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Abstract. For k ≥ 2, let H be a hypergraph with rank k on n vertices
and m edges. The transversal number τ(H) is the minimum number of
vertices that intersect every edge. In this paper, the following conjecture
is proposed: Is τ(H) ≤ (k−1)m+1

k
? We prove the inequality in some special

hypergraphs: (i) the inequality holds for k = 2 and k = 3. (ii) the
inequality holds for the hypergraphs with the König Property. (iii) the
inequality holds for the hypergraphs with maximum degree 2 and the
extremal hypergraphs with equality holds are characterized.

Keywords: Transversal · Rank k · Maximum degree 2 · Extremal
hypergraphs

1 Introduction

A hypergraph is a generalization of a graph in which an edge can join any number
of vertices. A simple hypergraph is a hypergraph without multiple edges. Let
H = (V,E) be a simple hypergraph with vertex set V and edge set E. As for a
graph, the order of H, denoted by n, is the number of vertices. The number of
edges will be denoted by m. The rank is r(H) = maxe∈E |e|.

For each vertex v ∈ V , the degree d(v) is the number of edges in E that
contains v. We say v is an isolated vertex of H if d(v) = 0. Hypergraph H is
k-regular if each vertex’s degree is k (d(v) = k,∀v ∈ V ). The maximum degree
of H is Δ(H) = maxv∈V d(v). Hypergraph H is k-uniform if each edge contains
exactly k vertices (|e| = k,∀e ∈ E). Hypergraph H is called linear if any two
distinct edges have at most one common vertex. (|e1 ∩ e2| ≤ 1,∀e1, e2 ∈ E).

Let k ≥ 2 be an integer. A cycle of length k, denoted as k-cycle, is a vertex-
edge sequence C = v1e1v2e2 · · · vkekv1 with: (1){e1, e2, . . . , ek} are distinct edges
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of H. (2){v1, v2, . . . , vk} are distinct vertices of H. (3){vi, vi+1} ⊆ ei for each
i ∈ [k], here vk+1 = v1. We consider the cycle C as a sub-hypergraph of H with
vertex set {vi, i ∈ [k]} and edge set {ej , j ∈ [k]}. For any vertex set S ⊆ V , we
write H \S for the sub-hypergraph of H obtained from H by deleting all vertices
in S and all edges incident with some vertices in S. For any edge set A ⊆ E, we
write H \ A for the sub-hypergraph of H obtained from H by deleting all edges
in A and keeping vertices. If S is a singleton set {s}, we write H \ s instead of
H \ {s}.

Given a hypergraph H(V,E), a set of vertices S ⊆ V is a vertex transversal
if every edge has at least a vertex in S which means that H \S has no edges. The
vertex transversal number is the minimum cardinality of a vertex transversal,
denoted by τ(H). A set of edges A ⊆ E is an edge cover if every vertex is adjacent
to at least an edge in A. The edge covering number is the minimum cardinality
of an edge cover, denoted by τ ′(H). A set of edges A ⊆ E is a matching if
every two distinct edges have no common vertex. The matching number is the
maximum cardinality of a matching, denoted by ν(H). In this paper, we consider
the vertex transversal set in simple hypergraphs with rank k.

1.1 Known Results

Hypergraphs are systems of sets which are conceived as natural extensions of
graphs. A subset S of vertices in a hypergraph H is a transversal (also called
vertex cover or hitting set in many papers) if S has a nonempty intersection with
every edge of H. The transversal number τ(H) of H is the minimum size of a
transversal in H. Transversals in hypergraphs are well studied in the literature
(see [5,10,11,13–15,17,18]).

Chvátal and McDiarmid [5] established the following upper bound on the
transversal number of a uniform hypergraph in terms of its order and size.

Theorem 1. [5] For k ≥ 2, if H is a k-uniform hypergraph on n vertices with
m edges, then τ(H) ≤ n+� k

2 �m
� 3k

2 � .

Henning and Yeo [8] proposed the following question:

Conjecture 1. [8] For k ≥ 2, let H be a k-uniform hypergraph on n vertices with
m edges. If H is linear, then (k + 1)τ(H) ≤ n + m holds for all k ≥ 2?

