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Preface

It is with great pleasure that we welcome you to the proceedings of the 17th International
Symposium on Visual Computing (ISVC 2022), which was held in San Diego, USA,
during October 3–5, 2022. ISVC provides a common umbrella for the four main areas of
visual computing including vision, graphics, visualization, and virtual reality. The goal
is to provide a forum for researchers, scientists, engineers, and practitioners throughout
the world to present their latest research findings, ideas, developments, and applications
in the broader area of visual computing.

This year, the program consisted of six keynote presentations, nine oral sessions, one
poster session, two special tracks, and one tutorial.We received close to 110 submissions
for the main symposium from which we accepted 45 papers for oral presentation and 16
papers for poster presentation. A total of eight papers were accepted for oral presentation
in the special tracks from 14 submissions.

All papers were reviewed with an emphasis on the potential to contribute to the
state of the art in the field. Selection criteria included accuracy and originality of ideas,
clarity and significance of results, and presentation quality. The review process was quite
rigorous, involving three independent double-blind reviews followed by several days of
discussion. During the discussion period we tried to correct anomalies and errors that
might have existed in the initial reviews. Despite our efforts, we recognize that some
papers worthy of inclusion may have not been included in the program. We offer our
sincere apologies to authors whose contributions might have been overlooked.

We wish to thank everybody who submitted their work to ISVC 2022 for review. It
was because of their contributions that we succeeded in having a technical program of
high scientific quality. In particular, we would like to thank the keynote speakers, the
programchairs, the steering committee, the international ProgramCommittee, the special
track organizers, the tutorial organizers, the reviewers, the sponsors, and especially, the
authors who contributed their work to the symposium. We would like to express our
appreciation to Springer for sponsoring the “best” paper award again this year.

We sincerely hope that ISVC 2022 offered participants opportunities for professional
growth.
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Keynote Talks



Towards Scaling Up GANs

Eli Shechtman

Adobe Research, USA

Abstract. Generative adversarial networks (GANs) have progressed
tremendously since their introduction in 2014. They can generate high-
quality imagery and their latent space lends itself to editing real images in
an intuitive and controllableway.However, they are known to have limita-
tions related to their scalability. They work well when trained on datasets
of a single object category, but strugglewithmore complex scenes. GANs
are also limited in the resolution of images they can generate and train
on, typically showing results up to 1K pixel resolution that push the
current hardware to the limits in memory and training time. To address
these, I will first describe a mid-level image representation for a genera-
tive model of scenes. The representation is mid-level in that it is neither
per-pixel nor per-image; rather, scenes are modeled as a collection of
spatial, depth-ordered “blobs” of features. When trained on scenes, our
model learns to associate different blobs with different entities in the
scene and to arrange these blobs to capture scene layout. We demon-
strate this emergent behavior by showing that, despite training without
any supervision, our method enables applications such as easy manipu-
lation of objects within a scene and scales well to a diverse dataset of
multiple scene categories. I will then describe ‘any-resolution’ training
of GANs that can exploit the variety of image resolutions available in the
wild, learning from pixels that are usually discarded, to enable high- and
continuously-variable resolution synthesis. We achieve this by switching
from the common fixed-resolution thinking, to a novel ‘any-resolution’
approach, where the original size of each training image is preserved.
We introduce a new class of generators that can learn from this multi-
resolution signal to synthesize images at any resolution, and show how to
train them by sampling patches at multiple scales. Our experiments show
generated images from several categories with both coherent global lay-
outs and realistic local details, going beyond 2K and up to 8K resolution.
Finally, I will relate these scalability efforts to other recent large-scale
generative models (such as Dall-E 2, Imagen and others).



Sensible Machine Learning for Geometry

Justin Solomon

MIT, USA

Abstract.From3Dmodeling to autonomous driving, a variety of applica-
tions can benefit from data-driven reasoning about geometric problems.
The available data and preferred shape representation, however, varies
widely from one application to the next. Indeed, the one commonality
among most of these settings is that they are not easily approached using
data-driven methods that have become de rigueur in other branches of
computer vision and machine learning. In this talk, I will summarize
recent efforts in my group to develop learning architectures and method-
ologies paired to specific applications, from point cloud processing to
mesh and implicit surface modeling. In each case, we will see how math-
ematical structures and application-specific demands drive our design
of the learning methodology, rather than bending application details or
eliding geometric details to apply a standard data analysis technique.



Designing Augmented Reality for the Future of Work

Doug Bowman

Virginia Tech, USA

Abstract. Augmented Reality (AR) technology has improved signifi-
cantly in recent years, to the point where it is expected that major tech-
nology companies will release consumer-focused AR glasses in the near
future. Technical challenges in optics, power, and tracking remain, but
are solvable. But what will we use these AR glasses for, and howwill they
provide value? In this talk, I will argue that some of the most impactful
applications of future AR glasses will be those that transform the way we
work. Using examples from my research on AR for knowledge work and
intelligent AR for construction work, I will explain why user experience
considerations are crucial to the adoption of AR for future work. Study-
ing the design of these applications today will lead to guidelines that can
help ensure the success of AR for the future of work tomorrow.



The Future of Visual Computing via Foundation Models
(Banquet Keynote Talk)

Ce Liu

Azure Cognitive Services, Microsoft, USA

Abstract. Thanks to big data, computing power and modern network
architecture, we are seeing a wave of continuous breakthroughs find their
way into people’s everyday lives. While modern AI has reached human
parity on a few well-defined research benchmarks, a rapidly growing
number of disjointed AI tasks are needed to mimic human intelligence
in understanding the open and complex world. As each AI task is often
defined by the statistics manifested from large amounts of task-specific
data, we end up building expensive silos without a synergistic way of
knowledge sharing and transferring among the different AI tasks. In this
keynote I will share the future of visual computing via large-scale image-
language foundation models, such as CLIP and Florence (image to text)
and Dall-E (text to image), as a new AI paradigm to integrate fragmented
tasks. Empowered by a semantic layer learned from the latest transform-
ers, these foundation models have demonstrated not only unprecedented
capabilities in zero-shot and few-shot transfer learning for new tasks in the
wild, but also fascinating potentials to unify common visual computing
tasks such as recognition, detection, segmentation, captioning and image
editing. I will also discuss how the research communities can develop
disruptive and creative AI systems using foundation models of various
modalities.



3D Reconstruction: Leveraging Synthetic Data
for Lightweight Reconstruction

David Jacobs

University of Maryland, USA

Abstract. Reconstruction and regression tasks are central problems in
computer vision. We consider, for example, using a single image to
recover the 3D structure of an indoor or outdoor scene, or of a human
face or body, or recovering the reflectance properties of surfaces or the
lighting in a scene. However, in such tasks it is challenging to obtain
large amounts of accurately labeled real training data; it’s easy to label
an image by saying: “this is a picture of a dog”, but much harder to label
the shape of an object or its reflectance properties, or the lighting in a
scene. In many cases, computer graphics provides access to large quan-
tities of labeled data, but there is a domain gap between real images and
images generated by graphics. I’ll discuss a series of works that address
the challenge of using labeled synthetic data to infer properties of the
world from real images. I’ll discuss methods that are lightweight, in the
sense of requiring only a single image or a few easily acquired images.



Human-AI Interaction in Visual Analytics: Designing
for the “Two Black Boxes” Problem

Chris North

Virginia Tech, USA

Abstract. Human-AI interaction plays a crucial role in visual analytics,
enabling analysts to use AI to help analyze data. In support of this goal,
explainable-AI visualizations seek to unmask the underlying details of
black box AI learning algorithms, enabling human analysts to under-
stand algorithmic state and results. However, to truly enable human-AI
interaction, we will argue that there exists a second black box repre-
senting the cognitive process of the user, containing information which
must be communicated to the algorithm. Using this “Two Black Boxes”
problem as motivation, we propose a design philosophy for human-AI
interaction. We discuss usability challenges associated with each phase
of communication between the pair of cooperatively-learning entities and
the benefits that emerge from opening the black boxes of human and AI
for data analysis tasks.
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Abstract. The Swapping Autoencoder achieved state-of-the-art perfor-
mance in deep image manipulation and image-to-image translation. We
improve this work by introducing a simple yet effective auxiliary mod-
ule based on gradient reversal layers. The auxiliary module’s loss forces
the generator to learn to reconstruct an image with an all-zero texture
code, encouraging better disentanglement between the structure and tex-
ture information. The proposed attribute-based transfer method enables
refined control in style transfer while preserving structural information
without using a semantic mask. To manipulate an image, we encode both
the geometry of the objects and the general style of the input images into
two latent codes with an additional constraint that enforces structure
consistency. Moreover, due to the auxiliary loss, training time is signifi-
cantly reduced. The superiority of the proposed model is demonstrated
in complex domains such as satellite images where state-of-the-art are
known to fail. Lastly, we show that our model improves the quality met-
rics for a wide range of datasets while achieving comparable results with
multi-modal image generation techniques.

Keywords: Structure-consistent image-to-image translation · Style
transfer · Training class imbalance

1 Introduction

Image-to-image translation and image manipulation techniques attracted much
attention [10,20,24,26,28,37,38,54,58,67] recently as they can have a signifi-
cant effect on many different tasks. Of particular interest is creating realistic
synthetic training datasets to improve models’ performance and generalization.
One example that demonstrates the use of a synthetic dataset in the training
of networks is presented in [65] where the authors introduce a semi-supervised
approach to generate datasets for semantic segmentation.

There are a plethora of works [27,28,32] which report that for images con-
taining single objects such as faces, or for images having the same semantic lay-
out such as building facades, deep image manipulation techniques can produce
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realistic synthetic images. However, generating natural scenes or more visually
complex images remains a challenge due to differences in the semantic layouts
of the input images.

The challenge of deep image manipulation state-of-the-art with complex
scenes is recognizing and learning essential features and characteristics from the
input image. Structural information is typically shared or has common character-
istics across different images in a dataset. On the other hand, the texture appears
entangled with intrinsic image features. The standard approach to preserving the
structural information is to condition the generation process on the input seman-
tic mask using conditional image synthesis frameworks. However, that approach
is not practical for image manipulation since the assumption of having access
to semantic masks does not hold in most cases. Researchers explored different
methods such as [37,48], but in this work, we assume that image representations
can be disentangled into the content/structure and texture/style.

Fig. 1. Our method learns structure-consistent image-to-image translation without
requiring a semantic mask. We learn to disentangle structure and texture for appli-
cations such as style transfer and image editing tasks. The first (left) image shows
the first input image, and the other images show the generated images in which the
structure is retained from the first input image and the texture from the second, third,
and fourth input images, respectively, shown in the inset images. Note that the tree’s
structure is preserved, and its texture -in this case, the foliage’s colour and density-
changes according to the texture of the second input image in the inset. Our model
was not trained on any season transfer dataset.

To address this problem, we propose an auxiliary module that enforces the
separation of structure from texture. This branch promotes the disentanglement
of structure and texture by suppressing texture-related information in the struc-
ture code by applying a gradient reversal layer. Additionally, it encourages the
emergence of deep features that are highly important for image editing tasks.
Better structure preservation can also impact many applications ranging from
creating a 3D synthetic simulation world, image editing, semantic image synthe-
sis, and style transfer. More importantly, the proposed technique can remove
biases from training datasets caused by class imbalances. Many benchmark
datasets introduce bias [7,40] that can limit the generalization capability of any
network trained on them and significantly limit the impact of networks trained
on these datasets in real-world scenarios.
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This paper pursues three main objectives: 1) consistent and accurate struc-
ture preservation, 2) diverse, and 3) realistic image synthesis. Our goal is to learn
multi-modal structure-consistent image-to-image translation in a fully unsuper-
vised approach without requiring semantic segmentation masks. Our technical
contributions can be summarized as follows:

– A new approach for a structure-consistent image-to-image translation that
does not rely on prior knowledge on the scene geometry.

– An auxiliary module that enforces the disentanglement between the structure
and texture information with an explicit loss term for penalizing the synthesis
of realistic images when no texture information is provided.

– An extension of the Swapping Autoencoder model with our auxiliary module.
We quantitatively and qualitatively demonstrate that our method generates
synthetic images structurally consistent with the source input image.

We present experiments on several datasets, simple datasets with minimal vari-
ations in the semantic information of the training examples such as CelebA-
MaskHQ [34] Fig. 2b, and complex datasets where the semantic information
varies drastically such as the LSUN Church [59] Fig. 1, and Cityscapes [7] Fig. 4b.
Our results demonstrate that the proposed method improves the performance
at a fraction of the training time required by state-of-the-art.

Fig. 2. (a) Overview. The geometry of the objects and the general style of the input
images are encoded into two latent codes with an additional constraint that enforces
structure consistency. We introduce a new module that encourages better disentangle-
ment between the structure and the style, based on gradient reversal layers. This results
in an attribute-based transfer that allows for a finer style transfer control while pre-
serving structural information without requiring a semantic mask. (b) Performance
on CelebAMask-HQ: Our model generates structure-consistent samples while trans-
ferring style from one image to another. Unlike most models that fail to preserve small
structural details, our approach is able to preserve fine details such as earrings (see last
row).
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2 Background and Related Work

This section provides an overview of the most relevant state-of-the-art, grouped
according to their methodology.

Generative Models. Generative Adversarial Networks (GANs) [14] introduced
an adversarial process to train a generative model. The problem is formulated
as a zero-sum game between a generator and discriminator where the optimal
solution is to find a Nash equilibrium. Ian J. Goodfellow refers to this frame-
work as a minimax two-player game in which generator G tries to minimize the
probability of the discriminator D to recognize the fake samples, and D tries to
maximize the probability of assigning the correct label. The objective function
is given by,

min
G

max
D

V (D,G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

GANs have proven to be very successful [4,27,28,66] compared to other common
approaches such as [19,43,46,52,53]. Both GANs and Variational Autoencoders
(VAEs) [31] contain an encoder and a decoder; however, they differ in a sense
that GAN is a framework for estimating data distribution. On the other hand,
VAEs learn the stochasticity within the data using the encoder’s latent code to
match the Gaussian distribution by reparameterizing the latent distribution and
maximizing the log-likelihood function. Some methods [2,68] combine GAN and
VAE or GAN and Autoencoders in their models to achieve multi-modal image
generation and prevent mode collapse.

Conditional generative models such as conditional VAEs [49], condi-
tional GANs [42], conditional autoregressive methods [15,43], to name a few,
have shown promising results [67] but we focus on conditional GANs for the
rest of this section. Generative adversarial networks can be extended to condi-
tional generative models [42] by feeding additional information c into the dis-
criminator and generator. This c can be any information such as edge mask for
semantic segmentation task or class labels for classification. By doing so, the
generator can use prior noise pz(z) and additional information c to create a hid-
den representation and the discriminator will use the information provided as
an input for a better discrimination. The quality of the results generated using
conditional GANs inspired many applications employing this method, includ-
ing, but not limited to, image-to-image translation [26,38,54,58], image edit-
ing [5,16], image inpainting [39,50,57], text-to-image [56,62], photo colorization
[36,47,61,64], conditional domain adaptation [3,5,6,60], super resolution [25,33],
style transfer [12,21,25,27,28,55]. Our work extends the image-to-image trans-
lation framework with a focus on image manipulation and style transfer.

Image-to-image translation is a framework to transfer an input image into
a synthesized output image while preserving some information from the input.
There are many methods designed for different applications. The main difference
is in the information they preserve from the input image, which depends on the
application. Image-to-image translation showed promise [10,20,24,67], however,
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as stated in [68], the quality improvement may come with the cost of losing multi-
modality. Recent works show that it is possible to prevent losing multi-modality
and use this method for multi-domain scenarios [22,35,68].

Unsupervised disentanglement aims to model the variations in data. It
has been the focus of several pioneer works such as [4,18,48]. InfoGAN [4], for
example, achieves this by maximizing the mutual information between latent
variables and input data, whereas [29,35,45,68] disentangle input information
to structure and texture codes. Our work builds on the same principles to disen-
tangle structure and texture in a completely unsupervised approach. However,
we go one step further and aim for better disentanglement by introducing a new
module to enforce better separation between the two. We show that our app-
roach can achieve the desired disentanglement and generate realistic and diverse
images while disentangling structure from style better than previous methods.

Multi-modal image synthesis overcomes the limitation of conditional
GANs ignoring the latent code, also known as mode collapse. The idea behind
the multi-modal image-to-image translation is to learn a conditional distribu-
tion while generating diverse images. Early works on conditional image-to-image
translation were mostly focused on producing deterministic outputs [24,38],
which limits their applicability. In Sect. 4, we show that our method can synthe-
size comparable results with the current state-of-the-art [68,69].

Style transfer also known as texture transfer, can be defined as the prob-
lem of synthesizing an image with style extracted from the source image while
preserving the semantics of the content image. Recent style transfer methods
[27,28] proposed the use of conditional normalization layers such as Conditional
Instance Normalization [9] and Adaptive Instance Normalization [21] as a practi-
cal approach to transfer the global style. Normalization layers used in most style
transfer methods diminish semantic information. Spatially-Adaptive Normaliza-
tion [44] was introduced as a way to avoid semantic-level information loss. We
propose a closely related method for preserving semantic information without
having access to a segmentation mask.

3 Method

Deep image manipulation requires an architecture with excellent feature extrac-
tion capabilities that allows for better disentanglement of texture from structure
later on. Using an encoder, our goal is to disentangle the structure from the tex-
ture for both input images to our model. When swapping the texture or structure
codes between the two randomly sampled input images x1, x2 ∈ R

H×W×3, our
model can synthesize an image with the same structural information as to its
content reference, but having the visual appearance or texture of the style ref-
erence image. Thus, we aim to generate realistic synthesized images where the
structure for the first image is preserved while transferring the style from the
second image.

Our solution comprises three key modules with two discriminators namely D
and Dstyle as shown in Fig. 2a: an encoder E, a generator G, and a disentangle-
ment module T which enforces better disentanglement of the structure from the
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style. The encoder learns how to encode visual information into two latent codes.
Similar to [45], we enforce a mapping from any combination of the two latent
codes to a realistic image by training an autoencoder. The generator synthesizes
realistic images using the two extracted latent codes. The disentanglement mod-
ule is designed to enforce the separation of the structure from the texture. We
present the details of the objective function in the subsequent sections.

3.1 Encoder

The encoder E learns a mapping from the input image to two latent codes
corresponding to the structure and the texture. We use a traditional autoen-
coder training process. We employ a reconstruction loss to measure the differ-
ence between the original image and the synthesized version with an additional
non-saturating adversarial loss [14] to enforce realistic image generation, and is
defined as,

Lenc(x1, x̂1) = Lrec(E,G) + Ladv(E,G,D) = ‖x1 − G(E(x1))‖1 − log(D(G(E(x1))))
(2)

3.2 Generator

Assuming we have already learned how to disentangle the structure from the tex-
ture, we can pass two images x1, x2 to the encoder and get the latent codes z1, z2
where z1 = (z1s , z

1
t ) and z2 = (z2s , z

2
t ). We assume zs is the encoded structure

and zt is the texture of an input image and x̂1 is the reconstructed image. The
generator conditioned on the latent structure code learns to map the extracted
structure and texture codes to an image. The texture code will be added through
weight modulation/demodulation introduced in [28]. Swapping the two texture
codes before passing them to the generator is a common method to transfer style
from one image to another. To ensure that the generated image is realistic, an
additional non-saturating adversarial loss [14] is added, given by,

Lswap(E,G,D) = − log(D(G(z1s , z
2
t ))) (3)

3.3 Structure and Texture Disentanglement

The latent codes must represent the structure and texture. However, this cannot
be achieved in our current setting without additional constraints to encourage
consistent structure and texture disentanglement. The approach used for learning
consistent texture codes is to enforce all the patches sampled from the image
generated in the previous step by swapping the textures to be visually similar to
patches extracted from the texture reference image [45]. We achieve this using
the following loss:

Lstyle(E,G,Dstyle) = − log(Dstyle(C(G(z1s , z
2
t )), C(x2)))) (4)
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where C is a random crop of size in the range [18 , 1
4 ]. This formulation results in

learning a more consistent style transfer. Experiments have shown that this term
is not enough and that better disentanglement can be achieved by enforcing the
structure code not to contain texture-related information. In order to enforce
structure consistency, we introduce an extra module with a gradient reversal
layer as its first layer followed by a generator. Gradient reversal layer act as
an identity function during forward but during backward it multiplies the gra-
dients with −1. This new generator has the same architecture as the original
generator, but it reconstructs an image with an all-zero texture code that is the-
oretically impossible. Our analysis of previous works shows that structure code
contains spatial information and includes style-related information. An incon-
sistent encoding will cause the network to generate odd samples that do not
follow the algorithms and cannot be interpreted. We train this module using a
reconstruction loss and a non-saturating adversarial loss [14].

Laux(x1, x̂1) = Lrec(E, T ) + Ladv(E, T,D) = ‖x1 − T (E(x1))‖1 − log(D(T (E(x1))))
(5)

Adding the gradient reversal layer, as shown in [11], forces the encoder to sup-
press any style-related information in the structure code. It also proved to be
useful in cross domain disentanglement [13]. The auxiliary loss from this branch
would help the encoder to disentangle structure from texture better.

3.4 Objective Function

We jointly train the encoder, generators and discriminators to optimize the final
objective, which is the weighted sum of previously mentioned loss functions and
is given by,

Ltotal = λrecLenc + λswapLswap + λstyleLstyle + λauxLaux (6)

where λrec, λswap, λstyle, λaux are weights that control the importance of each
term. The optimal values used for each term are discussed in Sect. 4.

Table 1. Quantitative comparison of FID and training time/number of iterations
on the validation set with state-of-the-art methods. Our proposed method achieves
comparable performance while it converges significantly faster.

Method LSUN Church #iterations

StyleGAN2 [28] 57.54 48 M

Swapping [45] 52.34 14 days × 4 V100 GPUs

Ours (validation) 51.42 5 M
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4 Experiments

Implementation Details. In all reported experiments, we randomly crop and
resize the input images to 256 × 256 resolution. We use the Adam optimizer
[30] with β1 = 0.0, β2 = 0.99. All reported results are computed on 4 NVIDIA
TESLA P100 GPUs. The discriminator D is based on StyleGAN 2 [28] and
Dstyle is based on Swapping autoencoder [45]. We experimented with different
hyper-parameters for λrec, λswap, λstyle, λaux but in this version we simply set
the loss weights to be all 1.0.

Datasets. We evaluate our method on four benchmark datasets curated for
scene understanding and semantic segmentation.

– CelebAMask-HQ [34] has 30,000 face images collected from the CelebA [40]
dataset. CelebAMask-HQ contains annotations for 19 classes. However, we
do not use masks in our training pipeline.

– LSUN church [59] is a subset of the Large-scale Scene Understanding (LSUN)
dataset. The training set contains 126,227 images. It is a challenging dataset
if no preprocessing is applied due to the diversity of the images.

– Cityscapes [7] is a street view dataset collected from 50 cities across Germany.
The training set contains 3000 images with fine annotations, and the test set
contains 500 images. It is considered a challenging dataset for image-to-image
translation because each scene may contain up to 30 classes.

Fig. 3. Left: Results from Swapping Autoencoder [45] on LSUN Church. Right: Our
results on the same images. As evident, our model achieves better feature embedding
and can retain the structural information of the input image while swapping only
the texture with that of a second input image. Finer-level details such as spires and
buildings outline are also retained. Most notably, our model was trained for a fraction
of iterations compared to [45].
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– Inria [41] is an aerial imagery dataset designed for semantic segmentation of
building footprints. The training set contains 180 images with 5000 × 5000
resolution from 5 cities. Each image covers an area of approximately 1500m ×
1500m. The test set contains 180 images of the same size collected from 5
cities that are not part of the training set.

Baselines. We compare our approach to a number of image-to-image transla-
tion, style transfer and multi-modal image synthesis methods including Swap-
ping Autoencoder [45], StyleGAN2 [28] and BicycleGAN [68]. We either use the
results published by authors or generated using their official source code for all
comparisons.

Performance Metrics. We use Fréchet Inception Distance (FID) [17] to mea-
sure the quality of generated images and LPIPS [63] to compare the similarity
of reconstructed images. FID calculates the difference between the real and the
generated data distributions using the Inception network to extract the features
while LPIPS calculates the perceptual similarity of the input with the recon-
structed version. Additionally, in the supplementary material, we report on the
SIFID metric on the LSUN church dataset for the training and testing sets, and
include additional comparisons and use-cases.

Structure-Consistent Style Transfer. This section evaluates the quality of
our generated images on style transfer and compares them to state-of-the-art.
In Fig. 3, we provide a qualitative comparison of our synthesized images with
our baselines. We find that our method produces comparable results with [45]
and [28] on LSUN Church dataset. A significant advantage of our approach is
that it required only 5M iterations for training which demonstrates that not
only is our approach significantly faster than our predecessors, but it surpasses
their performance in terms of FID on the validation set, as shown in Table 1.
Figure 3 shows that our method can generate samples with high visual quality
on style transfer while preserving structure. Furthermore, structure similarity
across generated samples supports the idea behind our auxiliary branch.

https://drive.google.com/drive/folders/1-wdoQe1gdfS0Kh2ryjYEqaFocpmZ3IDg?usp=sharing
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Fig. 4. (a) Image translation on LSUN Church. Each column corresponds to a
particular texture extracted form the images on first row, respectively, each row contain
the generated images with shared structure embedding. (b) Image translation on
Cityscapes. The left column shows the input images from Cityscapes, the second
column are reconstruction of input images. We provide a visualization of structure
latent codes in the third column after applying PCA and then resizing it to 256 × 256 for
the purpose of visualization. The last column shows our generated images by swapping
the texture between first and third row and between second and fourth row. As it can
be seen the lightning information, asphalt texture and coloring of the facades are the
main information that transferred by swapping the texture codes.

Realism of Reconstruction. The diagonals of Fig. 2b, 5a and 4a show the
quality of our method on image reconstruction task from the learned feature
embedding. Our method preserves windows, doorways, trees, spires and generally
the geometry of the objects as well as finer details such as earrings and tank
top strap in Fig. 2b (second row). We report quantitative comparison using the
LPIPS [63] to compare the similarity of reconstructed images.

Disentanglement of Structure and Texture. Accurately disentangling
structure and texture is an important task both for style transfer and image
manipulation. Given that this disentanglement is performed entirely unsuper-
vised, we can evaluate the effectiveness of our new module by comparing the
performance of our method with previous works on style transfer from existing
images. Better disentanglement of structure and texture leads to a finer manip-
ulation, resulting in significantly more realistic images. Figure 3 (left) shows the
results from Swapping Autoencoder [45] on LSUN Church. Our results, shown
on the right, demonstrate that our model achieves better feature embedding and
generates images that retain the structural information of the input image while
transferring only the texture from the second input image. Finer-level details
such as spires and buildings’ outlines are also preserved.
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Texture Code Normalization. We evaluated the effect of normalization on
the texture latent code and found that applying L2-norm results in faster conver-
gence and more realistic synthesis. In this work we do not employ normalization
in the generator, as in [23,51], and similar to [45].

Contexts. In Fig. 4b, we show examples from LSUN Church [59] that show-
case the applicability of our method to other contexts. The bottom row shows
a concrete example of how our technique preserves structures while transfer-
ring fine details. As it is evident, the building’s structure is preserved while the
texture is replaced. Similarly, the tree’s structure is preserved, and its texture
-in this case, the foliage’s colour and density- changes according to each of the
source images appearing in the top row. It should be noted that the model was
not trained on any season transfer dataset. Semantic image synthesis is one of
the critical tasks in designing 3D environments, image colorization, and image
editing, but it requires semantic masks and corresponding input images for train-
ing a model. This poses a limitation for many real-world applications where it
is not simple to produce segmentation masks to train a conditional generative
model in a supervised setting, but they need accurate semantic consistency. Our
method can perfectly adopt for semantically multi-modal image synthesis in an
unsupervised setting.

Fig. 5. (a) Style transfer on CelebAMask-HQ. The first row shows the texture
input image. The other rows show the results using the structure image in the first
column. On the second row, the specular highlight on the face is embedded as a struc-
ture and is retained. (b) Performance on Inria dataset. Left-to-right: first input
x1, second input x2, reconstruction of x1, our generated sample using structure of x1

and texture of x2. The semantic mask of x1, if available, can be transferred to the
synthetic image therefore increasing the labeled images in the training set that exhibit
the textural characteristics of x2.
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4.1 Comparison to State-of-the-Art

Figure 9a, 9b, and 8 shows additional qualitative results on both reconstruction
and style transfer tasks. The tables in Fig. 6a and 6b present a quantitative
comparison of our method with that of Swapping Autoencoder [45], StyleGAN2
[28], MaskGAN [34], and BicycleGAN [68].

Method LSUN Church CelebAMask-HQ Cityscapes

Ours 51.42 29.69 162.46
Swapping [45] 52.34 32.83 182.5
StyleGAN2 [ 28] 57.54 - -
MaskGAN [34] - 46.84 -
BicycleGAN [ 68] - - 87.74

(a)

Method LSUN Church

StyleGAN2 [28] 0.377
Image2StyleGAN [ 1] 0.186
Swapping [45] 0.227
Ours 0.203

(b)

Fig. 6. (a) Quantitative comparison of FID on style transfer with some label-to-image
translation work that are known for multimodal image synthesis and Swapping Autoen-
coder. In cases that we didn’t have access to metric values calculated by the author, we
trained their model for the same number of iterations as our network. Our method can
achieve better results on CelebAMask-HQ and comparable results on LSUN Church
trained for only 1.2M and 5M images. (b) Comparison of reconstructed image quality
using LPIPS [63] on LSUN Church. Our method focus on preserving structural details
and can produce high quality results. Given the fact that our model have only been
trained on 5M images which reduce the training time by a great factor, our method
can reconstruct input images better than StyleGAN2 [45].

5 Applications

As stated earlier, an important motivation of our work is to remove biases from
training datasets caused by class imbalances. Benchmark datasets such as [7,
40] have inherent biases that adversely affect the network’s generalization and
significantly limit the effectiveness of networks used in real-world scenarios.

In this section, we present results on two unique applications employing the
proposed technique:

– The first application addresses bias in training datasets and demonstrates
how our method contributes to overcoming this issue.

– The second application addresses the cost-effective generation of training
datasets for the task of semantic segmentation in satellite images without
incurring additional labelling costs.

Furthermore, we present additional comparisons with state-of-the-art and quan-
titative results on the datasets LSUN Church [59], CelebAMask-HQ [34], Inria
[41]. We conclude with a discussion on the limitations of our technique.
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5.1 Addressing Bias in Training Datasets

Often we talk about biases in different datasets as an issue that needs to be
addressed while designing the method, and we observe some generalization issues
caused mainly due to imbalances in class distributions. A different approach is
to adjust or expand our existing datasets to overcome this issue. Our method
can preserve fine details; for example, in face datasets, these often imbalanced
features can be gender, age, skin colour, hair colour, and accessories such as
earrings, eyeglasses, hats, etc. Using our method allows us to balance the dataset
by generating synthetic images with under-represented features. Furthermore, in
cases where labels are available for the source image, these will also be the same
for the generated images since our method preserves the same structure as the
source image and only changes the appearance, as shown in Fig. 7.

5.2 Training Datasets for Semantic Segmentation of Satellite
Images

Collecting satellite imagery for semantic segmentation is known to be an expen-
sive and challenging task. The process of capturing images is expensive, but
it may also contain inaccuracies due to the dynamic environment, e.g. a new

Fig. 7. The first (left) image shows the first input image, and the second/third/fourth
images show the generated image where the structure is retained from the first input
image and the texture from the second/third/fourth input image, which appear in the
inset images.

Fig. 8. This figure provide an example of how our method can preserve the geometry
of objects and semantic details while transferring the style. This would allow us to
generate multiple samples with no extra labeling cost.
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building may appear that was not present at the time of acquisition of the
satellite images. Another common issue is that the data collected from one
city/continent cannot be easily generalized for a different city/continent. Con-
sidering all the challenges mentioned above, deploying a semantic segmentation
network for aerial imagery can be challenging. Our structure-consistent network
is designed to help overcome these challenges by generating realistic samples for
different cities and weather conditions and generally creating datasets by style
transfer. Our approach significantly reduces the time needed to process the data
since we can expand any existing dataset to the desired style by only having a
few images from the new city without requiring semantic labels Fig. 8. Moreover,
it can also be extremely useful for editing or expanding already existing datasets
by changing the learned structure embedding.

6 Discussion and Limitations

Our method is superior to state-of-the-art unsupervised approaches and gives
comparable results to supervised techniques for image manipulation and image-
to-image translation. We showed that incorporating the proposed auxiliary mod-
ule as part of the training encourages better disentanglement of the structure
from the texture and better feature embedding. This opens up new applica-
tions for image editing and style transfer, such as balancing existing datasets by
generating images from underrepresented classes, expanding semantic segmen-
tation datasets, creating multi-view datasets, etc. Previous works [8] explored
the effect of combining multiple loss functions with different weights in a single
model using [18] to achieve better optimization. We believe the same can be
applied as a future step on our pipeline for image manipulation. The impor-
tance of structure versus texture may differ from one application to another. By
designing an architecture in which one can specify the percentage of structure
versus texture for image generation, our method can address even broader range
of challenges.

The proposed method works best when both structure and texture reference
images contain the same object classes. Otherwise, the model’s behaviour is not
entirely predictable. An example of this limitation is where the texture refer-
ence image does not have vegetation, but the structure reference image contains
a tree. In this scenario, the network may choose to copy the original texture.
Additionally, in some cases, our network will generate an image with very lit-
tle change to the structure image or replace some objects due to inconsistency
between represented classes in the structure and texture reference images. We
have not removed such cases during training. Ignoring them can be a reason-
able next step for style transfer tasks until we better understand the underlying
meaning of learned texture embedding.
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Fig. 9. (a) Examples of style transfer on CelebAMask-HQ using our learned embedding.
(b) Image translation on LSUN Church showing the quality of our method in different
lightning and weather.

7 Conclusions

We presented an end-to-end process for training a structure-consistent image
manipulation of existing images. We showed that our approach could disentan-
gle structure and texture with higher accuracy while preserving finer details than
state-of-the-art. We have extensively tested our method and showed that it could
consistently transfer texture to the correct parts and preserve structural infor-
mation without requiring a semantic mask. Most notably, this is achieved while
also reducing the computational time needed for training such a network to a
fraction of the time needed for the current state-of-the-art. Although our method
outperforms much state-of-the-art in the image-to-image translation task, defin-
ing and disentangling structure from texture in multi-object scenarios such as
Cityscapes remains challenging due to the diversity of the objects and complex-
ity of the scene. In the future, we plan to explore the knowledge embedded in
latent codes for different datasets and extend this framework to other domains
as discussed in Sect. 4.
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Abstract. The pandemic of these very recent years has led to a dra-
matic increase in people wearing protective masks in public venues. This
poses obvious challenges to the pervasive use of face recognition technol-
ogy that now is suffering a decline in performance. One way to address
the problem is to revert to face recovery methods as a preprocessing step.
Current approaches to face reconstruction and manipulation leverage the
ability to model the face manifold, but tend to be generic. We introduce
a method that is specific for the recovery of the face image from an image
of the same individual wearing a mask. We do so by designing a special-
ized GAN inversion method, based on an appropriate set of losses for
learning an unmasking encoder. With extensive experiments, we show
that the approach is effective at unmasking face images. In addition, we
also show that the identity information is preserved sufficiently well to
improve face verification performance based on several face recognition
benchmark datasets.

Keywords: Face unmasking · GAN inversion · Face verification

1 Introduction

Face recognition in unconstrained environments is still a challenging problem,
despite the impressive progress of recent approaches based on deep learning [8,
43]. A major factor affecting performance is the presence of occluded parts of
the face. Although face recognition under occlusions is not a new problem [53],
its relevance has been refreshed in light of the COVID-19 pandemic, which has
led to a dramatic increase of people wearing protective masks of various kinds in
public venues. This new status quo is posing challenges to the pervasive use of
face recognition technology, leading to government institutions initiating studies
to better evaluate the effects of face masks on current approaches [36].

There is more than one way to mitigate the loss of performance of face
matchers dealing with face images wearing masks [53], and one of them is to
attempt to reconstruct the face appearance on the occluded region. The main
advantage of this approach is that it can be used to potentially improve the
performance of any face matcher.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Recent approaches for face reconstruction and manipulation based on deep
learning [11,40,41] leverage the extraordinary generative power of these meth-
ods in capturing the statistics of the face manifold [24]. In this work we plan
to harness that capability even further. Differently than previous approaches,
which aim at generic face manipulations, we develop a method that is specifi-
cally focussed on unmasking images of faces wearing masks. Our method does
not involve the detection or segmentation of face masks, and can be used as
a preprocessing step to unmask a face image, which can then be fed to a face
matcher.

We frame the problem as a special instance of a GAN inversion [7,42], where
the GAN network is a StyleGAN2 architecture [24]. We do so by designing a set
of losses and a training procedure for learning an encoder network that maps the
input image of a face wearing a mask onto an appropriate code space of faces
not wearing masks. This is meant to be the input space of the generator network
that will then reproduce the face image without mask.

Ultimately, the challenge is to generate face images that preserve the identity
of the input in order to improve face recognition performance. This is why we test
our approach with several face recognition datasets. In particular, we show that
it can produce compelling face reconstructions with competitive image quality
metrics. In addition, we evaluate extensively how our method works for improv-
ing face verification under several face masking conditions.

2 Relevant Works

Image Recovery Under Occlusion and Recognition. Our work can be
considered as a type of occlusion recovery which coud be used for face recog-
nition [53]. A lot of works treat occlusions as noise and compress the occluded
images/faces down to a lower resolution or latent space. This helps to filter
out the noise and reconstruct the images back at a higher resolution. Some
of these approaches employ more traditional methods like sparse representa-
tions [12,22,22,25,28,32,45,56] and PCA [9,32,38], while others rely on neural
networks [13,17,26,50] to accomplish this task. Our approach is more similar
to the latter. Additionally, some of these methods are occlusion aware and rely
on occlusion segmentation or contours to help with the image recovery pro-
cess [2,5,10,47,51,52]. Therefore, occlusion map prediction is part of their model.
On the other hand, we do not require any kind of occlusion information. Addi-
tionally, some works try to make occlusion neutral feature-extractors/encoders
[6,30] or train the face matching networks to adapt to occlusions [46]. In that
sense, our method is not occlusion neutral, and although we do employ Arc-
Face [8] and FaceNet [43] to help with the training and facial verification tasks,
at no point do we train these matchers.

GAN Inversion. A lot of approaches used local discriminators and global dis-
criminators and trained GANs from scratch to reproduce faces/images free of
occlusions [14,21,27]. Some others used variations of cyclic losses for image/facial
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deocclusion [19,29]. We decided to use a pretrained StyleGAN2 [24] as our gen-
erator. As stated in [1,57], real life face reconstruction via StyleGAN based on
the original W space is a very hard task. Some approaches have extended the
W space to new ones, named W+ [41,49], W∗ [44], p [57] etc, while others
have trained the decoders with various losses to achieve exact facial GAN inver-
sion [7,16,42]. We decided to build our approach based on the W+ space via
the pSp model [41] and keep the generator fixed. Additionally, related to us,
a couple of works employ �-norm losses in the latent space of their StyleGAN
architectures [16,37,40]. However, none of them use the latent space loss for
image recovery or inpainting with StyleGAN.

We also report that [27,39,49] employed face parser losses in the output space
while training for GAN inversion/facial reconstruction). However, our work does
not use such a loss. Perceptual losses like LPIPS were also used by us and other
works [33,49,51]. ID losses based on Facenet, ArcFace, LightCNN etc. were also
used while training for GAN inversion/face unmasking [14,33,37,49,51,55]. Just
like [27,29,33,34,49], we also employed an �-norm loss on the output image space
to help with image reconstruction.

3 Method

Given an image M of a face wearing a mask, we are interested in developing an
approach for face unmasking, which is the task of mapping M onto a new image
U , depicting the same person in M , only without the mask. We assume that the
unmasking process can be modeled by the relationship U = g ◦ f(M), where f
maps M onto a representation w, and g generates U from the representation. We
do not make assumptions about the specific type of face mask, nor do we require
a mask detection or segmentation process to be involved in the unmasking task.
We do however, require the face in M to be aligned in terms of 2D position, 2D
orientation and scale with the nominal alignment of the dataset used for training
the model g ◦ f .

3.1 Baseline Model

In the case when the face in the image M was not wearing a mask, since no mask
needs to be removed, we would expect this condition to be true: U = M . Also,
let us indicate with T

.= U = M the image of the face without mask. Therefore,
the model g◦f0 should behave like a face autoencoder, where the encoder in this
particular case is indicated with f0. While there are several implementations of
face autoencoders [11,40,41], since we are ultimately interested in evaluating how
the approach would improve the performance of face recognition, we want one
that executes face autoencodings that are photorealistic, and that can maintain
face identity. The state-of-the art in that category is the pSp model [41], where
the generator g is a StyleGAN2 network [24], and the encoder f is based on
a feature pyramid model built on top of a ResNet backbone, and followed by
a mapping to a set of 18 styles. The styles capture different levels of image
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detail, roughly divided in three groups, coarse, medium, and fine. Every style is
a 512-dimensional vector. The collection of the 18 style vectors constitutes the
representation w, which is an element of the space referred to as W+ in [41].

The training of the pSp model is approached as a “GAN inversion” task,
meaning that the generator network is trained offline (i.e., StyleGAN2), and is
kept locked while only the encoder f0 is being trained, with the task of “learning
to invert” the operation of the generator. This approach is mainly due to the
success of StyleGAN2 in modelling the face space, and also due to the difficulty
in designing and training such kind of models.

In order to train the encoder f0, the pSp model combines a number of losses.
The fist one is a reconstruction loss based on the �2-norm

LR(T ) = ‖T − g ◦ f0(T )‖2. (1)

The second aims at maintaining the perceptual similarity between input and
reconstructions, and is based on the LPIPS metric P (·) [54]

LLPIPS(T ) = ‖P (T ) − P (g ◦ f0(T ))‖2. (2)

In order to preserve the face identity of the input in the reconstructions, an
identity preserving loss is used to maximize the cosine similarity between the
normalized ArcFace [8] representations AF (·) of the input image and the recon-
struction

LID(T ) = 1 − AF (T ) · AF (g ◦ f0(T )). (3)

The encoder f0, which we refer to as the baseline encoder, is then trained by
minimizing this loss, which is written on a per-image basis as

L0(T ) = LR(T ) + αLLPIPS(T ) + βLID(T ), (4)

where α, and β are hyperparameters striking a balance between the loss terms.

3.2 Unmasking Model

Given an image M with a masked face, we can still make the assumption that in
our original model g ◦ f , g is a face image generator, modeled with StyleGAN2,
and that we keep it fixed. Therefore, training the encoder f becomes a specialized
GAN inversion problem. If T is an image of a face not wearing a mask, we make
the assumption that T is identical to M , except for the area of M corresponding
to the pixels on the face mask.

To train the encoder f we combine several losses, most of which are a modi-
fication of those used to train the baseline model f0. See Fig. 1. Specifically, we
require the autoencoding of M (i.e., U) to be close to T in the �2-norm sense

LR(T,M) = ‖T − g ◦ f(M)‖2. (5)

We also want the autoencoding of M to be perceptually similar to T according
to the LPIPS metric P (·) by minimizing

LLPIPS(T,M) = ‖P (T ) − P (g ◦ f(M))‖2. (6)
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Fig. 1. Unmasking architecture. Overview of the architecture and the losses used
to train the baseline encoder f0, and the unmasking encoder f . The generator g is kept
fixed at all times. T is a face image. M is the same face image wearing a mask. U is
the autoencoded version of M .

In addition, the identity of the autoencoding of M should be as close to the
identity of T as possible, and for that we maximise the similarity between the
respective normalized ArcFace representations AF (·) by minimizing

LID(T,M) = 1 − AF (T ) · AF (g ◦ f(M)). (7)

We also observe that ideally, the baseline model should be such that T =
g◦f0(T ). Therefore, we would want as much as possible that g◦f0(T ) = g◦f(M),
but this could be achieved by simply having f0(T ) = f(M). So, we encourage
that with the loss

LLR(T,M) = ‖f0(T ) − f(M)‖2, (8)

which we name latent reconstruction loss. Finally, the encoder f , which we refer
to as the unmasking encoder, is trained by minimizing this combined unmasking
loss, which is written on a per-image basis as

LUM (T,M) = LR(T,M) + αLLPIPS(T,M) + βLID(T,M) + γLLR(T,M), (9)

where α, β, and γ are hyperparameters striking a balance between the loss terms.
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Table 1. Datasets. Quantitative summary of the datasets used.

Name Original # of
images

Total # of
masked images

# of train,
test IDs

# of train, test
images

FFHQ 70000 69794 —,— 55811, 13593

CelebA 202599 196999 8141, 2036 157597, 39402

LFW 13233 13168 4754, 1144 10794, 2374

RMFRD 2118 M + 90468 806 218, 64 597, 209

3.3 Datasets

Because of the pandemic, there is a number of datasets and tools to add masks
to face images. For instance, Masked-FaceNet is a dataset with faces from the
FFHQ dataset wearing masks correctly and incorrectly [4], RMFD is a collection
of real world masked faces, including also face images with same identity not
wearing masks [48], and so is DS-IMF [35]. The MAFA dataset [15] has a lot of
real world masked images, but neither with identification information nor with
corresponding identities without wearing masks. In our experiments we used the
FFHQ dataset [23], CelebA [31], and LFW [20], and we used the MasktheFace
toolkit [3] to create the pairs of face images (T,M), where M is a version of
T with a synthetic mask added. Note that the MasktheFace toolkit failed to
mask faces of certain images and those were not included in further training
and testing of the models. In addition, we used a subsection of RFRD called
RMFRD, which has real life masks only. Table 1 gives details on the size of the
datasets used.

3.4 Implementation Details

For training our approach, we assume that a StyleGAN2 generator model g is
given to us and is kept locked. Then, we train the baseline encoder f0 with the
loss (4). Subsequently, we use f0 to initialize the unmasking encoder f , and we
train it with the loss (9). Also, we conduct the experiments by first learning
the model for the dataset with higher resolution, and then we use the baseline
model to initialize the baseline model of the dataset with the immediate smaller
resolution. So, we start from the FFHQ dataset [23], then we process CelebA [31],
then LFW [20], and finally RMFRD [48].

The generator g based on StyleGAN2 allows to generate images at 1024 ×
1024 resolution with an architecture based on 18 layers. It is also possible to
use only the first 14 layers of StyleGAN2 and work with a model that generates
images at 256×256 resolution [41], which is also much faster to train. We verified,
as reported in Sect. 4, that working with the smaller network does not affect face
verification results significantly, since the images are downscaled before feeding
them to the face matcher. Therefore, unless otherwise stated, we always use the
model with the smaller 14 layers generator architecture.
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The approach we use assumes that the input images have faces that are
sufficiently aligned. This is the case for FFHQ and CelebA. For LFW, we used
the deep funneled images [20], which correct for the orientation of the faces and
properly align them. We also crop a 150×150 region out of the original 250×250
images to leave out image areas containing significant background clutter that
were making the training difficult to converge. Note also that the cropped images
were then resized up to 256 × 256 prior to be used.

Additionally, RMFRD has very low quality images and a very variable reso-
lution, and it is in general a very challenging dataset. Because of this, we used
OpenCV to only keep faces where we could detect both eyes, and we rotated
the faces to make the eyes horizontal, and resize them to 256 × 256. Moreover,
this dataset has faces wearing real masks as M images, and there are no iden-
tical images with faces without masks as T images. Therefore, the training is
approached in two phases. First, we used the unmasked faces in the training set
to train the baseline and the unmasking models just like we did for the other
datasets. Second, we fine-tune the model with the images with real masks as fol-
lows. The losses (5) and (6) are computed based only on the periorbital region of
the face because it is visible, which is identified automatically from the position
of the eyes. The loss (7), instead, uses as T , an image with the same identity and
that is not wearing a mask. Finally, in the loss (8) T is replaced with an estimate
T̂ of a face image without mask, generated by g to have the same periorbital
region of the masked face in the M image according to the �2-norm.

4 Experimental Results

We evaluate our unmasking model extensively, by providing results pertain-
ing the unmasking of face images wearing masks, the image quality metrics of
those images, and we evaluate to what extent the unmasking process might help
improving the performance of a face matcher. We use four datasets, FFHQ [23],
CelebA [31], and LFW [20], and RMFRD [48], and two face matchers, ArcFace
[8] and FaceNet [43].

Face Verification Notation. The face verification experiments are conducted
with different unmasking settings. The notation used to indicate these settings is
defined as follows. MM indicates when both the probe and the gallery face images
are masked. MT indicates when the probe image is masked and gallery images
are not. UU indicates that both probe and gallery images were originally masked
but they were both unmasked by our approach before verification. UT indicates
that the probe was originally masked but was unmasked by our approach before
verification and the gallery images were not masked. TT indicates when the
probe and the gallery images were not masked. This is expected to provide the
upper bound results.

18 Layers vs 14 Layers Architecture. We compared the two generator archi-
tectures based on 14 and 18 layers in terms of face verification performance as
well as image quality of the unmasked images. A key difference between the
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(a) FFHQ (b) CelebA

(c) LFW (d) RMFRD

Fig. 2. Face unmasking. Qualitative face unmasking results on various datasets. For
each row we have original face image (T ), masked image (M), and unmasked image
(U).

architectures is that the 14 layers provides 256 × 256 images and the 18 layers
provides 1024 × 1024 images. Table 2 shows the results on CelebA. The met-
rics used are area under curve (AUC) for face verification, and peak signal to
noise ratio (PSNR) and structural similarity index measure (SSIM) for image
quality [18]. The main conclusion is that the difference between architectures is
not significant. For AUC purposes, this is not surprising because the images are
downsampled to 112 × 112 for the face matchers. Also, the pSp framework only
accepts input at a resolution of 256×256. Therefore when calculating SSIM and
PSNR, the 1024 × 1024 images are downsized to 256 × 256 for the model input
and the resulting output quality is very similar to that of the 14 layers model.
The 18 layer model has slightly better facial verification AUCs because it has
more expressive power. On the other hand, the 14 layer model has marginally
better SSIM and PSNR values because it has to produce images at a lower scale.
Therefore, in the remaining experiments we used the 14 layered architecture,
which also allows for a faster training time.

Face Unmasking. We conducted face unmasking experiments with the four
datasets FFHQ, CelebA, LFW, and RMFRD. Qualitative unmasking results can
be seen in Fig. 2. The unmasked images have resolution 256 × 256. For FFHQ
the mask was simply black, for CelebA and LFW we show the case of different
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Table 2. Architecture depth. Effects of the generator network depth on face veri-
fication in terms of AUC, and unmasking image quality in terms of PSNR and SSIM.
The dataset used is CelebA.

Architecture UU UT PSNR SSIM

14-layer 0.9590 0.9422 19.00 0.75891

18-layer 0.9596 0.9440 18.51 0.75568

Table 3. Face verification. AUC, SSIM, and PSNR values of an ablation study of
the unmasking loss for different face verification settings. ArcFace was used as face
matcher.

Dataset LR LLPIPS LID LLR
MM

UU

MT

UT
TT SSIM PSNR

FFHQ 0.69450 17.92

CelebA
0.825

0.750

0.824

0.750
0.891

CelebA
0.825

0.833

0.824

0.840
0.891 0.72905 18.30

CelebA
0.931

0.952

0.940

0.964
0.984

CelebA
0.931

0.947

0.940

0.962
0.984

CelebA
0.931

0.959

0.940

0.971
0.984 0.75891 19.00

LFW
0.952

0.944

0.958

0.958
0.990

LFW
0.952

0.957

0.958

0.968
0.990 0.67737 17.04

RMFRD
0.602

0.609

shape and color masks added, and the masks in RMFRD are real masks worn
by the subjects.

Ablation of the Unmasking Loss. In Table 3 we report an ablation study
where in the unmasking loss (9) we include only the components indicated. We
do so for a face verification experiment using the CelebA, LFW, and RMFRD
datasets. The AUC values highlight the contribution coming from using only
LR, only LLR, and how much performance deteriorates when each of them is
removed from the full model.

The first two experiments in Table 3 concentrate on the cases when the model
is only trained with either LR or LLR. The facial verification results for these
two models only use 3000 images from the test dataset (the rest of the models
use the entirety of the test dataset). Please note that LR is not enough to learn a
model where the UU case is better than the MM, or the UT case is better than
the MT, highlighting the fact that adding the LLPIPS and LID is important
for LR. For CelebA, a model with only LLR allows the UU and UT cases to
outperform the MM and MT cases respectively, but adding the rest of the losses
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T M U(5) U(8) U(5) +(6) +(7) U(9)

Fig. 3. Ablation of face unmasking. Left two images: original face image (T ) and
same image with mask (M). The right four images are unmasked versions of M obtained
with different models.

further increases the facial verification AUCs by a large margin. Additionally, for
LFW, which is a lower resolution dataset, removing LLR causes UU and UT to
not outperform MM and MT respectively, further highlighting its importance.
The final takeaway is that the full model allows for UU and UT to surpass MM
and MT, respectively, and allows to approach the upper bound set by the TT
scenario.

Also, Table 3 summarizes the results on image quality metrics such as SSIM
and PSNR. LFW has lower metrics than the other datasets because it has the
lowest quality images, especially due to the aforementioned cropping of the T ,
and M images from a size of 250 × 250 to 150 × 150 followed by an upsampling
to 256 × 256. Additionally, FFHQ also performs worse than CelebA because the
comparison between U and T is done at a resolution of 256 × 256, for which
the T has to be downsampled, which detrimentally affects the SSIM and PSNR
metrics. CelebA images, instead, are three times more than FFHQ for training,
and are upsampled from 178 × 218 to 256 × 256, suffering the least amount of
distortion. Finally, the CelebA model with only LLR performs worse than the
full model in terms of both SSIM and PSNR. This is because the latter has more
constraints to satisfy, which gives better GAN-inversion results. More qualitative
results can be seen in Fig. 3, which follows similar trends.

Figure 3, instead, shows a qualitative ablation of the unmasking results,
obtained by progressively adding more components in the unmasking loss (9).
From the left, we have the original face image (T ), and the version wearing the
mask (M), followed by an unmasked face (U) with a model trained only with LR,
which is rather blurry, despite the fact that the generator is a StyleGAN2 net-
work that produces sharp face images. Then, fourth from the left, the unmasked
face was obtained with a model trained only with LLR, which is relatively sharp,
but the identity drift is noticeable. Second from the right, the unmasked face was
obtained with a model without only LLR, whereas the last image was unmasked
by the full model.

Face Verification with FaceNet. In Table 4 we report face verification results
on CelebA and LFW based on FaceNet [43] as the face matcher. The train/test
split used are the same as those used in the complete LUM models in Table 3.
Note that the results establish the same relationships between the various set-
tings as those deductible from Table 3. This is relevant because now we have
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trained the unmasking models with one face matcher (i.e., ArcFace), while we
have tested them with another one (i.e., FaceNet), confirming that even the pre-
vious results were not subject to strong biases, since models were trained and
tested with the same face matcher, since ArcFace is used in the loss (7).

Table 4. Face verification. AUC face verification results on CelebA and LFW.
FaceNet was used as face matcher during testing.

Dataset LR LLPIPS LID LLR
MM

UU

MT

UT

CelebA
0.832

0.868

0.814

0.867

LFW
0.9834

0.9833

0.9844

0.9845

5 Conclusions

In this work we have proposed a method for unmasking the face image of a
subject wearing a mask. We formulate the problem as a GAN inversion, because
we leverage the generative modeling of the face manifold of current methods.
We designed a set of losses to learn an unmasking encoder that enables map-
ping the input image onto a new face image. Our set of experiments show that
the unmasking process recovers compelling face images, with competitive image
quality metrics. In addition, by testing the unmasking process with two face
matchers, our set of results on face verification confirms that the identity is pre-
served sufficiently well to provide a consistent significant improvement on three
commonly used face recognition benchmarks.

Acknowledgements. This material is based upon work supported in part by the
Center for Identification Technology Research and the National Science Foundation
under Grants No. 1650474 and No. 1920920.

References

1. Abdal, R., Qin, Y., Wonka, P.: Image2StyleGAN: how to embed images into the
styleGAN latent space? In: IEEE ICCV, pp. 4432–4441 (2019)

2. Abdal, R., Zhu, P., Mitra, N.J., Wonka, P.: Labels4Free: unsupervised segmenta-
tion using StyleGAN. In: IEEE ICCV, pp. 13970–13979 (2021)

3. Anwar, A., Raychowdhury, A.: Masked face recognition for secure authentication.
arXiv preprint arXiv:2008.11104 (2020)

4. Cabani, A., Hammoudi, K., Benhabiles, H., Melkemi, M.: MaskedFace-Net-a
dataset of correctly/incorrectly masked face images in the context of COVID-19.
Smart Health 19, 100144 (2021)

5. Chen, Y.A., Chen, W.C., Wei, C.P., Wang, Y.C.F.: Occlusion-aware face inpainting
via generative adversarial networks. In: IEEE ICIP, pp. 1202–1206. IEEE (2017)

http://arxiv.org/abs/2008.11104


Learning Representations for Masked Facial Recovery 33

6. Cheng, L., Wang, J., Gong, Y., Hou, Q.: Robust deep auto-encoder for occluded
face recognition. In: ACM International Conference on Multimedia, pp. 1099–1102
(2015)

7. Daras, G., Dean, J., Jalal, A., Dimakis, A.G.: Intermediate layer optimization for
inverse problems using deep generative models. arXiv preprint arXiv:2102.07364
(2021)

8. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for
deep face recognition. In: IEEE CVPR, pp. 4690–4699 (2019)

9. Deng, Y., Dai, Q., Zhang, Z.: Graph Laplace for occluded face completion and
recognition. IEEE TIP 20(8), 2329–2338 (2011)

10. Din, N.U., Javed, K., Bae, S., Yi, J.: A novel GAN-based network for unmasking
of masked face. IEEE Access 8, 44276–44287 (2020)
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Abstract. This work proposes a novel approach based on deep learn-
ing to address the classification of shrimp (Pennaeus vannamei) into
two classes, according to their level of pigmentation accepted by shrimp
commerce. The main goal of this actual study is to support the shrimp
industry in terms of price and process. An efficient CNN architecture is
proposed to perform image classification through a program that could
be set other in mobile devices or in fixed support in the shrimp supply
chain. The proposed approach is a lightweight model that uses HSV color
space shrimp images. A simple pipeline shows the most important stages
performed to determine a pattern that identifies the class to which they
belong based on their pigmentation. For the experiments, a database
acquired with mobile devices of various brands and models has been
used to capture images of shrimp. The results obtained with the images
in the RGB and HSV color space allow for testing the effectiveness of
the proposed model.

Keywords: Pigmentation · Color space · Light weight network

1 Introduction

The actual report on shrimp export shows that Ecuador in the last 3 years
has become the main supplier of shrimp in the world. By 2022, 209 million
pounds were exported representing USD 599 million dollars. It represents of 37%
compared with the same period (cited from National Chamber of Aquaculture,
2022). The shrimp industry has evolved in the last two decades, which leads to
the mandatory automation of manual processes in any of its production stages.
Therefore, technology has become the best ally to improve productivity and
quality control. Especially, in those countries where this industry has become
one of the pillars of the gross domestic product, reaching export levels that
place them as the first in the world. Following the importance of this industry,
the use of technology based on computer vision nowadays has been developing
very fast to support the automation of critical processes from the farm to the
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processor. In particular, those most susceptible to human error for quality control
or classification of subtypes for dealing with the right price between the farmer
and processors, as well, an efficient packaging and distribution processes. One
of the most failure-prone processes visually evaluated the shrimp based in color
(varies farm to farm) and the manual shrimp class classification made by a
specialist. This task has always been tedious and time-consuming, dependent on
the specialists who perform it, and prone to human error. These tasks become
more complex when the objects to be classified are aquatic species that are
susceptible to rapid deterioration due to high temperatures or constant handling.
Provide the right deal price and final market is base in score visually and hand
made set.

