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Abstract. The Swapping Autoencoder achieved state-of-the-art perfor-
mance in deep image manipulation and image-to-image translation. We
improve this work by introducing a simple yet effective auxiliary mod-
ule based on gradient reversal layers. The auxiliary module’s loss forces
the generator to learn to reconstruct an image with an all-zero texture
code, encouraging better disentanglement between the structure and tex-
ture information. The proposed attribute-based transfer method enables
refined control in style transfer while preserving structural information
without using a semantic mask. To manipulate an image, we encode both
the geometry of the objects and the general style of the input images into
two latent codes with an additional constraint that enforces structure
consistency. Moreover, due to the auxiliary loss, training time is signifi-
cantly reduced. The superiority of the proposed model is demonstrated
in complex domains such as satellite images where state-of-the-art are
known to fail. Lastly, we show that our model improves the quality met-
rics for a wide range of datasets while achieving comparable results with
multi-modal image generation techniques.

Keywords: Structure-consistent image-to-image translation · Style
transfer · Training class imbalance

1 Introduction

Image-to-image translation and image manipulation techniques attracted much
attention [10,20,24,26,28,37,38,54,58,67] recently as they can have a signifi-
cant effect on many different tasks. Of particular interest is creating realistic
synthetic training datasets to improve models’ performance and generalization.
One example that demonstrates the use of a synthetic dataset in the training
of networks is presented in [65] where the authors introduce a semi-supervised
approach to generate datasets for semantic segmentation.

There are a plethora of works [27,28,32] which report that for images con-
taining single objects such as faces, or for images having the same semantic lay-
out such as building facades, deep image manipulation techniques can produce
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realistic synthetic images. However, generating natural scenes or more visually
complex images remains a challenge due to differences in the semantic layouts
of the input images.

The challenge of deep image manipulation state-of-the-art with complex
scenes is recognizing and learning essential features and characteristics from the
input image. Structural information is typically shared or has common character-
istics across different images in a dataset. On the other hand, the texture appears
entangled with intrinsic image features. The standard approach to preserving the
structural information is to condition the generation process on the input seman-
tic mask using conditional image synthesis frameworks. However, that approach
is not practical for image manipulation since the assumption of having access
to semantic masks does not hold in most cases. Researchers explored different
methods such as [37,48], but in this work, we assume that image representations
can be disentangled into the content/structure and texture/style.

Fig. 1. Our method learns structure-consistent image-to-image translation without
requiring a semantic mask. We learn to disentangle structure and texture for appli-
cations such as style transfer and image editing tasks. The first (left) image shows
the first input image, and the other images show the generated images in which the
structure is retained from the first input image and the texture from the second, third,
and fourth input images, respectively, shown in the inset images. Note that the tree’s
structure is preserved, and its texture -in this case, the foliage’s colour and density-
changes according to the texture of the second input image in the inset. Our model
was not trained on any season transfer dataset.

To address this problem, we propose an auxiliary module that enforces the
separation of structure from texture. This branch promotes the disentanglement
of structure and texture by suppressing texture-related information in the struc-
ture code by applying a gradient reversal layer. Additionally, it encourages the
emergence of deep features that are highly important for image editing tasks.
Better structure preservation can also impact many applications ranging from
creating a 3D synthetic simulation world, image editing, semantic image synthe-
sis, and style transfer. More importantly, the proposed technique can remove
biases from training datasets caused by class imbalances. Many benchmark
datasets introduce bias [7,40] that can limit the generalization capability of any
network trained on them and significantly limit the impact of networks trained
on these datasets in real-world scenarios.
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This paper pursues three main objectives: 1) consistent and accurate struc-
ture preservation, 2) diverse, and 3) realistic image synthesis. Our goal is to learn
multi-modal structure-consistent image-to-image translation in a fully unsuper-
vised approach without requiring semantic segmentation masks. Our technical
contributions can be summarized as follows:

– A new approach for a structure-consistent image-to-image translation that
does not rely on prior knowledge on the scene geometry.