The Chvátal and McDiarmid theorem implies that (k + 1)τ(H) ≤ n + m holds
for k ∈ {2, 3} even without the linearity constraint imposed on H. Henning and
Yeo [8] remarked that if H is not linear, then conjecture 1 is not always true,
showing an example by taking k = 4 and letting F7 be the complement of the
Fano plane F7. Henning and Yeo [8] proved the following theorem which verified
conjecture 1 for linear hypergraphs with maximum degree two:

Theorem 2. [8] For k ≥ 2, let H be a k-uniform linear hypergraph satisfying
Δ(H) ≤ 2. Then, (k+1)τ(H) ≤ n+m with equality if and only if each component
of H consists of a single edge or is the dual of a complete graph of order k + 1
and k is even.
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Henning and Yeo [12] proposed the following conjecture in another paper:

Conjecture 2. [12] τ(H) ≤ n
k + m

6 holds for all uniform hypergraphs with maxi-
mum degree at most 3.

Henning and Yeo [12] showed that τ(H) ≤ n
k + m

6 holds when k = 2 and char-
acterized the hypergraphs for which equality holds. Chvátal and McDiarmid [5]
showed that τ(H) ≤ n

k + m
6 holds when k = 3. Henning and Yeo characterized

the extremal hypergraphs. Henning and Yeo [12] showed that τ(H) ≤ n
k + m

6
holds when Δ(H) ≤ 2 and characterized the hypergraphs for which it holds with
equality in that case.

1.2 Our Results

In this paper, for k ≥ 2, we propose a conjecture as follows:

Conjecture 3. For every connected rank k hypergraph H(V,E) with m edges,
τ(H) ≤ (k−1)m+1

k .

By a simple operation of adding vertices, it is easy to show if the conjecture
holds in k-uniform hypergraphs, then it holds in hypergraphs with rank k. To
prove the conjecture, it only needs to consider k-uniform hypergraphs.
For k-uniform hypergraphs, Conjecture 3 and Conjecture 1 are related. If Con-
jecture 1 holds, combined with the relationship between vertex number and edge
number of connected rank k hypergraphs: n ≤ (k − 1)m + 1, we have

(k + 1)τ(H) ≤ n + m,n ≤ (k − 1)m + 1 ⇒ τ(H) ≤ n + m

k + 1
≤ km + 1

k + 1
,

which is a weaker result of Conjecture 3. The main content of the article is
organized as follows:

– In Sect. 2, we transform the conjecture on hypergraphs with rank k to the
conjecture on k-uniform hypergraphs. For the consequent sections, we prove
Conjecture 3 holds in some special hypergraphs.

– In Sect. 3, we prove Conjecture 3 holds for k = 2.
– In Sect. 4, we prove Conjecture 3 holds for k = 3.
– In Sect. 5, we prove Conjecture 3 holds for the hypergraphs satisfying the

König Property with τ(H) = ν(H).
– In Sect. 6, we prove Conjecture 3 holds for the hypergraphs with maximum

degree 2 and characterize the extremal hypergraphs with equality holds.

2 The Conjecture

Conjecture 3 is our central problem and restated as follows:
For every connected rank k hypergraph H(V,E) with m edges, τ(H) ≤
(k−1)m+1

k .
The next lemma tells us to prove Conjecture 3, it just needs to focus on

uniform hypergraphs. The basic method in the proof of Lemma 1 is frequently
used later.
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Lemma 1. If the conjecture holds in connected k-uniform hypergraphs, then it
holds in connected hypergraphs with rank k.

Proof. Let H be a connected hypergraph with rank k. If H is not k-uniform, we
can construct a connected k-uniform hypergraph H ′ by adding new vertices to
each edge. As shown in Fig. 1, for each edge e in H, if |e| < k, add k − |e| new
vertices to form an edge e′ in H ′. We derive that edge number does not change
and τ(H) = τ(H ′), which completes the proof.

Fig. 1. Adding new vertices to form k-uniform hypergraphs

The following sections will consider Conjecture 3 in some special cases.

3 The Rank 2 Hypergraphs

In this section, we prove Conjecture 3 holds for the rank 2 hypergraphs. Such
hypergraphs are actually general graphs.

Theorem 3. For any connected graph G(V,E) with m edges, τ(G) ≤ m+1
2 .

Proof. Suppose the theorem fails. Let us take out a counterexample G = (V,E)
with minimum number of edges, thus τ(G) > m+1

2 . For any vertex v ∈ V , let
C1, C2, . . . , Cp be p components of G \ v and Ci contains mi edges for i ∈ [p].
Thus, d(v) ≥ p. We have

m + 1
2

< τ(G) ≤ τ(G \ v) + 1 ≤
p∑

i=1

mi + 1
2

+ 1 =
m − d(v) + p

2
+ 1 ≤ m + 2

2
.