A special case of the object is the shrimp which, being a product of mass
consumption in many countries, has become crucial to have automated processes
with the least incidence of manual activities to classify them. Therefore, in this
work, it is proposed to implement algorithms based on computer vision and
deep learning to classify shrimp (Pennaeus vannamei) more quickly, efficiently,
and with fewer incidents or failures. With this proposal, a classification method
is developed that allows determining, based on a trained model, the type of
shrimp according to its pigmentation. These processes are intended to reduce the
time and costs of the shrimp at packaging process. Since shrimp industries have
evolved last decade, there are various techniques based on computer vision to
identify, classify and segment shrimp. For example, in [13], a method is proposed
to detect the freshness of shrimp captured by mobile devices, using a deep learn-
ing architecture. Another approach that discriminates shelled shrimp (Metape-
naeus ensis) by their status between fresh, frozen-thawed, and cold stored using
hyperspectral imaging applying successive projections algorithm (SPA) is pre-
sented in [9]. Similarly, in Liu et al. [5] the authors propose a shrimp recognition
based on a computer vision approach to determine the freshness of shrimp before
shipment to distribution centers for human consumption.

In the current work, a novel computer vision-based approach is proposed for
shrimp class classification. In this approach, we explore the use of color space
imaging to train our model to determine if working in another color space other
than the RGB one can improve the results obtained in the validation of the
model. We have trained our model using images from the RGB and HSV color
spaces. The core idea is to validate the effectiveness of the classification results on
each color space image dataset. Additionally, in our research, we have generated
our own set of good-quality images of shrimp in the same packaging line and
shrimp harvested at the farm. To fulfill this task, we have used a set of cameras
from mobile devices to capture the images of the shrimp with different lighting
level that considerably increase the shadows in the shots and not facilitates
the focus of the shrimp in the images. Likewise, the shrimp images have been
captured in different environments or scenarios.

The proposed pipeline consists of firstly capturing shrimp images, then
images are labeled by experts, and these images are used then for training
the proposed architecture. We propose a lightweight network that classifies the
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Fig. 1. Pipeline for shrimp classification.

shrimps into two out of the four classes according to their pigmentation. Due to
the imbalance present in the data set, where the samples of one of the classes are
almost 30% larger, we augment the dataset with less samples and undersample
the larger class. Another limitation is the similarity that the shrimp samples of
categories present to each other. Those limitations can lead to the network failing
to learn in its early stages and thus minimizing the performance of the resulting
trained model. In the architecture, to reduce the problem caused by the dis-
carding of negative information, it is proposed to use the Leaky ReLu activation
function, which allows the information to maintain the necessary variability in
the outputs of the model layers so that they remain differentiable and the model
can continue learning. The main contributions in the paper are summarized as
follows:

– A dataset with labeled images have been generated; it contains high-quality
data to be used for training deep learning-based approaches. This dataset
contains images from different points of view, illumination, and backgrounds.
The dataset corresponds to a variety of shrimp species named Penaeus van-
namei. This dataset will be available for the computer vision community.

– A lightweight CNN architecture is proposed, to support the automation of the
shrimp classification for a massive distribution market. The model is trained
using our dataset and it achieves better results compared with other models
of state of the art.

The manuscript is organized as follows. Section 2 presents works related to the
classification problem, which serve as the baseline to design our image acquisition
system, the image preprocessing, and the proposed architecture presented on
the pipeline. Section 3 presents the proposed shrimp classification architecture.
Experimental results and comparisons with different implementations are given
in Sect. 4. Finally, conclusions are presented in Sect. 5.
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2 Related Work

As described above, this paper presents an approach to perform shrimp classi-
fication according to their pigmentation. To define the best architecture design,
different approaches have been reviewed in the literature for shrimp classifica-
tion. Some of these techniques are based on color information, and patterns
detected, among others. In this section, some relevant techniques related to this
topic have been summarized.

Most of the techniques are based on deep learning, however, some approaches
are proposed using classical computer vision techniques or machine learning
models. One of the approaches based on machine learning is presented in [8]
where the authors propose a method to detect the freshness of shrimp. The
method is based on the use of labels that change their color depending on
the state of the freshness of the shrimp. The label detects the high content
of flavonoids present in shrimp. With the collected information, the authors
have implemented an algorithm based on the near neighbors model of machine
learning to perform the classification and quantization of the sensed colors. Addi-
tionally, another machine learning-based approach was proposed by Carbajal et
al. [1], where the authors propose a fuzzy logic inference system based on an
abstract to classify shrimps’ habitat quality to solve a biological problem.

Another approach based on the use of CNN and logistic regression has been
presented in [11]. It uses visible and near-infrared hyperspectral imaging tech-
niques to discriminate the freshness of shrimp while frozen. Shrimps have been
classified into two classes according to their freshness grades (fresh and stale).
Each grade is defined based on its volatile basic nitrogen level. A similar app-
roach is presented in [12] where the authors propose a hyperspectral imaging
algorithm that combines machine and deep learning techniques to extract spec-
tral features. This proposed approach can estimate the total volatile basic nitro-
gen (TVB-N) existing on Pacific white shrimps’. On the other hand, in [3], a
CNN approach called ShrimpNet is proposed to classify six types of shrimp cat-
egories. This architecture can perform shrimp recognition to support the sources
of animal protein available for human consumption. Instead, for shrimp quality
control, in [4] the authors propose a CNN model that detects the presence of
soft-shell on the body of shrimp and determines its level of deterioration. The
called Deep-ShrimpCL proposed network introduces combined self-learned fea-
tures in each layer of the model to optimize local receptive fields. Following the
line of classification of shrimp characteristics, in Ma et al. [6], the authors have
designed a deep learning network. This network allows monitoring the freshness
of the shrimp by recognizing the fingerprint of the smell. This model has used
the Wide-Slice Residual Network for food Recognition 50 (WISeR50) [7].
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Fig. 2. Shrimp classification architecture using HSV dataset

Fig. 3. Shrimp classification architecture using RGB dataset

3 Proposed Approach

3.1 Acquisition

To carry out the generation of the dataset, different models of smartphones with
different image resolutions, heights and perspectives were used. To facilitate the
task of labeling by the experts, physical labels were placed with the name of
the category to which each photographed shrimp belonged. Figure 4 shows some
examples of the images captured from smartphones. Since the images of each
shrimp also contain the category label they belong to, a simple pre-processing
has been done to leave only the shrimp in the image and later use these images for
training the neural networks. To carry out this task, a script written in Python
was used that semi-automatically selects the area where the shrimp is, cuts the
image, and saves it in PNG format in a folder where they were organized by
category.
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Class: 1 Class: 2

Fig. 4. Some illustration of different point of views of the acquired dataset

3.2 Preprocessing

Once the shrimp dataset has been correctly labeled according to its pigmen-
tation categories, it proceeds with the preprocessing before model training. To
carry out the classification of shrimp, a set of experiments has been prepared
to perform the classification designing a model with a lightweight parameters.
Only two of the four categories has been considered in this study, considering
the class of shrimp required by the market and final product. The data set has a
great similarity in its identifying characteristics. Also as mentioned before, our
dataset is not balanced, there are more samples in one category than the other
category which makes it more difficult to generalize the model. To overcome this
limitation we have proposed training not only with RGB color space images, but
HSV color spaces. We have included images converted to the HSV color space
to improve the extraction of relevant shrimp features and facilitate the classi-
fication process. Also we have reduced our dataset samples to balanced both
categories, introducing a more challenging problem. Also, we have applied data
augmentation to increase the amount of data available for training, to reduce
overfitting, and finally for improving the generalization of the model.

3.3 Classification

A novel-lightweight network has been designed to classify shrimp according to
their pigmentation. This deep learning based network has been designed to dif-
ferentiate the pattern of the two categories of shrimp using both color spaces
(RGB-HSV). In order to speed up the training time and overcome the unbalanced
dataset size we have applied fine tunning by using the weights of deep networks,
such as VGG [10] or ResNet [2]. As mentioned above, we have defined the use
of the data set in the HSV color space, since during the experiments, training
took less time and better classification efficiency metrics were obtained. The
proposed networks have fewer parameters compared to state-of-the-art models
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that use RGB images. The mentioned architectures for both color spaces (RGB,
HSV) are shown in Figs. 2 and 3, called ShrimpCL.

Both lightweight models receive as input the set of categorized images. The
model designed for RGB image classification consists of five layers: four con-
volutional layers defined with kernels of size 3 and two fully connected layers.
For the model with HSV images, it has been built with 7 layers: six convolu-
tional layers defined also with kernel size of 3 and two fully connected layers.
Both models use a cross-entropy loss function to measure the performance of
the classification model. In addition, the model includes a LeakyRelu activation
function after each convolution and a maximum grouping operation of maximum
group layer features to summarize the results of the convolution operation. The
last two layers are fully connected, the first one receives the output of the last
convolutional layer, which allows connecting all the outputs of the convolution
operation, as it was done in the multilayer perceptron technique.

For the classification model with RGB images, the first fully connected layer
consists of 512 nodes, while for the HSV model it consists of 1024 nodes. The
last fully connected layer in both models (RGB and HSV) enables class scoring
using the softmax activation function, to obtain the probability distribution cor-
responding to each class type. The models support multiclass classification, in
our case only two classes are needed. If it is required to modify the number of
classes, it is only necessary to modify the number of nodes of the last fully con-
nected layer of the proposed models. To extract the pattern able to differentiate
the categories of shrimps’, in our architectures, we have applied a large recep-
tive field in each layer and also, we have applied Leaky relu, reducing the slope
during training for negative values resulting in the convolutional operations.

ShrimpCL networks for each color space have been trained from scratch using
the Nesterov ADAM (NADAM) optimizer with a learning rate of 0.00027, which
provides faster model convergence and generalization. The following section
shows the results obtained from each of the experiments carried out and the
corresponding comparisons are made to validate the efficiency of the designed
models and determine which one presents the best results. The obtained results
are presented in the next section.

4 Experimental Results

This section presents the obtained results with the classification networks
designed to identify two categories of shrimp according to their pigmentation.
The architectures have been designed to receive shrimp samples from each cat-
egory labeled as input based on the color spaces of the images used. These
architectures have been evaluated with images of different color spaces, that
is, they have been evaluated in two scenarios: i) classification problem of two
classes of shrimp samples of RGB color space, and ii) problem classification of
two classes with shrimp samples of the HSV color space. In addition, as pre-
viously indicated, two representative state-of-the-art architectures (i.e., VGG16
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[10] and ResNet50 [2]) have been fine-tuned and it has been possible to deter-
mine which network obtains the best metrics. The results obtained are used to
make the corresponding quantitative comparisons.

The two-class classification approach was trained using a set of 1,300 images
(800 images for training, 300 images for testing, and 200 images to validate the
trained model).

It is important to mention that in order to select the best architecture,
not only the quantitative values of efficiency for each category of shrimp have
been considered, but also the average efficiency of the model and the number of
parameters of the proposed architecture. As mentioned above, according to the
obtained results, the model proposed for the images of the HSV color space is
the one that has obtained the best quantitative metrics. In particular, the values
are higher for the case of one of the classes (Class 1) and remain the same in the
other class (Class 2), when compared to the model evaluated with images of the
RGB color space.

The proposed architecture using HSV images is lighter than the shrimp clas-
sification architecture using RGB images. Since this model has fewer parameters,
it is trained in less time, without affecting the efficiency of the classification. The
results of the proposed lightweight network, ShrimpCL for HSV images, can be
seen in Table 1, for the two-class classification problem. The table also shows,
the results of the first classification model using RGB images designed for the
experiments, but later improved with a lighter architecture. Also, include the
state-of-the-art models, such as VGG-16 [10], ResNet-50 [2] and ShrimpCL for
RGB images evaluated in this paper. As can be seen, the proposed lightweight
architecture using the HSV color space images shows better quantitative results
than all previous approaches. Furthermore, it should be noted that the proposed
HSV architecture requires fewer parameters than our approach using the RGB
color space and more than two hundred times fewer parameters than the VGG
architecture.

Table 1. Results of shrimp classification

Network architecture Categories Metrics

Class 1 Class 2 Avg.
acc

# of net.
param.

VGG16-RGB 0.960 0.968 0.964 134268K

RESNET50-RGB 0.890 0.946 0.918 23591K

ShrimpCL for RGB 0.963 0.950 0.956 1646K

ShrimpCL for RGB-Ligth-Weight 0.972 0.965 0.968 593K

ShrimpCL for HSV-Light-Weight 0.981 0.973 0.977 473K
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5 Conclusions

This work tackles the challenging problem of classifying shrimp based on their
pigmentation. Taking into account that the pigmentation characteristics between
the defined classes are similar in some cases of the samples of the data set, as
well as the number of samples for each class, it is not necessarily balanced,
which complicates the design of the proposed solution. This lightweight CNN
classification model has been validated using shrimp images in the HSV color
space. The results prove that using this color space reduces the complexity of the
problem. This is because the characteristics detected in the images become more
distinguishable. Therefore, the efficiency in the classification of shrimp based on
their pigmentation is improved. Model validation could be extended with other
shrimp categories and explore the use of other color spaces or spectra to identify
patterns presented in the shrimp images.
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Abstract. Gait Emotion Recognition is an emerging research domain
that focuses on the automatic detection of emotions from a person’s
manner of walking. Deep learning-based methodologies have been proven
highly effective for computer vision tasks. This paper provides a powerful
deep-learning architecture for emotion recognition from gait by introduc-
ing the fusion of domain-specific discriminative features with latent deep
features. The proposed Bi-Modal Deep Neural Network (BMDNN) com-
bines salient features extracted from a deep neural network with highly-
discriminating handcrafted features. The proposed architecture outper-
forms state-of-the-art methods in all emotional classes on the Edinburgh
Locomotion MoCap Dataset.

Keywords: Human motion · Deep learning · Long short-term
memory · Gait · Emotion recognition · Laban movement analysis

1 Introduction

Gait Emotion Recognition (GER) is defined as the inference of human emotions
by analyzing a person’s manner of walking. It is an emerging domain of research,
significant for computer vision applications, namely gaming, virtual reality, and
human-robot interactions. The data collection for GER systems does not require
the subject’s cooperation. Recognition can be performed from a distance, and is
non-intrusive [1]. Furthermore, it can be adopted for a wide range of applications,
such as fall prevention in smart homes [2], disaster management [3], medical
diagnostics [4], and emotionally aware robot design [5].

Gait analysis requires coordinates of body joints over time collected using
motion capture systems [6], depth-based sensors [7], or extracted from videos of
people walking using pose-estimation [8]. The data can then be categorized into
emotions. Two popular emotion representation models are: the Distinct Cate-
gories (DC) model and the Pleasure Dominance Arousal (PDA) model [9]. The
DC model considers mutually exclusive emotion classes, while the PDA model
presents a continuous three-dimensional space where Pleasure, Dominance, and
Arousal are the axes. The Distinct Categories model is adopted in our research.

Preliminary works on GER were based on traditional Machine Learning (ML)
methodologies [10,11]; however, those approaches only explored a handful of
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specific features, which resulted in average performance. Incorporating Deep
Learning (DL) techniques to produce and exploit larger feature sets have only
recently started to be investigated [5]. Graph and pseudo-image based method-
ologies benefit from inherent structural information of the human body, but fail
to explore low-level features between distant vertices. Works based on Recurrent
Neural Networks (RNN) process gaits as sequences to explore all dependencies,
but use ineffective training methodologies or a sub-optimal network. Further-
more, DL methods generally require substantial amounts of data to perform
well. Subsequently, the lack of large datasets for GER resulted in researchers
relying on synthetic gaits or mixed datasets [12]. Therefore, a powerful neural
network that processes gaits sequentially and is trained on real gaits for emotion
recognition, is required to address the above mentioned research gaps.

This paper answers the following research questions:

1. Can domain-specific handcrafted features be fused with latent deep features
to improve gait emotion recognition performance?

2. Can the gait emotion recognition performance be enhanced by combining and
processing handcrafted features with raw gait data?

3. Can handcrafted features be used to make a deep learning model resilient to
class imbalance in the dataset?

4. How Laban Movement Analysis feature groups affect the performance of a
sequential neural network?

In this research, for the first time domain-specific handcrafted features
based on Laban Movement Analysis (LMA) are combined with latent features
extracted from a Deep Neural Network (DNN). A sequential neural network
based on Long Short Term Memory (LSTM), and Multi Layered Perceptrons
(MLP) is proposed to facilitate feature fusion. Unlike prior research, the fused
feature set is processed further to extract information-rich high-level features
before classification. Furthermore, L2 regularizers are employed to ensure a high
performance across all emotion classes. Additionally, the effects of various LMA-
based feature groups on GER performance are studied. The contributions of this
research are:

1. A novel fusion of robust LMA-based domain-specific handcrafted features
with latent features extracted from a deep neural network is proposed.

2. A powerful Bi-Modal Deep Neural Network (BMDNN) to facilitate the com-
bination and processing of the handcrafted features with deep latent features
is introduced.

3. A comprehensive analysis of GER performance with respect to different LMA-
based feature groups is conducted.

4. An ablation study of the proposed deep learning architecture is performed to
validate the performance on imbalanced dataset of real gait samples and the
importance of the introduced feature fusion.

The performance of the proposed methodology is evaluated on the Edinburgh
Locomotive MoCap Dataset [13] by performing comparison with most recent
state-of-the-art methods. The results show that the proposed model outperforms
all recent methods with the highest class and mean Average Precision.
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2 Related Works

The research conducted on GER can be broadly classified into: classical ML-
based and DL-based approaches.

Most ML works in GER were focused on producing an information-rich fea-
ture vector to classify emotions. One of the earliest work was published by
Janssen et al. in 2008 [14] to measure the force applied by the subjects dur-
ing emotional walks. In 2010, Karg et al. [10] used two feature sets based on
statistical parameters and eigen-postures to train Näıve Bayes (NB), Nearest
Neighbour and Support Vector Machine (SVM) classifiers. Venture et al. [15]
used a similarity index-based classification for a feature vector based on auto-
correlation matrices of degrees of freedom of body joints. In 2016, Li et al. [16]
applied Discrete Fourier Transform to identify key frequencies in gait trajec-
tories to build a feature set. The domain witnessed other interesting works on
accelerometer-based GER [17]. In 2018, Ahmed et al. [18] refined ten gait feature
groups by Analysis of Variance (ANOVA) and Multivariate ANOVA to achieve
better GER performance. However, the reliance on domain-specific handcrafted
features did not ensure optimal results. Therefore, the recent works explored
automatic feature extraction using data-centric DL algorithms.

Using DL methods for GER recognition is the latest development in this
domain. The first methodology proposed by researchers for GER was based
on Graph Neural Networks (GNNs). In 2018, Yan et al. [19] devised a graph-
based representation that utilized temporal connections between corresponding
body joints. This Spatial-Temporal Graph Convolution Network (STGCN) was
extended by adding an average pooling and a 2D convolution layer to extract
deep features in [12]. However, the training data was not representative of the
gait data collected in the real world and resulted in low performance.

In 2019, Randhavane et al. [20] proposed a LSTM-based network to produce
deep features to fuse with affected features. Similar to [12], the limitation of
dataset size was addressed by synthetically generating gaits. The method, how-
ever, had an ineffective LSTM and classification module, and did not demon-
strate good emotion classification performance. In 2020, the same authors [5]
represented gaits as pseudo-images and processed them using a Convolutional
Neural Network (CNN). In 2020, Bhattacharya et al. [21] proposed hierarchical
processing of gaits using Gaited Recurrent Units, which offer less control over
the memory cell when compared to LSTMs.

All DL approaches required substantial data to train a neural network. Paired
with a lack of gait datasets for emotion classification, some authors resorted to
train models on artificially produced gaits [12,20,21]. Hence, their training data
was either non-representative of real gaits or had too much variation. Some meth-
ods relied on adding affective features to improve the robustness [12,20]; however,
the feature sets were limited. Moreover, the features were introduced directly
to the classifier, hence the assessments were made using low-level information.
Graph and pseudo-image based methods [5,12] processed gaits structurally to
benefit from skeletal dependencies of the human body. Actions occurring in dif-
ferent localities of the skeleton can indicate the same emotion. However, due to
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a rigid structure used in graph-based methods, such low-level features were not
explored. On the other hand, RNNs processed gait data sequentially to exploit
all possible joint dependencies. Regardless, the only works based on sequential
networks used ineffective feature extraction module [20] or a training methodol-
ogy that was not aligned with emotion classification [21].

Laban Movement Analysis (LMA) [22] has been effective at discriminating
emotions from body movements [23]. However, no prior DL work combined the
powerful LMA-based handcrafted features with features extracted using a DNN.
The domain has also not seen works that process handcrafted and deep features
together to derive more information-rich features. Additionally, the sensitivity
of DL models toward the data distribution was not studied. These gaps are
addressed in the proposed research.

3 Methodology

This paper proposes a novel fusion of deep features extracted using a sequential
neural network and robust domain-specific handcrafted features (see Fig. 1) to
address the limitations mentioned in Sect. 2. The proposed architecture employs
LSTM units to extract sequential and temporal gait features for emotion recog-
nition by exploiting the dependencies among all body joints. Moreover, robust
handcrafted features: Joint Relative Distances (JRD) and Joint Relative Angles
(JRA) [1], are included to determine the relative geometric motions and direc-
tions of body joints and are inputted into the first module. All possible relative
angles and distances are considered in the proposed method to overcome the
limitation of favouring only a few body joints. The stability and recognition per-
formance are further improved by incorporating domain-specific LMA features
to capture the dynamic structural properties of a subject’s body while walking.
Information-rich LMA-based features are fed to the MLP subnetwork to fuse
with deep features which results in robustness and resilience to the imbalanced
dataset. The proposed method achieves remarkable precision scores across all
emotion classes and outperforms all recent state-of-the-art methods.

The entire DNN has an attenuated design where each layer comprises lesser
or equal number of units than the previous one. This ensures that the informa-
tion is condensed towards the end of the network. The Bi-Modal Deep Neural
Network (BMDNN) consists of two modules; the LSTM-based feature extraction
module sequentially processes gait data to produce a rich feature vector. The
second module, the MLP-based decision module is responsible for combining and
condensing the information extracted by the LSTM subnetwork and the features
calculated using LMA, and to map to the four emotion classes. Moreover, the
batch normalization layer in the MLP module ensures lower loss during training
with fast and smooth parameter updates.

The input to the first module is a concatenated vector of size [T, (N ∗C)+F ],
where T is the number of frames of each gait sequence, N is the number of body
joints, C is the number of coordinates for each body joint, and F is the combined
size of the angle and distance-based handcrafted features (JRAs and JRDs),
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Fig. 1. The architecture of the proposed GER deep learning method

described later. The input to the second module consists of the latent deep
features of size 64, extracted from the first module, concatenated with the robust
domain-specific LMA features. If the inputs are not normalized, optimization
of the model is skewed and produces too large or too small gradient values,
restricting optimal parameter updates. Moreover, since the input to the first
module is gait data, normalizing it through conventional pre-processing methods
would distort the structure of the gait sequences. Hence, the combined feature
vector from both inputs is normalized by the network via the batch normalization
layer in the beginning of the MLP module.

The first half of the network has two LSTM layers, each with 64 units, a
Hyperbolic Tangent (Tanh) activation, and a L2 regularizer with a penalty of
0.01. The regularizers penalizes high weights, hence preventing overfitting. The
Tanh activation, ensures that the negative values from the inputs are not ignored
while producing the activations.

The second half of the architecture contains a batch normalization layer
before two MLP layers. Each layer has 32 units with Tanh activations to ensure
an overall tapered design for refining features. The second subnetwork combines
the information from the features extracted by the LSTM subnetwork with the
LMA-based handcrafted features, to produce high-level features. These high-
level features are mapped to the four emotion classes using a Softmax activation.

The model is optimized using a RMSprop optimizer with a momentum of 0.5,
a rho of 0.3, and an epsilon of 1e − 7 for 400 epochs. Furthermore, the training
is performed using a batch size of 64 and categorical cross-entropy loss function.

DNN-based approaches are sensitive to the composition of the training data
and might result in low performance for under-represented emotion classes.
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Therefore to introduce more robustness, we propose a novel hybrid architecture
that integrates the domain-specific features.

The handcrafted geometric features, JRAs and JRDs, are processed by the
sequential feature extracting module alongside the raw gait sequences to produce
deep information-rich feature sets of size 64. Since the LSTM network processes
sequential data, the JRA and JRD features are calculated frame-wise. The addi-
tional information encapsulated by JRDs and JRAs, contributes to the high
performance of the model.

JRAs describe the motions of the body by calculating the angles formed by
any two body joints, A(x1, y1, z1) and B(x2, y2, z2), on the mid spine body joint
S(x0, y0, z0), thus consisting of

(
N−1
2

)
angles, where N is the number of body

joints. The calculation for JRAs is described in Eq. (1) where ‖ �SA‖ and ‖ �SB‖
are the norms of vectors �SA and �SB, respectively.

θ = cos−1

(
�SA · �SB

‖ �SA| ‖ �SB‖

)

(1)

The JRDs, as defined in Eq. (2), are Euclidean Distance (ED) measures
between two body joints A(x1, y1, z1) and B(x2, y2, z2). They encode the relative
movement of various body joints in terms of the distance between them, which
is beneficial for emotion recognition [1].

ED(A,B) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (2)

To improve the performance of the model for emotion classes with low
data representation, the proposed method employs statistically cumulated hand-
crafted features resilient to unbalanced datasets. These handcrafted features are
based on the Laban Movement Analysis (LMA) [22] which provides a structural
description of the movement of a subject’s body using four groups: body, effort,
shape, and space. These groups comprise of 17 features calculated in the tem-
poral domain, i.e. the features are calculated for each time frame of the gait
sequence and have a combined size of (17, T ). However, the LMA features must
be converted to a one-dimensional vector to make it compatible for the MLP sub-
network. This flattening of the features is performed by calculating histogram
values on 100 bins, thus making the final feature set of shape (1700, 1). The
final feature set is concatenated with the latent deep features extracted from the
LSTM subnetwork (64, 1) to form the input vector for the MLP subnetwork.

The body feature group (Head Inclination Angle, Flex Angle, Abduction
Angle, Knee Angle, Stride Angle, Knee Stride Length, Foot Stride Length)
describes the physical and structural characteristics of the body using seven
angle and distance measures. These features capture the information about the
connections of the body as it moves.

The effort features (Kinetic Energy, Knee Average Velocity, Heel Average
Velocity, Elbow Average Velocity, Wrist Average Velocity) encapsulate the subtle
intent behind the motion of a body by measuring the energy/force put into the
motion. This feature group describes the amount of expression [23]. The velocity
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of a particular joint at a time frame i can be calculated as the difference between
the joint’s position at the ith frame and the joint’s position at the i + 1th frame,
described in Eq. (3). Additionally, the Kinetic Energy at a given time frame i
is calculated using Eq. (3), where m is the mass of the joint (m = 1), v is the
velocity of the kth joint and N is the total number of the body joints.

KEi =
1

2N

N∑

k=1

m.vi2

k ; V i
A = Ai+1 − Ai (3)

The next movement component, shape, contains a single feature: density
index, which captures the progression of the body’s shape change with respect
to time. The metric represents the variation of the body shape throughout the
gait, which indicates how smooth/uneven the movements are. To determine the
Density Index , the centroid C of the body for each frame i is calculated according
to Eq. (4), where Jk is the vector containing the x, y, and z coordinates of the
kth body joint, and N is the total number of body joints. Finally, the Density
Index (DI) is calculated as described in (4), where Jkx is the x coordinate of the
kth body joint.

DIi =
1
N

N∑

k=1

√
(Ci

x − J i
kx)2 + (Ci

y − J i
ky)2 + (Ci

z − J i
kz)2 ; Ci =

1
N

N∑

k=1

Jk (4)

The fourth category in LMA is space (Whole Body Bounding Volume, Upper
Body Bounding Volume, Lower Body Bounding Volume, Spatial Symmetry
Index), which delineates the way a subject makes use of the surrounding space
during a gait. The Spatial Symmetry Index is indicative of relaxation [24]. The
Bounding Volume (BV) is the product of dx, dy and dz (Eq. (6)), which are
distances calculated in Eq. (5). Lastly, the spatial symmetry is calculated by
computing the barycenter of the skeletal body for each frame, and then using it
to calculate the symmetric indices for each axis. The Symmetric Index (SI) at
a given time frame i for an axis w is defined in Eq. (7), where LW , RW , and
BC represent the coordinates of the left wrist joint, the right wrist joint and the
barycenter of the body. Subsequently, the overall symmetry index is calculated
according to Eq. (7).

dx = max
k∈K

Jkx − min
k∈K

Jkx; dy = max
k∈K

Jky − min
k∈K

Jky

dz = max
k∈K

Jkz − min
k∈K

Jkz

(5)

Bounding V olume = dx × dy × dz (6)

SIi =
√

(SIix)2 + (SIiy)2 + (SIiz)2 ; SIiw =
(LW i

w − BCi
w) − (RW i

w − BCi
w)

(LW i
w − BCi

w) + (RW i
w − BCi

w)
(7)
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4 Experimental Results

The proposed method uses a subset of the Edinburgh Locomotive MoCap
Dataset (ELMD) [13] containing 1855 gait sequences, recorded for four seconds
at 60 Hz. Hence, each sequence has 240 frames. Each frame contains 3D coordi-
nates for 21 body joints. A study [20] used a crowd sourced platform to assign
emotion labels to 1835 gaits. These samples contain 1048 Angry, 454 Happy, 254
Sad and 79 Neutral gaits and are used for training, validation and testing with
a 80:10:10 stratified data split.

The proposed neural network was trained and tested on a set of values of
learning rates, batch sizes, different activation functions, and using different fea-
ture fusion techniques. This section also includes ablation studies to validate the
necessity and impact of the key components of the methodology. The proposed
method is evaluated using: the Average Precision (AP) for each emotion class,
and micro and macro mean Average Precision (mAP) scores. To ensure optimal
training of the DL model, experiments for various hyperparameters and their
respective values were performed.

Optimizers: The proposed method was trained with three popular optimiz-
ers to identify which one ensures the lowest loss and hence, better learning.
Stochastic Gradient Descent (SGD) was found to produce steep and smooth loss
curves; however it could not facilitate the network to reach low loss values (see
Fig. 2d). SGD also caused the network to be susceptible to the data composition
of the dataset shown in Table 1. On the other hand, Adam optimizer resulted
in a significantly lower loss value (see Fig. 2e). However, Root Mean Squared
propagation (RMSprop) produced the smoothest loss graphs (shown in Fig. 2f)
indicating an optimal learning and achieved the lowest loss out of all the opti-
mizers. The model also produced the most precise predictions with RMSprop
optimizer mentioned in Table 1.

Table 1. Performance comparison of the proposed model for different optimizers

Optimizers Class AP
angry

Class AP
happy

Class AP
sad

Class AP
neutral

Micro
mAP

Macro
mAP

SGD 0.94 0.58 0.23 0.08 0.58 0.46

Adam 0.99 0.93 0.95 0.91 0.97 0.94

RMSprop 0.99 0.95 0.97 0.91 0.98 0.96

Batch Sizes: The proposed architecture was trained with a range of batch sizes:
16, 32, 64, and 128. All batch sizes resulted in an effective learning that can be
observed through the smooth loss graphs produced during training. Based on
Table 2 results, the batch size of 64 was chosen for the proposed model.

Learning Rates: The learning rate of the model regulates the magnitude of
the weight updates and therefore, how fast the model converges. To determine
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(a) Model train and val
precision for SGD

(b) Model train and val
precision for Adam

(c) Model train and val
precision for RMSprop

(d) Model train and val
loss for SGD

(e) Model train and val
loss for Adam

(f) Model train and val
loss for RMSprop

Fig. 2. Precisions and losses of model over 400 epochs for various optimizers

an optimal learning rate for the proposed architecture, the model was trained
on learning rates from 4e − 6 to 4e − 5. As seen in Table 3, the learning rate of
1e − 5 results in the best precision of the model and hence was selected.

Feature Fusion Experiments: Two experiments were performed to find the
best way to fuse the domain-specific features with deep features. First, the LMA
features were calculated for each frame of the gait sequence and concatenated to
the input of the LSTM subnetwork. Second, the calculated LMA features were
flattened to be combined with the input of the MLP subnetwork. When the LMA
features are fused with the deep features and provided to MLP subnetwork,
the performance increases and the skewness of the performance towards highly
representative emotion classes is eliminated (Table 4).

Table 2. Performance of the model for different batch sizes

Batch
size

Class AP
angry

Class AP
happy

Class AP
sad

Class AP
neutral

Micro
mAP

Macro
mAP

16 0.99 0.92 0.95 0.91 0.97 0.94

32 0.99 0.94 0.96 0.89 0.98 0.95

64 0.99 0.95 0.97 0.91 0.98 0.96

128 0.99 0.94 0.96 0.83 0.98 0.93
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Table 3. Performance of the model for different learning rates

Learning
rate

Class AP
angry

Class AP
happy

Class AP
sad

Class AP
neutral

Micro
mAP

Macro
mAP

4e−6 0.99 0.93 0.95 0.87 0.97 0.94

8e−6 0.99 0.96 0.94 0.81 0.98 0.93

1e−5 0.99 0.95 0.97 0.91 0.98 0.96

2e−5 0.99 0.90 0.94 0.87 0.97 0.93

4e−5 0.99 0.93 0.95 0.81 0.97 0.92

Table 4. Performance of the model for different fused feature sets

Feature fusion
method

Class AP
angry

Class AP
happy

Class AP
sad

Class AP
neutral

Micro
mAP

Macro
mAP

LMA w/LSTM
input

0.99 0.87 0.64 0.41 0.95 0.73

LMA w/MLP
input

0.99 0.95 0.97 0.91 0.98 0.96

Number of Epochs: The number of epochs determine how many iterations
the model is trained for. If the model is trained for only a few epochs, the
model exhibits suboptimal performance whereas the model overfits if the training
goes on for too long. Thus, to determine the optimal number of epochs the
network was trained for 1000 epochs and the training and validation losses were
monitored. The model shows convergence shortly before the 400th epoch as seen
in Fig. 3. Thus, the number of epochs was set to 400.

(a) Training and validation precision of
the model for 1000 epochs

(b) Training and validation loss of the
model for 1000 epochs

Fig. 3. Precisions and losses of model over 1000 epochs on the ELMD dataset
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Table 5. Ablation Study for the various components of the proposed methodology

Architecture Class AP

angry

Class AP

happy

Class

AP sad

Class AP

neutral

Micro

mAP

Macro

mAP

LSTM subnetwork � 0.98 0.60 0.45 0.17 0.88 0.55

Geometric features ×
MLP subnetwork ×
LMA features ×
LSTM subnetwork � 0.98 0.67 0.50 0.26 0.89 0.60

Geometric features ×
MLP subnetwork �
LMA features ×
LSTM subnetwork � 0.99 0.87 0.82 0.61 0.95 0.82

Geometric features �
MLP subnetwork ×
LMA features ×
LSTM subnetwork × 0.99 0.93 0.97 0.86 0.98 0.94

Geometric features ×
MLP subnetwork �
LMA features �
LSTM subnetwork � 0.99 0.88 0.86 0.52 0.95 0.81

Geometric features �
MLP subnetwork �
LMA features ×
LSTM subnetwork � 0.99 0.93 0.97 0.85 0.97 0.94

Geometric features ×
MLP subnetwork �
LMA features �
LSTM subnetwork � 0.99 0.95 0.97 0.91 0.98 0.96

Geometric features �
MLP subnetwork �
LMA features �

We now present the results of the ablation study. Each component of the
neural network architecture is a crucial part of the proposed methodology. The
input of raw gait sequences, JRAs, and JRDs to the LSTM subnetwork provides
low-level features to the sequential network for producing higher-level features.
The first subnetwork is responsible for condensing gait features sequentially to
produce the rich feature set. The LMA features further enhance the performance
by providing robust handcrafted features that make the model resilient to unbal-
anced data. Finally, the MLP subnetwork is responsible to process the combined
features from the deep extracted features and the LMA-based handcrafted fea-
tures, to produce high-level features for emotion recognition.

Effectiveness of Geometric Features: The geometric features introduce all
possible angle and distance measures between two joints. Deep features are
formed using the combined information from body joints and geometric fea-



GER Using Bi-modal DNN 57

tures for each time frame. On removing the geometric features from the input
of the LSTM module, the overall performance of the model decreases (Table 5).

Effectiveness of LMA Features: The handcrafted features using Laban Move-
ment Analysis provide robustness and result in a well regularized model. Each of
the feature groups contribute distinct information to the proposed architecture.
As seen in Table 5, on excluding LMA feature groups a drastic decrease in the
model precision for most emotions, as well as the model’s resilience towards data
imbalance is reduced. Performance of the model for emotion classes with lower
data representation are affected strongly.

Effectiveness of LSTM and MLP Subnetworks: The LSTM and MLP
subnetworks are crucial building blocks of the proposed methodology. The main
function of the LSTM module is to produce information-rich deep features from
which further high-level features are extracted by the MLP module for classi-
fication. The MLP subnetwork also facilitates the fusion of deep features and
LMA features. As shown in Table 5, on removing the LSTM module from the
network, the model precision value decreases by 0.02 for the Happy class and
by 0.05 for Neutral class. The effect is stronger with the removal of the MLP
module from the network. The precision values across all emotion classes except
Angry decrease significantly and result in a macro mAP of 0.82.

Importance of Each LMA Feature Group: The proposed method was
trained and tested with different LMA feature groups to identify their impact
on overall model performance. Though all the features were necessary to achieve
the highest performance, some feature groups were crucial for identifying cer-
tain emotions. As seen from Table 6, the most contributing feature groups for
the identification of Happy and Neutral gaits were Body and Space features
which contain angular, distance, and volumetric measures. This indicates that
Happy and Neutral gaits contained in the dataset can be distinguished from
other emotional gaits by geometric body positions and the space occupied by
the subject during the gait. In contrast, Effort features proved to be important
for recognizing Sad gaits because kinetic energies and velocities of various joints
effectively capture the slower body movement of Sad emotions in comparison to
other emotional gait. Another interesting observation is that the model preci-
sion for the neutral class is 0.46 with just shape features (density of the body
joints); however, the model achieves a 0.91 precision with all the features com-
bined, which is much higher than any individual feature group’s precision. This
indicates that Shape feature group contributes unique information.
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Table 6. Model performance with various LMA feature groups

Feature group
used with
BMDNN

Class AP
angry

Class AP
happy

Class AP
sad

Class AP
neutral

Micro
mAP

Macro
mAP

No LMA
features used

0.99 0.88 0.86 0.52 0.95 0.81

Body features 0.99 0.94 0.88 0.87 0.97 0.92

Effort features 0.99 0.88 0.90 0.80 0.96 0.90

Shape features 0.99 0.89 0.80 0.46 0.95 0.78

Space features 0.99 0.90 0.88 0.87 0.97 0.91

All LMA
features

0.99 0.95 0.97 0.91 0.98 0.96

Table 7. Comparison of the proposed method with state-of-the-art methods

Methods Class AP
angry

Class AP
happy

Class AP
sad

Class AP
neutral

Micro
mAP

Macro
mAP

STEP (2020) [12] 0.22 0.52 0.30 0.12 0.29 0.27

ADF (2019) [20] 0.22 0.59 0.30 0.12 0.31 0.27

STGCN (2018) [19] 0.06 0.97 0.20 0.01 0.34 0.41

HAPAM (2020) [21] 0.97 0.66 0.40 0.18 0.60 0.88

ProxEmo (2020) [5] 0.90 0.92 0.94 0.94 0.92 0.93

BMSNN (2022) [25] 0.99 0.91 0.90 0.65 0.97 0.86

Proposed BMDNN 0.99 0.95 0.97 0.91 0.98 0.96

Comparison with State-of-the-Art: The best configuration of the proposed
architecture was compared with the most recent state-of-the-art methods. The
performances of STGCN [19], ADF [20], STEP [12], HAPAM [21], ProxEmo
[5], and BMSNN [25] were compared with the proposed method. Most of the
methods mentioned earlier were unable to train on small datasets like ELMD.
Table 7 shows that the proposed architecture outperforms all other methods
across all classes. In comparison to the best prior method, BMSNN [25], the
proposed BMDNN architecture achieves an increase in the Average Precision
by 4.4% for the Happy class, by 7.7% for the Sad class, and by 28.6% for the
Neutral class. Furthermore, the micro and mean Average Precision scores of
0.98 and 0.96 respectively, are also observed to be superior. Hence, the proposed
BMDNN architecture outperforms the state-of-the-art methodologies in terms
of overall precision, while maintaining high performance in all emotion classes.

The highest scores achieved by the proposed BMDNN architecture are
attributed to the powerful LSTM and the MLP subnetworks. The high perfor-
mance is also a result of the overall attenuated design of the neural network, the
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normalization techniques, and the regularization techniques employed. Another
major contributing factor is the information-rich handcrafted features exploited
by the DNN architecture.

5 Conclusion and Future Work

This paper proposes a unique approach of fusing latent features with the robust
domain-specific handcrafted features for recognizing four classes of emotions
from human gait sequences. The proposed architecture uses delineating hand-
crafted features based on the four components of human motion: Body, Effort,
Shape, and Space, based on the Laban Movement Analysis. The LMA features
are fused in a way that achieves the best performance mitigating the performance
drop for under-represented classes. The proposed architecture achieves a micro
mean Average Precision of 0.98, and a macro mAP of 0.96 that outperforms all
recent state-of-the-art methods on the ELMD dataset.

Recent advances in deep learning have shown transformer networks to be
proficient for sequential processing. Hence, architectures based on such networks
can be explored in the future. The research on emotion recognition from gait
opens new avenues for its utilization in smart homes, human-computer interac-
tion, robotics, virtual reality, and gaming.
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Abstract. In recent years, convolutional neural networks (CNNs) are widely used
in various computer vision taskswith advancedperformance.However, adversarial
sampleswhich add small-magnitude perturbation to images or videos are seriously
threatening the application of CNNs. Some existing attack methods pay attention
to the time domain information of the inputs, while the information in frequency
domain is usually ignored. Others attack frequency domain by massive queries
or significantly perceivable perturbation. In this paper, we propose a new method
to attack the frequency information. The frequency information is combined with
the Generative Adversarial Network (GAN) to design a novel algorithm called
Frequency Attack Framework (FAF), which can attack the high-frequency infor-
mation and the low-frequency information. Double discriminators are constructed
on theGANarchitecture tomake attackmore efficient in different frequencybands.
The proposed algorithm generates optimal perturbation, resulting in adversarial
samples with high attack transferability and quality. Several well-trained CNNs
are fooled by FAF, and all of them have high error rates. Even when CNNs add
defenses, our algorithm has a good performance.

Keywords: Adversarial attack · Generative adversarial network · Frequency
information · Transferability

1 Introduction

With the wide application of convolutional neural networks (CNNs) in various fields
[1], the vulnerability of them has become a problem that researchers are concerned
about [2]. Adversarial samples [3], which are difficult to distinguish from clean ones by
naked eyes, can mislead CNNs to make incorrect predictions with high probability. At
present, various adversarial attack methods have been proposed, which can be divided
intowhite-box attacks [4] and black-box attacks [5]. In thewhite-box attacks, parameters
of the target model are known, and attackers can easily cheat CNNs. Instead, black-box
attackers do not know the parameters of the target model, and in some cases, they do not
even know the output of the model. Therefor the implementation of black-box attacks
becomes more difficult [6]. There are three common branches in black-box attacks,
including gradient-based attack methods [7], optimization-based attack methods [8],
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and GAN-based attack methods [9]. Although various black-box attack methods have
been proposed, there are still many problems which have not been solved. Gradient-
based attack methods like FGSM [7], BIM [10] and PGD [11] constantly modify local
pixels of the input through gradient information until the end of the attack. Their trans-
ferability is good, but they usually need more iterative attack times, and the perturbation
is easy to perceive by human vision. Optimization-based attack methods like C&W [12]
can fool the source model with minimum perturbation, but suffer from weak transfer-
ability. GAN-based attack methods like advGAN [13] utilize a generator G to output the
adversarial perturbation, which is added to clean images to generate adversarial samples.
The discriminator D tries to distinguish between clean samples and adversarial samples.
AdvGAN has a good performance on MNIST [14] and CIFAR-10 [15] datasets, but its
transferability decreases on complex high-resolution datasets such as ImageNet [16].

Fig. 1. Low-frequency information and high-frequency information of images

In our work, we propose a novel frequency attack framework (FAF) focusing on
attacking frequency [17] information in order to generate adversarial samples with high
transferability and perceptual quality on complex high-resolution datasets. Other attack
methods based on GAN can be easily integrated into our framework. Frequency infor-
mation of images is important for the training of CNNs, even if the structure and param-
eters of models are different. The high-frequency information almost imperceptible to
humans is exploited by CNNs to trade robustness for accuracy [18]. Meanwhile the
low-frequency information is the basis for CNNs to obtain recognition ability during
the training time. Based on this, we design a GAN structure, which contains double
discriminators to attack the high-frequency information and low-frequency information
respectively. Moreover, our loss function is the combination of three different losses
which help to guide the training process. In the experiment, our algorithm can gener-
ate the minimum perturbation with high transferability, and various well-trained CNNs
produce incorrect predictions with high confidence. Compared with several efficient
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black-box attack methods [11] [13] [23], FAF achieves a better performance. Adversar-
ial samples generated by FAF have high transferability even when attacking CNNs with
defenses.

In summary, our contributions are listed as follows:

1. We propose a frequency attack framework, which focuses on attacking the frequency
information. Our method can fool CNNs with optimal perturbation. To the best of
our knowledge, we are the first to explore the method using frequency information
in the GAN-based attacks.

2. We use double discriminators in GAN structure to attack the high-frequency infor-
mation and the low-frequency information respectively, and design special loss
functions to optimize the training process. Our algorithm framework is robust and
efficient.

3. Our frequency attack framework can integrate existing GAN-based attacks easily,
and generate adversarial samples with high transferability.

2 Related Work

2.1 Adversarial Samples

Adversarial attacks are aimed to make CNNs confused by disturbing the input. Gen-
erally speaking, the adversarial sample is composed of the source image and a special
perturbation. This small change is difficult to detect, but can fool well-trained models to
output false predictions with high confidence. The adversarial attack can be expressed
by following equations:

find Z
s.tF(X ) �= F(X + Z)

‖Z‖ ≤ ε,

(1)

where a CNN F predicts differently on the original sample and the adversarial sample,
and these samples are very similar. The restriction of Z is measured by ‖ ·‖, which could
be the L1, L2, L∞ norm or other metrics.

2.2 Black-Box Attacks

In reality, it is almost impossible for attackers to obtain the parameter information of
the attacked model, so black-box attacks are more challenging than white-box attacks.
Existing popular black-box attacks mainly depend on the transferability of perturbation.
GoodFellow et al. [7] develop an effective method for generating adversarial pertur-
bation, which is called as fast gradient sign method (FGSM). This algorithm uses the
gradient information of the model and attacks only once with high efficiency. Kurakin
et al. [10] propose an optimization method for FGSM, which uses the category with
the lowest probability in model output as the target class, and turns the original sample
into an adversarial sample. Finally, the target model is guided to output the target class.
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Carlini et al. [12] propose an optimization-based attack method, which makes the pertur-
bation invisible.Moosavi et al. [19] generate theminimum perturbation through iterative
calculation, and gradually change pixels of images until a misclassification occurs. Xiao
et al. [13] propose a GAN-based method called advGAN, which conducts adversarial
training through three parts: generator, discriminator and surrogatemodel. The generator
can output the perturbation, and discriminator tries to distinguish between the original
sample and the adversarial sample.

2.3 Frequency Features and Attacks

Whenwe try to make judgments based on our visual system, the low-frequency informa-
tion in images dominates our perceived information. The information in high-frequency
components is usually ignored due to the unperceivable characteristic of these compo-
nents. Instead, CNNs can both perceive high-frequency information and low-frequency
information in images. Recent studies [18] have found that high and low frequency both
play important roles in training and application of CNNs. At the beginning of training,
CNNs use low-frequency information to optimize the weights to minimize training loss
[20]. With the increase of training iterations, high-frequency information is captured to
further optimize the capacity of CNNs.Well-trained CNNs often use the high-frequency
information as a supplement on the basis of fully learning the low-frequency information.

Prior to our work, several frequency-domain attacks have been adopted to generate
the adversarial perturbation. Li et al. [21] propose the F-mixup algorithm to mixup two
inputs in frequency-domain to achieve attacks. The attacker optimizes the adversarial
perturbation by making queries to probe top-1 label. Sharma et al. [22] prove that it is
particularly effective for low frequency attack models with defenses or not. Guo et al.
[23] show that using exclusively low frequency perturbation can make CNNs output
wrong results. Deng et al. [24] develop a frequency-tuned universal attack method to
improve the universal attack performance. This approach is adaptively bounded in the
frequency-domain and generates robust adversarial perturbation.

3 Our Frequency Attack Approach

3.1 Separate High and Low Frequency Information

In order to attack the high frequency and low frequency separately, we need to separate
them from images. Fourier transform, wavelet transform and other methods can be used
to achieve this mission. From the perspective of efficiency, our algorithm utilizes Fourier
transform function and inverse Fourier transform function to separate the frequency
information. Specifically, we use Fourier transform function FFT(·) to transform the
image from time-domain to frequency-domain. A circle C(·) centered in the frequency-
domain image is used to segment the information. The information in the circle is
transformed into low-frequency information by inverse Fourier transform IFFT(·), and
the rest is used as high-frequency information. Figure 1 shows the result. The whole
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information separation process can be expressed by following equations:

V = FFT(X )

VL =
{
V (i, j), if (i, j) ∈ C(r)

0, otherwise

VH =
{
V (i, j), if (i, j) /∈ C(r)

0, otherwise
XL = IFFT (VL)

XH = IFFT (VH ),

(2)

where r is the radius of the circle, which is set as 78 in this paper.

3.2 Dual Discriminators Support Attack

[25] has proved that dual discriminators can effectively avoid the mode collapse prob-
lem. Inspired by this, we design dual discriminators together with a generator to make
a minimax game. When a generator outputs adversarial perturbation, a discriminator
rewards high scores for high frequency information whilst another discriminator, con-
versely, favoring low frequency information. And the generator must optimize adversar-
ial samples to fool these discriminators. Further, the complementary characteristics of
two discriminators can improve the performance of adversarial perturbation.

3.3 Frequency Attack Framework

The overall structure of FAF is illustrated in Fig. 2. In order to improve the stability
of the training process and the effectiveness of the attack, the high and low frequency
information of images are shared by double discriminators. FAF mainly consists of
four components: a generator G, a high-frequency discriminator D1, a low-frequency
discriminator D2, and a surrogate model F . In the training phase, we input the source
sample X into the generatorG, and the generator outputs the complete frequency pertur-
bation Z . We use Fourier transform function to separate the high-frequency components
XH and low-frequency components XL of the sample. Similarly, the perturbation Z is
also separated into high-frequency perturbation ZH and low-frequency perturbation ZL.
Then XL + ZL is sent into low-frequency discriminator D2, which is used to distinguish
the difference between XL + ZL and XL. Next, we input ZH into the high-frequency dis-
criminator D1, which is used to distinguish the difference between ZH and XH . In order
to make the effect of the algorithm better, there is a pre-trained model to serve as the
surrogate model F . We take X + Z and ZH as the input of the surrogate model. By con-
stantly attacking the surrogate model during the training process, the transferability of
adversarial samples can be increased. In the test phase, the trained generatorG generates
an adversarial perturbation Z by inputting a clean sample. The final adversarial sample
is Xadv = XL + ZL + 2 ∗ ZH . The high-frequency information in the source sample is
replaced by the perturbation ZH , since the high-frequency perturbation is similar to the
high-frequency feature, but can disturb the output of CNNs.
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Fig. 2. Overview of FAF.

3.4 Network Architecture

The proposed model is composed of a generator and double discriminators, and they
are constructed a similar architecture as image super-resolution [26]. The generator is
modified by using three 3∗3 convolutions to replace the final 9∗9 convolution, so that it
has more powerful abilities of feature extraction and expression to generate high quality
adversarial perturbation. For adversarial attacks, every down-sampling process will drop
out some detail information in source samples, which is important for generating the
perturbation. Therefor the generator architecture does not contain pooling or deconvolu-
tion layers. The high-frequency discriminator and the low-frequency discriminator are
designed as the same architecture. Both generator and discriminator networks can be
regarded as fully convolutional networks, which are robust to different size of inputs.

3.5 Loss Function

Our FAF mainly includes three loss functions: GAN loss, attack loss and norm loss.
Firstly, we introduce the GAN loss function, which consists of generator loss and

discriminator loss. They are aimed to make FAF attack low-frequency information and
high-frequency information effectively. Inspired by [27], the least squares objective func-
tions can stabilize the training process to achieve better results. Specifically, generator
loss is defined as follows:

LG
GAN = ∑

x

[
(D1(G(xH )) − a)2

] + ∑
x

[
(D2(G(xL) + xL) − a)2

]
, (3)

where the parameter a is a random number ranged from 0.7 to 1.2.
The discriminators in FAF, D1 and D2, play a role of discriminating between the

clean sample and the adversarial sample. The discriminator losses are defined as follows:

LD1
GAN = ∑

x

[
(D1(xH ) − b)2

] + ∑
x

[
(D1(G(xH )) − c)2

]
, (4)

LD2
GAN = ∑

x

[
(D2(xL) − b)2

] + ∑
x

[
(D2(G(xL) + xL) − c)2

]
, (5)
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where the parameter b is a random number ranged from 0.7 to 1.2, and the parameter c
is a random number ranged from 0 to 0.3. They are soft labels.

Then we introduce the attack loss. Attack loss is mainly composed of LF
attack and

LH
attack , which aims to fool the surrogate model F and increases the transferability of

adversarial samples.
The LF

attack is defined as follows:

LF
attack = max

(
maxi �=tF(x)i − F(x)t, k

)
, (6)

where the threshold k is set to 0, F(x)t is the probability of the ground truth class, and
maxi �=tF(x)i is the probability of a class with highest probability except the ground truth
one.

Since the high-frequency information of inputs contains some irrelevant noise and
almost imperceptible, the cross-entropy loss is used to increase the transferability of
high-frequency perturbation:

LH
attack = Lce(F(xH ), t), (7)

where t stands for the second largest probability of the input.
And the norm loss Lnorm is used to limit the magnitude of the perturbation. We use

a soft hinge loss as same as [13].
Finally, the total loss is expressed as follows:

Ltotal = LGAN + αLF
attack + λLH

attack + Lnorm, (8)

where the weight parameters of α = 10 and λ = 10 are used to control the tradeoffs
among different losses.

4 Experiments

In this section, we evaluate the performance of FrequencyAttack Framework, both quan-
titatively and qualitatively. We further test the FAF in different cases and find that FAF
has a better performance than other popular methods. In the experiments, we select 2348
images from ImageNet [16] validation sets, which can be classified correctly by several
different well-trained CNNs, including ResNet152 [28], VGG19 [29], DenseNet121
[30], ResNext101 [31], ResNet50 [28] andMNASNet [32]. For preprocessing, the input
is resized to 3 ∗ 256 ∗ 256 and normalized to the range between 0 and 1. During the
training process, the Adam optimizer with learning rate 0.001 is used for optimizing
the generator and discriminators. The experiments are implemented in PyTorch with 4
NVIDIA GeForce RTX 2080Ti GPUs.
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Fig. 3. Adversarial samples generated by FAF. The samples on the left are original samples from
ImageNet. The samples on the right are adversarial samples generated by FAF.

4.1 Evaluation Metric

For the attack performance, it is important to keep high attack rates while maintaining
good perceptual quality. The Fréchet perception distance (FID) is used as the metric
of image quality, and its calculation formula is the same as that in [33]. Inspired by
the adversarial attack competition1, we normalize it to the range between 0 and 1 to
facilitate the comparison of experimental results. Typically, higher SF_norm score enjoys
better image quality. The SF_norm is defined as follows:

SF_norm =
∑√

1−min(FID(X ,Xadv),β)

β

N ,
(9)

whereX is the original sample,Xadv is the adversarial sample andN standards the number
of images we use. β stands for a threshold set to 200. It means that the similarity between
original samples and adversarial samples is very low when FID(X ,Xadv) exceeds the
threshold.

4.2 Ablation Study

Toprove the high transferability of FAF,we analyze the following aspects of our FAF, and
conduct a series of experiments: 1) the adversarial perturbation of different frequency
bands including high frequency (H-FAF), low frequency (L-FAF) and full frequency
(F-FAF), 2) the LH

attack .
Firstly,we compare the adversarial perturbation generated from low, high and full fre-

quency attack. Experiments are repeated five times, the average SFID_norm score and the
average error rate are reported in Table 1. In this table, RN152, RNext101, DN121, RN50
and MNAS stand for ResNet152, ResNext101, DenseNet121, ResNet50 and MNASNet
respectively.

1 https://tianchi.aliyun.com/competition/entrance/531853/information.

https://tianchi.aliyun.com/competition/entrance/531853/information


Attacking Frequency Information with Enhanced Adversarial Networks 69

Table 1. Ablation of different frequency bands attacks (ResNet50 as the target model)

Method SF_norn RN152 VGG19 RNext101 DN121 RN50 MNAS

L-FAF 0.75 79.75% 91.21% 79.39% 63.92% 96.99% 92.61%

H-FAF 0.75 65.07% 92.74% 73.19% 56.81% 92.92% 94.81%

F-FAF 0.75 83.94% 93.47% 79.97% 72.34% 98.58% 94.10%

According to Table 1, neither attacking the high-frequency information nor low-
frequency information is as good as attacking the full frequency, when the quality of
adversarial samples is similar.

Table 2 shows the impact of LH
attack on the adversarial sample. When we utilize

LH
attack , it is good at enhancing the transferability of adversarial samples.

Table 2. Ablation of different attack losses (ResNet50 as the target model)

Method SF_norn RN152 VGG19 RNext101 DN121 RN50 MNAS

LH
attack 0.75 83.94% 93.47% 79.97% 72.34% 98.58% 94.10%

w/o-LH
attack 0.75 78.69% 92.79% 78.78% 65.43% 98.58% 93.99%

Without this loss, attack algorithm may lack attention to the important information
of high frequency. It is a common property in different CNNs, which makes adversarial
perturbation transferable.

4.3 Transferability of FAF

We compare FAF with well-known attacks advGAN [13], LF-BA [23] and PGD [11].
In order to ensure the fairness of experiments, all algorithms are evaluated the attack
capability on the basis of similar SF_norm. PGD is implemented by foolbox [34], and
parameters are not changed. LF-BA and advGAN are used parameters as same as [23]
and [13].We use FAF, advGAN,LF-BAandPGD to attack five neural networks, and then
feed the generated adversarial samples to six other models. Experiments are repeated
five times. The average SF_norm score and the average error rate of models are reported in
Table 3. FAF, advGAN and PGD all have a high white-box attack success rate, in which
PGD has the highest performance since transfer-based methods generate adversarial
samples bymaking dozens of attacks on each clean sample. On the contrary, GAN-based
methods focus on finding the optimal perturbation of the whole datasets and attack only
once.Meanwhile the transfer performance varies a lot, in situations of different surrogate
models and victim models, FAF achieves the best black-box attack performance. The
transferability of FAF is about 6% to 20% higher than other attack methods. In Fig. 3,
we show several adversarial samples generated by FAF.
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4.4 Attack Under Defenses

In this experiment, we apply PGD, advGAN, LF-BA and FAF to attack ResNet50. Dif-
ferent from the last experiment, victim models are added different defense methods
to enhance the robustness. JPEG Compression [35], Median Smoothing [36], and Pixel
Squeezing [37] are used, which have been verified effective on ImageNet. These defense
methods are usedwith provided parameters. Table 4 shows the comprehensive black-box
attack performance of different attack methods against ResNet50 under defenses. Gen-
erally speaking, the defenses can decrease the average error rate but FAF still maintains
the highest transferability. In this work, Pixel Squeezing does not seem to work well,
since the performance of PGD is enhanced. But FAF still has a better performance than
PGD in this case.

