrix containing
all reported interactions of the type DNA binding and expression evidence. Self
regulation was removed from the ground-truths. The Ensembl database (release
83, December 2015) [15] was used to map gene names to their identifiers. After
overlaying the ground-truth with the set of genes with matching cis-eQTL, a
ground-truth network of 80 transcription factors (TFs) with matching cis-eQTL
and 3,394 target genes was obtained.

The expression dataset was then filtered to contain only the genes present
in the ground truth network, and ground-truth trans-eQTL sets for the 80 TF-
associated cis-eQTL genetic variants were defined as direct targets of the corre-
sponding TFs in the ground-truth network.

2.3 Experimental Settings

In all sets of experiments we used 5-fold cross-validation. Ridge Regression (RR),
Random Forest Regression (RFR), Support Vector Regression (SVR), and Naive
Bayes (NB) were implemented using the Python library scikit-learn. For RR, the
regularization strength (α) was set to 100 and other parameters were set to their
defaults. For RR and SVR, the default parameters were used. For NB, we used
the Gaussian Naive Bayes from scikit-learn library. For trans-eQTL predictions,
univariate linear correlation was also used to compare with the regression meth-
ods mentioned above.

Feature Selection. For each method we took the absolute values of the feature
importances/coefficients, scaled so that their sum equals to 1, and sorted these in
descending order. These scaled values represent the relative contribution of each

2 http://www.yeastract.com/formregmatrix.php.

http://www.yeastract.com/formregmatrix.php
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Fig. 1. RMSE values for genotype prediction on DREAM5 simulated data. (A) Box-
plots show the distribution of the RMSE values for all variants (blue) and for trans-
acting-only variants (red) for random forest regression (RFR), support vector regression
(SVR), ridge regression (RR), and naive Bayes (NB). (B) Scatter plots show RMSE
values of RFR, SVR, and NB vs RR for all variants. The data shown are for DREAM
Network 1. The results for Network 2–5 are shown in Supp. Figs. S1–S4. (Color figure
online)

feature to the prediction of each variant. We selected the top-scoring features
which together contributed 50% of the feature weight sum.

2.4 Code and Supplementary Information

The scripts to reproduce the analysis and the supplementary information are
available at https://github.com/michoel-lab/Reverse-Pred-GWAS.

3 Results

3.1 Reverse Genotype Prediction and Trans-EQTL Analysis in
Simulated Data

In the DREAM5 Systems Genetics Challenge, binary genotypes and steady-state
gene expression data for 1,000 genes were simulated for a population of 999 indi-
viduals, based on a gene network topology and the individuals’ genotypes at a
set of genome-wide DNA variants, using non-linear ordinary differential equa-
tions (ODEs) [14]. In the simulations, there was a one-to-one mapping between
genetic variants and genes, such that the effects of each variant are mediated by
exactly one causal gene. 25% of the variants acted in cis, meaning they affected
expression of their causal gene, but not the value of any of the parameters in the
ODE model. The remaining 75% of the variants acted in trans, meaning they
did not affect expression of their causal gene, but did affect the transcription
rate of the causal gene’s targets in the network. Simulated data for five networks
are available.

https://github.com/michoel-lab/Reverse-Pred-GWAS
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Fig. 2. Scatter plots of genotype RMSE values on DREAM5 simulated data against
the number of selected model features (A), the number of true trans-eQTL targets in
the ground-truth network (B), and the genotype class balance (frequency of the zero
class) (C), for random forest regression (RFR), support vector regression (SVR), ridge
regression (RR), and naive Bayes (NB). The data shown are for DREAM Network 1.
The results for Network 2–5 are shown in Supp. Figs. S5–S8.

Genotype Prediction Accuracy Varies Across Genetic Variants. We
trained models to predict the genotypes for variants whose causal gene had at
least one target in the ground-truth network (covering between 491–644 genes
depending on the network/dataset) using the expression data from all 1,000
genes as predictors, using Random Forest Regression (RFR), Support Vector
Regression (SVR), Ridge Regression (RR) and Naive Bayes classification (NB).
RMSE was then measured for each predicted variant in the test data. Mean
performance across the five train-test folds is reported here.

RFR achieved the best prediction performance (lowest RMSE) overall
(RMSE ∼0.3–0.5). RR achieved RMSEs in the range of ∼0.6–0.8. In contrast to
RFR and RR, the RMSE varied widely for SVR and NB (∼0.3–0.9) (Fig. 1A).
We did not observe a significant change in the distribution of RMSE values for
all the variants versus keeping only trans-acting variants (Fig. 1A), i.e. cis-acting
variants are not significantly easier to predict (by virtue of having a highly corre-
lated cis-gene) than variants that only have trans-associated genes. While RMSE
values are correlated between the methods (Fig. 1B), the correlation is imperfect
(with the exception of SVR-RR), such that there is considerable variation in the
RMSE-based ranking of variants between the methods.

Taken together these result show that prediction performance varies across
genetic variants within each method (i.e. variants can be ranked according to
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their RMSE) and that RFR can be preferred over the others in terms of average
prediction performance, but with considerable variation in relative performance
across methods for individual variants.

Next, we compared the genotype prediction performance for the different
methods with the number of features contributing upto 50% of the total sum of
feature weights (cf. Methods). In general, variants that were more predictable
had models with fewer features, and vice versa, irrespective of the prediction
method used (Fig. 2A). On the other hand, we did not observe any significant
relation between the prediction performance and the number of true targets in
the ground truth network (Fig. 2B). We also tested whether RMSE was influ-
enced by the genotype class imbalance. This was not the case for the regression-
based methods used here (Fig. 2C).

Fig. 3. A. Bar plots show the proportion of variants with trans-eQTL target prediction
AUROC > 0.7 (blue) and > 0.8 (red) in DREAM5 simulated data. B. Bar plots show
the number of variants with trans-eQTL target prediction AUROC ≥ 0.6 (blue) and
≥ 0.7 (red) in yeast data. Genes on the same chromosome were excluded as predictors
for each SNP. (Color figure online)

Feature Importances are Predictive of True Trans-EQTL Associations.
To evaluate the ability of reverse genotype prediction methods to identify true
trans-eQTL targets of a given variant, we defined true trans associations as direct
target genes of a variant’s causal gene in the ground-truth network and used
feature importances/coefficients in the genotype prediction model to predict how
likely a gene is to be a trans-eQTL of a given variant (see Methods). Performance
was measured using the area under the receiver operating curve (AUROC).

For all methods, more than ∼55%, resp. ∼65% of variants with at least
one trans-eQTL target in the ground-truth network had AUROC> 0.8, resp.
0.7, with univariate linear correlation and ridge regression performing somewhat
better than random forest and SVR (Fig. 3A). Ridge regression and univariate
correlation methods also had less variation in terms of AUROCs when com-
pared with RFR and SVR, and no significant difference in terms of AUROC
was observed when using all the variants versus using only trans-acting variants
(Fig. 4A). Interestingly, the variants for which high AUROCs were obtained dif-
fered between RFR, RR and univariate correlation methods, whereas RR and
SVR obtained nearly identical performance on all variants. (Fig. 4B).
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Fig. 4. Trans-eQTL target prediction performance on DREAM5 simulated data. (A)
Boxplots show the distribution of AUROC values for all variants (blue) and for trans-
acting-only variants (red) for random forest regression (RFR), support vector regression
(SVR), ridge regression (RR), and univariate correlation (Corr). (B) Scatter plots show
AUROC values of classification methods RFR, SVR, and Corr vs RR for all variants.
The data shown are for DREAM Network 1. The results for Network 2–5 are shown in
Supp. Figs. S10–S13. (Color figure online)

Fig. 5. Scatter plots of trans-eQTL target prediction performance (AUROC) on
DREAM5 simulated data against the number of selected model features (A), the num-
ber of true trans-eQTL targets in the ground-truth network (B), and the genotype class
balance (frequency of the zero class) (C), for random forest regression (RFR), support
vector regression (SVR), ridge regression (RR), and univariate correlation/naive Bayes
(NB). The data shown are for DREAM Network 1. The results for Network 2–5 are
shown in Supp. Figs. S14–S17.
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Fig. 6. Scatter plots show trans-eQTL prediction accuracy (AUROC) vs genotype
prediction performance (RMSE) for random forest regression (RFR), support vec-
tor regression (SVR), ridge regression (RR), and univariate correlation/naive Bayes
(NB/Corr). (A). For DREAM5 simulated data. (B). For yeast data where genes on
the same chromosome were excluded as predictors for each SNP

When compared to potential explanatory factors, no significant relation
was observed between AUROC values and number of selected model features
(Fig. 5A), number of ground-truth targets (Fig. 5B), or the genotype class bal-
ance (Fig. 5C).

Genotype and Trans-EQTL Prediction Performance Do Not Corre-
late. Finally we tested whether genotype prediction accuracy can be used as
a proxy for trans-eQTL prediction accuracy, that is, in the absence of ground-
truth networks, can we use genotype prediction accuracy to filter variants whose
model feature weights are indicative of true trans-eQTL targets? However, we
did not observe any correlation between the genotype prediction performance
and trans-eQTL target prediction performance for any of the methods (Fig. 6A)

3.2 Reverse Genotype Prediction and Trans-EQTL Analysis in
Yeast

In the next set of experiments we repeated the same analysis on yeast dataset.
Compared to the simulated data, the yeast data differs in two important aspects.
First, ground-truth target information is available for a small set of transcription
factors (TFs) only. Secondly, we have no knowledge of the causal gene(s) corre-
sponding to each variant, and need to rely on a local cis-association between a
variant and a TF to define a ground-truth set of trans-eQTL targets to a variant
(cf. Methods).

Genotype Prediction Accuracy Varies Across Genetic Variants. Geno-
type prediction performance for the yeast data also varied across genetic variants.
Similar to DREAM data RFR achieved lowest RMSE values in the yeast data
as well (Fig. 7A). We tested whether prediction performance may be explained
by local cis-associations by removing genes on the same chromosome as the
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Fig. 7. Genotype prediction performance on yeast data. Genotype prediction perfor-
mance on yeast data. (A) Boxplots show the distribution of the performance for all
variants using all genes (blue) and excluding genes on the same chromosome as the vari-
ant (red) as predictors, for random forest regression (RFR), support vector regression
(SVR), ridge regression (RR), and naive Bayes (NB). (B) Scatter plots show RMSE
values of classification methods RFR, SVR, and NB vs RR for all variants. Genes on
the same chromosome were excluded as predictors for each SNP. (Color figure online)

Fig. 8. Scatter plots of genotype prediction performance on yeast data against the
number of selected model features (A), the number of true trans-eQTL targets in
the ground-truth network (B) and the genotype class balance (frequency of the zero
class) (C), for random forest regression (RFR), support vector regression (SVR), ridge
regression (RR), and naive Bayes (NB). Genes on the same chromosome were excluded
as predictors for each SNP.
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test variant from the list of predictors. In this case we did observe that RMSE
increased markedly (i.e. prediction performance decreased) when removing local
genes, except for NB, and that after removing local genes, RR, RFR, and SVR
have similar average prediction performance (Fig. 7A).

Correlations of RMSEs between methods showed a similar pattern as in the
simulated data, with RR and SVR RMSEs being particularly strongly correlated
(Fig. 7B).

As in the simulated data, genotype prediction performance decreased (i.e.
RMSE increased) with increasing number of model features (Fig. 8A), but did
not depend significantly on the number of true targets (Fig. 8B) or genotype
class balance (Fig. 8C).

Next we tested whether feature importance weights were predictive of true
trans-eQTL associations, defined as genes that were bound by and differentially
expressed upon perturbation of a TF for which a given variant is a cis-eQTL (cf.
Methods). In this case, feature importances were only modestly predictive, with
20–30%, resp. 10–15%, of TF cis-eQTLs obtaining AUROCs > 0.6, resp. > 0.7,
and, as in the simulated data, there were fewer variants with high AUROC for
RFR, compared to the other methods (Fig. 3B).

We confirmed that the distribution of AUROC values was not affected by
removing genes on the same chromosome as a variant of interest from the list of
predictors (Fig. 9A). Furthermore, the AUROC values showed no relation with
the number of selected features, the number of true targets, or the genotype
class balance (Fig. 10).

Although AUROCs generally correlated between methods (Fig. 9B), in line
with the correlation of RMSE values, AUROC values tended to be systematically
higher for SVR and RR compared to RFR and univariate correlations. Interest-
ingly, univariate correlation and SVR share the same number of TF eQTLs with
AUROC > 0.70 (10), only 5 were common and each method had five TFs not
found by the other method (Supp. Figs. S22).

Genotype and Trans-EQTL Prediction Performance Do Not Corre-
late. Similar to the DREAM data we again observed poor correlation between
genotype and trans-eQTL prediction performance (Fig. 6B).

Feature Selection in Random Forest Produces a Map of Transcrip-
tional Hotspots. Transcriptional hotspots are regions of the genome associ-
ated with widespread changes in gene expression [12]. We learned prediction
models for all 2,884 SNPs in the yeast genome that were associated with local
changes in gene expression and plotted the RMSE for each predicted SNP against
its genome position. RFR showed a wide variation in RMSE values for SNPs,
across the whole genome, allowing to delineate genomic ranges with high and
low regulatory activity. Whereas RR and SVR showed much less variation, and
did not allow to separate high and low activity regions on most chromosomes
(Fig. 11). Interestingly, the regions detected by RFR overlapped only partially
with traditional hotspot maps based on univariate correlations (Supp. Fig. S23),
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Fig. 9. Trans-eQTL target prediction performance on yeast data. (A) Boxplots show
the distribution of AUROC values using all genes (blue) and excluding genes on the
same chromosome (red) as predictors, for random forest regression (RFR), support
vector regression (SVM), ridge regression (RR), and univariate correlation (Corr). (B)
Scatter plots show AUROC values of classification methods RFR, SVR, and univariate
correlation (Corr) vs RR for all variants. Genes on the same chromosome were excluded
as predictors for each SNP. (Color figure online)

Fig. 10. Scatter plots of trans-eQTL target prediction performance (AUROC) on yeast
data against the number of selected model features (A), the number of true trans-eQTL
targets in the ground-truth network (B) and the genotype class balance (frequency of
the zero class) (C), for random forest regression (RFR), support vector regression
(SVR), ridge regression (RR), and univariate correlation (Corr). Genes on the same
chromosome were excluded as predictors for each SNP.
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Fig. 11. Expression hotspot maps showing the negative log transformed RMSE values
vs genome position for 2884 SNPs in the yeast genome, for random forest (RF, top),
ridge regression (Ridge, middle), and support vector regression (SVR, bottom). Genes
on the same chromosome were excluded as predictors for each SNP.

again suggesting that non-linear methods like random forest may detect biolog-
ical signals missed by traditional methods.

4 Discussion

In this study we analyzed the use of machine learning methods for genotype pre-
diction in high-dimensional multi-trait GWAS. The basic hypotheses of reverse
genotype prediction from multiple trait combinations are that variants whose
genotypes can be predicted with higher accuracy are more likely to have a true
effect on a large number of the measured traits, and that feature importances
or coefficients in the trained models indicate the strength of association between
variants and individual traits. However, existing studies have not presented con-
clusive evidence for these hypotheses, because they only performed downstream
analysis for the highest scoring variants, and only considered linear models.
Here we performed an in-depth validation of various machine learning methods
for reverse genotype prediction in the context of trans-eQTL analysis, including
univariate, ridge regression, random forest, and support vector regression, using
both simulated and real transcriptional regulatory networks to define ground-
truth sets of trans-eQTL target sets.

Our results support the basic hypotheses only partially. In particular,
although genotype prediction performance indeed varied across genetic variants,
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there was no relation between genotype prediction performance and the number
of gene expression traits affected by a variant, nor with the accuracy of predict-
ing individual trans-eQTL target genes from model feature importances or coef-
ficients. This is important, because it shows that in the absence of ground-truth
information, we cannot use RMSE to select variants for which model features
will overlap best with true trans-associated genes. This was further illustrated
by the fact that random forest regression performed best at the genotype pre-
diction task, but performed worst on the trans-eQTL prediction task. The only
systematic relation we observed, both in the simulated and the yeast data, was
a negative correlation between genotype prediction performance and number of
model features, suggesting that if a variant can be predicted well, it can be done
with a relatively small number of traits.

While RMSE cannot be used to select variants with good trans-eQTL predic-
tion performance, we did observe that model feature importances or coefficients
were generally predictive of how likely a given gene is a true trans-eQTL target
of a given variant. Predictive performance was very strong in simulated data,
with more than 75% of variants obtaining an AUROC greater than 80%, but
also in yeast, 15–20% of variants obtained an AUROC greater than 70%.

An important goal of multi-trait GWAS is to distinguish between variants
that are associated with high vs low number of traits. Interestingly, we found
that only random forest, but not SVR or ridge regression, resulted in models with
a wide variation in the number of selected features across variants. However this
involved use of a simple, heuristic strategy for feature selection, and further
research to finetune this result will be required.

One aspect of multi-trait GWAS not considered in this study is statistical
inference. For linear methods, the null distribution of the model fit score under
the assumption of no association can be approximated analytically to obtain a
p-value for the significance of any observed score. Non-linear methods such as
random forest or SVM require a large number of permutations for each variant
separately to obtain a p-value, which becomes computationally infeasible for a
large number of variants. However approximate methods may yet overcome this
hurdle [16]. More importantly though, since our results indicate that model fit
is not related to either the strength or extent of true biological relations, the
relevance of performing statistical inference on this test statistic is in doubt.

Another area of future research concerns the generalization to other organ-
isms, in particular human. We focused on realistic simulated data from the
DREAM project and data from the eukaryotic model organism yeast, due to
the availability of data from a study with extraordinarily large sample size and
extensive, high-quality ground-truth transcriptional interaction data. The avail-
ability of ground-truth associations also motivated our choice of studying gene
expression traits. It will be of interest to expand this work to other types of traits,
including protein and metabolite levels, as well as high-dimensional phenotypic
traits such as images.

In summary, feature importance weights in machine learning models that
predict genotypes from high-dimensional sets of traits identify biologically



Multi-trait GWAS By Reverse Prediction 93

relevant variant-trait associations, but comparing the relative importance of vari-
ants through these models in a GWAS-like manner using a single test statistic
remains an open challenge.
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Abstract. Large annotated cell line collections have been proven to
enable the prediction of drug response in the pre-clinical setting.
We present an enhancement of Non-Negative Matrix Tri-Factorization
method, which allows the integration of different data types for the pre-
diction of missing associations. To test our method we retrieved a dataset
from the Cancer Cell Line Encyclopedia (CCLE), containing the connec-
tions among cell lines and drugs by means of their IC50 values, and we
integrated it by linking cell lines to their respective tissue of origin and
genomic profile. We performed two different kind of experiments: a) pre-
diction of missing values in the matrix, b) prediction of the complete
drug profile of a new cell line, demonstrating the validity of the method
in both scenarios.

Keywords: Non-Negative Matrix Tri-Factorization · Drug sensitivity ·
Data integration · Drug response prediction

1 Background

Cancer is a highly complex disease due to the enormous level of both intra- and
inter-tumor heterogeneity that often displays. Indeed, several tumors of the same
organ may vary significantly in important tumor-associated attributes. This is
the reason why patients with the same diagnosis can respond in different ways to
the same therapy, and this represents the main obstacle to effective treatments
[1]. For this reason, it becomes essential to be able to predict if a patient is
sensitive or resistant to a specific drug before the administration. Being sensi-
tive to a drug means that the drug manages to have the desired effect on the
person, with tolerable side effects; on the contrary, drug resistance represents
the inability of the active principle to perform its function. The parameter most
extensively used to characterize the response and sensitivity to a drug is the
half-maximal inhibitory concentration (IC50), that is the concentration needed
to inhibit the 50% of the targeted biological process or component [2]. In partic-
ular, in the field of anticancer therapies, the IC50 represents the concentration
of drugs needed to kill half of the cells in vitro. Since experimental approaches
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for the estimation of IC50 values are costly and time-consuming, researchers are
increasingly putting efforts into developing computer-based methods for predict-
ing the responsiveness of a patient to a drug. This was made possible thanks to
the huge amount of biological, medical and chemical data that have started to
be grouped and made publicly available through several tools and databases.
In particular, in the context of drug sensitivity, we can certainly cite the Can-
cer Cell Line Encyclopedia (CCLE) [3] and the Genomics of Drug Sensitivity
in Cancer (GDSC) [4] projects, which succeeded in collecting the genetic and
pharmacological profile of hundreds of cancer cell lines.

The work of Berrettina et al. [3] can be also considered one of the pioneering
machine learning methods proposed for the prediction of sensitive or resistant
drug response of a cell line. It exploited CCLE data for a predictive model based
on the näıve Bayes classifier. Subsequently, Dong et al. [5] used gene expression
features and drug sensitivity data to build SVM-RFE, a wrapper method that
firstly performs a feature selection operation and successively uses top features to
fit the Support Vector Machine, a supervised learning algorithm for classification.
HNMDRP, a network-based method which takes into consideration cell lines,
drugs and targets relationships, was then proposed by Zhang et al. [6]. Xu et
al. [7] developed the AutoBorutaRF model, which performs a two step feature
selection by means of a combination of an autoencoder artificial neural network
and the Boruta algorithm, and then uses random forest for classification. More
recently, Choi et al. [8] presented a deep neural network model, RefDNN, which
pairs molecular structure similarity profiles of drugs and gene expression data of
cell lines. In the meanwhile, we can also find DSPLMF, a prediction approach
presented by Emdadi et al. [9] based on logistic matrix factorization which allows
to compute the probability of cell lines to be sensitive to a drug and thus to
classify drug response. To improve the accuracy of the method, gene expression
profiles, copy number alterations and single-nucleotide mutation for cell line
similarity and chemical structures for drug similarity have been incorporated.

In this scenario fits our work, which has the purpose to address the issue of
predicting the sensitivity of a cell line to a drug with a network-based approach
based on Non-negative Matrix Tri-Factorization (NMTF), an algorithm designed
to factorize an input positive-defined matrix (such as an association matrix of a
bipartite graph) in three matrices of non-negative elements. The decomposition
has proven to be useful also to predict missing associations. One of the main
advantages of NMTF is the possibility to expand the bipartite network inte-
grating several information and thus forming a multi-partite graph; the NMTF
algorithm is then used to decompose each of the association matrices, in such a
way that the decomposition of each matrix is influenced by the decomposition
of the others [10]. The NMTF approach has been used in several domains and
in particular it demonstrated to have elevated performances in both finding new
indications for approved drugs and new synergistic drug pairs, in particular when
including several heterogeneous data types [10,11]. The main focus of this work
is to adapt the model to predict the sensitivity of a cancer cell line to a set of
anti-tumor drugs integrating the associations between cell lines and drugs with
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tissue and gene expression-related data. In the context of precision medicine, the
prediction of drug response and sensitivity based on genetic features is becoming
of fundamental relevance to speed the emergence of ‘personalized’ therapeutic
regimens. Being able to determine a priori to which drugs a patient, with its
genomic features, is sensitive or resistant would save a lot of precious time and
improve the efficiency of the therapy.

2 Material and Methods

2.1 Datasets

For our experiments, we used the dataset retrieved from the Cancer Cell Line
Encyclopedia (CCLE) [3] which comprised the association among 1065 cell lines
and 266 antitumor drugs, measured in terms of IC50. In light of the presence of
a large amount of missing values in the dataset, we firstly performed a filtering
operation that allowed us to reduce them from 20% to 2%, by eliminating both
cell lines and drugs with more than the 50% of missing data. Subsequently, we
binarized the matrix: since the IC50 is representative of the response of a cell
line to a drug, we considered a cell line to be sensitive to a drug if the corre-
sponding IC50 value was lower than a threshold and, on the contrary, a cell line
was considered resistant if that value was higher. As threshold for classification
we selected the median of IC50 values of each drug, considering all the cell lines.
From CCLE we have been able to retrieve also further datasets containing addi-
tional information; in particular, we took into consideration tissues of origin of
the tumors and the gene expression profiles quantified by RNA-seq experiments.
After processing and integrating all these data, as described in detail in Sect. 2.2,
we obtained a final dataset containing 379 cell lines and 202 drugs.

2.2 Model

In order to integrate all the available information, we modeled the set of cell
lines C, the set of drugs D, the set of tissues T and the set of genes G as the
multipartite network in Fig. 1, where each cell line is connected to the drugs to
which it is sensitive, the tissue of origin and a set of genes, with the weight of
the edge representing the expression of the gene in the cell line.

Such network is equivalent to the set of its association matrices: a binary
matrix XCD connecting cell lines to drugs, a binary matrix XTC connecting cell
lines to tissues, and a real matrix XGC connecting cell lines to genes. We built
the three matrices as follows:

– we represented the IC50 data as a matrix X ∈ R
|C|×|D|
≥0 , being R≥0 = R≥0 ∪

{+∞}, such that X[i, j] indicates the IC50 value of the j-th drug on the i-th
cell line if a measure is available, or +∞ otherwise. We transform X into the
binary matrix XCD ∈ {0, 1}|C|×|D|, such that:

XCD[i, j] =

{
1 if X[i, j] < Mj

0 otherwise
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Fig. 1. Multipartite graph connecting Tissues, Gene expression, Cell lines and Drugs.
The three association matrices of the graph are also indicated.

where Mj is the median of the IC50 values for the j-th drug that are different
from +∞. This step is necessary as different drugs work on different scale of
dosage. In other words, we define the i-th cell line to be sensitive to the j-th
drug if the IC50 value X[i, j] is lower than the median for that particular
drug;

– we built the matrix XTC ∈ {0, 1}|T |×|C| that connects cell lines to tissues as:

XTC [c, t] =

{
1 if c belongs to the tissue t

0 otherwise

– we considered the matrix X ′
GC ∈ R

|G|×|C|, where G is a set of genes and
X ′

GC [g, c] represents the RPKM , that means reads per kilobase of transcript,
per million mapped reads, measured for the given gene g in the specific cell line
c, by a RNA-seq experiment. To select a valuable subset of genes, we retrieved
the 1,000 genes with the highest standard deviation of the expression across
the cell lines. Then, for each drug (that is each column in the matrix XCD) we
performed a LASSO [12] feature selection. Finally, we kept into consideration
only the 532 genes that are selected as predictive features for at least two
drugs and build the matrix X ′′

GC ∈ R
532×|C|. Finally we performed a minmax

scaling on the columns of the matrix and considered the XGC ∈ [0, 1]532×|C|

matrix.

2.3 Method

Let’s consider a multipartite graph G; for the purpose of this work, we can
represent the graph as a set of association matrices, that is G = {XIJ}, such



98 C. Testa et al.

that each association matrix XIJ ∈ R
|I|×|J|
≥0 connects nodes of a set I to nodes

of a set J .
We can apply the NMTF method to factorize each association matrix XIJ

into three matrices:
XIJ

∼= UISIJV �
J (1)

where UI ∈ R
|I|×ki

≥0 ,SIJ ∈ R
ki×kj

≥0 , and VJ ∈ R
|J|×kj

≥0 with ki, kj ∈ N and ki <
|I|, kj < |J |. The Parameters ki and kj are the factorization ranks of NMTF and
describe the number of hidden vectors into which we want to represent the XIJ

association matrix.
Furthermore, the following constraint has to hold:

∀XIJ ,XJL ∈ G, XIJ
∼= UISIJV �

J ,XJL
∼= UJSJLV �

L =⇒ VJ ≡ UJ (2)

The factorization matrices are computed so as to minimize the objective function
based on the Frobenius norm:

L(G|Θ) =
∑

Xij∈G
Xij − UiSijV

�
j

2

Fro
(3)

where Θ represents the set of all the factorization matrices.
A minimum of the objective function can be computed algorithmically by

(a) initializing the factorization matrices and (b) applying the following multi-
plicative update rules:

UI ← UI 


∑
Q

XIQVQS�
IQ +

∑
Q

X�
QIUQSQI

∑
Q

UISIQV �
Q VQS�

IQ +
∑
Q

UIS
�
QIU

�
QUQSQI

(4)

VJ ← VJ 


∑
Q

X�
QJUQSQJ +

∑
Q

XJQVQS�
JQ

∑
Q

VJS�
QJU�

QUQSQJ +
∑
Q

VJSJQV �
Q VQS�

JQ

(5)

SIJ ← SIJ 
 U�
I XIJVJ

U�
I UISIJV �

J VJ
(6)

where 
 and •
• stand for Hadamard element-wise multiplication and divi-

sion, respectively. Updating rules must be iteratively calculated. We perform
100 warm-up iteration and then we iterate until a stop criterion is met; in our
experiments we used Li−1−Li

Li−1 < 10−6, where Li−1 and Li are respectively the
values of the loss function after the last and the previous iterations [13].

For matrices initialization, which is a critical aspect of the method, we
adopted a k-means approach [14–16].
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2.4 Prediction of Novel Associations

The prediction of novel associations between two sets of nodes can be inter-
preted as a matrix completion task. The NMTF method is applied in order to
predict novel links between two classes of nodes. In particular, we focused on
the associations between cell lines and drugs. After that

X̃CD = UCSCDV �
D

has been computed with the following updating rules

UC ← UC 
 XCDVDS�
CD

UCSCDV �
D VDS�

CD

(7)

VD ← VD 
 X�
CDUCSCD

VDS�
CDU�

C UCSCD
(8)

SCD ← SCD 
 U�
C XCDVD

U�
C UCSCDV �

D VD
(9)

we applied a threshold τ , typically 0 < τ < 1, and we considered that the i-th
cell line is associated with the j-th drug if the predicted value X̃CD[i, j] > τ .

2.5 Prediction of the Whole Drug Profile for a New Cell Line

Another scenario is when a novel cell line is included in the network. In this
situation, while we know the genetic feature of the cell line and its tissue of
origin, we do not have information about the drugs to which it is sensitive.

We here propose a slight modification of the NMTF multiplicative update
rules, in order to being able to predict the complete drug profile for the novel cell
line. Since we have no correct information in the matrix we aim to reconstruct
for the novel cell line, we do not consider the influence of XCD during the update
of UC matrix. Thus, the new rules to update U (for our network) were:

UC ← U 
 X�
TCUTSTC

UCS�
TCU�

T UTSTC
(10)

UC ← U 
 X�
GCUGSGC

UCS�
GCU�

GUGSGC
(11)

when only XTC or XGC are taken into account, while

UC ← U 
 X�
TCUTSTC + X�

GCUGSGC

UCS�
TCU�

T UTSTC + UCS�
GCU�

GUGSGC
(12)

when both XTC and XGC are added to the network. Updating rules for V and
S remained unvaried with respect to 8 and 9.
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3 Results

Here, we report the results of different trials that we performed on the dataset
illustrated in Sect. 2.1. In particular, we apply NMTF method, illustrated in
Sect. 2.3, for two different tasks: the prediction of novel cell line-drug associations
and the prediction of the drug profile for a new cell line. We evaluate our results
using the AUROC (that means area under the receiver operating characteristic
curve) and the comparison between the actual IC50 values of pairs predicted
sensitive (X̃CD > 0.6) and predicted resistant (X̃CD < 0.4).

3.1 Prediction of Novel Associations

In order to validate the model, we apply a mask that covers randomly the 5% of
the association matrix XCD. We run the method on the single matrix XCD with-
out passing other information and we compute the evaluation metrics, testing
various combination of the parameter k1 and k2. The best configuration corre-
sponds to k1 = 25 and k2 = 15. With these parameters the model performs well
and leads to a AUROC equal to 0.84417 as shown in Fig. 2a. On the best config-
uration we run also the Welch test, a two-sample location test which is used to
test the hypothesis that two populations have equal means and is more reliable
when the two samples have unequal variances and possibly unequal sample sizes.
Comparing the two box plots, the predicted sensitive and resistant associations
appear to be significantly different (p-val ≈ 0.0). Results are shown in Fig. 2b.

(a) (b)

Fig. 2. Performances using a random mask on XCD; (a) reports the ROC curve with
several values of k1 and k2, where k1 and k2 are the factorization ranks of the NMTF.
The best configuration corresponds to k1 = 25 and k2 = 15; (b) Boxplots of the IC50
values, divided by the means, of the predicted sensitive and resistant pairs using a
random mask on XCD, with the best configuration.
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3.2 Prediction of the Whole Drug Profile for a New Cell Line

In this case, we apply a mask on a single row of the matrix XCD in order to
simulate the addition of a novel cell line.

Considering only XCD matrix does not provide meaningful results, as shown
in Fig. 3a, 3b. As expected, without any additional information, the AUROC is
0.50506, and the two classes are not different. This result proves that it is impos-
sible to predict a complete drug profile for a novel cell line without considering
other data.

(a) (b)

Fig. 3. Performances using a mask on a single row of XCD with k1 = 25 and k2 = 15,
where k1 and k2 are the factorization ranks of NMTF. (a) ROC curve using a mask on
a single row on XCD. (b) Boxplots of the IC50 of the predicted sensitive and resistant
pairs using a mask on a single row of XCD.

Thus, we tested the method by also adding the XTC matrix alone, XGC

matrix alone as well as the two together.
The AUROCs in Fig. 4a proves that adding information increases the per-

formances of the predictor. Including the tissue of origin, the method is able to
reach an AUROC = 0.60244. If also gene expressions are added to the model,
we observe a significant improvement (AUROC = 0.71063). Finally, when both
gene expressions and tissues of origin are considered, and the AUROC increases
to 0.71163. In Fig. 4b the comparison between predicted resistant and sensitive
drugs, when all the information is used, is shown; the Welch test confirms the
difference in the distribution of the two classes (p-val = 9.30232 × 10−18), with
the IC50 of the predicted sensitive drugs clearly below the median.
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(a) (b)

Fig. 4. Performances using a mask on a single row of XCD considering also XTC and
XGC with k1 = 25, k2 = 15, k3 = 5, k4 = 30, where k1, k2, k3, k4 are the factorization
ranks of NMTF. (a) ROC curves using a mask on a single row of XCD considering also
XTC and XGC . (b) Boxplots of the IC50 of the predicted sensitive and resistant pairs
using a mask on a single row of XCD considering also XTC and XGC .

4 Discussion and Concluding Remarks

One of the main obstacles in the treatment of cancer is its heterogeneity, which
leads to a difference in the response of patients with the same cancer to the same
drug [17,18]. In this context, computer-based approaches can be very powerful
tools in order to identify in advance which drugs a patient is sensitive to and
to which drugs does not respond instead [19]. To reach this goal, we proposed
a network-based method which exploits Non-Negative Matrix Tri-Factorization
algorithm for the prediction of the sensitiveness of a patient, which is repre-
sented by the cell line extracted from his tumor mass, to a drug. We performed
the experiments on a dataset retrieved from CCLE, which contains cell lines
and antitumor drugs linked by means of their IC50 values. In our work, we
demonstrated that predicting the sensitivity of a specific drug for a given cell
line for which many IC50 experiments are available is a rather easy task. In our
experiments, using plain NMTF method without additional information for this
task allows to reach high performances (AUROC = 0.84417). On the contrary,
predicting drug sensitivity profile for a novel cell line is more complex: indeed,
NMTF method without other data scores as bad as a random predictor.

To overcome this limitation, we proposed a two-fold solution: (a) we devel-
oped an improved version of NMTF algorithm, which generates predictions tak-
ing into account only meaningful information, and (b) we integrated other infor-
mation, namely the tissues of origin and the gene expressions of the corpus of
cell lines. When all the available data are provided, the proposed method shows
much better performances: the resulted AUROC is equal to 0.71163.

Our results suggest that NMTF is a valid method for the prediction of sensi-
tiveness and resistance of a patient to a drug. In particular, the method gives very
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high results for the matrix completion task, meaning that with this approach is
easy to predict novel sensitivity or resistance associations to missing drugs, even
without adding further information to the primary association matrix. Instead,
for new cell lines with no previous connections to drugs the prediction is a little
more complicated and the link with more data matrices is needed. Indeed, the
initial value of prediction is quite low, but it increases adding patient related
data. In particular, it has only a 5% increase adding just the tissues matrix,
while the addition of gene expression data leads to a higher 10% increase of
the AUROC value. However, the employment of both matrices causes a slight
increase of the AUROC value with respect to the use of gene expression data
alone. This confirms the hypothesis that, since each cell line is linked only to
one tissue, information about tissues are poorly informative and supply a minor
contribution to the prediction compared to gene expression data.

Finally, to test the effect and the need of NMTF with respect to a baseline
method, we computed a leave-one-out validation for 202 binary logistic regressors
(one for each drug). Each predictor uses as feature the gene expression of a cell
and the one-hot-encoding of the tissues, and as label the response of the cell for
the drug associated to the regressor. The average AUROC of this experiment is
0.69128, thus performing almost the 3% worse than NMTF.

As future development we would like to enlarge the network to further
improve the performance. Moreover, we want to implement a regression method
in order to being able to predict also the weight of the connection, that means
the IC50 value.

To conclude, we believe that our method could certainly help to find more
rapidly the right therapy for the patient, saving time and providing the best
treatment from the start, which is one of the most critical part in the discovery
of the correct therapeutic plan of a person. Indeed, for a patient with cancer,
time is the most important resource and a “trial-and-error” approach is not the
most advantageous way to proceed in finding the right cure. A priori knowledge
of which drug will work and which will not on each specific patient should become
one of the fundamental strongholds in the context of precision medicine based
treatments.

