
Minming Li
Xiaoming Sun (Eds.)

LN
CS

 1
34

61

Frontiers of
Algorithmic Wisdom
International Joint Conference, IJTCS-FAW 2022
Hong Kong, China, August 15–19, 2022
Revised Selected Papers

Lecture Notes in Computer Science 13461

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Minming Li • Xiaoming Sun (Eds.)

Frontiers of
Algorithmic Wisdom
International Joint Conference, IJTCS-FAW 2022
Hong Kong, China, August 15–19, 2022
Revised Selected Papers

123

Editors
Minming Li
Department of Computer Science
City University of Hong Kong
Hong Kong, China

Xiaoming Sun
Institute of Computing Technology
Chinese Academy of Sciences
Beijing, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-20795-2 ISBN 978-3-031-20796-9 (eBook)
https://doi.org/10.1007/978-3-031-20796-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
Chapter “Secure Computations Through Checking Suits of Playing Cards” is licensed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For
further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-20796-9
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the contributed, accepted papers presented at International Joint
Conference on Theoretical Computer Science-Frontiers of Algorithmic Wisdom
(IJTCS-FAW 2022), for the 16th International Conference on Frontiers of Algorithmic
Wisdom (FAW) and the third International Joint Conference on Theoretical Computer
Science (IJTCS), held in Hong Kong, China, during August 15–19, 2022. Due to
COVID-19, the conference was run in a hybrid mode.

FAW started as the Frontiers of Algorithmic Workshop in 2007 at Lanzhou, China,
and was held annually from 2007 to 2021 and published archival proceedings. IJTCS,
the International joint theoretical Computer Science Conference, started in 2020, aimed
to bring in presentations covering active topics in selected tracks in theoretical com-
puter science.

To accommodate the diversified new research directions in theoretical computer
science, FAW and IJTCS joined their forces together to organize an event for infor-
mation exchange of new findings and work of enduring value in the field.

The conference had both contributed talks submitted to the four tracks in
IJTCS-FAW 2022, namely, Track A: Algorithmic Game Theory, Track B: Game
Theory in Blockchain, Track G: The 16th Conference on Frontiers of Algorithmic
Wisdom (previously named Frontiers of Algorithmic Workshop), Track H: Compu-
tational and Network Economics, and invited talks in focused tracks on Algorithmic
Game Theory; Game Theory in Blockchain; Multi-agent Learning, Multi-agent Sys-
tem, Multi-agent Games; Learning Theory; Quantum Computing; Machine Learning
and Formal Method; and Conscious Turing Machine. Furthermore, a Female Forum,
Young PhD Forum, Undergraduate Research Forum, and Young Faculty in TCS at
CFCS session were also organized.

For the four tracks that accepted submissions, the Program Committee, consisting of
47 top researchers from the field, reviewed 25 submissions and decided to accept 18
regular papers and 1 short paper. These are presented in this proceedings volume. Each
paper had at least three reviews, with additional reviews solicited as needed. The
review process was conducted entirely electronically via Springer EquinOCS system.
We are grateful to Springer for allowing us to handle the submissions and the review
process and to the Program Committee for their insightful reviews and discussions,
which made our job easier.

The best paper goes to “Optimally Integrating Ad Auction into E-Commerce
Platforms” authored by Weian Li, Qi Qi, Changjun Wang and Changyuan Yu.

Besides the regular talks, IJTCS-FAW 2022 had keynote talks from Yang Cai (Yale
University), Christian Catali (MIT), Hee-Kap Ahn (Pohang University of Science and
Technology) and Zhiyi Huang (University of Hong Kong).

We are very grateful to all the people who made this meeting possible: the authors
for submitting their papers, the Program Committee members and external reviewers
for their excellent work, and all the keynote speakers and invited speakers. We also

thank the Advisory Committee and Steering Committee for providing timely advice for
running the conference. In particular, we would like to thank City University of Hong
Kong and Peking University for providing organizational support. We would like to
thank Algorand Foundation for their generous sponsorship for the event. Finally, we
would like to thank Springer for their encouragement and cooperation throughout the
preparation of this conference.

August 2022 Minming Li
Xiaoming Sun

vi Preface

Organization

Program Committee Chairs

Li, Minming City University of Hong Kong, Hong Kong, China
Sun, Xiaoming Institute of Computing Technology, Chinese Academy

of Sciences, China

Track Chairs

Algorithmic Game Theory

Yukun, Cheng Suzhou University of Science and Technology, China
Zhengyang, Liu Beijing Institute of Technology, China

Game Theory in Blockchain

Jing, Chen Algorand, USA
Xiaotie, Deng Peking University, China

Frontiers of Algorithmic Wisdom

Chung-Shou, Liao National Tsinghua University, Taiwan
Haitao, Wang Utah State University, USA

Computational and Network Economics

Biaoshuai, Tao Shanghai Jiao Tong University, China
Jianwei, Huang Chinese University of Hong Kong, Shenzhen, China

Program Committee

Chau, Vincent Southeast University, China
Cheng, Yukun Suzhou University of Science and Technology, China
Hung, Ling-Ju National Taipei University of Business, Taiwan
Jin, Kai Sun Yat-sen University, China
Kong, Yuqing Peking University, China
Li, Shuai Shanghai Jiao Tong University, China
Li, Bo The Hong Kong Polytechnic University, Hong Kong,

China
Li, Minming City University of Hong Kong, Hong Kong, China
Liu, Jinyan Beijing Institute of Technology, China
Liu, Shengxin Harbin Institute of Technology, Shenzhen, China
Liu, Zhengyang Beijing Institute of Technology, China
Luo, Kelin University of Bonn, Germany

Sun, Xiaoming Institute of Computing Technology, Chinese Academy
of Sciences, China

Tang, Zhihao Shanghai University of Finance and Economics, China
Tao, Biaoshuai Shanghai Jiao Tong University, China
Wang, Zihe Renmin University of China, China
Wu, Xiaowei University of Macau, Macau, China
Xue, Jie New York University Shanghai, China
Yang, Kuan Shanghai Jiao Tong University, China
Zhang, Peng Rutgers University, USA
Zhang, Yuhao Shanghai Jiao Tong University, China
Zhang, Chihao Shanghai Jiao Tong University, China
Zheng, Zhenzhe Shanghai Jiao Tong University, China

Additional Reviewers

Chen, Binhui Beijing Institute of Technology, China
Guo, Yongkang Peking University, China
Lin, Chuang-Chieh (Joseph) Tamkang University, Taiwan
Lu, Yuxuan Peking University
Mei, Lili Hangzhou Dianzi University, China
Nong, Qingqing Ocean University of China, China
Qiu, Guoliang Shanghai Jiao Tong University, China
Wang, Qian Peking University, China
Xiao, Tao Huawei, China
Yan, Xiang Huawei, China
Yu, Wei East China University of Science and Technology,

China
Yu, Haoran Beijing Institute of Technology, China

viii Organization

Invited Talks

Constrained Min-Max Optimization:
Last-Iterate Convergence and Acceleration

Yang Cai

Yale University

Abstract. Min-max optimization plays a central role in numerous machine
learning (ML) applications ranging from generative adversarial networks,
adversarial examples, robust optimization, to multi-agent reinforcement learn-
ing. These ML applications pose new challenges in min-max optimization,
requiring the algorithms to (i) exhibit last-iterate convergence as opposed to the
more traditional average-iterate convergence, and (ii) to be robust in
nonconvex-nonconcave environments. In this talk, we first focus on the
last-iterate convergence rates of two most classical and popular algorithms for
solving convex-concave min-max optimization – the extragradient (EG) method
by Kopelevich (1976) and the optimistic gradient (OG) method by Popov
(1980). Despite their long history and intensive attention from the optimization
and machine learning community, the last-iterate convergence rates for both
algorithms remained open. We resolve this open problem by showing both EG
and OG exhibit a tight Oð1= ffiffiffiffi

T
p Þ last-iterate convergence rate under arbitrary

convex constraints. In the second part of the talk, we discuss some recent
progress on obtaining accelerated and optimal first-order methods for structured
nonconvex-nonconcave min-max optimization. Our results are obtained via a
new sum-of-squares programming based approach, which may be useful in
analyzing other iterative methods.

How Crypto, Stablecoins, CBDCs and Web3
Will Reshape Competition

Christian Catalini

Founder, MIT Cryptoeconomics Lab and Research Scientist, MIT

Abstract. The talk will explore some of the recent developments in the crypto,
payments and web3 space, as well as implications for competition and
innovation.

Voronoi Diagrams in the Presence of Obstacles

Hee-Kap Ahn

Pohang University of Science and Technology

Abstract. A Voronoi diagram is a fundamental geometric structure that parti-
tions space into regions based on the distance to points in a specific subset of the
space. Due to the structural and combinatorial properties, Voronoi diagrams
have applications in many fields, including geometry, informatics, biology,
engineering, and architecture. In this talk, we will review the concept and
properties of Voronoi diagrams and the recent progress in computing Voronoi
diagrams, especially in the presence of obstacles.

Recent Progress in Online Matching

Zhiyi Huang

University of Hong Kong

Abstract. Originated from the seminal work by Karp, Vazirani, and Vazirani
(1990), online matching has been established as one of the most fundamental
topics in the literature of online algorithms. This talk presents the basics of
online matching, and surveys the recent progress in two directions:

1. Open problems about online advertising: AdWords and Display Ads are
generalizations of the online bipartite matching problem by Karp et al. These
problems capture online advertising which generates tens of billions of US
dollars annually. This year, we introduce a new technique called online
correlated selection, and design the first online algorithms for the general
cases of AdWords and Display Ads outperforming greedy, which has
remained the state of the art for more than 10 years, despite many attempts to
find better alternatives.

2. General arrival models: Traditional online matching models consider bipar-
tite graphs and assume knowing one side of the bipartite graph upfront. The
matching problems in many modern scenarios, however, do not fit into the
traditional models. In the problem of matching rid of matching ride-sharing
requests, for instance, the graph is not bipartite in general, and all vertices
arrive online. There has been much progress in the past three years on online
matching models beyond the traditional ones, including the fully online
model, the general vertex arrival model, and the edge arrival model.

Contents

Algorithmic Game Theory

EFX Under Budget Constraint . 3
Sijia Dai, Guichen Gao, Shengxin Liu, Boon Han Lim, Li Ning,
Yicheng Xu, and Yong Zhang

Two-Facility Location Games with Distance Requirement 15
Ling Gai, Dandan Qian, and Chenchen Wu

Constrained Heterogeneous Two-Facility Location Games with
Max-Variant Cost . 25

Qi Zhao, Wenjing Liu, Qizhi Fang, and Qingqin Nong

Optimally Integrating Ad Auction into E-Commerce Platforms 44
Weian Li, Qi Qi, Changjun Wang, and Changyuan Yu

Verifiable Crowd Computing: Coping with Bounded Rationality. 59
Lu Dong, Miguel A. Mosteiro, and Shikha Singh

Game Theory in Block Chain

Equilibrium Analysis of Block Withholding Attack: An Evolutionary Game
Perspective . 81

Zhanghao Yao, Yukun Cheng, and Zhiqi Xu

Frontiers of Algorithmic Wisdom

An Approximation Algorithm for the H-Prize-Collecting Power Cover
Problem . 89

Han Dai, Weidong Li, and Xiaofei Liu

Online Early Work Maximization on Three Hierarchical Machines
with a Common Due Date . 99

Man Xiao and Weidong Li

Secure Computations Through Checking Suits of Playing Cards 110
Daiki Miyahara and Takaaki Mizuki

Streaming Submodular Maximization with the Chance Constraint 129
Shufang Gong, Bin Liu, and Qizhi Fang

Colorful Graph Coloring . 141
Zhongyi Zhang and Jiong Guo

On the Transversal Number of Rank k Hypergraphs 162
Zhongzheng Tang and Zhuo Diao

Exact Algorithms and Hardness Results for Geometric Red-Blue Hitting
Set Problem . 176

Raghunath Reddy Madireddy, Subhas C. Nandy, and Supantha Pandit

Bounds for the Oriented Diameter of Planar Triangulations 192
Debajyoti Mondal, N. Parthiban, and Indra Rajasingh

String Rearrangement Inequalities and a Total Order Between Primitive
Words . 206

Ruixi Luo, Taikun Zhu, and Kai Jin

Approximation Algorithms for Prize-Collecting Capacitated Network
Design Problems. 219

Lu Han, Vincent Chau, and Chi Kit Ken Fong

Computational and Network Economics

Possible and Necessary Winner Problems in Iterative Elections with
Multiple Rules . 235

Peihua Li and Jiong Guo

A Mechanism Design Approach for Multi-party Machine Learning 248
Mengjing Chen, Yang Liu, Weiran Shen, Yiheng Shen, Pingzhong Tang,
and Qiang Yang

Budget-Feasible Sybil-Proof Mechanisms for Crowdsensing 269
Xiang Liu, Weiwei Wu, Wanyuan Wang, Yuhang Xu, Xiumin Wang,
and Helei Cui

Author Index . 289

xvi Contents

Papers and Talks Presented in IJTCS Tracks A-F and H-I,
and the Forums

Invited Talks, Track A (Algorithmic Game Theory)

Practical Fixed-Parameter Algorithms for Defending Active Directory Style Attack
Graphs [Mingyu Guo]

Invited Talks, Track B (Game Theory in Blockchain)

Token Design and Economic Incentives [Ye Li]
Markets for Crypto Tokens, and Security under Proof of Stake [Ravi Jagadeesan]
Eliciting Information without Verification [Yuqing Kong]
Insightful Mining Equilibria [Mengqian Zhang]
FileInsurer: A Scalable and Reliable Protocol for Decentralized File Storage in

Blockchain [Hongyin Chen]
EIP-1559: Chaos and Efficiency in Ethereum's Transaction Fee Market [Stefanos

Leonardos]
A Rational Protocol Treatment of 51% Attacks [Vassilis Zikas]

Invited Talks, Track C (Multi-agent Learning, Multi-agent System,
Multi-agent Games)

A Continuum of Solutions to Cooperative Multi-Agent Reinforcement Learning
[Yaodong Yang]

A Brief Introduction to Convergence Analysis of Reinforcement Learning Algorithms
[Xingguo Chen]

Decision Structure in Decentralized Multi-Agent Learning [Yali Du]
Reverse Engineering Human Cooperation and Cultural Evolution [Joel Z Leibo]

Invited Talks, Track D (Learning Theory)

Unified Theory of Explaining Heuristic Findings in Attribution, Robustness, General-
ization, Visual Features in a DNN [Quanshi Zhang, Huiqi Deng]

Demystifying (Deep) Reinforcement Learning with Optimism and Pessimism [Zhaoran
Wang]

More Than a Toy: Random Matrix Models Predict How Real-World Neural
Representations Generalize [Wei Hu]

Invited Talks, Track E (Quantum Computing)

Optimal Quantum Circuit Constructions for Quantum State Preparation and General
Unitary Synthesis [Shengyu Zhang]

Quantum Adiabatic Theorem Revisited [Runyao Duan]
Winning Mastermind Overwhelmingly on Quantum Computers [Lvzhou Li]
Numerical Framework for Finite-size Security of Quantum Cryptography [Hongyi
Zhou]

Invited Talks, Track F (Machine Learning and Formal Method)

QVIP: An ILP-based Formal Verification Approach for Quantized Neural Networks
[Yedi Zhang]

Copy, Right? A Testing Framework for Copyright Protection of Deep Learning Models
[Jingyi Wang]

Adaptive Fairness Improvement based on Causality Analysis [Mengdi Zhang]
Robustness Analysis for DNNs from the Perspective of Model Learning [Pengfei
Yang]

Invited Talks, Track H (EconCS)

Escaping Saddle Points: from Agent-based Models to Stochastic Gradient Descent
[Fang-Yi Yu]

Truthful Cake Sharing [Xinhang Lu]
An Efficient Algorithm for Approximating Nash Equilibrium in Zero-sum Imperfect-

information Games [Ying Wen]

Invited Talks, Track I (Conscious AI)

Formalizing A Multimodal Language for Intelligence and Consciousness [Paul Liang]

Undergraduate Research Forum

Your Transformer May Not be as Powerful as You Expect [Shanda Li]
Element Distinctness, Birthday Paradox, and 1-out Pseudorandom Graphs [Hongxun

Wu]
Nash Convergence of Mean-Based Learning Algorithms in First Price Auctions

[Xinyan Hu]
Towards Data Efficiency in Offline Reinforcement Learning [Baihe Huang]
On the Feasibility of Unclonable Encryption, and More [Xingjian Li]
Characterizing Parametric and Convergence Stability in Nonconvex Nonsmooth

Optimization [Hanyu Li]

xviii Papers and Talks Presented in IJTCS Tracks A-F and H-I, and the Forums

Female Forum

Quantum Copy Protection and Unclonable Cryptography [Jiahui Liu]
Hardness Results for Weaver’s Discrepancy Problem [Peng Zhang]
Graph limits and graph homomorphism inequalities [Fan Wei]
A Faster Interior-Point Method for Sum-of-Squares Optimization [Shunhua Jiang]

Young PhD Forum

Optimal Rates of (Locally) Differentially Private Heavy-tailed Multi-Armed Bandit
[Yulian Wu]

Optimal Private Payoff Manipulation against Commitment in Extensive-form Games
[Yurong Chen]

Beyond Characteristic Function Method to Get Exponential Concentration Bound
[Zhide Wei]

Multiwinner Voting Using Favorite-Candidate Rule [Zeyu Ren]
The Power of Multiple Choices in Online Stochastic Matching [Xinkai Shu]

Young Faculty in TCS

An Optimal Separation between Two Property Testing Models for Bounded Degree
Directed Graphs [Pan Peng]

Ordinal Approximation Algorithms for MMS Allocation of Chores [Xiaowei Wu]
The Power of Uniform Sampling for Coresets [Xuan Wu]
A Polynomial Time Algorithm for Submodular 4-Partition [Chao Xu]
Graphical Resource Allocation with Matching-Induced Utilities [Bo Li]
Survivable Network Design: Group-Connectivity [Yuhao Zhang]

CSIAM Forum

DAMYSUS: Streamlined BFT Consensus Leveraging Trusted Components [Jiangshan
Yu]

Blockchain-Based Private Provable Data Possession [Huaqun Wang]

Papers and Talks Presented in IJTCS Tracks A-F and H-I, and the Forums xix

Algorithmic Game Theory

EFX Under Budget Constraint

Sijia Dai1, Guichen Gao1, Shengxin Liu2, Boon Han Lim3, Li Ning1,
Yicheng Xu1, and Yong Zhang1(B)

1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, People’s Republic of China

{sj.dai,gc.gao,li.ning,yc.xu,zhangyong}@siat.ac.cn
2 Harbin Institute of Technology (Shenzhen), Shenzhen, People’s Republic of China

sxliu@hit.edu.cn
3 Tunku Abdul Rahman University, Kajang, Malaysia

limbhan@utar.edu.my

Abstract. Fair division captures many real-world scenarios and plays
an important role in many research fields including computer science,
economy, operations research, etc. For the problem of indivisible goods
allocation, it is well-known that an allocation satisfying the maximum
Nash Social Welfare (Max-NSW) is envy-free up to one good (EF1), which
is an important fairness concept. However, EF1 is often considered to be
somewhat weak since one may remove the most valuable good. In this
paper, we investigate the relationship between the Max-NSW allocation
and a stronger fairness concept, envy-free up to any good (EFX), which
means the envyness disappears after the removal of the least valuable
good. We focus on the budget-feasible variant in which each agent has a
budget to cover the total cost of goods she gets. We show that a Max-
NSW allocation guarantees 1

4
-EFX when agents’ value are in the Binary

{0, 1} . Moreover, we provide an algorithm to find a budget-feasible EFX
allocation for the Binary variant.

Keywords: Fair division · Maximum nash social welfare · Budget
constraint · Envy-free up to any good

1 Introduction

The theory of fair division addresses the fundamental problem of allocating lim-
ited goods or resources among agents in a fair and/or efficient manner. It has
widespread applications in areas like vaccine distribution, kidney matching, prop-
erty inheritance, government auction, and so on.

In fair division model, the owner of a resource wants to allocate limited
resources efficiently and the recipients of resources want to receive it fairly. In
economics, Pareto Optimality (PO) is usually used to measure the efficiency of

Supported by the National Key Research and Development Project of China (Grant No.
2019YFB2102500), NSFC (Grant No. 12071460, 62102117), the Fundamental Research
Project of Shenzhen City (No. JCYJ20210324102012033) and the Shenzhen Science and
Technology Program (Grant No. RCBS20210609103900003).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 3–14, 2022.
https://doi.org/10.1007/978-3-031-20796-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-20796-9_1

4 S. Dai et al.

allocation, which means no other allocation can make some agents strictly better
off without making any agent strictly worse off. A lot of researches focuses on
finding effective algorithms to balance the efficiency and the fairness in real-world
applications [11,15,16,19,23]. Mamoru and Kenjiro [17] propose the concept
of Nash Social Welfare, which represents the multiplicative form of all agents’
valuations w.r.t. their assigned bundles. The property of the maximizing the
Nash Social Welfare leads it to be regarded as a balance on both efficiency and
fairness [17].

The Nash Social Welfare is well-studied for divisible goods [21]. Eisenberg
and Gale [12] show that the maximum Nash Social Welfare allocation can be
computed in polynomial time by using the convex program. However, comput-
ing the maximum Nash Social Welfare allocation for indivisible goods is proved
to be APX-hard [18] even when agents have additive valuations of goods, i.e.,
no polynomial-time approximation schemes (PTAS) unless P = NP . Thus, it
is natural to consider how to approximate the maximum Nash Social Welfare
in polynomial time. Cole et al. [10] first propose an algorithm with the approx-
imation ratio of 2.89 and they then improve the bound to 2 by a modified
algorithm [9]. Barman et al. [2] introduce the concept of Fisher market equilib-
rium and they design an algorithm with the approximate ratio 1.45 and show
that the output of algorithm could achieve Pareto Optimality. There are also
some works on the Nash Social Welfare maximization problem for some particu-
lar cases, e.g., the greedy maximum Nash Social Welfare algorithm for identical
valuations and binary valuations [3], an approximation maximum Nash Social
Welfare algorithm under submodular valuations [14].

Note that the maximum Nash Social Welfare allocation always exists. It
is interesting to investigate which kind of fairness can be achieved when an
allocation reaches the maximum Nash Social Welfare. Previous studies prove
that the allocation satisfying the maximum Nash Social Welfare can reach πn-
Maximin Share (MMS) (where πn is a value that desearses as the number of
agents increases) and 0.618-pairwise Maximin Share (PMMS) [6]. MMS and
PMMS mentioned above are important measurements of fairness. MMS means
that everyone should at least get the goods to maximize the worst distribution
of the share while PMMS consider fairness between any pair of agents.

Envy-free (EF) is one of the criteria of fair division, which states that when
resources are distributed among agents, each agent should receive a share which
at least as good as the share received by other agents in his opinion. But when
the resources to be allocated are indivisible, even if there is one resource and
two agents, it is impossible to achieve an EF allocation. Envy-free up to one
good (EF1) is proposed by Lipton et al. [20]. It is known that the maximum
Nash Social Welfare allocation is also an EF1 allocation [6]. Another well-known
fairness notion, envy-free up to any good (EFX), is introduced by Caragiannis
et al. [6], which is weaker than EF but stronger than EF1. They prove that a
PMMS allocation implies an EFX allocation if all agents have positive values
for all goods. Thus, the maximum Nash Social Welfare allocation can also reach
0.618-EFX.

EFX Under Budget Constraint 5

There are some interesting works to show the relationship between the allo-
cation satisfying the maximum Nash Social Welfare and the fairness under some
conditions [1,4,5,7,8]. For example, the maximum Nash Social Welfare alloca-
tion is always EFX as long as there are at most two possible values for the
goods [1]. The maximum Nash Social Welfare allocation is always EF1 if the
agents have identical valuations with matroid constraint [4].

In some realities, agents must pay for the goods allocated to her. Thus, a
natural generalization of the fair division problem is to consider the budget
constraint. Each agent is associated with some fixed budget and the cost of the
assigned bundle must be not exceed her budget. Wu et al. [22] introduce the
budget constraint for EF1 allocation in the fair division problem. As far as we
know, it is the first result considering the budget constraint in fairness allocation.
They show that any maximum Nash Social Welfare allocation is at least 1

4 -
EF1 and the ratio is tight. Besides, they prove that any maximum Nash Social
Welfare allocation guarantees 1

2 -EF1 if the budget of each agent is sufficiently
large. Gan et al. [13] study EF1 allocation in some special cases and show that
a 1

2 -EF1 allocations can be computed in polynomial time if the valuations of all
agents are identical. Meanwhile, the maximum Nash Social Welfare allocation
can be computed in polynomial-time and the approximation ratio w.r.t. EF1 is
asymptotically close to 1 when agents have identical valuations and the budget
of each agent is sufficiently large.

In this paper, we focus on the fair division under the budget constraint,
that means each agent can only afford the bundle with the total cost no more
than her budget. We investigate the properties of the maximum Nash Social
Welfare allocation with the budget constraint and find a budget-feasible EFX
allocation in this setting. The remainder of this paper is structured as follows.
Section 2 presents the model of fair division and some classical fairness concepts.
Section 3 proves that the maximum Nash Social Welfare allocation guarantees
the approximation ratio of EFX under the budget constraint. Section 4 provides
an algorithm to compute a budget-feasible EFX allocation for the Binary variant.
Section 5 gives the concluding remark and some possible future research for the
fair division problem.

2 Preliminaries

Let M = {g1, . . . , gm} denotes the set of goods and N = {1, 2, ..., n} denotes
the set of agents. Throughout this paper, we assume the goods are indivisible,
i.e., each good must be entirely allocated to one agent. Each agent i ∈ N has a
valuation function vi(·) : 2M → R≥0 that measures the utility of each agent on
different subsets of goods. In this paper, we assume that the valuation function
vi(·) of each agent is additive, i.e., vi(Xi) =

∑
g∈Xi

vi({g}) for any subset (or
bundle) Xi of M . For simplicity, we write vi(g) instead of vi ({g}) for good
g ∈ M .

6 S. Dai et al.

Every good g ∈ M is associated with a cost c(g) ≥ 0 and we assume
that the cost of goods is the same and additive for each agent, i.e., c(Xi) =∑

g∈Xi
c(g),∀i ∈ N, Xi ⊆ M . In addition, each agent has a different budget

Bi ≥ 0 for any i ∈ N .
Let X0 denotes the set of unallocated goods. X0 can be regarded as a charity,

who has unbounded budget and v0(g) = 0 for g ∈ M . We consider such an
allocation X = {X0,X1, . . . , Xn} which is a partition of goods set M , where
Xi ⊆ M is the bundle of goods assigned to agent i and Xi ∩ Xj = ∅ for any
0 ≤ i < j ≤ n.

When considering the budget constraint, we say an allocation X is budget-
feasible if each agent can afford the allocated bundle, i.e., c(Xi) ≤ Bi for any
i ∈ N .

We investigate the following three kinds of valuation functions, which are
reasonable and well-adopted in many applications.

– Binary : vi(g) ∈ {0, 1} for every i ∈ N and g ∈ M ;
– Identical : v(·): each agent has the same valuation on any good g ∈ M ;
– Interval : vi(g) ∈ [b, a], where 0 < b < a for every i ∈ N and g ∈ M .

Now we generalize the fairness concepts by considering the budget constraint.
Note that when each agent has sufficiently large budget and they can afford any
subsets of the good set M , the problem will be degenerated to the traditional
one without the budget constraint. Again, the objective is to find an allocation
which is fair to all agents. Under the budget constraint, we assume that the
agent will only envy the bundle she can afford [22].

Definition 1. (Budget-Feasible-Envy-freeness and Its Relaxations) For
any α ∈ [0, 1], a budget-feasible allocation X= (Xi)i∈N is:

– α-approximate budget-feasible envy-free (α-BFEF): if for any i, j ∈ N and
any S ⊆ Xj with c(S) ≤ Bi such that

vi(Xi) ≥ α · vi(S).

Note that a 1-BFEF allocation is an BFEF allocation.
– α-approximate budget-feasible envy-free up to one good (α-BFEF1): if for any

i, j ∈ N and any S ⊆ Xj with c(S) ≤ Bi such that

∃ g ∈ S, vi(Xi) ≥ α · vi(S \ g).

Note that a 1-BFEF1 allocation is an BFEF1 allocation.
– α-approximate budget-feasible envy-free up to any good (α-BFEFX): if for

any i, j ∈ N , any S ⊆ Xj with c(S) ≤ Bi such that

∀ g ∈ S, vi(Xi) ≥ α · vi(S \ g).

Note that a 1-BFEFX allocation is an BFEFX allocation.

EFX Under Budget Constraint 7

Our goal is to analyze the fairness property when the Nash Social Welfare
(NSW) is maximized while the budget constraint is satisfied. This gives rise to
the following definitions.

Definition 2. (PO) An allocation X is Pareto Optimal (PO) if there exist no
allocation X ′ such that vi(X ′

i) ≥ vi(Xi) for all i ∈ N and vj(X ′
j) > vj(Xj) for

some j ∈ N .

Definition 3. (Budget-Feasible-Max-NSW) An allocation X∗ is a budget-
feasible Max-NSW allocation if it is budget-feasible and maximizes the Nash
Social Welfare, i.e., ∏

i∈N

vi(X∗
i) ≥

∏

i∈N

vi(Xi)

for any other budget-feasible allocation X, where X∗
i ∩ X∗

j = ∅ and Xi ∩ Xj = ∅
for any i, j ∈ [n].

In this paper, we mainly consider BFEFX allocations in some cases. For
simplicity, we say agent j x-envies agent i with respect to her budget Bj if
there exists S ⊆ Xi such that c(S) ≤ Bj and vj(Xj) < vj(S \ g) for some g ∈ S.
In other words, no x-envy with respect to the budget among all agents is the
necessary and sufficient condition of satisfying BFEFX.

3 Max-NSW Allocation and EFX Under Budget
Constraint

In this section, we investigate the approximated fairness guarantee for the Max-
NSW allocation under the budget constraint.

We claim that if vi(g) = 0 for some i ∈ N and g ∈ M , to achieve the Max-
NSW allocation, good g will not be allocated to agent i. Otherwise, the budget
of agent i might be decreased while her valuation will not increase.

Remark 1. In a Max-NSW allocation, if vi(g) = 0 for some i ∈ N and g ∈ M ,
good g will not be allocated to agent i.

Proof. If there is a good whose valuation is 0 for all agents, i.e., vk(g) = 0, for
all k ∈ N , a reasonable idea is allocating it to the charity instead of an agent. �

Lemma 1. For the Binary variant, any Max-NSW allocation X∗ is 1
4 -BFEFX

and PO.

Proof. If X∗ is not PO, there exists another allocation X′ that the value of some
agent is strictly higher than the corresponding value in X∗ while the values
of other agents are non-decreasing. It means the NSW of X′ is larger, which
contradicts X∗ is a Max-NSW allocation.

We show the correctness of the bound 1
4 by contradiction. Assume a Max-

NSW allocation X∗ is not 1
4 -BFEFX, there exists the case that an agent i x-

envies another agent j, which can be denoted as

∃ S ⊆ X∗
j , c(S) ≤ Bi

8 S. Dai et al.

and
∃ g′ ∈ S, vi(S \ g′) > 4 · vi(X∗

i)

For the Binary variant, the value of a Max-NSW allocation depends on the
valuation of all agents. If at least one agent gets 0, i.e., the valuation of all goods
allocated to this agent is 0 and the value of Max-NSW will be 0, too. Otherwise,
the value of Max-NSW will be a positive number.

Let NW (X) be the value of Nash Social Welfare w.r.t. the allocation X. We
analyze two cases, NW (X∗) > 0 and NW (X∗) = 0, separately.

Case 1. NW (X∗) > 0.

– If ming∈X∗
j

vi(g) = 1.

Due to Theorem 3.1 in [22] and the Binary-value property, the Max-NSW
allocation is 1

4 -BFEFX, i.e.,

∀ S ⊆ X∗
j satisfying c(S) ≤ Bi,∀ g ∈ S, vi(X∗

i) ≥ 1/4 · vi(S \ g).

– If ming∈X∗
j

vi(g) = 0.

We may assume at least one good in X∗
j whose valuation of agent i is 1.

Otherwise agent i would never x-envy agent j. Hence, |S| ≥ 2.
If S contains �(> 1) goods with valuation vi(·) = 0, we may remove � − 1

of them from S and remain g′. In this way, the valuation vi(S) and vi(S \ g′)
do not change. Thus, we mayconsider that S contains only one good with zero
valuation.

Combining the assumption, an Max-NSW allocation X∗ is not 1
4 -BFEFX

and Remark 1, we have |S| > 4 · |X∗
i | + 1.

Evenly partition S\g′ into two sets, S1 and S2, i.e., ||S1|−|S2|| ≤ 1. Construct
a new allocation X′ = {X ′

1,X
′
2, ...,X

′
n}, in which X ′

k = X∗
k for all k �= i, j,

X ′
i = argmaxS�∈{S1,S2} vi(S�), X ′

j = X∗
j \ X ′

i and X ′
0 = X0 ∪ X∗

i .
Obviously, we have

vi(X ′
i) ≥ 1

2
· vi(S \ g′) > 2 · vi(X∗

i).

Agent j does not x-envy agent i no matter she chooses S1 or S2, since agent j
gets another one and g′ with the valuation at least 1

2 · vj(S), i.e.,

vj(X ′
j) ≥ 1

2
· vj(X∗

j).

Since vk(X ′
k) = vk(X∗

k) for all k �= i, j, it follows that
∏

�∈N

v�(X ′
�) >

∏

�∈N

v�(X∗
�),

which contradicts the fact that X∗ is Max-NSW.

EFX Under Budget Constraint 9

Case 2. NW (X∗) = 0.
If X∗

i = ∅ and X∗
j = ∅, they are envy-free each other.

If X∗
i �= ∅ and X∗

j �= ∅, similar to Case 1,

vi(X∗
i) ≥ 1

4
· vi(S \ g), ∀ g ∈ S.

Now we consider the remaining case, X∗
i = ∅ and X∗

j �= ∅.

– If |X∗
j | = 1

Since there is only one good in X∗
j , it is obviously true that

vi(X∗
i) ≥ 1

4
· vi(S \ g), ∀ g ∈ S.

– |X∗
j | ≥ 2

We claim that there exists at least one good g′ ∈ X∗
j such that vi(g′) = 1.

Otherwise, agent i will not x-envy agent j. If agent i is the only agent with zero
valuation in the allocation, switch g′ from X∗

j to X∗
i leading to a new allocation

with a positive Nash Social Welfare, which also contradicts the fact that X∗ is
the Max-NSW allocation.

If there are some other agent k ∈ N \ {i, j} and vk(X∗
k) = 0, the envyness

can be eliminated by moving all goods which leads to envyness to the charity
X0, while keep the valuation of Nash Social Welfare unchanged. �
Lemma 2. There is a particular instance where every Max-NSW allocation fails
to be better than (12 + ε)-BFEFX for any ε > 0 if the valuation is Binary.

Proof. This negative result can be shown via the following counterexample.

Example 1. There are 4 goods and two agents {1, 2} with B1 = B2 = 4. The
valuations of agents and costs of goods are shown in Table 1.

Table 1. Illustration to show a (1
4
+ ε)-BFEFX allocation is unreachable.

g1 g2 g3 g4

v1 0 1 1 1

v2 1 1 1 1

c 4 1 1 1

The only maximum Nash Social Welfare allocation X∗ = {X∗
1 =

{g2, g3, g4},X∗
2 = {g1}}. In this case,

v2(X∗
2) < (

1
2
+ ε) · v2(X∗

1 \ g4),

where ε > 0. We find that the Max-NSW allocation may not satisfy (12 + ε)-
BFEFX for any ε > 0 even if agents have the same budget. �

10 S. Dai et al.

Theorem 1. A Max-NSW allocation X∗ is 1
4 -BFEFX and PO if the valuation

is Binary under the budget constraint. Moreover, no PO allocation can be (12+ε)-
BFEFX for any ε > 0 under the above setting.

Proof. The correctness of this theorem can be directly obtained from Lemma 1
and Lemma 2. �

4 Computing a BFEFX Allocation

In this section, we give an algorithm to compute a BFEFX allocation for the
Binary variant in polynomial time. Intuitively, the cheaper cost of goods, the
more value an agent may get. To allocate more valuable good sets to agents,
a simple idea is assigning good with smaller cost to agent with smaller budget.
However, it may violate BFEFX since an agent with larger budget may x-envies
some other agent w.r.t. the budget.

In the algorithm, goods will be assigned to agents in turn with respect to the
non-decreasing order of their original budgets. Let B′

i be the remaining budget
of agent i, initially, B′

i = Bi. Let M ′ be the remaining unassigned good set,
initially, M ′ = M . We say an agent is active if she still can afford some goods
with positive value in the remaining unassigned goods. Let A denotes the set of
active agents. Formally speaking, agent i ∈ A if there exists g ∈ M ′ such that
c(g) ≤ B′

i and vi(g) = 1.
The algorithm is implemented round by round (the outer while loop in

Algorithm 1). In each round �, an agent i may get at most one good g�
i . Note

that BFEFX may violate at some step. We will show later (in Lemma 3) that
such case only happens when assigning some good to an agent i and another
agent j with larger budget x-envies agent i w.r.t. the budget Bj . When this
happens, we reallocate some assigned good from agent i to agent j so as to
eliminate the violation. According to Lemma 3, the assignment and reallocation
will not affect the x-envy property of agent � with � < i.

Lemma 3. In processing Algorithm 1, agent kj x-envies agent ki w.r.t. Bkj

only when j > i.

Proof. According to the algorithm, any assigned good is with value 1 for the
agent who gets it. If agent i gets a good from M ′ in round �, she must get
one good in all previous round �′ < �. That is because agent i is still active in
round �.

When agent ki gets good g�
ki

in round �, vki
(Xki

) = �. Assuming that agent
kj x-envies agent ki w.r.t. Bkj

at this time step and this does not happen in
previous steps. That means assigning g�

ki
to agent ki leads to such x-envy. So,

there exists S ⊆ Xki
with c(S) ≤ Bkj

and g�
ki

∈ S, satisfying

|S| − 2 = vkj
(S \ g�

ki
) − 1 ≤ vkj

(Xkj
) < vkj

(S \ g�
ki
) = |S| − 1.

EFX Under Budget Constraint 11

Algorithm 1: Finding a BFEFX allocation when the valuation function
is Binary
1 Input: agents set N , goods set M , budgets set B = {B1, B2, . . . , Bn} and costs

set C = {c(g1), c(g2), . . . , c(gm)};
2 Initialize: Xi ← ∅, B′

i ← Bi for all i ∈ N ;
3 Initialize: A ← N ; � Assume any agent can afford at least one good in M .
4 Initialize: M ′ ← M ;
5 Sorting agents according to their budgets, i.e., {k1, k2, ..., kn} such that

Bki ≤ Bkj for i < j;
6 while A �= ∅ and M ′ �= ∅ do
7 for i = 1 to n do
8 if agent ki ∈ A then
9 Pick the good g ← argmin{g∈M′} c(g) to agent ki such that

vki(g) = 1 and c(Xki) + c(g) ≤ Bki ;
10 Xki ← Xki ∪ g, M ′ ← M ′ \ g;
11 Procedure: Eliminate x-envy of agent ki; � Eliminate other agent

x-envy ki.

12 X0 ← M ′;
Return X = {X0, X1, X2, ..., Xn};

We have
vkj

(Xkj
) = |S| − 2.

If j < i, kj should be considered earlier than ki in each round. According to the
algorithm, g�

ki
must be assigned to agent kj , not ki.

Therefore, this lemma holds. �

Suppose the case mentioned in Lemma 3 happens, i.e., agent kj x-envies
agent ki at some time step, the Procedure can eliminate the x-envy by switch-
ing a good from ki to kj . To justify the correctness of the procedure, two facts
must be verified. (1) The switched good has positive value for agent kj , and (2)
agent kj can afford the switched good.

Remark 2. If agent kj x-envies agent ki at round � and S is the subset chosen
by the procedure, we have vkj

(g�
ki
) = 0 and for any g ∈ S \ g�

ki
, vkj

(g) = 1.

Remark 3. If agent kj x-envies agent ki at round � and S is the subset chosen
by the procedure, we have c(Xkj

) ≤ c(S \ g∗) and c(Xkj
) + c(g∗) ≤ c(S) ≤ Bkj

.

The full proof version of Remark 2 and Remark 3 can be found in Appendices.
To show the correctness of the algorithm, we need to prove the following two

lemmas.

Lemma 4. In each round, the elimination of x-envy is one-way, i.e., after han-
dling the pair (ki, kj) (ki < kj), agent kj does not x-envy agent ki w.r.t. Bkj

and moreover, the x-envy property of other agent k� (� < j) does not affected.

12 S. Dai et al.

Procedure: Eliminate x-envy of agent ki

while some agents x-envy agent ki w.r.t. her budget do
Let kj be the minimal index of j violating the BFEFX condition; � i < j
according to Lemma 3

S ← argmaxS⊆Xki
vkj (S); � |S| − 1 ≤ vkj (S) ≤ |S|

g∗ ← argmaxg′∈S\g�
ki

c(g′);

Xki ← Xki \ g∗, Xkj ← Xkj ∪ g∗;
if vki(g) = 0 for all g ∈ M ′ or c(Xki) + c(g) > Bki for all g ∈ M ′ such

that vki(g) = 1 then
A ← A \ ki;

else
Pick the good g ← argming∈M′{c(g)|vki(g) = 1}
Xki ← Xki ∪ g, M ′ ← M ′ \ g;

Procedure: Eliminate x-envy of agent kj .

Proof. After the first round, no matter whether or not an agent gets a good, no
agent x-envies others.

In some following step, x-envy may happen, w.l.o.g., agent kj x-envies agent
ki w.r.t. Bkj

. As analyzed in Lemma 3, |Xki
| ≥ |S| > |Xkj

|+1 and |Xki
|−|Xkj

| ≥
|S| − |Xkj

| = 2, where S is the goods set selected by the procedure.
According to the algorithm, good g∗ will be reallocated from agent ki to agent

kj and satisfying c(Xkj
) + c(g∗) ≤ Bkj

. Let X ′
kj

and X ′
ki

denote the updated
bundle of agents kj and ki, respectively. Since

vkj
(X ′

kj
) = |Xkj

| + 1 = |S| − 1 > vkj
(S \ g∗) = |S| − 2

and
vki

(X ′
ki
) = |Xki

| − 1 ≥ |Xkj
| + 1 ≥ vki

(X ′
kj
),

the x-envy between agents ki and kj is eliminated.
When agent kj gets the good g∗, a new x-envy may happen between agent

kj and some other agent k�. We claim that � > j. Otherwise, assume that � < j.
When allocating g∗ to agent ki, agent k� x-envies ki. Since g∗ is assigned to
agent ki in some previous round, such x-envy should be already eliminated, con-
tradicting to the assumption. Thus, the newly introduced x-envy only happens
on some agent k� with � > j. Therefore, the procedure will be implemented in a
one-way fashion. �
Lemma 5. When the algorithm stops, no agent x-envies the charity X0.

The full proof version can be found in Appendices.

Lemma 6. The algorithm will be stopped in O(mn2) time.

Proof. According to Lemma 4, when assigning good to an agent, the procedure
to eliminate x-envy will be executed at most O(n) times. Combining with the
outer while loop (repeat O(m) times) and the for loop (repeat O(n) times), the
running time of the algorithm is O(mn2). �

EFX Under Budget Constraint 13

Theorem 2. The proposed algorithm correctly computes a BFEFX allocation
for Binary variant in O(mn2) time.

Proof. Combining Lemma 4, Lemma 5 and Lemma 6, this theorem can be
proved. �

5 Concluding Remarks

Fair allocation is important in many fields and has been well studied during
recent years. The concept of the maximum Nash Social Welfare is fundamental
while budget feasible is also a reasonable constraint. The combination of these
three notions, fairness, Nash Social Welfare and budget-feasible, are interest-
ing and valuable in both theory and practice. In this work, we investigate the
relationship between the maximum Nash Social Welfare allocation and BFEFX
allocations in the budget feasible setting.

However, some important issues in this area are still not clear. Is it possible
to find a budget-feasible allocation which exactly or approximately satisfies the
maximum Nash Social Welfare? For the budget-feasible setting, the best guaran-
tee so far is a 1

2 -BFEF1 allocation for Identical variant [13]. Does there always
exist a BFEF1 allocation in general case? If the answer is no, can we find an
efficient algorithm to approximate the property of BFEF1? In addition, it is not
clear whether EFX allocation exists when the number of agents is greater than
3 [7]. For the budget-feasible setting, whether the BFEFX allocation in general
case can be approximated with a good ratio. Any positive or negative answer of
these questions may lead to a better understanding for the fair allocation.

References

1. Amanatidis, G., Birmpas, G., Filos-Ratsikas, A., Hollender, A., Voudouris, A.A.:
Maximum Nash welfare and other stories about EFX. In: Proceedings of the 29th
International Joint Conference on Artificial Intelligence, pp. 24–30. IJCAI 2020,
AAAI Press, Yokohama, Japan (2020)

2. Barman, S., Krishnamurthy, S.K., Vaish, R.: Finding fair and efficient allocations.
In: Proceedings of the 19th ACM Conference on Economics and Computation, pp.
557–574. EC 2018, ACM, New York, NY, USA (2018)

3. Barman, S., Krishnamurthy, S.K., Vaish, R.: Greedy algorithms for maximiz-
ing Nash social welfare. In: Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 7–13. AAMAS 2018, ACM,
Stockholm, Sweden (2018)

4. Biswas, A., Barman, S.: Fair division under cardinality constraints. In: Proceedings
of the 27th International Joint Conference on Artificial Intelligence, pp. 91–97.
IJCAI 2018, AAAI Press, Stockholm, Sweden (2018)

5. Caragiannis, I., Gravin, N., Huang, X.: Envy-freeness up to any item with high
Nash welfare: The virtue of donating items. In: Proceedings of the 20th ACM
Conference on Economics and Computation, pp. 527–545. EC 2019, ACM, New
York, NY, USA (2019)

14 S. Dai et al.

6. Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A.D., Shah, N., Wang, J.:
The unreasonable fairness of maximum Nash welfare. ACM Trans. Econ. Comput.
7(3), 1–32 (2019)

7. Chaudhury, B.R., Garg, J., Mehlhorn, K.: EFX exists for three agents. In: Pro-
ceedings of the 21st ACM Conference on Economics and Computation, pp. 1–19.
EC 2020, ACM, New York, NY, USA (2020)

8. Chaudhury, B.R., Kavitha, T., Mehlhorn, K., Sgouritsa, A.: A little charity guar-
antees almost envy-freeness. SIAM J. Comput. 50(4), 1336–1358 (2021)

9. Cole, R., Devanur, N., Gkatzelis, V., Jain, K., Mai, T., Vazirani, V.V., Yazdanbod,
S.: Convex program duality, fisher markets, and Nash social welfare. In: Proceed-
ings of the 18th ACM Conference on Economics and Computation, pp. 459–460.
EC 2017, ACM, New York, NY, USA (2017)

10. Cole, R., Gkatzelis, V.: Approximating the Nash social welfare with indivisible
items. In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory
of Computing, pp. 371–380. STOC 2015, ACM, New York, NY, USA (2015)

11. Dolev, D., Feitelson, D.G., Halpern, J.Y., Kupferman, R., Linial, N.: No justified
complaints: on fair sharing of multiple resources. In: Innovations in Theoretical
Computer Science, pp. 68–75. ITCS 2012, ACM, New York, NY, USA (2012)

12. Eisenberg, E., Gale, D.: Consensus of subjective probabilities: the pari-mutuel
method. Ann. Math. Statist. 30(1), 165–168 (1959)

13. Gan, J., Li, B., Wu, X.: Approximately envy-free budget-feasible allocation (2021).
https://arxiv.org/abs/2106.14446

14. Garg, J., Kulkarni, P., Kulkarni, R.: Approximating Nash social welfare under
submodular valuations through (un)matchings. In: Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, pp. 2673–2687. SOSA 2020, SIAM, Salt
Lake City, UT, USA (2020)

15. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-
inant resource fairness: Fair allocation of multiple resource types. In: Proceedings
of the 8th USENIX Conference on Networked Systems Design and Implementation,
pp. 323–336. NSDI 2011, USENIX Association, USA (2011)

16. Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., Akella, A.: Multi-resource
packing for cluster schedulers. In: ACM SIGCOMM 2014 Conference, pp. 455–466.
SIGCOMM 2014, ACM, Chicago, IL, USA (2014)

17. Kaneko, M., Nakamura, K.: The Nash social welfare function. Econometrica 47(2),
423–435 (1979)

18. Lee, E.: Apx-hardness of maximizing Nash social welfare with indivisible items.
Inf. Process. Lett. 122, 17–20 (2017)

19. Li, P., Hua, Q., Hu, Z., Ting, H.-F., Zhang, Y.: Approximation algorithms for the
selling with preference. J. Combinat. Optim. 40(2), 366–378 (2020). https://doi.
org/10.1007/s10878-020-00602-3

20. Lipton, R., Markakis, E., Mossel, E., Saberi, A.: On approximately fair allocations
of indivisible goods. In: Proceedings of the 5th ACM Conference on Electronic
Commerce, pp. 125–131. EC 2004, ACM, New York, NY, USA (2004)

21. Moulin, H.: Fair Division and Collective Welfare, vol. 1, 1st edn. MIT Press (2003)
22. Wu, X., Li, B., Gan, J.: Budget-feasible maximum Nash social welfare allocation

is almost envy-free (2020). https://arxiv.org/abs/2012.03766
23. Zhang, Y., Chin, F.Y., Poon, S.H., Ting, H.F., Xu, D., Yu, D.: Offline and online

algorithms for single-minded selling problem. Theoret. Comput. Sci. 821, 15–22
(2020)

https://arxiv.org/abs/2106.14446
https://doi.org/10.1007/s10878-020-00602-3
https://doi.org/10.1007/s10878-020-00602-3
https://arxiv.org/abs/2012.03766

Two-Facility Location Games
with Distance Requirement

Ling Gai1(B) , Dandan Qian1 , and Chenchen Wu2

1 Glorious Sun School of Business and Management, Donghua University,
Shanghai 200051, China

lgai@dhu.edu.cn, qiandandan@mail.dhu.edu.cn
2 College of Science, Tianjin University of Technology, Tianjin 300384, China

Abstract. We consider the game of locating two homogeneous facilities
in the interval [0, 1] with maximum distance requirement. In this game,
n agents report their preferred locations, then the designed mechanism
outputs the locations of two homogeneous facilities such that the total
utility of agents is maximized or the total cost is minimized. The location
information of agents is private and could be misreported to influence
the output. A strategy-proof mechanism with good performance ratio
need to be designed. We first show that for the desirable facilities case,
there is no deterministic strategy-proof mechanism can reach a constant
approximation ratio comparing with the optimal solution without private
information. Then we focus on the obnoxious facilities case. We propose
four group strategy-proof mechanisms and prove their approximation
ratios, separately. The performance of mechanisms are compared under
different maximum distance requirement.

Keywords: Facility location game · Strategy-proof mechanism ·
Distance requirement · Approximation ratio

1 Introduction

Facility location games have been in the center of research at the intersection
of artificial intelligence and social choice due to their practical importance. In
its original motivation, it is applied to determine the geographical locations of
some public facilities. The government first announces the mechanism employed,
then collects the private information of users (agents) and outputs the final loca-
tions. Generally, the government tries to adopt a good mechanism to minimize
the social cost or maximize the social welfare, while this objective relies heav-
ily on the authenticity of data collected. The reason that agents may report
untruthfully is for better rewards, being closer to a preferred facility or farther
away from an obnoxious one. In order to incentivize the agents to be honest, a
truthful mechanism has to be designed. This guarantee of real data comes with
a cost on the objective value. So, a strategy-proof mechanism with good per-
formance becomes the desire solution in the computational social choice area.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 15–24, 2022.
https://doi.org/10.1007/978-3-031-20796-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_2&domain=pdf
http://orcid.org/0000-0003-0710-8498
http://orcid.org/0000-0002-5967-227X
http://orcid.org/0000-0002-6742-8816
https://doi.org/10.1007/978-3-031-20796-9_2

16 L. Gai et al.

Chan et al. [1] gave a thorough and comprehensive survey on this topic. Facility
location game also has excellent application in other non-geographical fields, like
the temperature choosing for a classroom, or committee voting for people with
different political reviews.

In this paper, we focus on the games of locating two homogeneous facilities in
the interval [0, 1] with the maximum distance requirement included. It is mean-
ingful in reality especially when the facilities belong to one same government or
company, who does not want to pay too much operating and transportation cost
on connecting facilities. Both desirable facility and obnoxious facility are consid-
ered. Without specified statement, the facilities are assumed to be homogenous,
which means they are both desirable or both obnoxious to all the agents.

Here are some motivations for the problem with distance requirement. Take
locating the 5G mobile communication base stations as an example, the distance
between stations should not be too large due to the limited service interval.
For the band of 2.6GHz and the edge rate of 2Mbps, the maximum distance
between two stations is about 450m in dense urban areas, about 700m in general
urban areas, and about 1300m in suburban areas. For the band of 3.5GHz,
due to the high frequency and poor coverage, the maximum distance between
stations is about 100m smaller than that at 2.6GHz. This spacing standard
is currently occupied by the three major operators of China (China Mobile,
China Unicom and China Telecom). Another example is the locating of vertical
garbage stations and waste disposal site. Generally the garbages are collected
by sanitation workers and dumped into the vertical garbage station, then they
are compressed to blocks and delivered to large waste disposal site. The distance
between garbage station and waste disposal site should be in some reasonable
range to guarantee the operating efficiency. Other cases include the distance
between metro stations, the political views in election campaign, etc.

Related Works. There are huge number of literature concerning about facility
location games. The most related results are in [6,17], several mechanisms with
minimum distance requirement are designed. Note that some of the output facil-
ities satisfies the boundary condition, which means these mechanisms are also
applicable in our case with maximum distance requirement. We will show that
they are not always the good option and the choice of mechanisms is correlated
to the distance requirement parameter heavily. Procaccia and Tennenholtz [15]
first studied strategy-proof mechanism design for one facility on a line. Golomb
and Tzamos [10] studied the output of a facility location in the range of [0, 1],
focusing on minimizing the worst-case additive errors by using additive approx-
imation ratio. Zhang and Li [18] discussed the strategy-proof mechanism when
locating one facility on a line and all agents have their own weights. [13] improved
the lower bound from n−2 to (n−1)/2 for the deterministic strategy-proof mech-
anism. Fotakis and Tzamos [9] showed that any strategy-proof mechanism either
allows a unique dictator or always places the facilities at the leftmost and right-
most positions is feasible when the number of agents n ≥ 5 in the game. Fotakis

Two-Facility Location Games with Distance Requirement 17

et al. [8] studied the multistage K-facility reallocation problem on a line, where
the facility location is based on the stage-dependent locations of n agents.

Mei et al. [14] created a happiness function to measure the satisfaction of
agents and studied the upper and lower bounds of the mechanism based on the
preference and location. Krogmann et al. [11] considered facility location games
where the strategic facilities and clients influence each other. Li et al. [12] studied
the facility location games with payments and assume that facilities are strategic
players on a line.

The study for obnoxious facility location with deterministic and random-
ized mechanisms was firstly proposed by Cheng et al. [3]. Zou and Li [19] pro-
posed strategy-proof mechanisms for the facility location game with dual pref-
erence when both location and preference were private information. Dokow et
al. [5] studied strategy-proof mechanisms on a discrete graph. Feldman et al. [7]
restricted the location of facilities to a set of fixed candidate points in a certain
interval to study the mechanism design. Besides these discrete constraints, dis-
tance requirement on the facility location has also been studied. Cheng et al. [4]
put forward the model in which all agents want to stay away from the facilities
within the service range 1/2 ≤ r ≤ 1. Chen et al. [2] presented the problem of
dispersing n agents in a k–dimensional polytope meanwhile keeping a suitable
distance away from each other. Wu et al. [16] focused on a circle network to
design strategy-proof mechanisms with the minimum distance requirement.

Our Results. For the desirable facility location game with maximum distance
requirement, we prove the negative result that no deterministic strategy-proof
mechanism exists with constant approximation ratio. Then we consider the
obnoxious facility location game. Four mechanisms are designed separately and
proved to be strategy-proof. Their approximation ratios are showed in Table 1.

Table 1. Summary of the approximation ratio results under distance requirement b,
0 < b ≤ 1

0 < |y1 − y2| ≤ b

Obnoxious UB LB

M1 4
1−2b

3
M2 max{ 8

b
, 3
1−b

} 5
M3 max{ 16

3−2b
, 6
2b−1

} 3
2

M4 max{ 4
1−b

, 3
2b−1

} 3
2

Desirable +∞ /

Organization of the Paper. The rest of paper is organized as follows. In
Sect. 2, the definitions and terminologies are presented. In Sect. 3 the negative
result of desirable two-facility location game with maximum distance require-
ment is analyzed. In Sect. 4 the obnoxious two-facility location game is studied.
Four strategy-proof mechanisms are presented with approximation ratio proved.
Section 5 presents the conclusion and sketch of our future work.

18 L. Gai et al.

2 Preliminaries

Let N = {1, 2, . . . , n} be the set of agents. Each agent has a private information
of his location xi on a line interval [0, 1]. Let x = (x1, ..., xn) be the location
profile. Two facilities need to be output by a mechanism f(x) are denoted as
(y1, y2) ∈ I2. The distance requirement is denoted as 0 < |y1 − y2| ≤ b, where
b ∈ (0, 1].

For the desirable facilities case, the cost of an agent i is the minimum distance
to one of the two facilities. That is

ci(f(x), xi) = min{|xi − y1|, |xi − y2|}. (1)

Following utilitarian objective, the social cost of a mechanism f(x) with
respect to x is the sum of costs of n agents, i.e.

SC(f(x), xi) =
n∑

i=1

ci(f(x), xi). (2)

In the obnoxious facility location game, the utility of an agent i is defined as
the minimum distance to one of the two facilities which should be maximized,
i.e.,

ui(f(x), xi) = min{|xi − y1|, |xi − y2|}. (3)

Following utilitarian objective, the social utility of a mechanism f(x) with
respect to x is

SU(f(x), xi) =
n∑

i=1

ui(f(x), xi). (4)

Following the definitions in literatures, a mechanism f is strategy-proof if
any agent cannot increase the benefit by misreporting his location information.
Specifically, given agent i, profile x = {xi, x−i} ∈ In, and any location x′

i ∈ In,
it holds that

ui(f(xi,x−i), xi) ≥ ui(f(x′
i,x−i), xi).

A mechanism f is group strategy-proof if for any coalition of agents, at least
one of them cannot benefit if they misreport simultaneously. Specifically, given
a non-empty set S ⊆ N , profile x = {xS , x−S} ∈ In, and any location x′

S ∈ In,
it holds that

ui(f(xS ,x−S), xi) ≥ ui(f(x′
S ,x−S), xi),

where x−i = (x1, x2, ..., xi−1, xi+1, ..., xn) is the location profile of all agents
without agent i.

A mechanism f with maximizing objective has an approximation ratio r ≥ 1
if for any location profile x, the ratio between the optimal solution OPT (x) and
the mechanism solution SU(f,x) is at most r, i.e., OPT (x) ≤ rSU(f,x). The
version with minimizing objective is defined similarly.

Two-Facility Location Games with Distance Requirement 19

3 Desirable Two-Facility Location Game with Maximum
Distance Requirement

In the desirable two-facility location game, all agents want to get close
to one of the two homogeneous facilities. The cost of an agent i is
ci((y1, y2), xi) = min{|xi−y1|, |xi−y2|}} and the social cost is SC((y1, y2),x) =∑n

i=1 ci((y1, y2), xi). So, the problem with maximum distance requirement can
be shown as

min(y1,y2)∈D

n∑

i=1

min{|xi − y1|, |xi − y2|},

where D = {(y1, y2)|0 < |y1 − y2| ≤ b, 0 ≤ y1 ≤ y2 ≤ 1, 0 < b ≤ 1}.
Fotakis and Tzamos [9] has proved that for instances with more than 5 agents,

any deterministic strategy-proof mechanism either admits a unique dictator, or
always places the facilities at the leftmost and the rightmost location of the
instance. In the following we will show that these two mechanisms do not fit
the case with maximum distance requirement. Furthermore, there is no other
strategy-proof mechanism could reach a constant approximation ratio.

Theorem 1. Given n ≥ 5, no strategy-proof mechanism has bounded approxi-
mation ratio for the desirable two-facility location game with maximum distance
requirement.

The proof is omitted in this version.

4 Obnoxious Two-Facility Location Game with Maximum
Distance Requirement

In this section, we study the obnoxious homogeneous two-facility location game,
where all agents want to be far away from both homogeneous facilities. The
utility of agent i is defined as ui((y1, y2), xi) = min{|xi − y1|, |xi − y2|} and
the social utility is SU((y1, y2),x) =

∑n
i=1 ui((y1, y2), xi). The problem can be

shown as below

max(y1,y2)∈D

n∑

i=1

min{|xi − y1|, |xi − y2|},

where D = {(y1, y2)|0 < |y1 − y2| ≤ b, 0 ≤ y1 ≤ y2 ≤ 1, 0 < b ≤ 1}.

Mechanism M1. Define T1 = {i|xi ∈ [0, 1
2], xi ∈ x}, T2 = {i|xi ∈ (12 , 1], xi ∈

x}, N = T1

⋃
T2.

Given 0 < b < 1
2 , if |T1| ≥ |T2|, return (y1, y2) = (1 − b, 1); if |T1| < |T2|,

return (y1, y2) = (0, b).

Theorem 2. The mechanism M1 is group strategy-proof with an approximation
ratio r = 4

1−2b with 0 < b < 1
2 .

20 L. Gai et al.

Proof. Given 0 < b < 1
2 , for any agent i in T1,

ui((1 − b, 1), xi) = (1 − b) − xi ≥ ui((0, b), xi) = min{xi, |b − xi|}}; (5)

for any agent i in T2,

ui((1 − b, 1), xi) = min{xi, (1 − b) − xi} ≤ ui((0, b), xi) = xi − b; (6)

Let S ⊆ N be the collation of the agents. When all agents cannot gain
together by misreporting, the mechanism is group strategy-proof. We denote n1,
n2 as the number of agents in the interval T1, T2 with truthful report, respec-
tively; n′

1, n′
2 as the number of agents in the interval T1, T2 with misreporting.

The new false location profile is denoted as x′ and the facility location is (y′
1, y

′
2).

There are two cases.
Case 1. n1 ≥ n2, thus (y1, y2) = (1 − b, 1).
Case 1.1. If n′

1 ≥ n′
2, then (y′

1, y
′
2) = (1−b, 1) and ui(f(x), xi) = ui(f(x′), xi)

for any agent i ∈ N .
Case 1.2. If n′

1 < n′
2, then (y′

1, y
′
2) = (0, b). We can observe that at least one

agent i in [0, 1
2] misreports his location to x′

i ∈ (12 , 1]. Because of (5) and (6),
ui(f(x), xi) ≥ ui(f(x′), xi).

Case 2. n1 < n2, thus (y1, y2) = (0, b). The analysis of strategy-proofness is
similar to that of Case 1.

The Mechanism is group strategy-proof.
We next consider the approximation ratio. Without loss of generality, assume

that |T1| ≥ |T2|, and the mechanism outputs (y1, y2) = (1 − b, 1). The approxi-
mation ratio

r =
OPT (x)

SU((1 − b, 1),x)

=
maxy1,y2∈D

∑
i∈N min{|y1 − xi|, |y2 − xi|}∑

i∈T1
min{|xi − 1 + b|, |1 − xi|} +

∑
i∈T2

min{|xi − 1 + b|, |1 − xi|}

≤
∑

i∈N 1
∑

i∈T1
(1 − b − 1

2) +
∑

i∈T2
0

=
n

|T1|(12 − b)

≤ 4
1 − 2b

.

��
We can get the lower bound of mechanism M1 when n/2 agents are located

at point 1/2 and n/2 agents are at point 1. Under this case, OPT (x) = 3n/4,
and by mechanism M1, the output is (1 − b, 1), the social utility is n

2 (
1
2 − b).

Since OPT (x)
SU((1−b,1),xi)

= 3 + 6b
n−2b , the lower bound is 3.

Mechanism 2. Define T3 = {i|xi ∈ [0, b/4], xi ∈ x}, T4 = {i|xi ∈ (b/4, 1/2], xi ∈
x}, T5 = {i|xi ∈ (1/2, 4−b

4], xi ∈ x} and T6 = {i|xi ∈ (4−b
4 , 1], xi ∈ x}, N =

Two-Facility Location Games with Distance Requirement 21

T3 ∪T4 ∪T5 ∪T6. Given 2/3 < b < 1, if |T3|+ |T5| ≥ |T4|+ |T6|, return (y1, y2) =
(b/2, 1); if |T3| + |T5| < |T4| + |T6|, return (y1, y2) = (0, 2−b

2).
Before proving the performance of mechanism M2, we give the following

conclusion.
Lemma 1. For any agent i,

|xi − y1| ≤ |xi − b|+1, |xi − y2| ≤ |1−xi|+1, |xi − y1| = |xi|+ |y1| ≤ xi+1 (7)

|xi − y1| ≤ |xi − 3 − 2b
4

| + 1 (8)

|xi − y1| ≤ |xi − 1 − b

2
| + 1, |xi − y2| ≤ |xi − 1 + b

2
| + 1 (9)

The proof of is omitted due to page constraint.

Theorem 3. The mechanism is group strategy-proof with an approximation
ratio r = max{8

b ,
3

1−b} with 2/3 < b < 1.

Proof. Given 2
3 < b < 1, for any agent i ∈ T3, ui((b2 , 1), xi) = b

2 − xi ≥
ui((0, 2−b

2), xi) = xi;
for any agent i ∈ T4, ui((b2 , 1), xi) = | b2 − xi| ≤ ui((0, 2−b

2), xi) =
min{xi,

2−b
2 − xi};

for any agent i ∈ T5, ui((b2 , 1), xi) = min{xi − b
2 , 1− xi} ≥ ui((0, 2−b

2), xi) =
|xi − 2−b

2 |;
for any agent i ∈ T6, ui((b2 , 1), xi) = 1 − xi ≤ ui((0, 2−b

2), xi) = xi − 2−b
2 .

The proof of strategy-proofness is similar to that of Theorem 1.
Without loss of generality, assume that |T3| + |T5| ≥ |T4| + |T6|, and the

mechanism outputs (y1, y2) = (b/2, 1).

SU((
b

2
, 1), x) =

∑

i∈N

min{|xi − b

2
|, |1 − xi|}

≥ |T3| b
4
+

∑

i∈T5

min{|xi − b

2
|, |1 − xi|} +

∑

i∈T4∪T6

min{|xi − b

2
|, |1 − xi|}

From Lemma 1, we know that

OPT (x) = max(y1,y2)∈D

∑

i∈N

min{|y1 − xi|, |y2 − xi|}

≤ max(y1,y2)∈D

∑

i∈T3

ui(f(x), xi) +max(y1,y2)∈D

∑

i∈T5

ui(f(x), xi)

+max(y1,y2)∈D

∑

i∈T4∪T6

ui(f(x), xi)

≤ |T3|(1 − xi) + |T5|(1 − xi) +
∑

i∈T4∪T6

min{|xi − b

2
|, |1 − xi|} + 1)

≤ |T3|(2 − xi) + |T5|(2 − xi) +
∑

i∈T4∪T6

min{|xi − b

2
|, |1 − xi|}

22 L. Gai et al.

The approximation ratio is

r =
OPT (x)

SU(b2 , 1), x)

≤ |T3|(2 − xi) + |T5|(2 − xi)
|T3| b4 +

∑
i∈T5

min{|xi − b
2 |, |1 − xi|}

≤ max{ |T3|(2 − xi)
|T3| b4

,max{ |T5|(2 − xi)
|T5||xi − b

2 | ,
|T5|(2 − xi)
|T5||1 − xi| }}

= max{8
b
,

3/2
1
2 − b

2

,
4 + b

b
} = max{8

b
,

3
1 − b

}

Lower Bound. Suppose there are n/4 agents located at point b/4, n/4 agents
located at point 1/2, n/4 agents located at point 4−b

4 and n/4 agents located at
point 1. Under this case, OPT (x) = 5n

8 , and by mechanism M2, the output is
(b/2, 1), the social utility is n

8 . So OPT (x)/SU((b/2, 1), xi) = 5, the lower bound
of mechanism M2 is 5.

Mechanism M3. Define T7 = {i|xi ∈ [0, 3−2b
8], xi ∈ x}, T8 = {i|xi ∈

(3−2b
8 , 1

2], xi ∈ x}, T9 = {i|xi ∈ (12 ,
5+2b
8], xi ∈ x} and T10 = {i|xi ∈

(5+2b
8 , 1], xi ∈ x}, N = T7 ∪ T8 ∪ T9 ∪ T10.

Given 1
2 ≤ b ≤ 1, if |T7| + |T9| ≥ |T8| + |T10|, return (y1, y2) = (3−2b

4 , 1); if
|T7| + |T9| < |T8| + |T10|, return (y1, y2) = (0, 1+2b

4).

Theorem 4. The mechanism M3 is group strategy-proof with an approximation
ratio r = max{ 16

3−2b ,
6

2b−1}.
The proof is omitted here and stated in the extended version.

Lower Bound. Suppose there are n/4 agents located at point 3−2b
8 , n/4

agents located at point 1/2, n/4 agents located at point (5 + 2b)/8 and
n/4 agents located at point 1. In this case, OPT (x) = 3n/8, and the out-
put of mechanism M3 is (3−2b

4 , 1) with the social utility of n
8(1+b) . Since

OPT (x)/SU((3−2b
4 , 1), xi) = 3

1+b ∈ [3/2, 2), the lower bound of mechanism M3
is 3/2.

Mechanism M4. Define T11 = {i|xi ∈ [0, 1−b
2], xi ∈ x}, T12 = {i|xi ∈

(1−b
2 , 1/2], xi ∈ x}, T13 = {i|xi ∈ (1/2, 1+b

2], xi ∈ x} and T14 = {i|xi ∈
(1+b

2 , 1], xi ∈ x}, N = T11 ∪ T12 ∪ T13 ∪ T14.
Given 1/2 ≤ b ≤ 1, if |T11|+ |T13| ≥ |T12|+ |T14|, return (y1, y2) = (1− b, 1);

if |T11| + |T13| < |T12| + |T14|, return (y1, y2) = (0, b).

Theorem 5. The mechanism M4 is group strategy-proof with an approximation
ratio r = max{ 4

1−b ,
3

2b−1}.
The proof is omitted due to page constraint.

Two-Facility Location Games with Distance Requirement 23

Lower Bound. Suppose there are n/4 agents located at point 0, n/4 agents
located at point 1−b

2 , n/4 agents located at point 1+b
2 and n/4 agents located

at point 1. In this case, OPT (x) = n
4(1+b) . The output of mechanism M4 is

(1 − b, 1), the social utility is n
2(1−b) . Since OPT (x)

SU((1−b,1),xi)
= 1+b

2−2b ∈ [3/2,+∞),
the lower bound of mechanism M4 is 3/2.

Given above four mechanisms with approximation ratios related to distance
requirement b, we present the Fig. 1 to show their comparison. The curves reflect
the change of approximation ratios.

Fig. 1. The mechanism with better performance under different distance requirement

5 Conclusions

In this paper, we consider the two-facility location game with maximum dis-
tance requirement. For the game of locating two desirable facilities with max-
imum distance requirement on a line interval, we show that no deterministic
strategy-proof mechanism have a bounded approximation ratio comparing with
the optimal solution. For the game of locating two obnoxious facilities with max-
imum distance requirement, we propose group strategy-proof mechanisms and
prove their performance ratios. Since the performance ratio is highly correlated
to distance requirement parameter b, we recommend Fig. 1 to show the proper
choice of mechanisms under different circumstances.

Future work includes the randomized mechanism design for the obnoxious
two-facility location game with distance requirement and the case with more
facilities. We will also study the facility location game with both minimum and
maximum distance requirement.

24 L. Gai et al.

References

1. Chan, H., Filos-Ratsikas, A., Li, B., Li, M., Wang, C.: Mechanism design for facility
location problems: a survey. arXiv preprint arXiv:2106.03457 (2021)

2. Chen, J., Li, B., Li, Y.: Efficient approximations for the online dispersion problem.
SIAM J. Comput. 48(2), 373–416 (2019)

3. Cheng, Y., Yu, W., Zhang, G.: Mechanisms for obnoxious facility game on a path.
In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831, pp. 262–
271. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22616-8_21

4. Cheng, Y., Yu, W., Zhang, G.: Strategy-proof approximation mechanisms for an
obnoxious facility game on networks. Theor. Comput. Sci. 497, 154–163 (2013)

5. Dokow, E., Feldman, M., Meir, R., Nehama, I.: Mechanism design on discrete lines
and cycles. In: Proceedings of the 13th ACM Conference on Electronic Commerce,
pp. 423–440 (2012)

6. Duan, L., Li, B., Li, M., Xu, X.: Heterogeneous two-facility location games with
minimum distance requirement. In: AAMAS, pp. 1461–1469 (2019)

7. Feldman, M., Fiat, A., Golomb, I.: On voting and facility location. In: Proceedings
of the 2016 ACM Conference on Economics and Computation, pp. 269–286 (2016)

8. Fotakis, D., Kavouras, L., Kostopanagiotis, P., Lazos, P., Skoulakis, S., Zarifis, N.:
Reallocating multiple facilities on the line. Theor. Comput. Sci. 858, 13–34 (2021)

9. Fotakis, D., Tzamos, C.: On the power of deterministic mechanisms for facility
location games. ACM Trans. Econ. Comput. (TEAC) 2(4), 1–37 (2014)

10. Golomb, I., Tzamos, C.: Truthful facility location with additive errors. arXiv
preprint arXiv:1701.00529 (2017)

11. Krogmann, S., Lenzner, P., Molitor, L., Skopalik, A.: Two-stage facility location
games with strategic clients and facilities. arXiv preprint arXiv:2105.01425 (2021)

12. Li, M., Wang, C., Zhang, M.: Budgeted facility location games with strategic facili-
ties. In: Proceedings of the Twenty-Ninth International Conference on International
Joint Conferences on Artificial Intelligence, pp. 400–406 (2021)

13. Lu, P., Sun, X., Wang, Y., Zhu, Z.A.: Asymptotically optimal strategy-proof mech-
anisms for two-facility games. In: Proceedings of the 11th ACM Conference on
Electronic Commerce, pp. 315–324 (2010)

14. Mei, L., Li, M., Ye, D., Zhang, G.: Facility location games with distinct desires.
Discrete Appl. Math. 264, 148–160 (2019)

15. Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money.
ACM Trans. Econ. Comput. (TEAC) 1(4), 1–26 (2013)

16. Wu, X., Mei, L., Zhang, G.: Two-facility location games with a minimum distance
requirement on a circle. In: Du, D.-Z., Du, D., Wu, C., Xu, D. (eds.) COCOA 2021.
LNCS, vol. 13135, pp. 497–511. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-92681-6_39

17. Xu, X., Li, B., Li, M., Duan, L.: Two-facility location games with minimum distance
requirement. J. Artif. Intell. Res. 70, 719–756 (2021)

18. Zhang, Q., Li, M.: Strategyproof mechanism design for facility location games with
weighted agents on a line. J. Comb. Optim. 28(4), 756–773 (2014). https://doi.
org/10.1007/s10878-013-9598-8

19. Zou, S., Li, M.: Facility location games with dual preference. In: Proceedings of
the 2015 International Conference on Autonomous Agents and Multiagent Systems,
pp. 615–623 (2015)

http://arxiv.org/abs/2106.03457
https://doi.org/10.1007/978-3-642-22616-8_21
http://arxiv.org/abs/1701.00529
http://arxiv.org/abs/2105.01425
https://doi.org/10.1007/978-3-030-92681-6_39
https://doi.org/10.1007/978-3-030-92681-6_39
https://doi.org/10.1007/s10878-013-9598-8
https://doi.org/10.1007/s10878-013-9598-8

Constrained Heterogeneous Two-Facility
Location Games with Max-Variant Cost

Qi Zhao, Wenjing Liu(B) , Qizhi Fang, and Qingqin Nong

Ocean University of China, Qingdao 266100, China
zq1012@stu.ouc.edu.cn, {liuwj,qfang,qqnong}@ouc.edu.cn

Abstract. In this paper, we propose a constrained heterogeneous facil-
ity location model where a set of alternative locations are feasible for
building facilities and the number of facilities built at each location is
limited. Supposing that a set of agents on the real line can strategically
report their locations and each agent’s cost is her distance to the fur-
ther facility that she is interested in, we study deterministic mechanism
design without money for constrained heterogeneous two-facility location
games.

Depending on whether agents have optional preference, the problem
is considered in two settings: the compulsory setting and the optional
setting. In the compulsory setting where each agent is served by the
two heterogeneous facilities, we provide a 3-approximate deterministic
group strategyproof mechanism for the sum/maximum cost objective
respectively, which is also the best deterministic strategyproof mech-
anism under the corresponding social objective. In the optional setting
where each agent can be interested in one of the two facilities or both, we
propose a deterministic group strategyproof mechanism with approxima-
tion ratio of at most 2n+1 for the sum cost objective and a deterministic
group strategyproof mechanism with approximation ratio of at most 9
for the maximum cost objective.

Keywords: Mechanism design · Facility location · Strategyproof ·
Constrained

1 Introduction

In the origin mechanism design problem for heterogeneous facility location
games, there are a set of strategic agents who are required to report their private
information and a social planner intends to locate several heterogeneous facilities
by a mechanism based on the reported information, with the purpose of optimiz-
ing some social objective. In this paper, we study the problem of locating two
heterogeneous facilities under a constrained setting, which means a set of alter-
native locations are feasible for building facilities and the number of facilities
built at each location is limited.

Compared with the origin setting where facilities can be built anywhere in
a specific metric space and there is no limit on the number of facilities at each
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 25–43, 2022.
https://doi.org/10.1007/978-3-031-20796-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_3&domain=pdf
http://orcid.org/0000-0003-4826-2088
http://orcid.org/0000-0002-0895-7793
https://doi.org/10.1007/978-3-031-20796-9_3

26 Q. Zhao et al.

location, our constrained setting models well many practical applications. For
example, in the realistic urban planning, facilities can only be built at designated
sites and the number of facilities at each site is limited. To accommodate these
constraints, we propose a multiset of feasible locations and at most one facility
is permitted to build at each location. Further, we focus on the Max-variant
where the cost of each agent depends on her distance to the farthest one if she
is served by two or more heterogeneous facilities. The Max-variant can be found
applications in natural scenarios [26]. For example, a local authority plans to
locate different raw material warehouses for several processing plants. Assuming
each plant has multiple transport trucks having the same speed, the time that
the plant has to wait depends on its distance to the farthest one if it requires
raw materials from different sites.

We discuss the mechanism design problem for constrained heterogeneous
two-facility location games with Max-variant cost in two settings: the first is
the compulsory setting, where each agent is served by the two heterogeneous
facilities; the second is the optional setting, where each agent is served by either
one of the two facilities or both. Considering that agents may manipulate the
facility locations by misreporting their private information, we concentrate on
mechanisms that can perform well under some social objective (e.g., minimizing
the sum/maximum cost) while guaranteeing truthful report from agents (i.e.,
strategyproof or group strategyproof).

1.1 Our Contribution

This paper studies deterministic mechanism design without money for con-
strained heterogeneous two-facility location games with Max-variant cost under
the objective of minimizing the sum/maximum cost.

Our key innovations and results are summarized as follows.
In Sect. 2, we formulate the constrained heterogeneous facility location game

with Max-variant cost. We propose a finite multiset of alternative locations which
are feasible for building facilities and require that at most one facility can be
built at each location. Thus, by adjusting the number of same elements in the
multiset, the model can accommodate different scenarios where the number of
facilities at the same location is limited.

In Sect. 3, we focus on deterministic mechanism design in the compul-
sory setting. We propose a set of adjacent alternative location pairs, which
all agents have single peaked preferences over and the optimal solution under
the sum/maximum cost objective can always be found in. We prove that
any deterministic strategyproof mechanism has an approximation ratio of at
least 3 under the sum/maximum cost objective. In addition, we present 3-
approximate deterministic group strategyproof mechanisms for both social objec-
tives, which implies that the best deterministic strategyproof mechanisms have
been obtained.

In Sect. 4, we discuss the optional setting. For the sum cost objective, we pro-
pose a deterministic group strategyproof mechanism with approximation ratio

Constrained Heterogeneous Two-Facility Location Games 27

of at most 2n + 1. For the maximum cost objective, we design a deterministic
group strategyproof mechanism with approximation ratio of at most 9.

1.2 Related Work

Mechanism design without money for facility location games has been exten-
sively studied in recent years. Early studies focused on the characterization of
strategyproof mechanisms. Moulin [19] identified all the possible strategyproof
mechanisms for one-facility location on the line with single peaked preferences,
whose results were extended by Schummer and Vohra [21] and Dokow et al. [9]
to tree and cycle networks.

Approximate mechanism design without money was initiated by Procaccia
and Tennenholtz [20], who studied deterministic and randomized strategyproof
mechanisms with constant approximation ratio for facility location games under
the sum cost and the maximum cost in three settings: one-facility, two-facility
and multiple facilities per agent. Following this research agenda, numerous stud-
ies have emerged, including improvements on the lower/upper bound of approx-
imation [14,17] and further variants.

Cheng et al. [7] introduced approximate mechanism design for obnoxious
facility location games where the facility is not desirable to each agent. Zou
and Li [29] studied the dual preference setting where the facility can be desir-
able or undesirable for different agents. Zhang and Li [27] introduced weights to
agents and Filos-Ratsikas et al. [12] studied one-facility location problem with
double-peaked preferences. Serafino and Ventre [22] introduced heterogeneous
two-facility location games where each agent cares about either one facility or
both and her cost depends on the sum of distances to her interested facilities
(referred to as the Sum-variant). Later, Yuan et al. [26] considered the Min-
variant and Max-variant instead and Anastasiadis and Deligkas [1] studied het-
erogeneous k-facility setting with Min-variant. Besides, various individual and
social objectives were also studied. Mei et al. [18] introduced a happiness fac-
tor to measure each agent’s individual utility. Feigenbaum and Sethuraman [10]
considered the Lp-form of the vector of agent-costs instead of the classic sum
cost. Cai et al. [4] and Chen et al. [5] studied facility location problems under
the objective of minimizing the maximum envy. Ding et al. [8] and Liu et al. [16]
considered the envy ratio objective. Zhou et al. [28] studied group-fair facility
location problems.

Further, motivated by real-world applications, researchers have begun to
study the mechanism design problem with constraints on the facilities. Aziz
et al. [2,3] studied facility location problems with capacity constraints. Chen
et al. [6] studied the two-opposite-facility location problem with maximum dis-
tance constraint by imposing a penalty. Xu et al. [25] studied minimum distance
requirement for the heterogeneous two-facility location problem. In addition,
considering that in reality the feasible locations that facilities could be built at
are usually limited, mechanism design for facility location games with limited
locations were also studied. Sui and Boutilier [23] studied approximately strate-
gyproof mechanisms for facility location games with constraints on the feasible

28 Q. Zhao et al.

placement of facilities. Feldman et al. [11] studied the one-facility location set-
ting under the sum cost objective in the context of voting embedded in some
underlying metric space. Tang et al. [24] further considered the maximum cost
objective and the two-facility setting. Li et al. [15] studied the heterogeneous
two-facility setting with optional preference, which is also the most related to
our work among all studies on the constrained heterogeneous facility location
problem. However, there are at least three differences between us: (1) our model
requires a limit on the number of facilities at each feasible location and [15] does
not; (2) each agent’s location is private and her preference on facilities is public
in our model while it is the opposite in [15]; (3) we consider the Max-variant
cost while [15] considers the Min-variant where the cost of each agent depends
on her distance to the closest facility within her acceptable set.

2 Model

Let N = {1, 2, . . . , n} be a set of agents located on the real line R and F =
{F1, F2} be the set of two heterogeneous facilities to be built. Each agent i ∈ N
has a location xi ∈ R and a facility preference pi ⊆ F , where xi is i’s private
information and pi is public. Denote x = (x1, x2, . . . , xn) and p = (p1, p2, . . . , pn)
as the n agents’ location profile and facility preference profile, respectively. For
i ∈ N , let x−i = (x1, . . . , xi−1, xi+1, . . . , xn) be the location profile without
agent i, then x = (xi,x−i). For S ⊆ N , denote xS = (xi)i∈S , pS = (pi)i∈S , and
x−S = (xi)i/∈S , then x = (xS ,x−S).

Let A = {a1, a2, . . . , am} ∈ Rm be a multiset of alternative locations which
are feasible for building facilities and at most one facility can be built at each
location. Assume without loss of generality that a1 ≤ a2 ≤ . . . ≤ am. Denote an
instance of the n agents by I(x,p, A) or simply by I without confusion.

Individual and Social Objectives. When locating F1, F2 at y1 ∈ A, y2 ∈
A\{y1} respectively, denote the facility location profile by y = (y1, y2). Under
Max-variant, the cost of agent i is denoted by ci(y, (xi, pi)) = maxFj∈pi

|yj −xi|.
While each agent seeks to minimize her individual cost, the social planner
aims to minimize the sum cost or maximum cost of the n agents. For a loca-
tion and facility preference profile (x,p) ∈ Rn × (

2F)n, the sum cost and
the maximum cost under y are denoted by sc(y, (x,p)) =

∑
i∈N ci(y, (xi, pi))

and mc(y, (x,p)) = maxi∈N ci(y, (xi, pi)), respectively. Let OPTsc(x,p) and
OPTmc(x,p) be the optimal solution under the sum cost and the maximum
cost, respectively.

Considering the limit on facility locations, the mechanism in our constrained
setting is defined as follows.

Definition 1. A deterministic mechanism f is a function that maps the n
agents’ location profile x and facility preference profile p to a location profile
of the two facilities, i.e., f(x,p) = y = (y1, y2),∀(x,p) ∈ Rn × (

2F)n, where
y = (y1, y2) should satisfy y1 ∈ A and y2 ∈ A\{y1}.

Constrained Heterogeneous Two-Facility Location Games 29

Given a mechanism f and a reported location profile x′ ∈ Rn, the cost of
agent i ∈ N under f is ci(f(x′,p), (xi, pi)). The sum cost and maximum cost of
f are sc(f(x′,p), (x,p)) =

∑
i∈N ci(f(x′,p), (xi, pi)) and mc(f(x′,p), (x,p)) =

maxi∈N ci(f(x′,p), (xi, pi)), respectively. Since agents may misreport their loca-
tions to benefit themselves, strategyproofness of mechanisms becomes necessary.

Definition 2. A mechanism f is strategyproof if each agent can never benefit
from misreporting her location, regardless of the others’ strategies, i.e., for every
location and facility preference profile (x,p) ∈ Rn × (

2F)n, every agent i ∈ N ,
and every x′

i ∈ R, ci(f(x,p), (xi, pi)) ≤ ci(f((x′
i,x−i),p), (xi, pi)).

Definition 3. A mechanism f is group strategyproof if for any group of
agents misreporting their locations, at least one of them cannot benefit regard-
less of the others’ strategies, i.e., for every location and facility preference profile
(x,p) ∈ Rn × (

2F)n, every group of agents S ⊆ N and every x′
S ∈ R|S|, there

exists i ∈ S such that ci(f(x,p), (xi, pi)) ≤ ci(f((x′
S ,x−S),p), (xi, pi)).

We aim at deterministic strategyproof or group strategyproof mechanisms
that can perform well under the sum/maximum cost objective. The worst-case
approximation ratio is used to evaluate a mechanism’s performance. Without con-
fusion, denote sc(f(x′,p), (x,p)), sc (OPTsc(x,p), (x,p)), mc(f(x′,p), (x,p))
and mc (OPTmc(x,p), (x,p)) by sc(f, (x,p)), sc (OPT, (x,p)), mc(f, (x,p)) and
mc (OPT, (x,p)) respectively for simplicity. The approximation ratio under the
sum cost objective is defined as follows and it is similar under the maximum cost
objective.

Definition 4. A mechanism f is said to have an approximation ratio of
ρ(ρ ≥ 1) under the sum cost objective, if

ρ = sup
I(x,p,A)

sc(f, (x,p))
sc(OPT, (x,p))

. (1)

In this paper, we are interested in deterministic strategyproof or group strat-
egyproof mechanisms with small approximation ratio under the sum/maximum
cost objective.

Notations. For a location profile x ∈ Rn, denote the median location in x
by med(x), the leftmost location in x by lt(x) = mini∈N{xi}, the rightmost
location by rt(x) = maxi∈N{xi}, and the center location by cen(x) = lt(x)+rt(x)

2 .
For a facility preference profile p ∈ (

2F)n, denote Nk = {i ∈ N | pi = {Fk}} for
k ∈ {1, 2}, and N1,2 = {i ∈ N | pi = {F1, F2}}.

3 Compulsory Setting

In this section, we study the compulsory setting where each agent is served
by the two heterogeneous facilities, i.e., pi = {F1, F2},∀i ∈ N . For simplicity,
we omit pi or p in this section. For example, replace (x,p) by x and the cost

30 Q. Zhao et al.

of agent i ∈ N under the facility location profile y = (y1, y2) is denoted by
ci(y, xi) = maxj∈{1,2} |yj − xi|.

For the multiset of alternative locations A = {a1, . . . , am} with a1 ≤ . . . ≤
am, denote AP = {(a1, a2), (a2, a3), . . . , (am−1, am)}. Then the real line can be
partitioned into m−1 zones where the kth zone (denoted by Zk, k = 1, . . . , m−1)
represents the set of points whose favorite location pair in AP is (ak, ak+1). We
refer to Zk as the zone of location pair (ak, ak+1). Obviously, it holds that

Zk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
−∞, ak+ak+2

2

]
, k = 1

(
ak−1+ak+1

2 , ak+ak+2
2

]
, 2 ≤ k ≤ m − 2

(
ak−1+ak+1

2 ,+∞
)

, k = m − 1

(2)

The preferences of all agents over AP are (not strictly) single peaked : for each
agent i ∈ N with location xi ∈ Zl, her peak (or favorite) in AP is (al, al+1) and
her cost under (ak, ak+1) monotonically increases as |k − l| increases. Based on
the single peaked preference, locating at the peak of x’s any ith statistic order
(denoted by x(i)) is group strategyproof.

Lemma 1. Given a location profile x, locating at the peak of x(i) in AP for any
i ∈ {1, 2, . . . , n} is group strategyproof.

Proof. Given any i, the set of agents N can be divided into L(i) = {j ∈ N |
xj < x(i)}, R(i) = {j ∈ N | xj > x(i)}, and M(i) = {j ∈ N | xj = x(i)}.

To show group strategyproofness, we need to prove that for every nonempty
S ⊆ N with deviation x′

S ∈ R|S|, there exists j ∈ S who cannot benefit from
the coalitional deviation. Denote x′ = (x′

S ,x−S) and the mechanism by f .
Case 1: M(i) ∩ S 	= ∅. Then the cost of any agent j ∈ M(i) ∩ S cannot

decrease by the deviation since f(x) is her favorite.
Case 2: M(i)∩S = ∅. If x′

(i) < x(i), there must exist some agent j ∈ R(i)∩S

who prefers the peak of x(i) to that of x′
(i) since xj > x(i), which implies that

agent j cannot benefit from the deviation. Similarly, if x′
(i) > x(i), there must

exist some agent j ∈ L(i) ∩ S who prefers the peak of x(i) to that of x′
(i) since

xj < x(i) and cannot benefit from the deviation. ��
Lemma 1 provides a class of group strategyproof mechanisms for the com-

pulsory setting where all agents are served by two facilities. Next we will select
proper mechanisms from this class for the sum/maximum cost objective respec-
tively.

3.1 Sum Cost

For the sum cost objective, we first show that there exists an optimal solution
where the two facilities are located at adjacent alternatives.

Lemma 2. Given a location profile x ∈ Rn, there exists an optimal solution in
AP under the sum cost objective.

Constrained Heterogeneous Two-Facility Location Games 31

Proof. Let OPTsc(x) = (y�
1 , y

�
2) be an optimal solution. Without loss of gen-

erality, assume that y�
1 ≤ y�

2 . Supposing there exists some a ∈ A such that
y�
1 ≤ a ≤ y�

2 , we only need to show that sc((y�
1 , a),x) ≤ sc((y�

1 , y
�
2),x).

For each agent i ∈ N , ci((y�
1 , a), xi) = max{|y�

1 − xi|, |a − xi|},
ci((y�

1 , y
�
2), xi) = max{|y�

1 − xi|, |y�
2 − xi|}. If xi ≤ (a + y�

2)/2, obviously
ci((y�

1 , a), xi) ≤ ci((y�
1 , y

�
2), xi); otherwise, ci((y�

1 , a), xi) = |y�
1 − xi| =

ci((y�
1 , y

�
2), xi).