– An auxiliary module that enforces the disentanglement between the structure
and texture information with an explicit loss term for penalizing the synthesis
of realistic images when no texture information is provided.

– An extension of the Swapping Autoencoder model with our auxiliary module.
We quantitatively and qualitatively demonstrate that our method generates
synthetic images structurally consistent with the source input image.

We present experiments on several datasets, simple datasets with minimal vari-
ations in the semantic information of the training examples such as CelebA-
MaskHQ [34] Fig. 2b, and complex datasets where the semantic information
varies drastically such as the LSUN Church [59] Fig. 1, and Cityscapes [7] Fig. 4b.
Our results demonstrate that the proposed method improves the performance
at a fraction of the training time required by state-of-the-art.

Fig. 2. (a) Overview. The geometry of the objects and the general style of the input
images are encoded into two latent codes with an additional constraint that enforces
structure consistency. We introduce a new module that encourages better disentangle-
ment between the structure and the style, based on gradient reversal layers. This results
in an attribute-based transfer that allows for a finer style transfer control while pre-
serving structural information without requiring a semantic mask. (b) Performance
on CelebAMask-HQ: Our model generates structure-consistent samples while trans-
ferring style from one image to another. Unlike most models that fail to preserve small
structural details, our approach is able to preserve fine details such as earrings (see last
row).
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2 Background and Related Work

This section provides an overview of the most relevant state-of-the-art, grouped
according to their methodology.

Generative Models. Generative Adversarial Networks (GANs) [14] introduced
an adversarial process to train a generative model. The problem is formulated
as a zero-sum game between a generator and discriminator where the optimal
solution is to find a Nash equilibrium. Ian J. Goodfellow refers to this frame-
work as a minimax two-player game in which generator G tries to minimize the
probability of the discriminator D to recognize the fake samples, and D tries to
maximize the probability of assigning the correct label. The objective function
is given by,

min
G

max
D

V (D,G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

GANs have proven to be very successful [4,27,28,66] compared to other common
approaches such as [19,43,46,52,53]. Both GANs and Variational Autoencoders
(VAEs) [31] contain an encoder and a decoder; however, they differ in a sense
that GAN is a framework for estimating data distribution. On the other hand,
VAEs learn the stochasticity within the data using the encoder’s latent code to
match the Gaussian distribution by reparameterizing the latent distribution and
maximizing the log-likelihood function. Some methods [2,68] combine GAN and
VAE or GAN and Autoencoders in their models to achieve multi-modal image
generation and prevent mode collapse.

Conditional generative models such as conditional VAEs [49], condi-
tional GANs [42], conditional autoregressive methods [15,43], to name a few,
have shown promising results [67] but we focus on conditional GANs for the
rest of this section. Generative adversarial networks can be extended to condi-
tional generative models [42] by feeding additional information c into the dis-
criminator and generator. This c can be any information such as edge mask for
semantic segmentation task or class labels for classification. By doing so, the
generator can use prior noise pz(z) and additional information c to create a hid-
den representation and the discriminator will use the information provided as
an input for a better discrimination. The quality of the results generated using
conditional GANs inspired many applications employing this method, includ-
ing, but not limited to, image-to-image translation [26,38,54,58], image edit-
ing [5,16], image inpainting [39,50,57], text-to-image [56,62], photo colorization
[36,47,61,64], conditional domain adaptation [3,5,6,60], super resolution [25,33],
style transfer [12,21,25,27,28,55]. Our work extends the image-to-image trans-
lation framework with a focus on image manipulation and style transfer.

Image-to-image translation is a framework to transfer an input image into
a synthesized output image while preserving some information from the input.
There are many methods designed for different applications. The main difference
is in the information they preserve from the input image, which depends on the
application. Image-to-image translation showed promise [10,20,24,67], however,



Unsupervised Structure-Consistent Image-to-Image Translation 7

as stated in [68], the quality improvement may come with the cost of losing multi-
modality. Recent works show that it is possible to prevent losing multi-modality
and use this method for multi-domain scenarios [22,35,68].