Acknowledgments. Supported by the ERC Advanced Grant 693174 “Data-Driven
Genomic Computing” (GeCo).
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Abstract. Deep learning has recently enabledmany advances for computer vision
applications in image recognition, localization, segmentation, and understand-
ing. However, applying deep learning models to a wider variety of domains is
often limited by available labeled data. To address this problem, conventional
approaches supplement more samples by augmenting existing datasets. However,
these up-sampling methods usually only create derivations of the source images.
To supplement with unique examples, we introduce an approach for generating
purely synthetic data for object detection on biological pathway diagrams, which
describe a series of molecular interactions leading to a certain biological function
based on a set of rules and domain knowledge. Our method iteratively generates
each pathway relationship uniquely. These realistic replicas improve the general-
ization significantly across a variety of settings. The code is available at https://
github.com/JRunner97/Pathway_Data_Synthesis.

Keywords: Synthetic data · Data augmentation · Biological pathways · Object
detection

1 Scientific Background

1.1 Introduction

Much of the progress in object detection from the past decade can be attributed to
improved architecture design (RCNN [1], Fast-RCNN [2], Faster-RCNN [3], RetinaNet
[4], etc.) and increased access to more high-quality data. For example, the COCO [5]
2017 dataset alone contains over 100k labeled training images across 80 classes. How-
ever, in some domains, especially the biomedical field, high-quality labeled data is
often expensive and time-consuming to collect. To address this issue, many up-sampling
methods have been proposed to increase dataset sizes. Common approaches to this issue
involve creating more data through simple augmentations. However, recently there has
been more interest in generating entire synthetic samples. Our work is in this line of
research. We propose a general method for iteratively up-sampling diagram/figure data.
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As an exemplary task, we target localizing gene-gene interactions in biological pathway
figures. The ability to automatically extract such relationships can be very useful in
summarizing diagram/paper contents and by extension speed up article curation efforts.
To that end, the genes and their relationships need to be localized to convert gene-gene
relations into a computational format. Nowadays, deep learning-based models are dom-
inant in image object localization (or named object detection). Yet, the mainstream deep
object detection models are labeled data hungry, which requires annotating the bounding
boxes of objects from the images. Such annotation is costly and labor intensive. In this
work, we show how to easily generate each gene-gene interaction uniquely with anno-
tation to produce realistic pathway diagrams to supplement a small, annotated set for
training a deep learning model to recognize genes and their relationships from pathway
figures. With such a deep model, a tool reconstructing the graphs of pathways will be
further explored.

Fig. 1. a. Shows an example pathway figure. b. shows several gene-gene relationships with their
bounding boxes we could sample from this image. Text entities in these figures are genes or other
biological components. Arrows represent gene activations and t-bars indicate gene inhibitions.

1.2 Related Work

When needing to up-sample a dataset, the first step for most is to use traditional data
augmentations. Such methods usually focus on positional modifications such as random
flips, scaling, cropping, rotations, and translations. This kind of augmentation helps
make models capture similar signals but from different viewpoints. Other types of aug-
mentation focus on changing color characteristics such as lighting, contrast, hue, and
saturation. This kind of augmentation is helpful to make models more color agnostic and
focus on shape features. Involved modifications, such as kernel filters, random erasing,
and injecting random noise, can also be beneficial. These methods can promote a model
to use more contextual information and leverage larger-scale features. An overview of
these methods is provided in [6]. The key limitation of such augmentations is that they
do not significantly modify the underlying training signal, but instead create derivations
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of the same one. This can prevent generalization to similar data but in different styles,
orientations, or settings. Another approach to up-sampling does not just modify exist-
ing images but instead creates entirely new ones. This approach often leverages deep
learning methods such as conditional GANs [7], adversarial training, and neural style
transfer. Synthetic data generation has previously been applied in generating 3D point
clouds for training [8, 9]. Our work is complementary to other synthetic data genera-
tion methods and targets the object detection task specifically based on a set of rules.
Our rule-based method does not require significant training data preparation and deep
learning background; hence, it is more convenient and biology-aware than related deep
learning approaches.

2 Materials and Methods

2.1 Synthetic Data Generation

Fig. 2. An example showing the candidate region and its radial profile for filtering high-frequency
components. (a) a sample slice of a pathway image; (b) radial profile of the slice in the spectral
domain by applying the fast-Fourier transformation.

While simple augmentations can increase the total number of training images several
times over, they do not increase the number of unique relationships. It is observed that
this may lead to diminishing returns in generalization as the same relationships are
repeatedly seen during training. Our approach generates fully synthetic samples. Since
many relationships in pathway diagrams follow a simple structure, they are easy to
reproduce. A few components make up a relationship in a pathway figure: two entities
and a connecting identifier. These identifiers can be represented as arrows, objects, or
proximity. Here wewill first target two indicators frequently encountered in our pathway
figures: arrows (activate) and t-bars (inhibit), as shown in Fig. 1. We generate these fully
synthetic relationships by first identifying an empty region on a template image. As we
generate new images, we cannot place the slices randomly on the templates, as there is
a significant potential for overlap that does not exist in the ground truth figures. We first
sample a random candidate region on a template (Fig. 2.a) where our relationship could
be placed. Then, we convert that destination region to the spectral domain (Fig. 2.b) via
a fast-Fourier transform [13] and calculate the radial profile of that slice in the spectral
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domain (Fig. 3). The radial profile is the sum over pixel values the same radius away
from the slice’s center. We do this to see how many high-frequency components exist in
that destination region since the increased radius corresponds to higher frequencies in
the source image. In images, high-frequency components correspond to edges, contrast,
and complex shapes. Our intuition is that pre-placed slices on the image will then be
represented in the high-frequency regions.We can effectively search for good placements
on the templates by setting a threshold on those high-frequency components.

Fig. 3. Radial profile for the candidate region in the spectral domain from Fig. 2b. The x-axis
shows the pixel radius from the radial center as our frequency analog. The y-axis represents the
number of white pixels that points to high-frequency components at each radius.

With a region selected, we then determine our entity placement given the area’s
dimensions (see Fig. 4.a). Next, we draw a spline between the two textboxes (Fig. 4.b)
and add an indicator head at one of the spline ends (Fig. 4.c). This class identifier can be
an arrow or a t-bar (for activating or inhibiting relationships). This approach effectively
mimics the structure of many pathway relationships. Using such fully synthetic data
generation has several advantages over traditional augmentation for this task. The model
can train onmore diverse training data since no repeated relationships exist. This enables
us to target specific types of exotic relationships that are more difficult to categorize due
to little data: (e.g., curvy arrows, splines with corners, or dashed splines). Additionally,
this process can be multi-threaded to generate many diagrams at once.

2.2 Implementation Details

Checking Background. While simple to outline, implementing each step is more
involved. In the case that all pixels in the destination region are the same, we do not
have to run the full spectral check and can immediately stitch a relationship. When this
is not the case, we convert the destination region to the spectral domain and generate
its radial profile, as previously mentioned. Notably, when calculating the radial profile
on this output, we must normalize by distance to the center of the region since as the
radius grows so does the number of pixels at that radius. To filter out regions with too
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Fig. 4. To generate a relationship, with two placed entities (a), we denote their relationship by
drawing a spline/dashed line between them (b) and placing an identifying indicator at one end (c).

many high-frequency components, we look at the binned statistics over the radial pro-
file. Specifically, we bin the radial profile into 4 sections and look at the 2 later bins
corresponding to the higher frequencies. If the binned mean for either of those regions
is too large, we can rule out this placement. We used a threshold of 50 to filter out slices
with too many high-frequency components to determine our placement. This specific
threshold balances allowing color gradients while still removing any slices with harsh
edges. We found this method to be more effective than simply looking at the pixel statis-
tics of the destination slice and setting a threshold for the standard deviation, while other
approaches failed on edges of similar pixel values. Using our method produced more
realistic figures that better resembled the source dataset.

Fig. 5. Togenerate a cluster of entities,we start from the shapemasks of twoentities.We iteratively
move one shape’s center until the IoU between the shapes is 0.
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Entity/Cluster Generation. The text boxes of pathway entities come in a variety of
shapes. To mimic this variety, we pull from a folder containing images of arbitrary
shapes. These shapes are extracted from the source images and transformed to fit the
dimensions of our text. To further generate clusters of entities, we start from one shape
and its mask (Fig. 5.a). To add another shape to the arrangement, we select a random
direction from the first entity’s center and set the center of the new shape as some
distance along this path. The initial distance is a factor of the first shape’s dimensions.
We then calculate the intersection-over-union between the two shape’s masks (Fig. 5.b).
If there is any overlap, we then increase the push factor along our selected direction and
repeat until they are non-overlapping. This process can be repeated to add any number
of entities to each cluster.

Fig. 6. Scatter plots showing the distribution of relationship sizes in real pathways 6.a and our
synthetic pathways 6.b. The x-axes and y- axes represent the width and height of relationship
bounding boxes in the pathways, respectively.

Entity Placement. To effectively replicate the entity positions seen in real pathway
diagrams, we look at the histogram of relationship dimensions seen in those figures.
Figure 6.a shows a 2D-histogram of 1000 diagrams, highlighting that those relationships
are most concentrated in the low dimensional regimes. We use this distribution to guide
the region selection of our algorithm and fix the position of our two entities to opposite
corners. We do this to let the real relationship’s dimensional distribution fully guide our
entity placement. However, we do maintain that the region selected for placement must
be large enough to contain both entities. This explains the gap in Fig. 6.b that is not
seen in the real data. In the case of extreme dimensions (e.g., much larger x than y and
vice versa), we fix the placement to be top-down or left-right. We do this since most
relationships follow this orientation.

Drawing Spline. Once the entities have been placed, we can use their centers as ref-
erence points for the connecting spline. We use three different types of splines: lines,
arches, and corners. For direct lines, we must first find the start and end points for the
spline by interpolating a direct line between the centers of the two text boxes. We then
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select the n-th point along the line outside the textboxes as the respective start and end
points. We set n dynamically based on the distance between the two text boxes. With
the start and end points, we then draw a line between these two anchor points as our
spline. If we draw an arch, we start with the same method for obtaining the start and
end points. Then, we calculate the slope perpendicular to the line between them. With
this, we can calculate a third anchor point that will mark the arch’s apex. Using all three
anchor points, we can then interpolate a spline between them. We set a parameter to
determine how far from the baseline the third reference point should be. This allows us
to control how ‘curvy’ each arch is. When drawing a cornered spline, we use a different
method for obtaining the start and end points. For each square configuration, we can
have two different placements for the start and end points. They can be placed outside
the textboxes at some pre-set distance towards the same empty corner. Then we use their
max or min dimensions to determine a corner point for the third anchor and connect
these three points. To draw dashed splines instead, we simply omit placing intervals of
the spline. These intervals are drawn from random bounds and depend on the spline’s
thickness.

Drawing Indicator. With the spline drawn, we now place an indicator head at one
of the ends. Since there are different styles of indicators as well, we follow the same
approach as entity shapes and pull from a set of indicator shape images. Again, we extract
and transform the indicators as needed for the given spline style. We also rotate these
indicators to follow the slope of the spline near the end point and place that transformed
indicator onto the end of the spline.

Fig. 7. Histogram Scatter plot showing the distribution of pathway image dimensions. The x-
axes and y- axes represent the width and height of relationship bounding boxes in the pathways,
respectively.

Parameter Configuration. The above methods detail how to generate a new relation-
ship, but we can control many parameters for this process to ensure that each one is
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sufficiently unique. For each label, we can control the font color, style, size, and thick-
ness. For each textbox, we can control the textbox margin, background color, textbox
shape, and border thickness. For each spline, we can control the indicator placement,
type, length, width, color, and thickness. We dynamically change these parameters dur-
ing generation. This enables us to generate a more robust dataset that mimics the wide
variety of relationships seen in real data. For instance, we use the image dimension
distribution from real pathways (Fig. 7) to set the bounds for our templates.

3 Experimental Setup

3.1 Model

To validate the contribution of the proposed method to gene-gene relationship localiza-
tion modeling, we evaluated our method on the widely used RetinaNet [4] architecture
with a ResNet-50 [11] backbone pre-trained on the ImageNet [12] dataset. In all of our
experiments, we fine-tuned this model for 50 epochs with a learning rate of 0.01. During
training RetinaNet with our synthesized images, we are limited to 1 image per batch due
to its minimal 8 gigabytes GPU memory requirement. For loss, we used a combination
of the sigmoid focal loss [4] for classification (for imbalanced class distributions) and
dense box regression for localization.

3.2 Data

Fig. 8. Synthetic samples with annotation. a) shows the indicator head annotations used in
Experiments 4.1 & 4.2. b) shows the indicator body annotations used in Experiment 4.3.

The base augmented dataset was generated from 250 annotated pathway diagrams
collected from KEGG [10]. These base figures include 3326 activate indicators, 637
inhibit indicators, and 6461 textboxes. We used salt & pepper, color correction, and
randomnoise to generate 4,000 new training images.We treated trainingwith augmented
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data alone as our benchmark. For the synthetic data, we generated three sets of increasing
size with 1,000, 3,000, and 6,000 images (Fig. 8 as an example). We then looked at how
different amounts of synthetic data coupled with the augmented dataset can improve the
generalization of our model.We evaluated 45 images held-out from the ground truth data
as our validation set and examined the mean-average-precision (mAP) over the three
classes: inhibit indicators, activate indicators, and gene text. The mAP measurement
captures how well all objects are detected and classified. Results displayed in the tables
are averages and standard deviations over three runs to demonstrate the stability of the
proposed method.

4 Results

4.1 Synthetic Data for Mixed-Batches

Table 1. Validation mAP for increasing amounts of synthetic data used.

Training data Aug Aug + 1k Syn Aug + 3k Syn Aug + 6k Syn

mAP 26.9 ± 2.9 26.5 ± 0.4 28.8 ± 2.4 29.1 ± 2.1

In this set of experiments, we look at how our method can affect the generalization
of the model (shown in Table 1). With the 4000 augmented samples as our baseline, we
see how increasing the amount of synthetic data used in mixed batches affects valida-
tion. We find that our method used in conjunction with the augmented data improves the
generalization of RetinaNet. This is likely because we can introduce unique relation-
ships/features that simple augmentations cannot. This notion is supported by the fact that
increasing the amount of synthetic data generated by our method continues to improve
the performance of the model.

4.2 When to Use Synthetic Data

Following the improvement shown by leveraging synthetic data in mixed batches, we
sought to understandhowdifferent combinations of real and synthetic data affect training.
To that end, we first measured the performance of the augmented data and different
amounts of synthetic data on the independent set of 45 images using mAP: 50 as shown
in Fig. 9. Increasing the amount of synthetic data, as expected, showed improvement in
generalization from 3k at 30.2 to 20k at 32.4 mAP. However, both were unable to fully
close the gap to the augmented data 41.3 mAP. Interestingly, if we first pretrain on the
augmented data with a learning rate of 0.01 and finetune with synthetic data at 0.005, we
also see improvement over augmented training alone at 44.6 mAP. This improvement
is even more pronounced if we include the augmented data in our finetune stage and
use mixed batches (reaching 49.3). We flipped this experiment to pretrain with synthetic
and finetune with mixed batches and can see another boost in performance (50.7 mAP



114 J. Thompson et al.

Fig. 9. Comparing combinations of real and synthetic data at different stages of training

for 3K synthetic). Although, as previously validated, the augmented and synthetic data
seem to capture different features and, when used in combination, improve over either
standalone performance. In the case that we trained with mixed batches from the start
(our setting from experiment 1), we reached 57.2 and 57.4 mAP for 20k and 3k synthetic
samples. However, our best setting came from pretraining on synthetic and finetuning
on real data reaching 62.1 mAP.

4.3 Generalizing to New Tasks

Table 2. ValidationmAP for increasing amounts of synthetic data used fromeachmethod, starting
with the base augmented dataset.

Training data Syn Aug 10k Syn + Aug 10k Syn - > Aug

mAP:.50 29.1 ± 2.8 52.9 ± 1.8 63.3 ± 3.0 66.3 ± 3.9

Our third experiment looks to test how well our up-sampling approach improves
generalization for additional and more complex classes. To that end, we tried to localize
the entire relationship indicator bodies and specify two additional gene-gene relationship
markers (indirect activate and indirect inhibit). These classes are differentiated from their
bases with dashed bodies, as seen in Fig. 8.b.

We annotated the same 250 real diagrams used for the relationship heads, but instead
augmented their bodies to 3000 samples. Training with mixed batches again shows con-
siderable improvement over either alone.We also leveraged the insights from experiment
2 and we pretrained on 10,000 synthetic samples with annotated bodies and finetuned on
the augmented real samples. These results are listed in Table 2. We can observe that this
approach led to a 25% improvement over the model that was just trained with augmented
samples.
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4.4 Computational Time

We evaluated our computational time by generating 4000 synthetic images on a laptop
with 4-Core i5-8265U CPU. The average time per generation of one image with and
withoutmultiple threading is 84.5ms and 67.9ms, respectively. Even on such an ordinary
laptop, the proposed method can generate each synthetic image in a short time. Plus, if
we switched to the multi-threading mode, the speedup was 20% higher than that of the
single threading mode.

5 Conclusion

This work introduced an up-sampling method for object detection on pathway figures
based on a set of rules from spectral space and biological domain knowledge. Such
a biology-inspired data augmentation is novel and can better reflect the relationships
(gene activation and inhibition). As these relationships are highly diverse in graph-
ics, traditional methods for positional or color modifications do not sample them in
depth. Meanwhile, the relationships are represented in specific patterns with biologi-
cal meanings, GAN-based approaches may not follow the underlying rules well. Our
method’s fully synthetic approach was able to increase the generalization capacity of the
transfer-learned models. Our work motivates further investigation into the upper bound
of this synthetic approach and its possible extensions. We also validate the value of
a targeted up-sampling approach in addition to traditional augmentation. Our method
has the potential for other deep learning data augmentation in research problems where
domain knowledge can be represented as rules for generating synthetic data.
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Abstract. Machine learning techniques have become more attractive and widely
used for medical image processing purposes. In particular, the diagnosis of neu-
rodegenerative diseases has recently shown a potential field of application for these
methods. The performance comparison of a unique algorithm in various study
contexts can be biased, which usually leads to incorrect results. In this context,
this study consists in comparing the performance of different machine learning
techniques, identifying their main trends and their application for the diagnosis
of Alzheimer’s disease (AD). We presented a computer-aided diagnosis system
for the early diagnosis of AD by analyzing brain data from the OASIS dataset.
The principal component analysis (PCA) and the uniform manifold approxima-
tion and projection (UMAP) technique have been evaluated on the magnetic reso-
nance imaging and positron emission tomography images as feature selection tech-
niques. After that, the features are fed into nine machine learning models namely
Support vector machine (SVM), Artificial neural networks, Decision trees, Ran-
dom Forests, Discriminant analysis, Regression analysis, Naive Bayes, k-Nearest
neighbors, and Ensemble learning. The performance of the proposed classifiers is
investigated by the confusion matrix. In addition, area under the curve, Matthews
correlation coefficient, accuracy, andF1-scoremetrics are calculated regarding this
matrix. Our results indicate that the SVM-PCA/UMAP schemes provide a signif-
icant advantage over the other classifiers. Moreover, they are more efficient than
the baseline model based on the voxels-as-features reference feature extraction
approach.
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1 Scientific Background

Alzheimer’s disease (AD) is a fatal neurodegenerative disease and one of the world’s
major public health problems. TheWHO estimates that 50million people are affected by
some form of dementia, of which AD is the most common form. It affects 60% to 70%
of cases compared to 20% of cases of vascular dementia [1]. The Alzheimer’s Disease
International 2021 World Report estimates that the annual cost of the AD in the world
is approximately one trillion US dollars, which represents the equivalent of more than
1% of world GDP [2].

Although research has revealed a lot about this disease unfortunately, the cause(s)
of dementia remain unknown, except for some hereditary forms of the disease. Accord-
ing to researchers from the “Canadian Outcomes Study in Dementia” [3], slowing the
progression of the AD will contribute significantly to reducing its economic and psy-
chosocial costs. This slowdown depends on the implementation of early interventions
which are possible after an early diagnosis which is crucial to attenuate the effects of
AD.

Over the past three decades, computer-aided diagnostic (CAD) systems have become
one of the main areas of research in medical imaging and diagnostic radiology [4]. They
were introducedwith the idea of providing computer output as a “second opinion” to help
radiologists assess the extent of disease, and the consistency of radiological diagnosis.
The goal is to reduce the false negatives rate and improve diagnostic performance.

With the emergence of data science technology and the electronic processing of
medical data, several computational approaches and artificial intelligence techniques
are being applied for the purpose of aiding in the diagnosis of diseases. Despite the
efforts of researchers, developing an automated AD classification system remains a
rather challenging task. Machine learning has offered interesting results in the analysis
ofmedical images; particularly it has shown a prominent result for organ and substructure
segmentation, several diseases classification in areas of pathology, brain, breast, bone,
retina, etc. [5].

Unfortunately, there is little existing work for AD detection using machine learning
models [6–10]. Based on demographic and neuropsychological data, some studies have
compared the performance of a fewmachine learning based models. We cite the work of
Kavitha et al. [11] which employed decision tree (DT), random forests (RF), support vec-
tor machine (SVM), extreme gradient boosting (XGBoost), and voting classifiers using
data from open access series of imaging studies (OASIS). A better validation average
accuracy of 83% is obtained with RF and XGBoost. Using the same dataset, Suhaira
et al. [12] applied SVM, RF, k-nearest neighbors (KNN) and naïve Bayes (NB) to pre-
dict AD from psychological parameters. RF and SVM have achieved the highest degree
of accuracy with results that exceed 70%. Williams et al. [13] explore the use of NB,
SVM, DT and back-propagation artificial neural network (ANN). Accuracy rates of NB
and SVM are significantly higher compared to other models. Amulya et al. [14] applied
the gray-level co-occurrence matrix (GLCM) method to extract texture features from
OASISmagnetic resonance imaging (MRI) scans and the SVM classifier to discriminate
AD patients from healthy control (HC) subjects. The GLCM/SVM classification model
provides an average test accuracy of 75.71%. Gray in [15] used the RF classifier to
detect AD frommultimodal MRI and positron emission tomography (PET) data and she
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obtains a degree of accuracy of 90.0%. Klöppel et al. in [16] developed a linear SVM
based model for AD and HC classification using T1 weighted MRI scan. Up to 96% of
AD patients were correctly classified with this model. In [17], Magnin et al. developed
SVM based classifier and employed an anatomically labeled brain template to identify
regions of interest from whole brain images. Researchers achieved an average of 94.5%
correct classification. Several SVM classifiers are developed by Vemuri et al. [18] using
genotype and demographic data and structural MRI images to classify AD patients and
HC subjects. The highest degree of accuracy was 89.3%. Some research studies [19,
20] have used deep neural Networks for the MRI-based Alzheimer’s diagnosis using the
OASIS dataset. These methods achieve an accuracy of 93% and 92.39% respectively.

We found in most of the work reported in the literature that researchers provide
performance comparisons between different machine learning techniques by referring
to studies established by other researchers. However, the same algorithm can provide
different results for the same database if the study context, the acquisition and learning
parameters, the capacity of the computer equipment, etc. are different.

In other words, comparing the performance of different learning machine algorithms
is difficult and can lead to inaccurate results, if these algorithms are used separately
and applied in different research. Indeed, the majority of researchers used different
parameters and measures for the proposed CAD system citing the type of data used
(clinical, demographic, etc.), the cross-validationmethod followed (10-round validation,
5-round validation, etc. or none), the selection of the type of kernel (linear, polynomial,
etc.) for the SVM, the division of each node in the RF as well as the number of trees
chosen for the underlying forest associated with each node. Therefore, a performance
comparison is reliable between different machine learning techniques, only if a common
benchmark on the same database is available and within the reach of researchers.

So, the main purpose of this study is to compare the performance of several machine
learning algorithms for early diagnosis ofAD. Fromprevious research, it has been proved
thatMRI and PET scans can perform a significant role for early detection of AD [21]. For
this study, we analyze these neuroimaging data for developing multi-modal diagnostic
tools, based on principal component analysis (PCA) and uniform manifold approxi-
mation and projection (UMAP) approach for feature selection, and multiple machine
learning classifiers which are trained to detect AD from MRI and PET neurological
images.

The selected classifiers are based on various probabilistic and statistical formalisms
as well as optimization concepts. Particularly, we opted for the most efficient techniques
namely: SVM,ANN,DT, RF,NB,KNN, discriminant analysis (DA), regression analysis
(RA), and ensemble learning (EL). We demonstrate the performance of the CAD system
on the OASIS dataset [22] using area under the curve ROC curve (AUC), Matthews
correlation coefficient (MCC), accuracy (ACC), and F1-score as quantitative measures
[23].

The rest of the paper is organized as follows: Sect. 2 presents our proposed CAD
system which combines the advantages of both PCA/UMAP based feature selection,
and machine learning based supervised classifiers. Section 3 presents an evaluation of
these techniques with experimental details and results described. Finally, we conclude
the article in Sect. 4 and present future work.
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2 Methods

Ageneric automatedADclassification framework is shown in Fig. 1. In thiswork, several
classifiers such as SVM, ANN, DT, RF, DA, RA, NB, KNN and EL are trained on the
PCA/UMAP features extracted from the neurological images from OASIS dataset. We
have experienced the performance of these techniques on the T1-weightedMRI and PET
scans. In the following subsections, we describe the techniques used in each step of the
CAD system. For more details on the mathematical formalism, please refer to [4, 5].

Note: FSL-BET: Brain Extraction Tool, SPM8: Statistical Parametric Mapping, N3: Non-parametric Non-
uniform intensity Normalization method, MAX: Maximum, MIN: Minimum, MED: Median, IQR: Interquartile 
range, MEA: Mean, SD: Stand deviation, PCA: Principal component analysis, UMAP : Uniform Manifold 
Approximation and Projection, SVM: Support vector machines, ANN: Artificial neural networks, DT: Decision 
trees, RF: Random forests, DA: Discriminant analysis, RA: Regression analysis, NB: Naive Bayes, KNN: k-
Nearest neighbors, EL Ensemble learning, AD: Alzheimer disease, HC: Healthy control.

CAD system

Expert radiologist

Interpreta�on of diagnosis

Preprocessing
(FSL-BET,  

SPM8, N3…)

Feature Selec�on
(PCA, UMAP  
technique)

Classifiers
(SVM, ANN, DT, RF, 

DA, RA, NB, KNN and EL)

Features Extrac�on 
(MAX, MIN, MED,
IQR, MEA, SD)

Computer output
Second opinion 

(AD vs HC)

Manual interpreta�on

MRI                                

1 2 3 4

PET                                

Fig. 1. Schematic diagramof brain image interpretation (top) and block diagramof corresponding
CAD system (bottom). 1) Enhancement of brain image using: - BET-FSL to remove non-brain
tissue. - SPM8model to partially correct the spatial inhomogeneities. -N3method, to normalize the
intensity values. 2) Extraction of voxel features in a mathematical representation using grayscale
features as:MAX,MIN,MED, IQR,MEA, andSD. 3)Reduction of voxel parameters by collapsing
them into a new feature space applying PCA/UMAP-based feature selection. 4) Classification of
images into AD or HC classes using machine learning classifiers such as: SVM, ANN, DT, RF,
DA, RA, NB, KNN and EL.

2.1 Dataset Description

Weused the OASIS image dataset [22] to evaluate the performance of the proposed CAD
system approaches. The images chosen are anatomical MRI and functional PET, and
they contain different levels of artifacts (effects of noise, inter-slice intensity variations,
and intensity inhomogeneity).
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The experiments are performed on images of 300 subjects which include 90 scans of
normal subjects and 210 scans of patients with AD ranging from very mild to moderate.
Subjects include men and women ages 60 to 96 and for each of them, 3 or 4 T1-weighted
MRI scans are available. TheMRI data were collected on the Siemens Vision 1.5T scan-
ner (Siemens, Erlangen Germany). The PET data were collected on the Siemens ECAT
HRplus 962 PET scanner. Metabolic imaging with [18F] FDG-PET was performed with
dynamic 3D acquisition started 40 min after a bolus injection of approximately 5 mCi of
FDG and lasted 20 min. For each image 34 × 47 × 39 voxel-sized brain representation
is obtained.

2.2 Image Preprocessing

The brain extraction tool FSL-BET [24] was used to remove non-brain tissue in the
images. To partially correct the spatial inhomogeneities, we used neuroimaging com-
puter tools, in particular the non-parametric model of the statistical parametric mapping
(SPM8) [25] with a minimization function based on the entropy of the image intensity
histogram. Moreover, we adapted the Non-parametric Non-uniform intensity Normal-
ization (N3) method [26], to solve the problem of the non-uniform intensity and for
normalizing intensity values to ensure the same 0 to 1 dynamic range values for all
images.

2.3 Feature Extraction

This process is for creating a new, smaller set of features that stills captures most of
the useful information. It can be critical to the success of the proposed feature selection
algorithms, and to the convergence of the machine learning algorithms.

First of all, we applied theVoxels-as-features (VAF)method [5] which is the simplest
way to create features from an image. We considered these raw voxel values as separate
features. In this context, input samples are presented as points in the multidimensional
observation space and defined by the measurements of the input features.

Secondly, we calculated the Maximum (MAX), Minimum (MIN), Median (MED),
Interquartile range (IQR), Mean (MEA), and Stand deviation (SD) values which repre-
sents the most relevant grayscale features offering the best performance for this search
compared to other parameters tested previously. These features are extracted for the
hippocampal and parietal cortices which are the parts of the brain most affected by AD
and from which we have observed a large reduction in brain volume.

2.4 Dimensionality Reduction Techniques

Working in high-dimensional spaces is undesirable for many reasons; data analysis is
usually computationally intractable. For this reason, we have applied the most common
techniques of dimensionality reduction, which allows the transformation of data from a
high-dimensional space into a low-dimensional space with a representation that retains
some significant properties of the original data.
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Principal Component Analysis. The PCA consists in transforming correlated vari-
ables between them into new variables uncorrelated from each other that successively
maximize variance and which represent the principal components or axes [27]. In this
research, the voxels of each sample are rearranged into a vector form (MAX,MIN,MED,
IQR, MEA, and SD). With using the specific PCA steps, 1) we standardize the original
data (all the samples are subtracted from the mean value of corresponding feature); 2)
we calculate the covariance matrix, the eigenvalue and the eigenvector; 3) we record the
resulting eigenvalues in the order of large to small, and calculate the contribution rate of
each principal component; and 5) we transform the original sample matrix into a new
matrix.

Uniform Manifold Approximation and Projection Approach. The UMAP is based
on manifold learning techniques and ideas from topological data analysis [28]. In the
first phase of the UMAP algorithm, we use Nearest-Neighbor-Descent algorithm which
consists in constructing a fuzzy topological representation for which neighborhood
graph based approach should capture the structure of the manifold during dimension
reduction. The second phase, we use stochastic gradient descent to optimize the low-
dimensional representation which allows to have a fuzzy topological representation as
close as possible as measured by the cross-entropy.

2.5 Machine Learning Classifiers

We applied techniques based on supervised machine learning that takes into account
labeled data from different patients in the learning phase. At first, the training data are
used to train themodel and readjust its parameters progressively until convergence. Then,
the model with the final parameters is applied on unlabeled test data for the classification
of the unknown subjects into similar classes, the class of AD patients and that of HC
subjects.

Support Vector Machines. The SVMs try to maximize the margin between classes by
finding the optimal values, in the quadratic programming problem (represented in dual
Lagrangian form) [21]. Unlabelled instances are classified using the learned parameters
and bias, by taking the sign of the appropriate decision function. SVMs separate binary
labeled training data, by the hyperplane. This hyperplane is maximally distant from
the two classes (known as the maximal margin hyperplane). When no linear separation
of the training data is possible, SVMs can work effectively in combination with kernel
techniques. Thus, the hyperplane defining the SVMs corresponds to a nonlinear decision
boundary in the input space.

Artificial Neural Network. The ANN can be viewed as weighted directed graphs in
which artificial neurons are nodes and directed edges (with weights) are connections
between neuron outputs and neuron inputs [10]. The development of the backpropagation
learning algorithm for determining weights in a multilayer perceptron has made these
networks themost popular amongANN researchers. For our experiments a feed-forward
neural network (FFNN) was used. This type of ANN is static, that is, it produces only
one set of output values rather than a sequence of values from a given input. Because the
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FFNN is memory-less, its response to an input is independent of the previous network
state.

Discriminant Analysis. Linear discriminant analysis (LDA) is the most used DA tech-
nique [29]. LDA allows data to be projected into a moderate dimensional feature space
with a true class of separable features thatminimizes computational costs and overfitting.
We followed the following three-step process to project features onto a lower dimen-
sional space: 1) Calculate the distance between the mean of the two classes (between-
class variance). 2) Calculate the distance between the mean and each datum of each
class (within-class variance). 3) Create the lower dimensional space that maximizes
between-class variance and minimizes within-class variance.

Regression Analysis. The RA is among the predictivemodeling approaches that allows
the study of the relationship between a dependent variable (target) and one or more
independent variables (predictor). We applied the logistic regression (LR) technique
[30] which allows calculating the probability of mutually exclusive occurrences (0/1
in our case). In this context, the target variable can take only one of these two values.
A sigmoid curve is usually drawn to represent the connection of the target variable to
the independent variable, associating a probability with a value between 0 and 1. To
assign a new datum to one of the two classes (AD/HC), this technique calculates the
probability of the instance belonging to each class. To apply the LR as a binary classifier,
it is therefore necessary to assign a threshold to distinguish between the two classes. In
our case, a probability value greater than 0.50 makes it possible to assign the input data
to class AD if not to class HC.

Naive Bayes. The naiveBayes classifier is based onBayes’ theoremwith the application
of strong (naive) independence assumptions between the features [31]. This classifier
is highly scalable, which requires a number of linear parameters for the learning step.
Generally, the parameter estimation is based on maximum likelihood. Maximum likeli-
hood training is achieved by evaluating a closed-form expression, which requires linear
time, rather than an expensive iterative approximation like that employed for many other
types of classifiers. The advantage of this classifier is that it requires relatively little train-
ing data to estimate the parameters necessary for the classification, namely means and
variances of the different variables. So, we are interested in calculating the posterior
probability P(h|d) from the prior probability P(h) with P(d) and P(d|h). After calcu-
lating this probability for several different hypotheses, the hypothesis with the highest
probability is selected which represents the maximum a posteriori (MAP) hypothesis.

k-Nearest Neighbors. The KNN algorithm represents the simplified version of NB,
except that KNN does not need to consider probability values [32]. Generally, we have a
learning database made up of N “input-output” pairs. To estimate the output associated
with a new input x, the KNN method consists of considering (identically) the k learning
samples whose input is closest to the new input x, according to a distance to be defined.
The training examples are vectors in a multidimensional feature space, each with a
membership class label. The learning phase of the algorithm consists only in storing the
feature vectors and the class labels of the learning samples. In the classification phase, k
is a user-defined constant, and an unlabeled vector (test point) is classified by assigning
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it the label that is most frequent among the k training samples closest to the point to be
classified.

Decision Trees. The DTs are a rule-based approach that can perform both classification
and regression tasks. They represent a tree structure of several levels presented by nodes
whose highest node represents the root node. The goal is to create a model that predicts
the value of a target variable given several input variables. So, DTs model the decision
logic to process the data, perform the test, andmatch the result to classify the dataset in the
tree. The tests are represented by the intermediate nodes (nodes having at least one child
node) and they are carried out from the variables associated with the input (attributes).
The result obtained from the current test allows branching to the appropriate child node,
where the process is repeated until reaching the leaf node located in the last level of the
tree structure [33]. In other word, the algorithm tries to completely separate the dataset
so that all leaf nodes belong to a single class. On every split, the classification algorithm
tries to divide the dataset into the smallest subset possible. So, like any other machine
learning algorithm, the goal is tominimize the loss function (StochasticGradientDescent
in our case) as much as possible.

Random Forests. The RFs are a meta estimator that fits a number of DTs classifiers on
various subsamples of the dataset and uses averaging to improve the predictive accuracy
and control over-fitting [34]. The RFs are based on two key concepts that give it the
name random: A random sampling of training data set when building trees and random
subsets of features considered when splitting nodes. In this study, a bagging technique
is used to create an ensemble of trees where multiple training sets are generated with
replacement. We divided a dataset into N samples using randomized sampling. Then,
during the training phase, the DTs of forest are used to train different parts of the training
data. While each test data is transmitted to the different DTs in the forest, each of them
provides its classification result. The concept of voting is considered by the forest to
choose the most appropriate result.

Ensemble Learning. The EL is a way to generate various base classifiers from which
a new classifier is derived that performs better than any constituent classifier [35]. For
independently constructing ensembles, we used in this study, the RF which is an exten-
sion on bagging. Each classifier in the ensemble is a DT classifier and is generated using
a random selection of attributes at each node to determine the split. During classification,
each tree votes and the most popular class is returned. We followed the following steps
for the construction of the classifier. 1) Multiple subsets are created from the original
data set, selecting observations with replacement. 2) A subset of features is randomly
selected and the feature that gives the best split is used to iteratively split the node. 3)
The tree is grown to the largest. 4) Repeat the above steps and the prediction is given
based on the aggregation of predictions from n number of trees.
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2.6 Description of resampling Method and Performance Metrics

Each subject is represented by grayscale features which are MAX, MIN, MED, IQR,
MEA, and SD, and is collapsed into a new feature space by applying the feature selection
based on PCA and UMAP technique. The 10-fold cross-validation procedure is used to
test the performance of the classifiers and its robustness. For each fold, we have used
70% as training data and 30% as test data which is used to forecast results or to assess
the correctness of our models. To analyze the performance of the proposed classifiers,
for the first factor, the confusion matrix is generated for each classifier, and regarding
this confusion matrix, some quantitative measures which are ACC,MCC, F1-Score, and
AUC are calculated.