Table 3. Average error rate (Top-1) of different attack methods.

Surrogate Method SF_norm RN152 VGG19 RNext101 DN121 RN50 MNAS

RN152 advGAN 0.67 88.60% 88.97% 70.24% 55.39% 86.10% 93.54%

PGD 0.71 99.95% 82.90% 67.83% 63.48% 86.50% 84.35%

LF-BA 0.71 68.06% 87.33% 67.42% 58.73% 86.93% 90.20%

FAF 0.71 98.68% 89.20% 85.10% 73.26% 88.68% 93.79%

VGG19 advGAN 0.63 35.67% 99.98% 42.51% 27.42% 70.46% 85.00%

PGD 0.66 52.64% 100% 47.09% 60.06% 79.44% 91.82%

LF-BA 0.68 65.72% 92.93% 70.53% 61.75% 83.37% 90.20%

FAF 0.68 66.60% 99.44% 72.96% 66.47% 83.85% 95.73%

DN121 advGAN 0.67 55.35% 91.63% 61.70% 80.02% 82.91% 93.53%

PGD 0.70 63.30% 85.83% 57.35% 99.99% 83.53% 86.74%

LF-BA 0.70 66.70% 92.59% 69.89% 63.50% 88.71% 90.97%

FAF 0.70 85.29% 94.11% 81.83% 98.14% 92.67% 95.43%

RNext101 advGAN 0.72 67.79% 86.66% 93.61% 56.71% 79.80% 94.61%

PGD 0.75 65.22% 80.26% 99.73% 54.76% 75.98% 80.76%

LF-BA 0.73 62.52% 90.12% 65.67% 53.53% 84.07% 88.25%

FAF 0.75 83.42% 93.57% 98.53% 61.95% 93.17% 96.93%

RN50 advGAN 0.72 63.90% 91.69% 60.87% 50.41% 97.86% 93.73%

PGD 0.75 60.56% 81.84% 49.00% 53.39% 99.98% 80.82%

LF-BA 0.75 59.75% 89.35% 60.56% 51.58% 84.24% 86.29%

FAF 0.75 83.94% 93.47% 79.97% 72.34% 98.58% 94.10%
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Table 4. Average error rate (Top-1) under defenses (ResNet50 as the surrogate model).

Victim Method None Smooth [36] Pixel [37] JPEG [35]

RN152 advGAN 63.90% 18.63% 58.73% 49.05%

PGD 60.56% 43.66% 61.12% 46.06%

LF-BA 59.75% 19.59% 28.24% 22.32%

FAF 83.94% 54.58% 68.98% 70.66%

VGG19 advGAN 91.69% 63.14% 94.65% 74.32%

PGD 81.84% 80.89% 94.33% 77.37%

LF-BA 89.35% 59.97% 80.15% 53.41%

FAF 93.47% 84.67% 95.94% 80.11%

DN121 advGAN 50.41% 23.10% 61.19% 36.35%

PGD 53.39% 48.83% 61.64% 48.37%

LF-BA 51.58% 18.99% 20.44% 16.06%

FAF 72.34% 49.01% 66.64% 51.70%

RNext101 advGAN 60.87% 17.68% 59.35% 48.67%

PGD 49.00% 38.73% 60.42% 44.05%

LF-BA 60.56% 20.66% 26.92% 25.98%

FAF 79.97% 51.82% 67.02% 68.93%

MNAS advGAN 93.73% 61.09% 91.46% 83.80%

PGD 80.82% 71.69% 92.13% 80.14%

LF-BA 86.29% 47.61% 68.82% 46.08%

FAF 94.10% 82.62% 94.02% 89.31%

5 Conclusion

In our work, we propose a Frequency Attack Framework (FAF), which can effectively
generate adversarial samples on complex high-resolution images and achieve a high
transferability on the black-box attack. Our method is the first to attack on frequency
information by GAN structure. Our algorithm is robust and efficient when attacking
frequency information. FAF enjoys a significant attack to frequency-domain when dou-
ble discriminators are constructed. Compared with some popular attack methods, the
perturbation generated by FAF can be less perceptible while maintaining a high trans-
ferability. When increasing the robustness of CNNs by defense methods, FAF still out-
performances others. Since FAF alters the domain of attacked information only, existing
GAN-based attack methods can be integrated to it easily.
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Abstract. Making sense of large collections of images is difficult. Dimension
reductions (DR) assist by organizing images in a 2D space based on similari-
ties, but provide little support for explaining why images were placed together
or apart in the 2D space. Additionally, they do not provide support for modify-
ing and updating the 2D space to explore new relationships and organizations
of images. To address these problems, we present an interactive DR method for
images that uses visual features extracted by a deep neural network to project
the images into 2D space and provides visual explanations of image features that
contributed to the 2D location. In addition, it allows people to directly manipu-
late the 2D projection space to define alternative relationships and explore sub-
sequent projections of the images. With an iterative cycle of semantic interaction
and explainable-AI feedback, people can explore complex visual relationships in
image data. Our approach to human-AI interaction integrates visual knowledge
from both human mental models and pre-trained deep neural models to explore
image data. We demonstrate our method through examples with collaborators in
agricultural science.

Keywords: Interactive dimension reduction · Semantic interaction ·
Explainable AI · Image data

1 Introduction

People commonly use dimension reduction (DR) methods to explore data for sensemak-
ing tasks [8]. DRmethods excel at mapping high-dimensional data to a low-dimensional
space (typically 2D) while preserving meaningful structure and relationships. Several
methods add interaction to enable exploration, modification and understanding of the
2D space. For example, some systems incorporate semantic interactions which couple
cognitive and computational processes by inferring meaning behind interactions and
updating the model accordingly [12].

However, most of interactive DRmethods have limited support for image data, often
representing images as arrays of pixels and treating them the same as tabular data. This
not only limits the DR’s ability to determine similarities between images, but also often
inhibits interaction methods for understanding the 2D space. For example, Self et al.’s
Andromeda uses Weighted Multidimensional Scaling (WMDS) to create an interactive
DR that supports semantic interaction for exploring and understanding 2D projection
spaces via model steering [29]. After an interaction, the model learns new weights on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Bebis et al. (Eds.): ISVC 2022, LNCS 13598, pp. 77–90, 2022.
https://doi.org/10.1007/978-3-031-20713-6_6
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the input dimensions that infer meaning from the interaction and explain the information
learned by the projection. However, when a dataset does not have interpretable dimen-
sions, these explanations become meaningless. What’s more, because a single pixel has
an arbitrary meaning across all images, weighting the same pixel in each image does
not have a uniform effect on all of the images. Thus it does not make sense to directly
project images from pixel arrays.

We know from past research that deep neural networks excel at extracting mean-
ingful features from images and embedding them into a new representation [7]. Clas-
sifiers commonly use these embeddings, achieving high accuracy which indicates that
the embeddings must be well suited for finding similarities between images. The ques-
tion then remains, how can we use these feature embeddings to create more meaningful
projections of image data and capture human feedback?

In this paper, we present an interactive DR method, built from Self et al.’s
Andromeda, that supports semantic interaction for exploring projections of image data.
Our method leverages the feature embeddings extracted from a convolutional neural
network to project image data to a low-dimensional space using WMDS, while sup-
porting semantic interaction to enable people to explore and update the projection space.
Our method enables people to directly manipulate the 2D locations of images to define
new pairwise relationships in the 2D space and then learns new projection weights that
best respect those relationships. Using these weights to re-project the images, people
can observe impact of those relationships on the projection space. Each dimension now
represents some feature of the images, rather than an arbitrary pixel, but are still not
directly interpretable. Increasing the weight on a feature increases its importance in
the projection but still does not provide any insight into the information learned. Thus,
while updating the weights now has inherent meaning, people have no real understand-
ing of this meaning. That brings us to our second question: how can we translate the
learned weights back to the image space?

In addition to providing an interactive DR, our approach provides explanations of
features of importance in the 2D space through the use of a weighted backpropagation
algorithm.We adapt a traditional visual backpropagation method for generating saliency
maps [4] to apply the feature weights from the projection. Doing so creates saliency
maps that emphasize the image features most influential to the projection’s placement of
the image. Thus, we are able to push the information learned from the human interaction
back through the network to the image space, where people can interpret it.

Our method helps people explore multiple projections of their image data through
semantic interactions and explain the effects of these interactions on the placement of
images through saliency maps. Figure 1 presents an example using our method.

The contributions of this paper include:

– An interactive-AI method for dimension reduction that semi-automatically projects
images based on visual knowledge from both pre-trained neural models and human
feedback.

– An explainable-AI method for saliency mapping through weighted backpropagation
that explains important image features.

– A usage scenario, built from our collaboration with agriculture sciences, illustrating
a real world example of image exploration tasks supported by our methods.
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Fig. 1. Interactions to explore maturity level in edamame pod images. (a), shows user manipula-
tions based on maturity level. (b) shows the updated projection while (c) shows the ground truth
maturity level. (d)–(f) shows the explanations of important image features for each maturity level.

2 Related Work

Our work draws elements from interactive dimensionality reduction techniques, seman-
tic interaction methods, and explainability in deep learning. In this section, we start by
discussing related works from the interactive dimensionality reduction literature. Next,
we focus on semantic interaction and its applications in sensemaking. Finally, we dis-
cuss explainability techniques for deep learning methods in the context of image data.

2.1 Interactive Dimensionality Reduction

Dimensionality reduction techniques are commonly employed to analyze and visualize
high-dimensional data by projecting it onto a 2D or 3D space [31]. Alone, DR algo-
rithms typically produce a static projection space with no means for exploration or
manipulation. Thus, many scholars sought to develop interactive DR techniques capa-
ble of capturing user feedback and subsequently modifying the projection.

Some interactive DR methods create a bi-directional workflow where people can
alter data in the high dimensional space to see the effect on the 2D location and
vice versa [6,22]. Other works explore the idea of backwards (or inverse) projec-
tions that allow people to select locations in the 2D space and generate corresponding
high-dimensional representations [16,28]. PEx-Image specifically targets image data,
providing interactions for exploratory tasks, such as zooming into specific projection
regions, displacing points to resolve overlapping and displaying nearest neighbors of
selected images [11].
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Many works exist on interactively steering projections. Several take the approach
of requiring people to define control and organize control points, which are then used
to project a larger collection of data while maintaining local structures around control
points [23,25,26]. Others learn new distance functions forMDS to update the projection
to best respect user manipulations [5,29]. Fujiwara et al. provide a visual analytics
framework for comparative analysis, providing interactions to manipulate and update
projections to illustrate the similarities and differences between clusters of points [17].

Our work expands on past work by specifically targeting imaged data to provide
both projection-steering interactions and visual explanations of the 2D space. We extend
Self et al.’s Andromeda [29]. Andromeda allows people to directly manipulate the 2D
location of data points and updates the projection model to incorporate human feedback
into the projection. We propose an extension to Andromeda that supports image data via
deep learning feature representations and provides visual explanations of the important
image features, before and after human feedback.

2.2 Semantic Interaction

Semantic interactions exploit the natural interactions in visualizations to learn the intent
of the user and then, based on these interactions, update the underlying model and
its parameters [14]. In the context of sensemaking, semantic interactions capture the
analytical reasoning of the users [13], and support analysts throughout the sensemaking
process [10].

Most semantic interaction systems work using a dimensionality reduction model,
similar to the interactive dimensionality reduction methods described in the previ-
ous section. Semantic interaction is a bidirectional pipeline [9] and requires capturing
the changes in the visualization and turning them into changes to the model. In the
dimensionality reduction case, this is usually done through the use of an inverse trans-
formation (e.g., inverse WMDS) [33]. There are several models that can be used to
solve the bi-directional transforms required to implement semantic interactions, such
as Observation-Level Interaction [15], Bayesian Visual Analytics [21], and Visual to
Parametric Interaction [24].

Previous work has also shown how to integrate deep learning models with semantic
interaction techniques. Bian and North [1] developed a semantic interaction model for
text analytics integrating traditional dimensionality reduction techniques with a BERT
neural network as its core component. Bian et al. [2] continued the development of
these semantic interaction models and designed an explainable AI framework based on
counterfactuals that help users understand the generated projection.

2.3 Explainability in Deep Learning

Scholars have proposed several explainability methods for convolutional neural network
(CNN) models, the backbone of most image-based deep learning applications. Bojarski
et al. [4] proposed a visualization method that shows which pixels of an input image
contribute the most towards the predictions of a CNN model. In particular, their tech-
nique allows debugging CNN-based systems by highlighting the regions of the input
image that have the highest influence on the output of the model. Zeiler and Fergus [35]
developed a novel visualization technique that provides insight into the intermediate
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feature layers of a CNN in a classification task. Zhou et al. [36] use a global average
pooling layer to shed light on how this layer enables CNN models to localize objects
in images. In particular, their approach generates a Class Activation Map (CAM) using
global pooling. However, while these explanation techniques are powerful, they are
designed for specific CNN-based models. To address this weakness, researchers have
proposed visual explanation techniques for a large class of CNN-based models. For
example, Selvaraju et al. [30] generated CAMs based on gradient information of tar-
get concepts (Grad-CAM). Grad-CAM provides fine-grained explanations of the CNN
predictions, but suffers from performance issues with multiple occurrences and single-
object images.

Despite the recent advances in explainable deep learning for image data, there is
a dearth of studies exploiting explainable deep learning techniques for interactive DR
in the context of image analysis. Thus, our work seeks to fill this gap and combine
interactive DR for images with explainable deep learning techniques. In particular, we
base our work on the method of Bojarski et al. [4], as visual backpropagation provides
an efficient way to generate explanations of relevant image features for the users by
pushing the weights obtained in the interactive DR loop through the backpropagation
process.

3 Tasks

Before discussing the details of our method, we first must discuss the sensemaking tasks
of someone using our tool. Pirolli and Card described the sensemaking process as hav-
ing two primary loops: the foraging loop and the sensemaking loop [27]. The foraging
loop focuses on searching and filtering information and extracting evidence. The sense-
making loop then uses this information to iteratively construct representational schemas
as well as generate and test hypotheses about the data.

In the context of image data, simply looking at every image does not provide suf-
ficient information to make sense of the data. The foraging loop requires filtering and
extracting sets of images relevant to the task at hand. Then, those images must be orga-
nized into a schema that provides a structured representation for consuming the image
data and testing hypotheses. The process of generating and refining the schema typi-
cally requires several iterations of foraging for information under the current schema,
updating the schema based on the new information, and evaluating how the schema fits
the task at hand to determine if it requires further refinement.

Our method supports this schematization step through iterative exploration of the
images and refinement of the 2D representation to reflect prior knowledge of the analy-
sis task. Through discussions with collaborators in the plant sciences, we identified the
following tasks to support this iterative process: (1) Define custom similarities based on
prior knowledge and (2) link human and machine defined similarities

These tasks create a synergy between the machine and the human where they work
together as a team, teaching each other what they have independently learned from the
data. In the end, we create an analysis pipeline where the human perceives the data,
conveys their knowledge to the machine, and the machine then re-organizes the data
based on this information, while providing explanations of its reasoning. The remainder
of this section discusses these tasks in greater detail.
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3.1 Define Custom Similarities Based on Prior Knowledge

When analyzing data, people typically have some prior knowledge about the data, such
as what categories of or similarities between images they expect to exist within the
data. For example, in a set of edamame pod images, the analyst may expect images
of healthy pods and diseased pods. Static dimension reduction plots, may or may not
adequately reflect this prior knowledge. In the previous example, the person analyzing
may want to inspect healthy vs diseased pods, but the model may not naturally recog-
nize these differences. Furthermore, static projections do not enable people to explore
different projections defined under different guidelines. To enable hypothesis testing,
people must be able to steer the projection to define similarities in the data in a way
that reflects their prior knowledge. With our method, people directly manipulate the 2D
location of images to define new relationships within the data that the model then learns
and uses to re-project the images accordingly.

3.2 Link Human and Machine Defined Similarities

The previous task focuses on teaching the projection model to incorporate human
knowledge. However, while it helps the model learn human knowledge, it does not help
people understand the model’s knowledge. People need ways to inspect the image fea-
tures most important to the 2D projection. This helps them not only understand the 2D
space, but also validate the models perception of their knowledge and potentially iden-
tify other image similarities/differences beyond the knowledge they taught the model.
Our method provides saliency maps that illustrate the features of the image that the
projection most heavily used to place the image. Viewing the explanations of multiple
images provides insight into why the model placed them near or far from each other
and provides a means for understanding the 2D space.

4 Workflow and Methodology

In this section, we describe the expected user workflow and interactions, as well as
the underlying methodology. Figure 2 gives an overview of the workflow while Fig. 1
presents an example of using this workflow.

4.1 Initial State

Upon loading the data, our method extracts image features to project. It then uses
Weighted Multidimensional Scaling (WMDS) to project the features into 2D which
provides the initial view of the data and a starting point for the exploratory analysis. We
chose WMDS because it uses pairwise similarities as the input for projection and thus
changes in the 2D similarities conceptually map directly back to the input space.

Feature Extraction. Recently, deep learning models have become popular for feature
extraction in images [18]. In particular, Convolutional Neural Networks (CNN) have
shown great power in image-related tasks and as a result using CNNs has become the
standard in feature extraction [32]. For our research, we use pre-trained ResNet18 [20]
as a fixed feature extractor to generate features vectors from images.
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Fig. 2.An overview of our workflow. First, we extract image features using a deep learning feature
extractor which we then pass to an interactive DR method (WMDS) that facilitates semantic
interactions. After interactions, we pass the newly defined relationships to the inverse DR where
it learns new projection parameters that best respect them and re-projects the images.

Given an image dataset D , we forward propagate the images through the net-
work with the fully connected layer removed. The final representations are denoted
as X = ResNetpre−trained(D). The feature space X is a 512-dimensional space used
to represent the images. Each image representation (xi ∈ X ) is the output of applying
average pooling to the final feature map of the network. We use X as the input to the
interactive dimension reduction loop.

Weighted Multidimensional Scaling. Using the features extracted from the images (X )
as input, we perform MDS on a weighted data space to project the images to 2D, using
the following function:

y= argmin
y1,...yn

√
∑

i< j≤N
(distL(yi,y j)−distH(w,xi,x j))2 (1)

where N is the number of points in the dataset, distL(yi,y j) is the low-dimensional
distance between yi and y j and distH(w,xi,x j) is the weighted high dimensional distance
between the feature representations xi and x j, given the dimension weights w.

For the initial projection, we initialize w with equal weights for every dimension,
relying solely on the raw image features to organize the images.

4.2 Interactions and Inverse Projection

After the initial projection, our method allows people to directly manipulate the pro-
jection plot, dragging points into new positions in the 2D space. Manipulated points
define new pairwise relationships for the projection model to learn during the inverse
projection. Once the analyst completes their interaction, the model uses these relation-
ships to optimize the projection weights to create a layout that best respects the defined
relationships.

Interactive Dimension Reduction. To facilitate interactive dimension reduction, we use
inverseWMDS (WMDS−1) to update the projection after semantic interactions, as orig-
inally described in Andromeda [29].
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Fig. 3.Weighted visual backpropagation process

After a person re-positions a subset of the points, y∗, we perform WMDS−1 to cal-
culate new weights optimal for maintaining the specified relationships, thus capturing
human feedback. WMDS−1 uses the following equation to update the weights:

w= argmin
w1,...wd

√
(∑i< j≤N(distL(y∗

i ,y
∗
j)−distH(w,xi,x j))2

∑i< j≤N distH(w,xi,x j)2
(2)

This equation produces a vector of dimension weights that best respects the 2D
pairwise similarities specified through the interactions. We normalize the weight vector
to sum to 1, so as to normalize the HD distances to a roughly constant sized space. We
then re-project the images using Eq. 1 with the updated weights to create a layout that
incorporates human feedback.

4.3 Visual Explanations

Our method also provides visual explanations in the form of saliency maps that high-
light the important features for projecting a given image, shown in Fig. 1(d)–(f). In these
maps, the brighter pixels correspond to features of greater importance.

In the initial view, before semantic interactions, these explanations indicate the fea-
tures of importance identified by the feature extractor that the projection model then
uses to place the images. After an interaction, the optimized parameters are pushed
backwards through the feature extractor, using weighted backpropagation, to generate
new saliency maps that emphasize the features learned by the projection model. By
inspecting the differences between the original saliency map and the post-interaction
map, people can understand what features the projection learned from their interaction.
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Weighted Visual Backpropagation. Figure 3 illustrates our weighted visual backprop-
agation method. We base our proposed method on the visual backpropagation method
proposed by Bojarski et al. [4]. This method computes the actual contribution of neu-
rons to the feature representation, making the backpropagation fast and efficient. We
make this method projection-aware by applying the projection weights to the backprop-
agation.

To implement our method, we utilize the feature maps after each ReLU layer. For
the feature map of the last convolutional layer, we conduct channel-wise multiplication
with the weights w obtained from the interactive DR loop to back-propagate the user’s
intent. We then average the other feature maps to get a single feature map per layer. The
deepest single feature map, highlighted in green in Fig. 3, is deconvolved with the same
filter size and stride as the convolutional layer immediately preceding it. This scales
the feature map to match the size of the map in the previous layer. Then we point-
wise multiply the deconvolved feature map by the averaged single feature map of the
previous layer. This process is repeated until we reach the input image.

We keep our notation consistent with Bojarski et al. [4]. Note, we will only describe
our modification to their method. For full details, please refer to Bojarski et al. Consider
a convolutional neural network N with n convolutional layers. Let γ(i) denote the
value of pixel i of the input image and v represent a neuron. e represents an edge from
some other neuron v′ to v and ae denotes the activation of v (ae = a(v)). P denotes a
family of paths. The contribution of the input pixel i, calculated by the original Visual
Backpropagation method, is defined as:

θN
VBP(i) = c∗ γ(i) ∑

P∈P
∏
e∈P

ae (3)

To back-propagate the weighted feature map, we conduct channel-wise multipli-
cation for the last feature map with weights gained from the interactive DR loop. We
denote et as the edge that connects nodes from the layer (t − 1) to the layer t. Let k
denote the kernels for each layer. The contribution of the input pixel i calculated by our
Weighted Visual Backpropagation method is defined as

θN
WVBP(i) = c∗ γ(i) ∑

P∈P
∏
e∈P

aet (4)

where

aet =

{
a(v) if t �= n,

a(v)∗wk if t= n.

and wk is the weight from the inverse projection corresponding to channel k of the
feature map in the final layer.

5 Usage Scenario: Edamame Pods

We developed this usage scenario with our collaborators in the plant sciences depart-
ment [19]. Our collaborators identified the need for incorporating human perception
into model development for identifying plant features. Initially, they wanted to organize
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images of edamame pods based on maturity level. However, when sorting the images
they also discovered that the pods contained varying numbers of seeds, which often
correlates to the consumers’ perception of quality. They envisioned that a method like
ours would help them re-organize the images based on this newly identified feature and
allow them to reuse the original model. In the remainder of this section, we discuss two
scenarios for organizing images of edamame pods. For our example, we use a subset of
their edamame pod dataset containing 60 images, with 20 images per maturity stage.

Maturity Stage. The maturity stage of each pod is defined as either diseased, late-to-
harvest, or ready-to-harvest. Here, we test if our method can sort the images according
to these phenotypes and whether the features captured by the model to separate the
images are related to the underlying phenotypes, illustrated in Fig. 1. First, we project
the edamame pods to 2D. Then, we observe the visual phenotypes for maturity and
interactively drag a subset of pods (highlighted in green) in order to group them into 3
clusters according to the desired phenotype categories, shown in Fig. 1(a). We hypoth-
esized that, through this interaction, the underlying model would learn new weights
for the feature space that satisfy the newly defined projection and properly capture the
user’s mental model of pod maturity.

Figure 1(b) shows the updated projection (generated after approximately 25 s),
which produced three main clusters of pods according to their maturity stage.
Figure 1(c) shows the ground truth of the images. This indicates that the desired pheno-
types were effectively captured by the weighted features and represented in the updated
model.

The explainable feature visualizations of specific pods depict the most important
visual features learned by the interactive model. In Fig. 1(d) we see that one of the
important visual features learned by the model to determine the disease phenotype is
a salient discolored spot. Similarly, in Fig. 1(e,f), the model focuses on image areas
correlated to important features of each pod. This provides insight into that parts of the
pod are important for visually discerning the maturity stage. Furthermore, these results
provide a link between human perception and machine learning.

Number of Pods. For the same pods dataset, we also want to explore a different visual
phenotype: number of seeds per pod. However, the images were not originally collected
to determine the number of seeds. Thus, the number of seeds is a novel visual feature
that can be observed directly by the end users but is not initially used to cluster images in
the default projection. As before, the images of edamame pods are displayed in the 2D
plot. We then interactively drag pods (highlighted in green) to group them into 3 clusters
according to the number of seeds (1, 2 or 3), as shown in Fig. 4(a). We hypothesize that
by dragging a subset of the images, the underlying model will learn the weights for the
feature spaces that satisfy the user-defined projection based on the number of seeds.

Figure 4(b) shows the updated projection. We find that the projection model cap-
tures “number of seeds” phenotype. Figure 4(c) shows the ground truth of the updated
projection, instead of well-separated groups, the updated projection shows a linear rela-
tionship. We notice that there are two “three-seed” pods projected closer to the “two-
seeds” pods. To learn more about why these two pods are mis-projected, we explore
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Fig. 4. Interactions to explore images based on the number of seeds. (a) shows the interaction
based on seed count. (b) shows the updated projection while (c) shows the ground truth seed
count. (d)–(f) shows the explanations of important image features for each seed count while (g)
shows the explanations of two misprojected images.

the visual feature explanations for each group. Figure 4(d, e, f) shows the saliency map
for the three groups accordingly. We find that the most important CNN features mainly
capture the overall shape of the pod, as well as the position and the “raised” area of
the seeds to differentiate pods with different numbers of seeds. Yet for those two mis-
projected pods, they are either dominated by the disease spot or do not have the obvious
shape of three seeded pods, as shown by Fig. 4(g).

6 Discussion

General Framework for Analysis Using Deep Learning Features. One of the central
problems with using deep learning feature representations in data analysis is the loss
of access to the original data features. Typically, people must sacrifice analysis trans-
parency for performance. However, our method presents a framework in which we
maintain access to the original data features by leveraging the underlying deep learn-
ing model to create explanations from the underlying data features. Through the use
of weighted backpropagation, we push the information learned by the projection model
back through the neural network to generate explanations relative to the underlying data
features. In doing so, we take a step towards solving the “two black boxes” problem,
as defined by Wenskovitch and North [34]. The “two black boxes” problem identifies
both the deep learning algorithm and the human cognitive process as black boxes that
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impede the learning process. In our method, semantic interactions with the projection
allow people to express some of their cognitive processes to the machine. In return,
the model presents explanations that illustrate how it uses the provided information.
This creates a synergy between the machine and the human and facilitates a more com-
plete analysis experience. This framework can be generally applied to analytics methods
using deep learning representations of data.

Feature Representation Choice. In our method, we use ResNet18 to extract image
features. However, alternative methods for feature extraction could be used. Bian et
al. explored additional methods for feature extraction, including color histogram and
Scale-Invariant Feature Transform [3]. We explored these methods as well but found
that feature representations from convolutional neural networks provide the most mean-
ingful projections and explanations. However, there exist other neural network feature
extractors besides ResNet18. The design of our method easily allows people to swap
in different CNN feature extractors, including those designed for specific tasks and
datasets. This allows people to further customize projections of their data for the given
analysis task. Additionally, our method can facilitate the comparison of different feature
representations to identify the one most appropriate for a given task.

Other Methods for Explanation. Our method uses weighted backpropagation to create
explanations of the effects of semantic interactions. However, this method is only one
candidate for creating explanations of interactions. There exist other methods for gen-
erating feature explanations that we can adapt to our method. For example, we also
adapted Grad-CAM to consider the weights from the projection model to generate
explanations [30]. We found that Grad-CAM excels when images contained multiple
entities, however, it falls flat when searching for specific image features. As our method
benefits from finer-grained explanations, Grad-CAM was not a suitable method. Adapt-
ing other methods for creating model explanations remains to be explored in future
work.

7 Conclusion

In this paper, we presented an interactive dimension reduction method for exploring
image data using deep learning representations of images. Our method provides seman-
tic interactions that allow people to incorporate their prior knowledge into the projection
model. It uses custom-defined relationships to learn new projection weights optimal for
respecting these relationships. Additionally, our method provides visual explanations
of the effects of semantic interactions on the projections placement of images. These
explanations illustrate the image features most important for projecting the images and
illustrate the effects of interactions. We provide a real world usage scenario to demon-
strate the method’s effectiveness at organizing data from human-defined similarities.
Overall, we found that our method was able to capture human feedback and incorpo-
rate it into the model. Our visual explanations help bridge the gap between the feature
space and the original images to illustrate the knowledge learned by the model, cre-
ating a synergy between human and machine that facilitates a more complete analysis
experience.
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Abstract. This paper applies the recent advances of visual analytics,
which combine computers’ and humans’ strengths to the data exploration
process, to alleviate the scalability and overplotting issues of dimensional
projection techniques for high-dimensional temporal datasets. Our app-
roach first uses clustering algorithms to select the representative data
points at each time step for each data profile. We then apply dimension
reduction techniques to visualize the temporal relationships via connect-
ing lines. Finally, we propose a couple of different underlying models to
treat time steps and the time dimension to mitigate the final projections’
visual clutter. We built a web-based prototype, called MultiProjector , to
integrate these components into a unified data exploration process. The
prototype is validated on several high-dimensional temporal datasets in
various application domains to demonstrate our approach’s benefits.

Keywords: HPC monitoring · Projections · Graph visualization

1 Introduction

Temporal datasets are increasing in size and complexity due to the growth
of many fields such as scientific applications, economics, and finance. A time
series is a chronological collection of observations throughout time [10]. Tem-
poral datasets may have one variable (univariate time series) or many variables
(multivariate time series). The latter is more complicated in terms of the analysis
as relations between variables play a fundamental role in analyzing this type of
time series [27]. An example of the multivariate time series is the US employment
data. The monthly statistics of employees in various economic sectors (such as
Education, Finance, or Construction) form a multivariate time series collection.
In this example, each sector is a variable, and the state is an individual obser-
vation. In this paper, we consider the temporal dependencies between variables
and inter-relationships between individuals over time.

There are many efforts to integrate temporal information into common visual
presentations of cross-sectional datasets, or high-dimensional non-temporal
datasets, such as parallel coordinates [8,14], radar charts [26], and hierarchi-
cal layouts [13]. Ali et al. [2] introduce the application of sliding window and
dimension reduction techniques in visualizing long multivariate time series. Their
approach helps to display the similarity of chronological sliding windows of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Bebis et al. (Eds.): ISVC 2022, LNCS 13598, pp. 91–102, 2022.
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multivariate time series, enabling the detections of repetitive patterns or inter-
esting anomalies. This paper considers each instance in the multivariate time
series as a data point in the high-dimensional space. Similar data points are
grouped based on their multivariate values to provide a compressed summary
of the data profile. The projected positions of the remaining data points repre-
sent the interrelationships of individuals and the evolution of these individuals
via connecting lines. By marrying clustering methods and dimension reduction
techniques into a unified framework, we provide scalable multidimensional pro-
jections for large temporal data. The contribution of this paper is listed as the
following.

– We discuss, compare and summarize the pros and cons of various dimensional
reduction techniques in the context of temporal data.

– We propose a couple of different underlying models to treat time steps and
the time dimension to reduce the number of projected data points without
affecting the global structure and mitigate the final projections’ overplotting
issues.

– We implement an interactive web-based prototype to visualize high-
dimensional temporal datasets. Our approach and prototype are demon-
strated on real-world datasets in various domains to illustrate its benefits.

2 Related Work

2.1 Visualizing High Dimensional Temporal Datasets

Many works have been carried out to provide visualizations for high-dimensional
time series. Specifically, there are many efforts to add time dimensions into com-
mon visual presentations of cross-sectional datasets, or high-dimensional non-
temporal datasets, such as matrix [3], parallel coordinates [5], and circular lay-
outs [9]. We firstly consider the temporal extension of the scatterplot. Time-
Seer [6] transforms the collection of time series in the datasets into time series
of Scagnostics, which are metrics for visual features of the scatterplots for each
pair of variables. It uses these Scagnostics as a signal to identify unusual events.
Congnostics [22] proposes a list of eight metrics for connected scatterplots’ visual
features and helps to visualize the dynamic correlation between variables of an
individual.

TimeCluster [2] proposes the use of dimension reduction techniques to visual-
ize long multivariate time series. It considers each sliding window as a point in a
high-dimensional space, whose number of dimensions equals the time series val-
ues in the window. For example, an individual has three variables, and the sliding
window has a size of sixty. In this case, the high-dimensional space has 180 dimen-
sions. After reducing the dimensions by deep convolutional auto-encoder, the
authors continue to apply other dimension reduction methods such as PCA [31],
t-SNE [19], and UMAP [20]. Their approach helps to reconstruct the whole tem-
poral dataset to only one view to observe some interesting patterns like clusters
or abnormalities.
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2.2 Dimension Reduction

Principal Component Analysis, or PCA, is one of the most popular linear dimen-
sion reduction techniques. It projects the original data to a lower-dimensional
space, such that the variance of the projected data is maximized [31]. In addition
to the linear projections, many nonlinear dimension reduction techniques have
been developed. The t-Distributed Stochastic Neighbor Embedding, or t-SNE, is
a frequently used nonlinear projection. It computes the similarities between data
in the high-dimensional space by Gaussian distribution before reconstructing
these similarities by Student t-distribution in a low dimensional space [19]. This
method requires both time and memory complexity up to O(N2), which may
not be efficient for large datasets. The acceleration of this technique using the
Barnes-Hut algorithm can reduce the time complexity to O(Nlog(N)) and the
memory complexity to O(N) [29]. Uniform Manifold Approximation and Projec-
tion, or UMAP, is recently introduced to the literature [20]. It has been proved
to be comparable to t-SNE in the visualization of large datasets. Becht et al. [4]
provide a comparison for the running times of some popular projection meth-
ods, including t-SNE and UMAP. To stabilize the projection results for streaming
multidimensional data, Fujiwara et al. [12] propose geometric transformation and
animation methods. However, the approach does not aim to resolve the scalabil-
ity issues of the multidimensional projection techniques [11]. This paper utilizes
and expands the three projection methods mentioned in this section to various
multivariate temporal datasets. We will discuss in detail our visual methodology
in the next section.

3 Methodology

Our research problem is projected onto the three dimensions: individual data
entries, variables of these individuals, and time. An example of this data struc-
ture is the monthly US employment rates. This dataset has 53 states and terri-
tories in the US as 53 individuals. Each state has many economic sectors such as
Good Producing, Manufacturing, Financial Activities, etc., and they are consid-
ered the variables of each individual. The net change in the number of employees
per month of a specific sector of a particular state form a time series in this
collection. Before any computations and visualizations, we apply the min-max
normalization for every variable in the dataset to scale them to the unit range.

3.1 Clusterings

To handle large multivariate time series, not all data points join the dimension
reduction computation. Instead, we first perform clustering across all snapshots
to abstract a large number of data points into the major groups and focus on
data instances at the group changes. Our approach is based on the observation
that stable profiles may not contain much insight when analyzing time series,
but they consume the computational resources for rendering the projections and
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causing overplotting issues. In particular, our MultiProjector web-based proto-
type supports two clustering algorithms: k-means and leader bin. The former
requires a given number of groups and a convergence criterion such as the min-
imal decrease in squared error [15]. Users can also set the maximum number of
iterations to stop the k-means computation. The latter allows a flexible range of
leaders with a consideration: it is inefficient if there are too many leaders, while it
tends to over-summarize the dataset if there are too few ones [7]. MultiProjector
uses leader bin as the default multivariate clustering method since it provides
the representative instances (leaders) and more stable clustering outcomes.

3.2 Multidimensional Projections

We consider three popular classes: PCA, t-SNE, and UMAP. PCA projects data
points into a few orthogonal or uncorrelated principal components, which retain
the whole data maximum variance. Usually, the first two components retain
most information about the dataset, so it is reasonable to use PCA to project
the data points in high-dimensional space to two-dimensional space. However,
this method has two main disadvantages [30]. The first one is that it is inappro-
priate for embedding extremely high-dimensional space due to the overlapping
problem or the curse of dimensionality. The second drawback is that it favors
the large pairwise distances, not the small ones. The nonlinear methods (t-SNE
vs. UMAP) can avoid the overlapping issue of distinct clusters. While t-SNE
focuses on preserving the local structure of the dataset, UMAP can reconstruct
the global structure.

3.3 Visualizing the Time Dimension

A straightforward approach for plotting temporal domain is using the connected
lines. To enforce the time dimension in the computation, we integrate time as a
new dimension (increasing from min to max) along with variables for computing
the projection. This method allows time to contribute to the projection of data
points and to distinguish any individual at different time points. Additionally,
we introduce the use of the third axis along with the 2D space to display time. In
other words, this approach projects all individuals at the same time point into
a 2D layer before aligning them onto the layers in chronological order on the
third axis to illustrate the temporal evolution. This third dimension enforces the
contribution of time to the final projection of the dataset. The summary of the
idea of integrating the time domain into the 2D projection is depicted in Fig. 1.

3.4 Multivariate Representations

Each individual at a specific time point is defined by its multivariate metrics. As
we aim to plot the multivariate metrics directly on the projected space, circular
representations are more appropriate for a large number of variables [21]. An
intuitive presentation for an individual at a time point is a radar chart that
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Fig. 1. Visualizing the US monthly employment data in 22 years: (a) 2D UMAP pro-
jection (b) 2D UPMAP projection considering time as an additional variable in the
multidimensional project, and (c) Integrating the time domain into the 3D projection.

shows its multivariate values [17]. The position of each data point is determined
by its multivariate values. Then, the Euclidean distance between any pair of data
points measures how similar they are. Before applying projections, we reduce the
number of input data points by compressing similar timestamps of the same data
profile together. In other words, we care about the changes while discarding the
static points in the high-dimensional time series data.

4 Use Cases

4.1 Use Case 1: Monthly US Employment Rate

The US employment dataset contains 53 states and territories [1]. Each state is
considered as an individual profile that is recorded on 15 economic sectors. In
particular, the monthly net change of the number of employees in every economic
sector of each state is retrieved from January 1999 to May 2020. Totally, there
are 12,495 data points in this dataset to be considered in the final projection.

In this use case, we focus on the 2D UMAP projection and its 3D vari-
ances, as depicted in Fig. 1. Different from the incremental approach discussed
by Fujiwara et al. [12], we consider data points in all time steps as a whole in
the projection. This allows us to avoid the unstable layouts (such as flipped or
rotated) generated by independent projections for each time step. Figure 1(b)
depicts the chronological sequence when we consider time as an additional vari-
able for the UMAP projection. In Fig. 1(c), time is used as the third axis (from
left to right), the 53 multivariate data points representing the economic status
of states and territories in a given month are scattered on a plane orthogonal to
the time axis. We can easily notice the interesting spiral pattern from the point
of view of how the points are arranged throughout the 3D space in Fig. 1(c).
This can be explained as the US economy is completing a circle after the 2008
Great recession. The orange points at the rear of the spiral region are states
in March 2020. These points are most dissimilar to most of the points in the
spiral region, which means the US experienced a significant drop in the number
of employees in March 2020 when Covid-19 started wreaking havoc on the US
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economy. Moreover, the outlier below the Spiral represents the Louisiana econ-
omy in August 2005 due to hurricane Katrina. In this use case, the data points
are color-coded by the k-means clusters that they belong to. The cluster colors
are only there for visual inspection and have no impact on the actual projection.

Fig. 2. Multidimensional projections of the computer health metrics: (a) The multi-
variate data is first classified into six groups. (b) PCA projection of 12,609 operating
statuses, (c) t-SNE, and (d) UMAP projection of 1,225 operating statuses. The data
points are colored by their multivariate statuses as defined in (a) (Color figure online).
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4.2 Use Case 2: Monitoring Computer Metrics

The second use case considers the health metrics of a High-Performance Com-
puting system at a university [28]. The system has 467 nodes, and thus they are
467 individuals in the high dimensional time series associating to nine health
metrics, such as CPU temperatures, fans speeds, memory usage, and power con-
sumption [18]. In other words, they are nine variables in the temporal dataset.
The metrics are recorded at 5 min frequency. In particular, the dataset that we
use in this use case is on March 21, 2019.

The multivariate operating statuses of computing nodes in the High-
Performance Computing system are first classified into six major groups using
the k-means algorithm. Users can select different clustering methods as well as
the number of clusters on their choices. As depicted in Fig. 2(a), radar charts
are used to represent the multivariate status of the computing nodes as they
can quickly capture the morphology of the computing statuses [17]. The PCA
projection in Fig. 2(b) takes 876 ms. The PCA projections are pretty uniform,
and no visual pattern can be easily discerned.

Based on the observation that system administrators care more about the
significant changes rather than the static computing nodes [23], we propose to
reduce the number of static operating statuses and only focus on the dynamic
behaviors of the system (when the group switchings happen). Therefore, we
reduce the number of multivariate data points ten times from 12,609 down to
1,225. This allows our approach scaling well with the large time-dependent mul-
tivariate datasets. Figure 2(c) shows 2D t-SNE projection and our modified 3D
temporal projection. Notice that the 3D projection, with time as the third axis,
displays the three dense regions at the beginning and the end of the observed
period. The first region on the grids is the first time step, and therefore, the
operating statuses of all 476 computing nodes are recorded. The middle region
is sparse since we only plot the significant changes on the metrics, such as CPU
and memory usage, most probably associating to the HPC scheduler events (a
new user is allocated the computing resources or a new job is dispatched). Toward
the end of the observed period, there are separated into two groups: green and
red vs. orange and blue. As shown in the radars in Fig. 2(a), the green and red
groups have high CPU temperatures and high fan speeds while the orange and
blue groups are normal operating statuses. In particular, the chill water for the
HPC center was accidentally disconnected at around 2 pm on March 21, 2019,
leading to the overheat issues on all computing nodes (green and red nodes). At
4 pm, the system had been automatically shut down and then returned to the
normal operations (orange and blue groups). Regarding UMAP in Fig. 2(d), the
2D projection is quite uniform and has no visible cluster or outlier. In the 3D
UMAP projection, the similar dynamic behaviors of the system are also captured
on the temporal domain. We can also notice that our data reduction technique
has also mitigated the serious overplotting issues in Fig. 2(b2). Our MultiProjec-
tor also supports embedding the multidimensional representation of computing
nodes directly in the projection for visual inspections.
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Our MultiProjector also supports embedding the multidimensional repre-
sentation of computing nodes directly in the projection for visual inspections.
Figure 3 depicts the same example in Fig. 2(d1) in a compressed honeycomb
layout. In particular, MultiProjector initializes a force layout from the UMAP
configuration. The data points automatically resolve collisions before projected
onto a regular honeycomb layout. Specifically, each bee cell in Fig. 3 contains
a representative operating status of a node. The saturation of the radar indi-
cates how long the computing node stays on that status (no significant changes
on the health metrics). In this example, we draw a trajectory of a sample pro-
file, compute-3-41. We can visualize the chill water impacts on this computing
node: The node started with the normal operating status at 14:00, then traveled
through overheat states in green and red at 15:45 and 15:50, and finally ended
up with a blue state after the HPC system reset at 16:00.

Fig. 3. Visualizing 1,225 operating statuses in our non-overlapped honeycomb layout:
The six color-coded clusters are produced by the k-means algorithm on nine health
metrics, such as CPU temperatures, memory usage, and fan speeds. The arrow connects
various operational status of compute-3-41 in 2 h.

4.3 Use Case 3: Plant Genetics

In this use case, we target the visual clutter issue of multidimensional projections.
The data was retrieved from the Center for Functional Genomics of Abiotic
Stress [16]. In particular, we need to consider 20,450 plant genes experimented
under 12 tested conditions, with STOP1 mutant for the last 6 conditions. These
experimented conditions are abbreviated as wt for wild type, stop1 for knock-out
mutant background for the transcription factor, hp for high phosphate supply
(1 mM), lp for low phosphate supply (0 mM), Al for Al stress pH 5, and Fe
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for Fe excess supplied to the medium pH 5. For example, nametags for the
conditions composed as wthp6 means wild-type/high Pi supply/pH 6 and s1hp6
means stop1 ko/high Pi supply/pH 6. Al and Fe are only tested conditions
under low Pi and pH 5, and hence there are two library replicates for Al and
Fe for each genotype and toxicity. In the input data, the first column contains
gene names, and the next six columns are the wild type conditions, including
the base condition, wthp6. The last six columns are the corresponding STOP1
mutant conditions.

Fig. 4. Visualizing gene expressions using our MultiProjector prototype: (a) 20,450
plant genes (b) 210 transcription factors (Color figure online).

Figure 4 shows the expression levels of 20,450 genes under six controlled
conditions through two time steps: before and after the application of STOP1
mutant. Therefore, we have 40,900 data points in this projection. Figure 4(a)
shows overplotting issue of 2D UMAP projection. Notice that low expressed
genes tend to locate on the top while highly-expressed genes flow down the
bottom (the blue region). To alleviate the visual clutter issue, we first reduce
the number of projected genes by focusing on transcription factors (the genes
that change their expression behaviors significantly), which are identified by the
Euclidean distance of the multivariate values before vs. after the injection of
STOP1 mutant. Figure 4(b) shows our non-overlapped honeycomb layout of the
210 transcription factors. The arrows in the background highlight the group tran-
sitions of these 210 genes. We can notice the major group changes are between
green to yellow and purple to orange. We have annotated the special gene STOP1
and its rare transition from the most active group (blue) to an inactive one
(green), as depicted in the enlarged radar view. In this example, MultiProjec-
tor provided a compressed projection view of gene expression data that allows
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biologists to visualize and identify the behaviors of the leading factors under the
tested conditions. This type of analysis is important for plant treatments and
drug designs.

4.4 Discussion

PCA is a linear projection and hence is the fastest method with about one
second for thousands of data points in the web-based environment. However, it
has an issue of overlapping data points, especially when there are outliers. UMAP
preserves pairwise Euclidean distances significantly better than t-SNE [25], and
thus UMAP preserves more of the global structure. It runs much faster than
another nonlinear method, the t-SNE, especially as the size of data points is
significantly large. Because t-SNE focuses on reconstructing the dataset’s local
structure, it cannot perform well in clustering data points for finding dissimilar
groups [24]. The same groups’ points tend to pull each other, so the density of
the t-SNE projection may not be uniform. Figure 5 gives a comparison between
UMAP and t-SNE in terms of running time (in log scale) via our web-based
prototype. All tests were performed on a computer with 2.9 GHz Intel Core i5,
macOS Sierra Version 10.12.1, 8 GB RAM. The introduction video and online
demo of our web-based prototype can be accessed at https://git.io/JLppG.

Fig. 5. Running time comparisons of PCA, UMAP, and t-SNE in our web-based appli-
cation using Google Chrome.

5 Conclusion

Multidimensional projections are popular methods for reducing high-dimensional
data onto lower-dimensional planes. However, the importance of the time element
is not always considered properly. In this paper, we investigate the temporal
domain as one of the dimensions in multidimensional projections. This allows
us to impose the temporal changes onto the lower-dimensional space (such as
2D or 3D). We project different time steps as a whole and align them over

https://git.io/JLppG
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the 3rd axis in order to keep the spatial coherence between them. To project
a large number of input data points, we focused on the significant time steps
for each data profile where multivariate variances occur. Our temporal data
reduction technique also helps to mitigate the overplotting issues generated by
multidimensional projections. We experiment our approach on various existing
dimensional reduction methods and demonstrate them on different domains.
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Abstract. Modern-day display systems demand high-quality render-
ing. However, rendering at higher resolution requires a large number of
data samples and is computationally expensive. Recent advances in deep
learning-based image and video super-resolution techniques motivate us
to investigate such networks for high fidelity upscaling of frames rendered
at a lower resolution to a higher resolution. While our work focuses on
super-resolution of medical volume visualization performed with direct
volume rendering, it is also applicable for volume visualization with other
rendering techniques. We propose a learning-based technique where our
proposed system uses color information along with other supplementary
features gathered from our volume renderer to learn efficient upscaling of
a low resolution rendering to a higher resolution space. Furthermore, to
improve temporal stability, we also implement the temporal reprojection
technique for accumulating history samples in volumetric rendering. Our
method allows high-quality reconstruction of images from highly aliased
input as shown in Fig. 1.

Keywords: Super-resolution · Volume rendering · Medical imaging

1 Introduction

With recent advancements in imaging technology, medical volume data, such
as computed tomography (CT) scans and Magnetic Resonance Imaging (MRI)
images, are readily available. The rendering performed with these 3D data for
visualization of anatomical structures plays a significant role in today’s clinical
applications. The quality of the 3D volume data, as well as the visual fidelity of
the rendered content, directly affects the diagnosis accuracy in clinical medicine.
For larger volume data, the traversal of the volume becomes increasingly costly
and can negatively affect the frame rate for high resolution rendering.

In recent years, several works have addressed the goal of resolution augmen-
tation in the medical imaging sector as a software based post-processing tech-
nique rather than an engineering-hardware issue. Such software based techniques
have a variety of use cases. For instance, in cases of remote visualizations, high-
resolution rendering from supercomputers can only be saved or streamed at a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Bebis et al. (Eds.): ISVC 2022, LNCS 13598, pp. 103–114, 2022.
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a)Input b)Ours c)GT

Fig. 1. Results of our super-resolution network for volumetric rendering with a) input
rendering at a low resolution of 240× 240 which is upscaled by a factor of 8× 8 to
obtain the high-resolution output b) at 1920× 1920. c) is ground truth image.

compressed lower resolution state due to storage and bandwidth limitations. This
data, when streamed to the client-side, needs to be decompressed and upscaled
in such a way that the reconstruction error is kept as low as possible. Moreover,
high-resolution displays in modern-day mobile and Virtual Reality (VR) systems
demand high-resolution and high-quality rendering.

A variety of high quality image reconstruction techniques have been proposed
to address this issue. Recent works in deep learning have demonstrated that
learning-based image and video super-resolution methods can efficiently upscale
inputs to a higher resolution when the network is trained on low and high-
resolution pairs of images [4]. In image and video super-resolution literature,
super-resolution is generally studied as a deblurring problem. However, unlike
photographic images, each pixel sample in a rendering is a point sample in space
and time which makes the final rendering to have aliasing artifacts typically
at lower resolution. Thus, upscaling rendered content is considered as an anti-
aliasing and interpolation problem [21].

In our work, we investigate a deep learning based super-resolution approach
for direct volume rendering (DVR) of 3D medical data. Leveraging prior works on
image and video super-resolution architectures, we present a rendering pipeline
that includes an artificial neural network to perform upscaling of a ray-casted
visualization of medical volumetric data. Motivated by a recent work on super-
sampling of surface-only rendered content [21], we plan to use the neural super-
sampling architecture as a basis and extend it for volumetric rendering. Our
proposed pipeline consists of a volume renderer that outputs a low-resolution
rendering of medical volume data along with a number of supplementary features
which enables the super-resolution network to make sensible interpretations of
these features for generating a high-resolution representation of the input. Fur-
thermore, in order to improve the temporal stability and to aid in information
refill, we implement a simple, yet effective way to perform temporal reprojec-
tion for volumetric cases. This allows our network to effectively propagate and
aggregate samples from neighboring frames to the current frame.
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We summarize our technical contributions as follows:

– We demonstrate a learning-based technique that performs up to 8× 8 upsam-
pling of highly aliased volumetric rendering with improved visual fidelity and
temporal stability.

– We experimentally verify the effectiveness of supplementing the network with
additional features to improve the quality of reconstructed image.

– We implement an effective temporal reprojection technique for the accumu-
lation of history samples in volumetric rendering.

2 Related Work

2.1 Image and Video Super-resolution

Deep learning-based super-resolution techniques started to gain popularity since
the initial works by [4] where they used deep convolutional neural networks
(CNN) to learn end-to-end mapping between low/high-resolution images. Several
other CNN-based models have been proposed since then to improve upon the
network architecture. Instead of learning the direct mapping between input and
output, Kim et al. [12] proposed to learn the residual between the two images by
introducing a very deep network. After the introduction of residual network [7],
Zhang et al. [22] and Lim et al. [16] applied residual blocks to further improve
the performance of the network. To improve upon the perceptual quality of the
reconstructed photo-realistic images, Ledig et al. [15] incorporated generative
adversarial networks [6] and proposed to use a combination of loss functions
including perceptual loss [11] and adversarial loss [6].

Video super-resolution (VSR) is more challenging compared to single image
super-resolution in that one needs to gather auxiliary information across mis-
aligned neighboring frames in a video sequence for restoration. In some recent
works, recurrent networks have been widely used in video super-resolution archi-
tectures [2,9] which naturally allows for gathering information across multiple
frames. Another group of networks uses motion estimation between frames to
fuse multiframe information and to improve temporal coherence. Jo et al. [10]
proposed to use dynamic upsampling filters for implicit motion compensation
while Kim et al. [13] used a spatio-temporal transformer network for multiple
frame motion estimation and warping.

2.2 Resolution Enhancement for Rendered Content

Several methods have been proposed to improve the visual fidelity of rendered
content or to upsample a rendering performed at a lower resolution. Weiss et
al. [20] used a deep learning-based architecture to upscale the resolution for iso-
surface rendering. Nvidia recently introduced a super-sampling technique that
uses a deep neural network and temporal history to accumulate samples [5]. Simi-
larly, Xiao et al. [21] demonstrated up to 4× 4 upsampling of highly aliased input.
These methods, however, perform image reconstruction for surface-only rendered
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content. In our work, we focus on performing up to 8× 8 super-resolution of vol-
umetric visualization with high visual and temporal fidelity. Furthermore, most
of these above methods propose to use motion information between frames to
use temporal history, however, computing screen space motion information for
volumetric rendering is not straightforward.

3 Methodology

In this section, we describe the overall framework of our system.

3.1 Direct Volume Rendering Framework

In our DVR framework, we cast rays from the camera through pixels of the view-
port. When the ray reaches the volume contained in an axis-aligned bounding
box, the ray is sampled via ray marching, i.e., stepped along at equal distances.
At every step of the ray, a transfer function maps the interpolated intensity
value at that position to an RGBA vector. As the ray steps through the volume,
a local gradient is combined with a local illumination model to provide realistic
shading of the object. The final pixel value is computed using front-to-back
compositing of the acquired color and alpha (opacity) values along the ray. The
ray is terminated early if either the accumulated opacity reaches close to 1 or
the ray leaves the volume.

The issue with high-quality super-resolution for rendered content is that the
information at the to-be-interpolated pixels at the target resolution is completely
missing and since pixels are point-sampled, they are extremely aliased at geom-
etry edges, especially at low resolution. An effective way to handle these alias-
ing artifacts is temporal anti-aliasing (TAA) which attempts to gather multiple
samples per pixel by distributing the computations across multiple frames. Moti-
vated by this, we implement a similar technique to perform super-resolution i.e.,
compute and gather multiple sub-pixel samples across frames and feed this infor-
mation to our super-resolution network to upscale the low-resolution rendering.
However, for volumetric rendering, accumulating samples from previous frames
presents a few challenges which we discuss in the sections below.

3.1.1 Motion Vector and Depth In rendering, a motion vector defines an
analytically computed screen-space location where a 3D point that is visible at
the current frame i would appear in the previous frame i−1. The main principle
of temporal methods to perform either anti-aliasing or upsampling is to compute
multiple sub-pixel samples across frames, and then combine those together for
the current frame. The samples from the previous frame are reprojected using
the motion vector to the current frame. The input to our renderer is static
volumetric data without any motion of its own, so performing reprojection using
the motion vector depends entirely on the camera transformation matrices and
depth information. Unfortunately for direct volume rendering, we lack this depth
information since we are not looking at a single position in the world space but a
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p
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previous frame

pos B
Volumetric  

Object

pos A

Fig. 2. Camera movement around a volumetric object from posA to posB. Point x is
the first hit point on the volumetric object when the ray passes through the volume
for the current camera position, while p is a point inside the volume where the alpha
value is maximum along the ray.

number of points in the volume along the ray. Hence, computing motion vectors
to perform reprojection is challenging.

To overcome this, we implement a naive approach where we use the point of
maximum alpha along the ray to perform reprojection. Since this position will
have the maximum contribution to the final accumulated sample, we found that
this quasi-depth information computed using this heuristic gives an acceptable
approximation for the estimation of motion vector. We start from the current
frame coordinate u, v as shown in Fig. 2. Once we have the world space position
for the point p in space where we have maximum alpha along the ray, we can use
previous camera transformation matrices to reproject this position back to pre-
vious frame coordinates u′, v′. The difference between the two frame coordinates
gives us the screen space motion vector due to camera movement.

3.1.2 Disocclusion and Ghosting Once we have the motion vector between
two consecutive frames, we additionally incorporate temporal anti-aliasing to
our final rendering with an additional compute shader call, thus adding a post-
processing pass to our DVR pipeline. We utilize the history color buffer and
motion vector to gather samples from the previous frame and combine them
with the samples in the current frame. History samples can sometimes be invalid.
Trivially accepting all of the history samples causes ghosting artifacts in the final
rendered image because of disocclusion. As we move the camera, regions of the
volume that were not previously visible may come into view. To address this
issue, similar to [17,18], we resort to using neighborhood clamping which makes
the assumption that colors within the neighborhood of the current sample are
valid contributions to the accumulation process. Specifically, we implemented
3*3 neighborhood clamping which produced reasonably effective results for our
volume rendering case.

3.1.3 Supplementary Features Previous works on reconstruction networks
for surface data [14,21] have shown that supplementing a network with additional
features improves the overall performance of the network. This motivates us to
opt for a few supplementary features adapted to our volumetric case. Xiao et al.
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Fig. 3. Input feature images from the training dataset. From left to right: a) Final
rendered color image with 3 channels RGB, b) Depth with a single channel and c)
color-opacity vector (opacity is not shown) with 4 channels RGBA at the position where
alpha is maximum along the ray; d) Example Motion vector image with 2 channels.

[21] showed that the reconstruction network benefits with depth as an additional
input to the network, but as discussed in Sect. 3.1.1, depth information is not
well defined for the volumetric case, so we resort to using the depth at the point
of maximum alpha value along the ray since the final rendering will have more
contribution from this point. Additionally, we also save color and opacity values
at this point. When adding them as input, we are able to obtain additional gains
with our network (Sect. 5.1).

In addition to feeding the network with rendered frames and supplemen-
tary features from the current and the previous time steps, we also provide a
screen space 2D motion vector which is used to warp the previous frames to
the current frame. Using optical flow or motion estimation is common in the
video super-resolution literature (Sect. 2) to capture the temporal dependency
between successive frames and to reduce the complexity of the network. Figure 3
shows all types of inputs that our network receives.

3.2 Network Architecture

Figure 4 depicts the data flow through our network. The overall network archi-
tecture has been inspired from Xiao et al. [21] with a number of modifications
to suit our needs. We implement residual blocks to extract features from the
input since they are easier to train and allow a better flow of information due
to the presence of shortcut connections [7]. For our reconstruction network, we
adopt a similar autoencoder architecture by Hofmann et al. [8] which has been
successfully applied to volumetric data. For the loss formulation, we implement
Charbonnier loss because of its benefits mentioned in Sect. 3.2.5.

3.2.1 Residual Block The first component of the network is a residual block
which is used to extract features from the input frames, where by ‘input frames’,
we mean all the rendered color images from current and previous frames with
their supplementary features excluding motion vector. The residual block we use
in our network (Fig. 5) has two 3× 3 convolutional layers. Each convolutional
layer is followed by a rectified linear unit (ReLU) activation function. After the
second convolutional layer, the output from the layer is added together with the
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Fig. 7. Autoencoder for reconstruction of high
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input to the residual block, before sending it to the final ReLU activation func-
tion. To transform the input into the desired shape for the addition operation,
we introduce an additional 1× 1 convolutional layer in the skip connection.