Thus, we have

sc((y�
1 , a),x) =

∑

i∈N

ci((y�
1 , a), xi) (3)

=
∑

i:xi≤(a+y�
2)/2

ci((y�
1 , a), xi) +

∑

i:xi>(a+y�
2)/2

ci((y�
1 , a), xi) (4)

≤
∑

i:xi≤(a+y�
2)/2

ci((y�
1 , y

�
2), xi) +

∑

i:xi>(a+y�
2)/2

ci((y�
1 , y

�
2), xi) (5)

= sc((y�
1 , y

�
2),x) (6)

��
Intuitively, each agent always prefers the two facilities located as close as

possible, since her cost depends on her distance to the farther one. By Lemma
2, an optimal solution (or mechanism) can always be found in m − 1 steps.
However, it may be not strategyproof. Consider an instance I(x, A) with x =
(0, 2), A = {−1 − 2ε,−1, 1 + 3ε} where ε > 0 is sufficiently small. It holds
that OPTsc(x) = (−1, 1 + 3ε), c1(OPTsc(x), x1) = 1 + 3ε. Replacing x1 = 0 by
x′
1 = −1, we have OPTsc(x′) = (−1−2ε,−1), c1(OPTsc(x′), x1) = 1+2ε. Thus,

agent 1 with x1 = 0 can strictly decrease her cost by reporting x′
1 = −1.

Theorem 1. Under the sum cost objective, any deterministic strategyproof
mechanism has an approximation ratio of at least 3.

Proof. Suppose f is a deterministic strategyproof mechanism with approxima-
tion ratio of 3 − δ for some δ > 0.

Consider an instance I(x, A) with x = (−ε, ε) and A = {−1,−1, 1, 1}, where
ε > 0 is sufficiently small. f(x) can be (−1,−1), (1, 1), (−1, 1), or (1,−1)
and assume w.l.o.g. that f(x) = (1, 1) or (−1, 1). Then the cost of agent 1
is c1(f(x), x1) = 1 + ε.

For another instance I(x′, A) with x′ = (−1, ε), it holds that OPTsc(x′) =
(−1,−1) and sc(OPT,x′) = 1 + ε. If f(x′) = (1, 1), (−1, 1), or (1,−1), then
sc(f,x′) ≥ 3 − ε. This implies that

sc(f,x′)
sc(OPT,x′)

≥ 3 − ε

1 + ε
> 3 − δ (7)

for sufficiently small ε > 0, which is a contradiction. Thus, f(x′) = (−1,−1).
Note that c1(f(x′), x1) = 1 − ε. This indicates that agent 1 can decrease

her cost by misreporting her location as x′
1 = −1, which contradicts f ’s strate-

gyproofness. ��

32 Q. Zhao et al.

Mechanism 1. Given a location profile x ∈ Rn, output the peak of med(x) in
AP , i.e., the location pair (y1, y2) ∈ argmin

(s1,s2)∈AP

maxj∈{1,2} |sj −med(x)|, breaking

ties in any deterministic way.

Theorem 2. Mechanism 1 is group strategyproof and has an approximation
ratio of 3 under the sum cost objective.

Proof. By Lemma 1, Mechanism 1 is group strategyproof. We now turn to its
approximation ratio.

Given a location profile x ∈ Rn, let OPTsc(x) = (y�
1 , y

�
2) ∈ AP be an optimal

solution. Denote Mechanism 1 by f and f(x) = (y1, y2).
Considering that both f(x) and OPTsc(x) are adjacent location pairs in AP ,

assume w.l.o.g. that (y�
1 , y

�
2) is on the right of (y1, y2).

Let y′
2 ∈ A be the location adjacent to the right of y2 and y′ = (y1+y′

2)/2 be
the right border of the zone of (y1, y2). We first give two claims, then compare
sc(f,x) with sc(OPT,x).

Claim 1. |{i ∈ N | xi ≤ y′}| ≥ |{i ∈ N | xi > y′}|, since med(x) ≤ y′.

Claim 2. For any agent i with xi ≤ y′, it holds that ci(f(x), xi) ≤
ci(OPTsc(x), xi), since the peak of agent i in AP is (y1, y2) or to the left.

The sum cost of Mechanism 1 is

sc(f,x) =
∑

i∈N

ci ((y1, y2) , xi)) =
∑

i∈N

max
j∈{1,2}

|xi − yj | (8)

=
∑

xi≤y′
max

j∈{1,2}
|xi − yj | +

∑

xi>y′
max

j∈{1,2}
|xi − yj | , (9)

where the first term is denoted by α and the second by β.
The optimal sum cost is

sc(OPT,x) =
∑

i∈N

ci ((y�
1 , y

�
2) , xi)) =

∑

i∈N

max
j∈{1,2}

∣
∣xi − y�

j

∣
∣ (10)

=
∑

xi≤y′
max

j∈{1,2}

∣
∣xi − y�

j

∣
∣ +

∑

xi>y′
max

j∈{1,2}

∣
∣xi − y�

j

∣
∣ , (11)

where the first term is denoted by γ and the second by δ.

Constrained Heterogeneous Two-Facility Location Games 33

Note that

β =
∑

xi>y′
max

j∈{1,2}
|xi − yj | ≤

∑

xi>y′
max

j∈{1,2}
{|xi − y�| + |y� − yj |} (12)

≤
∑

xi>y′
|xi − y�| +

∑

xi>y′
max

j∈{1,2}
|y� − yj | (13)

≤
∑

xi>y′
|xi − y�| +

∑

xi≤y′
max

j∈{1,2}
|y� − yj | (14)

≤
∑

xi>y′
|xi − y�| +

∑

xi≤y′
max

j∈{1,2}
{|y� − xi| + |xi − yj |} (15)

≤
∑

i∈N

|xi − y�| +
∑

xi≤y′
max

j∈{1,2}
|xi − yj | (16)

≤
∑

i∈N

max
j∈{1,2}

∣
∣xi − y�

j

∣
∣ +

∑

xi≤y′
max

j∈{1,2}
|xi − yj | = γ + δ + α. (17)

Here, the third inequality holds by Claim 1. Besides, we have α ≤ γ by Claim
2. Thus,

sc(f,x)
sc(OPT,x)

=
α + β

γ + δ
≤ α + γ + δ + α

γ + δ
≤ 3γ + δ

γ + δ
≤ 3 (18)

Combining with Theorem 1, the approximation ratio of Mechanism 1 is 3. ��

3.2 Maximum Cost

Compared with the sum cost objective, there is a more precise statement on the
optimal solution under the maximum cost objective.

Lemma 3. Given a location profile x ∈ Rn, the peak of cen(x) in AP is exactly
an optimal solution under the maximum cost objective.

Proof. Let a = (ak, ak+1) be the peak of cen(x) in AP . If there exists s(∈ A) <
ak, then

(s + ak+1)/2 ≤ (ak−1 + ak+1)/2 ≤ cen(x). (19)

If there exists s(∈ A) > ak+1, then

(ak + s)/2 ≥ (ak + ak+2)/2 ≥ cen(x). (20)

Let y = (y1, y2) be any feasible solution that is different from (ak, ak+1).
Assume w.l.o.g. that y1 ≤ y2, then either y1 < ak or ak+1 < y2. By symmetry,
we only need to compare mc(y,x) with mc(a,x) through the following two cases.

Case 1: ak ≤ ak+1 ≤ cen(x). In this case, mc(a,x) = rt(x) − ak. If y1 < ak,
then

mc(y,x) ≥ rt(x) − y1 > rt(x) − ak = mc(a,x). (21)

If ak+1 < y2, then y2 − cen(x) ≥ cen(x) − ak by Eq. (20). Thus, we have

mc(y,x) ≥ y2 − lt(x) = y2 − cen(x) + cen(x) − lt(x) (22)
≥ cen(x) − ak + rt(x) − cen(x) = mc(a,x). (23)

34 Q. Zhao et al.

Case 2: ak ≤ cen(x) < ak+1. In this case, mc(a,x) = max{rt(x)−ak, ak+1 −
lt(x)}. If y1 < ak, then rt(x) − y1 > rt(x) − ak and by Eq. (19), it holds that

rt(x) − y1 = rt(x) − cen(x) + cen(x) − y1 (24)
≥ cen(x) − lt(x) + ak+1 − cen(x) = ak+1 − lt(x). (25)

Thus, we have mc(y,x) ≥ rt(x) − y1 ≥ mc(a,x). Similarly if ak+1 < y2, then
y2− lt(x) > ak+1− lt(x) and y2− lt(x) = y2−cen(x)+cen(x)− lt(x) ≥ cen(x)−
ak+rt(x)−cen(x) = rt(x)−ak. Thus, we have mc(y,x) ≥ y2− lt(x) ≥ mc(a,x).

��
However, the optimal mechanism is not strategyproof. Consider an instance

I(x, A) with x = (−ε, ε) and A = {−1, 1, 1 + ε}. It holds that OPTmc = (−1, 1)
and c2(OPT (x), x2) = 1 + ε for sufficiently small ε > 0. Replacing x2 = ε by
x′
2 = 2, we have OPTsc(x′) = (1, 1 + ε), c2(OPTsc(x′), x2) = 1. Thus, agent 2

with x2 = ε can strictly decrease her cost by misreporting x′
2 = 2.

Theorem 3. Under the maximum cost objective, any deterministic strate-
gyproof mechanism has an approximation ratio of at least 3.

Proof. Suppose f is a deterministic strategyproof mechanism with approxima-
tion ratio of 3 − δ for some δ > 0.

Consider an instance I(x, A) with x = (−ε, ε) and A = {−1,−1, 1, 1}, where
ε > 0 is sufficiently small. f(x) can be (−1,−1), (1, 1), (−1, 1), or (1,−1)
and assume w.l.o.g. that f(x) = (1, 1) or (−1, 1). Then the cost of agent 1
is c1(f(x), x1) = 1 + ε.

For another instance I(x′, A) with x′ = (−2−ε, ε), it holds that OPTmc(x′) =
(−1,−1) and mc(OPT,x′) = 1 + ε. If f(x′) = (1, 1), (−1, 1), or (1,−1), then
mc(f,x′) = 3 + ε. This implies that

mc(f,x′)
mc(OPT,x′)

=
3 + ε

1 + ε
> 3 − δ (26)

for sufficiently small ε > 0, which is a contradiction. Thus, f(x′) = (−1,−1).
Considering that c1(f(x′), x1) = 1− ε, agent 1 can decrease her cost by mis-

reporting her location as x′
1 = −2 − ε, which contradicts f ’s strategyproofness.

��

Mechanism 2. Given a location profile x ∈ Rn, output the peak of lt(x) in AP ,
i.e., the location pair (y1, y2) ∈ argmin

(s1,s2)∈AP

maxj∈{1,2} |sj − lt(x)|, breaking ties in

any deterministic way.

Theorem 4. Mechanism 2 is group strategy-proof and has an approximation
ratio of 3 under the maximum cost objective.

Proof. By Lemma 1, Mechanism 2 is group strategyproof. We now turn to its
approximation ratio.

Constrained Heterogeneous Two-Facility Location Games 35

Given a location profile x ∈ Rn, let OPTmc(x) = (y�
1 , y

�
2) be the peak of

cen(x) in AP which is also an optimal solution. Denote Mechanism 2 by f and
f(x) = (y1, y2). Assume without loss of generality that rt(x) − lt(x) = 1.

It is easy to see that mc(OPT,x) ≥ 1
2 , and

mc(OPT,x) ≥ max
j∈{1,2}

∣
∣lt(x) − y�

j

∣
∣ ≥ max

j∈{1,2}
|lt(x) − yj | . (27)

We compare mc(f,x) with mc(OPT,x) through the following analysis.
Case 1: y1 ≤ y2 ≤ lt(x) ≤ rt(x), or y1 ≤ lt(x) ≤ y2 ≤ rt(x).

mc(f,x) = |rt(x) − y1| = 1 + |lt(x) − y1| ≤ 3mc(OPT,x). (28)

Case 2: lt(x) ≤ y1 ≤ y2 ≤ rt(x).

mc(f,x) ≤ 1 ≤ 2mc(OPT,x). (29)

Case 3: lt(x) ≤ y1 ≤ rt(x) ≤ y2, or lt(x) ≤ rt(x) ≤ y1 ≤ y2.
In this case, the right border of the zone of (y1, y2) is no less than (y1 +

y2)/2 ≥ cen(x) ≥ lt(x). Combining with the fact that lt(x) lies in the zone of
(y1, y2), it holds that cen(x) also lies in the zone of (y1, y2). This implies that
f(x) = OPTmc(x). Thus, we have

mc(f,x) = mc(OPT,x). (30)

Case 4: y1 ≤ lt(x) ≤ rt(x) ≤ y2. Note that

|lt(x) − y2| ≤ max
j∈{1,2}

|yj − lt(x)| ≤ max
j∈{1,2}

|y�
j − lt(x)| ≤ mc(OPT,x), (31)

and

|rt(x) − y1| = 1 + |lt(x) − y1| ≤ 1 + mc(OPT,x) ≤ 3mc(OPT,x). (32)

Thus, it holds that

mc(f,x) = max {|lt(x) − y2| , |rt(x) − y1|} | ≤ 3mc(OPT,x). (33)

Above all, mc(f,x) ≤ 3mc(OPT,x). Combining with Theorem 3, Mechanism
2 has an approximation ratio of 3. ��

4 Optional Setting

In this section, we discuss the optional setting where each agent can be interested
in either one of the two heterogeneous facilities or both. The cost of agent i ∈ N
is ci(y, (xi, pi)) = maxFk∈pi

|yk − xi|.
Note that even in the optional setting, each agent i ∈ N has some kind of

single peaked preference: if pi = {F1} or {F2}, she has single peaked prefer-
ence over A; if pi = {F1, F2}, she has single peaked preference over AP . Our
mechanisms will be proposed based on the single peaked preference.

36 Q. Zhao et al.

In the following subsections, two mechanisms for one-facility location games
will be used as subroutines in our mechanisms. Supposing that a set of n agents
have single peaked preference over the set of alternative locations A, the related
results are listed as follows.

SC-Mechanism [11]. Given x ∈ Rn and A, output y ∈ argmin
a∈A

|a − med(x)|,
breaking ties in any deterministic way.

Proposition 1 ([11]). SC-Mechanism is group strategyproof and has an approx-
imation ratio of 3 under the sum cost objective.

MC-Mechanism [24]. Given x ∈ Rn and A, output y ∈ argmin
a∈A

|a− lt(x)|, break-

ing ties in any deterministic way.

Proposition 2 ([24]). MC-Mechanism is group strategyproof and has an
approximation ratio of 3 under the maximum cost objective.

4.1 Sum Cost

Mechanism 3. Given a location and facility preference profile (x,p) ∈ Rn ×(
2F)n, output the facility location profile y = (y1, y2) as follows:

• if |N1,2| > 0, select (y1, y2) ∈ argmin
(s1,s2)∈AP

maxj∈{1,2}
∣
∣sj − med

(
xN1,2

)∣∣, break-

ing ties in any deterministic way;
• if |N1,2| = 0 and |N1| ≥ |N2|, select y1 ∈ argmin

y∈A
|y − med (xN1)|, and y2 ∈

argmin
y∈A\{y1}

|y − med (xN2)| (if N2 	= ∅), breaking ties in any deterministic way;

• if |N1,2| = 0 and |N1| < |N2|, select y2 ∈ argmin
y∈A

|y − med (xN2)|, and y1 ∈
argmin
y∈A\{y2}

|y − med (xN1)| (if N1 	= ∅), breaking ties in any deterministic way.

Theorem 5. Mechanism 3 is group strategyproof and has an approximation
ratio of at most 2n + 1 under the sum cost objective.

Proof. Group Strategyproofness. Given (x,p) ∈ Rn × (
2F)n, Mechanism

3 outputs the facility location profile according to the public information p.
To show group strategyproofness, we need to prove that for every nonempty
S ⊆ N with deviation x′

S ∈ R|S|, there exists j ∈ S who cannot benefit from the
coalitional deviation. Denote x′ = (x′

S ,x−S), Mechanism 3 by f , Mechanism 1
by f1, and SC-Mechanism by f2.

Case 1: |N1,2| > 0, then f(x,p) = f1(xN1,2) and f(x′,p) =
f1(x′

N1,2∩S ,xN1,2\S). If N1,2 ∩ S 	= ∅, any agent in N1,2 ∩ S cannot benefit
from the deviation x′

N1,2∩S by f1’s group strategyproofness. If N1,2 ∩ S = ∅,
f(x′,p) = f3(xN1,2), which implies that any agent in S ⊆ N1 ∪ N2 cannot
benefit from the deviation.

Constrained Heterogeneous Two-Facility Location Games 37

Case 2: |N1,2| = 0 and |N1| ≥ |N2|. It holds that f(x,p) =
(f2(xN1), f2(xN2)) and f(x′,p) = (f2(x′

N1∩S ,xN1\S), f2(x′
N2∩S ,xN2\S)), with

f2(xN2) ∈ A\f2(xN1) and f2(x′
N2∩S ,xN2\S) ∈ A\f2(x′

N1∩S ,xN1\S). If N1 ∩ S 	=
∅, any agent in N1 ∩ S cannot benefit from the deviation x′

N1∩S by f2’s group
strategyproofness. If N1 ∩ S = ∅, f(x′,p) = (f2(xN1), f2(x

′
N2∩S ,xN2\S)) with

f2(x′
N2∩S ,xN2\S) ∈ A\f2(xN1). Still by f2’s group strategyproofness, any agent

in N2 ∩ S cannot benefit from the deviation x′
N2∩S .

Case 3: |N1,2| = 0 and |N1| < |N2|. This case is similar to Case 2.

Approximation Ratio. Given (x,p) ∈ Rn × (
2F)n, let OPTsc(x,p) = y� =

(y�
1 , y

�
2) be an optimal solution and f(x,p) = y = (y1, y2). We now compare

sc(f, (x,p)) with sc(OPT, (x,p)).
Case 1: If |N1,2| > 0, the output of Mechanism 3 on I(x,p, A) equals to

that of Mechanism 1 on I
(
xN1,2 ,pN1,2 , A

)
. Denote the optimal solution on

I
(
xN1,2 ,pN1,2 , A

)
as yopt.

By Theorem 2, it holds that
∑

i∈N1,2

ci (y, (xi, pi)) ≤ 3
∑

i∈N1,2

ci

(
yopt, (xi, pi)

) ≤ 3
∑

i∈N1,2

ci (y�, (xi, pi)) . (34)

Thus, we have

sc(f, (x,p)) =
∑

i∈N1∪N2∪N1,2

ci (y, (xi, pi)) (35)

≤
∑

i∈N1

|xi − y1| +
∑

i∈N2

|xi − y2| + 3
∑

i∈N1,2

ci (y�, (xi, pi)) (36)

≤
∑

i∈N1

|xi − y�
1 | +

∑

i∈N2

|xi − y�
2 | + 3

∑

i∈N1,2

ci (y�, (xi, pi)) (37)

+ |N1| · |y1 − y�
1 | + |N2| · |y2 − y�

2 | (38)
≤ 3sc(OPT, (x,p)) + |N1 ∪ N2| · 2sc(OPT, (x,p)) (39)
≤ (2n + 1)sc(OPT, (x,p)). (40)

Here, the above third inequality holds because for j = 1, 2,
∣
∣yj − y�

j

∣
∣ ≤ ∣

∣yj − med
(
xN1,2

)∣∣ +
∣
∣med

(
xN1,2

) − y�
j

∣
∣ (41)

≤ max
k∈{1,2}

∣
∣yk − med

(
xN1,2

)∣∣ +
∣
∣med

(
xN1,2

) − y�
j

∣
∣ (42)

≤ max
k∈{1,2}

∣
∣y�

k − med
(
xN1,2

)∣∣ +
∣
∣med

(
xN1,2

) − y�
j

∣
∣ (43)

≤ 2sc(OPT, (x,p)). (44)

Case 2: If |N1,2| = 0 and |N1| ≥ |N2|. Without loss of generality, assume
that N2 	= ∅. y1 equals to the output of SC-Mechanism on instance I1 =
I (xN1 ,pN1 , A), and y2 equals to the output of SC-Mechanism on instance
I2 = I (xN2 ,pN2 , A\{y1}). Denote by yopt

1 the optimal solution on instance I1
and yopt

2 the optimal solution on instance I2.

38 Q. Zhao et al.

For k = 1, 2, let sc(y, Ik) =
∑

i∈Nk
|xi − y|, then

sc(OPT, (x,p)) =
∑

i∈N1

|xi − y�
1 | +

∑

i∈N2

|xi − y�
2 | = sc (y�

1 , I1) + sc (y�
2 , I2)(45)

sc(f, (x,p)) =
∑

i∈N1

|xi − y1| +
∑

i∈N2

|xi − y2| = sc (y1, I1) + sc (y2, I2) .(46)

For I1, by Proposition 1, it holds that

sc (y1, I1) ≤ 3sc
(
yopt
1 , I1

) ≤ 3sc (y�
1 , I1) (47)

For I2, we consider the following two cases.
Case 2.1: If y�

2 ∈ A\ {y1}, by Proposition 1, it holds that

sc (y2, I2) ≤ 3sc
(
yopt
2 , I2

) ≤ 3sc (y�
2 , I2) (48)

Case 2.2: y�
2 /∈ A\ {y1}, then y1 = y�

2 and y�
1 ∈ A\ {y1}. On the one hand,

by Proposition 1, we have

sc (y2, I2) ≤ 3sc
(
yopt
2 , I2

) ≤ 3sc (y�
1 , I2) . (49)

On the other hand,

sc (y�
1 , I2) =

∑

i∈N2

|xi − y�
1 | ≤

∑

i∈N2

|xi − y�
2 | +

∑

i∈N1

|y�
2 − y�

1 | (50)

≤
∑

i∈N2

|xi − y�
2 | +

∑

i∈N1

|y1 − xi| +
∑

i∈N1

|xi − y�
1 | (51)

= sc (y�
2 , I2) + sc (y1, I1) + sc (y�

1 , I1) (52)
≤ sc (y�

2 , I2) + 4sc (y�
1 , I1) , (53)

where the first inequality holds because |N1| ≥ |N2| and the third holds by Eq.
(47).

Combining Eq. (49) and Eq. (53), we have

sc (y2, I2) ≤ 3sc (y�
2 , I2) + 12sc (y�

1 , I1) (54)

Thus, by Eq. (47) and Eq. (54), it holds that

sc(f, (x,p)) = sc (y1, I1) + sc (y2, I2) (55)
≤ 3sc (y�

1 , I1) + 3sc (y�
2 , I2) + 12sc (y�

1 , I1) (56)
≤ 15sc(OPT, (x,p)) (57)

Case 3: |N1,2| = 0 and |N1| < |N2|. This case is similar to Case 2.
Above all, Mechanism 3 has an approximation ratio of at most 2n + 1. ��

Constrained Heterogeneous Two-Facility Location Games 39

4.2 Maximum Cost

Mechanism 4. Given a location and facility preference profile (x,p) ∈ Rn ×(
2F)n, output the facility location profile y = (y1, y2) as follows:

• if |N1,2| > 0, select (y1, y2) ∈ argmin
(s1,s2)∈AP

maxj∈{1,2}
∣
∣sj − lt

(
xN1,2

)∣∣, breaking

ties in any deterministic way;
• if |N1,2| = 0, select y1 ∈ argmin

y∈A
|y − lt (xN1)| (if N1 	= ∅), and y2 ∈

argmin
y∈A\{y1}

|y − lt (xN2)| (if N2 	= ∅), breaking ties in any deterministic way.

Theorem 6. Mechanism 4 is group strategyproof and has an approximation
ratio of at most 9 under the maximum cost objective.

Proof. The proof of Mechanism 4 ’s group strategyproofness is similar to that
of Mechanism 3 ’s, which is omitted here. Now we focus on the approximation
ratio of Mechanism 4.

Denote Mechanism 4 by f . Given (x,p) ∈ Rn × (
2F)n, let OPTmc(x,p) =

y� = (y�
1 , y

�
2) be an optimal solution and f(x,p) = y = (y1, y2). We now compare

mc(f, (x,p)) with mc(OPT, (x,p)).
Case 1: If |N1,2| > 0, the output of Mechanism 4 on I(x,p, A) equals to that

of Mechanism 2 on I
(
xN1,2 ,pN1,2 , A

)
. Denote by yopt = (yopt

1 , yopt
2) the optimal

solution on I
(
xN1,2 ,pN1,2 , A

)
.

By Theorem 4, it holds that

max
i∈N1,2

ci (y, (xi, pi)) ≤ 3 max
i∈N1,2

ci

(
yopt, (xi, pi)

) ≤ 3 max
i∈N1,2

ci (y�, (xi, pi)) . (58)

Thus, we have

mc(f, (x,p)) (59)
= max

i∈N1∪N2∪N1,2
{ci (y, (xi, pi))} (60)

= max
{
max
i∈N1

{|y1 − xi|} ,max
i∈N2

{|y2 − xi|} , max
i∈N1,2

{ci(y, (xi, pi))}
}

(61)

≤ max
{
max
i∈N1

{|y�
1 − xi| + |y1 − y�

1 |} ,max
i∈N2

{|y�
2 − xi| (62)

+ |y2 − y�
2 |} , 3 max

i∈N1,2
ci (y�, (xi, pi))

}
(63)

≤ max
{
max
i∈N1

{|y�
1 − xi| + 2mc(OPT, (x,p))} ,max

i∈N2
{|y�

2 − xi| (64)

+2mc(OPT, (x,p))}, 3 max
i∈N1,2

ci (y�, (xi, pi))
}

(65)

≤ 3mc(OPT, (x,p)). (66)

40 Q. Zhao et al.

Here, the above second inequality holds because for j = 1, 2,
∣
∣yj − y�

j

∣
∣ ≤ ∣

∣yj − lt
(
xN1,2

)∣∣ +
∣
∣lt

(
xN1,2

) − y�
j

∣
∣ (67)

≤ max
k∈{1,2}

∣
∣yk − lt

(
xN1,2

)∣∣ +
∣
∣lt

(
xN1,2

) − y�
j

∣
∣ (68)

≤ max
k∈{1,2}

∣
∣y�

k − lt
(
xN1,2

)∣∣ +
∣
∣lt

(
xN1,2

) − y�
j

∣
∣ (69)

≤ 2mc(OPT, (x,p)). (70)

Case 2: |N1,2| = 0. Assume w.l.o.g. that N1 	= ∅, N2 	= ∅. y1 equals to the
output of MC-Mechanism on instance I1 = I (xN1 ,pN1 , A), and y2 equals to the
output of MC-Mechanism on instance I2 = I (xN2 ,pN2 , A\{y1}). Denote by yopt

1

the optimal solution on instance I1 and yopt
2 the optimal solution on instance I2.

For k = 1, 2, let mc(y, Ik) = maxi∈Nk
|xi − y|, then

mc(OPT, (x,p)) = max
{
max
i∈N1

|xi − y�
1 | ,max

i∈N2
|xi − y�

2 |
}

(71)

= max {mc (y�
1 , I1) ,mc (y�

2 , I2)} (72)
mc(f, (x,p)) = max {mc (y1, I1) ,mc (y2, I2)} (73)

For I1, by Proposition 2, it holds that

mc (y1, I1) ≤ 3mc
(
yopt
1 , I1

) ≤ 3mc (y�
1 , I1) (74)

For I2, we consider the following two cases.
Case 2.1: If y�

2 ∈ A\ {y1}, by Proposition 2, it holds that

mc (y2, I2) ≤ 3mc
(
yopt
2 , I2

) ≤ 3mc (y�
2 , I2) (75)

Case 2.2: y�
2 /∈ A\ {y1}, then y1 = y�

2 and y�
1 ∈ A\ {y1}. On the one hand,

by Proposition 2, we have

mc (y2, I2) ≤ 3mc
(
yopt
2 , I2

) ≤ 3mc (y�
1 , I2) . (76)

On the other hand,

mc (y�
1 , I2) = max

i∈N2
|y�

1 − xi| ≤ max
i∈N2

|y�
2 − xi| + |y�

1 − y1| (77)

≤ max
i∈N2

|y�
2 − xi| + |y�

1 − lt (xN1)| + |lt (xN1) − y1| (78)

≤ mc (y�
2 , I2) + 2mc (y�

1 , I1) (79)

Combining Eq. (76) and Eq. (79), we have

mc (y2, I2) ≤ 3mc (y�
2 , I2) + 6mc (y�

1 , I1) (80)

Thus, by Eq. (74) and Eq. (80), it holds that

mc(f, (x,p)) = max {mc (y1, I1) ,mc (y2, I2)} (81)
≤ max {3mc (y�

1 , I1) , 3mc (y�
2 , I2) + 6mc (y�

1 , I1)} (82)
≤ 9mc(OPT, (x,p)) (83)

Above all, Mechanism 4 has an approximation ratio of at most 9. ��

Constrained Heterogeneous Two-Facility Location Games 41

5 Conclusion

In this paper, we considered the mechanism design problem for constrained het-
erogeneous two-facility location games where a set of alternatives are feasible for
building facilities and the number of facilities built at each alternative is limited.
We studied deterministic mechanisms design without money under the Max-
variant cost where the cost of each agent depends on the distance to the further
facility. In the compulsory setting where each agent is served by two facilities, we
showed that the optimal solution under the sum/maximum cost objective is not
strategyproof and proposed a 3-approximate deterministic group strategyproof
mechanism which is also the best deterministic strategyproof mechanism for the
corresponding social objective. In the optional setting where each agent can be
interested in either one of the two facilities or both, we designed a deterministic
group strategyproof mechanism with approximation ratio with at most 2n + 1
for the sum cost objective and a deterministic group strategyproof mechanism
with approximation ratio with at most 9 for the maximum cost objective.

There are several directions for future research. First, the bounds for approx-
imation ratio of deterministic strategyproof mechanisms in the optional setting
do not match yet. Are there more desirable bounds in this setting? Second, ran-
domized mechanism design for constrained heterogeneous facility location games
remains an open question. Third, the cost of each agent served by two facilities
here is simply the sum of her distances from facilities. How about mechanism
design for constrained facility location games in more general settings, such as
agents having weighted preference for facilities [13]? Further, our model can be
extended to include more than two facilities or in more general metric spaces.

Acknowledgements. This research was supported in part by the National Natural
Science Foundation of China (12171444, 11971447, 11871442), the Natural Science
Foundation of Shandong Province of China (ZR2019MA052).

References

1. Anastasiadis, E., Deligkas, A.: Heterogeneous facility location games. In: Proceed-
ings of the 17th International Conference on Autonomous Agents and Multiagent
Systems, pp. 623–631 (2018)

2. Aziz, H., Chan, H., Lee, B., Li, B., Walsh, T.: Facility location problem with capac-
ity constraints: algorithmic and mechanism design perspectives. In: Proceedings of
the 34th AAAI Conference on Artificial Intelligence, vol. 34, no. 2, pp. 1806–1813
(2020). https://doi.org/10.1609/aaai.v34i02.5547

3. Aziz, H., Chan, H., Lee, B., Parkes, D.C.: The capacity constrained facility location
problem. Games Econ. Behav. 124, 478–490 (2020). https://doi.org/10.1016/j.geb.
2020.09.001

4. Cai, Q., Filos-Ratsikas, A., Tang, P.: Facility location with minimax envy. In:
Proceedings of the 25th International Joint Conference on Artificial Intelligence,
pp. 137–143 (2016)

https://doi.org/10.1609/aaai.v34i02.5547
https://doi.org/10.1016/j.geb.2020.09.001
https://doi.org/10.1016/j.geb.2020.09.001

42 Q. Zhao et al.

5. Chen, X., Fang, Q., Liu, W., Ding, Y.: Strategyproof mechanisms for 2 -facility
location games with minimax envy. In: Zhang, Z., Li, W., Du, D.-Z. (eds.) AAIM
2020. LNCS, vol. 12290, pp. 260–272. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-57602-8_24

6. Chen, X., Hu, X., Tang, Z., Wang, C.: Tight efficiency lower bounds for strategy-
proof mechanisms in two-opposite-facility location game. Inf. Process. Lett. 168,
106098 (2021). https://doi.org/10.1016/j.ipl.2021.106098

7. Cheng, Y., Yu, W., Zhang, G.: Strategy-proof approximation mechanisms for an
obnoxious facility game on networks. Theor. Comput. Sci. 497, 154–163 (2013).
https://doi.org/10.1016/j.tcs.2011.11.041

8. Ding, Y., Liu, W., Chen, X., Fang, Q., Nong, Q.: Facility location game with
envy ratio. Comput. Ind. Eng. 148(3), 106710 (2020). https://doi.org/10.1016/j.
cie.2020.106710

9. Dokow, E., Feldman, M., Meir, R., Nehama, I.: Mechanism design on discrete lines
and cycles. In: Proceedings of the 13rd ACM Conference on Electronic Commerce,
pp. 423–440 (2012). https://doi.org/10.1145/2229012.2229045

10. Feigenbaum, I., Sethuraman, J., Ye, C.: Approximately optimal mechanisms for
strategyproof facility location: minimizing Lp norm of costs. Comput. Sci. Game
Theory 42(2), 277–575 (2017). https://doi.org/10.1287/moor.2016.0810

11. Feldman, M., Fiat, A., Golomb, I.: On voting and facility location. In: Proceedings
of the 2016 ACM Conference on Economics and Computation, pp. 269–286 (2016).
https://doi.org/10.1145/2940716.2940725

12. Filos-Ratsikas, A., Li, M., Zhang, J., Zhang, Q.: Facility location with double-
peaked preferences. Auton. Agents Multi-Agent Syst. 31(6), 1209–1235 (2017).
https://doi.org/10.1007/s10458-017-9361-0

13. Fong, K., Li, M., Lu, P., Todo, T., Yokoo, T.: Facility location games with fractional
preferences. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence,
pp. 1039–1046 (2018). https://doi.org/10.1609/aaai.v32i1.11458

14. Fotakis, D., Tzamos, C.: On the power of deterministic mechanisms for facility
location games. ACM Trans. Econ. Comput. 2(4), 1–37 (2014). https://doi.org/
10.1145/2665005

15. Li, M., Lu, P., Yao, Y., Zhang, J.: Strategyproof mechanism for two heterogeneous
facilities with constant approximation ratio. In: Proceedings of the 29th Interna-
tional Joint Conference on Artificial Intelligence, pp. 238–245 (2020). https://doi.
org/10.24963/ijcai.2020/34

16. Liu, W., Ding, Y., Chen, X., Fang, Q., Nong, Q.: Multiple facility location games
with envy ratio. Theor. Comput. Sci. 864, 1–9 (2021). https://doi.org/10.1016/j.
tcs.2021.01.016

17. Lu, P., Sun, X., Wang, Y., Zhu, Z.A.: Asymptotically optimal strategy-proof mech-
anisms for two-facility games. In: Proceedings of the 11th ACM Conference on Elec-
tronic Commerce, pp. 315–324 (2010). https://doi.org/10.1145/1807342.1807393

18. Mei, L., Li, M., Ye, D., Zhang, G.: Facility location games with distinct desires.
Discrete Appl. Math. 264, 148–160 (2019). https://doi.org/10.1016/j.dam.2019.
02.017

19. Moulin, H.: On strategy-proofness and single peakedness. Public Choice 35(4),
437–455 (1980). https://doi.org/10.1007/BF00128122

20. Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money.
In: Proceedings of the 10th ACM Conference on Electronic Commerce, pp. 177–186
(2009). https://doi.org/10.1145/1566374.1566401

21. Schummer, J., Vohra, R.: Strategy-proof location on a network. J. Econ. Theory
104(2), 405–428 (2002). https://doi.org/10.1006/jeth.2001.2807

https://doi.org/10.1007/978-3-030-57602-8_24
https://doi.org/10.1007/978-3-030-57602-8_24
https://doi.org/10.1016/j.ipl.2021.106098
https://doi.org/10.1016/j.tcs.2011.11.041
https://doi.org/10.1016/j.cie.2020.106710
https://doi.org/10.1016/j.cie.2020.106710
https://doi.org/10.1145/2229012.2229045
https://doi.org/10.1287/moor.2016.0810
https://doi.org/10.1145/2940716.2940725
https://doi.org/10.1007/s10458-017-9361-0
https://doi.org/10.1609/aaai.v32i1.11458
https://doi.org/10.1145/2665005
https://doi.org/10.1145/2665005
https://doi.org/10.24963/ijcai.2020/34
https://doi.org/10.24963/ijcai.2020/34
https://doi.org/10.1016/j.tcs.2021.01.016
https://doi.org/10.1016/j.tcs.2021.01.016
https://doi.org/10.1145/1807342.1807393
https://doi.org/10.1016/j.dam.2019.02.017
https://doi.org/10.1016/j.dam.2019.02.017
https://doi.org/10.1007/BF00128122
https://doi.org/10.1145/1566374.1566401
https://doi.org/10.1006/jeth.2001.2807

Constrained Heterogeneous Two-Facility Location Games 43

22. Serafino, P., Ventre, C.: Heterogeneous facility location without money. Theor.
Comput. Sci. 636, 27–46 (2016). https://doi.org/10.1016/j.tcs.2016.04.033

23. Sui, X., Boutilier, C.: Approximately strategy-proof mechanisms for (con-
strained) facility location. In: Proceedings of the 14th International Conference
on Autonomous Agents and Multiagent Systems, pp. 605–613 (2015)

24. Tang, Z., Wang, C., Zhang, M., Zhao, Y.: Mechanism design for facility location
games with candidate locations. In: Wu, W., Zhang, Z. (eds.) COCOA 2020. LNCS,
vol. 12577, pp. 440–452. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64843-5_30

25. Xu, X., Li, B., Li, M., Duan, L.: Two-facility location games with minimum distance
requirement. J. Artif. Intell. Res. 70, 719–756 (2021). https://doi.org/10.1613/jair.
1.12319

26. Yuan, H., Wang, K., Fong, K.C., Zhang, Y., Li, M.: Facility location games with
optional preference. In: Proceedings of the 22nd European Conference on Artifi-
cial Intelligence, pp. 1520–1527 (2016). https://doi.org/10.3233/978-1-61499-672-
9-1520

27. Zhang, Q., Li, M.: Strategyproof mechanism design for facility location games with
weighted agents on a line. J. Comb. Optim. 28(4), 756–773 (2013). https://doi.
org/10.1007/s10878-013-9598-8

28. Zhou, H., Li, M., Chan, H.: Strategyproof mechanisms for group-fair facility loca-
tion problems. arXiv preprint arXiv:2107.05175 (2021)

29. Zou, S., Li, M.: Facility location games with dual preference. In: Proceedings of
the 14th International Conference on Autonomous Agents and Multiagent Systems,
pp. 615–623 (2015)

https://doi.org/10.1016/j.tcs.2016.04.033
https://doi.org/10.1007/978-3-030-64843-5_30
https://doi.org/10.1007/978-3-030-64843-5_30
https://doi.org/10.1613/jair.1.12319
https://doi.org/10.1613/jair.1.12319
https://doi.org/10.3233/978-1-61499-672-9-1520
https://doi.org/10.3233/978-1-61499-672-9-1520
https://doi.org/10.1007/s10878-013-9598-8
https://doi.org/10.1007/s10878-013-9598-8
http://arxiv.org/abs/2107.05175

Optimally Integrating Ad Auction
into E-Commerce Platforms

Weian Li1, Qi Qi2(B), Changjun Wang3, and Changyuan Yu4

1 Center on Frontiers of Computing Studies, Peking University, Beijing, China
weian li@pku.edu.cn

2 Gaoling School of Artificial Intelligence, Renmin University of China,
Beijing, China

qi.qi@ruc.edu.cn
3 Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

Beijing, China
wcj@amss.ac.cn

4 Baidu Inc., Beijing, China

yuchangyuan@baidu.com

Abstract. Advertising becomes one of the most popular ways of mone-
tizing an online transaction platform. Usually, sponsored advertisements
are posted on the most attractive positions to enhance the number
of clicks. However, multiple e-commerce platforms are aware that this
action may hurt the search experience of users, even though it can bring
more incomes. To balance the advertising revenue and the user experi-
ence loss caused by advertisements, most e-commerce platforms choose
fixing some areas for advertisements and adopting some simple restric-
tions on the number of ads, such as a fixed number K of ads on the
top positions or one advertisement for every N organic searched results.
Different from these common rules of treating the allocation of ads sepa-
rately (from the arrangements of the organic searched items), in this work
we build up an integrated system with mixed arrangements of advertise-
ments and organic items. We focus on the design of truthful mechanisms
to properly list the advertisements and organic items and optimally trade
off the instant revenue and the user experience. Furthermore, for differ-
ent settings and practical requirements, we extend our optimal truthful
allocation mechanisms to cater for these realistic conditions. Finally, we
exert several experiments to verify the improvement of our mechanism
compared to the common-used advertising mechanism.

Keywords: E-Commerce platforms · Ad auctions · Optimal mixed
arrangements

This work is supported by Beijing Outstanding Young Scientist Program No.
BJJWZYJH012019100020098, and Intelligent Social Governance Platform, Major
Innovation & Planning Interdisciplinary Platform for the “Double-First Class” Initia-
tive, Renmin University of China, and National Natural Science Foundation of China
(NSFC) (No. 11971046).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 44–58, 2022.
https://doi.org/10.1007/978-3-031-20796-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_4&domain=pdf
https://doi.org/10.1007/978-3-031-20796-9_4

Optimally Integrating Ad Auction into E-Commerce Platforms 45

1 Introduction

With the development of Internet and mobile devices, e-commerce platforms
have become the most fashionable online marketplace to bridge merchants and
consumers, whose popularity is originated from its convenient shopping mode.
That is, whenever and wherever consumers want to pick up their desirable prod-
ucts, they only require to enter a relevant keyword into the search bar of Apps
of e-commerce platforms by mobile devices. Then, platforms will return a list of
the matching products in the search result pages provided to be selected. Hence,
how to recommend products accurately and effectively is a considerable prob-
lem of platforms, which also affects both the short-run revenue and the long-run
prosperity.

Nowadays, in one standard webpage of search results, based on a given key-
word, it usually presents two types of items, organic search results and sponsored
advertisements1. The platform calculates the displayed sequence of two types of
items followed by certain rules. Traditionally, organic search results and spon-
sored advertisements are totally separate components in the process of arranging
items. First, e-commerce platforms will decide how many top positions are used
to display advertisements, and then run a preset auction mechanism, like gen-
eralized second price auction, to output the ads. For the rest positions, they are
used to show the organic items ranked by the relevance of items or other criteria
which depend on different platforms (e.g., see [4,5,29]).

The first step of the above process is so-called Sponsored Search Auction,
which is first launched by Google at the end of 20th century. Several common
pricing models can be adopted in sponsored search auctions, like pay-per-click,
pay-per-impression and pay-per-action. In this paper, we focus on the pay-per-
click model which means that, for the winners of auction, they only pay when
their advertisements are clicked. Due to the dissatisfaction with the ranking of
organic items, some merchants hope to join the auction (becoming the advertis-
ers) and charge some extra money for improving the position and drawing more
attention from customers. Because of the millions of search everyday, sponsored
search auction has become the vital instant incoming source of e-commerce plat-
form today. Different from the first step, ranking organic items aims to enhance
the efficiency of search and user experience, so its criterion is usually the rel-
evance of items. In this investigation, we consider exploiting a relatively com-
prehensive but very simple indicator to reflect relevance, that is, the expected
merchandise volume, or the expected sale amount to rank the organic items with
two reasons. The first reason is that the expected merchandise volume includes
the user’s interest in browsing the product (click rate), the detailed purchase
tendency (conversion rate), and the decision after the balance between price and
product quality. In another word, the merchandise volume can directly or indi-
rectly reflect the user experience. The second reason is that, nowadays, most
e-commerce platforms regard the gross merchandise volume (GMV) as a crite-

1 Sponsored advertisements are usually labeled by “Sponsored” or “Ad” to be distin-
guished with organic search results.

46 W. Li et al.

rion to measure how much they take over the whole market, and compete for
GMV during some shopping ceremonies.

However, due to some specialty of e-commerce platforms, like that the spon-
sored advertisements are also the organic items essentially, still insisting on the
conventional pattern and regarding sponsored advertisements and organic results
as independent sections may expose some downsides: (a) obviously, it is not
appropriate for different keywords to use the same number of positions providing
for ads. The conventional pattern cannot automatically solve the above prob-
lem; (b) to optimize the user experience, the platform will list the organic results
according to their expected transaction volume or their expected sale quantities
(these volumes or quantities are well known by the platforms), i.e., the item with
the highest expected “volume” will be shown in the first slot (exclude the slots
for advertisements), the item with the second highest expected “volume” will be
shown in the second slot, and so on. Nevertheless, during the sponsored search
auction, if some items with low volume would rather pay high price to get more
clicks, by the goal of sponsored search auction, maximizing the instant revenue,
these items will be picked up, which will harm the platforms’ expected GMV
and the long-run profits. In view of the above points, is it still a great idea to fix
the ad positions in advance? Can the platforms do better if they weighing the
allocation of the sponsored advertisements and the organic results at the same
time, not separately? If yes2, how to balance the two conflicting objectives of
user experience (i.e., GMV) and instant advertising revenue in designing mecha-
nisms? Furthermore, how to design the optimal mechanisms with the integrated
allocation?

In reality, on some platforms such as Tmall, Taobao etc., the advertisements
and organic items have already been combined together to display. However, the
currently used mixed allocation rules are still very heuristic. For example, always
take out one slot for advertisement of every N displaying slots. Motivated by
this, in this work, we will, from the theoretical aspect, try to study how to design
truthful mechanisms to optimally trade off the expected revenue and volume for
this new integrated setting (answering the third question and fourth question
proposed above). To the best of our knowledge, our work is the first attempt on
studying auction mechanism design with multiple objectives in the new layout
of mixed arrangements.

1.1 Our Contribution

In this paper, our contributions can be summarized as follows.

– Novelty—We initially build up an integrated model to describe the layout of
mixed arrangements of organic results and sponsored advertisements, called
an integrated ad system (IAS), where two main objectives, revenue and GMV,
are considered. We propose two general kinds of problems with two different

2 We give an example to illustrate that the GMV and revenue will be better if we con-
sider organic results and sponsored advertisements at the same time in full version.

Optimally Integrating Ad Auction into E-Commerce Platforms 47

ways to trade off the revenue and GMV: unconstrained problem of linearly
combining the volume and revenue as a single objective; constrained problem
of bounding the volume and maximizing the revenue (see Sect. 2.3).

– Techniques—For the unconstrained problem, we prove that the optimal
truthful mechanism (Theorem 1) can be obtained by a transformation on
objectives and then allocating the items by their “revised virtual values”.
For the constrained problem, using variables relaxation and Lagrangian dual
methods, we show that the constrained problem can be transformed into an
unconstrained problem by properly choosing a parameter (Theorem 2). Then
we give a numerical algorithm to compute the desired parameter, thus deriv-
ing the optimal truthful mechanism for the constrained problem.

– Extensions—We extend our study to three general settings with practical
restrictions: requiring an upper bound of the total number of advertisements,
and requiring certain sparsity of the allocation of advertisements where for the
later, we divide it into two models with different restriction on the sparsity.
However, under these restrictions, some good properties will not exist any-
more, but by some more delicate treatments, we can still design the optimal
mechanisms for both constrained and unconstrained problems.

– Practicability—We first verify that our mechanisms can be implemented as
planned. Then comparing with the currently used mechanism, we show the
superiority of our mechanisms. At last, we take the correlation between value
and weight of advertisers into account, our mechanisms still perform better.

1.2 Related Work

Sponsored Search Auction. Auction lies in the core of mechanism design
research, while sponsored search auction has been an area of great focus in com-
puter science in the last twenty years. For the traditional revenue optimization,
[20] solved the problem for single item in Bayesian-Nash equilibrium setting. [19]
studied multi-unit optimal auction. From the first launch of sponsored search
auction in 1997, a series of auction mechanisms are put forward, like generalized
first price (GFP) auction by Overture and generalized second price (GSP) by
Google, which makes sponsored search auction become a vital incoming source
of variable online platforms in practise. [2] showed that the lower bound of
revenue produced by GSP, the most popular mechanism is equal to the rev-
enue of classic VCG mechanism [8,12,28]. Due to the untruthfulness of GSP,
[11,27] independently examined the behavior of bidders and proposed locally
envy-free equilibrium (LEFE) and symmetric Nash equilibrium (SNE), respec-
tively. Another idea of a squashing parameter of GSP to improve the revenue
was proposed by [13]. [21] applied these works and studied its effects on Yahoo!
auction using the optimal reserve price. [26] also studied several different tech-
niques for increasing the revenue, including via several different reserve prices,
squashing, combinations of a reserve price and squashing, etc. Rather than using
the reserve price simply as a minimum bid, [23] presented the idea of incorpo-
rating the reserve price into ranking score and showed that this mechanism may
increase the revenue compared to the squashing mechanism.

48 W. Li et al.

For the topic of user experience, [1] introduced a concept of hidden cost, which
was advertiser-specific and represented the quality of the ads’ landing page. [3]
studied a model that introduced the users’ search cost, and showed that reserve
price can improve users’ welfare. [14] defined the shadow cost, which is revenue
reduction in long run and depends on both advertiser and slot.

As for the trade-offs among different objectives, there are also some related
studies. [16] first studied the problem of designing optimal mechanisms to balance
revenue and welfare. [25] considered the convex combination of revenue and
welfare to improve the prediction. [6] applied the linear combination of different
objectives as their objective function. [24] introduced a class of parameterized
mechanisms to balance different objectives.
Rank of Organic Results. Besides the methods [4,5,29] used in practise,
there are still multiple theoretical investigations about ranking organic results,
recently. [9] first incorporated bias of search results into consideration, when
ranking the items. In the next few years, this topic is still studied by many
researchers, e.g., [10,18,30]. [17] showed how to optimally rank search results to
maximize an objective that combines search-result relevance and sales revenue.
[7] studied the optimal ranking rule of multiple objectives includes consumer
and seller surplus, as well as the sales revenue, taking consumers’ choice into
consideration.

However, all these work treats the sponsored search auction separately and
does not consider the mixed arrangement of organic results and advertisements.
We design an integrated system that takes both organic items and paid adver-
tisements into consideration together.
Our Organizations. In Sect. 2, we give all the necessary notations and def-
initions, and build up the modelling framework of the integrated ad system.
Two core optimization problems are also proposed in this section. In Sect. 3,
we consider designing optimal mechanisms for these two problems. In Sect. 4,
we generalize our study to more practical settings and design the corresponding
optimal mechanisms. Finally, we summarize our works and put forward several
open problems in Sect. 5. The most of proofs, tables, algorithm and numerical
experiments can refer to our full version [15].

2 Notations and Preliminaries

2.1 Integrated Ad System

In the classic ad auction, advertisers bid for the keywords, and the pre-set adver-
tising slots, which are separated from organic search result, are allocated to the
ads with the highest bids. In this paper, we propose a new model called inte-
grated ad system which caters for modern e-commerce online platforms, where
both the positions and total number of advertising slots are not determined in
advance. After collecting bids from advertisers, the platform decides how to rank
all items (including sponsored advertisements and organic results) and how much
each advertiser should pay.

Optimally Integrating Ad Auction into E-Commerce Platforms 49

We start with a formal description of the IAS. In an IAS, there are n1 adver-
tisers and n2 organic results competing for K available slots of one search-result
page simultaneously. For simplicity, we call advertisements and organic results
as ad items and organic items, respectively. Denote A as the set of ad items and
O as the set of organic items, and exploit i ∈ A or i ∈ O to represent an ad item
or an organic item. Let k ∈ {1, 2, . . . ,K} index the slots. Generally, a higher
position slot has a smaller index. For the kth slot, βk stands for its effective
exposure, which means the probability that one user pays attention to this slot.
Without lose of generality, assume that β1 > β2 > . . . > βK > 0.

Each (ad or organic) item i has a quality (weight) factor wi to reflect its
relative popularity compared to other items. In addition, each item i’s esti-
mate merchandise volume per click is gi that is well known by the platform
and advertisers. In detail, the estimate merchandise volume is an attribute that
represents the expected sale amount per click. For ease of representation, we
call gi volume, instead. Each ad item i still has an extra private value vi per
click. More specifically, vi means that the advertisers want to charge extra vi to
gain one click. Suppose that vi is independently (not necessarily identical) drawn
from [0, ui] according to a publicly known distribution Fi(vi) whose respective
pdf is fi(vi). Given this, the virtual value of ad item i can be represented as
φi(vi) = vi −

(
1−Fi(vi)

)
/fi(vi). We assume that the distribution Fi(vi) satisfies

the regular condition, which implies that φi(vi) is monotone non-decreasing. For
the organic items, we have the following assumption:

Assumption 1. For any organic item i, we assume its valuation is always 0,
i.e., vi is drawn from the degenerate distribution with one support point 0.3.

In the IAS, we consider the separable click-through-rate (CTR) model. That is,
if the item i is allocated to slot k, the item i’s CTR is wiβk. It means that if we
put an item into a slot, the probability of being clicked is affected not only by
the position but also by itself. Similarly, the corresponding merchandise volume
is giwiβk.

In summary, the whole process of IAS can be described as: 1. The platform
releases the information of slots; 2. The advertisers submit a bid price based on
the value; 3. The platform ranks all ad items and organic items simultaneously
and decides how much the advertisers should charge.

2.2 Mechanism Design

Let v = (v1, v2, . . . , vn1) and b = (b1, b2, . . . , bn1) be the value profile and the bid
profile of all ad items. We may use v−i and b−i to represent the value profile and
bid profile of all ad items except ad item i.

In the IAS, after receiving the bids from advertisers, a mechanism M =
(x(b), p(b)) consists of two rules, allocation rule x(b) and payment rule p(b).

3 This assumption can be understood as that any organic items have no intention to
charge extra money for click numbers. They do not submit any price to platform
and make no contribution to the instant revenue.

50 W. Li et al.

More specifically, x(b) = (x1(b), x2(b), . . . , xn1+n2(b))
4 and p(b) = (p1(b), p2(b),

. . . , pn1(b)), where xi(b) =
∑K

k=1 xik(b)βk and xik(b) is the indicator function
to imply whether item i is assigned to slot k. Note that the CTR of item i is
wixi(b).

Since one slot should be allocated to one item and one item should be assigned
to at most one slot, xik(b) must satisfy the following constraints, denoted by X :

∑

k

xik(b) ≤ 1, ∀i ∈ A or O,

∑

i∈A

xik(b) +
∑

i∈O

xik(b) = 1, ∀k,

xik(b) ∈ {0, 1}, ∀i, k.

Given allocation rule and payment rule, the expected utility of ad item i with
bid bi, can be expressed as:

Ui(x, p, bi) =
∫

V−i

(
vi − pi(bi, v−i)

)
wixi(bi, v−i)f−i(v−i)dv−i (1)

In the IAS, to guarantee that advertisers have a desire to participate in the
auction, we require that the utility of ad item should not be less than zero.

Definition 1 (Individual Rationality)

Ui(x, p, bi) ≥ 0, ∀bi ∈ [0, ui], ∀i ∈ A.

In this paper, we also hope to design mechanisms that avoid advertisers false
reporting. Since our model is in Bayesian setting, we consider the mechanisms
with Bayesian Incentive Compatibility (BIC).

Definition 2 (Bayesian Incentive Compatibility)

Ui(x, p, vi) ≥ Ui(x, p, bi), ∀bi ∈ [0, ui], ∀i ∈ A.

We call a mechanism feasible iff it is IR, BIC and satisfies the condition X .
Fortunately, [20] has already given the equivalent characterization of IR, BIC
mechanisms. With a little refinement, we can design mechanisms with IR and
BIC in IAS as the following.

Lemma 1. ([20]). A mechanism is IR, BIC if and only if, for any ad item i
and bids of other items b−i fixed,
1. xi(bi, b−i) is monotone non-decreasing on bi.
2. pi(b) = bi − (

∫ bi
0

xi(si, b−i)dsi)/xi(b), when xi(b) �= 0; Otherwise, pi(b) = 0.

In the following of this paper, we only concentrate on designing feasible
mechanisms and use vi to represent the bid price bi directly for convenience.
4 In the IAS, since we allow that ad items and organic items display in a mixture

configuration, the outcome of an mechanism decides how to allocate both two types
of items, simultaneously.

Optimally Integrating Ad Auction into E-Commerce Platforms 51

2.3 Core Problems

As mentioned before, e-commerce platforms, unlike conventional search engines,
are concerned about instant revenue from ad items and GMV from both ad items
and organic items. Recall the notations in Subsects. 2.1 and 2.2, the revenue and
GMV are respectively given by

Revenue =
∫

V

∑

i∈A

pi(v)wixi(v)f(v)dv (2)

and
GMV =

∫

V

[∑

i∈A

giwixi(v) +
∑

i∈O

giwixi(v)
]
f(v)dv. (3)

In this subsection, we put forward two different approaches to trade off the
two objectives. The first approach is to think about the linear convex combi-
nation of the revenue and the GMV directly. Specifically, given a coefficient
α ∈ [0, 1] in advance, our problem is to find an optimal mechanism to maxi-
mize their convex combination with α. We call this problem as Unconstrained
Problem.

Unconstrained Problem. UCST (α) Given the weighted coefficient α ∈ [0, 1], the
unconstrained problem UCST (α) can be written as

max
x∈X

α · Revenue + (1 − α) · Volume. (4)

The second approach is that we optimize one metric while restricting the
other metric. This problem is called Constrained Problem. In this paper, we
always put GMV into constraints and optimize the revenue. Hence, in this prob-
lem, a threshold of GMV, denoted by V0, is always given in advance.

Constrained Problem. CST (V0) Given a threshold V0, the constrained problem
CST (V0) can be written as

max Revenue (P1)

s.t. Volume ≥ V0 (C1.1)

x ∈ X (C1.2)

3 The Optimal Mechanisms for the IAS

In this section, we mainly explore the optimal feasible mechanisms for both
unconstrained problem and constrained problem. We start with the uncon-
strained problem and present the elegant optimal mechanism.

52 W. Li et al.

3.1 The Unconstrained Problem

From our intuition, if there is no ad item, i.e., nobody submits a bid, the platform
will rank organic items by their volumes naturally. Because the organic item will
not influence the revenue, even if ad items appear, the order among organic
items does not change, as well. Therefore, the problem of designing the optimal
mechanism is, in fact, how to pick up appropriate ad items and insert them
properly into the list of organic items to achieve the optimum of goals. More
specifically, we need to design the optimal ranking criterion to incorporate the
ad items without disturbing the order of organic items, and the corresponding
payment function. For simplicity, we can define I = A ∪ O as the new set to
represent all items. Formally, we also extend v, b, p(b) to n1 + n2 dimensions.

For the unconstrained problem with fully mixed allocation of the ads and
organic items, we aim to find the criterion of rank to insert ad items into the
sequence of organic items optimally. Because there is no other constraint except
for the feasibility, we can simply the objective function to an easily observed
form which can help us find the optimal ranking rule, shown in the Lemma 2.

Lemma 2. To maximize the objective function (4), the mechanism needs to
maximize the objective

∫

V

∑

i∈I

(αφi(vi) + (1 − α)gi)wixi(v)f(v)dv − α
∑

i∈I

Ui(x, p, 0). (5)

Because p(b) only appear in Ui(x, p, 0) and we need to guarantee the property
of IR, by Lemma 1, if we choose

pi(v) = vi −
∫ vi

0
xi(si, v−i)dsi

xi(v)
(6)

as payment rule, then Ui(x, p, 0) will be 0 and we only need to consider to select
appropriate x(b) to maximize the first part of (5).

As for allocation rule, we define ψi(vi)
def
= (αφi(vi) + (1 − α)gi)wi as the

revised virtual value of item i. It is not difficult to check that the following
allocation rule can maximize the first part of formula (5).

xik(v) =

{
1 if ψi(vi) is the kth-highest revised virtual value, k ∈ {1, . . . , K},

0 otherwise.
(7)

Note that since φi(vi) is regular, ψi(vi) is non-decreasing as well. Consequently,
xi(v) satisfies the non-decreasing, when fix v−i.

By the argument above, we can obtain the optimal mechanism for uncon-
strained problem by Theorem 1.

Theorem 1. Given α ∈ [0, 1], the mechanism M = (x(v), p(v)), where x(v)
and p(v) are described by (7) and (6), is the optimal feasible mechanism for the
unconstrained problem UCST (α).

Optimally Integrating Ad Auction into E-Commerce Platforms 53

The optimal mechanism of the unconstrained problem has been given above.
We will explain more about the optimal mechanism. For the special case that all
items are organic items, the platform should rank them by their volumes. Our
mechanism exactly has the same rank as this, because our mechanism ranks
items by ψi(vi) = (αφi(vi) + (1 − α)gi)wi = (1 − α)giwi. It is equivalent to
ranking them by their volume. Based on this point of view, we can regard the
rank of general case in another perspective. For ad items, the term φi(vi) is
different from that of organic item. In the same ranking criterion, we can rank
the organic items first, then insert ad items optimally by ranking score ψi(vi).
Another fact is that there exists no redundant slots that no items are assigned
into. This is because, for the organic items, their revised virtual value is always
greater than zero, which makes that, at least, the organic items can be shown in
the result list. This point is also the difference with the classic Myerson auction
which may not allocate items. In another words, our mechanism is based on the
structure of Myerson auction, but allocation result is different. Finally, for the
organic items, they also have the payment rule p(b), but we can find that this
value will be always equal to 0, which meets the practical requirement.

3.2 The Constrained Problem

In this subsection, we mainly concentrate on the constrained problem. Since
the feasible region is discrete, i.e., xik(v) is not a continuous function about
bids v, it is difficult to optimize the objective directly. We first relax constraints
xik(v) ∈ {0, 1} in (C1.2) to xik(v) ∈ [0, 1] and denote the relaxed feasible region
as X̄ . The relaxed constrained problem is

max R(x)
def
=

∫

V

∑

i∈I

wipi(v)xi(v)f(v)dv (P2)

s.t. V (x)
def
=

∫

V

∑

i∈I

giwixi(v)f(v)dv ≥ V0 (C2.1)

x ∈ X̄ . (C2.2)

Given this, we can prove that Program (P2) is a convex optimization and satisfies
the strong duality, given an accessible V0. For an accessible V0, strong duality
holding implies that

max
x:x∈X̄ ,V (x)≥V0

R(x)
︸ ︷︷ ︸

Primal

= min
λ≥0

max
x∈X̄

(
R(x) + λ(V (x) − V0)

)

︸ ︷︷ ︸
Dual

= min
λ≥0

max
x∈X̄

[∫

V

∑

i∈I

(pi(bi) + λgi)wixi(b)f(b)db − λV0

]

.

54 W. Li et al.

Observing the inner maximization problem of the dual problem, when given
a λ, it is an unconstrained problem with relaxed feasible region X̄ . Since the
coefficient matrix of X̄ is totally unimodular matrix [22], the optimal solution
of inner problem is integral form, i.e., 0–1 form. Therefore, the optimal solution
of inner problem can be obtained by mechanism M with α = 1/(λ + 1), that is,

xλ
ik(v) =

{
1 if ψλ

i (vi) is the kth-highest, k ∈ {1, 2, . . . ,K},

0 otherwise,
(8)

where ψλ
i (vi)

def
= [(φi(vi) + λgi)wi]/(λ + 1). pλ

i (v) can be derived by replacing
xik(v) with xλ

ik(v) in (6).
As for the outer problem, according to the complementary-slackness, the

optimal λ∗ satisfies that λ∗(V (xλ∗
) −V0) = 0. Hence, either λ∗ = 0 or V (xλ∗

) −
V0 = 0 must hold. For the former case, we can testify whether λ∗ = 0 by
running the optimal mechanism M in Theorem 1 with α = 1 and compare
the output GMV with V0. If the output GMV exceeds V0, the optimal λ∗ is
0. Otherwise, we turn to the latter case. Because V (xλ) is monotone on λ and
it only contains one variable λ, we come up with a Dichotomy to output the
optimal λ∗. Consequently, plugging the optimal λ∗ into xλ

ik(v) and pλ
ik(v), we

derive the optimal feasible mechanism, M̄ = (xλ∗
i (v), pλ∗

i (v)), for the relaxed
constrained problem. Since xλ

ik(v) is 0–1 form, M̄ is the optimal mechanism for
the unrelaxed constrained problem.

Owing to the strong duality, the constrained problem is equivalent to an
unconstrained problem in some sense, if we choose a proper parameter. There-
fore, we have the following theorem to demonstrate their relationship.

Theorem 2. The constrained problem with threshold V0 is equivalent to one
unconstrained problem with coefficient α∗, where α∗ = 1/(λ∗ + 1) and λ∗ is the
optimal Lagrangian multiplier in the constrained problem.

4 Extensions

When allowing that advertisements and organic items can be arranged in a
fully hybrid way, one inevitable problem is that sometimes there may be too
many ad items displaying in the optimal allocations. Even though this type
of allocations can achieve the optimal tradeoff, these scenarios will hurt the e-
commerce platform in the long run. In this section, we generalize the integrated
system to tailor for more practical requirements. We make two extensions: one is
to restrict the number of ad items shown in one result page, the other is to add
the constraint on the sparsity of ad items. In each extension, we find the optimal
mechanism for the unconstrained problem (generalizing the Theorem 1), and
build up the relationship between the constrained problem and the unconstrained
problem (extending Theorem 2).

Optimally Integrating Ad Auction into E-Commerce Platforms 55

4.1 The Integrated Ad System with Number Budget on Ad Items

In this subsection, we still study designing the optimal mechanisms with an
extra requirement of bounding the total number of ad items. Formally, if we
require the number of ad items within c, we only need to add the constraint,∑

i∈A

∑
k xik(v) ≤ c, into X and denote new feasible region as X ′.

We first extend the results of unconstrained problem to this setting. From
Lemma 1, 2 and mechanism M, we have known that items are ranked by their
revised virtual values, ψi(vi). To abide by the new constraints, ad items appear
at most c times in the final layout. It is reasonable for us to take the top c ad
items (ordered by their highest revised virtual value) into account while ranking
all items. In view of this point, we generalize the mechanism M to M′(c):

Mechanism M′(c):
1. Sort all ad items into non-increasing order by ψi(vi). Remain the top c ad

items and delete the other ad items;
2. For the remaining ad items and all organic items, run the mechanism M

with coefficient α.

Due to the optimality of mechanism M and satisfying the restriction on
the number of ad items, we can claim that mechanism M′(c) is the optimal
mechanism in current setting.

Theorem 3. Given α ∈ [0, 1] and the budget c, the mechanism M′(c) is the
optimal mechanism for the unconstrained problem UCST (α) with the budget on
the number of ad items.

As for the constrained problem, we follow the similar logic used in Sect. 3.2. How-
ever, the main difference and difficulty is that, the coefficient matrix of X ′ is not
totally unimodular anymore, compared with the previous constrained problem.
Fortunately, even though the coefficient matrix lacks of the unimodularity, we
can prove that the relaxed problem still has the 0–1 form optimal solutions by
transferring it to a min-cost max-flow problem (shown in full version). Based
on the analysis in Sect. 3.2, the constrained problem still can simplify to an
unconstrained problem by choosing the proper parameter, which means that we
generalize the Theorem 2 into the case with budget constraint.

4.2 The Sparse Integrated Ad System

In this subsection, we investigate another extension that can control the sparsity
of ad items. It is motivated by the reality that some e-commerce platforms hope
that ad items appear intermittently, rather than emerge together. We consider
two kinds of constraints on sparsity of ad items: the sparsity on row and the
sparsity on column. The latter one can be found into full version.

The Sparsity on Row. When we search the products by personal computer on
e-commerce platforms, the search results are usually shown in several rows and
each row contains several items. Inspired by this layout, we hope to constrain the

56 W. Li et al.

number of ads in each row to comfort the users. In view of this point, we divide
one search-result page into multiple rows and each row contains consecutive l
slots. Then, we require that there are at most c ad items displayed in these l
slots. We call this model as the sparse integrated ad system – row (SIASR).
From the mathematical perspective, the above requirement can be described as
a group of constraints:

∑
i∈A

∑(m+1)l
k=ml+1 xik(v) ≤ c, m = 0, 1, . . . , �K/l	 and

∑
i∈A

∑K
k=�K/l�l+1 xik(v) ≤ c. Add them to X and denote the new constraint

feasible set as X̃ .
We begin with the unconstrained problem in this case. Observing these new

constraints, we can find that each one is actually a constraint on the number
of ad items for l slots. In another word, if we divide one search-result page
into �K/l	 + 1 parts, every part is an IAS with number budget on ad items
(introduced in Sect. 4.1). Consequently, We can run mechanism M′(c) for each
part to output a feasible arrangement for SIASR. Since the optimality of M′(c),
every part achieves the optimal arrangement, which induces the global optimal
arrangement for all slots. Therefore, we derive the optimal mechanism in this
setting, defined as M̃(c, l).

Mechanism M̃(c, l):
1. Run mechanism M′(c) to allocate the first l slots on all items;
2. Run mechanism M′(c) to allocate the next l slots on all remaining items;
3. Repeat step 2 until all slots are allocated. (In the last round, the number

of slots may be less than l).

Theorem 4. Given α ∈ [0, 1], the number of items in a row, l and the budget c,
the mechanism M̃(c, l) is the optimal mechanism for the unconstrained problem
UCST (α) of SIASR.

For the constrained problem, guiding from the method in Sect. 3.2, the
remaining question is to show the 0–1 form of the optimal solution of the relaxed
problem. Compared to Subsect. 4.1, the problem in this subsection is trickier,
since multiple parts enhance the difficulty on construction of the equivalent min-
cost max-flow problem. However, we overcome it (shown in full version) and solve
the constrained problem of SIASR, which extends the Theorem 2 to this setting.

5 Conclusion

To sum up, for the new features of e-commerce online platforms that combine
advertisement and organic items for display purposes, we offer a thorough and
exact study on designing mechanisms to balance both areas of “volume” and
revenue. For different ways of tradeoff and practical requirements, optimal fea-
sible mechanisms can be designed in order to realize them. We also empirically
evaluate our mechanism and demonstrate its advantage.

As far as we know, our research is the first through study on mixed arrange-
ment of advertisement items and organic items. There are still many problems
remain open, to name a few:

Optimally Integrating Ad Auction into E-Commerce Platforms 57

– In this paper, we only focus on feasible mechanisms. There may exist mech-
anisms which are not limed to BIC or IR that can realize a higher trade-off.

– The valuation distribution is publicly known to each advertiser. A further
area to explore would be how to design mechanisms that avoid cheating on
distribution.

References

1. Abrams, Z., Schwarz, M.: Ad auction design and user experience. In: Deng, X., Gra-
ham, F.C. (eds.) Internet and Network Economics, pp. 529–534. Springer, Berlin
(2007)

2. Aggarwal, G., Goel, A., Motwani, R.: Truthful auctions for pricing search keywords.
In: Proceedings of the 7th ACM Conference on Electronic Commerce, pp. 1–7.
ACM (2006)

3. Athey, S., Ellison, G.: Position auctions with consumer search. Q. J. Econ. 126(3),
1213–1270 (2011)

4. Austin, D.: How google finds your needle in the web’s haystack. Am. Math. Soc.
Feat. Col. 10(12) (2006)

5. Avrachenkov, K., Litvak, N.: Decomposition of the Google PageRank and optimal
linking strategy (2004)

6. Bachrach, Y., Ceppi, S., Kash, I.A., Key, P., Kurokawa, D.: Optimising trade-offs
among stakeholders in ad auctions. In: Proceedings of the Ffteenth ACM Confer-
ence on Economics and Computation, pp. 75–92. ACM (2014)

7. Chu, L.Y., Nazerzadeh, H., Zhang, H.: Position ranking and auctions for online
marketplaces. Manag. Sci. 66(8) (2017). SSRN 2926176

8. Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1), 17–33 (1971)
9. Crowcroft, J.: Net neutrality: the technical side of the debate: a white paper. ACM

SIGCOMM Comput. Commun. Rev. 37(1), 49–56 (2007)
10. Edelman, B., Lockwood, B.: Measuring bias in ‘organic’ web search. Unpublished

manuscript (2011)
11. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and the generalized

second-price auction: selling billions of dollars worth of keywords. Am. Econ. Rev.
97(1), 242–259 (2007)

12. Groves, T., et al.: Incentives in teams. Econometrica 41(4), 617–631 (1973)
13. Lahaie, S., Pennock, D.M.: Revenue analysis of a family of ranking rules for key-

word auctions. In: Proceedings of the 8th ACM Conference on Electronic Com-
merce, pp. 50–56. ACM (2007)

14. Li, J., Liu, D., Liu, S.: Optimal keyword auctions for optimal user experiences.
Decis. Support Syst. 56, 450–461 (2013)

15. Li, W., Qi, Q., Wang, C.: Optimally integrating ad auction into e-commerce plat-
forms. CoRR abs/2007.09359 (2020). https://arxiv.org/abs/2007.09359

16. Likhodedov, A., Sandholm, T.: Auction mechanism for optimally trading off rev-
enue and efficiency. In: Proceedings of the 4th ACM Conference on Electronic
Commerce, pp. 212–213. ACM (2003)

17. L’Ecuyer, P., Maillé, P., Stier-Moses, N.E., Tuffin, B.: Revenue-maximizing rank-
ings for online platforms with quality-sensitive consumers. Oper. Res. 65(2), 408–
423 (2017)

18. Maillé, P., Tuffin, B.: Telecommunication Network Economics: From Theory to
Applications. Cambridge University Press, Cambridge (2014)

https://arxiv.org/abs/2007.09359

58 W. Li et al.

19. Maskin, E., Riley, J.: Optimal multi-unit auctions’. Int. Lib. Criit. Writings Econ.
113, 5–29 (2000)

20. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)
21. Ostrovsky, M., Schwarz, M.: Reserve prices in internet advertising auctions: a field

experiment. In: Proceedings of the 12th ACM Conference on Electronic Commerce,
pp. 59–60. ACM (2011)

22. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Courier Corporation, North Chelmsford (1998)

23. Roberts, B., Gunawardena, D., Kash, I.A., Key, P.: Ranking and tradeoffs in spon-
sored search auctions. ACM Trans. Econ. Comput. 4(3), 17 (2016)

24. Shen, W., Tang, P.: Practical versus optimal mechanisms. In: Proceedings of the
16th Conference on Autonomous Agents and Multi-agent Systems, pp. 78–86.
International Foundation for Autonomous Agents and Multiagent Systems (2017)

25. Sundararajan, M., Talgam-Cohen, I.: Prediction and welfare in ad auctions. Theory
Comput. Syst. 59(4), 664–682 (2016)

26. Thompson, D.R., Leyton-Brown, K.: Revenue optimization in the generalized
second-price auction. In: Proceedings of the Fourteenth ACM Conference on Elec-
tronic Commerce, pp. 837–852. ACM (2013)

27. Varian, H.R.: Position auctions. Int. J. Ind. Organ. 25(6), 1163–1178 (2007)
28. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J.

Financ. 16(1), 8–37 (1961)
29. Williams, H.: Measuring search relevance (2010)
30. Wright, J.D.: Defining and Measuring Research Bias: Some Preliminary Evidence,

pp. 12–14. International Center for Law & Economics, November 2011

Verifiable Crowd Computing: Coping
with Bounded Rationality

Lu Dong1, Miguel A. Mosteiro1(B), and Shikha Singh2

1 Pace University, New York, NY 10038, USA
{ld41349n,mmosteiro}@pace.edu

2 Williams College, Williamstown, MA 01267, USA
shikha@cs.williams.edu

Abstract. In this paper we use the repeated-games framework to design
and analyze a master-worker (MW) mechanism, where a master repeat-
edly outsources computational tasks to workers in exchange for payment.
Previous work on MW models assume that all workers are perfectly ratio-
nal and aim to maximize their expected utility. Perfect rationality is a
strong behavioral assumption because it requires that all workers follow
the prescribed equilibrium. Such a model may be unrealistic in a practi-
cal setting, where some agents are not perfectly rational and may deviate
from the equilibrium for short-term gains. Since the correctness of these
MW protocols relies on workers following the equilibrium strategies, they
are not robust against such deviations.

We augment the game-theoretical MW model with the presence of
such bounded-rational players or deviators. In particular, we show how to
design a repeated-games based MW Verifiable Crowd Computing mech-
anism that incentivizes the rational workers (or followers) to effectively
punish such deviators through the use of terminal payments. We show
that the master can use terminal payments to obtain correct answers to
computational problems even in this more general model. We supplement
our theoretical results with simulations that show that our mechanism
outperforms related approaches.

Keywords: Crowd computing · Master-worker computing · Internet
computing · Verifiable computation outsourcing · Repeated games ·
Algorithmic game theory

1 Introduction

Due to the escalation of large data sets and the high cost of supercomputers,
most computation today is not being performed locally, but rather outsourced
either as Cloud Computing, Grid Computing, or to Internet-connected personal
computers (which we refer to as Crowd Computing1). In a Crowd Computing
platform, a client outsources computational tasks to several untrusted workers,

1 The denomination Crowd Computing has been used for different systems. We define
our model in Sect. 3.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 59–78, 2022.
https://doi.org/10.1007/978-3-031-20796-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-20796-9_5

60 L. Dong et al.

often in exchange for money. Crowd Computing has proven to be a powerful and
cost-effective alternative to setting up an expensive computational infrastructure
locally. However, it also brings up several implementation challenges, the most
prominent one being: how can a client ensure that the computational tasks have
been performed correctly by the untrusted workers?

In this work, we study Crowd Computing in the master-worker (MW) model
where computational tasks are assigned by a centralized entity called master to
agents called workers. Workers are expected to compute the task and return the
result. All communication between master and workers occurs in parallel, that
is, tasks are assigned and the results are returned simultaneously by all workers.

Practical examples of such Crowd Computing systems include
SETI@home [42], Foldit [32,45], and Mechanical Turk [3]. Reliable partic-
ipation in these systems is induced through various incentives. For example, in
Foldit the motivation is to participate in a game, in Mechanical Turk workers
participate for profit compelled by a reputation system, whereas in SETI@home
workers are altruistic volunteers.

Game-theoretical MW Model. Various models of worker-behavior have been
studied in the MW literature in distributed computing, e.g., the workers have
been assumed to be either malicious or honest [20,21,23,34–36,44].

The game-theoretic MW model assumes that all workers are rational and
choose their strategy to maximize their expected utility [13,14,21,22,47]. While
such a model is ideal for capturing the economic incentives that are present in
these systems, it also imposes strong behavioral assumptions on the workers. In
particular, the players are assumed to be perfectly rational. That is, all players
play the prescribed equilibrium strategy. In practice, some strategic agents in
a Crowd Computing system may not follow the equilibrium strategy for any
number of reasons: carelessness, limited rationality (they may not believe in the
expected utility guarantees of a probabilistic mechanism), they may be skepti-
cal of the empty threats sustainining the equilbrium, or they may distrust the
master. We call such players who are not perfectly-rational and may not follow
the prescribed equilibrium as deviators.

There is evidence that even in systems that provide incentives for computing
correctly, such deviators exist [4,26,30]. Since the master obtains the correct
answer to the computational tasks only when all workers follow the equilibrium
prescribed by the chosen incentives, the presence of such bounded-rational play-
ers, or deviators jeopardizes the correctness guarantees of such systems.

In this paper, we provide a principled approach to designing MW mechanisms
for Crowd Computing in the presence of such “bounded rational” deviators. We
say these deviators have bounded rationality to distinguish them from purely
malicious players because while they initially deviate from the equilibrium, once
they are punished by their rational peers, they realize that the threats are cred-
ible, and their utility will be maximized by following the equilibrium. That is,
we assume that after being punished deviators behave as followers.

Master-Worker Model with Deviators. In this work, we augment the
repeated-games-based MW model of Fernández Anta et al. [24] in two ways.

Verifiable Crowd Computing: Coping with Bounded Rationality 61

First, we consider pools of workers that include deviators.2 In particular, we
assume that some players in the system are perfectly-rational in the game-
theoretic sense and, hence, will follow the prescribed equilibrium (we call them
followers) and the rest are deviators, who initially may not follow the equilibrium
strategy. Second, in contrast to the infinitely repeated game studied in [24], we
consider finitely repeated games. That is, the MW interaction lasts for prede-
termined number of rounds (with a possible extension as explained in Sect. 3).

The presence of deviators in the MW model poses several challenges. First, we
need a mechanism to identify and appropriately punish such deviators. Second, in
a repeated-games framework such a punishment must be levied by the followers,
who incur a short-term utility loss in doing so. Thus, we need a mechanism to
incentivize the followers to punish deviators on behalf of the master. We achieve
this through the use of terminal payments, which are additional payments
provided to the followers at the end of a finitely-repeated game.

Terminal payments in finitely-repeated games has been studied by Goss-
ner [27], who proved a Folk Theorem for such games when players use mixed-
strategies. Gossner introduced these payments precisely to handle the presence
of deviators. We follow Gossner’s model of terminal payments and use them to
compensate followers at the end of the MW protocol.

Finitely-repeated games and terminal payments are particularly appealing
from a practical standpoint in Crowd Computing systems as they better capture
the practice of (a) hiring workers for limited periods, and (b) keeping track of
their behavior and rewarding compliance through payments, respectively. Exten-
sions such as modeling different types of deviators, or collusion among workers
are also interesting, and are left to future work.

1.1 Main Contributions

We summarize the main contributions of our paper below.

– Modeling Deviators. We generalize the repeated-games MW model to allow for
the presence of bounded-rational workers or deviators. Bounded-rationality
is a concept that has gained popularity in the computational applications
of game theory (e.g. see. [5,10–12,16,28,29,43]) because it bridges the gap
between game theory and rational behavior in practice. Our bounded-
rationality models intentional deviations, as opposed to other models where
deviations are accidental (e.g. trembling-hand equilibria [9]).

– Terminal Payments. We show how to implement terminal payments in a
constructive way in the repeated-games model. This notion was previously
only studied in an existential context. In particular, Gossner [27] showed that
a mixed-strategy equilibrium of finitely-repeated games exists in the presence
of terminal payments. In this paper, we construct a mechanism that admits
such an equilibrium in the presence of deviators.

2 The notion of deviators is only considered as part of the simulations in [24]; see
Sects. 2 and 6 for further comparison.

62 L. Dong et al.

– Verifiable MW Computing in the Presence of Deviators. As our main result
(Theorem 1) we provide a MW mechanism that is robust against deviating
workers—that is, the master obtains the correct answer in expectation and
asymptotically almost surely under certain mild conditions. We achieve this
through a finitely-repeated MW game and the use of terminal payments.
Thus, our mechanism improves over the work of Fernández Anta et al. [24] in
achieving correctness guarantees in a weaker behavioral model that includes
bounded-rationality.

– Simulation Results. We also compare experimentally the performance of our
mechanism to the previous work of Christoforou et al. [15] and Fernández-Anta
et al. [24]. We compare these approaches on the following metrics: correctness
of the answers obtained by the master and the cost incurred by the master.
On the range of parameters tested, our simulations show that, even for a large
number of tasks, our mechanism outperforms [15] in correctness at a similar
cost. Moreover, our mechanism outperforms [24] in terms of the cost while
providing similar correctness guarantees in a weaker model. We note that the
repeated application of a one-shot verification mechanism was shown to be
worse than [15] in [24]. Consequently, our mechanism outperforms such an
approach and we omit including it in simulations for clarity.

2 Additional Related Work

We discuss the various MW models that have been studied in the literature.

MW with Malicious Workers. Distributed computations in presence of mal-
ice have been well studied (e.g. [20,34,35,44]). In [44], the workers are assumed
to be malicious with some probability. To counter their effect, tasks with known
outcomes are executed to detect malicious workers, which is argued to work bet-
ter than voting techniques. However, later experimental work [34] showed that
it takes a long time to achieve low error rates in practice. In [20], the model
considers malicious workers who may deliberately return an incorrect result in
an effort to harm the master. Workers have a predefined behavior: either they
are malicious or honest. Majority voting is used to cope with malice in one-shot
computations. This work was later extended [35] to many tasks. A distributed
verification mechanism was introduced in [36], however, the model limits malice
to 20% of the workers. None of these models study selfish (rational) behavior.

MW Model with Rational Workers. Distributed computations when work-
ers are selfish (rational in the game-theoretic sense) have also been studied
(e.g. [13,14,21–23]). In [47], all workers are assumed to be rational. Auditing
and majority voting measures are used. If a non-audited computation does
not yield an absolute majority, the task is recomputed to achieve reliabil-
ity. Several works study coexistence of rational and malicious players [1,2,6–
8,13,14,18,19,22,25,40]. For example, protocols in [19] tolerate up to k rational
players that deviate from a NE, follow-up work [1] tolerates up to k colluding
rational players and t Byzantine ones. The BAR model (Byzantine, Altruistic,
and Rational) was introduced in [2] and later used in [37,38].

Verifiable Crowd Computing: Coping with Bounded Rationality 63

The above work applies to one-shot interactions between master and workers.
That is, the system design is oriented to the reliable computation of one task.

Repeated Games and MW. In the repeated-games MW framework, the
master sequentially assigns tasks to the same pool of workers. Christoforou et
al. [15] (and follow-up [39]) use this framework to design a mechanism based
on reinforcement-learning. In their approach, master and workers adjust their
strategies for the next interaction according to the outcome of the previous one.
The mechanism is shown to eventually converge to a state where the master
always obtains the correct results with minimal verification. Depending on sys-
tem parameters such as rewards, penalties and the workers’ aspiration for profit,
the time required for convergence may be long.

Our work builds upon the MW model of Fernández Anta et al. [24] and differs
from it in two ways.

First, the MW model in [24] is based on infinitely repeated games [41], while
we design a finitely-repeated MW game. The infinitely-repeated games approach
is shown to improve upon repeated application of one-shot and reinforcement-
learning mechanisms in terms of cost and reliability. However, the correctness of
the model relies heavily on the assumption that the workers are uncertain about
when the game ends. In particular, if the workers in [24] were to know when
the interaction ends, they would stop following the equilibrium (and computing
tasks) and default to cheating. Letting workers know the (possibly extended)
length of the interaction a priori makes the model more realistic.

Second, the model in [24] assumes all players are perfectly rational, while we
allow the presence of deviators. The term “deviators” is used in [24] to analyze
deviations from the equilibrium strategy, but these deviations are never benefi-
cial for the workers. Thus, since all workers are perfectly rational, no worker will
ever deviate. In this paper, we define deviators as players who may not follow the
prescribed equilibrium despite being aware of the consequence to their utility,
perhaps because they do not trust the mechanism or the threats of punishment.
To ensure that the punishment by followers is not just an empty threat, we
incentivize followers to levy the punishment using terminal payoffs. In contrast,
the punishment by peers in [24] is effectively an empty threat because impos-
ing the punishment causes a utility loss to players, and they incur such a loss
indefinitely in the infinitely repeated game.

Repeated Games and Crowdsourcing. More recently, a repeated-games
approach to collect crowd sensor data was presented in [33]. Their mechanism
uses a worker-reputation system, reinforcement learning to update strategies,
and master verification in the presence of both rational and irrational workers.
Their game model is finite but fails to address the deviation from equilibrium of
rational workers when the sequence of task assignments is reaching the end.

Several crowdsourcing models focus on collusion reporting or cheating detec-
tion when there are only two workers [17,46], or considering master-worker inter-
action as a two-player game [31]. Such approaches are often case-by-case and do
not model repeatedly outsourcing many computational tasks.

64 L. Dong et al.

3 Preliminaries

We say that a stochastic event holds with high probability (w.h.p.), if it holds
with probability at least 1 − 1/nc, for some constant c > 0, and that it holds
asymptotically almost surely (or a.a.s., for short), if it holds with probability at
least 1 − 1/f(n), where f(n) ∈ ω(1).
Master-Worker Model. We consider a computing platform with a set N of
processing entities called workers, where |N | = n, and a coordinator entity
called master . We call this platform a master-work (MW) system.

The master assigns computing tasks to workers sequentially in rounds. We
assume that the master has an unbounded source of tasks that need to be com-
puted. We consider computation of tasks that have a unique correct answer.
In each round, the master assigns the same computational task to all workers.
Upon receiving the results, the master decides stochastically whether to ver-
ify them (e.g. checking the solutions received or computing the result itself if
needed), or accept the majority. The probability of verification by the master
is denoted as pv. In order to avoid ties, we let n be odd. We assume that the
cost of verification is negligible with respect to computing the task, e.g. NP-hard
problems. If the master verifies the results of the computation, it pays a reward
ρ to the workers that returned the correct result, and charges a fine φ to those
that returned and incorrect result. If the master does not verify, workers in the
majority receive the reward ρ and no worker is fined.

The expected cost of the master is defined as the sum of the expected
verification cost and expected payments, minus the expected fines received (since
they reduce the cost).

As a design decision, our mechanism specifies a reward threshold γ on the
number of workers that will be rewarded. That is, if the number of workers to be
rewarded exceeds the reward threshold, the master does not reward any worker
(regardless of verification). This reward threshold reflects the natural assumption
that the master has a limited budget. Because receiving fines from the workers is
not the goal of the system, this parameter ensures that the cost reduction due to
fines does not increase the budget of the master for rewards. Note the prescribed
equilibrium will ensure that the number of workers following it (the followers)
stay below the threshold γ. In other words, in absence of deviations, the workers
strategic decision stochastically guarantees that the number of correct answers
will be at most γ.

Computing a task involves a cost for the workers, which is assumed to be
the same value c for all. For each round of task assignments, the strategy of the
workers is defined by their probabilistic choice to either compute the result of the
task or to return a default incorrect answer to avoid the cost of computing, albeit
risking to be fined. For each worker i ∈ N , let the probability of computing
the task be denoted as pζi

, and let p
�ζi

= 1 − pζi
be the probability of not

computing.
The above protocol is followed for each round of task assignments. We sum-

marize the notation in Table 1.

Verifiable Crowd Computing: Coping with Bounded Rationality 65

Table 1. System parameters

ρ : reward
φ : fine
c : worker computing cost

pζi
: worker i probability of computing

pv : master probability of verifying

γ : reward threshold
T : number of rounds
N : set of workers (|N | = n)
nf : number of followers
nd : number of deviators (nd = n − nf)

Repeated Game Model. We model the interactions in the MW system as
a finitely repeated game with mixed strategies and terminal payoffs [27]. That
is, the master assigns T computing tasks sequentially, each to the same set of n
workers. The strategic choice for each worker i ∈ N is the value of the probability
of computing pζi

.
In each round of task assignments, the master and workers proceed as in

the MW model above. The master computes an equilibrium where the work-
ers expected utility is maximized and sends the equilibrium parameters and
its computation to the workers. We assume that among n workers, there are
nf followers and nd = n − nf deviators. The followers are rational in the
game-theoretical sense and choose their strategies according to the prescribed
equilibrium. The deviators, on the other hand, may not trust the mechanism
and may choose a different strategy. The deviators motivation to steer away
from equilibrium is to go unnoticed while reducing costs or increasing utilities.
That is, they are not Byzantine malicious.

Upon detecting deviations, the followers change to a minmax strategy
(defined below) that yields the lowest payoff that followers can force upon a
deviator. The purpose of changing to a minmax strategy is to penalize the devi-
ators for not following the equilibrium. This change of strategy lasts for a period
of P rounds, which is called a peer-punishment period. P is large enough
to counter any extra utility that may be obtained by the deviators. Followers
compute the value P based on the detected deviation.

Without loss of generality, we assume that deviations are detected on or
before the (T − P)th round, and that only one period of peer-punishment is
needed throughout the whole computation. Otherwise, should a deviation occur
after some round Tlate such that Tlate+P > T , or more than one peer-punishment
period be needed, the master could assign more tasks3 to extend the interaction
period to Tlate+P , or to make T much larger than the sum of all punishment peri-
ods needed respectively. Intuitively, one would expect that deviators “learn the
lesson” after being punished—they confirm that deviating is indeed not worth-
while as any utility gain from deviating is nullified by the punishments. Also, we
limit the number of deviations as an arbitrary number of deviations indicates
malicious intent rather than bounded rationality. Furthermore, the deviators do
not know whether subsequent deviations will cause punishments, and a single
punishment is sufficient to establish the credibility of such a threat.

3 Recall the assumption that the master has access to an unbounded number of com-
putational tasks.

66 L. Dong et al.

After the T rounds of task assignments are completed, the master pays a
terminal payoff to followers to compensate them for the utility loss during
the peer-punishment period, and the interaction between the master and the
workers terminates.

Even though the master-worker interaction lasts a finite number of rounds,
the above framework allows us to model the worker behavior as in an infinitely
repeated game. That is, workers choose strategies taking into account long-term
interaction. Indeed, the player behavior in infinitely repeated games is well-
motivated even for finitely repeated games except in the last few rounds [41],
and by introducing terminal payoffs (and extending the interaction beyond T
rounds if needed) the long-term choice of strategies is not affected.

We now define the game formally. Let G1〈N, (Ai), (�i)〉 be a normal-form
(one-round) game with set of players N , where |N | = n. For each player i ∈ N ,
Ai = {ζ,��ζ} is the action space (compute or not compute) of player i ∈ N , and
�i is the preference relation on the space of all workers actions A = ×i∈NAi =
{ζ,��ζ}N . The preference relation of player i is represented by a utility function
ui , in the sense that ui(a) ≥ ui(b) whenever a �i b, for a, b ∈ A. The utility
function ui is based on the rewards and fines scheme defined in the MW model.
That is, for #ζ =

∑
j∈N :Aj=ζ 1 and #��ζ =

∑
j∈N :Aj=�ζ

1,

ui =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−c, if Ai = ζ and #ζ > γ,
ρ − c, if Ai = ζ and n/2 < #ζ ≤ γ,
pvρ − c, if Ai = ζ and #ζ < n/2,
−pvφ, if Ai = ��ζ and #��ζ > γ,
(1 − pv)ρ − pvφ, if Ai = ��ζ and n/2 < #��ζ ≤ γ,
−pvφ, if Ai = ��ζ and #��ζ < n/2.