In our diagnostic problem the training datasets suffer from imbalance of targeted
data. This is due to artifacts of the images. Typically, this data heavily imbalanced affect
performance evaluation of trained models. For this reason, in addition to calculating the
classification accuracy, we estimated the MCC, AUC and F1-Score.

The confusion matrix based on four categories (true positives, false negatives, true
negatives, and false positives) is used to evaluate a classifier’s performance considering
a pre-known set of labeled data. The sensitivity or recall metric shows the likelihood of
predicting true positive, while the specificity measures the true negative rate. The F1-
Score shows the balance between sensitivity and precision. The accuracy of eachmodel is
measured by evaluating the trueness of the results. TheMCC is a more reliable statistical
rate which produces a high score only if the prediction obtained good results in all of
the four confusion matrix categories. The ROC compares the classifiers’ performance
among the whole range of class distributions and error costs. To compare the ROC
curves, the AUC is calculated.

3 Result and Discussion

Figure 3 presents the confusion matrix of all the classifiers for MRI images. Again,
SVM outperforms other models for all images. The sensitivity is higher than those of
other classifiers, proving the power of these machines to better identify true positives.
Moreover, Fig. 2. presents the ROC curve for the SVM classifier based on the Gaussian
kernel function which provided the best results compared to the other classifiers.

FromTable 1which illustrates the results concerning the performance of the different
machine learning classifiers, it is observed that the SVM-based CAD system provided
superior results for both processed images, with prediction speed of ~1500 obs/sec and
training time of 1,8204 s. The ANN comes second considering the results of the other
classifiers. It consumedmore time for trainingwith time of 8,0284 s and prediction speed
of ~4000 obs/sec.
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For dimensional reduction techniques, from the Table 1, we found that the PCA and
UMAPoffer almost the same performance and exceed that of VAF-based systems.More-
over, in all cases and for both PET and MRI datasets, the Median & IQR combination
based feature selection offered the best PCA results compared to the other combina-
tions (MEA & SD, MIN & MAX, etc.). This finding is perhaps because the samples
distribution is skewed and not symmetric and there are extreme outliers present whose
interquartile range is the best way to measure the dispersion of this type of data.

In terms of computation time the Fig. 4 shows the results for the proposed PCA
and UMAP techniques compared to the t-distributed stochastic neighbor embedding (t-
SNE) technique. We see the advantages of the PCA and UMAP over t-SNE. Although
UMAP is slower than PCA, it is clearly the next best performance option among the
implementations explored here. Of this effect, and given the quality of the results that
UMAP has provided, we believe that it is also a good approach for dimension reduction.
It is has a solid theoretical backing but the main limitation of UMAP is its lack of
maturity. It is a very new technique, so the libraries and best practices are not yet firmly
established or robust.

In general, the proposed CAD system based on PCA/UMAP feature selection and
SVM/ANN classifiers can detect early AD and successfully classify the major AD
patients and discriminate them from HC subjects. These preliminary results of eval-
uating the complete CAD system are shown to be more useful for separating NORMAL
and AD classes.

                          (a) MRI                              (b) PET 

Fig. 2. Validations ROC curve of support vector machine for (a) MRI and (b) PET images.
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Table 1. Classification performance in term of ACC, MCC, F1-SCORE and AUC obtained from
the evaluation of severalmachine learning classifiers usingPCAandUMAPbased feature selection
and 10-fold cross-validation.

ACC (%) F1-SCORE

MRI PET MRI PET

VAF PCA UMAP VAF PCA UMAP VAF PCA UMAP VAF PCA UMAP

SVM 62.45 91.06 89.18 66.04 90.47 90.04 0.48 0.80 0.79 0.61 0.88 0.85

ANN 60.52 88.32 85.12 65.01 86.97 84.15 0.45 0.78 0.78 0.59 0.87 0.85

DT 52.03 86.23 83.79 64.02 84.14 84.00 0.39 0.77 0.75 0.39 0.80 0.80

RF 51.42 80.04 80.15 54.12 82.17 79.14 0.42 0.76 0.71 0.46 0.82 0.81

DA 60.78 79.04 79.00 60.78 80.54 78.23 0.44 0.78 0.70 0.36 0.77 0.75

RA 45.18 72.29 72.11 59.64 79.07 78.89 0.40 0.76 0.70 0.45 0.79 0.76

NB 60.09 86.82 86.00 61.07 84.36 82.99 0.40 0.71 0.70 0.33 0.80 0.75

KNN 59.54 85.99 84.75 61.08 83.95 80.47 0.39 0.73 0.69 0.57 0.80 0.80

EL 61.89 87.01 86.02 64.36 84.04 83.55 0.45 0.78 0.78 0.57 0.86 0.84

MCC AUC

MRI PET MRI PET

VAF PCA UMAP VAF PCA UMAP VAF PCA UMAP VAF PCA UMAP

SVM 0.60 0.96 0.92 0.39 0.95 0.93 0.62 0.95 0.87 0.63 0.88 0.87

ANN 0.58 0.95 0.90 0.38 0.95 0.90 0.58 0.85 0.86 0.61 0.84 0.83

DT 0.48 0.75 0.73 0.32 0.84 0.82 0.51 0.84 0.80 0.60 0.82 0.81

RF 0.58 0.84 0.81 0.30 0.79 0.80 0.49 0.77 0.74 0.61 0.80 0.77

DA 0.47 0.80 0.80 0.29 0.82 0.82 0.60 0.77 0.72 0.58 0.77 0.78

RA 0.41 0.79 0.77 0.29 0.76 0.74 0.43 0.71 0.77 0.54 0.78 0.79

NB 0.47 0.88 0.79 0.32 0.87 0.73 0.57 0.84 0.75 0.59 0.82 0.81

KNN 0.59 0.79 0.74 0.32 0.82 0.72 0.57 0.83 0.80 0.54 0.81 0.80

EL 0.58 0.91 0.86 0.35 0.90 0.90 0.58 0.85 0.83 0.61 0.83 0.80

Note (Hyper-parameters). DT: Maximum number of splits= 100; KNN: Number of neigh-
bors= 10; SVM:Box constraint level= 1, Kernel scale= 2.8; EL: Number of learners= 30,
Maximum number of splits = 121, Learning rate = 0.1; ANN: Number of fully connected
layers= 2, First layer size= 10, Second layer size= 10, Activation= ReLU, Iteration limit
= 1000, Regularization strength (Lambda) = 0; RF: max depth = 120, min sample split =
3.



128 L. Lazli

Fig. 3. Confusion matrix of MRI images, (a) Support vector machine, (b) Artificial neural net-
works, (c) Decision trees, (d) Random Forests, (e) Discriminant analysis, (f) Regression analysis,
(g) Naive Bayes, (h) K-Nearest neighbors, (i) Ensemble learning.

Fig. 4. Computation time of PCA, UMAP and t-SNE based feature selection.
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4 Conclusion

In this study, we proposed a CAD system to diagnose patients with probable prognosis
of AD. Various schemes combining different feature extraction and selection techniques
with several classification models have been studied and tested on brain database to
distinguish between brain images belonging to AD patients and those of normally aging
subjects. The PCA and UMAP based feature selection techniques have been evaluated
on the MRI/PET database. After that, the features are fed into nine classifiers based on
supervised machine learning namely SVM, ANN, DT, RF, DA, RA, NB, KNN and EL.

With using 10 cross-validation strategy and ACC, MCC, F1-SCORE and AUC
as quantitative measures for the classification performance, all experimental results
obtained showed that this kind of machine learning classifiers represent a promising
approach in the presence of incomplete and imprecise training knowledge, thus allow-
ing flexible adaptation of the classification architecture to the available information. Par-
ticularly, the PCA/UMAP-SVM scheme works in general better than other classifiers,
yielding in most cases higher performance rates.

We conclude that the experiments reported in this paper indicate that artificial intelli-
gence techniques can be used to automate aspects of clinical diagnosis of individualswith
cognitive impairment, which may have significant implications for the future of health
care. So, the CAD system can improve doctors’ diagnostic capabilities and reduce the
time required for accurate diagnosis.

In the future, we are exploring semi-supervised systems and unsupervised deep
learning methods for multi-class diagnosis of AD. In addition, data extensive knowledge
and experience are required to well distinguish the AD data from the aged normal.
Research is in progress integrating other sequences types include T2-weighted, FLAIR,
and TSE for MRI images and PiB and AV45 for PET images. We also plan to integrate
other type of features such as demographics data (gender, age, Right Handed, APOE,
Race), neuropsychological data (memory, language, I.Q., visual-spatial skills), genetic
and biospecimen data.
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Abstract. The volume of the biological literature has been increasing fast, which
leads to a rapid growth of biological pathway figures included in the related bio-
logical papers. Each pathway figure encompasses rich biological information,
consisting of gene names and gene relations. However, manual curations for path-
way figures require tremendous time and labor. While leveraging advanced image
understanding models may accelerate the process of curations, the accuracy of
these models still needs improvements. Since each pathway figure is associated
with a paper, most of the gene names and gene relations in a pathway figure also
appear in the related paper text, where we can utilize text mining to improve the
image recognition results. In this paper, we applied a fuzzymatchmethod to detect
gene names with different “gene dictionaries,” as well as gene co-occurrence in
the plain text for suggesting gene relations. We have demonstrated that the perfor-
mance of image understanding for both gene name recognitions and gene relation
extractions can be improved with the help of text mining methods. All the data
and code are available at GitHub (https://github.com/lyfer233/Text-Mining-Enh
ancements-for-Image-Recognition-of-Gene-Names-and-Gene-Relations).

Keywords: Text mining · Biological pathway · Gene name · Gene relation

1 Introduction

Biological pathway figures in research papers describe the process of a biological func-
tion, which involves many genes and their interactions. The gene names and their rela-
tions in pathway figures are great resources for biological studies and downstream appli-
cations. As the biological literature grows fast, the volume of pathway figures increases
fast as well. The manual curations of the gene names and the corresponding relations
in pathway figures are time-consuming and labor-consuming, which cannot catch up
with the rapid growth of publications. Therefore, automatic information extraction from
pathway figures is necessary to reduce the workload of manual curations, which help
identify both gene names and gene relations in the figures.
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Our recent work [1] annotated gene regulatory relations using image recognition
can be complemented by the text-mining approach, where both gene names and gene
relations can be recognized from plain biomedical text. This study combined both gene
name recognition and gene relation recognition approaches to enhance gene-relationship
recognition from biomedical text. In particular, we used different gene name dictionaries
to apply exact match and fuzzy match to help increase the accuracy of image recognition
results. Meanwhile, gene-relation information can be derived from gene co-occurrences
in the text, from both the same sentence and neighbor sentences, with three different lev-
els, namely caption level, paragraph level, and full-text level. Finally, we compared sev-
eral methods to enhance the image recognition results of gene names and gene relations
from pathway figures.

From the results we provided in Sect. 4, we believe our textminingmethodswill offer
combination of pipelines to help improve the performance of pathway image recogni-
tions. At the same time, we have done a thorough analysis to explain why some methods
did not perform well based on our experiments. The contributions of this paper are as
follows:

• To the best of our knowledge, this is the first study combining image understanding
and natural language processing for recognizing gene names and relationships from
the biomedical literature.

• We utilized fuzzy matches (introduced in Sect. 3.3) to improve the image recognition
results of gene names. Particularly, we applied various “gene dictionaries” in fuzzy
matches to obtain enhancement results.

• We adopted and compared gene co-occurrence at different levels (introduced in
Sect. 3.4) as different gene relation enhancement methods, demonstrating that gene
relation enhancements from the text could improve the image recognition results of
gene relations.

2 Related Work

Gene name identifications from pathway figures [2] provide a basis for pathway figure
information extraction, which can be useful for updating pathway databases such as
KEGG [3]. However, gene name recognitions based on image recognition tools often
contain errors. To solve this problem, we adopted text mining methods to enhance image
recognition results. Many text mining tools use Named Entity Recognition (NER) as the
core method to recognize named entities in the text. The same technique could also be
applied to the biological literature, which identifies biomedical concepts from the text,
such as PubTator Central [4]. BioBERT [5] is also a good pretrained language model
for NER tasks, and BERN [6], a BioBERT-based biomedical text mining tool provides
a similar web service as PubTator Central to recognize known biomedical entities.

Various biological relation extractionmethods, such as the node2vec model [7], have
been applied to extract different types of biological relations from papers. They extract
different relation types, such as gene-gene relationships and gene-disease associations
[8]. However, they usually extract biological relations solely from the text, while we are
trying to enhance the gene relation results from image recognition.
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3 Methods

3.1 Dataset

We retrieved and manually curated 45 pathway figures containing 311 gene names and
193 gene relations in total for analyzing the contributions of the proposed text mining
methods. Our text mining enhancements complement the results of our recent image
recognition pipeline [1], which integrates both the deep learning model and the optical
character recognition (OCR) as Sect. 3.2 described. The manual curation results are
treated as the ground truth when conducting the result comparison in Sect. 3. There are
many types of gene relations in pathway figures, but in this study, we only focus on two
types of gene regulatory relations – “inhibit” and “activate”.

3.2 OCR Tool

OCR serves as a technique to recognize the text within an image. We leverage Google’s
Could Vision API [9] to extract text from pathway figures. It can process entire images
directly without the need for additional preprocessing (e.g., deskewing, resizing, etc.)
by simply calling its built-in text-detection method and passing the current figure and a
suggested language. The API response includes all the words found in the figures and a
hierarchical breakdown specifying pages, blocks, paragraphs, words, and symbols from
the text. By extracting the words in each paragraph, we can build phrases that appear
frequently to enhance gene name and relation recognition in our figures.

3.3 Gene Name Enhancements

After obtaining the image recognition results, we first compared the recognized gene
names with a certain gene dictionary to see if an exact match was found. There are four
dictionaries in our attempts – manual curations, whole article, PubTator Central [4], and
exHUGO, where the dictionary of manual curations is served as a “control group”. The
dictionary of manual curations is the ground truth that we curated each pathway figure
by ourselves. The dictionary of the whole article is the full text of the article containing
the pathway figures, where we tokenized each word inside the full text as an entry in the
dictionary.

PubTator Central is a deep learning-based annotation tool for biological concepts,
such as genes and chemicals, as illustrated in Fig. 1. All the gene annotations extracted
by its deep learning model are stored in the database, and we can easily retrieve the gene
annotations of an article via its Web API.

Fig. 1. Anexample of biological concept annotation fromPubTatorCentral [4]. It contains various
biological concepts marked by different colors, where we only focus on the genes, colored by
purple here. (Color figure online)
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The dictionary of exHUGO combines the HUGO (Human Genome Organisation)
gene name list [10] and our manual curations. Customized from HGNC (HUGO
Gene Nomenclature Committee), HUGO gene list contains all the approved gene
names recorded inside their database. The HUGO gene list only includes regular gene
names of humans; however, biologists usually adopted their idiomatic expressions for
genes in plotting pathway figures. Therefore, we extended the HUGO gene list with
some manually curated gene symbols in a commonly used way forming the exHUGO
dictionary.

If there is no exact match found for the gene names between the results of the image
recognition pipeline and the dictionaries,we applied a fuzzymatch (Levenshtein distance
[11]) to the gene names. Levenshtein distance is a method to measure the differences
between two strings – a and b, which can indicate how many characters are needed to
change from one word to another, as Eq. 1 shows:

Lev(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

|a| if |b| = 0
|b| if |a| = 0
lev(tail(a), tail(b)) if a[0] = b[0]

1+ min

⎧
⎨

⎩

lev(a, tail(b))
lev(tail(a), tail(b))

lev(tail(a), b)
otherwise

(1)

where the tail means the remaining string after its first character, and a[0] and b[0]
represent the first character of string a and string b, respectively. For each OCR result,
we compare it with all gene names in the dictionary and pick the one with the largest

Fig. 2. The process of gene name enhancements. After obtaining the benchmark gene name
results, we first compare themwith the four different dictionaries, marked by the 4 different colors
in the legend. If there are direct matches, these gene names become part of the final gene name
results. If not, we then apply fuzzy match to these gene names through the same 4 dictionaries,
to discover more gene names. Together with the direct matches, they become the complete final
gene name results.
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similarity as its possibly corrected gene name. If the similarity is larger than a defined
threshold (0.9 is set in this study), the matched gene name will replace the OCR result.
Otherwise, the OCR result is considered no matched gene and treated as non-gene text.

We then applied the same gene dictionaries to fuzzy matches we used for the
exact match during the first step. Figure 2 shows the process of the whole gene name
enhancements.

3.4 Gene Relation Enhancements

After obtaining the gene relation results from our image recognition pipeline [1], we
applied two different gene relation extraction methods within three different text region
levels to improve the image recognition results. The two different gene relation extrac-
tion methods refer to the gene co-occurrence in the same sentence and in neighboring
sentences, whereas the three different levels correspond to caption level, paragraph level,
and full-text level, as shown in Fig. 3. Intuitively, the caption level is the caption of a
specific pathway figure, while the paragraph level is the paragraph that mentions the
pathway figure. Full-text level is all the text of the paper containing the pathway figure.

Gene co-occurrence is computed by how many times two genes co-occur in the
selected text region. We calculated all gene name pairs recognized in the pathway fig-
ures in both the same sentence and neighboring three sentences before and after a spe-
cific sentence, which adds to seven sentences in total. For both gene co-occurrences in

Fig. 3. The process of gene relation enhancements. After obtaining the benchmark gene relation
results, we measure the gene co-occurrence in 2 ways – both the same sentence and neighbor 3
sentences, turning out to 7 sentences in total. For each way, we count the gene co-occurrences in
3 different levels – caption level, paragraph level and full-text level.
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the same sentences and neighboring sentences, we calculated in three different levels,
as mentioned above. Since gene relation recognitions always happen after gene name
recognitions in the image recognition pipeline, we assume all gene names in the pathway
figures are recognized correctly before improving gene-relation recognition. Similarly,
the direct gene relation results from image recognition are also corrected by gene names
to conduct a fair comparison with other enhancements.

4 Results

4.1 Gene Name Enhancement Results

The number of annotated gene names in 45 pathway figures ranges from 2 to 20. We
listed the average of precisions, recalls, and F1 scores after enhancements for all four
dictionaries when employing fuzzy match, together with the corrected original image
recognition results, in Table 1. The “Image only” column indicates the initial results
from image recognition, and the other four columns show the results after applying a
fuzzy match with different dictionaries. The column “Manual curations” means that the
dictionary applied to fuzzymatch is the gene namesmanually curated from each pathway
figure, which can be treated as the “control group”, since the manual curations are not
always available for pathway figures. The column “Whole article” utilizes the whole
article to be the gene dictionary for a fuzzy match, where the whole text of a paper is
tokenized into single words as entries in the dictionary. The column “PubTator Central
received” treats the gene names retrieved from PubTator Central as the gene dictionary,
while the column “exHUGO retrieved” is based on exHUGO dictionary.

The comparison results show improvements by all three fuzzy match dictionaries.
The reason for relatively low performance in both original image recognition results and
enhancement results could be too many non-gene entities from pathway figures, such
as protein names, enzyme names, etc. We only focus on the gene names; however, the
image recognition results contain all the text entries inside a pathway figure, bringing
many non-gene entities.

From Table 1, the enhancement results are better than the image recognition results
alone for all four evaluationmethods.Among them, the fuzzy-matchmethodwithmanual
curations (i.e., using ground truth as the gene dictionary) leads to the highest performance
(as our upper bound), but manual curations are not always available in real applications.
Hence, the fuzzy match with PubTator Central retrieved and exHUGO retrieved gene
annotations may be useful as both perform better than the whole article. Although the
result based on PubTator retrieved has a better recall score, the exHUGO dictionary
achieves higher precision. Also, the higher F1 score indicates that exHUGO retrieved
results provide better trade-off for gene enhancements.

In addition, based on our experiments, we noticed that the exHUGO dictionary
contains many gene names that we did not find in the PubTator Central dictionary, such
as MEK1, CED-1, etc. At the same time, different written formats for the same gene
could also be considered; for example, NF-KB and NFKB refer to the same gene, where
PubTator Central can only identify the latter one. However, in exHUGO, there are also
some non-targeted genes included, e.g., CELL, P130Cas, etc.
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Table 1. Performance of gene name enhancement

Performance
(%)

Image only Fuzzy match dictionaries

Manual
curations

Whole article PubTator
central
retrieved

exHUGO
retrieved

Precision 31.4 40.6 32.8 34.6 66.1

Recall 70.8 91.6 74.0 78.2 68.3

F1 43.5 56.2 45.4 48.0 65.2

4.2 Gene Relation Enhancement Results

The number of annotated gene relations in 45 pathway figures ranges from 1 to 20.
Based on our comparison results, the image recognition performance is improved by
some of the relation extraction methods. Like gene name enhancements, we listed the
average enhancement precisions, recalls, and F1 scores for all three levels, together with
the corrected image recognition results, in Table 2.

The “Corrected image only” column indicates that the gene relation results directly
from image recognitions are “corrected” by manual curations (ground truth). We filtered
out all the non-gene entries in the image recognition results of gene names, leaving only
the gene name entries when counting the total gene relations in the pathway figures.
TheWeed to do this step is becausel the other results in Table 2 assume there are only
gene name co-occurrences counted, where no other non-gene entries would be counted
as gene co-occurrence – which makes the comparisons among different methods fairer.
The other columns in Table 2 are the results based on different levels within different
ranges of sentences, respectively, inferred from the column name itself.

Table 2. Performance of gene relation enhancement

Performance
(%)

Corrected
image
only

Caption
in 1
sentence

Caption
in 7
sentences

Paragraph
in 1
sentence

Paragraph
in 7
sentences

Full text
in 1
sentence

Full text
in 7
sentences

Precision 47.90 13.88 12.5 15.22 14.76 17.79 16.77

Recall 48.12 33.53 36.08 37.97 40.12 56.81 61.84

F1 48.01 19.63 18.62 21.73 21.58 27.09 26.39

First, from Table 2, although the overall performance for both caption-level and
paragraph-level does not increase, the recall scores of both full-text-level in one sentence
and in seven sentences are higher than the relations directly extracted from the corrected
image only. In the full text of an article, it is likely that more gene co-occurrences in
ground truth are detected. For example, (ATR, H2AX), this gene co-occurrence has
appeared in both ground truth and the same sentence of full-text-level, but it does
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not occur in the detected relations from an image. Further, compared to recall scores
of the same sentence with the neighboring sentence within three different levels, the
recall scores of neighboring sentences are always higher than the same sentence, which
implies that themore the sentences involved, themore correct gene co-occurrences could
potentially be detected.

Also, for both the same sentence and neighboring sentences, the precision scores
are rather lower than the detected relations from the image. The main reason could be
that the extra noise is involved in the data while introducing the auxiliary information
on both three different levels. For example, in one of the articles containing a certain
pathway figure, there are five gene relations in total in the ground truth, the original image
recognition only has two corrected gene relations. Whereas the gene co-occurrences
detected in the same sentence contain 24 gene co-occurrences, which perfectly match
all 5 gene relations in the ground truth, but with 19 irrelevant gene co-occurrences.

Moreover, when comparing within the same level, the precision scores are con-
sistently higher with neighboring sentences than with one sentence only, while the
recall scores are completely the opposite. That is because more gene co-occurrences
are detected after expanding the “search range”, which also involves more “noise genes”
simultaneously. For example, for one specific article, there are 7 gene co-occurrences in
total within one sentence, but only 1 gene co-occurrence can match the gene relations
in the ground truth. After searching gene co-occurrences based on seven sentences, the
gene co-occurrences become 9 in total, adding 2 more unmatched gene co-occurrences.
As a result, there is still one gene co-occurrence matching the gene relation in the ground
truth. Obviously, the 2 more gene co-occurrences can be defined as irrelevant noise.

When comparing the results across the different levels, the recall scores are always
increasing, no matter whether gene co-occurrences are detected within 1 sentence or
7 sentences. It indicates that amplifying the “search range” can still match more gene
co-occurrences.

Compared to the corrected image recognition results (corrected image only), the
precision scores of all gene co-occurrence methods are all decreasing, while only recall
scores at full-text level are increasing. The reasons are the following:

1. Some caption-level and paragraph-level sentences do not contain any gene co-
occurrences; hence, their gene co-occurrences would be null.

2. Some gene names are different in text and figures. For example, (PKA, GSK3B)
is a gene relation in one pathway figure, but GSK3B turns to GSK-3beta in the
text. Obviously, GSK3B and GSK-3beta refer to the same gene, but the different
expressions hinder the gene co-occurrence detection in the text.

4.3 Use Cases

Since we provided two different enhancements, so the use cases are separated as gene
name enhancements and gene relation enhancements. The original figure of Fig. 4 is
from [12] and Fig. 5 is from [13].
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Gene Name Enhancements. The fuzzy match method with different gene dictionaries
can help discover more gene names in the pathway figures – one example is shown in
Fig. 4. The blue rectangles in the figure are the gene names found by image recognitions
and the red rectangles are the newly discovered ones after applying the fuzzy match
method with the PubTator Central [4] retrieved gene names.

Fig. 4. The use case of gene name enhancement. The blue rectangles indicate the gene names
recognized by OCR, where the red rectangles indicate the gene names after applying our pipeline.
(Color figure online)

Gene Relation Enhancements. Similar to gene name enhancement, text mining meth-
ods can also help discover more gene relations in pathway figures, as illustrated in
Fig. 5. The blue rectangles in the figure are gene relations detected by image recogni-
tion. The red rectangles are the newly-added one extracted from the text by counting
gene co-occurrences in the same sentence.
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Fig. 5. The use case of gene relation enhancement. The blue rectangles indicate the gene relations
recognizedbyOCR,where the red rectangles indicate the gene relations after applyingour pipeline.
(Color figure online)

5 Discussion

This work demonstrated that text mining methods could improve the image recognition
results of gene names and gene relations. Our current methods for gene co-occurrence
detections still exist many problems. For instance, when we identified the sentences for
caption-level, paragraph-level, and full-text-level, we utilized theXMLfile, whichmight
lose some sentences due to the format problem. In the future, we might need to explore
other methods to obtain the corresponding sentences.

At the same time, for gene relation enhancements, we will also try to assign weights
to different levels of text regions, namely caption-level, paragraph-level and full-text-
level. Based on that approach, we should be able to get better performance. Moreover,
we plan to extend the exHUGO gene dictionary continuously. Based on a bigger gene
dictionary, it could help us identify the same gene name with different expressions in
the text, which leads to higher precision and recall scores.

Further work is also ongoing to manually curate more pathway figures to verify
that the text mining enhancements of our scientific literature processing framework are
generalizable. For example, our next target includes pathway figures from KEGG since
the XML ground truth file is already available for each figure. Also, we only utilized
existing off-the-shelf text mining tools for both gene name and gene relation extractions,
but we plan to explore building our model for this task.
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6 Conclusion

This paper applied text mining methods to enhance image recognition results of gene
names and gene relations.We compared the performance of fuzzymatches with different
“gene dictionaries,” as well as the performance of gene co-occurrence gene relation
extractions. The comparisons with image recognition results alone indicate that more
gene names and gene relations are discovered after text mining enhancements with
lower false positives based on image recognition results from pathway figures. Finally,
in this paper, we showed that combining information extracted from figures and text of
a scientific article could lead to an improvement in the quality of the extracted pathway.
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Abstract. The biomedical knowledge about transcriptional regulation
in bacteria is rapidly published in scientific articles, so keeping biologi-
cal databases up to date by manual curation is rather than impossible.
Despite the efforts in biomedical text mining, there are still challenges
in extracting regulatory interactions (RIs) between transcription factors
and genes from text documents. One of them is produced by text extrac-
tion from PDF files. We have observed that the extraction of RIs from
text lines that comes from tables of the original PDF article produces
false positives. Here, we address the problem of automatically separating
this text lines from those that are regular sentences by using automatic
classification. Our best model was a Support Vector Classifier trained
with n-grams of characters of tags of parts of speech, numbers, symbols,
punctuation, brackets, and hyphens. Despite a significant imbalanced
data, our classifier archived a positive class F1-score of 0.87. Our best
classifier will be coupled eventually to a preprocessing pipeline for the
automatic generation of transcriptional regulatory networks of bacteria
by discarding text lines that comes from tables of the original PDF.

Keywords: Information extraction · Transcriptional regulation ·
Biomedical text mining · Supervised learning · Regulatory interaction ·
Machine learning

1 Introduction

A transcriptional regulatory network (TRN) gives a global view of the regulatory
mechanisms for bacteria to survive under different environmental conditions.
A TRN is formed by several regulatory interactions (RIs) between transcrip-
tion factors (TFs) and regulated genes. TFs affect the initiation of transcrip-
tional regulation by facilitating (activation) or inhibiting (repression) the gene
transcription, so a regulatory interaction is formed by a TF, a gene, and an
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effect (Table 1). These TRNs are published in biological databases as a valuable
resource for experimental and bioinformatic researchers; however, many bacteria
still lack TRNs, and most of the existing ones are incomplete [11].

Table 1. Examples regulatory interactions from the E. coli TRN published in Regu-
lonDB [28].

TF (regulator) Gene Effect of the regulator

AraC araA Activator

AraC araB Repressor

AraC araC Activator

With the purpose of building a TRN using a collection of 3,200 articles
of Salmonella enterica serovar Typhimurium (Salmonella), which is one of the
primary pathogens that infect both humans and animals worldwide [12], we have
worked on developing a text mining approach to extract RIs from literature of
this bacterium. Our linguistic approach follows the concept of thematic role,
which refers to the various roles that a nominal phrase plays regarding the action
described by a verb; in the case of a RI, the TF is the agent and the gene is
the patient. Using simple rules and triplets extracted with Open Information
Extraction [2], we have obtained promising results (manuscript in preparation).

In our current pipeline for RI extraction, an article collection is preprocessed
by extracting text from the PDF files using an in-house developed text extractor
tool. Afterward, traditional NLP preprocessing steps are performed: sentence
split, tokenization, lemmatization, and part of speech tagging, using modules
from Stanza NLP library [27]. Then, NLP preprocessing output is processed
using rules and OpenIE to extract the final RIs and construct a TRN. Using our
approach, we are able to extract regulatory interactions from sentences such as:

1. It is known that prgH is under the regulation of many global regulators, such
as HilA, InvF, PhoP, and SirA [31].

2. The PhoP-activated mgtA, mgtC, and pagM genes are required for motility
on 0.3 % agarose low Mg2+media [24].

Analyzing the RIs extracted by our approach, we detected false positives
produced by the following situations: 1) Extracted RIs referring to another bac-
terium different from the bacterium of interest. For example, in the literature of
Salmonella, we can often find RIs of E. coli, as this is a model organism com-
monly used for comparison, 2) RIs extracted from sentences in which the RI is
not verified or implies a supposition, for example, OmpR appears to function
as an activator of ssrA [13], and 3) RIs extracted from text lines that come
from tables of the PDF article after text extraction using our in-house PDF text
extractor. The last problem is the one that we address here.
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Our in-house PDF text extractor extracted tables from the original article as
raw text; then, our NLP preprocessing steps transformed it into text lines. For
example, in the first row of Table 2, we show part of the original table obtained
from [33]. In the second row of Table 2, we display the extracted line from the
PDF file, illustrating that the original order of the data was lost. We obtained
the same output using some free available libraries to extract text from PDF
files.

Table 2. Example of a table before an after text extraction from PDF file with our
in-house developed tool and NLP pre-processing steps. Original table adapted from
[33]

Original table Flagella 1 phase-2 flagellin fljB 52.54 4.75 306.0

2 phase-1 flagellin fliC 51.34 4.76 2.2

Text line Flagella phase-2 flagellin phase-1 flagellin 306.0 2.2 2.1 2.3 2.2...

In addition to the text file, our pipeline delivers a semi-structured output
(JSON file) used to display articles in a curation Web system [10]. The JSON
file includes article sections and metadata that allow us to show a parallel visual-
ization of the PDF article and the corresponding rendering version for curation
(Fig. 1. Moreover, the approach to extract RIs has to correctly associate the
extracted RIs with the sentences in the JSON file to be displayed in the plat-
form, as extracted RIs are uploaded to the platform for the curator to validate
them.

Fig. 1. Parallel visualization of a PDF article and corresponding rendering version in
the curation Web system.

In the past, different approaches have been adopted to deal with tables from
articles in PDF or HTML format. However, these approaches were oriented
towards finding graphic patterns of tables, highlighting the importance of the
visual layout or the metadata. Also, previous works have addressed the problem
with Conditional Random Fields (CRFs) for predicting patterns and structures
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of tables through graphical modeling [26]. In another work, a new box-cutting
graphical recognition model was implemented to detect adjacent and connected
lines that delimit a table crawled from digital libraries [20]. There is a whole
field of Web table processing established [35]. A remarkable example is the clas-
sification of tables from academic papers, with particular appeal for topics such
as biological interactions, chemical patents, or similar fields, which require more
extensive and more complex tables than those found on the web [34].

Despite these efforts to deal with tables in PDF format, as a first approach
to decrease false-positive RIs, without the need to make significant changes in
our in-house text extractor, we propose to classify text lines into two categories:
1) NON-TABLE, if they appear to be regular sentences, and 2) TABLE if they
seem to come from a table in the original article. Once all TABLE instances are
categorized, they will be discarded in the RI extraction (Fig. 2).

We tested three classical text classifiers: Support Vector Classifier (SVC),
Random Forest (RF), and Stochastic Gradient Descent Classifier (SGDC), to
find the best model to automatically detect text lines of TABLE category in the
extracted text from the PDF files. We employed a manually categorized data set
of 150 articles from the literature on transcriptional regulation of Salmonella.
One of the major challenges in our task was the extensive imbalance in our data
set, which consisted of 410 instances of TABLE category (positive class) and
45,406 instances of NON-TABLE category (negative class). We addressed this
problem by testing the following strategies: random oversampling, automatic
weighting classes inversely proportional to class frequencies, and training based
on positive class F1-score. To represent instances of both categories, we used
tags of: Part-Of-Speech, numbers, symbols, hypens, brackets, and punctuation.
In addition, we examined sentence length as a feature for training. A feature
selection strategy was also considered. The best classifier was a SVC with an
F-score of the positive class of 0.87 trained using n-grams of characters of all
kind of tags.

This work will help us separate text lines that appear to come from tables in
the original PDF article from text lines that are natural sentences. In this way,
we expect to decrease false positives in our current (unpublished) pipeline to
extract regulatory interaction from the literature on transcriptional regulation
in bacteria. In a future study, we will quantify the effect of this separation on
the performance of extracting regulatory interactions.

In future work, we will test different approaches to dealing with tables in
PDF files. The automatic extraction and curation of tables in scientific articles
remain a need that increases proportionally with the number of new publications
on transcriptional regulation. We predict this behavior based on the ability of
tables to store dense and multidimensional information, something useful for the
presentation of complex interaction networks. Another characteristic of tables is
that they are displayed as easily understandable structures to humans but could
be algorithmically complex to analyze because of the variety of layouts.
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Fig. 2. RI extractor pipeline. Created with BioRender.com

2 Materials and Methods

2.1 Data Set

We obtained a list of 3,200 PubMed IDs (PMIDs) using a PubMed query based
on keywords of transcriptional regulation in Salmonella. This list was used to
download the PDF files. We extracted text files from these PDF articles using
our in-house tools. From the collection of text files, we selected a set of 150
files by searching the word table. We manually checked the text lines of the
150 articles where the search word table was found to confirm that these lines
came from tables in the original PDF article, avoiding references to tables in
the supplementary material. These text lines, which come from tables, were
considered the positive class, which we categorized as TABLE (see Table 2).
The remaining text lines were considered the negative class and labeled NON-
TABLE. Therefore, the data set comprised 410 instances of the positive class
and 45,406 of the negative class. As we mentioned, the imbalanced data problem
was the main challenge of this work since the number of examples of the positive
class was much smaller than those of the negative class. The data set was split
into 80% for training and 20% for testing the model.

https://biorender.com/
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2.2 Feature Extraction and Vectorization

In traditional machine learning, the representation of training instances by use-
ful features is essential to get the best predictive model; thus, we employed
some commonly used features in text classification [23]. After inspecting some
instances of both categories (TABLE and NON-TABLE), we identified some fea-
tures that were primarily present in text lines categorized as TABLE, suggesting
that they may be useful for classification. Some of those were numbers, symbols,
parenthesis, brackets, punctuation (.,;), and the presence of several nouns and
prepositions. However, many of these features were present in both categories;
for example, small text lines categorized as TABLE were similar to NON-TABLE
text lines expressing references, as they also contained parenthesis and numbers.

For feature extraction, we represent instances (text lines) as sequences of
tags that resulted from preprocessing steps with Stanza [27]. The annotations
returned by Stanza were: sentence split, tokenization, lemmatization, and the
Part-Of-Speech tagging with tags used in the Penn Treebank Project [22]. This
POS tagging includes linguistic elements (nouns, verbs, prepositions) as well as
cardinal numbers, symbols, and punctuation [14]. In Table 3 an instance of each
category represented with tags is shown. Notice that both instances share some
tags.