3.2.2 Zero Upsample and Warping We implement zero upsampling tech-
nique [21] to upscale the low-resolution input to the target resolution. In zero
upsampling, every pixel in the low-resolution space is upsampled to be sur-
rounded by pixels with zero values in high-resolution space. Once all the input
frames and the feature maps (extracted from the residual block) are upsam-
pled to target resolution, the previous frames and the corresponding feature
maps are processed further with the warping module, where they are backward
warped to align with the current frame with the help of motion vectors. All input
frames (after zero upsampling and warping) are then concatenated and fed to a
reweighting network as shown in Fig. 4.

3.2.3 Reweighting Network As discussed in Sect. 3.1.2, there are a few
limitations associated with using motion vectors that prevent its direct use for
accumulating history samples. In addition to disocclusion and ghosting, motion
vectors do not reflect shading and lighting changes between two frames. To
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address these issues, we leverage a recent work in neural upsampling [21] which
uses a reweighting network to weed out the inconsistent samples. The reweight-
ing network is shown in Fig. 6. It is a 3 layer convolutional network that generates
a pixel-wise reweighting channel for each previous frame. For example, for two
previous frames used in our network, we obtain two reweighting channels from
the reweighting network. Each of these reweighting channels undergoes elemen-
twise multiplication with all the channels of each of the previous frame’s feature
maps (after zero upsampling and warping). The result is concatenated with the
current frame’s feature map and fed as an input to an autoencoder.

3.2.4 Autoencoder For the reconstruction of high-resolution images using
the concatenated result from Sect. 3.2.3, we adopt a similar autoencoder net-
work from Hofmann et al. [8]. It uses a fully convolutional encoder and decoder
hierarchy with skip connections as shown in Fig. 7.

3.2.5 Loss Function We use Charbonnier loss [3] to quantify the error
between the high-resolution output and the given ground truth image. Char-
bonnier loss is known to be insensitive to outliers and for super-resolution tasks,
experimental evaluation has shown that it provides better PSNR/SSIM accura-
cies over other conventional loss functions [1].

L =
1
N

N∑

i=0

ρ(yi − zi), (1)

where, ρ(x) =
√

x2 + ε2, ε = 1 × 10−8, zi denotes the ground truth high
resolution frame, and N denotes the number of pixels.

4 Dataset

In order to generate a high quality dataset, we incorporate 3 different volumet-
ric data (CTA-Cardio: 512× 512× 321, Manix: 512× 512× 460, CTA Abdomen
Panoramix: 441× 321× 215) with different transfer functions. We render 36
videos from each volume data and each video contains 100 frames. Each of these
videos start from a random camera position in the scene that is selected from a
large candidate pool. We split the dataset generated from each scene into 3 sets:
training (80%), validation (10%), and test (10%).

For ground truth high-resolution images, we render the volume data at
1920× 1920 resolution with temporal anti-aliasing turned on. For low-resolution
input, the temporal anti-aliasing feature is turned off and the images are ren-
dered at varying resolutions: 480× 480, 240× 240, and 120× 120. In image and
video super-resolution literature, it is common practice to use blurred and down-
scaled versions of the original high-resolution image as low-resolution input to
the network. In contrast, our low-resolution input is directly generated from our
volume renderer. We train different networks to perform 4× 4, 8× 8, and up
to 16× 16 super-resolution with the respective combination of low and high-
resolution images.
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Table 1. Quantitative comparison between two networks: with and without the use of
additional RGBA information from the point of maximum alpha

With additional information Without additional information

Volume dataset PSNR(dB) SSIM PSNR(dB) SSIM

CTA-Cardio 38.09 0.9705 37.07 0.9683

Manix 37.92 0.9651 36.96 0.9631

CTA-Abdomen 31.89 0.9560 31.44 0.9557

a) Bicubic b) Without 
additional 

feature

c) With  
additional 

feature

d) Ground  
Truth

Fig. 8. Visual comparison for 8× 8 upscaling with different techniques on the CTA-
Cardio dataset. Images on the top and bottom row (enlarged sections of the blue and
yellow boxes respectively) are from two different sections of CTA-Chest. a) represents
input upscaled with bicubic interpolation. Comparing b) and c), we notice improved
edges and details in the upscaled image when the super-resolution network is sup-
plemented with additional RGBA information from the point of highest contribution

5 Evaluation

For the evaluation, we compare the performance of different variants of our
network on Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index
(SSIM). The reported results are observed on the validation set.

5.1 Performance Gain with Additional Feature at the Input

As discussed in Sect. 3.1.3, including auxiliary features at the input generally
benefits the network to achieve additional performance gain. In Table 1, we
compare the observed performance metrics for all the three datasets when we
include an additional feature at the input. The additional feature is the RGBA
information obtained from the point of highest contribution along the ray. In
addition to quantitative improvement in both PSNR and SSIM, we also observe
improved edges and details in the reconstructed images as shown in Fig. 8.

5.2 Performance Gain with Additional Previous Frames

In Table 2, we report the quantitative evaluation of three different networks, each
of which takes a different number of previous frames. We are able to make addi-
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Table 2. Performance gain achieved with additional previous frames on CTA-
Abdomen(table on the left) and CTA-cardio (table on the right) Dataset for 4× 4
upsampling. N denotes the number of previous frames.

N 1 2 3

PSNR (dB) 31.86 32.60 32.98

SSIM 0.9552 0.9606 0.9638

N 1 2 3

PSNR (dB) 39.35 39.94 40.49

SSIM 0.9690 0.9755 0.9783

a) input b) 1 additional 
frame

c) 3 additional 
frames

d) Ground 
Truth

Fig. 9. Visual comparison for 4× 4 upsampling on CTA-Abdomen and CTA-Cardio. a)
is the input to two different networks: one takes a single previous frame whose output
is in b), and the other takes up to 3 previous frames whose output is in c).

tional gains on both PSNR and SSIM with additional previous frames supplied
to the network. In addition to improvements in the quality of the reconstructed
image (Fig. 9), incorporating additional frames also improved the temporal sta-
bility of the reconstructed video sequence (video: youtu.be/1FZCQG0SBac).

Table 3. Quantitative comparison for various upsampling ratios on the Manix dataset

Upsampling ratio 4× 4 8× 8 16× 16

PSNR(dB) 42.37 37.92 33.65

SSIM 0.9787 0.9651 0.9471

5.3 Upsampling Ratio

To test the limits of our super-resolution network, we take it one step further
and perform up to 16× super-resolution. The observed PSNR and SSIM met-
rics are shown in Table 3. The target resolution for all the upsampling ratios
was the same 1920 × 1920, while the input resolution varied according to the
upsampling ratio. As the upsampling ratio increases, the quality of the recon-
structed images steadily deteriorates and the network is unable to reconstruct
the low-level features which are also evident from the images shown in Fig. 10.

https://youtu.be/1FZCQG0SBac
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Fig. 10. Visual comparison for various upscaling ratios on the Manix dataset. For all
images, target resolution was 1920× 1920.

6 Conclusion and Future Work

In our work, we introduced a new pipeline to perform super-resolution for med-
ical volume visualization. Our approach includes several adjustments tailored to
the volumetric nature of the data. Despite our improvements, there are numerous
future works that could be performed from here. Currently, all of our volumetric
datasets are static volumetric data without any motion of their own. The intro-
duction of dynamic volume will add more challenges to the system. Another
future extension could be supplementing our network with additional volumet-
ric features from multiple depths inside the volume. We believe this can further
improve the reconstruction ability of the super-resolution network.

Furthermore, it should be noted that our system was designed for offline
application and less importance was given to run-time performance. The cur-
rent implementation of our network is able to perform super-resolution at an
interactive frame rate of 10 fps (0.1018 s per frame). With run-time optimiza-
tions and integration of TensorRT, which can provide up to 6x faster accelerated
inference [19], our system has the potential to achieve real-time frame-rate.
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Abstract. Virtual reality offers unique affordances that can benefit the
scientific discovery process. However, virtual reality applications must
maintain very high frame rates to provide immersion and prevent adverse
events such as visual fatigue and motion sickness. Maintaining high frame
rates can be challenging when visualizing scientific data that is large in
scale. One successful technique for enabling interactive exploration of
large-scale datasets is to create a large image collection from a struc-
tured sampling of camera positions, time steps, and visualization opera-
tors. This paper highlights our work to adapt this technique for virtual
reality, and uses two authentic scientific datasets – a) a large-scale sim-
ulation of cancer cell transport and capture in a microfluidic device and
b) a large-scale molecular dynamics simulation of graphene for creating
extremely low friction interactions. We create a collection of omnidi-
rectional stereoscopic images (three-dimensional surround-view panora-
mas), each of which captures all possible view angles from a given loca-
tion. Therefore, virtual reality devices can always render local movements
at full frame rates without loading a new image from the collection.

Keywords: Virtual reality · Image-based graphics · Large-scale
visualization

1 Introduction

Sensors and simulations are producing data at ever-increasing rates, with tasks
such as genome sequencing [17] and modeling galaxy formation [15] currently
generating many petabytes of data. To help scientists make sense of these mas-
sive troves of data, new analysis techniques will be needed. Visualization has
long been a useful tool for interpreting data. However, traditional visualization
techniques often come up short when rendering large, complex datasets – either
failing to achieve interactive frame rates or requiring a reduction in data size.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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The Exascale Computing Project has identified a number of objectives for
next-generation visualization software. Among them is research to develop “post-
hoc approach[es] that support interactive exploration and understanding of data”
[11]. One emerging technique that supports this model for post-hoc, yet interac-
tive, analysis is the Cinema image-based visualization technique [1]. The Cinema
approach involves rendering many views of a large-scale dataset to an image
database. This database can then be interactively explored post-hoc to provide
a similar experience to real-time visualization systems.

Utilizing emerging display technologies will also be vital in the scientific dis-
covery process. Virtual reality (VR) has moved beyond purely experimental and
gaming platforms and is poised to aid in tasks such as training and analysis to
support data understanding and decision making [6]. VR combines a stereoscopic
three-dimensional (S3D) display with head tracking to create an immersive expe-
rience that has been shown to enhance engagement and understanding in many
situations [18,19]. S3D visualizations can help with tasks such as depth esti-
mation and mental rotations of 3D objects [8] and head tracking offers a more
natural interface for changing one’s view and manipulating a visualization.

In this paper, we highlight our work on adapting the Cinema image-based
approach for interactive VR immersion. Our workflow involves using produc-
tion quality rendering software to create omnidirectional stereoscopic (ODS)
images, which provides a 360◦ panoramic S3D view. This enables VR devices,
such as head mounted displays (HMDs), to always render local view changes
due to head rotation at full frame rates without needing to load a new image
from the database. We demonstrate the power of this technique through two
science drivers. The first is a large-scale multiphysics simulation of blood flow-
ing through a microfluidic device to help capture and detect the presence of
circulating tumor cells [20]. The second is a molecular dynamics simulation that
shows how graphene can be used to substantially reduce friction between nan-
odiamond particles and a surface of diamondlike carbon [3]. Finally, we detail
the development of a VR application that enables users to interactively view
the ODS Cinema database and we present a performance evaluation of viewing
large-scale data in VR.

2 Related Work

To situate our work in the context of prior efforts, we looked at research on image-
based visualization and viewing large-scale scientific data in virtual reality.

2.1 Image-Based Visualization

Cinema [1] leverages layer and image-based rendering techniques. From a given
perspective multiple renderings are performed, which can include an array of
different visualization techniques and data quantities. These images can then be
combined, layered, or replaced in different ways to explore the data from this
given perspective. Further, all of these same renderings can be performed from a
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variety of views from around the dataset and for each time step of a simulation.
This results in a database of images which can provide valuable insight into the
data, while requiring orders of magnitude less storage space and I/O time than
saving the raw simulation data.

While 2D Cinema images can show the perceived 3D model on the scene
with less space and rendering resources, it can not provide information related
to depth effectively due to the lack of depth cues. Whang [22] proposed to use
varying relative size of front planes, shading, and motion parallax to improve
the 3D immersive experience for 2D Cinema viewers. However, their work still
stopped short of leveraging immersive display technologies.

Another image-based approach proposed by Yong et al. [5] uses panoramic
images to provide an interactive virtual reality experience. Because the images
give a 360◦ view of the environment from a single position, the user can look in
any direction without the need to update the frame. Pre-rendering these frames
eliminates the need for special purpose hardware capable of rendering them
in real time. This also enables the scene to be arbitrarily complex. Rendering
the scene from numerous positions enables the user to explore the environment
from various perspectives. Our work takes this idea a step further by enabling a
truly dynamic experience whereby visualization parameters can be interactively
updated in addition to camera position.

2.2 Virtual Reality for Large-Scale Data Sets

There has long been interest in using virtual reality for investigating large-scale
datasets produced by high-performance computing (HPC) simulations. Faigle
et al. [7] highlight some of the requirements when merging the HPC and VR
spaces. At the forefront is the need for the update rate of the HPC computing
engine to not be tied to the update rate of the VR environment. Virtual reality
visualizations must be allowed to render at high frame rates and therefore cannot
be tied to bottlenecks in the computation or processing of simulation data.

Lütjens et al. developed a VR application for large-scale terrain data [13].
Their approach relied on level-of-detail (LOD) model reduction, tiling, and level
streaming to maintain high frame rates. LOD enabled features of the terrain
close to the user to be rendered in full detail while those far away could use fewer
triangles. Tiling splits the entire terrain model into separate smaller pieces, and
level streaming is a technique that only renders tiles with a specific distance from
the user. These techniques result in only needing to render a modest amount of
geometry from any given view point. While these techniques are well suited for
large-scale terrain data, other datasets may not cover such a large physical area
and therefore have a much larger percentage of the data close to the user.

Another technique that attempted to enable high frame rate virtual reality
for large-scale data was proposed by Ge et al. [9]. Their technique involved only
rendering points (rather than triangular meshes) from large-scale models. They
created a decoupled server-client system, whereby the server would determine
which points would actually be visible to the user. This limited number of points
were then streamed to the client responsible for visualizing the data. The client
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could rapidly re-render the current set of points as the user’s head position
changed. At slower intervals, the server could recompute the visible set of points
based on larger movements within a scene. Thus a user’s view may temporarily
have holes that later fill themselves in as the client receives updates from the
server. This decoupling of tasks allows the VR client applications to always
render a reasonable amount of geometry and thus maintain high frame rates.
Similarly, our approach aims to decouple updates to the scene from view updates
initiated by VR user head movement in order to maintain high frame rates.

3 Science Drivers

For our work on interactive image-based VR exploration, we visualized data
from two authentic large-scale scientific simulations.

3.1 Cancer Cell Transport

Detecting circulating tumor cells (CTCs) at earlier stages is crucial for patient
diagnostics and treatment. Microfluidic devices can help capture and detect the
presence of CTCs [20]. To inform design of such microfluidic devices, a large-
scale multiphysics model of blood flow was constructed that consists of CTCs,
red blood cells (RBCs), and blood plasma. RBCs and CTCs were simulated using
the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [21]
coupled with fluid flow that was solved using the Parallel Lattice Boltzmann
Solver (Palabos) [12]. The simulation was created based on a representative unit
from a device layout with a domain size of 260×25×500µm, as shown in Fig. 1.
The fluid data is spatial-temporal volumetric data with fluid pressure scalars
and velocity vectors. The cell data is spatial-temporal surface data embedded in
3D space. The fluid stress tensor, derived from velocity, was calculated during
post-processing and used to calculate the shear force applied to cell surfaces.

Fig. 1. (a) Microfluidic device with zoomed-in circular inset. The red box shows a
representative unit for computational modeling. (b) Visualization of the simulation
with RBCs (red), CTCs (green), streamlines (blue), and device microposts (beige).
(Color figure online)

The simulation was performed on the Gaea high-performance computing clus-
ter at Northern Illinois University. It took 34,560 core-hours to run 2.14 million
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time steps. After the first 400,000 time steps (used to reach quasi-equilibrium),
RBC and CTC data was saved 1 out of every 10,000 time steps and fluid data
was saved 1 out of every 25,000. With these output frequencies, cell and fluid
outputs were not aligned and cell positions changed too much between successive
time steps for viewing an animated visualization across time. Therefore a linear
interpolation was used to generate intermediate data between raw time steps.
The result was a total of 689 time steps that were saved, with each time step
needing 74 MB for RBC data, 8 MB for CTC data, and 947 MB for the fluid
data, thus consuming 709 GB of storage space for the entire simulation.

3.2 Graphene Superlubricity

Friction is the primary cause of mechanical energy dissipation in moving assem-
blies. Therefore, a large-scale molecular dynamics simulation was leveraged to
gain insight on compounds that are capable of minimizing friction in a number
of applications [3]. LAMMPS was used with the reactive force field (ReaxFF)
module to simulate between 1.2 million and 10 million atoms, which provided
insight on how graphene can wrap around nanodiamonds to form nanoscrolls
with reduced contact area. This phenomenon creates superlubricity, but only in
dry envrionments. The large-scale simulations (which took into account position,
velocity, element type, molecular structure, and interatomic potentials for each
individual atom) elucidated how the presence of a water layer inhibited scroll
formation, and therefore caused higher friction.

Computations were performed on the Mira supercomputer at the Argonne
Leadership Computing Facility. Each simulation used 16,000 nodes and took
2–4 million core-hours to run 50–100 million time steps. This work used data
from one run that simulated a dry environment in which the graphene exhibited
the nanoscrolling behavior. There were a total of 1,020 saved time steps, with
raw atomic position and bond connectivity data only consuming 32.3 GB, but
polygonal geometric data for atoms and bonds needing 4.8 TB storage space.

4 Cinema ODS Image Database

Often times, data from large-scale simulations are too big or complex to render
at the high frame rates necessary for virtual reality applications. For example,
there are approximately 3.3 million triangles and 87.7 million triangles in the
models for each time step in the cancer cell transport and graphene superlubricity
simulations respectively. While such scenes can be rendered in real-time, there
are some drawbacks when doing so for VR. First, only more simple rendering
techniques can be employed. Second, while able to be rendered at decent frame
rates on a machine with a powerful GPU, they still may not be high enough
for VR. Additionally, standalone VR devices are not powerful enough to render
massive amounts of geometry – the Oculus Quest 2, for example, can only render
approximately 1 million triangles while maintaining full frame rates [16].
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Due to these limitations, and the fact that many HPC simulations output
even larger and more complex models, we investigated leveraging non real-
time rendering paired with image-based visualization for creating an interactive
experience. To accomplish this, we adapted the Cinema image-based approach.
Rather than using traditional planar rendering however, images are rendered in
ODS format, thus providing S3D depth cues and a full 360◦ view of the data
from a single image (see Fig. 2). When viewed in a VR application, this allows
users to modify their view direction without loading a new image from the col-
lection. Therefore updates to the visualization are decoupled from updates to a
user’s view, enabling VR devices to always maintain full refresh rates.

Fig. 2. Omnidirectional stereo rendering of a single time step from the graphene super-
lubricity simulation. Left and right portions are views for the left and right eye respec-
tively, with each capturing a full 360◦ view of the scene.

The resulting Cinema ODS database will contain numerous images of a
dataset representing different views, time steps, and visualization operators.
Since the Cinema specification also supports additional files to be associated
with each entry in the database, we also decided to support ODS videos. These
videos can encapsulate all time steps – one video per combination of camera
position/visualization operator. The purpose of the videos is to enable users to
animate the visualization for a particular chosen set of visualization operators
more efficiently than consecutively loading each image in a time series.

One caveat with using ODS images and videos is that they need to be ren-
dered at fairly high resolutions. This is because only a fraction of the image is
visible to a VR user when looking in any given direction. A recent survey of
existing 360◦ images and videos concluded that the minimum resolution should
be 3840×1920 pixels (per eye) in order to provide an immersive experience [23].

4.1 Rendering

Since a Cinema ODS database is created a priori, this also provides an oppor-
tunity to create higher quality visualizations using non real-time techniques.
Therefore, the ODS images for both the cancer cell transport and graphene
superlubricity databases were rendered using Blender 3.0 [4], a high-quality ren-
dering software for 3D modeling and animation. Blender was chosen over other
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professional rendering software for two primary reasons – it is open-source and
therefore easy to install on HPC systems, and it has a Python scripting interface
making it easy to render many images in batch mode without user interaction.

ODS images for both databases used pole merging – a technique that reduces
the interocular distance near the poles of the projection sphere. This technique
has been shown to reduce visual discomfort associated with ODS binocular mis-
alignment artifacts without negating the benefits stereo depth cues [14].

Custom materials were created and more advanced rendering techniques were
utilized in order to create detailed visualizations. Between the two datasets, fea-
tures such as bump/displacement mapping, transparency, reflections, global illu-
mination, and shadows were used (see Fig. 3). Many of those techniques are often
too complex to leverage when performing real-time rendering but can enhance
the realism of a visualization and better enable data to be interpreted. Render
style can also easily be made one of the visualization parameters of a Cinema
ODS database if preference is unclear, thus enabling users to toggle between
basic and high-quality renderings.

Fig. 3. Comparison of basic vs. high-quality materials and rendering. (a) Basic materi-
als (smooth plastic-like look) and rendering (no transparency or shadows, local illumi-
nation). (b) High-quality materials (bump/displacement mapping to provide realistic
texture) and rendering (transparency and shadows, global illumination).

The cancer cell transport image database contains 16,536 images – 689 time
steps each with 24 permutations of visualization operators (three camera posi-
tions, with/without streamlines, cells colored solid vs. by magnitude of shear
force, and RBCs rendered opaque vs. semi-transparent). The graphene super-
lubricity image database contains 4,080 images – 1020 time steps each with 4
permutations of visualization operators (two camera positions and with/without
molecule bonds). Each ODS image was rendered at a resolution of 3840 × 3840
pixels encoded in JPEG format with a quality setting of 92/100. The resulting
images for all time steps of each set of visualization parameters were then com-
bined into WEBM videos using VP9 encoding and a playback speed of 24 frames
per second with average bitrates between 31.4 Mbps and 38.7 Mbps.

Two HPC resources were used for rendering the cancer cell transport and
graphene superlubricity databases – the Pittsburgh Supercomputing Center’s
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Bridges-2 and the Argonne Leadership Computing Facility’s ThetaGPU. Render-
ing processes were distributed amongst many nodes/GPUs, whereby each process
was responsible for rendering a fraction of the images in the entire database. For
larger datasets that cannot fit in the memory of a single GPU/node, it would
be possible to generate the image database by performing distributed rendering
– splitting data needed for each single image amongst many processes.

5 Interactive Cinema ODS Viewer

We developed an interactive VR viewing application for Cinema databases that
contain ODS images. The viewer application currently supports Cinema’s Spec
D specification, where each combination of available visual parameters corre-
sponds to a pre-rendered image in the database. The application was developed
using Babylon.js [2] with WebXR support. This choice was made since WebXR
supports a wide variety of VR devices and the application is accessible via a
web browser – no download or installation required. Once navigating to the web
site, the user can specify a URL that points to the desired Cinema ODS image
database. The database can either be hosted by a remote server or loaded locally.

A 3D graphical user interface (GUI) is dynamically generated based on visu-
alization parameters present in the Cinema ODS database. The application sup-
ports three types of GUI elements – sliders, checkboxes, and radio buttons.
Sliders are used for numeric parameters with regular intervals. Checkboxes are
used for boolean parameters. Radio buttons are used for categorical parameters.
Additionally, a ‘play’ button is created if video files are present. The GUI can be
hidden, re-shown, or re-positioned using a VR controller, thus allowing users to
see otherwise obscured portions of the image. Figure 4 shows the Cinema ODS
viewer application and GUI for the graphene superlubricity dataset.

Fig. 4. Interactive virtual reality view of the Cinema ODS viewer application. The
dynamically generated GUI on the middle-right part of the figure enables users to
interactively modify visualization parameters present in the database.
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Once a dataset is loaded in the Cinema ODS viewer, the GUI is created and
the first image is loaded and used as a texture for a photo dome (large sphere
that surrounds the camera). Subsequent updates to the GUI will trigger the
viewer application to find the corresponding image in the database and update
the photo dome’s texture. Two photo domes are used, with only one visible at
any given time, to double buffer image swaps. This prevents flickering between
the time the new image is selected (thus unloading the prior image) and the time
the new image is fully decoded and uploaded as a texture.

Pressing the ‘play’ button will trigger streaming of the appropriate ODS video
(starting at the frame that corresponds to the currently viewed time step). Sub-
sequent frames in the video will continuously be used to update the photo dome’s
texture. Pressing ‘pause’, having the video run to completion, or modifying any
other GUI element will switch back to using images for the photo dome. The
Cinema ODS viewing application is accessible at https://argonne-lcf.github.io/
cinema-ods/. Source code can also be downloaded and run locally.

6 Evaluation

To evaluate the image-based VR workflow, we measured the performance of
interactive exploration for large-scale datasets. First, we evaluated latency when
updating the Cinema ODS visualization. To do so, we tested the viewer applica-
tion under three different scenarios – remotely hosted image database accessed
via 50 Mbps WiFi, remotely hosted image database accessed via 1 Gbps Ether-
net, and locally hosted image database. A Windows laptop with an AMD Ryzen
9 4900 HS processor and 16 GB of RAM was used for all three scenarios.

We also evaluated the frame rate of the VR application to compare the
rendering performance of image-based VR with traditional 3D rendering. The
geometric models for both science datasets were converted to glTF format, a
compressed format specifically designed for 3D geometric meshes [10]. Frame
rates were measured using the Oculus Quest 2 as a standalone device and teth-
ered to a Windows desktop with an NVIDIA RTX 3060 Ti GPU.

6.1 Visualization Latency

We wanted to measure the average latency in the WebXR viewer application.
For this, we timed the delay between when a user selected a new option from
the GUI and when the corresponding image from the database was displayed on
the photo dome. The overall latency is comprised of three components – 1) time
to select proper image in the database based on change to the GUI, 2) time to
download the image from the hosting server to the VR application, and 3) time
to decode the JPEG image and apply it as a texture on the photo dome.

Latency was measured under three conditions – remotely hosted image
database accessed via 50 Mbps WiFi, remotely hosted image database accessed
via 1 Gbps Ethernet, and locally hosted image database. A total of 48 images
from each of the Cinema ODS databases were loaded under each test condition

https://argonne-lcf.github.io/cinema-ods/
https://argonne-lcf.github.io/cinema-ods/
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(representing all combinations of visualization options at a sample of time steps).
Average latency results are summarized in Table 1.

Table 1. Average image update latency.

50 Mbps WiFi 1 Gbps ethernet Local

Select 1.1 ms 1.0 ms 1.0 ms

Download 485.8 ms 33.0 ms 13.7 ms

Decode/Texture 95.7 ms 95.4 ms 96.5 ms

Total 582.6 ms 129.4 ms 111.2 ms

On average, the Cinema ODS viewer application could achieve a visualization
update rate of 1.7 images per second when using a 50 Mbps WiFi connection,
7.7 images per second when using a 1 Gbps Ethernet connection, and 9.0 images
per second when hosting the database locally. While the image update rate is
limited, the application can still update as a user looks around a given ODS
image at the full refresh rate supported by the VR device.

On the 50 Mbps WiFi, image download time was the main source of latency.
However, when using either 1 Gbps Ethernet or locally hosted image database,
latency was dominated by decoding the JPEG and uploading it as a texture.
Therefore, even though using a locally hosted the image database resulted in
2.41× faster downloads, the overall latency was only 1.16× less. This means that
entire image databases can reside on remote servers without major degradation
to image update rates as long as a sufficient network connection is used.

The Cinema ODS viewer application supports ODS videos that encode all
time steps for each set of visualization parameters. Under all three network
conditions, videos were able to smoothly play at the full 24 frames per second
that they were encoded with. This was expected since the bandwidth of even the
slowest network connection evaluated exceeded the average bitrate of the videos.

6.2 VR Frame Rate

In addition to update latency, we also wanted to compare the frame rate of
viewing ODS images to the actual 3D geometry in virtual reality. Two separate
VR applications were used – one that loaded a single image from the Cinema
ODS database and one that loaded a single time steps’ worth of 3D geometry
rendered with basic materials and lighting. We ran the applications for 15 s while
a user looked around the scene and measured how many frames the VR appli-
cation could render. Both applications were tested using two separate hardware
configurations – a standalone Oculus Quest 2, and a Windows desktop with an
NVIDIA RTX 3060 Ti GPU tethered to the Oculus Quest 2 via link cable. Both
science datasets were tested under each condition, with the cancer cell trans-
port models containing approximately 3.3 million triangles and the graphene
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superlubricity models containing approximately 87.7 million triangles. Results
for the average number of frames per second (fps) that could be achieved in each
situation are summarized in Table 2.

Table 2. Average frames per second in a virtual reality application.

Cancer cell transport Graphene superlubricity

Cinema ODS 3D Models Cinema ODS 3D Models

Standalone device 89.8 fps 38.5 fps 89.8 fps N/A

(Quest 2)

Tethered device 89.8 fps 89.8 fps 89.8 fps 43.5 fps

(RTX 3060 Ti)

The first thing to note about the frame rates is that the Cinema ODS vir-
tual reality application was always able to maintain full refresh rates (89.8 fps
on the device’90 Hz display) regardless of the complexity of the underlying data
or the power of the VR hardware. Rendering the 3D models, on the other hand,
depended significantly on both the data’s complexity and the VR hardware.
When viewing the less complex geometry from the cancer cell transport simu-
lation, a VR device tethered to the RTX 3060 Ti GPU could actually render
the scene at full frame rates. However, the lower powered standalone device was
only able to achieve 42.8% of its full frame rate. When viewing the more com-
plex geometry from the graphene superlubricity simulation, even the tethered
VR device struggled – achieving only 48.3% of its full frame rate. The standalone
device wasn’t even able to render the more complex scene at all, likely due to
insufficient memory to store all the geometric data for the models.

As frame rates fail to match the refresh rate of the VR display, and especially
as they dip below 60 fps, user experience begins to degrade. Low frame rates can
cause adverse events, such as visual fatigue and sickness. Therefore, it is a critical
component of our image-based VR technique that full frame rates can always
be achieved. This makes our Cinema ODS approach well suited for interacting
with large-scale datasets in virtual reality.

6.3 Qualitative Feedback

This work focused on developing the technology for enabling interactive image-
based VR, and therefore a formal user evaluation was out of scope. However, we
did have both a science researcher (blood flow expert) and members of the devel-
opment team (i.e. not domain experts) use the system. According to the blood
flow expert, the immersive VR application showed several important features
that were not immediately apparent when viewing the data in ParaView. First,
the egocentric view with head tracking enabled him to conveniently compare the
spatially varying information at the interior of the simulation space. This was a
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task that had been difficult to achieve using standard planar projections where
the camera is positioned outside the data domain.

Another benefit of investigating the data in VR was the ability to provide a
first-person view along a stream path, moving along with the surrounding cells.
Particularly insightful was the ability to see the effect of collisions with neighbors
on cell trajectories. The traditional planar view of the data in ParaView was
great at capturing the overall flow behavior. However, analyzing the relative
motion and inter-cell collisions between cells was more informative in the VR
application due to the stereo depth cues, egocentric view, and natural interaction
for controlling the view direction.

For those who weren’t domain experts, the immersive VR application
provided an intuitive visualization without knowing the underlying scientific
mechanics. Non-experts also noted that the interactivity provided by our Cin-
ema ODS technique resulted in a more engaging application that better enabled
data investigation as compared to simply watching a cinematic VR video.

7 Conclusion

This paper described an image-based technique for interactively viewing large-
scale datasets in virtual reality. By rendering a database of omnidirectional
stereoscopic images and videos, updates to the visualization became decoupled
from updates to a user’s view. This decoupling is critical for maintaining the
high refresh rates necessary for VR applications.

We developed an image-based VR application that supports Cinema
databases where images are rendered in ODS format. We tested the perfor-
mance of both image update latency and viewing frame rate. For image update
latency, our results showed a modest update rate (1.7–9.0 images per second).
However, since this image update rate is decoupled from view updates based on
a user’s head movements, the VR application can always maintain full refresh
rates. Therefore an approximately 100–600 ms delay between modifying a visu-
alization parameter and seeing the update seems quite reasonable. For viewing
frame rates, we compared image-based VR to standard rendering of 3D geom-
etry. For our two large-scale datasets, the image-based VR was always able to
maintain a frame rate equivalent to the display’s refresh rate (90 Hz), whereas
frame rate varied greatly (often well below interactive rates) depending on data
complexity and graphics hardware when rendering 3D geometry in VR.

In the future, we would like to integrate Cinema ODS database creation in
situ. I/O is a bottleneck for many HPC simulations. It would be advantageous to
render data as its being simulated. This would result in more accurate visualiza-
tions as well as greatly reduce the output data size since rendered image data is
often significantly smaller than raw simulation data. Additionally, we would like
to add support for depth-augmented stereo panoramas and visualization layers.
While traditional ODS images provide S3D depth cues and a full 360◦ view, they
do not allow for head movement (side-to-side or up-and-down). Encoding depth
information into ODS images would enable a small amount of head motion paral-
lax that would create a more immersive experience. Adding layer support would
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update our viewer application from using Cinema’s more basic Spec D specifica-
tion to the more advanced CIS specification and potentially reduce the number
of images needed in a database. Finally, we plan to conduct a formal study to
evaluate the benefits of interactively viewing large-scale scientific datasets in an
immersive image-based visualization application.
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Abstract. Facial attribute prediction is a facial analysis task that
describes images using natural language features. While many works have
attempted to optimize prediction accuracy on CelebA, the largest and
most widely used facial attribute dataset, few works have analyzed the
accuracy of the dataset’s attribute labels. In this paper, we seek to do
just that. Despite the popularity of CelebA, we find through quantita-
tive analysis that there are widespread inconsistencies and inaccuracies
in its attribute labeling. We estimate that at least one third of all images
have one or more incorrect labels, and reliable predictions are impossible
for several attributes due to inconsistent labeling. Our results demon-
strate that classifiers struggle with many CelebA attributes not because
they are difficult to predict, but because they are poorly labeled. This
indicates that the CelebA dataset is flawed as a facial analysis tool and
may not be suitable as a generic evaluation benchmark for imbalanced
classification.

1 Introduction

CelebA is a widely used face dataset which contains 202, 599 images of 10, 177
people labeled with 40 binary facial attributes such as big nose, bushy eyebrows,
gray hair, and smiling. The dataset was derived from the CelebFaces dataset,
with attribute annotations provided by a “professional labeling company” [12].
CelebA attribute labels have proven useful for a variety of tasks including face
recognition [21], semantic segmentation [9], detection and landmarking [16], and
face editing [6]. Data is provided as both the original, in-the-wild images, and
in a cropped and aligned format.

Despite the popularity of the dataset, we find there are a multitude of
widespread, unaddressed attribute labeling issues. While the subjectivity of
many attributes in the dataset makes complete analysis challenging, the majority
of labels we are able to analyze have a large number of errors or inconsistencies.
We use several techniques to evaluate label quality. We first create a list of con-
tradicting attributes and find that 6.78% of images are labeled with attributes
which directly contradict one another. We then relabel a random sample of 800
images for all non-subjective attributes and find that some attributes have false
positive rates as high as 25%, while others have false negative rates as high
as 22%. To evaluate subjective attributes, we use age estimation and semantic
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segmentation to provide estimates of age and feature size, and compare these
estimates with the binary attributes in CelebA. We find that such attributes
are highly inconsistent with these more fine-grained measures, preventing even
near-state-of-the-art classifiers from achieving reasonable performance. Finally,
we show that some attributes are correlated in ways that cannot be explained
by dataset imbalance, indicating incorrect labeling or gender and racial bias. In
total, we determine that at least 10 of the 40 attributes in CelebA have major
issues such as frequent contradictions, incorrect labels, or significant inconsis-
tency, and that most others suffer from sufficiently poor agreement to call into
question their relevance as identity-specific features for downstream face pro-
cessing tasks.

The remainder of this paper is organized as follows: in Sect. 2, we discuss
related work. In Sect. 3, we estimate the number of labels which are categorically
incorrect. Most CelebA labels are subjective and cannot be directly described as
“correct” or “incorrect,” so in Sect. 4 we analyze the consistency and agreement
of subjective labels. Finally, we conclude in Sect. 5.

2 Related Work

Many previous works have used the CelebA dataset to evaluate attribute pre-
diction and imbalanced classification methods [3,8,9,22]. Although the facial
attributes were originally intended for improving face verification, CelebA has
become popular as a generic benchmark for imbalanced classification [3,7,22].
However, few works have provided analysis of labeling issues. Hand et. al. [5]
argue that the poor performance of state-of-the-art classifiers on many attributes
is caused by ambiguous labeling, and provide examples of poor labels for the
attributes oval face, attractive, high cheekbones, and arched eyebrows. They also
show that many images labeled with lipstick are incorrectly labeled. However,
they do not perform any dataset-wide analysis to properly assess the scope of
these issues. Prior work has shown that there exist prevalent errors in common
image benchmarks, and that these errors can impair comparison between meth-
ods [13]. However, these works generally only analyze datasets such as CIFAR
and MNIST, for which each sample has a single label and error can be rep-
resented as confusion between a set of classes [14,23]. No comparable analysis
exists for CelebA, which is difficult to definitely estimate label error for because
each image can be labelled with any number of attributes, most of which are
subjective. Other work on label errors largely focuses on accounting for them
during training, rather than identifying and describing label error in a test set
[19].

There has also been some work discussing the bias caused by subjective
labeling and dataset imbalance. Prabhu et. al. [15] show that increasing the con-
tribution of labels such as attractive and wearing lipstick to a generative model
causes images to look like blond, white women. Wang et. al. [20] show that the
imbalance present in CelebA results in classifiers amplifying bias. Other works
have shown that bias amplification is an issue in large scale datasets exhibit-
ing imbalance [24]. However, to our knowledge no other work has performed
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Table 1. Contradicting attribute labels. % is the percentage of images in the full
dataset with the label in the left column and a contradicting label from the middle
column.

Label Contradictions %

No beard 5 o’Clock shadow, goatee, mustache 4.0%

5 o’clock shadow goatee, mustache, no beard 47.9%

Straight hair Wavy Hair 2.7%

Bald Bangs, receding hairline, straight hair, wavy hair 33.3%

quantitative analysis of labeling issues in CelebA. We show that many CelebA
labels, in addition to being subjective and imbalanced as shown in prior work,
are frequently inconsistent or even completely incorrect.

3 Incorrect Labels

We first focus on labels which can be directly shown to be incorrect. For sub-
jective labels, we do this by identifying contradicting labels. For non-subjective
labels, we manually relabel random samples to determine the frequency of incor-
rect labels. Note that the random sampling is meant to demonstrate that there
are data discrepancies, and to extrapolate the results to the entire dataset. We
argue that the size of the dataset and the random selection provide a relatively
accurate value of mislabeling, though it should not be considered the final ground
truth: that can only be identified by relabeling the entire dataset, which is not
a reasonable expectation for the scope of this paper.

3.1 Contradicting and Conflicting Labels

To determine the prevalence of incorrect labels for subjective attributes, we first
count the number of labels which are contradicting (in direct opposition to one
another). For example, it is not possible to have both straight hair and wavy
hair. To determine how many labels in CelebA directly contradict another label,
we define a list of all contradicting attributes. This is shown in Table 1. No
beard contradicts with all facial hair labels other than sideburns. Depending on
definition, sideburns may also contradict with no beard, but we find that this only
applies to 128 images (0.06% of the dataset) so we do not include it. Similarly,
5 o’clock shadow contradicts with other facial hair, straight hair contradicts
with wavy hair, and bald contradicts with all hair labels. We find that 6.78%
of images have at least one contradicting label based on this list, and that bald
and 5 o’clock shadow contradict with another label in one third or more images
labeled with these attributes.

We also find that there are many labels, which, while not necessarily contra-
dicting, conflict with one another. For example, a subject with light brown hair
might be labeled both brown hair and blond hair. 2.33% of images labeled with
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Fig. 1. The first four images in CelebA labeled as double chin but not chubby. None
of these images contain a double chin.

a hair color are labeled with multiple hair colors, most commonly either both
brown hair and black hair or brown hair and blond hair due to the unclear sep-
aration between classes. We also find that 38.1% of images labeled with double
chin are not labeled with chubby. While double chin does not necessitate chubby,
this is frequently indicative of bad labeling, as shown in Fig. 1. Similarly, while
hair color labels don’t contradict with bald because they may refer to facial hair,
we find that this is very rarely the case. If we add these conflicts to our list of
contradictions, we find that 9.84% of the dataset contains at least one pair of
contradicting labels, and the contradiction frequency for bald rises by 9.0% to
42.3%.

3.2 Mislabeling

The absolute number of incorrect labels cannot be determined without rela-
beling the entire dataset, so we instead estimate labeling error by manually
verifying a random sample. For each attribute for which labels can be clearly
identified as correct or incorrect, we construct one randomly sampled subset
of 400 images containing only positive instances, then another containing only
negative instances. We then manually verify the correctness of the labels. To
avoid sampling bias, a random seed of 0 is used for all attribute samples. We
find that there are very few entirely non-subjective labels in CelebA; of the 40
total attributes, only 7 can be clearly defined. Error counts for these attributes
along with their corresponding estimates of the mean and standard error for our
sample count are shown in Table 2.

Note that images are only marked as incorrect in cases of clear error. Eye-
glasses and the wearing * attributes are marked as false negatives if the clothing
item is clearly in the image when labeled negatively, and as false positives if the
clothing item is clearly not image when labeled positively. Mouth slightly open is
marked as correct or incorrect according to the definition “visible space between
lips.” Although “slightly” implies there exists some upper bound to how open the
mouth is, the dataset is consistently labeled with the assumption that any degree
of open indicates “slightly open.” Any alternative definition would drastically
increase the number of false positives. Wearing hat also has a small amount of
ambiguity. For our analysis we assume that hoods and bandanas count as hats.
Without this assumption, the number of false positives rise to 26 and false neg-
atives drop to 5. While using a binary label for gender assigned according to
the opinion of a labeler is in itself questionable, for the purpose of this analysis
we maintain CelebA’s classification and only mark a Male label as definitively
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Fig. 2. Examples of false positives (left to right): eyeglasses, wearing earrings, wearing
hat, and wearing necktie.

“wrong” when the pictured person has consistently identified as the opposite of
the gender with which they were labeled.

Examples of incorrectly labeled images are shown in Fig. 2. In addition to
incorrect labels, we find that in 86 images (21.5%) correctly labeled as wearing
necklace, the necklace is entirely cropped out in the aligned version. In many
more images, the necklace is visible but too small or similar to clothing to be
noticeable. This makes accurately predicting wearing necklace near-impossible
for the aligned version of the dataset.

To estimate the total number of images in CelebA which have at least one
error, we assume that attribute error rates are independent (i.e., one attribute
being wrong does not make another attribute more likely to be wrong), and
therefore that the likelihood of any error can be computed as P (err) = P (erra1)·
P (erra2) · ..., where P (errai

is the probability of attribute ai being incorrectly
labelled. Because details regarding label collection are not public, it is difficult
to determine the extent to which this assumption holds. Because attributes are
imbalanced, probabilities must be decomposed into

P (errai
) = P (errai

|ai = 1) · P (a1 = 1) + P (errai
|ai = 0) · P (a1 = 0)

Table 2. Number of false positives (FP) and false negatives (FN) for non-subjective
attributes out of a sample of 400. Best Acc. Represents the accuracy of a theoretically
perfect classifier based on our error estimates. PS-MCNN-LC [1], to our knowledge,
provides the best reported results for CelebA.

Label FP FN Best Acc. PS-MCNN-LC

Eyeglasses 2 (0.5± 0.35%) 0 (0.0± 0.0%) 99.8% 99.8%

Mouth slightly open 5 (1.3± 0.56%) 86 (21.5± 2.05%) 89.0% 96.0%

Male 5 (1.3± 0.56%) 2 (0.5± 0.35%) 99.1% 98.8%

Wearing hat 14 (3.5± 0.92%) 9 (2.3± 0.74%) 97.1% 99.4%

Wearing earrings 53 (13.3± 1.70%) 44 (11.0± 0.82%) 87.9% 92.7%

Wearing necklace 102 (25.5± 2.18%) 39 (9.8± 1.48%) 82.4% 89.0%

Wearing necktie 56 (14.0± 1.73%) 3 (0.8± 0.43%) 92.6% 98.5%
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We then use attribute correlation, as well as the error rate estimates in Table 2
to estimate the marginal distribution of error. From this we estimate that 34.3%
of images in CelebA have at least one incorrect label among these seven. Note
that almost all attributes are predominately negative (77% of all labels are nega-
tive), so the contribution of false negatives is far greater than the contribution of
false positives. Combining this with the contradictions listed in Table 1, we esti-
mate that 38.7% of images in CelebA have at least one incorrect label – because
we can exactly compute contradictions for each image, we use Monte-Carlo sam-
pling with exact contradiction labels combined with estimated mislabeling rates
to obtain the best possible estimate.

Importantly, incorrect labels cannot be treated as random noise. Of the 102
images incorrectly labeled with wearing necklace, 100 are of women. Of the 56
images incorrectly labeled with wearing necktie, all are of men, most of whom
are wearing a collared shirt and coat as shown in Fig. 2. Indeed, as shown in
Table 2, we find that a the current state-of-the-art model is able to learn the
error and perform better than a theoretically perfect classifier which accounts
for incorrect labeling. We therefore suggest that these labeling issues were likely
caused by labelers misunderstanding a set of reference images, resulting in sys-
temic mislabeling. Details about CelebA data collection are not provided, so we
are unable to determine the specific cause of these issues. These errors are far
more problematic than random noise because classifiers are able to learn the
noise. For example, a classifier trained on CelebA will likely that someone wear-
ing a collared shirt is wearing a necktie even if they are not, because the training
data is frequently mislabeled accordingly.

4 Inconsistent Labels

While incorrect labels are an issue for many attributes, most attributes are
subjective and therefore cannot be directly relabeled or shown to contradict
with other attributes. We instead show that many subjective attributes fail to
capture quantitative information about the feature they describe or are strongly
correlated with other, unrelated attributes.

4.1 Consistency

To evaluate label quality in subjective attributes, we take advantage of other
facial analysis tasks that can be used to estimate quantitative information about
subjective CelebA attributes. Semantic segmentation can be used to estimate the
size of different facial regions, and age estimation can be used to estimate youth.
We therefore compare all attributes which subjectively label the size of facial
features (big lips, big nose, and narrow eyes) as well as young, which subjectively
labels the age of the face, with these classifiers. We find that the subjective labels
are highly inconsistent with respect to these quantitative metrics, preventing
even near-state-of-the-art classifiers from achieving acceptable performance.
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Fig. 3. Histogram of combined lip segment size for images labeled with big lips and
images not labeled with big lips.

Fig. 4. Histogram of estimated ages for images labeled with young and images not
labeled with young.

For age estimation, we use DEX [17] to estimate the age of all images in
CelebA. For semantic segmentation, we use the DeepLabv3+ architecture [2]
trained on the CelebA-Mask-HQ dataset, which annotates 18 facial regions for
the 30, 000 image CelebA-HQ dataset [10]. We predict part masks for all images
in CelebA. We do note that using the DeepLabV3+ architecture as ground truth
could be seen as problematic, since there is no guarantee that the algorithm will
output the ground truth every time. However, DeepLabV3+ and other similar
algorithms and architectures are capable of a higher level of consistency than
human labeling as shown throughout this paper. For that reason, we believe that
they are a reasonable baseline comparison. Because segment size is affected by
pose, we restrict our analysis to frontal images to ensure consistent evaluation
of part size. We use the HopeNet pose estimation network [18] to estimate head
poses for all images in CelebA and discard all images with a pitch or roll not
within ±10◦ or a yaw not within −20◦ and 5◦. Because CelebA images are
generally frontal, this leaves 84, 970 out of 202, 599 images for analysis.

To evaluate the consistency of size-based attributes we count the number
of pixels contained in the segment associated with each attribute. We find that
the attribute labels provided by CelebA do a poor job of discriminating these
features. Images labeled with big lips have an average lip size of 343.1 ± 75.4
pixels, and images not labeled with big lips have an average lip size of 293.5±73.2
pixels. This is shown in Fig. 3. We obtain similar results for big nose and narrow
eyes: images labeled with big nose have an average nose size of 560.97 ± 69.81,
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Table 3. F1 scores for linear classifiers using estimated quantitative metrics to predict
subjective labels compared with a ResNet-18 classifier trained on CelebA. All attributes
other than young are evaluated using only frontal images.

Attribute Estimated ResNet-18

Narrow eyes 38.31 45.47

Big lips 52.47 46.73

Big nose 46.34 64.89

Young 90.05 92.91

Mouth slightly open 93.93 95.70

Eyeglasses 95.03 98.10

with all other images having an average nose size of 518.96±68.42. Images labeled
with narrow eyes have an average eye size of 72.61±33.42, with all other images
having an average eye size of 104.01±33.07. A linear classifier trained to predict
these attributes using segment sizes (assuming a balanced distribution) is unable
to reach an F1-score on the test data above 50 except for when predicting big
lips, for which it achieves an F1-score of 52. This indicates the actual size of the
features has little bearing on whether labelers described them as “big.”

As shown in Fig. 4, we find that the young attribute is far more consistent,
but still cannot be predicted completely reliably. The substantial overlap in esti-
mated age between positive and negative instances demonstrates that even with
reasonably consistent labeling, subjective binary attributes are highly flawed for
representing non-binary features. A model with higher accuracy for young than
a competitor may simply do a better job of capturing labeling bias than actually
estimating age.

To demonstrate that the poor performance of these classifiers is not a result
of bad segmentation and age estimation, we provide comparison to a ResNet-18
classifier trained to predict all 40 attributes. These results are shown in Table 3.
Our classifier is pretrained on ImageNet and achieves an average test accuracy of
91.71%, which is reasonably close to the current state-of-the-art result of 92.98%
[1]. Note that we compare to a generic ResNet model rather than current state-
of-the-art because, to our knowledge, no work reporting better test performance
has provided per-attribute F1 scores for CelebA [11]. Accuracy, the common
metric, is poor for comparing performance on highly imbalanced attributes.

The ResNet classifier does not perform substantially better than using seg-
ment size or age estimation, and even performs slightly worse for big lips. To
demonstrate that non-subjective attributes can be accurately estimated using
quantitative classifiers, we also estimate mouth slightly open and eyeglasses using
the mouth and glasses segments. While mouth slightly open is not entirely consis-
tently labeled (as discussed in Sect. 3.2) and glasses propped on foreheads cause
issues for our segment-size based classifier, we are still able to achieve satisfac-
tory performance. We therefore suggest that these subjective, size-based labels
are too inconsistent for any classifier to achieve reasonable performance.
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4.2 Agreement

There are many other highly subjective labels we are unable to quantitatively
estimate, many of which are just as inconsistent as the ones we can directly
analyze. To demonstrate this, we measure attribute agreement across different
images of the same person following the approach taken by [11]. Our analysis
follows the observation that most facial attributes should not vary between dif-
ferent images of one person. While attributes such as glasses, wavy hair, and no
beard may vary over time depending on the subject’s current clothing and hair-
cut, attributes such as oval face, big nose, and narrow eyes should be identically
labeled for different images of the same person.

Label agreement is measured using Fleiss’ κ [4], defined as P̄−Pe

1−Pe
, where

Pe is the probability of two reviewers agreeing on a label by chance given its
distribution, and P̄ is the rate at which reviewers actually do agree in practice.
The measure is most commonly used to determine agreement on a single sample
between different reviewers. By treating labels for different images of the same
person as different labels for the same sample, the metric can be directly used
for CelebA. As shown in Table 4, the subjective attributes we are able to analyze
using segment sizes actually have higher levels of agreement than the ones we are
not able to analyze. Attributes which should remain consistent across images of
the same person such as oval face, narrow eyes, and point nose have a κ measure
below 0.5.

These results indicate that CelebA may not be an appropriate dataset for
learning descriptions inherent to a single person. The poor label agreement sug-
gests that labels are heavily affected by factors other than the person in the
image. These may include pose, lighting, and image quality, but could also sim-
ply arise from the subjective opinions of different labelers. Because there is no
way of knowing why an image was labeled in a particular way, any network
trained to predict CelebA attributes will only be able to make accurate predic-
tions by learning these biases, making attribute detection highly susceptible to
manipulation in practice.

We note that, although CelebA is frequently used as a benchmark for a
method’s ability to predict on unbalanced data, label agreement as measured by
Fleiss’ κ is just as indicative of model performance than data balance. Despite
the existence of many attributes such as wearing hat and wearing glasses which
shouldn’t necessarily agree across images of a subject, an attribute’s κ is even
more correlated (albeit by a very slight margin) with the F1 score of a generic
ResNet-18 model than the percentage of samples in the majority class (0.358 >
0.352).

4.3 Correlated Labels

Counting contradictions, relabeling, and evaluating consistency with a quanti-
tative classifier still leaves many attributes unanalyzed. While we are unable
to directly evaluate the quality of these attributes, there are some correlations
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Table 4. Average Fleiss κ agreement for the 40 attributes in CelebA. κ < 0 indicates
agreement is worse than would be expected by random chance, κ = 1 indicates perfect
agreement.

Rank Attribute κ Rank Attribute κ

40 Blurry −0.0181 39 Pale skin 0.1562

38 Mouth slightly open 0.2141 37 Narrow eyes 0.2378

36 Wearing hat 0.2489 35 Smiling 0.2551

34 Wearing necktie 0.2712 33 Double chin 0.2910

32 Wearing necklace 0.3113 31 High cheekbones 0.3178

30 Rosy cheeks 0.3282 29 Bags Under eyes 0.3388

28 Receding hairline 0.3405 27 Straight hair 0.3441

26 Brown hair 0.3719 25 Oval face 0.3881

24 Wearing earrings 0.3893 23 Chubby 0.3924

22 Eyeglasses 0.4150 21 Gray hair 0.4233

20 Wavy hair 0.4272 19 Bangs 0.4313

18 Pointy nose 0.4546 17 Black hair 0.4717

16 Sideburns 0.4759 15 Bushy eyebrows 0.4893

14 Mustache 0.4945 13 Bald 0.4981

12 Goatee 0.5062 11 5 o Clock shadow 0.5131

10 Arched eyebrows 0.5131 9 attractive 0.5140

8 Big nose 0.5585 7 Blond hair 0.5727

6 Heavy makeup 0.6302 5 No beard 0.6450

4 Big lips 0.7279 3 Wearing lipstick 0.7322

2 Young 0.8360 1 Male 0.9789

between subjective attributes which indicate poor labeling. As discussed by pre-
vious work, on average attributes have a gender skew of 80.0% [20]. For example,
27.9% of images labeled with male are labeled with attractive, whereas 67.9% of
images not labeled with male are labeled with attractive. It is difficult to tell to
what extent this is a result of bias in labeling rather than bias in data selection,
but there are some cases were correlation is clearly indicative of bad labeling.
The clearest example is high cheekbones, which has a correlation of 0.68 with
smiling. 85.6% of images labeled high cheekbones are also labeled smiling, which
is otherwise only applied to 48.2% of all images. This is likely because cheekbones
appear higher while smiling, particularly when the smile is wide. Therefore, it
is highly unlikely that high cheekbones provides an accurate label of cheekbone
height irrespective of expression. Additionally, some gender correlations are too
strong to be explained by data selection. We find that women are 3.1 times more
likely to be labeled with pointy nose, whereas men are 2.9 times more likely to be
labeled with big nose. This is despite the fact that the probability of a random
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male nose being larger than a random female nose in terms of segment size is
just 54.3%, indicating gender bias substantially influences labeling.

Gender bias is also not the only bias encoded by subjective attributes. While
the correlation between big lips and big nose in the validation set is fairly weak
(0.054), our ResNet classifier described in Sect. 4.1 exaggerates this correlation to
0.091 due to related biases. Analysis of the 200 images which achieve the highest
activations for these attributes show that they are heavily biased towards black
men. 99% of people in the top activations for big lips are black, and 94% are
male. 78% of people in the top activations for big nose are black, and 97% are
male. None of the people in the images with the 200 lowest activations for either
attribute are black.

5 Conclusion

While the subjectivity of CelebA labels makes their quality difficult to evaluate,
we find that most labels we are able to quantitatively evaluate are poorly or
inconsistently used. In particular, 10% or more instances of 5 o’clock shadow,
bald, wearing earrings, wearing necklace, and wearing necktie are used incor-
rectly or contradict another label. Mouth slightly open is labeled consistently
enough to predict reliably, but the predictor does not match the label defini-
tion. Furthermore, subjective labels such as big nose, big lips, narrow eyes, and
young are inconsistent with a quantitative classifier measuring the same feature.
Attributes can also be shown to be poorly labeled through correlations. High
cheekbones almost entirely overlaps with smiling and pointy nose is strongly
negatively correlated with male. Other attributes clearly encode bias which is
amplified by a classifier trained to predict those attributes. Big lips and big nose,
while doing a poor job of estimating quantitative measures of lip and nose sizes,
both encode racial bias which is learned by a classifier. In total, we find that
there are 5 attributes which are clearly labeled incorrectly or contradict with
another attribute more than 10% of the time, and another 5 attributes which
are highly inconsistent or can be shown to be highly problematic through cor-
relation with another attribute. There are many other attributes we are unable
to evaluate, but are likely also poorly labeled. For example, a surprisingly high
number (34.8%) of images labeled male are also labeled bags under eyes, and our
ResNet classifier is unable to achieve an F1 greater than 50 for oval face. As a
result of these issues, researchers should be cautious about making performance
claims in regards to CelebA facial attribute classifiers. Future work should con-
sidering separating the most subjective attributes or even removing them from
consideration entirely. It would also be beneficial to begin constructing another
large scale face dataset that is more labelled in a more controlled manner than
CelebA.
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Abstract. The spread of invasive aquatic species disrupts ecological bal-
ance, damages natural resources, and adversely affects agricultural activ-
ity. There is a need for automated systems that can detect and classify
invasive and non-invasive aquatic species using underwater videos with-
out human supervision. In this paper, we intend to classify the larvae
of invasive species like Zebra and Quagga mussels. These organisms are
native to eastern Europe, but are invasive in United States waterways.
It’s important to identify invasive species at the larval stage when they
are mobile in the water and before they have established a presence, to
avoid infestations. Video-based underwater species classification has sev-
eral challenges due to variation of illumination, angle of view and back-
ground noise. In the case of invasive larvae, there is added difficulty due to
the microscopic size and small differences between aquatic species larvae.
Additionally, there are challenges of data imbalance since invasive species
are typically less abundant than native species. In video-based surveil-
lance methods, each organism may have multiple video frames offering
different views that show different angles, conditions, etc. Since, there are
multiple images per organism, we propose using image set based classifi-
cation which can accurately classify invasive and non-invasive organisms
based on sets of images. Image set classification can often have higher
accuracy even if single image classification accuracy is lower. Our system
classifies image sets with a feature averaging pipeline that begins with
an autoencoder to extract features from the images. These features are
then averaged for each set corresponding to a single organism. The final
prediction is made by a classifier trained on the image set features. Our
experiments show that feature averaging provides a significant improve-
ment over other models of image classification, achieving more than 97%
F1 score to predict invasive organisms on our video imaging data for a
quagga mussel survey.
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1 Introduction

Zebra mussels (Dreissena polymorpha) and Quagga mussels (Dreissena bugen-
sis) are not native to North American waters and probably arrived as freshwater
stowaways in commercial vessels from Europe in the 1980s [30]. Zebra mus-
sels spread rapidly, cause ecological disruption, and clog water pipes and other
machinery [8,30]. Due to economical and environmental damage it is important
to detect and prevent the spread of these invasive species. Adult zebra mussels are
easy to identify but they can spread quickly by laying millions of eggs per season.
By the time these invasive species have established themselves in a waterway,
eradicating or mitigating their presence becomes very difficult and costly. Thus
it is important to detect and monitor zebra mussels at the larval (aka veliger)
stage [22]. Detection of veligers is usually done by collecting water samples and
using microscopy with cross-polarized light for identification [22], or using DNA-
based methods [9]. Microscopy is expensive, time-consuming, and requires expert
manual analysis. DNA-based methods are time-consuming, expensive, and are
able to detect veliger presence but not prevalence. It’s important to have an
automated process that can monitor both veliger presence and prevalence [12].