Unsupervised disentanglement aims to model the variations in data. It
has been the focus of several pioneer works such as [4,18,48]. InfoGAN [4], for
example, achieves this by maximizing the mutual information between latent
variables and input data, whereas [29,35,45,68] disentangle input information
to structure and texture codes. Our work builds on the same principles to disen-
tangle structure and texture in a completely unsupervised approach. However,
we go one step further and aim for better disentanglement by introducing a new
module to enforce better separation between the two. We show that our app-
roach can achieve the desired disentanglement and generate realistic and diverse
images while disentangling structure from style better than previous methods.

Multi-modal image synthesis overcomes the limitation of conditional
GANs ignoring the latent code, also known as mode collapse. The idea behind
the multi-modal image-to-image translation is to learn a conditional distribu-
tion while generating diverse images. Early works on conditional image-to-image
translation were mostly focused on producing deterministic outputs [24,38],
which limits their applicability. In Sect. 4, we show that our method can synthe-
size comparable results with the current state-of-the-art [68,69].

Style transfer also known as texture transfer, can be defined as the prob-
lem of synthesizing an image with style extracted from the source image while
preserving the semantics of the content image. Recent style transfer methods
[27,28] proposed the use of conditional normalization layers such as Conditional
Instance Normalization [9] and Adaptive Instance Normalization [21] as a practi-
cal approach to transfer the global style. Normalization layers used in most style
transfer methods diminish semantic information. Spatially-Adaptive Normaliza-
tion [44] was introduced as a way to avoid semantic-level information loss. We
propose a closely related method for preserving semantic information without
having access to a segmentation mask.

3 Method

Deep image manipulation requires an architecture with excellent feature extrac-
tion capabilities that allows for better disentanglement of texture from structure
later on. Using an encoder, our goal is to disentangle the structure from the tex-
ture for both input images to our model. When swapping the texture or structure
codes between the two randomly sampled input images x1, x2 ∈ R

H×W×3, our
model can synthesize an image with the same structural information as to its
content reference, but having the visual appearance or texture of the style ref-
erence image. Thus, we aim to generate realistic synthesized images where the
structure for the first image is preserved while transferring the style from the
second image.

Our solution comprises three key modules with two discriminators namely D
and Dstyle as shown in Fig. 2a: an encoder E, a generator G, and a disentangle-
ment module T which enforces better disentanglement of the structure from the
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style. The encoder learns how to encode visual information into two latent codes.
Similar to [45], we enforce a mapping from any combination of the two latent
codes to a realistic image by training an autoencoder. The generator synthesizes
realistic images using the two extracted latent codes. The disentanglement mod-
ule is designed to enforce the separation of the structure from the texture. We
present the details of the objective function in the subsequent sections.

3.1 Encoder

The encoder E learns a mapping from the input image to two latent codes
corresponding to the structure and the texture. We use a traditional autoen-
coder training process. We employ a reconstruction loss to measure the differ-
ence between the original image and the synthesized version with an additional
non-saturating adversarial loss [14] to enforce realistic image generation, and is
defined as,

Lenc(x1, x̂1) = Lrec(E,G) + Ladv(E,G,D) = ‖x1 − G(E(x1))‖1 − log(D(G(E(x1))))
(2)

3.2 Generator

Assuming we have already learned how to disentangle the structure from the tex-
ture, we can pass two images x1, x2 to the encoder and get the latent codes z1, z2
where z1 = (z1s , z

1
t ) and z2 = (z2s , z

2
t ). We assume zs is the encoded structure

and zt is the texture of an input image and x̂1 is the reconstructed image. The
generator conditioned on the latent structure code learns to map the extracted
structure and texture codes to an image. The texture code will be added through
weight modulation/demodulation introduced in [28]. Swapping the two texture
codes before passing them to the generator is a common method to transfer style
from one image to another. To ensure that the generated image is realistic, an
additional non-saturating adversarial loss [14] is added, given by,

Lswap(E,G,D) = − log(D(G(z1s , z
2
t ))) (3)