Then, we derive that τ(G) = m+2
2 , p = d(v) and τ(Ci) = mi+1

2 for i ∈ [p].
Due to the arbitrariness of vertex v and the fact that p = d(v), G contains no
cycles. Thus, G is tree with m + 1 vertices and satisfies the König property [7]
τ(G) = ν(G). We have τ(G) = ν(G) ≤ m+1

2 , which is a contradiction.

Remark 1. For any connected graph, Theorem 3 implies a polynomial-time algo-
rithm for computing a vertex transversal with cardinality no more than m+1

2 .
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Next, we establish a necessary condition of the extremal graphs G with m
edges satisfying τ(G) = m+1

2 .

Theorem 4. If a connected graph G(V,E) with m edges satisfies that τ(G) =
m+1
2 , then every block of G is an edge or a cycle, where a block is a maximal

biconnected subgraph.

Proof. For any block B of G, take arbitrarily a vertex v in B. Suppose that
C1, C2, . . . , Cp are all components of G \ v and Ci contains mi edges. According
to Theorem 3, we have

m + 1
2

= τ(G) ≤ τ(G \ v) + 1 ≤
p∑

i=1

mi + 1
2

+ 1 =
m − d(v) + p + 2

2
.

Thus, m + 1 ≤ m − d(v) + p + 2, which means d(v) ≤ p + 1. Since d(v) ≥ p, we
know that v has at most two adjacent vertices in B. If v has only one adjacent
vertex in B, then B is an edge. If v has exactly two adjacent vertices in B, by
the arbitrariness of v in B, then B is a cycle.

Remark 2. According to the result of Theorem 4, the extremal graphs belong
to the partial 2-tree graph classes [3]. For the graphs with bounded tree width,
the optimal vertex transversal can be computed in linear time in [2]. Then we
derive a linear time algorithm to decide whether a m-edge graph G possesses
the property τ(G) = m+1

2 .

4 The Rank 3 Hypergraphs

In this section, we prove Conjecture 3 holds for the rank 3 hypergraphs. This is an
immediate corollary of the results by Chen [4]. Furthermore, Diao [6] characterize
the extremal 3-uniform hypergraphs with equality holds. This demonstrates a
polynomial-time algorithm to decide whether a rank 3 hypergraph is extremal.

Theorem 5. [4] For every 3-uniform connected hypergraph H(V,E) with m
edges, τ(H) ≤ 2m+1

3 .

Theorem 6. [6] For every 3-uniform connected hypergraph H(V,E) with m
edges, τ(H) = 2m+1

3 if and only if H(V,E) is a hypertree with perfect matching.

Combined with Lemma 1, the next two corollaries are derived immediately.

Corollary 1. For every connected rank 3 hypergraph H(V,E) with m edges,
τ(H) ≤ 2m+1

3 .

Corollary 2. For every connected rank 3 hypergraph H(V,E) with m edges,
τ(H) = 2m+1

3 , then H(V,E) is a hypertree with perfect matching.

Remark 3. For a hypertree, there is a polynomial-time algorithm to compute
the vertex transversal number. Thus for every connected hypergraph H(V,E)
with rank 3, it is decidable whether τ(H) = 2m+1

3 holds in polynomial time.
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5 The Hypergraphs with König Property

In this section, we prove Conjecture 3 holds for the hypergraphs with the König
Property. A hypergraph H has the König Property [1] if the transversal number
is equal to the matching number: τ(H) = ν(H).

Lemma 2. For every connected rank k hypergraph H(V,E) with n vertices and
m edges, n ≤ (k − 1)m + 1.

Proof. We prove this lemma by induction on m. When m = 0, H(V,E) is an
isolate vertex, n ≤ (k−1)m+1 holds on. Assume this lemma holds on for m ≤ k.
When m = k + 1, take arbitrarily one edge e and consider the subgraph H \ e.
Obviously, H \ e has at most k components. Assume H \ e has p components
Hi(Vi, Ei) with ni = |Vi| and mi = |Ei| for each i ∈ [p]. Then by induction,
ni ≤ (k − 1)mi + 1 holds on. So we have

n = n1+· · ·+np ≤ (k−1)m1+· · ·+(k−1)mp+p = (k−1)(m−1)+p ≤ (k−1)m+1,

which completes the proof.