(1)

The expected utility of the workers in the normal-form game depends on the
random choices of the master and other players. Following [41], we define the
extended game G2〈N, (Si), (ui)〉 that differs from G1 in that Si is the mixed
strategies space of player i ∈ N . Let ui : S → R be the expected utility
function of player i, where the expected value represents player i’s preferences
over the space S = ×i∈NSi.

The overall expected utility is based on the expected utility in each of the
T rounds and the terminal payoffs. We define the repeated game with terminal
payoffs implemented by our mechanism as G(T,W, ω)〈N, (Si), (ui)〉. We redefine
the expected utility function ui : ST → R, that is, a function whose expected
value represents player i’s preferences over the space ST . W ⊆ R

N is the terminal
payoffs set, and ω : HT → W is the terminal payoffs function applied to HT ,
where Ht is the set of t-tuples of elements of S, for t ∈ [1, T]. That is, HT is
the history of mixed-strategy actions at round T . We refer to the model as a
strategic game for simplicity.

The minmax strategy is a follower mixed strategy (i.e., a choice of proba-
bility of computing) such that the payoff of the deviators is minimized, regardless
of their strategy. The minmax payoff vi is the lowest expected payoff of devi-
ator i that the followers can force upon i. It is well-known (refer to Proposition
144.3 in [23]) that, for any enforceable payoff profile, that is, any payoff profile

Verifiable Crowd Computing: Coping with Bounded Rationality 67

Algorithm 1: Master algorithm with paramters γ =
⌈
n/2 + 2

√
n ln lnn

⌉
,

q = 1
2n

(∑γ−1
j=n−γ

(
n−1

j

)
+ (1 − pv)

(
n−1

(n−1)/2

))
, and pv = c/φ. Messages are

sent to (and received from) all workers.
1 send pζ , q, and certificate
2 for T times do
3 send a computational task
4 upon receiving all answers do
5 verified ← true, with probability pv or false, with probability 1 − pv

6 if verified then
7 verify the answers
8 fine the incorrect workers
9 if correct count ≤ γ then

10 reward workers that were correct

11 else
12 accept the answer of the majority
13 if majority count ≤ γ then
14 reward workers in the majority

15 send list 〈answer, count〉 and verified

16 verify complete-information certificate received
17 send payoffs according to ω(HT)

where the expected utility for each worker is at least the minmax payoff, there
exists a Nash equilibrium payoff profile that all workers will follow due to long-
term rationality. We assume that followers aim for Pareto efficiency (refer
to Sect. 1.7 in [41]), that is, an equilibrium mixed strategy corresponding to an
enforceable payoff profile that maximizes the workers expected utility.

4 Algorithmic Mechanism

In this section we describe the mechanism that implements the MW computing
platform. The algorithm for the master (refer to Algorithm 1) follows the model
defined in Sect. 3 in Lines 2 to 14. After computing the equilibrium pζ based
on the parameters defined for the system (reward, fine, etc.), in Line 1 the
master sends the value of pζ to workers together with a certificate showing the
calculation of such equilibrium, and a parameter q that is a function of the
number of workers n, the cost c, and the fine φ. In Line 15, the master sends
a list of the answers received and the number of each, which the workers will
use to detect deviations. Based on the complete-information certificate received
from workers (i.e. HT , rounds of punishment, correct answers, etc.), the master
computes the terminal payoffs and sends to followers in Lines 16 and 17.

68 L. Dong et al.

Algorithm 2: Algorithm for each follower i. Messages are sent to (and
received from) the master.
1 receive pζ , q, and verify certificate
2 sumδ ← 0, sumu ← 0, r ← 0, t ← 0, p ← pζ

3 while t ≤ T do
4 t ++

// computation phase
5 receive computing task
6 action ← ζ, with probability p or �ζ, with probability 1 − p
7 if action = ζ then result ← computed task else result ← fabricated

bogus result
8 send result

// deviation-detection phase
9 receive list〈answer, count〉 and verified

10 for each (answer, count) in list do
11 if action = �ζ then verify answer
12 if answer is correct and count �= npζ then
13 sumδ ← sumδ + (npζ − count)2

14 sumu ← sumu + udeviator(count, verified)
15 r ++

// peer-punisment phase
16 if sumδ ≥ npζ(1.6r + lnn) then // Lemma 2
17 P ← (sumu − ρq + c)/(ρq) // Lemma 4
18 sumδ ← 0, sumu ← 0, r ← 0, p ← 1
19 execute computation phase P times
20 p ← pζ , t ← t + P

21 send complete-information certificate
22 receive terminal payoff

5 Analysis

In our analysis, we relate the system parameters to the utility of workers and
the correctness of the master. First, we show bounds on the mixed strategy
equilibrium, that is, a probability of computing, in which workers maximize their
expected utility (refer to Lemma 1). Then, we proceed to analyze our mechanism
to handle deviations. Specifically, we prove that the deviation detection method
is correct w.h.p. (refer to Lemma 2), and we provide bounds on the length of the
peer-punishment period and on the terminal payoffs that compensate followers
for their loss of profit during such period (refer to Lemma 4). In our final theorem,
we connect all the aspects of our mechanism showing additionally that the master
achieves correctness in expectation and a.a.s. under some conditions.

Due to space restrictions, we defer some proofs to the full version of this
paper.

To simplify exposition, we define the following probability functions and use
them throughout the analysis.

Verifiable Crowd Computing: Coping with Bounded Rationality 69

p′
1 =

γ∑

j=n+1
2

j

n − j

(
n − 1

j

)

pj−1(1 − p)n−j−1 (j − np) ,

p′
2 =

n−1
2∑

j=1

j

n − j

(
n − 1

j

)

pj−1(1 − p)n−j−1 (j − np) , and

p′
3 =

n−1
2∑

j=n−γ

(
n − 1

j

)

pj−1(1 − p)n−j−1 (j − np) .

5.1 A Pareto-Efficient Repeated Game Equilibrium

Recall that, for any enforceable payoff profile, that is, any payoff profile where
the expected utility for each worker is at least the minmax payoff, there exists
a Nash equilibrium payoff profile that all workers will follow due to long-term
rationality (refer to Proposition 144.3 in [23]). To ensure Pareto efficiency, we
identify a strategy profile that maximizes the workers expected utility (refer to
Sect. 1.7 in [41]).

Lemma 1. Consider any MW system with n > 1 workers where nf = n, nd = 0,
pv = c/φ, γ =

⌈
n/2 + 2

√
n ln lnn

⌉
such that γ < n, and φ ≥ c(|p′

2| − |p′
3|)/(p′

1 −
|p′

3|) for any 0 ≤ p ≤ 1/2. Then, the following holds.

– The mixed strategy equilibrium of G is such that all workers use the same
probability of computing pζ , and such probability is in the range 1/2 < pζ ≤
γ/n.

– The maximum expected utility that any worker i ∈ N can obtain with a mixed
strategy equilibrium of G is E(ui) = ρq − c, where q is in the range

1
2n

⎛

⎝
γ−1∑

j=n−γ

(
n − 1

j

)

+ (1 − pv)
(

n − 1
(n − 1)/2

)
⎞

⎠ ≤ q ≤ 1.

5.2 Deviation-Detection Method

In this section, we establish a method for the followers to detect deviations from
the prescribed equilibrium, and if so move to a peer-punishment phase. Using
Chernoff bounds, the following lemma bounds the number of correct answers
that should be obtained w.h.p. when workers follow an equilibrium. Based on
those bounds, we provide a test that keeps track of such deviations over possibly
many rounds. Thus, either if strong deviations occur over a few rounds, or slight
deviations occur over many rounds, or both, the deviation is detected w.h.p.

70 L. Dong et al.

Lemma 2. For any MW system where all workers use the same pζ such that
pζ > 1/2, let Xt be the number of correct answers in round t. For any sequence
of rounds (not necessarily contiguous) of task assignments t1, . . . , tr, such that
Xt
= npζ for all t ∈ {t1, . . . , tr}. For any constant ξ > 0, the following holds
with probability at least 1 − 1/nξ:

∑tr

t=t1
(Xt − npζ)2 < npζ(1.6r + ξ lnn).

Lemma 2 gives a method of detection for the followers. Namely, for any
sequence of r rounds, possibly not contiguous, where the number of correct
answers is not npζ , keep track of what is the difference with respect to npζ . If
pζ < 1, some workers do not compute the task, but they need to know how many
correct answers were received to decide on the peer punishment. They can do
so by verifying which, if any, of the answers sent by the master are correct, and
use the corresponding count to compute the total number of correct answers.
Then, whenever the inequality proved in Lemma 2 is not true, followers move to
a peer-punishment phase.

5.3 Deviation Punishment and Terminal Payoffs

In this section we analyze conditions on the system parameters that enable
deviation peer-punishment. That is, what is the minmax strategy that followers
should use, and what is the duration of the peer-punishment phase. Recall that
the minmax strategy is a follower mixed strategy, i.e. a choice of probability
of computing, such that the payoff of deviators is minimized, independently of
what the deviators do, for each round of peer-punishment. We define vi as the
lowest expected payoff that can be forced upon worker i by other workers. That
is, for mixed strategies σi and σ−i of worker i and workers in N \{i} respectively,
we have vi = minσ−i

maxσi
E(ui).

Lemma 3. For any MW system with nf = n − 1 followers and a deviator i, if
all followers use pζ = 1, it is vi = max(−c,−pvφ).

Lemma 3 states that the minmax strategy for MW systems where nf = n−1
is pζ = 1. Indeed, as long as the number of followers exceeds the reward threshold,
if followers use the same minmax strategy, deviators receive the same minmax
payoff. We establish this observation in Corollary 1.

Corollary 1. For any MW system with nf > γ followers and nd = n − nf

deviators, if all followers follow the strategy pζ = 1, then the minmax payoff
vi = max(−c,−pvφ).

Lemma 4 relates the length of the peer-punishment phase to the extra pay-
off attained by a deviator until it is detected, and the utility loss from being
punished.

Lemma 4. For any MW system with nf > γ followers and nd = n − nf

deviators, pv = c/φ, γ =
⌈
n/2 + 2

√
n ln lnn

⌉
such that γ < n, and φ ≥

Verifiable Crowd Computing: Coping with Bounded Rationality 71

c(|p′
2| − |p′

3|)/(p′
1 − |p′

3|), or any 0 ≤ p ≤ 1/2. If deviations from the equilib-
rium are detected in rounds t1, . . . , tr, then the following holds.

(i) If followers use the minmax strategy for P ≥
∑tr

t=t1
uj(t)−ρq+c

ρq−c+min(c, pvφ)
, rounds of

peer-punishment, where q = 1
2n

(∑γ−1
j=n−γ

(
n−1

j

)
+ (1 − pv)

(
n−1

(n−1)/2

))
, and uj(t)

is the utility obtained by any deviator j in each round t in t1, . . . , tr, then any
utility gain by deviators during the t1, . . . , tr rounds of deviation from the pre-
scribed equilibrium, is lost in those P rounds of peer-punishment.

(ii) To compensate the followers for their loss while using the minmax strat-
egy, it is enough for the master to pay terminal payoffs of ω ≥ P (ρ − c +
min(c, pvφ)).

5.4 Mechanism Properties

We now establish our main result in the following theorem.

Theorem 1. Consider the mechanism specified in Algorithms 1 and 2 under
the models of Sect. 3, where the reward threshold is γ =

⌈
n/2 + 2

√
n ln lnn

⌉

such that γ < n, the set of workers has at least nf > γ followers, the probability
of verification is pv = c/φ, and the fine is φ ≥ c(|p′

2| − |p′
3|)/(p′

1 − |p′
3|), for any

0 ≤ p ≤ 1/2. Then, the following holds.

1. The mixed-strategy equilibrium is some probability pζ where 1/2 < pζ ≤ γ/n.
2. Deviators are detected w.h.p.
3. The expected utility of each follower for T rounds is at least

T

⎛

⎝ ρ

2n

⎛

⎝
γ−1∑

j=n−γ

(
n − 1

j

)

+ (1 − pv)
(

n − 1
(n − 1)/2

)
⎞

⎠ − c

⎞

⎠ .

4. The expected cost of the master is at most T (npζρ − pv(1 − pζ)φ).
5. In each round of peer-punishment, the master obtains the correct answer, and

in each round of task assignments without deviations or peer-punishment,
(a) in expectation the master obtains the correct answer,
(b) if pζ ≥ 1/2 +

√
n ln lnn the master obtains the correct answer a.a.s., and

(c) if pζ ≤ 1/2 +
√

n ln lnn the master pays less than γρ in rewards a.a.s.

Proof. Claims 1 to 3 follow from Lemmas 1 and 2, and the correctness of the
mechanism shown in Lemma 4.

For Claim 4, given that during punishment periods followers use pζ = 1 and
nf > γ, no worker is rewarded, the worst case cost is incurred when there is no
deviation. Thus, the claimed upper bound on the expected cost is a straightfor-
ward application of the payment model specified in Sect. 3 for T rounds of task
assignments without deviations.

We prove Claim 5 as follows. From Corollary 1, we know that during rounds
of peer punishment followers use pζ = 1. Given that nf > γ > n/2, the master

72 L. Dong et al.

obtains the correct answer during those rounds. For any round without devia-
tions or peer-punishment, let the random variable Xζ be the number of workers
that compute. Then, the following holds.

a) It is E(Xζ) = npζ . Hence, given that pζ > 1/2 as shown in Lemma 1, it
follows that the master obtains the correct answer in expectation.
b) Let δ =

√
n ln lnn/E(Xζ). Then,

1 − δ = 1 −
√

n ln lnn

npζ
= 1 −

√
n ln lnn

n/2 +
√

n ln lnn
=

n

2E(Xζ)
.

Given that 0 < δ < 1, by Chernoff bound:

Pr(Xζ ≤ n/2) = Pr(Xζ ≤ E(Xζ)(1 − δ))

≤ exp(−E(Xζ)δ2/2) = exp
(

− ln lnn

2pζ

)

=
(

1
lnn

) 1
2pζ ≤ 1√

lnn
.

Thus, Pr(Xζ ≤ (n − 1)/2) ≤ 1/
√
lnn. Therefore, the master obtains the

correct answer a.a.s.
c) Let δ = γ/E(Xζ) − 1. Given that 0 < δ < 1, by Chernoff bound Pr(Xζ ≥
γ) ≤ exp(−E(Xζ)δ2/3) and

exp(−E(Xζ)δ2/3) = exp
(

− ln lnn

3pζ

)

=
(

1
lnn

) 1
3pζ ≤ 1

3
√
lnn

.

Thus, Pr(Xζ ≥ γ) ≤ 1/ 3
√
lnn. Therefore, the master pays less than γρ in

rewards a.a.s.

6 Simulations

In this section, we present our simulations of the master and worker algorithms
(Algorithms 1 and 2) in the presence of deviators. To compare the performance
of our approach, we also simulated the reinforcement-learning-based mechanism
in [15], and the mechanism based on infinitely-repeated games in [24].

Throughout this section, we refer to our finitely-repeated game with termi-
nal payoffs mechanism as FRG. We refer to the evolutionary dynamics based
approach of the mechanism in [15] as ED, and to the infinitely-repeated games
approach in [24] as IRG.

Simulation Design. To the best of our knowledge, the impact of deviators on
the gaurantees of ED and IRG has not been theoretically analyzed. In ED, work-
ers update their probability of computing pζ in each round based on the previous

Verifiable Crowd Computing: Coping with Bounded Rationality 73

round’s pζ , payment received, and some measure of their profit aspiration. It is
assumed that all workers comply with the mechanism. On the other hand, in
IRG it is assumed that, all rational workers will follow the equilibrium because
of the threat of punishment.

In our experimental evaluation, we assume that 40% of workers are deviators
in all three mechanisms. In FRG, the deviators and followers proceed as described
in our model. In ED, the deviators and followers start with a different pζ , and
they converge over time. In IRG, we follow the simulations in [24] and assume
that the deviation is readily detected after one round (optimal detection), and
that the deviators become followers after one round of punishment (optimal effect
of peer punishment). For consistency we assume that deviations occur only once
in all three mechanisms.

In the IRG mechanism, the expected utility of the workers is computed
at equilibrium of the infinitely-repeated game. Hence, for this comparison, we
assume that workers in the IRG mechanism do not know that the interaction
is finite (once the number of task assignments desired by the master is com-
pleted, the interaction stops). Note that if the workers in the IRG mechanism
do know the length of interaction, its correctness collapses. Comparing our app-
roach against a stronger but less realistic execution of IRG [24] only strengthens
the results of our evaluation.

We provide preliminary simulations based on the following system parame-
ters. We evaluate all mechanisms for n = 9, 99, and 999 workers and the number
of rounds of task assignments in the range T ∈ [20, 1000]. The payoffs scheme is
evaluated for ρ = 10, φ = 10, and c = 2. The master’s probability of verification
is set to pv = c/φ = 0.2.

For FRG, we approximate the probability of computing of the followers at
equilibrium as pζ = 0.55. For the deviators, we use pζ = 0.9, to model their
motivation to compute to avoid being fined by the master.

For ED, we set the worker aspiration for profit a = 0.1, learning rate α = 0.01,
the master tolerance to error τ = 0.5. We set initial probabilities pζ = 0.5 for the
followers and pζ = 0.9 for deviators, and the probability of verification pv = 0.2.

We configured the parameters of IRG as follows (using the notation in [24]).
The reward WBA = ρ = 10, the fine WPC = φ = 10, and the cost of computing
WCT = c = 2. The additional master parameters in [24] are set as follows. Cost
of verification MCV , profit from being correct MBR and cost of being wrong
MPW are all set to 0; whereas the cost of accepting an answer is MCA = ρ = 10.
In [24], the followers use pζ = 0.9 and the deviators pζ ≤ 0.5. We simulate the
same pζ = 0.9 for followers; for the deviators, we set pζ = 0.5 which is the most
favorable choice for IRG.

These parameters choices satisfy the analysis of our work and [24]. A broader
range of simulation parameters is left to the full version.

The simulation code was written in Python 3.6 and executed on a PC. The
results presented are the average of 10 executions of each mechanism.

Discussion of Results. The results of our simulations can be seen in Figs. 1, 2,
and 3. In Fig. 1, we compare the mechanisms with respect to the ratio of the

74 L. Dong et al.

Fig. 1. Comparison of FRG, ED and IRG: number of correct answers obtained divided
by the total number of task assignments vs. number of task assignments.

Fig. 2. Comparison of the cost incurred by the Master in FRG, ED and IRG.

number of tasks for which the master obtains the correct answer to the total
number of task assignments. In Fig. 2, we compare the cost incurred by the
master for each mechanism. In Fig. 3, we plot the utilities of each worker in our
FRG mechanism and show that they obtain positive utilities from participating.

We observe in Figs. 1 and 2 that for any T up to 400 task assignments FRG
performs much better than ED in correctness, at similar costs incurred by the
master. In other words, FRG outperforms ED, unless the number of task assign-
ments is very large. The number of task assignments T is a design choice in the
mechanism. That is, the master may configure the platform to run for T = 400
task assignments, and hire a new pool of workers for each batch of computations.

Compared to IRG, the cost incurred by the master in FRG is much smaller, at
a slightly reduced correctness rate. Note that the correctness guarantees achieved
by IRG in our simulations is optimistic, because we assume that the players are
unaware of the number of rounds. Thus, we conclude that for a wide range of
parameters, FRG outperforms ED, and achieves similar correctness with much
lower cost incurred by the master compared to IRG (assuming that the workers
are unaware of the finite nature of the game).

Verifiable Crowd Computing: Coping with Bounded Rationality 75

Fig. 3. Workers utility in the FRG mechanism. The x axis is the worker IDs.

Finally, in Fig. 3 we show that the expected utility of each worker is positive
for each of the n values tested and for T = 200 (other values of T gave similar
results). This confirms the feasibility of the mechanism—by participating, the
workers receive non-negative utility.

7 Conclusion

In this paper, we design a finitely-repeated MW mechanism to perform verifiable
crowd-computing in the presence of deviators, workers who are not perfectly
rational and may not follow the prescribed equilibrium. This model better reflects
real-world crowd-computing applications, where non-compliant workers exist [4,
26,30], and contracts often have a prespecified length of interaction.

We use the notion of terminal payments to incentivize the followers (rational
workers who follow the equilibrium) to punish such deviators. We prove that
the master is able to obtain correct answers from such a mechanism always in
expectation, and asymptotically almost surely under certain mild conditions.

Finally, we simulate our mechanism and compare it with previous approaches:
ED [15] and IRG [24]. Our simulations show that our mechanism outperforms
ED in terms of correctness, and IRG in terms of the cost incurred by the master.

Acknowledgement. The work presented in this manuscript was partially supported
by NSF CCF 1947789, and the Pace University SR Grant and Kenan Fund.

References

1. Abraham, I., Dolev, D., Goden, R., Halpern, J.: Distributed computing meets game
theory: robust mechanisms for rational secret sharing and multiparty computation.
In: Proceedings of the 25th Annual ACM Symposium on Principles of Distributed
Computing, pp. 53–62 (2006)

76 L. Dong et al.

2. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J., Porth, C.: Bar fault
tolerance for cooperative services. In: Proceedings. of the 20th ACM Symposium
on Operating Systems Principles, pp. 45–58 (2005)

3. Amazon.com.: Amazon Mechanical Turk. http://www.mturk.com. Accessed 2 Oct
2017

4. Anderson, D.: BOINC: a system for public-resource computing and storage. In:
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
pp. 4–10 (2004)

5. Azar, P.D., Micali, S.: Super-efficient rational proofs. In: Proceedings of the 14th
Annual ACM conference on Electronic Commerce (EC), pp. 29–30 (2013)

6. Babaioff, M., Feldman, M., Nisan, N.: Combinatorial agency. In: Proceedings of
the 7th ACM Conference on Electronic Commerce, pp. 18–28 (2006)

7. Babaioff, M., Feldman, M., Nisan, N.: Mixed strategies in combinatorial agency. In:
Proceedings of the 2nd international Workshop on Internet & Network Economics,
pp. 353–364 (2006)

8. Babaioff, M., Feldman, M., Nisan, N.: Free-riding and free-labor in combinato-
rial agency. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS,
vol. 5814, pp. 109–121. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04645-2_11

9. Bielefeld, R.S.: Reexamination of the perfectness concept for equilibrium points in
extensive games. In: Models of Strategic Rationality. Theory and Decision Library
C, vol. 2, pp. 1–31. Springer, Dordrecht (1988). https://doi.org/10.1007/978-94-
015-7774-8_1

10. Chen, J., McCauley, S., Singh, S.: Rational proofs with multiple provers. In:
Proceedings of the 7th Innovations in Theoretical Computer Science Conference
(ITCS), pp. 237–248 (2016)

11. Chen, J., McCauley, S., Singh, S.: Efficient rational proofs with strong utility-
gap guarantees. In: Deng, X. (ed.) SAGT 2018. LNCS, vol. 11059, pp. 150–162.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99660-8_14

12. Chen, J., McCauley, S., Singh, S.: Non-cooperative rational interactive proofs. In:
27th Annual European Symposium on Algorithms (ESA 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2019)

13. Christoforou, E., Fernández Anta, A., Georgiou, C., Mosteiro, M.A.: Algorithmic
mechanisms for Internet supercomputing under unreliable communication. In: Pro-
ceedings of the 10th IEEE International Symposium on Network Computing and
Applications, pp. 275–280 (2011)

14. Christoforou, E., Fernández Anta, A., Georgiou, C., Mosteiro, M.A.: Algorith-
mic mechanisms for reliable master-worker Internet-based computing. IEEE Trans.
Comput. 63(1), 179–195 (2014)

15. Christoforou, E., Fernández Anta, A., Georgiou, C., Mosteiro, M.A., Sánchez, A.:
Applying the dynamics of evolution to achieve reliability in master-worker com-
puting. Concurr. Comput. Pract. Exp. 25(17), 2363–2380 (2013)

16. Conlisk, J.: Why bounded rationality? J. Econ. Lit. 34(2), 669–700 (1996)
17. Dong, C., Wang, Y., Aldweesh, A., McCorry, P., van Moorsel, A.: Betrayal, dis-

trust, and rationality: Smart counter-collusion contracts for verifiable cloud com-
puting. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 211–227 (2017)

18. Eidenbenz, R., Schmid, S.: Combinatorial agency with audits. In: Proceedings of
the International Conference on Game Theory for Networks, pp. 374–383 (2009)

19. Eliaz, K.: Fault tolerant implementation. Rev. Econ. Stud. 69, 589–610 (2002)

http://www.mturk.com
https://doi.org/10.1007/978-3-642-04645-2_11
https://doi.org/10.1007/978-3-642-04645-2_11
https://doi.org/10.1007/978-94-015-7774-8_1
https://doi.org/10.1007/978-94-015-7774-8_1
https://doi.org/10.1007/978-3-319-99660-8_14

Verifiable Crowd Computing: Coping with Bounded Rationality 77

20. Fernández, A., Georgiou, C., Lopez, L., Santos, A.: Reliable Internet-based com-
puting in the presence of malicious workers. Parall. Process. Lett. 22(1) (2012)

21. Fernández Anta, A., Georgiou, C., Mosteiro, M.A.: Designing mechanisms for reli-
able Internet-based computing. In: Proceedings of the 7th IEEE International Sym-
posium on Network Computing and Applications, pp. 315–324 (2008)

22. Fernández Anta, A., Georgiou, C., Mosteiro, M.A.: Algorithmic mechanisms for
Internet-based master-worker computing with untrusted and selfish workers. In:
Proceedings of the 24th IEEE International Parallel and Distributed Processing
Symposium, pp. 1–11 (2010)

23. Fernández Anta, A., Georgiou, C., Mosteiro, M.A., Pareja, D.: Algorithmic mecha-
nisms for reliable crowdsourcing computation under collusion. Public Lib. Sci. One
10(3) (2015)

24. Fernández Anta, A., Georgiou, C., Mosteiro, M.A., Pareja, D.: Multi-round master-
worker computing: a repeated game approach. In: Proceedings of the IEEE 35th
Symposium on Reliable Distributed Systems, pp. 31–40. IEEE (2016)

25. Gairing, M.: Malicious Bayesian congestion games. In: Proceedings of the 6th
Workshop on Approximation and Online Algorithms, pp. 119–132 (2008)

26. Golle, P., Mironov, I.: Uncheatable distributed computations. In: Proceedings of
the Cryptographer’s Track at RSA Conference 2001, pp. 425–440 (2001)

27. Gossner, O.: The folk theorem for finitely repeated games with mixed strategies.
Internat. J. Game Theory 24(1), 95–107 (1995)

28. Guo, S., Hubáček, P., Rosen, A., Vald, M.: Rational arguments: single round del-
egation with sublinear verification. In: Proceedings of the 5th Annual Conference
on Innovations in Theoretical Computer Science (ITCS), pp. 523–540 (2014)

29. Guo, S., Hubáček, P., Rosen, A., Vald, M.: Rational sumchecks. In: Theory of
Cryptography Conference, pp. 319–351 (2016)

30. Heien, E., Anderson, D., Hagihara, K.: Computing low latency batches with unre-
liable workers in volunteer computing environments. J. Grid Comput. 7, 501–518
(2009)

31. Hu, Q., Wang, S., Cheng, X., Ma, L., Bie, R.: Solving the crowdsourcing dilemma
using the zero-determinant strategies. IEEE Trans. Inf. Forensics Secur. 15, 1778–
1789 (2019)

32. It, F.: http://fold.it/portal/.Accessed 11 June 2016
33. Jin, X., Li, M., Sun, X., Guo, C., Liu, J.: Reputation-based multi-auditing algo-

rithmic mechanism for reliable mobile crowdsensing. Pervasive Mob. Comput. 51,
73–87 (2018)

34. Kondo, D., et al.: Characterizing result errors in internet desktop grids. In: Pro-
ceedings of the 13th International European Conference on Parallel and Distributed
Computing, pp. 361–371 (2007)

35. Konwar, K., Rajasekaran, S., Shvartsman, A.: Robust network supercomputing
with malicious processes. In: Proceedings of the 20th International Symposium on
Distributed Computing, pp. 474–488 (2006)

36. Kuhn, M., Schmid, S., Wattenhofer, R.: Distributed asymmetric verification in
computational grids. In: Proceedings of the 22nd IEEE International Parallel &
Distributed Processing Symposium, pp. 1–10 (2008)

37. Li, H.C., et al.: Flightpath: obedience vs choice in cooperative services. In: Pro-
ceedings of the 8th USENIX Symposium on Operating Systems Design and Imple-
mentation, pp. 355–368 (2008)

38. Li, H.C., et al.: Bar gossip. In: Proceedings of the 6th USENIX Symposium on
Operating Systems Design and Implementation, pp. 191–204 (2006)

http://fold.it/portal/

78 L. Dong et al.

39. Lu, K., Yang, J., Gong, H., Li, M.: Classification-based reputation mechanism for
master-worker computing system. In: Wang, L., Qiu, T., Zhao, W. (eds.) QShine
2017. LNICST, vol. 234, pp. 238–247. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78078-8_24

40. Moscibroda, T., Schmid, S., Wattenhofer, R.: When selfish meets evil: byzantine
players in a virus inoculation game. In: Proceedings of the 25th Annual ACM
Symposium on Principles of Distributed Computing, pp. 35–44 (2006)

41. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press (1994)
42. Project, T.S.: http://setiathome.berkeley.edu. Accessed 11 June 2016
43. Rubinstein, A.: Modeling Bounded Rationality. MIT Press, London (1998)
44. Sarmenta, L.: Sabotage-tolerance mechanisms for volunteer computing systems.

Futur. Gener. Comput. Syst. 18(4), 561–572 (2002)
45. Treuille, A., et al.: Predicting protein structures with a multiplayer online game.

Nature 466 (2010)
46. Yu, J., Li, Y.: New methods of uncheatable grid computing. Comput. Inform.

37(6), 1293–1312 (2019)
47. Yurkewych, M., Levine, B., Rosenberg, A.: On the cost-ineffectiveness of redun-

dancy in commercial p2p computing. In: Proceedings of the 12th ACM Conference
on Computer and Communications Security, pp. 280–288 (2005)

https://doi.org/10.1007/978-3-319-78078-8_24
https://doi.org/10.1007/978-3-319-78078-8_24
http://setiathome.berkeley.edu

Game Theory in Block Chain

Equilibrium Analysis of Block
Withholding Attack: An Evolutionary

Game Perspective

Zhanghao Yao, Yukun Cheng(B), and Zhiqi Xu

Suzhou University of Science and Technology, Suzhou 215009, China
zhyao@post.usts.edu.cn, ykcheng@amss.ac.cn

Abstract. With the advancement of blockchain technology, blockchain-
based digital cryptocurrencies, like Bitcoin, have received broad interest.
Due to the permissionless environment, the blockchain is vulnerable to
different kinds of attacks, such as the block withholding (BWH) attack.
BWH attack is one common selfish mining attack, by which the attack-
ing pool infiltrates the attacked pool, and the infiltrating miners with-
hold all the blocks newly discovered in the attacked pool. Therefore,
the attacking pool benefit by withholding blocks, damaging the bene-
fits of victim pools. In this paper, we introduce the reward reallocation
mechanism by paying additional rewards to the miners who successfully
mine blocks, and propose an evolutionary game model for BWH attack
among pools to study the strategy selection of pools. By constructing the
replicator dynamic equations, the evolutionary stable strategies of pools
are explored based on different levels of additional rewards. Our results
provide enlightening significance to mitigate the negative influence from
BWH attacks in practice.

Keywords: Block withholding attack · Evolutionary game ·
Mitigation measure · Blockchain

1 Introduction

Bitcoin, being one of the most popular blockchain applications, has risen in
popularity in recent years. Satoshi Nakamoto [1] first proposed Bitcoin as a
digital cryptocurrency. The bitcoin system uses Proof of Work (PoW) as the
consensus protocol to secure transactions [2]. Under PoW protocol, the agents,
named as miners, compete to mine blocks by expending their computation power
and then obtain the corresponding rewards. As the computation power of the
whole network grows, the Bitcoin system automatically increases the difficulty
of block generation to preserve the block generation interval. This makes it more
difficult for an single miner to successfully mine a block. Therefore, miners join
in mining pools to mine blocks by aggregating their computation power [3].

This research is supported by the National Nature Science Foundation of China (No.
11871366).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 81–86, 2022.
https://doi.org/10.1007/978-3-031-20796-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_6&domain=pdf
https://doi.org/10.1007/978-3-031-20796-9_6

82 Z. Yao et al.

The manager of a mining pool assigns the mining work to all miners in this
pool. Miners need to complete the work and submit a partial proof of work
(PPoW). Miners also have the probability of directly finding a hash that meets
the bitcoin network’s difficulty goal, namely full proof of work (FPoW). When
a miner generates a FPoW, she submits it to the manager, who then sends it to
the Bitcoin system. As a result, the pool receives the entire reward of a newly
discovered block. This reward is then distributed by the manager, which depends
on each miner’s contribution, including the PPoW miners.

During the mining process in a mining pool, a miner may only submits PPoW
and withholds FPoW. Such a malicious behavior is called the block withhold-
ing (BWH) attack. A mining pool is also susceptible to BWH attack from the
opponent pools. Eyal [4] studied BWH attack among pools, in which the attack-
ing pool sends some infiltrators to the victim pool, and these infiltrators play
BWH attack by throwing away FPoW. Generally, the ratio of the infiltrator’s
computation power to the computation power of the mining pool is called the
infiltration ratio. The infiltrators share the rewards of the victim pool, but do
not make any contribution.

BWH attack was first proposed by Rosenfeld [5]. The attacker participates
open mining pool, submits only PPoW to the manager and withholds FPoW,
damaging both his own and the pool’s revenue. Courtois and Bahack expanded
the strategy choices of attackers who launch BWH attacks in [6], arguing that
attackers can freely allocate their computation power to mine and launch BWH
attack at the same time and demonstrating that higher rewards are achieved
in this situation. Luu et al. [7] developed a computational power-splitting game
model to analyze revenue under various computation power distributions. They
demonstrated that attackers are encouraged to launch a BWH attack in an
equilibrium state. Eyal [4] investigated a game between two mining pools to
evaluate the Nash equilibrium of BWH attack, and he discovered that miners
would confront the miner’s dilemma. Alkalay-Houlihan and Shah proposed [8] a
detailed analysis based for this game. They proved that this game always admits
a pure Nash equilibrium, and the pure price of anarchy (PPoA) is at most 3.
Wang and Chen [9] gave a tight bound of (1, 2) for PPoA, and showed the tight
bound holds in a more general setting, in which infiltrators may betray. Chen
et al. [10] proposed a revised approach to reallocate the reward to the miners.
Instead of proportionally allocating the reward to all miners, a pool manager
deducts a fraction from the reward to award the miner who actually mined the
block. Under this setting, the authors proved that for any number of mining
pools, no-pool-attacks is always a Nash equilibrium. Recently, many research
focus on how to mitigate BWH attack. Bag et al. [11] improved the existing
Bitcoin mining protocol to make it difficult for miners to distinguish between
PPoW and FPoW so as to resist BWH attack. Schrijver et al. [12] proposed a
game-theoretic model, in which a novel reward mechanism to encourage miners
to submit blocks as soon as possible is introduced. Kim et al. [13] explored the
evolutionary game model of the miner’s dilemma, and the change of the miner
numbers in the pool over time.

Equilibrium Analysis of Block Withholding Attack 83

In this article, we introduce an approach to mitigate the negative effect from
BWH attack by giving additional rewards to honest miners, and propose an
evolutionary game model for BWH attack between two mining pools to study
the strategy selection of pools.

2 The Evolutionary Game Model for BWH Attack

2.1 Basic Evolutionary Game Model

We consider that there are two pools in the evolutionary game, pool 1 and pool 2,
with the same computation power of m units. There may be other mining power
outside the game, solo miners or other mining pools, but we assume they have no
interaction with these two pools. Each of these two pools has two strategies. One
is to play BWH attack (denoted by A) by sending some miners with an amount
of computation power, called infiltration computation power, to another pool.
The other (denoted by N) is not to infiltrate another pool. Thus the strategy
profiles of two pools are: (N,N), (N,A), (A,N) and (A,A). To be specific,
let the infiltration rate of a pool during BWH attack be α, α ∈ (0, 1), and the
infiltration computation power of the pool be αm. When a pool behaves honestly,
the mining cost per unit time is denoted by C1. If a pool launches BWH attack,
then its free-riding behavior could decrease the mining cost, which is denoted
by C2, 0 ≤ C2 < C1. When a block is successfully appended on the blockchain
by a pool, this pool would obtain an amount of revenue. Here let R, R ≥ 0, be
the mining revenue per unit of computation power and per unit time. If neither
of these two pools plays BWH attack, then the favorable mining environment
will bring more revenue to the pools. Thus we assume that the revenue per unit
computation power and per unit time increases to be γR, γ > 1.

To mitigate the negative influence from BWH attack and to encourage the
miners to behave honestly, we introduce an approach to reallocate the reward,
that is to assign a portion of revenue βR, β ∈ [0, 1), to the honest miners who
submit the FPoW in advance. Here parameter β is named as the additional
rewards ratio. The rest of reward is shared by all miners proportional to their
computation power.

Based on the setting of the evolutionary game model, the payoff matrix of
two mining pools under different strategy profiles is shown in Table 1.

Table 1. Payoff matrix of the model.

Pool 1 Pool 2

Not attack(N) Attack(A)

Not attack(N) mγR − C1 βmR + (1 − k)mR m
m+αm − C1

mγR − C1 (m − αm)R + (1 − β)mR αm
m+αm − C2

Attack(N) (m − αm)R + (1 − β)mR αm
m+αm − C2 (m − αm)R − C2

βmR + (1 − k)mR m
m+αm − C1 (m − αm)R − C2

84 Z. Yao et al.

2.2 The Stable Solutions of the Evolutionary Game

Our evolutionary game model is symmetric because each mining pool has the
same amount of computation power and the infiltration ratio of each pool is
the same too. Thus we assume the probability that a pool does not attack by
x (0 ≤ x ≤ 1), and thus the probability to launch BWH attack is 1 − x. As
each pool constantly adjusts its probability of strategy selection by learning and
imitating the behavior of the opponent with higher revenue, we are interested in
the convergence of the probability, which is then the evolutionary stable solution
(ESS), denoted by x∗.

Since the evolutionary game is symmetric, the payoff of a pool is denoted to
be U1, when it plays honestly. Let U2 be the payoff, when a pool plays BWH
attack. Based on the payoff matrix Table 1, the expected payoffs U1 and U2 are
proposed in the following.

U1 = x(mγR − C1) + (1 − x)[βmR + (1 − βmR)
m

m + αm
− C1].

U2 = x[(m − αm)R + (1 − β)mR
αm

m + αm
− C2] + (1 − x)[(m − αm)R − C2].

Hence, the average expected payoff U3 of this pool is U3 = xU1 + (1 − x)U2.
By [14], the difference between the payoff by adopting this strategy and the

player’s average expected payoff determines the growth rate of strategy selection
probability. Hence,

F (x) =
dx

dt
= x(U1−U3) = x(1−x)

[
(γ − 1)mRx +

(βα + α2)mR

1 + α
− C1 + C2

]
.

(1)

Clearly, when the growth rate of strategy selection probability is equal to 0,
the participant will stably select this strategy at last, and thus this strategy is
stable. So, by setting F (x) = 0, we have three fixed points:

x1 = 0, x2 = 1, x3 =
(C1 − C2)(1 + α) − (β + α)αmR

(1 + α)(γ − 1)mR
. (2)

2.3 Evolutionary Equilibrium Analysis on the Decision of BWH
Attack

In our discussion for BWH attack between two mining pools, each pool needs to
decide the infiltration ratio α, besides whether to attack. In addition, to mitigate
the influence from BWH attack, we impose the additional reward mechanism to
the miners who submit the FPoW. So the additional rewards ratio β is also a
variable we need to determine.

Equilibrium Analysis of Block Withholding Attack 85

Fig. 1. The pool’s dynamic evolution

According to (2), we have three distinguished cases: x3 ≤ 0, 0 < x3 < 1 and
x3 ≥ 1.

• Case 1. x3 ≤ 0. Under this case, there are two fixed points x1 = 0 and
x2 = 1. Furthermore, as x3 = (C1−C2)(1+α)−(β+α)αmR

(1+α)(γ−1)mR ≤ 0, we have β ≥
−α + C1−C2

αmR + C1−C2
mR . Based on (1), the figure for this case is shown in

Fig. 1(a). If the slope of the tangent line at the intersection of the curve
and the horizontal coordinate is negative in the dynamic evolution diagram,
then this intersection point is an evolutionary stable strategy [15]. From the
Fig. 1(a), we can observe the evolutionary stable strategy is x∗ = 1, indicating
that when the additional rewards ratio β is higher, the mining pool gains fewer
when it attacks, which motivates it to mine honestly.

• Case 2. 0 < x3 < 1. Under this case, there are three fixed points x1 = 0,
x2 = 1 and x3 = (C1−C2)(1+α)−(β+α)αmR

(1+α)(γ−1)mR . As 0 < x3 < 1, we have −α +
[C1−C2−(γ−1)mR]

αmR + [C1−C2−(γ−1)mR]
mR < β < −α + (C1−C2)

αmR + (C1−C2)
mR . By (1),

the figure for this case is shown in Fig. 1(b). Two points x∗ = 0 or x∗ = 1 may
be the evolutionary stable strategies, which depends on the initial probability
selected by the mining pool. To be specific, if the initial probability x ∈ (0, x3),
then F (x) ≤ 0, and the probability converges to x∗ = 0 at last, meaning that
the pool selects to attack eventually. When x ∈ (x3, 1), we have F (x) ≥ 0
and the pool finally decides not to attack.

• Case 3. x3 ≥ 1. Under this case, there are two fixed points x1 = 0
and x2 = 1. Because (C1−C2)(1+α)−(β+α)αmR

(1+α)(γ−1)mR ≥ 1, we have 0 < β ≤
−α + [C1−C2−(γ−1)mR]

αmR + [C1−C2−(γ−1)mR]
mR . The phase diagram under this

case, shown in Fig. 1(c), and the evolutionary stable strategy is x∗ = 0. It
demonstrates that if reward ratio β is relatively small, then the infiltrators
get more from the victim pool, increasing the revenue of the attacker. So for
the case of x3 ≥ 1, launching BWH attack is the evolutionary stable strategy
of each pool.

86 Z. Yao et al.

3 Conclusions

In this paper, we construct an evolutionary game model to study the evolu-
tion process of mining pools’ behavior under different levels of mitigation mea-
sures. By analyzing the evolutionary stable strategy, we discover that the higher
additional reward to honest miners has a positive influence on pool’s strategy
selection. There are also some limitations in the model considered in this article.
Firstly, each mining pool has the same computation power and the same infiltra-
tion ratio, which make the evolutionary game be symmetric. Therefore exploring
the asymmetric evolutionary game model is our future work. Secondly, we only
consider the case that two mining pools may launch BWH attack in this paper.
Thus how to extend the study to the scenarios with more mining pools is very
interesting.

References

1. Nakamoto S. Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
2. Tschorsch, F., Scheuermann, B. Bitcoin and beyond: a technical survey on decen-

tralized digital currencies. IEEE Commun. Surv. Tutor. 18(3), 2084–2123 (2016)
3. Liu, Y., Chen, X., Zhang, L., et al.: An intelligent strategy to gain profit for

bitcoin mining pools. In: 2017 10th International Symposium on Computational
Intelligence and Design (ISCID), vol. 2, pp. 427–430. IEEE (2017)

4. Eyal, I.: The miner’s dilemma. In 2015 IEEE Symposium on Security and Privacy,
pp. 89–103. IEEE (2015)

5. Rosenfeld, M. Analysis of bitcoin pooled mining reward systems. arXiv preprint
arXiv:1112.4980 (2011)

6. Courtois, N. T., Bahack, L. On subversive miner strategies and block withholding
attack in bitcoin digital currency. arXiv preprint arXiv:1402.1718 (2014)

7. Luu, L., Saha, R., Parameshwaran, I., et al.: On power splitting games in dis-
tributed computation: The case of bitcoin pooled mining. In 2015 IEEE 28th
Computer Security Foundations Symposium, pp. 397–411. IEEE (2015)

8. Alkalay-Houlihan, C., Shah, N.: The pure price of anarchy of pool block withhold-
ing attacks in bitcoin mining. Proc. AAAI Conf. Artif. Intell. 33(01), 1724–1731
(2019)

9. Wang, Q., Chen, Y. The tight bound for pure price of anarchy in an extended
miner’s dilemma game. arXiv preprint arXiv:2101.11855 (2021)

10. Chen, Z., Li, B., Shan, X. Discouraging pool block withholding attacks in Bitcoin.
J. Combinat. Optim. 43, 444–459 (2021)

11. Bag, S., Ruj, S., Sakurai, K.: Bitcoin block withholding attack: analysis and miti-
gation. IEEE Trans. Inf. Forensics Secur. 12(8), 1967–1978 (2016)

12. Schrijvers, O., Bonneau, J., Boneh, D., Roughgarden, T.: Incentive compatibility
of bitcoin mining pool reward functions. In: Grossklags, J., Preneel, B. (eds.) FC
2016. LNCS, vol. 9603, pp. 477–498. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54970-4 28

13. Kim, S., Hahn, S.G.: Mining pool manipulation in blockchain network over evolu-
tionary block withholding attack. IEEE Access 7, 144230–144244 (2019)

14. Friedman, D.: On economic applications of evolutionary game theory. J. Evol.
Econ. 8(1), 15–43 (1998)

15. Gong, H., Jin, W. Analysis of urban car owners commute mode choice based on
evolutionary game model. J. Control Sci. Eng. 2015(6), 1–5 (2015)

http://arxiv.org/abs/1112.4980
http://arxiv.org/abs/1402.1718
http://arxiv.org/abs/2101.11855
https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1007/978-3-662-54970-4_28

Frontiers of Algorithmic Wisdom

An Approximation Algorithm
for the H-Prize-Collecting Power Cover

Problem

Han Dai1, Weidong Li1, and Xiaofei Liu2(B)

1 School of Mathematics and Statistics, Yunnan University, Kunming, China
2 School of Information Science and Engineering, Yunnan University, Kunming,

China
lxfjl2016@163.com

Abstract. We are given a set U of user points, a set S of sensors in a
d-dimensional space Rd and a lower bound H. Each user point u ∈ U has
a profit h(u) and a penalty cost π(u). Each sensor s ∈ S can adjust its
power, and the cover range of sensors with power p(s) is a d-dimensional
ball of radius r(s), where p(s) = r(s)α and α ≥ 1 is a constant. The goal
of the H-prize-collecting power cover problem is to determine a power
assignment such that the total profit of covered user points is at least H
and the total power of sensors plus the total penalty cost of uncovered
user points is minimized. First, we proved that this problem is NP -hard
even when α = 1, and d = 1 and π(u) = 0 for any u ∈ U . Then, by
utilizing primal-dual and Lagrangian relaxation techniques, we present
a (4 · 3α−1 + ε)-approximation algorithm for any desired accuracy ε > 0.

Keywords: Power cover problem · H -prize-collecting · Approximation
algorithm · Lagrangian relaxation

1 Introduction

The goal of the minimum power partial coverage problem is to keep at least a spec-
ified number of user points of interest under monitoring, such that the total power
of sensors is minimized, where the service area of a sensor is a disk centered at the
sensor whose radius is determined by the power of the sensor [7]. However, the user
points may have different priorities, which can be described as profits in the real
world. In this paper, we consider a generalized version of the minimum power par-
tial coverage problem [3], called the H-prize-collecting power cover problem, which
is defined as follows. We are given a set U of n user points, a set S of m sensors on
a d-dimensional space Rd and a lower bound H. Each user point u ∈ U has a profit
h(u) and a penalty cost π(u). Each sensor s ∈ S can adjust its power, and the
cover range of sensors with power p(s) is a d-dimensional ball of radius r(s), where
p(s) = r(s)α. The aim of the H-prize-collecting power cover (H-PCPC, for short)
problem is to determine a power assignment such that the total profit of covered
user points is at least H and the total power of sensors plus the total penalty cost
of uncovered user points is minimized.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 89–98, 2022.
https://doi.org/10.1007/978-3-031-20796-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_7&domain=pdf
https://doi.org/10.1007/978-3-031-20796-9_7

90 H. Dai et al.

When h(u) = 1 for any u ∈ U , the H-PCPC problem is exactly the k-prize-
collecting minimum power cover problem introduced by Liu et al. [13], where a
feasible power assignment must cover at least k users and k is a given constant.
They presented a 3α-approximation algorithm. When the penalty cost of the
uncovered user is generalized to a submodular function, Liu et al. [9] presented
a 5 ·2α +1-approximation algorithm. More related results can be found in [5,14]

When h(u) = 1 and π(u) = 0 for any u ∈ U , the H-PCPC problem is exactly
the minimum power partial cover problem introduced by [3], who presented a
polynomial-time (12+ ε)-approximation algorithm when α = 2 if the space R

d is
a plane. When α ≥ 1, Li et al. [7] presented a 3α-approximation algorithm, and
Dai et al. [2] presented a O(α)-approximation algorithm when the space R

d is a
plane. Ran et al. [16] presented a polynomial time approximation scheme (PTAS)
based on a plane subdivision technique. Moreover, Liang et al. [8] presented an
exact algorithm when all user points and all sensors are on a line, i.e., d = 1.

When H =
∑

u h(u), the H-PCPC problem is exactly the minimum power
cover problem introduced by Biló et al. [1], who presented a PTAS based on
a plane subdivision technique. Additionally, Biló et al. [1] presented an exact
algorithm for when all user points and all sensors are on a line.

When H = 0, the H-PCPC problem is exactly the prize-collecting power cover
problem, which is a special case of the k-prize-collecting minimum power cover
problem. There is a 3α-approximation algorithm based on the algorithm in [13].
Liu et al. [12] presented a PTAS based on a plane subdivision technique. In the
same paper, they presented a 3α+1-approximation algorithm for the problem with
submodular penalties, where submodular function has the property of decreasing
marginal return and occur in many mathematical models in [10,11,15].

The rest of this paper is organized as follow. In the second part, we formally
introduce the H-PCPC problem and prove that this problem is NP -hard, even
when α = 1, and d = 1 and π(u) = 0 for any u ∈ U . In the third section, we
recall the prize-collecting power cover problem and introduce a 3α-approximation
algorithm from [13]. In the fourth section, we consider the Lagrangian relaxation
of the H-PCPC problem and present a (4 · 3α−1 + ε)-approximation algorithm.
Finally, we give brief conclusions.

2 Preliminaries

Suppose U is a set of n user points, S is a set of m sensors on a d-dimensional
space R

d, and H is a nonnegative profit bound. A user point u ∈ U is covered by
a sensor s ∈ S with power p(s) if u belongs to the d-dimensional ball B(s, r(s))
supported by p(s), that is, u ∈ B(s, r(s)), where B(s, r(s)) is a d-dimensional
ball B(s, r(s)) centered at s whose radius r(s) is determined by

p(s) = r(s)α, where α ≥ 1,

For convenience, we abbreviate ‘d-dimensional’ as ‘ball’. A user point is covered
by a power assignment p : S → R+ if it is covered by some ball supported by
p. Each user point u ∈ U has a profit h(u) and a penalty π(u). The H-prize-
collecting power cover (H-PCPC) problem aims to determine a power assignment

An Approximation Algorithm for the H-Prize-Collecting Power 91

p such that the total profit of covered user points is at least H and the total
power of sensors plus the total penalties of uncovered user points is minimized.
Here, we assume that there is no limit on the power at a sensor.

Theorem 1. The H-PCPC problem is NP -hard, even when α = 1, and d = 1
and π(u) = 0 for any u ∈ U .

Proof. We use the NP -complete partition problem [4] for the reduction. Given
t positives a1, a2, . . . , at, is there a subset A ⊆ {a1, a2, . . . , at} such that∑

ai:ai∈A ai = 1
2

∑t
i=1 ai?

For any instance of the partition problem, we construct an instance (U,S; p;
h;π) of the H-PCPC problem as follows: Given U = {u1, u2, . . . , ut} and S =
{s1, s2, . . . , st} on a line, let L be a large constant, and

{
d(si, si+1) = L,∀i ∈ {1, 2, . . . , t − 1};
d(ui, si) = ai,∀i ∈ {1, 2, . . . , t},

where d(a, b) is the Euclidean distance from point a to point b. α = 1, H =
1
2

∑t
i=1 ai, h(ui) = ai and π(ui) = 0 for each i = {1, 2, . . . , t}.

It is easy to prove that the partition problem has a solution if and only if the
objective value of the optimal solution of instance (U,S; p;h;π) of the H-PCPC
problem is 1

2

∑t
i=1 ai. ��

Note that in any optimal solution for an instance of the H-PCPC problem,
for any sensor s with r(s) > 0, there is at least one user point on the boundary
of ball B(s, r(s)) since otherwise the ball could be shrunk to result in less power.
Hence, at most m · n balls, denoted as B, must be considered in the H-PCPC.
For each ball B ∈ B, use U(B), r(B), p(B) and c(B) to represent the set of
user points covered, the radius, the power, and the center of ball B, respectively.
Then, we have

p(B) = r(B)α.

Let (F ∗, R∗) be an optimal solution for the H-PCPC, and its objective value
is OPT , where F ⊆ B and R∗ ⊆ U . Similar to the preprocessing step in [6], for
any ε > 0, we can assume that each ball B ∈ B satisfies

p(B) ≤ ε · OPT. (1)

3 The Prize-Collecting Power Cover Problem

In this section, we begin with a brief description of the primal-dual algorithm in
[13], denoted by Algorithm PCPC, and present the structural properties of its
output solution.

As in [13], for each ball B ∈ B, a variable xB ∈ {0, 1} indicates whether ball
B is picked; for each user point u ⊆ U , a variable zu ∈ {0, 1} indicates whether

92 H. Dai et al.

u is a penalty user point. The PCPC problem can be formulated as the following
integer programming problem:

min
∑

B:B∈B
p(B)xB +

∑

u:u∈U

π(u)zu

s.t .
∑

B:u∈U(B)

xB + zu ≥ 1, ∀u ∈ U (2)

xB ∈ {0, 1}, ∀B ∈ B,

zu ∈ {0, 1}, ∀u ∈ U,

where U(B) is the set of user points covered by ball B. The first constraint
states that any user point u ∈ U is either covered by some disk or penalized.
By relaxing the integrality constraints, a linear program is obtained and its dual
program is

max
∑

u:u∈U

yu

s.t .
∑

u:u∈U(D)

yu ≤ p(B), ∀B ∈ B, (3)

yu ≤ π(u), ∀u ∈ U,

yu ≥ 0, ∀u ∈ U.

Let ({yu}u∈U(D)) be a feasible solution of dual program (3). For any ball
B ∈ B, B is called tight if

∑
u∈U(D) yu = c · r(D)α; for any user point u ∈ U , u

is called tight if yu = π(u).
Algorithm PCPC consists of three steps:

(1) The primal-dual scheme is employed to find a tight ball set Btight and a tem-
porarily rejected user point set Rtemp, where Rtemp ∪⋃

B:B∈Btight U(B) = U
and U(B) is the set of user points covered by B.

(2) A maximally independent set I ⊆ Btight is found based on the greedy
method.

(3) Each ball in I has its radius enlarged three times. This set F of balls and
uncovered user points R are the output solutions of the algorithm.

Algorithm PCPC in [13] is described as follows.
Let {yu}u∈U be the dual value generated by Algorithm 1; then, it is not

difficult to obtain that {yu}u∈U is a feasible solution of dual program (3), i.e.,
∑

u:u∈U

yu ≤ OPT,

where OPT is the optimal value of the PCPC problem. Based on Lemma 2 and
Theorem 2 in [13], it is not hard to obtain the following theorem.

Theorem 2. (F,R) generated by Algorithm PCPC is a feasible solution of the
PCPC problem, and

∑

B:B∈F

p(B) + 3α ·
∑

u:u∈R

π(u) ≤ 3α · OPT.

An Approximation Algorithm for the H-Prize-Collecting Power 93

Algorithm 1: [13] Algorithm PCPC

Input: A user point set U ; a ball set B.
Output: A feasible solution (F, R).

1 Initially, set the dual variable yu = 0 and Btight = I = Rtemp = ∅.
2 while U �= ∅ do
3 Increase {yu}u∈U simultaneously until either some ball B becomes tight or

some use point u′ becomes tight.
4 If ball B becomes tight, Btight := Btight ∪ {B} and U := U \ U(B);

otherwise, use point u′ becomes tight, Rtemp := Rtemp ∪ {u′} and
U := U \ {u′}.

5 while Btight �= ∅ do
6 B′ := argmaxB∈Btight r(B), I := I ∪ {B′}.
7 for B ∈ Btight do
8 if U(B) ∩ U(B′) �= ∅ then
9 Btight := Btight \ {B}

10 Set F := {B(c(B), 3 · r(B))|B ∈ I} and R := U \ ⋃
B:B∈I U(B). Output (F, R).

4 The H-Prize-Collecting Power Cover Problem

As with the definitions of variables {xB}B∈B and {zu}u∈U in integer program
(2), the H-PCPC problem can be formulated as the following integer program:

min
∑

B:B∈B
p(B)xB +

∑

u:u∈U

π(u)zu

s.t .
∑

B:u∈U(B)

xB + zu ≥ 1, ∀u ∈ U (4)

∑

u:u⊆U

h(u)zu ≤ HU − H,

xB ∈ {0, 1}, ∀B ∈ B,

zu ∈ {0, 1}, ∀u ∈ U.

where the second constraint of (4) guarantees that the total profit of uncovered
user points of any feasible solution is at most HU − H and HU =

∑
u:u∈U h(u).

Then, the resulting Lagrangian relaxation of integer program (2) is

λ − HLP : min
∑

B:B∈B
p(B)xB +

∑

u:u∈U

π(u)zu + λ · (
∑

u:u⊆U

h(u)zu − (HU − H))

s.t .
∑

B:u∈U(B)

xB + zu ≥ 1, ∀u ∈ U

xB ∈ {0, 1}, ∀B ∈ B,

zu ∈ {0, 1}, ∀u ∈ U.

94 H. Dai et al.

Given any λ ≥ 0, we remark that, excluding the constant term of −λ(HU −H)
in the objective function, λ−HLP is exactly an integer program of the prize-
collecting power cover problem on instance Iλ, in which each user point u ∈ U
has a penalty π(u) + λ · h(u), where

Iλ : min
∑

B:B∈B
p(B)xB +

∑

u:u∈U

(π(u) + λ · h(u))zu

s.t .
∑

B:u∈U(B)

xB + zu ≥ 1, ∀u ∈ U

xB ∈ {0, 1}, ∀B ∈ B,

zu ∈ {0, 1}, ∀u ∈ U.

For any λ ≥ 0, let OPTλ and OPT (λ − HLP) be the optimal values of Iλ and
λ−HLP, respectively; then, we have OPTλ − λ · (HU − H) = OPT (λ − HLP).
Furthermore, any optimal solution of integer program (2) is also a feasible solu-
tion ofλ−HLP. Let OPT be the optimal value of integer program (2); then, we
have

OPTλ − λ · (HU − H) = OPT (λ − HLP) ≤ OPT, ∀ λ ≥ 0. (5)

For any λ ≥ 0, let (Fλ, Rλ) be the output solution generated by Algorithm
PCPC and let

Hλ =
∑

u:u∈U\Rλ

h(u)

be the total profit of the user points covered by (Fλ, Rλ). Thus, (Fλ, Rλ) is a
feasible solution of integer program (2) if Hλ ≥ H. In particular, if H0 ≥ H, we
can output (Fλ, Rλ), and its objective value is no more than 3α ·OPT . Without
loss of generality, we assume that

H0 < H.

Note that when λ >
∑

B∈B p(B)

minu∈U h(u) , (Fλ, Rλ) generated by Algorithm PCPC

covers all user points in U . This statement and H0 < H imply that we can
find λ1 and λ2 in polynomial time based on a binary search over the interval
[0,

∑
B∈B p(B)

minu∈U h(u)] and Algorithm PCPC, where

λ1 − λ2 ≤ εpmin

HU

and
Hλ1 ≥ H ≥ Hλ2 ,

where pmin = minB:B∈B p(B).

Lemma 1. For any λ ≥ 0, (Fλ, Rλ) generated by Algorithm PCPC on instance
Iλ satisfies

OUT (Fλ, Rλ) ≤ 3α · (OPT + λ · (Hλ − H)).

An Approximation Algorithm for the H-Prize-Collecting Power 95

Proof. For any λ ≥ 0, the objective value of (Fλ, Rλ) is

OUT (Fλ, Rλ)

=
∑

B:B∈Fλ

p(B) +
∑

u:u∈U\Rλ

π(u)

=
∑

B:B∈Fλ

p(B) +
∑

u:u∈U\Rλ

(π(u) + λ · h(u)) −
∑

u:u∈U\Rλ

λ · h(u)

≤ 3α · OPTλ − (3α − 1)
∑

u:u∈U\Rλ

(π(u) + λ · h(u)) −
∑

u:u∈U\Rλ

λ · h(u)

≤ 3α · (OPT + λ · (HU − H)) − 3α · (HU − Hλ)
= 3α · (OPT + λ · (Hλ − H)),

where the first inequality follows from Theorem 1 and the second inequality
follows from inequality (5). ��
Lemma 2. If Hλ1 = H or Hλ2 = H, then (Fλ1 , Rλ1) or (Fλ2 , Rλ2) is a feasible
solution of the H-PCPC problem, and its objective value is no more than 3α ·
OPT .

Proof. If Hλ1 = H, (Fλ1 , Rλ1) is a feasible solution, and its objective value by
Lemma 1 is

OUT (Fλ1 , Rλ1) ≤ 3α · (OPT + λ · (Hλ1 − H)) = 3α · OPT.

If Hλ2 = H, similarly, (Fλ2 , Rλ2) is a feasible solution satisfying

OUT (Fλ2 , Rλ2) ≤ 3α · OPT.

��
Then, we consider the case with

Hλ1 > H > Hλ2 .

Thus, (Fλ1 , Rλ1) is a feasible solution of the H-PCPC problem, and (Fλ2 , Rλ2)
is not a feasible solution of the H-PCPC problem. Then, by adding some ball
in Fλ1 to Fλ2 , we construct an augmenting feasible solution (Fa, Ra), where
Fa = Fλ2 ∪ F ′

λ1
, F ′

λ1
⊆ Fλ1 \ Fλ2 and Ra is the set of user points not covered

by Fa. We select the minimum solution between (Fλ1 , Rλ1) and (Fa, Ra) as the
output.

Then, we illustrate how to construct F ′
λ1

. First, each user point u ∈ (U \
Rλ1)∩ Rλ2 is assigned to an arbitrary ball in Fλ1 \ Fλ2 that covers it, and ϕ(B)
represents the total profit of the covered user points assigned to B. Then, the
balls in Fλ1 \ Fλ2 are sorted such that p(B1)

ϕ(B1)
≤ p(B2)

ϕ(B2)
≤ · · · . Finally, let F ′

λ1
=

{B1, . . . , Bq}, where q is the minimal index for which
∑q

i=1 ϕ(Bi) ≥ H − Hλ2 .
Let

γ =
H − Hλ2

Hλ1 − Hλ2

;

we then have the following lemma.

96 H. Dai et al.

Lemma 3.
∑

B:B∈F ′
λ1

P (B) ≤ γ · ∑
B:B∈Fλ1\Fλ2

p(B) + 3α · ε · OPT .

Theorem 3. min{OUT (Fλ1 , Rλ1), OUT (Fa, Ra)} ≤ (4 ·3α−1+2 ·3α · ε) ·OPT .

Proof. By γ = H−Hλ2
Hλ1−Hλ2

, we have

γ · OUT (Fλ1 , Rλ1) + (1 − γ) · OUT (Fλ2 , Rλ2)
≤ 3αγ · (OPT + λ1(Hλ1 − H)) + 3α(1 − γ) · (OPT + λ2(Hλ2 − H))

+3αγ · εpmin

HU
· (Hλ1 − H)

≤ 3α · OPT + 3α · εpmin ≤ 3α(1 + ε) · OPT, (6)

where the first inequality follows from Lemma 1, the second inequality follows
from pmin ≤ p(B) ≤ ε · OPT for any B ∈ B.

Let
θ =

OUT (Fλ2 , Rλ2)
OPT

.

By inequality (6), the objective value of (Fλ1 , Rλ1) is

OUT (Fλ1 , Rλ1) ≤ 3α(1 + ε) · OPT − (1 − γ) · OUT (Fλ2 , Rλ2)
γ

=
3α(1 + ε) − (1 − γ) · θ

γ
OPT.

Since Fa = F ′
λ1

∪Fλ2 , we have Ra ⊆ Fλ2 , and the objective value of (Fλ2 , Rλ2)
is

OUT (Fa, Ra)

=
∑

D:D∈Fλ2

p(D) +
∑

D:D∈F ′
λ1

p(D) +
∑

u:u∈Rλ2

π(u)

≤ (3α · (1 + ε) + γ · θ + 3αε) · OPT,

where the inequality follows from Ra ⊆ Rλ2 , π(u) ≥ 0 for any u ∈ U , and
inequality (6).

Therefore,

min{OUT (Fλ1 , Rλ1), OUT (Fa, Ra)}
= min{3

α · (1 + ε) − (1 − γ) · θ

γ
, 3α · (1 + ε) + γ · θ + 3αε} · OPT

≤ 4 · 3α−1 · OPT + 2 · 3αε · OPT

where the last inequality follows from γ = 1
2 and θ = 2 · 3α−1. ��

An Approximation Algorithm for the H-Prize-Collecting Power 97

5 Conclusion

In this paper, we consider the H-prize-collecting power cover (H-PCPC) prob-
lem, which is a space case of the H-prize-collecting set cover problem. We proved
that this problem is NP -hard even when α = 1, and d = 1 and π(u) = 0 for
any u ∈ U . Additionally, we present a (4 · 3α−1 + ε)-approximation algorithm
utilizing the primal-dual and Lagrangian relaxation techniques for any desired
accuracy ε > 0.

It would be interesting to design a better algorithm for the H-PCPC problem.
Moreover, the generalization of this problem to metric space is worthy of further
study. A submodular function has the property of decreasing marginal return
and there has been considerable work on submodular penalty optimization, in
which the penalty is determined by a submodular function. The generalization
of this problem to submodular penalties is worth considering.

Acknowledgement. The work is supported in part by the National Natural Science
Foundation of China [No. 12071417].

References

1. Biló, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering
to minimize the sum of cluster sizes. In: Brodal, G.S., Leonardi, S. (eds.) Algo-
rithms - ESA 2005, LNCS, vol. 3669, pp. 460–471. Springer, Heidelberg (2005)
https://doi.org/10.1007/11561071_42

2. Dai, H., Deng, B., Li, W., Liu, X.: A note on the minimum power partial cover
problem on the plane. J. Combinat. Optim. 44(2), 1–9 (2022). https://doi.org/10.
1007/s10878-022-00869-8

3. Freund, A., Rawitz, D.: Combinatorial Interpretations of Dual Fitting and Primal
Fitting. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp.
137–150. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24592-
6_11

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H Freeman and Company, New York (1990)

5. Guo, J., Liu, W., Hou, B.: An approximation algorithm for P-prize-collecting set
cover problem. J. Operat. Res. Soc. China (2021). https://doi.org/10.1007/s40305-
021-00364-7

6. Könemann, J., Parekh, O., Segev, D.: A unified approach to approximating partial
covering problems. Algorithmica 59(4), 489–509 (2011)

7. Li, M., Ran, Y., Zhang, Z.: A primal-dual algorithm for the minimum power partial
cover problem. J. Combinat. Optim. 39, 725–746 (2020)

8. Liang, W., Li, M., Zhang, Z., Huang, X.: Minimum power partial multi-cover on a
line. Theoret. Comput. Sci. 864, 118–128 (2021)

9. Liu, X., Dai, H., Li, S., Li, W.: The k-prize-collecting minimum power cover prob-
lem with submodular penalties on a plane . Sci. Sin. Inform. 52, 947–959 (2022).
(in Chinese). https://doi.org/10.1360/SSI-2021-0445

10. Liu, X., Li, W.: Approximation algorithms for the multiprocessor scheduling with
submodular penalties. Optim. Lett. 15(6), 2165–2180 (2021). https://doi.org/10.
1007/s11590-021-01724-1

https://doi.org/10.1007/11561071_42
https://doi.org/10.1007/s10878-022-00869-8
https://doi.org/10.1007/s10878-022-00869-8
https://doi.org/10.1007/978-3-540-24592-6_11
https://doi.org/10.1007/978-3-540-24592-6_11
https://doi.org/10.1007/s40305-021-00364-7
https://doi.org/10.1007/s40305-021-00364-7
https://doi.org/10.1360/SSI-2021-0445
https://doi.org/10.1007/s11590-021-01724-1
https://doi.org/10.1007/s11590-021-01724-1

98 H. Dai et al.

11. Liu, X., Li, W.: Combinatorial approximation algorithms for the submodular mul-
ticut problem in trees with submodular penalties. J. Combinat. Optim. 44,1964–
1976 (2020). https://doi.org/10.1007/s10878-020-00568-2

12. Liu, X., Li, W., Dai, H.: Approximation algorithms for the minimum power cover
problem with submodular/linear penalties. Theor. Comput. Sci. 923, 256–270
(2022). https://doi.org/10.1016/j.tcs.2022.05.012 (2022)

13. Liu, X., Li, W., Xie, R.: A primal-dual approximation algorithm for the k-prize-
collecting minimum power cover problem. Optim. Lett. 16, 2373–2385 (2021).
https://doi.org/10.1007/s11590-021-01831-z

14. Liu, X., Li, W., Yang, J.: A primal-dual approximation algorithm for the k-prize-
collecting minimum vertex cover problem with submodular penalties. Front. Com-
put. Sci. 17 (2022). https://doi.org/10.1007/s11704-022-1665-9

15. Liu, X., Li, W., Zhu, Y.: Single machine vector scheduling with general penalties.
Mathematics 9, 1965 (2021)

16. Ran, Y., Huang, X., Zhang, Z., Du, D.-Z.: Approximation algorithm for minimum
power partial multi-coverage in wireless sensor networks. J. Global Optim. 80(3),
661–677 (2021). https://doi.org/10.1007/s10898-021-01033-y

https://doi.org/10.1007/s10878-020-00568-2
https://doi.org/10.1016/j.tcs.2022.05.012
https://doi.org/10.1007/s11590-021-01831-z
https://doi.org/10.1007/s11704-022-1665-9
https://doi.org/10.1007/s10898-021-01033-y

Online Early Work Maximization on Three
Hierarchical Machines with a Common

Due Date

Man Xiao and Weidong Li(B)

School of Mathematics and Statistics, Yunnan University, Kunming 650504, China
weidongmath@126.com

Abstract. In this paper, we consider the online early work problems on
three hierarchical machines with a common due date. When there is one
machine of hierarchy 1, we propose an optimal online algorithm with a
competitive ratio of 1.302. When there are two machines of hierarchy 1,
we give a lower bound 1.276, and propose an online algorithm with a
competitive ratio of 1.302.

Keywords: Online · Early work · Hierarchy · Competitive ratio

1 Introduction

Since Chen et al. [5] proposed the online early work maximization problem,
more and more online and semi-online related problems are considered [6,16].
For a maximization (minimization) problem, the competitive ratio of an online
algorithm A is defined as the minimum value of ρ such that COPT (I) ≤
ρCA(I)(CA(I) ≤ ρCOPT (I)) for any instance I, where CA(I)(CA, for short)
denotes the output value of the online algorithm A, and COPT (I)(COPT , for
short) denotes the off-line optimal value. For an online problem, if there is no
algorithm with competitive ratio less than ρ, then ρ is a lower bound of the prob-
lem. If there is an algorithm whose competitive ratio matches the lower bound,
this algorithm is called an optimal online algorithm.

In the online scheduling problem, we are given n independent jobs and m
identical machines, each job must be assigned irrevocably to a machine before
the next job can be revealed. For the online makespan minimization scheduling
problem, if m = 2, Feigle et al. [7] proved that list scheduling is the optimal
online algorithm. Kellerer et al. [13] gave an optimal online algorithm with a
competitive ratio of 4

3 when the total size of all jobs is known in advance. Azar
and Regev [3] designed an optimal online algorithm with a competitive ratio
of 4

3 when the optimal value is known in advance. He and Zhang [10] proposed
an optimal online algorithm with a competitive ratio of 4

3 when the largest
processing time is known in advance. If m = 3, Feigle et al. [7] proved that
list scheduling is an optimal online algorithm with a competitive ratio of 5

3 .
When the total size of all jobs is known in advance, Angelelli et al. [1] gave a
lower bound

√
129−3
6 , and Lee and Lim [14] proposed an online algorithm with

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 99–109, 2022.
https://doi.org/10.1007/978-3-031-20796-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_8&domain=pdf
https://doi.org/10.1007/978-3-031-20796-9_8

100 M. Xiao and W. Li

a competitive a ratio of 7
5 . When the optimal value is known in advance, Bohm

et al. [4] proposed a lower bound 15
11 and an online algorithm with a competitive

ratio of 11
8 . If m is arbitrary, at present, the best lower bound is 1.85 [9], and

the best upper bound is 1.92 [8]. When the total size of all jobs is known in
advance, Albers and Hellwig [2] gave a lower bound 1.585, and Kellerer et al.
[12] designed an optimal online algorithm.

Assume that there are m machines with two hierarchies and the goal is to
minimize makespan, where the machines of hierarchy 1 can process all the jobs,
and the machines of hierarchy 2 can only process the jobs of hierarchy 2. If
m = 2, Park et al. [15] and Jiang et al. [11] independently gave an optimal
online algorithm with a competitive ratio of 5

3 . Park et al. [15] also proposed an
optimal online algorithm with a competitive ratio of 3

2 when the total size of all
jobs is known in advance. Wu and Yang [17] proposed two online algorithms with
competitive ratios of 1.618 and 1.5 respectively when the largest processing time
or the optimal value is known in advance. If there are one machine of hierarchy 1
and two machines of hierarchy 2, Zhang et al. [19] gave a lower bound 1.824, and
an online algorithm with a competitive ratio of 1.857. If there are two machines
of hierarchy 1 and one machine of hierarchy 2, Zhang et al. [19] gave a lower
bound 1.801, and an online algorithm with a competitive ratio of 1.857. If there
are k machines of hierarchy 1 and m−k machines of hierarchy 2, Zhang et al. [19]
presented an online algorithm with a competitive ratio of 1 + m2−m

m2−km+k2 < 7
3 .

Xiao et al. [20] considered the buffer model on three machines.
For the online early work maximization problem on two identical machines,

Chen et al. [5] gave an optimal online algorithm with a competitive ratio of√
5−1. When the total size of all jobs is known in advance, Chen et al. [6] designed

an optimal online algorithm with a competitive ratio of 6
5 . If two machines have

different hierarchies, Xiao et al. [18] proposed three optimal online algorithms
when the total size of low-hierarchy jobs, the total size of high-hierarchy jobs,
and both the total size of low-hierarchy and high-hierarchy jobs are known in
advance, respectively.

In this paper, we consider online early work maximization problem on three
machines with two hierarchies as in [19], and the corresponding results are shown
in Table 1. The rest of this paper is organized as follows. In Sect. 2, we describe
some preliminaries. In Sect. 3, we consider the model that has one machine of
hierarchy 1, and design an optimal online algorithm. In Sect. 4, we consider
the model that has two machine of hierarchy 1, give a lower bound 1.276, and
propose an online algorithm with a competitive ratio of 1.302. Finally, we make
a summary.

Table 1. The related results on the three machines with two hierarchies

Makespan minimization Early work maximization
Lower bound Upper bound Lower bound Upper bound

One machine of hierarchy 1 1.801 [19] 1.857 [19] 1.302 1.302

Two machines of hierarchy 1 1.824 [19] 1.857 [19] 1.276 1.302

Online Early Work Maximization on Three Hierarchical Machines 101

2 Preliminaries

We are given three machines M1, M2 and M3, and a job set J = {J1, J2, . . . , Jn}.
Denote the j-th job as Jj = (pj , gj), j ∈ {1, 2, . . . , n}, where pj indicates the
processing time of job Jj (also called the size of Jj), and gj indicates the hierarchy
of job Jj . We know the information of Jj only when Jj arrives, and the next job
Jj+1 arrives only when Jj is scheduled irrevocably on some machine. If gj = 1,
we call Jj as a job of hierarchy 1 or low-hierarchy job, and call Jj as a job of
hierarchy 2 or high-hierarchy job, otherwise. Only if g(Mi) ≤ gj for i ∈ {1, 2, 3}
and j ∈ {1, 2, . . . , n} where g(Mi) is the hierarchy of machine Mi, machine Mi

can process the job Jj , and each job can only be processed on one machine. As
in Chen et al. [5,6], assume that each job has a common due date d > 0, and
the size is no more than d, i.e.,

pj ≤ d, for j = 1, 2, . . . , n.

The early work of job Jj is Xj ∈ [0, pj]. If the job Jj is completed before the
due date d, then the job is called totally early, and Xj = pj . If the job Jj starts
at the time of Sj < d, but finishes after the d, Jj is called partially early, and
Xj = d − Sj . If the job Jj starts at the time of Sj ≥ d, Jj is called totally late,
and Xj = 0.

A schedule is actually a partition (S1, S2, S3) of the job set J , such that
S1 ∪ S2 ∪ S3 = J and Si ∩ Sj = ∅ for any i 	= j. Let Li =

∑
Jj∈Si

pj be the load
of Mi, for i ∈ {1, 2, 3}. The objective is to find a schedule such that total early
work

X =
n∑

j=1

Xj =
3∑

i=1

min {Li, d}

is maximized.
In the next sections, for convenience, let Tk (k ∈ {1, 2}) be the total size of

the jobs with hierarchy k, and Lj
i be the load of Mi after job Jj is scheduled for

i ∈ {1, 2, 3} and j ∈ {1, 2, ..., n}. Obviously, we have Ln
i = Li.

3 One Machine of Hierarchy 1

In this section, we consider the model with one machine of hierarchy 1
and two machines of hierarchy 2. For convenience, denote this problem as
P3(1, 2, 2)|online, dj = d|max(X). Without loss of generality, let g(M1) = 1,
and g(M2) = g(M3) = 2, which means that M2 and M3 can only process the
high-hierarchy jobs, and M1 can process all the jobs. Meanwhile, based on the
definition of total early work X, we have

Lemma 1. The optimal value COPT is at most min {3d, T1 + T2, d + T2}.

102 M. Xiao and W. Li

Proof. By the definition of X, COPT ≤ 3d and COPT ≤ T1 + T2. Since M2

and M3 can only process the high-hierarchy jobs, the total early work of jobs
processed on machine M2 and M3 is no more than T2, implying that COPT ≤
d + T2. Thus, the lemma holds.

Theorem 1. Any online algorithm A for P3(1, 2, 2)|online, dj = d|max(X) has
a competitive ratio at least

√
13−1
2 .

Proof. For convenience, assume than d = 1. The first two jobs are J1 =
(

√
13−1
4 , 2) and J2 = (

√
13−1
4 , 2).

If at least one job is assigned to M1, the last job J3 = (1, 1) arrives, implying
that L1 ≥

√
13+3
4 , and L2 + L3 ≤

√
13−1
4 . Thus, we have COPT = 1 +

√
13−1
4 +√

13−1
4 =

√
13+1
2 and CA ≤ 1 +

√
13−1
4 =

√
13+3
4 , implying that

COPT

CA
≥

√
13+1
2√

13+3
4

= 5 −
√
13 >

√
13 − 1
2

.

If both J1 and J2 are assigned to M2 or M3, no more jobs arrive. Since√
13−1
2 > 1, we have COPT =

√
13−1
2 and CA = 1. Therefore, COPT

CA ≥
√
13−1
2 .

Else, the next job J3 = (1, 2) arrives. If J3 is assigned to M1, the last job
J4 = (1, 1) arrives. We have L1 = 2, L2 = L3 =

√
13−1
4 , and CA = 1 +

√
13−1
4 +√

13−1
4 =

√
13+1
2 . Since COPT = 3, we have

COPT

CA
≥ 3

√
13+1
2

=
√
13 − 1
2

.

If J3 is assigned to M2 or M3, then no more job arrives, implying that COPT =
1+

√
13−1
4 +

√
13−1
4 =

√
13+1
2 and CA = 1+

√
13−1
4 =

√
13+3
4 . Therefore, we have

COPT

CA =
√

13+1
2√

13+3
4

= 5 − √
13 >

√
13−1
2 . Thus, the theorem holds.

Our algorithm is described as follows, where we assign the high-hierarchy
jobs preferentially to the machines of hierarchy 2.

Theorem 2. The competitive ratio of AlgorithmA1 is at most
√
13−1
2 .

Proof. If min {L1, L2, L3} ≥ d, we have CA2 = 3d ≥ COPT . If
max {L1, L2, L3} ≤ d, we have CA1 = L1 + L2 + L3 = T1 + T2 ≥ COPT .
Therefore, we only need to consider the case where min {L1, L2, L3} < d <
max {L1, L2, L3}. We distinguish the following four cases.

Case 1. L1 > d, L2 < d and L3 < d.
In this case, we have CA1 = d+L2 +L3. If no high-hierarchy job is assigned

to M1, AlgorithmA1 reaches optimality.
If there exist some high-hierarchy jobs assigned to M1, by the choice of Algo-

rithmA1, we have L2 + L3 >
√
13−1
2 d. Therefore, by Lemma 1, we have

COPT

CA1
≤ 3d

d + L2 + L3
≤ 3d

d +
√
13−1
2 d

=
√
13 − 1
2

.

Online Early Work Maximization on Three Hierarchical Machines 103

Algorithm 1: A1
1 Initially, let L0

1 = L0
2 = L0

3 = 0.
2 When a new job Jj = (pj , gj) arrives,
3 if gj = 1 then
4 Assign the job Jj to the M1.

5 else
6 if Lj−1

2 + pj ≤
√
13−1
2

d then
7 Assign the job Jj to M2.

8 else
9 if Lj−1

3 + pj ≤
√

13−1
2

d then
10 Assign the job Jj to M3.

11 else
12 Assign the job Jj to M1.

13 If there is another job, j ← j + 1, go to step 2. Otherwise, stop.

Case 2. L1 > d, L2 > d and L3 < d.
In this case, we have CA1 = 2d+L3. If no high-hierarchy job assigned to M1,

we have T2 = L2 + L3. According to the AlgorithmA1, we have L2 ≤
√
13−1
2 d.

By Lemma 1, we have

COPT

CA1
≤ d + T2

L3 + 2d
=

d + L2 + L3

2d + L3
≤ d + L3 +

√
13−1
2 d

L3 + 2d
=

L3 +
√
13+1
2 d

L3 + 2d

= 1 +
(

√
13+1
2 − 2)d

L3 + 2d
≤

√
13 + 1
4

<

√
13 − 1
2

.

If there exist some high-hierarchy jobs assigned to M1, by the choice of Algo-
rithmA1, we have L3 ≥

√
13−3
2 d. Thus, by Lemma 1, we have

COPT

CA1
≤ 3d

L3 + 2d
≤ 3d

√
13−3
2 d + 2d

=
√
13 − 1
2

.

Case 3. L1 < d, L2 > d and L3 > d.
In this case, we have CA1 = 2d+L1. According to the choice of AlgorithmA1,

we have L2 ≤
√
13−1
2 d and L3 ≤

√
13−1
2 d. By Lemma 1, we have

COPT

CA1
≤ T1 + T2

L1 + 2d
=

L1 + L2 + L3

L1 + 2d
≤ L1 +

√
13−1
2 d +

√
13−1
2 d

L1 + 2d

=
L1 + (

√
13 − 1)d

L1 + 2d
= 1 +

(
√
13 − 3)d

L1 + 2d
≤

√
13 − 1
2

.

104 M. Xiao and W. Li

Case 4. L1 < d, L2 > d and L3 < d.
In this case, we have CA1 = d + L1 + L3. According to the choice of Algo-

rithmA1, we have L2 ≤
√
13−1
2 d. By Lemma 1, we have

COPT

CA1
≤ T1 + T2

L1 + L3 + d
=

L1 + L2 + L3

L1 + L3 + d
≤ L1 + L3 +

√
13−1
2 d

L1 + L3 + d
≤

√
13 − 1
2

.

Thus, the theorem holds.

4 Two Machines of Hierarchy 1

In this section, we consider the model with two machines of hierarchy 1
and one machine of hierarchy 2. For convenience, denote this problem as
P3(1, 1, 2)|online, dj = d|max(X). Without loss of generality, let g(M1) =
g(M2) = 1, and g(M3) = 2, which means that M1 and M2 can process all the
jobs, and M3 can only process the high-hierarchy jobs. Based on the definition
of total early work X, we have

Lemma 2. The optimal value COPT is at most min {3d, T1 + T2, 2d + T2}.
Proof. By the definition of X, COPT ≤ 3d and COPT ≤ T1 + T2. Since M3 can
only process the high-hierarchy jobs, the total early work of jobs processed on
machine M3 is no more than T2, implying that COPT ≤ 2d + T2. Thus, the
lemma holds.

For convenience, let β ≈ 0.352 be the positive real root of equation β3 +
4β2 + 7β − 3 = 0 and α = 3

2+β − 1 ≈ 0.276.

Theorem 3. Any online algorithm A for P3(1, 1, 2)|online, dj = d|max(X) has
a competitive ratio at least 1 + α.

Proof. For convenience, assume d = 1, the first job is J1 = (α, 2). We distinguish
the following two cases.

Case 1. J1 is assigned to M3.
The next job J2 = (1, 2) arrives. If J2 is assigned to M3, no more job arrives.

We have COPT = 1 + α, CA = 1, and COPT

CA ≥ 1 + α. Else, the last two jobs
J3 = (1, 1) and J4 = (1, 1) arrive. We have COPT = 3, CA ≤ 2 + α, and
COPT

CA ≥ 3
2+α > 1 + α.

Case 2. J1 is assigned to M1 or M2.
The next job J2 = (β, 2) arrives. If J2 is assigned to M3, the next job J3 =

(1, 2) arrives. If J3 is assigned to M3, no more job arrives. We have COPT =
1 + α + β, CA = 1 + α and COPT

CA ≥ 1+α+β
1+α = 1 + α. If J3 is assigned to M1 or

M2, the last two jobs J4 = (1, 1) and J5 = (1, 1) arrive, we have COPT = 3 and

Online Early Work Maximization on Three Hierarchical Machines 105

CA ≤ 2+ β. Therefore, COPT

CA ≥ 3
2+β = 1+α. Else, J2 is assigned to M1 or M2,

the last two jobs J3 = (1, 1) and J4 = (1, 1) arrive. We have COPT = 2 + α + β

and CA ≤ 2. Therefore, COPT

CA ≥ 2+α+β
2 > 1 + α.

Thus, the theorem holds.

Our online algorithm is described as in AlgorithmA2.

Algorithm 2: A2
1 Initially, let L0

1 = L0
2 = L0

3 = 0.
2 When a new job Jj = (pj , gj) arrives,
3 if gj = 1 then
4 if Lj−1

1 + pj ≤
√
13−1
2

d then
5 Assign the job Jj to M1.

6 else
7 if Lj−1

2 + pj ≤
√

13−1
2

d then
8 Assign the job Jj to M2.

9 else
10 Assign the job Jj to machine with the least current load among M1

and M2.

11 else
12 if Lj−1

3 + pj ≤
√
13−1
2

d then
13 Assign the job Jj to M3.

14 else
15 if Lj−1

1 + pj ≤
√

13−1
2

d then
16 Assign the job Jj to M1.

17 else
18 if Lj−1

2 + pj ≤
√
13−1
2

d then
19 Assign the job Jj to M2.

20 else
21 Assign the job Jj to machine with the least current load among

M1, M2 and M3.

22 If there is another job, j == j + 1, go to step 2. Otherwise, stop.

Theorem 4. The competitive ratio of AlgorithmA2 is at most 1 + α

Proof. If max {L1, L2, L3} ≤ d, we have CA2 = L1+L2+L3 = T1+T2 ≥ COPT .
If min {L1, L2, L3} ≥ d, we have CA2 = L1 + L2 + L3 = 3d ≥ COPT . Hence, we
only to consider the min {L1, L2, L3} < d < max {L1, L2, L3}. Without loss of
generality, we distinguish the following four cases.

Case 1. L1 > d, L2 > d and L3 < d.

106 M. Xiao and W. Li

In this case, we have CA2 = 2d+L3. If there is no high-hierarchy job assigned
to M1 or M2, AlgorithmA2 reaches the optimality. Else, let Jl = (pl, 2) be
the last high-hierarchy job assigned to M1 or M2. According to the choice of
AlgorithmA2, we have Ll−1

3 + pl >
√
13−1
2 d. Since pl ≤ d, we have

L3 ≥ Ll−1
3 >

√
13 − 1
2

d − pl ≥
√
13 − 1
2

d − d =
√
13 − 3
2

d.

By Lemma 2, we have

COPT

CA2
≤ 3d

2d + L3
≤ 3d

2d +
√
13−3
2 d

=
√
13 − 1
2

.

Case 2. L1 > d, L2 < d and L3 < d.
In this case, we have CA2 = d + L2 + L3. If L1 ≤

√
13−1
2 d, by Lemma 2, we

have

COPT

CA2
≤ T1 + T2

d + L2 + L3
=

L1 + L2 + L3

d + L2 + L3
≤

√
13−1
2 d + L2 + L3

d + L2 + L3
≤

√
13 − 1
2

.

If L1 >
√
13−1
2 d, we distinguish the following two subcases.

Case 2.1. There is no high-hierarchy job assigned to M1 or M2. Let Jt be
the last job assigned to M1. Since L1 >

√
13−1
2 d and pt ≤ d, by the choice of

AlgorithmA2, we have 0 < L1 − pt ≤ L2, implying that L1 − pt + L2 >
√
13−1
2 d

and L2 >
√
13−1
4 d. By Lemma 2, we have

COPT

CA2
≤ 2d + T2

d + L2 + L3
=

2d + L3

d + L2 + L3
≤ 2d + L3

d +
√
13−1
4 d + L3

= 1 +
2d −

√
13+3
4 d

√
13+3
4 d + L3

≤ 1 +
5−√

13
4 d

√
13+3
4 d

= 2
√
13 − 6 <

√
13 − 1
2

.

Case 2.2. There exist some high-hierarchy jobs assigned to M1 or M2. If
L2 + L3 ≥

√
13−1
2 d, by Lemma 2, we have

COPT

CA2
≤ 3d

d + L2 + L3
≤ 3d

d +
√
13−1
2 d

=
√
13 − 1
2

.

If L2+L3 <
√
13−1
2 d, by the choice of AlgorithmA2, there is no high-hierarchy

job assigned to M2. Let Jt be the last job assigned to M1. Since L1 >
√
13−1
2 d,

by the choice of Algorithm A2, we have L1 − pt ≤ L2. If there exists one high-
hierarchy job assigned to M1 before Jt, by the choice of AlgorithmA2, we have

L3 + L2 ≥ L3 + L1 − pt >

√
13 − 1
2

d,

Online Early Work Maximization on Three Hierarchical Machines 107

which contradicts the assumption L2 + L3 <
√
13−1
2 d. Else, there is no high-

hierarchy job assigned to M1 before Jt, which implies that Jt is a high-hierarchy
job. By the choice of Algorithm A2, we have L1 − pt ≤ L2 and L1 − pt ≤ L3.
Let L2 +L3 = x. Thus, L1 ≤ L2+L3

2 + pt = x
2 + pt ≤ x

2 + d. From Lemma 2 and
x <

√
13−1
2 d, we have

COPT

CA2
≤ T1 + T2

d + L2 + L3
=

L1 + x

d + x
≤ d + x

2 + x

d + x
= 1 +

x
2

d + x

≤ 1 +

√
13−1
4 d

d +
√
13−1
2 d

= 1 +
7 − √

13
12

<

√
13 − 1
2

.

Case 3. L1 < d, L2 < d and L3 > d.
In this case, we have CA2 = L1 + L2 + d. If L3 ≤

√
13−1
2 d, by Lemma 2, we

have
COPT

CA2
≤ T1 + T2

L1 + L2 + d
=

L1 + L2 + L3

L1 + L2 + d
≤

√
13 − 1
2

.

If L3 >
√
13−1
2 d, let Jk be the last job assigned to M3. By the choice of

AlgorithmA2, and pk ≤ d, we have 0 < L3 − pk ≤ min {L1, L2}, implying that
L1 + L2 >

√
13−1
2 d. Thus,

COPT

CA2
≤ 3d

L1 + L2 + d
≤ 3d

√
13−1
2 d + d

=
√
13 − 1
2

.

Case 4. L1 > d, L2 < d and L3 > d.
In this case, we have CA2 = 2d + L2. We distinguish the following three

subcases.
Case 4.1. L1 ≤

√
13−1
2 d and L3 ≤

√
13−1
2 d. By Lemma 2, we have

COPT

CA2
≤ T1 + T2

2d+ L2
=

L1 + L2 + L3

2d+ L2
≤ (

√
13 − 1)d+ L2

2d+ L2
= 1 +

(
√
13 − 3)d

2d+ L2
≤

√
13 − 1

2
.