Table 3. Examples of the final representation of input data.

NON-TABLE NN IN NN VBZ DT JJ NN IN DT NN -LRB- NNP FW FW, CD -RRB-,
CC WRB DT NN NN HYPH NNS NN NN IN NN CC NN VBZ RB

TABLE NNP NN HYPH NN NNS IN DT NN HYPH NN NN VBN IN NNP NNP
-LRB- NNP -RRB- IN DT JJ HYPH NN NN -LRB- NN -RRB-, NN NN
NN -LRB- NNP -RRB- ...

Abbreviations: coordinating conjunction (CC), cardinal digit (CD), determiner (DT), adjec-
tive (JJ), foreign word (FW), preposition(IN), hyphen (HYPH), singular noun (NN), plural
noun (NNS), proper noun (NNP), adverb (RB), symbol (SYM), predeterminer (PDT), left
square bracket (-LRB-), right square bracket (-RRB-), verb (VB), verb in past participle
(VBN), verb gerund (VBG), verb in 3rd person singular present (VBZ), wh- pronoun (WP),
wh- adverb (WRB).

We tested four representations of instances based on tags: 1) symbol tags,
2) number tag, 3) number and symbol tags, and 4) all tags (Table 4). We also
considered sequential combinations of tags (n-grams) from these representations
to train the classifiers, hypothesizing that some combination of tag patterns
may help separate between instances of each category, for example, sequences of
numbers or combinations of nouns and numbers. We trained with individual tags
(n-grams = 1), two sequential tags (n-grams = 2), three sequential tags (n-grams
= 3), one and two tags (n-grams = 1,2), two and three tags (n-grams = 2,3),
and one, two and three tags (n-grams = 1,3). An example of tag n-grams from
all tags representation is shown in Table 4. Since another observation was that
text lines categorized as TABLE seemed to be longer than those categorized as
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NON-TABLE, we tested the length of the instance (total number of characters)
as a training feature.

Table 4. Different representations of instance features.

All tags NN IN NN VBZ DT JJ NN IN DT NN ... -LRB- NNP FW

Tag n-grams (NN IN) (NN VBZ) (DT JJ) (NN IN) (DT NN) ... (NNP FW)

Symbol tags LRB RRB LCB RCB SYM HYPH NFP, . :

Number and symbol tags CD LRB RRB LCB RCB SYM HYPH, . :

Characters N N I N N N V B Z D T J J N N I N ... N N P F W

Character n-grams (N N I) (I N N) (N N V) (D T J) ... (P F W)

Instance length 49

Abbreviations: left curly brackets (LCB), right curly brackets (RCB)

We also included using sequences of characters of tags (character n-grams)
as another way of representing instances. The main idea behind this represen-
tation is to reduce features, which also helps to save computational costs. This
representation of character-level k-grams has been used previously in text classi-
fication, such as language identification [17]. We represented instances with two
and three characters (n-grams = 2,3), two, three and four characters (n-grams
= 2,4), two, three, four and five characters (n-grams = 2,5), three and four char-
acters (n-grams = 3,4), and three, four and five characters (n-grams = 3,5). An
example of character n-grams is shown in Table 4. Although this representation
seems unusual, we obtained the best results training with this representation.

All instances were vectorized to a term frequency-inverse document frequency
matrix (TF-IDF) of size (n− instances,m− features), in which every row was
the numerical vector representation of a single instance. The TF-IDF has been
proposed in information retrieval [29] to give more importance to features that
best describe an instance, and it is widely used in NLP problems [32]. The weight
is very low for features (i.e., tags, n-grams of tags, n-grams of characters) that
occur in most instances, while it is higher for those which only occur in some
of them. This matrix and an array of length n− instances containing the class
category associated with each instance were provided to the learning algorithm.
All the classifiers were trained with all the vectorized representations mentioned
above.

It is well known that vector representations of text data are highly dimen-
sional [32]. Thus, we tested a dimensionality reduction strategy by choosing a
percentile of 70% or 90% of the features from the TF-IDF matrix. Dimensionality
reduction has benefits in memory, computation, complexity, variance reduction,
and elimination of noise and outliers [1]. This strategy removes features until
reaching a user-defined percentage of the highest-scoring features based on a
chosen metric. For scoring features, we employed the f classif, which computes
the ANOVA F-value between classes and features. By doing this, we manage
to train with only the most relevant features. We utilized the SelectPercentile
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method of scikit-learn (https://scikit-learn.org/stable/) [25] to implement this
strategy.

2.3 Supervised Learning

We compared the performance of three classical classification algorithms that
have previously proven effective in text classification [16]: Random Forest Clas-
sifier, Stochastic Gradient Descent Classifier, and Support Vector Classifier. We
opted for tools available in Scikit-Learn for text preprocessing, feature extrac-
tion, and classification since this library offers one of the best-integrated ecosys-
tems and flexible pipelines for machine learning [30].

Decision trees are simple structures used to solve complex problems. The
Random Forest Classifier (RFC) uses several decision trees to fit sub-samples of
the data provided [7]. The maximum size of each sub-sample can be modified
via the parameter n estimators. The run time can be pretty short for binary
classification compared to multi-class classification since there are significantly
few decisions per node.

The Stochastic Gradient Descent Classifier (SGDC) focuses on the gradient
of loss estimated in each sample, which updates the model in real-time to alter
the weight given to each classified sample using a modifiable learning rate [6].
This method lets us alter the learning rate (learning rate), the regularisation
term (penalty), and the loss function (loss) used by the model, making this a
highly adjustable gradient.

The Support Vector Classifier (SVC) finds the best decision hyperplane that
separates vectors representing instances of the two classes [9]. SVC accomplishes
this by finding the pair of instances that is the hardest to distinguish (support
vectors) and using them to build the decision function, which is unique for a
training set [5]. We used a Radial Basis Function (RBF) as a kernel for the
SVC, which uses the hyperparameters C and Gamma to calculate how related
two data points are and give them a class based on that closeness.

The imbalance between the number of positive and negative instances is
a huge challenge in machine learning [18]; however, there are no theory-based
guidelines to pick the best strategy to deal with this problem. We tried to address
our imbalanced data problem by testing three strategies: 1) the random over-
sampling of the positive instances, 2) automatically adjusting weights of classes
inversely proportional to the frequency of the instances of each class, and 3)
training classifiers based on positive class performance score.

To balance our data, we performed a random oversampling. We generate new
instances by randomly sampling with the replacement of the currently available
instances in the positive class. We used the Python library imbalanced-learn to
implement this strategy (https://imbalanced-learn.org) [19]. The random over-
sampling was performed excursively on training data, and the model was evalu-
ated with imbalanced test data as it is suggested in literature [21].

The second strategy we employed to address the imbalanced problem was the
weighting of classes inversely proportional to the frequency of the instances of
each category. This step modifies the training of the algorithms by penalizing the

https://scikit-learn.org/stable/
https://imbalanced-learn.org


Sentence Classification to Detect Tables 151

classification errors of the minority class. This strategy is already implemented
in the models of the Scikit-Learn [25].

In addition, to deal with this imbalanced data problem, we trained the classi-
fiers by evaluating the F-1 score value instead of the accuracy, which is unsuitable
for evaluating classifiers when the imbalanced problem is present [3]. We trained
the classifiers by optimizing only the F-1 score of the positive class (TABLE) as
a way to search for an improvement in the classification performance of this cat-
egory. We also trained classifiers using a weighted F1-score metric, calculated for
each category and then weighted by the number of instances of each class. This
allowed us to alter the F1-score to account for imbalanced data (the F1-score is
not between precision and recall).

All training runs were performed with the stratified k-fold cross-validation
strategy, with k = 5, and searching of hyperparameters: C and gamma for the
SVC; alpha, penalty, and l1 ratio for the SGDC; and estimators, bootstrap-
ping, and criterion for the RFC. A randomized search over parameter values
guided the optimization of hyperparameters by sampling from a distribution
over possible parameter values. This strategy has the benefit of adding param-
eters without having a decrement in efficiency [4]. We took advantage of the
RandomizedSearchCV object implemented in Scikit-Learn [25] for the optimiza-
tion of hyperparameter over 100 iterations. In Table 5, we show the range of
values utilized for optimization for each hyperparameter.

Table 5. Parameter settings for optimisation of hyperparameters (100 iterations)

Algorithm Hyperparameter Values

SVC C 1–50, step 0.5

Gamma 0–1, step 0.05

SGDC Alpha 10x: x from 0 to −7

l1,l2 Ratio: 0.15, 0.25, 0.5, 0.75

RFC Estimators 100, 150, 200, 300

Bootstrap True, false

Criterion Gini,entropy

3 Results

3.1 Best Model

In Table 6, we summarize all the features used for instance representation, the
parameters employed for training classifiers, and the combination of them that
obtained the best performance (third column). To understand how every param-
eter influences one another and to measure their impact on the classifier’s per-
formance, we tested all possible combinations, giving us a total of 397 cases
(runs).
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Table 6. Summary of features used for instance representation and parameters
employed for training classifiers. We include the combination that obtained the best
performance in third column.

Features and Parameters Tested options Best option

Features All tags, Only symbols, Only numbers, All tags

Symbols + numbers, instance length

Vectorization Tag, Character Character

N-gram range Tag:(1,1),(2,2),(3,3),(1,2),(2,3),(1,3) Character (2–5)

Character:(2,3),(2,4),(2,5),(3,4),(3,5)

Feature Selection None,70%, 90% None

Oversampling True, False False

Scorer Weighted, Only Positive Class Weighted

Oversampling of the positive class, the use of instance length as a feature,
and only training with number tags or symbol tags, did not significantly increase
the model performance. On the contrary, the weighting of classes inversely pro-
portional to the frequency of the instances of each category (Scorer Weighted) to
handle the imbalanced data and using character n-grams was an essential step
for enhancing model behavior since the highest 24 F1-scores on the test data
were archived by models using this configuration (Table 7). Surprisingly, neither
training with tag n-grams nor single tags led to anything close to outstanding;
the highest positive class F1-score on test data obtained with this strategy stood
in 24th place.

Table 7. Best positive class F1-scores obtained in test data.

Rank Run ID Recall Precision F1-Score MCC Feature N-gram range

1 Run 289 (SVC) 0.88 0.85 0.87 0.87 Character (2,5)

2 Run 291 (SVC) 0.88 0.84 0.86 0.86 Character (2,5)

3 Run 390 (SVC) 0.87 0.84 0.86 0.85 Character (2,5)

4 Run 363 (SGDC) 0.87 0.85 0.86 0.86 Character (3,4)

5 Run 328 (SVC) 0.82 0.88 0.85 0.85 Character (3,5)

... ... ... ... ... ... ... ...

24 Run 109 (SVC) 0.86 0.80 0.82 0.82 Tag (1,2)

The best classifier was obtained with an SVC using from 2 to 5 character
n-grams and without feature selection. Best hyperparameters were C = 23 and
gamma = 0.41. Despite the imbalanced data problem, this classifier obtained
an F-score for the positive class of 0.87 on the test data. To further back
up these results, we measured the Mattews Correlation Coefficient (MCC) [8]
for predictions on the test data and obtained an MCC score of 0.87. This
metric is a reliable indicator of the quality of a binary classification with a
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highly imbalanced data set because it measures the correlation between the
true and the predicted values. Thus, the obtained MCC score is consistent
with the model performance observed with the F1-score even though positive
instances were significantly underrepresented. Data and models are available in
https://github.com/laigen-unam/table-in-text.

We also used the Precision-Recall curve and the Receiver Operator Charac-
teristic (ROC) curve for evaluation. These evaluations have proven helpful for
counterfactual cases with imbalanced and balanced training data sets, respec-
tively [15]. We evaluated both and plotted the curve showing some metrics
(Fig. 3). We observed that the area under (AU) the ROC curve (Fig. 3a) appeared
to be optimistic, but it may mask a poor performance caused by the imbalance
of our data. However, the AU of the Precision-Recall curve is a more realistic
metric of our classification performance and showed that it got acceptable aver-
age precision (AP = 0.93) (Fig. 3b). The confusion matrix (Fig. 3c) on the test
data for the best classifier highlights our relevant results. Although there was a
significant difference in the number of instances between classes, only 9% of the
TABLE instances were classified wrongly in the NON-TABLE category.

Fig. 3. Results for the best classifier: (a) ROC curve. (b) Precision-Recall curve. (c)
Confusion matrix.

https://github.com/laigen-unam/table-in-text
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As we observed that the best combination of features was characters in the
n-gram range of (2,5) (Table 7), we explored increasing the number of iterations
to 700 for optimizing hyperparameters by training the three classifiers. Results
showed an increment in positive class F1-score. The SVC obtained a positive
class F1-score of 0.90, surpassing the RFC and the SGDC (Fig. 4).

Fig. 4. Best positive class F1-Scores for each algorithm on the test data using (2,5)
n-grams of characters.

3.2 Best Features

The features used by the best classifier were character n-grams ranging in sizes
from 2 to 5. We show the top features in Table 8 to gain insight into the pat-
terns learned by the best model. As we expected, features like numbers (CD) or
punctuation symbols (:) were essential for distinguishing between the two classes.
Interestingly, dividing by n-grams of characters instead of n-grams of tags helped
identify combinations of sequences and repeated elements, as we can see in fea-
tures 1–6 in Table 8. Notice that spaces were considered as characters to create
n-grams, allowing us to preserve the tag information. By doing this, we manage
to capture more information than the one captured by complete tag n-grams
while avoiding the computational cost and the exponential increase in feature
dimensionality that comes with increasing n-gram size. For example, line #5
captures sequences of two consecutive numbers (CD CD) and a number followed
by a coordinating conjunction (CD CC) in a single feature ( cd c). This repre-
sentation allows for more generalized features and reduces their dimensionality.
Moreover, the space at the beginning of the ( cd c) feature retains positional
information, suggesting this sequence of tags does not appear at the start of the
text line.
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Table 8. Top 1% best features using n-grams of size (2,5). Note that features 37–39
contain the information of 3 tags while being smaller that complete tag n-gram of size
(3–3) displaying the same sequence of elements.

Rank Feature N-gram size Tags feature

#1 ( . n) 4 2

#2 ( . nn) 5 2

#3 ( : :) 4 2

#4 ( : : ) 5 2

#5 ( cd c) 5 2

... ... ... ...

#37 (d : :) 5 3

#38 (n . n) 5 3

#39 (n : :) 5 3

4 Conclusion

By training a classifier, we addressed the problem of automatically separating
text lines that appear sentences from those that came from tables in PDF files.
The best model archived an F-score of the positive class of 0.87 on the test data,
improvable to 0.90. It was obtained by a Support Vector Classifier trained with
n-grams of characters of parts of speech tags, numbers, symbols, punctuation,
brackets, and hyphens. This classifier will be coupled to our pipeline to extract
regulatory interactions from the literature on transcriptional regulation in bac-
teria to evaluate its effect on reducing false positives. This work may have an
impact on extracting TRNs for bacteria without an available curated database.
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most comprehensive and up-to-date inventory of meta-curated, historical, bacterial
regulatory networks, their completeness and system-level characterization. Com-
put. Struct. Biotechnol. J. 18, 1228–1237 (2020). https://doi.org/10.1016/j.csbj.
2020.05.015
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Abstract. Magnetic Resonance Imaging (MRI) is one of the tools used
to identify structural and functional changes caused by multiple sclerosis,
and by processing MR images, connectivity networks can be obtained.
The analysis of structural connectivity networks of multiple sclerosis
patients usually employs network-derived metrics, which are computed
independently for each subject. We propose a novel representation of
connectivity networks that is extracted from a model trained on the
whole multiple sclerosis population: RF-Isolation. RF-Isolation is a vec-
tor encoding the disconnection of each region of interest with respect to
all other regions. This feature can be easily captured by isolation-based
outlier detection methods. We therefore reformulate the task as an out-
lier detection problem and propose a novel approach, called MS-ProxIF,
based on a variant of Isolation Forest, a Random Forest-based outlier
detection system, from which the representation is extracted. We test
the representation via a set of classification experiments, involving 79
subjects, 55 of which suffer from multiple sclerosis. In particular, we
compare favourably to the most used network-derived metrics in multi-
ple sclerosis.

Keywords: Multiple sclerosis · Structural connectivity network ·
Microstructure informed tractography · Proximity isolation forest

1 Introduction

Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous
system causing demyelination and neurodegeneration [1]. It is usually diagnosed
and followed up via the analysis of Magnetic Resonance Imaging (MRI), which is
sensitive to demyelination, i.e. lesions affecting white matter tracts and causing
disconnection of grey matter regions.
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The aim of this paper is to discern MS patients from healthy subjects, starting
from their quantitative connectivity networks estimated with MRI. A connectiv-
ity network encodes the connectivity strength between each pair of brain regions
of interest (ROIs). An interesting technique, used to compare MS subjects to a
healthy cohort, consists of analyzing the distribution of network-derived metrics.
These measures capture the importance in terms of connectivity of either the
whole network or a subnetwork composed by fewer ROIs. The rationale behind
these methodologies is that in connectivity networks, because of the presence
of lesions, the connectivity strength between the ROIs involved in a lesion is
expected to be lower in an MS subject than in a healthy one. Although the
relevance of network-derived measures in the study of MS has been already
investigated [11,14,15], there are some issues that would benefit from method-
ological improvement. In particular, all these measures are subject-wise: they are
computed independently for each subject using only the connectivity network of
the subject under analysis. In other words, they tend to capture how MS behaves
in a specific subject, rather than the global nature of the disease.

In this paper, we propose a novel representation of MS connectivity networks,
called RF-Isolation. The main characteristics of RF-Isolation are: i) it measures
the disconnection of each ROI with respect to all other ROIs; ii) the problem is
reformulated as an outlier detection task, hence the disconnection of a ROI is
represented via an outlierness score, extracted by using a Random Forest (RF)-
based outlier detector model; iii) it is disease-wise, i.e. it is extracted for all
subjects, MS and healthy, from a model built using the entire MS population.

We assessed the suitability and robustness of the proposed approach via
several classification experiments, performed on a cohort of 79 subjects, 55 of
which suffer from MS. We also compared to standard network-derived metrics.

2 Materials and Methods

2.1 Study Population

The dataset we employ consists of 79 subjects1: 55 suffering from MS and 24
healthy controls. MS subjects had to meet several inclusion criteria: for example,
among others [15], their Expanded Disability Status Scale score had to be
≤ 7 and they had to satisfy the diagnostic McDonald criteria. There were also
several exclusion criteria, such as: the presence of any major systemic condition,
pregnancy, and addiction to drugs/alcohol, among others [15]. Further, they
underwent a clinical examination within a week from the MRI scan. All subjects
have signed a written informed consent prior to the beginning of the whole
study, as the Declaration of Helsinki states. The Institutional Review Board of
the Icahn School of Medicine at Mount Sinai approved the protocol.

1 The dataset has been collected at the Mount Sinai Hospital of New York (US) by
the group of Matilde Inglese. The dataset is not publicly available.
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2.2 MRI Acquisition and Processing

The MRI acquisition protocol was the same for all subjects: a Siemens Skyra 3T
scanner (Siemens, Erlangen, Germany) with a 32-channels head coil was used
–further technical details can be found in [15]. As to the processing of the brain
images, the first part of the pipeline illustrated in Fig. 1 of [14] was followed.
Briefly, images were segmented obtaining a cortical parcellation in 85 grey mat-
ter ROIs using the Desikan-Killiany atlas [6]. At the same time, the tractogra-
phy was computed using a probabilistic algorithm. The next crucial step was the
application of the COMMIT (Convex Optimization Modeling for Microstructure
Informed Tractography) framework [4] to obtain quantitative structural connec-
tivity networks that better reflect the white matter tissue microstructure.

The final connectivity networks, one for each subject, were obtained by com-
bining the COMMIT-weighted tractogram with the segmented grey matter. Each
connectivity network is composed by 85 brain regions of interest of grey matter,
encoded as nodes; the connectivity strength between each pair of ROIs is encoded
as an undirected edge between the involved ROIs. Please note that in the rest
of the paper, we will use the terms ROIs and brain regions interchangeably.

2.3 RF-Isolation Extraction

The proposed methodology, RF-Isolation, is based on three assumptions:

i RF-Isolation is a vector of length equal to the number of established brain
regions. Each feature of the vector encodes the degree of disconnection of one
ROI with respect to all other ROIs. Indeed, disconnections in the brain are
a cornerstone of MS.

ii To encode such characteristic, we map the problem to the outlier detection
context. Outliers are objects which do not conform to the rest of the data:
they are few and different from the former. We can easily interpret a ROI
with a high level of disconnection as an outlier. Therefore, the disconnection
level of a ROI can be measured by quantifying its “outlierness”.

iii The last assumption is that to extract a meaningful representation for MS,
we should build the model using only subjects suffering from MS. Using only
the healthy cohort, or both populations, would lead to a model in which the
identification of disconnected ROIs is presumably more difficult.

In detail, our approach is based on two steps:

1. Train a model using the entire MS population.
2. Given a subject, we can obtain its RF-Isolation vector by employing the

model from Step 1.

Before thoroughly describing each step, a note must be made on how the adopted
model was chosen: our reasoning starts from Isolation Forest (iForest) [8], an RF-
based methodology that is also one of the most successful outlier detectors. The
aim of iForest is to separate each object from the rest of the data, relying on the
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principle of isolation. Outliers, due to their nature, are likely to get isolated early
in a tree, i.e. they have a high isolation capability. The latter is used to quantify
the anomaly score, i.e. outlierness degree, of an object. Unfortunately, iForests
work only with vectorial data, whereas our starting point is a connectivity net-
work, which can be seen as a similarity matrix. In detail, the connection strength
between two ROIs can be interpreted as a similarity value, i.e. the stronger the
connection, the higher the similarity. Thus, we based our approach on Prox-
imity Isolation Forest (ProxIF) [9], an RF and isolation-based outlier detection
methodology that works with all types of data for which a proximity measure
can be defined. In detail, we extend ProxIF and adapt it for this applicative
context: we denote the obtained model as MS-ProxIF.

Figure 1 depicts the pipeline of the proposed approach. In Fig. 1(a) we illus-
trate the building procedure of an MS-ProxIF model, whereas in Fig. 1(b) we use
the MS-ProxIF model from Fig. 1(a) to extract the RF-Isolation representation.
Each step is thoroughly described in the next two subsections.

Step 1. The first step, i.e. the building procedure of MS-ProxIF, is the most
complex. A ProxIF is an ensemble learner composed by several randomized deci-
sion trees, called Proximity Isolation Trees (ProxITs). Each ProxIT is built using
a similarity matrix encoding pairwise similarities, which in our context, corre-
sponds to building an MS-ProxIT using one connectivity network. Actually, dif-
ferently from ProxIT, each MS-ProxIT can be built using several connectivity
networks, each representing a different subject. This extension is crucial, since
each MS-ProxIT, rather than capturing subject-wise characteristics, can retrieve
disease-specific information. Therefore, an MS-ProxIT is built using a random
subset of both ROIs and connectivity networks, each drawn without replacement.

Before describing how to build an MS-ProxIT, we must define how a ROI x
traverses it. The traversal procedure is recursive and describes whether a ROI
in a node n should go to the left child nL or to the right one nR. In detail, in [9]
two traversal modalities are defined:

– Given a node n we have one prototype P , i.e. a ROI, and a threshold on the
connectivity strength θ ∈ [min

x∈n
connectivity(x, P ),max

x∈n
connectivity(x, P )], if

connectivity(x, P ) > θ then x −→ nL, otherwise x −→ nR. In other words,
x ends up in the left child, along with the prototype, only if their connection
is strong enough.

– In a node n two different ROIs, PL and PR are chosen as proto-
types, which respectively represent the putative left and right child. If
connectivity(x, PL) > connectivity(x, PR) then x −→ nL, otherwise x −→
nR. In other words, the ROI x ends up in nL if its connection to PL is stronger
than its connection to PR.

In our context, the first traversal modality seems more suitable. In detail,
when using only one prototype, by analyzing how strongly connected is the ROI
x to the ROI P , we obtain a partial contribution to the total disconnection
degree of x, which computation is the final aim of the proposed methodology.
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Fig. 1. Pipeline of the proposed approach: (a) building an MS-ProxIF; (b) extracting
the RF-Isolation vector for a subject x. Combine stands for the function computing
the anomaly score at forest level via aggregation of the tree scores.
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Instead, from the second traversal modality, we can only infer to which prototype
the ROI x has a stronger connection, which is not what we are seeking.

The aim behind the building procedure of a ProxIT, is to obtain a tree struc-
ture where splitting n generates two child nodes such that: each child contains
objects highly similar to each other but dissimilar to the objects in the sibling
node. In our context, the aim is to find one child node that contains many ROIs
strongly connected with each other, and the other child that contains few ROIs.
The former will be the root of a big subtree, and thus the contained ROIs will be
isolated after a long procedure. The converse holds for the ROIs in the smaller
sibling: they are likely to be isolated soon, i.e. of being disconnected. Ideally we
would like a split of a node n to generate a node containing only inliers, highly
connected ROIs, and one containing only outliers, disconnected ROIs.

To build a tree, we have to define a learning strategy, i.e. how to define
on a node n the test which induces its splitting into two child nodes. In an
MS-ProxIT, it consists of choosing: one prototype ROI P , a threshold θ on the
connectivity strength with respect to P (or two prototypes PL and PR

2), and
in some cases, additionally with respect to [9], a connectivity network. Indeed,
an MS-ProxIT can be built with one or several connectivity networks. In the
first case, the learning algorithm is identical to [9]: given n, P and θ we split the
ROIs in n, based on how strongly connected they are to P . In the latter scenario,
instead, since the MS-ProxIT is built using multiple connectivity networks, the
test on node n is characterized by P , θ and one connectivity network cn. In other
words, to split the ROIs in n, we evaluate how strongly connected they are to P
in the chosen connectivity network cn. It is important to note that: i) only ROIs
traverse the nodes; ii) the connectivity network cn is needed only during the
tree building procedure. Therefore, when the latter has ended, we can discard
the information about which cn was used to partition the ROIs in n.

The other crucial step of the building procedure consists of choosing the best
test for each node n: the choice can be either completely random or based on an
optimization procedure. This step is independent of the number of connectivity
networks used to build the tree.

In detail, to the already extensive pool of training criteria proposed in [9],
i.e. how to choose the best test, we add two additional ones, O-1PRD and
O-2PRD . These criteria are an adaptation to the outlier detection context of
the RényiD [2] criterion proposed for clustering, i.e. the best split is the one
maximizing the divergence in terms of information (quantified by the Rényi
entropy) between the two child nodes. This concept is relevant also for outlier
detection, since finding the two child nodes conveying the highest amount of
different information, corresponds to ideally separating inliers from outliers. In
detail, to define these criteria, we estimate the Rényi divergence between the
child nodes using an estimator [10] which employs only information related to
the K-Nearest Neighbors (KNNs) of the objects. Formally, given a set A of N

2 For the sake of clarity the remainder of the explanation will refer to tests charac-
terized by P and θ, but an analogous reasoning would hold if the test consisted of
choosing two prototypes PL and PR.
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objects and a set B of M objects, the estimation of the Rényi divergence of order
α of A from B is computed as follows:

RD(A,B) =
1

α − 1
log

[
M
N

α

M

M∑
i=1

(
Ni

Mi + 1
)α

]
(1)

where Ni and Mi are the number of KNNs of bi ∈ B that respectively belong to A
and B. In other words, A will diverge more from B, if few of its objects are KNNs
of objects in B. In our context, A and B are the child nodes nL and nR, and to
measure their divergence, we have to compute both RD(nL, nR) and RD(nR, nL)
–and average their results– since the divergence is not symmetric. Please note
that O-1PRD and O-2PRD differ only because the former evaluates tests defined
by P and θ, whereas O-2PRD evaluates tests defined by two prototypes PL and
PR. For additional information related to the learning phase, see [9].

Step 2. Given a built MS-ProxIT, we can extract, for a given subject and a
given ROI x, its anomaly score. Due to their outlier-like nature, disconnected
ROIs are more likely to be isolated sooner in the tree, and therefore we would
like to assign them a higher anomaly score. To assign such score, we make the
ROI x traverse the tree, following one of the two modalities previously presented,
depending on the training criterion used to build t (one or two prototypes). It
is important to highlight that traversing t is independent of which and how
many connectivity networks were used to build the MS-ProxIT. In other words,
the evaluation of whether a ROI x should follow the left or right edge depends
exclusively on the connectivity network of the subject that is traversing t.

After traversing t, we can recover the anomaly score of the ROI x, which is
a function of the depth of the reached leaf. In detail, the smaller the depth, the
higher the anomaly score, i.e. the more likely the ROI x is highly disconnected.
To obtain the anomaly score of x at forest level, we have to make x traverse
each MS-ProxIT composing the MS-ProxIF: the final score is a function of the
average depth of the reached leaves –see [8] for details on the formula.

By repeating this procedure for all ROIs of a subject, we obtain the RF-
Isolation vector, a novel representation where each feature represents the degree
of disconnection of a ROI as computed from MS-ProxIF.

Please note that an RF-Isolation vector, extracted from an MS-ProxIF –
which we recall is trained on the MS population– is an adequate representation
also for the healthy cohort. Indeed, given a ROI disconnected only in MS sub-
jects, in a healthy patient the same ROI is likely to traverse a longer path, i.e. get
a lower anomaly score, since its connectivity to other ROIs is probably higher.

2.4 Classification Analysis

To evaluate the suitability and robustness of the proposed representation, we
made two different analyses: the first studies the MS-ProxIF model, whereas the
second one compares RF-Isolation to standard network-derived metrics.
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Both analyses are based on the classification of the 79 subjects as either MS or
healthy, following a Leave One Out protocol (LOO): each classifier is trained 79
times on a dataset of 78 subjects and tested on the left out subject. The classifiers
we employed are: linear Support Vector Machines (SVM), K-Nearest Neighbor
(KNN) and Random Forest (RF). We measured the classification performances
using the Matthews Correlation Coefficient [3] (MCC) which takes into account
all four entries of the confusion matrix and thus returns a high value only if both
classes are well identified. In detail, we employ the normalized MCC, which ranges
in [0, 1].

To increase the robustness of the proposed methodology, we repeat 5 times
the whole procedure, i.e. from building the MS-ProxIF to the classification step.

Analysis of the MS-ProxIF Model. The first analysis aims at finding
the most suitable variant of the MS-ProxIF model for the task of extracting
RF-Isolation–and subsequently of discriminating MS subjects from the healthy
cohort. In detail, we generated many different MS-ProxIF models, from which we
extracted different RF-Isolation vectors, by varying the following parameters:

– Number of trees in a forest: T ∈ {50, 100, 200}.
– Number of ROIs used to build each tree: S ∈ {50%, 75%, 100%}.
– Number of connectivity networks used to build each tree: C ∈

{1, 5, 10, 20, All} where All consists of using all MS subjects to build each
tree.

– The training criterion. In detail, we study 6 criteria: R-1P and R-2P which
split data randomly, chosen because of the pervasive success of random vari-
ants in [8]; O-1PSD and O-2PSD, the best variant according to [9]; and
O-1PRD and O-2PRD, the novel variants proposed in Sect. 2.3.

– The maximum depth that each tree can reach: D ∈ {log2(S), S − 1}.

We analyze the behaviour of each of the above parameters via a statistical anal-
ysis of the classification results. The input of each analysis is the set of MCC
values averaged across the 5 iterations of the proposed approach and all param-
eters except: the 6 training criteria, the 3 classifiers (SVM, KNN, RF) and the
parameter under analysis. For example, if we were to analyze T , the input would
be made of 54 MCC values since: we average across the iterations and all values
of D, S and C; we have 3 values of T , 3 classifiers and 6 training criteria.

As to the adopted statistical procedure, when analyzing D, since it can
assume only two values, we perform a Wilcoxon signed-rank test, whereas for all
other parameters, we carry out a Friedman test followed by a post-hoc Nemenyi
test. Indeed, the Friedman test is adopted if we have to assess whether there
is a global significant difference among more than two methods, in our scenario
represented by the different values a parameter can take. Following the Friedman
test, we perform a Nemenyi test that employs a critical value to find out which
pairs of methods are statistically different. We use a critical difference (CD) dia-
gram [5] to visualize the results of these tests. A CD diagram consists of a line
where methods are represented from left to right based on their rank, from worst
to best. If two methods are not significantly different, a red line connects them.
The significance level is set to α = 0.05 for all tests.
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Comparison to Standard Network Measures. The second analysis aims
at understanding whether RF-Isolation has a higher capability of correctly iden-
tifying MS subjects compared to standard network-derived measures. In detail,
from each subject’s connectivity network, we extracted the following metrics
using the Brain Connectivity Toolbox [13]3:

– Node Strength: It is the sum of the weights of all edges connected to the node.
– Local Efficiency : It is the average inverse shortest path length in the neigh-

borhood of the node; a stronger connection leads to a stronger contribution.
– Assortativity : It is a correlation coefficient based on the Node Strength. A

positive value indicates that nodes tend to link together with nodes which
Node Strength is similar.

– Clustering Coefficient : It is the sum of the clustering coefficients of all nodes.
The Clustering Coefficient of a node consists of the proportion of its neighbors
which are neighbors of each other.

– Density : It is the ratio between the number of existing connections to the
number of possible connections.

– Global Efficiency : It is the average inverse shortest path length in the network.
– Mean Strength: It is the average Node Strength computed across all nodes.
– Modularity : It is a statistic describing to which degree the network can be

partitioned into disjoint sets of nodes, such that within each set the number
of edges maximized, and the number of edges between different groups is
minimized.

Node Strength and Local Efficiency are local measures, i.e. analogously to RF-
Isolation, they have one feature for each ROI. Instead, all the remaining metrics
are global measures, i.e. one value describes a connectivity network. These mea-
sures were chosen because of their significance with respect to MS, as shown
in previous works ([15] and references therein). As mentioned in Sect. 1, all the
listed metrics are subject-wise, being computed independently for each subject.

3 Results

3.1 Analysis of the MS-ProxIF Model

Table 1 depicts the results of the analysis of the depth D: we report the mean
rank of both values of D, and the p-value output by the test, in bold if the
null hypothesis is rejected. We can assess that using a smaller depth, D =
log2(S), is the best significant option. The latter is a common choice in the
context of isolation-based approaches [8], and it also represents the average tree
height [7]. The second parameter we analyze is the forest size T , which results are
depicted via the CD diagram in Fig. 2(a): even though T = 100 is first-ranked,
it is comparable to T = 200. Nevertheless, T = 100 remains a wiser option

3 For more thorough descriptions, please refer to https://sites.google.com/site/bctnet/
list-of-measures.

https://sites.google.com/site/bctnet/list-of-measures
https://sites.google.com/site/bctnet/list-of-measures
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Table 1. Results of the Wilcoxon signed-rank test comparing the two options for the
maximum depth D.

Mean rank

D = log2(S) D = S−1 p-value

1.222 1.778 0.0074

from a computational perspective, and it is also a common choice for RF-based
methodologies [8,12]. Then we analyze the number of ROIs S used to build each
tree, which is expressed in percentage 50% = 43 ROIs, 75% = 64 ROIs, and
100% = 85 ROIs. From the CD diagram depicted in Fig. 2(b) we can observe
that using all ROIs is the best choice, even though it is comparable to S = 50%.
One of the most interesting parameters is C, the number of connectivity networks
used to build each tree. The results of the statistical analysis, shown in Fig. 2(c),
assess that C = 10 is the best option, even though it is comparable to all other
values of C, except for C = 1, the last ranked. Results confirm the usefulness of
employing multiple connectivity networks, i.e. C > 1, to build each tree, since
it leads to a more informative RF-Isolation representation. The last analysis
compares the different training criteria: the CD diagram in Fig. 2(d) assesses that
O-1PRD is the best choice. Further, training criteria based on two prototypes
are all ranked significantly worse than all criteria using one prototype, making
the latter a better choice, as hypothesized.

Fig. 2. CD diagram comparing the different options for: (a) the forest size T ; (b) the
number of ROIs S used to build each tree; (c) the number of connectivity networks C
used to build each tree; (d) the adopted training criterion.

Summarizing, we can conclude that even though we can extract a robust RF-
Isolation vector from several parametrizations, we can identify one that is the
most suitable. In detail, we should set the parameters of MS-ProxIF as follows:
D = log2(S), S = 100%, C = 10, T = 100, and the training scheme to O-1PRD.
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3.2 Comparison to Standard Network Measures

In Table 2 we report the comparison, in terms of MCC, between standard
network-derived measures, and the proposed approach. As to RF-Isolation, the
MCC has been averaged across the iterations, and the parameters of the under-
lying MS-ProxIF model have been set according to the previous analysis. We
can observe that RF-Isolation shows better performances than all the other
measures independently of the employed classifier. The only exception is when
we compare to Local Efficiency using KNN: however, the difference is rather
small with respect to the improvements brought by RF-Isolation. To validate
the improvement, we also report the standard errors of the mean.

Obtained results suggest that RF-Isolation, a disease-wise representation
extracted from a trained model, represents a valid alternative to standard met-
rics for connectivity networks, which are instead subject-wise.