Lemma 3. Let H(V,E) be a k-uniform connected hypergraph with m edges. If
H has the König Property, then τ(H) ≤ (k−1)m+1

k .

Proof. According to the König Property and Lemma 2, we have the following
inequalities:

τ(H) = ν(H) ≤ n

k
≤ (k − 1)m + 1

k
.

According to Lemma 1 and Lemma 3, the next theorem is derived directly.

Theorem 7. Let H(V,E) be a connected rank k hypergraph with m edges. If H

has the König Property, then τ(H) ≤ (k−1)m+1
k .

Proof. Let H be a connected hypergraph with rank k. H has the König Prop-
erty with τ(H) = ν(H). If H is not k-uniform, we can construct a connected
k-uniform hypergraph H ′ by adding new vertices to each edge. As shown in
Fig. 1, for each edge e in H, if |e| < k, add k − |e| new vertices to form
an edge e′ in H ′. During this process, the edge number does not change and
τ(H) = τ(H ′), ν(H) = ν(H ′). Thus, the new hypergraph H ′ maintains the
König property with τ(H ′) = ν(H ′). According to Lemma 3, we have

τ(H ′) ≤ (k − 1)m + 1
k

, τ(H) = τ(H ′) ⇒ τ(H) ≤ (k − 1)m + 1
k

.

6 The Hypergraphs with Maximum Degree 2

In this section, we prove Conjecture 3 holds for the hypergraphs with maximum
degree 2 and characterize the extremal hypergraphs with equality holds. These
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results are proved by the dual hypergraphs. For a hypergraph H(V,E), the dual
hypergraph [1] H∗(V ∗, E∗) is a hypergraph whose vertices V ∗ correspond to the
edges E of H and edges E∗ correspond to the vertices V of H. Denote that
n = |V |, m = |E|, n∗ = |V ∗| and m∗ = |E∗|. We have the following relationships
of parameters between a hypergraph and its dual hypergraph: (i) n∗ = m; (ii)
m∗ = n; (iii) τ(H) = τ ′(H∗).

6.1 The Bound of Hypergraphs with Maximum Degree 2

In this subsection, we prove Conjecture 3 holds for the hypergraphs with max-
imum degree 2. For a hypergraph H(V,E) with maximum degree 2, its dual
hypergraph is a multi-graph G∗(V ∗, E∗). The transversal number τ(H) corre-
sponds to the edge covering number τ ′(G∗). The edge covering number is related
to the matching number by the theorem of Gallai [9]. The content of proof is
organized as follows:

– An lower bound of matching number is proven by Lemmas 4, 5 and 6.
– An upper bound of edge covering number is proven by Lemma 7.
– Conjecture 3 for the hypergraphs with maximum degree 2 is proven by The-

orem 9.

Theorem 8. [9] [Gallai’s Theorem]For every connected graph G(V,E) with n
vertices and the minimum degree δ(G) > 0, ν(G) + τ ′(G) = n.

Lemma 4. For every tree T (V,E) with m edges and Δ(T ) ≤ k, ν(T ) ≥ m
k .

Proof. We prove this lemma by contradiction. Let us take out the counterexam-
ple T (V,E) with minimum edges. Thus d(v) ≤ k for each v ∈ V and ν(T ) < m

k .
Obviously T (V,E) has at least three vertices. The longest path in T is p, which
connects one leaf v1 to another leaf v2, as shown in Fig. 2. v is the only adjacent
vertex of v1. The degree of v is d(v) and T \ v has d(v) components, denoted as
{Ti, 1 ≤ i ≤ d(v)}.

Fig. 2. The longest path p between leaves v1 and v2

Claim 1: ν(T \ v) ≥ m−k
k .

T is the counterexample with minimum edges, thus ν(Ti) ≥ mi

k . Combined with
d(v) ≤ k, we have the following inequality:

ν(T \ v) =
∑

1≤i≤d(v)

ν(Ti) ≥
∑

1≤i≤d(v)

mi

k
=

m − d(v)
k

≥ m − k

k
.
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Claim 2: ν(T ) ≥ ν(T \ v) + 1.
v1 is a leaf in T . For every matching M in T \v, M ∪ e(v1, v) is a matching in T .
According to these claims, we have the following inequality:

ν(T ) ≥ ν(T \ v) + 1 ≥ m − k

k
+ 1 =

m

k
,

which is a contradiction with ν(T ) < m
k .