Recently, there has been a lot of research in classifying fish and other under-
water species [3,39]. But, there can be some unique challenges in classifying
veligers of invasive species. First, fish and other adult underwater species have
large and recognizable patterns, while veligers are difficult to distinguish from
other organisms even for human experts. Secondly, there are a lot of other native
planktonic organisms present in the water samples. Moreover, veligers can be rare
depending on the season, which creates a data imbalance problem both at the
training and testing stage [22]. Additionally, images collected from water samples
might vary in illumination, background noise, and viewpoint orientation. There-
fore, any solution for detecting invasive veligers must take the aforementioned
challenges into account.

Fig. 1. 1. Adult zebra mussels that are easily recognizable. But our problem is about
detecting zebra mussels at larval (veliger) stage, so the spread of invasive species can be
stopped. 2. Some images of veligers from our dataset. The first row contains images of
invasive veligers, and the second row contains images of other non-invasive organisms.

Our dataset comes from a video capture of a water sample. First, organ-
isms in the video are tracked and then cropped images are extracted for each
organism. This has been done by proprietary software developed by a private
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company, and is based on a Kalman filter. For each tracked organism, we group
together extracted images and aim to classify the set as either invasive or non-
invasive. That means our prediction model is based on image set classification,
i.e. classification based on multiple images of same object [25]. Experts provided
ground truth by inspecting the tracked objects in the video and the extracted
images.

Image set based classification is often used in face detection with multiple
instances of the same person recorded from surveillance videos. These datasets
generally contain images of faces captured under different poses, expressions, or
illumination [24,36]. An image set-based approach can perform better than sin-
gle image classification, given that they take advantage of the multiple instances
available [36,41]. The general solution to this problem entails reducing the dimen-
sion of the images, followed by aggregation of features of images in the same set.
The second step is to use a similarity or distance measure with a nearest neigh-
bour classifier [35]. This is both computationally expensive and unreliable for
images with fine-grained differences.

Our dataset has two primary classes: invasive and non-invasive. Each organ-
ism has a varying number of images, depending on how long the organism was
in the video frame. Our solution uses a feature extraction model followed by
a final classifier. For feature extraction we have considered both hand-crafted
and deep learning based methods. Hand-crafted features generally use a filter
to encode some characteristics of an image like edges, color, shape, etc. Some
popular hand-crafted feature descriptors are SIFT, HOG, HSV, color histogram,
PCA, etc. [27]. More recently, methods based on deep learning can learn complex
image features more accurately [11]. So we used a convolutional autoencoder to
extract features from individual images [28,37].

In the last decade, convolutional neural networks based methods have been
able to achieve significant improvement in many machine learning tasks, espe-
cially image classification. In particular, non-linear activation functions, batch
normalization, pooling etc. have improved network performance [5]. In our case,
we use a convolution autoencoder to map images to lower-dimensional features.
Autoencoders use an encoder to create latent representation from an image and
then a decoder is used to reconstruct the original image [21]. The loss is calcu-
lated based on the difference between original and reconstructed image and is
optimized over the training period. Since the latent representation is created over
multiple layers, it presents an opportunity to use different activation functions
and create features that are appropriate for the problem.

Another challenge in our invasive species dataset is that the images are taken
in different angles and illuminations as shown in Figs. 1 and 2, with groups of
invasive and non-invasive images of the same organism placed side by side. The
variations come from the organisms moving in three dimensions as they pass
through the video frame. Thus we need a machine learning pipeline that is
invariant to different conditions [2]. One technique is to train different models
for different purposes and then use an ensemble for the final prediction. This
is of course more expensive to train and might also introduce bias towards cer-
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tain types of data variations. For example, the ensemble model might overfit on
images of low illumination and do poorly against images of high illumination.
Another technique is to augment the dataset, which aims to create data varia-
tions resulting in a more balanced dataset [38]. This approach can involve chang-
ing brightness of some images with low illumination and using them to balance
the dataset [18]. Several papers propose using morphological transformations or
generative adversarial networks to create augmented data samples [42]. These
ideas are relevant to our problem, especially since we also have data imbalance
in favor of non-invasive species. But generative adversarial networks with clas-
sification models are difficult to train, risk overfitting, and are computationally
expensive.

Fig. 2. These are groups of four images placed in same row taken from the same
organism. As shown, the images have a lot of variation in terms of viewpoint and
illumination, making it difficult to accurately classify individual organism.

In this paper we present a feature averaging process to create a representation
from an image set which makes classification robust to varying illumination and
object orientation and also reduces generalization error [24]. The key idea is
that using the average of features from multiple images reduces the effect of
illumination or viewpoint changes, compared to the use of a single image [23].
Some researchers have used linear subspace methods to represent mean or basis
image from image sets [35]. But we have decided to use element-wise average of
autoencoder features, which provides a more flexible and robust representation
of the image set, while capturing the fine details at the same time.

Our classification pipeline is based on two neural networks. At first we extract
features from each image of an organism using the encoding portion of a con-
volutional autoencoder network. Then we average these features across images
of the same organism to create a single feature vector for the organism. Finally,
we use a neural network classifier to predict if the organism is invasive or non-
invasive. Our main contribution here is to present a classification approach that
takes advantage of multiple instances, and can accurately and reliably classify
invasive and non-invasive larvae despite the presence of variation in illumination
and viewpoint. Our experiments also show the robustness of the autoencoder-
based feature averaging process compared to other classification models. The
balanced accuracy of this method is 97% on the test data, which is a significant
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improvement from other previous models which were convolutional neural net-
works similar to VGGNet [40]. In the results section, we provide more detailed
results including F1-score, recall, and balanced accuracy. We also compare our
results with other methods of classifying underwater images or image sets like
CNN, PCA+CNN, SVM, etc.

In the next section we provide a literature survey on the problem of aquatic
invasive species detection and responses, image set classification, and neural net-
work models for feature extraction. In the methodology section we discuss details
of our classification pipeline, network structure, loss functions, and the dataset.
In the results section we describe the evaluation metrics and the experimental
results and analysis.

2 Related Work

The problem of aquatic invasive species (AIS) is not new, but approaches for
detection and identification of invasive mussels are costly and can be ineffec-
tive at preventing infestation due to the time required. Common approaches for
detecting invasive mussels include microscopy or environmental DNA (eDNA).
Here we review some approaches for detection of invasive species as well as some
plans to stop further spread.

2.1 Aquatic Invasive Species

Most of the early techniques for detection of zebra mussels in larval stage are
based on microscope photography. Conn et al. [7] provide a framework to detect
and differentiate between larval and post-larval stages of zebra mussel (Dreissena
polymorpha) and the Dark False mussel (Mytilopsis leucophaeata). This pho-
tographic guide aims to help personnel involved with the monitoring of these
organisms. The other notable work in this area is from Johnson et al. [22], which
uses cross-polarizing filters for microscopy retrofitted to detect the presence of
zebra mussel veligers much faster with improved accuracy. This technique is
useful for rapid detection as well as counting of veligers in a water sample.

A recent study by Gingera et al. [16] is based on water samples from Lake
Winnipeg during early May and late October. This is an eDNA-based technique
to identify the presence of zebra and quagga mussels. The results of the study
show that zebra mussels were detected in 0–33.3% of all water samples per site
studied during the early season and 42.9–100% during the late season. Finally,
Feist et al. [14] provides a detailed review of eDNA-based approaches to detect
and combat the spread of zebra and quagga mussels along with discussion on all
the important discoveries and novel revelations made along the way.

Other than detection, there is a lot of research on how to trace and combat
the presence of zebra and quagga mussels. The Massachusetts Department of
Conservation and Recreation [13] has a rapid response plan to combat spread
of zebra mussels, which involves collection of water samples, early detection of
invasive species, marking of GPS position for infested locations followed by risk
assessment and necessary response.
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2.2 Local Responses to Aquatic Invasive Species

Now we look at some of the different states across western United States and
ways they monitor and control aquatic invasive species. In the state of Texas
many freshwater fisheries and other aquatic resources are managed by the Texas
Parks and Wildlife Department (TPWD). Experts from TPWD and their part-
ner organizations monitor Texas water bodies for the spread of zebra and quagga
mussels at least twice per year. There are different amounts of infestation in dif-
ferent lakes. For example, Lake Worth in Tarrant County, Lake Brownwood,
Inks Lake, and Medina Lake in the Colorado and San Antonio River basins have
been designated as infested which indicates a sustained significant presence of
zebra mussels in those lakes. On the other hand, International Amistad Reser-
voir in the Rio Grande basin had the first detection of quagga mussels in a Texas
reservoir in February 2022.

In California quagga mussels have spread in Southern California reservoirs
fed by the Colorado River. The state of California has added legislation requiring
all reservoir owners and managers to assess the possibility of zebra and quagga
mussels spread [31]. The Arizona Game and Fish Department (AZGFD) urges
pet stores and aquarium owners to check for zebra mussels infestations [1].

Overall, the spread of invasive species is estimated to have an economic
impact of $219 billion in the United States. It impacts different types of water
infrastructure along with fishing, boating, and hunting. Worldwide it is estimated
to have an economic impact of more than $4 trillion. This makes automated early
detection and monitoring of invasive mussels crucial to reducing environmental
and economic damage [43].

2.3 Classification with Image Sets

Our dataset contains multiple images of the same organism taken from video
sample with different pose and illumination. Because of that, we chose an app-
roach based on image set classification. Over the years there has been a lot
of interest in image set-based classification [15,25,47], especially in the area of
face recognition [19], handwritten digit recognition [20], shape recognition [10]
and object recognition from different viewpoints [25]. The general procedure for
image set classification is: (1) images of the same class are grouped together,
(2) a model is learned to represent the set, and (3) for classifying test data a
similarity measurement is used to match the set with a particular class. So, the
key problem of image set classification is to capture the intrinsic properties of
the set and use those for classification.

Most image set classification approaches can be categorized into two different
types: parametric and non-parametric models [47]. Parametric models assume
that each population follows a certain distribution, determined by a fixed set
of parameters. In this method each image set is modelled using a distribution
function and a similarity measure is used make the final classification.

Non-parametric methods do not require a pre-determined number of param-
eters in the model, but allow the data to determine the complexity of the
model. These methods create a representation for each image set often based on
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statistical features and then a distance measure is used for the prediction.
These methods represent image sets in different ways [47], such as linear sub-
spaces [25,46], affine subspaces [4], and nonlinear manifolds [15,45].

Linear subspace methods place images in a low dimensional linear subspace
and use subspace distance as a measure of similarity. Yamaguchi et al. [46]
represented face images from different directions to create a subspace with the
image sequence and use mutual subspace method as a distance measure. Kim
et al. [25] developed a discriminative model, which maximizes the canonical
correlations within sets in the same class.

The nonlinear manifold method represents images from the same set as a
nonlinear manifold. Wang et al. propose a manifold learning approach [45], rep-
resenting each manifold as a collection of linear models. Image sets from the
test data are mapped to the manifold and matched against manifolds from the
training set. The final classification is made by calculating the manifold-manifold
distance (MMD).

Our method uses a convolutional autoencoder to represent image sets.
Autoencoders, which are often deep networks, are used extensively with images
to learn compressed representations and mappings for dimensionality reduction.
A simpler and widely-used data dimensionality reduction technique is principal
component analysis (PCA). PCA represents the data based on the orthogonal
directions of maximum variance. PCA can give a poor representation for images
with large number of features and low variance concentration [26]. The nonlin-
earity of neural networks on the other hand allows autoencoders to compress
much more complex data while retaining information about the internal struc-
ture [21,26].

2.4 Underwater Image Classification

A lot of underwater image classification problems have similar challenges of
variation in brightness, image quality and viewpoint orientations. Raitoharju et
al. [32] proposed a data enrichment algorithm to improve neural network-based
classification of aquatic macroinvertebrates. They created new images by rota-
tions and mirroring of older images, which increases the dataset size, leading to
better classification accuracy. Schoening et al. [34] propose an image patch based
feature representation for the problem of seafloor classification. The paper from
Chuang et al. [6] compared supervised and unsupervised feature extraction meth-
ods for fish species recognition. Their experiments show that an unsupervised
approach gives more accurate predictions of fish species. For many underwater
species recognition problems the choice of feature extraction and representation
method is crucial. In the next section, we discuss the use of autoencoders for
feature extraction from images.

2.5 Autoencoders

Autoencoders were initially proposed by Hinton et al. [21] and are frequently
used for learning feature representations. Since then it has been used and stud-
ied for image representation, compression, and dimensionality reduction in wide
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range of data types. Liu et al. [28] proposed autoencoder features to predict well
failures using an SVM for final classification. The paper also compared the use
of hand-crafted features with autoencoder features for classification. Most neu-
ral networks are trained to predict a target value or label Y given an input X,
and a loss function is used to measure the difference between true and predicted
labels. Autoencoders instead use a combination of layers as an encoder to create
a low dimensional representation and then use more layers as a decoder to recon-
struct the input. The loss function is calculated using the difference between the
input and reconstructed output data. The gradients are propagated through the
decoder and encoder networks. There are multiple variants of autoencoders that
are applicable in wide range of problems. Vincent et al. [44] proposed denoising
autoencoders which tries to reconstruct an image from a noised input image,
thereby making the model robust to noise. Goroshin et al. [17] proposed an
autoencoder architecture that limits the model’s ability to reconstruct inputs
which are not near the data manifold. The paper also shows that using differ-
ent activation functions in the intermediate layers of autoencoder can be used
to learn different features with interesting properties. Rifai et al. [33] adds a
penalty term to the loss function which makes the model better at capturing the
local directions of the data.

3 Methodology

Our prediction algorithm uses two steps: feature set generation and classification.
The training process involves two different models: an autoencoder trained to
generate features from images, and a classifier trained to discriminate between
invasive and non-invasive organisms. Figure 3 shows the steps involved for feature
averaging.

3.1 Solution Description

Consider image set S, which contains different images of the same organism. S
has n images x1 through xn, each of size (a, b). Our goal is to create a vector
r of size z � a · b, which is a single representation of S. An autoencoder is
used for feature extraction. Image xi in the set has a corresponding feature
vector fi of size z, so there will be n feature vectors for n images in the set.
Now these features are combined to create an average representation r of size
z, where r = (

∑n
i=1 fi) /n. The addition is done element-wise to create a final

feature which is of the same size as the features from individual images. The
autoencoder starts with an input size of (a, b, 3) and the final layer of the encoder
has an output size of z. Now, we should look at the details of the neural network
architecture used for feature extraction.
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Fig. 3. Diagram of the feature averaging pipeline. The images in the set are from the
same organism. Image features are extracted from all images using the encoder and
the average feature is used for final classification.

3.2 Convolutional Autoencoder

Let us assume we have images of size (a, b, 3) given as input to the autoencoder.
The autoencoder network Φ = {φe, φd} is formed of an encoder φe that creates
a latent vector of size lz and the decoder φd reconstructs the input image with
the same size. The network architecture is based on the VGG model [40], which
allows us to compare the performance with a VGG based CNN model. The
VGG based model generally uses convolution filters of size 3 × 3, pooling layers
of stride size 2 × 2, and dense layers with decreasing output size. The final layer
of the encoder is fully connected from the encoder to the decoder. The encoder
output size is z, which is the size of the latent vector features lz. The decoder
reconstructs the image with a series of dense layers, convolution layers, and up-
sampling layers. Where the encoder uses a pooling layer, the decoder uses an
up-sampling layer. We have used ReLU as activation in convolution layers and
TanH in the final dense layer. The loss function is mean square error between
the input image and the reconstructed image. The parameters are learned using
the Adam optimizer. When using an autoencoder for feature extraction, we use
the output of the last encoder layer.
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Fig. 4. (1) The classifier starts with features of size 48 and provides an output of size
2, which is used to make the prediction. ? × 48 stand for the batch-size variable along
with the input feature size. (2) The autoencoder, with the input size of (40, 40, 3). The
output of the encoder is 48 features, which are used for feature averaging. (3) The CNN
based model used for comparison.

3.3 Classification Model

Once the autoencoder has been trained, it can be used to extract features from
every image. These features are averaged within a set to give us a feature and
label pair for each organism. Now, we have a neural network based classifier that
is trained to predict the label from the features. The input features reduced by
two dense layers with ReLU activation function. If the input to the classifier
network has z features, we train the three layers of the classifier network to
reduce from size z to the output size. The final layer has the output size of 2
with a softmax activation function, using categorical cross-entropy loss. We train
the network with the Adam optimizer, and use a dropout layer for regularization.
Figure 4 presents a diagram of the classification model, autoencoder model, and
CNN-based base model. Figure 6 shows images of organisms reconstructed by
autoencoder, and Fig. 7 shows some images that were misclassified by the base
CNN model.

3.4 Activation Functions

For the autoencoder we use two types of activation functions. For the convolu-
tion layers we use ReLU activation, which is defined as ReLU(x) = max(0, x).
This function eliminates negative values and eliminates the vanishing gradient
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problem observed with other activation function [29]. For the encoder’s output
layer we use hyperbolic tangent TanH(x) = (ex − e−x)/(ex + e−x). The output
of TanH(x) is in the range [−1, 1]. This limits the range of the autoencoder’s
output (latent) features, which regularizes against extreme feature values [29].

We used softmax activation at the final layer of classification. Softmax con-
verts a real-valued vector into a discrete probability distribution [29]; the outputs
are in the range [0, 1], with their sum being 1. For softmax activation the output
f(x), given input x of size k is computed as f(x)i = exp(xi)/(

∑k
j=1 exp(xj)).

3.5 Loss Functions

The loss function for the autoencoder network is mean-squared error:
MSE(Y, Ŷ ) = 1

n

∑n
i=1(Yi − Ŷi)2, where Y is the true label, Ŷ is the predicted

label, and n is the number of pixels. MSE in this case is the average of pixel-wise
squared error between the input and generated images.

The classifier portion of the network uses categorical cross-entropy as the loss
function. We use categorical encoding to encode the target label to numerical
features with values between values of 0 to 1. Cross-entropy loss is computed from
the sum of the negative logarithm of predictions made by the Neural Network.
For our case with n samples and C = 2 categories,if ground truth is given by Y
and prediction by Ŷ , where Y, Ŷ ∈ [0, 1], the cross-entropy loss is CE(Y, Ŷ ) =
−∑n

i=1

∑C
c=1 Yic · log(Ŷic) = −∑n

i=1(Yi1 · log(Ŷi1) + Yi2 · log(Ŷi2)).

3.6 Base Model

For comparison we use a CNN-based model to classify individual images (as
opposed to classifying a set of images per organism). This “base model” has two
convolution layers of size 3 × 3 with a max pooling layer after each one, one
convolution layer of size 5 × 5, and fully-connected dense layers. The final layer
has softmax activation with categorical cross-entropy loss. We use the Xavier
initializer and the Adam optimizer for training. We train for 20 epochs with a
batch size of 32 and learning rate .001.

3.7 Dataset

Our dataset contains a total of 4, 374 organisms with a total of 112, 788 images.
There are 674 invasive organisms (quagga mussels) with 19, 101 images and 3, 700
non-invasive organisms with 93, 687 images. On average each organism has 25.78
images. The average image size is 22.56 × 19.46 pixels. We resize each image to
a fixed size of 40 × 40 × 3 and use that as an input to the autoencoder. We
trained multiple autoencoder models with latent feature size of 48, 16 and 64.
We trained a classifier for each latent representation. Table 1 gives more details
on the number of parameters for each model.
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Table 1. These are details about the neural network models used. The first row presents
an autoencoder with an output vector of 64 features. The following two rows give details
of the encoder and decoder which are used to construct that autoencoder. Next, we
have the details of autoencoders with latent vectors of 48 and 16 features. This is
followed by the classifiers and the base neural network model.

Model type # Parameters # Convolution layers # Dense layers

Autoencoder (64 features) 38, 297 7 3

Encoder (64 features) 28, 089 3 2

Decoder (64 features) 10, 208 4 1

Autoencoder (48 features) 34, 281 7 3

Encoder (48 features) 26, 073 3 2

Decoder (48 features) 8, 208 4 1

Autoencoder (16 features) 26, 249 7 3

Encoder (16 features) 22, 041 3 2

Decoder (16 features) 4, 208 4 1

Classifier(64 features) 2, 362 0 3

Classifier(48 features) 1, 850 0 3

Classifier(16 features) 276 0 3

Base model (CNN) 204, 512 3 3

4 Results

4.1 Evaluation Metric

Our dataset has class imbalance, and the cost of a false negative (missing an
invasive larvae) is potentially high. Therefore, accuracy alone is not sufficient to
evaluate model performance. Thus we look at the following performance metrics:

Recall: Recall measures the percentage of the true invasive examples that are
correctly predicted by the model. Recall is not affected by imbalance because it
is only dependent on the invasive group. Recall = TP/(TP + FN).

F1 Score: F1 score combines precision (which is TP/(TP + FP )) and
recall using the harmonic mean. With equal weight for both, F1 =
2 · precision · recall/(precision + recall) = 2TP/(2TP + FP + FN).

Balanced Accuracy: Balanced Accuracy (BAC) is the average of the individual
accuracy of each class. BAC = (1/2) · (TP/(TP + FN) + TN/(FP + TN)).

4.2 Quantitative Analysis

We split the dataset into train and test data for both the autoencoder and
classifier. We use 80% for training and validation and 20% for testing. The
dataset is shuffled before each training iteration to validate the results. The
shuffle is applied over organisms, so that the images from same organism are not



Recognition of Aquatic Invasive Species Larvae 157

in both training and test data. We train the autoencoder for 20 epochs and the
classifier for 200 epochs. We use the Xavier initializer and the Adam optimizer
with a learning rate of .001. Figure 5 shows the training accuracy and loss against
the number of training epochs. Then we show the comparative performance of
our model against other popular machine learning methods.

Fig. 5. 1. Autoencoder training loss against number of epochs. 2. Similarly, Classi-
fier training loss vs epochs. 3. Autoencoder training accuracy. 4. Classifier training
accuracy.

4.3 Comparative Analysis

We shuffle the dataset for both the autoencoder and classifier, perform 10 iter-
ations of training and use the average score to compare the result. We also
compare the results with other machine learning methods like a convolutional
neural network, PCA + neural network, SVM classifier, and PCA + KNN. The
results are in Table 2. For the base neural network we report the accuracy on
individual images and also on organisms (image sets) based on majority vote.
The autoencoder-based feature average achieves highest accuracy with 48 fea-
tures.

Fig. 6. Images of invasive and non-invasive species reconstructed by the autoen-
coders. Notice that larger autoencoder features create better reconstructions which
also improves the accuracy of the final classification.

Fig. 7. These are some of the images incorrectly classified by the Base Neural Network
(VGG). A lot of these images have low brightness or have different viewpoints that
causes incorrect prediction.
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Table 2. Experimental results on three evaluation metrics: F1, BAC, and Recall.
The results at the top are based on classification of image set of each organism (each
prediction is for one organism). The results at the bottom are based on individual
images of all organisms in the test set (each prediction is for an individual image).
We have also reported the accuracy with under-sampling method, where we have used
a subset of the non-invasive images to balance the two classes. For PCA we report
accuracy on individual images and similar feature averaging for organisms-wise results.
The results show that the feature averaging process gives reliable improvement.

Type # Method Test size F1 score BAC Recall

Classify each
organism

1 Feature averaging (64 features) 850 97.1 ± 0.9% 98.2 ± 0.7% 96.3 ± 0.5%

2 Feature averaging (48 features) 850 97.1 ± 0.3% 98.2 ± 0.3% 96.3 ± 0.4%

3 Feature averaging (16 features) 850 90.5 ± 0.3% 95.2 ± 1.2% 88.8 ± 1.5%

4 Base neural network (CNN) 850 88.1 ± 0.7% 89.4 ± 0.3% 82.5 ± 0.6%

5 PCA (feature average) + Neural network 850 86.7 ± 0.6% 92.5 ± 0.7% 85.5 ± 0.4%

Classify each
image

6 Base neural network (CNN) 20, 196 80.2 ± 1.2% 89.3 ± 1.6% 80.1 ± 1.4%

7 Base neural network (under-sampling) 20, 196 82.2 ± 1.1% 87.5 ± 1.5% 82.7 ± 1.1%

8 PCA + Neural network 20, 196 66.8 ± 1.1% 82.9 ± 1.3% 54.9 ± 0.9%

9 SVM 20, 196 74.6 ± 0.6% 83.0 ± 0.3% 79.3 ± 0.8%

10 PCA+ 3-nearest neighbour 20, 196 64.2 ± 10.0% 78.7 ± 5.0% 68.1 ± 9.0%

For single images, a convolutional neural network has F1 score of 80%. Com-
pared with single image classification, image set-based classification performs
better in many cases [36,41]. Our results show that autoencoder-based feature
averaging improves the accuracy significantly over single image classification and
has consistent performance comparable to state-of-the-art image set classifica-
tion techniques. Moreover, it shows that feature fusion applied over an image set
before classification has an advantage over voting after classification (Fig. 8).

Fig. 8. 1. These are the invasive reconstruction created from images of an organism
and at the bottom the decoder reconstruction from average representation. 2. Similar
average representation of a Non-invasive organism

5 Conclusion

The spread of aquatic invasive species is a large, critical problem with global
impact. We presented a framework to detect invasive mussel larvae from water
sample videos. Our approach uses image sets and feature averaging to create
representative features for each organism, which is then used for classification.
We use two different neural networks: a convolutional autoencoder to create the
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features, and a classifier. Our experiments show that this method is robust and
an improvement over other techniques.

Our goal is to create end-to-end prediction model. We want to incorporate
additional relevant information such as organism movement, image/object size,
weather, season, water conditions, etc. We would also like to extend this work to
other invasive species including green crabs, Asian carp, hydrilla, and northern
snakehead.
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Abstract. We propose an automated disaster mapping technique using
pre- and post-disaster satellite imagery. We first find the geometric trans-
formation for automatic image registration by matching regions repre-
sented by shape and intensity descriptors. We produce piece-wise con-
stant approximations of the two images using the delineated regions.
We perform linear subspace learning in the joint regional space and
project the samples onto the orthogonal to tangent subspace to produce
a change map and identify the outliers using statistical tests. We tested
our method on multiple disaster datasets that is, four wildfire events and
two flooding events. We validated our results by measuring the over-
lap score (DSC), and classification accuracy of our disaster map and
ground-truth data. We performed comparisons to representative change
detection techniques, namely Gabor Two-Level Clustering (G-TLC), and
spectral index-based detection methods. Performance metrics indicated
that the proposed Subspace Learning-based Disaster Mapping (SLDM)
method produced more accurate change maps than the compared meth-
ods for multiple types of disaster events. Visual interpretation of the
proposed SLDM method confirms its capacity for creating change maps
for disaster mapping.

1 Introduction

In the wake of a disaster, timely intervention or response is paramount to reduce
fatalities, infrastructural damage, risk of environmental hazards, health risks and
other consequences. Natural disaster events include wildfires, floods, landslides,
earthquakes, and tsunamis. A first step leading to timely intervention of the
response team is to identify the areas that have been impacted by the disaster.
This process is often termed disaster-mapping. In the past few decades, the
increase in the number of remote sensing satellite data and the coordination of
the International Charter Space and Major Disasters has made it possible for
the acquisition and usage of multi-source images, including very high resolution
(VHR) optical images and thermal images, for image-based disaster mapping
techniques [25].

One of the objectives of disaster mapping using remote sensing images is
to produce a change map that correctly delineates the area(s) that have been
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Bebis et al. (Eds.): ISVC 2022, LNCS 13598, pp. 162–173, 2022.
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affected by disaster. At the early stages of disaster mapping research, accurate
change maps were produced manually by visual analysis [16,25]. Nevertheless,
manual techniques are labor-intensive, inefficient and subject to the proficiency
of experts. Recently, researchers have invested resources to develop automated
disaster mapping techniques and improve the efficiency of such techniques. Con-
tributions to the field of disaster mapping range from classical image analysis
tools to machine learning techniques [9,25]. Moreover, in the current era of arti-
ficial intelligence, the field of disaster mapping has received significant contri-
butions from deep learning techniques. Reviews of image processing techniques
for disaster mapping/assessment are available in [9,25] and [6]. Although some
image-based disaster mapping techniques may be developed based on pre- or
post-disaster data only [4], other works propose multi-temporal change detec-
tion techniques, that utilize pre- and post-disaster images for disaster mapping
[11,12,23].

Multi-temporal change detection techniques for disaster mapping are devel-
oped on the assumption that changes caused by a disaster are easily detected
by evaluating the difference between pre- and post-disaster images. Utilizing
information from pre-disaster data for disaster mapping offers additional infor-
mation that would assist to accurately map the area(s) that were impacted.
Thus, basic image processing techniques, such as image subtraction, have been
used for disaster mapping [9]. Notwithstanding, one major disadvantage of using
basic image processing techniques for disaster-mapping purposes is that they
may falsely detect differences caused by brightness [9]. Other image process-
ing techniques for monitoring disaster events compute differences between spec-
tral indices, such as the normalized-differenced vegetation index (NDVI) [17,22],
normalized-differenced water index (NDWI) [14,27], and normalized burn ratio
(NBR) [19]. The use of spectral indices may be limited to multi-spectral data,
or restricted to certain disaster events. Other multi-temporal disaster mapping
techniques that have been proposed include principal component analysis (PCA)
based methods [24], feature extraction-based classification methods like the two
level clustering technique for change detection using Gabor features (G-TLC)
[11], a method that uses wavelet features and Kohonen clustering [10], and PCA
k-means (PCAKM) clustering [2]. Additional unsupervised feature-based clus-
tering techniques for change detection in satellite imagery have been proposed
in [7,8]. Despite the good reported performances of clustering and feature-based
clustering techniques proposed in the literature above, these methods may face
limitations to map disasters accurately, especially when applied to high- or very-
high-resolution images, due to high computational complexity [26].

Recently, deep learning techniques have produced state-of-the-art perfor-
mances in the fields of image processing and analysis. Deep learning techniques
have also been developed for multi-temporal disaster mapping. Sublime et al.
[23], proposed a deep learning technique for automatic disaster mapping using
joint-autoencoders and decoders. The method produced relatively high accu-
racy for the particular application to Tohoku tsunami, especially for detection
of flooded areas. Nevertheless, it presented some limitations including moder-
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ate performance accuracy for classification of destroyed buildings. The authors
in [28] utilized autoencoder models to detect changes in very high resolution
images (VHR). In their method, feature learning is defined implicitly and enabled
to learn complex features from VHR images, unlike other methods that make
assumptions of predefined linear transformations. The authors in [1] proposed a
convolutional U-Net architecture for multi-temporal disaster mapping using four-
spectral bands. Each pair is composed of high resolution (0.6 m) pre- and post-
disaster WorldView images. This method uses supervised-learning, and requires
substantial amounts of labeled data for training, which are usually not available
for remote sensing and especially in our studies.

Although deep learning techniques for multi-temporal disaster mapping have
proven to produce good results, they present their own challenges. The unavail-
ability of labeled data by experts is a major domain challenge in remote sensing.
This limitation implies that in some methods of the literature, the networks
may need to be trained on the test image, which means that parts of the test
image need to be labeled to train the net. Also, deep learning techniques require
high-performance hardware for training due to high computational complexity.
Despite the good characteristics of existing methods, and deep learning tech-
niques, there is an unmet need for change detection algorithms that can perform
well for multiple disaster events with low requirements for manual labeling. In
this paper, we propose a subspace learning-based disaster mapping (SLDM) tech-
nique that identifies and characterizes changes between pre- and post-disaster
images. We employ principles of subspace learning [15,20] in the joint space
generated by multiple time points to estimate the disaster map. This method
is motivated by the assumption that unaffected regions are expected to lie on a
principal subspace, or close to it. Conversely, the affected regions are expected
to lie further away from the principal subspace. Our experiments on multiple
datasets support the validity of this approach, and provide a framework that is
adaptable to different types of disaster events.

2 Subspace Learning-Based Disaster Mapping

The main stages of the proposed method are (i) region delineation, (ii) region
mapping and matching, and (iii) disaster mapping by subspace learning, as
shown in Fig. 1. We detail the region delineation and disaster mapping stages
next.

2.1 Region Delineation

First, let L denote the locations of areas that have been hit by a natural disaster.
Our task is to identify the affected areas in L, automatically, using remotely
sensed satellite images Lb and La acquired before and after the natural disaster,
respectively. Lb and La are also referred to as pre-disaster and post-disaster
images, respectively. Our goal is to obtain an image map, showing the regions(s)
that have been affected by disaster.
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Fig. 1. Flowchart of the proposed subspace learning-based disaster mapping algorithm.

In this stage, we delineate the regions of the two images that serve as the
basic image elements of automated co-registration and disaster mapping. To
generate these regions, or superpixels, we employ watershed segmentation based
on Parzen kernel density edge estimation [13] and morphological reconstruction.

First, we apply a median filter to the input image Lx, to reduce the effect of
noise on edge estimation. Secondly, we estimate edge maps using Parzen kernel
density estimation. Next, we apply the regional h−minima transform to reduce
the local minima of the edge map that do not correspond to meaningful regions.
We specify the height of minima to be filtered by the parameter hmin. The
sensitivity of edge maps depends on the following parameters: Parzen kernel
length−pkl, Parzen bandwidth−pbw, and hmin.

Finally, we perform watershed segmentation on the hmin−transformed edge
map. Watershed segmentation produces a closed region map Rx that we use in
the next stages.

2.2 Segmentation Fusion

We introduce a multivalued fusion method to fuse the input and reference region
maps. The goal is to obtain a common set of regions for both time points that
accommodates subspace learning.

We propose to perform multivalued region fusion by combining the signed
distance maps of input and reference superpixels followed by morphological
reconstruction to remove small/noisy regions. In particular, given the super-
pixel binary map B = {p ∈ Ω|L(p) = 1}, the distance transform computes a
map DM such that at each pixel p, X(p) is the smallest distance from p to Bc,
i.e.,

DM(p) = min{dist(p, q)|q ∈ Bc} = min{dist(p, q)|L(q) = 0},

where dist(., .) is a pair-wise distance function, in our case, the Euclidean dis-
tance. The signed distance map is therefore given as

Jx = −DM(Bc
x) \ (DM(Bx) ∪ (Bx + 0.5)) , (1)

with x = a, b. The fused signed distance map becomes

J = 0.5(Ja ∪ Jb). (2)
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Fig. 2. Example of segmentation fusion. Post-disaster regions (yellow), pre-disaster
regions (cyan) and fused regions (green). (Color figure online)

We then apply h-minima transform on J to remove local minima of the fused
distance map, followed by watershed segmentation to produce the fused regions.
We map the fused regions onto all registered bands in both time points. We show
an example of segmentation fusion in Fig. 2.

2.3 Subspace Learning for Disaster Mapping

Here we use subspace learning techniques to compute tangent distances [3,
5,15,20,21] that will be used for identifying the damaged regions. Motivated
from manifold learning principles, our premise is that the pre- and post-disaster
regions not affected by the disaster will lie close to a principal subspace formed
by regional multi-band descriptors obtained from the fused superpixels. Con-
versely, the damaged regions will lie further away from the principal subspace.
We approximate the principal subspace by a tangent space. We will identify the
level of damage caused by a disaster using distances from the tangent space,
which are known as tangent distances.

Let S : {descriptors of regions of no damage} be the region descriptors that
are concentrated close to a manifold that is generated by the unknown rela-
tionships of the multi-temporal no-disaster region descriptors in the two time
points.

We approximate the manifold by a linear principal space Sp with respect to
a query region rq using the tangent distance given by

td(rq, Sp) = min
r∈Sp

‖rq, r‖2. (3)

Following this formulation, the region descriptors corresponding to the disaster
areas, will lie further away from Sp relative to the no-disaster region descriptors.

We compute the pre- and post-disaster piecewise constant approximation
maps LR

a and LR
b from the input images La and Lb using the labeled map

R produced by segmentation fusion or the reference segmentation in the case
of SLDM. The objective is to reduce the statistical variability of the samples
without losing the changes we intend to detect.
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Let Xai
and Xbi , for i = 1, . . . , n, be the vectorized forms of LR

ai
and LR

bi
,

respectively, where n is the number of spectral bands. We form a N × 2n matrix
X = [Xa1 ,Xb1 , . . . , Xan

,Xbn ]. We scale the data matrix X by calculating the
z-score of each column. Let Z denote the z-scaled matrix.

Next, we apply PCA to the matrix Z to obtain the eigenvalues λk, k =
1, . . . , 2n be the eigenvalues of the covariance matrix Σ arranged in descend-
ing order of magnitude, with corresponding eigenvectors wk, k = 1, . . . , 2n. We
project Z to the space spanned by {w1,w2, . . . ,w2n} as follows

W = [W1,W2, . . . , W2n] = Z · [w1,w2, . . . ,w2n]T. (4)

We define the principal subspace Sp as the hyperplane spanned by the first p
components, W1, . . . , Wp.

We assume that the unaffected regions will be approximated with vectors X
that lie close to the principal subspace Sp, whereas the regions changed by the
disaster will lie further from this space. We propose to use these distances to
define the change map LR

d , that is, LR
d := d(X,Sp). By definition, this vector

distance is given by projection onto the orthogonal subspace, which yields

LR
d := d(W,Sp) = ‖W − Z · (w1 + w2 + . . . + wp)

T ‖2 (5)

= ‖Wo‖2 = ‖Z · (wp+1 + . . . + w2n)T‖2, (6)

where ‖ · ‖2 denotes the �2 norm, and W0 denotes the orthogonal subspace.

3 Determining the Changed and Unchanged Regions

Given the set of points X ∈ R
N×d in the orthogonal space produced by subspace

learning, we estimate the probability density using kernel density estimation. The
sample set x1, . . . , xn ∈ R

d, with n ≤ N, consists of the feature map with priors
p(xk), k = 1, . . . , n.

We anticipate that the peak and the minimum of the probability density
curve would correspond to the no-change and noisy regions, respectively. The
data points satisfying τn < p(x) < τd correspond to regions Ri, i = 1, 2 that are
candidates for changes caused by the disaster, where τd and τn are the detection
and noise margins respectively.

These regions divide the orthogonal space into two semi-spaces. We estimate
the total probability on each region Ri bounded by the tangent space and reject
the candidate points that lie in the region of lower probability. We determine
the regional probabilities by the areas under the estimated pdf and choose the
maximizing region as the detection region Rd:

Rd = arg max
i

P{x ∈ Ri}. (7)

Figure 3 shows an example of the estimated density, the detection region in green
color and the rejected region in gray.
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Fig. 3. Scatterplots of original data points, mapped data points, decision density
function, and the subspace data points identified as changes caused by disaster (in
green color). (Color figure online)

4 Experiments, Results and Discussion

4.1 Experimental Setup

We evaluate the effectiveness of the proposed method by testing it on datasets
of two floods in Oroville, CA, USA (O-FL) and Brazil (B-FL), and four wildfires
in Pisa, Italy (PI-FI), Fort McMurray, Canada (FM-FI), San Bernardino, CA,
USA (SB-FI) and Yosemite national park, CA, USA (Y-FI). According to the
information on ESA earth-watching, the six disaster events were severe, and
caused hundreds of residents to vacate their homes, significant infrastructural
damage, waste of resources, and loss of lives.

We obtained pre- and post-disaster images from the United States Geolog-
ical Survey (USGS) glovis archive. The technical characteristics of the images
are provided in Table 1. We utilized the near-infra-red (NIR) bands from both
times in all our experiments. We generated the ground-truth of the cropped
region of interest in each case manually by visual interpretation/analysis using
the information provided on the ESA’s earth watching - environmental hazards
website. The pre- and post-disaster images and the ground-truth change map of
the above datasets are displayed in Fig. 4.

To reduce the effect of atmospheric conditions, we performed cloud, cloud-
shadow, and no-data removal on both pre-disaster and post-disaster images at
the preprocessing stage using a mask generated by FMask [29], and registration
information.
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Table 1. Technical details of the datasets

Data Satellite Acquisition dates ROI size Resolution

Pre-disaster Post-disaster

O-FL Sentinel-2 12-Dec-2016 30-Jan-2017 1500 × 1500 10 m

B-FL Landsat 8 OLI 18-May-2014 5-Jul-2014 3001 × 3000 30 m

PI-FI Landsat 8 OLI 24-Oct-2017 25-Sep-2018 731× 818 30 m

FM-FI Landsat 8 OLI 1-Oct-2015 12-May-2016 2200 × 2200 30 m

SB-FI Landsat 8 OLI 17-Jul-2016 18-Aug-2016 1800 × 2200 30 m

Y-FI Landsat 8 OLI 5-Jun-2013 9-Sep-2013 3000 × 3000 30 m

4.2 Results and Discussion

Our method performs complete registration [18] and disaster mapping given
multi-temporal images. Disaster mapping requires accurate registration of the
pre- and post-disaster images in a common space. Therefore it is important to
evaluate the performance of the registration stage.

Our first experiments included an evaluation of registration accuracy. The
root mean square error measures of our method against ground truth trans-
formations are: B-FL (0.100), PI-FI (0.318), FM-FI (0.327), SB-FI (0.026) and
Y-FI (0.576). We note that the RMSE values are smaller than 1 pixel, indicating
high accuracy that meets the requirements of multi-temporal disaster mapping.
We note here that the multi-temporal images in the Oroville fire dataset were
already co-registered, so no registration was applied to them.

We also evaluated the accuracy of the proposed subspace learning-based dis-
aster mapping technique against manually generated ground truth data. We
compared the performance of our SLDM techniques to image differencing, spec-
tral index differencing, namely normalized-differenced spectral indices (d-NDVI),
and disaster specific indices - normalized burn ratio (d-NBR) and normalized dif-
ferenced water index (d-NDWI), and the Gabor Two-level Clustering (G-TLC)
[11]. Furthermore, SLDM-SF symbolizes SLDM with segmentation fusion, in
contrast to SLDM that symbolizes our method without using fusion. We made
this distinction to evaluate the effect of segmentation fusion on performance. The
results produced by the proposed SLDM techniques and the compared methods
are shown in Fig. 4. Table 2 contains a summary of delineation and classification
accuracy rates of all disaster mapping methods under consideration.

With respect to average DSC, Table 2 shows that SLDM and SLDM-SF out-
performed other compared methods on wildfires, while SLDM is the second best
on floods. We observe that at least one version of the SLDM technique produced
greater DSC than G-TLC on all datasets except for the Oroville flood, and Pisa
fires. All versions of SLDM produced at least 0.006 higher DSCs on SB-FI, and
0.064 higher on FM-FI. SLDM produced > 0.9 DSC on SB-FI, outperforming
the non-SLDM techniques. SLDM-SF was the top performing method on Y-FI,
with an improvement of at least 0.034 in DSC versus the non-SLDM techniques.
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Fig. 4. Comparison between our SLDM techniques with other methods. (left to right)
Oroville flood (O-Fl), Brazil flood (B-FL), Pisa fires (PI-FI), Fort McMurray fires
(FM-FI), San-Bernardino fires (SB-FI), and Yosemite fires (Y-FI). (top to bottom)
Pre-disaster image, post-disaster image, ground-truth, image difference (DIFF), differ-
enced spectral indices (d-NDVI, d-NBWI, and d-NBR), G-TLC, SLDM, and SLDM-SF
disaster maps. The difference image for G-TLC was calculated using log ratio.

In Fig. 4 we observe that the detection maps by SLDM techniques on B-FL,
FM-FI, SB-FI, and Y-FI are more accurate than non-SLDM techniques. G-TLC
and DNDVI show better performance on O-FL, and PI-FI.

Both SLDM techniques produced better average DSC than image
differencing-based (DIFF) techniques on the flood data, and produced better
DSC on all data except O-FL. Similarly, both SLDM techniques produced bet-
ter average DSC on all data than spectral index-based detection except on floods,
where D-NDWI is the best performing method. The detection rates of SLDM
techniques are more accurate than d-NDVI on O-FL, B-FL, FM-FI, SB-FI and
Y-FI. SLDM produced lower rates than D-NDVI and D-NBR on PI-FI. D-NBR
also produced greater DSC than SLDM only on Y-FI. D-NDWI also outper-
formed SLDM techniques on O-FL data, which is likely caused by the limited
resolution of O-FL images that could favor pixel-level analysis.

In comparison with a state-of-the-art technique, G-TLC, we observe in
Table 2 and Fig. 4 that both SLDM techniques produced more accurate detection
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in terms of DSC than G-TLC on B-FL, FM-FI, and SB-FI. On O-FL, G-TLC
yielded better performance than all SLDM techniques. On Y-FI, SLDM-SF per-
formed better than G-TLC in terms of DSC.

We also hypothesized that segmentation fusion would improve the detec-
tion and classification performance of the proposed framework. Comparison of
average accuracy rates supports this hypothesis on wildfires, but not on floods.

We note here that straightforward application of the compared methods pro-
duced only moderate detection rates. Therefore, to establish equal standards
for evaluation and comparison, in the reported results we applied the pre- and
post-processing steps that we proposed in our methods, including filtering, and
removal of small regions based on the cumulative distribution function, on all
the compared methods.

Table 2. Classification performance comparisons on flood and wild-fire datasets.

Compared methods

Wildfires Metric DIFF D-NDVI D-NBR G-TLC SLDM SLDM-SF

PI-FI ACC 0.991 0.993 0.992 0.994 0.992 0.991

DSC 0.764 0.838 0.801 0.850 0.793 0.770

FM-FI ACC 0.896 0.902 0.903 0.902 0.921 0.909

DSC 0.680 0.709 0.703 0.711 0.789 0.775

SB-FI ACC 0.990 0.989 0.991 0.988 0.991 0.988

DSC 0.889 0.872 0.894 0.860 0.904 0.900

Y-FI ACC 0.989 0.970 0.977 0.978 0.970 0.979

DSC 0.719 0.701 0.744 0.744 0.731 0.781

Mean ACC 0.967 0.966 0.966 0.965 0.969 0.969

DSC 0.763 0.780 0.786 0.791 0.804 0.806

Floods Metric DIFF D-NDVI D-NDWI G-TLC SLDM SLDM-SF

O-FL ACC 0.989 0.984 0.989 0.989 0.987 0.986

DSC 0.719 0.604 0.718 0.721 0.634 0.604

B-FL ACC 0.923 0.943 0.946 0.927 0.926 0.926

DSC 0.544 0.639 0.670 0.575 0.716 0.692

Mean ACC 0.956 0.963 0.967 0.958 0.957 0.956

DSC 0.631 0.621 0.694 0.648 0.675 0.648

5 Conclusion

In this work, we proposed a subspace learning-based disaster mapping technique
that delineates, maps, and identifies region entities to perform disaster mapping
from pre- and post-disaster imagery. We formulated disaster mapping as a sub-
space learning problem and proposed a tangent distance measure to express the
degree of damage.
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The validation results indicate that the proposed method is capable of pro-
ducing accurate maps for timely response to disaster events. Furthermore, the
concept of subspace learning is extensible to multiple dimensions and to other
techniques for finding mappings, such as manifold learning.
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Abstract. Automatic plankton recognition provides new possibilities to
study plankton populations and various environmental aspects related
to them. Most of the existing recognition methods focus on individual
datasets with a known set of classes limiting their wider applicability.
Automated plankton imaging instruments capture images of unknown
particles and the class (plankton species) composition varies between
geographical regions and ecosystems. This calls for an open-set recogni-
tion method that is able to reject images from unknown classes and can
be easily generalized to new classes. In this paper, we show that a flexible
model capable of high classification accuracy can be obtained by utiliz-
ing similarity learning and a gallery set of known plankton species. The
model is shown to generalize well for new plankton classes added in the
gallery set without retraining the model. This provides a good basis for
the wider utilization of plankton recognition methods in aquatic research.

Keywords: Plankton recognition · Open-set classification · Metric
learning

1 Introduction

Phytoplankton are microscopic organisms that grow at a rapid rate. Combined
with their ability to produce organic compounds from inorganic material, phy-
toplankton are considered the foundation of the marine food web by supporting
all other living organisms in the ocean. As a by-product of the photosynthetic
operation, phytoplankton are one of the main producers of oxygen on the Earth.
Because of the critical roles it plays both as a sustainer of marine ecosystems and
as a regulator of a global climate change, monitoring phytoplankton populations
over time and space is essential.

Recent technological advancements have resulted in the emergence of auto-
mated and semi-automated plankton imaging instruments with continuously
improving image resolution and output rates. This has opened novel possibilities
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to study plankton communities. However, to fully utilize the large image volumes
in plankton research automatic methods are needed to analyze the image data.
The main image analysis task to be solved is plankton recognition, i.e., classifying
the images based on the species they contain.

Convolutional neural networks (CNNs) have shown to reach close-to-human
level accuracy in various image recognition tasks and plankton recognition is not
an exception [9,12]. However, they are known to struggle in open-set settings
where the class composition of training data differs from the data for which
the trained model is applied. Typical CNN-based classification models tend to
classify the images from a new class to one of the known classes often with a high
confidence, and to include new classes to the models, they need to be retrained.
These are major problems for plankton recognition as the plankton species vary
between different regions and seasons. Retraining a separate model for each
dataset is not feasible. Therefore, there is a need for a recognition model that
1) is able to predict when the image contains a previously unknown plankton
species and 2) can be generalized to new classes without retraining the whole
model.

In this paper, we address these challenges by proposing a novel open-set
plankton recognition method utilizing metric learning. The idea is to learn such
image embeddings that the plankton images from the same species are close to
each other and the images from the different species are far from each other in
the feature space (see Fig. 1). The recognition method consists of a gallery set of
known species and a learnt similarity metric allowing to compare query images
to the gallery images. Similarity in this context corresponds to likelihood that
the images belong to the same class. This further allows to define a threshold
value for similarity enabling open-set classification: if no similar images are found
in the gallery set, the query image is predicted to belong to an unknown class.
Furthermore, new classes can be added by simply including them into gallery
set as the model does not necessarily need to learn class-specific image features.

Fig. 1. Similarity metric learning for plankton images.

We propose to train the similarity metric using the angular margin loss (Arc-
Face) [5] combined with Generalised mean pooling (GeM) [20] allowing to aggre-
gate of the deep activations to rotation and translation invariant representations.
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ArcFace uses a similarity learning mechanism that allows distance metric learn-
ing to be solved in the classification task by introducing the Angular Margin
Loss. This allows straightforward training of the model and only adds negligi-
ble computational complexity. In the experimental part of the work, we show
that the proposed method obtains high plankton image classification accuracy
and outperforms the previously proposed model utilizing OpenMax [1] layer in
open-set classification. We further show that the method generalizes well to new
classes added to the gallery set without retraining. This makes it straightfor-
ward to apply the model to new datasets with only partly overlapping plankton
species composition.

2 Related Work

2.1 Plankton Recognition

In hope of mitigating the laborious task of manually classifying the plankton
images, various automatic approaches have been proposed. Modern imaging
devices often utilize flow cytometry and are able to produce separate images of
individual particles rendering the plankton recognition task as an image classi-
fication problem. Traditional plankton recognition methods utilize hand-crafted
image features such as shape and texture (see e.g. [2]). Recently, CNNs have
replaced hand-crafted features and have shown recognition performance which is
comparable to human experts [9,13]. Such recognition models have already been
implemented into operational phytoplankton recognition systems [11]. A typical
approach utilizes common CNN architectures (e.g., ResNet), pre-trained mod-
els, and transfer learning [12,18]. However, also custom architectures have been
proposed to address the fine-grained nature of the classification problem [3,4].

2.2 Open-Set Classification

Generic classifiers often fall under the false assumption that the model has
already seen all the possible classes that it will encounter after the model has
been deployed [7]. In a realistic setting, this assumption is typically not true. For
example, continuous plankton imaging devices capture also non-plankton parti-
cles and rare plankton particles not present in the training data. This is even
more evident when the classification model is applied to data collected from a
new geographical location with only partially overlapping plankton species com-
position with the training data. Open-set classification aims to identify already
known classes successfully and simultaneously reject unknown classes [7].

Bendale et al. [1] proposed the OpenMax which is an additional layer that
allows deep neural networks to perform open-set recognition. The method utilizes
meta-recognition to analyze activation scores and identify when the recognition
model is likely to fail. Based on the distribution of the activation vector values,
the OpenMax layer calculates the probability of an image being from an unknown
class.
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In the case of plankton recognition the open-set problem is often formulated
as an anomaly detection problem where the model is trained to both correctly
classify the known classes and to filter abnormal classes by training the model
to produce high and low entropy distributions for the normal classes and abnor-
mal classes respectively. Yuchun et al. [19] proposed a loss function which con-
tains three loss terms to detect the anomalies and to maintain the classification
accuracy for the images belonging to the normal classes by incorporating the
expected cross-entropy loss, the expected Kullback-Leibler (KL) divergence, and
the Anchor loss. The model was tested on classes of plankton images containing
also bubbles or random suspending particles.

Walker et al. [22] utilized a large background set of images which do not
belong to the target classes (classes to be recognized) and hard negative mining
to find images that are more likely to cause false negatives. The training set
was then complemented with these challenging images to improve the classifiers
ability to recognize when the images are from novel classes. While promising
results were obtained on open-set plankton recognition the method requires that
a labeled background set is available which limits the usability of the method.

2.3 Classification by Metric Learning

The aim of deep metric learning is to obtain image embedding vectors that model
the similarity between images. It is commonly utilized in person [23] and animal
re-identification [15], as well as, content based image retrieval [6], but has been
also successfully applied to more traditional image recognition problems such as
vehicle attribute recognition [16]. The main benefit of metric learning is that
training with the full set of target classes is not needed which makes metric
learning more suitable for open-set recognition than traditional classification
models.

The most common approaches for deep metric learning include triplet-based
learning strategies and classification-based metric learning. The first approach
learns the metric by sampling image triplets with and anchor, positive, and neg-
ative examples [10]. The loss function is defined in such a way that the distance
(similarity) from the embeddings of the anchors to the positive samples are mini-
mized, and the distance from the anchors to the negative samples are maximized.
The second approach approximates the classes using learnt proxies [14] or class
centers [5] that provide the global information needed to learn the metric. This
makes it possible to formulate the loss function based on the softmax loss and
allows to avoid the challenging triplet mining step.

Recently, metric learning has been utilized also in plankton classification.
Teigen et al. [21] studied the viability of few-shot learners in correctly classifying
plankton images. A Siamese network was trained using the triplet loss and used
to determine the class of a query image. Two scenarios were tested: the multi-
class classification and the novel class detection. A model trained to distinguish
between five classes of plankton using five reference images from each class was
able to achieve a reasonable accuracy. In the novel class detection, however, the
model was able to filter out only 57 images out of 500 unknowns. Furthermore,
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the used triplet loss approach suffers from the high cost of the triplets mining
and exponentially increasing computations as the number of classes increases.

3 Proposed Method

The proposed method for plankton recognition is based on similarity metric and
a gallery set of known classes. To obtain the similarity metric, a CNN model is
trained using the Angular Margin loss (ArcFace) [5]. Given an image as input, the
trained CNN model outputs an embedding vector and a similarity of two images
is quantified by computing the cosine distance between the image embeddings
as

dcos(v1,v2) =
v1 · v2

||v1|| ||v2|| , (1)

where v1 and v2 are the embedding vectors. The embedding vector will be
discussed further below.

To perform the plankton recognition for a query image, the embedding vector
is first computed using the trained model. Then the distances to the embedding
vectors of gallery set images are computed and the label is given based on the
most similar image. See Fig. 2 for the overview of the method. It should be noted
that since the image embeddings for gallery set can be computed and stored
beforehand the query image recognition can be done efficiently by computing
the cosine similarities between the vectors (simple dot product if the vectors are
L2 normalised). If the similarity between the query image and the most similar
gallery set image exceeds the predetermined threshold the query image is labelled
as unknown providing the basis for the open-set recognition. The metric learning
approach increases inter-class separability while decreasing intra-class variation
making the recognition less sensitive to selected threshold values when compared
to a traditional classification approach with class probability thresholding. The
threshold values can be tuned by minimizing the amount of misclassifications in
the validation set.

Since the method learns to quantify the similarity (likelyhood that the images
originate from the same class) instead of representations for individual classes,

Fig. 2. The proposed method.
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the set of plankton species for which the method is applied can differ from
the set of classes in the training set. Therefore, to utilize the trained model
on a new dataset with different set of classes due to, for example, different
geographical region or ecosystem, one must only select and label a new gallery
set. The gallery set requires considerably less labeled images per class than model
training. Technically, even just one gallery image per class is enough to apply
the method if intra-class variation is very small. However, a very small amount
of gallery images may lead to a subpar recognition performance.

The method can be used with any backbone architecture, but ResNet-18 [8]
has been found to produce a high classification accuracy on plankton image
data with low computation cost [11]. We further propose to use Generalised
mean pooling (GeM) [20] to aggregate the deep activations and to construct a
representation that is invariant to both rotation and translation of the plankton.
The embedding vector v aggregated through GeM can be written as

v = [v1 . . . vk . . . vC ]� , vk =

(
1

|Xk|
∑

x∈Xk

xpk

) 1
pk

, k ∈ {1 . . . C}, (2)

where Xk is a set of elements of the feature map k and C is the number of
channels. The greater the power parameter pk, the more the network values
strong features. One of the major benefits of GeM is that pk is also learnable so
it can be optimized during the learning process.

3.1 Angular Margin Loss

ArcFace [5] utilizes the Angular Margin Loss to learn a distance metric for the
classification task. The idea behind the method is to consider the weights of the
last fully-connected layer as class centers. Normalization is used to distribute
embeddings on a hypersphere with predefined radius which makes it possible to
utilize geodesic distance. The loss is formulated as:

L = − 1
N

N∑
i=1

log
es(cos(θyi

+m))

es(cos(θyi
+m)) +

∑n
j=1,j �=yi

es cos θj
, (3)

where s is the feature scale (hypersphere radius), θyi
is an angle between embed-

ding and the class center (vector of weights) of the correct class yi, θj is an angle
between weight vector for class j and the predicted embedding vector, N and n
are the batch size and number of classes, respectively. m is a predefined additive
margin that is used to increase inter-class separability while decreasing intra-
class variation. The most notable benefits of the ArcFace method include the
lack of need for triplet mining and a better class separability.

4 Experiments

4.1 Data

The data was collected from the Baltic Sea using an Imaging FlowCytobot
(IFCB) [17] that capture grayscale images of individual phytoplankton (see
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Fig. 3). The SYKE-plankton IFCB 2022 dataset consists of 63 074 images rep-
resenting 50 different classes of phytoplankton manually labeled by an expert.
Due to the varying rarity of plankton species, the dataset is highly imbalanced
and the number of images per class varies from 19 to 12 280 images. For detailed
description of the data, see [11]. The dataset has been made publicly available1.

Fig. 3. Example images from the dataset.

To prepare the data for the training phase, several preprocessing steps were
done. The images were resized to have a standard dimension [224,224]. Resizing
was done using bicubic interpolation and the aspect ratio was maintained by
padding with the background color. The dataset was split into the training, val-
idation and test subsets with a ratio 6:2:2. To address the large class imbalance,
undersampling was utilized for large classes and data augmentation with random
affine transformations for small classes in order to create a balanced training set
with 2 000 images per class.

4.2 Description of Experiments

To evaluate the open-set classification accuracy 10 classes were selected as
unknowns and excluded from the training set. The remaining 40 classes were
used for training. The gallery set was constructed by randomly selecting 100
images per class from the training set. The experiment was repeated 5 times in
such a way that each class was selected as unknown once.