Table 2. Comparison of RF-Isolation with standard network-derived metrics.

MCC

Representation SVM KNN RF

RF-Isolation 0.8686 (0.0128) 0.7822 (0.0192) 0.8554 (0.0139)

Local efficiency 0.7997 (0.0180) 0.7843 (0.0190) 0.7799 (0.0193)

Nodal strength 0.8167 (0.0168) 0.6559 (0.0254) 0.8127 (0.0171)

Assortativity 0.5000 (0.0281) 0.5000 (0.0281) 0.4790 (0.0281)

Clustering coefficient 0.5000 (0.0281) 0.5950 (0.0271) 0.6110 (0.0267)

Density 0.5000 (0.0281) 0.4369 (0.0277) 0.6325 (0.0262)

Global efficiency 0.6226 (0.0264) 0.7373 (0.0218) 0.5818 (0.0274)

Mean strength 0.7261 (0.0224) 0.6760 (0.0246) 0.6102 (0.0268)

Modularity 0.5812 (0.0274) 0.7487 (0.0212) 0.6392 (0.0259)

4 Conclusion

We proposed a novel metric of quantitative connectomes to analyse MS patients
via classification. Differently from other graph-based metrics, the novel repre-
sentation, RF-Isolation, is more descriptive from a disease point of view. Indeed,
to extract it, we trained a model on the entire MS population, from which we
derived the RF-Isolation vector for all subjects. The suitability of the approach
is confirmed by the experimental analyses. Future work includes analyzing the
link between RF-Isolation, and the most involved ROIs in the MS lesion process.
In addition, when a bigger dataset will be available, we will test RF-Isolation
for classifying different subtypes of MS, which is nowadays clinically challenging.
Lastly, we could also adapt the proposed methodology to study other neurode-
generative diseases, e.g. Amyotrophic Lateral Sclerosis.
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Abstract. Using available phylogeographical data of 3585 SARS–CoV–
2 genomes we attempt at providing a global picture of the virus’s dynam-
ics in terms of directly interpretable parameters. To this end we fit a hid-
den state multistate speciation and extinction model to a pre-estimated
phylogenetic tree with information on the place of sampling of each
strain. We find that even with such coarse–grained data the dominat-
ing transition rates exhibit weak similarities with the most popular,
continent–level aggregated, airline passenger flight routes.

Keywords: COVID-19 · Hidden Markov model · Phylogeography ·
State-dependent diversification

1 Introduction

Following an initial outbreak in Wuhan, China at the end of 2019, the severe
acute respiratory syndrome coronavirus 2 (SARS–CoV–2) started spreading
rapidly around the world in early 2020. It is reported in the literature that
asymptomatic and mild cases can make up over 95% of all SARS–CoV–2 infec-
tions [22], therefore, one can easily imagine silent transmissions across countries
and continents, even with multiple stepping stones, being undetected by health
service monitoring. Such transmissions, nonetheless, will leave information in the
viral genomes and hence also could be present in the phylogeny connecting the
strains.
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Some phylogenetic or stochastic-branching-process-based studies which link
SARS–CoV–2 genomes to geographical origins have been done previously. For
instance, [23] proposed two branching process models which use only the daily
laboratory-confirmed case count. There are also phylogenetic studies that focus
on tracing the transmission pattern on a local scale. To name a few, [6] has
analyzed the local transmission pattern in Aotearoa, New Zealand by comparing
a local phylogeny, which consists of 649 virus genomes sampled between February
and May, 2020, with the global COVID–19 genome data; [10] did a phylogenetic
ancestral trait reconstruction analysis for Boston, Massachusetts, United States;
[21] uses the NextStrain data to perform a phylogenetic inference for Ontario,
Canada; and [14] for Austria.

Global transmission, however, can be statistically more challenging to infer
using phylogenies constructed from virus genomes as the sole material, partly
because of the fact that even a genomic sample consisting of tens of thousands
data points only represents a tiny fraction of the underlying population. Nonethe-
less, in an analysis done on a sample of global genomes, [12] observed that “trans-
mission occurred more readily among neighboring countries than among countries
that are geographically disconnected”, and sequences from China, Hong Kong, and
Taiwan tend to form a cluster; so do those from Sweden, Denmark, and Finland.
Their observation indicates that it is indeed possible to detect signals of trans-
mission even if the sample size is small on a global scale. Unlike between-country
transmission, however, intercontinental transmission should be less correlated to
geographical proximity, as one may reasonably suspect that the virus transmits
more frequently between North America and Europe than between North Amer-
ica and Africa due to their econo-political kinship, while it is hard to say which

Fig. 1. Graphical representation of the HiSSE model and its speciation and transition
parameters. Collapsing the hidden states will result in the multistate speciation and
extinction model (MuSSE, [4]) model. More discussion on what the hidden state cap-
tures can be found in Sect. 3. We call λ the “diversification rates” and q the “transition
rates”.
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pair of the continents are geographically closer. We ponder whether this kind of
correspondence is observable in a global, intercontinental, genome data set.

To investigate whether such signal is indeed detectable on an intercontinental-
scale phylogeny, in this work, we attempted to fit the hidden-state multi-state spe-
ciation and extinction (HiSSE, [2]) models to a continent-labelled phylogeny that
is constructed using global virus genomes, and compared it with intercontinental
air passenger volume. We found that the “big-picture” transmission pattern recov-
ered from the phylogeny seems to exhibit a connection to air traffic volume.

The readers are reminded that the question under our consideration is not
whether the intercontinental flights are indeed correlated with the disease trans-
mission, but rather, whether a noisy continent-level phylogeny contains signal
of such transmission or not. The answer to the former question is, of course,
widely expected to be affirmative, while the latter is much less investigated as
most studies of this type uses only a local-level phylogeny.

2 Data and Methods

We obtained a phylogenetic tree of the SARS–CoV–2 virus with 3585 tips, dated
on 26th April 2020 from NextStrain [7]. Each tip is labelled with one of the six
continents: Africa, Asia, Europe, North America, Oceania, and South America.
Table 1 shows the number of strains for each continent and the corresponding
fatality counts. Among multiple helper functions and tools, the R [16] packages,
“ape” [13] and “phytools” [17] were used to pre-process and experiment with
the phylogenetic tree.

We make use of the SABRE data set [18] to estimate the bi-directional flows
of passengers between and within continents. These data cover almost all air
traffic data with the exclusion of a few low-cost companies, and is by far one of
the most complete data sets available.

We used a HiSSE model in which the continent is a discrete observed trait
and there is a binary hidden-state, as graphically illustrated in Fig. 1. The model
was developed for capturing the scenarios in which some unobserved factors are
influencing the evolutionary dynamics. In the model, one can think that the
branching process starts with a single particle which carries an hidden state and
a non-hidden state. This particle lives for an exponentially-distributed random
duration of time, whose mean depends on both the non-hidden and hidden state’s
diversification and transition rates, and then, either mutates into another type
with different states, splits into two identical copies of itself that behave in the
same manner, or dies out. We will discuss the role of the hidden state later

Table 1. Division of the 3585 strains by regions and relation to observed COVID–19
deaths as of NextStrain tools and ECDC’s data—data sets for the day of 26th April
2020 (204494 case fatalities).

Africa Asia Europe N. America Oceania S. America

No. strains (%) 88 (2.45) 610 (17.02) 1641 (45.77) 971 (25.09) 186 (5.19) 89 (2.48)

Thous. deaths (%) 1.38 (0.67) 16.87 (8.25) 123.30 (60.30) 57.12 (27.93) 0.11 (0.05) 5.72 (2.80)
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Table 2. Parameter constraints used in the analyses. All models assume that the two
hidden–state transition rates are equal and that the extinction rates of each region
are equal. The indices i, j correspond to the six possible regions. BIC stands for the
Bayesian information criterion and AIC stands for the Akaike information criterion.
“All equal” means that the rates of the six continents are assumed to be the same,
while “free” means that each continent has its own rate.

λobs qobs BIC AIC Evidence Entropy

Model I Free Free – – – –

Model II Free qij = qji 2532.282 2383.854 -1206.655 1180.386

Model III All equal qij = qji 2560.932 2443.426 -1234.223 1213.961

Model IV All equal Free 2574.625 2364.352 -1230.033 1164.299

Model V Free All equal 2828.881 2767.036 -1988.705 1384.707

Model VI All equal All equal 2864.063 2833.140 -1433.883 1417.864

in Sect. 3; the non-hidden state has six possible values, each corresponds to a
continent. The observed and hidden states carry their own diversification and
transition rates; and we used the Markov Chain Monte Carlo (MCMC) method
implemented in RevBayes 1.0.12 [8] to estimate six similar models, each of which
has different parameter space restrictions, as exhibited in Table 2. In the table,
“all equal” means that the rates of the six continents are assumed to be the
same, while “free” means that each continent has its own rate. Extinction rates
are present in the model but not in the graph for readability. We tried different
restrictions in order to improve estimability and reduce the risk of parameter
redundancy, as determining parameter identifiability is not a straightforward
task even for the simpler non-phylogenetic hidden Markov models that do not
have direct transitions between observed states [3].

Note that we call q’s the “transition” rates, while the word “transmission”
is reserved to colloquially mean the virus’ spreading in a more general sense.
It would be rather misleading to call the q’s “transmission rates” as they only
capture the intercontinental dynamics, while “transmission rate” often suggests
the speed of the virus’ spreading from one individual to another regardless of
whether this spreading is intercontinental or not, as in, for example, the popular
susceptible-infectious-recovered (SIR, [9]) epidemic models.

For each model, 32 independent chains are computed in parallel and stopped
simultaneously. Then we trim them to the same length (number of cycles, as in
RevBayes each such iteration actually contains multiple proposals) and discard
a quarter of our sample as burn-in. The resulting chain lengths of each model are
(257, 1103, 928, 946, 1103, 1103). Model I, the unconstrained model, has a problem
that the 32 chains disagree with each other, with some of the chains running very
slowly, hence the short chain length. We discontinued running this model due to
the huge running time and limited computation budget, as a single run of this set
of experiments could take at least about 5000–7000 processor hours to complete.

The prior of the root state, in our case, is set to a discrete distribution
with 47.5% probability on each of Asia–A and Asia–B, while the remaining 5%
probability mass is equally distributed over all the other states; this reflects our
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knowledge that the first outbreak happened in China, and that we do not know
the hidden state at the root. Due to the high dimensionality of the estimation
problem, we impose a constraint that the transition rates between the two hid-
den states are equal, that is, in Fig. 1, we have qAB = qBA. Except for the
mentioned and a few minor constants, we follow the recommendations given by
RevBayes’ tutorial (https://revbayes.github.io/tutorials/sse/hisse.html) on the
HiSSE model and did not add any meaningful information to the prior.

After obtaining the posterior distribution of the diversification and transition
rates, we compared their posterior means with the percentage of intra- and inter-
continental travel attributed to each continent.

To compare the models, we have computed the Bayesian Information Crite-
ria (BIC, [20]) , Akaike information criterion (AIC, [1]) , estimated evidence and
an estimate of the posteriors’ differential entropy. The BIC and AIC are com-
puted using the posterior mode in the approximately 32 thousand MCMC sample
points. The evidence is estimated using the harmonic mean estimator [11]. The
differential entropy is estimated by taking the mean of the log-posterior density
across the MCMC sample points.

We have also attempted to constrain the extinction rate to zero before run-
ning the six main models, but with much shorter MCMC chains. The resulting
parameter estimates, although only from around 200–300 MCMC sample points,
are all very similar to the main model, and this coincides with the fact that the
main models’ extinction rate estimates are all very small (on the scale of 0.001).
In other words, the two sets of models appear to agree on the extinction rate,
although it has been observed, e.g. in [2], that extinction rates are rather diffi-
cult to estimate in general. We did not run these models further as there seems
not to be much insight we can get from them, and running the MCMC chain is
computationally expensive.

In addition to the six ways of restricting the parameters as shown in Table 2,
which are our main models, we have also experimented with a version of each of
them, except Model VI (because its speciation and transition rates are all equal,
so this sort of prior would not bring in anything), in which the SABRE data were
used as a weakly informative prior rather than as an independent piece of infor-
mation to compare the fit parameters with. The prior-informed models are essen-
tially the same as their original counterparts, except that (1) on the fractions
[λ1, · · · , λ6] /

∑6
j=1 λj , whenever its six dimensions are not restricted to be the

same, a six-dimensional Dirichlet prior with α = c1 [�1, · · · , �6] is imposed, where
�i is the percentage of intra-continental flight traffic attributed to the ith conti-
nent; and likewise, (2) on the fractions [q1, · · · , qp] /

∑p
j=1 qj , in which p is either

15 or 30 depending on whether or not qij = qji is assumed in Table 2, whenever
its p dimensions are not restricted to be the same, a p-dimensional Dirichlet prior
with α = c2 [κ1, · · · , κp] is imposed, where the κi’s are the percentages of inter-
continental flight traffic attributed to all possible pairs of continent. The λ’s infor-
mative Dirichlet prior is applied to Model I, II, and V because those are the models
whose λ’s are not restricted to be all equal. Similarly, the mentioned informative
prior for q is applied to only Model I–IV as Model V and VI have their q’s equality-
constrained. This prior is inapplicable to Model VI because neither its λ’s nor q’s
are allowed to vary across continents. In other words, we expect the percentages

https://revbayes.github.io/tutorials/sse/hisse.html
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λi/
∑6

j=1 λj and qi/
∑p

j=1 qj , for each continent i, to have their expected values
equaling to �i and κi, respectively, and both �i and κi are taken from the SABRE
data. We have chosen c1 = 6.0 and c2 = 1.0 in our experiment. The reason why
c2 is set so much lower than c1 is that some κi in the SABRE data are much closer
to zero than others. The marginal prior distributions of the dimensions whose κi’s
are closer to zero will have a much lower variance than those whose κi are further
from zero. Therefore, had we not relaxed c2, the Dirichlet prior would have been
probably too restrictive on some dimensions.

3 Results and Discussion

The MCMC chains of Model I has failed to converge in a sense that the 32
chains disagree with each other and the sampling of some chains is very slow,
while the chains of all other models have Gelman-Rubin’s R̂ statistics [5] well
below 1.1 (See Figure S.1 in the Supplementary Information). Model I’s problem
persists with varying random seeds and random initializations. Given that both
Model IV (with free transition rates) and Model V (with free diversification
rates) converge nicely, we suspect that it is the interaction between the λs and
the qs that makes the geometry of the likelihood function difficult to sample
from.

Tables 3, 4, and 5 show a comparison between our Model II and IV’s rate
estimates and the air traffic data. Figure 2 depicts our marginal posterior. When
reading the mentioned tables, the readers should note that our main focus when
comparing the rates with the passenger flight volumes is not on the actually
estimated values, but the proportion of transitions between a particular pair of
continents to the total transition volume.

According to the Bayesian Information Criterion (BIC) and the estimated evi-
dence, the best model was Model II, in which all diversification rates, observed
and hidden, are allowed to vary freely but the transition rates “there–and–back”
between each pairs of regions are assumed equal, in other words, we have qij = qji.
We found reasonable that a symmetric-rate model was chosen, as the interconti-
nental air traffic pattern is rather symmetric according to our data set. However,
the AIC and the entropy favours Model IV, which constrains all diversification
rates to equality but leaves the transition rates free. It is noticeable that Model
II gives us narrow credible intervals for the transition rates, but wide intervals for
the diversification rates; while Model IV behaves contrariwise, with some of its
estimated transition rates having large uncertainty but diversification rates well-
estimated. In fact, the average of all six diversification rates of Model II almost
coincides with Model IV’s estimate. The diversification rates are orders of magni-
tude larger than nearly all of the estimated intercontinental transition rates. The
transition rates estimated by the two also shows similarities. For example, from
Fig. 2 it seems both models agree that the Europe-North-America rate is around
0.3, Asia-North-America slightly less than 0.1, and Asia-Africa’s rate is small.

Model II and IV almost completely agree on the rates related to the hidden
states. It is worth noting that both estimated λA to be rather small, meaning
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Fig. 2. Marginal posterior distributions under Model II and IV , in which λ, q are μ are
the diversification rates, transition rates and extinction rates. The arrows in the graphs
indicate zoom-in of the content in the dotted boxes. Numbers above boxes indicates
posterior mean.
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Hidden = A
Hidden = B

Fig. 3. Stochastic character map for the hidden state. Note that state A’s branches
are significantly longer.

Africa
Asia
Europe
N. America
Oceania
S. America

Fig. 4. Phylogeny of SARS–CoV–2 strains from nextstrain.org [7,19] with maximum
a posteriori geographical states of the lineages painted. The unit of time of the tree is
30 days. The maximum height of the tree is 137 days. The ancestral regions for the
strains are found under the best found Model II.

that the internal nodes in latent state A will have much slower speciation. That
is to say, the latent state A has explained the very long branches in the phylogeny
(See Fig. 3). In fact, we have previously attempted to fit, using the R package
“diversitree” [4], a multistate speciation and extinction model (MuSSE), which
is similar to the HiSSE but without the hidden states, as it seems to us that a
natural model to use should be one that takes the speciation, extinction and tran-
sition rates to be region-dependent. Unfortunately, without the hidden states,

http://nextstrain.org
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multiple optimization routines have failed to find a maximum likelihood esti-
mate, in a sense that the likelihood seems to tend toward infinity, as some rates
move toward infinistesimal while others toward big numbers. That λA captured
the excessively long branches may have, in part, explained why the estimation
is stablized after introducing the latent states, because the long branches may
be explainable under MuSSE only if some λ’s are tiny. The results given by
MuSSE can be found in Table S.1 in the Supplementary Information. We do not
know exactly what the latent state is, in other words, what has caused some
branches to be long; nonetheless, we believe that having latent states is really
not as peculiar a choice as it initially might seem, for claiming that no latent
factors are affecting the transmission pattern can be just as questionable, if not
more, in such a global pandemic.

On the other hand, a more complicated model (for instance with multiple
hidden states rather than a binary) would perhaps be too heavy or hard to
estimate given that the full model’s 32 MCMC chains have problem agreeing
with each other. The choice of the optimal number of hidden states is, in fact,
an interesting and rather unexplored model selection problem, as given the high
computation cost in this kind of Bayesian phylogenetic models, it would not be
practical to brute-forcefully try multiple number of hidden states. Thus, one may
need a method to combine estimation and selection, for example by employing
some clever priors in some ways similar to LASSO or L1-regularized regression.
But how to do this properly remains a topic for further research.

In Model II, the posterior means of almost all transition rates are below 0.1
except for the one between North America and Europe (posterior mean=0.305,
the highest) and, next below it, that between Asia and Europe (0.115). The

Table 3. Comparison of intracontinental passenger volumes and diversification rates
λs. The Roman numeral subscript indicates model numbers in Table 2. The posterior
mean doubling time, T2 = 1/λ, is given in days. The %λ, fraction of diversification,
attributed to each region is calculated for region i as λi/

∑
j λj . We also present their

95% posterior credibility intervals (CI). The %pax is the percentage of intracontinen-
tal travel attributed to each region in April 2020. All of the diversification rates are
from the posterior sample under the best found model. Pearson’s correlation coefficient
between E%λ and %pax (see Fig. S.20 in the SI for a visualization) is 0.425 (p–value
0.4) and Kendall’s τ is 0.733 (p–value 0.056).

Africa Asia Eur. N.Am. Oc. S.Am.

EλII 0.880 1.562 1.957 1.567 0.707 1.233

EλIV ———————— 1.699 ————————

ET2,II 35.005 19.21 15.293 19.334 42.92 25.717

ET2,IV ———————— 0.589 ————————

E%λII 11.1 19.8 24.8 19.9 8.9 15.6

%λII 95%CI 8.0 18.0 22.9 18.1 7.0 11.3

14.6 21.6 26.7 21.6 11.0 20.2

%pax 1.9 69.2 13.0 11.8 1.5 2.6

%deaths 0.67 8.25 60.30 27.93 0.05 2.80
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Table 4. Comparison of passenger volume proportions and transition rates estimated
from Model II. The first two rows of each cell correspond to the estimated fraction of
the transitions that is attributed to the given pair of regions, e.g. for regions 1 and 2 it
will be q12/

∑
i<j qij . In each cell, we have in the top row the posterior 95% credibility

intervals, then the posterior average and in the third row the fraction of April 2020
intercontinental air passenger travel attributed to the given pair of regions. Pearson’s
correlation coefficient between the passenger fractions and transition rate fractions is
0.67072 (p-value 0.0062) and the Kendall’s τ is 0.35238 (p-value 0.074).

Asia Europe N. America Oceania S. America

Afr. (0,0.015) (0.046,0.076) (0.003,0.019) (0.006,0.080) (0.008,0.127)

0.006 0.060 0.009 0.035 0.056

0.052 0.139 0.012 0.001 0.002

Asia (0.083,0.123) (0.063,0.106) (0.066,0.125) (0.002,0.018)

0.103 0.083 0.094 0.008

0.297 0.086 0.048 0.004

Eur. (0.232,0.302) (0.058,0.097) (0.046,0.078)

0.267 0.076 0.061

0.244 0.014 0.044

N.Am. (0.061,0.113) (0.010,0.035)

0.086 0.021

0.008 0.048

Oc. (0.007,0.077)

0.034

0.001

Fig. 5. The posterior mean estimates of Model II using the SABRE data as an infor-
mative prior versus without using it. Each estimated diversification rate is displayed
as a “λ” symbol in the plot. Likewise, the transition rate estimates are shown as “q”.
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Table 5. Comparison of passenger volume proportions and transition rates estimated
from Model IV. The format and meaning of each row is the same as Pearson’s correla-
tion coefficient between the passenger fractions and transition rate fractions is 0.24277
(p-value 0.196) and the Kendall’s τ is 0.24138 (p-value 0.063).

From To

Afr. Asia Europe N. America Oceania S. America

Afr. (0.001,0.033) (0.038,0.183) (0.006,0.083) (0.000,0.031) (0.002,0.042)

0.012 0.108 0.037 0.010 0.017

0.026 0.071 0.007 0.001 0.001

Asia (0.000,0.004) (0.031,0.060) (0.016,0.036) (0.017,0.035) (0.001,0.007)

0.001 0.044 0.025 0.026 0.003

0.027 0.156 0.045 0.023 0.002

Eur. (0.012,0.022) (0.015,0.027) (0.049,0.079) (0.014,0.027) (0.015,0.026)

0.016 0.020 0.063 0.020 0.020

0.068 0.141 0.121 0.006 0.021

N.Am. (0.000,0.006) (0.009,0.022) (0.049,0.082) (0.012,0.027) (0.001,0.008)

0.003 0.015 0.064 0.019 0.004

0.006 0.041 0.123 0.003 0.024

Oc. (0.004,0.031) (0.001,0.037) (0.016,0.086) (0.035,0.113) (0.001,0.021)

0.015 0.015 0.047 0.071 0.009

0.001 0.025 0.008 0.004 0.000

S.Am. (0.001,0.042) (0.001,0.047) (0.054,0.238) (0.051,0.185) (0.003,0.082)

0.014 0.016 0.142 0.112 0.032

0.001 0.002 0.023 0.023 0.000

mentioned top two agree with the volume of passenger in the SABRE data set,
although the third most busily travelled Africa-Europe pair is not that visible in
the transition rates, which, readers are reminded, are estimated purely using the
phylogeny constructed from the virus genome. Nonetheless, we have observed
correlation between the estimated transition rates and air traffic data. If one
performs a Bayesian model averaging on Models II–V using our estimate of the
evidence and a uniform prior, the resulting model is almost identical to Model
II, whose weight given by the evidence is extremely close to one.

The Pearson’s correlation between the proportion of Model II’s estimated
q’s and the proportion of intercontinental passenger volume is 0.67072 (p-value
0.0062), which is much more significant than that of Model IV’s (0.24277, p-value
0.196). This is indeed expected as, first, from Fig. 2b we can see that Model IV’s
posterior is rather uncertain about some transition rates; and secondly, the pas-
senger volume in Table 5 is very close to a symmetric matrix. In fact, the symmetry
is very consistent throughout all months of the year, as presented in Figure S.21 in
the SI, where one should notice, en passant, that the intercontinental traffic pro-
portions are overall rather stable throughout different months of the year. On the
intracontinental side, notice that Asia’s intracontinental traffic volume is 69.2%
of the total (the penultimate row in Table 3), which can severely affect the com-
puted Pearson’s correlation (0.425, p-value 0.4, Table 3); but, in fact, if we exclude
Asia, then the Pearson’s correlation would become 0.92996 (p-value 0.022), and
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the Kendall’s τ would become 1.0 (p-value 0.0167). Of course, however small these
Asia-excluded p-values are, they were calculated only from five data points; still
and all, the pattern of correlatedness is more apparent when viewed together with
the transition rates’ correlations (for a visualization of these data points see Figure
S.20 in the SI). A closer look into Table 4 reveals that the estimated transition rate
proportions and the air traffic volume are much more similar among pairs involv-
ing Europe, North America and Asia, and the very dissimilar rates in the table
tend to be the pairs between Oceania, South America and Africa. This dissimilar-
ity may very well be the result of the fact that we have significantly less data from
the latter group of continents (Table 1).

As mentioned in the method section, we have also attempted using the
SABRE data as a prior instead. With the prior’s presence, the MCMC sampler
struggles to output parallel chains with as good a mixing as the original models,
and this has led to that some R̂’s in all but Model V being larger than 1.1 (See
Figure S.1 in the Supplementary Information). We suspect that the source of
this problem is the efficiency of the MCMC sampler. The auto-correlation in the
sample was visibly higher than the original versions of the models, and we have
observed that the R̂ statistics generally improve as more sample points were
collected, although the improvement was rather slow, especially in the models
in which all the q’s are allowed to vary freely.

Although some chains may not have fully explored the entire posterior dis-
tribution, Fig. 5 suggests that at least the posterior mean estimates of Model II
are rather robust against the added prior. In fact, the Pearson’s correlation in
Fig. 5 is 0.999924 and Kendall’s τ 0.977. Again, the readers are reminded that,
although it may not be the case seeing the multidimensional prior as a whole,
some of the prior’s marginal distributions with even only c2 = 1.0 is in fact quite
restrictive, especially in the cases where the inter-continental traffic of a conti-
nent pair is tiny. In Model II, another noticeable example of the phylogenetic
data overwhelming the prior is the transition rate between Oceania and South
America. The original model and the informative-prior version estimated this
rate to be 0.034 and 0.029 respectively, while the prior’s expected value for this
rate is 0.001; i.e., the final estimates are thirty times bigger than the prior, and
the prior has only dragged the posterior mean down a little.

It has to be discussed what type of data the nextstrain.org database is pro-
viding, in the context of our analyses. Phylogenetic trees constructed by the
NextStrain platform are estimated from DNA sequences using an implementa-
tion of the FastTree algorithm [15] in the bioinformatics tool called “augur”.
Therefore how the DNA sequences were sampled, or sub-sampled from a bigger
pool of sequences, may affect the estimated tree’s topology, as well as the result
of our model. One limitation of our model and the data is that the percentages of
strains that we have for each continent (See Table 1) may not match the actual
“population size” of each continent. For example, Europe accounts for 60.30% of
all death while it is only 45.77% of our strains, and this may bias our estimates.
Not only do these proportions matter, the distribution of cities from which the
genomes have originated may also influence the topology of the estimated tree,

http://nextstrain.org
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as one could easily imagine the virus genome sampled from Europe’s important
metropolises being different from small cities. The degree to which this variabil-
ity can influence the estimated tree is rather unknown and difficult to quantify.

The diversification rate λ is related to the expected doubling time, i.e. as 1/λ.
Hence, this allows us to present the diversification rates in terms of units of time.
The expected posterior times for a strain to produce a new one are presented in
Table 3. The transition rates are strongest between regions most experiencing the
virus, but also seem to correspond, on a very high–level, to human air travel paths.
Three of the four highest transition rates correspond to the most frequent flight
paths. Under this kind of interpretation, one could ask why the transition rates
are orders of magnitude smaller than the diversification rates. Firstly, only a small
percentage of the populations travels intercontinental; and secondly, travel restric-
tions and border closures may also play a role. Also, we must point out here that
the assumption of constant-through-time migration rates between continents only
reflect the average rate during this time period. The volume of travel, from a fine-
grained view, is expected to fluctuate due to both randomness and travel restric-
tion during the period. Therefore, the estimated qij parameters should be under-
stood as correlating to the average transition rates for this time period.

4 Conclusions

We found an unsurprising, small, but statistically significant, correlation
between the transmission intensity that is estimated from only the molecule-
level information and the intercontinental volume of air passengers (Tables 4
and 5). Both of them suggest that North-America-Europe and Asia-Europe are
likely to be the top two pairs of continents in transmission intensity during our
considered time period.

Though, it has to be underlined at the end that the proposed method does not
capture any particular transmission history, infection pathways, nor does it indi-
cate any preventative strategies, decisions, nor policies. The branching processes’
parameters are time–homogeneous, so no temporal patterns can be described. It
rather provides a general transmission and diversification “big picture” that is
averaged over time.

Nonetheless, we find it rather remarkable that, via our novel application of the
HiSSE model in such an analysis, we are able to see, at this coarse-grained level,
any numerical evidence that one can indeed observe signals of intercontinental
transmission solely from a phylogeny that is constructed from molecule-level
information of the virus genomes, despite the very sparse and possibly biased
sampling process. It would be an interesting further study to investigate the
possibility of applying this kind of models to finer-grained phylogenetic data, for
example, on a country-level.
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Availability of Data and Materials. The R scripts, RevBayes scripts, MCMC

chains, along with the used phylogenetic tree, geographical classification, inside

and between regions air passenger volume fractions are available at https://github.

com/KHDS-mod/COVID-19-HiSSE and https://urn.kb.se/resolve?urn=urn:nbn:se:

liu:diva-185867. An already constructed phylogenetic tree and strain (i.e. leaf) data

were downloaded from NextStrain (https://nextstrain.org/ncov/global) on 26th April

2020. This data set contains 3585 genomes sampled between December 2019 and

April 2020. A full acknowledgments table of the research groups and authors from

the whole world generating the sequence data, from which NextStrain’s phyloge-

netic tree is constructed, is provided in the nextstrain ncov global authors.tsv

file in COVID-19-HiSSE repository. The geographic distribution of COVID–19 case

fatalities worldwide (presented in Tab. 1) were downloaded from European Centre for

Disease Prevention and Control (https://www.ecdc.europa.eu/en/publications-data/

download-todays-data-geographic-distribution-covid-19-cases-worldwide ECDC) on

11th May 2020. We took a subset of the case fatalities for 26th April 2020 correspond-

ing to NextStrain’s sequences. The region of North America includes the following

countries: Canada, Mexico, Panama, USA. The region of South America includes the

following countries: Brazil, Chile, Colombia, Ecuador, Peru, Uruguay. The 5 deaths

from Georgia were subtracted from Europe and added to Asia, because Georgia is

classified as Asia in the NextStrain data. In addition, there are 7 deaths not classi-

fied in any of the regions by ECDC. These are labelled as “Cases on an international

conveyance Japan” and seem to correspond to deaths on cruise ships. We excluded

these completely. The air passenger data have been obtained through the commercial

provider SABRE [18]. Data are consolidated for the years 2019 and 2020.
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Abstract. The pandemic of COVID-19 has had a significant impact
on global health and is becoming a major international concern. For-
tunately, early detection helped decrease its number of deaths. Artifi-
cial Intelligence (AI) and Machine Learning (ML) techniques are a new
era, where the main objective is no longer to assist experts in decision-
making but to improve and increase their capabilities and this is where
interpretability comes in. This study aims to address one of the biggest
hurdles that AI faces today which is public trust and acceptance due to
its black-box strategy. In this paper, we use a deep Convolutional Neural
Network (CNN) on chest computed tomography (CT) image data and
Support Vector Machine (SVM) and Random Forest (RF) on clinical
symptoms data (Bio-data) to diagnose patients positive for COVID-19.
Our objective is to present an Explainable AI (XAI) models by using
the Local Interpretable Model-agnostic Explanations (LIME) technique
to identify positive patients to the virus in an interpreted way. The results
are promising and outperformed the state of the art. The CNN model
reached an Accuracy and F1-Score of 96% on CT-scan images, and SVM
outperformed RF with Accuracy of 90% and Specificity of 91% on Bio-
data. The interpretable results of XAI-Img-Model and XAI-Bio-Model,
show that LIME explanations help to understand how SVM and CNN
black box models behave in making their decision after being trained
on different types of COVID-19 dataset. This can significantly increase
trust and help experts understand and learn new patterns for the current
pandemic.

Keywords: Explainable AI · Deep learning · CNN · Black box
classifiers · LIME · COVID-19 diagnosis · Image data · Clinical data

1 Scientific Background

In December 2019, a novel virus named COVID-19 emerged in the city of Wuhan,
China. It caused widespread infections and deaths due to its contagious charac-
teristics. COVID-19 is an infectious disease caused by Severe acute respiratory
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syndrome Coronavirus 2 (SARS-CoV-2). It was declared pandemic by the World
Health Organization (WHO) on March 11, 2020. The virus is so perilous and can
provoke the death of people with weakened immune systems. The global pan-
demic has motivated the research community to come with cutting edge research
for combating this virus [1,2].

Various methods have been used to diagnose COVID-19, containing blood
tests, PCR and a variety of medical imaging techniques. The main digital sup-
port that have tackled the pandemic with novel methods comes from the Arti-
ficial Intelligence (AI) and Machine Learning (ML) community in the form of
automated COVID-19 detection. AI techniques were used for different types of
data including non-imaging and imaging datasets [3]. Two medical imaging tech-
niques, X-ray and CT-scan, are employed to diagnose COVID-19 using AI and
ML methods. The most AI algorithms used for different types of data, includ-
ing non-imaging and imaging datasets [3], are Convolutional Neural Network
(CNN), Support Vector Machines (SVM), Logistic Regression, Decision Trees
(DT) and Random Forest (RF) [4].

De Moraes et al. [5] used SVM and data from emergency care admis-
sion exams (RT-PCR) to detect COVID-19 cases. They collected data from
235 patients of which 43% were confirmed COVID-19 cases. They trained five
machine learning algorithms and found out that the SVM had the best per-
formance with an accuracy of 85%. The authors concluded that the method
could be used to target which patient needs a laboratory COVID-19 tests done
on them. Mei et al. in [6] is one of the contributions that used AI models to
generate the probability of a patient being positive for COVID-19. The authors
applied a CNN on a chest CT scan that reported a sensitivity of 83.6% and a
specificity of 75.9%, and SVM on clinical information with 80.6% and 68.3%
respectively. Wang et al. [7] used CNN with a dataset comprising of 13,800
chest X-ray radiography images from 13,725 patients so as to try and provide
clinicians with a deeper insight into the critical factors affecting with COVID-
19 cases. They reported an accuracy, sensitivity and positive prediction value
(PPV) of 92.6%, 87.1% and 96.4% respectively. Li et al. [8] employed CNN for
the detection of COVID-19. The authors extracted visual features from volumet-
ric chest CT images of COVID patients and classified them. They reported that
the method was not only able to detect COVID-19 case but also to distinguish
it from other community acquired pneumonia and non-pneumonic lung diseases.
The authors concluded that CNN with X-ray imaging might extract significant
biomarkers related to COVID-19.

Deep Neural Networks (DNN) can perform wonderful feats, thanks to their
extremely large and complicated web of parameters, but their complexity is also
their curs. The inner workings of NNs are often a mystery even to their creators.
This is a challenge that has been troubling the AI community since deep learning
started to become popular in the early 2010s. Research showed that the use of
black-box models such as SVM or Neural Nets (NN) was very high followed by
Decision Trees (DT), which are explainable models and highlighted that the use
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of NN has decreased over time which is, very probably, due to their inexplicable
behavior [9].

So, one of the biggest hurdles that AI faces today is public trust and accep-
tance. People struggle to trust the decisions and answers that AI-powered tools
provide. AI does not explicitly share how and why it reaches its conclusions.
Interpretability is one of the most common reasons limiting the black-box mod-
els to be accepted and used in critical domains such as the medical one. Explain-
able Artificial Intelligence (XAI) is a set of processes and methods that allow
human users to understand and trust the results and conclusions created by
machine learning algorithms. Demanding more interpretability and explainabil-
ity by the healthcare community creates, indeed, more challenges for the AI and
ML technologies [9].

Among the developed explainable methods comes LIME (Model-agnostic
Explanations) [10] which is a local interpretation technique that aims to explain
the conditional interaction between the decisions and the attributes concerning
a single prediction. LIME explains the predictions of any classifier by treating
the model as a black box and learning an interpretable model locally around a
prediction. LIME was applied to different disease diagnosis systems in health-
care domain such as Chronic Wound classification [11], Glioblastoma Multiforme
(GBM) diagnosis [12], Lung cancer Diagnosis [13], Parkinson’s Disease (PD)
diagnosis [14] and others. Several research works have been done on AI/ML
models’ interpretation [9]. “Why should I trust it?” is the most powerful ques-
tion users ask when it comes to using a deployed model to make decisions. ML
explainability has the power to break even the models with the highest accuracy.

Our goal in this research is to give an interpretation of the COVID-19
cases separation generated by our developed models that could perform multi-
classification task using different types of datasets. The objectives of our study
in this paper are:

– Build a powerful CNN COVID-19 diagnosis model using deep learning and
transfer learning methods for CT-Scan imaging data.