Lemma 5. For every tree T (V,E) with n vertices and Δ(T ) ≤ k, ν(T ) ≥ n−1
k .

Proof. Every tree T (V,E) has m = n − 1. According to Lemma 4, ν(T ) ≥ n−1
k

holds.

Lemma 6. For every connected graph G(V,E) with n vertices and Δ(G) ≤ k,
ν(G) ≥ n−1

k .

Proof. Take out a spanning tree T of G. According to Lemma 5, ν(G) ≥ ν(T ) ≥
n−1
k .

Lemma 7. For every connected graph G(V,E) with n vertices and Δ(G) ≤ k,
τ ′(G) ≤ (k−1)n+1

k .

Proof. According to Theorem 8 and Lemma 6, τ ′(G) = n − ν(G) ≤ n − n−1
k =

(k−1)n+1
k holds.

Theorem 9. Let H(V,E) be a connected hypergraph with m edges and rank k.
If maximum degree of H is no more than 2, then τ(H) ≤ (k−1)m+1

k .

Proof. Consider the dual hypergraph H∗(V ∗, E∗) of H whose vertices corre-
spond to the edges of H and edges correspond to the vertices of H. A vertex
transversal in H correspond to an edge cover in H∗. Thus we have

n∗ = m, m∗ = n, τ(H) = τ ′(H∗), τ(H) ≤ (k − 1)m + 1

k
⇔ τ ′(H∗) ≤ (k − 1)n∗ + 1

k
.

The rank of H is k, which means every edge of H contains at most k vertices.
Thus every vertex’s degree is at most k in H∗. The maximum degree of H
is no more than 2, thus every edge of H∗ contains at most 2 vertices. This
means the hypergraph H∗ is a multigraph, denoted by G∗. Delete the loops and
multiedges to a simple graph. The deleting operations do not change the edge
covering number. According to Lemma 7, τ ′(G∗) ≤ (k−1)n∗+1

k , which means
τ(H) ≤ (k−1)m+1

k .

6.2 The Extremal Hypergraphs with Maximum Degree 2

In this subsection, we characterize the extremal hypergraphs with maximum
degree 2, meaning the equality τ(H) = (k−1)m+1

k holds. As shown before, the
maximum degree restricts its dual hypergraph is a multi-graph. The transversal
number of a hypergraph corresponds to the edge covering number of its dual
multi-graph. For a graph, the edge covering number is related to the matching
number by the theorem of Gallai [9]. The content of proof is organized as follows:
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– An family of graphs called k-star tree is introduced by Definitions 1, 2, 3 and
Lemma 8.

– The extremal graphs with matching number are characterized by Lemmas 9,
10 and 11.

– The extremal graphs with edge covering number are characterized by
Lemma 12.

– The extremal maximum degree 2 hypergraphs with transversal number are
characterized by Theorem 10.

Recall that k-star is a (k+1)-vertex tree with k leaves and the central vertex
of a k-star is the k-degree vertex. Then we introduce the definition of k-star tree.

Definition 1. For k ≥ 3, a tree T (V,E) is called a k-star tree if it satisfies

– Each vertex’s degree is no more than k.
– The edges of T can be decomposed into several k-stars.

Definition 2. For a k-star tree T (V,E), the central vertices of k-stars are called
central vertices and other vertices are called noncentral vertices. The vertices
connecting different k-stars are called adjacent vertices. Noncentral vertices are
formed by adjacent vertices and leaves.

Definition 3. For a k-star tree T (V,E), the structure tree describes the struc-
ture of T as formed by its k-stars. Let A denote the set of adjacent vertices of
T , and B the set of its k-stars. Then, we have a natural tree T ′(A ∪ B,E′) on
vertex set A ∪ B formed by the edges e′(a, b) ∈ E′ with a ∈ A, b ∈ B and a ∈ b,
which means the adjacent vertex a belongs to the k-star b in T . An example is
shown in Fig. 3.

Fig. 3. A k-star tree, where the squares, the hollow dots and the solid dots are central
vertices, adjacent vertices and leaves, respectively.
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Lemma 8. For a k-star tree T (V,E), there is a unique k-star decomposition
of T .

Proof. Let p be the number of k-stars in T . This proof can be finished by induc-
tion on p.