3.3 Structure and Texture Disentanglement

The latent codes must represent the structure and texture. However, this cannot
be achieved in our current setting without additional constraints to encourage
consistent structure and texture disentanglement. The approach used for learning
consistent texture codes is to enforce all the patches sampled from the image
generated in the previous step by swapping the textures to be visually similar to
patches extracted from the texture reference image [45]. We achieve this using
the following loss:

Lstyle(E,G,Dstyle) = − log(Dstyle(C(G(z1s , z
2
t )), C(x2)))) (4)
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where C is a random crop of size in the range [18 , 1
4 ]. This formulation results in

learning a more consistent style transfer. Experiments have shown that this term
is not enough and that better disentanglement can be achieved by enforcing the
structure code not to contain texture-related information. In order to enforce
structure consistency, we introduce an extra module with a gradient reversal
layer as its first layer followed by a generator. Gradient reversal layer act as
an identity function during forward but during backward it multiplies the gra-
dients with −1. This new generator has the same architecture as the original
generator, but it reconstructs an image with an all-zero texture code that is the-
oretically impossible. Our analysis of previous works shows that structure code
contains spatial information and includes style-related information. An incon-
sistent encoding will cause the network to generate odd samples that do not
follow the algorithms and cannot be interpreted. We train this module using a
reconstruction loss and a non-saturating adversarial loss [14].

Laux(x1, x̂1) = Lrec(E, T ) + Ladv(E, T,D) = ‖x1 − T (E(x1))‖1 − log(D(T (E(x1))))
(5)

Adding the gradient reversal layer, as shown in [11], forces the encoder to sup-
press any style-related information in the structure code. It also proved to be
useful in cross domain disentanglement [13]. The auxiliary loss from this branch
would help the encoder to disentangle structure from texture better.

3.4 Objective Function

We jointly train the encoder, generators and discriminators to optimize the final
objective, which is the weighted sum of previously mentioned loss functions and
is given by,

Ltotal = λrecLenc + λswapLswap + λstyleLstyle + λauxLaux (6)

where λrec, λswap, λstyle, λaux are weights that control the importance of each
term. The optimal values used for each term are discussed in Sect. 4.

Table 1. Quantitative comparison of FID and training time/number of iterations
on the validation set with state-of-the-art methods. Our proposed method achieves
comparable performance while it converges significantly faster.

Method LSUN Church #iterations

StyleGAN2 [28] 57.54 48 M

Swapping [45] 52.34 14 days × 4 V100 GPUs

Ours (validation) 51.42 5 M
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4 Experiments

Implementation Details. In all reported experiments, we randomly crop and
resize the input images to 256 × 256 resolution. We use the Adam optimizer
[30] with β1 = 0.0, β2 = 0.99. All reported results are computed on 4 NVIDIA
TESLA P100 GPUs. The discriminator D is based on StyleGAN 2 [28] and
Dstyle is based on Swapping autoencoder [45]. We experimented with different
hyper-parameters for λrec, λswap, λstyle, λaux but in this version we simply set
the loss weights to be all 1.0.

Datasets. We evaluate our method on four benchmark datasets curated for
scene understanding and semantic segmentation.

– CelebAMask-HQ [34] has 30,000 face images collected from the CelebA [40]
dataset. CelebAMask-HQ contains annotations for 19 classes. However, we
do not use masks in our training pipeline.

– LSUN church [59] is a subset of the Large-scale Scene Understanding (LSUN)
dataset. The training set contains 126,227 images. It is a challenging dataset
if no preprocessing is applied due to the diversity of the images.

– Cityscapes [7] is a street view dataset collected from 50 cities across Germany.
The training set contains 3000 images with fine annotations, and the test set
contains 500 images. It is considered a challenging dataset for image-to-image
translation because each scene may contain up to 30 classes.

Fig. 3. Left: Results from Swapping Autoencoder [45] on LSUN Church. Right: Our
results on the same images. As evident, our model achieves better feature embedding
and can retain the structural information of the input image while swapping only
the texture with that of a second input image. Finer-level details such as spires and
buildings outline are also retained. Most notably, our model was trained for a fraction
of iterations compared to [45].



