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Abstract. This paper applies the recent advances of visual analytics,
which combine computers’ and humans’ strengths to the data exploration
process, to alleviate the scalability and overplotting issues of dimensional
projection techniques for high-dimensional temporal datasets. Our app-
roach first uses clustering algorithms to select the representative data
points at each time step for each data profile. We then apply dimension
reduction techniques to visualize the temporal relationships via connect-
ing lines. Finally, we propose a couple of different underlying models to
treat time steps and the time dimension to mitigate the final projections’
visual clutter. We built a web-based prototype, called MultiProjector, to
integrate these components into a unified data exploration process. The
prototype is validated on several high-dimensional temporal datasets in
various application domains to demonstrate our approach’s benefits.
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1 Introduction

Temporal datasets are increasing in size and complexity due to the growth
of many fields such as scientific applications, economics, and finance. A time
series is a chronological collection of observations throughout time [10]. Tem-
poral datasets may have one variable (univariate time series) or many variables
(multivariate time series). The latter is more complicated in terms of the analysis
as relations between variables play a fundamental role in analyzing this type of
time series [27]. An example of the multivariate time series is the US employment
data. The monthly statistics of employees in various economic sectors (such as
Education, Finance, or Construction) form a multivariate time series collection.
In this example, each sector is a variable, and the state is an individual obser-
vation. In this paper, we consider the temporal dependencies between variables
and inter-relationships between individuals over time.

There are many efforts to integrate temporal information into common visual
presentations of cross-sectional datasets, or high-dimensional non-temporal
datasets, such as parallel coordinates [8,14], radar charts [26], and hierarchi-
cal layouts [13]. Ali et al. [2] introduce the application of sliding window and
dimension reduction techniques in visualizing long multivariate time series. Their
approach helps to display the similarity of chronological sliding windows of the
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multivariate time series, enabling the detections of repetitive patterns or inter-
esting anomalies. This paper considers each instance in the multivariate time
series as a data point in the high-dimensional space. Similar data points are
grouped based on their multivariate values to provide a compressed summary
of the data profile. The projected positions of the remaining data points repre-
sent the interrelationships of individuals and the evolution of these individuals
via connecting lines. By marrying clustering methods and dimension reduction
techniques into a unified framework, we provide scalable multidimensional pro-
jections for large temporal data. The contribution of this paper is listed as the
following.

— We discuss, compare and summarize the pros and cons of various dimensional
reduction techniques in the context of temporal data.

— We propose a couple of different underlying models to treat time steps and
the time dimension to reduce the number of projected data points without
affecting the global structure and mitigate the final projections’ overplotting
issues.

— We implement an interactive web-based prototype to visualize high-
dimensional temporal datasets. Our approach and prototype are demon-
strated on real-world datasets in various domains to illustrate its benefits.

2 Related Work

2.1 Visualizing High Dimensional Temporal Datasets

Many works have been carried out to provide visualizations for high-dimensional
time series. Specifically, there are many efforts to add time dimensions into com-
mon visual presentations of cross-sectional datasets, or high-dimensional non-
temporal datasets, such as matrix [3], parallel coordinates [5], and circular lay-
outs [9]. We firstly consider the temporal extension of the scatterplot. Time-
Seer [6] transforms the collection of time series in the datasets into time series
of Scagnostics, which are metrics for visual features of the scatterplots for each
pair of variables. It uses these Scagnostics as a signal to identify unusual events.
Congnostics [22] proposes a list of eight metrics for connected scatterplots’ visual
features and helps to visualize the dynamic correlation between variables of an
individual.