Case 4.2. L1 >
√
13−1
2 d and L3 ≤

√
13−1
2 d. Let Jt be the last job assigned to

M1. By the choice of AlgorithmA2, we have L2 ≥ L1−pt > 0 and L1−pt+L2 >√
13−1
2 d, implying that L2 >

√
13−1
4 d. By Lemma 2, we have

COPT

CA2
≤ 3d

2d + L2
≤ 3d

2d +
√
13−1
4 d

=
12

7 +
√
13

=
7 − √

13
3

<

√
13 − 1
2

.

Case 4.3. L3 >
√
13−1
2 d. Let Jk be the last job assigned to M3. By the choice

of AlgorithmA2, we have min {L1, L2} ≥ L3 − pk > 0. Since pk ≤ d, we have
L2 ≥ L3 − pk ≥ (

√
13−1
2 − 1)d =

√
13−3
2 d. By Lemma 2, we have

COPT

CA2
≤ 3d

2d + L2
≤ 3d

2d +
√
13−3
2 d

=
√
13 − 1
2

.

Thus, the theorem holds.

108 M. Xiao and W. Li

5 Discussion

In this paper, we considered the online early work problems on three hierarchical
machines. When only one machine of hierarchy 1, we design an optimal online
algorithm. When only one machine of hierarchy 2, we give a lower bound 1.276
and an upper bound 1.302. In the future, it is interesting to study the online
and semi-online early work maximization problems on m hierarchical machines.

Acknowledgement. The work is supported in part by the National Natural Science
Foundation of China [No. 12071417].

References

1. Angelelli, E., Speranza, M., Tuza, Z.: Semi on-line scheduling on three processors
with known sum of the tasks. J. Sched. 10, 263–269 (2007). https://doi.org/10.
1007/s10951-007-0023-y

2. Albers, S., Hellwig, M.: Semi-online scheduling revisited. Theor. Comput. Sci. 443,
1–9 (2012)

3. Azar, Y., Regev, O.: On-line bin-stretching. Theor. Comput. Sci. 168, 17–41 (2001)
4. Böhm, M., Sgall, J., van Stee, R., Veselý, P.: Online bin stretching with three bins.

J. Sched. 20(6), 601–621 (2017). https://doi.org/10.1007/s10951-016-0504-y
5. Chen, X., Sterna, M., Han, X., Blazewicz, J.: Scheduling on parallel identical

machines with late work criterion: offline and online cases. J. Sched. 19, 729–736
(2016). https://doi.org/10.1007/s10951-015-0464-7

6. Chen, X., Kovalev, S., Liu, Y., Sterna, M., Chalamon, I., Blazewicz, J.: Semi-online
scheduling on two identical machines with a common due date to maximize total
early work. Discrete Appl. Math. 290, 71–78 (2021)

7. Faigle, U., Kern, W., Turan, G.: On the performance of on-line algorithms for
partition problems. Acta Cybernet. 9(2), 107–119 (1989)

8. Fleischer, R., Wahl, M.: On-line scheduling revisited. J. Sched. 3, 343–353 (2000)
9. Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating adversaries for

request-answer games. In: Proceedings of the 11th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 564–565. SIAM, Philadelphia (2000)

10. He, Y., Zhang, G.: Semi on-line scheduling on two identical machines. Computing
62, 179–187 (1999). https://doi.org/10.1007/s006070050020

11. Jiang, Y., He, Y., Tang, C.: Optimal online algorithms for scheduling on two identi-
cal machines under a grade of service. J. Zhejiang Univ., Sci., A 7, 309–314 (2006).
https://doi.org/10.1631/jzus.2006.A0309

12. Kellerer, H., Kotov, V., Gabay, M.: An efficient algorithm for semi-online multi-
processor scheduling with given total processing time. J. Sched. 18(6), 623–630
(2015). https://doi.org/10.1007/s10951-015-0430-4

13. Kellerer, H., Kotov, V., Speranza, M., Tuza, Z.: Semi on-line algorithms for the
partition problem. Oper. Res. Lett. 21(5), 235–242 (1997)

14. Lee, K., Lim, K.: Semi-online scheduling problems on a small number of machines.
J. Sched. 16, 461–477 (2013). https://doi.org/10.1007/s10951-013-0329-x

15. Park, J., Chang, S., Lee, K.: Online and semi-online scheduling of two machines
under a grade of service provision. Oper. Res. Lett. 34(6), 692–696 (2006)

16. Sterna, M.: Late and early work scheduling: a survey. Omega 104(15–16), 102453
(2021)

https://doi.org/10.1007/s10951-007-0023-y
https://doi.org/10.1007/s10951-007-0023-y
https://doi.org/10.1007/s10951-016-0504-y
https://doi.org/10.1007/s10951-015-0464-7
https://doi.org/10.1007/s006070050020
https://doi.org/10.1631/jzus.2006.A0309
https://doi.org/10.1007/s10951-015-0430-4
https://doi.org/10.1007/s10951-013-0329-x

Online Early Work Maximization on Three Hierarchical Machines 109

17. Wu, Y., Yang, Q.: Optimal semi-online scheduling algorithms on two parallel iden-
tical machines under a grade of service provision. In: Chen, B. (ed.) AAIM 2010.
LNCS, vol. 6124, pp. 261–270. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14355-7_27

18. Xiao, M., Liu, X., Li, W.: Semi-online early work maximization problem on two
hierarchical machines with partial information of processing time. In: Wu, W., Du,
H. (eds.) AAIM 2021. LNCS, vol. 13153, pp. 146–156. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-93176-6_13

19. Zhang, A., Jiang, Y., Tan, Z.: Online parallel machines scheduling with two hier-
archies. Theor. Comput. Sci. 410, 3597–3605 (2009)

20. Xiao, M., Ding, L., Zhao, S., Li, W.: Semi-online algorithms for hierarchical
scheduling on three parallel machines with a buffer size of 1. In: He, K., Zhong,
C., Cai, Z., Yin, Y. (eds.) NCTCS 2020. CCIS, vol. 1352, pp. 47–56. Springer,
Singapore (2021). https://doi.org/10.1007/978-981-16-1877-2_4

https://doi.org/10.1007/978-3-642-14355-7_27
https://doi.org/10.1007/978-3-642-14355-7_27
https://doi.org/10.1007/978-3-030-93176-6_13
https://doi.org/10.1007/978-981-16-1877-2_4

Secure Computations Through Checking
Suits of Playing Cards

Daiki Miyahara1,2(B) and Takaaki Mizuki2,3

1 The University of Electro-Communications, Tokyo, Japan
miyahara@uec.ac.jp

2 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
3 Tohoku University, Sendai, Japan

Abstract. Card-based cryptography started with the “five-card trick”
designed by Den Boer (EUROCRYPT 1989); it enables Alice and Bob
to securely evaluate the AND value of their private bits using a physical
deck of five cards. It was then shown that the same task can be done
with only four cards, i.e., Mizuki et al. proposed a four-card AND proto-
col (ASIACRYPT 2012). These two AND protocols are simple and easy
even for non-experts, such as high school students, to execute. Their only
common drawback is the need to prepare a customized deck consisting of
red and black cards such that all cards of the same color must be identi-
cal. Fortunately, several existing protocols are based on a standard deck
of playing cards (commercially available). Among them, the state-of-the-
art AND protocol was constructed by Koch et al. (ASIACRYPT 2019);
it uses four playing cards (such as ‘A, J, Q, K’) to securely evaluate the
AND value. The protocol is elaborate, while its possible drawback is the
need to repeat a shuffling operation six times (in expectation), which
makes it less practical.

This paper aims to provide the first practical protocol working on a
standard deck of playing cards. We present an extremely simple AND
protocol that terminates after only one shuffle using only four cards;
our proposed protocol relies on a new operation, called the “half-open”
action, whereby players can check only the suit of a face-down card with-
out revealing the number on it. We believe that this new operation is
easy-to-implement, and hence, our four-card AND protocol working on a
standard deck is practical. We formalize the half-open action to present a
formal description of our proposed protocol. Moreover, we discuss what
is theoretically implied by introducing the half-open action and show
that it can be applied to efficiently solving Yao’s Millionaires’ problem
with a standard deck of cards.

Keywords: Card-based cryptography · Secure computation · Real-life
hands-on cryptography

1 Introduction

Card-based cryptography enables people including non-specialists to easily
conduct cryptographic tasks, such as secure multiparty computations and
c© The Author(s) 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 110–128, 2022.
https://doi.org/10.1007/978-3-031-20796-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_9&domain=pdf
http://orcid.org/0000-0002-5818-8937
http://orcid.org/0000-0002-8698-1043
https://doi.org/10.1007/978-3-031-20796-9_9

Secure Computations Through Checking Suits of Playing Cards 111

zero-knowledge proofs, in daily activities using a deck of physical cards. Typi-
cally, we use a two-colored deck of cards, i.e., a deck consisting of black ♣ and red
cards ♥ whose backs are all identical ? . In history, the first card-based protocol
called the five-card trick was presented by Den Boer [2] at EUROCRYPT 1989;
it enables Alice and Bob holding private bits a ∈ {0, 1} and b ∈ {0, 1}, respec-
tively, to securely evaluate the AND value a ∧ b using five cards ♣ ♣ ♥ ♥ ♥ ,
as described below.

1.1 The Five-Card Trick

Assume that, based on a pair of cards of different colors, Alice and Bob agree
upon the following encoding rule:

♣ ♥ = 0, ♥ ♣ = 1. (1)

If two face-down cards ? ? represent a bit x ∈ {0, 1} according to the above
encoding (1), then we call them a commitment to x and denote it by

? ?
︸ ︷︷ ︸

x

.

The five-card trick [2] proceeds as follows.
1. Alice and Bob privately create commitments to a and b, respectively, and

between them, place one helping red card ♥ ; then, turn it face down:

? ?
︸ ︷︷ ︸

a

♥ ? ?
︸ ︷︷ ︸

b

→ ? ?
︸ ︷︷ ︸

a

? ? ?
︸ ︷︷ ︸

b

.

Note that the three cards in the middle would be ♥ ♥ ♥ if and only if
a = b = 1.

2. Apply a random cut, denoted by 〈·〉, to the sequence of five cards:

? ?
︸ ︷︷ ︸

a

? ? ?
︸ ︷︷ ︸

b

→
〈

? ? ? ? ?
〉

→ ? ? ? ? ? .

A random cut is a cyclic shuffling operation such that the resulting sequence
is randomly shifted. Note that a secure implementation of a random cut called
the Hindu cut has been known [49].

3. Reveal all the five cards; then, we learn the value of a ∧ b, which depends
on whether or not the three red cards ♥ ♥ ♥ are consecutive (apart from
cyclic rotation):

♥ ♣ ♥ ♥ ♣
♣ ♥ ♥ ♣ ♥

♥ ♥ ♣ ♥ ♣
♥ ♣ ♥ ♣ ♥

♣ ♥ ♣ ♥ ♥

a ∧ b = 0

or

♣ ♥ ♥ ♥ ♣
♥ ♥ ♥ ♣ ♣
♥ ♥ ♣ ♣ ♥

♥ ♣ ♣ ♥ ♥

♣ ♣ ♥ ♥ ♥

a ∧ b = 1.

Thus, the five-card trick can elegantly evaluate the AND value securely.

112 D. Miyahara and T. Mizuki

1.2 Protocols with a Standard Deck of Cards

After twenty-three years since the invention of the five-card trick, it was reported
at ASIACRYPT 2012 that the same task can be conducted without any help-
ing card [30]. These two AND protocols [2,30] are simple and easy even for
non-experts, such as high school students, to understand. Actually, both the
protocols are practical and used for introducing the notion of secure computa-
tions in university classes [21,39]. On the other hand, their only common draw-
back is the need to prepare a customized deck consisting of red and black cards
(♣ ♣ ♥ ♥ · · ·) such that all cards of the same color must be indistinguishable.

Fortunately, there are several existing protocols that work on a standard deck
of playing cards (which is commercially available), such as:

A♣ A♠ A
♥

A
♦

2♣ 2♠ 2
♥

2
♦ · · · K♣ K♠ K

♥
K

♦ .

Table 1 enumerates the existing AND protocols working on a standard deck. In
these protocols, a standard deck is regarded as a total order on {1, 2, . . . , 52}
(because of 13 numbers × 4 suits): that is, a protocol is supposed to work on
cards like 1 2 3 4 · · · whose backs are all ? . In this standard deck setting,
a Boolean value can be also represented by a pair of cards: a bit x ∈ {0, 1} is
encoded with the order of two cards i and j , 1 ≤ i < j ≤ 52, according to

i j = 0, j i = 1. (2)

Therefore, such two face-down cards serve a commitment to x ∈ {0, 1}, which is
denoted by

? ?
︸ ︷︷ ︸

[x]{i,j}

,

where the set {i, j} is called its base.
Among the existing AND protocols (shown in Table 1), the state-of-the-art

one was presented by Koch et al. at ASIACRYPT 2019 [10]; it is a card-minimal
AND protocol, i.e., it uses only four cards (such as 1 2 3 4). Given two input
commitments to a, b ∈ {0, 1}, the protocol produces a commitment to a∧ b after
applying a random cut six times in expectation:

? ?
︸ ︷︷ ︸

[a]{1,2}

? ?
︸ ︷︷ ︸

[b]{3,4}

→ Random cut 6 times (exp.) → ? ?
︸ ︷︷ ︸

[a∧b]B

,

where the base B will be one of {1, 2}, {1, 3}, {1, 4}, {2, 4}, {3, 4}.
The description of this protocol [10] will be presented in Sect. 2. Although

the protocol is elaborate as will be seen, its possible drawback is the need to
repeat a random cut six times (in expectation), which makes it less practical.

Secure Computations Through Checking Suits of Playing Cards 113

Table 1. The existing AND protocols with a standard deck

of cards # of shuffles not Las Vegas?

Niemi and Renvall [37] 5 9.5 (exp.)

Mizuki [26] 8 4 �
Koch and Schrempp and Kirsten [10,11] 4 6 (exp.)

1.3 Contribution

As mentioned above and implied by Table 1, the existing AND protocols working
on a standard deck are somewhat impractical due to their numbers of required
shuffles and/or cards. Thus, our aim is to provide the first practical AND protocol
working on a standard deck of playing cards.

In this study, we present an extremely simple AND protocol that terminates
after only one random cut using only four cards. The key idea behind our con-
struction is to make use of the simple fact that every card in a standard deck
has a suit in addition to its number. In other words, we do not regard a standard
deck just as a total order, but we directly utilize the suits (♣,♠, ♥, ♦) to perform
an efficient secure AND computation. More precisely, our AND protocol works
on a deck of four cards

3♣ 3
♥

9♣ 9
♥ ,

whose suits (♣ or ♥) will play an important role. Our four-card AND protocol
relies on a new operation, called the half-open action, whereby players are able
to check only the suit of a face-down card without revealing the number on it.
Thus, briefly, given two input commitments to a, b ∈ {0, 1}, our protocol securely
evaluates the value of a ∧ b by using one random cut and the half-open action:

? ?
︸ ︷︷ ︸

[a]{a}

? ?
︸ ︷︷ ︸

[b]{b}

→ Random cut once + Half-open

−→
{

a ∧ b = 1 if 3♣ ♣ , 9♣ ♣ , 3
♥ ♥ , or 9

♥ ♥ appears,
a ∧ b = 0 otherwise.

We present the details of our protocol in Sect. 4. As will be seen in Sect. 3,
our new operation, the “half-open” action, is easy-to-implement, and hence, we
believe that our four-card AND protocol working on a standard deck is practical.

In Sect. 5, we construct, by extending the computational model of card-based
protocols, which has been developed in [8,13,31,32,48], a formal computation
model that admits the operation mentioned above, i.e., the half-open action.
Based on this model, we present a formal description of our proposed protocol
in Sect. 6.

Moreover, we discuss what is theoretically implied by introducing the half-
open action and show that it can be applied to efficiently solving Yao’s Mil-

114 D. Miyahara and T. Mizuki

lionaires’ problem [50] with a standard deck of cards in Sect. 7. Somewhat sur-
prisingly, our solution requires only one more half-open action compared to the
existing solutions [23] that work on a two-colored deck of cards.

2 The Existing Card-Minimal AND Protocol

In this section, we introduce the existing card-minimal AND protocol con-
structed by Koch et al. [10,11] using four cards 1 2 3 4 .

1. Given input commitments to a, b ∈ {0, 1}, apply a random cut:

? ?
︸ ︷︷ ︸

[a]{1,2}

? ?
︸ ︷︷ ︸

[b]{3,4}

→
〈

? ? ? ?
〉

→ ? ? ? ? .

2. Turn over the first card; assume that the revealed card is 1 (the other cases
are similar). Then, turn it face down:

1 ? ? ? → ? ? ? ? .

(a) Swap the third and fourth cards.

1

?
2

?
3

?
4

? →
1

?
2

?
4

?
3

? .

(b) Apply a random cut:
〈

? ? ? ?
〉

→ ? ? ? ? .

(c) Turn over the first card. If 3 appears, proceed to Step 3; otherwise, go
back to (b) after turning over the face-up card.

3. Apply a random cut to the second, third, and fourth cards:

3
〈

? ? ?
〉

→ 3 ? ? ? .

4. Reveal the second card.
(a) If either 1 or 4 is revealed, then we obtain a commitment to a ∧ b:

3 1 ? ?
︸ ︷︷ ︸

[a∧b]{2,4}

or 3 4 ? ?
︸ ︷︷ ︸

[a∧b]{1,2}

.

(b) If 2 is revealed, we obtain a commitment to a ∧ b (which can be easily
changed into a commitment to a ∧ b just by swapping the two cards):

3 2 ? ?
︸ ︷︷ ︸

[a∧b]{1,4}

.

Secure Computations Through Checking Suits of Playing Cards 115

Note that in Steps 2(b) and (c), the protocol searches for 3 among the
four cards by repeating the application of a random cut; the expected number
of shuffles is four (because of the four cards). Therefore, in total, this protocol
needs six random cuts (in expectation), and hence, it is a Las Vegas algorithm.

In the next sections, we aim to reduce the number of shuffles required for a
secure AND computation.1

Fig. 1. Typical playing cards Fig. 2. Half-open with fingers

3 New Action: Half-Open of Playing Cards

In this section, we propose a novel action in card-based cryptography: the half-
open action reveals only the suit of a given face-down card (of a standard deck)
without leaking any information about its number:

?
half-open→ ♣ or ♠ or ♥ or ♦ .

We present a couple of implementations of this action.
Because implementing the half-open action depends on a physical design of

cards, let us consider typical playing cards as shown in Fig. 1. Here, we mention
the general policy of implementing the half-open action, which would be helpful
when considering non-typical playing cards. Because the half-open action reveals
only a suit, we should find a specific area on the front where a suit is “identically”
placed for all cards. The half-open action can be achieved by revealing such an
area while hiding the others.

Figure 2 describes a playing card such that nothing but its suit (♣) is visible.
One possible way to have such a situation is as follows. Note that a typical
1 Recently, a zero-knowledge proof protocol for Sudoku has been developed using

standard decks of cards [42], and protocols based on private operations have been
constructed using a standard deck [19]. In addition, efficient copy and XOR pro-
tocols [15], a card-minimal three-input AND protocol [14], and other three-input
protocols [5] have been devised.

116 D. Miyahara and T. Mizuki

playing card has a number and suit in the upper left and lower right corners.
Given a face-down card (to which apply the half-open), another (face-up) card
is inserted below it, the two cards are stacked, and they are turned over. Then,
slide out one card while keeping the number hidden with fingers so that only the
suit becomes visible.

Because mastering this method requires some effort, we consider an easier
method for the half-open action. For this, we made covers that disclose only
suits of cards without leaking their numbers, as shown in Fig. 3. Here, we used
an A3-size notebook and scissors to make the covers, but any sheet of paper can
be used, and it is effortless to make.

Next, we show how to use the covers specifically. We put a cover under a
target card (Fig. 4), lift the card and cover together (Fig. 5), and turn them over
to check the suit (Fig. 6). We describe this result as ♥ . Thus, the half-open
action can be easily implemented: it is an effortless task to create a cover, insert
the cover under the card, and turn them over.

Fig. 3. The use of covers

Fig. 4. Put a cover under
the card

Fig. 5. Lift up the card
and cover together

Fig. 6. Turn them over.
We describe this as ♥.

It should be noted that Marcedone et al. [21, Solution 4] first considered
a similar idea of folding up a portion of a customized card such as a square

Secure Computations Through Checking Suits of Playing Cards 117

card to obtain partial information. Shinagawa [46] used specialized cards with
invisible ink to obtain partial information by illuminating a black light with a
cover. Compared to their studies, our study uses a standard deck of commercially
available cards, i.e., we do not need to prepare a specialized deck of cards.

4 Our Simple AND Protocol Based on Half-Open Action

In this section, we present our efficient AND protocol working on a standard
deck with the help of the half-open action.

In the sequel, we use the following four playing cards:

3♣ 3
♥

9♣ 9
♥ ,

although any four cards can be chosen as long as two of them have the same suit
and the others have another same suit.

Table 2. The principle behind our proposed protocol

(a, b) Sequence Right of 3♣ Left of 9
♥ Right of 3

♥ Left of 9♣

(0,0) 3♣ 9
♥

3
♥

9♣ 9
♥

3♣ 9♣ 3
♥

(0,1) 3♣ 9
♥

9♣ 3
♥

9
♥

3♣ 3♣ 9
♥

(1,0) 9
♥

3♣ 3
♥

9♣ 3
♥

9♣ 9♣ 3
♥

(1,1) 9
♥

3♣ 9♣ 3
♥

9♣ 3
♥

9
♥

3♣

Alice and Bob hold their private bits a ∈ {0, 1} and b ∈ {0, 1}, respectively.
Our proposed protocol proceeds as follows.

1. Alice takes 3♣ 9
♥ and places a commitment to a based on the following encod-

ing similar to (2):
3♣ 9

♥ = 0, 9
♥

3♣ = 1.

Bob takes 3
♥

9♣ and places a commitment to b in the same way as Alice, i.e.,
by focusing only on their numbers:

3
♥

9♣ = 0, 9♣ 3
♥ = 1.

Thus, we have the following two commitments:

? ?
︸ ︷︷ ︸

[a]{3♣,9♥}

? ?
︸ ︷︷ ︸

[b]{3♥,9♣}

.

118 D. Miyahara and T. Mizuki

Table 2 indicates the actual sequence of cards for each input. Let us focus
on 3♣ : observe that the suit of the card on the right of 3♣ has a suit ♣ if
and only if a = b = 1. Therefore, they can obtain only the value of a ∧ b by
checking the suit.
In the same way, the suits of the cards on the right of 3

♥ and on the left of
9♣ and 9

♥ determine the value of a ∧ b. See the third to sixth columns of
Table 2. Our protocol uses this relationship to perform a secure computation
of the logical AND function.

2. Apply a random cut to the sequence of four cards:

? ?
︸ ︷︷ ︸

[a]{3♣,9♥}

? ?
︸ ︷︷ ︸

[b]{3♥,9♣}

→
〈

? ? ? ?
〉

→ ? ? ? ? .

Note that the relationship shown in Table 2 remains unchanged (despite the
random cut).

3. Reveal the first card. Note that the revealed card should be one of 3♣ , 3
♥ ,

9♣ , 9
♥ with the equal probability (i.e., 1/4), and hence, information about

the input is never leaked.
4. If the revealed card is either 3♣ or 3

♥ , then apply the half-open action to its
right card, namely the second card (because a ‘3’ is placed on the right side
of a clock or wristwatch). If it is either 9♣ or 9

♥ , then apply the half-open
action to its left card, namely the fourth card (because a ‘9’ is placed on the
left side of a wristwatch). Alice and Bob obtain the value of a ∧ b as follows:

3♣ ♥ ? ?
9

♥ ? ? ♣
3

♥ ♣ ? ?
9♣ ? ? ♥

a ∧ b = 0

or

3♣ ♣ ? ?
9

♥ ? ? ♥

3
♥ ♥ ? ?

9♣ ? ? ♣
a ∧ b = 1.

This is our four-card AND protocol, which uses only one random cut and
one half-open action. Although we believe that the correctness and security of
our protocol are clear from the above description, we present their formal proofs
in Sect. 6.2.

It should be noted that if one wants to use the first method shown in Fig. 2
to implement the half-open action in Step 4, the card revealed in Step 3 can be
used as a cover (so that no additional card needs).

In the next sections, we formally define the half-open action and formally
describe our protocol.

5 Formalizing Half-Open Action

In this section, we formalize a card-based protocol using a standard deck of
playing cards such that the half-open action is allowed.

Secure Computations Through Checking Suits of Playing Cards 119

In the literature [13,31], a deck was typically represented as a multiset over a
symbol set, such as [♣,♣, ♥, ♥, ♥] and {1, 2, 3, 4}. Remember that our protocol
proposed in Sect. 4 employs the fact that every card in a standard deck has a suit
and its number. Therefore, we call a pair of a number and a suit, such as (1,♣),
(1,♠), (2, ♥), and (2, ♦), an atomic card. Following this, we denote a standard
deck D by a multiset of atomic cards2. For an atomic card c = (i, s), we denote
its suit symbol by ss(c) := s. For example, ss(1,♣) = ♣ and ss(2, ♦) = ♦.

5.1 Notations

For a deck D, a face-up card and a face-down card are represented as c
? and ?

c for
c ∈ D, respectively. In addition, a face-down card to which the half-open action
was applied is represented as ss(c)

c . Given such a face-up, face-down, or “half-
open” card, we denote its atomic card by atom(c

?) = atom(?c) = atom(ss(c)c) = c,
and denote its visible symbol by top(c

?) = c, top(?c) = ?, and top(ss(c)c) = ss(c),
respectively. We say that a d-tuple Γ = (α1, α2, . . . , αd) consisting of d cards from
a standard deck D is a sequence if [atom(α1), atom(α2), . . . , atom(αd)] = D.

We denote the set of all (possible) sequences from a standard deck D by

SeqD := {Γ | Γ is a sequence of D}.

We extend the use of top(·) to a sequence: given a sequence Γ = (α1, α2, . . . , αd),
we write top(Γ) = (top(α1), top(α2), . . . , top(αd)), and we call it the visible
sequence of Γ . We also define the visible sequence set VisD as

VisD := {top(Γ) | Γ ∈ SeqD}.

5.2 Protocols

We present a formal description of a protocol. As seen below, starting from an
initial sequence, a protocol specifies an action to be applied to a current sequence
step by step, depending on its internal state and the visible sequence.

A protocol (having a finite state control and a table on which a single sequence
is put) is formally specified with a quadruple P = (D, U,Q,A):

– D is a deck;
– U ⊆ SeqD is an input set ;
– Q is a state set having an initial state q0 ∈ Q and a final state qf ∈ Q;
– A : (Q\{qf}) × VisD → Q × Action is an action function, where Action is the

set of the following actions:
• (turn, T) for T ⊆ {1, 2, . . . , |D|};
• (perm, π) for π ∈ S|D|, where Si denotes the symmetric group of degree i;
• (shuf,Π,F) for Π ⊆ S|D| and a probability distribution F on Π. If F is

uniform, we omit it and write this action as (shuf,Π);

2 It should be noted that D can be any set of cards taken from 52 playing cards.

120 D. Miyahara and T. Mizuki

• (hopen, T) for T ⊆ {1, 2, . . . , |D|};
• (hclose, T) for T ⊆ {1, 2, . . . , |D|};

Given a current sequence Γ = (α1, α2, . . . , α|D|), each action in Action trans-
forms the current sequence Γ into the next sequence Γ ′ as follows.

– (turn, T): Γ ′ = (β1, β2, . . . , β|D|) such that

βi =
{

swap(αi) if i ∈ T,
αi otherwise,

for every i, 1 ≤ i ≤ |D|, where swap(c
?) =

?
c and swap(?c) =

c
? for an atomic

card c;
– (perm, π): Γ ′ = (απ−1(1), απ−1(2), . . . , απ−1(|D|));
– (shuf,Π,F): Γ ′ resulting from applying action (perm, π) to Γ , where π is a

permutation drawn from Π according to the probability distribution F ;
– (hopen, T): Γ ′ = (β1, β2, . . . , β|D|) such that for every i, 1 ≤ i ≤ |D|,

βi =

{

ss(ci)
ci

if i ∈ T,

αi otherwise,

where αj for every j ∈ T must be a face-down card αj = ?
cj

.
– (hclose, T): Γ ′ = (β1, β2, . . . , β|D|) such that for every i, 1 ≤ i ≤ |D|,

βi =

{

?
ci

if i ∈ T,

αi otherwise,

where αj for every j ∈ T must be a “half-open” card αj = ss(cj)
cj

(to which
hopen has been applied).

6 Formal Description of Our Protocol

In this section, we show a formal description of our proposed AND protocol
based on the computational model formalized in Sect. 5.

6.1 Pseudocode

The following is a pseudocode of our protocol, where we define RC1,2,3,4 =
{(1 2 3 4)i | 1 ≤ i ≤ 4}. Its deck is [(3,♣), (3, ♥), (9,♣), (9, ♥)].

input set:

{(?
(3,♣)

,
?

(9, ♥)
,

?
(9,♣)

,
?

(3, ♥)

)

,
(?
(3,♣)

,
?

(9, ♥)
,

?
(3, ♥)

,
?

(9,♣)

)

,

(?
(9, ♥)

,
?

(3,♣)
,

?
(9,♣)

,
?

(3, ♥)

)

,
(?
(9, ♥)

,
?

(3,♣)
,

?
(3, ♥)

,
?

(9,♣)

)}

Secure Computations Through Checking Suits of Playing Cards 121

(shuf,RC1,2,3,4)
(turn, {1})
if visible seq. = ((3,♣), ?, ?, ?) or ((3, ♥), ?, ?, ?) then
(hopen, {2})
if visible seq. = ((3,♣),♣, ?, ?) or ((3, ♥), ♥, ?, ?) then a ∧ b = 1
else a ∧ b = 0

if visible seq. = ((9,♣), ?, ?, ?) or ((9, ♥), ?, ?, ?) then
(hopen, {4})
if visible seq. = ((9,♣), ?, ?,♣) or ((9, ♥), ?, ?, ♥) then a ∧ b = 1
else a ∧ b = 0

9 3 9 3 11

9 3 3 9 10

3 9 9 3 01

3 9 3 9 00

shuf, RC1,2,3,4

9 3 9 3 1
4 11 3 9 3 9 1

4 11 9 3 9 3 1
4 11 3 9 3 9 1

4 11

9 3 3 9 1
4 10 3 9 9 3 1

4 10 9 9 3 3 1
4 10 3 3 9 9 1

4 10

9 9 3 3 1
4 01 3 3 9 9 1

4 01 9 3 3 9 1
4 01 3 9 9 3 1

4 01

9 3 9 3 1
4 00 3 9 3 9 1

4 00 9 3 9 3 1
4 00 3 9 3 9 1

4 00

turn, 1

9 3 9 3 11

9 3 3 9 10

9 9 3 3 01

9 3 9 3 00

3 9 3 9 11

3 9 9 3 10

3 3 9 9 01

3 9 3 9 00

9 3 9 3 11

9 9 3 3 10

9 3 3 9 01

9 3 9 3 00

3 9 3 9 11

3 3 9 9 10

3 9 9 3 01

3 9 3 9 00

revealed 3revealed 9

revealed 3revealed 9

hopen, 4 hopen, 2

hopen, 2

3 9 3 9 11
3 3 9 9 10

00+ 01+ 10

3 9 9 3 01

00+ 01+ 10

3 9 3 9 00

00+ 01+ 10

revealedrevealedrevealed revealed

hopen, 4

9 3 9 3 11
9 9 3 3 10

00+ 01+ 10

9 3 3 9 01

00+ 01+ 10

9 3 9 3 00

00+ 01+ 10

revealed revealed

9 3 9 3 11
9 3 3 9 10

00+ 01+ 10

9 9 3 3 01

00+ 01+ 10

9 3 9 3 00

00+ 01+ 10

3 9 3 9 11
3 9 9 3 10

00+ 01+ 10

3 3 9 9 01

00+ 01+ 10

3 9 3 9 00

00+ 01+ 10

revealedrevealed

Fig. 7. The KWH-tree for the proposed AND protocol. Here, (hopen, {i}) indicates
that only the suit of the i-th card is to be disclosed.

6.2 Correctness and Security

We depict the KWH-tree [9,13,48] of our protocol in Fig. 7, by which we can
confirm that the correctness and security of the protocol are satisfied.

122 D. Miyahara and T. Mizuki

The KWH-tree is a tree-like diagram that shows the transitions of possible
sequences of cards along with their respective polynomials (or monomials) in a
box, where actions to be applied to the sequence are appended to an edge. In
the figure, the probability of (a, b) = (x, y) is denoted by Xxy. A polynomial
annotating a sequence in a box such as 1/4X00 represents the conditional prob-
ability that the current sequence is the one next to the polynomial, given what
can be observed so far on the table. Because the sum of all polynomials in each
box (except for the bottom-most boxes) is equal to

∑

x,y∈{0,1}
Xxy,

it is guaranteed that no information about the input is leaked.

7 Discussion

In this section, we discuss the relationship between our proposed protocol using
the half-open action and an existing protocol working on a two-colored deck of
cards, indicating the strongness of the half-open action. We consider the four-
card AND protocol [30] as a comparison because the number of required cards is
the same. Moreover, we discuss the theoretical aspects of the half-open action and
show that it can be applied to efficiently solving Yao’s Millionaires’ problem [50].

7.1 Comparison

The four-card AND protocol invented by Mizuki et al. [30] computes the logical
AND using four cards:

♣ ♣ ♥ ♥ → a ∧ b.

Their protocol is card-minimal, although the number of required shuffles is two
(one random cut and one random bisection cut), and its principle is more difficult
to understand than the five-card trick [2].

As mentioned in Sect. 1.2, the efficiency of card-based protocols working on
a standard deck [10,26,37] was less than those working on a two-colored deck
in terms of the number of required shuffles. However, the number of required
shuffles in our proposed protocol presented in Sect. 4 is one, and hence, it is
more efficient than the existing AND protocol working on a two-colored deck [30]
(except for the need of the half-open action), which is the first result of card-
based cryptography history. This implies that the half-open action is useful, and
we could obtain similar results for other protocols.

7.2 Theoretical Aspects

If we replace the turning-over action with the half-open action, we can regard
a playing card with a card having only a suit because only a suit is always

Secure Computations Through Checking Suits of Playing Cards 123

revealed on the front of the playing card. For example, face-down ♣ and A♣ can
be regarded as identical as follows:

?
Turn→ ♣ = ?

Half-open→ ♣ .

That is, we can regard a standard deck as a four-colored deck, and hence, any i-
card protocol working on two-colored deck can be implemented using a standard
deck for i ≤ 26. For example, to implement the five-card trick [2] introduced
in Sect. 1.1, it suffices to use the half-open action thrice (instead of using the
turning-over action). In summary, the half-open action solves the need for a
customized deck to implement the existing protocols using red and black cards.

A more striking example is to solve Yao’s Millionaire’ problem [50]. The
problem determines whether a < b or not without revealing any information
more than necessary for a, b ∈ {1, 2, . . . ,m} and some natural number m ≥ 2.
Miyahara et al. [23] in 2020 proposed a card-based millionaire protocol working
on a standard deck, although its efficiency is less than the one working on a two-
colored deck. We show that it can be improved almost as efficiently as working
on a two-colored deck in the next subsection.

7.3 Millionaire Protocol Using Half-Open

Our millionaire protocol requires only one more half-open action compared to
the existing solution [23] working on a two-colored deck of cards. Our protocol
proceeds as follows.

1. Alice holds m club cards and m − 1 heart cards. She places a sequence of
m+1 face-down cards in which the cards from the first to a-th are clubs and
the remaining cards are hearts:3

1

?
♣

2

?
♣

· · ·
a

?
♣

a+1

?
♥

a+2

?
♥

· · ·
m

?
♥

m+1

?
♥

.

Bob holds m spade cards and one diamond card. He places a sequence of
m + 1 face-down cards below Alice’s sequence, in which the b-th card is a
diamond and the remaining cards are spades:

1

?
2

? · · ·
b−1
?

b

?
b+1

? · · ·
m

?
m+1

?

?
♠

?
♠

· · · ?
♠

?
♦

?
♠

· · · ?
♠

?
♠

.

Observe that the suit of the card above the Bob’s diamond card (i.e., the b-th
card in Alice’s sequence) determines only whether a < b or not, i.e., the suit
is a heart if a < b, and the suit is a club if a ≥ b.

3 It is sufficient for the suits to satisfy the above arrangement: the orders of the
numbers (written on the cards) can be arbitrary.

124 D. Miyahara and T. Mizuki

2. Fix the two cards in each column to make m + 1 piles, and then apply a
random cut to the piles (denoted by < · · · | · · · | · · · >):

〈

?

?

∣

∣

∣

∣

∣

?

?

∣

∣

∣

∣

∣

· · ·
∣

∣

∣

∣

∣

?

?

〉

→ ? ? · · · ?

? ? · · · ?
.

Note that Alice’s and Bob’s sequences are randomly shifted, but their offsets
are the same.

3. Reveal all the cards in Bob’s sequence. Then, one diamond card should
appear. Let r ∈ {1, . . . , m+1} denote the position of the revealed diamond
card. Note that information about the value of b does not leak to Alice because
r is a uniformly distributed random value.

4. Apply the half-open action to the r-th card in Alice’s sequence. If a heart is
revealed ♥ , then we have a < b; otherwise ♣ , we have a ≥ b.

5. If a ≥ b, we can further determine whether equality holds or not by applying
the half-open action to the (r + 1)-st card in Alice’s sequence (i.e., (b + 1)-st
card). If a heart is revealed ♥ , then we have a = b; otherwise ♣ , we have
a > b.

This is our millionaire protocol working on a standard deck of cards using
the half-open action. The numbers of required cards and shuffles are 3m+1 and
one, respectively. Remember that we use the half-open action in Step 4 of our
protocol presented in Sect. 7.3. Note that if we just reveal the card in Step 4
instead of using the half-open action, information about the value of b leaks to
Alice because she knows where she placed the revealed card in Step 1. We need
a more complicated subprotocol if we do not use the half-open action.

The existing millionaire protocol working on a standard deck [23] employs
such a complicated subprotocol. This protocol requires 4m cards and four shuf-
fles. Therefore, our protocol is more efficient in terms of the numbers of cards
and shuffles.

8 Conclusion

In this paper, we proposed a simple two-input AND protocol that requires only
one shuffle, which is the trivial lower bound on the number of required shuffles4.
The key is to consider a new action, called the half-open action, by which play-
ers can know only a suit of a face-down card. Surprisingly, this simple action
contributes to the significant improvement on the numbers of required shuffles
and cards, compared to the existing AND protocols.

Card-based cryptography has evolved steadily [27,28] as new concepts, tech-
niques, and/or applications (such as the random bisection cut [33], permuta-
tion manipulation [1,6,7], zero-knowledge proofs for pencil puzzles [4,17,40–45],
private operations [20,35,36,38], graph theoretical methods [22,25], information

4 Single-shuffle protocols have attracted attention recently [16,47].

Secure Computations Through Checking Suits of Playing Cards 125

leakage analysis [29,48], new physical tools [18,24,34], and comparison with Tur-
ing complexity [3,12]) were found. We believe that the half-open action will open
a new vista in this research field: This paper is a first step toward developing
efficient protocols based on the half-open/close actions.

Acknowledgements. We thank the anonymous referees, whose comments have
helped us improve the presentation of the paper. We thank Hiroto Koyama, who
invented the half-open action, for his cooperation in preparing an earlier Japanese
draft version of this paper. This work was supported in part by JSPS KAKENHI
Grant Numbers JP21K11881 and JP18H05289.

References

1. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2_27

2. Boer, B.: More efficient match-making and satisfiability The Five Card Trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23

3. Dvořák, P., Koucký, M.: Barrington plays cards: the complexity of card-based pro-
tocols. In: Bläser, M., Monmege, B. (eds.) Theoretical Aspects of Computer Sci-
ence. LIPIcs, vol. 187, pp. 26:1–26:17. Schloss Dagstuhl, Dagstuhl (2021). https://
doi.org/10.4230/LIPIcs.STACS.2021.26

4. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical
zero-knowledge proof systems for solutions of Sudoku puzzles. Theor. Comput.
Syst. 44(2), 245–268 (2009). https://doi.org/10.1007/s00224-008-9119-9

5. Haga, R., Hayashi, Y., Miyahara, D., Mizuki, T.: Card-minimal protocols for three-
input functions with standard playing cards. In: Batina, L., Daemen, J. (eds.)
AFRICACRYPT 2022. LNCS, vol. 13503, pp. 448–468. LNCS, Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-17433-9_19

6. Ibaraki, T., Manabe, Y.: A more efficient card-based protocol for generating a
random permutation without fixed points. In: Mathematics and Computers in
Sciences and in Industry (MCSI), pp. 252–257 (2016). https://doi.org/10.1109/
MCSI.2016.054

7. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J.
(eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21819-9_16

8. Kastner, J., et al.: The minimum number of cards in practical card-based protocols.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 126–155.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_5

9. Koch, A.: Cryptographic protocols from physical assumptions. Ph.D. thesis, Karl-
sruhe Institute of Technology (2019). https://doi.org/10.5445/IR/1000097756

10. Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal ver-
ification. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol.
11921, pp. 488–517. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34578-5_18

11. Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal ver-
ification. New Gener. Comput. 39(1), 115–158 (2021). https://doi.org/10.1007/
s00354-020-00120-0

https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.4230/LIPIcs.STACS.2021.26
https://doi.org/10.4230/LIPIcs.STACS.2021.26
https://doi.org/10.1007/s00224-008-9119-9
https://doi.org/10.1007/978-3-031-17433-9_19
https://doi.org/10.1109/MCSI.2016.054
https://doi.org/10.1109/MCSI.2016.054
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-70700-6_5
https://doi.org/10.5445/IR/1000097756
https://doi.org/10.1007/978-3-030-34578-5_18
https://doi.org/10.1007/978-3-030-34578-5_18
https://doi.org/10.1007/s00354-020-00120-0
https://doi.org/10.1007/s00354-020-00120-0

126 D. Miyahara and T. Mizuki

12. Koch, A., Walzer, S.: Private function evaluation with cards. New Gener. Comput.
40, 115–147 (2022). https://doi.org/10.1007/s00354-021-00149-9

13. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6_32

14. Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: A secure three-input AND proto-
col with a standard deck of minimal cards. In: Santhanam, R., Musatov, D. (eds.)
CSR 2021. LNCS, vol. 12730, pp. 242–256. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-79416-3_14

15. Koyama, H., Toyoda, K., Miyahara, D., Mizuki, T.: New card-based copy protocols
using only random cuts. In: ASIA Public-Key Cryptography Workshop, pp. 13–22.
ACM, New York (2021). https://doi.org/10.1145/3457338.3458297

16. Kuzuma, T., Toyoda, K., Miyahara, D., Mizuki, T.: Card-based single-shuffle pro-
tocols for secure multiple-input AND and XOR computations. In: ASIA Public-
Key Cryptography, pp. 1–8. ACM, New York (2022, to appear). https://doi.org/
10.1145/3494105.3526236

17. Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to
construct physical zero-knowledge proofs for puzzles with a “single loop” condition.
Theor. Comput. Sci. 888, 41–55 (2021). https://doi.org/10.1016/j.tcs.2021.07.019

18. Lafourcade, P., Mizuki, T., Nagao, A., Shinagawa, K.: Light cryptography. In:
Drevin, L., Theocharidou, M. (eds.) WISE 2019. IFIP AICT, vol. 557, pp. 89–101.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23451-5_7

19. Manabe, Y., Ono, H.: Card-based cryptographic protocols with a standard deck of
cards using private operations. In: Cerone, A., Ölveczky, P.C. (eds.) ICTAC 2021.
LNCS, vol. 12819, pp. 256–274. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-85315-0_15

20. Manabe, Y., Ono, H.: Card-based cryptographic protocols with malicious players
using private operations. New Gener. Comput. 40, 67–93 (2022). https://doi.org/
10.1007/s00354-021-00148-w

21. Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. Cryptology
ePrint Archive, Report 2015/1031 (2015)

22. Miyahara, D., Haneda, H., Mizuki, T.: Card-based zero-knowledge proof protocols
for graph problems and their computational model. In: Huang, Q., Yu, Yu. (eds.)
ProvSec 2021. LNCS, vol. 13059, pp. 136–152. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-90402-9_8

23. Miyahara, D., Hayashi, Y., Mizuki, T., Sone, H.: Practical card-based implemen-
tations of Yao’s millionaire protocol. Theor. Comput. Sci. 803, 207–221 (2020).
https://doi.org/10.1016/j.tcs.2019.11.005

24. Miyahara, D., Komano, Y., Mizuki, T., Sone, H.: Cooking cryptographers: Secure
multiparty computation based on balls and bags. In: Computer Security Foun-
dations Symposium, pp. 1–16. IEEE, New York (2021). https://doi.org/10.1109/
CSF51468.2021.00034

25. Miyamoto, K., Shinagawa, K.: Graph automorphism shuffles from pile-scramble
shuffles. New Gener. Comput. 40, 199–223 (2022). https://doi.org/10.1007/s00354-
022-00164-4

26. Mizuki, T.: Efficient and secure multiparty computations using a standard deck of
playing cards. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp.
484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_29

27. Mizuki, T.: Preface: special issue on card-based cryptography. New Gener. Comput.
39(1), 1–2 (2021). https://doi.org/10.1007/s00354-021-00127-1

https://doi.org/10.1007/s00354-021-00149-9
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-030-79416-3_14
https://doi.org/10.1007/978-3-030-79416-3_14
https://doi.org/10.1145/3457338.3458297
https://doi.org/10.1145/3494105.3526236
https://doi.org/10.1145/3494105.3526236
https://doi.org/10.1016/j.tcs.2021.07.019
https://doi.org/10.1007/978-3-030-23451-5_7
https://doi.org/10.1007/978-3-030-85315-0_15
https://doi.org/10.1007/978-3-030-85315-0_15
https://doi.org/10.1007/s00354-021-00148-w
https://doi.org/10.1007/s00354-021-00148-w
https://doi.org/10.1007/978-3-030-90402-9_8
https://doi.org/10.1007/978-3-030-90402-9_8
https://doi.org/10.1016/j.tcs.2019.11.005
https://doi.org/10.1109/CSF51468.2021.00034
https://doi.org/10.1109/CSF51468.2021.00034
https://doi.org/10.1007/s00354-022-00164-4
https://doi.org/10.1007/s00354-022-00164-4
https://doi.org/10.1007/978-3-319-48965-0_29
https://doi.org/10.1007/s00354-021-00127-1

Secure Computations Through Checking Suits of Playing Cards 127

28. Mizuki, T.: Preface: special issue on card-based cryptography 2. New Gener. Com-
put. 40, 47–48 (2022). https://doi.org/10.1007/s00354-022-00170-6

29. Mizuki, T., Komano, Y.: Information leakage due to operative errors in card-based
protocols. Inf. Comput., 1–15 (2022). https://doi.org/10.1016/j.ic.2022.104910,in
press

30. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–
606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_36

31. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via
abstract machine. Int. J. Inf. Secur. 13(1), 15–23 (2013). https://doi.org/10.1007/
s10207-013-0219-4

32. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic proto-
cols and its applications. IEICE Trans. Fundam. E100.A(1), 3–11 (2017). https://
doi.org/10.1587/transfun.E100.A.3

33. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36

34. Murata, S., Miyahara, D., Mizuki, T., Sone, H.: Public-PEZ cryptography. In:
Susilo, W., Deng, R.H., Guo, F., Li, Y., Intan, R. (eds.) ISC 2020. LNCS, vol. 12472,
pp. 59–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62974-8_4

35. Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: Secure computation
for threshold functions with physical cards: power of private permutations. New
Gener. Comput. 40, 95–113 (2022). https://doi.org/10.1007/s00354-022-00153-7

36. Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve Million-
aires’ problem with two kinds of cards. New Gener. Comput. 39(1), 73–96 (2021).
https://doi.org/10.1007/s00354-020-00118-8

37. Niemi, V., Renvall, A.: Solitaire zero-knowledge. Fundam. Inf. 38(1,2), 181–188
(1999), https://doi.org/10.3233/FI-1999-381214

38. Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private
operations. New Gener. Comput. 39(1), 19–40 (2020). https://doi.org/10.1007/
s00354-020-00113-z

39. Pass, R., Shelat, A.: A course in cryptography (2010). http://www.cs.cornell.edu/
~rafael/

40. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Card-based ZKP for connec-
tivity: applications to Nurikabe, Hitori, and Heyawake. New Gener. Comput. 40,
149–171 (2022). https://doi.org/10.1007/s00354-022-00155-5

41. Robert, L., Miyahara, D., Lafourcade, P., Libralesso, L., Mizuki, T.: Physical zero-
knowledge proof and NP-completeness proof of Suguru puzzle. Inf. Comput. 285,
1–14 (2022). https://doi.org/10.1016/j.ic.2021.104858

42. Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for
Sudoku. New Gener. Comput. 40, 49–65 (2022). https://doi.org/10.1007/s00354-
021-00146-y

43. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink puzzle and
k vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2020). https://
doi.org/10.1007/s00354-020-00114-y

44. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Ripple Effect. Theor.
Comput. Sci. 895, 115–123 (2021). https://doi.org/10.1016/j.tcs.2021.09.034

45. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge
proof for Sudoku. Theor. Comput. Sci. 839, 135–142 (2020). https://doi.org/10.
1016/j.tcs.2020.05.036

https://doi.org/10.1007/s00354-022-00170-6
https://doi.org/10.1016/j.ic.2022.104910,
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1007/s10207-013-0219-4
https://doi.org/10.1007/s10207-013-0219-4
https://doi.org/10.1587/transfun.E100.A.3
https://doi.org/10.1587/transfun.E100.A.3
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-030-62974-8_4
https://doi.org/10.1007/s00354-022-00153-7
https://doi.org/10.1007/s00354-020-00118-8
https://doi.org/10.3233/FI-1999-381214
https://doi.org/10.1007/s00354-020-00113-z
https://doi.org/10.1007/s00354-020-00113-z
http://www.cs.cornell.edu/~rafael/
http://www.cs.cornell.edu/~rafael/
https://doi.org/10.1007/s00354-022-00155-5
https://doi.org/10.1016/j.ic.2021.104858
https://doi.org/10.1007/s00354-021-00146-y
https://doi.org/10.1007/s00354-021-00146-y
https://doi.org/10.1007/s00354-020-00114-y
https://doi.org/10.1007/s00354-020-00114-y
https://doi.org/10.1016/j.tcs.2021.09.034
https://doi.org/10.1016/j.tcs.2020.05.036
https://doi.org/10.1016/j.tcs.2020.05.036

128 D. Miyahara and T. Mizuki

46. Shinagawa, K.: Card-based cryptography with dihedral symmetry. New Gener.
Comput. 39(1), 41–71 (2021). https://doi.org/10.1007/s00354-020-00117-9

47. Shinagawa, K., Nuida, K.: A single shuffle is enough for secure card-based compu-
tation of any Boolean circuit. Discret. Appl. Math. 289, 248–261 (2021). https://
doi.org/10.1016/j.dam.2020.10.013

48. Takashima, K., Miyahara, D., Mizuki, T., Sone, H.: Actively revealing card attack
on card-based protocols. Nat. Comput., 1–13 (2021, in press). https://doi.org/10.
1007/s11047-020-09838-8

49. Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Secure
implementations of a random bisection cut. Int. J. Inf. Secur. 19(4), 445–452
(2019). https://doi.org/10.1007/s10207-019-00463-w

50. Yao, A.C.: Protocols for secure computations. In: Foundations of Computer Sci-
ence, pp. 160–164. IEEE Computer Society, Washington, DC (1982). https://doi.
org/10.1109/SFCS.1982.88

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s00354-020-00117-9
https://doi.org/10.1016/j.dam.2020.10.013
https://doi.org/10.1016/j.dam.2020.10.013
https://doi.org/10.1007/s11047-020-09838-8
https://doi.org/10.1007/s11047-020-09838-8
https://doi.org/10.1007/s10207-019-00463-w
https://doi.org/10.1109/SFCS.1982.88
https://doi.org/10.1109/SFCS.1982.88
http://creativecommons.org/licenses/by/4.0/

Streaming Submodular Maximization
with the Chance Constraint

Shufang Gong, Bin Liu(B) , and Qizhi Fang

School of Mathematical Sciences, Ocean University of China, Qingdao 266100,
Shandong, China

binliu@ouc.edu.cn

Abstract. Submodular optimization plays a significant role in combi-
natorial problems due to its diminishing marginal return property. Many
artificial intelligence and machine learning problems can be cast as sub-
modular maximization problems with applications in object detection,
data summarization, and video summarization. In this paper, we con-
sider the problem of monotone submodular function maximization in
the streaming setting with the chance constraint. Using mainly the idea
of guessing the threshold, we propose streaming algorithms and prove
good approximation guarantees and computational complexity. In our
experiments, we demonstrate the efficiency of our algorithm on synthetic
data for the influence maximization problem and indicate that even if
the strong restriction of chance constraint is imposed, we can still get a
good solution. To the best of our knowledge, this is the first paper to
study the problem of monotone submodular function maximization with
chance constraint in the streaming model.

Keywords: Submodular maximization · Streaming algorithm ·
Chance constraint

1 Introduction

The submodular function has the property of diminishing marginal gains and
can be used to describe many problems in the real world. The objective func-
tions of some well-known combinatorial optimization problems including Max-
Cut [26], Max-Dicut [8], Influence Maximization [19], Max-Coverage [20] and
Max-Bisection [2] are submodular. Formally, given a ground set V , a non-
negative set function f : 2V → R≥0 is called submodular iff for any subsets
S ⊆ T ⊆ V and element e ∈ V \T , we have f(S∪{e})−f(S) ≥ f(T ∪{e})−f(T).
The submodular function f is monotone (nondecreasing) iff for any subsets
S ⊆ T we have f(S) ≤ f(T). The submodular function f is normalized iff

This work was supported in part by the National Natural Science Foundation of China
(11971447, 11871442), and the Fundamental Research Funds for the Central Universi-
ties.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 129–140, 2022.
https://doi.org/10.1007/978-3-031-20796-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_10&domain=pdf
http://orcid.org/0000-0002-8958-3999
https://doi.org/10.1007/978-3-031-20796-9_10

130 S. Gong et al.

f(∅) = 0. Denote by fA(B) = f(A ∪ B) − f(A) the marginal contribution of
subset B to subset A.

The submodular maximization problems with constraints are generally NP-
hard, e.g., submodular maximization with the cardinality, knapsack, matriod
or routing constraints, etc [22,31]. Previous work has commonly studied the
case where the probability of satisfying the constraint is 1. But such a require-
ment usually causes the solution to over-emphasize the worst-case scenario. To
alleviate this, we naturally relax it to the case where the solution breaks the
constraint with a low probability. More specifically, S satisfying the chance con-
straint is defined as Pr[W (S) > B] ≤ α holds, where each element e ∈ V has a
random weight W (e), α is a given failure probability, B is a given budget and
W (S) =

∑
e∈S W (e) is a linear function. In this paper, we mainly study that

the weights of all element obey a uniform distribution with the same dispersion.
Optimization problems with chance constraint are extensively used in finance
and engineering owing to the uncertainties in price, demand, supply, energy
availability, safety requirement etc [3,5,27]. Recently, the submodular problem
with chance constraint attracts much attention [7,17,24].

Modern datasets derived every second from industry and science such as data
summarization, sensor data and social networks have shown exponential growth.
The amount of data is huge while the computer storage space is limited, then
the traditional greedy methods are no longer suitable to solve streaming setting.
Therefore, this motivates the research on the streaming model. In the stream-
ing model, data arrives one by one and the algorithm needs make irrevocable
decisions about whether to store the current data before the next data arrives.
Badanidiyuru et al. [1] proposed four metrics to measure the quality of stream-
ing algorithms, which are the number of passes over the dataset, the memory
complexity, the query complexity per element and the approximation ratio.

Consequently, in the context of industrial science and massive data, it is
imperative to study the problem of submodular maximization in the streaming
setting with chance constraint. Our problem can be reformulated as

max
S⊆V

f(S)

s.t. P r[W (S) > B] ≤ α, (1)

where f : 2V → R≥0 is a normalized monotone submodular function, each
element e ∈ V has a random weight W (e), α is a given failure probability, B is
a given budget and W (S) =

∑
e∈S W (e) is a linear function.

Our Contribution. In this paper, we investigate the problem of maximizing
monotone submodular with chance constraint in the streaming model. Inspired
by Doerr et al. [7], we mainly focus on two distributions of weights of elements.
One is that the weight of each element is uniformly and independently distributed
in [a − δ, a + δ], and the other is that the weight of each element is uniformly
and independently distributed in [a(e) − δ, a(e) + δ], a(e) is related to element
e and dispersion δ is a fixed constant. Clearly the former is a special case of
the latter. For the first distribution, based on ideas from the Sieve-Streaming

Streaming Submodular Maximization with the Chance Constraint 131

algorithm proposed by Badanidiyuru et al. [1], we design a single-pass (1/2 − ε)
approximation streaming algorithm with memory complexity O(B/ε) and query
complexity per element O(log B/ε). For the second distribution, by extending
ideas from the DynamicMRT algorithm introduced by Huang et al. [15], we
design a single-pass (1/3 − ε) approximation streaming algorithm with memory
complexity O(B/ε) and query complexity per element O(log B/ε). To the best of
our knowledge, this is the first paper to investigate the problem of submodular
function maximization with chance constraint in the streaming model.

The rest of this paper is organized as follows. In Sect. 3, we introduce two tail
inequalities and two surrogate functions related to chance constraint. In Sect. 4,
we propose a streaming algorithm called UIIDW for uniform independently iden-
tically distribution weights. In Sect. 5, we design a streaming algorithm called
UWSD for uniform weights with the same dispersion. In Sect. 6, some conclud-
ing remarks and further research are given. Due to page limit, the numerical
experiments are placed in Appendix.

2 Related Work

In the following, we summarize part of the relevant theoretical work on submod-
ular optimization, which provides an innovative guarantee for the research in
this paper.

Submodular Function with the Different Constraints. The submodu-
lar maximization problems with constraints are generally NP-hard. The con-
straints that have been extensively studied in previous work are the cardinal-
ity constraint, the knapsack constraint and the matriod constraint, etc. In the
following, we summarize part of the classical theoretical work on submodular
optimization with different constraints. For maximizing a monotone submodu-
lar function with cardinality constraint, Nemhauser et al. [22] devised a simple
discrete greedy algorithm to achieve the 1−1/e approximation, and furthermore,
this result is shown to be tight [23]. As far as the knapsack constraint is con-
cerned, Sviridenko [25] enumerated all subsets S of size 3 and augmented them
using the greedy algorithm, eventually obtained the 1 − 1/e approximation. For
the matriod constraint, a simple discrete greedy algorithm gives the 1/2 approx-
imation [11] and later Calinescu et al. [4] improved the approximation ratio to
1−1/e using a continuous greedy algorithm. In addition, Filmus et al. [8] demon-
strated that there no exist 1−1/e+ε polynomial-time approximation algorithms
via a reduction from the max-k-cover problem for any ε > 0.

Chance Constraint. The chance constraint involves random components and
requires that the probability of an event breaking the constraint cannot exceed
a given threshold value. The uncertainty comes from the fact that the weights of
elements in the ground set are random. Under the chance constraint, the study
of the objective function extends from linear function [29,30] to submodular
function [7,12,24]. As a rule, even if we fully know the probability distribution

132 S. Gong et al.

of uncertain data in advance, the chance constraint is hard to evaluate efficiently.
To address this issue, Doerr et al. [7] used the tail inequalities to construct easily
computable surrogate functions to replace chance constraint Pr[W (S) > B] ≤ α.
Chance constraint holds as long as the surrogate function holds. Note that the
chance constraint is not equivalent to the surrogate function. With this idea,
for Problem (1) in general setting, Doerr et al. [7] utilized the greedy algorithm
to achieve arbitrarily close to the 1 − 1/e approximation. Later, Neumann et
al. [24] presented an evolutionary multi-objective algorithm that could achieve
the same approximation ratio in less time and experimental results also showed
that there is a significant improvement in the quality of the solution compared
to the greedy algorithm.

Streaming Model. In the streaming setting, for maximizing a monotone
submodular function with the cardinality constraint, Badanidiyuru et al. [1]
designed the first single-pass (1/2 − ε) approximation streaming algorithm with
memory complexity O(k log k/ε) and query complexity per element O(log k/ε)
based on threshold and parallel ideas. Subsequently, Kazemi et al. [18] raised
the lower bound on the optimal value estimation, improving the memory com-
plexity to O(k/ε) while keeping other parameters the same. In hardness result,
Norouzi-Ford et al. [10] proved that the above approximation ratio has reached
the optimum when the elements arrive in any given order and the memory com-
plexity does not exceed O(k log k). As far as the knapsack constraint is concerned,
Huang et al. [15] proposed the first single-pass (1/3 − ε) approximation stream-
ing algorithm. Later, Huang and Kakimura. [14] designed a single-pass (0.4 − ε)
approximation streaming algorithm. For maximizing a submodular function with
p-matriod constraint, Chekuri et al. [6] designed a single-pass Ω(1/p) approxi-
mation streaming algorithm with memory complexity O(k log k), where k is an
upper bound on the cardinality of the desired set. Later, for this problem, using
the random sampling technology, Feldman et al. [9] proposed a streaming algo-
rithm with 1/4p approximation, memory complexity O(k), and query complexity
per element O(km/p) without having to scan all elements completely, where m
represents the number of matroids needed to define p-matriod constraint. Fur-
ther, Xu et al. [16,28] generalized the results of submodular optimization to
non-submodular optimization in the streaming setting.

3 Preliminaries

We first introduce Chernoff bound and Chebyshev’s inequality two tail inequal-
ities. Later Doerr et al. [7] utilized them to give two surrogate functions of the
chance constraint.

Lemma 1. [13] (Multiplicative Chernoff Bound). Independent random variables
U1, U2, · · · , Um satisfy Ui ∈ [0, 1] for any i = 1, 2, · · · ,m. We denote U =∑n

i=1 Ui. When ε ∈ [0, 1], it holds

Pr[U ≥ (1 + ε)E[U]] ≤ e− ε2E[U]
3 .

Streaming Submodular Maximization with the Chance Constraint 133

Lemma 2. [21] (One-Sided Chebyshev’s Inequality). Denote by U a random
variable with expectation E[U] and variance V ar[U]. For any λ > 0, it holds

Pr[U ≥ E[U] + λ] ≤ V ar[U]
V ar[U] + λ2

.

Lemma 3. [7] (Surrogate function based on Multiplicative Chernoff Bound).
For any e ∈ V , weight W (e) is independently and uniformly distributed in [a(e)−
δ, a(e) + δ]. For any S ⊆ V , if

B − E[W (S)] ≥
√

6δ2|S| ln(
1
α

),

then Pr[W (S) > B] ≤ α.

Lemma 4. [7] (Surrogate function based on One-Sided Chebyshev’s Inequality).
For any e ∈ V , weight W (e) is independently and uniformly distributed in [a(e)−
δ, a(e) + δ]. For any S ⊆ V , if

B − E[W (S)] ≥
√

(1 − α)|S|δ2
3α

,

then Pr[W (S) > B] ≤ α.

4 Streaming Algorithm: Uniform Independently
Identically Distribution Weights (UIIDW)

In this section, we discuss the case that the weights W (e) of all elements
are uniformly and independently distributed in[a − δ, a + δ] (0 ≤ δ ≤ a)
and propose the UIIDW algorithm along with the relevant detailed analysis.
According to Lemma 3 and Lemma 4, we naturally define k∗ to verify whether
subset S satisfies the chance constraint. For Chernoff-based and Chebyshev-

based surrogate functions, let k∗ = max{k ∈ Z+|k +
√

6δ2k ln(1
α)

a ≤ B
a } and

k∗ = max{k ∈ Z+|k +
√

(1−α)kδ2

3α ≤ B
a } respectively. That is, if |S| ≤ k∗, then S

satisfies the chance constraint.
The main line of Algorithm 1 is: Set a suitable threshold and calculate the

marginal contribution of the arriving element to the current set. If the element
brings a gain exceed the threshold, then it is added to the current solution,
otherwise the element is discarded. Specifically, we choose the threshold f(OPT)

2k∗
to evaluate the quality of the arriving element. But since f(OPT) is unknown
in advance, it needs to be guessed. We find that maxe∈V f(e) ≤ f(OPT) ≤
k∗ maxe∈V f(e), but maxe∈V f(e) is still unknown. We can solve it in Line 6 and
the value of maxe∈V f(e) can be obtained at some iteration. Due to the need
for analysis, the upper bound is set to 2k∗ maxe∈V f(e). For the lower bound,
to improve the memory complexity, we take a maximum between the current

134 S. Gong et al.

maximum singleton value and the feasible function value which narrowes the
guessing range of f(OPT). Therefore, there exists a v ∈ I = {(1 + ε)i|i ∈ Z+}
which satisfies (1 − ε)f(OPT) ≤ v ≤ f(OPT). Then, run the algorithm in
parallel for different guesses v of f(OPT).

Denote ei as the i-th arrived element, mi as the maximum singleton value
among the first i elements. From the UIIDW algorithm, we can see that ei

is not taken into account by set Sv where v > 2k∗mi. The next lemma tells
us that even if ei is taken into account, it will be discarded due to its low
marginal contribution. Therefore, we can assume that each Sv is checked from
the beginning of data streaming. Due to page limit, the details of proofs in this
section are provided in Appendix.

Algorithm 1. UIIDW
Require: the ground set V , the monotone submodular function f , the parameter

ε ∈ (0, 1), α, a, δ
1: Chernoff-based:

k∗ = max{k ∈ Z+|k +

√
6δ2k ln(1

α
)

a
≤ B

a
}

(or Chebyshev-based:

k∗ = max{k ∈ Z+|k +
√

(1−α)kδ2

3α
≤ B

a
})

2: I ← {(1 + ε)i|i ∈ Z+}
3: For each v ∈ I, Sv ← φ
4: m0 ← 0, LB ← 0
5: while element ei is arriving do
6: mi ← max{mi−1, f({ei})}
7: LB ← max{mi, LB}
8: Ii ← {(1 + ε)j | LB

1+ε
≤ (1 + ε)j ≤ 2k∗mi}

9: Delete all Sv such that v /∈ Ii

10: for v ∈ Ii do
11: if f(Sv ∪ {ei}) − f(Sv) ≥ v

2k∗ and |Sv| < k∗ then
12: Sv ← Sv ∪ {ei} and LB ← max{LB, f(Sv)}
13: end if
14: end for
15: end while
16: return S ← argmaxv∈In f(Sv)

Lemma 5. For any i ∈ {1, 2, · · · , n}, if v > 2k∗mi, then ei always satisfies
f({ei}) < v

2k∗ .

By Lemma 5, we get the conclusion that f(Sv ∪ {ei}) − f(Sv) = fSv
({ei}) ≤

f({ei}) < v
2k∗ when v > 2k∗mi. Denote S∗ as the optimal solution and OPT

as the optimal value of Problem (1). In the following, we argue that there is an
upper bound on |S∗|.
Lemma 6. When α ≤ 1

2 , we have |S∗| ≤ B
a .

Streaming Submodular Maximization with the Chance Constraint 135

Note that α is a small positive real number and is usually set to α ≤ 0.1.
Hence, |S∗| ≤ B

a is holds.

Lemma 7. In the UIIDW algorithm, the memory complexity is O(k∗
ε) and the

query complexity per element is O(log k∗

ε) where ε ∈ (0, 1).

Observe easily that there exists v̂ ∈ In ∩ [(1 − ε)f(S∗), f(S∗)]. Denote Sv̂ as
the set corresponding to v̂ at the end of the UIIDW algorithm.

Theorem 1. For any e ∈ V , W (e) is independently and uniformly distributed
in [a − δ, a + δ] (0 ≤ δ ≤ a), ε ∈ (0, 1). When B → +∞, the UIIDW algorithm
satisfies the following properties.

– It outputs a feasible set and achieves almost the 1
2 approximation.

– It requires one pass, memory complexity O(k∗
ε) and query complexity per ele-

ment O(log k∗

ε) where k∗ = max{k ∈ Z+|k +
√

6δ2k ln(1
α)

a ≤ B
a } (Chernoff-

based) or k∗ = max{k ∈ Z+|k +
√

(1−α)kδ2

3α ≤ B
a } (Chebyshev-based).

According to the above results, we observe that Algorithm 1 needs less storage
space and queries for small α and high δ.

5 Streaming Algorithm: Uniform Weights with the Same
Dispersion

In this section, another case is discussed, where the weight W (e) of each ele-
ment is uniformly and independently distributed in [a(e) − δ, a(e) + δ] (0 ≤
δ ≤ mine∈V a(e) and 1 ≤ mine∈V a(e)). We propose the UWSD algorithm along
with the relevant detailed analysis. The UWSD algorithm first performs pre-
processing steps to remove singletons that do not meet the chance constraint.
The main ideas of the UWSD algorithm are similar to the UIIDW algorithm.
Furthermore, to make the following analysis easier, we try to adopt a fixed
value B̂ to verify whether subset S satisfies the chance constraint. For Chernoff-
based and Chebyshev-based surrogate functions, let B̂ = B −

√
6δ2B ln(1

α) and

B̂ = B −
√

(1−α)δ2B
3α respectively. That is, if E[W (S)] ≤ B̂, it holds that S

satisfies the chance constraint.
The main line of Algorithm 2 is: Set a suitable threshold and calculate the

marginal contribution of the arriving element to the current set. If the element
brings a gain exceed the threshold, then it is added to the current solution,
otherwise the element is discarded. Specially, we choose the threshold 2f(OPT)

3 ̂B
to evaluate the quality of the arriving element. The guessing process of f(OPT)
is similar to Sect. 4.

Due to page limit, the details of proofs in this section are provided in
Appendix.

136 S. Gong et al.

Algorithm 2. UWSD
Require: the set V , the monotone submodular function f , the parameter ε ∈ (0, 1),

B, α, a(e), δ
1: Chernoff-based:

B̂ = B −
√

6δ2B ln(1
α
)

(or Chebyshev-based:

B̂ = B −
√

(1−α)δ2B
3α

)
2: I ← {(1 + ε)i|i ∈ Z+}
3: For each v ∈ I, Sv ← φ
4: m0 ← 0, LB ← 0
5: while element ei is arriving do
6: if a(ei)+δ−B

2δ
≤ α then

7: mi ← max{mi−1, f({ei})}
8: LB ← max{mi, LB}
9: Ii ← {(1 + ε)j | LB

1+ε
≤ (1 + ε)j ≤ 3mi

̂B
2

}
10: Delete all Sv such that v /∈ Ii

11: for v ∈ Ii do
12: if f(Sv∪{ei})−f(Sv)

E[W (ei)]
≥ 2v

3 ̂B
and E[W (S ∪ {ei})] ≤ B̂ then

13: Sv ← Sv ∪ {ei} and LB = max{LB, f(Sv)}
14: end if
15: end for
16: end if
17: end while
18: return Ṡ ← argmax{maxv∈In f(Sv), mn}

Lemma 8. For any i ∈ {1, 2, · · · , n}, if v > 3mi
̂B

2 , then ei always satisfies
f({ei})

E[W (ei)]
< 2v

3 ̂B
.

By Lemma 8, we get the conclusion that f(Sv∪{ei})−f(Sv)
E[W (ei)]

= fSv (ei)
E[W (ei)]

≤
f({ei})

E[W (ei)]
< 2v

3 ̂B
when v > 3mi

̂B
2 . Next, we can assume that each Sv is checked

from the beginning of data streaming. The following lemma shows that there is
an upper bound on the expectation of the weight of the optimal solution S∗.

Lemma 9. When α ≤ 1
2 , we have E[W (S∗)] ≤ B.

Note that α is a small positive real number and is usually set to α ≤ 0.1.
Hence, E[W (S∗)] ≤ B is holds.

Lemma 10. Let S be the any current set during the execution of the UWSD
algorithm and v is a guess of OPT corresponding to this S. It holds f(S) ≥
2vE[W (S)]

3 ̂B
.

The following result is implied by the proof of Lemma 10.

Corollary 1. For any current set S in the UWSD algorithm, if an element
satisfies threshold condition, i.e.,f(S∪{e})−f(S)

E[W (e)] ≥ 2v

3 ̂B
, then we have the fact that

f(S ∪ {e}) ≥ 2v·E[W (S∪{e})]
3 ̂B

.

Streaming Submodular Maximization with the Chance Constraint 137

It is clear that there exists a v̂ ∈ In ∩ [(1 − ε)f(S∗), f(S∗)] and the definition
of Sv̂ is same as before. Denote S′ as the current set of Sv̂ during the execution
of the UWSD algorithm. It implies that S′ ⊆ Sv̂ and we reach the following
conclusion.

Lemma 11. For the current set S′ of Sv̂ in the UWSD algorithm, if an element
does not satisfy the threshold condition, i.e.,f(S′∪{e})−f(S′)

E[W (e)] < 2v̂

3 ̂B
, then it holds

that fSv̂
(e) < 2v̂·E[W (e)]

3 ̂B
.

If e ∈ S∗ but e /∈ Sv̂, this implies that e does not satisfy the threshold
condition or its addition would destroy the budget B̂. The latter is defined
below.

Definition 1. If an element e ∈ S∗/Sv̂ satisfies the following two conditions

1. f(S ∪ {e}) − f(S) ≥ 2v̂

3 ̂B
E[W (e)],

2. E[W (S ∪ {e})] > B̂ and E[W (S)] ≤ B̂,

we call e a negative element, where S is the current set corresponding to v̂ just
before e arrives.

Lemma 12. When B → +∞ and there are no negative elements, the UWSD
algorithm outputs a feasible solution Ṡ and achieves almost the 1

3 approximation.

Lemma 13. In the UWSD algorithm, the memory complexity is O(̂B
ε) and the

query complexity per element is O(log
̂B

ε) where ε ∈ (0, 1).

Theorem 2. For any e ∈ V , W (e) is independently and uniformly distributed
in [a(e) − δ, a(e) + δ] (0 ≤ δ ≤ mine∈V a(e) and 1 ≤ mine∈V a(e)). ε ∈ (0, 1).
When B → +∞, the UWSD algorithm satisfies the next properties

– It outputs a feasible set and achieves almost the 1
3 approximation.

– It requires one pass, memory complexity O(̂B
ε) space and query complexity

per element O(log
̂B

ε) where B̂ = B −
√

6δ2B ln(1
α) (Chernoff-based) or B̂ =

B −
√

(1−α)δ2B
3α) (Chebyshev-based).

According to the above results, we observe that Algorithm 2 needs less storage
space and queries for small α and high δ.

6 Conclusion

In this paper, we study streaming algorithms for the problem of monotone sub-
modular function maximization with the chance constraint and obtain the fol-
lowing two main results.

138 S. Gong et al.

1. For uniform independently identically distribution weights, we design a single-
pass streaming (1/2−ε)-approximation algorithm called UIIDW with memory
complexity O(B/ε) and query complexity per element O(log B/ε).

2. For uniform weights with the same dispersion, we propose a single-pass
streaming (1/3 − ε)-approximation algorithm called UWSD with memory
complexity O(B/ε) and query complexity per element O(log B/ε) since k∗,
B̂ and B are of the same order of magnitude.

References

1. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A.: Streaming submodular maxi-
mization: massive data summarization on the fly. In: 20th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pp. 671–680, Assicia-
tion for Computing Machinery, New York, NY, USA (2014)

2. Bazgan, C., Gourves, L., Monnot, J.: Approximation with a fixed number of solu-
tions of some multi objective maximization problems. J. Discrete Algorithms 22,
19–29 (2013)

3. Berning, A.-W., Girard, A., Kolmanovsky, I.: Rapid uncertainty propagation and
chance-constrained path planning for small unmanned aerial vehicles. Adv. Control
Appl. Eng. Ind. Syst. 2(1), e23 (2020)

4. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a Submodular Set
Function Subject to a Matroid Constraint (Extended Abstract). In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-72792-7_15

5. Chekuri, C., Gupta, S., Quanrud, K.: Streaming Algorithms for Submodular Func-
tion Maximization. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann,
B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 318–330. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47672-7_26

6. Chekuri, C., Gupta, S., Quanrud, K.: Streaming algorithms for submodular func-
tion maximization. In: 42nd International Colloquium on Automata, Languages,
and Programming, pp.318-330. Springer, Heidelberg (2015)

7. Doerr, B., Doerr, C., Neumann, A.: Optimization of chance-constrained submod-
ular functions. In: 34th AAAI Conference on Artificial Intelligence. 34, pp. 1460–
1467. Association for the Advancement of Artifical Intelligence, New York, NY,
USA (2020)

8. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

9. Feldman, M., Karbasi, A., Kazemi, E.: Do less, get more: streaming submodu-
lar maximization with subsampling. Advances in Neural Information Processing
Systems, 31 (2018)

10. Feldman, M., Norouzi-Fard, A., Svensson, O.: The one-way communication com-
plexity of submodular maximization with applications to streaming and robust-
ness. In: 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp.
1363–1374, Association for Computing Machinery, Chicago, IL, USA (2020)

11. Fisher, M.-L., Nemhauser, G.-L., Wolsey, L.-A.: An analysis of approximations for
maximizing submodular set functions-II. In: Balinski, M.L., Hoffman, A.J. (eds.)
Polyhedral combinatorics. Springer, Heidelberg (1978). https://doi.org/10.1007/
BFb0121195

https://doi.org/10.1007/978-3-540-72792-7_15
https://doi.org/10.1007/978-3-662-47672-7_26
https://doi.org/10.1007/BFb0121195
https://doi.org/10.1007/BFb0121195

Streaming Submodular Maximization with the Chance Constraint 139

12. Frick, D., Sessa, P.-G., Wood, T.-A.: Exploiting structure of chance constrained
programs via submodularity. Automatica 105, 89–95 (2019)

13. Hagerup, T., Rub, C.: A guided tour of Chernoff bounds. Inf. Process. Lett. 33(6),
305–308 (1990)

14. Huang, C.-C., Kakimura, N.: Improved streaming algorithms for maximizing mono-
tone submodular functions under a knapsack constraint. Algorithms 83(3), 879–902
(2021)

15. Huang, C.-C., Kakimura, N., Yoshida, Y.: Streaming algorithms for maximizing
monotone submodular functions under a knapsack constraint. Algorithms 82(4),
1006–1032 (2020)

16. Jiang, Y., Wang, Y., Xu, D.: Streaming algorithm for maximizing a monotone non-
submodular function under d-knapsack constraint. Optimization Letters 14(5),
1235–1248 (2020)

17. Joung, S., Lee, K.: Robust optimization-based heuristic algorithm for the chance-
constrained knapsack problem using submodularity. Optimization Letters 14(1),
101–113 (2020)

18. Kazemi, E., Mitrovic, M., Zadimoghaddam, M.: Submodular streaming in all its
glory: tight approximation, minimum memory and low adaptive complexity. In:
36th International Conference on Machine Learning, pp. 3311–3320. International
Machine Learning Society, Long Beach, California, USA (2019)

19. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: 9th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 137–146. Association for Computing Machinery,
Washington, DC, USA (2003)

20. Khuller, S., Moss, A., Naor, J.-S.: The budgeted maximum coverage problem. Inf.
Process. Lett. 70(1), 39–45 (1999)

21. Marshall, A.-W., Olkin, I.: A one-sided inequality of the Chebyshev type. The Ann.
Math. Stat. 31, 488–491 (1960)

22. Nemhauser, G.-L., Wolsey, L.-A.,: Fisher M L.: An analysis of approximations for
maximizing submodular set functions-I. Math. program. 14(1), 265–294 (1978)

23. Nemhauser, G.-L., Wolsey, L.-A.: Best algorithms for approximating the maximum
of a submodular set function. Math. Oper. Res. 3(3), 177–188 (1978)

24. Neumann, A., Neumann, F.: Optimising monotone chance-constrained submodular
functions using evolutionary multi-objective algorithms. In: Bäck, T., et al. (eds.)
PPSN 2020. LNCS, vol. 12269, pp. 404–417. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58112-1_28

25. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

26. Trevisan, L., Sorkin, G.-B., Sudan, M.: Gadgets, approximation, and linear pro-
gramming. J. Comput 29(6), 2074–2097 (2000)

27. Wang, B., Dehghanian, P., Zhao, D.: Chance-constrained energy management sys-
tem for power grids with high proliferation of renewables and electric vehicles.
IEEE Trans. Smart Grid 11(3), 2324–2336 (2019)

28. Wang, Y., Xu, D., Wang, Y.: Non-submodular maximization on massive data
streams. J. Global Optim. 76(4), 729–743 (2020)

29. Xie, Y., Neumann, A., Neumann, F.: Specific single-and multi-objective evolution-
ary algorithms for the chance-constrained knapsack problem. In: 22th Genetic and
Evolutionary Computation Conference, pp. 271–279. Association for Computing
Machinery, Cancún Mexico (2020)

https://doi.org/10.1007/978-3-030-58112-1_28
https://doi.org/10.1007/978-3-030-58112-1_28

140 S. Gong et al.

30. Xie, Y., Harper, O., Assimi, H.: Evolutionary algorithms for the chance-constrained
knapsack problem. In: 21th Genetic and Evolutionary Computation Conference,
pp. 338–346. Association for Computing Machinery, Prague, Czech Republic (2019)

31. Zhang, H., Vorobeychik, Y.: Submodular optimization with routing constraints.
In: 30th AAAI conference on artificial intelligence, pp. 819–826. Association for
the Advancement of Artifical Intelligence, Phoenix, Arizona, USA (2016)

Colorful Graph Coloring

Zhongyi Zhang(B) and Jiong Guo

School of Computer Science and Technology, Shandong University, Jinan, China
202015106@mail.sdu.edu.cn, jguo@sdu.edu.cn

Abstract. Given a simple graph G and a positive integer d, the Col-
orful Graph Coloring problem (CGC) asks for the minimum number of
colors needed to color the “coloring elements” of G, such that for every
“colorful element” of G, the coloring elements in its “neighborhood” have
at least d colors. Both coloring elements and colorful elements of G can
be vertices and edges, which means that there are four variants of CGC.

With both coloring and colorful elements being vertices, we use
Vertex-Coloring Vertex-Colorful (VCVC) to denote the variant of CGC,
which asks for the minimum number of colors needed to color the ver-
tices such that for every vertex v, the vertices in the closed neighborhood
of v are colored by at least d colors. The Vertex-Coloring Edge-Colorful
variant (VCEC) colors the vertices such that every edge is incident to ver-
tices of at least d colors. Clearly, this variant is meaningful only for d ≤ 2
with simple graphs as input, and with d = 2 is equivalent to the classi-
cal Graph Coloring problem. The Edge-Coloring Vertex-Colorful variant
(ECVC) demands for every vertex v that the edges incident to v are
colored by at least d colors. Finally, the Edge-Coloring Edge-Colorful
variant (ECEC) colors the edges such that the “closed neighborhood” of
every edge contains d distinctly colored edges. The closed neighborhood
of an edge e contains e and all edges sharing endpoints with e.

Motivated by the extensive research on Graph Coloring and the appli-
cations of Colorful Graph Coloring in resource allocation, we initialize
the complexity study of VCVC, ECVC, and ECEC and achieve the fol-
lowing results. VCVC is polynomial-time solvable for d ≤ 2 and becomes
NP-hard for d ≥ 3. We also present a parameterized algorithm for VCVC
with treewidth as parameter. ECVC is NP-hard only in the case that d
is set equal to the minimum degree of vertices δ(G). If d �= δ(G), then
ECVC is polynomial-time solvable. Based on this, we show that in the
case of d = δ(G), we can compute a coloring with d+1 colors in polyno-
mial time, providing an absolute approximation with an additive term
one. Moreover, we prove that ECEC is NP-hard with d ≥ 4, and solv-
able in polynomial time with d ≤ 3. Finally, we present integer linear
programming formulations for the problems.

Keywords: Graph coloring · NP-hard · Absolute approximation ·
Parameterized algorithms

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 141–161, 2022.
https://doi.org/10.1007/978-3-031-20796-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_11&domain=pdf
https://doi.org/10.1007/978-3-031-20796-9_11

142 Z. Zhang and J. Guo

1 Introduction

The Graph Coloring problem, which given an undirected graph G = (V,E) and
an integer k > 0, asks for an assignment of the vertices in V to k colors, such that
adjacent vertices have different colors, is one of the most prominent problems
in Computer Science and Discrete Mathematics. If a graph has such a coloring,
then G is k-colorable. The minimum value of k such that G is k-colorable is called
the chromatic number of G. Most standard textbooks on graph theory have
chapters on Graph Coloring [1,8]. Concerning its computational complexity, it
is well-known that Graph Coloring is NP-hard for k ≥ 3 [2] and inapproximable
within a ratio of nε unless P = NP [4].

A lot of variants of Graph Coloring have been introduced and studied, such
as Edge Coloring, List Coloring, Total Coloring, etc. Edge Coloring seeks for
the minimum number of colors needed to color the edges such that no two edges
sharing an endpoint have the same color. Edge Coloring is NP-hard [2] but there
is an absolute approximation algorithm with an additive term one [7].

Here, we study a new variant of Graph Coloring, called Colorful Graph Col-
oring (CGC), which given a simple graph G and a positive integer d, asks for the
minimum number of colors needed to color the “coloring elements” of G, such
that for every “colorful element” of G, the coloring elements in its “neighborhood”
have at least d colors. Both coloring elements and colorful elements of G can be
vertices and edges, which means that there are four variants of this problem.

With both coloring and colorful elements being vertices, we use Vertex-
Coloring Vertex-Colorful (VCVC) to denote the variant of Colorful Graph Col-
oring, which asks for the minimum number of colors needed to color the vertices
such that for every vertex v, the vertices in the closed neighborhood of v are
colored by at least d colors. The Vertex-Coloring Edge-Colorful variant (VCEC)
colors the vertices such that every edge is incident to vertices of at least d colors.
Clearly, this variant is meaningful only for d ≤ 2 with simple graphs as input,
and with d = 2 is equivalent to the classical Graph Coloring problem. The Edge-
Coloring Vertex-Colorful variant (ECVC) demands for every vertex v that the
edges incident to v are colored by at least d colors. Finally, the Edge-Coloring
Edge-Colorful variant (ECEC) colors the edges such that the “closed neighbor-
hood” of every edge contains d distinctly colored edges. The closed neighborhood
of an edge e contains e and all edges sharing endpoints with e.

CGC can have applications in the area of resource allocation [3,6]. Consid-
ering a city plan task, where given a set of locations and a set of facilities, we
want to build a facility in every location, such that every location has as diverse
facilities as possible in its nearby locations. By using vertices to denote locations
and adding an edge between two vertices representing that the corresponding
two locations are nearby, we can formulate the city plan task as VCVC.

Motivated by the extensive research on Graph Coloring and the applications
of Colorful Graph Coloring in resource allocation, we initialize the complexity
study of VCVC, ECVC and ECEC and achieve the following results: VCVC is
polynomial-time solvable for d ≤ 2 and becomes NP-hard for every d ≥ 3. We
also present a parameterized algorithm for VCVC with treewidth as parameter.

Colorful Graph Coloring 143

ECVC is NP-hard only in the case that d is set equal to the minimum degree
of vertices δ(G). If d �= δ(G), then ECVC is polynomial-time solvable. Based on
this, we show that in the case of d = δ(G), we can compute a coloring with d+1
colors in polynomial time, providing an absolute approximation with an additive
term one. Moreover, we prove that ECEC is NP-hard with d ≥ 4, and solvable
in polynomial time with d ≤ 3. Finally, we present integer linear programming
formulations for the problems.

Preliminary. We consider only undirected, simple graphs G = (V,E) with n =
|V | and m = |E|. Let N(v) and N [v] be the open and closed neighborhoods
of a vertex v ∈ V , respectively. Similarly, we use N(e) to denote the “open”
neighborhood of an edge e ∈ E, which contains the edges sharing endpoints
with e, and N [e] to denote the “closed” neighborhood of e, that is, N [e] = N(e)∪
{e}. Moreover, the degree of v ∈ V (or e ∈ E) in G is set equal to degG(v) =
|N(v)| (or degG(e) = |N(e)|), and Δ(G) = max

v∈V
degG(v), δ(G) = min

v∈V
degG(v).

A coloring of the vertices in G is a function c : V → C, where C is the
set of colors. Here, c(v) for v ∈ V is the color assigned to v. The coloring
of the edges and c(e) for e ∈ E can be defined analogously. The elements
to be colored are called the coloring elements. The variants Vertex-Coloring
Vertex-Colorful (VCVC) and Vertex-Coloring Edge-Colorful (VCEC) have ver-
tices as coloring elements, while Edge-Coloring Vertex-Colorful (ECVC) and
Edge-Coloring Edge-Colorful (ECEC) have edges as coloring elements. The “col-
orful elements” of VCVC and ECVC are the vertices and VCEC and ECEC have
edges as colorful elements. We define the “coloring neighborhood” of the colorful
elements for the four variants as follows. In VCVC, the coloring neighborhood
of a vertex v ∈ V is the closed neighborhood of v. In VCEC, the coloring neigh-
borhood of an edge e ∈ E contains exactly the two endpoints of e. In ECVC, the
coloring neighborhood of a vertex v is the set of edges incident to v. In ECEC,
the coloring neighborhood of an edge e is the closed neighborhood of e. Given
a coloring c of the coloring elements, we use DG(y) for a colorful element y to
denote the set of colors assigned by c to the coloring elements in the coloring
neighborhood of y, and dG(y) = |DG(y)|. All four variants have an integer d ≥ 1
as input, called the “diversity bound”. Given a coloring c, a colorful element y is
called d-colorful, if dG(y) ≥ d. A coloring c is d-colorful, if all colorful elements
are d-colorful. The problem studied in this paper can be defined as follows.

Colorful Graph Coloring (CGC)
INPUT: G = (V,E) and two integers k ≥ d ≥ 1.
OUTPUT: Is there a d-colorful coloring c for G with at most k colors?

Due to lack of space, some proofs are deferred to Appendix.

2 Vertex-Coloring Vertex-Colorful

We first show that Vertex-Coloring Vertex-Colorful (VCVC) is NP-complete if
and only if d ≥ 3 and then present a parameterized algorithm with respect to the

144 Z. Zhang and J. Guo

treewidth. Recall that VCVC asks for a coloring of the vertices with at most k
colors, such that all vertices are d-colorful.

Theorem 1. VCVC with d ≤ 2 is solvable in O(m+n) time, and NP-complete
for every d ≥ 3.

In the following, we present a parameterized algorithm for VCVC with
treewidth tw as parameter.

Definition 1. A tree decomposition of a graph G = (V,E) consists of a tree T
and a mapping function X. For each node a in T , X(a) corresponds to a subset
of V . For each edge e = {u, v} ∈ E, there exists a node a in T with {u, v} ⊆
X(a). For each vertex v ∈ V , the nodes in {a ∈ T |v ∈ X(a)} form a subtree
of T . In a tree decomposition, max

a∈T
|X(a)|−1 is called its width. The treewidth tw

of a graph G is equal to the minimum width of all tree decompositions of G.

As in many tree decomposition-based algorithms, we use the so-called nice
tree decomposition [5].

Definition 2. A nice tree decomposition is a special kind of tree decomposition,
which has the following additional properties:

1. T is rooted at node r.
2. X(r) = ∅ and for every leaf l, X(l) = ∅.
3. Every node b in T has at most two children.
4. If b has two children b1 and b2, then X(b) = X(b1) = X(b2), and b is called

a union node.
5. If b has only one child b1 then one of the following two conditions is true:
(a) X(b1) ⊂ X(b) and |X(b)| = |X(b1)| + 1 (b is called an introduce node).
(b) X(b) ⊂ X(b1) and |X(b1)| = |X(b)| + 1 (b is called a forget node).

Theorem 2. VCVC can be solved in O(n · tw4tw2
) time.

Proof. If graph G has a tree decomposition of width tw, then it also has a
nice tree decomposition of the same width. Given a tree decomposition, we can
construct a nice tree decomposition with the same width in polynomial time.

We describe the dynamic programming algorithm for VCVC, based on a nice
tree decomposition (T,X). For a node a ∈ T , we define Y [a] =

⋃
b∈T (a) X(b),

where T (a) denotes the subtree of T rooted at a, and Y (a) = Y [a] \ X(a).
Given a set C of k colors, we define the states of a node a ∈ T with X(a) =

{b1, b2, · · · , bw}. A state is a vector of 2w+1 components, S = (a, s1, s2, · · · , s2w),
where si ∈ C for 1 ≤ i ≤ w, and si ⊆ C with w < i ≤ 2w. Note that there are
at most kw · 2kw different states for node a. We aim to compute the function fa

for every node a, mapping all states S of a to {0, 1}, where fa(S) = 1 means
that there exists a coloring of the vertices in Y [a], such that all vertices in Y (a)
are d-colorful and for each bi ∈ X(a), bi is colored with si and its neighbors
in Y [a] are colored with the colors in sw+i. Then, G has a d-colorful coloring,
if fr(S) = 1 for at least one state S of the root r; otherwise, no such coloring
exists. The function fa is computed bottom-up.