– Build a high-performance COVID-19 diagnostic model on a non-imaging
dataset, including clinical data, by comparing multiple ML classifiers like
SVM and RF.

– Create an Explainable AI (XAI) system by applying interpretable method as
LIME to the developed classifiers in order to convert complex black-box AI
models to more understandable glass box. The aim is to give the user the
ability to follow the reasoning behind the AI decision.

The rest of the paper is organized as follow: Sect. 2 describes the datasets used
in this study as well as the design of CNN deep learning, SVM and RF models
trained for the COVID-19 detection. Section 3 presents the experimental results
of this empirical evaluation, the comparison of our models to the literature in
addition to the LIME interpretability results for the clinical and imaging data.
We conclude the paper in Sect. 4 and give some future work.
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2 Materials and Methods

In this study we propose an Explainable AI diagnosis model for multiple
databases: Clinical data (laboratory test results, reported symptoms, history
of exposure etc.) as well as chest imaging findings for rapid identification of
patients with COVID-19. Our main objective is to interpret the ML black boxes
to explain the cases of the diagnosis decision for the human experts.

2.1 Datasets Description and Preprocessing

Data is an essential element for the efficient implementation of ML methods.
The combination of AI and data sets generates a practical COVID-19 diagnosis
solution [1]. In this work we are interested in the dataset that contains the
information of clinical data and chest imaging findings, so that we could carry
out our study on multi-datasets [6]. The data was acquired from 905 patients
for whom there was a clinical concern of COVID-19. It was collected between 17
January and 3 March 2020 from 18 medical centers in 13 provinces in China. The
final dataset was a cleaned and filtered version (3 classes) of the initial dataset
(12 classes).

Image Dataset: The first dataset used in our study represents the chest CT
scans [6]. Each image is accompanied by a set of 26 attributes such as patient
ID, age, date and location, and included 488 men and 417 women. Each patient
may have multiple images taken on different days. The original images dataset
is composed of 12 classes including tuberculosis, viral, SARS, etc. The CT scan
dataset used for this study consisted of 619 samples of which 520 samples belong
to the COVID-19 class, 81 samples belong to the pneumonia class, and 18 sam-
ples belong to the normal class. The other classes were eliminated for irrelevance.
ImageDataGenerator was used to preprocess image batches before training: resiz-
ing the image dataset to 224*224*3 pixels, thresholding the image to remove any
very bright pixels and repair missing areas, and normalizing the pictures by scal-
ing them so their pixel values within the run [0, 1].

Bio-Dataset: The second dataset represents the clinical information named
as Bio-Dataset [6]. The data contains 619 rows that represent patients with 23
features: patient-ID, RT-PCR, went-ICU, hypertension, extubated, lymphocyte-
count, neutrophil-count, leukocyte-count, age, temperature, pO2-saturation, sex,
heart-disease, intubation-present, offset, diabetes, cancer, fatigue, in-ICU, intu-
bated, needed supplemental O2, white blood cell count and survival. Patients are
classified into three classes: COVID-19, Pneumonia and Normal. To deal with
the missing values in Bio-dataset, we have filling them using the mean methods.
The categorical features were transformed to numerical values by using encod-
ing method. For clinical notes feature (text type) we only put in consideration
important notes: hypertension, diabetes, coronary heart, cancer and fatigue, we
then transformed them into Boolean attributes mentioning 1 if it is Yes, and 0
if it is not.
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2.2 Models Design

The objective of our study is to implement an explainable AI system on different
types of data that will allow to detect COVID-19. For this end, we created two
AI/ML models to detect a patient being COVID-19. The first model is a deep
learning Artificial Neural Network model with Convolutional Neural Network
(CNN or ConvNet) architecture based on a chest CT scan data, and the second
model is supervised Support Vector Machine (SVM) and Random Forest (RF)
classifiers that were trained and compared on clinical input data.

CNN Architecture for Image Data: For the classification of chest CT scan
data, we used Convolutional Neural Network (CNN) which is a specific kind of
deep learning architecture. One of the great advantages of CNN is its ability to
auto-extract the features it will need with consideration of the spatial structure of
the image. In the proposed architectures, VGG-16, ResNet-50, and InceptionV3
were employed as convolutional bases of the model. All the CNNs were pre-
trained on ImageNet.

Fig. 1. CNN network design of inception-V3 used model.

Our CNN deep-learning model was developed using transfer learning using
of certainly considered one among 3 ultra-modern pre-trained model (Inception-
V3). The implemented transfer learning models are divided into two parts Con-
volutional base and Classifier. The convolutional base is used as a spatial feature
extractor and the classifier predicts the class label based on features extracted
by CNN. InceptionV3 is a pre-trained model that belongs to transfer learning
models (Inception family), widely used for image recognition models. The classi-
fier, as shown in Fig. 1, consists of a global average and max pooling and a fully
connected layer with the ReLU activation function and Softmax function for the
label prediction. This model is also composed of several convolutional layers,
pooling layers in parallel. An Adam optimizer was used to optimize the weights
of the models. The learning rate was set to 0.001 and batch size of 32. To fight
against overfitting, we used more than one technique: Dropout regularization
with a rate of 0.1 and data augmentation which consists of randomly rotating
the image and zooming with a range of 0.2.
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Classifier Model for Bio-Data: Regarding our second model, we have used
supervised classifier, where the algorithm is trained on clinical input data that
has been labeled for a particular output. We have applied two Machine Learning
models SVM and RF. The Fig. 2 represents the phases of realization of our Bio-
Classifier. The model is composed of three steps. The first step is collecting and
preprocessing data by cleaning and selecting important attributes. The second
step is the classification algorithms, we applied two algorithms SVM and RF to
test the performance of each and choose the best model. And the third step,
testing and evaluating the modes for performance comparison. After the perfor-
mance evaluation, SVM was reported as the best model for the Bio-dataset.

Fig. 2. Bio-data classifier architecture.

2.3 Explainability and Interpretability

We applied two AI/ML models to detect a patient being COVID-19. We named
the first model XAI-Img-model, which is based on a chest CT scan where we used
a deep learning CNN architecture. The second was named XAI-Bio-model, and it
is based on clinical information where we have applied SVM method after show-
ing its performance comparing to RF. For both models, we have interpreted their
results using the LIME method as shown this the Fig. 3. As presented earlier,
LIME uses the linear model to determine which features were most contributory
to the model’s prediction for each learnt example.
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Fig. 3. Explainable/interpretable model design using LIME

XAI-Img-Model: As transparency, interpretability, and explainability are nec-
essary in radiology to build patient and provider trust [15], we are proposing
to employ the LIME algorithm to generate explanations for the predictions of
the best deep learning CNN classifier architecture we have trained on imag-
ing dataset. By applying LIME to our CNN trained model, we can conduct
informed feature engineering based on clearly inconsequential features that we
see for image data. LIME considers features to be super pixels of the image.

XAI-Bio-Model: For patient’s detection, in case of COVID-19, it is necessary
to understand the symptoms to be able to decide if the case is positive or neg-
ative. LIME was used to interpret our SVM model decision. This interpretable
technique has made the black-box model to be of high Interpretability. This
phase aimed to interpret the selected model locally and define how each feature
affects the final decision and on which features the model relies on the most.

3 Results

Our experimental study is based on 2 types of data; each data is composed of
619 samples and three classes: Normal, COVID-19 and Pneumonia. The models
were evaluated and compared to each other as well as to the state of the art
[6] that uses the same dataset. The best model is not necessarily the one with
higher Accuracy, therefore, multiple performance classification measures were
used to select the best model/architecture. The best model for each type of data
is then interpreted using the LIME method. The experimental results as well as
the prediction explanation are given in the following subsections.

3.1 Deep CNN for Image-Data Experimentation Results

In our first series of experiments we employed three kinds of CNNs models
on image dataset and fine-tuned them in keeping with our requirements. Our
model was developed with the aid of using transfer learning using of certainly
considered one among 3 ultra-modern pre-trained models (VGG16, ResNet-50,
and Inception-v3) as a backbone. These 3 networks have three fully connected
layers (FC), the last one is used for classification purpose. We initialized the
last FC layer according to the target dataset. An Adam optimizer was used to
optimize the weights of the models. The learning rate was set to 0.001 and batch
size of 32. We trained the 3 models for several epochs. The CT scan images set
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was split into train and test sets at a ratio of 80% and 20% respectively. For
the set of check records, the 3 pre-trained models to diagnose COVID-19 are
evaluated and compared. As proven in Table 1, Inception-V3 confirmed great
diagnostic performance. Our deep CNN model outperformed the alternative pre-
trained fashions within the testing dataset, regarding the Accuracy and F1-
Score of 96%. The same value obtained from these metrics can be interpreted
mainly by the fact that we are dealing with a multi-class classification, where
each test data must belong to a single class and not to multiple labels. The
Specificity and Sensitivity are both hight for all the models, they reached values
of 94% and 80% respectively.

Table 1. Deep CNN Classification Performance obtained by Inceptionv3, VGG16 and
Resnet50 for Image-Dataset. Evaluation Metrics % used: Acc: Accuracy, Spec: Speci-
ficity, Sens: Sensitivity and F1-Score

Pre-trained model Epochs Loss Acc Spec Sens F1-Score

InceptionV3 20 0.04 0.96 0.94 0.80 0.96

VGG16 20 0.31 0.87 0.94 0.80 0.87

Resnet-50 100 0.55 0.83 0.94 0.80 0.83

3.2 Classifiers for Bio-Data Experimentation Results

In the second series of experiments, we have applied two supervised learning
algorithms on Bio-data, which are Random Forest (RF) and Support Vector
Machine (SVM). Each of the two algorithms needs different inputs parameters
to increase the predictive power of the model. The Bio dataset was split into
Train, Validation and Test sets at a ratio of 6:2:2 which means 60% training set,
20% validation set and 20% test set. To find an optimal hyper-parameter we
can just try all combinations and see what parameters work best. The idea is to
create a grid of hyper-parameters and just try all of their combinations.

RF: There are fundamentally 2 elements for RF which can be tuned to work on
the prescient force of the model: Features which improve forecasts of the model
like n-estimators which present the quantity of trees you need to fabricate and
max-features present greatest number of elements Random Forest is permitted
to attempt in individual tree. For the hyper-parameters of RF, we tried different
values. Table 2 shows the trained and the best parameters for RF classifier. The
best parameters reached an Accuracy of 83% on the training set and 90% on the
validation set.
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Table 2. Trained Parameters and Best Parameters for RF Classifier Model. The
reached Accuracy for the best parameters was 83% for the Training set and 90%
for the Validation set.

Grid parameters Trained values Best values

Criterion [gini, entropy] Gini

Max depth [4, 5, 6, 7, 8, 10] 7

Max features [auto, sqrt, log2] Auto

N estimators [21, 30, 60, 100, 200, 500] 100

SVM: The SVM algorithm was used on Bio-dataset as a second classifier. We
have trained different parameters in order to increase the predictive power of the
model. SVM has a set of parameters as the regularization parameter C and the
kernel (similarity function) type to be used in the algorithm. SVM, was evaluated
to predict COVID-19 using clinical information and after various emphases, we
arrived at the best values of C=1, Gama = 0.1 and Kernel = rbf. Table 3 shows
the trained and the best parameters for SVM classifier. The best parameters
reached an Accuracy of 92% on both the training and validation sets.

Table 3. Trained parameters and best parameters for SVM classifier model. The
reached Accuracy for the best parameters was 92% for the Training set and 92%
for the Validation set.

Grid parameters Trained values Best values

C [1, 10, 30, 60, 80, 100, 200,400, 600, 1000] 1

Gama 1, 0.1, 0.01, 0.001, 0.0001] 0.1

Kernel [linear, rbf] rbf

SVM and RF Comparison:
Comparing the two created classifier models, it is clear that the model based RF
is as performant as the model based on SVM. By analyzing the results presented
in Table 4 we can conclude that the SVM model slightly outperformed RF in its
abilities of 70% of Sensitivity and 90% of Accuracy and F1-Score. Both models
reached high Specificity of up 90%.

Table 4. Performance comparison of RF and SVM classification models.

Model Accuracy Specificity Sensitivity F1-Score

RF 0.85 0.90 0.60 0.85

SVM 0.90 0.91 0.70 0.90
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From the ROC Curve presented in Fig. 4, it is evident that the AUC for the
SVM ROC curve is higher than that for the RF ROC curve. Both SVM and
RF perform well on the dataset, but we are choosing SVM since ROC curve is
overall higher.

Fig. 4. ROC curve for SVM and RF

3.3 Comparison Study

After various tests, we have come to the resolution that the best model that fits
well our CT scan dataset is the deep CNN InceptionV3 with 96% Accuracy, 80%
Sensitivity and 94% Specificity. Compared to the state of the art, authors in [6]
used CNN architecture for the same image dataset and reported 75.9% specificity
and 83.6% sensitivity. They applied SVM, RF and MLP on Bio dataset. The
results showed that the best model that fit well on this dataset was MLP with
specificity 68.3%. On the other side, we applied on the same clinical dataset
our SVM classifier that outperformed MLP with a specificity of 91%, the reason
can be the lack of data which can cause overfitting in complicated models. The
comparison study is presented in Table 5. Our ML models had a better specificity
and a close sensitivity. By analyzing the results, we can conclude that our deep
CNN and SVM models are most appropriate for this types of datasets with high
performance.

Table 5. Comparison between our models and the models in [6]. CNN-CTscan : our
deep CNN model on Image data. SVM-Bio: our SVM model on Clinical data.

Metrics CNN-CTscan CNN [6] SVM-Bio MLP [6]

Specificity 94% 75.9% 91% 68%

Sensitivity 80% 84% 70 % 81%
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3.4 Explainability/Interpretability Results

Interpretability aims increasing model trustworthiness especially in critical
domains such as the medical one. In this study, LIME was used for the local
interpretability of the best CNN and SVM models applied on COVID-19 multi-
datasets. In this section, we present the explanation of individual prediction for
three instances of different classes so the decider can understand why the model
predicted a specific class for a particular test instance.

XAI-Img-Model: In order to explain the way our CNN model works on image
data, we decided to interpret the deep black-box model using LIME as shown in
Fig. 5, which is a plot explanations of the deep learning CNN model on image
data to interpret the decision and understand how it was made. This explainable
model is named “XAI-Img-model”.

Super pixels hued green as shown in Fig. 5 demonstrate areas that were gen-
erally contributory toward the anticipated class. Alternately, super pixels shaded
red show districts that were generally contributory against the anticipated class.
For the class predicted COVID-19, as shown in Explanation (A) of Fig. 5 with
97%, it is predicted positively at the level of the shoulder, and negatively inside
the lungs and the neck. The class predicted Normal in the Explanation (B) with
97.5% predicting positively inside the lungs, and negatively inside the lungs, the
neck and at the level of the shoulder. For the class predicted Pneumonia, Expla-
nation (C), with 99.1% predicting positively inside the lungs and at the level of
the shoulder, and negatively on the side of thoracic cavity.

XAI-Bio-Model: For this model, we aim to explain the way our SVM works
on clinical data by applying the LIME interpretation. This explainable model is
named “XAI-Bio-model”. A set of three instances was chosen from the test set,
then the explanation was plotted to interpret the black-box model and under-
stand how our SVM uses the features to make its decision. The interpretable
results are shown in Fig. 6. The information given by LIME represent: the pre-
diction probability of the three classes (COVID-19, Normal, Pneumonia) given
in the leftmost box, the middle chart shows the important features with their
bounding values and the table below is the actual values of the corresponding
features in the observation row passed as input.

We choose randomly one individual to visually show the effects of the features
on its class. As we are able to see in the explanation (A) of the Fig. 6, the LIME
results indicates that our model predicted a COVID-19 with a probability of 1.00,
this means that the possibility that this selected person has a COVID-19 disease
is 100%, 0% for Normal and 0% for Pneumonia. In this explication we notice
how the needed supplemental O2 and intubation present switched the decision
towards COVID-19 class. Also, we can see that the effect of the sex being male
has a much worse effect as being in 0.09 bucket. The model’s decision was affected
more by the first three features. For the explanation (B), the results indicate that
our model predicts a probability that this selected person is Normal 71%, 29%
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Fig. 5. LIME explanation of three test instances for our deep CNN based CT-scan
COVID-19 Dataset: “XAI-IMG-Model”: (A) Class COVID-19; (B) Class Normal; (C)
Class Pneumonia.
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Fig. 6. LIME Explanation of three test instances for our SVM based Demo-
graphic/Clinical COVID-19 Data: “XAI-BIO-Model”: (A) Class COVID-19; (B) Class
Normal; (C) Class Pneunomonia.

COVID-19 and 0% Pneumonia. We can see the effect of needed-supplemental-O2
of 0.15 and intubation present of 0.09 on the class percentage of COVID-19 for
this patient. The model decided that the person is normal based on the three last
features for NOT COVID-19 and the three first ones for NOT Pneumonia. In
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the explanation (C) results show Pneumonia disease is 100%, 0% for COVID-19
and 0% for Normal. The needed supplemental and the intubation present had
a huge impact on classifying the instance as Pneumonia. Five attributes were
responsible for the decision of NOT COVID-19 and privileged the Pneumonia
class.

4 Conclusion

In this research study, we investigated the power of the deep learning CNN
model on chest imaging findings as well as RF and SVM on clinical data which
could effectively predict outcome for COVID-19 patients. The developed ML
models showed a good performance and reached a hight evaluation metric values.
Since we are dealing with a healthcare problem which is a very sensitive field,
transparency, interpretability, and explainability are necessary to build patient
and provider trust. In this work we proposed to use LIME in order to generate
explication for ML black-box models. We named our models XAI-Img-Model
and XAI-Bio-Model on image CT-scan data and Clinical data respectively. The
proposed models proved to be highly useful in understanding the black box
behavior and help domain expert understand decisions and predictions which
increase its trustworthiness. The study is still in its earlier stages of theoretical
research. As ongoing work, using other datasets and integrating multiple types
of data for the same model will be helpful as the medical domain is very critical.
We will focus as well on checking the interpretability using other techniques
wether local or global to increase the trustworthiness, as well as, studying the
diagnosis and prognosis interpretability for other complex diseases.
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Abstract. In this paper, we discuss the importance of considering
causal relations in the development of machine learning solutions to pre-
vent factors hampering the robustness and generalisation capacity of the
models, such as induced biases. This issue often arises when the algo-
rithm decision is affected by confounding factors. In this work, we argue
that the integration of research assumptions as causal relationships can
help identify potential confounders. Together with metadata informa-
tion, it can enable meta-comparison of data acquisition pipelines. We call
for standardised meta-information practices as a crucial step for proper
machine learning solutions development, validation, and data sharing.
Such practices include detailing the data acquisition process, aiming for
automatic integration of causal relationships and actionable metadata.
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1 Introduction

The number of scientific publications in the biological field employing machine
learning (ML) is rapidly growing [1]. Both as a result of better access to larger
amounts of data generated using the latest technology (e.g., high throughput
screening) and the computational capacity together with the fast development
in the ML area, especially in deep learning (DL) with the use of convolutional
neural networks (CNN) and generative adversarial networks (GAN) [2,3].

Biological systems are complex, though the advent of ML has shown a promis-
ing approach to working with data stemming from such complex phenomena
for conducting data analysis and prediction. However, such progress has not
come without challenges, e.g., model interpretation of ML and DL models is
a usual hurdle but also a common neglected requirement. The heterogeneity
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and multi-modal nature of biological data also presents challenges such as the
curse of dimensionality, which may lead to data sparsity or multicollinearity [4].
Multi-modal and heterogeneous data also call for better metadata to convey the
acquisition details and facilitate the comparison and contrast of datasets and
acquisition pipelines.

Such trend and their direct consequences in biological healthcare applica-
tions call for standardised guidelines to ensure the quality of each stage of the
research and application pipelines. This is specially important when comparing
data acquisition pipelines, mixing datasets or comparing ML performance across
datasets (e.g., for external validation) which may potentially stem from different
data generation processes.

Ensuring good quality during the whole process, from data generation to
model deployment, is a complex and ambitious task, still fundamental to building
correct ML models to study biological phenomena. The most notable approaches
include some of the current guidelines.. Among other objectives, these guide-
lines aim to establish better data sharing and appropriate foundations for good
appraisal and reproducibility. The data sharing goal aims to ensure good data
management not only to advance in knowledge discovery and innovation but
also to allow for proper data reuse. Better appraisal and reproducibility can be
achieved through standardised reporting guidelines that guarantee the reporting
of key dataset elements (for example dataset generation details) as an essential
step for dataset comparison and validation. In this way, remarkable efforts have
been done in the recent years. Here we highlight the FAIR principles [5] and the
DOME recommendations [6].

The FAIR principles (Findability, Accessibility, Interoperability, and
Reusability) aim to increase data usability, with special emphasis on machine-
readable and actionable datasets. This need arises because machines, in contrast
to humans, lack a natural ability to identify and interpret the context, becoming
more likely to make errors contextualising data. However, machines can over-
come humans’ main limitations operating at the scope, scale, and speed that the
current e-Science scenario requests. Thus, different mechanisms and protocols
seeking machine self-guidance for data exploration need to be developed [5].

More specific to the area of applied ML for biological analysis, we can find
DOME (Data, Optimisation, Model and Evaluation), a community-wide collec-
tion of recommendations focused on standardised review guidelines for proper
reporting of supervised ML in biological studies. DOME’s impact is not limited
to the evaluation of publications’ results individually, but it opens the door to
better meta-analysis of ML datasets which enables comparison of methods and
avoidance of unnecessary repetition of data generation to answer to new research
questions [6]. However, today such meta-analysis is not easily feasible due to the
lack of data sharing standardisation.

The rest of the paper is structured as follows: with FAIR and DOME as
guidance, we discuss the importance of considering potential confounders in the
data, especially after the paradigm change from classical statistical modelling
to ML. Below, we explore its impact on the ML-based biological applications.
Finally, we discuss potential solutions with a special focus on the standardised
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metadata that aims to encode causal relationships. Although every step is critical
to develop better models, this paper focuses on the datasets and their standard-
ised reporting in the context of biological research.

2 Considerations for the Development and Reporting
of ML Solutions

The study of biological systems involves either inferences or predictions. Infer-
ence aims to create a mathematical model about the data-generation process,
testing a hypothesis or formalising our understanding of how the studied sys-
tems behave. It is used to understand the mechanism of the studied event, e.g.,
how the accumulation of one specific protein affects the system. In contrast,
the purpose of prediction is to forecast future behaviour, without necessarily
understanding the mechanism behind it, e.g., to predict which treatment is bet-
ter based on the specific level of a determined protein. Despite the fact that
both statistics and ML can be used to predict and make inferences, tradition-
ally, statistical methods have been applied for inference whilst ML methods were
employed for prediction [7]. The choice between prediction or inference depends
on the ultimate analysis goal.

In short, the statistical approaches are useful when we want to understand
the influence of each variable, but in general (not always), have less predictive
power, frequently because only few variables and linear relationships are consid-
ered. Conversely, when large and high dimensional datasets are analysed with
prediction as a goal, ML is chosen [7]. One of the most crucial handicaps in
current ML is the lack of model traceability. However, the high predictive power
of these methods promotes their use for biological applications. Although, such
methods are not exempt from risks.

In the remaining of this section, we discuss the relevance of desirable prop-
erties of ML models followed by the current limitations of biomedical ML solu-
tions that lack some of these properties, leading to systematic errors and valid-
ity issues. Next, we delve into the details regarding the origin and typology
of such systematic errors and the limitations of the performance evaluation of
ML models, which has proven unable to express the model’s phenomenological
fidelity and data validity. These issues are illustrated with examples. Finally, we
describe methodological tools to help preventing such systematic issues through
the development of the ML models and their future life after deployment.

2.1 The Desirable Properties of ML Models

Like any other model, ML models are purpose dependent. Therefore, there is no
exhaustive set of sufficient and necessary conditions to define what a good model
is. Nonetheless, there are some common criteria than can be balanced to achieve
a good compromise. In 2019, the European Union’s (EU) High-Level Expert
Group on Artificial Intelligence (AI HLEG) released the “Ethics guidelines for
trustworthy AI” prescribing four ethical principles: “respect for human auton-
omy, prevention of harm, fairness and explicability” accompanied with seven
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key requirements: (1) human agency and oversight, (2) technical robustness and
safety, (3) privacy and data governance, (4) transparency, (5) diversity, non-
discrimination, and fairness, (6) environmental and societal well-being, and (7)
accountability [8]. To achieve these goals, models must feature desirable proper-
ties such as model traceability, robustness and generalisation.

Model Traceability. Producing trustworthy solutions requires traceability,
which involves providing a detailed account of data provenance and the design
decisions involved in the production of the model. This requirement concerns
transparency and explainability, providing rich documentation of the problem
assumptions, data collection, labelling, cleaning, model selection, model train-
ing, evaluation methods, deployment work and model monitoring. Of course, the
particular actions for model traceability depend on the model and its context.
An indirect requirement for proper model traceability is data accountability [9]
which demands rigorous documentation of the data generation process, its limita-
tions and the underlying assumptions that shape the data. Moreover, traceability
intersects with goals such as repeatability, reproducibility and replicability [10].
All in all, the final aim is to successfully reproduce and explain model outcomes
and backtrack the prediction process.

Robustness. Biological solutions usually involve multi-modal information,
which often involve different sources of data, entailing different kinds of noisy
data with peculiar distributions (e.g., non-normality). Such particularities call
for robust models able to handle potential outliers and noisy data [11]. ML
models are robust when their output remains consistently accurate even after
drastic changes in one or more of the input’s independent variables (features).
Or in other words, the testing error has to be consistent with the training error
of the model. For instance, ideally, a model for image classification should be
robust to natural distribution shifts in the input, such as changes due to lighting
conditions, scene compositions, etc.

Generalisation. Tightly related to the previous virtue, generalisation relates to
the model performance in unseen instances drawn from the same distribution as
the training set. Note that this does not necessarily refer to noisy data. Although
evaluating ML models on non-overlapping test data is a common technique to
assess internal validity, it does not reflect the resilience to outliers, noisy data
and transferability to other scenarios.

Currently, when we identify a performance change of a ML model on a new
dataset, there is few we can do without additional information (e.g., documenta-
tion, metadata) that may help us explain why the performance is different. Was
the data acquired differently? (e.g., different devices, protocols). Is the context
of the sampling units different? (e.g., patients from a region with different dis-
ease incidence). Providing the research assumptions encoded as causal diagrams
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as well as dataset meta-information together with a traceable model may help
understanding issues in robustness and generalisation that may arise both dur-
ing the development of solutions or during the life cycle of a solution already
deployed in a real-scenario.

2.2 Current Limitations in Biomedical ML Solutions

The number of scientific works using ML techniques has increased exponentially
over the last years, and it is progressively translating into real-world applications,
including high-stakes domains such as health, conservation, employment, edu-
cation or justice. High-stakes AI domains are characterised by their significance
and lasting impact on both individuals and society [12].

Unfortunately, despite these models report excellent results during their
model training and testing steps, there are notorious cases where the accuracy
dropped significantly during their real application, with harmful repercussions
when affecting high-stakes domains. Systematic errors have been reported in
commercial software employing ML models for tracking, face detection, crimi-
nal justice and hiring recommendations. Such errors include systematic biases
against concrete populations [13] and limitations in model generalizability and
transportability which are well-known issues in biomedical applications [14].

2.3 Origin and Error Types

The reasons and solutions are complex, but one of the most notable factors is
the dataset composition, including the consideration and intervention to avoid
undesirable biases and potential confounders. Although confounders are not
biases per se, neglecting control for them may produce biased estimates. Simply
put, the main error sources fall into two subtypes of biases. On one side, con-
veyance of systematic biases in the datasets. On the other side, biases
induced during the collection, annotation, preprocessing, and learning
strategies.

Conveyance of Systematic Biases in the Datasets. These patterns rep-
resent actual real-world bias that we do not want to convey in the data. For
instance, a dataset may reflect an unfair systematic historical discrimination
against a particular group of people that may undesirably be perpetuated or
even amplified if is not controlled for [13].

Biases Induced During the Collection, Annotation, Preprocessing, and
Learning Strategies. In this case, biases arise from one or multiple steps in the
data pipeline, e.g., the data collection process might be biased, or the training
process may wrongly employ features, producing a biased model [15], e.g., in
CNN applications [16,17], image features that we may think to have a stronger
predictive power for the model may not be as relevant as other hidden features we
are unable to see such as noise patterns that hint different acquisition devices,
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acting as a shortcut to detect two groups of sampling units (e.g., healthy v.
control). See Sect. 2.4 for a detailed example.

Although the origin and impact of both type of errors is different, the solu-
tion to both involves improving model traceability in different ways for a better
understanding of the model’s decisions. Efforts in this direction are applied in
the whole MLOps pipeline, i.e. the automation and monitoring at all steps of
ML system development and deployment, including integration, testing, releas-
ing, deployment and infrastructure management [18,19]. This paper focuses on
the induced biases as they are an important concern in biological studies. A spe-
cial focus is put on dataset documentation of both the acquisition process and
metadata as a way to reduce the risk of such undesirable biases. Additionally,
encoding the assumptions taken during study design is key to spot incompati-
bilities across datasets, models and studies.

2.4 Limitations of the Current Evaluation System

At this point, one may wonder how models suffering from such issues could
satisfy all the requirements needed for their deployment. This issue is explained
to a large extent because the metrics currently employed by practitioners (e.g.,
F1, accuracy, AUC, Matthews correlation coefficient) assess the goodness of the
model fitting the data but do not express the phenomenological fidelity of the
model and the validity of the data. The phenomenological fidelity refers to the
representation of the modelled phenomena. For instance, although diseases can
co-exist, many ML solutions designed for disease diagnosis employ multi-class
classification approaches which do not properly represent the hypothesis space of
the problem to be solved, e.g., diagnosis, since diseases may have more than one
etiology, and one etiology can lead to more than one disease [20]. On the other
side, the validity of the data indicates how well the data captures the phenomena
in order to explain it [12], because apparent performance does not necessarily
imply proper phenomena modelling [21].

Current applications measure how good the models perform on the test data,
which generally is a subdivision of the same dataset or a dataset collected under
similar conditions. Such a score does not express how well the model captures
the behaviour of the real phenomena, for which data is just an approximate rep-
resentation of reality, e.g., they do not measure whether all the event variations
are considered or if the capturing methods have enough sensitivity.

Moreover, the ‘black box’ nature of current ML models hinders transparency
regarding the features or combination of features employed during predictions.
Equally dangerous is the fact that models are not aware of their surrounding
context. Models best hope is to expect their target data resembles that from their
training period [20]. Without traceability capabilities and context information
of its deployment environment, we cannot properly understand and debug any
issues that may arise when a model is deployed in the real-world.

While common ML safe practices like cross-validation or class imbalance con-
trol aim to minimise model issues such as model over-fitting, their use draws
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from the premise that data is a solid representation of the modelled
phenomena. Such practices cannot overcome data collection issues, leading to
poor consideration of the dataset acquisition process, metadata information and
documentation work.

These issues have been proven to impact ML projects, e.g., decreasing the
accuracy of IBM’s cancer treatment AI solution and causing that Google Flu
Trends underestimates a flu peak by 140% [12]. In another example, Maguolo
et al. show how the lack of explainability and transparency may hinder the
detection of drastic cases of apparent performance with a total lack of phe-
nomena modelling. The authors discuss the validity of testing protocols in most
papers dealing with the automatic diagnosis of COVID-19. For that, the authors
removed the lungs from X-Ray images and retrained the models, obtaining a sim-
ilar apparent good performance. The authors conclude that “models might be
biased and learn to predict features that depend more on the source of the dataset
than they do on the relevant medical information” [21]. Therefore, models may
use undesirable bias or exploit uncontrolled confounders during the training.
Proper documentation of the acquisition differences may enable rapid compari-
son of datasets to better spot potential sources of errors during training as well
as sudden changes in input data in production settings.

Fig. 1. DAG depicting a scenario with a confounding factor (age) acting (solid lines)
in both the predictor and outcome (relationship depicted with a dashed line).

2.5 Helping Methodological Tools

Biological solutions are diverse and there is not a single tool or methodology
that may suit all scenarios, studies, settings and research problems. However,
every scientist, regardless of the area, shares a common toolkit of methodologies
including calibration of instruments, reproducibility, journaling (either lab note-
books or code version control), and so forth. Below we share two methodological
practices that may prevent aforementioned issues.
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Better Dataset Documentation. The first step to avoid, or detect, potential
bias in datasets and models is to improve the documentation of the dataset
generation process. This is a crucial step since, currently, there is a plethora
of techniques to control or correct in case of potential bias or confounders. How-
ever most of them assume previous knowledge of such elements [22]. Some of the
most common sources of induced bias include unknown confounders as well as
selection, acquisition, and annotation biases resulting from non documented
assumptions. As shown in the directed acyclic graph (DAG) from Fig. 1, con-
founders (age) are variables that affect both the potential predictor variable
(physical activity) and the outcome (cardiac problems). When the presence
of confounders is unknown and in lack of experiments specifically designed to
minimise them (e.g., randomised controlled trials), we cannot control for them.
Uncontrolled confounders lead to conclude that a given feature may be a strong
predictor of the outcome when in reality the association is spurious. Moreover,
such association may not hold anymore when the sample comes from a different
setting where the confounder is differently expressed, e.g. income level may play
a different role on diabetes treatment depending on the country [23]. When the
model learns spurious associations between predictors and outcomes, an unde-
tected overfitted model is produced, resulting in poor generalisation capabilities
that eventually unveil during its translation into real-world settings [14]. Before
ML-based analysis expansion, researchers generally employed statistical mod-
elling of biological processes to make inferences from observational data. Gen-
erally, in statistical modelling, there is a tight control of potential confounders.
This close analysis allows to include functional assumptions that affect the rela-
tionships between variables.

Fig. 2. Diagram depicting data cascades re-drawn from [12]. Thick red arrows show the
point where compounding effects become visible. Dotted red arrows depict abandoning
or restarting of the ML data process (Color figure online).
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Data Cascades. Recently, the concept of data cascades (DC) was presented
as one of the main issues in the current life-cycle of an ML system [12]. DCs
are defined as compounding events provoking negative downstream impact from
data issues causing a technical debt over time. DC describes and identifies how
induced biases are generated during the design and data collection process:
from the problem statement, dataset collection, data labelling, data analysis
and cleaning; as well as model selection, model training, model evaluation until
model deployment. This is represented in Fig. 2, which depicts several steps of
the development process in which issues may arise, compromising the model. In
essence, these cascading issues are similar to those that may arise in the tradi-
tional process of drug development, such as translational failures using animal
models or issues in patient stratification [24]. If any of these issues (both in drug
development or ML development) are not spot at the right stage, e.g., a trans-
lation failure between animal models and humans during the pre-clinical stage
or a wrong assumption during the problem statement, the cost and potential
harm in later stages can be disastrous. Therefore, pro-active work to spot weak
points in the workflow can help dividing the research work into milestones at
which documentation and quality control are evaluated to prevent dragging such
errors to later stages.

Appropriate encoding of research assumptions, metadata information and
proper workflow design can help improving replication, reproducibility or assess
suitability of models to new data and vice-versa. Bearing all the previous con-
cerns, intervention in the developing and reporting systems of ML-based solu-
tions must be addressed before its translation into real-world settings.

3 Relevance of Induced Bias in Biological Studies for ML
Analysis

The previous section described several considerations to bear in mind during the
development of ML solutions (ML properties, model limitations, error sources
and error types). This section provides a detailed overview of several workflow
points at which induced biases may arise in the context of biological ML appli-
cations. There is a large diversity in biomedical modelling, one of the most
popular areas is the one that focuses on understanding the biological processes
that underline human diseases. Such studies aim to understand the core biologi-
cal processes like transcription, translations, signalling or metabolism, including
tissues and organs. The current size and precision of omics data open the door
for insight modelling using ML techniques.

There are multiple areas where ML has been successfully employed in bio-
logical research, such as gene expression, microRNA binding, protein-protein
interaction, single-cell data, metagenomics and sequencing. In consequence, this
has impacted many different areas expanding our knowledge in diverse areas such
as neurobiology, cancer biology, and immunology. Further research is expected
to shake the clinical landscape improving clinical decision-making, predicting
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Fig. 3. Directed arrows indicate causal effects and dotted lines indicate induced asso-
ciations. (a) shows a scenario in which collider bias could distort the estimate of the
causal effect of sporting activity on the academic ability. As shown in (b), the rela-
tion between the two associated variables can be indirect, with the risk factor and
the outcome being indirectly associated with sample selection through unmeasured
confounding variables (U and V).

patient trajectories, and boosting clinical trial efficiency and drug develop-
ment [25].

The batch effect (BE) is a known source of confounding in the area of
biology. The BE refers to the different factors when comparing sample lots that
affect the measurements masking the biological variation impact. The BE is the
consequence of different laboratory conditions, reagent lots, machine calibration,
software and even personnel differences, e.g., a strong laboratory-specific effect
has been reported when comparing multiple micro-array experiments. Another
example concerns gene expression studies, in which large variations are asso-
ciated with the data processing and the specific settings of micro-array work.
Consequently, several papers, including relevant studies published in high-impact
journals, were retracted [26] on the basis of such errors.