Unsupervised Structure-Consistent Image-to-Image Translation 11

– Inria [41] is an aerial imagery dataset designed for semantic segmentation of
building footprints. The training set contains 180 images with 5000 × 5000
resolution from 5 cities. Each image covers an area of approximately 1500m ×
1500m. The test set contains 180 images of the same size collected from 5
cities that are not part of the training set.

Baselines. We compare our approach to a number of image-to-image transla-
tion, style transfer and multi-modal image synthesis methods including Swap-
ping Autoencoder [45], StyleGAN2 [28] and BicycleGAN [68]. We either use the
results published by authors or generated using their official source code for all
comparisons.

Performance Metrics. We use Fréchet Inception Distance (FID) [17] to mea-
sure the quality of generated images and LPIPS [63] to compare the similarity
of reconstructed images. FID calculates the difference between the real and the
generated data distributions using the Inception network to extract the features
while LPIPS calculates the perceptual similarity of the input with the recon-
structed version. Additionally, in the supplementary material, we report on the
SIFID metric on the LSUN church dataset for the training and testing sets, and
include additional comparisons and use-cases.

Structure-Consistent Style Transfer. This section evaluates the quality of
our generated images on style transfer and compares them to state-of-the-art.
In Fig. 3, we provide a qualitative comparison of our synthesized images with
our baselines. We find that our method produces comparable results with [45]
and [28] on LSUN Church dataset. A significant advantage of our approach is
that it required only 5M iterations for training which demonstrates that not
only is our approach significantly faster than our predecessors, but it surpasses
their performance in terms of FID on the validation set, as shown in Table 1.
Figure 3 shows that our method can generate samples with high visual quality
on style transfer while preserving structure. Furthermore, structure similarity
across generated samples supports the idea behind our auxiliary branch.

https://drive.google.com/drive/folders/1-wdoQe1gdfS0Kh2ryjYEqaFocpmZ3IDg?usp=sharing
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Fig. 4. (a) Image translation on LSUN Church. Each column corresponds to a
particular texture extracted form the images on first row, respectively, each row contain
the generated images with shared structure embedding. (b) Image translation on
Cityscapes. The left column shows the input images from Cityscapes, the second
column are reconstruction of input images. We provide a visualization of structure
latent codes in the third column after applying PCA and then resizing it to 256 × 256 for
the purpose of visualization. The last column shows our generated images by swapping
the texture between first and third row and between second and fourth row. As it can
be seen the lightning information, asphalt texture and coloring of the facades are the
main information that transferred by swapping the texture codes.

Realism of Reconstruction. The diagonals of Fig. 2b, 5a and 4a show the
quality of our method on image reconstruction task from the learned feature
embedding. Our method preserves windows, doorways, trees, spires and generally
the geometry of the objects as well as finer details such as earrings and tank
top strap in Fig. 2b (second row). We report quantitative comparison using the
LPIPS [63] to compare the similarity of reconstructed images.

Disentanglement of Structure and Texture. Accurately disentangling
structure and texture is an important task both for style transfer and image
manipulation. Given that this disentanglement is performed entirely unsuper-
vised, we can evaluate the effectiveness of our new module by comparing the
performance of our method with previous works on style transfer from existing
images. Better disentanglement of structure and texture leads to a finer manip-
ulation, resulting in significantly more realistic images. Figure 3 (left) shows the
results from Swapping Autoencoder [45] on LSUN Church. Our results, shown
on the right, demonstrate that our model achieves better feature embedding and
generates images that retain the structural information of the input image while
transferring only the texture from the second input image. Finer-level details
such as spires and buildings’ outlines are also preserved.
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Texture Code Normalization. We evaluated the effect of normalization on
the texture latent code and found that applying L2-norm results in faster conver-
gence and more realistic synthesis. In this work we do not employ normalization
in the generator, as in [23,51], and similar to [45].