TimeCluster [2] proposes the use of dimension reduction techniques to visual-
ize long multivariate time series. It considers each sliding window as a point in a
high-dimensional space, whose number of dimensions equals the time series val-
ues in the window. For example, an individual has three variables, and the sliding
window has a size of sixty. In this case, the high-dimensional space has 180 dimen-
sions. After reducing the dimensions by deep convolutional auto-encoder, the
authors continue to apply other dimension reduction methods such as PCA [31],
t-SNE [19], and UMAP [20]. Their approach helps to reconstruct the whole tem-
poral dataset to only one view to observe some interesting patterns like clusters
or abnormalities.
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2.2 Dimension Reduction

Principal Component Analysis, or PCA, is one of the most popular linear dimen-
sion reduction techniques. It projects the original data to a lower-dimensional
space, such that the variance of the projected data is maximized [31]. In addition
to the linear projections, many nonlinear dimension reduction techniques have
been developed. The t-Distributed Stochastic Neighbor Embedding, or t-SNE, is
a frequently used nonlinear projection. It computes the similarities between data
in the high-dimensional space by Gaussian distribution before reconstructing
these similarities by Student t-distribution in a low dimensional space [19]. This
method requires both time and memory complexity up to O(N?), which may
not be efficient for large datasets. The acceleration of this technique using the
Barnes-Hut algorithm can reduce the time complexity to O(Nlog(N)) and the
memory complexity to O(N) [29]. Uniform Manifold Approximation and Projec-
tion, or UMAP, is recently introduced to the literature [20]. It has been proved
to be comparable to t-SNE in the visualization of large datasets. Becht et al. [4]
provide a comparison for the running times of some popular projection meth-
ods, including t-SNE and UMAP. To stabilize the projection results for streaming
multidimensional data, Fujiwara et al. [12] propose geometric transformation and
animation methods. However, the approach does not aim to resolve the scalabil-
ity issues of the multidimensional projection techniques [11]. This paper utilizes
and expands the three projection methods mentioned in this section to various
multivariate temporal datasets. We will discuss in detail our visual methodology
in the next section.

3 Methodology

Our research problem is projected onto the three dimensions: individual data
entries, variables of these individuals, and time. An example of this data struc-
ture is the monthly US employment rates. This dataset has 53 states and terri-
tories in the US as 53 individuals. Each state has many economic sectors such as
Good Producing, Manufacturing, Financial Activities, etc., and they are consid-
ered the variables of each individual. The net change in the number of employees
per month of a specific sector of a particular state form a time series in this
collection. Before any computations and visualizations, we apply the min-max
normalization for every variable in the dataset to scale them to the unit range.

3.1 Clusterings

To handle large multivariate time series, not all data points join the dimension
reduction computation. Instead, we first perform clustering across all snapshots
to abstract a large number of data points into the major groups and focus on
data instances at the group changes. Our approach is based on the observation
that stable profiles may not contain much insight when analyzing time series,
but they consume the computational resources for rendering the projections and
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causing overplotting issues. In particular, our MultiProjector web-based proto-
type supports two clustering algorithms: k-means and leader bin. The former
requires a given number of groups and a convergence criterion such as the min-
imal decrease in squared error [15]. Users can also set the maximum number of
iterations to stop the k-means computation. The latter allows a flexible range of
leaders with a consideration: it is inefficient if there are too many leaders, while it
tends to over-summarize the dataset if there are too few ones [7]. MultiProjector
uses leader bin as the default multivariate clustering method since it provides
the representative instances (leaders) and more stable clustering outcomes.

3.2 Multidimensional Projections

We consider three popular classes: PCA, t-SNE, and UMAP. PCA projects data
points into a few orthogonal or uncorrelated principal components, which retain
the whole data maximum variance. Usually, the first two components retain
most information about the dataset, so it is reasonable to use PCA to project
the data points in high-dimensional space to two-dimensional space. However,
this method has two main disadvantages [30]. The first one is that it is inappro-
priate for embedding extremely high-dimensional space due to the overlapping
problem or the curse of dimensionality. The second drawback is that it favors
the large pairwise distances, not the small ones. The nonlinear methods (t-SNE
vs. UMAP) can avoid the overlapping issue of distinct clusters. While t-SNE
focuses on preserving the local structure of the dataset, UMAP can reconstruct
the global structure.