Such issues are usually addressed during the experimental design thanks
to randomisation, stratification, replications and inclusion of both positive and
negative controls. However, dataset reuse and dataset mix (where datasets are
often produced with different settings) may impede controlling for such factors.
Therefore, this is a lurking problem in biological data analysis and ML solu-
tions employing mixed high-throughput datasets. Finally, although the BE often
relates to the preparation and measure conditions of the samples, other induced
bias may arise in the subsequent pipeline steps in the form of data cascades.

Practices leading to collider bias represent yet another source of bias. A
collider entails a variable that is influenced by two other variables, i.e. collider
bias occurs when an exposure and outcome (or factors causing these) each influ-
ence a common third variable [27]. The associations induced by collider bias are
properties of the sample, rather than the individuals that comprise such a sam-
ple. Therefore, such associations fail to generalise beyond the sample and may
be inaccurate even within the sample, threatening validity, e.g., when the factors
affecting sample selection also affect the variables of interest, the relationships
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between these variables may become distorted, leading to erroneous inferences
and modelling. An account of the impact of collider bias in COVID-19 under-
standing is given in [28]. The authors provide a simple example, depicted here in
Fig. 3 (a), in which academic and sporting abilities can influence selection into a
prestigious school. These two factors are barely correlated in the general popula-
tion. However, they become strongly correlated in the sample because the school
enrolment depends on them. As depicted in Fig. 3 (b), the association of interest
can be distorted without their variables being directly influencing the collider,
e.g., factors affecting the sample selection can themselves influence the variables
of interest, distorting the relationship between them. This effect is known as
M-bias.

Of course, the effect of collider bias is not limited to observational studies
and can as well be conveyed to any ML solution trained on biased datasets of
this nature.

As depicted in Fig. 4, there are five general steps from which these potentially
induced biases can arise and have cascading consequences (see DC in § 2.5). In
first place, the biological source may showcase variations in population, disease
penetrance, phenotypic manifestation, environmental conditions or sample tech-
niques may induce biases during human sampling. Next, human or machine sam-
ple preparation may be sensitive to the machines employed, reactants, protocol
settings and in-house calibration. In the same line, different settings conditions
may affect the signal measurement. Then data analysis is conditioned by the
approach employed for data cleaning, normalisation and labelling. Finally, data
sharing is not exempt from issues if decisions are taken to modify or remove
features or statistical units before the data distribution.

All of these issues may result in technical and research debt in later stages
of the scientific programmes.

Fig. 4. General workflow diagram showcasing the generation process of biological
datasets. Gray boxes contain potential sources of induced bias
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4 An Approach to Overcome the Limitations:
Accompanying Metadata with Causal Information

Open science and open innovation allow fulfilling a basic principle of science,
reproducibility. The main principles include open code, open data and open
publications. But while open data allows reproducing the reported results, ensur-
ing data reusability entails proper description of the whole generation process.
At this point, it is clear that datasets must be paired with proper documenta-
tion and accompanied with additional information to automatise dataset and
pipeline meta-analysis. These are indeed among the principles of relevant guide-
lines such as DOME [6]. However, encoding such information together with the
dataset is not always possible, often requiring sidecar files better suited to express
dataset properties differently. Metadata has emerged as a crucial component for
reproducibility in the research life cycle [29]. Additionally, the full potential of
metadata is still open to unexplored opportunities associated with the area of
biological ML [6]. FAIR principles reflect the need of reusability and interop-
erability, suggesting extensive documentation to satisfy data management and
stewardship needs. Similarly, DOME guidelines aim for proper data provenance
and safe model evaluation. However, such principles do not demand further meta-
data encoding of the causal assumptions made during the data collection process
and the intentions of the original study for which it was collected.

The final aim of such metadata should be to convey the data generating
process enabling its comparison across datasets to identify differences in the
generation process and inform of potential induced biases as the first step for its
control. To ensure its correct comparison the metadata should be standardised.
The metadata standardisation is already present in domain-specific reposito-
ries such as Genbank or UniProt which are highly curated and include specific
metadata. Domain-specific metadata standards include DICOM (Digital Imag-
ing and Communications in Medicine), FHIR (Fast Healthcare Interoperability
Resources), Functional Annotation of ANimal Genomes (FAANG) and Observa-
tional Health Data Sciences and Informatics (OHDSI). However, general-purpose
solutions are still scarce [5] with ISA Commons [30] as the prominent model to
describe metadata relating to the provenance of samples and data.

However, none of these metadata formats and models enable the encoding of
causal graphs representing the assumptions considered during the data collection
process or study design. Such additional information could prevent issues in
which the modeller is unaware of known confounders (which might be taken into
account during the data acquisition but not properly documented) between the
variables, with unexpected consequences.

Additionally, an inappropriate split may break the assumption that data is
independent and identically distributed, in other words, that all samples stem
from the same generative process which has no memory of past generated sam-
ples. For instance, a medical dataset containing multiple samples from the same
patients without stating the patient id (or another patient dependent variable),
precluding group-wise division of the dataset. In this example, the training pro-
cess could be compromised due to potential data leakage caused by the presence
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of samples from the same patient in both the train and test sets. Similar to
group-wise split issues, if the samples stem from a time-dependent process, a
time-wise scheme is at hand, otherwise data leakage may also occur if instances
of different moments in time are present in both train and test sets. In any case,
such data generative process must be properly documented beforehand.

Fig. 5. Sample causal diagrams showcasing some combinations for 3 variables. In C,
sleep acts as a confounder of both exercise and weight, while in E its role is a collider.
Finally, in F, sleep acts as a mediator.

4.1 Incorporating Causal Information

As previously discussed, causal diagrams enable encoding of assumptions over
the modelled phenomena. Causal diagrams summarise existing knowledge in the
form of nodes and edges which convey causal relationships between variables
(nodes). First, such knowledge is simplified into assumptions which are then
used to construct causal diagrams, or causal models. Again, such assumptions
are encoded as missing edges and the direction of present edges, e.g., exercise
reduces weight. Causal diagrams enable calculating estimands prior to data col-
lection. Given the causal query P(W|do(E)) (read as the causal effect of exercise
in weight), and thanks to the estimand P(W|S,E)·P(S) from diagram C from
Fig. 5, we know that the question cannot be answered without sleep data. This
causal information could be used to select only those datasets that have sleep
data. Then, metadata could provide information regarding sleep data acquisi-
tion to ensure compatibility with previous data or across datasets when merging
datasets. Note that for diagram E, weight is assumed not to depend on sleep,
hence no sleep data would be required in such scenario.

Data Alone is Not Enough. Importantly, such causal information cannot be
extracted from tabular or image data, however, we need to convey (when our
knowledge allows it) how variables relate. For instance, we can track the length
of a building shadow B as a function of the sun’s elevation S and building
height h, but tabular data alone will not be able to express the direction of the
causal relationship between S and B. However, since we know that the former
affects the latter and not vice-versa, we can encode such knowledge in a causal
model. This is even more important when knowledge is unclear but assumptions
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are nevertheless taken, e.g., does obesity increase asthma or vice-versa? are there
mediators? In such cases, it is essential to convey the research assumptions taken
during the construction of a solution. These situations can also arise in biological
system modelling for the understanding of disease molecular mechanisms, e.g., an
elevation of a determined protein and a concrete gene may be observed under two
different conditions. This association may be bi-directional, i.e., the protein may
act as a regulator of the gene expression, or the gene expression may stimulate
protein generation.

Acquisition metadata can also help raising warnings, e.g., if acquisition
devices are replaced, which may require certain model re-calibration to prevent
errors. Conversely, if the assumptions change as a consequence of new knowledge
introduction, warnings may be raised regarding the data, or new incompatibil-
ities may be found, e.g., if we learn sleep to affect both exercise and weight,
the system may check whether sleep data acquisition methods are compatible
thanks to the metadata information.

Making Causal Information Actionable. Causal diagrams can be encoded
in file formats such as the graph description language DOT or Graph Modelling
Language (GML). Python libraries such as Microsoft’s DoWhy [31] and IBM’s
causallib [32] allow working with such causal models enabling calculation of
estimands and estimate of causal effects. Both libraries provide detailed examples
in the form of Jupyter Notebooks to help getting familiar with their tools. Such
tools can be employed to work with causal models of high level knowledge in a
similar way Systems Biology Markup Language (SBML) allows to represent low-
level biological phenomena such as cell signalling pathways [33,34]. In a similar
way to SBML models, causal models could be labelled with standard identifiers
such as those available at https://identifiers.org/, which includes more than 700
different namespaces [35] such as the international convention of diseases (ICD)
or SNOMED collection of medical terminology.

Together with causal information, and according to the above, metadata
(following either general-purpose or domain-specific standards) should at least
comply with the following principles to enable actionable metadata application.
Interoperability, through automatic metadata generation during data collec-
tion that eases machine-machine interaction. Usability, enabling easy-to-use
integration when human input is required. Adherence, supplying an inter-
face to which general and domain-specific standards may adhere. Integrative,
employing already existing guidelines. Privacy, providing features to comply
with current data protection frameworks (such as the EU General Data Protec-
tion Regulation or the California Consumer Privacy Act).

5 Conclusion

In this paper we present the general issues affecting ML solutions for high-stakes
domains, such as biomedical research, caused by induced biases derived from

https://identifiers.org/
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the collection, annotation and preprocessing stages of the ML model production
pipeline.

In particular, we address the lack of information context which enables ML
models to learn spurious associations between variables that might be affected by
endogenous confounding factors derived from the particularities of the pipeline
setting (such as instrument noise, laboratory protocols).

This issue is amplified in high-throughput scenarios when comparing sample
lots generated in different settings. Our proposed approach involves bringing
data work to the foreground of the ML model production pipeline. Increased
domain knowledge, data excellence incentives and improved feedback channels
in the AI data life-cycle are good starting points [12]. However, such goals must
be translated into material actions.

In this paper we propose increased documentation of the dataset generation
process as an essential safety practice. This includes the use of dataset-wise stan-
dardised metadata and incorporation of causal relationship information regard-
ing dataset variables.

In this sense, we note the scarcity of general-purpose metadata standards
but emphasise the availability of purpose-dependent metadata standards such
as DICOM. Rather than proposing a standard for metadata, we recommend
to exploit existing metadata standards and accompany such information with
causal assumptions, integrating these in the workflow to both strengthen the
quality of model development and improve audit and monitor deployed solutions.

We believe the inclusion of metadata is well suited for the particularities
of biological datasets and may ease dataset mixture and pipeline comparison.
The practice of including causal information in the documentation could prevent
confounding effects by encoding the assumptions concerning the dataset gener-
ation process. Together, this extra information can be used to audit dataset
compatibility and model suitability.

Thus, existing standards are yet to be fully exploited for the production of
standardised documentation and metadata, which may not only ease the data
work but also open the door for actionable-metadata and incorporation of causal
relationships during the model training. We believe these strategies will help
mitigating potential risks of ML solutions in real-world scenarios both during
development and deployment stages.
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Abstract. With the advent of deep learning techniques for text generation, comes
the possibility of generating fully simulated or synthetic genomes. For this study,
the dataset of interest is that of coronaviruses. Coronaviridae are a family of
positive-sense RNA viruses capable of infecting humans and animals. These
viruses usually cause mild to moderate upper respiratory tract infection; however,
they can also cause more severe symptoms, gastrointestinal and central nervous
system diseases. The viruses are capable of flexibly adapting to new environments,
hence health threats from coronavirus are constant and long-term. Immunogenic
spike proteins are glycoproteins found on the surface of Coronaviridae particles
that mediate entry to host cells. The aim of this study was to train deep learn-
ing neural networks to produce simulated spike protein sequences, which may be
able to aid in knowledge and/or vaccine design by creating alternative possible
spike sequences that could arise from zoonotic sources in future. Deep learn-
ing recurrent neural networks (RNN) were trained to provide computer-simulated
coronavirus spike protein sequences in the style of previously known sequences
and examine their characteristics. The deep generative model was created as a
recurrent neural network employing text embedding and gated recurrent unit lay-
ers in TensorFlow Keras. Training used a dataset of alpha, beta, gamma, and
delta coronavirus spike sequences. In a set of 100 simulated sequences, all 100
had most significant BLAST matches to Spike proteins in searches against NCBI
non-redundant dataset (NR) and possessed the expected Pfam domain matches.
Simulated sequences from the neural network may be able to guide us with future
prospective targets for vaccine discovery in advance of a potential novel zoonosis.

Keywords: Coronavirus · Deep learning · Neural networks

1 Introduction

1.1 Coronaviridae

Coronaviridae are a family of large, enveloped single-stranded positive-sense RNA
viruses encompassing alpha, beta, gamma, and delta coronavirus divisions as well as
unclassified divisions in the sequence databases. The genome is packed inside a helical
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capsid and is further surrounded by an envelope. The spike protein forms large pro-
trusions from the virus surface, giving the coronaviruses the appearance of wearing a
‘crown’ under electron microscopy. Coronaviruses can infect a wide range of different
animals and usually cause mild to moderate upper-respiratory tract illnesses, however
they can also cause severe respiratory infections as well as gastrointestinal and central
nervous system diseases. Coronaviruses circulate among humans and animals such as
bats, pigs, camels, and cats. Recent zoonoses include severe acute respiratory syndrome
Coronavirus (SARS-CoV), which emerged in November 2002 and became effectively
extinct by 2004 [1]. Another zoonosis, Middle East Respiratory Syndrome (MERS-
CoV) was believed to be transmitted from an animal reservoir in camels in 2012 [2]. In
veterinary terms, economically important CoV exist such as porcine epidemic diarrhoea
coronavirus (PEDV) which lead to an extremely high fatality rate in piglets [3]. The
coronavirus SARS-CoV-2 emerged from China in 2019 [4] and was declared a pan-
demic during the first quarter of 2020 with an extremely high requirement for a vaccine
to be provided in a short timeframe. The Spike protein is a multifunctional viral protein
found on the outside of the SARS-CoV-2 virus particle (Fig. 1).

Fig. 1. Spike protein structure from SARS-CoV-2. The S1 fragment is shown in magenta, the S2
fragment is shown in red, with glycosylation as lighter hues. The receptor binding domain (RBD)
is located at the top of the molecule, whilst the S1 and S2 fragments form part of a complex with a
membrane-spanning segment. Image adapted from D. Goodsell and RCSB PDB [5]. (Color figure
online)

Spike protein initially binds a host cell receptor though its S1 subunit and fuses viral
and host membranes through its S2 subunit. In addition to mediating entry, the spike is a
critical determinant of viral host range and amajor inducer of host immune responses [6].
Due to the key role of the Spike (S) protein, it is the main target for antibody-mediated
neutralization [7].

1.2 Recurrent Neural Networks

Deep learning is a subset of artificial intelligence employing neural networks. The recur-
rent neural network (RNN) is a type of neural network usually used for text encoding
implementations, mainly through whole word encoding and the bag of words concept.
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The recurrent neural network (RNN) is trained on a set of sequences using an optimiza-
tion algorithm with estimations of gradient descent combined with backpropagation
through time. The RNN has the potential to consider previously seen data such as the
character or word that came before the current time step using units such as long short-
term memory cells (LSTM) or gated recurrent units (GRU). The GRU is a variant of
LSTM with a forget gate but having fewer parameters than LSTM as it lacks an output
gate [8]. GRU performance is similar to LSTM but can be enhanced on some datasets.

In 2007, Hochreiter, Heusel and Obermayer proposed the use of LSTM for protein
homology detection [9], commenting that LSTM is capable of automatically extracting
local and global sequence statistics like hydrophobicity, polarity, volume and polariz-
ability and combining them with a pattern. The results included extraction of feature
dependencies that were not detected with common bioinformatic techniques. In this
study, we investigate whether GRU is capable of learning these features in the context
of generating synthetic sequences.

2 Methods

2.1 Recurrent Neural Network (RNN) Architecture

In creating the model described in this study, character encoding was used on the
sequences in the training set. Alternative model architectures were considered which
included either two layers of GRU, a single bidirectional layer of GRU, or two bidi-
rectional layers of GRU. In addition, either a single dense layer was used as output,
or two dense layers, with the first dense layer having half the number of RNN units
(512). Model architecture changes also included swapping GRU for LSTM. However,
the model showing the best results as judged by bioinformatic analysis of the output
synthetic sequences was composed of a single embedding layer and a gated recurrent
unit (GRU) with 1024 RNN units followed by a dense linear layer (Fig. 2).

Fig. 2. Simple recurrent neural network trained for the production of synthetic protein sequences
of Spike protein. The vocabulary size was 26, including each of the protein single letter codes, plus
newline and space characters, the embedding dimension was 256, with a RNN units parameter of
1024. During prediction, after loading the trained model, the model is reset to a batch size of one
and prediction is carried out one character at a time starting with the seed text.
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The model was trained in Tensorflow 2.1.0 with Keras using an Adam optimizer
with AMSgrad option and an adaptive learning rate over 15 epochs, where losses fell
gradually from an initial 3.259 to 0.266. Learning was terminated after the losses had
fallen between 0.2–0.3.

2.2 Coronavirus Training Set

A training dataset was formulated from a wide variety of coronavirus spike protein
sequences from alpha, beta, gamma and delta coronaviruses and constituted isolates
frommany different animals. The total number of spike protein sequences in the training
dataset was 2406, encompassing 511 sequences from Human CoV including examples
of SARS-CoV-1 and MERS as well as SARS-CoV-2 (hCoV-19), 232 Bovine, 194 Noc-
tilionine (Bat), 106 Porcine and several samples from other animals including camel,
Chinese ferret-badger, hedgehog, dog, deer, avian and whale. Downloaded sequences
were searched and cleaned to remove poorer quality and partial sequences and subunits
resulting in a total of 2295 sequences. All the cleaned data was used in training and the
model was evaluated by bioinformatic methods. BLASTP percentage match identities
within the dataset had a mean of 79.7, median of 92.5 and an interquartile range of 37.2.

3 Results

3.1 Characteristics of DL Simulated Spike Proteins

To create predictions, the RNN is initially given a short seed protein sequence. The seed
sequence can be passed as a random choice from previously sequenced spike proteins
or formulated of random choices of amino acids starting with Methionine chosen by the
python random library. In this study, given a seed text, the RNNwas then able to provide
sequences up to the full length of spike protein, a maximum length in the input dataset
of 1582 amino acids with a mean length of 1324.4 amino acids. The maximum sequence
identity that a simulated sequence achieved in BLAST matches against the training set
was 100% sequence identity over 875 amino acids with a temperature scaling value of
1.0 (see below for details) or 100% identity over the full length of the protein with a
temperature scaling value of 0.5. The lengths of all the synthesized proteins were fixed
at 1588 amino acids.

For preliminary investigations, 100 DL synthesised spike protein sequences were
collected. The RNNwas initially providedwith seed sequences of 16 amino acids chosen
at random from the starts of the full dataset of spike proteins. The amino acid complement
of the real and synthesized spike proteins in the datasets is as compared below in Fig. 3.
Although the amino acid complements show some differences, there are significant
similarities across the two datasets.

Sequence Matching
All 100 of the simulated sequences had a significant BLASTP match to Spike protein
from one or more coronavirus sequences with BLAST searches of the query sequences
against the entire non-redundant database (Fig. 4).
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Fig. 3. Comparison of the amino acid composition of the real and simulated proteins.
Boxplot graph showing the amino acid composition of each amino acid as a fraction of the protein
sequence in both the real dataset (red) and the synthesized dataset (blue). The amino acid single
letter code is shown on the X axis with the fraction of the amino acid in each sequence on the y
axis as calculated by Biopython ProtParam module. The ‘Real’ training dataset comprised 2295
sequences in total with the ‘Synth’ simulated example dataset containing a matched number of
samples. The difference between the Real and Synth amino acid composition datasets was not
significant (Mann-Whitney test in R, p-value = 0.35).

Fig. 4. Partial BLAST alignment of Spike protein from a simulated query protein against Bat
coronavirus RaTG13 [10]

The real spike protein training dataset was clustered and deduplicated resulting in
154 clusters of non-redundant sequences. The 100 simulated sequences were searched
with BLASTP against the representative cluster sequences. Figure 5A shows that the
best BLAST hits for the first set of simulated sequences covered several distinct clusters.
There were several hits toMERS clusters, possibly due to a high representation ofMERS
sequences in the training set. A second set of 100 simulated sequences were generated
that each had an identical seed text of 64 amino acids from the start of SARS-CoV-2
spike. Figure 5B shows that the equivalent BLAST hits on these sequences had a higher
number of SARS-CoV matches, as well as Bat SARS-like sequences, although some
samples still shared high identities with MERS sequences.
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Fig. 5. BLAST matches of simulated sequences against known Spike proteins
Figure 5A shows BLAST searches of the original 100 DL synthesized sequences filtered for
matches by length over 200bp and identity over 90%. 5B shows the second set of DL synthesized
sequences which were all given identical seed text feeder sequence of 64 amino acids from the
start of SARS-CoV-2. This graph is filtered for matches by length over 500 bp and identity over
90%. Highest length matches are represented by the largest diameter circle and darkest colour.
However, large circles are generally of interest since the identity cut-off is high. Unfiltered data
can be found at the GitHub site as described in the Data Availability section.

Pfam Domain Complements of Simulated Protein Sequences
Significant Pfam domain hits were uncovered on searching the query sequences with
HMMER3 against the Pfam-A database. Searches of the synthesized proteins against
Pfam_A.hmm database revealed Pfam domains that were expected within a coronavirus
spike protein (below).

Table 1 Common Pfam domains and their counts identified within the original 100
simulated sequences which are also found in real Spike proteins, showing that all 100
sequences had C-terminal Spike domains. Other domains were identified in full Pfam-A
however, themost commonwereCorona_S2, Spike_rec_bind andSpike_NTD.Database
Pfam-A.SARS-CoV-2 refers to the April 2, 2020 update for SARS-CoV Pfam domains
(Xfam Blog https://xfam.wordpress.com/2020/04/02/pfam-sars-cov-2-special-update/).

The resulting Pfam domains compared favourably with the most commonly found
domains within the real training dataset of 2504 proteins which had 1781 domain
counts of Spike_rec_bind, 2413 Corona_S2, 1052 Spike_NTD and 502 Corona_S1
(Coronavirus S1 glycoprotein domain) among others. According to Pfam Architec-
tures, domain Corona_S2 is found in real spike proteins in the databases together with

https://xfam.wordpress.com/2020/04/02/pfam-sars-cov-2-special-update/
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Table 1. Pfam Domain Complements in the 100 simulated sequences.

Pfam domain Pfam database Full name Count

Corona_S2 Pfam-A Coronavirus S2 glycoprotein 100

Corona_S1 Pfam-A Coronavirus S1 glycoprotein 13

Spike_rec_bind Pfam-A Spike receptor binding domain 81

Spike_NTD Pfam-A Spike glycoprotein N-terminal 53

CoV_NSP2_C Pfam-A.SARS-CoV-2 Coronavirus replicase NSP2, C-terminus 6

CoV_S1_C Pfam-A.SARS-CoV-2 Coronavirus Spike S1, C-terminus 75

bCoV_S1_RBD Pfam-A.SARS-CoV-2 Betacoronavirus Spike S1, receptor-binding 82

bCoV_S1_N Pfam-A.SARS-CoV-2 Betacoronavirus-like spike S1, N-terminus 88

CoV_S2 Pfam-A.SARS-CoV-2 Coronavirus Spike glycoprotein S2 100

either Corona_S1, Spike_NTD and Spike_rec_bind, or with just Spike_rec_bind, or with
Spike_NTD and 2 x Spike_rec_bind or in some sequences as a standalone domain.

Prediction
During prediction, probabilities are generated for the next character in the sequence of
the amino acid single letter alphabet. A parameter, known as temperature, can be used
to scale the probabilities of the output distribution. If the temperature value is low, the
model will be more confident on predictions which may produce more repetitive text. At
a temperature of 0.5, the model was able to reach 100% identity over the full length of
Spike SARS glycoprotein with the only differences being in the seed text. The purpose
of this study is to provide sequences that are not identical to known sequences so we
may find better use of a higher temperature value to provide more diverse text.

A second dataset sample of 100 synthesized sequences was formed by specifically
using a seed text of 64 amino acids from the SARS-CoV-2 spike protein for each sim-
ulated sequence. When simulated sequences were clustered at the default 90% level of
sequence identity, the result was 51 separate clusters in which Cluster 0 had 27 members
ranging from 92%–100% identity which corresponded to SARS-CoV-1 type, Cluster
1 had 13 members of 97–100% identity which corresponded to Bat RaTG13/SARS-
CoV-2 type, Cluster 38 had 3 members corresponding to MERS type, Cluster 2 had 3
members, Clusters 4, 8 and 19 each had two members, whilst each example of the rest of
the dataset clustered separately. Hence, the seed text provided SARS-like hits in several
but not all cases. Some sequences were definitively of interest to this study, such as a
synthesized protein with 97% full length identity to a Bat beta-coronavirus sequence
isolated from Chaerephon plicata in Yunnan in 2011 [11]. Further sequences of interest
included those with high identity over stretches of the protein sequence to SARS-CoV-1
or SARS-CoV-2, particularly those including hybrid regions. Once the initial predicted
protein is finished, the prediction commences a new protein again immediately if the
maximum number of characters has not been reached. In some cases there were hybrid
matches to parts of sequence from spike proteins in the dataset. A larger dataset of 1000
simulated sequences was generated with the same SARS-CoV seed text as previously.
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These simulated sequences were clustered and clusters corresponding to SARS-CoV-
1 and SARS-CoV-2 were aligned together with examples of the real spike proteins
from SARS-CoV-1 and SARS-CoV-2. Multiple sequence alignments of the binding
region indicate that residues important in human ACE2 recognition [12, 13] are broadly
conserved across the simulated sequences.

Fig. 6. Sequence Logos frommultiple sequence alignments of the spike receptor binding domains
(RBD) generated onWeblogo3 [14]. Each logo consists of stacks of symbols, one for each position
in the sequence. Colours denote amino acid chemical properties. The height of the stack indicates
the relative frequency of each amino acid whilst the width of the stack shows the fraction of
symbols in the column (narrow = many gaps). Figure 6A shows the receptor binding domains
of all the proteins in the real dataset that possessed a RBD matching that of the SARS-CoV and
SARS-CoV-2 clusters in the dataset. Figure 6B shows the RBD of the synthetic dataset alignments
that matched those clusters. The starred amino acids are contacting residues with human ACE2
receptor in the RBD of both SARS-CoV and SARS-CoV-2 [13].
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4 Conclusions

This study used a comprehensive training set formulated fromCoronavirus Spike protein
sequences in DL neural networks to produce novel sequence from a short feeder seed
text. Novel sequences shared features that can be searched with bioinformatics tools to
provide highly significant BLAST and Pfamdomainmatches. That each of the sequences
examined sharedmatches to Spike protein is exciting andwarrants further consideration.
Interestingly, in one example, the prediction querywas able to correct an unknown amino
acid (X) to a G that exactly matched other sequences of that type. It is trivial to generate
high numbers of these synthesized sequences from themodel, although in some cases the
resultant sequence may not represent viable protein. In addition, the training set is only
as comprehensive as the initial database, animal CoV sequences may exist elsewhere
that are not represented here, and further unknown biases may exist.

Synthesised sequences may find a use in cases of data privacy such as generat-
ing synthetic patient data for studies as provided by Synthea (Standard Health Record
Collaborative), or to generate further examples of poorly represented data for better
statistical analysis. Further applications may include the generation of gene clusters of
a particular type and evolution studies. Whilst the CoV model occasionally produced
data with large-scale rearrangements, the results indicated that relatively simple neural
networks can provide useful synthetic sequences with low compute requirements when
trained on a curated database. The potential production of novel sequence by DL is
exciting as a future strategy and warrants further consideration.

Data Availability. The model and source code are available at: https://github.com/LCrossman.
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Abstract. We are going through the last years of the COVID-19 pan-
demic, where almost the entire research community has focused on the
challenges that constantly arise. From the computational and mathemat-
ical perspective, we have to deal with a dataset with ultra-high volume
and ultra-high dimensionality in several experimental studies. An indica-
tive example is DNA sequencing technologies, which offer a more realistic
picture of human diseases at the molecular biology level. However, these
technologies produce data with high complexity and ultra-high dimen-
sionality. On the other hand, dimensionality reduction techniques are
the first choice to address this complexity, revealing the hidden data
structure in the original multidimensional space. Also, such techniques
can improve the efficiency of machine learning tasks such as classifica-
tion and clustering. Towards this direction, we study the behavior of
seven well-known and cutting-edge dimensionality reduction techniques
tailored for RNA-sequencing data. Along with the study of the effect of
these algorithms, we propose the extension of the Random projection and
Geodesic distance t-Stochastic Neighbor Embedding (RGt-SNE) algo-
rithm, a recent t-Stochastic Neighbor Embedding (t-SNE) improvement.
We suggest a new distance criterion for the kernel matrix construction.
Our results show the potential of the proposed algorithm and, at the
same time, highlight the complexity of the COVID-19 data, which are
not separable, creating a significant challenge that the Machine Learning
field will have to face.

Keywords: Dimensionality reduction · Single-cell RNA-sequencing ·
High-dimensional COVID-19 data

1 Introduction

The emergence of Coronavirus Disease 2019 (COVID-19) pandemic resulted in
a great impact on global health care systems, affecting various fields and infect-
ing millions of people worldwide [1]. The unprecedented pandemic had a great
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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impact on scientific community, motivating researchers to construct strategies,
in order to understand the inner profile and molecular structure of SARS-CoV-2
[2,3]. The immense growth of literature on COVID-19 in various topics and espe-
cially in biomedical sciences developed numerous resources in order to provide
a well-established framework to reveal the underlying mechanisms of the virus
and identify potential therapeutic measures [4]. The ongoing pandemic required
effective solutions, and the consolidation of molecular biology and computational
models is one of the first choices to deal with the crucial challenge.

The technological development in the molecular biology field is to such an
extent that we can analyze a disease or a biological process in great detail at the
cellular level. In recent years, many technologies have been developed which
give measurements with great accuracy, offering the possibility for in-depth
analysis and interpretation. All omics technologies (genomics, transcriptomics,
metabolomics, etc.) have opened up new research paths to clarify a plethora of
complex human diseases [10]. One of the dominant technology is transcriptomics,
which through the quantification of mRNA offers gene expression information
for a case under study. Part of this transcriptomics family is the very recent
technology called single-cell RNA-sequencing. An emerging technology that has
revolutionized molecular biology since it can analyze a plethora of cells in tis-
sue by examining each cell individually. The critical advantage is that we have
measurements with great accuracy, offering reliable and robust data [5].

Various applications of large-scale transcriptome analysis attempt to eluci-
date the pathophysiology of SARS-CoV-2 and determine the inner pathways of
immune response [6]. RNA sequencing technique provides an essential framework
that may uncover differential states of cellular response in COVID-19, while the
nobility of this method raised the interest of the scientific community to cre-
ate public databases that present information and single cell atlases of differ-
ent experiments [9]. While advances in computational methods constantly arise,
single-cell data require the appropriate practices to analyze and extract use-
ful information through data integration and interpretation [7]. Also, the major
problem with single-cell RNA-sequencing data is their complexity in terms of
sample size and feature space size. A typical single-cell RNA-sequencing exper-
iment exports expression profiles for around 20 thousand genes (feature space,
dimensionality) from thousands up to hundreds of thousands of cells (sample
size) [8]. Understandably, we have to deal with huge complexity where their
data analysis or mining is a quite challenging task.

Machine learning is how a computer system can acquire artificial intelligence.
It is called learning because it is reminiscent of how we humans learn by observ-
ing a situation. Machine learning has shown excellent performance in biomedical
problems of high complexity, having offered in recent decades many promising
results in the interpretation and clarification of biological mechanisms activated
in complex diseases. Machine learning has already made significant progress on
the coronary pandemic. As the data grows, the scope for implementing machine
learning methods to lead to more substantive results for the complex pandemic
problem expands. Such algorithms intend to uncover new roads to identify more
in-depth mechanisms of COVID-19, creating a potential validated framework
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that enhances the prevention, diagnosis and treatment of the disease [11]. There-
fore, the need for more machine learning tools is imperative, and the research
community should turn in this direction.

The present work covers one of the above needs related to the up to 2-
dimensional (2D) visualization of high-dimensional COVID-19 RNA sequencing
data, contributing to a better visual interpretation by the experienced biolo-
gist or doctor. Dimensionality reduction algorithms are the dominant choice
to achieve a robust 2D data visualization. In this direction, several such algo-
rithms have been proposed in recent years tailored for RNA sequencing data. We
present an extensive overview of relevant cutting-edge dimensionality reduction
tools in COVID-19 case studies. A variant of the recent RGt-SNE algorithm
is also proposed, which differs from the original algorithm in the construction
phase of the distance table among samples (cells or tissues). This variant seems
to adapt better to single-cell RNA-sequencing data, effectively addressing the
2D visualization problem for COVID-19 high-dimensional data. Also, the exten-
sive reference and application of recent dimensionality reduction algorithms in
such data underline the complexity of the task and the difficulty of finding the
mechanisms that distinguish the two primary states (health vs COVID-19).

2 State-of-the-Art Dimensionality Reduction Techniques

This chapter describes five modern dimensionality reduction algorithms adapted
to RNA-sequencing data. Together with the two well-known algorithms, t-SNE
and UMAP, they were applied to COVID-19 scRNA-seq data, and their results
are analyzed in the next chapter. For one of them (RGt-SNE), we present a
variation that uncovers effectively the cell-cell similarities having more accurate
outcomes in scRNA-seq data.

Generally, interpreting the dimensionality reduction process briefly and
descriptively, we consider it one methodology that tries to project a set of high-
dimensional vectors into a lower-dimensional space where the initial data struc-
ture and their pairwise distances remain similar to a given error [12]. Dimen-
sionality reduction techniques aim to create a subspace that preserves as much
as possible intact the usable amount of information and denoising data. The
preservation of local and global structure of data provides a reliable framework
to examine the proximity levels and interpret the patterns and variability of
data [12]. Visualizing high-dimensional datasets through 2D plane can uncover
various patterns and unleash cell heterogeneity among important aspects of an
experiment [8]. Visualization of high dimensional RNA sequencing data consists
a crucial step from preprocessing stages through downstream analysis, assist-
ing researchers to perceive important insights of the underlying structure and
interpret sample variations [7]. While multiple tools are proposed, t-Stochastic
Neighbor Embedding (t-SNE) [16] and Uniform Manifold Approximation [15] are
dominating the field, providing an efficient and novel framework [13,14]. Focus-
ing on recently published dimensionality reduction techniques that are tailored
for scRNA-seq data, we archived different contemporary state-of-the-art algo-
rithms. Based on the flexible and novel framework of t-SNE and UMAP, the for-
mation of variants, such as densMAP [18], den-SNE [18] and RGt-SNE [20], are
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examined as alternative methods for high-dimensional data visualization. Addi-
tionally, robust approaches with advanced mathematical backgrounds emerge
and seem to present promising results, such as the Potential of Heat-diffusion
for Affinity-based Trajectory Embedding (PHATE) [19]. Furthermore, the reli-
ability of Self-assembling Manifold algorithm (SAM) is investigated as another
alternative tool for dimensionality reduction and visualization [23]. Examining
the theoretical background of these methods, various aspects and limitations can
be viewed as a brief introduction to the core concepts of each technique.

More specifically, Densvis package includes the den-SNE and densMAP, two
visualization algorithms for high dimensional data [18]. Highly motivated by the
well-established dimensionality reduction techniques of t-SNE and UMAP espe-
cially for transcriptomics [14,17], these proposed methods present a different
scope from the aforementioned techniques targeting to overcome the limitation
of loss of local density of data points and overcome misleading visualizations,
which represent an aggregation of clusters with low differentiation of heterogene-
ity dispersion that exists in reality. By introducing the notion of local radius,
densMAP and den-SNE manage to apprehend the density of each data point
from the original nearest neighborhood approach, aiming to take a deeper look
to the insights of heterogeneity and accurate local structure [18].

The basic theoretical background of t-SNE and UMAP presents the con-
struction of a neighborhood graph in hyper-space followed by the assignment of
different probability kernels at each dimension for the edges and enhancing the
quality of embedding by operating the minimization of a cost function [18]. Inher-
iting the fundamental steps of these noble algorithms, densMAP and den-SNE
manifest prime adjustments to original probability kernel functions in high and
low dimensional space. The required objective function that measures the accor-
dance of high dimensional space and the low embedding is maximized in order
for the points to be permuted in the most appropriate position. Adjustments
regarding initial concepts of objectives function optimizations are incorporated
as the correlation of local radius of initial and projected space is maximized. The
quality of correspondence between the local radius in the original dataset and
in the embedding is measured by the correlation coefficient, which represents
a density preservation objective. The objective functions are augmented in a
new formula, where the target is the maximization with respect to the optimiz-
ing criteria performed in both t-SNE (gradient descent) and UMAP (stochastic
gradient descent) [18].

PHATE consists of a non-linear method, aiming to preserve both global and
local structure [19]. It provides a much more sufficient mathematical background
to distinguish different patterns between various populations. The theoretical
backbone of PHATE depends on diffusion geometry while it implements some
prime adjustments, providing high efficiency to visualize in two dimensions [19].
To understand the overall shape of the data, the initial step consists of the
tracking of proximity measures between data points. The calculation of dissimi-
larity between points is achieved by searching the pairwise distances in Euclidean
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metric space. The conversion to local affinities requires a radial basis Gaussian
kernel, which manages to quantify the spread of neighborhood [19].