ResNet-18 was used as the backbone architecture for all experiments. The
network was trained from scratch using Adam optimizer. A fixed learning rate
of 1e-5 was used to train 200 epoch with a batch size of 64. The main two hyper-
parameters related to ArcFace are the hypersphere radius s and the additive
angular margin penalty m. s and m were set to 2.39 and 0.95, respectively. The
threshold values for open-set classification were defined for each class separately
based on the validation set. The thresholds were found based on the distance
between the query image and all the images in the gallery set. For OpenMax a
pretrained ResNet-18 was used as a backbone.
1 http://doi.org/10.23728/b2share.abf913e5a6ad47e6baa273ae0ed6617a.

http://doi.org/10.23728/b2share.abf913e5a6ad47e6baa273ae0ed6617a
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4.3 Results

Table 1 shows the comparison between the proposed metric learning based
method and the OpenMax method. The classification of the knowns presents the
results in traditional closed-set setting with the same 40 classes included in both
the training and test sets. The classification accuracy with the proposed method
varied between 92.5% and 95.4%. These are comparable accuracies with baseline
CNN classifiers obtained with the similar datasets (96% accuracy with 32 classes
of phytoplankton [3] and 97% accuracy with 50 classes [11]). The classification of
the knowns with the threshold shows the results when the test set contains only
images from the known classes, but the threshold is applied to filter out predicted
unknowns. As it can be seen, the accuracy decreases only little, which indicates
that the known classes are only rarely classified as unknowns. The classifica-
tion of the unknowns shows how many percentage of images from the previously
unseen classes were correctly classified as the unknowns and the open-set clas-
sification shows results with 41 classes (40 known classes + unknowns). As it
can be seen, the proposed method outperforms OpenMax in both recognition
accuracy and ability to reject images from previously unseen classes.

Table 1. Mean classification accuracies and standard deviations over all 5 subexperi-
ments.

Classification of
knowns

Classification of
knowns+threshold

Classification of
unknowns

Open-set
recognition

OpenMax [1] 93.85± 0.84% 91.96± 0.68% 41.80± 8.10% 90.65± 0.39%

Proposed 94.60± 1.05% 93.27± 0.95% 65.20± 6.43% 92.33± 0.90%

One benefit of the proposed similarity learning approach is that by including
images to the gallery set it allows to generalize the method to new classes without
retraining the model itself. To study the method’s ability to generalize, example
images from the 10 unknown classes were included into the gallery set. Two
experiments were carried out: 1) the gallery set and the query set contained
images from all 50 classes (40 classes used to train the similarity model and 10
unknown classes), and 2) the gallery set and the query set contained images only
from the 10 classes that were not included in the training. The results are shown
in Table 2. While a drop in accuracy can be observed due to considerably more
challenging tasks and a mismatch between training and test set distributions, a
reasonably high accuracy was obtained.
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Table 2. Capability to generalize to previously unseen classes.

Top-1 Top-2 Top-3 Top-4 Top-5

50 classes
(10 new)

84.48± 1.90% 91.96± 0.99% 94.69± 0.70% 95.88± 0.41% 96.57± 0.38%

10 classes
(all new)

74.07± 7.08% 90.21± 3.29% 95.68± 2.03% 97.78± 1.60% 98.91± 0.70%

5 Conclusions

In this paper, a similarity learning approach to tackle the open-set plankton
recognition problem was proposed. The method consists of a similarity metric
learned using angular margin loss and a gallery set of known plankton species.
The feature embeddings produced by the similarity learning model allow to
compute the similarities between images and to find the most similar image
(species) in the gallery set of known plankton species. Moreover, by setting simi-
larity thresholds, the method is able to recognize when the query image contains
a plankton species not present in the gallery set, enabling open-set recogni-
tion. The proposed method was shown to accurately recognize plankton species
and it outperformed OpenMax in the open-set recognition task. Furthermore,
we showed that the proposed method can adapt to new classes added to the
gallery set without retraining the similarity learning model. This is a promising
step towards a general-purpose plankton recognition method applicable to dif-
ferent datasets with varying class compositions, promoting the wider utilization
of automatic plankton recognition for aquatic research.
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20. Radenović, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no
human annotation. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1655–1668
(2018)

21. Teigen, A.L., Saad, A., Stahl, A.: Leveraging similarity metrics to in-situ discover
planktonic interspecies variations or mutations. In: Global Oceans 2020: Singapore-
US Gulf Coast, pp. 1–8 (2020)

22. Walker, J., Orenstein, E.: Improving rare-class recognition of marine plankton with
hard negative mining. In: International Conference on Computer Vision, pp. 3672–
3682 (2021)

23. Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., Hoi, S.C.: Deep learning for person
re-identification: a survey and outlook. IEEE Trans. Pattern Anal. Mach. Intell.
44(6), 2872–2893 (2021)



Sensor Fusion Operators for Multimodal
2D Object Detection

Morteza Mousa Pasandi, Tianran Liu, Yahya Massoud(B),
and Robert Laganière

University of Ottawa, Ottawa, ON, Canada

ymass049@uottawa.ca

Abstract. Autonomous driving requires effective capabilities to detect
road objects in different environmental conditions. One promising solu-
tion to improve perception is to leverage multi-sensor fusion. This app-
roach aims to combine various sensor streams in order to best integrate
the information coming from the different sensors. Fusion operators are
used to combine features from different modalities inside convolutional
neural network architectures. In this study, we provide a framework
for evaluating early fusion operators using different 2D object detec-
tion architectures. This comparative study includes element-wise addi-
tion and multiplication, feature concatenation, multi-modal factorized
bilinear pooling, and bilaterally-guided fusion. We report quantitative
results of the performance as well as an analysis of computational costs
of these operators on different architectures.

Keywords: Convolutional neural networks · Sensor fusion · Fusion
operators · Object detection · Autonomous driving

1 Introduction

Nowadays, intelligent vehicles include several sensors of different types in order
to produce robust perception systems. In that context, multi-modal sensor fusion
represents a way to enhance the accuracy and reliability of perception algorithms
and methods. Deep convolutional networks are particularly well adapted for sen-
sor fusion as the network architecture can be designed to accommodate multiple
branches coming from different sensor streams that eventually merge or fuse
together to produce a single output.

Different strategies can be used to implement sensor fusion in a neural net-
work. Early fusion aims at combining the input modalities before performing
the feature extraction step. Late fusion is usually done at the very end of the
network by fusing the high-level feature maps before making a final classifica-
tion or detection decision. Mid-level fusion is performed on intermediate deep
representations and applies further processing of the fused feature maps in order
to come up with a final decision. However, no matter which strategy is used to
implement a sensor fusion architecture, one has to make a decision on how fusion
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Bebis et al. (Eds.): ISVC 2022, LNCS 13598, pp. 184–195, 2022.
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will be performed at the junction point where the branches from the different
modalities merge.

The choice of an appropriate fusion mechanism is therefore a critical factor
toward building a robust sensor fusion architecture. The fusion mechanism will
enable proper interaction between the different modalities and their correspond-
ing feature maps. Several fusion operators have been proposed in the recent
literature. Some are based on simple element-wise arithmetic operators such as
summation and multiplication, or on order statistics such as median or min/max
operations. Although computationally efficient, these element-wise approaches
generally do not provide good perceptual robustness as they are unable to cap-
ture all interactions between the different modalities and their associated feature
maps. In order to design more advanced fusion operators, we need to capture the
intrinsic interrelation between features. This idea seems to constitute an inter-
esting alternative to simple fusion operators. But before adding computational
complexity to a network, one must assess the efficacy of such complex fusion
operators.

[1] presented an idea of employing learnable fusion mechanisms for the task
of 3D object detection, and proposed extending such contribution to other tasks
while exploring other variations of fusion modules. The objective of this paper is
to experimentally compare the performance of different fusion operators in the
context of multi-modal road user detection using deep neural networks. To do so,
we selected an object detection architecture and use LiDAR and camera fusion as
an illustrative application of sensor fusion. The performance of this architecture
is then tested for different choices of fusion mechanisms. Our objective is to
demonstrate the impact of a fusion operator on the precision of a detection
network.

Section 2 presents some recent works in sensor fusion. Section 3 describes
the detection network used in this experimental study. Section 4 introduces the
different fusion operators. Section 5 present the experimental results. Section 6
is a conclusion.

2 Related Work

MV3D [2] presents a sensor fusion framework that leverages both camera and
LiDAR sensors. The proposed architecture uses cylindrical frontal view projec-
tion of the LiDAR sensor to further enhance the performance of its frontal view
branch. Each of the modalities is fed into a feature extraction network, then a
3D region-proposal generation step is applied. After that, region proposals are
fed into a deep-fusion mechanism to enable interaction between all three modali-
ties. Finally, the output of the deep-fusion mechanism is fed to classification and
regression branches. It is worth noting that the deep-fusion mechanism comprises
of a branching version of the element-wise mean fusion.

FrustumPointNets [3] uses RGB-D data for the tasks of object detection and
localization. The framework applies a robust 2D detector to the RGB image
to extract accurate 2D region-proposals, then aims to extract and segments 3D
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frustums from each region proposal by using the depth information. PointFusion
[4] is a two-stage framework that uses inputs from both camera and LiDAR.
PointFusion applies a SOTA 2D detector on the image, then fuses the extracted
feature maps with the corresponding 3D points extracted from the raw LIDAR
point cloud to mitigate any loss of information, not having to encode the whole
raw point cloud.

AVOD [5] incorporates a two-stage architecture to operate on both camera
and LiDAR sensors, while the intermediate fusion mechanism is an element-wise
mean operation, followed by a series of fully-connected layers for each modal-
ity. ContFuse [6] is an end-to-end framework that uses the idea of continuous
convolution to project frontal view feature maps extracted from a frontal view
stream into BEV, then fuses these projected feature maps with original BEV
feature maps extracted from a BEV feature extractor. The fusion mechanism is
a simple element-wise summation. [1] proposes a two-stream multi-modal multi-
view sensor fusion architecture that operates on LiDAR BEV representation,
LiDAR frontal view features (height, depth, and intensity), and RGB images.
Early learnable fusion for the frontal view stream is employed to boost perfor-
mance. Moreover, learnable mid-level fusion is applied with multi-task learning
to bypass the limited nature of fixed fusion operations (e.g. addition or multipli-
cation). MMF [7] employed a strategy of using two sensors (LiDAR and camera)
to learn four tasks and showed that a target task (3D object detection) can ben-
efit from multi-task learning. MMF framework aimed at using RGB image as
well as projection-based representations for LiDAR point clouds to simultane-
ously perform the following tasks: 2D and 3D object detection, online mapping,
and depth completion.

3 Camera-LiDAR 2D Object Detector

The objective of this paper is to study the impact of various fusion operators on
the performance of a sensor fusion framework. Therefore, we chose a multi-sensor
fusion architecture that uses both LiDAR and camera inputs to perform 2D road
object detection. We performed our experiments without introducing changes
to the original network. Instead, we evaluated the performance by replacing
the fusion operator that combines both input modalities. In Fig. 1, we show
the architecture of the sensor fusion network. The objective behind our model
selection is to combine both good performance and low complexity.

The camera stream processes a colored input image to detect 2D objects.
The downside of using camera only is the impact of, among others, adverse
lighting and weather conditions, noise, reflections, and limited depth cues. These
challenging situations will negatively affect the performance of an image-based
object detector. The LiDAR stream aims at complementing the visual infor-
mation with 3D information provided in the form of 3D point clouds. In order
to have compatible representations from both modalities, we opted for a frontal
view representation of the LiDAR data by projecting intensity, depth, and height
maps on the camera view.
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Fig. 1. Overall architecture of our sensor fusion framework. This network is used to
assess and analyze the effectiveness of different fusion operators in a 2D detection task.

Both camera and LiDAR frontal views are then combined using a fusion
operator forming the sensor fusion head of this early fusion network. The out-
come of the fusion operation is then fed into the 2D object detection to perform
inference. The architecture of the 2D detection network is inspired by popular
detection frameworks such as Faster-RCNN [8] and Cascade-RCNN [9].

We use ResNet-30 [10] and Swin Transformer Tiny [11] as our feature extrac-
tion backbone networks. ResNet-30 has an initial layer containing 32 filters and
a 7× 7 kernel size, followed by three stages containing {4, 4, 6} basic blocks and
{32, 64, 128} filters, respectively. Swin Transformer Tiny has a window size of
7 with four stages containing {96, 192, 384, 768} embedding sizes, respectively.
To further process the output of the backbone network, we employ one of two
types of necks, namely Simple neck or a Feature Pyramid Network (FPN) neck
[12]. Simple neck has three stages, each stage containing 96 Filters, resulting in
288 output channels after concatenation of all stages.

Lastly, Faster-RCNN [8] and Cascade-RCNN [9] are used as detection heads.
Faster-RCNN employs a region proposal network (RPN) and a region-of-interest
(ROI) detection head for generating object proposals. It extracts a fixed-length
feature vector from each region proposal, based on which it assigns a classifica-
tion score and a predicted bounding box. The outcome of both the RPN and
the feature maps extracted from the neck are then fed into the ROI detection
head to infer 2D objects. Cascade-RCNN is based on a sequential arrangement of
three identical ROI heads, each feeding the next cascaded Faster RCNN detector.
Figure 2 illustrates how both early- and mid-level fusion are applied in the pro-
posed framework. Early fusion applies the fusion operation on the inputs, then
feeds the fused inputs to the backbone network, while mid-level fusion feeds
inputs to two parallel backbone networks first, then applies the fusion operation
on the two output feature maps.

4 Sensor Fusion Operators

Fusion operators can be classified into two categories: (1) fixed and (2) learn-
able operators. The first category includes basic and computationally efficient
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Fig. 2. Left: early fusion fuse inputs then feeds the outcome to the backbone network.
Right: mid-level fusion feeds inputs to two backbone networks first, then fuses the
output feature maps.

fusion methods such as element-wise summation, mean, max, or the concatena-
tion operation. However, these methods are generally not robust enough to ade-
quately capture the interactions between related features of different modalities.
At the price of higher computational cost and training complexity, more sophis-
ticated fusion schemes have been introduced. [13] proposed bilinear-pooling as a
robust fusion mechanism. Despite the expressiveness of bilinear pooling, its use
is impractical from a computational perspective. The authors present more effi-
cient way to implement factorized versions of the robust bilinear-pooling fusion
mechanism in deep learning architectures leading to multi-modal factorized bilin-
ear pooling (MFB). MFB has been used in [14] for detecting activity in videos.
MFB’s implementation was further studied and optimized in [1] in order to be
adapted for the task of 3D object detection. As a mid-level fusion mechanism,
[1] showed a significant performance increase compared to element-wise fusion
operators. Bilateral Guided Aggregation (BGA) is another fusion mechanism
that has been applied in [15] to preserve Semantic features in semantic seg-
mentation tasks. BGA aims at fusing multi-modal features with a cross-modal
attention mechanism embedded into a neural sub-network. BGA has also been
used in [16] to merge frontal view features with bird’s eye view features in a
camera-lidar fusion network. In our work, we employ and analyze both multi-
modal factorized bilinear pooling (MFB) and bilateral guided fusion (BGF) as
potential learnable fusion mechanisms. Both fusion mechanisms are illustrated
in Fig. 3.

Multi-modal Factorized Bilinear Pooling. First, both colored image (Irgb)
and LiDAR features (Ilidar) are projected into a high-dimensional space using a
convolutional layer that expands the number of channels from 3 to 6. The afore-
mentioned step produces two expanded feature maps (Fa) and (Fb) as described
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Fig. 3. The structure of two learnable fusion mechanisms: multi-modal factorized bilin-
ear pooling (MFB) and bilateral guided fusion (BGF).

in Eq. 1. Then, each feature map is fed into two convolutional layers while pre-
serving the size of the channel dimension (6 filters), producing four new feature
maps: {Fa1, Fa2, Fb1, Fb2}. All four feature maps are then mixed together based
on Eqs. 2 and 3. Then, two operations (addition and multiplication) are applied
in parallel to Fout1 and Fout2. The multiplication outcome is then fed into a
convolutional layer with 6 filters. Finally, the outcome of both convolution and
addition operations is concatenated and fed into a final convolutional layer which
reduces the channel dimension from 12 to 3 channels, followed by power and L2

normalization. The final process is described in Eq. 4.

Fa = Conv3−→6(Irgb)
Fb = Conv3−→6(Ilidar)

(1)

Fout1 = Fb1 ∗ Fa2 + Fa (2)

Fout2 = Fb2 ∗ Fa1 + Fb (3)

Fmul = Fout1 ∗ Fout2

Fadd = Fout1 + Fout2

Fpre = Concat(Conv6−→6(Fmul),Fadd)
Ffinal = Norm(Conv12−→3(Fpre))

(4)

Bilateral Guided Fusion. Similar to steps 1 and 2 in MFB, both input modal-
ities are first projected into a high-dimensional space using convolutions (Eq. 1),
then fed into convolutions to produce four feature maps: {Fa1, Fa2, Fb1, Fb2}.
Finally, all four feature maps are mixed based on Eq. 5 with a combination of
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sigmoid, addition, and multiplication to produce a final fused outcome with 3
output channels.

Fout1 = (σ(Fa1) ∗ Fa2) + Fa

Fout2 = (σ(Fb1) ∗ Fb2) + Fb

Ffinal = Conv12−→3(Concat(Fout1,Fout2))
(5)

5 Experimental Results

In this section, we present the results of employing different operators in an
early fusion mechanisms for various 2D detection architectures. Moreover, fur-
ther experimentation is performed to discuss mid-level fusion and to assess the
effectiveness and efficiency of each fusion operator.

5.1 Experimental Setting

To assess the effectiveness of early sensor fusion mechanisms, we train and evalu-
ate four different models on the KITTI 2D object detection benchmark [17]. We
rely on KITTI’s validation set to showcase our experimental results and abla-
tion study by following the same split suggested in [18]. Faster-RCNN variants
are trained using stochastic gradient descent, while Cascade-RCNN with Swin
Transformer is trained using the AdamW [19] optimizer. All architectures are
trained on the 2D detection task for “Car” and “Pedestrian” classes. Models are
trained for 30 epochs, while applying horizontal flipping as a data augmenta-
tion strategy. Detection accuracy is reported for three different categories: easy,
moderate, and hard. We use average-precision (AP%) to report the detection
accuracy for each class in all three difficulty levels.

5.2 Evaluation of Early Sensor Fusion

In Table 1, we compare and contrast the results of five early fusion operators
and their impact on the performance of four 2D object detectors. The baseline
detection accuracy for each architecture is called “No Fusion”, where the detec-
tor operates on the colored image only without LiDAR information, hence, no
early fusion mechanism is being applied. Other fusion operators are: (1) element-
wise addition “Add”, (2) feature concatenation “Concat”, (3) element-wise mul-
tiplication “Multi”, (4) bilaterally-guided fusion “BGF”, and (5) multi-modal
factorized bilinear pooling “MFB”.

For the first set of experiments which use the R30 Simple Neck Faster-RCNN
detector, MFB consistently outperforms all other early fusion operators in all
difficulty levels for both classes of interest. Compared to the second-best fusion
operator, MFB scores an increase of (+4.37%) and (+3.76%) in the moderate
category for both car and pedestrian classes, respectively. In the second set of
experiments, we use the R30 FPN Faster-RCNN detector. Feature concatenation
yields better results for the pedestrian class, while BGF performs better for the
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Table 1. Comaparing 2D detection accuracy of different early stage fusion operators
on Faster-RCNN and Swin Transformer

Model
components

Fusion
operation

Car (AP70%) Pedestrian (AP50%)

Easy Moderate Hard Easy Moderate Hard

R30
Simple Neck
Faster-RCNN

No fusion 78.04 56.03 47.25 29.04 24.55 20.93

Add 77.45 59.18 48.34 30.73 23.25 19.52

Concat 83.48 65.74 56.05 36.63 27.60 23.97

Multi 77.09 56.39 47.51 28.98 22.18 18.71

BGF 84.82 66.73 58.44 34.09 28.36 24.76

MFB 85.52 71.1 59.2 37.2 32.12 29.98

R30
FPN
Faster-RCNN

No fusion 89.92 81.26 72.56 63.18 53.12 46.18

Add 92.57 81.88 71.7 54.27 45.32 38.28

Concat 93.48 84.21 74.42 65.59 55.41 47.94

Multi 87.39 70.25 62.6 58.18 48.91 42.2

BGF 93.79 84.89 76.15 64.57 54.99 47.45

MFB 92.93 82.37 72.23 64.12 53.15 47.11

R30
FPN
Cascade-
RCNN

No fusion 92.49 84.38 73.75 62.33 52.89 44.9

Add 93.82 85.42 75.33 63.62 52.61 44.31

Concat 94.49 87.5 77.74 70.21 58.98 50.41

Multi 90.9 77.23 67.53 64.85 54.44 46.38

BGF 94.9 88.4 78.38 71.25 61.11 52.48

MFB 93.21 85.34 76.93 66.88 56.13 48.53

Swin
FPN
CascadeRCNN

No fusion 93.85 81.66 71.56 58.98 50.02 43.12

Add 90.35 77.76 67.78 59.50 50.70 43.29

Concat 94.87 86.36 77.76 71.3 60.83 52.05

Multi 91.49 76.05 66.00 60.73 50.62 43.50

BGF 95.38 85.81 77.68 67.66 56.78 47.9

MFB 96.57 88.12 78.13 67.20 58.10 50.11

car class. That being said, both feature concatenation and BGF are on par. If
we compare their performance based on the moderate difficulty, we find that
BGF is superior to concatenation by (+0.68%) for the car class, but inferior to
concatenation by (−0.42%) for the pedestrian class. When incorporated with
R30-FPN Cascade-RCNN, BGF outperforms other fusion methods for both car
and pedestrian classes in all difficulty levels.

Finally, we evaluate the Swin FPN Cascade-RCNN detector and observe
MFB fusion outperforming other early fusion methods in the car class. As for
the pedestrian class, it follows a similar pattern to R30-FPN Faster-RCNN,
where feature concatenation outperforms all other fusion methods.

Based on the aforementioned results, we conclude the superiority of the learn-
able fusion mechanisms, both MFB and BGF, over other less-sophisticated fusion
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operators when detecting the car class. Using feature concatenation as the fusion
operator yields overall good results, and even superior to learnable fusion in two
cases only for the pedestrian class.

5.3 Evaluation of Mid-Level Sensor Fusion

In order to assess the importance of mid-level fusion, we train two ResNet30
in parallel, then fuse the extracted features from each network. Table 2 shows
and contrasts the results between early- and mid-level fusion on the same model
architecture, an R30 FPN Faster-RCNN 2D object detector. Sophisticated learn-
able fusion mechanisms prove ineffective in the case of mid-level fusion for both
car and pedestrian class, while more simple element-wise addition or feature
concatenation are scoring higher detection accuracy. Moreover, mid-level fusion
with element-wise addition is superior to early fusion in the case of pedestrian
detection, scoring an increase of (+2.25%), (+3.97%), and (+3.46%) in easy,
moderate, and hard categories, respectively.

Table 2. Difference between early fusion and mid-level fusion. The reported results
compare two different backbone feature extractors.

Model
components

Fusion
operation

Car (AP70%) Pedestrian (AP50%)

Easy Moderate Hard Easy Moderate Hard

R30
FPN
Faster-RCNN
Early Fusion

No Fusion 89.92 81.26 72.56 63.18 53.12 46.18

Add 92.57 81.88 71.7 54.27 45.32 38.28

Concat 93.48 84.21 74.42 65.59 55.41 47.94

Multi 87.39 70.25 62.6 58.18 48.91 42.2

BGF 93.79 84.89 76.15 64.57 54.99 47.45

MFB 92.93 82.37 72.23 64.12 53.15 47.11

R30
FPN
Faster-RCNN
Mid-level Fusion

No Fusion 90.44 79.97 70.12 53.4 46.13 39.33

Add 93.14 83.80 73.88 67.84 59.38 51.40

Concat 93.97 83.77 73.65 67.12 58.18 50.53

Multi 93.70 82.87 72.64 63.64 54.25 46.46

BGF 93.41 82.50 72.44 60.75 51.91 44.72

MFB 93.75 82.87 72.08 59.8 50.54 43.00

5.4 Complexity Analysis

Computation Overhead. In Table 3, we compare the computational com-
plexity of five different object detectors without applying any fusion mecha-
nisms. In terms of the number of learnable parameters, R30-FPN Faster-RCNN
has the least capacity with 18.4M parameters, compared to Swin Tiny FPN
Cascade-RCNN which has 72.5M parameters. R30 Simple Neck Faster-RCNN
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Table 3. Comparison of the complexity of each model and their required floating point
operations per second (FLOPS)

Model Computation metrics

Parameters (Million) FLOPS (Giga)

R30 Simple Neck Faster-RCNN 18.88 79.44

R30 FPN Faster-RCNN 18.4 191.71

2 Stream R30 FPN Faster-RCNN 20.87 217.78

R30 FPN Cascade-RCNN 46.2 219.51

Swin Tiny FPN Cascade-RCNN 72.5 336.13

has 79.44 GFLOPS, which is four times more efficient compared to Swin Tiny
FPN Cascade-RCNN which has 336.13 giga-FLOPS.

An interesting aspect that should be emphasized is the relation between the
number of parameters and GFLOPS for different fusion mechanisms. In Fig. 4,
we compare concatenation to two learnable fusion mechanisms (MFB and BGF)
by applying them on three different architectures: (1) R30 Simple Neck Faster-
RCNN, (2) R30 FPN Faster-RCNN, and (3) Swin FPN Cascade-RCNN.

Normally, concatenation by itself does not add up more learnable parameters
to the architecture, except for Swin FPN Cascade-RCNN. In contrast, both
MFB and BGF add more learnable parameters to the model. That being said,
the impact of concatenation on increasing GFLOPS is comparable, and in some
cases even higher than both MFB and BGF.

Fig. 4. Showing the relation between number of parameters (log-scaled) and the
amount of GFLOPS when using different fusion operators. Even though learnable
fusion mechanisms add up more learnable parameters to the architecture, their
GFLOPS is still on par, and in some cases more efficient compared to feature con-
catenation.
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Kernel Size of MFB. As denoted in [1], MFB was used with a kernel of size
(1 × 1). In this work, we aimed to assess this design choice by comparing the
usage of kernel size (1 × 1) and (3 × 3). We perform such experiments on R30
FPN Faster-RCNN architecture. In Table 4, we observe that (3×3) usually yields
superior detection accuracy for both car and pedestrian classes, with only one
exception in the moderate case for the pedestrian class.

Table 4. Comparing different kernel size options in MFB Fusion module. K1: 1 × 1
kernel size, K3: 3 × 3 kernel size. Mid-level flag denotes whether the setting was used
in mid- or early-fusion. All four experiments were performed on Resnet 30 FPN Faster-
RCNN architecture.

Exp K1 K3 Mid-level Car AP70% Pedestrian AP50%

Easy Moderate Hard Easy Moderate Hard

(a)
√ √

92.93 82.01 71.42 58.8 50.43 42.11

(b)
√ √

93.75 82.87 72.08 59.8 50.54 43.00

(c)
√

92.71 81.48 71.82 63.66 54.12 46.28

(d)
√

92.93 82.37 72.23 64.12 53.15 47.11

6 Conclusion

In this work, we provide a comprehensive analysis of both effectiveness and effi-
ciency of various fusion operators when employed in different architectures to
perform the task of multi-modal 2D object detection. In our experiments, we
show that multi-modal representations leverage early fusion to provide more
interaction between input features. Moreover, early fusion proves more effective
compared to mid-level fusion of high-level feature maps. Multi-modal factor-
ized bilinear pooling (MFB) showed performance improvements when used with
Transformer-based 2D object detector. Also, we observe that element-wise mul-
tiplication negatively impacts the performance as it causes the gradients to vary
dramatically in the upstream network. In contrary to early fusion experiments,
mid-level fusion yielded higher performance when a simple element-wise addition
fusion was applied.
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Abstract. We propose a new Reject Option Classification technique to
identify and remove regions of uncertainty in the decision space for a
given neural classifier and dataset. Such existing formulations employ a
learned rejection (remove)/selection (keep) function and require either a
known cost for rejecting examples or strong constraints on the accuracy
or coverage of the selected examples. We consider an alternative formula-
tion by instead analyzing the complementary reject region and employing
a validation set to learn per-class softmax thresholds. The goal is to max-
imize the accuracy of the selected examples subject to a natural random-
ness allowance on the rejected examples (rejecting more incorrect than
correct predictions). We provide results showing the benefits of the pro-
posed method over näıvely thresholding calibrated/uncalibrated softmax
scores with 2-D points, imagery, and text classification datasets using
state-of-the-art pretrained models. Source code is available at https://
github.com/osu-cvl/learning-idk.

Keywords: Reject Option Classification · Confusion · Uncertainty

1 Introduction

Neural classifiers have shown impressive performance in diverse applications
ranging from spam identification to medical diagnosis to autonomous driving.
However, the typical argmax softmax decision function forces these networks to
sometimes yield unreliable predictions. For example, the 10-class feature space
shown in Fig. 1a displays many regions of class overlap/confusion. It can be
desirable to abstain from accepting predictions within highly confusing regions.
These low-confidence decisions could be discarded or potentially given to a more
complex model (or human analyst) to resolve. Our task is to identify these
confusing regions by learning an auxiliary rejection/selection function on pre-
dictions. We show the results of using a particular rejection function (described
later) in Fig. 1b and 1c, where plots are generated for the selected and rejected
examples. Clearly, these plots show much stronger classifiable selected examples
while further supporting the confusability of the rejected examples.
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Fig. 1. t-SNE plots of logits from a weakly-trained ResNet20 [16] model on CINIC10
[7] using a) all, b) selected only, and c) rejected only.

One simple solution to detect under-confident predictions is to threshold the
softmax value of the argmax decision. However, näıvely thresholding at 0.5 (the
boundary of being more confidently correct) or some other ad hoc threshold may
not be ideal or optimal. Reject Option Classification methods [5,11–14,21,22]
aim to address this problem by endowing a classifier with a learned rejection
threshold to reject (remove) or select (keep) predictions, enabling the model to
“know what it doesn’t know.”

There are three main types of approaches to learning a rejection function.
First, the cost-based approach [5] minimizes an objective that uses a user-defined
cost for making a rejection. However, applications without a known rejection
cost can not leverage this approach. The next type of approach is the bounded-
improvement model [21], which maximizes coverage (percentage of examples
selected) under the constraint that the select accuracy (accuracy of selected
examples) is lower-bounded by a user-defined amount. For example, a classifier
may be required to have a select accuracy of ≥95% while trying to maximize the
number of selected predictions (coverage). Lastly, the bounded-coverage model
[12] maximizes the select accuracy under the constraint that the coverage is
lower-bounded by a user-defined amount. For example, it may be necessary to
accept ≥90% of examples while maximizing the select accuracy.

These previous works focus on user-defined constraints of accuracy and cov-
erage for the selected examples. Here, we present a new Reject Option Classifi-
cation approach that instead focuses on a natural randomness property desired
of reject regions. This randomness property is not directly applicable to the
complementary select regions and holds across any neural classifier and dataset
pairing. Our contributions are summarized as follows:

1. Fast post-processing method applicable to any pretrained classifier/dataset.
2. No user-defined costs/constraints for rejection, select accuracy, or coverage.
3. Additional approach that reduces computation for large datasets.
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2 Preliminaries

Let X be the space of examples, Y = {1, ..., c} be a finite label set of c classes, and
PXY be the joint data distribution over X × Y. Suppose f is a trained classifier
f : X −→ [0, 1]c with softmax/confidence outputs, and Vm = {(xi, yi)}m

i=1 is a
validation set of m examples sampled i.i.d. from PXY . The empirical accuracy
(0–1) of f w.r.t. the validation set Vm is defined as

Acc(f |Vm) = 1 − 1
m

m∑

i=1

�(f(xi), yi) (1)

where �(f(xi), yi) = 1[argmax(f(xi)) �= yi] is the 0/1 loss using the indicator
function on the argmax decision rule.

A Reject Option Classifier H(f,gτ ) is defined by a tuple (f, gτ ) where f is
the previously defined trained classifier and gτ : [0, 1]c −→ {0, 1} is a rejection
function (1:reject, 0:select) with a per-class threshold vector τ ∈ [0, 1]c. We can
write the rejection function for a given example (xi, yi) as

gτ (f(xi)) = 1[max(f(xi)) ≤ τargmax(f(xi))]

Hence, H(f,gτ ) is

H(f,gτ )(xi) =

{
reject, gτ (f(xi)) = 1
f(xi), gτ (f(xi)) = 0

The performance of a Reject Option Classifier can be evaluated using cov-
erage (φ) and/or select accuracy on the validation set Vm. The coverage is the
proportion of the examples selected by gτ , using

φ(H(f,gτ )|Vm) =
1
m

m∑

i=1

(1 − gτ (f(xi))) (2)

The empirical select accuracy w.r.t. the labeled validation set Vm (when the
coverage is greater than 0) is

SelAcc(H(f,gτ )|Vm) = 1 −
∑m

i=1 �(f(xi), yi) · (1 − gτ (f(xi)))∑m
i=1(1 − gτ (f(xi)))

(3)

A trade-off exists between the coverage and select accuracy of a Reject Option
Classifier since the only way to increase select accuracy is by rejecting more
misclassified examples (decreasing coverage). Hence, Reject Option Classifica-
tion problems are typically formulated by either constraining coverage or select
accuracy and maximizing the other, as described in the next section.
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3 Related Work

As previously mentioned, prior approaches to Reject Option Classification
employ strong user-defined constraints. In the case where a cost of rejection
is available, [5] provides an optimal strategy when the data distribution PXY
is known. In [22], a model is proposed for binary classification with additional
user-defined classification costs using Receiver Operating Characteristic (ROC)
analysis. For cases where the cost of rejection is not defined or available, two
other constraint-based strategies have been proposed: bounded-improvement and
bounded-rejection models.

In [21], the bounded-improvement model is proposed, where the objective is
to maximize the coverage φ such that the select accuracy has a lower bound of
a∗, as given by

max φ(H(f,g)|Vm) s.t. SelAcc(H(f,g)|Vm) ≥ a∗ (4)

They use ROC analysis to determine optimal decision thresholds in the case
of two classes. Furthermore, they assume a classifier can provide output scores
(e.g., softmax) proportional to posterior probabilities. In [11], an algorithm is
proposed to learn the optimal rejection function when perfect select accuracy is
possible for a classifier. The later work of [13] explores the bounded-improvement
model in the context of deep neural networks. They propose an algorithm to
learn an optimal threshold that statistically guarantees (under a user-defined
confidence level) that the theoretical select accuracy is greater than a specified
target accuracy a∗.

Alternatively, the bounded-coverage model has the objective of maximizing
the select accuracy such that the coverage has a lower bound of c∗, as given by

max SelAcc(H(f,g)|Vm) s.t. φ(H(f,g)|Vm) ≥ c∗ (5)

In [12], the bounded-coverage model is formalized, and a method is provided
to obtain uncertainty scores from any black-box classifier. In [14], a joint train-
ing scheme is proposed to simultaneously learn a neural classifier and rejection
function that provides the highest accuracy for the desired coverage c∗.

Our proposed method focuses on the rejected region rather than the selected
region. We do not require user-defined costs for rejection nor lower bounds for
select accuracy or coverage. Instead, we learn per-class rejection thresholds sub-
ject to a natural randomness property desirable of any reject region. Our formu-
lation employs an upper bound of randomness (or confusion) expected/desired
for a rejection region at a proposed significance level. As multiple viable rejection
regions could exist, we maximize in tandem the select accuracy.

4 Proposed Method

Consider a strong neural classifier (e.g., 99% accuracy) and an overall rejection
threshold chosen to reject all but the single highest scoring prediction. Though
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the threshold yields 100% select accuracy (with 1 example), the coverage of
the model is far too small (again, just 1 example) for any practical application.
Furthermore, the classification accuracy in the remaining reject region would
be very high (undesired). Next, consider a weak classifier having a large confu-
sion region and a reject threshold set to 0 (reject none, select all). Though the
threshold yields 100% coverage of the examples, the model’s select accuracy (of
all examples) could be too low to be worth using.

We argue that an ideal reject threshold (or set of per-class thresholds) should
aim to produce a reject region that has at most random-chance classification
accuracy. We certainly do not want to reject significantly more correct than
incorrect predictions. As multiple viable rejection region sizes may exist, each
adhering to at most random-chance classification behavior, the reject region
corresponding to the highest accuracy in the complementary accept region should
be chosen. Such an approach offers a naturally constrained analysis of reject
regions that can be used to filter out indecision areas of any neural network and
dataset pairing. However, a method must be provided to test a reject region for
adherence to the upper-bound randomness requirement. We base our method on
a Binomial distribution.

Consider a series of flips of a fair coin with P (heads) = P (tails) = 0.5
(random chance). Let Z be the number of observed heads after 100 tosses. The
expected value of Z is 50, but in reality, the number of heads can deviate from
this ideal. The Binomial distribution with p = 0.5 can be used to calculate the
probability of seeing Z = k heads in n trials. The corresponding Binomial CDF
can be used to assess the probability of seeing at most k heads

P (Z ≤ k) = BinomCDF (k;n, p) =
k∑

i=0

(
n

i

)
pi(1 − p)n−i (6)

We now shift focus from coin flips to the successes/failures of a classifier. Let
Rτ = {(x, y) ∈ Vm | H(f,gτ )(x) = reject} be the set of rejected examples from Vm

using threshold τ , where |Rτ | = n. As previously mentioned, we desire a reject
region with accuracy ≤ 50% + ξ, for some small ξ. Note that ξ largely depends
on the size of Rτ (smaller n may allow larger ξ in Binomial probability).

We employ the Binomial CDF model in Eq. 6 (with p = 0.5) along with
the actual number of classification successes k∗ of validation examples (having
ground truth) in Rτ to assess adherence to the desired upper bound random state
of Rτ . If BinomCDF (k∗;n, 0.5) = 1 − δ, this means the probability of getting
a higher number of correct classifications in the reject region, assuming random
behavior, is δ. For example, if δ = .05, there is only a 5% chance of observing
>k∗ correct classifications assuming random chance behavior. Thus, for a given
significance level δ, a proposed reject region has too many correct classifications
if BinomCDF (k∗;n, 0.5) > 1 − δ, and therefore must not be accepted. Only
when BinomCDF (k∗;n, 0.5) ≤ 1 − δ is the region viable. As multiple sizes of a
reject region could be deemed viable, we seek to maximize the select accuracy to
ensure the highest performing select region from the corresponding set of viable
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reject regions. To learn the desired per-class rejection thresholds τ , our overall
objective, B-CDFδ, for k∗ observed successes in the examined reject region is

max SelAcc(H(f,gτ )|Vm) s.t. BinomCDF (k∗;n, 0.5) ≤ 1 − δ (7)

As we are thresholding the softmax scores of the classifier, an important
aspect to consider is network calibration, which aims to better align softmax
values to true probabilities. Prior Reject Option Classification methods [5,11–
14,21,22] did not employ calibration. However, we believe it is an important com-
ponent to model classification uncertainty properly. Previous work has provided
various methods to calibrate networks, including temperature scaling [15]. When
learning global or per-class thresholds, global temperature scaling is unnecessary
(as it is a monotonic operation on the argmax softmax values). Therefore, as
promoted in [24], we use per-class temperature scaling to better model class-
conditional uncertainty before learning per-class rejection thresholds.

The algorithm for our approach is relatively direct and fast to run. We first
compute a list of possible rejection thresholds per-class given a validation set.
For each class c, we identify examples predicted as class c. Then, we choose
potential thresholds from those examples’ calibrated softmax scores. Since we
are maximizing select accuracy across viable reject regions, we need only employ
thresholds corresponding to the incorrect predictions. Next, for a given threshold
and class, we extract the corresponding reject region and evaluate the Binomial
constraint at a significance level δ. The algorithm chooses the threshold resulting
in the highest select accuracy with acceptable reject regions. If multiple thresh-
olds admit the same select accuracy, we choose the smallest threshold (produc-
ing the highest coverage). Experiments will demonstrate performance trade-offs
across various significance levels δ.

5 Experiments

As previous Reject Option Classification methods require strong user/
application-defined constraints on select accuracy or coverage, we can not
directly compare the bounded-improvement and bounded-coverage models to
our method. We instead compare a baseline model (Base) that never rejects
any predictions (threshold of 0). Additionally, we compare a näıve method that
thresholds the softmax values at 0.5. Here, we employ with and without cali-
bration variations, Näıve-Cal and Näıve-NoCal, respectively. For our proposed
Binomial-CDF method (B-CDFδ), we present results across different significance
values δ ∈ {0.05, 0.1, 0.5, 0.75, 0.95}. We use per-class temperature scaling cali-
bration [24] for B-CDFδ and the Näıve-Cal approaches.

We evaluate on different modalities: synthetic 2-D point-sets, benchmark
image classification datasets, and common text classification datasets. We report
and compare various accuracy (ideal, select, reject) and coverage metrics.

We additionally examine the generalization capability of thresholds from val-
idation data to test data. Lastly, we provide an alternative formulation using
associated confidence intervals to avoid the computational complexity of the
Binomial CDF for very large datasets with vast reject regions.
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5.1 Synthetic Data

To initially test our approach, we designed 8 multi-class 2-D point datasets
with varying amounts of class overlap. We split these datasets into two subsets
characterized by class overlap: equal-density and unequal-density. We sampled
train-validation-test partitions having 1K-1K-4K examples per-class. We used a
test set 4X larger than the training set to better measure the true performance
of the learned thresholds.

For each dataset, we trained a simple neural network consisting of a single
hidden layer of 10 nodes followed by a ReLU activation and an output layer
consisting of the number of classes (2–4). We trained the network for 50 epochs
using a half period cosine learning rate scheduler (with an initial learning rate
of 0.1 and no restarts) and an SGD optimizer with 0.9 momentum. We selected
the model from the epoch with the highest validation accuracy. We repeated this
process ten times (producing 10 models) using different random seed initializa-
tions to provide meaningful statistics on the results [8].

5.1.1 Equal Density Overlap
For the first 4 datasets, each class is uniformly sampled from a defined rectan-
gular region and positioned such that varying amounts of overlap occur. The
top of Table 1 shows the resulting test datasets. Here, the ideal reject regions
are shown in black and are due to theoretically equivalent class densities. To
compare results from different reject thresholds, we computed the accuracy of
the rejection function (1-reject, 0-select) w.r.t. the ideal reject region, defined as
the Ideal Decision Accuracy (IDA).

We see the IDA scores of the different approaches in Table 1. We report the
mean IDA score and the standard deviation over the ten trained models for each
method and dataset. We also computed one-sided T-tests at the 0.05 significance
level [8] against the highest mean IDA, and we bold all approaches whose mean
is not significantly less than the top-scoring mean IDA.

The first two datasets (Synthetic 1 and Synthetic 2) are binary datasets that
demonstrate weaknesses in the Näıve approaches. We see that the Näıve meth-
ods match Base in IDA as they rejected no examples. In two-class datasets, the
smallest maximum-softmax score is 0.5. Hence, rejecting examples with the triv-
ial 0.5 threshold is unlikely as both softmax values must be exactly 0.5. On the
other hand, some B-CDFδ approaches did reject confusing examples, with the
B-CDF.05/.10 variants yielding the highest IDA for Synthetic 1 and 2. In Syn-
thetic 3, the B-CDF.05/.10 variants produced the best results. Synthetic 4 again
demonstrates the capability of B-CDFδ to better model the ideal reject region,
where all δ values gave statistically similar results above the other methods.

5.1.2 Unequal Density Overlap
Table 2 shows similarly configured datasets as Table 1 except that we used
isotropic Gaussian distributions rather than uniform squares to sample the
datasets. We also varied the density ratio of examples sampled per-class to evalu-
ate regions of varying confusion. Here, the theoretical reject region is an infinitely
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Table 1. The mean/std ideal decision accuracy (IDA) of different approaches on four
equal density synthetic datasets (R:B:G:Y) over 10 runs.

Synthetic 1 Synthetic 2 Synthetic 3 Synthetic 4

Density Ratio 1:1:0:0 1:1:0:0 1:1:1:0 1:1:1:1

Method IDA↑ IDA↑ IDA↑ IDA↑
Base 74.4 0.0 64.5 56.3

Näıve-NoCal 74.4±0.0 0.0±0.0 70.4±0.9 61.0±0.3

Näıve-Cal 74.4±0.0 0.0±0.0 71.6±1.3 64.5±1.2

B-CDF.05 76.7±1.0 90.5±29.7 88.4±2.4 93.0±1.3

B-CDF.10 76.3±0.9 70.8±44.9 88.1±2.2 93.2±1.4

B-CDF.50 75.1±1.6 4.4±6.0 85.4±3.6 93.7±1.7

B-CDF.75 74.6±0.1 3.0±6.3 80.5±4.5 93.7±1.8

B-CDF.95 74.4±0.0 0.0±0.0 71.3±4.4 93.1±2.0

thin line along the maximum posterior decision boundaries. However, this line
could be a region in practice due to the sampling of the datasets. Therefore,
instead of employing IDA, we report and compare the select accuracy, reject
accuracy, and coverage of the approaches.

We see in the 2-class datasets Synthetic 5 and 6 that the Base and Näıve
methods have full coverage. However, the proposed algorithm identified viable
reject regions in the sampled data. In Synthetic 5, the B-CDF.05 variant improved
the select accuracy by +2.8% over the Base and Näıve methods, with a 54.3%
reject accuracy. In Synthetic 6, the B-CDF.05 method scored a reject accuracy of
61.5%, slightly larger than expected. Since thresholds are learned and ensured on
validation data, this overage could occur on test data when using a strong model
with a small reject region and different sampling of the data. Later in Sect. 5.4,
we will show a more detailed generalization experiment from validation to test
data on real datasets. In Synthetic 7 and 8, we see that most B-CDFδ approaches
rejected more examples than Base and Näıve methods with reject accuracy near
50%. The B-CDF.05 variant improved the select accuracy over Base (+7% and
+11.6%, respectively), while maintaining a viable reject accuracy of 52.2%.

5.2 Image Datasets

We next evaluated the approaches on the benchmark image classification
datasets CIFAR10 [17], CIFAR100 [17], FGVC-Aircraft [20], and ImageNet [9]
using pretrained state-of-the-art CNN and transformer models. These datasets
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Table 2. The mean select accuracy (SA), reject accuracy (RA), and coverage (φ) of
different approaches on four Gaussian unequal density synthetic datasets (R:B:G:Y)
over 10 runs.

Synthetic 5 Synthetic 6 Synthetic 7 Synthetic 8

Density Ratio 2:1:0:0 2:1:0:0 4:2:1:0 6:5:4:3

Method SA↑ RA↓ φ↑ SA↑ RA↓ φ↑ SA↑ RA↓ φ↑ SA↑ RA↓ φ↑
Base 88.4 – 100 66.6 – 100 82.9 – 100 71.4 – 100

Näıve-NoCal 88.4 – 100 66.6 – 100 84.2 42.7 96.3 75.6 42.3 87.3

Näıve-Cal 88.4 – 100 66.6 – 100 84.8 42.3 94.9 75.8 41.6 87.1

B-CDF.05 91.2 54.3 92.6 66.7 61.5 95.5 89.9 52.2 80.7 83.0 52.2 62.4

B-CDF.10 90.5 52.8 94.5 66.7 61.9 95.9 89.5 51.2 82.2 82.6 51.6 63.9

B-CDF.50 88.9 44.6 98.8 66.7 53.8 98.4 87.0 46.7 89.2 81.0 49.7 69.3

B-CDF.75 88.6 38.7 99.6 66.6 – 100 85.6 44.1 92.9 80.1 48.6 72.4

B-CDF.95 88.4 – 100.0 66.6 – 100 84.1 39.3 96.8 78.9 46.4 77.0

contain various numbers of classes ranging from 10 to 1K. Since all reject
approaches are post-processing methods, only the logits/softmax values of a
trained model and the truth targets are needed. For CIFAR10, CIFAR100, and
FGVC-Aircraft, we used pretrained state-of-the-art NAT CNNs [18]. For Ima-
geNet, we used the pretrained BEiT large transformer [2]. None of the afore-
mentioned datasets have a fixed train-validation-test partitioning of the data.
Therefore, we report scores on the validation set for ImageNet and the test set
for CIFAR10, CIFAR100, and FGVC-Aircraft. Table 3 shows the results of the
various approaches.

Note that when comparing results from two different thresholds, if one yields
higher select accuracy and lower reject accuracy (regardless of the coverage
change), it is a definite improvement. If one has higher select accuracy and
higher reject accuracy, as long as the reject accuracy is within the acceptability
level of the Binomial, then this is still considered an improvement.

CIFAR10. The Base approach scored 98.4% select accuracy indicating that the
model is already strong. Both Näıve approaches rejected a few examples, with
Näıve-Cal scoring slightly higher select accuracy and lower reject accuracy than
Näıve-NoCal. The highest select accuracy of 99.3% was given by B-CDF.05 with
a coverage of 98.0% and a reject accuracy of 58.7%. Though seemingly high, the
B-CDFδ approach statistically permits higher reject accuracy for smaller reject
regions (consider the possible number of heads appearing on a small number of
fair coin tosses). Comparing B-CDFδ to Näıve-Cal, the B-CDF.50 variant had a
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Table 3. The select accuracy (SA), reject accuracy (RA), and coverage (φ) of different
approaches on four benchmark vision datasets.

CIFAR10 CIFAR100 FGVC Aircraft ImageNet

Method SA↑ RA↓ φ↑ SA↑ RA↓ φ↑ SA↑ RA↓ φ↑ SA↑ RA↓ φ↑
Base 98.4 – 100 88.3 – 100 90.1 – 100 88.4 – 100

Näıve-NoCal 98.5 57.1 99.9 89.3 24.5 98.5 96.3 58.4 83.5 91.7 45.1 92.8

Näıve-Cal 98.6 48.8 99.6 91.8 40.1 93.4 93.2 33.3 94.8 90.6 38.5 95.7

B-CDF.05 99.3 58.7 97.9 97.8 55.9 77.3 98.3 45.4 84.4 97.4 52.7 79.7

B-CDF.10 99.2 55.6 98.3 97.3 53.1 79.7 98.0 42.8 85.7 96.9 49.5 81.9

B-CDF.50 98.9 42.5 99.2 94.8 42.3 87.7 96.2 28.6 91.0 94.6 36.8 89.1

B-CDF.75 98.5 20.0 99.9 92.3 32.6 93.4 93.9 21.6 94.7 92.1 27.7 94.1

B-CDF.95 98.4 – 100 89.3 21.3 98.6 91.1 14.9 98.6 89.7 22.5 98.0

lower reject accuracy (42.5%) and higher select accuracy (98.9%), demonstrating
better performance.

CIFAR100. The Base approach scored 88.3% select accuracy. The Näıve-Cal
method rejected about 5% more examples than Näıve-NoCal, yielding a higher
select accuracy (91.8%) and a lower reject accuracy (40.1%). The B-CDF.75 vari-
ant matched the coverage of Näıve-Cal while increasing select accuracy (+0.5%)
and decreasing reject accuracy (−7.5%). These improvements indicate that the
B-CDFδ approach can better model confusion over the Näıve methods.

FGVC-Aircraft. The Base approach scored 90.1% select accuracy. The Näıve-
Cal method outperformed Näıve-NoCal in coverage (94.8%, 83.5%, respectively)
and reject accuracy (33.3% and 58.4%, respectively) but scored lower select accu-
racy (93.2% and 96.3%, respectively). Compared to Näıve-Cal, the B-CDF.50/.75

variants scored much lower reject accuracy (−4.7% and −11.7%, respectively)
and similar coverage (−3.8% and −0.1%, respectively) with increased select accu-
racy (+3.0% and +0.7%, respectively), indicating better performance.

ImageNet. The Base approach scored 88.4% select accuracy. The Näıve-NoCal
and Näıve-Cal approaches achieved a higher select accuracy (91.7% and 90.6%,
respectively) with reasonable reject accuracy (45.1% and 38.5%, respectively)
and fairly high coverage (92.8% and 95.7%, respectively). Comparing the Näıve-
Cal approach to B-CDFδ, the B-CDF.50/.75 variants performed better in select
accuracy (+4.0% and +1.5%, respectively) and reject accuracy (−1.7% and
−10.8%, respectively). Nearly all B-CDFδ approaches scored higher select accu-
racy and reasonable reject accuracy (as desired). We found that per-class thresh-
olds varied widely on this dataset (and others with many classes).

5.3 Text Datasets

We next evaluated the approaches on the IMDB sentiment analysis [19] and AG
News [23] text classification datasets. These datasets contain fewer classes than
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Table 4. The select accuracy (SA), reject accuracy (RA), and coverage (φ) of different
approaches on text datasets.

IMDB AG News

Method SA↑ RA↓ φ↑ SA↑ RA↓ φ↑
Base 94.7 – 100 94.7 – 100

Näıve-NoCal 94.7 – 100 94.8 30.0 99.9

Näıve-Cal 94.7 – 100 94.9 33.3 99.8

B-CDF.05 96.3 53.4 96.3 96.7 55.8 95.1

B-CDF.10 96.2 52.7 96.5 96.7 54.8 95.3

B-CDF.50 95.6 49.8 97.9 95.6 46.0 98.2

B-CDF.75 95.5 48.0 98.3 95.4 39.8 98.8

B-CDF.95 94.7 18.2 99.9 94.7 – 100

the image datasets (2 and 4, respectively). We utilized near state-of-the-art off-
the-shelf pretrained BERT transformers [10] for the evaluations. Both datasets
do not include a validation set, hence we report results on the test data. Table 4
shows the results for text classification using the IMDB and AG News datasets.

IMDB. The Base approach was fairly strong and scored a select accuracy of
94.7%. Like in the 2-class synthetic datasets, the Näıve approaches failed to
reject any examples. However, the B-CDFδ method rejected some examples with
B-CDF.05 giving a reasonable reject accuracy (53.4%) and greater select accu-
racy (+1.6%). Other B-CDFδ variants yielded higher select accuracy with reject
accuracy near 50%, except B-CDF.95 which selected nearly all examples with
18.2% reject accuracy and coverage of 99.9%.

AG News. The Base method scored a select accuracy of 94.7%. The Näıve-
NoCal and Näıve-Cal approaches rejected only a few examples, improving select
accuracy by +0.1% and +0.2%, respectively. The B-CDFδ approach rejected
more examples than Näıve-Cal, with B-CDF.05 scoring the highest select accu-
racy (96.7%) with acceptable reject accuracy (55.8%). Moreover, all other B-
CDFδ variants (except B-CDF.95) scored higher select accuracy than both Näıve
methods, with a reasonable reject accuracy.

5.4 Generalization from Validation to Test Data

We now present results on how the learned reject thresholds generalize from
a validation set to a test set. We employed CINIC10 [7] (imagery) and Tweet
Eval Emoji [3] (text) as both contain a proper train-validation-test partitioning.
We utilized a weakly-trained ResNet20 CNN [16] for CINIC10 and an off-the-
shelf pretrained BERT transformer [10] for Tweet Eval Emoji. Table 5 shows the
results of rejection thresholds learned from validation and applied to test data.

CINIC10 contains 90K training, 90K validation, and 90K testing examples.
Given that the validation set here is large (equal to the test set), we expect
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Table 5. The generalization of select accuracy (SA), reject accuracy (RA), and cover-
age (φ) of thresholds learned on validation and applied to test data for CINIC10 and
Tweet Eval Emoji.

CINIC10 Tweet Eval Emoji

Val Test Val Test

Method SA↑ RA↓ φ↑ SA↑ RA↓ φ↑ SA↑ RA↓ φ↑ SA↑ RA↓ φ↑
Base 81.8 – 100 81.5 – 100 32.6 – 100 47.9 – 100

Näıve-NoCal 83.5 31.4 96.9 83.1 29.7 96.9 58.5 22.5 28.0 74.7 24.7 46.5

Näıve-Cal 87.7 40.2 87.7 87.5 39.3 87.4 69.3 24.0 19.1 79.4 28.5 38.2

B-CDF.05 93.4 51.6 72.5 93.2 51.0 72.2 92.9 30.3 3.6 93.7 35.3 21.7

B-CDF.10 93.2 51.2 73.0 93.0 50.6 72.8 90.7 30.1 4.1 92.4 35.0 22.5

B-CDF.50 92.6 49.9 74.8 92.4 49.3 74.6 82.8 29.2 6.4 89.1 33.8 25.6

B-CDF.75 92.1 49.2 76.1 92.0 48.4 75.8 79.7 28.4 8.2 86.6 33.1 27.7

B-CDF.95 91.5 48.1 77.7 91.4 47.3 77.4 71.3 27.4 11.9 82.0 32.8 30.7

thresholds to behave similarly across validation and test. We see that select
accuracy, reject accuracy, and coverage all transfer well to the test set (nearly a
one-to-one match). The earlier Figs. 1b and 1c depict t-SNE embeddings com-
puted using the select and reject sets given by B-CDF.05.

Tweet Eval Emoji contains 45K training, 5K validation, and 50K testing
examples with 21 classes. For this dataset, the validation set is 10X smaller
than the test set. Although, we observe that all metrics here tend to be higher
(desired) on the test set across all approaches, which shows that the proposed
algorithm compensates in the proper direction. However, in Table 2 the reject
accuracy of the B-CDFδ approach on Synthetic 6 was larger than expected due
to the smaller validation set. We additionally examined a larger validation set
on Synthetic 6 and saw expected generalization performance.

5.5 Alternative Confidence Interval Formulations

Given the computational complexity of evaluating the Binomial CDF on very
large reject regions, we provide alternative confidence interval methods with a
similar goal but lower computational complexity. The objective remains the same
as B-CDFδ, but the randomness evaluation uses a one-sided confidence inter-
val to determine whether the lower bound on true accuracy given the observed
accuracy is reasonable (less than or equal to 50%). We present results using
the Clopper-Pearson interval [6], the Wilson interval with and without continu-
ity correction (Wilson-CC and Wilson-NoCC, respectively) [4], and the Agresti
Coull interval [1]. Closed-form equations exist for Wilson-CC, Wilson-NoCC,
and Agresti Coull. Table 6 shows the results using these confidence intervals.

On these datasets, the Clopper-Pearson and Wilson-CC approaches arrive at
the same solutions as the original B-CDF.05 approach. However, Wilson-NoCC
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Table 6. The select accuracy (SA), reject accuracy (RA), and coverage (φ) of alter-
native confidence interval approaches on four benchmark vision datasets.

CIFAR10 CIFAR100 FGVC Aircraft ImageNet

Method SA ↑ RA ↓ φ↑ SA ↑ RA ↓ φ↑ SA ↑ RA ↓ φ↑ SA ↑ RA ↓ φ↑
Base 98.4 – 100 88.3 – 100 90.1 – 100 88.4 – 100

Näıve-NoCal 98.5 57.1 99.9 89.3 24.5 98.5 96.3 58.4 83.5 91.7 45.1 92.8

Näıve-Cal 98.6 48.8 99.6 91.8 40.1 93.4 93.2 33.3 94.8 90.6 38.5 95.7

B-CDF.05 99.3 58.7 97.9 97.8 55.9 77.3 98.3 45.4 84.4 97.4 52.7 79.7

Clopper-Pearson 99.3 58.7 97.9 97.8 55.9 77.3 98.3 45.4 84.4 97.4 52.7 79.7

Wilson-CC 99.3 58.7 97.9 97.8 55.9 77.3 98.3 45.4 84.4 97.4 52.7 79.7

Wilson-NoCC 99.3 59.8 97.7 98.2 57.8 75.6 98.7 49.1 82.5 97.7 54.9 78.1

Agresti-Coull 99.3 59.8 97.7 98.2 57.8 75.6 98.8 49.7 82.3 97.8 55.0 78.0

and Agresti-Coull typically score higher select accuracy at the cost of higher
reject accuracy and lower coverage. The Agresti-Coull method scored the highest
select accuracy, highest reject accuracy, and lowest coverage for all experiments.
We showed results based on δ=.05, but for all significance levels examined in
this paper, we found that Clopper-Pearson and Wilson-CC approaches matched
B-CDFδ. These results demonstrate that Clopper-Pearson and Wilson-CC could
be interchanged with B-CDFδ to reduce computational complexity, if desired.