– When p = 0, T is an isolated vertex and there is a unique k-star decomposi-
tion.

– When p = 1, T is a k-star and there is a unique k-star decomposition.
– Assume the lemma holds for p ≤ t. When p = t+1, let us consider the struc-

ture tree T ′ of the k-star tree T . v′ is a leaf in T ′ and Sv′ is the corresponding
k-star in T . v is the central vertex of Sv′ , as shown in Fig. 4. T \ v is also a
k-star tree and the number of k-stars in T \v is exactly t. By induction, there
is a unique k-star decomposition D in T \v. Thus D∪Sv′ is the unique k-star
decomposition in T . The lemma holds for p = t + 1. Therefore, the lemma
holds for every k-star tree.

Fig. 4. The central vertex v in k-star tree T

Lemma 9. For every tree T (V,E) with m ≥ 2 edges and Δ(T ) ≤ k, ν(T ) = m
k

if and only if T is a k-star tree.

Proof. Necessity: T (V,E) is a tree with Δ(T ) ≤ k and ν(T ) = m
k holds. It needs

to show T is a k-star tree. Since m ≥ 2, T (V,E) has at least three vertices. Take
out a leaf u in T arbitrarily and v is the only adjacent vertex of u. The degree
of v is d(v) and T \ v has d(v) components, denoted as {Ti, 1 ≤ i ≤ d(v)}.
Claim 1: ν(T \ v) ≥ m−k

k .
According to Lemma 4, ν(Ti) ≥ mi

k . Combined with d(v) ≤ k, we have the
following inequality:

ν(T \ v) =
∑

1≤i≤d(v)

ν(Ti) ≥
∑

1≤i≤d(v)

mi

k
=

m − d(v)
k

≥ m − k

k
.

Claim 2: ν(T ) ≥ ν(T \ v) + 1.
u is a leaf in T . For every matching M in T \ v, M ∪ e(u, v) is a matching in T .
According to these claims, we have the following inequality:

ν(T ) ≥ ν(T \ v) + 1 ≥ m − k

k
+ 1 =

m

k
.
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Combined with ν(T ) = m
k , we have ν(T \ v) = m−k

k . This means the degree of v
is exactly k and in T \ v, each component {Ti, 1 ≤ i ≤ d(v)} satisfies ν(Ti) = mi

k
holds.

Take out {Ti, 1 ≤ i ≤ d(v)} as T and repeat the above analysis pro-
cess. Finally, there are some isolated vertices. Denote the deleted vertices as
{vj , 1 ≤ j ≤ t}. A k-star Sj is deleted when vj is deleted. Thus the edges of T
can be decomposed into several k-stars. According to Definition 1, T is a k-star
tree.

Sufficiency: T is a k-star tree. It needs to show ν(T ) = m
k . Let p be the number

of k-stars in T . We do induction on p.

– When p = 0, T is an isolated vertex and ν(T ) = m
k holds.

– When p = 1, T is a k-star and ν(T ) = m
k holds.

– Assume the sufficiency holds for p ≤ t. When p = t + 1, let us consider
the structure tree T ′ of the k-star tree T . v′ is a leaf in T ′ and Sv′ is the
corresponding k-star in T . v is the central vertex of Sv′ , as shown in Fig. 4.
T \ v is also a k-star tree and the number of k-stars in T \ v is exactly t. By
induction, ν(T \ v) = m−k

k holds. Thus we have

ν(T ) = ν(T \ v) + 1 =
m − k

k
+ 1 =

m

k
.

The sufficiency holds for p = t + 1. Therefore, the sufficiency holds for every
k-star tree.

Remark 4. The above proof also demonstrates a polynomial-time algorithm to
decide whether a tree T is a k-star tree. In addition, If T is a k-star tree, the
algorithm gives the unique k-star decomposition.

Lemma 10. For every tree T (V,E) with n vertices and Δ(T ) ≤ k, ν(T ) = n−1
k

if and only if T is a k-star tree.

Proof. Every tree T (V,E) has m = n − 1 edges. According to Lemma 9, ν(T ) =
n−1
k if and only if T is a k-star tree.

Lemma 11. For every connected graph G(V,E) with n vertices and Δ(G) ≤ k,
ν(G) = n−1

k if and only if G is a k-star tree.