Colorful Graph Coloring 145

Leaf node. Since X(a) = ∅ for each leaf node a ∈ T , there is only one state S =
(a) and we set fa(S) = 1.

Introduce node. Consider an introduce node a with X(a) = {b1, b2, · · · , bw+1},
where its only child is denoted as a′ with X(a′) = {b1, b2, · · · , bw}.
Let Z = {bi ∈ X(a′)|bi is adjacent to bw+1}. We set fa(S) = 1
where S = (a, s1, · · · , sw+1, sw+2, · · · , s2(w+1)) if there exists a state S′ =
(a′, s′

1, · · · , s′
w, s′

w+1, · · · , s′
2w) of a′ such that:

1. fa′(S′) = 1;
2. For 1 ≤ i ≤ w, si = s′

i;
3. For each bi ∈ Z, si+(w+1) = s′

i+w ∪ {sw+1};
4. For each bi /∈ Z, si+(w+1) = s′

i+w;
5. s2(w+1) = (

⋃
bi∈Z{si}) ∪ {sw+1}.

Forget node. Consider a forget node a with X(a) = {b1, b2, · · · , bw}, where its
only child is denoted as a′ with X(a′) = {b1, b2, · · · , bw+1}. We set fa(S) = 1
where S = (a, s1, · · · , sw, sw+1, · · · , s2w) if there exists a state S′ =
(a′, s′

1, · · · , s′
w+1, s

′
w+2, · · · , s′

2(w+1)) of a′ such that:
1. fa′(S′) = 1;
2. For 1 ≤ i ≤ w, si = s′

i;
3. For w < i ≤ 2w, si = s′

i+1;
4. |s′

2(w+1)| ≥ d.
Union node. Consider a union node a with X(a) = {b1, b2, · · · , bw}, where

its children are denoted as a′ and a′′ with X(a′) = X(a′′) = X(a).
We set fa(S) = 1 where S = (a, s1, · · · , sw, sw+1, · · · , s2w) if there
exist a state S′ = (a′, s′

1, · · · , s′
w, s′

w+1, · · · , s′
2w) of a′ and a state S′′ =

(a′′, s′′
1 , · · · , s′′

w, s′′
w+1, · · · , s′′

2w) of a′′ such that:
1. fa′(S′) = fa′′(S′′) = 1;
2. For 1 ≤ i ≤ w, si = s′

i = s′′
i ;

3. For w < i ≤ 2w, si = s′
i ∪ s′′

i .

To prove the running time, note that in the above algorithm, we use si

with w < i ≤ 2w in a state S to record the colors in the closed neighborhood
of a vertex bi ∈ X(a). Thus, if in the bottom-up process, we have |si| ≥ d
at a node a, meaning that bi becomes d-colorful, then si can be replaced by a
“colorful symbol” and ignored by further computation. Therefore, for a node a
with X(a) = {b1, b2, · · · , bw}, we have at most kw · (∑d

i=0

(
k
i

)
)w different states.

It is clear that a VCVC instance (G = (V,E), k, d) with d > δ(G) + 1 is a
no-instance. We prove that for any instance with d ≤ δ(G) + 1, (d − 1) · tw + 1
colors suffice. Since si with w < i ≤ 2w and |si| ≥ d is ignored, there are at
most (d − 1) · w different colors in

⋃2w
i=w+1{si} and at most w different colors

in
⋃w

i=1{si} in a state S. If k ≥ d · tw + 1, then for each introduce node, we can
color the added vertex with a color other than all the colors in

⋃2w
i=1{si}. Then

for each node a, X(a) = {b1, b2, · · · , bw} will be colored with distinct colors
whether adjacent or not. For each v ∈ V , v will be colored with a different
color from all the previous neighbors, and the neighbors added later will be
colored with a new color until d(v) ≥ d, which means v is d-colorful. Since
|N [v]| = degG(v) + 1 ≥ δ(G) + 1 ≥ d, the coloring is d-colorful. Thus, the

146 Z. Zhang and J. Guo

instances with k ≥ d · tw + 1 are yes-instances and we need only to consider the
instances with k ≤ d · tw.

The running time of the algorithm is O(n · (kw · ∑d
i=0

(
k
i

)w
)2) time. By

∑d
i=0

(
k
i

) ≤ kd, w ≤ tw + 1, d ≤ δ(G) + 1 ≤ tw + 1 and k ≤ d · tw, the
algorithm runs in O(n · tw4tw2

) time. ��

3 Edge-Coloring Vertex-Colorful

The Edge-Coloring Vertex-Colorful (ECVC) variant asks for a coloring of the
edges with k colors such that for every vertex v, the edges incident to v are
colored by at least d colors. Clearly, d ≤ δ(G), with δ(G) denoting the minimum
degree. We show that ECVC is NP-hard only in the case d = δ(G) and otherwise
polynomial-time solvable. Further, for the NP-hard case, we achieve an absolute
approximation algorithm with additive term one. In both the polynomial-time
algorithm and the approximation algorithm, we apply the absolute approxima-
tion algorithm for Edge Coloring by V. Vizing [7]. Given a graph G = (V,E),
Edge Coloring asks for the minimum number of colors needed to color the edges,
such that no two adjacent edges have the same color. Clearly, at least Δ(G)
many colors are needed, with Δ(G) being the maximum degree of vertices. The
algorithm from [7] provides in cubic time a coloring with at most Δ(G)+1 colors.

Theorem 3. ECVC with d < δ(G) is solvable in cubic time.

Proof. Given an ECVC-instance (G = (V,E), k, d) with d < δ(G) and k ≥ d, we
apply the following algorithm:

Step 1: Set G1 = G, i = 1;
While ∃v : degGi

(v) > d + 1 do
Let ei be an arbitrary edge {u, v} incident to v;
Gi+1 = Gi \ {ei};i = i + 1;
END While.

Step 2: Use the approximation algorithm by V. Vizing [7] to color the resulting
graph G′ from Step 1, such that no two adjacent edges have the same color.
Since Δ(G′) = d+1, the color set contains at most d+2 colors c1, c2, · · · , cd+2.

Step 3: Suppose that there are l edges removed from Step 1. Add these edges
back in the reversed order of their removals. That is, we start with Gl+1,
add el to Gl+1 to get Gl, and finally arrive at G. During this, we color each
added edge and compute for each vertex v ∈ V its unused color set ϕGi

(v),
that is, the set of colors not used by the edges incident to v in Gi. For 1 ≤
i ≤ l, we assume that the edge ei = {u, v} was removed in Step 1 due
to degGi

(v) > d + 1 and distinguish the following cases:
Case 1: degGi+1(u) ≥ d+1: color ei with an arbitrary color in {c1, c2, · · · , cd};
Case 2: ϕGi+1(u) = {cd+1, cd+2}: color ei with an arbitrary color in

{c1, c2, · · · , cd};
Case 3: degGi+1(u) < d + 1 and ϕGi+1(u) �= {cd+1, cd+2}: color ei with an

arbitrary color in ϕGi+1(u) ∩ {c1, c2, · · · , cd}.

Colorful Graph Coloring 147

Step 4: Recolor the edges colored with cd+1 or cd+2 with colors in {c1, c2, · · · , cd}:
Note that in a Edge Coloring, the edges of each two colors formed some
disjoint cycles and paths [7]. Consider the subgraph formed by the edges
with cd+1 and cd+2, which consists of disjoint cycles (v0, s0, v1, · · · , sj , v0) or
paths (v0, s0, v1, · · · , sj , vj+1), where vi are the vertices and si are the edges.
For every 0 ≤ i ≤ j, if cr ∈ ϕG(vi) with 1 ≤ r ≤ d, then recolor si with cr,
otherwise, recolor si with an arbitrary color in {c1, c2, · · · , cd}.

After Step 3 of the above algorithm, all edges are present and colored
and Step 4 reduced the number of colors. Note that Δ(G′) = d + 1 and the
approximation algorithm in Step 2 returns a coloring with at most d + 2 col-
ors, c1, c2, · · · , cd+2. Observe that the edges added in Step 3 are colored with col-
ors in {c1, c2, · · · , cd}. Thus, Step 4 affects only edges in G′. Next, we prove the
resulting coloring is d-colorful. To this end, we prove first that the coloring after
Step 3 is d-colorful. Hereby, we prove by an induction that for each 1 ≤ i ≤ l+1,
the following properties always hold for all vertices v ∈ V :

1. If degGi
(v) < d + 1, then |DGi

(v)| = degGi
(v).

2. If degGi
(v) ≥ d + 1, then |DGi

(v)| ≥ d + 1 or ϕGi
(v) = {cd+1, cd+2}.

For i = l + 1, there is no vertex v with degGl+1(v) > d + 1. If degGl+1(v) <
d + 1, then |DGl+1(v)| = degGl+1(v) is guaranteed by the correctness of the
approximation algorithm for Edge Coloring [7]. By the same reason we also
know |DGl+1(v)| = d + 1 for all vertices v with degGl+1(v) = d + 1. Sup-
pose the properties hold for Gi+1. We arrive at Gi by adding ei = {u, v}
to Gi+1. We only have to examine the properties for u and v. Again, we
assume ei was removed in Step 1 due to degGi

(v) > d + 1. Then, degGi+1(v) ≥
d + 1 and by the induction assumption, |DGi+1(v)| ≥ d + 1 or ϕGi+1(v) =
{cd+1, cd+2}. Since Step 3 only adds edges with colors in {c1, c2, · · · , cd}, it
holds that |DGi

(v)| ≥ d + 1 or ϕGi
(v) = {cd+1, cd+2}. Concerning u, we

assume degGi
(u) ≤ d + 1, since, otherwise, it is handled in the same way

as v. Then, degGi+1(u) < d + 1, since ei = {u, v}. By the induction assump-
tion, |DGi+1(u)| = degGi+1(u) < d + 1. Case 2 or 3 of Step 3 applies
to ei. If Case 2 applies, then DGi+1(u) = {c1, c2, · · · , cd}, degGi+1(u) = d,
and degGi

(u) = d+1. Clearly, ϕGi
(u) = {cd+1, cd+2} and the properties hold. If

Case 3 applies, |DGi
(u)| = |DGi+1(u)|+1 = degGi+1(u)+1 = degGi

(u), meaning
that the properties also hold.

Consider the properties for G1, that is, the original graph G. We have
δ(G) > d. The property (2) holds for all vertices v: |DG(v)| ≥ d + 1
or ϕG(v) = {cd+1, cd+2}, meaning that all vertices are d-colorful.

We proceed then proving that Step 4 does not violate the d-colorful require-
ment. Recall that Step 4 only changes the colors of the edges, which are colored
with cd+1 or cd+2 and thus, are in G′. These edges form disjoint cycles or paths.
Let (v0, s0, v1, · · · , sj , v0) or (v0, s0, v1, · · · , sj , vj+1) be such a cycle or path, where
the edges are colored alternatively by cd+1 and cd+2. After Step 3, all vertices on
the cycle or path are d-colorful. By property (2), |DG(vi)| ≥ d+1 and |ϕG(vi)| ≤ 1
for all 0 ≤ i ≤ j. If |ϕG(vi)| = 0, then vi remains d-colorful after Step 4.

148 Z. Zhang and J. Guo

Fig. 1. A binding gadget.

If ϕG(vi) = {cr} with 1 ≤ r ≤ d, then Step 4 recolors the edge ei with cr

and thus, vi remains d-colorful. Note that ϕG(vi) ∩ {cd+1, cd+2} = ∅ for all ver-
tices on the cycle or the internal vertices on the path. The endpoints of the paths
must have ϕG(vi) = {cd+1} or ϕG(vi) = {cd+2} and have already all colors
in {c1, c2, · · · , cd} in their neighborhood. They remain d-colorful after Step 4.

Concerning the running time, since Step 2 is doable in cubic time, and
Steps 1, 3, and 4 can be finished in O(m + n) time, this algorithm runs in
cubic time. ��
Theorem 4. ECVC with d = δ(G) is NP-complete.

Next, we prove that in the case of d = δ(G), d+1 colors suffice for a d-colorful
coloring, resulting in an absolute approximation with an additive term one.

Theorem 5. ECVC with d = δ(G) can be approximated in cubic time with
additive term one.

4 Edge-Coloring Edge-Colorful

We prove that Edge-Coloring Edge-Colorful (ECEC) is NP-hard for every d ≥ 4.
If d ≤ 2, then ECEC can be solved by similar approaches as in the proof of
Theorem 1 for VCVC. We then prove that it is solvable in polynomial time
with d = 3. Recall that ECEC colors edges and the colorful elements are edges.

Theorem 6. ECEC is NP-complete for every d ≥ 4.

Proof. ECEC is clearly in NP. The hardness is proven by a reduction from
Graph Coloring. Given a Graph Coloring instance (G = (V,E), k) with k ≥ 4,
we construct an ECEC-instance (G′ = (V ′, E′), k, d = k). Assume the color
set C = {c1, c2, · · · , ck}. For each vertex v ∈ V , we construct a vertex gadget,
which consists of degG(v) many “binding” gadgets and degG(v) many “connect-
ing” gadgets. The gadgets are connected alternatively in a cycle. Each binding
gadget looks like an “extended” (k − 1)-star, which consists of one center, k − 1
degree-2 vertices, and k − 1 leaves; see Fig. 1 for an illustration. The edges inci-
dent to the center, denoted as m1,m2, · · · ,mk−1, are called shoulder edges, and
the edges incident to the leaves, denoted as a1, a2, · · · , ak−1, are called arm

Colorful Graph Coloring 149

Fig. 2. A connecting gadget with two binding gadgets M1 and M2.

Fig. 3. (a) The cycle of binding and connecting gadgets for one vertex v ∈ V . M :
binding gadgets and K: connecting gadgets. (b) Edge gadget for e = {u, v}.

edges. A connecting gadget connects two binding gadgets and has three parts,
as shown in Fig. 2. In the middle is a complete bipartite graph R with 2(k − 2)
vertices, k−2 on each side. On the both sides of R are two size-(k−2) matchings.
Then, a binding gadget is connected to a connecting gadget by adding k−2 edges
between one leaf of the binding gadget and the k − 2 vertices of one matching of
the connecting gadget; see Fig. 2 for an illustration. One connecting gadget can
connect two binding gadgets. The connecting and binding gadgets correspond-
ing to one vertex v ∈ V are organized in a cycle by adding a connecting gadget
between two binding gadgets as shown in Fig. 3 (a). Note that each binding gad-
get has k − 2 “free” leaves, that is, leaves not connected to connecting gadgets.
They are used to “bind” edge gadgets.

For each edge e = {u, v} ∈ E, we create a (k − 2)-star with one center
and k − 2 leaves. And we “merge” the center with the free leaves of one binding
gadget created for u. By merging two vertices, we delete these two vertices and
add one new vertex, which is adjacent to the neighbors of the deleted vertices.
Also, the free leaves of one binding gadget of v are also merged with this center,
as shown in Fig. 3 (b). Note that each binding gadget of each vertex is “merged”
with exactly one edge gadget. The construction needs clearly polynomial time.

150 Z. Zhang and J. Guo

Claim 1. The ECEC-instance (G′ = (V ′, E′), k, d = k) is a yes-instance if and
only if the Graph Coloring instance (G = (V,E), k) is a yes-instance. ��
Theorem 7. ECEC with d = 3 is solvable in polynomial time.

Proof. We assume that the input graph G = (V,E) is connected and for each
e ∈ E, degG(e) ≥ 2. We call a vertex v a “cross vertex” if degG(v) ≥ 3,
“chain vertex” if degG(v) = 2, “leaf vertex” if degG(v) = 1. We use A,B,C . . .
to denote cross vertices and a, b, c . . . the others. Note that leaf vertices can
only be adjacent to cross vertices. A path between two cross vertices is called
a “chain”, if all internal vertices are chain vertices. A single edge between two
cross vertices is also regarded as a chain. A chain with n internal vertices is a
“0-chain”, if (n+1) mod 3 = 0; “1-chain” and “2-chain” are defined analogously.
A path can also be characterized as “0-path”, “1-path” and “2-path” in the same
way. Moreover, a chain from a vertex A to itself is called a “ring” on A, which
again can be a “0-ring”, “1-ring” and “2-ring”.

Lemma 1. G has a 3-colorful coloring with three colors if and only if the fol-
lowing cases do not apply:

1. G is a cycle with n mod 3 �= 0.
2. G consists of a cross vertex A and two 1-rings on A.
3. G consists of two cross vertices A and B, and two 1-chains and one 0-chain

between A and B.
4. G contains a cross vertex A with degG(A) = 3 and one 1-ring on A.

The “only if”-direction is easy to prove. In case (1), if n = 5, then we need at
least five colors to achieve 3-colorfulness; if n �= 5, then at least four colors are
needs. Cases (2), (3) and (4) require also at least four colors. All four cases can
be examined in polynomial time.

In the following, we show that, in the absence of the above cases, we can
find in polynomial time a 3-colorful coloring for G with three colors. We apply
firstly a preprocessing to eliminate rings. For each 0-ring or 2-ring on a cross
vertex A, we remove its vertices with the only exception with A, and add two
leaf vertices as neighbors of A. For each 1-ring on A, we replace it by one leaf
neighbor of A. The correctness of this preprocessing is obvious. Note that since
cases (2) and (4) do not apply, we still have degG(e) ≥ 2 for every e ∈ E.

Next, we use the following two steps to construct the 3-colorful coloring.
First, we find in polynomial time a special subgraph G′ of G. Then, we extend
the coloring of G′ to entire graph. A 3-colorful coloring is a beautiful coloring
of G, if for each v ∈ V with degG(v) ≥ 2, the edges incident to v have at least
two colors. The proofs of the next claims give the details of the two steps.

Claim 1. Given a connected subgraph G′ of G, whose leaf vertices are also leaf
vertices of G, and a beautiful coloring c of G′ with three colors, we can construct
in polynomial time a beautiful coloring of G with three colors.

Claim 2. We can always find a non-empty subgraph G′ of G, which has a
beautiful coloring with three colors, and whose leaf vertices are also leaf vertices
in G. ��

Colorful Graph Coloring 151

5 Integer Linear Programming

In the following, we present an integer programming formulation for VCVC.
The formulations for ECVC and ECEC can be constructed in a similar way:
create a coloring variable for every coloring element and construct the following
constraints for the neighborhood of every colorful element.

Given a VCVC-instance (G = (V,E), k, d), we first create for each vertex v
a variable c(v) ∈ {1, 2, . . . , k} to store the color of v. Then, we consider the
neighborhood of v, N [v] = {v, u1, . . . , ul} and create two variables α(x, y) ∈
{0, 1} and β(x, y) ∈ {0, 1} for each pair of x, y in N [v]. Moreover, we create l+1
variables γ(x) ∈ {0, 1} for x ∈ N [v]. Next, we add the following constraints for
each vertex v.

First, for each pair of x, y in N [v], we have two constraints as follows:
{

c(x) − c(y) + (k + 1)α(x, y) + (k + 1)(1 − β(x, y)) − 1 ≥ 0
c(x) − c(y) + (k + 1)(1 − α(x, y)) + (k + 1)(1 − β(x, y)) − 1 ≥ 0

These two constraints guarantee that β(x, y) = 1 implies c(x) �= c(y). The
next 2l+3 constraints require that there are d vertices in N [v], which are colored
distinctly. With γ(x) = 1 for x ∈ N [v], we mean that x is one of these d vertices.
Thus, we have the follows constraint:

∑

x∈N [v]

γ(x) = d

The following 2l + 2 constraints guarantee that those d vertices x with
γ(x) = 1 are colored distinctly:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

x∈N [v]\{v}
β(x, v) + (l + 1)(1 − γ(v)) ≥ d − 1

∑

x∈N [v]\{u1}
β(x, u1) + (l + 1)(1 − γ(u1)) ≥ d − 1

. . .
∑

x∈N [v]\{ul}
β(x, ul) + (l + 1)(1 − γ(ul)) ≥ d − 1

∑

x∈N [v]\{v}
β(x, v) − (l + 1)γ(v) ≤ 0

∑

x∈N [v]\{u1}
β(x, u1) − (l + 1)γ(u1) ≤ 0

. . .
∑

x∈N [v]\{ul}
β(x, ul) − (l + 1)γ(ul) ≤ 0

For a vertex x ∈ N [v], which is not one of the d distinctly colored ver-
tices, i.e., γ(x) = 0, the second half of these 2l + 2 constraints makes sure

152 Z. Zhang and J. Guo

that β(x, y) = 0 for each y ∈ N [v] and x �= y. If x is one of the dis-
tinctly colored vertices, i.e., γ(x) = 1, then the first half of these constraints
guarantees the existence of other d − 1 vertices y1, y2, . . . , yd−1 ∈ N [v] satis-
fying β(x, yi) = 1 for 1 ≤ i ≤ d − 1, meaning that x is colored differently
from y1, y2, . . . , yd−1. Adding together, we can conclude a satisfying assignment
to c(v), β(x, y), γ(x), α(x, y) corresponds to a coloring c(v) of the vertices such
that N [v] for each vertex v contains d distinctly colored vertices.

6 Conclusion

We studied the classical complexity of three variants of the Graph Coloring
problem. The next natural step is to consider the approximability of the prob-
lems. Moreover, the complexity of the problems on special graph classes is an
interesting research direction for future work. Finally, as for the classical Graph
and Edge Coloring, the lower and upper bounds on the color numbers for the
CGC-variants might be another research topic.

A Proof of Sect. 2

Proof (Proof of Theorem1). For d = 1, VCVC needs only one color and is trivial.
In the case of d = 2, we show that two colors suffice. First, we color the vertices
with two colors arbitrarily. Then, if all vertices have two colors c1 and c2 in
their closed neighborhoods, then we are done; otherwise, let v be a vertex whose
neighbors are all colored with the same color as v, say c1. We change the color
of v to c2. Clearly, v satisfies the 2-colorful requirement. Moreover, it is easy to
observe that changing the color of v can only affect its neighbors, which have the
color c1. Thus, if a vertex u is 2-colorful before changing the color of v, then u
remains 2-colorful afterwards. This means that each color-change increases the
number of 2-colorful vertices by at least one and the color-change can be applied
at most n times. The first step, coloring the vertices arbitrarily, is clearly doable
in O(n) time. And we can find all 2-colorful vertices in O(m+n) time. Altogether,
the algorithm needs O(m + n) time.

VCVC is clearly in NP. Its NP-hardness for d ≥ 3 is achieved by a reduc-
tion from Graph Coloring. Given a Graph Coloring instance (G = (V,E), k)
with k ≥ 3, we construct a VCVC-instance (G′ = (V ′, E′), k, d = k) as follows.
For each v ∈ V , we create a complete graph Kv with k vertices v0, v1, · · · , vk−1

in G′. For each edge e = {u, v} ∈ E, we add k + 1 vertices e0, e1, · · · , ek

to G′, where e1, e2, · · · , ek form a complete graph Ke and e0 is connected
to e1, e2, · · · , ek−3 by k − 3 edges. Furthermore, we add two edges {e0, v0}
and {e0, u0} to G′. Then, |V ′| = k · |V | + (k + 1) · |E| and |E′| = (k − 1) ·
|E| + k(k−1)

2 · (|V | + |E|). The construction of G′ is clearly in polynomial time.
Next, we prove the equivalence between the instances. If there is a proper

coloring of G with k colors, then for each v ∈ V , we color the corresponding
vertex v0 ∈ V ′ with the same color as v. The other k − 1 vertices in Kv are

Colorful Graph Coloring 153

colored distinctly with the remaining k−1 colors. By doing so, the vertices in Kv

are all k-colorful. Next, for each edge e = {u, v}, we color the corresponding
vertex e0 by a color, which is different from the colors of u and v. Then, the
vertices e1, e2, · · · , ek−3 in the corresponding Ke are colored with the k − 3
colors, which are different from the colors of u, v, and e0, and ek−2, ek−1, ek are
colored with the colors of u, v, e0, respectively. The vertices in Ke are colored
distinctly and thus are k-colorful. The vertex e0 has a color other than all its
neighbors u0, v0, e1, e2, · · · , ek−3 and is also k-colorful. This means that (G′, k, k)
is a yes-instance of VCVC.

If (G′, k, k) has a k-colorful coloring, then we color the vertices v in G with the
same colors of their corresponding vertices v0 in G′. For each edge e = {u, v} ∈ E,
we can conclude from the fact that the corresponding vertex e0 is k-colorful, all
neighbors of e0 are colored distinctly, meaning that u0 and v0 are colored with
different colors. Thus, the coloring of G is proper, and uses k colors. ��

B Proof of Sect. 3

Proof (Proof of Theorem4). ECVC is clearly in NP. Its NP-hardness for d =
δ(G) is achieved by a reduction from Edge Coloring. Given an Edge Col-
oring instance (G = (V,E), k) with k = Δ(G), we construct an ECVC-
instance (G′ = (V ′, E′), k, d = k) with δ(G′) = k as follows. First, we con-
struct a complete bipartite graph with 2k vertices {a1, a2, · · · , ak, b1, b2, · · · , bk},
where {a1, a2, · · · , ak} forms one side and {b1, b2, · · · , bk} the other side. Then,
for each v ∈ V , we add a vertex v′ to V ′, and for each e = {u, v} ∈ E, we add an
edge e′ = {u′, v′} to E′. Finally, for each v ∈ V , we add rv = k − degG(v) edges
between v′ and {a1, a2, · · · , arv

}. Since k = Δ(G), rv ≥ 0. The construction
of G′ is clearly in polynomial time.

Next, we prove the equivalence between the instances. If there is a proper
coloring of G with k colors C = {c1, c2, . . . , ck}, then for each e ∈ E, we color
the corresponding edge e′ ∈ E′ with the same color as e. For each v ∈ V , it
is clearly that v has degG(v) many different colors assigned to the edges inci-
dent to v in G, say c1, c2, · · · , ck−rv

. Then we color the rv edges between v′

and {a1, a2, · · · , arv
} distinctly with the colors in C \ {c1, c2, · · · , ck−rv

}. The
vertices v′ ∈ V ′, which correspond to the vertices v ∈ V , are k-colorful. Finally,
we color the edges between ai and bj with cs with s = [(i+ j − 1) mod k] + 1, so
that a1, a2, · · · , ak, b1, b2, · · · , bk are also k-colorful. This means that (G′, k, k) is
a yes-instance of ECVC.

If (G′, k, k) has a k-colorful coloring, then we color the edges e in E with
the same color as their corresponding edges e′ in E′. For each vertex v ∈ V , we
can conclude from the fact that the corresponding vertex v′ is k-colorful, all the
edges incident to v′ are colored distinctly, meaning that all edges incident to v
are colored with different colors. Thus, the coloring of G is proper and uses k
colors. ��

154 Z. Zhang and J. Guo

Proof (Proof of Theorem5). The following algorithm returns in polynomial time
a d-colorful coloring with d+1 colors for a given graph G = (V,E) with δ(G) = d
and is based on the same idea as the algorithm in the proof of Theorem 3.

Step 1: Set G1 = G, i = 1;
While ∃v : degGi

(v) > d do
Let ei be an arbitrary edge {u, v} incident to v;
Gi+1 = Gi \ {ei};
i = i + 1;
END While.

Step 2: Use the approximation algorithm by V. Vizing [7] to color the resulting
graph G′ from Step 1, such that no two adjacent edges have the same color.
Since Δ(G′) = d, the color set contains at most d + 1 colors.

Step 3: Suppose that there are l edges removed from Step 1. Add these edges
back in the reversed order of their removals. That is, we start with Gl+1,
add el to Gl+1 to get Gl, and finally arrive at G. During this, we color each
added edge and compute for each vertex v ∈ V its unused color set ϕGi

(v),
that is, the set of colors not used by the edges incident to v in Gi. For 1 ≤
i ≤ l, we assume that the edge ei = {u, v} was removed in Step 1 due
to degGi

(v) > d and distinguish the following cases:
Case 1: degGi+1(u) ≥ d: color ei with an arbitrary color;
Case 2: degGi+1(u) < d: color ei with an arbitrary color in ϕGi+1(u).

Next, we prove the resulting coloring is d-colorful. As in the proof of Theo-
rem 3, we prove that for each 1 ≤ i ≤ l +1, the following properties always hold
for all vertices v ∈ V :

1. If degGi
(v) < d, then |DGi

(v)| = degGi
(v).

2. If degGi
(v) ≥ d, then |DGi

(v)| ≥ d.

For i = l + 1, there is no vertex v with degGl+1(v) > d. If degGl+1(v) < d,
then |DGl+1(v)| = degGl+1(v) is guaranteed by the correctness of the approx-
imation algorithm for Edge Coloring [7]. By the same reason we also know
|DGl+1(v)| = d for all vertices v with degGl+1(v) = d. Suppose the prop-
erties hold for Gi+1. We arrive at Gi by adding ei = {u, v} to Gi+1. We
only have to examine the properties for u and v. Again, we assume ei was
removed in Step 1 due to degGi

(v) > d. Then, degGi+1(v) ≥ d and by the
induction assumption, |DGi+1(v)| ≥ d, it holds that |DGi

(v)| ≥ d. Concern-
ing u, we assume degGi

(u) ≤ d, since, otherwise, it is handled in the same
way as v. Then, degGi+1(u) < d, since ei = {u, v}. By the induction assump-
tion, |DGi+1(u)| = degGi+1(u) < d. Case 2 of Step 3 applies to ei. |DGi

(u)| =
|DGi+1(u)| + 1 = degGi+1(u) + 1 = degGi

(u), and the properties also hold.
Consider the properties for G1, that is, the original graph G. We have

δ(G) = d. The property (2) holds for all vertices v, |DG(v)| ≥ d, meaning
that all vertices are d-colorful.

As in the proof of Theorem 3, the algorithm runs clearly in cubic time and
we have the following conclusion. ��

Colorful Graph Coloring 155

C Proof of Sect. 4

Proof (Proof of Claim 1 of Theorem6). Before showing the equivalence between
the instances, we prove a property of the ECEC-instance.

First, we claim that if there is a k-colorful coloring for G′ = (V ′, E′), then all
arm edges of all binding gadgets corresponding to one vertex v ∈ V are colored
with the same color. Observe that each shoulder edge e in Fig. 1 has exactly k−1
adjacent edges, among them k − 2 shoulder edges and one arm edge in the same
binding gadget. Thus e and these adjacent edges should be colored distinctly.
This means the arm edge has a color different from the k − 1 colors of the
shoulder edges. This is true for all shoulder edges, meaning that the arm edges
of one binding gadgets have the same color. See Fig. 2 for a connecting gadget
with two binding gadgets, where there are one arm edge a and one shoulder
edge m from one binding gadget and one arm edge a′ and one shoulder edge m′

from the other. Suppose c(a) = c1, c(a′) = c2, c(m) = c3, c(m′) = c4. Note a is
only adjacent to m and the k − 2 edges l1, l2, · · · , lk−2 are between the binding
gadget and the connecting gadget. Thus, to make a k-colorful, l1, l2, · · · , lk−2

need to be colored with k − 2 distinct colors, that is, C \ {c1, c3}. Then, to
make li with 1 ≤ i ≤ k − 2 k-colorful, the matching edge ni has to be colored
with the same color as m, that is, c3. The same argument applies to a′,m′, l′i
and n′

i, that is, c(n′
i) = c4.

Further, the k−2 edges in the complete bipartite graph R, which are adjacent
to one matching edge ni, are colored with k − 2 distinct colors, where one has
to be colored with c1 and none is colored with c3. The same can be concluded
for the k − 2 R-edges adjacent to n′

i, with one edge colored with c2 and none
with c4. If c3 �= c4, then all edges in R have colors from C \ {c3, c4}. By k ≥ 4,
there are at least two matching edges on both sides of R, meaning at least one
edge li is colored with a color in C \ {c1, c3, c4}. Then, for the corresponding
matching edge ni, the adjacent k − 2 R-edges have only k − 3 colors available,
a contradiction to the conclusion that these edges are colored distinctly. There-
fore, c3 = c4. Similarly, if c1 �= c2, then there is an edge li colored with c2. This
means that the R-edges adjacent to ni cannot by colored with c2. As shown
above, every edge n′

i has an adjacent edge in R which is colored with c2. Then,
there are k − 2 R-edges colored with c2. Since no two R-edges with the same
color can be adjacent, these k − 2 edges form a matching, meaning that ni has
an adjacent R-edge colored with c2, a contradiction. Thus, c1 = c2. We can
conclude that all arm edges of the vertex gadgets of one vertex v ∈ V have the
same color.

Suppose there is a k-coloring C of G. We color the arm edges of vertex v ∈ V
with c(v). The shoulder edges in one binding gadget of v are colored distinctly
with the colors in C\{c(v)}. Hereby, we color the shoulder edges, whose adjacent
arm edges are connected to the same connecting gadget, with the same color,
saying c′. This is possible due to k ≥ 4. Then, we color the edges ni and n′

i

for 1 ≤ i ≤ k − 2 with c′ and li and l′i distinctly with colors in C \ {c(v), c′}.
Suppose that C \ {c(v), c′} = {ca1 , ca2 , · · · , cak−2} and li and l′i are colored
with cai

. We color the edge in R, which is between ni and n′
j , with c(v) if i = j

156 Z. Zhang and J. Guo

and with car
with r = [(2i − j − 1) mod (k − 2)] + 1 if i �= j. Finally, the edges

in the edge gadget for an edge e = {u, v} are colored distinctly with the colors
in C \ {c(u), c(v)}. The resulting coloring clearly is k-colorful.

Concerning the reversed direction, we already know that all arm edges of
a vertex v ∈ V are colored with the same color. We then color v with this
color. The colorful edges bi in the edge gadget for an edge e = {u, v} guarantee
that the arm edges of u and the arm edges of v have different colors, resulting
in c(u) �= c(v) and a proper k-coloring. ��
Proof (Proof of Claim 1 of Theorem7). We extend G′ and c iteratively, each
step adding at least one edge. The correctness and running time follow from the
following description of a single step.

If G′ �= G, then there must be a vertex A, which is a cross vertex in G and
whose incident edges are partially colored by c, since G is connected and every
leaf vertex in G′ is a leaf vertex in G. By the same argument and the definition of
beautiful colorings, there are at least two edges incident to A which are assigned
different colors by c. Let e and f be the two edges, and a be one edge incident
to A which is not colored by c. We extend G′ by adding at least a to G′. Hereby,
we distinguish the following cases.

Case 1. There is an uncolored path P between A and a vertex B ∈ G′, which
passes through a. An uncolored path means that all its internal vertices are
not in G′. Note that it might be A = B. Since G′ is connected and all leaf
vertices in G′ are leaf vertices in G, B must be a cross vertex in G and at
least two edges incident to B are colored by c with two different colors; let g
and h be these two edges and b denote the edge of P incident to B. See
Fig. 4 for an illustration. If {c(e), c(f)} = {c(g), c(h)}, say c(e) = c(g) = c1
and c(f) = c(h) = c2, then we color path P with (c1, c3, c2, . . . , c3, c2) if P
is a 0-path; with (c3, c1, c2, . . . , c2, c3) if P is 1-path; with (c3, c2, c1, . . . , c3, c2)
if P is 2-path. If {c(e), c(f)} �= {c(g), c(h)}, say c(e) = c1, c(f) = c(g) = c2
and c(h) = c3, then we color path P with (c3, c2, c1, . . . , c2, c1) if P is a 0-path;
with (c3, c2, c1, . . . , c1, c3) if P is a 1-path; with (c3, c1, c2, . . . , c3, c1) if P is a
2-path.

Fig. 4. There is an uncolored path between A and B.

The determination of path P is clearly doable in polynomial time and the
coloring of P is trivial. It remains to show that the resulting subgraph G′′ and
the new coloring c′ satisfy the precondition of the claim. Since the vertices added
to G′ are degree-2 vertices in G′′, all leaf vertices in G′′ are leaf vertices in G′ and

Colorful Graph Coloring 157

thus leaf vertices in G. The 3-colorfulness and conditions for beautiful colorings
are clearly fulfilled by c′. The proofs of running time and correctness are trivial
in all cases and thus are omitted in the following.

Case 2. There is no uncolored path P between A and vertices in G′ passing
through a. We distinguish further cases.

Case 2.1.The other endpoint of a is a leaf vertex in G. We color a with a color
different from c(e) and c(f).

Case 2.2. The other endpoint x of a is not a leaf vertex. Note that the removal
of a disconnects x and G′. Then, we remove G′, a, and all leaf vertices from G
and start a depth-first search from x. Consider the rightmost path P from x to
a leaf in the resulting depth-first search tree. Let B1, . . . , Bl be the cross vertices
in this path according to the order of their occurrences from top to bottom.
Let b be the edge between Bl and its father in this path. We color a with the
color different from c(e) and c(f) and color P till Bl alternatively with c(e), c(f)
and c(a). Further subcases are considered.

Case 2.2.1. Bl has at least two leaf vertices as neighbors. Let g and h be the two
corresponding edges. Then, add a, the subpath of P between x and Bl and Bl’s
two leaf neighbors to G′ and color g and h with colors different from c(b).

Case 2.2.2. Bl has only one leaf vertex as neighbor. Let g be the corresponding
edge. Bl must have another incident edge h, which is part of a chain between Bl

and a cross vertex Bi on P . Let p and q be the two edges on P , which are
incident to Bi, and r be the edge of the chain, which is incident to Bi, as shown
in Fig. 5.

Fig. 5. g incident to a leaf vertex, h part of a chain to a cross vertex.

We add the subpath of P between x and Bl, the chain between Bi and Bl and
the edges a and g to G′. If c(b) ∈ {c(p), c(q)}, say c(b) = c(p) = c1 and c(q) = c2,
then we have the following alternatives: if the chain between Bi and Bl is a 0-
chain, then color g with c3 and the chain with (c2, c1, c3, . . . , c1, c3); if 1-chain,
then color g with c2 and the chain with (c3, c1, c2, . . . , c2, c3); if 2-chain, then
color g with c3 and the chain with (c2, c3, c1, . . . , c2, c3). If c(b) /∈ {c(p), c(q)},
say c(b) = c1, c(p) = c2 and c(q) = c3, then we have the following possibil-
ities: if the chain between Bi and Bl is a 0-chain, then color g with c2 and
the chain with (c3, c2, c1, . . . , c2, c1); if 1-chain, then color g with c3 and the

158 Z. Zhang and J. Guo

chain with (c2, c3, c1, . . . , c1, c2); if 2-chain, then color g with c3 and the chain
with (c2, c1, c3, . . . , c2, c1).

Case 2.2.3. Bl has no leaf vertex as neighbor. Then, let g and h be two incident
edges of Bl different from b. Clearly, both g and h are part of chains between Bl

and some cross vertices on P . Let g be on a chain C1 between Bl and Bj and
h on a chain C2 between Bl and Bi. See Fig. 6 for an illustration. Observe that
there is a subgraph G0 consisting of two cross vertices Bj and Bl, and three
disjoint paths between them, (z, . . . , g), (y, . . . , b) and (x, . . . , q, r, . . . , h). The
path from A to Bi connects G′ and G0. We now add G0 and this path to G′.
We distinguish further cases. The coloring strategy of most cases is to firstly
construct a beautiful coloring to G0, and the coloring of the path between A
and Bi is then trivial, since the combination of two beautiful colorings for two
subgraphs obviously gives a beautiful coloring of the union of the two sub-
graphs. For the brevity of presentation, we give only one case as an example.
If there are two 2-paths between Bl and Bj and the remaining one is a 0-path,
then we can color the 2-path with (c1, c2, c3, . . . , c1, c2) and (c2, c3, c1, . . . , c2, c3),
respectively, and the 0-path with (c3, c2, c1, . . . , c2, c1). This is clearly a beau-
tiful coloring. The only tricky case is that there are two 1-paths between Bl

and Bj and the remaining one is a 0-path. Here, we need to first color the
path from A to Bi, and then color the paths between Bj and Bl accord-
ingly. The concrete coloring depends on which of the three paths is the 0-path.
Suppose c(p) = c1. In the case that (x, . . . , q, r, . . . , h) is one 1-path, suppose
(z, . . . , g) is the other 1-path. We color the 2-path (q, . . . , x, z, . . . , g, h, . . . , r)
with (c2, c3, c1, . . . , c2, c3); then the coloring of the path (y, . . . , b) is
trivial. Finally, if (x, . . . , q, r, . . . , h) is the 0-path, we color (q, . . . , x)
with (c2, c3, c1, . . . , c3, c1), (r, . . . , h) with (c3, c2, c1, . . . , c2, c1), (z, . . . , g) with
(c2, c3, c1, . . . , c1, c2), (y, . . . , b) with (c3, c1, c2, . . . , c2, c3) if both (q, . . . , x) and
(r, . . . , h) are 0-chains. We color (q, . . . , x) with (c2, c3, c1, . . . , c1, c2), (r, . . . , h)
with (c3, c2, c1, . . . , c3, c2), (z, . . . , g) with (c1, c2, c3, . . . , c3, c1), (y, . . . , b) with
(c3, c1, c2, . . . , c2, c3) if (q, . . . , x) and (r, . . . , h) are a 1-chain and a 2-chain,
respectively. The coloring with i = j is the same as the case that (q, . . . , z)
is a 0-chain.

Fig. 6. Both g and h are part of chains to cross vertices.

In summary, we have corresponding colorings for all above cases, which are
doable in polynomial time. The resulting new subgraphs satisfy the precondition

Colorful Graph Coloring 159

of the claim, and the resulting colorings are beautiful. Thus, the claim is correct.
��
Proof (Proof of Claim 2 of Theorem7). Firstly, if G has no cross vertex, that
is G is a circle. Since we have ruled out case (1), so G can only be C3k, which
obviously has a beautiful coloring.

Assume that G has only one cross vertex A. As we have eliminated all rings,
so G can only be a star consisting of A and at least three leaf vertices. It is
simple to color the edges with three different colors.

Fig. 7. There are two chains between A and B.

Fig. 8. There are three chains and one leaf vertex.

Assume that G has two cross vertices A and B. If there is only one chain
between A and B, then each of A and B has at least two adjacent leaf ver-
tices. We color the chain firstly, and then color these leaf edges with two
colors other than the color of the end edge of the chain. If there are two
chains between A and B, let (e, . . . , g) and (f, . . . , h) be these two chains,
and l and r be two edges connecting leaf vertices, as shown in Fig. 7. If
there are two 0-chains or a 1-chain and a 2-chain, then we have a C3k,
easy to color. If there are two 1-chains or a 0-chain and a 2-chain, we
color l with c1, (e, . . . , g, h, . . . , f) with (c2, c3, c1, . . . , c2, c3). If there are two 2-
chains, we color l with c1, r with c2, (e, . . . , g) with (c2, c3, c1, . . . , c2, c3),
and (f, . . . , h) with (c3, c1, c2, . . . , c3, c1). If there is a 0-chain and a 1-chain,
we color l with c1, r with c2, (e, . . . , g) with (c2, c3, c1, . . . , c3, c1), and (f, . . . , h)
with (c3, c1, c2, . . . , c2, c3). If there are at least three chains between A and B,
then as shown in the proof of Claim 1, only the case that two 1-chains and
a 0-chain cannot be colored with a beautiful coloring. Since we have ruled out
Case (3), at least one leaf vertex or another chain should exist. If there is an edge l
connecting A and a leaf vertex, then let (e, . . . , g) and (f, . . . , h) be the two 1-
chains, (p, . . . , q) be the 0-chain, as shown in Fig. 8. We color l with c1, (e, . . . , g)
with (c2, c3, c1, . . . , c1, c2), (f, . . . , h) with (c3, c2, c1, . . . , c1, c3), and (p, . . . , q)
with (c3, c2, c1, . . . , c2, c1). If there is another chain between A and B, then this

160 Z. Zhang and J. Guo

new chain forms a C3k or a three-1-chain-structure with the three existing chains.
Both C3k and three-1-chain-structure have beautiful colorings.

In the following, we discuss the case that G has at least three cross vertices.
Let A and B be the two cross vertices with the maximum number of vertex-
disjoint paths between them in G. If there is only one path between A and B,
then G is a tree. Hereby, we can w.l.o.g. assume A and B have the maximum
distance among all pairs of cross vertices. Then, each of A and B has two leaf
vertices as neighbors. We can use the same way as in the previous paragraph to
color the path and the four leaf edges, giving the subgraph G′.

Suppose that there are two paths between A and B, as shown in Fig. 7. If
each of A and B has a leaf vertex as neighbor, we can use the same coloring as
in the case that G has only two cross vertices; otherwise, suppose B does not
have a leaf vertex as neighbor. Let r be another edge adjacent to B. We apply
the procedure used in the proof of Case 2.2 in Claim 1, removing r, starting
a depth-first search from the other endpoint x of r, finding a subgraph F and
coloring it. If c(r) ∈ {c(g), c(h)}, say c(r) = c(g) = c1 and c(h) = c2, we swap
all the c1 colors with c3 colors in F , such that it is a beautiful coloring.

Fig. 9. z is a bridge.

Fig. 10. z is not a bridge.

Finally, if there are at least three paths between A and B, we only need to
discuss the case that there are two 1-paths and a 0-path. Let (e, . . . , g), (f, . . . , h)
and (p, . . . , q) be the three paths. There must be another edge incident to this
subgraph. Let z be this edge, and x and y be the two edges on the paths inci-
dent to z. If z is a bridge of G, as shown in Fig. 9, then we can apply the same
procedure as in the previous paragraph to the bridge z. We can color the three
paths with the same coloring as in the proof of Case 2.2.3 in Claim 1. If z is
not a bridge, then there exists a path between two (A,B)-paths or between two
vertices of the same (A,B)-path. Let w be the other end edge of this path,

Colorful Graph Coloring 161

and l and r be the two edges on the path between A and B adjacent to w.
There are two cases, namely, l and r on the same (A,B)-path as x and y as
shown in Fig. 10 (a) and on another one as shown in Fig. 10 (b). We can firstly
rule out the case that three paths exist between two cross vertices and do not
form a (1-path,1-path,0-path)-structure. For the case in Fig. 10 (b), (f, . . . , l),
(r, . . . , h), (p, . . . , x) and (y, . . . , q) can only be 0-paths or 1-paths. But no mat-
ter whether (w, . . . , z) is 0-path or 1-path, we have a C3k. For the case in
Fig. 10 (a), (w, . . . , z), (r, . . . , x), (e, . . . , g) and (f, . . . , h) should be 1-paths. We
color (r, . . . , x) and (e, . . . , g) with (c2, c3, c1, . . . , c1, c2), (w, . . . , z) and (f, . . . , h)
with (c3, c1, c2, . . . , c2, c3), (p, . . . , l) and (y, . . . , q) with (c1, c2, c3, . . . , c3, c1), if
both (p, . . . , l) and (y, . . . , q) are 1-paths. We color (r, . . . , x) and (e, . . . , g)
with (c2, c3, c1, . . . , c1, c2), (w, . . . , z) with (c3, c1, c2, . . . , c2, c3), (f, . . . , h)
with (c1, c2, c3, . . . , c3, c1), (p, . . . , l) with (c3, c2, c1, . . . , c2, c1), (y, . . . , q) with
(c1, c3, c2, . . . , c1, c3), if (p, . . . , l) and (y, . . . , q) are a 0-path and a 2-path, respec-
tively.

In the case enumeration above, if any two cross vertices coincide, the coloring
is the same as for the case that there is a 0-chain between them. Thus, we can
always find such a subgraph. ��

References

1. Diestel, R.: Graph Theory, 5th edn. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53622-3

2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to NP-
Completeness. W. H. Freeman, San Francisco (1979)

3. Katoh, N., Ibaraki, T.: Resource Allocation Problems. The MIT Press, Cambridge
(1988)

4. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. In: STOC 1993, pp. 286–293 (1993)

5. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Press, Oxford
(2006)

6. Norton, M.S., Kelly, L.K.: Resource Allocation: Managing Money and People. Rout-
ledge, London (1997)

7. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret. Analiz
3, 23–30 (1964). (in Russian)

8. West, D.B.: Introduction to Graph Theory. Prentiss Hall, Englewood Cliffs (2000)

https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3

On the Transversal Number of Rank k
Hypergraphs

Zhongzheng Tang1 and Zhuo Diao2(B)

1 School of Science, Beijing University of Posts and Telecommunications,
Beijing 100876, China

tangzhongzheng@amss.ac.cn
2 School of Statistics and Mathematics, Central University of Finance

and Economics, Beijing 100081, China

diaozhuo@amss.ac.cn

Abstract. For k ≥ 2, let H be a hypergraph with rank k on n vertices
and m edges. The transversal number τ(H) is the minimum number of
vertices that intersect every edge. In this paper, the following conjecture
is proposed: Is τ(H) ≤ (k−1)m+1

k
? We prove the inequality in some special

hypergraphs: (i) the inequality holds for k = 2 and k = 3. (ii) the
inequality holds for the hypergraphs with the König Property. (iii) the
inequality holds for the hypergraphs with maximum degree 2 and the
extremal hypergraphs with equality holds are characterized.

Keywords: Transversal · Rank k · Maximum degree 2 · Extremal
hypergraphs

1 Introduction

A hypergraph is a generalization of a graph in which an edge can join any number
of vertices. A simple hypergraph is a hypergraph without multiple edges. Let
H = (V,E) be a simple hypergraph with vertex set V and edge set E. As for a
graph, the order of H, denoted by n, is the number of vertices. The number of
edges will be denoted by m. The rank is r(H) = maxe∈E |e|.

For each vertex v ∈ V , the degree d(v) is the number of edges in E that
contains v. We say v is an isolated vertex of H if d(v) = 0. Hypergraph H is
k-regular if each vertex’s degree is k (d(v) = k,∀v ∈ V). The maximum degree
of H is Δ(H) = maxv∈V d(v). Hypergraph H is k-uniform if each edge contains
exactly k vertices (|e| = k,∀e ∈ E). Hypergraph H is called linear if any two
distinct edges have at most one common vertex. (|e1 ∩ e2| ≤ 1,∀e1, e2 ∈ E).

Let k ≥ 2 be an integer. A cycle of length k, denoted as k-cycle, is a vertex-
edge sequence C = v1e1v2e2 · · · vkekv1 with: (1){e1, e2, . . . , ek} are distinct edges

Supported by National Natural Science Foundation of China under Grant No.11901605,
No.12101069, the disciplinary funding of Central University of Finance and Economics,
the Emerging Interdisciplinary Project of CUFE, the Fundamental Research Funds for
the Central Universities and Innovation Foundation of BUPT for Youth (500422309).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 162–175, 2022.
https://doi.org/10.1007/978-3-031-20796-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_12&domain=pdf
https://doi.org/10.1007/978-3-031-20796-9_12

On the Transversal Number of Rank k Hypergraphs 163

of H. (2){v1, v2, . . . , vk} are distinct vertices of H. (3){vi, vi+1} ⊆ ei for each
i ∈ [k], here vk+1 = v1. We consider the cycle C as a sub-hypergraph of H with
vertex set {vi, i ∈ [k]} and edge set {ej , j ∈ [k]}. For any vertex set S ⊆ V , we
write H \S for the sub-hypergraph of H obtained from H by deleting all vertices
in S and all edges incident with some vertices in S. For any edge set A ⊆ E, we
write H \ A for the sub-hypergraph of H obtained from H by deleting all edges
in A and keeping vertices. If S is a singleton set {s}, we write H \ s instead of
H \ {s}.

Given a hypergraph H(V,E), a set of vertices S ⊆ V is a vertex transversal
if every edge has at least a vertex in S which means that H \S has no edges. The
vertex transversal number is the minimum cardinality of a vertex transversal,
denoted by τ(H). A set of edges A ⊆ E is an edge cover if every vertex is adjacent
to at least an edge in A. The edge covering number is the minimum cardinality
of an edge cover, denoted by τ ′(H). A set of edges A ⊆ E is a matching if
every two distinct edges have no common vertex. The matching number is the
maximum cardinality of a matching, denoted by ν(H). In this paper, we consider
the vertex transversal set in simple hypergraphs with rank k.

1.1 Known Results

Hypergraphs are systems of sets which are conceived as natural extensions of
graphs. A subset S of vertices in a hypergraph H is a transversal (also called
vertex cover or hitting set in many papers) if S has a nonempty intersection with
every edge of H. The transversal number τ(H) of H is the minimum size of a
transversal in H. Transversals in hypergraphs are well studied in the literature
(see [5,10,11,13–15,17,18]).

Chvátal and McDiarmid [5] established the following upper bound on the
transversal number of a uniform hypergraph in terms of its order and size.

Theorem 1. [5] For k ≥ 2, if H is a k-uniform hypergraph on n vertices with
m edges, then τ(H) ≤ n+� k

2 �m
� 3k

2 � .

Henning and Yeo [8] proposed the following question:

Conjecture 1. [8] For k ≥ 2, let H be a k-uniform hypergraph on n vertices with
m edges. If H is linear, then (k + 1)τ(H) ≤ n + m holds for all k ≥ 2?

The Chvátal and McDiarmid theorem implies that (k + 1)τ(H) ≤ n + m holds
for k ∈ {2, 3} even without the linearity constraint imposed on H. Henning and
Yeo [8] remarked that if H is not linear, then conjecture 1 is not always true,
showing an example by taking k = 4 and letting F7 be the complement of the
Fano plane F7. Henning and Yeo [8] proved the following theorem which verified
conjecture 1 for linear hypergraphs with maximum degree two:

Theorem 2. [8] For k ≥ 2, let H be a k-uniform linear hypergraph satisfying
Δ(H) ≤ 2. Then, (k+1)τ(H) ≤ n+m with equality if and only if each component
of H consists of a single edge or is the dual of a complete graph of order k + 1
and k is even.

164 Z. Tang and Z. Diao

Henning and Yeo [12] proposed the following conjecture in another paper:

Conjecture 2. [12] τ(H) ≤ n
k + m

6 holds for all uniform hypergraphs with maxi-
mum degree at most 3.

Henning and Yeo [12] showed that τ(H) ≤ n
k + m

6 holds when k = 2 and char-
acterized the hypergraphs for which equality holds. Chvátal and McDiarmid [5]
showed that τ(H) ≤ n

k + m
6 holds when k = 3. Henning and Yeo characterized

the extremal hypergraphs. Henning and Yeo [12] showed that τ(H) ≤ n
k + m

6
holds when Δ(H) ≤ 2 and characterized the hypergraphs for which it holds with
equality in that case.

1.2 Our Results

In this paper, for k ≥ 2, we propose a conjecture as follows:

Conjecture 3. For every connected rank k hypergraph H(V,E) with m edges,
τ(H) ≤ (k−1)m+1

k .

By a simple operation of adding vertices, it is easy to show if the conjecture
holds in k-uniform hypergraphs, then it holds in hypergraphs with rank k. To
prove the conjecture, it only needs to consider k-uniform hypergraphs.
For k-uniform hypergraphs, Conjecture 3 and Conjecture 1 are related. If Con-
jecture 1 holds, combined with the relationship between vertex number and edge
number of connected rank k hypergraphs: n ≤ (k − 1)m + 1, we have

(k + 1)τ(H) ≤ n + m,n ≤ (k − 1)m + 1 ⇒ τ(H) ≤ n + m

k + 1
≤ km + 1

k + 1
,

which is a weaker result of Conjecture 3. The main content of the article is
organized as follows:

– In Sect. 2, we transform the conjecture on hypergraphs with rank k to the
conjecture on k-uniform hypergraphs. For the consequent sections, we prove
Conjecture 3 holds in some special hypergraphs.

– In Sect. 3, we prove Conjecture 3 holds for k = 2.
– In Sect. 4, we prove Conjecture 3 holds for k = 3.
– In Sect. 5, we prove Conjecture 3 holds for the hypergraphs satisfying the

König Property with τ(H) = ν(H).
– In Sect. 6, we prove Conjecture 3 holds for the hypergraphs with maximum

degree 2 and characterize the extremal hypergraphs with equality holds.

2 The Conjecture

Conjecture 3 is our central problem and restated as follows:
For every connected rank k hypergraph H(V,E) with m edges, τ(H) ≤
(k−1)m+1

k .
The next lemma tells us to prove Conjecture 3, it just needs to focus on

uniform hypergraphs. The basic method in the proof of Lemma 1 is frequently
used later.

On the Transversal Number of Rank k Hypergraphs 165

Lemma 1. If the conjecture holds in connected k-uniform hypergraphs, then it
holds in connected hypergraphs with rank k.

Proof. Let H be a connected hypergraph with rank k. If H is not k-uniform, we
can construct a connected k-uniform hypergraph H ′ by adding new vertices to
each edge. As shown in Fig. 1, for each edge e in H, if |e| < k, add k − |e| new
vertices to form an edge e′ in H ′. We derive that edge number does not change
and τ(H) = τ(H ′), which completes the proof.

Fig. 1. Adding new vertices to form k-uniform hypergraphs

The following sections will consider Conjecture 3 in some special cases.

3 The Rank 2 Hypergraphs

In this section, we prove Conjecture 3 holds for the rank 2 hypergraphs. Such
hypergraphs are actually general graphs.

Theorem 3. For any connected graph G(V,E) with m edges, τ(G) ≤ m+1
2 .

Proof. Suppose the theorem fails. Let us take out a counterexample G = (V,E)
with minimum number of edges, thus τ(G) > m+1

2 . For any vertex v ∈ V , let
C1, C2, . . . , Cp be p components of G \ v and Ci contains mi edges for i ∈ [p].
Thus, d(v) ≥ p. We have

m + 1
2

< τ(G) ≤ τ(G \ v) + 1 ≤
p∑

i=1

mi + 1
2

+ 1 =
m − d(v) + p

2
+ 1 ≤ m + 2

2
.

Then, we derive that τ(G) = m+2
2 , p = d(v) and τ(Ci) = mi+1

2 for i ∈ [p].
Due to the arbitrariness of vertex v and the fact that p = d(v), G contains no
cycles. Thus, G is tree with m + 1 vertices and satisfies the König property [7]
τ(G) = ν(G). We have τ(G) = ν(G) ≤ m+1

2 , which is a contradiction.

Remark 1. For any connected graph, Theorem 3 implies a polynomial-time algo-
rithm for computing a vertex transversal with cardinality no more than m+1

2 .

166 Z. Tang and Z. Diao

Next, we establish a necessary condition of the extremal graphs G with m
edges satisfying τ(G) = m+1

2 .

Theorem 4. If a connected graph G(V,E) with m edges satisfies that τ(G) =
m+1
2 , then every block of G is an edge or a cycle, where a block is a maximal

biconnected subgraph.

Proof. For any block B of G, take arbitrarily a vertex v in B. Suppose that
C1, C2, . . . , Cp are all components of G \ v and Ci contains mi edges. According
to Theorem 3, we have

m + 1
2

= τ(G) ≤ τ(G \ v) + 1 ≤
p∑

i=1

mi + 1
2

+ 1 =
m − d(v) + p + 2

2
.

Thus, m + 1 ≤ m − d(v) + p + 2, which means d(v) ≤ p + 1. Since d(v) ≥ p, we
know that v has at most two adjacent vertices in B. If v has only one adjacent
vertex in B, then B is an edge. If v has exactly two adjacent vertices in B, by
the arbitrariness of v in B, then B is a cycle.

Remark 2. According to the result of Theorem 4, the extremal graphs belong
to the partial 2-tree graph classes [3]. For the graphs with bounded tree width,
the optimal vertex transversal can be computed in linear time in [2]. Then we
derive a linear time algorithm to decide whether a m-edge graph G possesses
the property τ(G) = m+1

2 .

4 The Rank 3 Hypergraphs

In this section, we prove Conjecture 3 holds for the rank 3 hypergraphs. This is an
immediate corollary of the results by Chen [4]. Furthermore, Diao [6] characterize
the extremal 3-uniform hypergraphs with equality holds. This demonstrates a
polynomial-time algorithm to decide whether a rank 3 hypergraph is extremal.

Theorem 5. [4] For every 3-uniform connected hypergraph H(V,E) with m
edges, τ(H) ≤ 2m+1

3 .

Theorem 6. [6] For every 3-uniform connected hypergraph H(V,E) with m
edges, τ(H) = 2m+1

3 if and only if H(V,E) is a hypertree with perfect matching.

Combined with Lemma 1, the next two corollaries are derived immediately.

Corollary 1. For every connected rank 3 hypergraph H(V,E) with m edges,
τ(H) ≤ 2m+1

3 .

Corollary 2. For every connected rank 3 hypergraph H(V,E) with m edges,
τ(H) = 2m+1

3 , then H(V,E) is a hypertree with perfect matching.

Remark 3. For a hypertree, there is a polynomial-time algorithm to compute
the vertex transversal number. Thus for every connected hypergraph H(V,E)
with rank 3, it is decidable whether τ(H) = 2m+1

3 holds in polynomial time.

On the Transversal Number of Rank k Hypergraphs 167

5 The Hypergraphs with König Property

In this section, we prove Conjecture 3 holds for the hypergraphs with the König
Property. A hypergraph H has the König Property [1] if the transversal number
is equal to the matching number: τ(H) = ν(H).

Lemma 2. For every connected rank k hypergraph H(V,E) with n vertices and
m edges, n ≤ (k − 1)m + 1.

Proof. We prove this lemma by induction on m. When m = 0, H(V,E) is an
isolate vertex, n ≤ (k−1)m+1 holds on. Assume this lemma holds on for m ≤ k.
When m = k + 1, take arbitrarily one edge e and consider the subgraph H \ e.
Obviously, H \ e has at most k components. Assume H \ e has p components
Hi(Vi, Ei) with ni = |Vi| and mi = |Ei| for each i ∈ [p]. Then by induction,
ni ≤ (k − 1)mi + 1 holds on. So we have

n = n1+· · ·+np ≤ (k−1)m1+· · ·+(k−1)mp+p = (k−1)(m−1)+p ≤ (k−1)m+1,

which completes the proof.

Lemma 3. Let H(V,E) be a k-uniform connected hypergraph with m edges. If
H has the König Property, then τ(H) ≤ (k−1)m+1

k .

Proof. According to the König Property and Lemma 2, we have the following
inequalities:

τ(H) = ν(H) ≤ n

k
≤ (k − 1)m + 1

k
.

According to Lemma 1 and Lemma 3, the next theorem is derived directly.

Theorem 7. Let H(V,E) be a connected rank k hypergraph with m edges. If H

has the König Property, then τ(H) ≤ (k−1)m+1
k .

Proof. Let H be a connected hypergraph with rank k. H has the König Prop-
erty with τ(H) = ν(H). If H is not k-uniform, we can construct a connected
k-uniform hypergraph H ′ by adding new vertices to each edge. As shown in
Fig. 1, for each edge e in H, if |e| < k, add k − |e| new vertices to form
an edge e′ in H ′. During this process, the edge number does not change and
τ(H) = τ(H ′), ν(H) = ν(H ′). Thus, the new hypergraph H ′ maintains the
König property with τ(H ′) = ν(H ′). According to Lemma 3, we have

τ(H ′) ≤ (k − 1)m + 1
k

, τ(H) = τ(H ′) ⇒ τ(H) ≤ (k − 1)m + 1
k

.

6 The Hypergraphs with Maximum Degree 2

In this section, we prove Conjecture 3 holds for the hypergraphs with maximum
degree 2 and characterize the extremal hypergraphs with equality holds. These

168 Z. Tang and Z. Diao

results are proved by the dual hypergraphs. For a hypergraph H(V,E), the dual
hypergraph [1] H∗(V ∗, E∗) is a hypergraph whose vertices V ∗ correspond to the
edges E of H and edges E∗ correspond to the vertices V of H. Denote that
n = |V |, m = |E|, n∗ = |V ∗| and m∗ = |E∗|. We have the following relationships
of parameters between a hypergraph and its dual hypergraph: (i) n∗ = m; (ii)
m∗ = n; (iii) τ(H) = τ ′(H∗).

6.1 The Bound of Hypergraphs with Maximum Degree 2

In this subsection, we prove Conjecture 3 holds for the hypergraphs with max-
imum degree 2. For a hypergraph H(V,E) with maximum degree 2, its dual
hypergraph is a multi-graph G∗(V ∗, E∗). The transversal number τ(H) corre-
sponds to the edge covering number τ ′(G∗). The edge covering number is related
to the matching number by the theorem of Gallai [9]. The content of proof is
organized as follows:

– An lower bound of matching number is proven by Lemmas 4, 5 and 6.
– An upper bound of edge covering number is proven by Lemma 7.
– Conjecture 3 for the hypergraphs with maximum degree 2 is proven by The-

orem 9.

Theorem 8. [9] [Gallai’s Theorem]For every connected graph G(V,E) with n
vertices and the minimum degree δ(G) > 0, ν(G) + τ ′(G) = n.

Lemma 4. For every tree T (V,E) with m edges and Δ(T) ≤ k, ν(T) ≥ m
k .

Proof. We prove this lemma by contradiction. Let us take out the counterexam-
ple T (V,E) with minimum edges. Thus d(v) ≤ k for each v ∈ V and ν(T) < m

k .
Obviously T (V,E) has at least three vertices. The longest path in T is p, which
connects one leaf v1 to another leaf v2, as shown in Fig. 2. v is the only adjacent
vertex of v1. The degree of v is d(v) and T \ v has d(v) components, denoted as
{Ti, 1 ≤ i ≤ d(v)}.

Fig. 2. The longest path p between leaves v1 and v2

Claim 1: ν(T \ v) ≥ m−k
k .

T is the counterexample with minimum edges, thus ν(Ti) ≥ mi

k . Combined with
d(v) ≤ k, we have the following inequality:

ν(T \ v) =
∑

1≤i≤d(v)

ν(Ti) ≥
∑

1≤i≤d(v)

mi

k
=

m − d(v)
k

≥ m − k

k
.

On the Transversal Number of Rank k Hypergraphs 169

Claim 2: ν(T) ≥ ν(T \ v) + 1.
v1 is a leaf in T . For every matching M in T \v, M ∪ e(v1, v) is a matching in T .
According to these claims, we have the following inequality:

ν(T) ≥ ν(T \ v) + 1 ≥ m − k

k
+ 1 =

m

k
,

which is a contradiction with ν(T) < m
k .

Lemma 5. For every tree T (V,E) with n vertices and Δ(T) ≤ k, ν(T) ≥ n−1
k .

Proof. Every tree T (V,E) has m = n − 1. According to Lemma 4, ν(T) ≥ n−1
k

holds.

Lemma 6. For every connected graph G(V,E) with n vertices and Δ(G) ≤ k,
ν(G) ≥ n−1

k .

Proof. Take out a spanning tree T of G. According to Lemma 5, ν(G) ≥ ν(T) ≥
n−1
k .

Lemma 7. For every connected graph G(V,E) with n vertices and Δ(G) ≤ k,
τ ′(G) ≤ (k−1)n+1

k .

Proof. According to Theorem 8 and Lemma 6, τ ′(G) = n − ν(G) ≤ n − n−1
k =

(k−1)n+1
k holds.

Theorem 9. Let H(V,E) be a connected hypergraph with m edges and rank k.
If maximum degree of H is no more than 2, then τ(H) ≤ (k−1)m+1

k .

Proof. Consider the dual hypergraph H∗(V ∗, E∗) of H whose vertices corre-
spond to the edges of H and edges correspond to the vertices of H. A vertex
transversal in H correspond to an edge cover in H∗. Thus we have

n∗ = m, m∗ = n, τ(H) = τ ′(H∗), τ(H) ≤ (k − 1)m + 1

k
⇔ τ ′(H∗) ≤ (k − 1)n∗ + 1

k
.

The rank of H is k, which means every edge of H contains at most k vertices.
Thus every vertex’s degree is at most k in H∗. The maximum degree of H
is no more than 2, thus every edge of H∗ contains at most 2 vertices. This
means the hypergraph H∗ is a multigraph, denoted by G∗. Delete the loops and
multiedges to a simple graph. The deleting operations do not change the edge
covering number. According to Lemma 7, τ ′(G∗) ≤ (k−1)n∗+1

k , which means
τ(H) ≤ (k−1)m+1

k .

6.2 The Extremal Hypergraphs with Maximum Degree 2

In this subsection, we characterize the extremal hypergraphs with maximum
degree 2, meaning the equality τ(H) = (k−1)m+1

k holds. As shown before, the
maximum degree restricts its dual hypergraph is a multi-graph. The transversal
number of a hypergraph corresponds to the edge covering number of its dual
multi-graph. For a graph, the edge covering number is related to the matching
number by the theorem of Gallai [9]. The content of proof is organized as follows:

170 Z. Tang and Z. Diao

– An family of graphs called k-star tree is introduced by Definitions 1, 2, 3 and
Lemma 8.

– The extremal graphs with matching number are characterized by Lemmas 9,
10 and 11.

– The extremal graphs with edge covering number are characterized by
Lemma 12.

– The extremal maximum degree 2 hypergraphs with transversal number are
characterized by Theorem 10.

Recall that k-star is a (k+1)-vertex tree with k leaves and the central vertex
of a k-star is the k-degree vertex. Then we introduce the definition of k-star tree.

Definition 1. For k ≥ 3, a tree T (V,E) is called a k-star tree if it satisfies

– Each vertex’s degree is no more than k.
– The edges of T can be decomposed into several k-stars.

Definition 2. For a k-star tree T (V,E), the central vertices of k-stars are called
central vertices and other vertices are called noncentral vertices. The vertices
connecting different k-stars are called adjacent vertices. Noncentral vertices are
formed by adjacent vertices and leaves.

Definition 3. For a k-star tree T (V,E), the structure tree describes the struc-
ture of T as formed by its k-stars. Let A denote the set of adjacent vertices of
T , and B the set of its k-stars. Then, we have a natural tree T ′(A ∪ B,E′) on
vertex set A ∪ B formed by the edges e′(a, b) ∈ E′ with a ∈ A, b ∈ B and a ∈ b,
which means the adjacent vertex a belongs to the k-star b in T . An example is
shown in Fig. 3.

Fig. 3. A k-star tree, where the squares, the hollow dots and the solid dots are central
vertices, adjacent vertices and leaves, respectively.

On the Transversal Number of Rank k Hypergraphs 171

Lemma 8. For a k-star tree T (V,E), there is a unique k-star decomposition
of T .

Proof. Let p be the number of k-stars in T . This proof can be finished by induc-
tion on p.

– When p = 0, T is an isolated vertex and there is a unique k-star decomposi-
tion.

– When p = 1, T is a k-star and there is a unique k-star decomposition.
– Assume the lemma holds for p ≤ t. When p = t+1, let us consider the struc-

ture tree T ′ of the k-star tree T . v′ is a leaf in T ′ and Sv′ is the corresponding
k-star in T . v is the central vertex of Sv′ , as shown in Fig. 4. T \ v is also a
k-star tree and the number of k-stars in T \v is exactly t. By induction, there
is a unique k-star decomposition D in T \v. Thus D∪Sv′ is the unique k-star
decomposition in T . The lemma holds for p = t + 1. Therefore, the lemma
holds for every k-star tree.

Fig. 4. The central vertex v in k-star tree T

Lemma 9. For every tree T (V,E) with m ≥ 2 edges and Δ(T) ≤ k, ν(T) = m
k

if and only if T is a k-star tree.

Proof. Necessity: T (V,E) is a tree with Δ(T) ≤ k and ν(T) = m
k holds. It needs

to show T is a k-star tree. Since m ≥ 2, T (V,E) has at least three vertices. Take
out a leaf u in T arbitrarily and v is the only adjacent vertex of u. The degree
of v is d(v) and T \ v has d(v) components, denoted as {Ti, 1 ≤ i ≤ d(v)}.
Claim 1: ν(T \ v) ≥ m−k

k .
According to Lemma 4, ν(Ti) ≥ mi

k . Combined with d(v) ≤ k, we have the
following inequality:

ν(T \ v) =
∑

1≤i≤d(v)

ν(Ti) ≥
∑

1≤i≤d(v)

mi

k
=

m − d(v)
k

≥ m − k

k
.

Claim 2: ν(T) ≥ ν(T \ v) + 1.
u is a leaf in T . For every matching M in T \ v, M ∪ e(u, v) is a matching in T .
According to these claims, we have the following inequality:

ν(T) ≥ ν(T \ v) + 1 ≥ m − k

k
+ 1 =

m

k
.

172 Z. Tang and Z. Diao

Combined with ν(T) = m
k , we have ν(T \ v) = m−k

k . This means the degree of v
is exactly k and in T \ v, each component {Ti, 1 ≤ i ≤ d(v)} satisfies ν(Ti) = mi

k
holds.

Take out {Ti, 1 ≤ i ≤ d(v)} as T and repeat the above analysis pro-
cess. Finally, there are some isolated vertices. Denote the deleted vertices as
{vj , 1 ≤ j ≤ t}. A k-star Sj is deleted when vj is deleted. Thus the edges of T
can be decomposed into several k-stars. According to Definition 1, T is a k-star
tree.

Sufficiency: T is a k-star tree. It needs to show ν(T) = m
k . Let p be the number

of k-stars in T . We do induction on p.

– When p = 0, T is an isolated vertex and ν(T) = m
k holds.

– When p = 1, T is a k-star and ν(T) = m
k holds.

– Assume the sufficiency holds for p ≤ t. When p = t + 1, let us consider
the structure tree T ′ of the k-star tree T . v′ is a leaf in T ′ and Sv′ is the
corresponding k-star in T . v is the central vertex of Sv′ , as shown in Fig. 4.
T \ v is also a k-star tree and the number of k-stars in T \ v is exactly t. By
induction, ν(T \ v) = m−k

k holds. Thus we have

ν(T) = ν(T \ v) + 1 =
m − k

k
+ 1 =

m

k
.

The sufficiency holds for p = t + 1. Therefore, the sufficiency holds for every
k-star tree.

Remark 4. The above proof also demonstrates a polynomial-time algorithm to
decide whether a tree T is a k-star tree. In addition, If T is a k-star tree, the
algorithm gives the unique k-star decomposition.

Lemma 10. For every tree T (V,E) with n vertices and Δ(T) ≤ k, ν(T) = n−1
k

if and only if T is a k-star tree.

Proof. Every tree T (V,E) has m = n − 1 edges. According to Lemma 9, ν(T) =
n−1
k if and only if T is a k-star tree.

Lemma 11. For every connected graph G(V,E) with n vertices and Δ(G) ≤ k,
ν(G) = n−1

k if and only if G is a k-star tree.

Proof. Sufficiency: G is a k-star tree. According to Lemma 10, ν(G) = n−1
k

holds.
Necessity: G(V,E) is a connected graph with Δ(G) ≤ k, ν(G) = n−1

k . It needs to
show G is a k-star tree. Take out arbitrarily a spanning tree T of G. According
to Lemma 5, we have

ν(G) ≥ ν(T) ≥ n − 1
k

, ν(G) =
n − 1

k
⇒ ν(T) =

n − 1
k

.

According to Lemma 10, T is a k-star tree. By arbitrariness, the next claim
holds.

On the Transversal Number of Rank k Hypergraphs 173

Claim 1: Each spanning tree in G is a k-star tree.
T is a k-star tree. The vertices are divided into central vertices and noncentral
vertices. Central vertices are only connected with noncentral vertices and vice
versa. Thus the next claim holds.
Claim 2: For each path p in T , central vertices and noncentral vertices are
adjacent in p.
We will show G is T . This is proved by contradiction. Suppose there is an edge
e(u, v) ∈ G \ T . T is a k-star tree. According to Definition 2, the vertices are
divided into central vertices and noncentral vertices. Noncentral vertices are
divided into adjacent vertices and leaves. Two cases are discussed as follows:

– u or v is a central vertex. Without loss of generality, suppose u is a central
vertex. The degree of u is k in T . In T ∪ e(u, v), the degree of u is k + 1,
which is a contradiction with any degree no more than k in G. This case is
impossible.

– u and v are noncentral vertices. The unique u − v path in T is denoted as p.
w is the adjacent vertex of v in p. By Claim 2, w is a central vertex. Take
out the longest path with start vertex w from T \e(v, w), denoted as p̃(w, v1).
Thus, v1 is a leaf in T . Consider the spanning tree T̃ = T ∪ e(u, v) \ e(v, w),
as shown in Fig. 5. By Claim 1, T̃ is also a k-star tree. p̃(w, v1) is a path
in both T and T̃ . By Claim 2, w is also a central vertex in T̃ . This is a
contradiction with d(w) = k − 1 < k in T̃ . This case is impossible.

Fig. 5. The case when u and v are noncentral vertices

Above all, there is a contradiction for each cases. Thus our hypothesis does
not hold and there is no edge e(u, v) ∈ G \ T . Thus G is T , which is a k-star
tree.

Lemma 12. For every connected graph G(V,E) with n vertices and Δ(G) ≤ k,
τ ′(G) = (k−1)n+1

k holds if and only if G is a k-star tree.

Proof. According to Theorem 8 and Lemma 11, τ ′(G) = n − ν(G) = n − n−1
k =

(k−1)n+1
k holds if and only if G is a k-star tree.

Theorem 10. Let H(V,E) be a connected rank k hypergraph with m edges. If
maximum degree of H is no more than 2, then τ(H) = (k−1)m+1

k if and only if
the simple dual graph G∗ is a k-star tree.

174 Z. Tang and Z. Diao

Proof. Consider the dual hypergraph H∗(V ∗, E∗) of H whose vertices corre-
spond to the edges of H and edges correspond to the vertices of H. A vertex
transversal in H correspond to an edge cover in H∗. Thus we have

n∗ = m, m∗ = n, τ(H) = τ ′(H∗), τ(H) =
(k − 1)m + 1

k
⇔ τ ′(H∗) =

(k − 1)n∗ + 1

k
.

The rank of H is k, which means every edge of H contains at most k vertices.
Thus every vertex’s degree is at most k in H∗. The maximum degree of H is no
more than 2, thus every edge of H∗ contains at most 2 vertices. This means the
hypergraph H∗ is a multigraph, denoted by G∗. Delete the loops and multiedges
to a simple graph. The deleting operations do not change the edge covering
number. According to Lemma 12, τ ′(G∗) = (k−1)n∗+1

k if and only if G∗ is a
k-star tree. This means τ(H) = (k−1)m+1

k if and only if the simple dual graph
G∗ is a k-star tree.

Remark 5. For a simple graph, there is a polynomial-time algorithm to compute
the edge covering number [16]. Thus for every connected hypergraph H(V,E)
with maximum degree 2, it is decidable whether τ(H) = (k−1)m+1

k holds in
polynomial time.

Remark 6. For a k-star tree as a dual graph, the primal hypergraph is a k-flower.
The extremal hypergraphs are exactly k-flowers connected by common edges as
shown in Fig. 6. Some 1-degree vertices are added in the edges which correspond
to the deleted loops in a k-star tree.

Fig. 6. A k-star tree and its primal hypergraph

References

1. Berge, C.: Hypergraphs. North-Holland, Paris (1989)
2. Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In:

Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-19488-6 110

https://doi.org/10.1007/3-540-19488-6_110

On the Transversal Number of Rank k Hypergraphs 175

3. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor.
Comput. Sci. 209(1), 1–45 (1998)

4. Chen, X., Diao, Z., Hu, X., Tang, Z.: Covering triangles in edge-weighted graphs.
Theory Comput. Syst. 62(6), 1525–1552 (2018)

5. Chvátal, V., Mcdiarmid, C.: Small transversals in hypergraphs. Combinatorica
12(1), 19–26 (1992)

6. Diao, Z.: On the vertex cover number of 3-uniform hypergraphs. J. Oper. Res. Soc.
China 9, 427–440 (2021)

7. Diestel, R.: Graph Theory, 4th Edition, Graduate texts in mathematics, vol. 173.
Springer, New York (2012)

8. Dorfling, M., Henning, M.A.: Linear hypergraphs with large transversal number
and maximum degree two. Eur. J. Comb. 36, 231–236 (2014)

9. Gallai, T.: Uber extreme punkt-und kantenmengen, annales universitatis scien-
tiarum budapestinensis de rolando eotvos nominatae. Sect. Math. 2, 133–138
(1959)

10. Henning, M.A., Löwenstein, C.: Hypergraphs with large transversal number and
with edge sizes at least four. Discrete Appl. Math. 10(3), 1133–1140 (2012)

11. Henning, M.A., Yeo, A.: Total domination in 2-connected graphs and in graphs
with no induced 6-cycles. J. Graph Theory 60(1), 55–79 (2010)

12. Henning, M.A., Yeo, A.: Hypergraphs with large transversal number. Discrete
Math. 313, 959–966 (2013)

13. Henning, M.A., Yeo, A.: Lower bounds on the size of maximum independent sets
and matchings in hypergraphs of rank three. J. Graph Theory 72, 220–245 (2013)

14. Henning, M.A., Yeo, A.: Transversals and matchings in 3-uniform hypergraphs.
Euro. J. Combinatorics 34, 217–228 (2013)

15. Lai, F.C., Chang, G.J.: An upper bound for the transversal numbers of 4-uniform
hypergraphs. J. Combinatorial Theory Ser. B 50(1), 129–133 (1990)

16. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24.
Springer, Heidelberg (2003)

17. Thomassé, S., Yeo, A.: Total domination of graphs and small transversals of hyper-
graphs. Combinatorica 27(4), 473–487 (2007)

18. Tuza, Z.: Covering all cliques of a graph. Discret. Math. 86(1–3), 117–126 (1990)

Exact Algorithms and Hardness Results
for Geometric Red-Blue Hitting Set

Problem

Raghunath Reddy Madireddy1, Subhas C. Nandy2, and Supantha Pandit3(B)

1 Birla Institute of Technology and Science Pilani, Hyderabad Campus,
Hyderabad, Telangana, India

raghunath@hyderabad.bits-pilani.ac.in
2 Indian Statistical Institute, Kolkata, India

nandysc@isical.ac.in
3 Dhirubhai Ambani Institute of Information and Communication Technology,

Gandhinagar, Gujarat, India

pantha.pandit@gmail.com

Abstract. We study geometric variations of the Red-Blue Hitting Set
problem. Given two sets of objects R and B, colored red and blue,
respectively, and a set of points P in the plane, the goal is to find a
subset P ′ ⊆ P of points that hits all blue objects in B while hitting
the minimum number of red objects in R. We study this problem for
various geometric objects. We present a polynomial-time algorithm for
the problem with intervals on the real line. On the other hand, we show
that the problem is NP-hard for axis-parallel unit segments. Next, we
study the problem with axis-parallel rectangles. We give a polynomial-
time algorithm for the problem when the rectangles are anchored on a
horizontal line. The problem is shown to be NP-hard when all the rect-
angles intersect a horizontal line. Finally, we prove that the problem is
APX-hard when the objects are axis-parallel rectangles containing the
origin of the plane, axis-parallel rectangles where every two rectangles
intersect exactly either zero or four times, axis-parallel line segments,
axis-parallel strips, and downward shadows of segments. To achieve these
APX-hardness results, we first introduce a variation of the Red-Blue Hit-
ting Set problem in a set system, called the Special-Red-Blue Hitting
Set problem. We prove that the Special-Red-Blue Hitting Set problem is
APX-hard and we provide an encoding of each class of objects mentioned
above as the Special-Red-Blue Hitting Set problem.

Keywords: Special Red-Blue Hitting Set · Anchored rectangles ·
Intervals · Polynomial-time algorithm · NP-hard · APX-hard

1 Introduction

The Hitting Set problem is a fundamental and well-studied problem in computer
science and combinatorial optimization. Here, a set P of elements and a collection
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 176–191, 2022.
https://doi.org/10.1007/978-3-031-20796-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_13&domain=pdf
https://doi.org/10.1007/978-3-031-20796-9_13

Geometric Red-Blue Hitting Set Problem 177

S of subsets of P are given. The goal is to find a minimum size subset P ′ ⊆ P
such that each set in S is hit by some element of P ′. In the geometric setting P
represents a set of points and S represents a set of geometric objects in the plane.
A well-studied variation of the Hitting Set problem is the Red-Blue Hitting Set
problem. In this case, we are given a set P of elements and two collections, B
and R, of subsets of P ; the goal is to pick a subset of elements P ′ ⊆ P which
hits all the sets in B while hitting the minimum number of sets in R. In this
paper, we consider a geometric variant of the problem which is given below.

Red-Blue Hitting Set (RBHS) Problem. We are given a set of points
P and two sets of objects R (red objects) and B (blue objects) in the plane.
The goal is to pick a subset P ′ ⊆ P that hits all the objects in B while
hitting the minimum number of objects in R.

In this paper, we study the hardness and approximability of the RBHS prob-
lem for the geometric objects such as intervals on the real line, line segments,
and axis-parallel rectangles.

1.1 Previous Work

In the Set Cover problem, a set U and a collection S of subsets of 2U are given,
and the goal is to find a minimum size sub-collection S′ ⊆ S that covers all ele-
ments in U . Both Set Cover and Hitting Set problems are dual to each other in the
classical setting1. The Hitting Set problem is NP-hard [11] and cannot be approx-
imated better than O(log n) factor unless P= NP [9,14] (note that n = |U |). In
the geometric setting the Set Cover problem is NP-hard even for simple geometric
objects such as unit disk [10], unit squares [10], to name a few. Further, PTASes
exist for unit disks [13,19] and axis-parallel unit squares [5,8]. Since the Set Cover
and Hitting Set problems are dual of each other, the above results also hold for the
Hitting Set problem for unit disks and unit squares. In [4], Chan and Grant proved
that the Set Cover problem is APX-hard for several classes of objects such as axis-
parallel rectangles containing a common point, axis-parallel strips, axis-parallel
rectangles such that each pair intersects in either zero or four times, downward
shadows of line segments, etc. They also proved that the Hitting Set problem is
APX-hard for axis-parallel strips and rectangles intersecting zero or four times.
Further, Madireddy and Mudgal [15] proved that the Hitting Set problem is APX-
hard for rectangles that contain the origin of the plane and downward shadows of
segments. The geometric Hitting Set and Set Cover problems are also NP-hard for
half-strips anchored on two parallel lines [17,18].

Researchers have studied variations of the Set Cover problem due to its numer-
ous applications and one such variations is the Red-Blue Set Cover problem
(RBSC). It was first introduced by Carr et al. [3] for the set systems. Here, we
are given two sets of elements R and B and a collection of subsets S ⊆ 2R∪B ; the

1 https://www8.cs.umu.se/kurser/TDBA77/VT06/algorithms/BOOK/BOOK5/
NODE201.HTM.

https://www8.cs.umu.se/kurser/TDBA77/VT06/algorithms/BOOK/BOOK5/NODE201.HTM
https://www8.cs.umu.se/kurser/TDBA77/VT06/algorithms/BOOK/BOOK5/NODE201.HTM

178 R. R. Madireddy et al.

goal is to pick a sub-collection S′ ⊆ S that covers all elements in B while covering
the minimum number of elements in R. In [3], it is proved that, unless P= NP,
the RBSC problem cannot be approximated within 2log

1−δ n-factor in polynomial
time, where δ = 1

logc log n with c ≤ 1
2 (note that n = |U |). In a geometric setting,

Chan and Hu [5] first considered the RBSC problem and proved that the problem
is NP-hard for axis-parallel unit squares and provided a PTAS for the same. Fur-
ther, it is known that the RBSC problem is APX-hard when the objects are axis-
parallel rectangles [21] of arbitrary size. In [16], APX-hardness results are given for
the RBSC problem for several classes of objects mentioned in [4]. Further, in [16],
NP-hardness proofs are given for the RBSC problem with axis-parallel rectangles
intersecting a horizontal line and rectangles anchored on two parallel lines.

Dom et al. [7] studied the Red-Blue Hitting Set problem (in a set system)
with consecutive ones property2. Based on whether red or blue sets or both the
sets satisfy the consecutive ones property, the authors gave NP-hardness results
or polynomial-time algorithms. Chang et al. [6] considered the same problem
and gave an O((m + n)k + k2)-time algorithm, (which improves the time bound
O(mnk2) of [7]) for the RBHS problem when the union of both red and blue
sets satisfy the consecutive ones property where m = |B|, n = |R|, and k = |P |.
We note that the polynomial-time algorithm in [6] also works for RBHS problem
with intervals on a real line such that no interval in R ∪ B completely covers
another interval in R ∪ B.

1.2 Our Contributions

We first provide an O(m log m + n log n + k(m + n))-time exact algorithm for
RBHS problem, where m = |B|, n = |R|, and k = |P |, when the objects in R∪B
are intervals on the real line (Sect. 3.1). Further, for the case of line segments, we
show that the problem is NP-hard even when the line segments are axis-parallel
unit segments (Sect. 3.2).

Next, we consider the case when the objects in R ∪ B are axis-parallel rect-
angles. We give a polynomial-time algorithm for RBHS problem when all the
axis-parallel rectangles anchored along a horizontal line (see Sect. 4.1). On the
other hand, we show that the RBHS problem is NP-hard even when all the
rectangles intersecting a horizontal line (see Sect. 4.2).

Finally, we show that RBHS problem is APX-hard when the objects in R∪B
are: (i) rectangles containing the origin, (ii) downward shadows of segments,
(iii) axis-parallel strips, (iv) axis-parallel rectangles when every pair of rectan-
gles intersect either zero or four times, and (v) axis-parallel line segments. In
the process of proving the APX-hardness results for RBHS problem, we define
a restricted variant of the RBHS problem in a set system, namely Special Red
Blue Hitting Set (SPECIAL-RBHS) problem and show that the problem is APX-
hard. By encoding the instance of SPECIAL-RBHS problem into instances of
2 Let X be a set of elements and C be a collection of subsets of X. The collection C
has the consecutive ones property if there exist a linear order of elements in X and
a 0-1 matrix A, where Aij = 1 if and only if i-th set in C contains the j-th element
in X, such that all 1’s in any row are consecutive.

Geometric Red-Blue Hitting Set Problem 179

RBHS problem, we show the RBHS problem is APX-hard for the above men-
tioned classes of objects.

Our work leaves two open questions (i) the complexity of the RBHS problem
for axis-parallel lines and (ii) existence of a PTAS or APX-hardness for the
RBHS problem with axis-parallel unit segments.

2 Preliminaries

In a formula in Conjunctive Normal Form (CNF), a clause is said to be negative
if all its literals are negatively present in that clause. Otherwise, if all its literals
are positively present, then the clause is called a positive clause. In Monotone
3-SAT (M3SAT) problem, a 3-CNF formula φ is given, where each clause is
either positive or negative and contains exactly three literals, the objective is to
decide whether φ is satisfiable. This problem is known to be NP-complete [12].
Now consider a planar embedding of the M3SAT problem, called the Planar
Monotone Rectilinear 3-SAT (PMR3SAT) problem [2]. In this problem, for each
variable or clause, a segment is considered. The variable segments are on a
horizontal line L ordered from left to right. The positive (resp. negative) clause
segments are placed below (resp. above) the line L and they are in different
levels in the y-direction. Each clause connects to the three literals it contains
by vertical connections. Finally, the embedding is drawn in such a way that it
becomes planar. See an instance φ of the PMR3SAT problem in Fig. 1. de Berg
and Khosravi [2] proved that this problem is NP-complete. For variable xi, order
the connections of positive clauses, that connect xi, left to right. Let C� be a
positive clause that connects to xi through the ξ-th connection according to this
order, then we say that C� is the ξ-th clause for xi. For example, for the variable
x1, C3 is the 1-st and C1 is the 2-nd clause. A similar description is given for
negative clauses by looking at the PMR3SAT embedding (Fig. 1) rotated 180◦.

Fig. 1. Planar monotone rectilinear 3-SAT

180 R. R. Madireddy et al.

3 The RBHS problem with lines and segments

In this section, we first present a polynomial-time algorithm for the RBHS prob-
lem where the elements in R ∪B are intervals on the real line IR. Next, we show
that the problem is NP-hard when the objects are axis-parallel unit segments.
In the following, we assume that m = |B|, n = |R|, and k = |P |.

3.1 Intervals on a Real Line IR

Let R and B be the sets of n and m intervals of color red and blue, respectively,
and P be the set of k points on the real line. We assume that (i) for every blue
interval, there is at least one point in P that can hit it (otherwise the solution
for this problem does not exist), (ii) the points in P are sorted, and (iii) the
end points of intervals in R and B are sorted; each end-point is tagged with its
color, whether it is left or right, and the coordinate of its other end-point.

Definition 1. If a segment b = [α, β] ∈ B completely covers (spans over)
another segment b′ = [α′, β′] ∈ B, i.e., α ≤ α′ and β ≥ β′ then b is said to
be dominated by b′.

We can get the dominated segments in B as follows. Scan the end-points of B
in left to right order. While processing the left end-point of a segment, it is
entered in a balanced binary tree TB. When the right end-point of a segment
t is processed, if its left end-point is the left-most element in TB , it is a non-
dominated segment, and is put in a set B′; otherwise, it is ignored. In both the
cases t is deleted from TB . Finally, B′ is the set of not-dominated segments, and
will be referred to as B. The segments in B are named as {b1, b2, . . . , bm} in
increasing order of their right end-points. The same naming holds if named with
respect to their left end-point as we have eliminated the dominated set of points
from B.

We design a dynamic programming based algorithm for the RBHS problem
with intervals (RBHSI problem) scanning the event points (i.e., the end points of
B∪R and the points of P) in left to right order. We maintain two height-balanced
binary trees TB and TR. At an instant of time, TB (resp. TR) contains the active
segments, i.e., whose left end-points are processed but right end-points are not
processed. We also maintain two arrays S and Γ . The element S[i] corresponds
to the point pi ∈ P , and it stores a tuple (σ, prev), where σ is the total number
of red segments hit by the best solution including pi for hitting up to the last
named segment in TB , and prev is the point of P chosen in that solution prior to
pi. The element Γ [bj] stores the point to hit the segment bj ∈ B that produces
the best solution.