3.3 Visualizing the Time Dimension

A straightforward approach for plotting temporal domain is using the connected
lines. To enforce the time dimension in the computation, we integrate time as a
new dimension (increasing from min to max) along with variables for computing
the projection. This method allows time to contribute to the projection of data
points and to distinguish any individual at different time points. Additionally,
we introduce the use of the third axis along with the 2D space to display time. In
other words, this approach projects all individuals at the same time point into
a 2D layer before aligning them onto the layers in chronological order on the
third axis to illustrate the temporal evolution. This third dimension enforces the
contribution of time to the final projection of the dataset. The summary of the
idea of integrating the time domain into the 2D projection is depicted in Fig. 1.

3.4 Multivariate Representations

Each individual at a specific time point is defined by its multivariate metrics. As
we aim to plot the multivariate metrics directly on the projected space, circular
representations are more appropriate for a large number of variables [21]. An
intuitive presentation for an individual at a time point is a radar chart that
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2D without involving time 2D with time as one dimension 3D with time as an axis

Louisiana
August 2005

COVID-19 +,
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Fig. 1. Visualizing the US monthly employment data in 22 years: (a) 2D UMAP pro-
jection (b) 2D UPMAP projection considering time as an additional variable in the
multidimensional project, and (c¢) Integrating the time domain into the 3D projection.

shows its multivariate values [17]. The position of each data point is determined
by its multivariate values. Then, the Euclidean distance between any pair of data
points measures how similar they are. Before applying projections, we reduce the
number of input data points by compressing similar timestamps of the same data
profile together. In other words, we care about the changes while discarding the
static points in the high-dimensional time series data.

4 Use Cases

4.1 Use Case 1: Monthly US Employment Rate

The US employment dataset contains 53 states and territories [1]. Each state is
considered as an individual profile that is recorded on 15 economic sectors. In
particular, the monthly net change of the number of employees in every economic
sector of each state is retrieved from January 1999 to May 2020. Totally, there
are 12,495 data points in this dataset to be considered in the final projection.
In this use case, we focus on the 2D UMAP projection and its 3D vari-
ances, as depicted in Fig. 1. Different from the incremental approach discussed
by Fujiwara et al. [12], we consider data points in all time steps as a whole in
the projection. This allows us to avoid the unstable layouts (such as flipped or
rotated) generated by independent projections for each time step. Figure 1(b)
depicts the chronological sequence when we consider time as an additional vari-
able for the UMAP projection. In Fig. 1(c), time is used as the third axis (from
left to right), the 53 multivariate data points representing the economic status
of states and territories in a given month are scattered on a plane orthogonal to
the time axis. We can easily notice the interesting spiral pattern from the point
of view of how the points are arranged throughout the 3D space in Fig.1(c).
This can be explained as the US economy is completing a circle after the 2008
Great recession. The orange points at the rear of the spiral region are states
in March 2020. These points are most dissimilar to most of the points in the
spiral region, which means the US experienced a significant drop in the number
of employees in March 2020 when Covid-19 started wreaking havoc on the US
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economy. Moreover, the outlier below the Spiral represents the Louisiana econ-
omy in August 2005 due to hurricane Katrina. In this use case, the data points
are color-coded by the k-means clusters that they belong to. The cluster colors
are only there for visual inspection and have no impact on the actual projection.
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Fig. 2. Multidimensional projections of the computer health metrics: (a) The multi-
variate data is first classified into six groups. (b) PCA projection of 12,609 operating
statuses, (¢) t-SNE, and (d) UMAP projection of 1,225 operating statuses. The data
points are colored by their multivariate statuses as defined in (a) (Color figure online).



Graph Visualization for High-Performance Computing System 97

4.2 Use Case 2: Monitoring Computer Metrics

The second use case considers the health metrics of a High-Performance Com-
puting system at a university [28]. The system has 467 nodes, and thus they are
467 individuals in the high dimensional time series associating to nine health
metrics, such as CPU temperatures, fans speeds, memory usage, and power con-
sumption [18]. In other words, they are nine variables in the temporal dataset.
The metrics are recorded at 5 min frequency. In particular, the dataset that we
use in this use case is on March 21, 2019.