5.6 Discussion

We evaluated multiple approaches on equal-density synthetic datasets and
showed that the B-CDFδ method provides the highest accuracy to the ideal
decision function. On unequal-density synthetic data, real-world imagery, and
text datasets, our approach performed the best at specific δ values, yielding the
highest select accuracy while keeping a reasonable and statistically viable reject
accuracy (near 50%). Furthermore, given a user preference for select accuracy
or coverage in a specific application, the user could examine different δ values
to best suit the task. Higher values of δ provide increased coverage, while lower
values of δ provide increased select accuracy. Overall, we found that lower values
of δ seem preferable across multiple datasets and could be used as a default.
We have also shown that thresholds learned on large validation sets transfer
well to test sets. Lastly, we presented an alternative formulation using related
confidence intervals and showed that they could provide similar performance at
reduced computational complexity. Therefore, when given very large datasets
with extensive reject regions, it is recommended to use alternative formulations.

6 Conclusion

Given the growing adoption of neural networks in various applied tasks, the
need for confident predictions is becoming increasingly important. We proposed
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a Binomial-CDF approach to automatically detect and filter out regions of confu-
sion for any neural classifier and dataset pairing. This post-processing technique
leverages a validation set to learn per-class rejection thresholds that can identify
and reject regions in the decision space based on random-chance classification.
This approach is applicable when strong constraints on select accuracy or cov-
erage are unavailable. We demonstrated that the approach provides a favorable
scoring of select and reject accuracy on 2-D points, imagery, and text datasets.
In future work, we plan to develop a joint-training objective to learn the rejec-
tion function during the training of the neural network.
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Abstract. Intracorporeal suturing is one of the most critical skills in the Funda-
mentals of Laparoscopic Surgery (FLS) training. Assessment of skills acquisition
requires a significant amount of the supervisory surgeons’ time, and it can be a
very subjective decision. This study uses an object detection algorithm, Scaled-
YOLOv4, in conjunction with a centroid tracking algorithm to evaluate the sur-
geon’s skills during advanced intracorporeal suturing.We proposed a system capa-
ble of locating and tracking surgical instruments as well as providing an evaluation
of the performance of the surgeons. Since the accuracy of the detection is crucial
to our proposed tracking system, we evaluated the detection performance using
the mean average precision and inference time metrics. An average precision of
85.50% was achieved for the detection of the needle, and 100% was achieved for
the work field area.

Keywords: Laparoscopic surgery training · Object detection · Suturing video
data · Needle tracking

1 Introduction

Minimally invasive surgery (MIS) is one of the enhanced methods used in surgical
treatments, and it has received enormous attention in recent years while considering
the patients’ surgical experiences and the skills of surgeons executing these procedures.
MIS’s goal is to achieve improved surgical performance through smaller, fewer incisions
and with executing higher precision and efficacy surgical procedures [1]. In addition,
to increase liability and improve patient safety in healthcare delivery, all MIS surgery
procedures must be trained for and professionally assessed [2].

Before performing laparoscopic surgery, surgeons must gain a wide range of skills,
such as suturing, injection, anastomosis, needle insertion and others [3, 4]. To achieve
this goal, training programs for laparoscopic surgery have been introduced and integrated
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into hospital curricula. To develop surgical skills for more complicated tasks, facilitate
resident training and enhance surgical competency, several surgery simulators have been
developed [5].

A commonly used program for acquiring laparoscopic suturing skills is the Fun-
damentals of Laparoscopic Surgery (FLS) [6]. In spite of the fact that FLS provides
a good platform for acquiring the basic skills required, it does not adequately capture
the full complexity of the laparoscopic skills needed for the operating room [7]. There-
fore, to enhance the skills of laparoscopic surgeons, various training methods have been
proposed which not only increase the skill level of surgeons but also evaluate their per-
formance. The performance assessment provides feedback on the level of the surgeon’s
expertise and is commonly based on tracking the surgeon’s performance during a task
operation [8]. In order to achieve this important goal when suturing intracorporeal, it is
necessary to monitor and assess the performance of residents by tracking the movements
of the tips of the surgical tools in complex environments, such as suturing in tight spaces
[9].

By using the FLS laparoscopic box trainer, in this study we propose a robust, multi-
class detection and tracking system for complex intracorporeal suturing tasks. For the
Intracorporeal Suturing task in a FLS Box Trainer, this system should be able to locate
and identify all instruments. As an additional contribution, a measurement algorithm is
proposed not only for the general evaluation of the FLS metrics (i.e., time and error), but
also for detecting whether or not the trainee is operating in the designated field of work.
Upon failure to meet that criterion, a notification will appear on the monitor to alert the
trainee to the problem. In this study, a deep learning approach based on Scaled-YOLOv4
has been proposed, which has been trained on our custom intracorporeal suturing dataset
to detect and track all the instruments in a real-time manner.

This paper is organized as follows. In Sect. 2, we provide an overview of relatedwork
regarding the detection of FLS instruments by using Convolutional Neural Networks
(CNN). Section 3 describes the methodologies proposed for the training algorithms and
a novel method for evaluating advanced suturing. Section 4 presents the experimental
setup. The results are discussed in Sect. 5. Lastly, conclusions and plans for future
research are given in Sect. 6.

2 Related Works

In recent years, deep learning technologies have gained more attention in various appli-
cations [10]. In some complex applications, humans could be completely removed, and
Deep Neural Networkmodels and unsupervised learningmethods would take their place
[11].

Oquendo et al. [11] proposed a motion-tracking system and algorithms using a mag-
netic sensing system that automatically evaluates the trainees’ performance in two trials
of intracorporeal suturing in a custom pediatric laparoscopic box trainer. During a pedi-
atric laparoscopic suturing task, 32 surgical residents were evaluated using a validated
and novel machine learning algorithm. To determine the most appropriate algorithm
in terms of speed and accuracy, Soviany et al. [12] examined two types of state-of-
the-art methods: Two-Stage object detectors (Faster R-CNNs) and Single-Stage Object
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Detectors (MobileNet-SSDs, SSD300s). According to the researchers, the performance
differences between a two-stage detector and a single-stage detector were insignificant
when applied to simple images. Our dataset for intracorporeal suturing contains only
simple images, so we used a single-stage detector for our analysis.

Peng et al. [13] proposed a method for autonomous recognition of multiple surgical
instruments’ tips based on the arrow object bounding box (OBB)-YOLO network pre-
diction, which recognizes the localization of an instrument. Koskinen et al. [14] trained
and evaluated YOLOv5-l on a dataset of 4900 to 5900 frames, with approximately 20
surgical settings and 17 micro-instruments, for knot tying and interrupted suturing tasks,
to perform tool detection.

Schwaner et al. [15] presented an application of the Learning from Demonstration
method to implement a fully autonomous bi-manual surgical suturing task, including
steps such as needle pick up, insertion, re-grasping, and extraction, and hand-over with a
custom surgical robot system. Pryor et al. [16] investigated localization and autonomous
robotic control of needles in the context of a magneto-suturing system using neural
network-based segmentation and classification techniques in a closed-loop feedback
control system.

The development of deep learning architectures for detecting surgical tools in the
laparoscopic video has also been the subject of several medical research studies [17–
19]. Sugimori et al. [20] used YOLOv2 to detect tips of surgical instruments in images
extracted from nine video recordings of carotid endarterectomies. A study conducted
by Cho et al. [17] aimed to detect the tooltips of instruments using two open source
detectors, RetinaNet and YOLOv2, and then localized them by using colored points.
Alkhamaiseh et al. [18] compared the performance of two deep learning algorithms,
YOLOv5 and scaled YOLOv4, in a pattern cutting exercise, for the purpose of detecting
the movement of the tip of the scissors. A laparoscopic box trainer tool tip tracking task
was implemented using Fast-RCNNby Fathabadi et al. [19]. According to [21], a scaled-
YOLOv4 has demonstrated faster and more accurate object detection in comparison to
other single-stage detectors.

3 Methodology

The proposed method employs an open-source deep learning algorithm for detecting
and tracking intracorporeal suturing laparoscopic instruments in a FLS box trainer by
usingmulti-class detection and trackingmethods. The simplicity of this algorithm allows
the recognition process to be executed more quickly and yet deliver satisfying results
when compared to other algorithms. The workflow of the proposed work is given in
Fig. 1. Our custom dataset was used to pre-train the model, which used the Scaled-
YOLOv4 architecture [22] from Torchvision’s models repository. Thus, to train the
model, we expanded and augmented our previous laparoscopic box trainer dataset [21]
by incorporating extracted frames from various laparoscopic intracorporeal suturing
training videos using Roboflow augmentation tools [23].
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Fig. 1. Process flowchart of the proposed method

3.1 Scaled-YOLOv4 Architecture

An image is divided into N x N grids in accordance with the logic of the YOLO algo-
rithm. The Mish-Function serves as an activation function in the YOLO algorithm. The
leaky ReLU functions are used instead of the mish function in the tiny-YOLO series to
reduce the computational cost. YOLOv4 Scaled-Stage is based on a Cross-Stage Partial
Network (CSP) developed by Wang C et al. [22] for scaling large and small networks.
As the backbone of its architecture, YOLOv4-CSP uses a slightly modified version of
CSPDarkNet53, whereas YOLOv4 uses the CSP approach [22].

3.2 Measurement Algorithm

To track the needle and find out whether it is inside the field of work, i.e., the region of
interest (ROI) or it is out of it, a measurement algorithm based on the Euclidean Distance
Transformation [24] has been developed. For passing this test, variableDistance between
the center of the needle and the center of the field of work is continuously measured,
and it is compared with the bounding box coordinates of the ROI. If the needle is out
of the ROI, a notification will be displayed on the monitor screen. In Eq. 1, during each
frame, Distance represents the distance between two points, and variable Pix represents
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the set of pixel points that contain all the pixels of the extracted object.

D[A][B] = min
{
Distance

[(
Ax,Ay

)
,
(
Bx,By

)]
, (A,B) ∈ pix

}

Distance
[(
Ax,Ay

)
,
(
Bx,By

)] =
√
(Bx − Ax)

2 + (
By − Ay

)2 (1)

As suturing occurs in tight spaces during an actual operation, surgeon trainees should
execute the suturing test in a very tight space, too [9]. In this study, we have referred to
the red sponge carrier as the working area, which we have classified as an object called
ROI. Considering that the location of the working field area cannot be guaranteed and
may vary, we have trained our model to detect this area.

4 Experimental Setup

The Intelligent Box-Trainer System (IBTS) [22] facilitates a variety of FLS training
exercises, including tooltip tracking, intracorporeal suturing, pattern cutting, and peg
transfer. In this work, intracorporeal suturing was carried out to detect all the objects
used in the task and track the needle driver and notify the trainee whether it is inside or
outside of the ROI. These scenarios are illustrated in Figs. 2 and 3.

(a) Inside view (b) Surgeon's view 

Fig. 2. The IBTS for intracorporal suturing task
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Fig. 3. Execution of the intracorporal suturing task in the intelligent fuzzy controllers laboratory

4.1 Dataset

To train the model for detecting intracorporeal suturing instruments and field of work
(ROI), 2500 images were randomly chosen from 12 different intracorporeal suturing
video recordings (i.e., 18500 frames). All images have been resized to 640 by 640
pixels to work with the Scaled-YOLOv4 darknet framework. Thereafter, this dataset
was subdivided into 1745 images (70%) for training, 505 frames (20%) for validation,
and 250 frames (10%) for testing.We labeled the dataset by using the LabelImg tool [25]
for five classes: “Tissue”, “Needle”, “L-Grasper,”, “Grasper” and “ROI” and saved it as
a.txt file, based on the Scaled-YOLO format. A representation of the annotated image is
shown in Fig. 4. It illustrates the five objects from our IBTS dataset.

Fig. 4. Labeling of objects inside the IBTS using the LabelImg tool

Table 1 shows the number of objects and the processes of splitting classes. During
the distribution phase, we ensured that a wide variety of frames were used for each class.
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Table 1. Class splitting distribution

Objects per class

Split process Needle Grasper L-Grasper Tissue ROI

Training 1063 1112 1165 1634 1740

Validation 329 310 304 453 497

Testing 191 188 178 228 238

4.2 Software Implementation

A Momentum optimizer with a learning rate of 0.04 was used for the region proposal
and classification network. We fed our network with images of 640 × 640 pixels and
performed 10,000 iterations with 64 batches. The final output was a bounding box for
each detected object as a class label (Needle, Grasper (i.e., Needle Driver), left Grasper
(L-Grasper), Tissue, and ROI with its confidence score. In this study, our intelligent
laparoscopic box trainer software has been developed using Python, and the feasibility
of this work has been evaluated on a Windows PC along with a P100-PCIe GPU.

5 Results

In Sect. 2, we described that how our proposed model was trained and constructed.
In Fig. 5, the training loss and validation loss for each iteration are shown for 10,000

Fig. 5. Training Loss and the mAP for the scaled-YOLOv4 by darknet
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iterations. The output with the highest precision (i.e., the best weight file) was chosen
to be used in our research. mAP@0.5 provides a measure of the mean average precision
at the 50% intersection-over-union threshold, which evaluates if a model generalizes
well on a never-before-seen dataset. The blue curve represents the learning error for the
training dataset (specifically, the Complete Intersections-Over-Union (CIoU) loss for the
Scaled-YOLOv4) [21]. During the training process, our model generated output training
files every 1000 iterations, as well as files with the highest mAP. Figure 5 illustrates that
the highest mAP occurs at 6800 iterations when the mAP reaches 95%. To the track
needle position, the best output file was chosen, out of all generated, since it has the
highest mAP.

The measures precision, recall, F1-score, and mAP have been used as the criteria to
evaluate the performance of the Scaled-YOLOv4 algorithm. The F1 score, the model’s
test accuracy, is the harmonic mean of precision and recall. The highest possible value
of the F1-score is 0.88, which indicates a perfect precision, 0.88, and recall, 0.88. In
addition, mAP, 0.95 is calculated by taking the mean of average precision (AP) of all the
classes, as shown in Table 2. Furthermore, precision and recall were computed using the
Intersection over Union (IOU) threshold. The IOU was calculated as the ratio between
the overlap area and the union area of the ground truth and the prediction labels. Then,
the average precision was calculated from the precision-recall curve.

The detection and tracking results are presented in Fig. 6, which illustrates that all
objects have been detected where a threshold degree of accuracy was determined to be
at least 70%, so the class bounding box with a higher IOU will only be presented. All
objects have been detected ideally with 100% accuracy. When the needle is within the
ROI bounding box, the system does not display warnings or distance measurements, as
the trainee is performing the task correctly. However, the user’s guide screen displays
a warning message when the needle is detected outside the field of work area (i.e., the
ROI bounding box). By tracking the tools in a limited virtual space, the proposed system
can implement an advanced suturing test without requiring any additional equipment.
The proposed system also records the number of times the needle has been detected
outside of the ROI and the associated Distance from the center of the ROI, which will
negatively impact the resident’s overall score in the performance assessment system to
be developed in the near future.

Table 2. Evaluation metrics

Class Id Class name Average Precision (AP)

0 Needle 85.50%

1 Grasper 95.96%

2 Tissue 98.89%

3 ROI 100.00%

4 L_grasper 92.86%

Precision: 0.88 Recall: 0.88

F1-score: 0.88 IOU: 70.38
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Fig. 6. Detection and tracking result shown in sample frame of the intracorporeal suturing task
video

6 Discussion

The accuracy of the centroid tracking algorithm is entirely dependent on the quality of
the detection. Due to this and on the grounds of the results of a previous study [22]
that showed the Scaled-YOLOv4 had delivered decent detection quality for the same
dataset, Scaled-YOLOv4 has been used in this study. The loss function that has been
used is based on the YOLOv4 loss function [22], which is a combination of classification
loss, localization loss, and confidence loss. As illustrated in Fig. 5, we can guarantee
that we will choose the low loss with the high mAP after the training process.

In advanced laparoscopic intracorporeal suturing, it is imperative to emphasize the
importance of both the needle and the ROI since the purpose of advanced suturing is to
keep tools in a very tight space, and the needle is the moving object that is required to
be within the ROI-designated field of work area. According to our results, the detection
precision mAP for the needle is 85.5%, and for the ROI it is 100%. Because the ROI is
fully detectable, there is no loss of detection in all video frames. As a result, we conclude
that detecting the needle was challenging at some points during the suturing operation. It
is possible for the needle to either be hidden behind other objects or positioned parallel to
the camera’s field of view, in which case the needle will look like the thread. These cases,
however, would not present a problem since we focus on tracking the needle outside of
the ROI, where detection is more accessible due to a smaller number of objects present.

7 Conclusion and Future Work

In this paper, we propose using a centroid tracking method to track the needle position in
the FLS box trainer to evaluate the trainees’ performance while they carry out advanced
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intracorporeal suturing tasks. Using the proposed system, needle positions can be deter-
mined frame by frame, hence, providing an impartial assessment of surgery skills. In
addition, the system generates a report that can be reviewed by supervisory surgeons at
their convenience. Our model training time and detection accuracy were evaluated using
the scaled-YOLOv4 in terms of mean average precision, inference loss, and training
loss. The proposed system generates adequate information that can be used to develop
an intelligent performance assessment system soon. Based on the operation time, errors,
surgical instrument motion, and distance quality in the field of work area, a fuzzy logic-
based system will be developed to assess the laparoscopic suturing skills. Furthermore,
after performing more testing and evaluation, our proposed system may also qualify as
a real-time performance assessment system.
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Abstract. In this work, we explore various approaches for automated
visual classification of multimodal inputs such as EEG and Image data
for the same item, focusing on finding an optimal solution. Our new
technique examines the fusion of EEG and Image data using a concate-
nation of deep learning models for classification, where the EEG feature
space is encoded with 8-bit-grayscale images. This concatenated-based
model achieves a 95% accuracy for the 39 class EEG-ImageNet dataset,
setting a new benchmark and surpassing all prior work. Furthermore,
we show that it is computationally effective in multimodal classifica-
tion when human subjects are presented with visual stimuli of objects
in three-dimensional real-world space rather than images of the same.
These findings will improve machine visual perception and bring it closer
to human-learned vision.

Keywords: EEG · Images · Multimodal visual classification · Deep
learning · Machine vision

1 Introduction

In classification problems, searching for similar patterns is the first thought in
mind. The human brain learns to classify things on the go in a semi-supervised
approach. It is fascinating to observe that one-half of the human brain searches
for similar patterns, while the other labels are based on intuition. In contrast,
machines employ binary logic to discover patterns in a supervised environment
[25]. They lack the intuition that the human mind possesses. The same applies
in the case of visual classification [17], but a distinctive micro-pattern can some-
times make a classification task difficult for humans, whereas machines out-
perform in finding that pattern. As a result, given that humans and machines
perceive visual cues in different ways, our aim is to find the best approach to
combine human cognition with machine perception for improved visual classifi-
cation.

Integration with evoked potentials (human visual perception) through the
brain-computer interface (BCI) will enable a new form of automated annotation
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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of brain-based images [14] compared to the current state where much manual
effort is required to annotate or label a visual stimulus. Also, joint represen-
tational learning will especially contribute to imaging systems (e.g. diagnosis,
surveillance, object tracking), as the AI vision system will learn directly and
integrate with human observative decisions. It can provide vital suggestions,
such as a new region of interest that was not perceived by the human eye due
to [6], and it can later learn to filter out non-interesting regions using temporal
and spatial joint learning.

2 Related Work

The visual classification task with EEG signal data was initially performed by
Kaneshiro et al. [12] in 2015, who proposed a linear discriminant analysis frame-
work based on representational similarity to classify 12 different object cate-
gories and obtained an accuracy of 28.87% in their proposed data set, known
as the object category-EEG data set. Zhang et al. [31] also proposed a unique
approach to visual classification with an EEG dataset using an 8-bit heatmap
scaling to convert raw EEG signals into images. A pre-trained MobileNet was
used to extract deep features from these images and obtained a classification
performance of 95.33% with an SVM classifier. Marini et al. [19] found that
EEG signals demonstrated stronger and more sustained event-related desyn-
chronization (ERD) in the [8–13] Hz frequency band for real objects compared
to their images, possibly due to 3-D stereoscopic differences, in addition to a late
persistent parietal amplitude modulation consistent with an old-new’ memory
advantage for actual objects over images.

Ilievski et al. [11] and Guillaumin et al. [7] showed robust performance for
visual classification using multimodal learning with text and image as cross-
modal input. Similarly, Owens et al. [21] and Arandjelovic et al. [2] performed
visual classification using shared visual and auditory space modalities.

Spampinato et al. [28] introduced multimodal visual classification using EEG
and image data. Their methodology showed outstanding results until later, when
it was revealed that the EEG data were not correctly filtered, adding bias to the
data. This revelation voided the results of this approach and all other derived
works that have used unfiltered data. Palazzo et al. [23] corrected the dataset
used by [28] and later published the filtered EEG-ImageNet dataset which we
have used in this study.

3 Datasets

Visual classification with multimodal image and EEG data learning has been
an emerging study since 2017 [28]. As a result, there are only a limited number
of publicly available databases, so collecting additional data was not a priority
of our research. This research focused on two existing multimodal datasets for
visual classification tests shown in Table 1.
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3.1 EEG-ImageNet

The EEG-ImageNet dataset was published by Spampinato et al. [28] and later
updated [23] due to filtering issues and signal bias caused by EEG drift. We
used the recently updated dataset, commonly known as EEG-ImageNet. It was
created by recording EEG signals from six subjects using a 128-channel actiCAP
electrode system. The recordings included each subject viewing 2000 images (50
images per class with 40 classes from a subset of ImageNet [4] dataset). The
signals were recorded for 500 ms for each trial at a sampling rate of 1000 Hz
Hz. The total number of trials was 12,000 for 40 classes; however, due to low-
quality samples and some missing trials in the dataset, we used 11,682 trials for
39 classes, approximately 50 images for each class. All data from class “mush-
rooms” (labeled 33 in the dataset) were excluded, and some classes did not have
all 50 images with the corresponding EEG recordings tagged. We followed the
processing by Pallazzo et al. [23] and used the variant [5–95] Hz of the data
set for this study, as it performed comparatively better than [14–70] Hz for the
classification of EEG data [20,22,23].

Table 1. Parameters of the two publicly available datasets.

Datasets Trials Stimulus Classes Subjects Stimuli Stimuli per class Rec. per stimulus Sampling rate

EEG-ImageNet [23] 11,682 Image 39 6 1947 50* 440ms 1000 Hz

Image 2 22 96 48 800ms/1600ms 512 Hz
Marini et al. [18] 4,224

Real 2 22 96 48 800ms/1600ms 512 Hz

*There are approximately 50 images for each class.

3.2 Visual Stimuli EEG Dataset: Real-World 3D Objects
and Corresponding 2D Image Stimuli

Marini et al. [18] introduced an EEG dataset with two distinct but similar visual
stimuli. It consisted of 24 subjects viewing 3D real-world kitchen and garage
objects, and their corresponding images while recording EEG signals. Each sub-
ject’s data had 192 trials, 96 of which were real-world objects, and the other 96
were exact-size photographs of the same items. A 128-electrode setup was used
to record the signal data at 512 Hz sampling rate. The entire length of each raw
signal was 2800 ms (−800 to 2000 ms), of which 800 ms (0 to 800 ms) was the
actual response of subjects observing the stimulus, and the next 800 ms (800 to
1600 ms) were with their eyes closed before switching to the subsequent trial.

The unwanted artifacts of the original data were removed. However, the raw
EEG signals were not processed for ERP analysis. We used various processing
techniques, including normalizing the data using a z-score and then baseline cor-
recting the signal in the prestimulus period (−200 to 0 ms) to give zero-centered
values with a unitary standard deviation. We used data from 22 participants,
since two of them (two and seven) had fragmentary data. For optimization, we
clipped the signal data (0 to 800 ms) for deep learning models and (0 to 1600
ms) for conventional machine classifiers.
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4 Data Encoding and Processing

We use various data extraction and encoding techniques to optimize the feature
space and process the data for optimal model configuration and performance.

4.1 Classical Feature Extraction for EEG Data

The EEG visual stimuli datasets usually have more categorical information in
the alpha, beta, and gamma frequency bands of the signal, as observed by previ-
ous studies [5,28,30]. We performed a periodogram spectral analysis to use the
relative band power average of all signals as a feature in each trial. This anal-
ysis is best suited for low-frequency resolution in small-length signal datasets
[1]. These feature sets are then fed to machine learning classifiers with various
mixed PCA pipelines and feature selection encoding (Sect. 5.1).

4.2 Classical Feature Extraction for Image Data

Histogram of Oriented Gradients, or HOG, a classic feature descriptor applied
as a feature extractor for various computer vision applications, computes the
features from histograms using both the image gradient’s magnitude and angle
[3]. We used the HOG filter on the image data to produce a one-dimensional
feature vector fed into the classifiers to assess the baseline accuracy.

4.3 Principal Component Analysis (PCA) Encoding

PCA is a statistical encoder for converting high- to low-dimensional data by
picking the main components that capture the most relevant information about
the data set. We employed PCA encoders to compress the feature dimension of
both images and EEG data to evaluate the differences in classification results
by utilizing only the main components with 99% variance.

4.4 Grayscale-Image Encoding for EEG Data

We used the grayscale-image encoder from our previous work [20], which was
designed as a feature extractor to convert the 128-channel EEG signal values to
an 8-bit grayscale heatmap image. This encoding method was modified from the
Zhang et al. [31] technique used in EEG classification.

The data was processed using two strategies with the grayscale-image
encoder. In the first method, each EEG trial’s grayscale image was cloned three
times (512× 440× 3) to match the input shape of the CNN-based models. Hence,
the input shape for EEG-ImageNet was (11682× 512× 440× 3), and the Marini
et al. dataset was (4224× 512× 440× 3). In the second method, we stacked the
EEG signals of all subjects corresponding to the same stimulus trial as repre-
sented in Fig. 1. Thus, unlike the first method of replicating the same image
three times, the images of every subject will be considered as a channel. This
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Fig. 1. Representation of the input sample of grayscale-image encoded EEG data with
each subject as a dimension for every visual stimulus.

processing approach turned out to be more efficient than the first one, as it uses
data from different subjects as separate dimensions. The shape of the input data
for EEG-ImageNet was (1947× 512× 440× 6), and the Marini et al. dataset
was (192× 512× 440× 22), given six subjects and 22 subjects in the respective
datasets.

5 Methods and Model Implementation

5.1 Conventional Machine Learning Classifiers

We used Decision Tree, Random Forest, K-Nearest Neighbor, Support Vector
Machine (SVM), Multilayer Perceptron, and Logistic Regression as traditional
machine learning classifiers in our evaluation. These model configurations were
default setups from the sklearn library [24]. For our experiments, we modified the
SVM kernel to RBF. The baseline classification accuracy using one-dimensional
feature vectors collected in Sects. 4.1 and 4.2 was determined using these classi-
fiers.

5.2 LSTM-Based EEG Model (LEM) [20]

The LSTM-based EEG Model (introduced in our previous work [20]) has an
input layer with the same shape as each sample of raw EEG data. It was first
linked to 50 stacked bidirectional LSTMs [9], then to two stacks of common
LSTMs (128 and 50), and finally to a dense layer of 128 neurons. To train the
model with a softmax classifier, we employed the adam optimizer. Each input
EEG data sample has the shape (ts, ch), where “ts” represents the number of
time points, and “ch” represents the number of channels in each trial.

5.3 CNN-Based Image Model (CIM) [20]

The model architecture included an input layer representing the shape of the
image data to be supplied, a functional model layer that fits CNN-based pre-
trained models, a 128-neuron dense layer and a softmax classification layer. For
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training, we applied a stochastic gradient descent optimizer. Pre-trained models
such as ResNet [8], VGG16 [27], MobileNet [10], and EfficientNet [29] were used
as functional models for several experiments mentioned in Sect. 6. This model
was first introduced in our previous work [20].

5.4 Grayscale-Image Encoded EEG Model (GEM)

Fig. 2. A representation of the Grayscale-Image Encoded EEG Model (GEM) (modi-
fied from our previous work [20])

The GEM architecture consists of a pipeline framework based on our previous
study [20] in which the raw EEG data signal data are first converted to an image
feature set using the Grayscale-Image encoder mentioned in Sect. 4.4. Then it was
fed to a CIM (EfficientNet), a functional model layer for classification. Efficient-
Net was used as it was shown to have the best performance for grayscale-image
encoded EEG data [31]. Figure 2 illustrates the GEM model design.

5.5 Concatenation-Based Models [20]

A concatenation-based technique often combines the data obtained from two or
more machine learning models and then labels those features. To predict the dif-
ferent classes in our datasets, we integrate the penultimate levels of the models,
i.e., fully connected layers, immediately before the classification layer, a softmax
layer. Concatenated models are popular multimodal deep learning models due
to their fast convergence and generalization since different modalities do not lose
any feature value during joint learning, which aids in the final classification. We
used two designs, concatenated LEM [20] or GEM model (EEG data as input)
with CIM model (image stimuli as input) to perform multimodal joint learning
visual classification experiments, as shown in Figs. 3a and 3b.

6 Experiments and Results

We investigated the performance of Marini et al. [18] dataset and compared it
with the EEG ImageNet [23] dataset using various combinations of encodings
mentioned in Sect. 4 and classification models mentioned in Sect. 5.
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Fig. 3. Multimodal deep learning visual classification using concatenation design
(based on our previous approach [20])

6.1 Baseline Visual Classification for EEG and Image Data

In our initial experiments, we obtained a baseline visual classification perfor-
mance using EEG data and the corresponding image stimulus data to find the
degree of distinct visual information present in the classical features of the data.

Table 2a shows the baseline performance of the best data processing, encoding
(Sect. 4) and classifier implementation (Sect. 5.1) on the image data for the EEG-
ImageNet and Marini et al. datasets. We observed a slight drop in accuracy when
the feature space was reduced using PCA. To evaluate the baseline accuracy of
the EEG data, we used the first 1600 ms of the EEG sequence for the Marini et
al. dataset and 440 ms for EEG-ImageNet. The raw EEG signal was processed to
extract the average band power of the alpha and beta bands (Sect. 4.1). Table 2b
shows the best baseline performance obtained for each dataset.

Table 2. Baseline visual classification for EEG and Image data

(a) Image stimuli

s

Image Dataset # of classes Accuracy Best Classifier Setup

Marini et al. 2 0.67 HOG - Gaussian Näıve Bayes

Marini et al. 2 0.65 HOG+PCA - Logistic Regression

EEG-ImageNet 39 0.05 HOG - SVM

EEG-ImageNet 39 0.04 HOG+PCA - Gaussian Näıve Bayes

(b) EEG data

EEG Dataset # of classes Accuracy Best Classifier

EEG-ImageNet 39 0.15 Multilayer perceptron

Marini et al. 2 0.53 Logistic Regression

6.2 Classification Using Deep Learning Models

To compare the results with previous baseline performances, we continue our
efforts to evaluate the depth of classification using various state-of-the-art deep
learning classifier models.
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Table 3. CIM performance on Image data for the two datasets

DL Classifier Model EEG-ImageNet Acc Marini et al. Acc

ResNet 0.85 0.81

VGG 16 0.63 0.72

MobileNet 0.33 0.63

AlexNet 0.2 0.54

To classify images, we used different CNN-based image models (Sect. 5.3).
The image stimulus of each trial was first resized (224× 224× 3) to be fed to
the CIM models. Table 3 shows the classification results for both datasets, with
the ResNet model having the best performance. For the LEM classifier, the
EEG data were used as is from the dataset. However, for the GEM classifier,
we applied grayscale-image encoded EEG data (Sect. 4.4). The visual classifi-
cation using the EEG data is shown in Table 4. Marini et al. and the EEG
ImageNet datasets obtained better visual classifications when the EEG signals
were grayscale encoded. Furthermore, GEM performed better when each sub-
ject’s data were stacked as a distinct channel dimension.

Table 4. Comparison of our visual classification on EEG data with SOTA models

Marini et al. dataset

EEG data Encoding Classifier models Marini et al. [18] Acc

Raw EEG data LSTM based Model (LEM) 0.5

Grayscale image encoded EEG data EfficientNet + SVM (rbf) 0.52

Grayscale image encoded EEG data with all 22 subjects as channel EfficientNet + SVM (rbf) 0.73

EEG-ImageNet (results as shown in our previous work [20])

EEG data Encoding Classifier models EEG-ImageNet -Acc

Raw EEG data Stacked LSTMs [28] 0.22

Raw EEG data SyncNet [16] 0.27

Raw EEG data EEGNet [15] 0.32

Raw EEG data EEG-ChannelNet [23] 0.36

Raw EEG data GRUGate Transformer [30] 0.46

Raw EEG data LSTM based Model (LEM) [20] 0.26

Grayscale image encoded EEG data EfficientNet + SVM (rbf) [20] 0.64

Grayscale image encoded EEG data with all 6 subjects as channel EfficientNet + SVM (rbf) [20] 0.70

6.3 Hemispherical Brain Region Classification Comparison

In this experiment, our objective was to estimate the categorization potency
of the EEG signal data based on the left and right hemispherical regions of
the brain with various traditional and deep learning classifiers (Sects. 6.1 and
6.2). We selected a group of 12 electrodes around the left (C3) and right (C4)
motor cortex electrodes as the hemispherical regions. Table 5 lists the top results
for traditional and deep learning classifiers in both datasets. Classification was
marginally improved in the left motor cortex region compared to the right for the
Marini et al. dataset. However, it is interesting to note that the right hemispher-
ical region provided better visual classification accuracy for the EEG-ImageNet
dataset.
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Table 5. Visual classification based on the hemispherical regions of the brain

Exp. Implementation approach Classifier Model Used Dataset Acc (Left-hem) Acc (Right-hem)

1 Alpha and beta band average as features Decision Tree Marini et al. 0.51 0.51

2 Alpha and beta band average as features Gaussian Näıve Bayes Marini et al. 0.53 0.5

3 Grayscale image-encoded EEG data Model (GEM) EfficientNet Marini et al. 0.52 0.51

4 Alpha and beta band average as features Random Forest EEG-ImageNet 0.05 0.05

5 Alpha and beta band average as features Multilayer Perceptron EEG-ImageNet 0.06 0.07

6 Grayscale image-encoded EEG data Model (GEM) EfficientNet EEG-ImageNet 0.13 0.28

6.4 Visual Classification Using Multimodal Deep Learning

The previous experiments were carried out to separately evaluate the visual
classification performance of EEG and Image stimuli data. The isolation of these
different input modes in various classifiers gave us a baseline understanding
of the accuracy. In this section, we test our joint learning experiments using
concatenation-based models (Sect. 5.5).

Table 6 illustrates the performance comparison of our models with the state-
of-the-art multimodal visual classification approaches (Image and EEG data as
inputs). Additionally, the LEM model concatenated with the CIM model was
compared with the GEM model concatenated with the CIM using the EEG-
ImageNet dataset. The results indicated that our GEM-based concatenation
model outperformed the other architectures and reached 95% accuracy for the
EEG-ImageNet. Using this result, we further used this model approach to eval-
uate the performance of joint learning on the Marini et al. dataset. We similarly
obtained a performance improvement for this dataset (78%) compared to using
a single EEG only modality (73%, Table 4).

Table 6. Multimodal deep learning visual classification using Image+EGG data as
cross modal input.

Exp. Implementation approach Model Used Dataset Accuracy

1 Regression-based Model [28] LEM feature regressed with CIM EEG-ImageNet 0.03

2 Siamese network [23] Joint learning with 1D CNN and ResNet EEG-ImageNet 0.91

3 Vertical Stacking [20] ResNet pretained and LEM (end to end) EEG-ImageNet 0.70

4 LEM - based Concatenation Model [20] LEM concatenated with CIM EEG-ImageNet 0.82

5 GEM - based Concatenation Model GEM concatenated with CIM EEG-ImageNet 0.95

6 GEM - based Concatenation Model GEM concatenated with CIM Marini et al.(image stimuli) 0.72

7 GEM - based Concatenation Model GEM concatenated with CIM Marini et al. (real object stimuli) 0.78

6.5 Visual Classification for Real Object Versus Image as Stimuli

As discussed in Sect. 1, the Marini et al. dataset had two different types of EEG
recording trials for each visual stimulus data; one when the subject observed
the real-world object and the other with planar images of the same object. We
applied best-performing deep learning approaches of visual classification to inves-
tigate whether machine learning classification improves in the above-mentioned
differences in visual stimuli. We found a marginal improvement in classification
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performance with real object stimuli using the traditional machine learning app-
roach. However, the GEM-based concatenation classifier provided a 6% increase
in accuracy when the visual stimuli were real objects compared to planar images,
as shown in Table 7.

Table 7. Visual classification using real objects versus planar images stimuli

Exp. Implementation approach Model Used Marini et al. dataset Acc (Image stmuli) Acc (Object stimuli)

1 Baseline classification Model ML classifiers EEG 0.48 0.5

2 LSTM-based EEG Model (LEM) Stacked (BiLSTM + LSTMs) and 128 FC EEG 0.51 0.51

3 Grayscale image-encoded EEG data Model (GEM) EfficientNet EEG 0.49 0.52

4 GEM - based Concatenation Model GEM concatenated with CIM Image + EEG 0.72 0.78

7 Discussion

The datasets used in this work are resourceful but challenging. With 39 classes
(a significantly high number in EEG studies), the EEG ImageNet dataset is one
of the benchmark datasets for the overall EEG classification problem. However,
even though the Marini et al. dataset has two classes, it is worth noting that
there are 192 visual stimulus trials, of which 96 are for real-world object stimuli
and the remaining 96 are for image stimuli. This makes it harder to classify using
deep learning models, as they require a large number of samples to train from
scratch. We chose these two datasets to evaluate the optimal performance of our
proposed visual classification models.

The baseline classification experiments provided the seed results to compare
the stretch of improvement that we achieved while designing more complex clas-
sifier architectures. While experimenting with many deep learning architectures
for visual classification, we found that the grayscale-image encoded EEG Model
(GEM) was best suited for visual classification of challenging datasets such as
EEG-ImageNet [23] and Marini et al. [19]. It performed better as we accommo-
dated the two-dimensional feature information from all 128 channels in a single
image by stretching rather than compressing each channel’s feature space.

We got mixed results for the experiments based on the hemisphere mentioned
in Table 5. The strong ERP in the hemispherical region of the motor cortex is
contralateral to the dominant hand (right-handed subjects in the dataset by
Marini et al.). However, this information was not available in the EEG-ImageNet
dataset.

We also compared different multimodal deep learning approaches on our
datasets. Unlike other modalities, such as text and audio tagged with images, it is
harder for machines to classify patterns from EEG signals because they are more
volatile and noisy [23]. The concatenation-based approach with the grayscale
encoding of EEG data allowed us to accommodate all data (such as electrodes
and the entire set of features for all modalities), unlike other approaches where
you have to select the best electrodes [26] to reduce complexity or the need to
select partial information for each modality [13,23,28]. The GEM-based concate-
nation model also helped to discover that machine perception can be enhanced
with real-world objects as stimuli instead of images.
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8 Conclusion

To conclude this study, we evaluated different approaches to improve visual clas-
sification using a multimodal fusion of brainwave (EEG) and image features using
EEG-ImageNet and Marini et al. datasets with two key takeaways. First, we
designed a state-of-the-art approach to visual classification, the Grayscale-Image
encoded EEG model (GEM), which provides a new benchmark performance
accuracy of 95% in multimodal deep learning classification. Second, we found
that automated visual classification can be improved for multimodal inputs when
the stimulus for EEG recording is a real-world object rather than an image.
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Abstract. Anatomical studies of plant hydraulic traits have tradition-
ally been conducted by manual measurements of light micrographs. An
automated process could expedite analysis and broaden the scope of
questions that can be asked, but such an approach would require the abil-
ity to accurately classify plant cells according to their type. Our research
evaluates a deep learning-based model which accepts a cropped cell image
input alongside a broader cropped image which incorporates contextual
information of that cell type’s original cropped image, and learns to seg-
regate these plant cells based off of the features of both inputs. Whilst a
single cropped image classification yielded adequate results with outputs
matching the ground-truth labels, we discovered that a second image
input significantly bolstered the model’s learning and accuracy (98.1%),
indicating that local context provides important information needed to
accurately classify cells. Finally our results imply a future application of
our classifier to automatic cell-type detection in xylem tissue image cross
sections.

1 Introduction

Plants are important global producers of oxygen and they serve as an important
food source for many animals. This makes plants essential for the existence of
most life on Earth. Most plant life on land is limited to some extent by water
availability. While most plants have some basic adaptations to control water loss
(such as a waxy cuticle covering the leaves and the ability to regulate water loss
through stomata), some plants have adapted to thrive in dry regions such as the
desert and chaparral ecosystems of southern California [1,2]. During drought,
some of the most dehydration tolerant chaparral shrubs can survive internal
water pressures that are more negative than −10 MPa, absolute pressures that
are equivalent to approximately 100 times Earth’s atmospheric pressure [3,4].

The ability of some plants to survive extreme dehydration is attributed
in part to anatomical characteristics of the plant vascular tissue system. The
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Bebis et al. (Eds.): ISVC 2022, LNCS 13598, pp. 237–248, 2022.
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vascular tissue system is composed, in part, of xylem. Xylem tissue transports
water from the roots to the leaves. The xylem tissue contains several cell types
with distinct functions [5], that may be divided into three cellular classifications.
1) Tracheary elements are elongate tubes with a large diameter for the passive
transport of water, which is pulled through the plant by evaporation from the
leaves (i.e., transpiration). They have a thick secondary cell wall and are dead
upon maturity, facilitating their function of long-distance transport. There are
two types of tracheary elements that may be found within chaparral shrubs,
vessel elements and tracheids. 2) Fibers are also elongate cells, but they func-
tion primarily as mechanical support for the stem or root by means of their
thick cell walls with a narrow lumen. 3) Parenchyma cells are short cells that
have thin primary cell walls and are typically alive at maturity. They function
in short-distance transport and storage of water and starch (long-term sugar
reserves). There are two types of parenchyma cells that may occur within the
xylem, axial parenchyma and ray parenchyma. While all flowering plants have
these three cell types present in the xylem, structural adaptations within each
cell type can improve whole-plant dehydration tolerance. Additionally, different
species may differ greatly in the proportions of these cell type classes within
their xylem, with the amount of different cell type classes linked to differences
in plant function [6,7].

Small changes in xylem cell characteristics can have a large impact on their
function. For example, there is a tradeoff between hydraulic efficiency (which
contributes to greater sugar production and growth) and resistance to freezing-
induced gas bubble (embolism) formation in the vascular system (which can
lead to whole-plant mortality), with large diameter tracheary elements being
efficient but highly vulnerable to embolism [8–10]. In a similar way, tracheary ele-
ment implosion resistance (measured as the cell wall thickness to breadth ratio,
(t/b)2) also corresponds to dehydration-induced embolism resistance [11,12].
Although not directly conducting water, the fibers provide mechanical sup-
port (estimated by parameters such as wall thickness and lumen diameter) that
increases embolism resistance and the mechanical strength of the stem [2,12].
The proportion of the parenchyma within the xylem can indicate the plant’s rel-
ative carbon stores, with implications for tradeoffs related to carbon starvation
and drought tolerance [5,6,13].

Traditionally, all these measurements related to plant anatomy have been
taken manually or semi-automatically from light micrographs of transverse stem
sections. However, given the difficulty of scaling up time-intensive measurements
to whole ecosystems or the globe, it is compelling to find faster ways to measure
key xylem traits without compromising accuracy. There is a need for automated,
scalable software tools that could automatically analyze large datasets efficiently.
An accurate but automated way to measure anatomical traits could also allow
us to take advantage of increasingly available large image datasets [14]. In short,
a faster means of measuring key characteristics of xylem anatomy would greatly
broaden the scope of questions that can be asked about plant structure and
function. We tackle this problem in this paper by introducing a deep learning-
based model for classification of plant cells.
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2 Related Works

In recent years, cell type classification with machine learning has received
significant attention particularly in the medical field. Researchers have made
breakthrough findings in cancer cell type classifications [15] and cardiovascular
research [16], for example, where different types of white blood cells were segre-
gated through popular machine learning techniques such as Deep Learning, or a
Random Forest algorithms [17].

Although some prior studies have used semi-automated approaches to classify
plant cells [18], and there exists commercially available software such as Win-
CELL (Regent Instruments, Inc.), there are relatively few previous applications
of machine learning to plant hydraulic anatomy. Previous studies have applied
machine learning algorithms to topics such as plant disease classification [19]
and plant leaf classification [20]; however few studies have been conducted on
machine learning at the cellular level. Those studies at this microscopic level
have mainly been focused on the segmentation of plant tissues, then possibly
classifying those segmented images [14,21–24]. To our best knowledge, we are
the first group to design a cascade-like machine learning model to classify trac-
heary elements (vessels), fibers, and parenchyma cells in plants, with discussions
on the effects of inputting a contextualized image alongside the image to be
classified.

3 Dataset and Problem Definition

Our dataset for this project consists of light micrographs of transverse stem and
root sections of three chaparral shrub species native to the Santa Monica Moun-
tains in southern California: Ceanothus crassifolius (CCR), Ceanothus oliganthus
(CO), and Frangula californica (FCA). The samples were collected in 2007 at
Cold Creek Canyon (34◦05′36.0′′N, 118◦39′02.9′′W). Samples were taken from
three individuals of each species to account for genetic and phenotypic variation
among individuals. Thin circular slices of the stems and roots (transverse sec-
tions or “cross-sections”) were cut using a sledge microtome (Model 860 Sledge
Microtome, American Optical Corp., Buffalo, NY, USA). The cross-sections were
stained with I2KI (to show starch) and mounted in glycerol on microscope slides.
Images of the cross-sections were taken at 100× or 200× magnification using
a light microscope with an attached digital camera (Olympus BH-2, Olympus
Imaging Corp., Center Valley, PA; Spot Insight 2, v. 18.2 Color Mosaic, Diagnos-
tic Instruments, Inc., Sterling Heights, MI). Multiple (non-overlapping) images
were taken of each cross section, with each image showing at least 200 cells.
Our final dataset included 26 CCR, 22 CO, and 37 FCA images. The goal for
this research project is to classify three functionally distinct plant cell types
found in the xylem tissue (vessel, fiber, and parenchyma). Our objective is to
construct a machine learning model that learns the features of these plant cell
types alongside its surrounding characteristics to classify them with high accu-
racy. Flowering plants have two types of conductive tracheary elements: vessels
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Fig. 1. (A) Chaparral shrub stem cut transversely as to prepare cross sections. (B)
Micrograph of transverse cross section with labeled cell types. Boxes are placed as for
cropping. Scale bar = 50 µm.

(typically larger diameter, composed of multiple cells) and tracheids (typically
smaller diameter, composed of a single cell). However, it can be difficult to dis-
tinguish tracheids from other cell types in light micrographs, as large tracheids
can appear similar to small vessels and small tracheids can appear similar to
fibers. Thus, we did not attempt to identify tracheids in this study; we tried
to avoid using images of tracheids. For labeled vessels, we selected large cells
that were most likely vessels and not tracheids. However, it is possible that some
tracheids were incorrectly labeled as vessels or fibers. Additionally, the roots
of some shrubs contained gelatinous fibers, which are morphologically distinct
from the more common sclerenchyma fibers. We categorized all fibers (gelatinous
and sclerenchyma) as falling within the cell type class of “fibers” for this study.
Finally, we did not distinguish between axial and ray parenchyma, but rather
categorized them all within the cell type class of “parenchyma”.

All of the original images were re-scaled to 1600× 1200 for each image cross
section regardless of the shrub species. We utilized a manual image cropping
software called makesense.ai to crop the individual cells. We discarded all the
extremely zoomed out images and chose the images with good resolution. Since
vessels are the least abundant compared to fibers and parenchyma, we started
with cropping the vessels and cropping approximately the same amount for fibers
and parenchyma. The cells that are not fully shown in the image, i.e. are in
the corner or blurry, were not cropped. This process is depicted in Fig. 1. This
cropping process produced 790 unique images of vessels, fibers, and parenchyma
cells.

When splitting our data into training and testing sets, our group decided
to train a model on two shrub species and use the third species as an external
validation. All models were run three times, with different species used as the
test and training sets each time.
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Fig. 2. Illustration of cascade-like framework to achieve a multi-class classification
while avoiding its potential sub-class confusions. This is attained by splitting the clas-
sifier into two binary deep-learning classification models.

4 Methodology

Our research presents a cascade-like approach to classifying plant cell-types and
consists of two separate models, each for their own classification task of varying
complexity. Additionally to the cascade-like models, we then propose the effects
of inputting two image inputs to the machine learning model- the first being a
cropped image of either a vessel, fiber, or parenchyma, and the second being a
broader image that displays some context around that cropped image.

4.1 Data Augmentation and Pre-processing

To mitigate the minute number of cropped training images that we obtained,
some data augmentation was implemented to give our model more generalization.
By using a PyTorch transform, each cropped cell type image was augmented in
terms of a random rotation between 0 and 180◦ ten times.

Our data loading consists of a three step process of pre-processing the images.
The first step is to resize each cropped image to (224, 224) (width, height) pixels,
as the pre-trained ResNet-18 was trained on this image size on ImageNet [25].
Following, we normalize the features in each of the data sets by calculating the
mean and standard deviation for the data set as a whole and computing a z
score standardization for each image, ultimately modifying each image to have
roughly a mean of 0 and standard deviation of 1. Lastly, each pixel value in the
RGB channels are transformed into a range spanning from 0–1 by a division of
255 through a PyTorch Tensor.
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Fig. 3. Portrayal of our experiments of the advantages of an additional cropped image
input to potentially enhance classification results.

4.2 Cascading-Like Model

Due to the fact that a multi-class cell type classification assignment may be
harder for features to be classified, our group trained and optimized one model
on categorizing vessels vs other cell types, and the other on classifying fibers vs
parenchyma cells.

As depicted in Fig. 2, the intuition is to deliver a cropped cell image to two
potential classification models. First, the cropped cell image will be sent to the
a model that will classify it as a vessel or non-vessel. If the first model were to
classify that cropped image was a vessel, then the classification task would be
complete, however, in the case where the image is a non-vessel, then the second
model will classify that cropped image as a fiber or parenchyma.

4.3 Global Contextualization Approach

While local patches can capture detailed information about the texture of a cell,
it lacks the contextual information necessary to classify some cells. The reasoning
behind this approach is due to the potential similarity of fiber and parenchyma
cell class types when strictly cropped with little to no surrounding information,
particularly for fibers and axial parenchyma. However, when including a sec-
ondary image with surrounding information, we hypothesize a preferable more
concise model.

To achieve the contextualized photos, we took the image dimensions of each
cropped plant cell image and re-cropped a new globalized image that is 140 pixels
longer and taller than the original cropped image. As illustrated in Fig. 3, we
decided to extract the features of the original cropped image and the globalized
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cropped image separately in a chosen feature extraction model, then concatenate
the features in a wrapper class where those added features are fully connected
into a probability distribution of two classes.

Fig. 4. Depiction of the cell-type classification we hope to achieve with deep learning.

5 Experiments and Results

To fulfill our research goal, we trained one pipeline that consists of two binary
classification models that classifies one cropped plant cell type input, and a
second pipeline consisting of two binary classification models, that classifies two
image inputs as a plant cell type. For our baseline classification models, we appro-
priated three popular deep learning models: ResNet-18, VGG-16, and DeiT, as
feature extractors by freezing the weights previously trained on ImageNet, and
only training the fully connected layer [25–27].

For each model, our data was partitioned into three data sets. The training
data, which was permuted to choose two of the three plant species for training
and the third plant species as an external validation, was assigned an approx-
imate [90, 10] train-validation split after augmenting. This was done by imple-
menting a random number generator, where on the 1/10th probability scenario,
that image alongside its augmented counterparts would be sent to the valida-
tion data, which was subsequently used for hyper-parameter tuning. Figure 4
illustrates our end goal for classifying these xylem cell-types. We chose an ini-
tial learning rate of 0.1 and decreased it by a magnitude of 10 every n steps
depending on the sub-problem we were trying to solve.

5.1 Model Evaluation Metric

The accuracy of each of our models are evaluated based on the number of pre-
dictions the model gets correct on the external test set divided by the length of
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Table 1. These are the scores for each baseline pre-trained convolutional neural net-
works with the bare cropped image inputs, and the cropped image input with contextual
assistance.

Baseline models ResNet-18 VGG-16 DeiT

Vessel vs other cell types 96.7% 93.9% 97.1%

Vessel vs other cell types + large patches 98.1% 94.8% 98.1%

Fiber vs parenchyma 91.00% 76.4% 82.6%

Fiber vs parenchyma + large patches 91.7% 81.3% 86.8%

the test set. To find these predictions, we take the max of the probability dis-
tribution outputted by our machine learning model and count the overlapping
corrects with our ground truth labels. To determine the overall accuracy of a
cascade-like model, the average score of both sub-models are taken.

For our final models, we have decided to report results by a percentage of
accuracy on the CCR plant species as the external test with an error margin
calculated by the standard deviation of the CCR test accuracies, and the CO
and FCA accuracies. By doing so, we hope to have created classification models
that will yield similar test results within the error margin on other unseen species.

5.2 Baseline Results

To determine which pre-trained feature extractor to use, we trained both mod-
els without data augmentation on the three chosen neural networks (ResNet-18,
VGG-16, DeiT) to determine initial results. Our group decided that ResNet-
18 was the most accurate and efficient feature extractor for our research goals,
because without any augmentation, it is clear that ResNet-18 has the best per-
formance for all sub-problems. Additionally, the information shown in Table 1
starts to strengthens our claim of contextualized images providing classification
assistance, as marginal improvements are evident in the contextualized image
models.

5.3 Results

Our hypothesis of adding a contextualized image to the machine learning model
proved to be accurate. Table 2 shows that adding a global patch for vessel classi-
fication improved the vessel vs non-vessels by 5.7% correctly classifying 211/213
vessels, fiber vs parenchyma by 2.8%, and escalating the overall accuracy by
4.2%. As a justification for our cascade-like architecture, the total accuracy of a
trained and optimized multi-class classification model with data augmentation
and global patch input is also visualized to be evidently worse than both the
non-global patch and with global patch cascade-like models.
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Table 2. A comparison of the performance of ResNet-18 with augmented images and
global patches vs ResNet-18 with just data augmentation. Large patches are shown to
increase classification accuracy. A justification for our cascading-like model is supported
when compared with the multi-class classification results. Abbreviation Notes: (Ves,
Fib, Par, aug) = (Vessel, Fiber, Parenchyma, augmentation

Cascading model Ves. vs other Fib. vs par. Overall accuracy

Large patches + data aug. 99.1 ± 1.2% 97.2 ± 4.3% 98.1 ± 2.6%

Data aug. 93.4% 94.4% 93.9%

Non-cascading model Ves. vs other Fib. vs par. Overall accuracy

Large patches + data aug. x x 90.1%

Fig. 5. Representation of the cropped plant cell images that were misclassified by our
model

6 Discussion

In this study, we used a novel application of machine learning to classify plant cell
types in xylem tissue. We discovered that applying two cascading models (vessels
vs non-vessels and fibers vs parenchyma) achieved more accurate results than a
single model to classify the three cell types. Vessels have a more distinctive shape
compared to fibers and parenchyma, which likely explains why the accuracy
score in the first model is higher than in the second model comparing fibers and
parenchyma. We ran the cascading models three times and found some variation
depending on which two species were used for training and which one species
was used for testing the model. This likely reflects interspecific variation in cell
characteristics and the cell types present (e.g., the lack of tracheids in FCA) and
the challenge of fine-tuning a model that can be accurately applied to a broad
selection of species.
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Additionally, we discovered that incorporating the larger context (“patches”)
surrounding each plant cell improved the accuracy of our classification model.
The appearance and size of plant cells is naturally variable within cell types
(even within a single image), due to a variety of genetic, environmental, or
developmental factors. Thus, the context can greatly increase the confidence
in cell classification (e.g., vessels are larger than fibers). Also, some cell types
can be classified based on the pattern that they form within the tissue. For
example, parenchyma in xylem tissue form lines (“rays”) through the fibers and
vessels, as shown in Fig. 1. Future models may be able to incorporate contextual
information with even greater success.

Another challenge to our current framework is that some cells would overlap
with other cells in the cropped rectangular frame which may cause the machine
to analyze the undesired overlapping cell as part of the region of interest for
classification. When cropping parenchyma for instance, the parenchyma that is
directly next to it would sometimes appear in the cropped frame. As illustrated
in Fig. 5, our model misclassified some parenchyma, fibers, and vessels, whether
it be due to a lack of image quality, or similarity in features. In our future work,
we may try to implement a cropping technique that is similar to the magnetic
lasso tool that would crop the cell at its exact borders.

While promising, our current framework could be expanded and diversified.
For example, we could train and test this model using images from more species,
more developmental stages, and grown under a greater variety of environmental
conditions. While some cell characteristics are fairly conserved within a cell
type, there is an incredible amount of morphological diversity within and among
species. Future studies may determine whether our model can be broadly applied
across ecosystems, growth forms (e.g., woody vs non-woody tissue), and organs
(e.g., stem vs root).

Our cascading model framework could also be applied to classify a greater
number of cell types. For this study, we adopted a simplified classification system
for the three most abundant cell type classes (vessel, fiber, and parenchyma).
However, future models may further distinguish cell types, such as between ray vs
axial parenchyma, libriform vs gelatinous fibers, and vessels vs tracheids. A more
detailed model would also likely benefit from the cascading model framework and
contextual information.

7 Conclusion

Our study produced a novel approach to classifying plant cell types from light
micrographs with high accuracy. Our model may provide a foundation for future
models that are capable of detecting, classifying, and measuring plant cells from
unprocessed light micrographs. Our framework might also be applied to other
times of image datasets, such as micro-computed tomography. With the increas-
ing availability of large image datasets, such a model would greatly broaden the
utility of these resources for research teams that lack the manpower for manual
analysis.
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Abstract. Numerous applications need to concurrently solve multiple
tasks. We present an unsupervised method enabling to create from two
pre-trained neural networks A and B, a network B’ approximating B
while feeding on a part of A’s layers. This “Vampire” Network allows
to significantly reduce the combined weight of the two networks. We
propose the following contributions: (1) we show that two networks of the
same structure but trained on different tasks display quite strong linear
properties between their layers; (2) an unsupervised algorithm replacing
part of the vampire network’s features by linear projections of features
from the first network; (3) we show that the vampire network thereby
created significantly reduces the number of additional parameters needed
to accomplish the second task, and thus the computational load of the
full system.

Keywords: Neural network · Compression · Multitask

1 Introduction

Deep Convolutional Neural Networks (DCNN) are widely used for different tasks
such as detection, semantic segmentation or depth estimation. Since some appli-
cations like autonomous driving need to combine theses different outputs, Multi-
task models seem to be a relevant solution. It consists in generating networks
performing several related tasks at once on the same input, effectively sharing
resources between tasks [2]. One major convenience of such methods is the induc-
tive bias that arises during the training step, that allows one task to benefit from
the training of others, both raising the convergence speed and the generalisation
abilities of the trained network [2]. Another interesting property for embedded
applications is the reduction of the model size due to some shared parts. How-
ever, most of the proposed approaches assume that all tasks must be trained
jointly with available annotated data-sets. Moreover, adding a new task without
modifying the performances of existing ones is also a important feature from an
industrial point of view.

We propose VampNet: 1) Given two DCNN networks NA (that we will call
Master network) and NB , already trained on two different but related task A

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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and B, we formulate a framework to build a new network NB′ that approximates
NB under the challenging hypothesis:

– no annotated learning base is available,
– the master network NA must not be modified,
– the model size of the new network NB′ must be lower than NB

Since both networks estimate related tasks, they should be correlated. We study
this assumption and show that a very simple linear relation can be applied to
replace features in NB by features from NA. The new generated network NB′

is then called VampNet (from Vampire): it saves some computation by using
some simple linear projections of NA features (so-called vampirizing thereafter)
resulting in a strong reduction of the size of the two merged networks. Figure 1
presents an overview of VampNet.