When the left (resp. right) end-point of a segment is encountered, it is entered
in (resp. deleted from) the AVL Tree TB or TR depending on whether its color
is blue or red respectively. When a point pi ∈ P is encountered, if pi hits no blue
segment (i.e., TB = ∅), then pi is ignored. Otherwise, we compute the cost of
the best solution including pi as follows:

Geometric Red-Blue Hitting Set Problem 181

Let bk, b� ∈ B be the smallest and highest numbered segments in TB , respec-
tively. Let Γ [bk−1] = pj , and S[j] = (σ′, pθ). We compute σ = (σ′ +C), where
C denotes the number of red segments in TR that are not hit by pj but hit
by pi, and can be determined in O(|TR|) time. Next, we scan the array Γ
backward, and update Γ [θ] with i for all θ = b�, . . . , bk if the existing σ is
such that S[Γ [θ]] ≥ σ.

The correctness follows from using the best solution of hitting the right-most
segment that is not hit by the current point under processing, and the fact that
after processing each point in P we are updating the best solution of hitting each
blue segment in TB by checking whether the current point under processing has
the minimum σ value to hit that segment. The array Γ is always updated as B
contains non-dominated segments. The time complexity of processing the end-
points of R ∪ B is O(m log m + n log n). Processing each point pi ∈ P needs
scanning the tree TR to count C, and the tree TB to update their associated
tuple. Finally, following the prev pointers, we can identify the points in the
optimum solution. Thus, we have the following result:

Theorem 1. The proposed algorithm correctly solves the RBHSI problem in
O(m log m + n log n + k(m + n)) time using O(m + n + k) space.

3.2 Axis-Parallel Line Segments

We prove that the RBHS problem is NP-hard even when each member of R ∪B
is an axis-parallel unit segment (RBHS-ULS problem), by giving a polynomial-
time reduction from the M3SAT problem (see Sect. 2 for the definition). Dur-
ing the reduction, from an instance φ of the M3SAT problem, with n vari-
ables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm, an instance Hφ of the RBHS-
ULS problem is generated. To make the reduction clearly visible, in the reduc-
tion, we take horizontal unit segments and vertical infinite lines. Next we com-
press the configuration vertically to make the vertical lines as unit segments.

Variable Gadget: For the variable xi, the gadget (Fig. 2) consists of 4m + 4
blue segments {bi

1, b
i
2, . . . , b

i
4m+4}, 4m + 4 red segments {ri

1, r
i
2, . . . , r

i
4m+4}, and

4m+4 points {pi
1, p

i
2, . . . , p

i
4m+4}. The 2m+1 blue segments {bi

2, b
i
3, . . . , b

i
2m+2},

2m + 2 red segments {ri
1, r

i
2, . . . , r

i
2m+2}, and 2m + 2 points {pi

1, p
i
2, . . . , p

i
2m+2}

are on a horizontal line. The 2m + 1 blue segments {bi
2m+4, b

i
2m+5, . . . , b

i
4m+4}

and the 2m + 2 red segments {ri
2m+3, r

i
2m+4, . . . , r

i
4m+4}, and 2m + 2 points

{pi
2m+3, p

i
2m+4, . . . , p

i
4m+4} are on another horizontal line. There are two blue

vertical lines bi
1 and bi

2m+3. We place the blue and red segments and points in
such a way that the point pi

j hits exactly two blue segments bi
j and bi

j+1 and
exactly one red segment ri

j , for 1 ≤ j ≤ 4m + 4 (assuming bi
4m+5 = bi

1) (Fig. 2).
Observe that, there are exactly two sets of points; P i

1 = {pi
1, p

i
3, . . . , p

i
4m+3} and

P i
2 = {pi

2, p
i
4, . . . , p

i
4m+4}; such that each of them hits all the blue segments and

half (i.e., 2m + 2) of the red segments. We assume that, the set P i
1 interprets xi

to be false and P i
2 interprets xi to be true.

182 R. R. Madireddy et al.

The overall structure of the construction is shown in Fig. 2. The variable
gadgets are placed vertically one after another in an identical way (i.e., all the j-
th point; except 1-st, (2m+2)-th, (2m+3)-th, and (4m+4)-th; from n variables
are on a vertical line, and left end points of j-th segment, except 1-st and (m+3)-
th), are also on a vertical line. There are two regions G1 and G2 at the extreme
left and extreme right of the construction. In the region G1, m blue vertical lines
{b11, b

2
1, . . . , b

m
1 } are arranged in a order from left to right. Similarly, in G2, m

blue vertical lines {b12m+3, b
2
2m+3, . . . , b

m
2m+3} are arranged in an order from left

to right. To the right of the point pi
2� (resp. pi

2�+1) there is a dedicated region
g�
+ (resp. g�

−) where the gadget of C� is placed, 1 ≤
 ≤ m.

Clause Gadgets and Its Placement: Let C� be a negative clause that contains
variables xi, xj , and xk. For C�, the gadget consists of a single vertical line b�.
The line b� is placed inside the region g�

−. The three points pi
2�+1, pj

2�+1, and
pk
2�+1 are shifted horizontally and placed inside g�

− (see Fig. 2).

Fig. 2. Schematic construction of an instance of the RBHS-ULS problem from an
instance of the M3SAT problem. Here, the strip G1 is magnified at the left side of the
figure. A similar structure as G1 is there inside the strip G2.

This completes the construction and the construction can be made in poly-
nomial (in n and m) time. Observe that, in the construction the set R is a set
of horizontal segments and the set B is a set of horizontal segments and vertical
lines. By compressing the plane vertically such that vertical lines compressed to
a vertical segment of unit length, all objects in R ∪ B become axis-parallel unit
segments. We conclude the following theorem.

Theorem 2. The RBHS-ULS problem is NP-hard.

Proof. We prove that φ is satisfiable if and only if 2n(m + 1) points hit all blue
objects and 2n(m + 1) red segments in Hφ.

Assume that φ is satisfiable and let there be a satisfying assignment. If xi is
true, the set P i

2 is selected, otherwise, the set P i
1 is selected. So a total 2n(m+1)

Geometric Red-Blue Hitting Set Problem 183

points are selected across n variables that hits all blue segments and 2mn + 2n
red segments in all variable gadgets. Now consider a negative clause C�, the
three points pi

2�+1, pj
2�+1, and pk

2�+1 are shifted vertically and placed on the blue
vertical line b�. Since C� is satisfiable at least one of xi, xi and xk is false and
the corresponding point hits b�.

On the other hand assume that 2n(m + 1) points hit all blue segments and
2n(m+1) red segments in Hφ. At least 2m+2 points are required to hit all blue
segments in the gadget of xi, 1 ≤ i ≤ n. They also hit 2m+2 red segments. Since
the solution contains 2n(m+1) points and the variable gadgets are disjoint, there
are exactly two sets of points, P i

1 and P i
2 such that each hits minimum number

of red segments for xi. Therefore, we set variable xi to be true if P i
2 is selected,

otherwise, we set xi to be false. Now we claim that this assignment satisfies all
the clauses. Let C� be a negative clause that contains variables xi, xj , and xk.
Since the segment b� is hit by the three points pi

2�+1, pj
2�+1, and pk

2�+1, at least
one of them must be in the solution. If pκ

2�+1 hits b�, then the set Pκ
1 that contains

pκ
2�+1 is selected, that makes xi to be false. This implies that C� is satisfiable. �	

4 The RBHS Problem with Axis-Parallel Rectangles

In this section we consider the objects in R ∪ B as axis-parallel rectangles.
We first give a polynomial-time exact algorithm for the RBHS problem when
the axis-parallel rectangles are anchored at the same side of a horizontal line
(RBHSAR problem). Next, we prove that the RBHS problem is NP-hard even
when axis-parallel rectangles stabbing a horizontal line (RBHS-RSHL problem).

4.1 Rectangles Anchored on a Horizontal Line

In this section, we give a dynamic programming algorithm for the RBH-
SAR problem. Let B = {b1, b2, . . . , bm} be a set of m blue rectangles, R =
{r1, r2, . . . , rn} be a set of n red rectangles in the plane that are anchored along
the x-axis and lie above the x-axis. Also, let P = {p1, p2, . . . , pk} be a set of
k points in the plane lie above the x-axis. Further, assume that the point set
P = {p1, p2, . . . , pk} is sorted according to their x-coordinates. Add two points,
p0 at the extreme left and pk+1 at the extreme right, in the set P . Let Pij be the
set of points {pi, pi+1, . . . , pj} and Bij (resp. Rij) be the set of blue (resp. red)
rectangles whose left boundaries are to the right of pi and right boundaries are
to the left of pj . Define a sub-problem H(i, j) that includes the point-set Pij ,
blue rectangle set Bij , and red rectangle set Rij . Denoting by bh, the minimum
height (top boundary has the minimum y-coordinate) rectangle in Bij , we have
the following result:

Lemma 1. The optimum value π(i, j) for the sub-problem H(i, j) satisfy

π(i, j) = min
�:p�∈P∩bh

{χ + π(i,
) + π(
, j)},

where χ is the number of red rectangles (in R) hit by p�.

184 R. R. Madireddy et al.

Proof. Let pd ∈ P be a point that lies inside bh ∈ Bij . As the given rectangles
in R ∪ B are anchored and lie above the x-axis, if we choose pd in a solution S,
all the rectangles in R ∪ B that are hit by pd are removed, and the rectangles
in Rij ∪ Bij that remain have their horizontal span is fully within either of the
vertical strips defined by the point-pair [pi, p�] and [p�, pj]. �	

Our aim is to recursively compute π(0, k + 1). We consider a DP table of
dimension (k + 1) × (k + 1). We consider a recursion stack, and the algorithm
starts with pushing π(0, k + 1) in the stack. While processing a top element
π(i, j) of the stack, if the value(s) π(i,
) and π(
, j) are previously computed,
those values will be available in the DP table. We add that/those value(s) with
χ, and in the recursion along this/these path(s) is/are terminated. The unsolved
sub-problem(s) (if any) are pushed in the stack for further processing. Finally,
when the recursion stack is empty, the answer is reported.

The correctness of the algorithm follows from Lemma 1. To solve H(i, j),
(i) identifying bh needs O(n) time, and (ii) we need to compute the minimum
of the values of O(k) sub-problems corresponding to the points in bh. For each
point pd ∈ bh, O(m + n) time is needed to create the set of red and blue rectan-
gles (Bi�, Ri�) and (B�j , R�j) for solving Hi� and H�j . The space complexity is
determined by the size of the DP table. Thus, we conclude the following theorem.

Theorem 3. Our proposed recursive algorithm for the RBHSAR problem cor-
rectly computes the optimum solution in O(k3(m + n)) time using O(k2) space.

4.2 Rectangles Stabbing a Horizontal Line

In this section we prove that the RBHS-RSHL problem, where the rectangles in
R ∪ B are stabbed by a horizontal line L, is NP-hard by giving a polynomial-
time reduction from the PMR3SAT problem (see Sect. 2 for the definition). Let
φ be an instance of the PMR3SAT problem with n variables x1, x2, . . . , xn and
m clauses C1, C2, . . . , Cm. Below we construct an instance Hφ of the RBHS-
RSHL problem from φ as follows.

Variable Gadget: The gadget for the variable xi is shown in Fig. 3. Let L be
a horizontal line. There are 2m + 1 points {pi

1, p
i
2, . . . , p

i
2m+1} that one side of L

and the remaining 2m+1 points {pi
2m+2, p

i
2m+3, . . . , p

i
4m+2} that are on the other

side of L. The gadget contains 4m + 2 blue rectangles {bi
1, b

i
2, . . . , b

i
4m+2} and

4m + 2 red rectangles {ri
1, r

i
2, . . . , r

i
4m+2}. The two rectangles bi

1 and bi
2m+2 are

intersected by L. The 2m blue rectangles {bi
2, b

i
3, . . . , b

i
2m+1} and the 2m+1 red

rectangles {ri
1, r

i
2, . . . , r

i
2m+1} are anchored on L from the above and the remain-

ing 2m blue rectangles {bi
2m+3, b

i
2m+4, . . . , b

i
4m+2} and the 2m+1 red rectangles

{ri
2m+2, r

i
2m+3, . . . , r

i
4m+2} are anchored on L from the below. The blue rectangle

bi
j covers two points pi

j−1 and pi
j , for 1 ≤ j ≤ 4m+2 (assuming pi

0 as pi
4m+2) and

the red rectangle ri
j covers the point pi

j , for 1 ≤ j ≤ 4m+2. It is clear that there
are exactly two sets; P i

1 = {pi
1, p

i
2, . . . , p

i
4m+1} and P i

2 = {pi
2, p

i
4, . . . , p

i
4m+2}; such

that each of them hits all the blue rectangles and minimum number (2m + 1) of

Geometric Red-Blue Hitting Set Problem 185

Fig. 3. Structure of a variable gadget.

red rectangles. The set P i
1 represents that the variable xi is false and the set P i

2

represents that xi is true.

Modification of Planar Embedding: We modify the planar embedding of
the PMR3SAT problem in the following way. The variable segments and its
placement remain as it is. The clause segments remain the same, however, their
placement is changed now. Consider the positive clauses. We reverse the levels of
the clause segments i.e., the highest level (largest y-valued) segment are placed
in lowest level (smallest y-valued), the second highest level segment are placed
in second lowest level (smallest y-valued), and so on. The connection (using
legs) between the variable and clauses remain in the same position however
their lengths may get increased or decreased. A similar construction is done for
negative clauses also. See Fig. 4(a) for this construction.

(a) (b)

Fig. 4. (a) A modification of the Planar Monotone Rectilinear 3-SAT instance given
in Fig. 1. (b) A schematic structure of the position of variable and clause gadgets and
their interconnection.

Next, we exchange the positive and negative clauses i.e., the clauses that
connect to the variables from above now connect the variables from below and
the clauses that connect to the variables from below are now connect the variables
from above. See Fig. 4(b) for this new interpretation.

186 R. R. Madireddy et al.

Clause Gadget: For each clause gadget, we take a blue rectangle. If the clause is
positive (resp. negative), then the top (resp. bottom) boundary of the rectangle
coincides with the clause segment, and the bottom (resp. top) boundary coincides
with L. In Fig. 4(b), we demonstrate a schematic diagram of the clause gadgets
and their placement with respect to the variable gadgets for the instance of the
PMR3SAT problem in Fig. 1.

Placement of Clause Gadgets with Respect to Variable Gadgets: Each
variable segment of the PMR3SAT problem instance φ is replaced with a variable
gadget and each clause segment of the PMR3SAT problem instance φ is replaced
with a blue rectangle. Now we describe the placement of the clause blue rectangle
with respect to the variable gadgets. Let C� be a positive clause that contains
xi, xj , and xk. Further, assume that C� is interpreted as the t1-th, t2-th, and
t3-th clause with respect to the variables xi, xj , and xk, respectively. Then, we
shift the three point pi

2t1 , pj
2t2

, and pk
2t3 vertically downwards from the variables

xi, xj , and xk, respectively, along the top boundary of b� (see Fig. 5).

Fig. 5. A clause gadget and its interaction with variable gadgets.

This construction and it can be done in polynomial (in n and m) time. Now,
we conclude the following theorem.

Theorem 4. The RBHS-RSHL problem is NP-hard.

Proof. We prove that φ is satisfiable if and only if in the instance Hφ of the
RBHS-RSHL problem generated from φ, 2mn + n points hit all blue rectangles
and 2mn + n red rectangles.

Assume that φ is satisfiable and let there be a satisfying assignment. If xi is
true, the set P i

2 is selected, otherwise, the set P i
1 is selected. So a total 2mn + n

points are selected across n variables that hit the blue rectangles of the variables
and 2mn + n red rectangles. Now for a positive clause C�, the three points pi

2t,
pj
2t, and pk

2t are placed inside the blue rectangle b�. Since C� is satisfiable at least
one of xi, xj , and xk is true and the corresponding point hits b�.

Assume that 2mn+n points hit all blue rectangles and 2mn+n red rectangles
in Hφ. Observe that at least 2m + 1 points hit the blue rectangles of the gadget
of xi. These points also hit 2m + 1 red rectangles. Since each variable gadget is

Geometric Red-Blue Hitting Set Problem 187

disjoint and the solution contains 2mn + n points, we say that exactly 2m + 1
points are required to stab the blue rectangles in the gadget of xi. Recall that,
there are exactly two optimal sets of points either P i

1 and P i
2 that hit minimum

number (2m + 1) of red rectangles. So we set xi to be true if P i
2 is selected,

otherwise we set xi to be false. We now argue that all the clauses are satisfiable.
Let C� be a positive clause contains variables xi, xj , and xk. The rectangle b� is
hit by at least one of pi

2t, pj
2t, and pk

2t. If pκ
2t, for κ ∈ {i, j, k}, hits b�, the variable

xκ is true, since pκ
2t ∈ Pκ

2 and Pκ
2 is selected. Resulting C� is satisfiable. �	

5 APX-Hardness Results for the RBHS Problem

We first introduce a restricted variant of the RBHS problem in a set system,
the Special-Red-Blue Hitting Set (SPECIAL-RBHS) problem. We show that
this problem is APX-hard. Next, we give encoding of the RBHS problem, as
SPECIAL-RBHS problem, for several classes of objects (see Theorem 6).

Special-Red-Blue Hitting Set (SPECIAL-RBHS) Problem:
Let (U,X) be a range space, and U = S ∪ T , where S = {s1i , s

2
i , s

3
i | i =

1, 2, . . . , n} and T = {t1q, t
2
q, t

3
q, t

4
q | q = 1, 2, . . . ,m} are the sets of elements.

Further, X = R ∪ B, where R and B are the collections of red and blue
subsets of U , respectively, such that
1. For each i = 1, 2, . . . , n, the set R contains a subset {s1i , s

2
i , s

3
i } ⊆ S.

2. For each q = 1, 2, . . . ,m, there exist two integers i and j, 1 ≤ i < j ≤ n,
such that X contains five subsets {sk

i , t1q}, {t1q, t
2
q}, {t2q, t

3
q}, {t3q, t

4
q}, and

{t4q, s
k′
j } of U for some k, k′ ∈ {1, 2, 3}. Further, the sets {sk

i , t1q}, {t2q, t
3
q},

and {t4q, s
k′
j } are in B and the sets {t1q, t

2
q} and {t3q, t

4
q} are in R.

3. Further, each element in U belongs to exactly one set in R and exactly
one set in B.
The goal is to find a subset U∗ ⊆ U of points that hits all the sets in B

while hitting the minimum number of sets in R.

Theorem 5. The SPECIAL-RBHS problem is APX-hard.

Proof. We give an L-reduction [20] from an APX-hard problem, the vertex cover
problem on cubic graphs [1] to the SPECIAL-RBHS problem. Let G = (V,E) be
a cubic graph where V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. We generate
an instance (U,X) of the SPECIAL-RBHS problem as follows:

1. For each vertex vi ∈ V , take three elements s1i , s
2
i , s

3
i in S. Thus, S =

{s1i , s
2
i , s

3
i | i = 1, 2, . . . , n}. Further, for each i = 1, 2, . . . , n, place set

{s1i , s
2
i , s

3
i } in R.

2. For each edge eq ∈ E, consider four elements t1q, t
2
q, t

3
q, and t4q in T . Thus,

T = {t1q, t
2
q, t

3
q, t

4
q | q = 1, 2, . . . ,m}.

3. For each edge eq = (vi, vj) ∈ E where 1 ≤ i < j ≤ n do the following:

188 R. R. Madireddy et al.

(a) Let k be a positive integer such that eq is the k-th edge incident to vi in
the order e1, e2, . . . , em. Similarly, let k′ be a positive integer such that
eq be the k′-th edge incident on vj in the order e1, e2, . . . , em. Since G is
a cubic graph, we have 1 ≤ k ≤ 3 and 1 ≤ k′ ≤ 3.

(b) Consider five subsets {sk
i , t1q}, {t1q, t

2
q}, {t2q, t

3
q}, {t3q, t

4
q}, and {t4q, s

k′
j } of

S ∪ T . Place the sets {sk
i , t1q}, {t2q, t

3
q}, {t4q, s

k′
j } in B and place the sets

{t1q, t
2
q}, {t3q, t

4
q} in R.

4. Finally, let U = S ∪ T and X = R ∪ B.

The above reduction is an L-reduction with α = 4 and β = 1 and the theorem
is proved. �	
Theorem 6. The RBHS problem is APX-hard for the following classes of
objects:
(O1:) Axis-parallel rectangles where each pair of rectangles intersect exactly
either zero or four times.
(O2:) Axis-parallel line segments.
(O3:) Axis-parallel strips.
(O4:) Rectangles containing the origin of the plane.
(O5:) Downward shadows of segments.

Proof. We give an encoding of each class as the SPECIAL-RBHS problem.

O1: We place the points s11, s
2
1, s

3
1, s

1
2, s

2
2, s

3
2, . . . , s

1
n, s2n, s3n on a horizontal line

in the same order from left to right such that for each i = 1, 2, . . . , n, the three
points s1i , s

2
i , and s3i are very close to each other (see Fig. 6). We place a rectangle

which covers only the three points s1i , s
2
i , and s3i (see Fig. 7(a)). Further, there

is a sufficient gap between the points corresponding to different i’s and this
gap is used to place the points t2q and t3q for q = 1, 2, . . . ,m. Further, for each
q = 1, 2, . . . ,m, there is a dedicated region in which we place the points t1q, t

2
q, t

3
q,

Fig. 6. Outline of placement of points in class O1.

Geometric Red-Blue Hitting Set Problem 189

and t4q (see Fig. 6). For each q = 1, 2, . . . ,m, we place axis-parallel rectangles for
the sets {sk

i , t1q}, {t1q, t
2
q}, {t2q, t

3
q}, {t3q, t

4
q}, and {t4q, s

k′
j } as shown in Fig. 7(a).

O2: The encoding is similar to class O1. Here, every rectangle in O1 is replaced
with an appropriate axis-parallel segment (see Fig. 7(b)).

O3: The encoding is similar to class O1 (Fig. 7(c)) except the placement of
s11, s

2
1, s

3
1, . . . , s

1
n, s2n, s3n. For each i = 1, 2, . . . , n, the tuples of points s1i , s

2
i , and s3i

are placed in an increasing stair-case fashion from bottom to top. The placement

(a) (b)

(c) (d)

(e)

Fig. 7. The encoding of sets {ski , t1q}, {t1q, t2q}, {t2q, t3q}, {t3q, t4q}, and {t4q, sk
′

j } for k = 2
and k′ = 1 for classes (a) Class O1 (b) Class O2 (c) Class O3, (d) Class O4, and (e)
Class O5.

190 R. R. Madireddy et al.

of other points is the same as in the case of O1. Further, vertical (resp. horizontal)
strips are used for blue (resp. red) sets.

O4: The encoding is given in Fig. 7(d). We place the points s11, s
2
1, s

3
1, s

1
2, s

2
2, s

3
2,

. . . , s1n, s2n, s3n, in the order from bottom to top, on a line parallel to y = x − 1.
Further, place the points t11, t

2
1, t

3
1, t

4
1, t

1
2, t

2
2, t

3
2, t

4
2, . . . , t

1
m, t2m, t3m, t4m on a line y =

x + 1 in the same order from bottom to top. Place a rectangle for each set
in the instance of SPECIAL-RBHS covering only the respective points. These
rectangles can be placed such that each one covers the origin of the plane.

O5: Place the points s11, s
2
1, s

3
1, s

1
2, s

2
2, s

3
2, . . . , s

1
n, s2n, s3n, in the same order on a line

parallel to y = −x and place the points t11, t
2
1, t

3
1, t

4
1, t

1
2, t

2
2, t

3
2, t

4
2, . . . , t

1
m, t2m, t3m, t4m

on the line y = x − 1. Finally, place the objects for the sets in the instance of
SPECIAL-RBHS problem that covers only the respective points in each set. The
encoding is given in Fig. 7(e). �	

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret.
Comput. Sci. 237(1), 123–134 (2000)

2. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the
plane. Int. J. Comput. Geom. Appl. 22(3), 187–206 (2012)

3. Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.: On the red-blue set cover prob-
lem. In: SODA, pp. 345–353 (2000)

4. Chan, T.M., Grant, E.: Exact algorithms and APX-hardness results for geometric
packing and covering problems. Comput. Geom. 47(2), 112–124 (2014)

5. Chan, T.M., Hu, N.: Geometric red blue set cover for unit squares and related
problems. Comput. Geom. 48(5), 380–385 (2015)

6. Chang, M., Chung, H., Lin, C.: An improved algorithm for the red-blue hitting set
problem with the consecutive ones property. Inf. Process. Lett. 110(20), 845–848
(2010)

7. Dom, M., Guo, J., Niedermeier, R., Wernicke, S.: Red-blue covering problems and
the consecutive ones property. J. Discrete Algorithms 6(3), 393–407 (2008)

8. Erlebach, T., van Leeuwen, E.J.: PTAS for weighted set cover on unit squares. In:
APPROX/RANDOM, pp. 166–177 (2010)

9. Feige, U.: A threshold of lnn for approximating set cover. J. ACM 45(4), 634–652
(1998)

10. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal Packing and Covering in
the Plane are NP-Complete. Inf. Process. Lett. 12(3), 133–137 (1981)

11. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is NP-complete.
SIAM J. Appl. Math. 32(4), 826–834 (1977)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

13. Li, J., Jin, Y.: A PTAS for the weighted unit disk cover problem. In: Automata,
Languages, and Programming, pp. 898–909 (2015)

14. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. J. ACM 41(5), 960–981 (1994)

15. Madireddy, R.R., Mudgal, A.: Approximability and hardness of geometric hitting
set with axis-parallel rectangles. Inf. Process. Lett. 141, 9–15 (2019)

Geometric Red-Blue Hitting Set Problem 191

16. Madireddy, R.R., Nandy, S.C., Pandit, S.: On the geometric red-blue set cover
problem. In: WALCOM, pp. 129–141 (2021)

17. Mudgal, A., Pandit, S.: Geometric hitting set and set cover problem with half-
strips. In: CCCG (2014)

18. Mudgal, A., Pandit, S.: Geometric hitting set, set cover and generalized class cover
problems with half-strips in opposite directions. Discret. Appl. Math. 211, 143–162
(2016)

19. Mustafa, N.H., Ray, S.: Improved Results on Geometric Hitting Set Problems.
Discrete Comput. Geom. 44(4), 883–895 (2010). https://doi.org/10.1007/s00454-
010-9285-9

20. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

21. Shanjani, S.H.: Hardness of approximation for red-blue covering. In: CCCG (2020)

https://doi.org/10.1007/s00454-010-9285-9
https://doi.org/10.1007/s00454-010-9285-9

Bounds for the Oriented Diameter
of Planar Triangulations

Debajyoti Mondal1 , N. Parthiban2(B), and Indra Rajasingh3

1 Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
dmondal@cs.usask.ca

2 Department of Data Science and Business Systems, School of Computing,
SRM Institute of Science and Technology, Kattankulathur, India

parthiban24589@gmail.com
3 Division of Mathematics, Saveetha School of Engineering, Saveetha Institute of

Medical and Technical Sciences, Chennai, India

Abstract. The diameter of an undirected or a directed graph is defined
to be the maximum shortest path distance over all pairs of vertices in
the graph. Given an undirected graph G, we examine the problem of
assigning directions to each edge of G such that the diameter of the
resulting oriented graph is minimized. The minimum diameter over all
strongly connected orientations is called the oriented diameter of G. The
problem of determining the oriented diameter of a graph is known to be
NP-hard, but the time-complexity question is open for planar graphs.
In this paper we compute the exact value of the oriented diameter for
triangular grid graphs. We then prove an n/3 lower bound and an n/2+
O(

√
n) upper bound on the oriented diameter of planar triangulations. It

is known that given a planar graph G with bounded treewidth and a fixed
positive integer k, one can determine in linear time whether the oriented
diameter of G is at most k. In contrast, we consider a weighted version
of the oriented diameter problem and show it to be weakly NP-complete
for planar graphs with bounded pathwidth.

Keywords: Oriented diameter · Planar graph · Separator · Triangular
grid

1 Introduction

An undirected graph is called oriented when each edge of the graph is assigned
an orientation. Computing such orientations often requires the resulting directed
graph to be strongly connected, i.e., every vertex in the directed graph must be
reachable from every other vertex. This is useful in transforming two-way traf-
fic or communication networks to one-way networks especially when one-way
communication is preferred or more cost effective over two-way communication

The work of D. Mondal is supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 192–205, 2022.
https://doi.org/10.1007/978-3-031-20796-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_14&domain=pdf
http://orcid.org/0000-0002-7370-8697
https://doi.org/10.1007/978-3-031-20796-9_14

Bounds for the Oriented Diameter of Planar Triangulations 193

channels [1,28], as well as finds application in the context of network broadcast-
ing and gossiping [10,20].

The diameter of a directed or undirected graph is the maximum shortest
path distance over all pairs of vertices, where the distance of a path is measured
by the number of its edges. The oriented diameter OD(G) of an undirected
graph G is the smallest diameter over all the strongly connected orientations
of G. In 1978, Chavátal et al. [3] proved that determining whether the oriented
diameter of a graph is at most two is NP-complete. They showed that the oriented
diameter of a 2-edge-connected graph with diameter 2 is at most 6, and there
exist graphs achieving this upper bound. For graphs with diameter 3, the known
upper and lower bounds are 9 and 11, respectively [22]. Several studies attempted
to provide good upper bounds on the orientated diameter problem of connected
and bridgeless graphs [4,7,21]. In 2001, Fomin et al. [7] discovered the relation
OD(G) ≤ 9γ(G) − 5 between the oriented diameter and the size γ(G) of a
minimum dominating set. Dankelmann et. al. [4] showed that every bridgeless
graph G of order n and maximum degree Δ has an orientated diameter at most
n − Δ − 3.

A rich body of literature examined oriented diameter for interconnection
networks [9,16,18,26] and for various interesting graph classes. Gutin et al. [13]
studied some well-known classes of strong digraphs where oriented diameter
exceeds the diameter of the underlying undirected graph only by a small con-
stant. Fujita et al. [11] considered the problem of finding the minimum oriented
diameter of star graphs and proved an upper bound of [5n/2] + 2 for any n ≥ 3,
which is a significant improvement over the upper bound 2n(n − 1) derived by
Chvátal and Thomassen [3]. Fomin et al. [8] showed that computing oriented
diameter remains NP-hard for split graphs and provided approximation algo-
rithms for chordal graphs. Later, they showed that the oriented diameter of an
AT-free graph is upper bounded by a linear function in its graph diameter [9].

We consider oriented diameter of planar graphs. Eggemann and Noble [6]
showed that given a planar graph G with bounded treewidth and a fixed positive
integer k, one can determine in linear time whether the oriented diameter of G
is at most k. They also showed how to remove the dependency on the treewidth
and gave an algorithm that given a fixed positive integer k, can decide whether
the oriented diameter of a planar graph is at most k in linear time. Recently,
Wang et al. [30] have showed that the diameter of a maximal outerplanar graph
with at least three vertices is upper bounded by �n/2� with four exceptions, and
the upper bound is sharp.

Our Contribution: In this paper we compute the exact value on the oriented
diameter for triangular grid graphs. This result relates to the vast literature that
attempts to compute diameter preserving or optimal orientation for well-known
graph classes (e.g., for two-dimensional torus [19], two-dimensional grid [27,28],
hypercube [23], products of graphs [17]). We then generalize the idea of comput-
ing oriented diameter of triangular grid graphs to give an algorithm for planar tri-
angulations. Given a planar triangulation with n vertices, we show how to orient
its edges such that the diameter of the resulting oriented graph is upper bounded

194 D. Mondal et al.

(0, 0, 2)

(1, 0, 1)

(2, 0, 0)

(1, 1, 0)

(0, 2, 0)

(0, 1, 1)
(a) (b)

obtuse edgeacute edge

h-level 0

h-level 1

h-level 2

horizontal edge

a-level 0 o-level 2 a-level 1 o-level 1
a-level 2

o-level 0

Fig. 1. The triangular-grid network T2. Illustration for (a) levels and (b) 3-tuples.

by n/2+O(
√

n). This is interesting since �n/2� is already known to be an upper
bound on the oriented diameter for the maximal outerplanar graphs [30]. We
next show that there exist planar triangulations with oriented diameter at least
n/3. Finally, we show that the weighted version of the oriented diameter problem
is weakly NP-complete even for planar graphs of bounded pathwidth, which con-
trasts the linear-time algorithm of Eggemann and Noble [6] for the unweighted
variant.

2 Oriented Diameter of a Triangular Grid

In this section we compute the exact value of the oriented diameter of triangular
grid graphs. A triangular tessellation of the plane with equilateral triangles is
called a triangular sheet or triangular grid. The vertices are the intersection of
lines and the lines between two vertices are the edges.

Definition 1. ([31]). Consider the ordered 3-tuples of integers (i, j, k) such that
i + j + k = r. Let these 3-tuples represent the vertices and let two vertices be
joined if the sum of the absolute differences of their coordinates is 2. The graph
generated is referred to as a triangular grid graph Tr of dimension r.

There are r + 1 levels in a triangular grid Tr and in each level i, there are
i + 1 vertices, 0 ≤ i ≤ r. This implies that Tr has (r + 1)(r + 2)/2 vertices and
3r(r + 1)/2 edges. Diameter of Tr is r. The edges of Tr can be partitioned into
horizontal edges, acute edges, and obtuse edges. The shortest path comprising
of horizontal (acute, obtuse) edges with end vertices of degree 2 in Tr is said to
be at h-level (a-level, o-level) 0. Inductively, the path through the parents of
vertices at level i is said to be at h-level (a-level, o-level) i+1, 0 ≤ i ≤ r−1. The
vertex v = (i, j, k) in Tr is the point of intersection of the paths representing its
h-level i, a-level j, and o-level k. See Figs. 1(a) and 1(b).

A simple observation on the length of a shortest cycle passing through any
two vertices of length 2 in Tr, r ≥ 2 yields the following result.

Lemma 1. Let G be the triangular grid Tr, r ≥ 2. Then OD(G) ≥ r + 1.

Proof. The diameter of Tr is r, which is realized between two end vertices of
h-level 0 line. Any shortest cycle in G passing through these two end vertices
has length r + (r + 1) = 2r + 1. Hence OD(G) ≥ r + 1.

Bounds for the Oriented Diameter of Planar Triangulations 195

The following algorithm yields an oriented triangular grid with diameter r+1.
In the sequel, if

#»

P and
#»

Q are directed paths then
#»

P ◦ #»

Q denotes the concatenation
of the paths

#»

P and
#»

Q with end of
#»

P as the beginning of
#»

Q.

Input: A triangular grid graph Tr of dimension r.
Output: An orientation of Tr with diameter r + 1.
Algorithm: Direct the h-level0 line from right to left; a-level0 line from bottom
to top; o-level0 line from top to bottom. Direct all other horizontal lines from
left to right, acute lines from top to bottom and the obtuse lines from bottom
to top.

Proof of Correctness: Given any two vertices u and v in Tr, we have to show
that there exist a (u, v)-directed path and a (v, u)-directed path, both of length
at most r + 1. Let u be (i, j, k) and v be (l,m, n). Without loss of generality
assume that i ≤ l.
Case 1(a): j < m and i + j ≥ l

Path from u to v: Let
#»

P be the directed path from u along the o-level k till it
reaches vertex w in the h-level l. Let

#»

Q be the directed path from w along the
h-level l till it reaches vertex v. Then

#»

P ◦ #»

Q is a directed path from u to v of
length (l − i) + (k − n) ≤ j + k − n = r − (i + n) ≤ r. See Fig. 2(a).
Path from v to u: When (i + j) < m, let

#»

P be the directed path from v along
the a-level m till it reaches vertex w in h-level 0. Let

#»

Q be the directed path
from w along h-level 0 till it reaches x at o-level k. Let

#»

R be the directed path
from x along o-level k till it reaches vertex u. Then

#»

P ◦ #»

Q ◦ #»

R is a directed
path from v to u of length l + (m − (i + j)) + i = r − n − j < r. See Fig. 2(b).
When m ≤ i + j, let

#»

P be the directed path from v along the a-level m till it
reaches vertex w in o-level k; let

#»

Q be the directed path from w along o-level k
till it reaches u. Then

#»

P ◦ #»

Q is a directed path from v to u of length at most of
l + (m − j) = r − n − j < r. See Fig. 2(c).
Case 1(b): j < m and i + j < l

Path from u to v: Let
#»

P be the directed path from u along the o-level k till it
reaches vertex w on the a-level 0. Let

#»

Q be the directed path from w along the
a-level 0 till it reaches vertex x at h-level l. Let

#»

R be the directed path from x
along h-level l till it reaches v. Then

#»

P ◦ #»

Q ◦ #»

R is a directed path from u to v of
length j + (l − (i + j)) + m = l + m − i = r − i − n < r. See Fig. 2(d).
Path from v to u: When (i + j) < m, let

#»

P be the directed path from v along
the a-level m till it reaches vertex w in h-level 0. Let

#»

Q be the directed path
from w along h-level 0 till it reaches x at o-level k. Let

#»

R be the directed path
from x along o-level k till it reaches vertex u. Then

#»

P ◦ #»

Q ◦ #»

R is a directed
path from v to u of length l + (m − (i + j)) + i = r − n − j < r. See Fig. 2(e).
When m ≤ i + j, let

#»

P be the directed path from v along the a-level m till it
reaches vertex w in o-level k; let

#»

Q be the directed path from w along o-level k
till it reaches u. Then

#»

P ◦ #»

Q is a directed path from v to u of length at most of
l + (m − j) = r − n − j < r. See Fig. 2(f).

196 D. Mondal et al.

(a)

(i, j, k)u

w

(0, i+j, k) (0, m, l+n)

(b)

(c) (d)

(i, j, k)u
w

m

(l, m, n)

k j

i

(l, 0, m+n) x

(i+j, 0, k) w

l

(i, j, k
)

(i+j, 0, k)

(l, 0, m+n) v(l, m, n) v(l, m, n)

(i, j, k)u x w

(0, m, l+n) (0, i+j, k)

v

u

(0, i+j, k) (0, m, l+n)

(e)

v(l, m, n)

(i, j, k)u x w

v(l, m, n)

(f)

(i, j, k)u
w

(0, m, l+n) (0, i+j, k)

v (l, m, n)

Fig. 2. (a)
#»
P : (u,w)-directed path,

#»
Q:(w, v)-directed path,

#»
P ◦ #»

Q is directed path from
u to v, (b)

#»
P : (v, w)-directed path,

#»
Q : (w, x)-directed path,

#»
R : (x, u)-directed path,

#»
P ◦ #»

Q ◦ #»
R is directed path from v to u, (c)

#»
P : (v, w)-directed path,

#»
Q : (w, u)-directed

path,
#»
P ◦ #»

Q is directed path from v to u, (d)
#»
P : (u,w)-directed path,

#»
Q:(w, x)-directed

path,
#»
R : (x, v)-directed path,

#»
P ◦ #»

Q ◦ #»
R is (u, v)-directed path, (e)

#»
P : (v, w)-directed

path,
#»
Q : (w, x)-directed path,

#»
R : (x, u)-directed path,

#»
P ◦ #»

Q◦ #»
R is directed path from

v to u and (f)
#»
P : (v, w)-directed path,

#»
Q : (w, u)-directed path,

#»
P ◦ #»

Q is directed path
from v to u.

Case 2: Here we consider the two subcases: (a) j ≥ m and i + k ≥ l, and (b)
j ≥ m and i + k < l. The proof for this is similar to Case 1 and is included in
the full version [25].
Case 3: Both the vertices u and v lie in the same h-level, a-level or o-level. As
long as u and v are not both vertices of degree 2 in Tr, arguments similar to
that of Case 1 show that

#»

d (u, v) and
#»

d (v, u) are at most r. Suppose that both
u and v are of degree 2 in Tr, then if

#»

d (u, v) = r, then
#»

d (v, u) = r + 1. Thus
the oriented graph Tr has diameter r + 1.

The above analysis of the algorithm for triangular grid graphs and Lemma 1
yield the following result.

Bounds for the Oriented Diameter of Planar Triangulations 197

Theorem 1. Let G be the triangular Tr, r > 2. Then OD(G) = r + 1.

3 Upper Bound on the Oriented Diameter of a Planar
Triangulation

In this section we provide an n/2+O(
√

n) upper bound on the oriented diameter
of a planar triangulation. The idea is to use edge orientations similar to the one
we used for the triangular grid, i.e., three outgoing edges at each internal vertex
with interleaving incoming edges and a clockwise orientation on the outer face.
In fact, every planar triangulation is known to admit such an orientation for its
internal vertices, which is obtained by via a ‘Schnyder realizer’. Since we use
this concept extensively, we first briefly review some preliminary definitions and
notation related to planar graphs and Schnyder realizer.

3.1 Planar Graphs and Schnyder Realizer

A planar graph is a graph that can be drawn on the Euclidean plane such that
no two edges cross except possibly at their common endpoint. A plane graph G
is a planar graph with a fixed planar embedding on the plane. G delimits the
plane into connected regions called faces. The unbounded face is the outer face
of G and all the other faces are the inner faces of G. G is called triangulated if
every face (including the outerface) of G contains exactly three vertices on its
boundary. The vertices on the outer face of G are called the outer vertices and
all the remaining vertices are called the inner vertices. The edges on the outer
face are called the outer edges of G.

Let G = (V,E) be a triangulated plane graph with the outer vertices vm, vr

and vl in clockwise order on the outer face. Then the internal edges of G can be
directed in a way such that every inner vertex has three directed paths which are
vertex disjoint (except that they start at the common vertex v) and end at the
three outer vertices [29]. In other words, there are three directed trees Tm, Tr

and Tl rooted at vm, vr and vl, respectively, that span all the internal vertices of
G. Let us denote the edges of Tm, Tr and Tl as the m-edges, r-edges and l-edges,
respectively. Then the edges at every internal vertex v of G are directed in a
certain order, as shown in Fig. 3(c). The trees Tm, Tr and Tl are referred to as
Schnyder realizer. Figure 3(a) illustrates a Schnyder realizer and Fig. 3(b) shows
the tree Tl separately. The trees Tm, Tr and Tl form a partition of all the graph
edges except the edges in the outer face.

There exists a Schnyder realizer Tl, Tr, Tm of G with leaf(Tl) + leaf(Tr) +
leaf(Tm) = 2n − 5 − δ0 [2], where 0 ≤ δ0 ≤ �(n − 1)/2	 is the number of cyclic
faces. It is known that there exists a Schnyder realizer where one tree has at
least � (n + 1)/2� leaves and such a realizer can be computed in linear time [32].

198 D. Mondal et al.

(a) (b)

Tl

v1
v3

v4

v6 v5

vl = v1 vr = v2

v3
v4

v6 v5

vm = v7

v

0 or more
incoming r-edges

0 or more
incoming m-edges

0 or more
incoming l-edges

outgoing
m-edge

outgoing
l-edge

outgoing
r-edge

(c)

Fig. 3. (a) A Schnyder realizer. (b) Illustration for Tl. (c) Illustration for the edge
orientations around a vertex.

(a)
vl = v1 vr = v2

v3
v4

v6 v5

vm = v7

(b)
vl = v1 vr = v2

v3
v4

v6 v5

vm = v7

(c)
vl = v1 vr = v2

v3
v4

v6 v5

vm = v7

Fig. 4. (a) Illustration for the algorithm of Sect. 3.2. (b–c) The paths
#»
Q and

»

Q′, which
are shown in red and blue, respectively. Here v = v5 and w = v4. (Color figure online)

3.2 An Initial Upper Bound

We first give an algorithm to compute a �3(n − 1)/4�+2 upper bound on oriented
diameter of G, and in the subsequent section we improve the bound to n/2 +
O(

√
n).

Algorithm: We first compute a Schnyder realizer Tl, Tr, Tm such that one tree
(assume without loss of generality that Tm) has at least � (n+1)

2 � leaves [32]. We
now assign the edge orientations as follows (Fig. 4a).

Orient the outer edges of G in clockwise order:
»

(vm, vr),
»

(vr, vl) and
»

(vl, vm).
Orient the m-edges such that each vertex of Tm points at its ancestor in Tm.
Orient the l-edges such that each vertex of Tl points at its descendent in Tl.
Orient the r-edges such that each vertex of Tr points at its descendent in Tr.

Proof of Correctness: We now show that for every pair of vertices u,w in G,
their shortest path length is bounded by at most �3(n − 1)/4� + 2.

Case 1 (Both u,w are Internal Vertices of G): Let
#»

P u,vm
be the path that

starts at u and follows the m-edges to reach vm. Let
#»

P vr,w be the path that
starts at vr and follows the r-edges to reach w. Similarly, let

#»

P vl,w be the path
that starts at vl and follows the l-edges to reach w.

Bounds for the Oriented Diameter of Planar Triangulations 199

Consider now two u to w paths (Fig. 4b–c). One is the path
#»

Q that first
travels along

#»

P u,vm
, then along the edge

»

(vm, vr) and finally, along
#»

P vr,w. The
other is the path

»

Q′ that first travels along
#»

P u,vm
, then along the edges

»

(vm, vr)
and

»

(vr, vl), and finally, along
#»

P vl,w. We now show that at least one of these two
paths are of length at most �3(n − 1)/4� + 2.

Since Tm has at least �(n + 1)/2� leaves, the length β of
#»

P u,vm
is at most

�n − (n+1)
2 � = �(n − 1)/2�. Since the paths

#»

P vr,w and
#»

P vl,w are vertex disjoint
(except that they start at w), the sum of their lengths is at most (n − β − 1).
Here the −1 term represents that we can safely skip the vertex vm. We now
can assume without loss of generality that

#»

P vl,w has at most �(n − β − 1)/2�
edges, where β ≤ �(n − 1)/2�. Therefore, the length of

»

Q′ is bounded by at most
β + �(n − β − 1)/2� + 2 = �(n − 1)/2 + β/2� + 2 = �3(n − 1)/4� + 2.

Similarly, we can find a w to u path of length at most �3(n − 1)/4� + 2 by
swapping the roles of u and w in the argument above.

Case 2 (At Least One of u,w is an Outer Vertex of G): If both u,w are
outer vertices then they can reach each other following at most two outer edges.
If exactly one is an outer vertex, then without loss of generality assume u be the
inner vertex and w be the outer vertex. To compute the u to w path we first
travel to vm via m-edges and then reach w by visiting outer edges. To compute
the w to u path, we consider two paths (as we did in Case 1): one that goes
through vr and the other that goes through vl. In both scenarios, we can use the
analysis of Case 1 to find a path of length at most �3(n − 1)/4� + 2.

3.3 An Improved Upper Bound

In this section we improve the upper bound to n/2 + O(
√

n) by leveraging the
concept of planar separator. Let G be a triangulated plane graph with n vertices.
A simple cycle C in G is called a simple cycle separator if the interior and the
exterior of C each contains at most 2n/3 vertices. Every planar graph admits a
simple cycle separator of size O(

√
n) [5,12,24].

Let C be a simple cycle separator of size O(
√

n) in G. Let Gin be the graph
induced by the vertices of C and the vertices inside C. We create a triangulated
graph G′

in by adding a vertex sout to all the vertices of C. Similarly, we define
Gout to be the graph induced by the vertices of C and the vertices outside C,
and create G′

out by adding a vertex sin to all the vertices of C. We then take a
planar embedding of G′

out such that sin lies on the outerface. Figure 5 illustrates
a separator of G and the corresponding G′

in and G′
out.

Let nin and nout be the number of vertices of G′
in and G′

out, respectively.
We now compute an orientation σ for the edges of G′

in such that the shortest
path distance between every pair of vertices is at most �3(nin − 1)/4� + 2 as we
did in Sect. 3.2. We then remove the orientation of the edges on C and reorient
them clockwise. Let the resulting orientation be σ′. We now show that using σ′

instead of σ and avoiding sout increases the shortest path distance between a
pair of vertices in Gin by at most O(

√
n).

200 D. Mondal et al.

Fig. 5. (a) Illustration for a simple cycle separator. (b–d) The construction of the plane
triangulations G′

in and G′
out. The red vertices in (c) are the outer vertices and they

become inner vertices in (d). (Color figure online)

We consider two cases depending on whether the tree T rooted at sout has
the maximum number of leaves in the Schnyder realizer of G′

in.

Case 1 (T has the Maximum Number of Leaves): In Sect. 3.2 we con-
structed a path

#»

P from an inner vertex u to another inner vertex w such that
it first moves from u to an outer vertex and then traverses along the outer cycle
and finally, travels towards w. Such a path can also be constructed using σ.
However, in σ′, we need to restrict ourselves within the edges of Gin. Let x be
a vertex of C and the first such vertex that we encounter while travelling from
v to w following

#»

P . Similarly, let y be a vertex of C and the last such vertex
that we encounter while travelling from v to w following

#»

P . We now replace the
subpath from x to y using a clockwise path on C. This results into a path of
length at most �3(nin − 1)/4� + O(

√
n) that uses the orientation of σ′. We can

find a w to v path of length at most �3(nin − 1)/4� + O(
√

n) using the same
argument by swapping the roles of u and w. It is straightforward to observe that
the argument holds even when one of u and w, or both lie on the cycle separator.

Case 2 (T Does Not Have the Maximum Number of Leaves): Without
loss of generality assume that the tree rooted at an outer vertex v
= sout has the
maximum number of leaves in the Schnyder realizer of G′

in. The argument here
is the same as that of Case 1. To reach from an inner vertex u to another inner
vertex w, we take a path

#»

P from u to v and then traverse along the outer cycle
and finally, travel towards w. Since we need to avoid sout, we can leverage the
clockwise cycle C. Define the vertices x and y similar to that of Case 1. We then
replace the subpath of

#»

P from x to y using a clockwise path on C. This results
into a path of length at most �3(nin − 1)/4� + O(

√
n) that uses the orientation

of σ′. We can find a w to v path using the same argument by swapping the role
of u and w. It is straightforward to observe that the argument holds even when
one of u and w or both lie on the cycle separator.

We now compute an orientation σ′′ for the edges of G′
out in the same way as

we did for G′
in. In the following we show that the edge orientations of G obtained

by taking the edge orientations from σ′ and σ′′ ensure an oriented diameter of
n/2 + O(

√
n).

Bounds for the Oriented Diameter of Planar Triangulations 201

v1

u1

w1

v3

u3

w3

v1

u1
w1

v3

u3

w3

(a) (b)

v1

u1
w1

v3

u3

w3

(c)

Fig. 6. (a) Illustration for a nested triangles graph. (b) A triangulated nested triangles
graph. (c) A shortest cycle of 2n/3 vertices through w1 and vn/3.

Consider a pair of vertices u and w in G. If both belong to Gin, then they
can be reached from each other using a path of length �3(nin − 1)/4�+O(

√
n) =

n/2 + O(
√

n). The same argument holds if they both belong to Gout.
Assume now without generality that u belongs to Gin and w belongs to

Gout. To find a u to w path, we first traverse the path P ′ that goes from u to
a vertex on C (using σ′) and then traverse clockwise along C, and finally take
the path P ′′ that goes from a vertex of C to w (using σ′′). By the analysis of
Sect. 3.2 and then by leveraging σ′, we obtain the length of P ′ to be at most
�(nin − 1)/2� + O(

√
n). By the analysis of Sect. 3.2 we know that there are two

vertex disjoint paths in G′
out that start at C and reach w. Hence the length of

one of these paths is at most �nout/2�. After considering σ′′, the corresponding
path P ′′ would have a length of �nout/2� + O(

√
n). Therefore, the length of the

u to w path is upper bounded by at most n/2 + O(
√

n). We can construct a w
to u path by swapping the role of u and w.

The computation of the simple cycle separator takes O(n) time [24]. The
computation of the required Schnyder realizer also takes O(n) time [32]. Hence
it is straightforward to implement the algorithm in linear time. The following
theorem summarizes the result of this section.

Theorem 2. The oriented diameter of a planar triangulation with n vertices is
n/2 + O(

√
n) and such an orientation can be computed in O(n) time.

4 Lower Bound

The lower bound is determined by the nested triangles graph Gn, which is defined
as follows.

For n = 3, the graph G3 is a cycle u1, v1, w1 of three vertices. For n = 3m,
where m > 1 is a positive integer, Gn is obtained by enclosing Gn−1 inside a
cycle un/3, vn/3, wn/3 of three vertices and then adding the edges (un/3−1, un/3),
(vn/3−1, vn/3), and (wn/3−1, wn/3). See Fig. 6(a).

We triangulate the graph Gn by adding the edges (vi, wi+1),(vi, ui+1) and
(wi, ui+1), where 1 ≤ i < n/3. See Fig. 6(b). It is now straightforward to employ

202 D. Mondal et al.

an induction on n to show that the shortest path length between w1 and vn/3

is n/3. Therefore, any orientation of the graph, a directed cycle through w1 and
vn/3 must be of length at least 2n/3. Hence we obtain the following theorem.

Theorem 3. For every n = 3m, where m is a positive integer, there exists a
planar triangulation with oriented diameter at least n/3.

5 Planar Weighted Oriented Diameter

In this section we consider the weighted oriented diameter. Formally, given an
edge weighted graph, the weighted oriented diameter is the minimum weighted
diameter over all of its strongly connected orientations.

If the edge weights are small, then one can find an orientation with small
weighted diameter. The following corollary is a direct consequence of Theorem 2.

Corollary 1. Let G be an edge weighted planar graph with n vertices. Assume
that the weight of each edge is at most (1 + ε)/n, where 0 ≤ ε < 1, and the sum
of all weights in 1. Then in linear time, one can compute an orientation of G

with weighted oriented diameter at most (1+ε)
2 + 1

O(
√

n)
.

In the following section we show that the decision version of the weighted
oriented diameter problem is weakly NP-complete.

5.1 Planar Weighted Oriented Diameter Is Weakly NP-complete

Here we show that given a planar graph G and an integer k, it is weakly NP-
complete to decide whether G has a strongly connected orientation of diameter
at most k. We formally define the problem as follows:

Problem: Planar Weighted Oriented Diameter
Input: An undirected connected planar graph G, where each edge is weighted
with a positive real number, and a positive integer D.
Question: Is there a strongly connected orientation of G such that the
weighted diameter of the resulting oriented graph is at most D?

The problem is in NP because given an orientation of the edges of G, one can
verify whether the weighted oriented diameter is within D in polynomial-time
by computing all pair shortest paths.

We will reduce the weakly NP-complete problem Partition, which is defined
as follows:

Problem: Partition
Input: A multiset S of positive integers.
Question: Can S can be partitioned into two subsets with equal sum?

Given an instance S = {a1, a2, . . . , an} of Partition, we construct an
instance I = (G,D) of Planar Weighted Oriented Diameter as follows:

Bounds for the Oriented Diameter of Planar Triangulations 203

ts

10 8 264 10

ts

10 8 264 10

(a) (b)

vk

wk

vj

wj

vk

wk

vj

wj

v1

w1

v1

w1

Fig. 7. (a–b) Construction of G from S.

Step 1. Take a 2 × (n + 1) grid graph, e.g., Fig. 7(a). Let v1, . . . , vn+1 be the
vertices at the top row and let w1, . . . , wn+1 be the vertices at the bottom row
and set the weights of the top edges (v1, v2), . . . , (vn, vn+1) using the numbers
a1, . . . , an from left to right.
Step 2. Subdivide the leftmost vertical edge (v1, w1) with a division vertex s.
Similarly, subdivide the rightmost vertical edge with a division vertex t.
Step 3. Replace each internal vertical edge (vi, wi), where 1 < i < n+1, with
a cycle vi, dviwi

, wi, d
′
viwi

, vi, where dviwi
and d′

viwi
are two new vertices, e.g.,

Fig. 7(b). We will refer to these cycles as inner cycles.
Step 4. Set the weight of all the edges except for the top edges to ε = 1

m , where
m is the number of edges in the graph. Set D to be equal to 1+ 1

2

∑n
i=1 ai −ε.

We show that S admits a bipartition if and only if G admits a strong ori-
entation with diameter at most D and thus prove the following theorem. The
proof is included in the full version [25].

Theorem 4. Planar Weighted Oriented Diameter is weakly NP-
complete.

Since the pathwidth of G is O(1), we obtain the following corollary.

Corollary 2. Planar Weighted Oriented Diameter is weakly NP-
complete, even when the pathwidth of the input graph is bounded by a constant.

6 Conclusion

In this paper we computed exact value of the oriented diameter for triangular
grid graphs and proved an n/3 lower bound and an n/2 + O(

√
n) upper bound

on the oriented diameter of planar triangulations. A natural direction for future
research would be to close the gap between the lower bound and the upper bound.
We also showed that the weighted version of the oriented diameter problem is
weakly NP-complete. Although the time complexity of the unweighted version
remains open, it would be interesting to examine whether the weighted version
is strongly NP-hard.

A related concept here is cycle diameter, which is the maximum shortest cycle
length through two vertices, where the maximum is taken over all pair of vertices
in the graph. For every planar graph with positive edge weights, Guttmann-
Beck and Hassin [14,15] proved the existence of an orientation where the cycle

204 D. Mondal et al.

diameter in the oriented graph is within a constant factor of the cycle diameter of
the original graph. Similarly, it would be interesting to design efficient algorithms
to approximate the oriented diameter of general planar graphs.

References

1. Ajish Kumar, K.S., Rajendraprasad, D., Sudeep, K.S.: Oriented Diameter of
Star Graphs. In: Changat, M., Das, S. (eds.) CALDAM 2020. LNCS, vol. 12016,
pp. 307–317. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39219-
2 25

2. Bonichon, N., Le Saëc, B., Mosbah, M.: Optimal area algorithm for planar polyline
drawings. In: Goos, G., Hartmanis, J., van Leeuwen, J., Kučera, L. (eds.) WG 2002.
LNCS, vol. 2573, pp. 35–46. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-36379-3 4

3. Chvátal, V., Thomassen, C.: Distances in orientations of graphs. J. Combin. The-
ory, Ser. B 24(1), 61–75 (1978)

4. Dankelmann, P., Guo, Y., Surmacs, M.: Oriented diameter of graphs with given
maximum degree. J. Graph Theory 88, 5–17 (2018)

5. Djidjev, H.N., Venkatesan, S.M.: Reduced constants for simple cycle graph sepa-
ration. Acta Inform. 34(3), 231–243 (1997)

6. Eggemann, N., Noble, S.D.: Minimizing the oriented diameter of a planar graph.
Electron. Notes Discrete Math. 34, 267–271 (2009)

7. Fomin, F.V., Matamala, M., Prisner, E., Rapaport, I.: Bilateral orientations and
domination. Electron. Notes Discrete Math. 7 (2001)

8. Fomin, F.V., Matamala, M., Rapaport, I.: The complexity of approximating the
oriented diameter of chordal graphs. Int. Workshop Graph-Theoretic Concepts
Comput. Sci. 2573, 211–222 (2002)

9. Fomin, F.V., Matamala, M., Rapaport, I.: AT-free graphs: linear bounds for the
oriented diameter. Discret. Appl. Math. 141, 135–148 (2004)

10. Fraigniaud, P., Lazard, E.: Methods and problems of communication in usual net-
works. Discret. Appl. Math. 53(1–3), 79–133 (1994)

11. Fujita, S.: On oriented diameter of star graphs. In: First International Symposium
on Computing and Networking, pp. 48–56 (2013)

12. Gazit, H., Miller, G.L.: Planar separators and the Euclidean norm. In: Asano,
T., Ibaraki, T., Imai, H., Nishizeki, T. (eds.) SIGAL 1990. LNCS, vol. 450, pp.
338–347. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52921-7 83

13. Gutin, G., Yeo, A.: Orientations of digraphs almost preserving diameter. Discret.
Appl. Math. 121, 129–138 (2002)

14. Guttmann-Beck, N., Hassin, R.: Minimum diameter and cycle-diameter orienta-
tions on planar graphs. arXiv e-prints pp. arXiv-1105 (2011)

15. Guttmann-Beck, N., Hassin, R.: Series-parallel orientations preserving the cycle-
radius. Inf. Process. Lett. 112(4), 153–160 (2012). https://doi.org/10.1016/j.ipl.
2011.10.020

16. Koh, K.M., Tan, B.P., Rapaport, I.: The diameter of an orientation of a complete
multipartite graph. Discret. Math. 149(1–3), 131–139 (1996)

17. Koh, K.M., Tay, E.G.: On optimal orientations of cartesian products of graphs (ii):
complete graphs and even cycles. Discret. Math. 211, 75–102 (2000)

18. Koh, K.M., Tay, E.G.: Optimal orientations of graphs and digraphs: a survey.
Graphs Comb. 18(4), 745–756 (2002)

https://doi.org/10.1007/978-3-030-39219-2_25
https://doi.org/10.1007/978-3-030-39219-2_25
https://doi.org/10.1007/3-540-36379-3_4
https://doi.org/10.1007/3-540-36379-3_4
https://doi.org/10.1007/3-540-52921-7_83
https://doi.org/10.1016/j.ipl.2011.10.020
https://doi.org/10.1016/j.ipl.2011.10.020

Bounds for the Oriented Diameter of Planar Triangulations 205

19. König, J., Krumme, D.W., Lazard, E.: Diameter-preserving orientations of the
torus. Networks 32(1), 1–11 (1998)

20. Krumme, D.W.: Fast gossiping for the hypercube. SIAM J. Comput. 21(2), 365–
380 (1992)

21. Kurz1y, S., Latsch, M.: Bounds for the minimum oriented diameter. Discret. Math.
Theoret. Computer Sci. 14(1), 109–142 (2012)

22. Kwok, P.K., Liu, Q., West, D.B.: Oriented diameter of graphs with diameter 3. J.
Combinat. Theory 100(3), 265–273 (2010)

23. McCanna, J.E.: Orientations of the n-cube with minimum diameter. Discret. Math.
68(2–3), 309–313 (1988)

24. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs.
J. Comput. Syst. Sci. 32(3), 265–279 (1986)

25. Mondal, D., Parthiban, N., Rajasingh, I.: Oriented diameter of planar triangula-
tions. CoRR abs/2203.04253 (2022). https://doi.org/10.48550/arXiv.2203.04253

26. Ng, K.L., Koh, K.M.: On optimal orientation of cycle vertex multiplications. Dis-
cret. Math. 297(1–3), 104–118 (2005)

27. Roberts, F.S., Xu, Y.: On the optimal strongly connected orientations of city street
graphs I: large grids. SIAM J. Discret. Math. 1(2), 199–222 (1988)

28. Roberts, F.S., Xu, Y.: On the optimal strongly connected orientations of city street
graphs. III. three east-west avenues or north-south streets. Networks 22(2), 109–
143 (1992)

29. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the 1st
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 138–148.
ACM, San Francisco, California, USA (1990)

30. Wang, X., Chen, Y., Dankelmann, P., Guo, Y., Surmacs, M., Volkmann, L.: Ori-
ented diameter of maximal outerplanar graphs. J. Graph Theory 98(3), 426–444
(2021)

31. West, D.B.: Introduction to Graph Theory. Prentice-Hall (2000)
32. Zhang, H., He, X.: Canonical ordering trees and their applications in graph draw-

ing. Discret. Comput. Geometry 33(2), 321–344 (2005)

https://doi.org/10.48550/arXiv.2203.04253

String Rearrangement Inequalities
and a Total Order Between Primitive

Words

Ruixi Luo , Taikun Zhu , and Kai Jin(B)

School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen
University, Shenzhen, China

{luorx,zhutk3}@mail2.sysu.edu.cn, jink8@mail.sysu.edu.cn

Abstract. We study the following rearrangement problem: Given n
words, rearrange and concatenate them so that the obtained string is
lexicographically smallest (or largest, respectively). We show that this
problem reduces to sorting the given words so that their repeating strings
are non-decreasing (or non-increasing, respectively), where the repeating
string of a word A refers to the infinite string AAA Moreover, for fixed
size alphabet Σ, we design an O(L) time sorting algorithm of the words
(in the mentioned orders), where L denotes the total length of the input
words. Hence we obtain an O(L) time algorithm for the rearrangement
problem. Finally, we point out that comparing primitive words via com-
paring their repeating strings leads to a total order, which can further
be extended to a total order on the finite words (or all words).

Keywords: String rearrangement inequalities · Primitive words ·
Combinatorics on words · String ordering · Greedy algorithm

1 Introduction

Combinatorics on words (MSC: 68R15) have strong connections to many fields
of mathematics and have found significant applications to theoretical computer
science and molecular biology (DNA sequences) [5,8,10,14,17,21]. Particularly,
the primitive words over some alphabet Σ have received special interest, as
they have applications in the formal languages and algebraic theory of codes
[12,13,16,19]. A word is primitive if it is not a proper power of a shorter word.

In this paper, we consider the following rearrangement problem of words:
Given n words A1, . . . , An, rearrange and concatenate these words so that the
obtained string S is lexicographically smallest (or largest, respectively). We prove
that the lexicographical smallest outcome of S happens when the words are
arranged so that their repeating strings are increasing, and the largest outcome

Kai Jin is supported by National Natural Science Foundation of China 62002394,
and Shenzhen Science and Technology Program (Grant No. 202206193000001,
20220817175048002).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 206–218, 2022.
https://doi.org/10.1007/978-3-031-20796-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_15&domain=pdf
http://orcid.org/0000-0003-0483-0119
http://orcid.org/0000-0001-7365-9576
http://orcid.org/0000-0003-3720-5117
https://doi.org/10.1007/978-3-031-20796-9_15

Rearrangement Inequalities for String Concatenation 207

of S happens when the words are arranged reversely; see Lemma 6. Throughout,
the repeating string of a word A refers to the infinite string R(A) = AAA

Based on the above lemma (we suggest to name its results as “string rear-
rangement inequalities”), the aforementioned rearrangement problem reduces to
sorting the words A1, . . . , An so that R(A1) ≤ . . . ≤ R(An). We show how to sort
for the special case where A1, . . . , An are primitive and distinct in O(

∑
i |Ai|)

time. The general case can be easily reduced to the special case and can be
solved in the same time bound. Note that we assume bounded alphabet Σ and
the size of Σ is fixed. Moreover, |X| always denotes the length of word X.

Our algorithm beats the plain algorithm based on sorting (via comparing
several pairs R(Ai), R(Aj)) by a factor of log n. The algorithm is simple – it
only applies basic data structures such as tries and the failure function [10,21].
Nevertheless, its correctness and running time analysis is non-straightforward.

We mention that comparing primitive words via comparing their repeating
strings leads to a total order ≤∞ on primitive words, which can be extended to
a total order ≤∞ on all words (Sect. 5). We show that this order is the same
as the lexicographical order over Lyndon words but are different over primitive
words and finite words. It is also different from reflected lexicographic order, co-
lexicographic order, shortlex order, Kleene-Brouwer order, V-Order, alternative
order [1–3,9,11]. It seems that order ≤∞ has not been reported in literature.

1.1 Related Work

It is shown in [6] that the language of Lyndon words is not context-free. Also,
many people conjectured that the language of primitive words is not context-
free [6,12,13,19]. But this conjecture is unsettled thus far, to the best of our
knowledge. It would be interesting to explore whether the results shown in this
paper can be helpful for solving this longstanding open problem in the future.
See more introductions about primitive words in [16].

Fredricksen and Maiorana [15] showed that if one concatenates, in lexico-
graphic order, all the Lyndon words that have length dividing a given number
n, the result is a de Bruijn sequence. Au [4] further showed that if “dividing n”
is replaced by “identical to n”, the result is a sequence which contains exactly
once every primitive word of length n as a factor. Note that concatenating some
Lyndon words by lexicographic order is the same as concatenating by ≤∞ order.

The Lyndon words have many interesting properties and have found plentiful
applications, both theoretically and practically. Among others, they are used in
constructing de Brujin sequence as mentioned above (which have found appli-
cations in cryptography), and they are applied in proving the “runs theorem”
[5,8,20]. The famous Chen-Fox-Lyndon Theorem states that any word W can
be uniquely factorized into W = W1W2 . . . Wm, such that each Wi is a Lyndon
word, and W1 ≥ . . . ≥ Wm [7,14] (Here ≥ refers to the opposite of Lexicograph-
ical order, but is the same as the opposite of ≤∞). This factorization is used in
the computation of runs in a word [8]. See the Bible of combinatorics on words
[17] for more introductions about Lyndon words and primitive words.

208 R. Luo et al.

2 Preliminaries

Definition 1. The nth power of word A is defined as:

An =
{

AAn−1, n > 0;
empty word, n = 0.

A word A is non-primitive if it equals Bk for some word B and integer k ≥ 2.
Otherwise, A is primitive. (By this definition the empty word is not primitive.)

The next lemma summarizes three results about the powers proved by Lyn-
don and Schüzenberger [18]; see their Lemmas 3 and 4, and Corollary 4.1. (More
introductions of these results can be found in Sect. 1.3 “Conjugacy” of [17].)

Lemma 1 [18]. Given words A and B, there exist C, k, l such that A = Ck and
B = Cl when one of the following conditions holds:

1. AB = BA.
2. Two powers Am1 and Bm2 have a common prefix of length |A| + |B|.
3. Am1 = Bm2 .

Definition 2. The root of a word A, denoted by root(A), is the unique primitive
word B such that A is a power of B. The uniqueness of root is obvious, a formal
proof can be found in Corollary 4.2 of [18] or in [16].

Lemma 2. Assume A is a non-empty word. Find the largest j < |A| such that
the prefix of A with length j equals the suffix of A with length j. Let k = |A|−j >
0. Then,

|root(A)| =
{

k, |A| = 0 (mod k);
|A|, |A| �= 0 (mod k). (1)

Proof. This result should be well-known. A simple proof is as follows.
Fact 1. If S = BB′ = B′B and B,B′ are non-empty, S is non-primitive.

This is a trivial fact and is implied by Lemma 1 (condition 1); proof omitted.
Claim 1. |root(A)| ≥ k.
Proof: The prefix and suffix of A with length |A|− |root(A)| are the same, which
implies that j ≥ |A| − |root(A)|. Consequently, |root(A)| ≥ |A| − j = k.
Claim 2. If |root(A)| < |A| (i.e., A is non-primitive), then k ≥ |root(A)|.
Proof: Denote S = root(A) and assume |S| < |A|. Therefore, A = Sd (d ≥ 2).
Suppose to the opposite that k < |root(A)|. Let B be the prefix of S with
length k, and B′ be the suffix of S such that S = BB′. As k < |S|, we have
j > |A|− |S| ≥ |S|. Further since the suffix of A with length j (which starts with
B′B) equals to the prefix of A with length j (which starts with S = BB′), we
get S = B′B. Applying Fact 1, root(A) = S is non-primitive. Contradictory.

We are ready to prove the lemma. When |A| is a multiple of k, A is a power of
its prefix of length k, which means |root(A)| ≤ k. Further by Claim 1, |root(A)| =
k. Next, assume |A| is not a multiple of k. Since |A| is a multiple of |root(A)|,
we see |root(A)| �= k. Further by Claims 1 and 2, it follows that |root(A)| = |A|.

��

Rearrangement Inequalities for String Concatenation 209

For a non-empty word A, denote by R(A) the infinite repeating string AA

The following lemma is fundamental to our algorithm.

Lemma 3. For non-empty words A and B, the relation between R(A) and R(B)
is the same as the relation between AB and BA. In other words,

R(A) < R(B) ⇔ AB < BA, (2)
R(A) > R(B) ⇔ AB > BA. (3)
R(A) = R(B) ⇔ AB = BA, (4)

Proof. Assume that A,B are words that consist of the decimal symbols
‘0’,. . . ,‘9’. The proof can be easily extended to the more general case.

Let α, β denote the number represented by strings A,B. For example, string
‘89’ represents number 89. Denote a = |A| and b = |B|. Observe that

AB < BA ⇔ α · 10b + β < β · 10a + α ⇔ α

10a − 1
<

β

10b − 1
.

Moreover,

α

10a − 1
= α

1
10a

1 − 1
10a

= α[
1
10a

+ (
1
10a

)2 + (
1
10a

)3 + . . .] = 0.ααα · · · = 0.α̇;

β

10b − 1
= β

1
10b

1 − 1
10b

= β[
1
10b

+ (
1
10b

)2 + (
1
10b

)3 + . . .] = 0.βββ · · · = 0.β̇.

So, AB < BA ⇔ 0.α̇ < 0.β̇ ⇔ R(A) < R(B). Similarly, (4) and (4) hold. ��
A more rigorous but complicated proof of Lemma 3 is given in the appendix.
As an interesting corollary of Lemma 3, we obtain that “if AB ≤ BA and

BC ≤ CB, then AC ≤ CA”. This transitivity is not obvious without Lemma 3.

Now, we can formally bring up the main problem.

Problem 1. Given non-empty words A1, . . . , An, find a permutation
π1, . . . , πn of {1, . . . , n} so that

R(Aπ1) ≤ . . . ≤ R(Aπn
).

In other words, this is a sorting problem.
Clearly, R(A) = R(root(A)). To solve Problem 1, we can replace A by root(A)

(using a preprocessing algorithm based on Lemma 2), and then it reduces to:

Problem 1’. Given primitive words A1, . . . , An, find a permutation
π1, . . . , πn of {1, . . . , n} so that

R(Aπ1) ≤ . . . ≤ R(Aπn
).

210 R. Luo et al.

3 A Linear Time Algorithm for Sorting the Repeating
Words

Assume that A1, . . . , An are primitive. Denote L =
∑

i |Ai| for short. This
section presents an O(L) time algorithm for solving Problem 1’, that is, sorting
R(A1), . . . , R(An). We start with one definition and two nontrivial observations.

Definition 3. For any two non-empty words S and A, denote by degA(S) the
largest integer d so that Sd is a prefix of A. Moreover, for non-empty word S and
set of non-empty words A = {A1, . . . , An}, denote degA(S) = maxj degAj

(S).
In other words, if we build the trie T of A, SdegA(S) is the longest power of

S that equals to some path of the trie T starting from its root.
For any i (1 ≤ i ≤ n), denote

Ni = the degA(Ai)-th power ofAi (5)
Mi = NiA

2
i = the (degA(Ai) + 2)-th power of Ai (6)

Lemma 4. The relation between infinitely repeating strings R(Ai) and R(Aj)
is the same as the relation between words Mi and Mj, that is,

R(Ai) = R(Aj) ⇔ Mi = Mj ,

R(Ai) < R(Aj) ⇔ Mi < Mj ,

R(Ai) > R(Aj) ⇔ Mi > Mj .

As a corollary, sorting R(A1), . . . , R(An) reduces to sorting M1, . . . , Mn.

Proof. Consider the comparison of R(Ai) and R(Aj). Assume |Ai| ≤ |Aj |. Oth-
erwise it is symmetric.

First, consider the case R(Ai) = R(Aj). Let m1 = |Aj | and m2 = |Ai|. We
know Am1

i = Am2
j because R(Ai) = R(Aj). Applying Lemma 1 (condition 3),

Ai = Ck and Aj = Cl for some C, k, l. Further since Ai, Aj are primitive,
Ai = C = Aj . It follows that Mi = Mj . Next, assume that R(Ai) �= R(Aj).

Let p = degAj
(Ai). Thus, Aj = Ap

i S, where p ≥ 0 and Ai is not a prefix of
S. Be aware that p ≤ degA(Ai) by the definition of degA(Ai).

According to Lemma 3, the comparison of R(Ai) and R(Aj) equals to the
comparison of AiAj and AjAi. Further since Aj = Ap

i S, it equals to the com-
parison of Ap

i AiS and Ap
i SAi. In the following, we discuss two subcases.

Subcase 1. |S| > |Ai|, or |S| ≤ |Ai| and S is not a prefix of Ai.
Recall that Ai is not a prefix of S. In this subcase, we will find an unequal

letter if we compare Ai with S (starting from the leftmost letter). Comparing
Ap

i AiS and Ap
i SAi is thus equivalent to comparing the prefixes Ap

i Ai and Ap
i S.

Notice that Ap
i Ai = Ap+1

i and Ap
i S = Aj are also prefixes of Mi and Mj ,

respectively (note that Ap+1
i is a prefix of Mi because Mi is the (degA(Ai)+2)-th

power of Ai and degA(Ai) ≥ p as mentioned above). Therefore, comparing Mi

and Mj is also equivalent to comparing the two prefixes Ap
i Ai and Ap

i S.

Rearrangement Inequalities for String Concatenation 211

Altogether, comparing R(Ai), R(Aj) is equivalent to comparing Mi,Mj .

Subcase 2. S is a prefix of Ai. (This means S is a proper prefix of Ai as S �= Ai.)
Assume Ai = ST . Comparing Ap

i AiS and Ap
i SAi is just the same as com-

paring Ap
i STS and Ap

i SST . It reduces to proving that comparing Mi and Mj

also reduces to comparing Ap
i STS and Ap

i SST .
First, we argue that ST �= TS. Suppose to the opposite that ST = TS. Apply-

ing Lemma 1 (condition 1), S = Ck and T = Cl for some C, k, l. This implies that
Ai and Aj are both powers of C, and hence R(Ai) = R(Aj), contradictory.

Observe that Ap
i STS is a prefix of Ap

i STST = Ap+2
i , which is a prefix of Mi

(because Mi is the (degA(Ai) + 2)-th power of Ai and degA(Ai) + 2 ≥ p + 2).
Observe that p > 0. Otherwise Aj = A0

i S is shorter than Ai, which contra-
dicts our assumption |Ai| ≤ |Aj |. As a corollary, Ai is a prefix of Aj = Ap

i S.
Therefore, Ap

i SST = Ap
i SAi = AjAi is a prefix of A2

j , which is a prefix of Mj .
To sum up, Mi and Mj admit Ap

i STS and Ap
i SST as prefixes, respectively.

Further since TS �= ST , comparing Mi,Mj reduces to comparing Ap
i STS and

Ap
i SST , which is equivalent to comparing R(Ai), R(Aj) as mentioned above. ��

Assume A1, . . . , An are distinct henceforth in this section. To this end, we
can use a trie to reduce those duplicate elements in A1, . . . , An, which is trivial.

Lemma 5. When A1, . . . , An are primitive and distinct,
∑

i |Ni| = O(L).

Proof. First, we argue that N1, . . . , Nn are distinct. Suppose that Ni = Nj (i �=
j). Recall that Ni = Am

i (for m = degA(Ai)) and Nj = An
j (for n = degA(Aj)).

Applying Lemma 1 (condition 3), Ai = Ck and Aj = Cl. Further since Ai, Aj

are primitive, Ai = C = Aj , which contradicts the assumption that Ai �= Aj .
We say Ni extremal if it is not a prefix of any word in {N1, . . . , Nn} \ {Ni}.

Partition N1, . . . , Nn into several groups such that (a) for elements in the same
group, one of them is the prefix of the other, and (b) the longest element in each
group is extremal. (It is obvious that such a partition exists: we can first distribute
the extremal ones to different groups, and then distribute the non-extremal ones
to suitable group (each non-extremal one is a prefix of some extremal ones).

Now, consider any such group, e.g., Ni1 , . . . , Nix . It suffices to prove that (X)
|Ni1 | + . . . + |Nix | = O(|Ai1 | + . . . + |Aix |), and we prove it in the following.
Without loss of generality, assume that Nij is a prefix of Nij+1 for j < x.

We state two important formulas: (i) Nix = Aix . (ii) |Nij | < |Aij | + |Aij+1 |
for j < x. Equation (X) above follows from formulas (i) and (ii) immediately.

Proof of (i). Suppose to the contrary that Nix �= Aix . By the definition of Nix ,
there exists some Aj such that Nix is a prefix of Aj . Clearly, j �= ix since Nix is
not a prefix of Aix . Consequently, Nix is a prefix of some other Nj , which means
Nix is not extremal, contradicting property (b) of the grouping mentioned above.

Proof of (ii). Suppose to the contrary that |Nij | ≥ |Aij | + |Aij+1 |. Because Nij

and Nij+1 are powers of Ai,j and Aij+1 and share a common prefix, Nij , of length
at least |Aij |+ |Aij+1 |. By Lemma 1 (condition 2), Aij = Ck and Aij+1 = Cl for
some C, k, l. Hence Aij = Aij+1 , as Aij and Aij+1 are primitive. Contradictory.

��

212 R. Luo et al.

Our algorithm for sorting R(A1), . . . , R(An) is simply as follows.
First, we build a trie of A1, . . . , An and use it to compute N1, . . . , Nn. In

particularly, for computing Ni, we walk along the trie from the root and search
for maximal powers of Ai, which takes O(|Ni|+ |Ai|) = O(|Ni|) time. The total
running time for computing N1, . . . , Nn is therefore O(

∑
i |Ni|) = O(L).

Second, we compute M1, . . . , Mn and build a trie of them. By utilizing this
trie, we obtain the lexicographic order of M1, . . . , Mn, which equals the order of
R(A1), . . . , R(An) according to Lemma 4. The running time of the second step
is

∑
i |Mi| =

∑
i |Ni| + 2

∑
i |Ai| = O(L) + O(L) = O(L).

Formally, the algorithm can be described as follows.

Algorithm 1. Algorithm for sorting R(A1), . . . , R(An)

Input: Words A1, . . . , An

Output: The order of R(A1), . . . , R(An).
1: Build the a trie of A1, . . . , An.
2: for each i ∈ {1, . . . , n} do
3: Walk along the trie from the root and search for maximal powers of Ai.
4: end for
5: Compute M1, . . . , Mn and build the second trie of them.
6: Obtain the lexicographic order of M1, . . . , Mn utilizing the second trie.
7: Output lexicographic order of M1, . . . , Mn, which equals to the order of

R(A1), . . . , R(An).

Step by step, we can see that step 1 takes O(
∑

i |Ai|) = O(L) time, each step 3
takes O(|Ni|+ |Ai|) = O(|Ni|) time and the whole loop takes O(

∑
i |Ni|) = O(L)

time, step 5 takes
∑

i |Mi| =
∑

i |Ni| + 2
∑

i |Ai| = O(L) + O(L) = O(L) time,
both step 6 and step 7 also takes O(L) time. In total, this algorithm takes O(L)
time.

To sum up, we obtain

Theorem 1. Problem 1’ and Problem 1 can be solved in O(L) = O(
∑

i |Ai|)
time.

Proof. It remains to be shown that root(Ai) can be computed in O(|Ai|) time.
Applying Lemma 2, computing root(A) reduces tao finding the largest j < |A|

such that the prefix of A with length j equals the suffix of A with length j.
Moreover, the famous KMP algorithm [10] finds this j in O(|A|) time. ��

As a comparison, there exists a less efficient algorithm for solving Problem 1,
which is based on a standard sorting algorithm associated with a naïve gadget for
comparing R(A) and R(B) – according to Lemma 3, comparing R(A) and R(B)
reduces to comparing AB and BA, which takes O(|A|+|B|) time. The time com-
plexity of this alternative algorithm is higher. For example, when A1=“aaaaaa1”,
A2=“aaaaaa2”, etc., the running time would be Ω(n log n|A1|) = Ω(L log n).

Rearrangement Inequalities for String Concatenation 213

4 The String Rearrangement Inequalities

We call Eq. (7) right below the String Rearrangement Inequalities.

Lemma 6. For non-empty words A1, . . . , An, where R(A1) ≤ . . . ≤ R(An), we
claim that

A1A2 . . . An ≤ Aπ1Aπ2 . . . Aπn
≤ AnAn−1 . . . A1, (7)

for any permutation π1, . . . , πn of {1, . . . , n}.
In other words, if several words are to be rearranged and concatenated into

a string S, the lexicographical smallest outcome of S occurs when the words are
arranged so that their repeating strings are increasing, and the lexicographical
largest outcome of S occurs when the words are arranged so that their repeating
strings are decreasing. Here, the repeating string of a word A refers to R(A).

Example 1. Suppose there are four given words: “123”, “12”, “121”, “1212”. Notice
that R(121) < R(12) = R(1212) < R(123). Applying Lemma 6, the lexicograph-
ical smallest outcome would be “121121212123”, and the lexicographical largest
outcome would be “123121212121”. The reader can verify this result easily.

Remark 1. If we sort the given words using the lexicographic order instead, the
outcome of the concatenation is not optimum. For example, we have “12” < “121”
< “1212” <“123”, and a concatenation in this order is not the smallest outcome,
and a concatenation in its reverse order is neither the largest outcome.

Proof. (of Lemma 6). Consider any concatenation Aπ1 . . . Aπn
. If A1 is not at the

leftmost position, we swap it with its left neighbor Ax. Note that R(A1) ≤ R(Ax)
by assumption. According to Lemma 3, A1Ax ≤ AxA1. This means that the
entire string becomes smaller or remains unchanged after the swapping. Applying
several such swappings, A1 will be on the leftmost position. Then, we swap A2

to the second place. So on and so forth. It follows that A1 . . . An ≤ Aπ1 . . . Aπn
.

The other inequality in (7) can be proved symmetrically; proof omitted. ��
Combining Theorem 1 with Lemma 6, we obtain

Corollary 1. Given n words A1, . . . , An that are to be rearranged and concate-
nated, the smallest and largest concatenation can be found in O(

∑
i |Ai|) time.

Another corollary of Lemma 6 is the uniqueness of the best concatenation:

Corollary 2. Given primitive and distinct words A1, . . . , An that are to be rear-
ranged and concatenated, the smallest (largest, resp.) concatenation is unique.

Proof. It follows from Lemma 6 and the fact that R(A1), . . . , R(An) are distinct
(see Proposition 1 below). ��
Proposition 1. For distinct primitive words A and B, we have R(A) �= R(B).

Proof. Recall that when A and B are primitive and R(A) = R(B), we can infer
that A = B (as proved in the second paragraph of the proof of Lemma 4).
Therefore, if A and B are primitive and distinct, R(A) �= R(B). ��

214 R. Luo et al.

5 A Total Order ≤∞ on Words

Definition 4. Given primitive words A and B, we state that A ≤∞ B if R(A) ≤
R(B). Notice that ≤∞ is a total order on primitive words by Proposition 1.
Furthermore, we extend ≤∞ to the scope of finite nonempty words as follows.

For non-empty words A = Sk and B = T l, where S, T are primitive, we state
that A ≤∞ B if (S = Tand|S| ≤ |T |), or(S �= T and S ≤∞ T). The symbol ≤∞
in the equation stands for the relation between primitive words.

For example, 121 ≤∞ 12 ≤∞ 1212 ≤∞ 121212 ≤∞ 122.
Obviously, the relation ≤∞ is a total order on finite nonempty words.
The next lemma shows that within the class of Lyndon words, the order ≤∞

is actually the same as the lexicographical order ≤lex (denoted by ≤ for short).
(Note that Lyndon words are primitive, so the unextended ≤∞ is enough here.)

Lemma 7. Given Lyndon words A and B such that A ≤ B, we have A ≤∞ B.

Proof. Assume that A �= B; otherwise we have R(A) = R(B) and so A ≤∞ B.
By the assumption A ≤ B, we know A < B. Consider two cases:

1. |A| ≥ |B|, or |A| < |B| and A is not a prefix of B
Combining the assumption A < B with the condition of this case, we can see

that the relation between AB,BA is the same as that between A,B: In compar-
ing AB and BA, the result is settled before the min{|A|, |B|}-th character.
2. |A| < |B| and A is a prefix of B, i.e., A is a proper prefix of B

Assume that B = AC where C is nonempty. Because B is a Lyndon word
by assumption, AC < CA. Therefore, AB = AAC < ACA = BA.

In both cases, we obtain AB < BA. It further implies that R(A) < R(B) by
Lemma 3. This means A ≤∞ B. ��

In fact, it is possible to further extend ≤∞ to all (finite and infinite) words.
Define the repeating string of an infinite word A, denoted by R(A), to be A
itself. We state that A ≤∞ B if R(A) < R(B) or R(A) = R(B) and |A| ≤ |B|.

6 Conclusions

In this paper, we present a simple proof of the “string rearrangement inequalities”
(7). These inequalities have not been reported in literature to the best of our
knowledge. We also study the algorithmic aspect of these two inequalities, and
present a linear time algorithm for rearranging the strings so that R(A1) ≤
. . . R(An). This algorithm beats the trivial sorting algorithm by a factor of log n.

The algorithm itself is direct (indeed, it looks somewhat brute-force) and
easy to implement, yet the analysis of its correctness and complexity is built
upon nontrivial observations, namely, Lemma 3, Lemma 4, and Lemma 5.

In the future, it is a problem worth attacking that whether we can improve
the running time for sorting R(A1), . . . , R(An) from O(L) to O(N), where N
denotes the number of nodes in the trie of A1, . . . , An.

Rearrangement Inequalities for String Concatenation 215

The order ≤∞ on primitive words has nice connections with repeating deci-
mals as shown in the proof of Lemma 3. It would be interesting to know whether
these connections have more applications in the study of primitive words.

A An alternative proof of Lemma 3

Below we show an alternative proof of Lemma 3. This proof is less clever and
much more involved (compared to the other proof in Sect. 2), yet it reflects more
insights which helped us in designing our linear time algorithm.

Below we always assume that A, B, X, Y are words.

Definition 5. Word A is truly less than word B, if there exists a prefix pair
A1A2...Ai and B1B2...Bi, in which A1A2...Ai−1 and B1B2...Bi−1 are equal and
Ai is less than Bi. For convenience, let A <T B denote this case for the rest of
this paper. Note that i can be 1 such that A1 is less than B1.

For any pair of nonempty words, A and B, we can generalize 3 following prop-
erties with Definition 5. Note that any X or Y in the following properties can
be any word, including empty word.

Claim (1). Proposition A <T B is equivalent to AX < BY , if A is not prefix of
B and B is not prefix of A.

Proof. If A is not prefix of B and B is not prefix of A, the proposition AX < BY
implies that A and B fits the case described in Definition 5 and thus A <T B
holds. The proposition A <T B, by Definition 5, also indicates that AX < BY .

��
Claim (2). If A <T B, it holds that AX <T BY .

Proof. If A <T B, by Definition 5, there exists a prefix pair A1, A2...Ai and
B1B2...Bi, in which A1A2...Ai−1 and B1B2...Bi−1 are equal and Ai is less than
Bi. Since A is the prefix of AX and B is the prefix of BY , AX and BY also
have the prefix pair A1A2...Ai and B1B2...Bi mentioned above, thus it holds
that AX <T BY by Definition 5. ��
Claim (3). If A < B and |A| = |B|, it holds that A <T B.

Proof. If A < B and |A| = |B|, we can find a substring pair A1A2...Ai and
B1B2...Bi, in which A1A2...Ai−1 and B1B2...Bi−1 are equal and Ai is less than
Bi. This is exactly the case of Definition 5, so naturally A <T B. ��

Now, we are ready for proving Lemma 3.
Recall that this lemma states for non-empty words A and B, the relation

between R(A) and R(B) is the same as the relation between AB and BA.
We will prove R(A) = R(B) ⇔ AB = BA and R(A) < R(B) ⇔ AB < BA.

Note that R(A) > R(B) ⇔ AB > BA can be obtained similarly.

216 R. Luo et al.

Proposition 2. For nonempty words A and B, AB = BA ⇔ R(A)=R(B).

Proof. From AB = BA or R(A) = R(B), we obtain from Lemma 1 that A = Ck

and B = Cl for some C, k, l, which implies that R(A) = R(B) and AB = BA.��
Proposition 3. For nonempty words A and B, AB < BA ⇔ R(A) < R(B).

We prove the two directions separately in the following.

Proof (of AB < BA ⇒ R(A) < R(B)).
We discuss two subcases.

Subcase 1. |A| ≤ |B|
Let B = AmS, in which m = degB(A) by Definition 3.
Note that target R(A) < R(B) equals to R(A) < R(AmS), which then equals

to R(A) < SR(AmS), by eliminating the leading Am.
With AB < BA, we will get the relation that AB < BA leads to Am+1S <

AmSA. And Am+1S < AmSA leads to AS < SA, which eventually leads to
AS <T SA.

We will prove that AA <T SA. And since AA is a prefix of R(A) and SA is a
prefix of SR(AmS), proposition R(A) < SR(AmS) follows by Claim 2, proving
the target proposition.

Now we prove AA <T SA in two cases.

1. If |A| ≤ |S|, or |A| > |S| but S is not a prefix of A, note that A is not a
prefix of S, since AS < SA, proposition A <T S follows by Claim 1. Then
AA <T SA follows by Claim 2.

2. If |A| > |S| and S is a prefix of A, let A = ST . Since AS <T SA, we have
STS <T SST , then AA = STST <T SST = SA follows by Claim 2. Thus
AA <T SA.

Subcase 2. |A| > |B|
Let A = BmS, in which m = degA(B).
Note that target R(A) < R(B) equals to R(BmS) < R(B), which then equals

to SR(BmS) < R(B), by eliminating the leading Bm.
With AB < BA, we will get the relation that AB < BA leads to BmSB <

Bm+1S. And BmSB < Bm+1S leads to SB < BS, which eventually leads to
SB <T BS.

We will prove that SB <T BB. And since BB is a prefix of R(B) and SB is a
prefix of SR(BmS), proposition SR(BmS) < R(B) follows by Claim 2, proving
the target proposition.

Now we prove SB <T BB in 2 cases.

1. If |B| ≤ |S| , or |B| > |S| but S is not a prefix of B, note that B is not a
prefix of S, since SB < BS, proposition S <T B follows by Claim 1. Then
SB <T BB follows by Claim 2.