Contexts. In Fig. 4b, we show examples from LSUN Church [59] that show-
case the applicability of our method to other contexts. The bottom row shows
a concrete example of how our technique preserves structures while transfer-
ring fine details. As it is evident, the building’s structure is preserved while the
texture is replaced. Similarly, the tree’s structure is preserved, and its texture
-in this case, the foliage’s colour and density- changes according to each of the
source images appearing in the top row. It should be noted that the model was
not trained on any season transfer dataset. Semantic image synthesis is one of
the critical tasks in designing 3D environments, image colorization, and image
editing, but it requires semantic masks and corresponding input images for train-
ing a model. This poses a limitation for many real-world applications where it
is not simple to produce segmentation masks to train a conditional generative
model in a supervised setting, but they need accurate semantic consistency. Our
method can perfectly adopt for semantically multi-modal image synthesis in an
unsupervised setting.

Fig. 5. (a) Style transfer on CelebAMask-HQ. The first row shows the texture
input image. The other rows show the results using the structure image in the first
column. On the second row, the specular highlight on the face is embedded as a struc-
ture and is retained. (b) Performance on Inria dataset. Left-to-right: first input
x1, second input x2, reconstruction of x1, our generated sample using structure of x1

and texture of x2. The semantic mask of x1, if available, can be transferred to the
synthetic image therefore increasing the labeled images in the training set that exhibit
the textural characteristics of x2.
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4.1 Comparison to State-of-the-Art

Figure 9a, 9b, and 8 shows additional qualitative results on both reconstruction
and style transfer tasks. The tables in Fig. 6a and 6b present a quantitative
comparison of our method with that of Swapping Autoencoder [45], StyleGAN2
[28], MaskGAN [34], and BicycleGAN [68].

Method LSUN Church CelebAMask-HQ Cityscapes

Ours 51.42 29.69 162.46
Swapping [45] 52.34 32.83 182.5
StyleGAN2 [ 28] 57.54 - -
MaskGAN [34] - 46.84 -
BicycleGAN [ 68] - - 87.74

(a)

Method LSUN Church

StyleGAN2 [28] 0.377
Image2StyleGAN [ 1] 0.186
Swapping [45] 0.227
Ours 0.203

(b)

Fig. 6. (a) Quantitative comparison of FID on style transfer with some label-to-image
translation work that are known for multimodal image synthesis and Swapping Autoen-
coder. In cases that we didn’t have access to metric values calculated by the author, we
trained their model for the same number of iterations as our network. Our method can
achieve better results on CelebAMask-HQ and comparable results on LSUN Church
trained for only 1.2M and 5M images. (b) Comparison of reconstructed image quality
using LPIPS [63] on LSUN Church. Our method focus on preserving structural details
and can produce high quality results. Given the fact that our model have only been
trained on 5M images which reduce the training time by a great factor, our method
can reconstruct input images better than StyleGAN2 [45].

5 Applications

As stated earlier, an important motivation of our work is to remove biases from
training datasets caused by class imbalances. Benchmark datasets such as [7,
40] have inherent biases that adversely affect the network’s generalization and
significantly limit the effectiveness of networks used in real-world scenarios.

In this section, we present results on two unique applications employing the
proposed technique:

– The first application addresses bias in training datasets and demonstrates
how our method contributes to overcoming this issue.

– The second application addresses the cost-effective generation of training
datasets for the task of semantic segmentation in satellite images without
incurring additional labelling costs.

Furthermore, we present additional comparisons with state-of-the-art and quan-
titative results on the datasets LSUN Church [59], CelebAMask-HQ [34], Inria
[41]. We conclude with a discussion on the limitations of our technique.
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5.1 Addressing Bias in Training Datasets

Often we talk about biases in different datasets as an issue that needs to be
addressed while designing the method, and we observe some generalization issues
caused mainly due to imbalances in class distributions. A different approach is
to adjust or expand our existing datasets to overcome this issue. Our method
can preserve fine details; for example, in face datasets, these often imbalanced
features can be gender, age, skin colour, hair colour, and accessories such as
earrings, eyeglasses, hats, etc. Using our method allows us to balance the dataset
by generating synthetic images with under-represented features. Furthermore, in
cases where labels are available for the source image, these will also be the same
for the generated images since our method preserves the same structure as the
source image and only changes the appearance, as shown in Fig. 7.