The multivariate operating statuses of computing nodes in the High-
Performance Computing system are first classified into six major groups using
the k-means algorithm. Users can select different clustering methods as well as
the number of clusters on their choices. As depicted in Fig.2(a), radar charts
are used to represent the multivariate status of the computing nodes as they
can quickly capture the morphology of the computing statuses [17]. The PCA
projection in Fig.2(b) takes 876 ms. The PCA projections are pretty uniform,
and no visual pattern can be easily discerned.

Based on the observation that system administrators care more about the
significant changes rather than the static computing nodes [23], we propose to
reduce the number of static operating statuses and only focus on the dynamic
behaviors of the system (when the group switchings happen). Therefore, we
reduce the number of multivariate data points ten times from 12,609 down to
1,225. This allows our approach scaling well with the large time-dependent mul-
tivariate datasets. Figure 2(c) shows 2D t-SNE projection and our modified 3D
temporal projection. Notice that the 3D projection, with time as the third axis,
displays the three dense regions at the beginning and the end of the observed
period. The first region on the grids is the first time step, and therefore, the
operating statuses of all 476 computing nodes are recorded. The middle region
is sparse since we only plot the significant changes on the metrics, such as CPU
and memory usage, most probably associating to the HPC scheduler events (a
new user is allocated the computing resources or a new job is dispatched). Toward
the end of the observed period, there are separated into two groups: green and
red vs. orange and blue. As shown in the radars in Fig. 2(a), the green and red
groups have high CPU temperatures and high fan speeds while the orange and
blue groups are normal operating statuses. In particular, the chill water for the
HPC center was accidentally disconnected at around 2 pm on March 21, 2019,
leading to the overheat issues on all computing nodes (green and red nodes). At
4 pm, the system had been automatically shut down and then returned to the
normal operations (orange and blue groups). Regarding UMAP in Fig. 2(d), the
2D projection is quite uniform and has no visible cluster or outlier. In the 3D
UMAP projection, the similar dynamic behaviors of the system are also captured
on the temporal domain. We can also notice that our data reduction technique
has also mitigated the serious overplotting issues in Fig. 2(b2). Our MultiProjec-
tor also supports embedding the multidimensional representation of computing
nodes directly in the projection for visual inspections.
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Our MultiProjector also supports embedding the multidimensional repre-
sentation of computing nodes directly in the projection for visual inspections.
Figure 3 depicts the same example in Fig.2(d1l) in a compressed honeycomb
layout. In particular, MultiProjector initializes a force layout from the UMAP
configuration. The data points automatically resolve collisions before projected
onto a regular honeycomb layout. Specifically, each bee cell in Fig.3 contains
a representative operating status of a node. The saturation of the radar indi-
cates how long the computing node stays on that status (no significant changes
on the health metrics). In this example, we draw a trajectory of a sample pro-
file, compute-3-41. We can visualize the chill water impacts on this computing
node: The node started with the normal operating status at 14:00, then traveled
through overheat states in green and red at 15:45 and 15:50, and finally ended
up with a blue state after the HPC system reset at 16:00.

15:50
. B [}
L) “
| } L
) L} 5 [}
. (LY l:l . l‘l [\
compute-3-41 6808000

Fig. 3. Visualizing 1,225 operating statuses in our non-overlapped honeycomb layout:
The six color-coded clusters are produced by the k-means algorithm on nine health
metrics, such as CPU temperatures, memory usage, and fan speeds. The arrow connects
various operational status of compute-3-41 in 2h.