Proof. Sufficiency: G is a k-star tree. According to Lemma 10, ν(G) = n−1
k

holds.
Necessity: G(V,E) is a connected graph with Δ(G) ≤ k, ν(G) = n−1

k . It needs to
show G is a k-star tree. Take out arbitrarily a spanning tree T of G. According
to Lemma 5, we have

ν(G) ≥ ν(T ) ≥ n − 1
k

, ν(G) =
n − 1

k
⇒ ν(T ) =

n − 1
k

.

According to Lemma 10, T is a k-star tree. By arbitrariness, the next claim
holds.
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Claim 1: Each spanning tree in G is a k-star tree.
T is a k-star tree. The vertices are divided into central vertices and noncentral
vertices. Central vertices are only connected with noncentral vertices and vice
versa. Thus the next claim holds.
Claim 2: For each path p in T , central vertices and noncentral vertices are
adjacent in p.
We will show G is T . This is proved by contradiction. Suppose there is an edge
e(u, v) ∈ G \ T . T is a k-star tree. According to Definition 2, the vertices are
divided into central vertices and noncentral vertices. Noncentral vertices are
divided into adjacent vertices and leaves. Two cases are discussed as follows:

– u or v is a central vertex. Without loss of generality, suppose u is a central
vertex. The degree of u is k in T . In T ∪ e(u, v), the degree of u is k + 1,
which is a contradiction with any degree no more than k in G. This case is
impossible.

– u and v are noncentral vertices. The unique u − v path in T is denoted as p.
w is the adjacent vertex of v in p. By Claim 2, w is a central vertex. Take
out the longest path with start vertex w from T \e(v, w), denoted as p̃(w, v1).
Thus, v1 is a leaf in T . Consider the spanning tree T̃ = T ∪ e(u, v) \ e(v, w),
as shown in Fig. 5. By Claim 1, T̃ is also a k-star tree. p̃(w, v1) is a path
in both T and T̃ . By Claim 2, w is also a central vertex in T̃ . This is a
contradiction with d(w) = k − 1 < k in T̃ . This case is impossible.

Fig. 5. The case when u and v are noncentral vertices

Above all, there is a contradiction for each cases. Thus our hypothesis does
not hold and there is no edge e(u, v) ∈ G \ T . Thus G is T , which is a k-star
tree.

Lemma 12. For every connected graph G(V,E) with n vertices and Δ(G) ≤ k,
τ ′(G) = (k−1)n+1

k holds if and only if G is a k-star tree.

Proof. According to Theorem 8 and Lemma 11, τ ′(G) = n − ν(G) = n − n−1
k =

(k−1)n+1
k holds if and only if G is a k-star tree.

Theorem 10. Let H(V,E) be a connected rank k hypergraph with m edges. If
maximum degree of H is no more than 2, then τ(H) = (k−1)m+1

k if and only if
the simple dual graph G∗ is a k-star tree.
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Proof. Consider the dual hypergraph H∗(V ∗, E∗) of H whose vertices corre-
spond to the edges of H and edges correspond to the vertices of H. A vertex
transversal in H correspond to an edge cover in H∗. Thus we have

n∗ = m, m∗ = n, τ(H) = τ ′(H∗), τ(H) =
(k − 1)m + 1

k
⇔ τ ′(H∗) =

(k − 1)n∗ + 1

k
.

The rank of H is k, which means every edge of H contains at most k vertices.
Thus every vertex’s degree is at most k in H∗. The maximum degree of H is no
more than 2, thus every edge of H∗ contains at most 2 vertices. This means the
hypergraph H∗ is a multigraph, denoted by G∗. Delete the loops and multiedges
to a simple graph. The deleting operations do not change the edge covering
number. According to Lemma 12, τ ′(G∗) = (k−1)n∗+1

k if and only if G∗ is a
k-star tree. This means τ(H) = (k−1)m+1

k if and only if the simple dual graph
G∗ is a k-star tree.

Remark 5. For a simple graph, there is a polynomial-time algorithm to compute
the edge covering number [16]. Thus for every connected hypergraph H(V,E)
with maximum degree 2, it is decidable whether τ(H) = (k−1)m+1

k holds in
polynomial time.

Remark 6. For a k-star tree as a dual graph, the primal hypergraph is a k-flower.
The extremal hypergraphs are exactly k-flowers connected by common edges as
shown in Fig. 6. Some 1-degree vertices are added in the edges which correspond
to the deleted loops in a k-star tree.

Fig. 6. A k-star tree and its primal hypergraph
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