2. If |B| > |S| and S is a prefix of B, let B = ST . Since SB <T BS, we have
SST <T STS, then SB = SST <T STST = BB follows by Claim 2. Thus
SB <T BB.

Rearrangement Inequalities for String Concatenation 217

With both cases proved, we have AB < BA ⇒ R(A) < R(B). ��
Proof (of R(A) < R(B) ⇒ AB < BA).

In the following, we discuss two subcases.

Subcase 1. |A| ≤ |B|.
Let B = AmS, in which m = degB(A).
Note that AB < BA equals to Am+1S < AmSA, which equals to AS < SA

by eliminating the leading Am.
With R(A) < R(B), we will get the relation that R(A) < R(B) equals

to R(A) < R(AmS). And R(A) < R(AmS) equals to R(A) < SR(AmS) by
eliminating the leading Am.

Now we will prove AS < SA.
1. If |A| <= |S|, or |A| > |S| and S is not a prefix of A, note that A is not

a prefix of S, since R(A) < SR(AmS), A <T S follows by Claim 1. Then
AS < SA follows by Claim 2.

2. If |A| > |S| and S is a prefix of A, let A = ST . Since R(A) < SR(AmS),
we have R(ST) < SR((ST)mS), we pay attention to the prefixes with
length 2*|S|+|T| of these two infinite words: STS and SST . We argue that
STS �= SST otherwise ST = TS, then S, T,B,A are powers of a common
element by Lemma 1, then R(A) = R(B), which is contradictory. Thus,
since R(ST) < SR((ST)mS), we will have STS < SST . It holds that
AS = STS < SST = SA. Thus, we end up with AS < SA.

Subcase 2. |A| > |B|.

Let A = BmS, in which m = degA(B).
Note that AB < BA equals to BmSB < Bm+1S, which equals to SB < BS

by eliminating the leading Bm.
With R(A) < R(B), we will get the relation that R(A) < R(B) equals

to R(BmS) < R(B). And R(BmS) < R(B) equals to SR(BmS) < R(B) by
eliminating the leading Bm.

Now we will prove SB < BS, in two cases.

1. If |B| <= |S|, or |B| > |S| and S is not a prefix of B, note that B is not
a prefix of S, since SR(BmS) < R(B), S <T B follows by Claim 1. Then
SB < BS follows by Claim 2.

2. If |B| > |S| and S is a prefix of B, let B = ST . Since SR(BmS) < R(B),
we have SR((ST)mS) < R(ST). we pay attention to the prefixes with length
2 ∗ |S| + |T | of these two infinite words: SST and STS. We can argue that
SST �= STS otherwise ST = TS, then S, T,B,A are powers of a common
element by Lemma 1, then R(A) = R(B), which is contradictory. Thus, since
SR((ST)mS) < R(ST), we will have SST < STS. It holds that SB = SST <
STS = BS. Thus, we end up with SB < BS.

With both cases proved, we have R(A) < R(B) ⇒ AB < BA. ��
Now, with both subcases proved, we have R(A) < R(B) ⇔ AB < BA.

218 R. Luo et al.

References

1. Orderings - oeiswiki (2022). https://oeis.org/wiki/Orderings
2. Wikipedia: Shortlex order (2022). https://en.wikipedia.org/wiki/Shortlex_order
3. Alatabbi, A., Daykin, J., Rahman, M., Smyth, W.: Simple linear comparison of

strings in v-order. In: Pal, S., Sadakane, K. (eds.) WALCOM 2014, LNCS, Vol.
8344, pp. 80–89 (2014)

4. Au, Y.: Generalized de bruijn words for primitive words and powers. Discret. Math.
338(12), 2320–2331 (2015). https://doi.org/10.1016/j.disc.2015.05.025

5. Bannai, H.I.T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The "runs"
theorem. SIAM J. Comput. 46(5), 1501–1514 (2017). https://doi.org/10.1137/
15M1011032

6. Berstel, J., Boasson, L.: The set of lyndon words is not context-free. Bull. EATCS
63 (1997)

7. Chen, K., Fox, R., Lyndon, R.: Free differential calculus, iv. the quotient groups
of the lower central series. Ann. Math. 81–95 (1958)

8. Crochemore, M., Russo, L.: Cartesian and lyndon trees. Theor. Comput. Sci. 806,
1–9 (2020). https://doi.org/10.1016/j.tcs.2018.08.011

9. Daykin, D., Daykin, J., Smyth, W.: String comparison and lyndon-like factorization
using v-order in linear time. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011, LNCS
6661, pp. 65–76 (2011)

10. D.E. Knuth, J.M., Pratt, V.: Fast pattern matching in strings. SIAM J. Comput.
6(2), 323–350 (1977). https://doi.org/10.1137/0206024

11. Dolce, F., Restivo, A., Reutenauer, C.: On generalized lyndon words.
ArXiv:abs/1812.04515 (2019)

12. Dömösi, P., Horváth, S., Ito., M.: On the connection between formal languages and
primitive words. In: Proceedings of the First Session on Scientific Communication,
pp. 59–67. University of Oradea, Oradea, Romania (1991)

13. Dömösi, P., Ito, M.: Context-free languages and primitive words (2014). https://
doi.org/10.1142/7265

14. Duval, J.: Factorizing words over an ordered alphabet. J. Algor. 4(4), 363–381
(1983). https://doi.org/10.1016/0196-6774(83)90017-2

15. Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de bruijn
sequences. Discrete Math. 23, 207–210 (1979)

16. Lischke, G.: Primitive words and roots of words. Acta Univ. Sapientiae, Informatica
3(1), 5–34 (2011)

17. Lothaire, M.: Combinatorics on Words. Encyclopedia of Mathematics, vol. 17,
Addison-Wesley, MA (1983)

18. Lyndon, R., Schützenberger, M.: The equation am = bncp in a free group. Michigan
Math. J. 9(4), 289–298 (1962). https://doi.org/10.1307/mmj/1028998766

19. Petersen, H.: On the language of primitive words. Theor. Comput. Sci. 161, 141–
156 (1996)

20. Smyth, W.: Computing regularities in strings: a survey. Eur. J. Combin. 34(1),
3–14 (2013). https://doi.org/10.1016/j.ejc.2012.07.010

21. Zhang, D., Jin, K.: Fast algorithms for computing the statistics of pattern match-
ing. IEEE Access 9, 114965–114976 (2021). https://doi.org/10.1109/ACCESS.
2021.3105607

https://oeis.org/wiki/Orderings
https://en.wikipedia.org/wiki/Shortlex_order
https://doi.org/10.1016/j.disc.2015.05.025
https://doi.org/10.1137/15M1011032
https://doi.org/10.1137/15M1011032
https://doi.org/10.1016/j.tcs.2018.08.011
https://doi.org/10.1137/0206024
http://arxiv.org/1812.04515
https://doi.org/10.1142/7265
https://doi.org/10.1142/7265
https://doi.org/10.1016/0196-6774(83)90017-2
https://doi.org/10.1307/mmj/1028998766
https://doi.org/10.1016/j.ejc.2012.07.010
https://doi.org/10.1109/ACCESS.2021.3105607
https://doi.org/10.1109/ACCESS.2021.3105607

Approximation Algorithms
for Prize-Collecting Capacitated Network

Design Problems

Lu Han1, Vincent Chau2(B), and Chi Kit Ken Fong3

1 School of Science, Beijing University of Posts and Telecommunications,
Beijing, China
hl@bupt.edu.cn

2 School of Computer Science and Engineering, Southeast University, Nanjing, China
vincentchau@seu.edu.cn

3 Chu Hai College of Higher Education, Hong Kong, China

kenfong@chuhai.edu.hk

Abstract. In this paper, we study the prize-collecting capacitated net-
work design (PCCND) problem. We have to route the demand of each
source to some sinks in a network, or eventually pay the prize to not
serving the demand. We need to install multiple cables on the edges of
the network to support the service. The goal is to find a feasible solution
with the minimum cost. We give a 3.482-approximation algorithm for the
PCCND. We also consider a special case of the PCCND, in which there
is only one given sink, and present a 2.9672-approximation algorithm.

Keywords: Prize-collecting · Network design · Facility location ·
Steiner tree · Approximation algorithm

1 Introduction

We study the prize-collecting capacitated network design (PCCND) problem,
which generalizes both the prize-collecting facility location (PCFL) problem and
the prize-collecting Steiner tree (PCST) problem. In the PCCND problem, we are
given a set of sinks and a set of sources in a network. Each sink is associated with
an opening cost. Each source has a unit of demand and a prize. We could decide
to either route the demand of a source to an opened sink or pay its prize for not
routing. The amount of demands that can be served by an edge in the network
depends on how many cables are installed on the edge. All the cables have the
same capacity. Installing l cables on an edge could allow the demands served by
the edge up to l times the capacity, and would incur l times the corresponding edge

The research of the first author is supported by the National Natural Science Foun-
dation of China (No. 12001523). The second author is supported by the national key
research and development program of China under grant No. 2019YFB2102200, and
by the Fundamental Research Funds for the Central Universities No. 2242022R10024.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 219–232, 2022.
https://doi.org/10.1007/978-3-031-20796-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_16&domain=pdf
https://doi.org/10.1007/978-3-031-20796-9_16

220 L. Han et al.

cost. Our task is to open some sinks, install cables on the edges of the network,
and decide to either route the demand of each source to some opened sink or to
pay its prize without violating the capacity of each edge, so that the total cost of
opening sinks, installing cables on edges, and paying prizes is minimized.

1.1 Related Works

When each cable has a capacity of 1, the PCCND problem simplifies to the PCFL
problem. In the PCFL problem, we are given a set of facilities and a set of clients.
Each facility has an opening cost. Each client has a unit of demand and is associ-
ated with a prize. We could decide to either connect the demand of a client to an
opened facility or pay its prize for not connecting. Connecting a client to a facility
would incur a connection cost. The objective is to open some facilities, and decide
to either connect the demand of each client to some opened facility or to pay its
prize, so that the total cost of opening facilities, connecting clients, and paying
prizes is minimized. The PCFL problem is also known as the facility location prob-
lem with penalties, in which the prize of a client is called its penalty cost. Under
the assumption that the connection costs satisfy the triangle inequality, Charikar
et al. [3] proposed the PCFL problem and give its first 3-approximation algorithm
based on the technique of primal-dual. Subsequently, many researchers began to
design approximation algorithms for the PCFL problem [4,16,17]. By exploiting
the properties of the penalties (i.e., the prizes), Li et al. [11] presented the cur-
rently best LP-rounding 1.5148-approximation algorithm for the PCFL problem.
Note that if each client has an infinite prize, the PCFL problem becomes the well-
known uncapacitated facility location (UFL) problem [12]. Other generalizations
of the UFL problem can be found in the literature [9,10,15,18].

When there is only one given sink without opening cost, each cable has an infi-
nite capacity, and all the other vertices in the network are the sources, the PCCND
problem simplifies to the PCST problem. In the PCST problem, we are given a
graph consisting of a set of vertices and a set of edges, as well as a root vertex.
Each vertex is associated with a prize, and each edge is associated with a cost.
The objective is to find a tree containing the root vertex so that the total cost of
the edge costs of the edges in the tree and the prizes of the vertices not in the tree
is minimized. A 3-approximation algorithm could be obtained for the PCST prob-
lem by adopting a similar idea of the algorithm for the prize-collecting traveling
salesman problem in [2]. Goemans and Williamson presented a 2-approximation
primal-dual algorithm in [5]. Archer et al. [1] gave the currently best 1.9672-
approximation algorithm for the PCST problem, which overcame the integrality
gap barrier. For other generalizations of the PCST problem, we refer to [6–8,14].

When each source has an infinite prize, the PCCND problem becomes the
capacitated-cable facility location (CCFL) problem. In the CCFL problem, we are
given a set of facilities and a set of clients in a network. Each facility has an opening
cost. Each client has a unit of demand. We have to connect the demand of a client
to an opened facility. The amount of demands that can be served by an edge in
the network depends on how many cables are installed on the edge. All cables have
the same capacity. Installing l cables on an edge could allow the demands served

Approximation Algorithms for PCCND Problems 221

by the edge up to l times the capacity, and would incur l times the corresponding
edge cost. The objective is to open some facilities, install cables on the edges of the
network, and connect the demand of each client to some opened facilities without
violating the capacity of each edge so that the total cost of opening facilities and
installing cables on the edges is minimized. Under the assumption that the edge
costs satisfy the triangle inequality, Ravi and Sinha [13] proposed the CCFL prob-
lem and gave an approximation algorithm for it. It is worth mentioning that the
idea of our algorithm in this paper is inspired by the work of [13].

1.2 Our Results

As our main contribution, we propose a 3.482-approximation algorithm for the
PCCND problem. The algorithm first solves two constructed instances of the
PCFL and PCST problems, and then combines the solutions of these two instances
to obtain a feasible solution for the PCCND instance. The intuition behind the
algorithm is based on an observation that two well-constructed instances of the
PCFL and PCST problems could provide two useful lower bounds for the opti-
mal objective of the PCCND instance. Moreover, we also consider a special case
of the PCCND problem, in which there is only one given sink, called the single-
sink prize-collecting capacitated network design (single-sink PCCND) problem.
We show that the idea of our algorithm for the PCCND problem could yield a
2.9672-approximation algorithm for the single-sink PCCND problem.

The remainder of the paper is structured as follows. In Sect. 2, we give the
formal description of the studied problem as well as the description of the PCFL
and PCST problems. Then in Sect. 3, we present our main algorithm for the
PCCND problem. In Sect. 3.3, we study the single-sink PCCND problem.

2 Preliminaries

As described above, our problem is closely related to the PCFL and PCST
problems. We first describe our problem in Sect. 2.1, in what follows, we give the
formal description of the two other problems. Finally we show how to construct
two relevant instances of the PCFL and PCST in order to provide lower bounds
to an optimal solution of the PCCND instance.

2.1 Prize-Collecting Capacitated Network Design Problem

In a PCCND instance, we are given an undirected graph G = (V,E), a set of
sinks T ⊆ V , a set of sources S ⊆ V , and an integer U which corresponds to
the cable capacity. Opening a sink t ∈ T incurs a non-negative opening cost of
ft. Each source s ∈ S has a unit of demand and a non-negative prize ps. For
a source, we could decide to either route its demand to an opened sink via a
path, or to pay its prize for not routing. Each edge e ∈ E has a non-negative
edge cost ce, and we assume that the edge costs satisfy the triangle inequality.
We can install multiple cables on the same edge. If we install l times on an edge

222 L. Han et al.

e, the edge e can serve up to lU units of demands go through it, and we should
pay a cost of lce. The objective is to open a set of sinks O ⊆ T , install cables on
the edges, and decide to either route the demand of each source to some opened
sink or to pay its prize without violating the capacity of any edges, such that the
total cost (i.e., the cost of opening sinks, installing cables on edges, and paying
prizes) is minimized.

Note that if the edge costs do not follow the triangle inequality, then the prob-
lem does not admit a constant approximation ratio since it is a generalization
of the PCFL problem.

We use (O,P, τ) to denote a solution of a PCCND instance. Here O is the
set of opened sinks, P is the set of sources deciding not to route, and τ : E → Z

indicates the times of the cable installed on an edge. For a solution (O,P, τ),
denote by CO(O,P, τ) its total opening cost, i.e.,

CO(O,P, τ) =
∑

t∈O

ft;

and denote by CP (O,P, τ) its total prize, i.e.,

CP (O,P, τ) =
∑

s∈P

ps;

and denote by CE(O,P, τ) its total edge cost of installing, i.e.,

CE(O,P, τ) =
∑

e∈E

τ(e)ce.

Therefore, the total cost of the solution (O,P, τ) is

CO(O,P, τ) + CP (O,P, τ) + CE(O,P, τ) =
∑

t∈O

ft +
∑

s∈P

ps +
∑

e∈E

τ(e)ce.

2.2 Prize-Collecting Facility Location Problem

In a PCFL instance, we are given a set of facilities F and a set of clients D.
Opening a facility i ∈ F incurs a non-negative opening cost of fF

i . Each client
j ∈ D has a unit of demand and a non-negative prize pFj . For a client, we could
decide to either connect its demand to an opened facility or to pay its prize for
not connecting. Connecting a client j ∈ D to a facility i ∈ F incurs a connection
cost of cFij . Assume that the connection costs satisfy the triangle inequality. The
objective is to open a set of facilities OF ⊆ F , and decide to either connect
the demand of each client to some opened facility or to pay its prize, such that
the total cost (i.e., the cost of opening facilities, connecting clients, and paying
prizes) is minimized.

We use (OF, PF, σF) to denote a solution of a PCFL instance. Here OF is
the set of opened facilities, PF is the set of clients deciding not to connect, and

Approximation Algorithms for PCCND Problems 223

σF : D \ PF → OF indicates the assigned facility of a client. For a solution
(OF, PF, σF), denote by CO(OF, PF, σF) its total opening cost, i.e.,

CO(OF, PF, σF) =
∑

i∈OF

fF
i ;

and denote by CP (OF, PF, σF) its total prize, i.e.,

CP (OF, PF, σF) =
∑

j∈PF

pFj ;

and denote by CC(OF, PF, σF) its total connection cost, i.e.,

CC(OF, PF, σF) =
∑

j∈D\PF

cFσ(j)j .

Therefore, the total cost of the solution (OF, PF, σF) is

CO(OF, PF, σF) + CP (OF, PF, σF) + CC(OF, PF, σF)

=
∑

i∈OF

fF
i +

∑

j∈PF

pFj +
∑

j∈D\PF

cFσ(j)j .

From any given PCCND instance IPCCND with inputs of a graph G = (V,E),
a sink set T ⊆ V , a source set S ⊆ V , an integer U , opening costs {ft}t∈T ,
prizes {ps}s∈S and edge costs {ce}e∈E , we could construct a corresponding PCFL
instance IPCFL with inputs of a facility set F , a client set D, opening costs
{fF

i }i∈F , prizes {pFj }j∈D and connection costs {cFij}i∈F,j∈D as follows. Define the
facility set F and client set D as the sink set T and source set S, respectively.
Define the opening cost fF

i of a facility i ∈ F to be the same as the opening
cost ft of the corresponding sink t = i in T , and the prize pFj of a client j ∈ D
to be the same as the prize ps of the corresponding source s = j in S, and the
connection cost cFij of a facility-client pair (i, j) to be 1/U times the minimum
total edge cost of a path from i = t ∈ T to j = s ∈ S in the graph G. An
illustration of the above construction can be found in Fig. 1, in which U=2.

The following lemma gives a lower bound to an optimal solution of the
PCCND instance.

Lemma 1. The total cost of an optimal solution of the instructed PCFL
instance IPCFL is no more than the total cost of an optimal solution of the
PCCND instance IPCCND.

Proof. Assume that (O∗, P ∗, τ∗) is an optimal solution of the PCCND instance
IPCCND. We could construct a feasible solution (OF, PF, σF) for the PCFL
instance IPCFL, where OF = O∗, PF = P ∗, σF(j) := arg mini∈O∗ cFij for each
j ∈ D\PF. It can be seen that the total opened cost and total prize of these two
solutions are the same. Note that under the solution (O∗, P ∗, τ∗), the demand
of a source s may not be served by an opened sink with the minimum total

224 L. Han et al.

Fig. 1. Construction of the relevant instance of PCFL. Sources are represented in red,
and sinks are represented in blue. (Color figure online)

edge cost of a path from s, and j’s share of the total edge cost is at least 1/U
of the total edge cost of the path from j to its assigned sink. Thus, the total
edge cost incurred by a source s ∈ S \ P ∗ under the solution (O∗, P ∗, τ∗) is at
least the connection cost of cFσ(j)j of the same corresponding client j = s under
the solution (OF, PF, σF). Therefore, the total cost of a feasible solution of the
PCFL instance IPCFL is no more than the total cost of an optimal solution of
the PCCND instance IPCCND, implying the lemma. ��

2.3 Prize-Collecting Steiner Tree Problem

In a PCST instance, we are given an undirected graph GS = (V S, ES) and a
root vertex r ∈ V S. Each vertex v ∈ V S has a non-negative prize pSv , and each
edge e ∈ ES has a non-negative edge cost cSe . The objective is to find an r-rooted
tree, such that the sum of the edge costs of the edges in the tree and the prizes
of the vertices not in the tree is minimized.

We use (RS, P S) to denote a solution of a PCST instance. Here RS is an
r-rooted tree, and P S is the set of vertices not in the tree RS. Denote by V (RS)
and E(RS) the vertices and edges in the tree RS, respectively. Note that P S =
V S \ V (RS). For a solution (RS, P S), denote by CP (RS, P S) its total prize, i.e.,

CP (RS, P S) =
∑

v∈PS

pSv ;

and denote by CE(RS, P S) its total edge cost, i.e.,

CE(RS, P S) =
∑

e∈E(RS)

cSe .

Therefore, the total cost of the solution (RS, P S) is

CP (RS, P S) + CE(RS, P S) =
∑

v∈PS

pSv +
∑

e∈E(RS)

cSe .

Approximation Algorithms for PCCND Problems 225

From any given PCCND instance IPCCND with inputs of a graph G = (V,E),
a sink set T ⊆ V , a source set S ⊆ V , an integer U , opening costs {ft}t∈T , prizes
{ps}s∈S and edge costs {ce}e∈E , we could construct a relevant PCST instance
IPCST with inputs of a graph GS = (V S, ES), a root r ∈ V S, prizes {pSv}v∈V S

and edge costs {cSe}e∈ES as follows. We add a dummy vertex r as the root
and construct an undirected graph GS = (V S, ES), where V S = V ∪ {r} and
ES = E ∪ {(v, r) : v ∈ T}. Define the prize pSv of a vertex v ∈ S to be the same
as the prize ps of the corresponding source s = v in S, and the prize pSv of a
vertex v ∈ V S \ S to be zero. Define the edge cost cSe of an edge e ∈ E remains
the same the edge cost ce as in the PCCND instance I, and the edge cost cSe of
an edge e ∈ {(v, r) : v ∈ T} to be fv. An illustration of the above construction
can be found in Fig. 2.

Fig. 2. Construction of the relevant instance of PCST.

The following lemma gives another lower bound to an optimal solution of the
PCCND instance.

Lemma 2. The total cost of an optimal solution of the instructed PCST
instance IPCST is no more than the total cost of an optimal solution of the
PCCND instance IPCCND.

Proof. Assume that (O∗, P ∗, τ∗) is an optimal solution of the PCCND instance
IPCCND. We could construct a feasible solution (RS, PS) for the PCST instance
IPCST, where RS obtained from deleting all the redundant edges in {e ∈ E :
τ∗(e) ≥ 1}⋃{(v, r) : v ∈ O∗} but one, and P S = V S \ V (RS). It can be seen
that the total opening and edge cost of the solution (O∗, P ∗, τ∗) is at least the
total edge cost of the solution (RS, PS), and that the total prize of the solution
(O∗, P ∗, τ∗) is at least the total prize of the solution (RS, PS). Therefore, the
total cost of a feasible solution of the PCFL instance IPCST is no more than the
total cost of an optimal solution of the PCCND instance IPCCND, implying the
lemma. ��

226 L. Han et al.

3 Algorithm and Analysis

This section presents an approximation algorithm for the PCCND problem. The
main idea is based on using the solutions of the relevant constructed instances
of the PCFL and PCST to build a feasible solution (O,P, τ) for the PCCND
instance. In Sect. 3.1, we show how the set of opened sinks and the set of sources
paying the prizes (i.e., the sets O and P in the solution (O,P, τ)) are determined.
Then in Sect. 3.2, we show the construction process of the mapping τ in the
solution (O,P, τ). Finally, we conclude this section by proving the approximation
ratio of our algorithm.

3.1 Bound the Cost of Opening Sinks and Paying Prizes

The construction process of the sets O and P in the solution (O,P, τ) is quite
simple. We construct and solve the relevant instances of the PCFL and PCST.
The set O is simply obtained from combining the opened facilities in the solution
of the PCFL instance and the corresponding vertex v ∈ T pays the edge cost of
(v, r) in the solution of the PCST instance. The set P is obtained from combin-
ing the clients paying the prizes in the solution of the PCFL instance and the
vertices paying the prizes in the solution of the PCST instance among the given
source set S. The formal construction process of the sets O and P is given in
Algorithm 1.

Algorithm 1. Selection of the set of opened sinks O and the set of sources P

Input: A PCCND instance IPCCND with inputs of G = (V, E), T ⊆ V , S ⊆ V , U ,
{ft}t∈T , {ps}s∈S and {ce}e∈E .

Output: A set O of opened sinks and a set P of the sources paying the prizes for the
PCCND instance IPCCND.

Step 1 Construct and solve a relevant PCFL instance.
Step 1.1 Construct a PCFL instance IPCFL with inputs of F , D, {fF

i }i∈F ,
{pF

j }j∈D and {cFij}i∈F,j∈D, where F = T , D = S, fF
i = fi for any i ∈ F = T ,

pF
j = pj for any j ∈ D = S, and set cFij to be 1/U times the minimum total

edge cost of a path from i ∈ F = T to j ∈ D = S in the graph G.
Step 1.2 Solve the PCFL instance IPCFL with the currently best αF-

approximation algorithm for the PCFL and obtain a solution (OF, PF, σF).
Step 2 Construct and solve a relevant PCST instance.

Step 2.1 Add a dummy vertex r as a root and construct a PCST instance IPCST

with inputs of GS = (V S, ES), r ∈ V S, {pS
v}v∈V S and {cSe}e∈ES , where V S =

V ∪ {r}, ES = E ∪ {(v, r) : v ∈ T}, pS
s = ps for any v ∈ S, pS

v = 0 for any
v ∈ V S\S, cSe = ce for any e ∈ E, and cSe = fv for any edge e ∈ {(v, r) : v ∈ T}.

Step 2.2 Solve the PCST instance IPCST with the currently best αS-
approximation algorithm for the PCST and obtain a solution (RS, P S).

Step 3 Construct the sets O and P .
Define OS := {t ∈ T : (t, r) ∈ E(RS)}, and P ′ := P S ∩ S. Set O := OF ∪ OS,
P := PF ∪ P ′, and output O and P .

Approximation Algorithms for PCCND Problems 227

The following Lemma 3 bounds the total opening cost of O, while Lemma 4
bounds the total prize of P .

Lemma 3. The total opening cost under f of the sinks in O is no more than
the total opening cost under fF of the facilities in OF plus the total edge cost
under cS of the edges in {(t, r) ∈ E(RS) : t ∈ T}.
Proof. Since O := OF ∪ OS, therefore,

∑

t∈O

ft ≤
∑

t∈OF

ft +
∑

t∈OS

ft

=
∑

t∈OF

fF
t +

∑

e∈{(t,r)∈E(RS):t∈T}
cSe .

This completes the proof. ��
Lemma 4. The total prize under p of the sources in P is no more than the total
prize under pF of clients in PF plus the total prize under pS of the vertices in
P S.

Proof. Since P := PF ∪ P ′ and P ′ := P S ∩ S, therefore,
∑

s∈P

ps ≤
∑

s∈PF

ps +
∑

s∈P ′
ps

≤
∑

s∈PF

pFs +
∑

s∈P ′
pSs

≤
∑

s∈PF

pFs +
∑

s∈PS

pSs .

This completes the proof. ��

3.2 Bound the Cost of Installing Cables

The construction process of the mapping τ in the solution (O,P, τ) is more
challenging. Note that all the demands of the sources needing to be routed are
on the tree RS obtained with Algorithm 1. We could divide all these demands
according to the subtrees of RS rooted at the some vertex v ∈ OS. For the
demands needing to be routed in each subtree, we try to install a suitable number
of cables on the edges of the graph in order to satisfy their demands. The formal
construction process of the mapping τ is given in Algorithm 2.

Lemma 5. The solution (O,P, τ) is a feasible solution for the PCCND instance
IPCCND.

Proof. If we prove that the number of cables installed on the edges, according
to the mapping τ , are sufficient for routing all the demands from the sources in
S \ P to the opened sinks in O, we prove the feasibility of the solution (O,P, τ).

228 L. Han et al.

Algorithm 2. Solving the PCCND problem
Input: The PCCND instance IPCCND, the solution (OF, PF, σF) of the PCFL instance

IPCFL, the solution (RS, PS) of the PCST instance IPCST, the sets of OS, O, and P .
Output: A mapping τ : E → Z for the PCCND instance IPCCND.
Step 0 Initialization.

Set τ(e) := 0 for each edge e ∈ E. We orient all edges of the tree RS in a direction
towards the root r. For any vertex v ∈ V (RS), denote by R(v) the subtree of RS

rooted at v.
Step 1 Classify the subtrees.

Step 1.1 For each subtree R(v), where v ∈ OS, delete any source s ∈ S ∩ P and its
incident edges of the subtree, if s is not an intermediate vertex on a path from any
other source in S \ P to the root v. After pruning edges, we name each updated
subtree of R(v) as R′(v).

Step 1.2 We call the subtree R′(v), where v ∈ OS, a light subtree, if the number of
sources in S \P on it is no more than U . Otherwise, we call the subtree R′(v) a heavy
one. Denote by LR all the light subtrees, and HR all the heavy subtrees. Go to Step
2 to deal with the light subtrees, and go to Step 3 to deal with the heavy subtrees.

Step 2 Install cables on the light subtrees.
Step 2.1 Install a cable on each edge of the subtrees in LR, and update τ(e) := τ(e)+ 1

for each edge e ∈ ⋃
Rl∈LR E(R).

Step 2.2 For each light subtree Rl, route the demand of each source in (S \ P) ∩ V (Rl)
to the root of Rl.

Step 3 Install cables on the heavy subtrees.
Step 3.1 Install a cable on each edge of the subtrees in HR, and update τ(e) := τ(e)+1

for each edge e ∈ ⋃
Rh∈HR E(R).

Step 3.2 For each heavy subtree Rh, let V ′(Rh) be the vertices of the subtree, which
have at most U units of demands on each of their incoming incident edge and have
more than U units of demands on each of their outgoing incident edge. For a vertex
u ∈ V (Rh) of some heavy subtree Rh, denote by R′′(u) the subtree of Rh rooted at
u.

Step 3.3 For all v′ in V ′(Rh) of some heavy subtree Rh do
Step 3.3.1 Find all the vertices that directly orient to v′ via an edge of the subtree

Rh. We call these vertices the children of v′, and denote them by Vch(v
′). We

call v′ the parent of each vertex in Vch(v
′). For each subtree R′′(u), where u ∈

Vch(v
′), let S(u) be the sources needing to be routed on the subtree, i.e., the

sources in (S \ P) ∩ V (R′′(u)). Then for each R′′(u), find a source-sink pair
(su, tu), where su ∈ S(u) and tu ∈ OF, which has the minimum connection
cost cFsutu

. Select �∑u∈Vch(v
′) S(u)/U� such pairs with lowest connection cost.

Update τ(e) := τ(e) + 1 for each edge on the path connecting the selected pairs
with a minimum total edge cost.

Step 3.3.2 If the source-sink pair (su, tu) corresponding to a subtree R′′(u) is
selected, then route the demand of each source in S(u) to the sink tu. If the
source-sink pair (su, tu) of a subtree R′′(u) is not selected, then route some or
none of the demands of the sources in S(u) to some selected sinks via a path on
the heavy subtree and the corresponding selected pair, such that the amount of
demands being routed to each sink is exactly U .

Step 3.3.3 Remove all the routed demands and update each heavy subtree. Go to
Step 2.2 to deal with the updated light subtrees, and go to Step 3.2 to deal with
the updated heavy subtrees.

Step 4 Output the mapping.
Once all the demands needing to be routed have been processed, we stop the algorithm
and output the mapping of τ .

Approximation Algorithms for PCCND Problems 229

Since the number of sources needing to be routed on any light subtree is no
more than U , installing one cable on each edge of the subtree is sufficient for
routing all the demands to the root. Recall that the root of any light subtree is
in OS. Therefore, all the demands on any light subtree could be routed to an
opened sink in O without violating the capacities of the corresponding edges.

For a heavy subtree, recall that we first find all the vertices with more than
U units outgoing demands and at most U incoming demands on their incident
edges. Then, we try to deal with the demands on the subtrees of their children
by selecting a certain number of source-sink pairs, so that most of the demands
on the subtrees of the children can be routed to the sinks in OF and there are no
more than U units of demands left. It is worth mentioning that the routing idea
for dealing with most of the demands in Step 3.3.2 of Algorithm 2 may cause a
violation of the capacity requirements, but that kind of situation can be handled.
Consider the situation that the demand of a source s1 on a children subtree R′′

is routed to some selected source-sink pairs (s2, t2) related to a sibling subtree of
R′′, and then in later iterations, one of the un-routed source s3 on R′′ is selected
as a source of a source-sink pair. Since Step 3.3.2 of Algorithm 2 guarantees that
the amount of demands being routed to each selected source-sink pair is exactly
U , there must be some demands of the sources on a sibling subtree of R′′ which
need to be routed to s3. Note that routing the demand of s1 to the pair (s2, t2)
occupies a unit of capacity on the edge from the root of R′′ to its parent, and
routing the demand of some source s4 to s3 also occupy a unit of capacity on the
edge from the root of R′′ to its parent. When the source s1 in this situation is a
set of sources on R′′, and the source s4 is also a set of sources, it is very likely
that the capacity of the edge from the root of R′′ to its parent is violated. To
handle the violation, we could reroute the demands of the sources like s1 from
s2 to s3, and reroute the demands of the sources like s4 from s3 to s2. Therefore,
it can be seen that installing a cable on each edge of an initially heavy subtree
and on each edge related to the selected source-sink pairs is sufficient for serving
all the demands on the heavy subtree.

From the above analysis, we complete the proof of this lemma. ��
Lemma 6. The total edge cost under c of the edges according to the mapping
τ is no more than the total connection cost under cF of the clients according to
the mapping σF plus the total edge cost under cS of the edges in V (RS).

Proof. The total edge cost incurred by installing a cable on each edge related to
the selected source-sink pairs is no more than the corresponding total connection
cost of the solution (OF, PF, σF), since there are exactly U units of demands
being routed to each selected source-sink pair and the connection cost of each
source s ∈ S \ P routing its demand through the pair under the mapping of σF

is no less than the connection cost of the selected pair. It can be seen that the
total edge cost incurred by installing a cable on each edge of the light and heavy
subtrees are no more than the total edge cost of the edges in E(RS) \ {(t, r) ∈
E(RS) : t ∈ T}, therefore, we have that

230 L. Han et al.

∑

e∈E

τ(e)ce ≤
∑

j∈D\P

cFσF(j)j +
∑

e∈E(RS)\{(t,r)∈E(RS):t∈T}
ce

=
∑

j∈D\P

cFσF(j)j +
∑

e∈E(RS)\{(t,r)∈E(RS):t∈T}
cSe .

This completes the proof. ��
We are now ready to present our main result for the PCCND problem.

Theorem 1. Algorithm 2 is a 3.482-approximation algorithm for the PCCND
problem.

Proof. Let OPTPCCND, OPTPCFL and OPTPCST be the total costs of the opti-
mal solutions of the PCCND instance IPCCND, the constructed PCFL instance
IPCFL and the constructed PCST instance IPCST, respectively.

Recall that P := PF ∪ P ′ and P ′ := P S ∩ S, that the solutions (OF, PF, σF)
and (RS, P S) are obtained from using the currently best approximation algo-
rithms with ratios of αF and αS for the PCFL and PCST to solve the instances
IPCFL and IPCST, respectively. Combining Lemmas 1-4 and 6, we obtain that

∑

t∈O

ft +
∑

s∈P

ps +
∑

e∈E

τ(e)ce

≤
⎛

⎝
∑

t∈OF

fF
t +

∑

s∈PF

pFs +
∑

j∈D\P

cFσF(j)j

⎞

⎠ +

⎛

⎝
∑

s∈PS

pSs +
∑

e∈E(RS)

cSe

⎞

⎠

≤
⎛

⎝
∑

t∈OF

fF
t +

∑

s∈PF

pFs +
∑

j∈D\PF

cFσF(j)j

⎞

⎠ +

⎛

⎝
∑

s∈PS

pSs +
∑

e∈E(RS)

cSe

⎞

⎠

≤ αFOPTPCFL + αSOPTPCST

≤ (
αF + αS

)
OPTPCCND.

Using the values of αF = 1.5148 and αS = 1.9672 yields the approximation ratio
of 3.482 of our algorithm. ��

3.3 Case of Single Sink

In a single-sink PCCND instance, we are given an undirected graph G = (V,E),
a sink t ∈ V , a set of sources S ⊆ V , and an integer U of cable capacity. Each
source s ∈ S has a unit of demand and a non-negative prize ps. For a source,
we could decide to either route its demand to the sink t via a path, or to pay
its prize for not routing. Each edge e ∈ E has a non-negative edge cost ce, and
assume that the edge costs satisfy the triangle inequality. We can install multiple
times the cable on an edge. If we install l times on an edge e, the edge e can
serve lU units of demand, and we should pay a cost of lce. The objective is to
install cables on the edges, and decide to either route the demand of each source

Approximation Algorithms for PCCND Problems 231

to the sink t or to pay its prize without violating the capacity of any edge, such
that the total cost (i.e., the cost of installing cables on edges and paying prizes)
is minimized.

Based on the approximation algorithm for the PCCND, we provide a better
approximation algorithm for the single-sink PCCND. This comes from the fact
that the optimal solution of the corresponding constructed PCFL instance could
be found. Here is our main result for the single-sink PCCND.

Corollary 1. Algorithm 2 is a 2.9672-approximation algorithm for the PCCND
problem with a single sink.

4 Conclusion

In this paper, we assume that each source has a unit of demand in the PCCND
and single-sink PCCND problems. It is of great interest to study a more general
case where demands can be arbitrary and are not splittable. A natural question
is whether our algorithm can be adapted to the case of non-uniform demands.

References

1. Archer, A., Bateni, M., Hajiaghayi, M., Karloff, H.: Improved approximation algo-
rithms for prize-collecting steiner tree and tsp. SIAM J. Comput. 40(2), 309–332
(2011)

2. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.: A note on the
prize collecting traveling salesman problem. Math. Program. 59(1), 413–420 (1993)

3. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: SODA, vol. 1, pp. 642–651 (2001)

4. Geunes, J., Levi, R., Romeijn, H.E., Shmoys, D.B.: Approximation algorithms for
supply chain planning and logistics problems with market choice. Math. Program.
130(1), 85–106 (2011)

5. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)

6. Hajiaghayi, M.T., Jain, K.: The prize-collecting generalized steiner tree problem
via a new approach of primal-dual schema. In: SODA, vol. 6, pp. 631–640. Citeseer
(2006)

7. Hajiaghayi, M., Nasri, A.A.: Prize-Collecting Steiner Networks via Iterative
Rounding. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 515–526.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12200-2 45

8. Han, L., Xu, D., Du, D., Wu, C.: A 5-approximation algorithm for the k-prize-
collecting steiner tree problem. Optim. Let. 13(3), 573–585 (2019)

9. Han, L., Xu, D., Du, D., Zhang, D.: A local search approximation algorithm for the
uniform capacitated k-facility location problem. J. Combin. Opt. 35(2), 409–423
(2018)

10. Han, L., Xu, D., Li, M., Zhang, D.: Approximation algorithms for the robust facility
leasing problem. Opt. Let. 12(3), 625–637 (2018). https://doi.org/10.1007/s11590-
018-1238-x

https://doi.org/10.1007/978-3-642-12200-2_45
https://doi.org/10.1007/s11590-018-1238-x
https://doi.org/10.1007/s11590-018-1238-x

232 L. Han et al.

11. Li, Y., Du, D., Xiu, N., Xu, D.: Improved approximation algorithms for the facility
location problems with linear/submodular penalties. Algorithmica 73(2), 460–482
(2015)

12. Mahdian, M., Pál, M.: Universal facility location. In: Di Battista, G., Zwick,
U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 409–421. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-39658-1 38

13. Ravi, R., Sinha, A.: Approximation algorithms for problems combining facility
location and network design. Oper. Res. 54(1), 73–81 (2006)

14. Sharma, Y., Swamy, C., Williamson, D.P.: Approximation algorithms for prize
collecting forest problems with submodular penalty functions. In: Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1275–
1284. Citeseer (2007)

15. Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location prob-
lems. Algorithmica 40(4), 245–269 (2004)

16. Xu, G., Xu, J.: An LP rounding algorithm for approximating uncapacitated facility
location problem with penalties. Inform. Proces. Let. 94(3), 119–123 (2005)

17. Xu, G., Xu, J.: An improved approximation algorithm for uncapacitated facility
location problem with penalties. J. Combin. Opt. 17(4), 424–436 (2009)

18. Xu, Y., Xu, D., Du, D., Wu, C.: Improved approximation algorithm for universal
facility location problem with linear penalties. Theor. Comput. Sci. 774, 143–151
(2019)

https://doi.org/10.1007/978-3-540-39658-1_38

Computational and Network Economics

Possible and Necessary Winner Problems
in Iterative Elections with Multiple Rules

Peihua Li(B) and Jiong Guo(B)

Department of Computer Science, Shandong University, Qingdao, China
lipeihua@mail.sdu.edu.cn, jguo@sdu.edu.cn

Abstract. An iterative election eliminates some candidates in each
round until the remaining candidates have the same score according
to a given voting rule. Prominent iterative voting rules include Hare,
Coombs, Baldwin, and Nanson. The Hare/Coombs/Baldwin rules elim-
inate in each round the candidates with the least plurality/veto/Borda
scores, while the Nanson rule eliminates the candidates with below-
average Borda scores. Recently, it has been demonstrated that iterative
elections admit some desirable properties such as polynomial-time win-
ner determination and NP-hard control/manipulation/bribery.

We study new aspects of iterative elections. We suppose that a set R
of iterative voting rules is given and each round of the iterative election
can choose one rule in R to apply. The question is whether there is a
combination of rules, such that a specific candidate p becomes the unique
winner (the Possible Winner problem), or whether a specific candidate p
wins under all rule combinations (the Necessary Winner problem). The
Possible Winner problem can be considered as a special control problem
for iterative elections. We prove that for all subsets R of {Hare, Coombs,
Baldwin, Nanson} with |R| ≥ 2, both Possible and Necessary Winner
problems are hard to solve, with the only exception of R = {Baldwin,
Nanson}. We further provide special cases of the Necessary Winner prob-
lem with R = {Baldwin, Nanson}, which are polynomial-time solvable.
We also discuss the parameterized complexity of the Possible Winner
problems with respect to the number of candidates and the number of
votes, and achieve fixed-parameter tractable (FPT) results.

Keywords: Computational social choice · Iterative elections ·
Combinatorial opitimization · Computational complexity.

1 Introduction

The theory of social choice aims at the aggregation of preferences of individu-
als to achieve a collective decision. Over the past two decades, computational
social choice has become an interdisciplinary area to study the computational

The authors are supported by the National Natural Science Foundation of China
(No.62072275 and 61772314).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 235–247, 2022.
https://doi.org/10.1007/978-3-031-20796-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_17&domain=pdf
https://doi.org/10.1007/978-3-031-20796-9_17

236 P. Li and J. Guo

perspectives of voting problems [BCE+16]. An instance of a voting problem
consists of an election and a voting rule (or correspondence). An election is
denoted as E = (C, V), where C is a set of candidates C = {c1, ..., cm} and
V is a multiset of votes V = {v1, ..., vn}, where each vote is a total order of C,
vi = ci1 > ci2 > ... > cim , for each 1 ≤ i ≤ n and ij ∈ {1, ...,m} with 1 ≤ j ≤ m.
In vi, the first candidate ci1 is the most favorite candidate of vi and cim is the
least favorite candidate. A voting rule maps the election to a set of winning
candidates (the winners). Hereby, the unique winner case refers to the scenario
with only one winner. We also use co-winners to refer to the multiple winners.

Most voting rules directly output the winners based on the computation
of some scores for the candidates or pairwise comparisons of the candidates.
For instance, the most extensively studied rules are from the class of positional
scoring rules, each of which is associated with a scoring vector < α1, ..., αm >
with α1 ≥ α2 ≥ ... ≥ αm. From a vote v, the candidate at the i-th position of
v receives a score of αi. The candidates with the highest overall score from all
votes win the election. The most prominent positional scoring rules are plurality
< α1 = 1, α2 = ... = αm = 0 >, veto < α1 = ... = αm−1 = 1, αm = 0 >, Borda
< α1 = m − 1, α2 = m − 2, ..., αm = 0 >, and k-approval for 1 ≤ k ≤ m − 1
< α1 = ... = αk = 1, αk+1 = ... = αm = 0 >.

Recently, iterative elections have attracted more and more attention
[MNRS18,BSW20,ZG20]. Given an election, iterative voting rules eliminate the
candidates in rounds. The winners are the candidates remaining in the end. Until
now, the most prominent iterative voting rules include Hare, Coombs, Baldwin
and Nanson. The Hare rule [TP08] eliminates in each round the candidates with
the minimum plurality score, the Coombs rule [LN95] the ones with the mini-
mum veto score, the Baldwin rule [Bal26] the ones with minimum Borda score,
and the Nanson rule [Nan82] the ones with below-average Borda scores. The
iterative process terminates, when all remaining candidates have the same score.
These candidates are then the winners. It is easy to observe that the winner
determination problem with respect to these four rules is easy to solve. The
resistance of these rules against strategic behaviors such as control, manipula-
tion, and bribery has been proved [ENR+21,FMS21]. We study a new aspect
of iterative elections. Hereby, we assume that a set of iterative voting rules is
given and each round is allowed to choose a rule from the set to apply. The
question here is whether there is a combination of the rules, such that a specific
candidate p becomes the winner of the election (the Possible Winner problem),
or whether a specific candidate p wins the election under all possible rule combi-
nations (the Necessary Winner problem). A rule combination refers to a vector
< r1, r2, ... > where each ri is from the given set, and is applied to the i-th
round. For the Possible Winner problem, we require that p becomes the unique
winner, while p can be a co-winner in the Necessary Winner problem. The other
unique winner/co-winner settings can be handled in similar ways. Possible and
Necessary Winner problems have been studied for traditional single-round rules
under different circumstances such as with incomplete votes [XC08,CDK+21]
and for sequential voting [GNNW14]. The version studied in this paper can also

Possible and Necessary Winner Problems in Iterative Elections 237

be considered as a constructive control problem for iterative elections. The elec-
tion chair has the power to choose the rule applied to each round and his aim is
to make a specific candidate win the election.

We achieve hardness results for both Possible/Necessary problems with the
rules from a subset R of {Hare, Coombs, Baldwin, Nanson}. Clearly, if |R| = 1,
the Possible and Necessary Winner problems become the winner determination
problem for the rule in R and are solvable in polynomial time. With |R| ≥ 2,
the Possible Winner problem is NP-hard and the Necessary Winner problem
is CoNP-hard. The only exception is with R = {Baldwin, Nanson}, for which
both Possible and Necessary problems remain open. We achieve these results by
complex reductions from 3SAT, which require careful construction to balance the
scores of the candidates and to guarantee the correspondence between the choice
of rules and the assignment of the variables. Further, we discuss the parameter-
ized complexity of the Possible Winner problems with respect to the number
of candidates and the number of votes, and achieve fixed-parameter tractable
(FPT) results. Moreover, we consider a special case with Necessary Winner for R
= {Balwin, Nanson} and show that a Condorcet winner of the initial election is
always a necessary winner and thus this special case is polynomial-time solvable.
Some proofs are deferred to a long version.

2 Preliminaries

An election is denoted as E = (C, V), where C is a set of candidates C =
{c1, ..., cm} and V is a multiset of votes V = {v1, ..., vn}, where each vote is a
total order of C, vi = ci1 > ci2 > ... > cim , for each 1 ≤ i ≤ n and ij ∈ {1, ...,m}
with 1 ≤ j ≤ m. The rules studied in this paper are from the class of positional
scoring rules, each of which is associated with a scoring vector < α1, ..., αm >
with α1 ≥ α2 ≥ ... ≥ αm. From a vote v, the candidate at the i-th position of v
receives a score of αi. The overall score of a candidate is the sum of the scores
that the candidate gets from all votes under the corresponding rule.

The most prominent positional scoring rules are plurality < α1 = 1, α2 =
... = αm = 0 >, veto < α1 = ... = αm−1 = 1, αm = 0 >, Borda < α1 =
m − 1, α2 = m − 2, ..., αm = 0 >.

2.1 Iterative Voting Rules

An iterative election eliminates some candidates in each round until the remain-
ing candidates have the same score according to a given voting rule. Prominent
iterative voting rules include Hare, Coombs, Baldwin, and Nanson.

– The Hare rule eliminates in each round the candidates with the least plurality
score.

– The Coombs rule eliminates in each round the candidates with the least veto
score.

– The Baldwin rule eliminates in each round the candidates with the least
Borda score.

238 P. Li and J. Guo

– The Nanson rule eliminates in each round the candidates with below-average
Borda scores.

2.2 Possible and Necessary Winner Problems

Possbile Winner
Input: An election E = (C, V), a specific candidate p, a voting rules set R.
Question: Is there a combination of the rules from R, such that p becomes
the winner of the election?

Necessary Winner
Input: An election E = (C, V), a specific candidate p, a voting rules set R.
Question: Can p win the election under all possible rule combinations?

3 Possible Winner

In this section, we prove the NP-hardness and the parameterized complexity of
the Possible Winner problem.

Theorem 1. Possible Winner is NP-hard for all subsets R of {Hare, Coombs,
Baldwin, Nanson} satisfying |R| ≥ 2 and R �= {Baldwin, Nanson}.
Proof. The NP-hardness is achieved by reductions from 3SAT. Here, we present
the reduction for R = {Hare, Baldwin}. The other cases follow from similar
reductions. The 3SAT problem asks whether, for a given set of Boolean variables
x1, .., xs and a set of clauses y1, ..., yt with each clause consisting of three literals,
there exists an assignment of the variables satisfying all clauses.

The basic idea of the reduction is as follows. We create four variable can-
didates x1

i , x
2
i , x

T
i , xF

i for each variable xi, and one clause candidate zi for each
clause yi. The votes are constructed in the way that 1) the eliminations of these
candidates occur in s main rounds r1, ..., rs and each main round ri eliminates
the variable candidates created for xi, and 2) each main round has two secondary
rounds, where the first secondary round r1i of ri eliminates x1

i , x
T
i or x1

i , x
F
i , repre-

senting that xi is assigned to TRUE or FALSE, and the second secondary round
r2i eliminates the remaining two. To eliminate x1

i and xT
i in r1i , we have to apply

Hare, while Baldwin is applied to eliminate x1
i and xF

i . The clause candidate
zj is eliminated in the second secondary round of the main round ri, depending
on whether variable xi occurs in the clause yj and whether the assignment of
xi satisfies yj , that is, which variable candidate in {xT

i , xF
i } is eliminated in the

first secondary round of ri. Finally, the specific candidate p remains in the end
only if all clause candidates are eliminated in the s main rounds, meaning that
all clauses are satisfied by the assignment of the variables. Then by combining
the rules applied in all main rounds, we can get a rule combination such that p
becomes the unique winner.

Possible and Necessary Winner Problems in Iterative Elections 239

Next, we present the details of the reduction. As stated above, we have
four variable candidates x1

i , x
2
i , x

T
i , xF

i for each variable xi and one clause
candidate zj for each clause yj . Then, the candidate set is set as C :=(⋃s

i=1 {x1
i , x

2
i , x

T
i , xF

i }
) ⋃(⋃t

j=1 {zj}
)⋃

Ê
⋃ {p} with the set of auxiliary

candidates Ê :=
(⋃t

j=1 {uj,1, uj,2}
) ⋃{α, β, q}⋃(⋃s

i=1 {w1,1
i , w2,1

i , wT,1
i , wF,1

i ,

w1,2
i , w2,2

i , wT,2
i , wF,2

i }
)

. Particularly, the pair of candidates uj,1 and uj,2 is used

to balance the plurality score of clause candidate zj . Analogously, the pair of
candidates wg,1

i and wg,2
i with g in {1, 2, T, F} is used for the plurality score set-

ting of variable candidate xg
i . Moreover, candidate q plays the role of comparison

with p with respect to the plurality score after s main rounds. The candidates
α and β are used to construct votes, where the Borda scores of other candidates
are influenced but their plurality scores remain the same. For a subset S ⊆ C,
we use

−→
S to denote an arbitrary but fixed ordering of S and

←−
S to denote the

reversed ordering of
−→
S . Further, we use D(c1, c2) with c1, c2 ∈ C to denote a

pair of votes: α > c1 > c2 >
−→
S > β and β >

←−
S > c1 > c2 > α, where

S = C \{α, β, c1, c2}. If we have two votes being two completely reversed orders,
then all candidates have the same Borda score from these two votes. However,
in the two votes in D(c1, c2), all candidates with the only exception of c1 and c2
have the same Borda score m−1 with m = |C|, while the Borda score of c1 is m
and the Borda score of c2 is m − 2. If we use γ to denote the “standard” Borda
score m − 1, then the score of c1 is γ + 1 and the score of c2 is γ − 1. Further,
if we remove one candidate c from C, then all candidates in C \ {c, c1, c2} have
again the standard Borda score m − 2 from these two votes. By abusing γ to
denote the new standard Borda score, we can say that the Borda scores of most
candidates remain the same, γ. If c /∈ {c1, c2}, then the scores of c1 and c2 also
remain the same, γ + 1 and γ − 1, respectively. If c = c1, then the Borda score
of c2 becomes γ. We then say that the removal of c1 increases the Borda score
of c2. In the case of removing c = c2, the Borda score of c1 becomes γ and we
say the removal of c2 decreases the Borda score of c1. Note that in the following,
we often construct the votes in a pairwise manner as D(c1, c2), and the above
change of Borda score can also be observed there. Define W = (2s + 1 + t)t.

The set V of votes consists of six subsets which are created in the order of
their indices. The first subset V1 contains the votes for the clause candidates.
For a clause candidate zi with 1 ≤ i ≤ t whose corresponding clause yi contains
variables xj , xk, xl with 1 ≤ j < k < l ≤ s, the votes are constructed according
to the positive/negative occurrences of the variables. Hereby, we define four vote
forms χ1, χ2, χ3, χ4:

• χ1 := zi > ui,1 > p >
−→
S > ui,2 with S = C \ {p, zi, ui,1, ui,2};

240 P. Li and J. Guo

• χ2 :=
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xF
j > zi > ui,1 > p >

−→
S > ui,2 with S = C \ {p, zi, x

F
j , ui,1, ui,2}, if

xj occurs positively in yi;
xT
j > zi > ui,1 > p >

−→
S > ui,2 with S = C \ {p, zi, x

T
j , ui,1, ui,2}, if

xj occurs negatively in yi;

• χ3 :=
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xF
k > zi > ui,1 > p >

−→
S > ui,2 with S = C \ {p, zi, x

F
k , ui,1, ui,2}, if

xk occurs positively in yi;
xT
k > zi > ui,1 > p >

−→
S > ui,2 with S = C \ {p, zi, x

T
k , ui,1, ui,2}, if

xk occurs negatively in yi;

• χ4 :=
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xF
l > zi > ui,1 > p >

−→
S > ui,2 with S = C \ {p, zi, x

F
l , ui,1, ui,2}, if

xl occurs positively in yi;
xT
l > zi > ui,1 > p >

−→
S > ui,2 with S = C \ {p, zi, x

T
l , ui,1, ui,2}, if

xl occurs negatively in yi.

Then, the set Vi
1 contains the votes created for the clause candidate zi, which

are as follows:

– one vote v = zi > p > ui,1 >
−→
S > ui,2 with S = C \ {p, zi, ui,1, ui,2} and one

vote ←−v ;
– W + 2j − 1 many of the form χ1 and W + 2j − 1 many of the form ←−χ1;
– 2k − 2j many of the form χ2 and 2k − 2j many of the form ←−χ2;
– 2l − 2k many of the form χ3 and 2l − 2k many of the form ←−χ3;
– 2s + 1 + t − 2l many of the form χ4 and 2s + 1 + t − 2l many of the form ←−χ4.

Note that |Vi
1| = 2(W + 2s + 1 + t) for all 1 ≤ i ≤ t, and V1 =

⋃t
i=1 Vi

1.
Next, in V2, we construct a vote set Vi

2 for each variable xi, consisting of two
subsets, P i and Bi, which serve mainly the purpose of controlling the plurality
and Borda scores of variable candidates, respectively, and thus, determine the
order of eliminations. Hereby, we use V1(x) to denote the set of votes in V1,
where x is ranked at the first position. The subset P i consists of the following
votes:

– one vote v = x1
i > xT

i > w1,1
i > p >

−→
S > w1,2

i with S = C \
{p, x1

i , x
T
i , w1,1

i , w1,2
i } and one vote ←−v ;

– W+2i−2 votes v = x1
i > w1,1

i > p >
−→
S > w1,2

i with S = C\{p, x1
i , w

1,1
i , w1,2

i }
and W + 2i − 2 votes ←−v ;

– W + 2i votes v = x2
i > w2,1

i > p >
−→
S > w2,2

i with S = C \ {p, x2
i , w

2,1
i , w2,2

i }
and W + 2i votes ←−v .

Possible and Necessary Winner Problems in Iterative Elections 241

– W + 2i − 1 − |V1(xT
i)| votes v = xT

i > wT,1
i > p >

−→
S > wT,2

i with S =
C \ {p, xT

i , wT,1
i , wT,2

i } and W + 2i − 1 − |V1(xT
i)| votes ←−v ;

– W + 2i − |V1(xF
i)| votes v = xF

i > wF,1
i > p >

−→
S > wF,2

i with S = C \
{p, xF

i , wF,1
i , wF,2

i } and W + 2i − |V1(xF
i)| votes ←−v .

The subset B1 contains six votes: two votes in D(p, x1
1), two votes in

D(x2
1, p), and two votes in D(x2

1, x
F
1). For each 2 ≤ i ≤ s, Bi contains ten

votes: two votes in D(p, x1
i), two votes in D(x2

i , p), two votes in D(x2
i , x

F
i), two

votes in D(x1
i , x

2
i−1), and two votes in D(xF

i , x2
i−1). Then, V2 :=

⋃s
i=1 Vi

2 =⋃s
i=1

(
P i ∪ Bi

)
.

The third subset V3 contains 2(W +2s+1+ t− 3)+6 votes to set the scores
of p and q:

– W + 2s + 1 votes v = p >
−→
S > q with S = C \ {p, q} and W + 2s + 1 votes←−v ;

– t − 3 votes v = q >
−→
S > α with S = C \ {q, α} and t − 3 votes ←−v ;

– two votes in D(q, p);
– two votes in D(x2

s, q);
– two votes in D(p, x2

s).

The fourth subset V4 contains the following votes for setting the plurality
scores of the candidates in Ê \ {α, β, q}:

– for each 1 ≤ i ≤ t, W + 2s + 1 + t votes v = ui,1 > p >
−→
S > ui,2 with

S = C \ {p, ui,1, ui,2} and W + 2s + 1 + t votes ←−v ;
– for each 1 ≤ i ≤ s, 2(W + 2s + 1 + t) − (W + 2i − 1) votes v = w1,1

i > p >−→
S > w1,2

i with S = C \ {p,w1,1
i , w1,2

i } and 2(W + 2s + 1 + t) − (W + 2i − 1)
votes ←−v ;

– for each 1 ≤ i ≤ s, 2(W +2s+1+t)−(W +2i) votes v = w2,1
i > p >

−→
S > w2,2

i

with S = C \ {p,w2,1
i , w2,2

i } and 2(W + 2s + 1 + t) − (W + 2i) votes ←−v .
– for each 1 ≤ i ≤ s, 2(W + 2s + 1 + t) − (W + 2i − 1 − |V1(xT

i)|) votes
v = wT,1

i > p >
−→
S > wT,2

i with S = C \ {p,wT,1
i , wT,2

i } and 2(W + 2s + 1 +
t) − (W + 2i − 1 − |V1(xT

i)|) votes ←−v ;
– for each 1 ≤ i ≤ s, 2(W + 2s + 1 + t) − (W + 2i − |V1(xF

i)|) votes v = wF,1
i >

p >
−→
S > wF,2

i with S = C \ {p,wF,1
i , wF,2

i } and 2(W + 2s + 1 + t) − (W +
2i − |V1(xF

i)|) votes ←−v .

The fifth subset V5 contains 6(2t + 8s) votes for setting the Borda scores of
auxiliary candidates:

– two votes in D(p, e) for each e ∈ Ê \ {α, β, q};
– two votes in D(q, p) for each e ∈ Ê \ {α, β, q};
– two votes in D(e, q) for each e ∈ Ê \ {α, β, q}.

The sixth subset V6 contains 2(W + 2s + 1 + t) + 12 votes for adjusting the
Borda scores of α, β:

242 P. Li and J. Guo

– one vote β > p > α >
−→
S > q and one vote q >

←−
S > p > α > β with

S = C \ {p, q, α, β};
– one vote α > q >

−→
S > β and one vote β >

←−
S > α > q with S = C \{q, α, β};

– two votes in D(q, p);
– W + 2s + 1 + t votes of the same form α >

−→
S > β and W + 2s + 1 + t votes

of the same form β >
←−
S > α with S = C \ {α, β};

– one vote α > p > β >
−→
S > q and one vote q >

←−
S > p > β > α with

S = C \ {p, q, α, β};
– one vote β > q >

−→
S > α and one vote α >

←−
S > β > q with S = C \{q, α, β};

– two votes in D(q, p).

The vote set is V := V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6. The reduction is clearly
doable in polynomial time.

In order to prove the correctness of the reduction, we give a detailed illus-
tration of the first main round. The other main rounds excute in the same way.
For the ease of presentation, we adopt a variation of the computation of Borda
scores. Note that all votes are created in a pairwise manner. If two votes are com-
pletely reversed orders, as the votes in V1

⋃(⋃s
i=1 P i

) ⋃ V4, then all candidates
receive the same Borda score from these two votes. After deleting arbitrarily
many candidates from these votes, the remaining candidates have always the
same Borda score. These votes can therefore be ignored from the computation
of Borda scores. If two votes are created as D(c1, c2), then all candidates have
the same score except for c1 and c2, which we call the “standard score”. Then,
we calculate only the deviation from this standard score for each candidate.

Claim 1. Before the first main round, x1
1 and xF

1 have the minimum Borda
score, while x1

1 and xT
1 have the minimum plurality score.

By this claim, we know that the candidates to be eliminated in the first
secondary round can only be x1

1 and xT
1 (by Hare) or x1

1 and xF
1 (by Baldwin).

This round is the first secondary round of the first main round dealing with the
candidates for x1.

Claim 2. 1) If we apply the Hare rule to eliminate x1
1 and xT

1 in the first sec-
ondary round of the first main round, then p has the minimum Borda score and
x2
1, xF

1 and the clause candidates zi, whose corresponding clauses contain positive
occurrences of x1, have the minimum plurality score.

2) If we apply the Baldwin rule to eliminate x1
1 and xF

1 in the first secondary
round of the first main round, then p has the minimum Borda score and x2

1,
xT
1 and the clause candidates zi, whose corresponding clauses contain negative

occurrences of x1, have the minimum plurality score.

By this claim, we cannot apply the Baldwin rule in the second secondary
round, since, otherwise, p would be eliminated. By applying the Hare rule, x2

1, xF
1

and the clause candidates, whose corresponding clauses contain positive occur-
rences of xi, are eliminated. Thus, we can interprete the application of the Hare
rule in the first secondary round as assigning TRUE to x1. The application of

Possible and Necessary Winner Problems in Iterative Elections 243

the Baldwin rule in the first secondary round corresponds to the assignment of
FALSE to x1.

Claim 3. After the first main round, x1
2 and xT

2 have the minimum plurality
score, while x1

2 and xF
2 have the minimum Borda score.

From Claims 1–3, there are only two possible rule combinations for the two
secondary rounds of the first main round, that is, <Hare, Hare> and <Baldwin,
Hare>. The former one corresponds to the assignment of TRUE to x1, while the
latter means the assignment of FALSE to x1. Moreover, the second main round
faces the same situation as the first main round, dealing with x2 instead of x1.
The same argument applies. Next, we consider the situation after the s main
rounds, that is, after all variable candidates are eliminated. Clearly, all elements
e in Ê and p remain in the election. Some clause candidates zi might remain.

Claim 4. If only the candidates in Ê and p remain after the s main rounds,
then p is the unique winner.

By Claim 4, we can conclude that if the given 3SAT instance is a yes-instance,
then we can apply the rules according to Claim 2 and all clause candidates are
eliminated in the s main rounds. In the (2s+1)-th round, only the candidates in
Ê ∪{p} remain and p becomes the unique winner by applying first the Hare rule
and then the Baldwin rule. Thus, the corresponding Possible Winner instance is
a yes-instance. Next, we prove the reversed direction.

Claim 5. If there is a clause candidate zi remaining in the (2s + 1)-th round
together with Ê ∪ {p}, then p cannot be the unique winner.

By Claim 2, we can conclude that if the given 3SAT instance is a no-instance,
we cannot eliminate all clause candidates in the s main rounds. There is at least
one clause candidate zi remaining in the (2s + 1)-th round. Then by Claim 5, p
cannot be the unique winner. Thus, the corresponding Possible Winner instance
is a no-instance. Combining Claims 4 and 5, we establish the equivalence of the
instances. The NP-hardness for R = {Hare, Baldwin} then follows.
�

Now, we explore the parameterized complexity of the Possbile Winner prob-
lem with respect to the parameter of the number of the candidates or the number
of the votes.

Theorem 2. The Possible Winner problem is FPT with respect to the number
of candidates.

Proof. Let C = {c1, ..., cm} be the candidate set, V = {v1, ..., vn} be the vote
set and R be the given voting rule set. We first enumerate all possible orders of
the candidates, where p is at the last position. Each order specifies the order of
candidate eliminations. There are at most m! different elimination orders. For
each elimination order, we partition the candidates such that p is in a singleton

244 P. Li and J. Guo

subset. There are at most f(m) =
∑m

d=1

(
∑d−1

i=0 (−1)i·(di)·(d−i)m

d!

)
different parti-

tions. Each subset in the partition specifies the candidates eliminated in a single
round. Thus, there are at most m! · f(m) different partitions in total. For each
partition, we iterate over all subsets in their order in the permutation and find
out which rules in R can eliminate all candidates in each subset. If there exists a
partition, for which there is a sequence of rules, which eliminates the candidates
in the corresponding subset, then we get a combination of rules making p the
unique winner. The running time is F (m,n) = m! · f(m) · |R| · poly(m,n), which
is FPT with respect to the number of the candidates.
�

Next, we investigate the parameterized complexity of the Possbile Winner
problem with respect to the parameter of the number of votes.

Theorem 3. Given the voting rule set R with |R| = 2 and R containing Hare,
the Possible Winner problem is FPT with respect to the number of votes.

Proof. Let C = {c1, ..., cm} be the candidate set, V = {v1, ..., vn} be the vote
set and R = {Hare, r}. We observe that, once we apply Hare, then the number
of the remaining candidates is at most n. It means that we can apply r several
times before applying Hare and then in the remaining rounds the numbers of
the candidates and the votes are both bounded by n and then we can use the
algorithm in the proof of Theorem 2 to examinate if the specific candidate p
can be a unique winner. The rule r can be applied at most m times before
applying Hare. Thus, the running time is m · F (n, n) = n! · f(n) · poly(m,n),

where f(n) =
∑n

d=1

(
∑d−1

i=0 (−1)i·(di)·(d−i)n

d!

)
.
�

4 Necessary Winner

In this section, we prove the CoNP-hardness of the Necessary Winner problem
and provide special cases, for which Necessary Winner are easy to solve.

Theorem 4. Necessary Winner is CoNP-hard for R ⊆ {Hare, Coombs, Bald-
win, Nanson} with |R| ≥ 2 and R �= {Baldwin, Nanson}.
Proof. We consider only the subset R = {Hare, Baldwin}. The other cases follow
from similar reductions. Again we reduce from 3SAT and the reduction shares
some common features with the reduction in the proof of Theorem 1. We give
here only a brief discussion of the main differences and leave the details to the
full version.

We also construct the same set of candidates and apply the first s main
rounds to eliminate the variable candidates. The “satisfied” clause candidates
are also eliminated in the second secondary rounds of the main rounds. However,
if no clause candidate remains after the s main rounds, then there is a rule
combination for the remaining rounds such that the specific candidate p loses

Possible and Necessary Winner Problems in Iterative Elections 245

the election; otherwise, p wins with all possible rule combinations. This means
that, the given 3SAT-instance is a yes-instance, if and only if the Necessary
Winner instance is a no-instance. The candidate q also plays the same role but
we slightly modify the construction of votes. More precisely, we have to exchange
the positions of p and q in some votes, such that p’s plurality score becomes the
minimum after all clause candidates have been eliminated in the s main rounds.
In this way, we can apply the Hare rule in the (2s + 1)-th round to eliminate
p, resulting in that p loses the election. Moreover, in the case that some clause
candidates remain after the s main rounds, q’s plurality score is the minimum,
guaranteeing that applying the Hare rule in the (2s + 1)-th round does not
eliminate p. We also assure that the Borda score of p in the (2s + 1)-th round is
not the minimum and thus, applying the Baldwin rule does not eliminate p.

As in the proof of Theorem 1, the vote set V consists of six subsets. The
votes in V2 ∪ V4 remain the same. As for V1, in Vi

1 for each 1 ≤ i ≤ t, we replace
the first pair of votes zi > p > ui,1 >

−→
S > ui,2 and ui,2 >

←−
S > ui,1 > p > zi

with S = C \ {p, zi, ui,1, ui,2} by zi > q > p > ui,1 >
−→
S′ > ui,2 and ui,2 >

←−
S′ >

ui,1 > p > q > zi with S′ = C \ {p, q, zi, ui,1, ui,2} and V1 =
⋃t

i=1 Vi
1.

The set V3 is set completely different and contains the following votes:

– W + 2s + 1 votes q > p >
−→
S > α and W + 2s + 1 votes α >

←−
S > p > q with

S = C \ {p, q, α};
– W + 2s + 1 + t − 2 votes p >

−→
S > β and W + 2s + 1 + t − 2 votes β >

←−
S > p

with S = C \ {p, β}.

The fifth subset V5 contains the following votes for setting the Borda scores
of auxiliary candidates:

– two votes in D(p, e) for each e ∈ Ê \ {α, β};
– two votes in D(x2

s, p) for each e ∈ Ê \ {α, β};
– two votes in D(e, x2

s) for each e ∈ Ê \ {α, β}.

The sixth subset V6 contains now the following votes:

– one vote p > α >
−→
S > β and one vote β >

←−
S > p > α with S = C \{p, α, β};

– one vote α > x2
s >

−→
S > β and one vote β >

←−
S > α > x2

s with S =
C \ {x2

s, α, β};
– two votes in D(x2

s, p);
– W + 2s + 1 + t votes of the same form α >

−→
S > β and W + 2s + 1 + t votes

of the same form β >
←−
S > α with S = C \ {α, β};

– one vote p > β >
−→
S > α and one vote α >

←−
S > p > β with S = C \{p, α, β};

– one vote β > x2
s >

−→
S > α and one vote α >

←−
S > β > x2

s with S =
C \ {x2

s, α, β};
– two votes in D(x2

s, p).

The correctness proof works similarly as in the proof of Theorem 1.
�

246 P. Li and J. Guo

Next, we provide special cases, for which Necessary Winner always returns
yes. Given a set of n votes, each being a linear order of m candidates, we say
that candidate c1 “beats” candidate c2, if in more than half of the votes, c1 is
ranked in front of c2. A candidate c is called a Condorcet winner, if c beats
all other candidates. A rule r is called “Condorcet-consistent”, if applying r to
the current election does not eliminate the Condorcet winner c. Note that after
the elimination, c remains the Condorcet winner. The following theorem follows
trivially from the definition of Condorcet-consistency.

Theorem 5. If p is the Condorcet winner of the current election and each rule
in R has the property of Condorcet consistency, then p is the necessary winner.

Next, we consider only the rules, which are based on Borda scores.

Corollary 1. Let n and m be the numbers of votes and candidates, respectively.
If p is a Condorcet winner of the current election and each rule r in R satisfies
the following conditions, then p is a necessary winner:

1) r is based on Borda scores;
2) In the case n being even, if r is applied to the current election, then all

candidates eliminated in this round have Borda scores less than (n+2)(m−1)
2 ;

3) In the case n being odd, if r is applied to the current election, then all candi-
dates eliminated in this round have Borda scores less than (n+1)(m−1)

2 .

Proof. It is easy to verify that every Condorcet winner of an election with n

votes and m candidates has a minimum Borda score of (n+2)(m−1)
2 for the case

n being even or (n+1)(m−1)
2 for the case n being odd. Then, by the conditions,

all rules in R are Condorcet-consistent. The claim follows from Theorem 5.
�
Since both Baldwin and Nanson satisfy the conditions in Corollary 1, we

have the following result.

Corollary 2. If p is a Condorcet winner of the current election and R =
{Baldwin, Nanson}, then p is the necessary winner.

5 Conclusion

In this paper, we introduce a new version of Possible and Necessary Winner
problems with respect to iterative elections and achieve NP-hard and CoNP-
hard results for most subsets of the four prominent iterative election rules. The
complexity status of both Possible and Necessary Winner problems for R =
{Baldwin, Nanson} remains open. Since for the same election, the candidates
eliminated by the Baldwin rule form a subset of the set of candidates eliminated
by the Nanson rule, we conjecture that both problems are polynomial-time solv-
able with these two rules. Moreover, it would be a challenging research topic to
give a general classification of the rules for which Possible and Necessary Winner
are solvable in polynomial time or hard to solve.

Possible and Necessary Winner Problems in Iterative Elections 247

References

[Bal26] Baldwin, J.: The technique of the Nanson preferential majority system of
election. Proc. Royal Soc. Victoria 39, 42–52 (1926)

[BCE+16] Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D. (eds.)
Handbook of Computational Social Choice. Cambridge University Press
(2016)

[BSW20] Baumeister, D., Selker, A.-K., Wilczynski, A.: Manipulation of opinion
polls to influence iterative elections. In: Proceedings of the 19th Inter-
national Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2020, pp. 132–140 (2020)

[CDK+21] Chakraborty, V., Delemazure, T., Kimelfeld, B., Kolaitis, P.G., Relia, K.,
Stoyanovich, J.: Algorithmic techniques for necessary and possible winners.
Trans. Data Sci. 2(3):22:1–22:23 (2021)

[ENR+21] Erdélyi, G., Neveling, M., Reger, C., Rothe, J., Yang, Y., Zorn, R.: Towards
completing the puzzle: complexity of control by replacing, adding, and
deleting candidates or voters. Auton. Agents Multi-Agent Syst. 35(2), 1–
48 (2021). https://doi.org/10.1007/s10458-021-09523-9

[FMS21] Faliszewski, P., Manurangsi, P., Sornat, K.: Approximation and hardness
of shift-bribery. Artif. Intell. 298, 103520 (2021)

[GNNW14] Gaspers, S., Naroditskiy, V., Narodytska, N., Walsh, T.: Possible and nec-
essary winner problem in social polls. In: Proceedings of the 13th Inter-
national Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2014, pp. 613–620 (2014)

[LN95] Levin, J., Nalebuff, B.: An introduction to voteacounting schemes. J. Econ.
Perspect. 3–26 (1995)

[MNRS18] Maushagen, C., Neveling, M., Rothe, J., Selker, A.-K.: Complexity of shift
bribery in iterative elections. In: Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2018, pp. 1567–1575, 2018

[Nan82] Nanson, E.: Methords of election. In: Transactions and Proceedings of the
Royal Society of Victoria, pp. 197–240 (1882)

[TP08] Taylor, A., Pacelli, A.: Mathematics and Politics: Strategy. Power, and
Proof. Springer Science and Business Media, Voting (2008)

[XC08] Xia, L., Conitzer, V.: Determining possible and necessary winners under
common voting rules given partial orders. In: Proceedings of the 23th
International Conference on Artificial Intelligence, AAAI 2008, pp. 196–
201 (2008)

[ZG20] Zhou, A., Guo, J.: Parameterized complexity of shift bribery in itera-
tive elections. In: Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2020, pp. 1665–
1673 (2020)

https://doi.org/10.1007/s10458-021-09523-9

A Mechanism Design Approach
for Multi-party Machine Learning

Mengjing Chen1(B), Yang Liu2, Weiran Shen3, Yiheng Shen4,
Pingzhong Tang1, and Qiang Yang2,5

1 Tsinghua University, Beijing, China
ccchmj@qq.com

2 WeBank Co., Ltd., Shenzhen, China
yangliu@webank.com , qyang@cse.ust.hk

3 Renmin University, Beijing, China
shenweiran@ruc.edu.cn

4 Duke University, Durham, USA
ys341@duke.edu

5 Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Abstract. In a multi-party machine learning system, different parties
cooperate on optimizing towards better models by sharing data in a
privacy-preserving way. A major challenge in learning is the incentive
issue. For example, if there is competition among the parties, one may
strategically hide his data to prevent other parties from getting better
models.

In this paper, we study the problem through the lens of mechanism
design and incorporate the features of multi-party learning in our setting.
First, each agent’s valuation has externalities that depend on others’
types and actions. Second, each agent can only misreport a type lower
than his true type, but not the other way round. We call this setting
interdependent value with type-dependent action spaces. We provide the
optimal truthful mechanism in the quasi-monotone utility setting. We
also provide necessary and sufficient conditions for truthful mechanisms
in the most general case. We show the existence of such mechanisms is
highly affected by the market growth rate. Finally, we devise an algorithm
to find the desirable mechanism that is truthful, individually rational,
efficient and weakly budget-balance.

Keywords: Mechanism design · Federated learning · Incentive design

1 Introduction

In multi-party machine learning, a group of parties cooperates on optimizing
towards better models. This concept has attracted much attention recently [12,
22,23]. The advantage of this approach is that, it can make use of the distributed
datasets and computational power to learn a powerful model that anyone in the
group cannot achieve alone.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 248–268, 2022.
https://doi.org/10.1007/978-3-031-20796-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_18&domain=pdf
https://doi.org/10.1007/978-3-031-20796-9_18

A Mechanism Design Approach for Multi-party Machine Learning 249

To make multi-party machine learning practical, a large body of works focus
on preserving data privacy in the learning process [1,22,26]. However, the incen-
tive issues in the multi-party learning have largely been ignored in most previous
studies, which results in a significant reduction in the effectiveness when putting
their techniques into practice. Previous works usually let all the parties share the
same global model with the best quality regardless of their contributions. This
allocation works well when there are no conflicts of interest among the parties.
For example, an app developer wants to use the users’ usage data to improve
the user experience. All users are happy to contribute data since they can all
benefit from such improvements [16].

When the parties are competing with one another, they may be unwilling to
participate in the learning process since their competitors can also benefit from
their contributions. Consider the case where companies from the same industry
are trying to adopt federated learning to level up the industry’s service qualities.
Improving other companies’ services can possibly harm their own market share,
especially when there are several monopolists that own most of the data.

Such a cooperative and competitive relation poses an interesting challenge
that prevents the multi-party learning approach from being applied to a wider
range of environments. In this paper, we view this problem from the multi-agent
system perspective, and address the incentive issues mentioned above with the
mechanism design theory.

Our setting is a variant of the so-called interdependent value setting [18]. A
key difference between our setting and the standard interdependent value set-
ting is that each agent cannot “make up” a dataset that is of higher quality than
his actual one. Thus the reported type of an agent is capped by his true type.
We call our setting interdependent value with type-dependent action spaces. The
setting that agents can never over-report is common in practice. One straight-
forward example is that the sports competitions where athletes can show lower
performance than their actual abilities but not over-perform. The restriction on
the action space poses more constraints on agents’ behaviors, and allows more
flexibility in the design space.

We first formulate the problem mathematically, and then apply techniques
from the mechanism design theory to analyze it. Our model is more general
than the standard mechanism design framework, and is also able to describe
other similar problems involving both cooperation and competition.

We make the following contributions in this paper:

– We model and formulate the mechanism design problem in multi-party
machine learning, and identify the differences between our setting and the
other mechanism design settings.

– For the quasi-monotone externalities setting, we provide the revenue-optimal
and truthful mechanism. For the general valuation functions, we provide both
the necessary and the sufficient conditions for all truthful and individually
rational mechanisms.

250 M. Chen et al.

– We analyze the influence of the market size on mechanisms. When the market
grows slowly, there may not exist a mechanism that achieves all the desirable
properties we focus on.

– We design an algorithm to find the mechanisms that guarantee individual
rationality, truthfulness, efficiency and weak budget balance simultaneously
when the valuation functions are given.

1.1 Related Works

A large body of literature studies mechanisms with interdependent values [18],
where agents’ valuations depend on the types of all agents and the intrinsic qual-
ities of the allocated object. Roughgarden et al. [21] extend Myerson’s auction
to specific interdependent value settings and characterize truthful and rational
mechanisms. They consider a bayesian setting while we do not know any prior
information. Chawla et al. [5] propose a variant of the VCG auction with reserve
prices that can achieve high revenues. They consider value functions that are
single-crossing and concave while we consider environments with more general
value functions. Mezzetti [17] gives a two-stage Groves mechanism that guar-
antees truthfulness and efficiency. He requires agents to report their types and
valuations before the final monetary transfer are made while in our model, agents
can only report their types.

In our setting, agents have restricted action spaces, i.e., they can never report
types exceeding their actual types. There is a series of works that focus on
mechanism design with a restricted action space [2–4]. The discrete-bid ascending
auctions [2,6,7] specify that all bidders’ action spaces are the same bid level set.
Several works restrict the number of actions, such as bounded communications
[4]. Previous works focus on mechanisms with independent values and discrete
restricted action spaces, while we study the interdependent values and continuous
restricted action spaces setting.

The learned model can be copied and distributed to as many agents as pos-
sible, so the supply is unlimited. A line of literature focuses on selling items in
unlimited supply such as digital goods [9–11]. However, the seller sells the same
item to buyers while in our setting we can allocate models with different qualities
to different agents.

Redko et al. [20] study the optimal strategies of agents for collaborative
machine learning problems. Both their work and ours capture the cooperation
and competition among the agents, but they only consider the case where agents
reveal their total datasets to participate while agents can choose to contribute
only a fraction in our setting. Kang et al. [14] study the incentive design problem
for federated learning, but all their results are about a non-competitive environ-
ment, which may not hold in real-world applications.

Our work contributes to the growing body of literature on incentive mecha-
nism design for federated learning [15,27]. Jia et al. and Song et al. [13,24] design
mechanisms based on the Shapley value and Ding et al. [8] apply the contract
theory. However, the existing works do not consider the interdependent values
of participants and type-dependent action space as our model does.

A Mechanism Design Approach for Multi-party Machine Learning 251

2 Preliminaries

In this section, we introduce the general concepts of mechanism design and
formulate the multi-party machine learning as a mechanism design problem. A
multi-party learning consists of a central platform and several parties (called
agents hereafter). The agents serve their customers with their models trained
using their private data. Each agent can choose whether to enter the platform.
If an agent does not participate, then he trains his model with only his own
data. The platform requires all the participating agents to contribute their data
in a privacy-preserving way and trains a model for each participant using a
(weighted) combination of all the contributions. Then the platform returns the
trained models to the agents.

We assume that all agents use the same model structure. Therefore, each
participating agent may be able to train a better model by making use of his
private data and the model allocated to him. One important problem in this
process is the incentive issue. For example, if the participants have conflicts of
interest, then they may only want to make use of others’ contributions but are
not willing to contribute with all their own data. To align their incentives, we
allow the platform to charge the participants according to some predefined rules.

Our goal is to design allocation and payment rules that encourage all agents
to join the multi-party learning as well as to contribute all their data.

2.1 Valid Data Size (Type)

Suppose there are n agents, denoted by N = (1, 2, . . . , n), and each of them has
a private dataset Di where Di ∩ Dj = ∅,∀i �= j. For ease of presentation, we
assume that a model is fully characterized by its quality Q (e.g., the prediction
accuracy), and the quality only depends on the data used to train it. We have
the following observation:

Observation 1. If the agents could fake a dataset with a higher quality, any
truthful mechanism would make agents gain equal final utility.

Suppose that two agents have different true datasets D1 and D2. We assume that
all other agents truthfully report datasets D−i. If truthfully reporting dataset D1

and D2 finally leads to different utility, w.l.o.g, we let u(D1,D−i) < u(D2,D−i),
then if an agent has true dataset D1, he would report D2 and use the dataset
allocated by the platform in the market. All his behavior is the same as that of
an agent with real dataset D2. Thus if a mechanism is truthful, any reported
dataset would lead to the same final utility and it is pointless to discuss the
problem. Hence, we make the assumption that the mechanism is able to identify
the quality of any dataset. All agents can only report a dataset with a lower
quality.

For simplicity, we measure the contribution of a dataset to a trained model
by its valid data size. Thus we have the following assumption:

252 M. Chen et al.

Assumption 1. The model quality Q is bounded and monotone increasing with
respect to the valid data size s ≥ 0 of the training data:

1. Q(0) = 0 and Q(s) ≤ 1, ∀s;
2. Q(s′) > Q(s), ∀s′ > s.

The valid data size of every contributor’s data is validated by the platform in a
secure protocol (which we propose in the full version). Let ti ∈ R+ be the valid
data size of agent i ’s private dataset Di. We call ti the agent’s type. The agent
can only falsify his type by using a dataset of lower quality (for example, using
a subset of Di, or adding fake data), which decreases the contribution to the
trained model as well as the size of valid data. As a result, the agent with type
ti cannot contribute to the platform with a dataset higher than his type:

Assumption 2. Each agent i can only report a type lower than his true type
ti, i.e., the action space of agent i is [0, ti].

2.2 Learning Protocol

In this section, we describe the learning protocol that could enable the imple-
mentation of our mechanism. We assume that the platform has a validation
dataset. The platform requires the agents to report their valid data size ti. This
could be done by asking each agent to submit the best model that he can pos-
sibly obtain by using his own dataset. Then the platform computes the model
quality qi using the validation dataset and get the agent’s valid data size ti by
ti = Q−1(qi). The agent type ti will be used in the training process (e.g., aggre-
gate weighted model updates), as well as to determine the final allocation, which
is a model with quality xi.

The platform should also guarantee to deliver to each agent the promised
model. However, it is possible that an agent reports ti in the beginning but
only contribute t′i < ti in the actual training process. In the extreme case where
all agents contribute nothing to the training process, the platform will fail to
allocate a model to each agent with the quality determined by the mechanism.
To address this issue, the platform can train n additional models simultaneously,
with the i-th model trained only using the data from agent i. During the training
process, the platform can apply secure multi-party computation techniques, such
as homomorphic encryption [25,26], to prevent the agent from knowing which
model is sent to him to compute the update. And after the training, the platform
can compute the quality t′i of the i-th model again using the validation dataset.
If the qualities t′i and ti match, we know with high probability that the dataset
contributed by the agent is consistent with the type he reports. Otherwise, the
platform can just exclude the agent and start over the training process again.

The above protocol only ensures that the type reported by each agent is the
same as the type he uses in the actual training process with. To encourage all
agents to join and contribute all their data, we still need to design mechanisms
with desirable properties, to which we devote the rest of the paper.

A Mechanism Design Approach for Multi-party Machine Learning 253

2.3 Mechanism

Let t = (t1, t2, . . . ,tn) and t−i = (t1, . . . , ti−1, ti+1, . . . , tn) be the type profile
of all agents and all agents without i, respectively. Given the reported types
of agents, a mechanism specifies a numerical allocation and payment for each
agent, where the allocation is a model in the multi-party learning. Formally, we
have:

Definition 1 (Mechanism). A mechanism M = (x, p) is a tuple, where

– x = (x1, x2, · · · , xn), where xi: Rn
+ 	→ R is the allocation function for agent i,

which takes the agents’ reported types as input and decides the model quality
for agent i as output;

– p = (p1, p2, · · · , pn), where pi: Rn
+ 	→ R is the payment function for agent i,

which takes the agents’ reported types as input and specifies how much agent
i should pay to the mechanism.

In a competitive environment, a strategic agent may hide some of data and does
not use the model he receives from the platform. Thus the final model quality
depends on both the allocation and his actual type. We use valuation function
vi(x(t′), t) to measure the profit of agent i.

Definition 2 (Valuation). We consider valuation functions vi(x(t′), t) that
depend not only on the allocation outcome x(t′) where t′ is the reported type
profile, but also on the actual type profile t.

We assume the model agent i uses to serve customers is:

qi = max{xi(t′), Q(ti)},

where Q(ti) is the model trained with his own data. The valuation of agent i
depends on the final model qualities of all agents due to their competition. Hence
vi can also be expressed as vi(q1, . . . , qn).

We make the following assumption on agent i’s valuation:

Assumption 3. Agent i’s valuation is monotone increasing with respect to true
type ti when the outcome x is fixed.

vi(x, ti, t−i) ≥ vi(x, t̂i, t−i),∀x,∀ti ≥ t̂i,∀t−i,∀i.

This is because possessing more valid data will not lower one’s valuation. Oth-
erwise, an agent is always able to discard part of his dataset to make his true
type t′i. Suppose that each agent i’s utility ui(t, t′) has the form:

ui(t, t′) = vi(x(t′), t) − pi(t′),

where t and t′ are true types and reported types of all agents respectively. As we
mentioned above, an agent may lie about his type in order to benefit from the
mechanism. The mechanism should incentivize truthful reports to keep agents
from lying.

254 M. Chen et al.

Definition 3 (Incentive Compatibility (IC)). A mechanism is said to be
incentive compatible, or truthful, if reporting truthfully is always the best response
for each agent when the other agents report truthfully:

ui(x(ti, t−i), t) ≥ ui(xi(t′i, t−i), t),∀ti ≥ t′i,∀t−i,∀i.

For ease of presentation, we say agent i reports ∅ if he chooses not to partic-
ipate (so we have xi(∅, t−i) = 0 and pi(∅, t−i) = 0). To encourage the agents to
participate in the mechanism, the following property should be satisfied:

Definition 4 (Individual Rationality (IR)). A mechanism is said to be indi-
vidually rational, if no agent loses by participation when the other agents report
truthfully:

ui(x(ti, t−i), t) ≥ ui(x(∅, t−i), t),∀ti, t−i,∀i.

The revenue and welfare of a mechanism are defined to be all the payments
collected from the agents and all the valuations of the agents.

Definition 5. The revenue and welfare of a mechanism (x, p) are:

Rev(x, p) =
∑n

i=1
pi(t′), Wel(x, p) =

∑n

i=1
vi(x, t).

We say that a mechanism is efficient if

(x, p) = arg max(x,p) Wel(x, p),

A mechanism is weakly budget-balance if it never loses money.

Definition 6 (Weak Budget Balance). A mechanism is weakly budget-
balance if:

Rev(x, p) ≥ 0,∀t.

Definition 7 (Desirable Mechanism). We say a mechanism is desirable if
it is IC, IR, efficient and weakly budget-balance.

2.4 Comparison with the Standard Interdependent Value Setting

Although each agent’s valuation depend on both the outcome of the mechanism
and all agent’s true types, our interdependent value with type-dependent action
spaces setting, however, fundamentally different from standard interdependent
value settings:

– In our setting, the type of each agent is the “quality” of his dataset, thus each
agent cannot report a higher type than his true type. While in the standard
interdependent value setting, an agent can possibly report any type.

A Mechanism Design Approach for Multi-party Machine Learning 255

– In our setting, the agents do not have the “exit choice” (not participating in
the mechanism and getting 0 utility) as they do in the standard setting. This
is due to the motivation of this paper: companies from the same industry
are trying to improve their service quality, and they are always in the game
regardless of their choices. A non-participating company may even have a
negative utility if all other companies improved their services.

– To capture the cooperation among the agents, the item being sold, i.e., the
learned model, also depends on all agents types. The best model learned by
the multi-party learning platform will have high quality if all agents contribute
high-quality datasets. However, the objects for allocation are usually fixed in
standard mechanisms instead.

3 Quasi-Monotone Externality Setting

In the interdependent value with type-dependent action spaces setting, each
agent’s utility may also depend on the models that other agents actually use.
Such externalities lead to interesting and complicated interactions between the
agents. For example, by contributing more data, one may improve the others’
model quality, and end up harming his own market share. In this section, we
study the setting where agents have quasi-monotone externalities.

Definition 8 (Quasi-Monotone Valuation). Let qi be the final selected
model quality of the agent and q−i be the profile of model qualities of all the
agents except i. A valuation function is quasi-monotone if it is in the form:

vi(qi, q−i) = Fi(qi) + θi(q−i),

where Fi is monotone and θi is an arbitrary function.

Example 1. Let’s consider a special quasi-monotone valuation: the linear exter-
nality setting, where the valuation for each agent is defined as vi =

∑
j αijqj

with qj being the model that agent j uses. The externality coefficient αij means
the influence of agent j to agent i and captures either the competitive or cooper-
ative relations among agents. If the increase of agent j’s model quality imposes
a negative (positive) effect on agent i’s utility (e.g. major opponents or collabo-
rators in the market), αij would be negative (positive). Additionally, αii should
always be positive, naturally.

In the linear externality setting, the efficient allocation is straightforward.
For each agent i, we give i the training model with best possible quality if∑

j αji ≥ 0. Otherwise, agent i are not allocated any model if
∑

j αji < 0.

We introduce a payment function called maximal exploitation payment, and
show that the mechanism with efficient allocation and the maximal exploitation
payment guarantees IR, IC, efficiency and revenue optimum.