Additionally, the transition probabilities between cells constitute the suit-
able approach to “diffuse”, hence to transport from regions of high aggregation
of cells to regions of low affinities via random or stochastic process in order to
obtain a normalized probability matrix and capture the global structure of data
(Markov transition matrix or diffusion operator) [19]. In contrast to the tradi-
tional approach of diffusion maps, instead of the instant eigendecomposition the
algorithm attempts to transform the powered diffusion operator to “potential
distances” by applying log-transformation to the probabilities. The resultant
matrix is pipelined to the non-metric Multidimensional Scaling in order to visu-
alize the variation of numerous data points. The “goodness of fit criterion” is
modeled by setting a stress function, for which the minimization results in a
much more accurate embedding [19].

The RGt-SNE methodology [20] sets its core concepts in three main sections.
The reconstruction of a similarity matrix by projecting the original space to a
new low dimensional embedding via Random Projection method and k nearest
neighbors searching to each space. The similarity matrix is constructed after
counting the number of times the sample j was the nearest neighbor of sam-
ple i and is instantly inverse to a distance matrix. The second part consists of
searching for geodesic distances from each pair of samples. At last, the resulting
distance matrix is pipelined to t-Stochastic Neighbor Embedding algorithm for
visualization in a two-dimensional plane [20]. In contrast with the commonly-
used metric of Euclidean measure, in this paper, we perform an excessive use
of a distance-based metric of correlation in the local neighborhood searching,
for which we observed presents better results within gene expression data, tak-
ing into account also recent scientific works that evaluated the performance of
different association measures, while other recent approaches concentrate their
efforts to conduct a correlation distance-based scheme for downstream analysis
in gene expression networks and pathways [21,22].

Self-assembling manifold (SAM) algorithm is an ensemble method that
attempts to elaborate important insights into gene expression levels [23]. By
generating a random adjacency matrix via k-nearest neighbor investigation,
SAM seeks patterns between different collections among expression proximity.
SAM is applied through a log normalized preprocessed matrix and facilitates the
Fano factor to capture variability among highly dispersed genes. The rescaling
of expression matrix is implemented by multiplication of weighted graph with
preprocessed log-transformed gene expression matrix, aiming to capture vari-
ance between gene expression levels. PCA is applied to the rescaled matrix, and
all the PCs are used to calculate cell-to-cell redefined distances. This iterative
procedure repeats until root-mean-square deviation of gene weights converge to
a value close to zero [23].

Evaluation of dimensional reduction methods is applied by the use of internal
clustering criteria to examine the functionality of each in approach. Distance-
based measurable criteria are applied to illustrate the validity of dimensional-
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ity reduction techniques in compactness, separability, and connectedness [28].
Technically, mitigating the problem to a clustering validation weighting scheme,
metrics assess the quality of the embedded structures in two-dimensional space,
while hypothesizing that provided metadata, such as COVID-19 and healthy
controls are the predicted clusters, even though belonging to expected categori-
cal data. Silhouette coefficient, Dunn index, Davies-Bouldin indices and Nearest
Neighbor Error (NNE) [12] are calculated in order to evaluate the performance
of each approach. Silhouette information score presents the average contribution
of a sample to each cluster membership, and Dunn index quantifies inter-cluster
dissimilarity levels [29,30]. Both metrics are confidence indicators of compact-
ness and how the variation in intra-cluster level is concentrated. While values
approximating one are considered good for Silhouette information, Dunn index
assign “well-clustered” solutions in predominantly larger values [29,30]. Davies-
Bouldin metric is examined to detect the efficiency of separability and the dis-
tance between the centers of each cluster, thus how well clusters are separated
from each other. In contrast to previous indices, Davies-Bouldin index approx-
imates better clustering results for small measurements [29,30]. Nearest Neigh-
bor Error measurements by implementing nearest neighbor classifier attempt to
calculate the validity of low dimensional embedding as proposed, and validate
the embedding framework, quantifying reconstruction errors and local structure
quality [12].

3 Experimental Analysis

3.1 Dataset Description and Preprocessing

The reliability of five recently published dimensionality reduction algorithms
and the traditional and well-known techniques of t-SNE and UMAP for 2D
visualization was examined in four real COVID-19-based omics dataset from
one single-cell RNA-seq and three RNA-seq experiments. In particular, the first
dataset (Dataset 1- GSE152075) tries to analyze differential gene expression
in SARS-CoV-2 hosts by RNA-sequencing nasopharyngeal swabs [24]. For this
experiment, 430 SARS-CoV-2 positives and 54 negative controls were examined
with various amounts of viral loads and different demographic characteristics
such as age and sex, aiming to uncover patterns of host response to predict
disease severity. Thus, the first dataset consists of 484 RNA-seq samples of,
35784 gene expressions. Due to gene counts profile of the dataset, some basic
filtering of excluding columns summing to zero was performed as a preprocess-
ing step to the dimensionality reduction algorithms, resulting to 31512 genes.
The second experimental dataset (Dataset 2 - GSE163151) examines the gene
expression identification of 404 patients with different clinical histories regarding
disease severity and various viral pathogens that cause respiratory illnesses [25].
Specifically, among 404 individuals, 351 gene expression counts were retrieved
from nasopharyngeal swabs and 53 from whole blood samples. The research
attempted to investigate the crucial network activation due to immune response
to different pathogens. The proposed survey used different pathogens or donor
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controls to elaborate significant biomarkers to construct a diagnostic approach
through COVID-19 and other acute viral respiratory illnesses and sample tissue
extraction. This study consisted of overall 145 SARS-CoV-2 infected patients,
175 SARS-CoV-2 negative patients with other viral infections or 82 with non-
viral infections, 31 donor controls, and 5 donors with Bacterial Sepsis. In this
case, we included and examined the trend of COVID-19 whole blood samples
and donor controls, extracting a dataset of 176 samples with, 26486 genes (145
COVID-19 samples and 31 Donor controls). Note here that the original data con-
tains 404 samples, however we isolated COVID-19 and Donor controls samples.
Regarding the normalization step we follow the pre-process pipeline as reported
by the corresponding original study.

In addition, a large-scaled multi-omics analysis (Dataset 3 - GSE157103)
was obtained with 126 individuals belonging to COVID-19 and non-COVID-19
groups. The authors in the original research attempt to uncover associations
between different biomolecule classes to achieve a better identification of the
biological processes of the disease mechanisms and unleash potential therapeu-
tic opportunities [26]. The final normalized dataset had 126 single-cell tran-
scriptome samples for, 19472 genes in two clinical conditions of COVID-19 and
non-COVID-19 patients. The latter dataset (Dataset 4 - E-MTAB-9221) contains
peripheral blood samples of 25 control (12) and COVID-19 (13) patients examin-
ing different biomarkers and analyzing them by spectral flow cytometry, aiming
to discriminate patients that require instant hospitalization [27]. Data was down-
loaded by ArrayExpess repository where preprocessing steps such as, normaliza-
tion and scaling have already been performed, thus we obtained expressions of,
18958 genes for 6178 cells including the two classes for COVID-19 infected (4527
cells) and control cells (1651 cells) (Table 1).

Table 1. RNA sequencing datasets description

Accession Samples Genes Database

GSE152075 484 31512 GEO

GSE163151 176 26486 GEO

GSE157103 126 19472 GEO

E-MTAB-9221 6178 18958 ArrayExpress

We implemented all seven dimensionality reduction methods (source code)
using the default parameters as suggested by the author. Few minor configura-
tions were made on some executions when a better visualization outcome was
observed. There was no exhaustive search of parameters since in various changes
no significant changes were observed in their performance. More specifically, in
cases of UMAP, t-SNE and den-SNE different implementations have been con-
ducted, while in densMAP a correlation-based metric was included in all datasets
due to higher visualization quality. Additionally, RGt-SNEcorr is dependent on

https://github.com/ioDallas/DR_COVID-19_CIBB-2021
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parameters of the number of random projection spaces, the projected dimension,
and the number of nearest neighbors, while correlation-based kernels were used
exclusively in all cases. Specifically, while no parameter analysis was performed in
our survey, the behavior of the most sensitive parameters of each algorithm was
investigated such as perplexity and number of neighbors in t-SNE and UMAP
respectively. Perplexity is proposed to range between 5 and 50, thus t-SNE and
den-SNE algorithms were examined among this interval [14]. The number of
neighbors was also assessed between a range of 5 to 30 for UMAP and densMAP
methods. In cases of den-SNE and densMAP, variations of the well-established
techniques of t-SNE and UMAP, density preservation parameters remained at
the predefined level of the software creators.

Perplexity was assigned to 25 for den-SNE in all datasets, while in t-SNE
adjustments were made for better visualizations. Values of 25 were defined for
datasets 1 and 3, while perplexity equal to 30 was preferred for datasets 2 and
4. In the case of UMAP, number of neighbors was set to 15 to all datasets,
while in the density preservation method of densMAP number of neighbors fol-
lowed the same tuning except Dataset 1, in which the parameter was defined
as 30. PHATE and SAM followed default approaches in parameter tuning for
all datasets. For example, parameters of number of nearest neighbors for kernel
generation were set to 5 with the decay level kept to 40. The sensitivity of differ-
ent combinations of parameters regarding optimization and the novelty of RGt-
SNEcorr is not examined in the presented research. After an extensive search,
we concluded that slightly better visualizations were obtained for 30 random
projected spaces, in which random matrix was generated following uniform dis-
tribution as it was constructed to the original paper [20]. The number of random
projected spaces reached no significant visual improvement for highly increased
values, thus Dataset 1 and Dataset 2 were assigned to 20 and 10 respectively,
while datasets 3 and 4 were allocated to 7. The graph of the proximity measures
for each sample was constructed after the application of the nearest neighbor
search. The number of nearest neighbors was set to 3 for the first, third, and
fourth datasets, while for Dataset 2 we searched for the first 5 nearest neighbors.
Overall, each technique was operated on a server with 3.80 GHz Intel Core i-7
CPU and 125 GiB of memory, thus the computational cost of each method did
not present significant deviations as each algorithm was executed in few seconds.

3.2 Results

All dimensionality reduction methods were applied to four RNA sequencing
studies. The 2D visualizations (see Fig. 1) show a slight predominance of our
RGt-SNE correlation distance-based method compared to PHATE, and den-
SNE, two state-of-the-art techniques tailored for scRNA-seq data. Also, the
data complexity can be easily observed since the two main classes (COVID-
19 and non-COVID-19) are not easily separable. The labels that were used from
each dataset attempted to analyze the behavior of our data regarding the dis-
tinguishing of COVID-19 positive samples with negative viral loads or healthy
controls. For the first dataset (GSE152075), RGt-SNEcorr manages to provide a
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Fig. 1. Comparison of 2D visualization. Each point represents a cell (E-MTAB-9221)
or sample (GSE157103, GSE163151, GSE152075) and each color represents a different
COVID-19 disease state according to original data biologically meaningful annotation.
Datasets complexity in terms of COVID-19 and healthy population’s distinction is
illustrated above. We observe the superiority of the RGt-SNEcorr and its ability to
distinguish the 2 classes, which are not easily separable from the other well-established
methods.
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slight distinction between both different classes. Even though the overall shape
of our data in 2D projection is undefined, RGt-SNEcorr presents three clusters
of healthy controls that are separated from COVID-19 samples. SAM also man-
ages to separate a collection of healthy samples, although many of them are
still clustered with COVID-19 positive samples. Other approaches can’t manage
to distinguish both labels, presenting high variation of the minor’s health con-
trols in the overall placement of all points. Visualizations in the second dataset
present overall ambiguous results regarding the separation of both labels. Tradi-
tional methods of t-SNE and UMAP fail to distinguish patterns for both classes
while the re-adjusted methods of den-SNE and densMAP, approaches that pro-
mote density preservation in 2D projection, aren’t promoting any optimization.
Similar to the first case, SAM and RGt-SNEcorr illustrate the best separation
for all classes while also managing to create separable clusters contrary to other
well-established techniques. Comparing both approaches is trivial to elaborate
on, which distinguishes better both classes. RGt-SNEcorr creates more clus-
ters that contain both COVID-19 samples with other respiratory disease cases.
On the other hand, SAM proposes three clusters of high variation that contain
both classes with mediocre ability to distinguish them. Observing the results
for the third dataset (GSE157103), our proposed algorithm provides distinct
discrimination of COVID-19 and non-COVID-19 cases, embedding clear struc-
tures, in contrast with other methods, which can’t provide clear discrimination,
more balanced structure, and present multiple outliers. Although UMAP pro-
vides a distinct structure for both clusters that embed, it doesn’t illustrate clear
discrimination of COVID-19 and non-COVID-19 samples. Additionally, in the
latter dataset (E-MTAB-9221) each method (except RGt-SNE) presents exces-
sive covering between COVID-19 infected and normal cells, RGt-SNE recognizes
the cells of two classes minimizing noisy patterns. SAM and densMAP present
some minor distinctions between two classes and manage to create solid struc-
tures of clusters compared to other approaches. Density preservation approaches
of den-SNE and densMAP assign more “spread” structures aiming to interpret
heterogeneity and variation among projected constructions over conventional
methods of t-SNE and UMAP which in some cases present binding local rela-
tionships between data points.

Overall, traditional well-established techniques of t-SNE and UMAP fail to
analyze the complexity of all datasets in terms of discrimination of classes, while
the other state-of-the-art methods such as PHATE, den-SNE and densMAP
don’t illustrate clear patterns and structures. Our proposed methodology can
accord a “potential framework” for further downstream analysis and provide a
much more excessive interpretation due to the clearer discrimination of classes,
exploiting additional metadata information of both datasets. Visualization of
each dataset unleashed the complexity that is underlying in the distinct sepa-
ration of COVID-19 and control samples. Arbitrary cluster structures are high-
lighted, observing the direction points are aligned from high dimensional to 2D
embeddings.

Table 2 contains the aforementioned distance-based metrics for each visual-
ization scheme. The visualization complexity of all datasets for each technique is
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Table 2. Measurable visualization results

Method Silhouette Dunn Index Davies Bouldin NNE

Dataset 1 - GSE152075

densMAP 3,62E–01 7,36E–03 5,06E–01 6,20E–03

den-SNE 1,06E−02 1,69E−03 9,24E+00 1,85E−01

PHATE −1,34E−02 2,26E−04 1,35E+01 1,68E−01

RGt-SNEcorr 1,66E−01 2,58E−03 1,95E+00 8,95E−03

SAM 8,60E−02 2,01E−03 3,06E+00 9,44E−02

t-SNE 2,60E−02 6,10E−03 5,40E+00 1,45E−01

UMAP −6,34E−02 1,26E−04 1,08E+01 1,84E−01

Dataset 2 - GSE163151

densMAP 6,74E–01 8,81E−04 1,10E+00 8,71E−02

den-SNE 3,50E−01 1,31E−03 1,79E+00 1,27E−01

PHATE 5,84E−01 2,02E−04 1,58E+00 1,61E−01

RGt-SNEcorr 5,80E−01 2,78E–02 7,30E–01 1,70E–02

SAM 1,78E−01 2,04E−03 2,00E+00 9,66E−02

t-SNE 2,77E−01 2,05E−03 1,33E+00 1,21E−01

UMAP 4,50E−01 1,51E−03 1,10E+00 1,34E−01

Dataset 3 - GSE157103

densMAP 1,07E−01 3,83E−03 4,01E+00 2,06E−01

den-SNE 8,83E−02 7,38E−03 3,58E+00 2,49E−01

PHATE 9,27E−02 1,08E−03 3,01E+00 2,51E−01

RGt-SNEcorr 2,69E–01 1,55E−03 7,54E–01 1,06E–01

SAM 7,36E−02 1,34E−02 3,53E+00 2,09E−01

t-SNE 9,30E−02 1,46E–02 3,13E+00 2,30E−01

UMAP 1,54E−01 2,34E−03 3,21E+00 2,30E−01

Dataset 4 - E-MTAB-9221

densMAP 4,02E−02 2,32E−05 8,89E+00 1,97E−01

den-SNE −9,53E−02 2,81E−05 1,85E+01 1,74E−01

PHATE −1,40E−01 9,10E−07 5,21E+00 2,32E−01

RGt-SNEcorr 9,55E–02 7,55E−05 2,40E+00 9,17E–03

SAM 5,04E−02 7,32E−06 9,39E+00 1,64E−01

t-SNE −8,49E−02 8,81E–05 3,18E+01 1,69E−01

UMAP −6,62E−02 1,99E−05 6,60E+01 2,08E−01

confirmed as measurements present overall poor performance quality. In partic-
ular, PHATE performs poorly in most cases, failing to create distinct structures.
RGt-SNEcorr outperforms well-established methods, providing a more efficient
framework to interpret and manifest results. Traditional state-of-the-art man-
ifold learning algorithms of t-SNE and UMAP display significant low-quality
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structures. Comparing them to recently density preservation adjusted methods
of den-SNE and densMAP, we can conceive that den-SNE doesn’t surpass t-
SNE. On the other hand, densMAP manage to outperform in some indices mea-
surements and provide the best scores in the first dataset (GSE152075) and
develop a reliable framework compared to UMAP. The investigation of SAM
shows ambiguous results regarding the efficiency and the validity of internal
scores although, manages in many cases to surpass well-established methods
of t-SNE, den-SNE and PHATE. Distance-based metrics proved the low qual-
ity resulted in compactness and separability that was demonstrated through
indefinable structures in various visualizations. Density preservation methods of
den-SNE and densMAP tend to show higher separability than original t-SNE
and UMAP. Dataset 2 (GSE163151) denotes the best measurements and visual-
ization schemes presenting higher quality performance measurements, resulting
in defined clusters and discrimination between expected label annotation.

3.3 Discussion

Considering the aforementioned results, we can clearly state that COVID-19 is
a complex disease that is difficult to clarify. Our comparative study with 2D
visualizations highlights the data complexity. Although we selected cutting-edge
dimensionality reduction tools tailored for RNA sequencing data, the huge com-
plexity of COVID-19 did not allow the tools to find clearly patterns that separate
the health and the COVID-19 disease state. It is worth mentioning that the four
datasets were obtained from different experiments and paradigms that aim to
unleash inner mechanisms of COVID-19 infection, with provided metadata that
presents different characteristics and insights. Observing the imbalanced labeling
for each dataset, we aimed to compare algorithmic methods for a clearer distinc-
tion of different clinical conditions, an approach that may provide an important
framework to unleash important insights into different populations.

As a result of large-scale analysis, high-dimensional data provide a challeng-
ing field due to the computational cost and high complexity. As the number of
dimensions increase, measuring proximity between cell (or tissue) populations
are less reliable, while noisy patterns distort the information and variability of
data. Higher dimensionality requires high computation cost and machine learn-
ing algorithms tend to lose their efficiency due to the “Curse of Dimensional-
ity”. Transitioning through lower dimensions and providing an embedding that
captures the essential information while preserving both local and global cell
populations’ structure raises the research interest in this field [19]. As a neces-
sary procedure of downstream analysis, dimensionality reduction aims to retain
a form of high-dimensional data as it compresses the high embedding to a lower
subset. Remarkably, the projection from a high dimensional space to a 2D repre-
sentation consists of an important step to illustrate and assist the community in
analyzing and exploring various insights and patterns [7]. Towards this direction,
several tools have been recently proposed for high throughput RNA sequencing
data visualization [31]. However, new dimensionality reduction and visualization
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techniques will be emerging, as the need for tools that can retrieve and depict
the information into a 2D scheme provides essential benefits.

4 Conclusions

We studied COVID-19 through multidimensional data from transcriptomics
technologies in the present work. To best of our knowledge, this is the first
extensive study which highlights the dimensionality reduction techniques impact
for high-dimensional COVID-19 data. These data are characterized by solid
complexity and great dimension, making it challenging to analyze and extract
knowledge from them. We focused on one of the essential parts of unsuper-
vised learning, which is data visualization through dimensionality reduction algo-
rithms. Seven cutting-edge dimensionality reduction algorithms were extensively
reported and applied in four COVID-19 transcriptomics data sets. A variant of
a recent dimensional reduction algorithm was also proposed, which in this vari-
ation concerns the determination of the relationships between the cell samples
to create a new search space that will give more realistic results. When the
algorithms are applied, our results showed that COVID-19 disease is difficult to
clarify through data. Such data has substantial complexity and huge dimension-
ality. The continuous advancement of technology in the biomedical field offers a
wealth of heterogeneous data of large volume and large dimension, thus creating
the need for more dimensional tools to clarify complex COVID-19 disease.
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Abstract. In recent years, there have been several proposed applica-
tions based on Convolutional Neural Networks (CNN) to neuroimag-
ing data analysis and explanation. Traditional pipelines require several
processing steps for feature extraction and ageing biomarker detection.
However, modern deep learning strategies based on transfer learning and
gradient-based explanations (e.g., Grad-Cam++) can provide a more
powerful and reliable framework for automatic feature mapping, further
identifying 3D ageing biomarkers. Despite the existence of several 3D
CNN methods, we show that a LeNet-like 2D-CNN model trained on
T1-weighted MRI images can be used to predict brain biological age in a
classification task and, by transfer learning, in a regression task. In addi-
tion, automatic averaging and aligning of 2D-CNN gradient-based images
is applied and shown to improve its biological meaning. The proposed
model predicts soft biological brain ageing indicators with a six-class-
balanced accuracy of ≈70% by using the anagraphic age of 1100 healthy
subjects in comparison to their brain scans.

Keywords: Neuroimaging · Brain age prediction · 2D brain age
biomarkers · Brain age biomarker explanations · Brain ageing detector

1 Introduction

Anagraphic age differs from biological brain age (BBA) [1]. Through the anal-
ysis of T1-weighted magnetic resonance imaging it is possible to study BBA
biomarkers to foreshadow patient neurodegenerative diseases [2,3]. Traditional
machine learning algorithms and 3D based convolutional neural networks (3D-
CNN) are applied to identify ageing biomarkers. In turn, 3D-CNNs could provide
a plethora of information even if they are both time-consuming in preprocessing
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phases and require high computational resources in training phases [4,5]. On
the counterpart, traditional methods may be faster even if their results are less
interpretable from the neurologist point of view [6]. In this work, we show that
it is possible to predict the BBA by adopting a lighter and explainable app-
roach which consists of using 2D brain slices for ad-hoc 2D neural networks with
gradient-based methods for 2D aging biomarker visualizations [7]. In fact, 2D
slices of the brain MRI can be analyzed to ensure classification/identification
interpretability [8]. Convolutional Neural Networks (CNNs) are often used in
conjunction with other techniques in order to explain why the network makes
a particular prediction. These techniques are typically used to extract visual
features from images. However, machine learning (ML) and deep learning (DL)
models can also be used for eXplainable AI (X-AI) systems. This would allow
for the behavior of the “black-box” models to be explained and their predictions
interpreted [9]. There are two types of X-AI methods: those that can be imple-
mented intrinsically, meaning that the models are already transparent and do
not require further explanations (for example, Principal Component Analysis,
Logistic regression, or Decision Trees); and those that can be applied after the
model prediction to explain ’why’ this decision was taken. The latter are largely
explored in healthcare and in biomedical image analysis, ensuring the explain-
ability of the developed models and supporting the medical scientific community
in the diagnosis of diseases [10]. In [11] a Principal component analysis is applied
to the CNN classification predictions of two neuroblastoma cells line in digital
holograms video stream to understand why the presented ML and DL models
are able or not to correctly distinguish the considered cells. In [12] a survey of
the state-of-the-art X-AI methods applied to medical support decision systems
are presented and categorized with respect to their type of interpretability. As
a last example, in [13] a post-hoc X-AI method is applied to a DNN trained on
tabular morphological features extracted from T1-weighted MRI images. Based
on these works, we presented a CNN able to correctly classify 2D biological
brain age indicators by reaching an average class-balanced accuracy of ≈0.74 on
the validation set and ≈0.71 on the test set over a collection of 1100 subjects.
Furthermore, Grad CAM++ [7] is applied as a post-hoc X-AI method to high-
light the most important areas used by the CNN to correctly classify the BBA.
The whole methodology is introduced in Sect. 2, while our results are shown in
Sect. 3. In Sect. 4 our results are discussed. In Sect. 6, there are some conclusions
about our preliminary study and future prospects.

2 Methods

The presented methodology, including the LeNet-like CNN regression and clas-
sification models and the GradCAM++ biomarkers relevance maps, is imple-
mented using Keras [14] on top of Tensorflow [15]. The training and the infer-
ence steps were performed on an NVIDIA GeForce GTX 970 GPU with a 4
GB of VRAM. The low-budget requirements make this procedure well suited
to be implemented on several embedded medical-imaging devices. In Sect. 2.1,
T1-weighted MRI dataset collection, preprocessing and labelling are described
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Table 1. Dataset design and distributions of 10-years-range class T1-weighted slices.

20–30 30–40 40–50 50–60 60–70 70–80

(a) Statistical distributions training set

Mean age 25.4 34.83 45.15 55.37 64.61 74.57

Std age 3.22 2.66 2.91 2.91 2.88 3.03

Total subjects 124 124 124 124 124 108

Male subjects 62 62 62 62 62 46

Female subjects 62 62 62 62 62 62

(b) Statistical distributions validation set

Mean age 25.9 34.97 44.29 55.2 64.84 74

Std age 2.8 2.66 2.56 2.67 3.08 2.85

Total subjects 32 38 39 37 40 23

Male subjects 12 20 19 17 20 10

Female subjects 20 18 20 20 20 13

(c) Statistical distributions test set

Mean age 25.96 35.09 44.43 56.15 65.25 75.68

Std age 2.12 3.15 3.15 2.7 2.95 3.3

Total subjects 20 30 35 35 58 29

Male subjects 4 26 11 9 20 10

Female subjects 16 4 24 26 38 19

as the preparatory steps for Le-Net like 2D-CNN models. In Sect. 2.2, the 2D-
CNN models for classification and regression tasks are described. Finally, feature
visualization to explain trained networks classification is illustrated in Sect. 2.3.

2.1 Data Extraction, Preprocessing and Labeling

A well-balanced dataset of 1100 healthy subjects is obtained by combining two
MRI datasets: (i) T1-weighted MRI public available datasets (IXI dataset1 and
the (ii) CamCAN dataset2 provided by the Cambridge Centre for Ageing and
Neuroscience) [16,17]. The MRIs are acquired with 3T and 1.5T systems in (i),
while a 3T acquisition system in (ii) is used. Approximately 10 min is required to
preprocess 2D brain slices, which includes preliminary corrections for intensity
bias and noise, segmentation of brain tissue from skull and non-brain area, and
normalization to the MNI Average Brain (305 MRI) template. The training is
supervised as the 2D subject slices are labeled by anagraphic 10-year ranges
from 20 to 80 years. The between-classes 10-year range grouping is maintained
unbiased with respect to class numerosity and sex distribution.

The training set is composed of 728 subjects, while the validation set consists
of 209 subjects and, the test set is built with 207 subjects (see also Table 1). For
each subject, a reduced number of slices (30 slices from 70 to 100 over 258×258×
258 voxels) is considered. According to neurologists, this slab, covering the most
1 https://brain-development.org/ixi-dataset/.
2 http://www.mrc-cbu.cam.ac.uk/camcan/.

https://brain-development.org/ixi-dataset/
http://www.mrc-cbu.cam.ac.uk/camcan/


Soft Brain Ageing Indicators 245

of the cortical and white matter and ventricles, shows more typical 3D ageing
biomarkers [18–21]. The class overlaps are avoided to preserve set independence.
Meanwhile, in the regression task (used to strengthen the explainability of our
results) the anagraphic age is used as a label.

Fig. 1. The Figure is separated into three boxes. In the first box (a), the input images
with their respective size are shown. In the second box (b), the LeNet-like convolutional
neural network (CNN) architecture is shown. The output size of each layer is reported
below the figure. In detail, the K and Z parameters represent the kernel size and the
number of convolutional channels, respectively. Meanwhile, in the last box (c), the
different model endings (from blue and red arrows) show the ability for the model to
be switched between a regression or a classification task. (Color figure online)

2.2 2D-CNN Models for Brain Age Classification and Regression

The LeNet-like [22] architecture is used for the 2D brain ageing classification and
regression tasks. The number of neurons in the last dense layer is variable, with
six neurons for classification (according to the six 10-years-range classes) and
one neuron for the regression-oriented model (single subject anagraphic brain
age). The architecture is designed to be used for both the classification and
the regression oriented model, as shown in Fig. 1. Basically, the architecture is
modulated with respect to the following parameters: (i) Kernel size K and (ii)
Number of convolutional channels Z. In the classification oriented model, the
Categorical Cross-Entropy is used as loss to reduce the classification error with
respect to the six class 10-years-range targets over a batch-size of 90 slices. The
loss is minimized with a Rectified Adam optimizer [23] to prevent model over-
fitting on the weight back-propagation. The Neural Network is configured with
the following parameters: learning rate of 0.001 and weights decay of 0.01. The
model is driven to convergence with an early stop to the 150th epoch. One of
the 6 class 10-years-range biological age prediction (20–30, 30–40, etc.), for each
subject, is decided with a majority voting schema over the 30 slices prediction
pool. The regression oriented model is a modification of the previous model.
In the training phase, the weights of the previous model are freezed and the
model is trained only in the tail (the last dense layers as shown in Fig. 1 - Box
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(c) - Regression block). The loss considered in this case is the Mean Squared
Error. For each subject, the median value is estimated over 30 slices to maintain
prediction age consistency with respect to the previous model.

2.3 2D Brain-Age Biomarkers Model Explanation

2D brain-age biomaker explanations come trough a region-based visualization for
2D-CNN model predictions obtained with a gradient-weighted class activation
mapping tool. Grad Cam++ [24] is used to discover the most important 2D
biological biomarkers by flowing into the final convolutional layer through the
network graph. Thus, the Grad CAM++ logic can be described for the 10-years-
range age classes c as follows:

M c = ReLU

(∑
k

αk
cA

k

)
(1)

where:
αk
c =

1
N

∑
i,j

dyc

dAk
i,j

(2)

where N is the number of pixels in the input brain slices, Ak is the feature
map of interest (for example the last convolutional layer in the CNN), and yc

corresponds to a scalar class score. In this way, the feature map M c is computed
to understand why the CNN is focusing on a particular area of the input brain
slices. For each subject, a collection of 30 heatmaps is obtained. Then, these
heatmaps are processed and normalized to mantain within- and between-subject
registration with original images. This class activation map method is commonly
used as a post-hoc X-AI for image detection/classification analysis, ensuring high
reliability to understand the CNN decision making process.

Table 2. Balanced classification accuracy for each 10-years-range class and average
classification accuracy (Avg)

20–30 30–40 40–50 50–60 60–70 70–80 Avg

Train. 0.98 0.97 0.86 0.89 0.92 0.93 0.93

Val. 0.82 0.67 0.72 0.69 0.76 0.80 0.74

Test 0.73 0.68 0.65 0.61 0.71 0.87 0.71

3 Results

In Sect. 3.1, the performance of the classification model is described using con-
fusion matrices that take into account the class-balanced and averaged accu-
racy. The class-balanced accuracy is calculated by weighting the six-class scores
according to the number of subjects in each age group. For this reason, those
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values are higher and meaningful with respect to the averaged one. Furthermore,
in Sect. 3.2, the results obtained from the linear regression model are evaluated
by means of their median predictions m̂, their mean absolute error (MAE ) [25]
and Pearson’s correlation coefficient (ρ2) with respect to the true values [26].

Fig. 2. In this Figure, the classification results from training (Box (a)), validation (Box
(b)) and test set (Box (c)) are reported. For each dataset, the confusion matrix for
the 6 classes of 10-year age ranges is reported. Both the age ranges and the classes are
shown with 6 labels from 0 to 5.

3.1 Classification Results

The percentages of matching between the anagraphic age and the biological
predicted one are the following: 87.64% on 728 subjects on the Training set,
55.98% on 209 subjects on the Validation set and 51.69% on 207 subjects for the
Test set. As shown in Fig. 2, most of the predictions are on the diagonals of the
confusion matrix, which indicates that the biological and the anagraphic ages
are generally consistent. Following the figure, most of the misalignments are in
the classes that are adjacent to the correct ones, showing interesting behaviors
that are better explained with the class-balanced accuracy (Table 2). Finally, the
classification power of our 2D-CNN is shown in Table 2 - Avg column.

3.2 Linear Regression Results

The results of the regression task can be seen in Fig. 3. In detail, the median
value m̂ of the within-subjects predictions over 30 slices are collected (see also
Sect. 2.1). In particular, on the training set, the results of the regression model
show a MAE = 4.19 and ρ2 = 0.95 of m̂ with respect the true value. The
MAE and Pearson’s correlation coefficient slightly change for Validation set
(MAE = 5.03 and ρ2 = 0.91). Finally, in the test set, the MAE = 6.06 and a
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Fig. 3. In this Figure, the regression results from training (Box (a)), validation (Box
(b)) and test set (Box (c)) are reported. The results of the regression show a general
linear trend with respect to the real brain age, even if there are some outliers on the
validation and test set. However, our X-AI system would be able to identify these
outliers on specific subjects and brain slices as it is shown in Figs. 5 and 6.

Fig. 4. The Figure shows the relationships between the predicted subjects biological
age (y-axis) and their anagraphic age (x-axis) in a box-plot visualization. The differ-
ent color groups in the graph represent the 10-year age range classes as described in
Sect. 2.2. In particular, each box-plot represents the variability of ageing estimation on
different slices of a single subject.

ρ2 = 0.89. In Fig. 4, the variability of predictions within subjects and between
slices is shown by box plots of different colors (one for each 10-year-range class).

4 Discussion

The 2D-CNN LeNet-like models explained with GradCam++ over 2D brain
slices can effectively classify soft biological brain age indicators with a certain
accuracy. As it is shown on the explanation maps of Fig. 5, in most cases, the
ageing process is aligned with the anagraphic age (i.e. the age indicated on
a person’s birth certificate). However, there are some cases where there is an
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Fig. 5. The Figure shows the explanation map of every 2D brain biomarker for age
classification by averaging for each age range. The maps of importance were obtained
through the application of GradCam++ on every slice for each subject and then medi-
ated.

evident misalignment between the two. In these cases, according to Smith et al.
2019 [27], the age discrepancy or alignment between ageing and anagraphic age
can be determined over minimum age differences.

In addition, observing visual explanation maps (e.g. those reported in Fig. 5)
could help to better understand ageing, even when there is a discrepancy between
chronological and biological brain age. For example, through the heat map anal-
ysis (i.e. slide 90 - Fig. 6), it emerges that the areas with greater intensity (the
yellow ones) are those known to neuroradiologists to often show clues about the
signs of brain aging [18–21] at least in older subjects.

However, many subjects who were classified as incorrect are actually expected
to be associated with neighboring classes, not with their chronological age. This is
because these subjects have neuromorphological features that are similar to those
predicted in the neighboring classes, suggesting that the misaligned subjects have
clear discrepancies between their chronological age and their biological age.
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Fig. 6. The two external maps in the figure above show the most relevant biomarkers
for brain aging in subjects aged 40–50 and 50–60. In addition, a single subject aged
44 is classified in the confusion matrix as an outlier falling in the 50–60 age range
rather than the 40–50 age range. It is also evident that this subject is more similar,
visually, to the block of averaged explanation maps of the age range 50–60. The yellow
areas identified with our X-AI model are often indicative of brain aging according to
neuroradiologists [18–21]. (Color figure online)

5 Architectural, Qualitative and Performance
Comparisons

Our proposed LeNet-like CNN is suitable for real-time/mobile applications. In
general, it shows fast performance in both the inference (about 100 ms to classify
a single brain image) and in the training steps. This architecture is much lighter
than others, involving only ≈120K parameters instead of the millions of parame-
ters required by state-of-the-art 3D-CNNs trained on the same task with similar
brain datasets like those of [4,28,29]. According to [30], even though the accuracy
of prediction is relatively lower than 3D models in the Literature [28,29,31,32],
the threshold between precision and lightness of the model can be interesting
in all those systems where a preliminary investigation is necessary in real-time
applications. This approach is inspired by the modeling adopted on MobileNet
[33] applications. MobileNets are a class of small, low-latency, low-power mod-
els that are used for classification, detection, and other vision applications on
systems with low computational capacity.

6 Conclusion

An efficient and accurate methodology for brain age classification has been pro-
posed, based on convolutional neural networks. Unlike common 3D-CNN models
adopted in the Literature, the proposed methodology is based on a light-weight
LeNet-like 2D convolutional neural network. The introduced methodology takes
in input the patient’s anagraphic age and 2D slices obtained from T1-weighted
MRI images and outputs visual explanations (heatmaps) of the regions involved
in the ageing classification. The dataset is composed of 1100 brain scans and
the 2D-CNN has been trained on more than 700 subjects. The experimental
results obtained on the test and validation sets showed an acceptable error and
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a good accuracy in both classification and regression. In future works, with an
improvement of localization techniques based on the gradient, it will be possible
to create an automatic system for brain age classification using a pre-trained
2D-CNN with two-dimension brain slicing. Furthermore, a comparison between
the state-of-the-art brain aging systems based on DL will be explored, focusing
on developing intrinsically and post-hoc X-AI methods. In future findings, this
system could provide a detailed description of each area of the brain involved in
ageing processes with lower computational costs and in real-time contexts.
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roscience (CamCAN) to provide their data collection.
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