4.3 Use Case 3: Plant Genetics

In this use case, we target the visual clutter issue of multidimensional projections.
The data was retrieved from the Center for Functional Genomics of Abiotic
Stress [16]. In particular, we need to consider 20,450 plant genes experimented
under 12 tested conditions, with STOPI mutant for the last 6 conditions. These
experimented conditions are abbreviated as wt for wild type, stop! for knock-out
mutant background for the transcription factor, hp for high phosphate supply
(I mM), Ip for low phosphate supply (0 mM), Al for Al stress pH 5, and Fe
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for Fe excess supplied to the medium pH 5. For example, nametags for the
conditions composed as wthp6 means wild-type/high Pi supply/pH 6 and s1hp6
means stopl ko/high Pi supply/pH 6. Al and Fe are only tested conditions
under low Pi and pH 5, and hence there are two library replicates for Al and
Fe for each genotype and toxicity. In the input data, the first column contains
gene names, and the next six columns are the wild type conditions, including
the base condition, wthp6. The last six columns are the corresponding STOPI
mutant conditions.

AT1G34370 (STOP1)
(b)

Fig. 4. Visualizing gene expressions using our MultiProjector prototype: (a) 20,450
plant genes (b) 210 transcription factors (Color figure online).

Figure4 shows the expression levels of 20,450 genes under six controlled
conditions through two time steps: before and after the application of STOP1
mutant. Therefore, we have 40,900 data points in this projection. Figure4(a)
shows overplotting issue of 2D UMAP projection. Notice that low expressed
genes tend to locate on the top while highly-expressed genes flow down the
bottom (the blue region). To alleviate the visual clutter issue, we first reduce
the number of projected genes by focusing on transcription factors (the genes
that change their expression behaviors significantly), which are identified by the
Euclidean distance of the multivariate values before vs. after the injection of
STOP1 mutant. Figure 4(b) shows our non-overlapped honeycomb layout of the
210 transcription factors. The arrows in the background highlight the group tran-
sitions of these 210 genes. We can notice the major group changes are between
green to yellow and purple to orange. We have annotated the special gene STOP1
and its rare transition from the most active group (blue) to an inactive one
(green), as depicted in the enlarged radar view. In this example, MultiProjec-
tor provided a compressed projection view of gene expression data that allows
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biologists to visualize and identify the behaviors of the leading factors under the
tested conditions. This type of analysis is important for plant treatments and
drug designs.

4.4 Discussion

PCA is a linear projection and hence is the fastest method with about one
second for thousands of data points in the web-based environment. However, it
has an issue of overlapping data points, especially when there are outliers. UMAP
preserves pairwise Euclidean distances significantly better than t-SNE [25], and
thus UMAP preserves more of the global structure. It runs much faster than
another nonlinear method, the t-SNE, especially as the size of data points is
significantly large. Because t-SNE focuses on reconstructing the dataset’s local
structure, it cannot perform well in clustering data points for finding dissimilar
groups [24]. The same groups’ points tend to pull each other, so the density of
the t-SNE projection may not be uniform. Figure 5 gives a comparison between
UMAP and t-SNE in terms of running time (in log scale) via our web-based
prototype. All tests were performed on a computer with 2.9 GHz Intel Core i5,
macOS Sierra Version 10.12.1, 8 GB RAM. The introduction video and online
demo of our web-based prototype can be accessed at https://git.io/JLppG.

1000 -=- UMAP
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100 . = PCA
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Fig. 5. Running time comparisons of PCA, UMAP, and t-SNE in our web-based appli-
cation using Google Chrome.

5 Conclusion

Multidimensional projections are popular methods for reducing high-dimensional
data onto lower-dimensional planes. However, the importance of the time element
is not always considered properly. In this paper, we investigate the temporal
domain as one of the dimensions in multidimensional projections. This allows
us to impose the temporal changes onto the lower-dimensional space (such as
2D or 3D). We project different time steps as a whole and align them over
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the 3rd axis in order to keep the spatial coherence between them. To project
a large number of input data points, we focused on the significant time steps
for each data profile where multivariate variances occur. Our temporal data
reduction technique also helps to mitigate the overplotting issues generated by
multidimensional projections. We experiment our approach on various existing
dimensional reduction methods and demonstrate them on different domains.
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