5.2 Training Datasets for Semantic Segmentation of Satellite
Images

Collecting satellite imagery for semantic segmentation is known to be an expen-
sive and challenging task. The process of capturing images is expensive, but
it may also contain inaccuracies due to the dynamic environment, e.g. a new

Fig. 7. The first (left) image shows the first input image, and the second/third/fourth
images show the generated image where the structure is retained from the first input
image and the texture from the second/third/fourth input image, which appear in the
inset images.

Fig. 8. This figure provide an example of how our method can preserve the geometry
of objects and semantic details while transferring the style. This would allow us to
generate multiple samples with no extra labeling cost.
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building may appear that was not present at the time of acquisition of the
satellite images. Another common issue is that the data collected from one
city/continent cannot be easily generalized for a different city/continent. Con-
sidering all the challenges mentioned above, deploying a semantic segmentation
network for aerial imagery can be challenging. Our structure-consistent network
is designed to help overcome these challenges by generating realistic samples for
different cities and weather conditions and generally creating datasets by style
transfer. Our approach significantly reduces the time needed to process the data
since we can expand any existing dataset to the desired style by only having a
few images from the new city without requiring semantic labels Fig. 8. Moreover,
it can also be extremely useful for editing or expanding already existing datasets
by changing the learned structure embedding.

6 Discussion and Limitations

Our method is superior to state-of-the-art unsupervised approaches and gives
comparable results to supervised techniques for image manipulation and image-
to-image translation. We showed that incorporating the proposed auxiliary mod-
ule as part of the training encourages better disentanglement of the structure
from the texture and better feature embedding. This opens up new applica-
tions for image editing and style transfer, such as balancing existing datasets by
generating images from underrepresented classes, expanding semantic segmen-
tation datasets, creating multi-view datasets, etc. Previous works [8] explored
the effect of combining multiple loss functions with different weights in a single
model using [18] to achieve better optimization. We believe the same can be
applied as a future step on our pipeline for image manipulation. The impor-
tance of structure versus texture may differ from one application to another. By
designing an architecture in which one can specify the percentage of structure
versus texture for image generation, our method can address even broader range
of challenges.

The proposed method works best when both structure and texture reference
images contain the same object classes. Otherwise, the model’s behaviour is not
entirely predictable. An example of this limitation is where the texture refer-
ence image does not have vegetation, but the structure reference image contains
a tree. In this scenario, the network may choose to copy the original texture.
Additionally, in some cases, our network will generate an image with very lit-
tle change to the structure image or replace some objects due to inconsistency
between represented classes in the structure and texture reference images. We
have not removed such cases during training. Ignoring them can be a reason-
able next step for style transfer tasks until we better understand the underlying
meaning of learned texture embedding.
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Fig. 9. (a) Examples of style transfer on CelebAMask-HQ using our learned embedding.
(b) Image translation on LSUN Church showing the quality of our method in different
lightning and weather.

7 Conclusions

We presented an end-to-end process for training a structure-consistent image
manipulation of existing images. We showed that our approach could disentan-
gle structure and texture with higher accuracy while preserving finer details than
state-of-the-art. We have extensively tested our method and showed that it could
consistently transfer texture to the correct parts and preserve structural infor-
mation without requiring a semantic mask. Most notably, this is achieved while
also reducing the computational time needed for training such a network to a
fraction of the time needed for the current state-of-the-art. Although our method
outperforms much state-of-the-art in the image-to-image translation task, defin-
ing and disentangling structure from texture in multi-object scenarios such as
Cityscapes remains challenging due to the diversity of the objects and complex-
ity of the scene. In the future, we plan to explore the knowledge embedded in
latent codes for different datasets and extend this framework to other domains
as discussed in Sect. 4.
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