Definition 9 (Maximal Exploitation Payment (MEP)). For a given allo-
cation function x, if the agent i reports a type t′i and the other agents report t′−i,
the maximal exploitation payment is to charge agent i

pi(t′i, t
′
−i) = vi(x(t′i, t

′
−i), t

′
i, t

′
−i) − vi(x(∅, t′−i), t

′
i, t

′
−i).

256 M. Chen et al.

We emphasize that our MEP mechanism and the VCG are quite different. The
VCG charges each agent for the harm he causes to others due to his participation
while the MEP charges each agent the profit he gets from the mechanism due to
his participation. We will show that the MEP is truthful in the quasi-monotone
valuation setting in the following theorem, while it is already known that VCG
cannot guarantee truthfulness in the interdependent setting [17].

Theorem 1. Under the quasi-monotone valuation setting, any mechanism with
MEP is the mechanism with the maximal revenue among all IR mechanisms,
and it is IC.

Corollary 1. Any efficient allocation mechanism with MEP under the linear
externality setting with all the linear coefficients αji ≥ 0 should be IR, IC, weakly
budget-balance and efficient.

In the standard mechanism design setting, the Myerson-Satterthwaite The-
orem [19] is a well-known classic result, which says that no mechanism is simul-
taneously IC, IR, efficient and weakly budget-balance. The above Corollary 1
shows that in our setting, the Myerson-Satterthwaite Theorem fails to hold.

4 General Externality Setting

In this section, we consider the general externality setting where the valuations
of agents can have any forms of externalities. The restrictions on the action space
and the value functions make the IC and IR mechanisms hard to characterize.
It is possible that given a allocation rule, there exist several mechanisms with
different payments that satisfy both IC and IR constraints. To understand what
makes a mechanism IC and IR, we analyze some properties of truthful mech-
anisms in this section. For ease of presentation, we assume that the functions
v(·), x(·) and p(·) are differentiable.

Theorem 2 (Necessary Condition). If a mechanism (x, p) is both IR and
IC, for all possible valuation functions satisfying Assumption 3, then the payment
function satisfies ∀ti ≥ t′i,∀ti,∀t−i,∀i,

pi(0, t−i) ≤ vi(x(0, t−i), 0, t−i) − vi(x(∅, t−i), 0, t−i), (1)

pi(ti, t−i) − pi(t′i, t−i) ≤
∫ ti

t′
i

∂vi(x(s′, t−i), s, t−i)
∂s′

∣∣∣∣
s=s′

ds′, (2)

where we view vi(x(t′i, t−i), ti, t−i) as a function of ti, t′i and t−i for simplicity.
The partial derivative in Eq. (2) is computed using the chain rule, i.e.,

∂vi(x(t′i, t
′
−i), ti, t−i)

∂t′i
=

n∑

j=1

∂vi(x(t′i, t
′
−i), ti, t−i)

∂xj(t′i, t
′
−i)

∂xj(t′i, t
′
−i)

∂t′i

A Mechanism Design Approach for Multi-party Machine Learning 257

Theorem 2 describes what the payment p is like in all IC and IR mechanisms.
In fact, the conditions in Theorem2 are also crucial in making a mechanism
truthful. However, to ensure IC and IR, we still need to restrict the allocation.

Theorem 3 (Sufficient Condition). A mechanism (x, p) satisfies both IR
and IC, for all possible valuation functions satisfying Assumption 3, if for each
agent i, for all ti ≥ t′i, and all t−i, Eqs. (1) and the following two hold

t′i = arg min
ti:ti>t′

i

∂vi(x(t′i, t−i), ti, t−i)
∂t′i

(3)

pi(ti, t−i) − pi(t′i, t−i)

≤
∫ ti

t′
i

∂vi(x(s′, t−i), s, t−i)
∂s′

∣∣∣∣
s=s′

ds′ −
∫ ti

t′
i

∂vi(x(∅, t−i), s, t−i)
∂s

ds. (4)

5 Market Growth Rate

In this section, we will analyze a factor, the market growth rate, for the existence
of the desirable mechanism. Expanding the market size would reduce competition
among the agents, meaning that the damage to an agent’s existing market caused
by joining the mechanism is more likely to be covered by the market growth.
Thus our intuition is that if the market grows quickly, a desirable mechanism is
more likely to exist.

As mentioned above, each agent’s valuation is the profit made from the mar-
ket, so formally we define the market size to be the sum of the valuations of all
the agents. Let M(q) be the agents’ total valuations where q = (q1, q2, . . . , qn)
is the set of actual model qualities they use. We have:

M(q) =
∑n

i=1
vi(x, t).

In general, the multi-party learning process improves all agents’ models. So we do
not consider the case where the market shrinks due to the agents’ participation,
and assume that the market is growing.

Assumption 4 (Growing Market). q � q′ implies M(q) ≥ M(q′).

A special case of the growing market is the non-competitive market where
agent’s values are not affected by others’ model qualities, formally:

Definition 10 (Non-competitive Market). A market is non-competitive iff
∂vi(q)
∂qj

≥ 0,∀i, j.

Theorem 4. In a non-competitive market, there always exists a desirable mech-
anism, that gives the best possible model to each agent and charges nothing.

258 M. Chen et al.

Since the efficient mechanism both redistributes existing markets and
enlarges the market size by giving the best learned model when the market
is growing, it is difficult to determine whether a desirable mechanism exists if
the competition exists. We will give the empirical analysis of the influence of
the growth rate of competitive growing markets for desirable mechanisms in
AppendixG.

6 Finding a Desirable Mechanism

In the linear externality setting, we provide a mechanism that satisfies all the
desirable properties. But this mechanism is not applicable to all valuation func-
tions in the general setting, since the existence of a desirable mechanism depends
on the agents’ actual valuation functions. We provide an algorithm, that given
the agents’ valuations, computes whether such a mechanism exists, and outputs
the one that optimizes revenue, if any.

Since each agent can only under-report, according to the IR property, we
must have:

ui(x(ti, t−i), t) ≥ ui(x(∅, t−i), t),∀t,∀i.

Equivalently, we get ∀t,∀i,

ui(x(∅, t−i), t) ≤ vi(x(ti, t−i), t) − pi(ti, t−i),
pi(ti, t−i) ≤ vi(x(ti, t−i), t) − ui(x(∅, t−i), t),

pi(t) ≤ vi(x(ti, t−i), t) − ui(x(∅, t−i), t).

For simplicity, we define the upper bound of p(t′) as

p(t) � {vi(x(ti, t−i), t) − ui(x(∅, t−i), t).

The IC property requires that ∀ti ≥ t′i,∀t−i,∀i,

ui(x(ti, t−i), t) ≥ ui(x(t′i, t−i), t).

A little rearrangement gives:

pi(ti, t−i) − pi(t′i, t−i) ≤ vi(x(ti, t−i), t) − vi(x(t′i, t−i), t) � Gapi(t′i, ti, t−i).

Note that the inequality correlations between the payments form a system of
difference constraints. The form of update of the payments is almost identical
to that of the shortest path problem. Therefore, we make use of this observation
to design the algorithm.

We assume that all the value functions are common knowledge, the efficient
allocation is then determined because the mechanism always chooses the one
that maximizes the social welfare. Thus it suffices to figure out whether there
is a payment rule p(t′) which makes the mechanism IR, IC and weakly budget-
balance. Since the valid data size for each agent is bounded in practice, we
assume the mechanism only decides the payment functions on the data range

A Mechanism Design Approach for Multi-party Machine Learning 259

[0,D], and discretize the type space into intervals of length ε, which is also the
minimal size of the data. Thus each agent’s type is a multiple of ε. Note that
since the utility function is general, all the points in the action space would
influence the properties and existence of the mechanism, thus it is necessary to
enumerate all the points in the space. The exponential value function space, i.e.,
the exponential input space, determines that the complexity of our algorithm is
exponential in D.

We give the following algorithmic characterization for the existence of a desir-
able mechanism.

Algorithm 1: Finding desirable mechanisms
input: Agents’ valuation functions v.
Use the function vi to calculate all the Gapi(t

′
i, ti, t−i) and pi(ti, t−i) for each i;

Initialize all pmax
i (ti, t−i) to be pi(ti, t−i) for each i;

for i = 1 to n do
for t−i = (∅, ∅, · · · , ∅) to (D, D, · · · , D) (increment = ε on each dimension)
do

Build an empty graph;
For each pi(ti, t−i), construct a vertex Vtit−i and insert it into the graph;
Construct a base vertex V Bt−i which denotes the payment zero into the
graph;

for ti = 0 to D (increment = ε) do

Add an edge from V Bt−i to Vtit−i with weight p(ti, t−i);
for t′

i = 0 to ti (increment = ε) do
Add an edge with weight Gapi(t

′
i, ti, t−i) from Vt′

it−i
to Vtit−i ;

Use the Single-Source Shortest-Path algorithm to find the shortest path
from V Bt−i to all the other vertices. These are the maximum solutions
pmax
i (ti, t−i) for each payment case;

if
∑n

j=1 pmax
j (t) < 0 then

return There is no desirable mechanism.

return pmax
i as the payment functions.

The following theorem proves the correctness of Algorithm 1.

Theorem 5. Taking agents’ valuation functions as input, Algorithm1 outputs
the answer of the decision problem of whether there exists a mechanism that
guarantees IR, IC, efficiency and weak budget balance simultaneously, and spec-
ifies the payments that achieve maximal revenue if the answer is yes.

7 Conclusion

In this paper, we study the mechanism design problem for multi-party machine
learning. We restrict the action space of each agent where he can only mis-
report a lower type than his actual type and consider the valuation function

260 M. Chen et al.

that is about the allocation outcome and the true types of all agents. The VCG
mechanism does not guarantee IR and DSIC and the Myerson-Satterthwaite
Theorem in the standard mechanism design setting does not hold in our setting,
implying the desirable mechanisms that are both IR, DSIC, efficient and weakly
budget-balance exist in our setting. We propose a maximal exploitation pay-
ment mechanism and show that this mechanism is truthful and revenue-optimal
in the quasi-monotone externalities setting. Then we give sufficient and necessary
conditions for designing a truthful mechanism for the general setting. These con-
ditions restrict both the allocation function and the payment function. We show
that the data size disparity between agents and the market growth rate highly
affect the existence of the desirable mechanism. If the market grows fast and
the disparity is small, a desirable mechanism is more likely to exist. Finally, we
devise an algorithm to find desirable mechanisms that are truthful, individually
rational, efficient and weakly budget-balance simultaneously.

Appendix

A Proof of Theorem1

Proof. Intuitively, the MEP rule charges agent i the profit he gets from an model
that the mechanism allocates to him. If the mechanism charges higher than the
MEP, an agent would have negative utility after taking part in. The IR constraint
would then be violated. So it’s easy to see that the MEP is the maximal payment
among all IR mechanisms.

Then we prove that this payment rule also guarantees the IC condition. It
suffices to show that if an agent hides some data, no matter which model he
chooses to use, he would never get more utility than that of truthful reporting.
We suppose that agent i’s type is t′i and he untruthfully reports t′i.

Suppose that the agent i truthfully reports the type t′i = ti, since the payment
function is defined to charge this agent until he reaches the valuation when he
does not take part in the mechanism, the utility of this honest agent would be

u0
i (t

′) = Fi(Q(ti)) + θi(q−i(∅, t′−i)).

If the agent does not report truthfully, we suppose that the agent reports t′i
where t′i ≤ ti. According to the MEP, the payment function for agent i would
be

pi(t′i, t
′
−i) = Fi(qi(t′i, t

′
−i)) + θi(q−i(t′i, t

′
−i)) − Fi(Q(t′i)) − θi(q−i(∅, t′−i)).

It can be seen that the mechanism would never give an agent a worse model
than the model trained by its reported data, otherwise the agents would surely
select their private data to train models. Hence it is without loss of general-
ity to assume that the allocation xi(t′i, t

′
−i) ≥ Q(t′i), ∀t′i, t

′
−i,∀i. Thus we have

q−i(t′i, t
′
−i) = x−i(t′i, t

′
−i). We discuss the utility of agent i by two cases of choos-

ing models.

A Mechanism Design Approach for Multi-party Machine Learning 261

Case 1: the agent chooses the allocation xi. Since agent i selects the allo-
cated model, we have qi = xi(t′i, t

′
−i). Then the utility of agent i would be

u1
i =vi(t′i, t

′
−i) − pi(t′i, t

′
−i)

=Fi(xi(t′i, t
′
−i)) + θi(x−i(t′i, t

′
−i)) + Fi(Q(t′i))

+ θi(x−i(∅, t′−i)) − Fi(xi(t′i, t
′
−i)) − θi(x−i(t′i, t

′
−i))

=Fi(Q(t′i)) + θi(x−i(∅, t′−i)).

Because both Fi and Q are monotone increasing functions and ti ≥ t′i, we have

u1
i ≤ Fi(Q(ti)) + θi(x−i(∅, t′−i)) = u0

i .

Case 2: the agent chooses Q(ti). Since agent i selects the model trained by
his private data, we have qi = Q(ti). The final utility of agent i would be

u2
i =vi(t′i, t

′
−i) − pi(t′i, t

′
−i)

=Fi(Q(ti)) + θi(x−i(t′i, t
′
−i)) + Fi(Q(t′i))

+ θi(x−i(∅, t′−i)) − Fi(xi(t′i, t
′
−i)) − θi(x−i(t′i, t

′
−i))

=Fi(Q(ti)) + Fi(Q(t′i)) + θi(x−i(∅, t′−i)) − Fi(xi(t′i, t
′
−i)).

Subtract the original utility from the both sides, then we have

u2
i − u0

i =Fi(Q(ti)) + Fi(Q(t′i)) + θi(x−i(∅, t′−i))
− Fi(xi(t′i, t

′
−i)) − Fi(Q(ti)) − θi(x−i(∅, t′−i))

=Fi(Q(t′i)) − Fi(xi(t′i, t
′
−i)).

Because xi(t′i, t
′
−i) ≥ Q(t′i), ∀t′i, t

′
−i,∀i and because Fi is a monotonically increas-

ing function, we can get u2
i − u0

i ≤ 0. Therefore max{u1
i , u

2
i } ≤ u0

i , lying would
not bring more benefits to any agent, and the mechanism is IC.

B Proof of Corollary 1

Proof. In Theorem 1 we know that the MEP mechanism is IR and IC. Since
the linear coefficients are all positive and the externality setting is linear, any
efficient mechanism would allocate the best model to all the agents. Since each
agent gets a model with no less quality than his reported one and the payment
is equal to the value difference between the case an agent truthfully report and
the case he exit the mechanism. The agent’s value is always larger than the
value when he exits the mechanism. Then the payment is always positive and
the mechanism should satisfy all of the four properties.

262 M. Chen et al.

C Proof of Theorem2

Proof. We first prove that Eq. (1) holds. Observe that

ui(x(ti, t′−i), ti, t−i) − ui(x(t′i, t
′
−i), t

′
i, t−i)

=[vi(x(ti, t′−i), ti, t−i) − pi(ti, t′−i)] − [vi(x(t′i, t
′
−i), t

′
i, t−i) − pi(t′i, t

′
−i)]

≥[vi(x(ti, t′−i), ti, t−i) − pi(ti, t′−i)] − [vi(x(t′i, t
′
−i), ti, t−i) − pi(t′i, t

′
−i)]

=ui(x(ti, t′−i), ti, t−i) − ui(x(t′i, t
′
−i), ti, t−i)

≥0, (5)

where the first inequality is because of Assumption 3, and the last inequality is
because of the DSIC property.

Let t′i = 0 in Eq. (5). We have

ui(x(ti, t′−i), ti, t−i) ≥ ui(x(0, t′−i), 0, t−i).

The IR property further requires that ui(x(0, t′−i), 0, t−i) ≥ ui(x(∅, t′−i), 0, t−i),
which Eq. (1) follows.

To show Eq. (2) must hold, we rewrite Eq. (5):

pi(ti, t′−i) − pi(t′i, t
′
−i) ≤ vi(x(ti, t′−i), ti, t−i) − vi(x(t′i, t

′
−i), t

′
i, t−i)

=
∫ ti

t′
i

dvi(x(s′, t′−i), s(s
′), t−i)

ds′ ds′. (6)

Fixing t−i and t′−i, the total derivative of vi(x(s′, t′−i), s, t−i) is:

dvi(x(s′, t′−i), s, t−i)

=
∂vi(x(s′, t′−i), s, t−i)

∂s′ ds′ +
∂vi(x(s′, t′−i), s, t−i)

∂s
ds.

View s as a function of s′ and let s(s′) = s′:

dvi(x(s′, t′−i), s(s
′), t−i)

ds′

=
∂vi(x(s′, t′−i), s, t−i)

∂s′

∣∣∣∣
s=s′

+
∂vi(x(s′, t′−i), s(s

′), t−i)
∂s(s′)

ds(s′)
ds′ .

Plug into Eq. (6), and we obtain:

pi(ti, t′−i) − pi(t′i, t
′
−i)

≤
∫ ti

t′
i

∂vi(x(s′, t′−i), s, t−i)
∂s′

∣∣∣∣
s=s′

+
∫ ti

t′
i

∂vi(x(s′, t′−i), s(s
′), t−i)

∂s(s′)
ds′.

Since the above inequality holds for any valuation function with vi(x, ti, t−i) ≥
vi(x, t′i, t−i),∀x,∀t−i,∀ti ≥ t′i, we have:

pi(ti, t′−i) − pi(t′i, t
′
−i) ≤

∫ ti

t′
i

∂vi(x(s′, t′−i), s, t−i)
∂s′

∣∣∣∣
s=s′

ds′.

A Mechanism Design Approach for Multi-party Machine Learning 263

D Proof of Theorem3

Proof. Equation (3) indicates that the function ∂vi(x(t
′
i,t

′
−i),ti,t−i)

∂t′
i

is minimized
at t′i:

∂vi(x(t′i, t
′
−i), s, t−i)

∂t′i

∣∣∣∣
s=t′

i

≤ ∂vi(x(t′i, t
′
−i), ti, t−i)

∂t′i
. (7)

Therefore, we have

ui(x(ti, t′−i), ti, t−i) − ui(x(t′i, t
′
−i), ti, t−i)

=
∫ ti

t′
i

∂vi(x(s′, t′−i), ti, t−i)
∂s′ ds′ − pi(ti, t′−i) + pi(t′i, t

′
−i)

≥
∫ ti

t′
i

∂vi(x(s′, t′−i), s, t−i)
∂s′

∣∣∣∣
s=s′

ds′ − pi(ti, t′−i) + pi(t′i, t
′
−i)

≥
∫ ti

t′
i

∂vi(x(∅, t′−i), s, t−i)
∂s

ds, (8)

where the two inequalities are due to Eq. (7) and (4), respectively. Since
vi(x, ti, t−i)≥vi(x, t′i, t−i), ∀x,∀t−i,∀ti ≥ t′i indicates ∂vi(x(∅,t′

−i),s,t−i)

∂s ≥ 0, the
above inequality shows that the mechanism guarantees the DSIC property.

To prove that the mechanism is IR, we first observe that

[ui(x(ti, t′−i), ti, t−i) − vi(x(∅, t′−i), ti, t−i)] − [ui(x(t′i, t
′
−i), t

′
i, t−i)

− vi(∅, x(t−i), t′i, t−i)]

=ui(x(ti, t′−i), ti, t−i) − ui(x(t′i, t
′
−i), t

′
i, t−i) −

∫ ti

t′
i

∂vi(x(∅, t′−i), s, t−i)
∂s

ds

≥ui(x(ti, t′−i), ti, t−i) − ui(x(t′i, t
′
−i), ti, t−i) −

∫ ti

t′
i

∂vi(x(∅, t′−i), s, t−i)
∂s

ds

≥0,

where the two inequalities are Assumption 3 and Eq. (8). Letting t′i = 0 using
Eq. (2), we get:

ui(x(ti, t′−i), ti, t−i) − vi(x(∅, t′−i), ti, t−i)
≥ui(x(0, t′−i), 0, t−i) − vi(x(∅, t′−i), 0, t−i)
=vi(x(0, t′−i), 0, t−i) − pi(0, t′−i) − vi(x(∅, t′−i), 0, t−i)
≥0.

E Proof of Theorem4

Proof. Suppose that the platform uses the mechanism mentioned in the theo-
rem. Then for each agent, contributing with more data increases all participants’

264 M. Chen et al.

model qualities. By definition, in a non-competitive market, improving others’
models does not decrease one’s profit. Therefore, the optimal strategy for each
participant is to contribute with all his valid data, making the mechanism truth-
ful. Also because of the definition, entering the platform always weakly increases
one’s model quality. Thus the mechanism is IR. With the IC and IR properties,
it is easy to see that the mechanism is also efficient and weakly budget-balance.

F Proof of Theorem5

Proof. Suppose that there is a larger payment for agent i such that pi(t′) >
pmax

i (t′) where t′ is the profile of reported types. In the process of our algo-
rithm, the pmax

i (t′) is the minimal path length from V B−i to Vtit−i, denoted
by (V B−i, Vti1t−i, Vti2t−i, · · · , Vtik=t′

i
t−i). By the definition of edge weight, we

have the following inequalities:

pi(ti1, t−i) ≤ pi(ti1, t−i),
pi(ti2, t−i) − pi(ti1, t−i) ≤ Gapi(ti1, ti2, t−i),

...
pi(tik, t−i) − pi(ti(k−1), t−i) ≤ Gapi(ti1, ti2, t−i).

Adding these inequalities together, we get

pi(t′) ≤ pi(ti1, t−i) +
k−1∑

j=1

Gapi(tij , ti(j+1), t−i) = pmax
i (t′).

If pi(t′) < pmax
i (t′) holds, this would violate at least 1 of the k inequalities

above. If the first inequality is violated, the mechanism would not be IR, by the
definition of pi(ti1, t−i). If any other inequality is violated, the mechanism would
not be IC, by the definition of Gapi(tij , ti(j+1), t−i).

On the other hand, if we select pmax
i (t′) to be payment of agent i, all the

inequalities should be satisfied, otherwise the shortest path would be updated
to a smaller length.

Therefore the pmax
i (t′) must be the maximum payment for agent i. If the

maximal payment sum up to less than 0, there would obviously be no mechanism
that is IR, IC and weakly budget-balance under the efficient allocation function.

G Experiments

We design experiments to demonstrate the performance of our mechanism for
practical use. We first show the mechanism with the maximal exploitation pay-
ments can guarantee a good quality of trained model and high revenues under
the linear externality cases. Then we conduct simulations to exhibit the rela-
tion of the market growth of competitive markets to the existence of desirable
mechanisms.

A Mechanism Design Approach for Multi-party Machine Learning 265

G.1 The MEP Mechanism

We consider the valuation with linear externalities setting where αij ’s (defined
in Example 1) are generated uniformly in [−1, 1]. Each agent’s type is drawn
uniformly from [0, 1] independently and the Q(t) is 1−e−t

1+e−t . The performance of a
mechanism is measured by the platform’s revenue and its best quality of trained
model under the mechanism. All the values of each instance are averaged over
50 samples. We both show the performance changes as the number of agents
increases and as the agents’ type changes.

When the number of agents becomes larger, the platform can obtain more
revenues and train better models (see Fig. 1). Particularly, the model quality
is close to be optimal when the number of agents over 12. An interesting phe-
nomenon is that the revenue may surpass the social welfare. This is because
the average external effect of other agents on one agent i tends to be negative
when agent i does not join in the mechanism, thus the second term in the MEP
payment is averagely negative and revenue is larger than the welfare.

To see the influence of type on performance, we fix one agent’s type to be
1 and set the other agent’s type from 0 to 10. It can be seen in Fig. 2 that
the welfare and opponent agent’s utility (uti 2) increase as the opponent’s type
increases but the platform’s revenue and the utility of the static agent (uti 1) are
almost not affected by the type. So we draw the conclusion that the most efficient
way for the platform to earn more revenue is to attract more small companies
to join the mechanism, since in the Fig. 1 the revenue obviously increases as the
number of agents increases.

G.2 Existence of Desirable Mechanisms

We assume all the agents’ types lie in [0,D], and the type space can be discretized
into intervals of length ε, which can be viewed as the minimal size of a dataset.
Thus each agent’s type is a multiple of ε. The data disparity is defined as the
ratio of the largest possible data size to the smallest possible data size, namely,
D/ε. We measure the condition for existence of desirable mechanisms by the
maximal data disparity when the market growth rate is given.

To describe the market growth, we use the following form of valuation func-
tion and model quality function:

Q(t) = t and vi(q) =
(∑n

j=1
Q(qj)

)γ

· Q(qi),∀i,

where γ indicates the market growth rate. We consider the competitive growing
market case where −1 ≤ γ < 0.1

The algorithm we use to find desirable mechanisms under different valuation
functions is described in Sect. 6. We enumerate the value of γ from −1 to −0.668
with step length 0.002 and run the algorithm to figure out the boundary of D/ε

1 When γ < −1, the market is not a growing market; when γ ≥ 0, the market becomes
non-competitive, therefore by Theorem 4, a desirable mechanism trivially exists.

266 M. Chen et al.

(a) Welfare & revenue (b) Best quality of trained model

Fig. 1. Performance of MEP under different numbers of agents

Fig. 2. Performance of MEP under different types

Fig. 3. Data disparity vs. Market growth (Color figure online)

A Mechanism Design Approach for Multi-party Machine Learning 267

under different γ in a market with 2 agents. The range of γ is determined by our
computing capability, and the disparity boundary has been over 10000 when γ
is near −0.66.

Figure 3 shows the boundary of data disparity for existence of desirable mech-
anisms under different market growth rates. For every fixed γ, there does not
exist any desirable mechanism when the data disparity is larger than the point
on the red line. It can be seen an obvious trend that when γ becomes larger, the
constraint on data size disparity would become looser. A desirable mechanism
is more likely to exist in a market that grows faster. When the market is not
growing, there would not be such a desirable mechanism at all. On the other
hand, if the market grows so fast such that there does not exist any competition
between the agents, the desirable mechanism always exists.

References

1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
308–318. ACM (2016)

2. Ausubel, L.M.: An efficient ascending-bid auction for multiple objects. Am. Econ.
Rev. 94(5), 1452–1475 (2004)

3. Blumrosen, L., Feldman, M.: Implementation with a bounded action space. In:
Proceedings of the 7th ACM Conference on Electronic Commerce, pp. 62–71. ACM
(2006)

4. Blumrosen, L., Nisan, N.: Auctions with severely bounded communication. In: 2002
Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer
Science, pp. 406–415. IEEE (2002)

5. Chawla, S., Fu, H., Karlin, A.R.: Approximate revenue maximization in interde-
pendent value settings. In: Babaioff, M., Conitzer, V., Easley, D.A. (eds.) ACM
Conference on Economics and Computation, EC 2014, Stanford, CA, USA, 8–12
June 2014, pp. 277–294. ACM (2014)

6. Chwe, M.S.Y.: The discrete bid first auction. Econ. Lett. 31(4), 303–306 (1989)
7. David, E., Rogers, A., Jennings, N.R., Schiff, J., Kraus, S., Rothkopf, M.H.: Opti-

mal design of English auctions with discrete bid levels. ACM Trans. Internet Tech-
nol. (TOIT) 7(2), 12 (2007)

8. Ding, N., Fang, Z., Huang, J.: Optimal contract design for efficient federated
learning with multi-dimensional private information. IEEE J. Sel. Areas Commun.
39(1), 186–200 (2020)

9. Fang, W., Tang, P., Zuo, S.: Digital good exchange. In: Proceedings of the 2016
International Conference on Autonomous Agents & Multiagent Systems, pp. 1277–
1278. International Foundation for Autonomous Agents and Multiagent Systems
(2016)

10. Goldberg, A.V., Hartline, J.D.: Envy-free auctions for digital goods. In: Proceed-
ings of the 4th ACM Conference on Electronic Commerce, pp. 29–35. ACM (2003)

11. Goldberg, A.V., Hartline, J.D., Wright, A.: Competitive auctions and digital goods.
In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 735–744. Society for Industrial and Applied Mathematics (2001)

268 M. Chen et al.

12. Hu, Y., Niu, D., Yang, J., Zhou, S.: FDML: a collaborative machine learning frame-
work for distributed features. In: Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 2232–2240. ACM
(2019)

13. Jia, R., et al.: Towards efficient data valuation based on the Shapley value. In:
The 22nd International Conference on Artificial Intelligence and Statistics, pp.
1167–1176. PMLR (2019)

14. Kang, J., Xiong, Z., Niyato, D., Yu, H., Liang, Y.C., Kim, D.I.: Incentive design for
efficient federated learning in mobile networks: a contract theory approach. arXiv
preprint arXiv:1905.07479 (2019)

15. Lim, W.Y.B., et al.: Federated learning in mobile edge networks: a comprehensive
survey. IEEE Commun. Surv. Tutor. 22(3), 2031–2063 (2020)

16. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial Intelligence and Statistics, pp. 1273–1282 (2017)

17. Mezzetti, C.: Mechanism design with interdependent valuations: efficiency. Econo-
metrica 72(5), 1617–1626 (2004)

18. Milgrom, P.R., Weber, R.J.: A theory of auctions and competitive bidding. Econo-
metrica 50(5), 1089–1122 (1982)

19. Myerson, R.B., Satterthwaite, M.A.: Efficient mechanisms for bilateral trading. J.
Econ. Theory 29(2), 265–281 (1983)

20. Redko, I., Laclau, C.: On fair cost sharing games in machine learning. In: Thirty-
Third AAAI Conference on Artificial Intelligence (2019)

21. Roughgarden, T., Talgam-Cohen, I.: Optimal and robust mechanism design with
interdependent values. ACM Trans. Econ. Comput. 4(3), 18:1–18:34 (2016)

22. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, pp.
1310–1321. ACM (2015)

23. Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.S.: Federated multi-task learn-
ing. In: Advances in Neural Information Processing Systems, pp. 4424–4434 (2017)

24. Song, T., Tong, Y., Wei, S.: Profit allocation for federated learning. In: 2019 IEEE
International Conference on Big Data (Big Data), pp. 2577–2586. IEEE (2019)

25. Takabi, H., Hesamifard, E., Ghasemi, M.: Privacy preserving multi-party machine
learning with homomorphic encryption. In: 29th Annual Conference on Neural
Information Processing Systems (NIPS) (2016)

26. Yonetani, R., Naresh Boddeti, V., Kitani, K.M., Sato, Y.: Privacy-preserving visual
learning using doubly permuted homomorphic encryption. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2040–2050 (2017)

27. Zhan, Y., Zhang, J., Hong, Z., Wu, L., Li, P., Guo, S.: A survey of incentive
mechanism design for federated learning. IEEE Trans. Emerg. Top. Comput. 10,
1035–1044 (2021)

http://arxiv.org/abs/1905.07479

Budget-Feasible Sybil-Proof Mechanisms
for Crowdsensing

Xiang Liu1, Weiwei Wu1(B), Wanyuan Wang1, Yuhang Xu1, Xiumin Wang2,
and Helei Cui3

1 School of Computer Science and Engineering, Southeast University, Nanjing, China
{xiangliu,weiweiwu,wywang,yuhang xu}@seu.edu.cn

2 School of Computer Science and Engineering, South China University of
Technology, Guangzhou, China

xmwang@scut.edu.cn
3 School of Computer Science, Northwestern Polytechnical University,

Xi’an 710129, China
chl@nwpu.edu.cn

Abstract. The rapid use of smartphones and devices leads to the devel-
opment of crowdsensing (CS) systems where a large crowd of partici-
pants can take part in performing data collecting tasks in large-scale
distributed networks. Participants/users in such systems are usually self-
ish and have private information, such as costs and identities. Budget-
feasible mechanism design, as a sub-field of auction theory, is a useful
paradigm for crowdsensing, which naturally formulates the procurement
scenario with buyers’ budgets being considered and allows the users to
bid their private costs. Although the bidding behavior is well-regulated,
budget-feasible mechanisms are still vulnerable to the Sybil attack where
users may generate multiple fake identities to manipulate the system.
Thus, it is vital to provide Sybil-proof budget-feasible mechanisms for
crowdsensing. In this paper, we design a budget-feasible incentive mecha-
nism which can guarantee truthfulness and deter Sybil attack. We prove
that the proposed mechanism achieves individual rationality, truthful-
ness, budget feasibility, and Sybil-proofness. Extensive simulation results
further validate the efficiency of the proposed mechanism.

Keywords: Crowdsensing · Budget feasibility · Sybil-proofness ·
Mechanism design · Auction

1 Introduction

The proliferation of smart mobile devices, such as phones, tablets and smart-
watch, which are installed with rich sensors (e.g., camera, light sensor, and GPS),
has made crowdsensing a new popular economic paradigm which provides the
crowd of users with mobile devices chances accomplishing large-scale distributed
tasks, like collecting and sharing environmental information. Crowdsensing (CS)
systems usually consists of a platform and a collection of users. The platform
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Li and X. Sun (Eds.): IJTCS-FAW 2022, LNCS 13461, pp. 269–288, 2022.
https://doi.org/10.1007/978-3-031-20796-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20796-9_19&domain=pdf
https://doi.org/10.1007/978-3-031-20796-9_19

270 X. Liu et al.

acts as a data requester who posts a set of tasks need to be finished and smart-
phone users provide services by performing assigned tasks. Applications like
reCAPTCHA [18], Amazon Mechanical Turks (AMT) and oDesk have made it
possible to exploit human resources solving crowdsensing problems.

Most of smartphone users are not voluntary to work on the tasks since they
consume their own resources, e.g., battery, computing power, time, cellular data
traffic, and expose private information with potential privacy. Furthermore, the
system can be more effective with more users’ participation. Thus a good incen-
tive mechanism is vitally important to stimulate users to contribute to the plat-
form. Many works [5,9,21,25] model the crowdsourcing/crowdsensing problems
as reverse auctions where the requester works as a buyer and the users act as
service sellers who bid for performing tasks. Users achieve monetary reward
after submitting results of assigned tasks. Auction-based systems often face the
strategic scenario where the participants may take strategic behaviors to obtain
more utilities, e.g., bidding false private information. Sufficient works thus make
the effort to design truthful mechanisms so that users have no incentive to bid
dishonestly [4–6,8,12,15,20,21,25]. Apart from false bidding behaviors, there is
another kind of strategic behavior called Sybil attack, also known as false-name
attack, that users may generate fake identities to manipulate the system for more
utilities. The detection methods for Sybil attack have been considered in various
research areas such as combinatorial auctions [16,17,24], spectrum auctions [19],
and social networks [2]. Unfortunately, Lin et al. [10] show that many existing
truthful mechanisms in crowdsourcing are vulnerable to Sybil attack, e.g., by
taking Sybil attack, users in [5,25] can increase her payment by reporting false
information, and the user in [27] can change from a loser to a winner with a pos-
itive utility. Lin et al. [10] and Zhang et al. [26] are the first to propose incentive
mechanisms guaranteeing truthfulness and Sybil-proofness in the auction-based
crowdsourcing systems.

However, in the procurement scenario, the requester often comes with budget
and the designed procurement mechanism should satisfy the budget constraint
that the total payment from the requester cannot exceed a given budget. The
goal of requester in this scenario is to maximize total value of assigned tasks
finished by users within the budget constraint. This problem falls into research
of budget-feasible mechanism design problem first studied in [13] which proposes
the first budget-feasible truthful mechanism in the procurement scenarios. After
that, many works [1,7,14,28] extend the budget-feasible mechanism design into
the crowdsourcing systems. Although the truthfulness/bidding behavior is well
regulated in these mechanisms, budget-feasible mechanisms in crowdsourcing
systems yet consider the Sybil-proofness and are still vulnerable to Sybil attack
of users. And existing Sybil-proof mechanisms proposed for the auction-based
systems [10,26] also cannot be applied to the procurement scenario as an unlim-
ited payment is even allowed if necessary to elicit the incentive behaviors.

Therefore, in this paper, we focus on designing a budget-feasible Sybil-proof
mechanism for CS systems to deter the untruthful bidding behaviors and Sybil
attack. The designed mechanism should guarantee various desired properties

Budget-Feasible Sybil-Proof Mechanisms for Crowdsensing 271

like, individual rationality that the payment to each seller covers at least (but
not necessarily equals) her private cost, budget feasibility that the total payment
of the requester does not exceed her budget, truthfulness that no sellers have
incentive to bid dishonestly, and Sybil-proofness that users cannot increase their
utilities by launching Sybil attack. The main contributions of this paper are as
follows:

(1) We are the first to address Sybil attack in procurement scenarios for CSs,
and propose a corresponding budget-feasible Sybil-proof mechanism, which
moves a step forward to robust budget-feasible mechanisms in crowdsensing.

(2) We design a Mechanism TBS (Truthful Budget-feasible and Sybil-proof
mechanism) and prove that the proposed mechanism achieves computational
efficiency, individual rationality, truthfulness, budget feasibility and Sybil-
proofness.

(3) We evaluate the performance and validate the desired properties by exten-
sive simulations. Furthermore, it shows that the proposed mechanism spends
less when procuring fixed value from users than previous Sybil-proof mech-
anisms, while ensuring the budget feasibility.

The rest of paper is organized as follows. In Sect. 2, we briefly review the
works in truthful auctions, budget-feasible mechanisms in crowdsensing and
Sybil-proof mechanisms. In Sect. 3, we introduce the system model and problem
formulation. We discuss the vulnerability to Sybil attack in traditional budget-
feasible mechanisms in Sect. 4. In Sect. 5, we propose a mechanism TBS and
prove the desired properties. The performance evaluation is presented in Sect. 6.
Finally, we conclude this paper in Sect. 7.

2 Related Work

Many works consider incentive mechanisms in crowdsensing/crowdsourcing sys-
tems. Yang et al. [21] compute the unique Stackelberg Equilibrium for the
platform-centric crowdsensing model and designed truthful mechanism for the
user-centric crowdsourcing model. Feng et al. [5] further take the location infor-
mation into consideration when assigning sensing tasks to smartphones. Zhang
et al. [25] study three models of crowdsourcing which consider the cooperation
and competition among the service and propose incentive mechanisms for each
of them. Zhu et al. [29] design incentive mechanisms based on the combina-
tion of a reverse auction and a Vickrey auction to address malicious competition
behavior in price bidding. Huang et al. [8] design a truthful double auction mech-
anism which takes max-min fairness into consideration. Cui et al. [4] propose an
incentive mechanism for task allocation problem in crowdsourcing systems by
designing a bid-independent payment calculation scheme.

Budget-feasible mechanism was first studied in [13] which addresses the
procurement scenarios where buyers have budgets and the payment scheme
should be carefully designed. After that, Singer and Mittal [14] present constant-
competitive truthful mechanisms for maximizing the number of tasks under a

272 X. Liu et al.

budget. Some works [7,28] focus on budget-feasible mechanisms in online sce-
nario where users arrive online and the requester wants to select users for maxi-
mizing the value of services under a budget constraint. Singla et al. [15] use the
approach of regret minimization by combining multi-armed bandits to design
budget-feasible mechanisms that achieve near-optimal utility for the requester.

Although Sybil attack has been addressed in some auction scenarios, it has
rarely been studied in budget-feasible mechanisms. For example, Terada and
Yokoo [16] propose a false-name-proof multi-unit auction protocol. The works
[4,17,24] focus on truthful and Sybil-proof mechanisms in combinatorial auc-
tions. Wang et al. [19] design mechanisms that detect Sybil attack in dynamic
spectrum auctions. Brill et al. [2] consider Sybil-proofness for users who may
manipulate the recommendation by performing a false-name manipulation in
social networks. Yao et al. [23] propose a novel Sybil attack detection method
based on Received Signal Strength Indicator (RSSI) for Vehicular Ad Hoc Net-
works (VANETs). For crowdsourcing systems, Lin et al. [10] and Zhang et al.
[26] investigate truthful and Sybil-proof mechanisms in auction-based systems.
However, these mechanisms do not take into account the budget constraints of
requesters, thus cannot be applied to the procurement scenarios in crowdsourcing
systems.

In summary, although the bidding behaviors are well regulated, existing
budget-feasible mechanisms in crowdsourcing systems are still vulnerable to
Sybil attack. Therefore, it is vital to design budget-feasible mechanisms that
are robust in truthfulness and Sybil-proofness.

3 Preliminaries

We consider a crowdsensing system that consists of a platform and n users
denoted by u = {1, 2, . . . , n}. Users may participate in this system to finish
crowdsensing tasks. Denote by Ti the task set user i wants to finish. Let T =⋃

i∈u Ti denote the whole tasks that can be finished by all users. In addition,
each task tl ∈ T has a value vl > 0 to the platform. The platform gains value vl
when task tl is completed.

3.1 Reverse Auction Model

We model the interaction between the platform and users as a reverse auction,
where the platform acts as a requester/buyer and users serve as sellers. We
take into account the procurement scenario in the crowdsensing systems where
the requester wants to procure service from users (sellers) within budget B. We
assume that each user i has a cost function ci(B) to show the cost of finishing
all tasks in a bundle B ⊆ T . Following the assumption in [10], the cost function
ci(·) of user i satisfies the following properties:

– ci(∅) = 0 and ci ({tl}) = ∞,∀tl ∈ T\Ti;
– ci (B′) ≤ ci (B′′) ,∀B′,B′′ ⊆ T with B′ ⊆ B′′;

Budget-Feasible Sybil-Proof Mechanisms for Crowdsensing 273

– ci(B) ≤ ci (B′) + ci (B′′) ,∀B′,B′′ ⊆ T and B = B′ ∪ B′′.

These four properties characterize the cost of performing tasks in practice.
Meanwhile, we consider the scenario of incomplete information auction where

only user herself knows her private information, e.g., task sets and cost function.
The budget and value function of the requester, as an auctioneer, are com-
mon knowledge. Let (Ti, ci(·)) denote the task-cost pair of each user i. Initially,
all users would bid their costs. In the auction model, we consider the strate-
gic scenario where each user is selfish and rational and she may misreport her
cost for more utilities denoted by c̃i 	= ci or her task set denoted by T̃i 	= Ti.
Similarly, let (T̃i, c̃i(·)) denote the reported task-cost pair of each user i and
�β = {(T̃1, c̃1), (T̃i, c̃i), · · · , (T̃i, c̃i)} denote the bid profile of all users. Specifi-
cally, denote by �β−i the bid profile of all users except user i.

After receiving the bids from users, the requester/buyer selects a subset of
users uw ⊆ u called winners and assign each winner i ∈ uw a task set Ai = Ti to
finish, and, Ai = ∅ if i /∈ uw. Let �A = (A1, A2, . . . , An) denotes the assignment
profile. To stimulate users to participate in the auction, the platform gives pay-
ment pi to each winner i. Note that pi = 0 if i /∈ uw. Let �p = (p1, p2, . . . , pn)
denote the payment profile. We further consider the budget feasibility on the
buyer’s side which requires that the total payments paid to the sellers cannot
exceed the budget, i.e.,

∑
i∈u pi ≤ B. We assume that each user is willing to per-

form only the whole set Ti following the assumption in [10,22]. We thus define
user i’s utility as the payment minus her cost, i.e.,

ui((T̃i, c̃i(·)), �β−i) =
{

pi − ci(Ti), if Ai = Ti

0, otherwise
(1)

The platform adopts value function V(·) to calculate the total value over a
subset of users. We define the utility of platform as total value procured from
winners, i.e., V(uw), which is the sum of value of all tasks in the union set of
assigned task sets of winners, i.e., ub = V(uw) = V (∪i∈uw

Ti) =
∑

ti∈∪i∈uwTi
vi,

where function V (·) denotes the sum of value of all tasks in the subset of T . It
is easy to show that the value function V(·) is a monotone submodular function
by the following definition.

Definition 1 (Monotone Submodular Function): Let G be a finite set. For any
X ⊆ Y ⊆ G and x ∈ G, a function f : 2G ← R is called submodular if and only
if f(X ∪ {x}) − f(X) ≥ f(Y ∪ {x}) − f(Y) and it is monotone (increasing) if
and only if f(X) ≤ f(Y).

3.2 Sybil Attack

We further consider the Sybil attack where a user could submit multiple fictitious
identities. As a simple case, user i could submit two task-cost pairs (T̃i′ , c̃i′) and
(T̃i′′ , c̃i′′)) under two identities i′ and i′′, respectively. This case is sufficient to
represent the general Sybil attack.

274 X. Liu et al.

Assume that user i submits (T̃i′ , c̃i′) and (T̃i′′ , c̃i′′) under two identities i′ and
i′′, where T̃i′ ∪ T̃i′′ = Ti. Let Ai′ and Ai′′ denote the assigned task set for user i′

and i′′, respectively. Similarly, denote by pi′ and pi′′ the corresponding payments
for them. As user i is willing to perform only the whole set Ti, her utility ũi under
Sybil attack will be zero if the union assigned task set among generated identities
is not equal to Ti. Thus, ũi = pi′ + pi′′ − ci (Ti) if Ai′ ∪ Ai′′ = Ti and otherwise
ũi = 0. When ũi > ui, user i has an incentive to conduct Sybil attack.

3.3 Properties

The goal of this paper is to design a budget-feasible and Sybil-proof mechanism
maximizing the utility of platform under the crowdsensing model above and
guaranteeing the following desired properties:

(1) Individual Rationality: Each user i has a non-negative utility when bid-
ding her true task-cost pair, i.e., ui((Ti, ci(·)), �β−i) ≥ 0.

(2) Truthfulness: Reporting true cost function is user i’s dominant strategy,
i.e., ui((Ti, ci(·)), �β−i) ≥ ui((T̃i, c̃i(·)), �β−i).

(3) Budget Feasibility: The total payment cannot exceed the budget of
requester, i.e.,

∑
i∈u pi ≤ B.

(4) Sybil-proofness: Any user’s utility is maximized when bidding her true
task-cost pair using a single identity, i.e., ũi ≤ ui.

(5) Computational Efficiency: The mechanism terminates in polynomial
time.

4 Sybil Attack on Budget-Feasible Mechanisms

In this section, we discuss the vulnerability to Sybil attack in truthful incentive
mechanisms. As discussed in Sect. 2, many existing budget-feasible mechanisms
do not take into account the threat of Sybil attack. Thus, we present a detailed
example showing how Sybil attack increases a dishonest user’s utility.

In budget-feasible mechanisms [3,13], the proportional share allocation rule
is widely used to generate budget-feasible allocations and elicit the truthfulness.
Denoted by mi or mi(S) = V(S ∪ {i}) − V(S) the marginal value of a user i
with respect to set S, users are sorted according to their non-decreasing order of
the cost relative to marginal contributions, i.e., i + 1 = argminj∈u

cj
mj(Si)

where

Si = {1, 2, . . . , i}, and selected as winners if ci
mi(Si−1)

≤ B/2
V(Si)

. In addition, user
i in the winner set is rewarded mi(Si−1) · B

V(uw) to guarantee the truthfulness.

Proportional share allocation rule: (1) Sort all the users according
to their non-decreasing costs relative to marginal contribution. (2) Allocate
user i to winner set uw if ci

mi(Si−1)
≤ B/2

V(Si)
.

Budget-Feasible Sybil-Proof Mechanisms for Crowdsensing 275

Fig. 1. Example of the sybil-attack.

Next, we illustrate an example to show Sybil attack in Fig. 1. In this example,
we set the budget of the requester (buyer) at B = 50. We use squares to denote
users (sellers) while circles represent tasks. The edge between a user and a task
means that this task is in this user’s task set. Each user owns a task set Ti and the
number above user i is her cost for task set Ti. The number below task tj is her
value vj to the buyer. There are four users u = {1, 2, 3, 4}, and corresponding
task sets: T1 = {t3, t4}, T2 = {t2, t4, t5}, T3 = {t1, t2, t3}, T4 = {t1, t5, t6}. In
addition, their costs are c1 = 6, c2 = 10, c3 = 5, c4 = 10, and the value of
these tasks are v1 = 4, v2 = 9, v3 = 6, v4 = 8, v5 = 6, v6 = 2, respectively. Let
V(S) =

∑
tj∈∪i∈STi

vj denote the value function given the user subset S.
According to proportional share allocation rule, user 3 with the mini-

mum cost per marginal value c3
V (T3)

= c3
v1+v2+v3

= 5
19 ≤ B/2

V({3}) = 25
19 is

first selected as a winner. Then, user 2 with the minimum cost per marginal
value among remaining users {1, 2, 4} is selected as the second winner, i.e.,

c2
V (T2\T3)

= c2
v4+v5

= 10
14 ≤ B/2

V({3,2}) = 25
33 . Last, user 4 has the minimum

cost per marginal value c4
V (T4\(T2∪T3))

= c4
v6

= 10
2 , but exceeds the threshold

B/2
V({3,2,4}) = 25

35 . Thus, we have the winner set {3, 2}. According to the payment
scheme, we have the payment p1 = 0, p2 = (v4 + v5) · B

V({3,2}) ≈ 21.21, p3 =
(v1 + v2 + v3) · B

V({3,2}) ≈ 28.79, p4 = 0. The utilities of these four users are
u1 = 0, u2 = 11.21, u3 = 23.79, u4 = 0, respectively.

Now, we assume that user 1 generates two identities: user 1′ with task set
T1′ = {t3} and cost c1′ = 1, and user 1′′ with task set T1′′ = {t4} and cost
c1′′ = 5, as shown in Fig. 1(b).

In such a scenario, user 1′ is selected as the first winner with the minimum
cost per marginal value c1′

v3
= 1

6 ≤ B/2
V({1′}) = 25

6 . Then, user 3 is selected as

the second winner since c3
v1+v2

= 5
13 ≤ B/2

V({1′,3}) = 25
19 . After that, user 1′′ is

selected as the third winner by c1′
v4

= 5
8 ≤ B/2

V({1′,3,1′′}) = 25
27 . Last, user 4 has

the minimum cost per marginal value c4
v6

= 10
8 which exceeds B/2

V({1′,3,1′′,4}) = 25
35 .

Thus, we have the winner set {1′, 3, 1′′}. According to the payment scheme,
we have the payment p1′ = 11.11, p1′′ = 14.81, p2 = 0, p3 = 24.07, p4 = 0. The
utilities of these four users in this case are u1 = 19.92, u2 = 0, u3 = 19.07, u4 = 0,

276 X. Liu et al.

respectively. Therefore, we can find that user 1 gains higher utility of 19.92 by
launching Sybil attack.

This demonstrates that the traditional budget-feasible mechanisms are vul-
nerable to Sybil attack. We can also find that Sybil attack may impact the
auctions from two aspects: First, a user launching Sybil attack may increase
her utility, at the cost of effecting the profits of other users, e.g., user 1’ utility
increases while the utilities of user 2 and 3 decrease when user 1 generates fake
identities. This behaviour may hinder the willingness of other users to partici-
pate in the system. Second, Sybil attack can also hurt the platform’s utility, e.g.,
the platform can only achieve utility 27 in Fig. 1(b) rather than 33 in Fig. 1(a).
Therefore, this motivates us to design an incentive budget-feasible mechanism
that is robust against Sybil attack.

5 Mechanism TBS

In this section, we propose a budget-feasible Sybil-proof mechanism TBS
(Truthful Budget-feasible and Sybil-proof mechanism).

The main idea of Mechanism TBS is as follows. In order to detect Sybil
attack, we first group all the users by the task size and sort all the groups
in the decreasing order of their users’ task size. Mechanism TBS consists of
two phases: winner selection and payment determination. In winner selection
scheme, we scan these groups to select winners starting from the group with
largest task size. Within each group, we iteratively select the user with the lowest
bid per marginal value until the specified threshold set to guarantee budget
feasibility and truthfulness is violated. In payment determination scheme, we
find a threshold payment, above which bids cannot be selected as winners.

Next, we introduce more details of Mechanism TBS as shown in Algorithm1.
Considering the budget constraint, we use B = B

2 as virtual budget to select
winners. We first group all the users by the task size |Ti|, i.e., users in the same
group have the same task size, and sort these groups in the decreasing order of
task size, i.e., G1,G2, . . . ,Gl, and start from the largest task size group. Assume
that we are now considering group Gh. We find the user with the lowest bid
per marginal value i = argminj∈Gh

bj
vj(Rj)

where set Rj denotes the union set of
all assigned task sets before j and vj(Rj) denotes the marginal value of user j
given the task set Rj , i.e., vj(Rj) = V (Rj ∪ Tj) − V (Rj). Suppose that i is the
i-th lowest user in this group. Let q denote the maximum bid per marginal value
among winners in the previous groups, i.e., q = maxj∈Gl∩uw,∀l<h

bj
vj(Rj)

. User i

will be selected as a winner if it satisfies
bi

vi(Ri)
≤ B

V (Ri ∪ Ti)
, q ≤ B

V (Ri ∪ Ti)
(2)

and
bi ≤ vi(Ri), V (Ri) + vi(Ri) ≤ B. (3)

Based on the strategies above, the mechanism can control winners’ cost per
marginal value and elicit the budget-feasibility as well as the Sybil-proofness.

Budget-Feasible Sybil-Proof Mechanisms for Crowdsensing 277

Algorithm 1: Mechanism TBS

Input: Sensing task set T , budget B, user set u, bidding profile �β.
Output: Assignment profile �A, payment profile �p.

1 R ← ∅, q ← 0, pi ← 0, Ai ← ∅, uw ← ∅;
2 Group users by the task set size, and sort these groups according to the

decreasing order of task size, i.e., G1, G2, ..., Gl;
3 k ← 1, q ← 0, B ← B/2, q0 ← 0, R0 ← ∅;
4 while k ≤ l do
5 // Winner Selection;

6 G′ ← Gk, i ← argmaxj∈G′
bj

vj(R)
;

7 while bi
vi(R)

≤ B
V (R∪Ti)

and q ≤ B
V (R∪Ti)

and bi ≤ vi(R) and V(R) ≤ B

and G′ �= ∅ do

8 G′ ← G′ \ {i}, q ← max{q, bi
vi(R)

}, Ai ← Ti, R ← R ∪ Ti, uw ← uw ∪ {i};

9 i ← argmaxj∈G′
bj

vj(R)
;

10 end
11 qk ← q, Rk ← R
12 // Payment Determination;
13 for i ∈ Gk, Ai �= ∅ do
14 G′ ← G′ \ {i}, R′ ← Rk−1, q

′ ← qk−1;

15 ij ← argmaxj∈G′
bj

vj(R)
;

16 while
bij

vij (R
′) ≤ B

V (R′∪Tij
)
and q′ ≤ B

V (R′∪Tij
)
and bij ≤ vij (R

′) and

V (R′) ≤ B and G′ �= ∅ do

17 pi ← max{pi, min{vi(R
′) · min{ bij

vij (R
′) ,

B
V (R′∪Ti)

}, vi(R
′)}};

18 G′ ← G′ \ {i}, q′ ← max{q′, bi
vi(R′)}, R′ ← R′ ∪ Tij ;

19 ij ← argmaxj∈G′
bj

vj(R′) ;

20 end

21 end
22 k ← k + 1;

23 end

24 return uw, �A, �p

The process repeats until the bid per marginal value of user bi
vi(Ri)

or the value
of q exceeds the threshold B

V (Ri∪Ti)
, or the total value is higher than the budget

in this group V (Ri) + vi(Ri) > B, or user’s submitted cost is higher than the
marginal value bi > vi(Ri).

Then we calculate the payment pi for each winner i in this group Gh. Follow-
ing the general rule in [11,13], to elicit the truthfulness, the payment should be
set as the threshold payment by bidding which the winner can replace one of the
virtual winners as the winner. Thus, to find the threshold payment, we select
virtual winners from the same group without the winner herself using the same
winner selection scheme as follow. Given users Gh \ {i}, we similarly execute the

278 X. Liu et al.

winner selection scheme to select new virtual winning users denoted by uh
w,−i

and we assume that |uh
w,−i| = Ki. Let ij denote the selected user in the j-th

iteration. User i can be selected as a winner instead of user ij when her reported
cost c̃i(Ti) satisfies:

c̃i(Ti)

vi(Rij)
≤ bij

vij (Rij)
,

c̃i(Ti)

vi(Rij)
≤ B

V (Rij ∪ Ti)
, c̃i(Ti) ≤ vi(Rij), (4)

simultaneously. Thus, to replace the virtual winner ij ∈ uh
w,−i, the bid of user i

is at most the minimum of three values: θi(j) = min{δi(j), ρi(j), vi(Rij)} where

δi(j) = vi(Rij) · bij
vij

(Rij
) and ρi(j) = vi(Rij) · B

V (Rij
∪Ti)

. Moreover, we have Ki

bids since the size of set uh
w,−i is Ki and the last virtual winner is iKi

. To replace
one of these virtual winners, user i should report at most the maximum among
these values and the marginal value of user i after Ki iteration:

pi = max

{
max

ij∈uh
w,−i

θi(j), vi(RiKi
∪ TiKi

)

}
(5)

which will be set as the final payment for winner i in this group.
After considering the current group, we process the next group Gh+1. This

will repeat until no users can be selected as winners.

5.1 Theoretical Analysis on Desired Properties

Next, we analyze the properties of mechanism TBS.

Lemma 1. Mechanism TBS is computationally efficient.

Proof. The running time of Mechanism TBS is dominated by the loop in the
winner selection phase (lines 8–12) and payment determination phase (lines 18–
31). In the winner selection process, the running time is at most O(n2) because
finding the minimum price-per-value user will take O(n) time and the number
of winners is at most n. In the payment scheme phase, the running time is
O(n3) since the select scheme will be executed n times. Therefore, the total
computational complexity of Mechanism TBS is O(n4) since at most n groups
need to be processed.

Lemma 2. Mechanism TBS is individually rational.

Proof. To simplify the notation, we neglect the label of group and let user i
denote the i-th winner in group Gh. Recall that user ij is the j-th virtual winner
in payment determination phase which selects virtual winners by excluding user
i herself. We assume that the order of virtual winners in the payment determi-
nation phase is i1, i2, . . . , i[i], . . . , iKi

where [i] denotes the place where user i
should be selected in the winner selection phase if it was involved. It is obvious
that previous i − 1 sellers, i.e., from i1 to i[i]−1, are still selected as winners in
the winner selection phase. According to (2), we have

{ ci
vi(Ri)

≤ B
V (Ri∪{Ti})

ci ≤ vi(Ri)
(6)

Budget-Feasible Sybil-Proof Mechanisms for Crowdsensing 279

since user i is the winner in the truthful case. For the virtual winner i[i], we have

ci
vi(Ri)

≤ ci[i]
vi[i](Ri[i])

(7)

since user i is selected as winner rather than user i[i] in the winner selection
phase. Recall that δi[i] = vi(Ri[i]) · ci[i]

vi[i] (Ri[i])
and ρi[i] = vi(Ri[i]) · B

V (Ri[i]∪{Ti}) .

By combining (6) and (7), we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ci ≤ vi(Ri)·ci[i]
vi[i] (Ri)

=
vi(Ri[i])·ci[i]
vi[i] (Ri[i])

= δi[i]

ci ≤ vi(Ri)·B
V (Ri∪Ti)

=
vi(Ri[i])·B
V (Ri[i]∪Ti)

= ρi[i]

ci ≤ vi(Ri) = vi(Ri[i]).

Thus, it is obvious that ci ≤ θi([i]). According to Eq. (5), we have pi ≥ max θi(j) ≥
θi([i]) ≥ ci. Therefore, TBS guarantees the individual rationality.

Before analyzing Mechanism TBS’s truthfulness, we first introduce a general
rule for verifying truthfulness:

Theorem 1 (Monotone theorem, [11,13]). In single parameter domains, an
auction mechanism is truthful iff:

– The selection rule is monotone: If user i wins the auction by bidding bi, it
also wins by bidding b′

i ≤ bi;
– Each winner is paid the critical value, which is the smallest value such that

user i would lose the auction if it bids higher than this value.

Lemma 3. Mechanism TBS is truthful.

Proof. We first prove that user i cannot improve her utility by submitting a false
task set. We assume that user i submits a false task set T̃i 	= Ti. If T̃i ⊂ Ti, the
utility of i is zero according to Eq. (1). If Ti ⊂ T̃i, user i can not finish all the
tasks as a winner, thus fails to get payment. Therefore, users have to submit her
true task set for utility maximization.

Next, we prove that user i cannot improve her utility by bidding a false cost.
Following the general rule in Theorem1, we show that the designed mechanism
is monotone and the payment to each winning seller is the critical value.

Monotonicity: Assume that a winner user i in group Gh bids a lower cost
b′
i < ci. Since user i is a winner, we have

⎧
⎨

⎩

ci
vi(Ri)

≤ B
V (Ri∪Ti)

q ≤ B
V (Ri∪Ti)

ci ≤ vi(Ri)
(8)

Suppose that user i converts to the j-th (j < i) lowest price per marginal value
after bidding the lower bid. Recall that Ri denotes the total value of winners

280 X. Liu et al.

before user i. It is obvious that the total value of winners before i and j satisfies
Rj ≤ Ri. Thus, we have b′

i

vi(Rj)
≤ ci

vi(Ri)
due to b′

i ≤ ci ≤ vi(Ri) ≤ vi(Rj).

In addition, we have b′
i

vi(Rj)
≤ B

V (Rj∪Ti)
since ci

vi(Ri)
≤ B

V (Ri∪Ti)
≤ B

V (Rj∪Ti)
.

Additionally, note that q ≤ B
V (Ri∪Ti)

≤ B
V (Rj∪Ti)

. According to (2) and (3), user
i is still selected as a winner. Thus, mechanism guarantees monotonicity.

Threshold Payments: Now we consider each winner’s payment. Assume that
user iKi

is the last winner in the payment determination scheme which processes
the users without i herself. Recall that

pi = max
{

max
1≤j≤Ki

{θi(j)}, vi(RiKi
∪ TiKi

)
}

(9)

If user i bids a higher cost bi > pi, we have bi > max1≤j≤Ki
{θi(j)} which means

that user i will not be selected as a winner before Ki iterations in this group.
We also have pi > vi(RiK ∪ TiKi

), thus i will not be selected after Ki iterations
since any user will not be selected as winners if her bid is higher than it marginal
value due to (3). Thus, pi is the threshold payment and any winner will not be
selected as winner if her bid is higher than the payment pi. Therefore, users have
no incentive to submit false bid.

In summary, no sellers can increase her utility by submitting a false task-cost
pair. Therefore, Mechanism TBS guarantees truthfulness.

Before starting to consider budget feasibility, we first introduce a useful
lemma inspired by [3].

Lemma 4. Consider any set S ⊂ T ⊆ Gh in one group and i =
argminj∈T\S

cj
vj(S) . Then

c(T) − c(S)
V (T) − V (S)

≥ ci
vi(S)

. (10)

Proof. Assume that c(T)−c(S)
V (T)−V (S) < ci

vi(S) which implies c(T)−c(S)
V (T)−V (S) < ct

vt(S) for any
t ∈ T \ S. After adding all inequalities, we have

c(T) − c(S)
V (T) − V (S)

<

∑
t∈T\S ct

∑
t∈T\S vt(S)

=
c(T) − c(S)

∑
t∈T\S vt(S)

which means V (T) − V (S) >
∑

t∈T\S vt(S) contradicting to the submodularity.

Lemma 5. Mechanism TBS is budget-feasible.

Proof. We prove the budget feasibility by showing that Mechanism TBS satis-
fies two properties:

∑
i∈uw

max1≤j≤K θi(j) ≤ B and
∑

i∈uw
vi(RiKi

∪ TiKi
) ≤ B.

Assume that user K in group k is the last winner in mechanism TBS. We focus

Budget-Feasible Sybil-Proof Mechanisms for Crowdsensing 281

on payment determination phase and let ij denote j-th user in the group e(e ≤ k)
without user i. We consider two cases:

(1) Consider θi(j): Recall that θi(j) = min{δi(j), ρi(j), vi(Rij)} and δi(j) =
vi(Rij) · cij

vij
(Rij

) . For each user ij < i[i], we have
cij

vij
(Rij

) ≤ ci
vi(Rij

) since user ij

is selected as winner instead of user i. Thus δi(j) ≤ ci which means θi(j) ≤ ci.
In group Gh, for each user ij ≥ i[i], we assume that the set of winners we

have chosen before ij is S. Suppose user i replaces ij as a winner by bidding
θi(j). Thus we have S ∪ {i} ⊂ uw ∪ S. In addition, we have

θij
vi(S)

≤ c(uw ∪ S) − c(S ∪ {i})
V (uw ∪ S) − V (S ∪ {i})

(11)

Recall that ci
vi(Ri)

≤ B
V (uw) which means that

∑
i∈uw

ci ≤ B. Thus, we have

V (uw) − V (S ∪ {i})
B

≤ V (uw) − V (S ∪ {i})
∑

i∈uw
ci

≤ V (uw ∪ S) − V (S ∪ {i})
c (uw ∪ S) − c(S ∪ {i})

(12)

Assume that θi(j) > vi(Ri) · B

V (uw) , we have

vi(S)
θi(j)

<
vi(S)
vi(Ri)

· V (uw)
B

≤ V (uw)
B

(13)

where the second inequality is due to Ri ⊆ S. By combining (11) and (13), we
have

B

V (uw)
<

c(uw ∪ S) − c(S ∪ {j})
V (uw ∪ S) − V (S ∪ {j})

(14)

According to (12) and (14), we have V (uw) < 2V (S ∪ {i}) due to B = 2B.
However, since

bij
vij

(Rij
) ≤ B

V (S∪{ij}) , we have

θi(j) ≤ δi(j) =
vi(Rij) · bij

vij (Rij)
≤ vi(Rij) · B

V (S ∪ {ij})

≤ vi(Ri) · B

V (uw)

(15)

which contradicts to the assumption θi(j) > vi(Ri) · B
V (uw) . Thus, we have θi(j) ≤

vi(Ri) · B

V (uw) .

(2) Consider vi(RiK): It is obvious that vi(RiK) ≤ vi(Ri). Thus, we have
vi(RiK) ≤ vi(Ri) ≤ vi(Ri) · B

V (uw) since V (uw) ≤ B due to (3).
Therefore, Mechanism TBS guarantees budget feasibility.

Before proving Sybil-proofness of Mechanism TBS, we introduce the following
general rules introduced by [10]:

282 X. Liu et al.

Theorem 2. A mechanism is Sybil-proof if it satisfies the following two condi-
tions:

– If any user i pretends two identities i′ and i′′, and both i′ and i′′ are selected
as winners, then i should be selected as a winner while using only one identity;

– If any user i pretends two identities i′ and i′′, the payment to i should not be
less than the summation of the payments to i′ and i′′.

Lemma 6. Mechanism TBS is Sybil-proof.

Proof. We first prove TBS satisfies the first condition. Assume that user i gen-
erate two identities i′ and i′′ which implies that Ti′ ⊂ Ti and Ti′′ ⊂ Ti, and
both of them are selected as winners. Let R′,R′′ denote the union assigned task
set before i′, i′′ are selected as winners respectively. Similarly, denote by R the
union assigned task set before user i is selected as the winner. W.l.o.g, suppose
the group of i′ is ahead of the group of i′′. Since user i′ and i′′ are all winners,
according to conditions of being winners in (2) and (3), we have

bi′ ≤ vi′(R′), bi′′ ≤ vi′′(R′′) (16)

and
bi′

vi′(R′)
≤ B

V (R′ ∪ Ti′)
bi′′

vi′′(R′′)
≤ B

V (R′′ ∪ Ti′′)
bi′

vi′(R′)
≤ B

V (R′′ ∪ Ti′′)

(17)

where the reason for the third inequality is that the maximum bid per marginal
value q among winners before i′′ is higher than bi′

vi′ (R′) and it must be not higher
than the current average price-per-value B

V (R′′∪Ti′′)
according to the selection

rule (2). Also note that

vi′(R′) ≤ vi′(R), vi′′(R′′) ≤ vi′′(R) (18)

since the groups of user i′, i′′ will follow the groups of user i. Combining (16)
and (18), we have

bi = ci ≤ ci′ + ci′′ = bi′ + bi′′

≤ vi′(R′) + vi′′(R′′)
≤ vi′(R) + vi′′(R)
≤ vi(R)

(19)

where the reason for the first and last inequality is because Ti = Ti′ ∪ Ti′′ . By
combining (17) and (19), it holds that

ci
vi(R)

≤ bi′ + bi′′

vi′(R′) + vi′′(R′′)
≤ B

V (R′′ ∪ Ti′′)

≤ B

V (R ∪ Ti)
.

(20)

Budget-Feasible Sybil-Proof Mechanisms for Crowdsensing 283

Thus user i will still be selected as a winner without generating multiple identi-
ties.

Next, we consider the second condition. It is obvious that the payment of user
i is at least vi(RiKi

) according to (5). Recall that the order of winning seller in
the payment determination phase is i1, i2, . . . , i[i], . . . , iKi

and [i] denotes the
place where user i should be selected in the winner selection phase if it was
involved. Thus, we have bij ≤ vij (Rij) where ij is selected in Ki iterations. For
the user after i[i], we have min{δi(r), ρi(r), vi(Rir)} ≤ vi(Rir) ≤ vi(Ri) where
ir ≥ i[i]. For the user ij before i[i], we have

min{δi(j), ρi(j), vi(Rir)} ≤ δi(j) = vi(Rij) · bij
vij (Rij)

≤ vi(Rij) · bi
vi(Rij)

= bi

≤ vi(Ri)

(21)

where the reason for the second inequality is that user ij is selected as winner
instead of user i. Furthermore, after Ki iterations, we have vi(RKi

) ≤ vi(Ri).
Hence, we have pi ≤ vi(Ri). Similarly, we have pi′ ≤ vi′(Ri′) and pi′′ ≤ vi′′(Ri′′).
Thus we have

pi′ + pi′′ ≤ vi′(Ri′) + vi′′(Ri′′)
≤ vi′(Rik′) + vi′(Rik′)
≤ vi(RiK′) ≤ pi

(22)

Hence, the second condition is satisfied.
Therefore, Mechanism TBS guarantees Sybil-proofness.

6 Performance Evaluation

In this section, we conduct extensive simulations to validate the performance of
Mechanism TBS. We first verify the desired properties (truthfulness and robust-
ness against Sybil attack) of Mechanism TBS. Then, we validate the performance
of Mechanism TBS in terms of various optimization metrics, e.g., payment (the
payment for target value), platform utility (the total value procured from users),
and average user utility (the sum of users’ utilities over the number of sellers).
Under these metrics, we take the Sybil-proof Mechanism SPIM-S proposed in
[10] as the benchmark algorithm. Although Mechanism SPIM-S cannot work in
the procurement scenario with budget constraint, we can achieve the comparison
by enumerating the inputs of Mechanism SPIM-S.

Simulation Setup. In our evaluation, we assume that the task size of each
user is uniformly distributed over [1, 5], and value of each task is uniformly
distributed over [1, 20]. The users’ costs for each task is uniformly distributed
over [1,10]. In default, we set the number of users, the number of tasks and
budget at 150, 200 and 200, respectively. To evaluate the impact of number of
total users on the performance of platform utility and average user utility, we

284 X. Liu et al.

Fig. 2. The impact of
untruthful bids on TBS.

Fig. 3. The impact of
Sybil attack on TBS.

Fig. 4. The impact of
Sybil attack on TBS.

vary the number of users from 40 to 140 with the increment of 20. Similarly,
to evaluate the impact of number of total tasks on the performance of platform
utility and average user utility, we let the number of tasks vary from 80 to 200
in increment of 20. Furthermore, to evaluate the impact of total budget on the
performance of platform utility and average user utility, we change the budget
from 120 to 400 with the increment of 40. All the results are averaged over 100
instances.

6.1 Evaluation of Desired Properties

The properties like individual rationality and budget feasibility of Mechanism
TBS can be easily verified. In this part, we mainly validate the truthfulness
and Sybil-proofness of Mechanism TBS by letting users submit false bids or
launch Sybil attack unilaterally, and monitoring the corresponding utilities. In
the simulation, we fix the number of tasks at 150 and the number of users at
200, respectively.

Figure 2 shows the impact of (untruthful) bids on user utilities for Mechanism
TBS. To validate truthfulness, we let each of these users unilaterally change her
bid in [1, 10]. We randomly select three users: 139, 140, and 106 of TBS. User
106 is a loser with real cost 7.56 while users 139 and 140 are winners with real
costs 3.27 and 1.31, respectively. Specifically, in Fig. 2, we use larger markers to
indicate the utilities for truthful bids and the smaller ones to indicate those of
untruthful bids. We observe that these users cannot achieve more utilities after
bidding false costs, e.g., user 139 obtains less utilities if her bid is not equal to
her real cost 3.27. Therefore, users obtain the maximum utility when bidding
real cost, which validates the truthfulness of Mechanism TBS.

Figure 3 shows the impact of Sybil attack on user utilities of Mechanism TBS.
To validate Sybil-proofness, we let each of these users create up to 5 false names.
For each false name, the submitted task set is a subset of the submitted tasks
of the user. We select three users: 80, 137, and 107 of TBS. User 80 and 137 are
winners while user 107 is a loser. Moreover, in Fig. 3, we also use larger markers
to indicate the utilities when users do not launch Sybil attack. We observe that
these users achieve the highest utilities without generating fake identities, e.g.,
user 137 obtains less utilities after creating more false names. Therefore, a user

Budget-Feasible Sybil-Proof Mechanisms for Crowdsensing 285

cannot increase her utility by unilaterally launching Sybil attack which validates
the Sybil-proofness of Mechanism TBS.

6.2 Evaluation of Optimization Metrics

Next, we compare Mechanism TBS with Mechanism SPIM-S using aforemen-
tioned metrics. Since Mechanism SPIM-S actually cannot be applied to pro-
curement scenarios with budget constraint, we use enumeration method when
conducting the comparison. Specifically, to evaluate the platform utility and
average user utility, we enumerate the possible outputs of SPIM-S by running
multiple rounds of auctions to find the one that uses up the given budget. To
evaluate the payment, we enumerate possible outputs until a target total value
is procured.

Fig. 5. (a)–(c) show the impact of users, tasks and budget on platform utility, while
(d)–(f) on average user utility.

Evaluation of Platform Utility. The top part of Fig. 5 shows the impact of
users, tasks and budget on platform utility for Mechanism TBS and Mechanism
SPIM-S. In Fig. 5(a), Fig. 5(b) and Fig. 5(c), we see that while preserving the
budget feasibility, Mechanism TBS can achieve similar platform utility to that of
the Mechanism SPIM-S. This demonstrates that a small loss of overall platform
utility might be needed to guarantee budget constraint in the procurement sce-
nario. Furthermore, in both Fig. 5(a) and Fig. 5(b), the platform utility increases
in all these two mechanisms. The respective reasons are that competition among
users has become more fierce which leads to more users with lower costs being

286 X. Liu et al.

winners, and more users can be selected as winners with increments of tasks.
However, as a constant budget is set in the experiment, the platform utility is
growing slowly in both figures. In addition, the platform utility grows steadily
with the increments of budget as shown in Fig. 5(c).

Evaluation of Average User Utility. The bottom part of Fig. 5 shows the
performance of user average utility, defined as the total utilities of all uses over
the number of users, for Mechanism TBS, and Mechanism SPIM-S. In Fig. 5(d),
Fig. 5(e) and Fig. 5(f), we can see that the average user utility of Mechanism
TBS is higher than Mechanism SPIM-S. This is because TBS can select the user
with smaller cost which improves winner’s utility. As shown in Fig. 5(d) and
Fig. 5(f), average user utility decreases as the number of users increases, while it
rises as budgets increase. This is because 1) as the number of users increases the
competition among users become more fierce resulting in lower payments, 2) as
budget increases more users can participate in the system.

Evaluation of Payment. Figure 4 compares payments at various target values.
We fix the number of tasks and the number of users at 150 and 200, respectively,
and set budget at 600 for Mechanism TBS. We vary the target value from 50
to 700 with increment of 50. We can see that Mechanism SPIM-S spends higher
payments when procuring the same value from users than Mechanism TBS.
The reason is Mechanism TBS considers each user’s cost per marginal value
below the defined threshold in the selection phase, while Mechanism SPIM-S
only considers the costs which may lead to a user with higher cost per marginal
value also being selected as a winner, and further result in a increment of total
payment. Therefore, our proposed mechanism will spend less for unit value while
guaranteeing budget-feasibility.

In summary, our proposed Mechanism TBS can guarantee budget feasibility,
truthfulness and Sybil-proofness. More importantly, it spends less on procuring
a target value than previous Sybil-proof mechanisms.

7 Conclusion

In this paper, we study Sybil-proof and budget-feasible incentive mechanisms
for crowdsensing systems. We design an incentive mechanism TBS and prove
that the designed mechanism guarantees the individual rationality, truthfulness,
budget-feasibility and Sybil-proofness. We validate the desired properties of the
designed mechanism through extensive simulations.

Acknowledgements. The work is supported in part by the National Key Research
and Development Program of China under grant No. 2019YFB2102200, National Nat-
ural Science Foundation of China under Grant No. 61672154, 61672370, 61972086 and
the Postgraduate Research & Practice Innovation Program of Jiangsu Province under
grant No. KYCX19 0089.

Budget-Feasible Sybil-Proof Mechanisms for Crowdsensing 287

References

1. Anari, N., Goel, G., Nikzad, A.: Mechanism design for crowdsourcing: an optimal
1-1/e competitive budget-feasible mechanism for large markets. In: 2014 IEEE
55th Annual Symposium on Foundations of Computer Science, pp. 266–275. IEEE
(2014)

2. Brill, M., Conitzer, V., Freeman, R., Shah, N.: False-name-proof recommenda-
tions in social networks. In: Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems, pp. 332–340. International Foundation
for Autonomous Agents and Multiagent Systems (2016)

3. Chen, N., Gravin, N., Lu, P.: On the approximability of budget feasible mecha-
nisms. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 685–699. Society for Industrial and Applied Mathematics
(2011)

4. Cui, J., et al.: TCAM: a truthful combinatorial auction mechanism for crowdsourc-
ing systems. In: 2018 IEEE Wireless Communications and Networking Conference
(WCNC), pp. 1–6. IEEE (2018)

5. Feng, Z., Zhu, Y., Zhang, Q., Ni, L.M., Vasilakos, A.V.: TRAC: truthful auction for
location-aware collaborative sensing in mobile crowdsourcing. In: IEEE INFOCOM
2014-IEEE Conference on Computer Communications, pp. 1231–1239. IEEE (2014)

6. Gao, L., Hou, F., Huang, J.: Providing long-term participation incentive in partic-
ipatory sensing. In: 2015 IEEE Conference on Computer Communications (INFO-
COM), pp. 2803–2811. IEEE (2015)

7. Goel, G., Nikzad, A., Singla, A.: Mechanism design for crowdsourcing markets
with heterogeneous tasks. In: Second AAAI Conference on Human Computation
and Crowdsourcing (2014)

8. Huang, H., Xin, Y., Sun, Y.E., Yang, W.: A truthful double auction mechanism
for crowdsensing systems with max-min fairness. In: 2017 IEEE Wireless Commu-
nications and Networking Conference (WCNC), pp. 1–6. IEEE (2017)

9. Koutsopoulos, I.: Optimal incentive-driven design of participatory sensing systems.
In: 2013 Proceedings IEEE INFOCOM, pp. 1402–1410. IEEE (2013)

10. Lin, J., Li, M., Yang, D., Xue, G., Tang, J.: Sybil-proof incentive mechanisms for
crowdsensing. In: IEEE INFOCOM 2017-IEEE Conference on Computer Commu-
nications, pp. 1–9. IEEE (2017)

11. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)
12. Qiao, Y., Wu, J., Cheng, H., Huang, Z., He, Q., Wang, C.: Truthful mechanism

design for multiregion mobile crowdsensing. In: Wireless Communications and
Mobile Computing 2020 (2020)

13. Singer, Y.: Budget feasible mechanisms. In: 2010 IEEE 51st Annual Symposium
on Foundations of Computer Science, pp. 765–774. IEEE (2010)

14. Singer, Y., Mittal, M.: Pricing mechanisms for crowdsourcing markets. In: Pro-
ceedings of the 22nd International Conference on World Wide Web, pp. 1157–1166.
ACM (2013)

15. Singla, A., Krause, A.: Truthful incentives in crowdsourcing tasks using regret
minimization mechanisms. In: Proceedings of the 22nd International Conference
on World Wide Web, pp. 1167–1178. ACM (2013)

16. Terada, K., Yokoo, M.: False-name-proof multi-unit auction protocol utilizing
greedy allocation based on approximate evaluation values. In: Proceedings of the
Second International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 337–344. ACM (2003)

288 X. Liu et al.

17. Todo, T., Iwasaki, A., Yokoo, M., Sakurai, Y.: Characterizing false-name-proof
allocation rules in combinatorial auctions. In: Proceedings of the 8th International
Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 265–272.
International Foundation for Autonomous Agents and Multiagent Systems (2009)

18. Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: reCAPTCHA:
human-based character recognition via web security measures. Science 321(5895),
1465–1468 (2008)

19. Wang, Q., et al.: ALETHEIA: robust large-scale spectrum auctions against false-
name bids. In: Proceedings of the 16th ACM International Symposium on Mobile
Ad Hoc Networking and Computing, pp. 27–36. ACM (2015)

20. Xu, J., Xiang, J., Yang, D.: Incentive mechanisms for time window dependent tasks
in mobile crowdsensing. IEEE Trans. Wirel. Commun. 14(11), 6353–6364 (2015)

21. Yang, D., Xue, G., Fang, X., Tang, J.: Crowdsourcing to smartphones: incentive
mechanism design for mobile phone sensing. In: Proceedings of the 18th Annual
International Conference on Mobile Computing and Networking, pp. 173–184.
ACM (2012)

22. Yang, D., Xue, G., Fang, X., Tang, J.: Incentive mechanisms for crowdsensing:
crowdsourcing with smartphones. IEEE/ACM Trans. Network. 24(3), 1732–1744
(2015)

23. Yao, Y., et al.: Multi-channel based Sybil attack detection in vehicular ad hoc
networks using RSSI. IEEE Trans. Mob. Comput. 18(2), 362–375 (2018)

24. Yokoo, M., Sakurai, Y., Matsubara, S.: The effect of false-name bids in combi-
natorial auctions: new fraud in internet auctions. Games Econom. Behav. 46(1),
174–188 (2004)

25. Zhang, X., Xue, G., Yu, R., Yang, D., Tang, J.: Truthful incentive mechanisms for
crowdsourcing. In: 2015 IEEE Conference on Computer Communications (INFO-
COM), pp. 2830–2838. IEEE (2015)

26. Zhang, X., Xue, G., Yu, R., Yang, D., Tang, J.: Countermeasures against false-
name attacks on truthful incentive mechanisms for crowdsourcing. IEEE J. Sel.
Areas Commun. 35(2), 478–485 (2017)

27. Zhao, D., Li, X.Y., Ma, H.: How to crowdsource tasks truthfully without sacrificing
utility: online incentive mechanisms with budget constraint. In: IEEE INFOCOM
2014-IEEE Conference on Computer Communications, pp. 1213–1221. IEEE (2014)

28. Zhao, D., Li, X.Y., Ma, H.: Budget-feasible online incentive mechanisms for crowd-
sourcing tasks truthfully. IEEE/ACM Trans. Network. (TON) 24(2), 647–661
(2016)

29. Zhu, X., An, J., Yang, M., Xiang, L., Yang, Q., Gui, X.: A fair incentive mecha-
nism for crowdsourcing in crowd sensing. IEEE Internet Things J. 3(6), 1364–1372
(2016)

Author Index

Chau, Vincent 219
Chen, Mengjing 248
Cheng, Yukun 81
Cui, Helei 269

Dai, Han 89
Dai, Sijia 3
Diao, Zhuo 162
Dong, Lu 59

Fang, Qizhi 25, 129
Fong, Chi Kit Ken 219

Gai, Ling 15
Gao, Guichen 3
Gong, Shufang 129
Guo, Jiong 141, 235

Han, Lu 219

Jin, Kai 206

Li, Peihua 235
Li, Weian 44
Li, Weidong 89, 99
Lim, Boon Han 3
Liu, Bin 129
Liu, Shengxin 3
Liu, Wenjing 25
Liu, Xiang 269
Liu, Xiaofei 89
Liu, Yang 248
Luo, Ruixi 206

Madireddy, Raghunath Reddy 176
Miyahara, Daiki 110
Mizuki, Takaaki 110
Mondal, Debajyoti 192
Mosteiro, Miguel A. 59

Nandy, Subhas C. 176
Ning, Li 3
Nong, Qingqin 25

Pandit, Supantha 176
Parthiban, N. 192

Qi, Qi 44
Qian, Dandan 15

Rajasingh, Indra 192

Shen, Weiran 248
Shen, Yiheng 248
Singh, Shikha 59

Tang, Pingzhong 248
Tang, Zhongzheng 162

Wang, Changjun 44
Wang, Wanyuan 269
Wang, Xiumin 269
Wu, Chenchen 15
Wu, Weiwei 269

Xiao, Man 99
Xu, Yicheng 3
Xu, Yuhang 269
Xu, Zhiqi 81

Yang, Qiang 248
Yao, Zhanghao 81
Yu, Changyuan 44

Zhang, Yong 3
Zhang, Zhongyi 141
Zhao, Qi 25
Zhu, Taikun 206

	Preface
	Organization
	Invited Talks
	Constrained Min-Max Optimization: Last-Iterate Convergence and Acceleration
	How Crypto, Stablecoins, CBDCs and Web3 Will Reshape Competition
	Voronoi Diagrams in the Presence of Obstacles
	Recent Progress in Online Matching
	Contents
	Papers and Talks Presented in IJTCS Tracks A-F and H-I, and the Forums
	Algorithmic Game Theory
	EFX Under Budget Constraint
	1 Introduction
	2 Preliminaries
	3 Max-NSW Allocation and EFX Under Budget Constraint
	4 Computing a BFEFX Allocation
	5 Concluding Remarks
	References

	Two-Facility Location Games with Distance Requirement
	1 Introduction
	2 Preliminaries
	3 Desirable Two-Facility Location Game with Maximum Distance Requirement
	4 Obnoxious Two-Facility Location Game with Maximum Distance Requirement
	5 Conclusions
	References

	Constrained Heterogeneous Two-Facility Location Games with Max-Variant Cost
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Model
	3 Compulsory Setting
	3.1 Sum Cost
	3.2 Maximum Cost

	4 Optional Setting
	4.1 Sum Cost
	4.2 Maximum Cost

	5 Conclusion
	References

	Optimally Integrating Ad Auction into E-Commerce Platforms
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Notations and Preliminaries
	2.1 Integrated Ad System
	2.2 Mechanism Design
	2.3 Core Problems

	3 The Optimal Mechanisms for the IAS
	3.1 The Unconstrained Problem
	3.2 The Constrained Problem

	4 Extensions
	4.1 The Integrated Ad System with Number Budget on Ad Items
	4.2 The Sparse Integrated Ad System

	5 Conclusion
	References

	Verifiable Crowd Computing: Coping with Bounded Rationality
	1 Introduction
	1.1 Main Contributions

	2 Additional Related Work
	3 Preliminaries
	4 Algorithmic Mechanism
	5 Analysis
	5.1 A Pareto-Efficient Repeated Game Equilibrium
	5.2 Deviation-Detection Method
	5.3 Deviation Punishment and Terminal Payoffs
	5.4 Mechanism Properties

	6 Simulations
	7 Conclusion
	References

	Game Theory in Block Chain
	Equilibrium Analysis of Block Withholding Attack: An Evolutionary Game Perspective
	1 Introduction
	2 The Evolutionary Game Model for BWH Attack
	2.1 Basic Evolutionary Game Model
	2.2 The Stable Solutions of the Evolutionary Game
	2.3 Evolutionary Equilibrium Analysis on the Decision of BWH Attack

	3 Conclusions
	References

	Frontiers of Algorithmic Wisdom
	An Approximation Algorithm for the H-Prize-Collecting Power Cover Problem
	1 Introduction
	2 Preliminaries
	3 The Prize-Collecting Power Cover Problem
	4 The H-Prize-Collecting Power Cover Problem
	5 Conclusion
	References

	Online Early Work Maximization on Three Hierarchical Machines with a Common Due Date
	1 Introduction
	2 Preliminaries
	3 One Machine of Hierarchy 1
	4 Two Machines of Hierarchy 1
	5 Discussion
	References

	Secure Computations Through Checking Suits of Playing Cards
	1 Introduction
	1.1 The Five-Card Trick
	1.2 Protocols with a Standard Deck of Cards
	1.3 Contribution

	2 The Existing Card-Minimal AND Protocol
	3 New Action: Half-Open of Playing Cards
	4 Our Simple AND Protocol Based on Half-Open Action
	5 Formalizing Half-Open Action
	5.1 Notations
	5.2 Protocols

	6 Formal Description of Our Protocol
	6.1 Pseudocode
	6.2 Correctness and Security

	7 Discussion
	7.1 Comparison
	7.2 Theoretical Aspects
	7.3 Millionaire Protocol Using Half-Open

	8 Conclusion
	References

	Streaming Submodular Maximization with the Chance Constraint
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Streaming Algorithm: Uniform Independently Identically Distribution Weights (UIIDW)
	5 Streaming Algorithm: Uniform Weights with the Same Dispersion
	6 Conclusion
	References

	Colorful Graph Coloring
	1 Introduction
	2 Vertex-Coloring Vertex-Colorful
	3 Edge-Coloring Vertex-Colorful
	4 Edge-Coloring Edge-Colorful
	5 Integer Linear Programming
	6 Conclusion
	A Proof of Sect.2
	B Proof of Sect.3
	C Proof of Sect.4
	References

	On the Transversal Number of Rank k Hypergraphs
	1 Introduction
	1.1 Known Results
	1.2 Our Results

	2 The Conjecture
	3 The Rank 2 Hypergraphs
	4 The Rank 3 Hypergraphs
	5 The Hypergraphs with König Property
	6 The Hypergraphs with Maximum Degree 2
	6.1 The Bound of Hypergraphs with Maximum Degree 2
	6.2 The Extremal Hypergraphs with Maximum Degree 2

	References

	Exact Algorithms and Hardness Results for Geometric Red-Blue Hitting Set Problem
	1 Introduction
	1.1 Previous Work
	1.2 Our Contributions

	2 Preliminaries
	3 The RBHS problem with lines and segments
	3.1 Intervals on a Real Line IR
	3.2 Axis-Parallel Line Segments

	4 The RBHS Problem with Axis-Parallel Rectangles
	4.1 Rectangles Anchored on a Horizontal Line
	4.2 Rectangles Stabbing a Horizontal Line

	5 APX-Hardness Results for the RBHS Problem
	References

	Bounds for the Oriented Diameter of Planar Triangulations
	1 Introduction
	2 Oriented Diameter of a Triangular Grid
	3 Upper Bound on the Oriented Diameter of a Planar Triangulation
	3.1 Planar Graphs and Schnyder Realizer
	3.2 An Initial Upper Bound
	3.3 An Improved Upper Bound

	4 Lower Bound
	5 Planar Weighted Oriented Diameter
	5.1 Planar Weighted Oriented Diameter Is Weakly NP-complete

	6 Conclusion
	References

	String Rearrangement Inequalities and a Total Order Between Primitive Words
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 A Linear Time Algorithm for Sorting the Repeating Words
	4 The String Rearrangement Inequalities
	5 A Total Order on Words
	6 Conclusions
	A An alternative proof of Lemma 3
	References

	Approximation Algorithms for Prize-Collecting Capacitated Network Design Problems
	1 Introduction
	1.1 Related Works
	1.2 Our Results

	2 Preliminaries
	2.1 Prize-Collecting Capacitated Network Design Problem
	2.2 Prize-Collecting Facility Location Problem
	2.3 Prize-Collecting Steiner Tree Problem

	3 Algorithm and Analysis
	3.1 Bound the Cost of Opening Sinks and Paying Prizes
	3.2 Bound the Cost of Installing Cables
	3.3 Case of Single Sink

	4 Conclusion
	References

	Computational and Network Economics
	Possible and Necessary Winner Problems in Iterative Elections with Multiple Rules
	1 Introduction
	2 Preliminaries
	2.1 Iterative Voting Rules
	2.2 Possible and Necessary Winner Problems

	3 Possible Winner
	4 Necessary Winner
	5 Conclusion
	References

	A Mechanism Design Approach for Multi-party Machine Learning
	1 Introduction
	1.1 Related Works

	2 Preliminaries
	2.1 Valid Data Size (Type)
	2.2 Learning Protocol
	2.3 Mechanism
	2.4 Comparison with the Standard Interdependent Value Setting

	3 Quasi-Monotone Externality Setting
	4 General Externality Setting
	5 Market Growth Rate
	6 Finding a Desirable Mechanism
	7 Conclusion
	A Proof of Theorem1
	B Proof of Corollary1
	C Proof of Theorem2
	D Proof of Theorem3
	E Proof of Theorem4
	F Proof of Theorem5
	G Experiments
	G.1 The MEP Mechanism
	G.2 Existence of Desirable Mechanisms

	References

	Budget-Feasible Sybil-Proof Mechanisms for Crowdsensing
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Reverse Auction Model
	3.2 Sybil Attack
	3.3 Properties

	4 Sybil Attack on Budget-Feasible Mechanisms
	5 Mechanism TBS
	5.1 Theoretical Analysis on Desired Properties

	6 Performance Evaluation
	6.1 Evaluation of Desired Properties
	6.2 Evaluation of Optimization Metrics

	7 Conclusion
	References

	Author Index