When using a classical DCNN NB (i.e.: without skip connections) replacing
the full feature map of a layer has as consequence that the preceding layers of
the network do not have to be computed anymore. This implies that the deeper
a full layer is replaced, the lower the resulting global network size is. This is
why we focus thereafter on vampirizing a layer (i.e.: the full feature map of the
layer).

We demonstrate our method on several public data-sets for two related tasks:
semantic segmentation and depth estimation. Moreover, we provide a thorough
ablation study to analyse linear correlation between layers and the proposed
model that select the vampirized layer.

The next section presents some relevant works linked to multitask learning,
network merging and correlation based feature analysis. Section three describes
the core of our model while section four shows and analyses the experiments
provided in order to evaluate the VampNet framework.

In this paper, we use the following nomenclature for convolutional neural
networks:

– a feature extracted by a convolutional layer is a single channel of its output
volume. Each element of a channel is then a sample of the feature, as it is
the result of a dot product with the convolution kernel for a different patch
of the input volume.

– a feature-map is the set of features computed by a convolutional layer.

2 Related Work

In order to assess the proposed VampNet model with the wide literature, we
consider three aspects: 1) correlation based feature analysis, 2) neural network
merging and 3) multitask neural networks.

2.1 Correlation-Based Feature Map Analysis

Since the proposed method relies on the assumption that there are linear links
between features of two correlated task networks, we first review relevant works
dealing with linear analysis for neural networks.
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[7] uses Canonical Cross Correlation (CCA) between feature maps to compare
learned representations. By comparing in-training feature maps to their fully
trained version, the authors are able to study the training dynamics of a network.
They explore the application of CCA to model compression.

[13] notes that multiple trainings of the same network starting from differ-
ent random initial states usually converge toward solutions with similar per-
formances, and that learned feature maps of a same layer often correlate with
each other across the solutions. The authors show that it is possible to find a
one-to-one, then a few-to-one mapping between features of the same layer of two
versions of the same network, using activations’ correlation as distance metric.

2.2 Multitask Neural Networks

Multitask learning [2,14] encompasses learning methods aiming to accomplish
multiple tasks at the same time. The main interest of this kind of approach
is inductive bias: by learning two different but related tasks, more meaningful
features are trained. Each task can thus benefit from features that would not
have appeared with its sole training gradient.

Multitask neural network are the deep learning pendant of multitask learning.
Two families stand out fairly distinctively [9]: approaches that have a “hard
sharing” of weights, i.e. using a common body of computations, and approaches
that have a “soft sharing” of weights, i.e. giving each task its own trainable
weights but putting constraints between them.

2.3 Networks Merging

While in multitask learning specific networks are trained to estimate several
tasks, networks merging considers two existing networks which are mixed to
produce a lightweight one. [12] introduces a post-training merging and compres-
sion method based on the convolution kernels’ weights’ values. The approach
consists in a separation of kernels into 1 × 1 convolutions, a K-means clustering
of those new kernels, followed by a Huffman encoding of the found centroids. A
codebook can then be used to get back the full kernels. The clustering step has
the effect that retrieved kernels are not exactly equal to the original ones. The
authors suggest to make up for the changes in performances by fine-tuning the
model on the original training data.

[10] proposes a cascaded architecture to speed up classifiers’ ability to discard
negatives, replacing a monolithic network by a sequence of smaller classifiers
called stages. Stages are of increasing abstraction level and size, the later ones
only being computed if the earlier did not return a negative result. Because
each subsequent stage must be of higher abstraction than the preceding one,
building such an abstraction at each stage would induce a substantial amount
of computing for examples that are not early rejected. To avoid that, the author
gives each stage access to all the features extracted by the previous one, a stage
only adding layers and/or channels to the preceding stage. All the stages are
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trained at the same time under a composite loss. As the sharing is unidirectional,
the later stages do influence the convergence of the earlier ones but not vice versa.

In this paper, we propose a model that starts from several assumptions: 1)
we have two existing trained networks like in network merging, 2) no annotated
data-set is available like in unsupervised learning and 3) the function of the
master network should not be changed.

3 Method

This section describes the core of the proposed model, relying on that correlated
tasks trained using two networks with the same structure generate correlated
Feature Maps (FM) within the two networks. After defining how to compute
linearities between FMs, we propose a simple way, using a convolutional opera-
tor, to replace a feature by a linear projection of one vampirized from another
task network. Since replacing the full FM of a layer is very interesting to save
both computation time and model size, we propose a layer selection relation
to automatically choose where replacing a layer while keeping a good trade-off
between performances and computation budget.

Fig. 1. Overview of the method: computations are spared by reusing results from a
related network. In a first time, features of two networks NA and NB are compared
with each other by linear regression. Features from NA with the smallest residuals
can then be used to predict features from NB by linear projection, thus creating the
network N ′

B , approximating NB . In this example, the displayed results are from fully
replacing UNet layer 11.

3.1 Linearity Between Feature Maps

Given two networks: NA and NB with the same structure but trained on two
different tasks (A and B), we are interested in replacing some features of NB

by linear projections of features of NA, without using any annotated data. This
strategy, called VampNet (NB acts like a vampire when it gets some already
computed features of NA) is motivated by:

– The network NA won’t be modified: it can be mandatory in some industrial
contexts (i.e. such network has already been certificated for task A).
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– The resulting new NB network will save computation time.
– We argue that if task A and B are correlated, The new NB network will keep

good performances.

Let FA,l(X) be a 3D-tensor function returning the feature map associated
to layer l ∈ {1, .., Nl} of network NA for the input tensor X. Moreover, we
define fA,l

w,h,c(X) a function returning the feature sample value for layer l, channel
c ∈ {1, .., N l

c}, and position w ∈ {1, .., N l
w}, h ∈ {1, .., N l

h}. FA,l
c (X) .= FA,l

:,:,c(X)
is a function computing the 2D-slice feature matrix from channel c of tensor
FA,l(X) and fA,l

c (X) .= vec(FA,l
c )(X) the vectorization of FA,l

c (X). The linear
relation between the feature computed by channel c of layer l of network NA

and the feature computed by the channel c′ of the same layer of network NB

can be expressed by:
fB,l
c (X) =

[
fA,l
c′ (X) 1

]
w (1)

with w a parameter vector of size 2.
Given a set of input images X .= {X1, ...Xnx

}, estimating w is given by the
resolution of the following linear system:

⎡

⎢
⎢
⎢
⎢
⎣

fB,l
c (X1)

...
fB,l
c (Xi)

...
fB,l
c (XNx )

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

fA,l

c′ (X1) 1

...
...

fA,l

c′ (Xi) 1

...
...

fA,l

c′ (XNx ) 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

w (2)

However, the number of equations of this linear system is huge (Nx×N l
w×N l

h)
and solving it becomes too complex. We propose a sub-sampling strategy to
reduce the number of equations using only a subset of all possible pixels of the
features.

Let sl
w(i) and sl

h(i) be two sub-sampling functions providing width and height
indexes of a feature of layer l for i ∈ {1, .., N l

s} and with N l
s << N l

w × N l
h. Sub-

sampling vectors associated to the network N. can be defined as:

f̂
.,l

c (X) .= ‖N l
s

i=1F
.,l

sl
w(i),sl

h(i),c
(X) (3)

with ‖ the concatenation operator. The linear equation 2 can be approximated
from a new one, changing full vectors to sub-sampled ones. Several sub-sampling
strategies can be defined.

3.2 Ranking Linearity Between Features

When data are standardized (zero-mean and unit-std), the residue between the
linear prediction and the set of target values is a simple way to estimate linearity.
We define f̃

.,l

c (X) returning the standardized sub-sampled vector by applying
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f̃
.,l

c (X) = 1
σ
f̂.,lc

.(̂f
.,l

c (X) − f̂
.,l

c ) with σ
f̂
.,l
c

the standard deviation (std) and f̂
.,l

c the

mean of f̂
.,l

c (X) over X, and compute the residue by:

rl
c,c′ =

1
Nx

∑

X∈{X}
‖f̃B,l

c (X) − [̃f
A,l

c′ (X), 1]w̃‖2 (4)

The residue provides a natural way to predict if two features are correlated.
We propose to compute a feature-wise residue matrix between the same layer of
networks NA and NB .

3.3 Vampirizing a Feature Using a Convolutional Operator

The simple model we propose to replace a feature is two-steps:

Selection of the closest feature in NA given the feature FB,l
c of channel c of layer l

of network NB , we define the association function providing the closest feature’s
channel for the same layer of NA by:

tlc(c)
.= argmin

c′∈{1,..,N l
c}

rl
c,c′ (5)

Replace by Convolution. The vampire network NB replaces one of its features by
the selected one of NA applying a linear projection. It can be done very simply
using a biased convolutional 1 × 1 kernel. Given a linear relation estimated by
w = [a, b]T between fB,l

c and fA,l
sl
c(c)

, the associated feature of network NB can be
replaced by:

FB,l
c = FA,l

tlc(c)
∗ K (6)

with K a kernel of size 1 × 1 × (Nc + 1) defined by:

K
.=

[
‖Nc

i=1a.δ
tlc(c)
i ‖ b

]
(7)

with δ the Kronecker function and ‖ the concatenation operator. The bias b is
provided by a virtual last channel with unit values.

3.4 Vampirizing a Layer

Replacing a layer is very important in order to save high computational cost.
When VampNet replaces a full layer, it does not have to compute the layers
before it anymore. Vampirizing a layer is achieved by replacing all of its features.
The simple way to do that is by the strategy presented in the previous subsection
(Fig. 2).
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Fig. 2. Sampling method: in a given layer, for a feature pair c from NA and c′ from NB ,
we take a same random set of Ns pixels in the volumes extracted by both networks.
Nh and Nw are the spacial dimensions, Nx is the data-set’s size, and Nc is the number
of features.

3.5 Automatic Selection of the Layer to Be Replaced

VampNet should produce a new model that approximates the original NB net
with a lower inference computation cost. Choosing the layer to be replaced is
very important. The Deeper this layer is, the higher the computation gain will
be. However, we expect that the correlation decreases along the layers. Since the
new network must approximate an existing one for a given task, we propose to
define a layer-to-vampirize selection function with two terms:

Computation Budget Loss. Let Cl(NB) the computation cost of the new network
when replacing layer l of network NB and C0(NB) the cost of NB without any
replacement. We propose to define a loss function by:

LC(Cl(NB)) .=
C0(NB) − Cl(NB)

C0(NB)
(8)

Accuracy Loss. The new network should provide good performances while using
a large number of features coming from a network trained for another task. Like
in knowledge distillation, we consider the output of NB as annotations that
should be estimated by N ′

B . We then propose to estimate the accuracy between
the two networks according to the layer to be replaced with a typical metric for
the targeted task: LA. In the semantic segmentation case, we choose to use the
mean Intersection over Union metric (mIoU).

We propose a layer-to-vampirize selection function that combines both the
accuracy and the computation budget terms:

l̂v = argmin
l∈{1,..,Nl}

λLC(Cl(NB)) + (1 − λ)LA(N l′
B) (9)
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4 Experiments

4.1 Setup

Networks and Tasks. Since the proposed model applies on convolution layers,
we study it on fully convolutional networks with encoders and decoders like the
ones used for segmentation or depth estimation tasks. We use the UNet network
as it is a fairly simple network with such an encoding/decoding structure. How-
ever, the presence of skip-connections breaks the assumption that when replacing
a layer, the previous ones don’t have to be computed anymore. We will com-
pare the impact of such connections into the network structure by comparing
UNet with a degraded version of it without skip-connections that we will call
Encode/Decoder-like (or ED-like). Figure 3 shows The evolution of VampNet
model size related to the vampirized layer with (UNet) and without (ED-like)
skip-connections. On the left figure, the model size (y-axis) is computed as a
ratio related to the original network size. The middle and right figures illustrate
the layers that do not need to be computed (within the overlay areas) if we
choose to replace the layer 14 (red line in the left figure). In this case, the new
model size would be about 1% of the original for both networks (that value can
also be read in Table 1). When using skip connections, some layers before the
replaced one still have to be computed while all preceding layers can be forgot-
ten in the case of ED-like networks (no skip connections). In the case of UNet
and similar architectures however, the first and last layers do not contain many
parameters in comparison to the central ones which have a lot more channels,
and computing them does not cost a lot, it is visible as the low variation rate
on both sides of the left figure. The difference between the two networks’ model
sizes is drawn in green on the left figure.

We chose two tasks for experiments: 1) Depth estimation that consists in
estimating a dense depth map from a monocular image [1,4] and 2) semantic
segmentation that associates a semantic class to each pixel of an input image
[6,8]. These two tasks are known to be quite related [15]. Depth estimation is
selected as the task to be vampirized (A) and semantic segmentation as the
task to be approximated (B). Evaluation of the performance of the semantic
segmentation task is achieved using the classical Mean Intersection Over Union
criteria (mIoU) on a testing data-set.

Data-Sets and Implementation Details. Different data-sets have been used
to train the depth estimation network (called ND) and the semantic segmen-
tation network (called NS). ND was trained using ApolloScape [11] (sequences
from road n◦ 3 for training and sequences from road n◦ 2 for validation) while
NS was trained using Cityscapes [3] (2975 images). Related to Semantic seg-
mentation, we use the 19 default Cityscapes training classes.

The implementation we use was made in the PyTorch framework using a
single GPU. For sub-sampling during the linear analysis, we chose a selection
function that get a constant spatial coverage such as each sample covers 1/16th

of the features For example, for input images of resolution 256 × 256, the first
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Fig. 3. Visualisation of saved computation: on the left, the evolution of the saved
network volume; On the right the two studied architectures: UNet in the middle and
ED-like on the right. The overlays are an example of what can be removed if we choose
to vampirize layer 14, shown as a red line on the left graph. The x-axis units of the left
graph correspond to blue arrows in the networks. (Color figure online)

layer’s output is also 256 × 256 that is 65536 pixels, we sample 4096 of them.
For the middle layers, the spatial resolution drops to 16 × 16 that is 256 pixels,
and we sample 16 of them. This is one of the possible strategies that provides
a computational solution. Moreover, the analysis is achieved on a set of 1000
images.

4.2 Linearity

Feature-Based Linearity. Since the main hypothesis of VampNet is that a
task B feature can be replaced by a linear projection of a task A feature, we first
study the loss of accuracy according to the number of replaced filters in a layer.
Figure 4 shows such evolution for several layers (3, 7, 11 and 15) for both ED-like
and UNet networks. We define the loss of accuracy as the mIoU degradation: a
degradation of 0% means that the VampNet version of the segmentation network
outputs the exact same segmentation maps as the original network. This figure
shows that the more features are approximated, the more the network loses
in accuracy, which is not surprising. However, it also appears that it does not
increase according to the depth. It means that two networks with correlated
tasks share linear information into deep layers: for example, replacing features
in layer 11 yields better results than replacing features in layer 15 (for both
tested networks). It is counter-intuitive because we expected that features grow
in abstraction levels and should become more specific to the task [5].

Layer-Based Linearity. Since the best strategy to reduce the computation
budget is to replace all the features of a layer, the next experiment evaluates
the loss of accuracy (mIoU) according to the replaced layer (See Fig. 5). Like in
the previous experiment, we observe that mIoU degradation does not increase
monotonically according to the depth. The general shape of the curve outlines
that layer-wise linearity seems to be better in the decoder (from layer 10).
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Fig. 4. mIoU degradation depending on
feature replacement ratio at varying
depths.

Fig. 5. mIoU degradation depending on
vampirization depth for full feature map
replacement.

4.3 Trade-Off Selection Between the Accuracy and Computational
Budget

This section studies the couple accuracy, computation budget and the influence
of the function that selects the layer to be replaced.

Table 1 present the couple mIoU degradation and size ratio related to the
replaced layer for the two networks. It confirms that replacing encoding layers
does not provide good performances for both accuracy and computational bud-
get. Regarding UNet, mIoU degradation is below 10% for layers 9 to 11: the
first decoding layers. The model size decreases along layers but we observe a
high reduction between layers 9 and 11. This is directly linked to the network
auto-encoder-like structure with many parameters near the embedded middle
representation. The UNet variant without skip connection does not seem to fol-
low the same variations and mostly presents a degradation of about 10% at layer
11.

Table 1. mIoU degradation and size ratio for a given vampirization layer

Layer 0 1 2 3 4 5 6 7 8

UNet % degradation 96.94 76.38 58.02 72.18 93.73 57.30 34.25 14.31 15.46

% size 99.99 99.86 99.74 99.22 98.96 96.87 95.82 87.47 83.30

ED-like % degradation 71.97 26.87 50.27 78.27 90.77 72.70 67.40 37.75 90.04

% size 99.99 99.86 99.60 99.08 98.03 95.95 91.77 83.42 66.72

Layer 9 10 11 12 13 14 15 16 17

UNet % degradation 4.88 8.44 8.14 42.66 10.08 23.82 35.57 34.89 26.02

% size 49.90 20.67 12.31 5.01 2.92 1.09 0.57 0.17 0.04

ED-like % degradation 42.63 35.03 10.55 24.53 43.36 33.04 28.43 36.23 22.26

% size 33.31 16.61 8.26 4.09 2.00 0.95 0.43 0.17 0.04

The layer to be replaced must be selected according to the desired trade-
off between the accuracy and the computation budget. Adjusting this trade-off
is achieved by a selection function that uses a hyper-parameter λ described in
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Sect. 3.5. Figure 6 studies the evolution of the accuracy loss and model compres-
sion for λ ∈ [0, 1]. For small values of λ, the mIoU degradation is low while
the model size ration is about 50 for UNet and 8% for its variant without skip
connection. As λ increases, the mIoU degradation also increases while the model
size ratio decreases.

Figure 7 shows, according to selected layer to be replaced when λ ∈ [0, 1], a
2D parametric representation of the accuracy loss and model compression rate.
Since we want to minimize both the degradation and model size, the best layer
to be replaced is the one that provide an accuracy loss/size ratio, near the origin.
This graph confirms that layers 11 is a good candidate for both networks. It will
be selected for λ = 0.5.

Fig. 6. Evolution of the size ratio and
mIoU degradation when varying λ from
0 to 1.

Fig. 7. Pareto front of selected layers for
λ ∈ [0, 1].

Figure 8 Shows some output examples from using VampNet on layer 11 of
UNet for a semantic segmentation task with depth estimation as master network.
The UNet original segmentation network has 28M parameters while it VampNet
approximation reduces the model size to 3M (12.31% of the size, that is 87.69%
compression). Differences mainly occur on class boundaries and for small objects.

Fig. 8. Examples of results for a vampirization of layer 11 of the UNet network, with
the input image (a), the output of NA (b), the ground-truth of task B (c), the output
of NB (d), the output of N ′

B (e), and the error mask between NB and N ′
B (f).
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5 Conclusion

We introduced vampire networks, an approach to reduce the cumulative size
of two networks performing related tasks by replacing features of one of them
by a linear projection of the features of the other, while leaving that last one’s
performances untouched. We explained our method of selecting which features
to replace by analyzing the linearity between them, and of computing the pro-
jection parameters, all of this in an unsupervised fashion. We showed that while
replacing some features in a layer can somewhat reduce the needed resources, the
true potential appears if we are able to replace a whole layer, in which case big
portions of the vampire network can be discarded at once. We also showed how
skip-connection can impede that alleviation. Our approach is oriented toward
reducing the size of the vampire network; by approximating its features we over-
all reduce its accuracy, which is a problem that we do not solve here.

In future works we plan to explore several ideas: taking inspiration of what is
done in [13], actually training the projection instead of computing it, potentially
replacing it with a shallow neural network could prove interesting. We could also
use a multiple regression instead of a singular one to predict features. The goal
of our approach being to add new tasks in a cascading manner, experiments with
more than two tasks, meaning multiple source networks, should also be done. A
last idea would be to see how well this method works with networks of different
architectures.
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Abstract. Neural networks are becoming increasingly better at tasks
that involve classifying and recognizing images. At the same time tech-
niques intended to explain the network output have been proposed.
Here we examine three such techniques: Gradient-based Class Activa-
tion Mapping (Grad-CAM), Integrated Gradients (IG), and Integrated
Grad-CAM, and introduce a new technique, that we call Riemann-
Stieltjes Integrated Grad-CAM (RSI-Grad-CAM) that overcomes some
of the shortcomings of those and similar techniques. Like Grad-CAM, our
method can be applied to any layer of the network, and like Integrated
Gradients it is not affected by the problem of vanishing gradients. For
efficiency, gradient integration is performed numerically at the layer level
using a Riemann-Stieltjes sum approximation. Compared to Grad-CAM,
heatmaps produced by our algorithm are better focused in the areas of
interest, and their numerical computation is more stable.

1 Introduction

The visualization of features captured by convolutional neural networks (CNN)
helps explain how they make their predictions. This is a field of rapid devel-
opment in which many techniques have been proposed, tested, and validated.
Methods to provide explanations for the predictions of a CNN can be grouped
into three main categories: primary attribution methods, layer attribution meth-
ods and neuron attribution methods [5].

Primary attribution methods evaluate the contribution of each input to the
output of a model. This approach is model-agnostic, meaning that primary attri-
bution methods work the same regardless of the internal structure of the network
or machine learning system used. Some examples are Integrated Gradients (IG)
[13] and Local Interpretable Model-Agnostic Explanations (LIME) [7].

Layer attribution methods evaluate the contribution of each neuron in a
given layer to the output of the model. These methods are useful to determine
the location of medium and high level features such as the spacial location of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Bebis et al. (Eds.): ISVC 2022, LNCS 13598, pp. 262–274, 2022.
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the various elements that compose an image. Some examples are Gradient-based
Class Activation Mapping (Grad-CAM) [10] and Grad-CAM++ [2].

Neuron attribution methods evaluate the contribution of each input feature
to the activation of given hidden neurons. Both primary and layer attribution
methods can be converted into neuron attribution methods by replacing the
network output with any neuron activation. They may be useful when we are
interested in determining how the activation of a given neuron, rather than the
network output, depends on the input of the network. It is also possible to
combine the effect of the input on a given neuron and the effect of the neuron
on the network output, as in the Neuron Conductance method described in [4].

In our study we look at three gradient based methods: Gradient Guided Class
Activation Map (Grad-CAM, a layer attribution method) [10], Integrated Gra-
dients (a primary attribution method) [13], and Integrated Grad-CAM (layer
attribution method) [9]. We examine their advantages and limitations, and pro-
pose a modification of Grad-CAM in which gradients are replaced with integra-
tion of gradients computed at any layer rather than the input layer. This allows
our method to simultaneously overcome the limitations of grad-CAM, and Inte-
grated Gradients, namely vulnerability to the vanishing gradients problem, and
be applicable to arbitrary hidden networks.

2 Previous Work

Here we look at three gradient-based techniques: Grad-CAM, Integrated Gradi-
ents, and Integrated Grad-CAM.

Grad-CAM. Introduced in [10], this method uses the gradients of any target
concept flowing into a convolutional layer to produce a heatmap, also called
saliency map or localization map,1 intended to highlight the regions of the image
that contribute to predicting the concept.

Grad-CAM works as follows. First we must pick a convolutional layer A, con-
sisting of a number of feature maps, also called channels, A1, A2, . . . , AN (where
N is the number of feature maps in the picked layer), all of them with the same
dimensions. When the network is fed with an input image, the channels/feature
maps of the hidden layers are expected to capture progressively higher features
of the image (beginning with edge detection, shapes, textures, geometric shapes,
and ultimately whole categories such as “dog” and “cat”). We will use the term
“channels” when referring to the third dimension of a layer, and “feature maps”
if we want to stress their feature capturing role.

Let Ak be the k-th feature map of the chosen layer, and let Ak
ij be the

activation of the unit in the position (i, j) of the k-th feature map. Then, the
localization map, or “heatmap,” is obtained by combining the feature maps of

1 We will be using the terms heatmap, saliency map, and localization map interchange-
ably.
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the layer using weights wc
k that capture the contribution of the k-th feature map

to the output yc of the network corresponding to class c.
In order to compute the weights, we pick a class c and determine how much

the network output yc depends of each unit of the k-th feature map, as measured
by the gradient ∂yc/∂Ak

ij , which can be computed by using the backpropagation
algorithm. The gradients are then averaged thorough the feature map to yield
a weight wc

k, as indicated in Eq. (1). Here Z is the size (number of units) of the
feature map.

wc
k =

global average pooling
︷ ︸︸ ︷

1
Z

∑

i

∑

j

∂yc

∂Ak
ij

︸ ︷︷ ︸

gradients via backprop

(1)

The next step consists of combining the feature maps Ak with the weights
computed above, as shown in Eq. (2). Note that the combination is also fol-
lowed by a Rectified Linear Unit function ReLU(x) = max(x, 0), because we
are interested only in the features that have a positive influence on the class of
interest. The result Lc

Grad-CAM is called class-discriminative localization map by
the authors. It can be interpreted as a coarse heatmap of the same size as the
chosen convolutional feature map.

Lc
Grad-CAM = ReLU

(

∑

k

wc
kAk

)

︸ ︷︷ ︸

linear combination

(2)

After the heatmap has been produced, it is min-max normalized and upsam-
pled via bilinear interpolation to the size of the original image, and overlapped
with it to highlight the areas of the input image that contribute to the network
output corresponding to the chosen class (see Fig. 1).

Fig. 1. Original image (left). Grad-CAM locating a dog (center) and a cat (right).

The method is very general, and can be applied to any (differentiable) net-
work outputs.

In spite of its success, Grad-CAM is vulnerable to the vanishing gradients
problem that happens when some or all the gradients get zero or near zero,
(∂yc/∂Ak

ij ≈ 0). This happens e.g. when the network output is near saturation,
i.e., when the value of the output is very close to its maximum (say 100% score
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assigned to a class). In this instance, any increase in the value is very small
(almost zero). The gradients can vanish at hidden layers too.

Integrated Gradients. Introduced in [13], Integrated Gradients avoids the
vanishing gradients problem by using the result of integrating gradients along a
set of network inputs obtained by interpolating between a baseline input (e.g. a
black image) and the actual desired input. A deep network can be interpreted
as a multivariate function F : Rd → [0, 1] from its d inputs to the prediction
F (x) of the network for a given input x ∈ R

d. The goal is to determine which
pixels in the image contribute to the prediction of the network. To accomplish
that, instead of using a single image, the method uses a sequence of interpolated
images between a baseline x′ and the given image x:

γ(α) = x′ + α(x − x′) 0 ≤ α ≤ 1 (3)

Each interpolated image is a combination of γ(0) = x′ (baseline) and γ(1) = x
(given image). Then, the gradient of the network output with respect to each
input pixel xi is integrated as shown in Eq. (4).

IntegratedGradsi(x):: = (xi − x′
i) ×

∫ 1

α=0

∂F (x′ + α × (x − x′))
∂xi

dα (4)

A problem with the Integrated Gradients method is that it is designed for
working with the network inputs and may miss features captured at hidden
(intermediate) layers.

Integrated Grad-CAM. Introduced in [9], Integrated Grad-CAM produces
heatmaps by integrating Grad-CAM saliency maps produces by a set of inter-
polated images between a baseline x′ and a final image x.

M c =
∫ 1

α=0

ReLU

(

∑

k

∑

i,j

∂yc(α)
∂Ak

ij

Δk(α)

)

dα (5)

where Δk(α) = Ak(α) − Ak(0). Here ∂yc(α)/∂Ak
ij represents the partial deriva-

tive of the network output yc with respect to Ak
ij when the input γ(α) =

x′ + α(x − x′) is fed to the network, and Ak
ij(α) is the value of the activation in

location (i, j) of the k-th feature map of the chosen layer. The explanation map
can be computed numerically using a Riemann sum for the integral:

M c ≈
m

∑

�=1

ReLU

(

1
m

∑

k

∑

i,j

∂yc(α�)
∂Ak

ij

Δk(α�)

)

(6)

where m is the number of interpolation steps, and α� = �/m. Finally, M c is
upsampled to the dimensions of the input image via bilinear interpolation.
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3 Methodology

In this section we will introduce a novel attribution method combining ideas
from Grad-CAM and Integrated Gradients, but essentially different from the
approach used in Integrated Grad-CAM. In the next section we will provide
metrics showing how our method overperforms Grad-CAM and Integrated Grad-
CAM.

Like the Integrated Gradients attribution method, our algorithm feeds the
network with a set of inputs obtained by interpolation between a baseline and
a final input. Then, it computes a weight for each feature map to be used like
in Grad-CAM, except that instead of gradients it uses the integral of those
gradients to compute the weight assigned to each feature map.

The computation of the integrated gradients is formally equivalent to the
numerical computation of a Riemann-Stieltjes Integral [6]. We start with a brief
explanation of the concepts and mathematical techniques behind our method.

3.1 Motivation and Theoretical Background

Our technique aims to replace the gradients of the activations Ak
ij used by Grad-

CAM with their integral as the network is fed by a sequence of interpolated
images (recall that k indexes the feature maps within a given layer, and (i, j)
is the location of each of the units of the feature map). The main motivation is
that we are not interested in how much the output network yc for a given class
c changes for an infinitesimal change of the activations Ak

ij , but how much it
changes along the whole interval of values taken by each activation Ak

ij as the
image fed to the network goes from baseline to final image. The idea behind this
technique is inspired by the gradient theorem for line integrals [15, p. 374]: a line
integral through a gradient field ∇F of a scalar vector field F :Rn → R along a
given curve γ : [0, 1] → R

n equals the difference between the values of the scalar
field at the endpoints p = γ(0) and q = γ(1) of the curve:

F (q) − F (p) =
∫

γ

∇F (x) · dr =
∫

γ

n
∑

i=1

∂F

∂xi
dxi =

n
∑

i=1

∫

γ

∂F

∂xi
dxi (7)

Each term
∫

γ
∂F
∂xi

dxi of the final sum is the contribution of the i-th variable
xi to the total change of F . In our method the function will be the output of
the network for a given class yc, and the variables of integration will be the
activations Ak

ij . The gradients are ∂yc/∂Ak
ij , and the term corresponding to the

contribution of unit (i, j) in feature map k will be
∫

γ
∂yc

∂Ak
ij

dAk
ij .

Note that the Ak
ij are not independent variables, but (potentially compli-

cated) functions of the network inputs. An integral in which the variable of
integration is replaced with a function is called a Riemann-Stieltjes integral [6].
In general, the integral of a function f with respect to another function g is
expressed like this:

∫ b

a

f(x) dg(x) (8)



RSI-Grad-CAM 267

where g(x) is called the integrator. In our problem the activations Ak
ij will play

the role of integrators. This kind of integral can be numerically approximated
with a modification of a Riemann sum as follows:

∫ b

a

f(x) dg(x) ≈
m

∑

�=1

f(x�)[g(x�) − g(x�−1)] (9)

where x� = a + �
m (b − a).

3.2 Riemann-Stieltjes Integration of Gradients

In our method we use a Riemann-Stieltjes integral like Eq. (8) with f = ∂yc/∂Ak
ij

as integrand, and g = Ak
ij in the role of integrator, so the weight assigned to

feature map k of the chosen layer for a given class c will be:

wc
k =

1
Z

∑

i,j

∫ α=1

α=0

∂yc(α)
∂Ak

ij

dAk
ij(α) (10)

where α is the interpolating parameter varying between 0 and 1.
The approximate value of the integral in Eq. (10) is given by the following

Riemann-Stieltjes sum, as in Eq. (9):

∫ α=1

α=0

∂yc(α)
∂Ak

ij

dAk
ij(α) ≈

m
∑

�=1

{

∂yc(α�)
∂Ak

ij

× ΔAk
ij(α�))

}

(11)

where α� = �/m and ΔAk
ij(α�) = Ak

ij(α�) − Ak
ij(α�−1). Hence, the following is a

numerical approximation of the wc
k:

wc
k =

1
Z

∑

i,j

(

m
∑

�=1

{

∂yc(α�)
∂Ak

ij

× ΔAk
ij(α�)

})

(12)

3.3 Metrics

We will compare the performance of Grad-CAM, Integrated Grad-CAM and our
RSI-Grad-CAM using two quantitative evaluation approaches, with and without
ground truth.

Quantitative Evaluations Without Ground Truth. Following [2] we use
quantitative evaluations that do not require ground truth. This metric measures
how much the prediction of the network changes when the original image is
replaced by the parts of the image highlighted by the heatmap produced by the
attribution method being tested. Given an image I and a heatmap Lc generated
for this image for class c, we find an explanation map Ec = Lc � I, where �
represents the Hadamard (element-wise) product of Lc and I. Figure 2 shows an
example of image, heatmap, and resulting explanation map.
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Fig. 2. Original image, heatmap, and explanation map.

Feeding the network with an image I we obtain an output Y c = predicted
probability of class c. If we feed the network with the explanation map Ec we
will obtain an output Oc. For a good attribution method we expect Oc to be
close to the predicted probability Y c. Based on this idea, the following metrics
are defined:

Percentage Average Drop =
100
N

N
∑

i=1

max(0, Y ci
i − Oci

i )
Y ci

i

(13)

Increase in Confidence =
1
N

N
∑

i=1

1(Y ci
i < Oci

i ) (14)

where 1 is the indicator function with value 1 if the argument is true, and 0 if
it is false, i is an index running through the image dataset, and ci is the class
predicted by the network when fed with the ith image.

Intuitively, the “drop” is the proportion of decrease of the network output
when replacing the original image with the explanation map, and the Percentage
Average Drop is the average of the drop through the image dataset multiplied by
100 (lower is better). The Increase in Confidence is the proportion of images for
which the explanation map produces a network output larger than the network
output produced by the original image (higher is better).

Quantitative Evaluations with Ground Truth. With an image dataset
containing ground-truth bounding boxes, we can use metrics indicating in what
extent the heatmaps overlapped the bounding boxes. Here we use the Pixel
Energy, defined as

∑
Lc

(i,j)∈bbox∑
Lc

(i,j)∈bbox
+

∑
Lc

(i,j)/∈bbox
, i.e., the sum of pixel intensities in

the part of the heatmap inside the bounding box divided by the total sum of
intensities of the heatmap for the entire image (see energy-based pointing game
in Sect. 4.3 of [14]). When comparing two heatmaps generated by the same input
image, higher pixel energy is better. Range goes from 0 to 1.
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4 Implementation and Testing

4.1 Implementation

We call our algorithm RSI-Grad-CAM (for “Riemann-Stieltjes Integrated Gra-
dient Class Activation Map”). The computation of the weights wc

k and the final
linear combination of feature maps

∑

k wc
kAk are straightforward. The appli-

cation of a ReLU at the end allows to select only the units that contribute
positively to the score of the selected class.

In our implementation, when computing the weights, we also selected only
units in which activations, integrated gradients, and activation total increments
(Ak

ij(m) − Ak
ij(0)) are all positive. This allows the algorithm to ignore extrane-

ous elements that do not contribute to the chosen class score. For instance, if an
image contains a ‘dog’ and a ‘cat’, and we are interested in locating only the dog,
the area of the image containing the cat is expected to produce negative inte-
grated gradients, negative activations, and negative activation total increments
in the feature maps more strongly linked to the ‘dog’ output. As a consequence,
we expect that ignoring those units will produce heatmaps that are sharper and
better focused in locating the elements of the image related to the output of the
chosen class.

After a heatmap has been produced at the layer level, it is min-max normal-
ized and upsampled to the original size and overlaid to highlight the elements
of the input image that most contribute to the output corresponding to the
desired class. Following [13] we pick a black image as baseline, since it naturally
represents absence of image for natural elements.

Figure 3 shows heatmaps generated by our RSI-Grad-CAM method and two
other methods. The heatmaps generated by our method do a better job at locat-
ing the object (at the last convolutional layer of the network) and its parts (at
a layer before the last one).

Fig. 3. Heatmaps generated by Grad-CAM, our RSi-Grad-CAM, and Integrated Grad-
CAM at the last (block5 pool) and next to the last block (block4 pool)) of a VGG19
network when fed with the image shown at the left (a set of guitar picks).
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4.2 Quantitative Evaluations

The examples shown in the previous section are illustrative. Here we use the
quantitative metrics introduced in Sect. 3.3 to evaluate our attribution technique.
For that purpose, we use a common image classification network working on a
fairly large dataset with a variety of images of objects and natural elements, as
detailed below.

Dataset and Model. We used the VGG-19 network pretrained on ImageNet
[11], with input shape 224 × 224 × 3, and performed experiments on a subset
of the validation dataset used for the ImageNet Large Scale Visual Recogni-
tion Challenge 2012 (ILSVRC2012) [8]. The ILSVRC2012 dataset is a subset of
ImageNet with 50,000 images from 1,000 categories, annotated with labels and
rectangular bounding boxes obtained using the Amazon Mechanical Turk [12].
Figure 4 shows two randomly selected images with their bounding boxes.

Fig. 4. Two images from the ILSVRC2012 dataset. Left: image of Alp mountains with
two bounding boxes. Right: image of a sea snake, with one bounding box.

In all the tests we picked a convolutional block and computed heatmaps gen-
erated by each of the attribution methods at the maxpooling layer of the block.
The subset of images was chosen so that: the network predicted the right class,
the image contained only one bounding box, and the bounding box occupied less
that 50% of the image area. The final dataset used contained a total of 12,525
images.

In the next section we compare the performance of Grad-CAM, RSI-Grad-
CAM and Integrated Grad-CAM in three aspects: numerical stability, quantita-
tive evaluations without ground truth, and quantitative evaluations with ground
truth.

Quantitative Evaluations Without Ground Truth (Results). Now we
look at the results of applying Average Drop and Increment in Confidence, intro-
duced in Sect. 3.3.

In order to determine if these metrics depend on the predicted probability, the
graphics shown in Fig. 5 and 6 were obtained by sorting the images by predicted
probability, and computing averages across a fix length rolling window. In our
experiments the window had a width of 1000 samples, so each point in the
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Fig. 5. Average % drop and Increment in Confidence at the last convolutional block.

Fig. 6. Average % drop and Increment in Confidence at the next to the last convolu-
tional block.

Fig. 7. Average energy at the last and next to the last convolutional blocks

graph represents the average metric obtained for 1000 consecutive samples (the
p coordinate in the graph is also the average probability of the 1000 elements
contained in the sliding window). We found that the performance of Grad-CAM
was the best at the last convolutional block, but our method RSI-Grad-CAM did
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slightly better than Grad-CAM, while the performance of Integrated Grad-CAM
got worse when computed at blocks below the last one.

Quantitative Evaluations with Ground Truth (Results). Here we look at
the results of applying Pixel Energy introduced in Sect. 3.3. The results for the
whole dataset (as a function of the probability p predicted by the network) are
shown in Fig. 7. We observe that our method RSI-Grad-CAM performs better
than Grad-CAM at the last and next to the last convolutional blocks of the
network. Compared to Integrated Grad-CAM, RSI-Grad-CAM produces similar
results at the last convolutional block, but again it performs better at the next
to the last block.

5 Conclusions

We have examined three attribution techniques intended to provide explanations
about how CNNs make their predictions, and proposed a new method that better
implements the goals of those techniques.

Grad-CAM uses gradients of the network output for a given class computed
at an arbitrary convolutional layer. Those gradients are used to determine the
relative contribution of each feature map in that layer to produce a heatmap
highlighting the regions of the network input that contribute to the network
output. While this technique works relatively well in many situations, its per-
formance suffers when any of the network layers, particularly its output layer, is
near saturation level. Integrated Gradients overcomes the problem caused by the
network output saturation by integrating the gradients of the network outputs
with respect to the inputs of the network along a set of outputs obtained by
interpolation from a baseline to the desired input. However, it may miss features
captured at hidden layers of the network.

Integrated Grad-CAM offers a solution based on integrating saliency maps.
We include it here for comparison to our method, RSI-Grad-CAM. Unlike Inte-
grated Grad-CAM, our RSI-Grad-CAM method replaces the gradients used by
Grad-CAM with gradients integrated using the activations of the units of the
internal layer as integrators. Compared to Integrated Grad-CAM, our method
has comparable performances only when used at the last layer of the network,
but the performance of Integrated Grad-CAM degrades quickly when used at
hidden layers below the last one, and then our method performs better at those
layers.

Compared to Grad-CAM we observe that the results of applying our RSI-
Grad-CAM method yields better results when applied to images in which the
network outputs are near saturation and has a better numerical stability. Fur-
thermore, it is better suited to detect small details within the region of interest
when used at layers right below the last one—such small details are expected to
be captured at hidden layers below the last one, and we find empirically that
our method works better on those layers.
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6 Future Work

Any method based on line integrals depends on the integration path used. In
our algorithm we feed the network using a set of images linearly interpolated
between a baseline and the desired input. A possible area of research would be
to explore alternate integration paths.

Alternatively, there is a degree of arbitrariness in the choice of the baseline (a
blank image in our case). Ideally the baseline should be an input that produces
equal outputs for all classes. However it is unlikely that only one output has
such property, so additional conditions on the baseline may need to be imposed
depending on heuristic arguments (such as darker baselines being preferred to
bright ones as indicative of “no features present”) and practical considerations
such as final performance.

Although our experiments provide enough evidence in support of the good
performance of RSI-Grad-CAM compared to the other attribution methods
examined here, there is still room to try our method on additional network
models and datasets from other domains such as, e.g., medical imaging. The
sanity checks for saliency methods described in [1] are also a line of research
worth exploring.

Another line of work would be to replace Grad-CAM with our RSI-Grad-
CAM algorithm in existing works, such as the method proposed in [3] for use in
embedding networks.

References

1. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I.J., Hardt, M., Kim, B.: Sanity
checks for saliency maps. CoRR abs/1810.03292 (2018). https://arxiv.org/abs/
1810.03292

2. Chattopadhyay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-
CAM++: generalized gradient-based visual explanations for deep convolutional
networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV) (2018). https://doi.org/10.1109/wacv.2018.00097

3. Chen, L., Chen, J., Hajimirsadeghi, H., Mori, G.: Adapting Grad-CAM for embed-
ding networks (2020). https://arxiv.org/abs/2001.06538

4. Dhamdhere, K., Sundararajan, M., Yan, Q.: How important is a neuron? (2018).
https://arxiv.org/abs/1805.12233

5. Kokhlikyan, N., et al.: Captum: a unified and generic model interpretability library
for PyTorch (2020). https://arxiv.org/abs/2009.07896

6. Protter, M.H., Morrey, C.B.: The Riemann—Stieltjes integral and functions of
bounded variation. In: A First Course in Real Analysis. Undergraduate Texts in
Mathematics. Springer, NY (1991). https://doi.org/10.1007/978-1-4419-8744-0 12

7. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: explaining the
predictions of any classifier. In: Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Demonstra-
tions (2016). https://doi.org/10.18653/v1/N16-3020

8. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

https://arxiv.org/abs/1810.03292
https://arxiv.org/abs/1810.03292
https://doi.org/10.1109/wacv.2018.00097
https://arxiv.org/abs/2001.06538
https://arxiv.org/abs/1805.12233
https://arxiv.org/abs/2009.07896
https://doi.org/10.1007/978-1-4419-8744-0_12
https://doi.org/10.18653/v1/N16-3020
https://doi.org/10.1007/s11263-015-0816-y


274 M. Lucas et al.

9. Sattarzadeh, S., Sudhakar, M., Plataniotis, K.N., Jang, J., Jeong, Y., Kim, H.:
Integrated grad-CAM: sensitivity-aware visual explanation of deep convolutional
networks via integrated gradient-based scoring (2021). https://arxiv.org/abs/2102.
07805

10. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.:
Grad-CAM: visual explanations from deep networks via gradient-based localiza-
tion. Int. J. Comput. Vis. 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-
019-01228-7

11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Bengio, Y., LeCun, Y. (eds.) ICLR (2015). https://dblp.
uni-trier.de/db/conf/iclr/iclr2015.html#SimonyanZ14a

12. Sorokin, A., Forsyth, D.A.: Utility data annotation with amazon mechanical turk.
In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, pp. 1–8 (2008)

13. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In:
Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 3319–
3328. PMLR (2017). https://proceedings.mlr.press/v70/sundararajan17a.html

14. Wang, H., et al.: Score-CAM: score-weighted visual explanations for convolutional
neural networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pp. 24–25 (2020)

15. Williamson, R., Trotter, H.: Multivariable Mathematics, 4th edn. Pearson Educa-
tion Inc. (2004)

https://arxiv.org/abs/2102.07805
https://arxiv.org/abs/2102.07805
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#SimonyanZ14a
https://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#SimonyanZ14a
https://proceedings.mlr.press/v70/sundararajan17a.html


Deep Labeling of fMRI Brain Networks Using
Cloud Based Processing

Sejal Ghate1, Alberto Santamaria-Pang2, Ivan Tarapov2, Haris Sair3,
and Craig Jones3,4(B)

1 Department of Biomedical Engineering, JHU, Baltimore, MD, USA
sghate1@jhu.edu

2 Health AI, Microsoft, Redmond, WA, USA
{alberto.santamariapang,ivan.tarapov}@microsoft.com

3 Department of Radiology and Radiological Science, JHU, Baltimore, MD, USA
hsair1@jhmi.edu, craigj@jhu.edu

4 Department of Computer Science, JHU, Baltimore, MD, USA

Abstract. Resting state fMRI is an imaging modality which reveals brain activity
localization through signal changes, in what is known as Resting State Networks
(RSNs). This technique is gaining popularity in neurosurgical pre-planning to
visualize the functional regions and assess regional activity. Labeling of rs-fMRI
networks require subject-matter expertise and is time consuming, creating a need
for an automated classification algorithm. While the impact of AI in medical
diagnosis has shown great progress; deploying and maintaining these in a clinical
setting is an unmet need. We propose an end-to-end reproducible pipeline which
incorporates image processing of rs-fMRI in a cloud-based workflow while using
deep learning to automate the classification of RSNs.We have architected a repro-
ducible Azure Machine Learning cloud-based medical imaging concept pipeline
for fMRI analysis integrating the popular FMRIB Software Library (FSL) toolkit.
To demonstrate a clinical application using a large dataset, we compare three neu-
ral network architectures for classification of deeper RSNs derived from processed
rs-fMRI. The three algorithms are: an MLP, a 2D projection-based CNN, and a
fully 3D CNN classification networks. Each of the networks was trained on the
rs-fMRI back-projected independent components giving> 98% accuracy for each
classification method.

Keywords: Resting state fMRI · Independent component analysis · Neural
network classification · AzureML

1 Introduction

Functional magnetic resonance imaging (fMRI) is a technique to understand time-
varying, spatially related signal changes in the brain. Since its introduction, fMRI
has revolutionized our understanding of neuroscience and human cognition [1]. fMRI
relies on Blood Oxygen Level Dependent (BOLD) signal change that is modulated by
oxygen uptake in functionally active regions of the brain [2]. Resting state fMRI (rs-
fMRI) is a method to measure intrinsic signal fluctuations without a specific task-based
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paradigm and is gaining popularity for brain activity localization in neurosurgical pre-
planning such as for the eloquent cortex in the brain [3]. The benefits of using rs-fMRI
are that highly correlated brain networks/components at rest can be reproduced across
multiple subjects for appropriate assessment of functional brain regions. Moreover, rs-
fMRI eliminates the need for active patient participation and other task-related logis-
tical/demographic considerations such as cognitively challenged patients for language
mapping.

Independent Component Analysis (ICA) [4] is a mathematical algorithm to sepa-
rate 3D + time rs-fMRI data into 3D spatial maps of statistically independent compo-
nents (ICs) having strong 1D temporal coherence. ICA is advantageous in that it is a
blind-source separation technique that does not require a-priori information for clus-
tering of temporal signals. Group-ICA is a popular method for performing ICA across
a cohort to identify Resting State Networks (RSNs) common to the group as opposed
to subject-level ICA which separates actual neuronal signals from noise for a single
subject. Labeling of these spatial-temporal RSNs can be time consuming and subjective
requiring expertise, thus creating the need for an objective and accurate algorithm for
automated classification.

Over the past few years, deep learning has been gaining popularity to classify relevant
RSNs from rs-fMRI ICA results. Kam et. Al. Proposed a novel spatial-temporal deep-
learning framework to identify noise components from true RSNs, using a 3D CNN for
spatial ICA maps and 1D CNN on ICA time series [5]. Other studies such as Vergun
et. Al., Zhao et al. used deep learning for RSN classification of a smaller number of
ICs (~5–10) [6, 7]. Deep learning based rs-fMRI classification was also used for disease
classification in Alzheimer’s disease and schizophrenia [8, 9]. Our work is similar to
Joliot et al.’s in investigating neural network for classifying ICA signals for a greater
number of RSNs (>40) [10]. Though, in their work, subject specific contributions from
group-ICA results were not used as part of their deep learning training data. In our
study, we use the group-ICA results back-projected to individual subjects to highlight
variability of the same RSN across different subjects, while also classifying a higher
number of RSNs (58) displaying deep networks.

Our goal was to architect a reproducible Azure Machine Learning [11] cloud-
based medical imaging concept pipeline for fMRI analysis integrating the popular
toolkit FMRIB Software Library (FSL) [12] and to use it for a reproducible end-to-
end image processing and deep-learning rs-fMRI classification framework. Figure 1
shows a schematic of our concept pipeline. This workflow incorporates both group-ICA
processing and classification of RSNs on a single platform without the hassle of indi-
vidual software processing and expert labeling. To the best of our knowledge, this is
the first study that performed classification on over 50 RSNs and that will enable the
inclusion of a hierarchy in the labeled networks. We plan to make of public access our
pipeline architecture code and methods for further reproducibility.
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Fig. 1. Schematic of the concept imaging pipeline.

2 Methods

2.1 Data

To demonstrate feasibility and reproducibility, we used the 1000 Functional Con-
nectomes Project publicly available dataset for our experiments. The 176 subjects
(106M/70F) from the Beijing-Zhang cohort were selected (mean age of 21.2 ± 1.9)
all data acquired on a 3T scanner, and the fMRI data had a TR = 2 s, more details on
the projects website [17].

2.2 fMRI Resting State Analysis

The rs-fMRI analysis was composed of three main steps: (1) standard pre-processing
pipeline to resample image volumes to a standard reference coordinate system; (2) per-
forming group ICA to estimate group level components; and (3) dual regression analysis
to estimate group components at the subject level.

Step 1: The pre-processing pipeline consisted of several steps implemented using
FSL [13] including motion correction (MCFLIRT with standard parameters), spatial
smoothing (FWHM = 7mm), temporal filter (default high pass filter), and registration
(resampling to MNI standard space using FLIRT).

Step 2:Group ICAof rs-fMRIwas performedusingFSLMELODIC.TheMELODIC
model order was set to 100 ICs and was selected based on highest variability amongst
respective ICs. ICA output maps were reviewed and labeled as RSNs based on anatomic
location by a neuroradiologist with 12 years of fMRI expertise. There were 58 unique
labels identified for classification. Two classes, ‘Noise’ and ‘Unknown’ were used for
ICs that did not display true RSNs.

Step 3:We used the dual regression (back-projection) algorithm implemented in FSL
to estimate group components per subject. This was implemented in two stages. Stage
1, regress the group ICA spatial maps (from Step 2) into each subject’s 4D dataset to
resulting in a set of time courses; and Stage 2, regress the time courses into the same 4D
dataset to get a subject-specific set of spatial maps [14]. All the processing components
were executed using Azure Machine Learning Cloud-based analytics.
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2.3 Neural Network Methods

The total dataset size from the back-projected dual regression processing was 17,600 3D
volumes of size 45 * 54 * 45 voxels each. The data was split into training, validation,
and testing groups (70/10/20%) and the split was performed at the subject level. Each
split had a similar distribution of labels representative of typical rs-fMRI group-ICA
results. Three neural network architectures were compared in terms of accuracy, time to
train, and time to predict. To account for the class imbalance, where ‘Noise’ dominated
as compared to the 57 other classifications, all labels were weighted according to their
distribution in the dataset. The SGD optimizer, and Cross Entropy loss with weighted
labels, were used for all three networks. Data was trained with a learning rate of 1e-3, a
batch size of 32 and 25 epochs across all three networks. All training was performed on
the AzureML platform using an NVIDIA K80 GPU compute cluster.

MLP: We chose to first incorporate a multi-layer perceptron (MLP), as opposed to
CNNs, to understand the voxel-voxel interactions through the fully connected layers.
Three fully connectedhidden layerswere usedof 200neurons each,withReLUactivation
and a dropout of 66% after the second layer. No down sampling or data augmentation
was performed on the dataset before training.

Fig. 2. Pipeline of the classifications: (left) Axial, Coronal and Sagittal images of a 3D back-
projected rs-fMRI dataset is flattened and input to the (middle) Multi-Layer Perceptron consisting
of 3 hidden layers of 200 neurons each, and finally (right) classifying a specific RSN label.

2.5D Neural Network: The novel 2D data representation was constructed from the
back-projected 3D volumes transformed into 3-channel 2D slices by projecting the sum
of the voxel information across each of the axial, sagittal and coronal planes and setting
them in the red, green and blue channel, respectively. Each of the projected image
intensities were scaled to an RGB intensity range (0–255). This transformation thus
retained all the information yet drastically reduced input volume size. A 2D ResNet
(resnet-50 in PyTorch) with pretrained weights was trained on these images using the
same hyper-parameters as the previous model (Fig. 3).

3D Neural Network: A pretrained 3D ResNet architecture (r3d_18 in PyTorch) from
the Torchvision videomodelswas trained on the 3D fMRI cluster volumes. No additional
data augmentation was performed on the datasets prior to training.
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Fig. 3. The input of the 2.5D network is a constructed RGB image based on (left) an axial
projection of the back-projection of the fMRI IC (red channel), (middle-left) sagittal projection
(green channel), (middle-right) coronal projection (blue), and (right) the 2.5D resulting RGB
image.

3 Results

3.1 fMRI Resting State Analysis

We architected a reproducible Azure Machine Learning [11] cloud-based medical imag-
ing concept pipeline for fMRI analysis integrating the popular toolkit FMRIB Software
Library (FSL). The core components of the concept pipeline are: 1) data ingestion com-
ponent using a Blob Storage Container [15]; 2) Docker container with Ubuntu 18.04,
FSL v6.0 [12] and Miniconda [16]; 3) a Python script to run FSL; and 4) configurable
compute cluster. The pipeline is capable to orchestrate end-to-end steps or individual
steps based on the configuration. We integrate modularity by building docker containers
for required processing steps, one to run FSL-based image analytics and another Docker
container built around the PyTorch image libraries. To enable full reproducibility, the
pipeline automatically tracks datasets, code version control and Anaconda environments
(and code dependencies). Similarly, the analysis pipeline has full traceability of input
parameters for downstream analysis. All the algorithms packaged in docker containers
and executed from the Azure Machine Learning Cloud. Figure 2 below shows an exam-
ple of an image registration output using FLIRT (pre-processing step) when executed
in the pipeline. The image in gray is the rs-fMRI volume (spatial component), red con-
tours correspond to the reference image. Once individual dual regression volumes were
estimated, they were used to train a classifier to semantically predict the resting state
components (Fig. 4).

Fig. 4. Example of a representative registration of a subject (grayscale) and the reference image
(red contours). (Color figure online)
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3.2 Neural Network Performance Comparison

Our results indicate that all three neural networks could be used as an accurate classifier
to classify the RSNs, showcasing greater than 98% testing accuracy in all models. Since
the hyperparameters used were the same across all models, and no data augmentation
was performed on the training dataset, a comparison was conducted based on accuracies
obtained and time taken to train the model for optimization purposes. Table 1 below
summarizes the training, testing accuracies and duration ofmodel training and inference.

Table 1. Summary of the training and testing rs-fMRI classification accuracy and total training
time taken.

Model Training accuracy Testing accuracy Training duration Inference duration

MLP 99.8% 100% 5 min 1.9 s

2.5D 99.4% 99% 33 min 23 s

3D 98.1% 98% 12 h 23min 904 s

As shown in Table 1 above, the MLP neural network reached a 100% testing
classification accuracy, while the 2.5D and 3D models reached 99% and 98% testing
classification accuracies.

Another important factor is the time to train each network considering future planned
work with larger datasets. Training and inference were fastest for the MLP (5 min and
~2 s, respectively), while the longest training and inference time was taken by the 3D
CNN model training (over 12 h for training and 15 min for inference).

4 Discussion

The purpose of training our dataset on three different models was to understand which
model would be most efficient for deployment and resulted in accurate classifications.
Though all models gave excellent accuracies, the MLP had a 100% accuracy on the test
data and the shortest inference time. Though CNN architectures are more commonly
used for image classification problems, we believe that the MLP was able to extract
voxel-to-voxel interaction at a lower level as opposed to high-level features such as
edges and contours derived from a CNN. This reasoning can also be validated looking
at the back projected rs-fMRI images which do not display any strong edges or contours
whenqualitatively andvisually assessing the image.Additionally, since only 200neurons
were used in the hidden layers, the number of parameters would be considerably fewer
than present in a 3D-CNN network. Hence, we infer that the ideal model to be used for
further studies would be the MLP given the fast inference time for deployment purposes
and similar accuracy to the convolutional architectures.

Another factor that may have led to such high accuracies is the distinct variability
amongst different networks and the deep labeling performed in the dataset. Labels were
annotated in such away that each label comprised of a functional name (e.g., ‘Language’,
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‘Motor’, or ‘Visual’) along with the anatomical region of the functional network (e.g.,
‘Ventral’, ‘Dorsal’, ‘Superior’, etc.). Table 2 displays examples of the labels used in the
classification. The purpose of this sequence adopted during the labeling is the emergence
of certain hierarchies between sub-networks that can also be easily distinguished while
classification. The labels displayed show lowest-level specific brain networks.

Table 2. Example labels of rs-fMRI networks.

DMN-PCC-MID EXECUTIVE-POSTERIOR-LEFT

ATTENTION-DORSAL-IPS-MID MOTOR-VENTRAL

VISUAL-LINGUAL-ANTERIOR SENSORY-DORSAL-HAND-RIGHT

DMN-CINGULATE-MID SALIENCE-INSULA-POSTERIOR

COGNITIVE-MFG LANG-BROCA

Since the current study incorporates back-projected data from a group-ICA process-
ing conducted for a model order of 100 independent components, the RSNs produced
account for ICs that may display a deeper classification of RSNs compared to a group-
ICA study with model order 20. As an extension of the current study, we aim to perform
group-ICA on the cloud-based FSL pipeline for different predefined independent com-
ponent model orders, to generate greater variability in the dataset which may include
higher level, bigger RSNs as well as deeper, more specific RSNs. Additionally, the cur-
rent dataset only includes one demographic of data acquired from Beijing. With the FSL
image processing pipeline in the cloud, we plan to conduct an experiment on all sub-
jects across every cohort present in the 1000 Functional Connectomes dataset, creating
a dataset that is representative across different demographics.

The inclusion of RSNs with different levels of hierarchies and comprehensive label-
ing enables the extension of this study not just for multi-class classifications but also
for multi-label classification providing information across taxonomies of functional net-
works and their respective anatomical regions. This would be particularly beneficial to
identify two ambiguous RSNs that may overlap with each other as a result of coherence
during ICA separation. The results from the deep learning classifications can be used to
further create a hierarchical classification model.

In realistic scenarios, end-to-end cloud-based systems must be capable of not only
training and deploying AI models but to pre-process large amounts of data using compu-
tational tools that were not originally designed to be operated in the cloud. This scenario
poses the challenge of how to architect robust cloud systems so that they benefit from
new capabilities from cloud computing while they can efficiently integrate standardized
medical imaging libraries (such as FSL) to provide an end-to-end cloud-based pipeline.
We plan to make our pipeline core components publicly available and further optimize
the integration of FSL and enable parallel processing to minimize the processing time.
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5 Conclusions

We have demonstrated interoperability of well-established image processing libraries
with state-of-the art cloud-based architectures for a large dynamic imagingmodality like
fMRI.Wehave efficiently processed rs-fMRI image data by integrating image processing
libraries such as FSL for a large cohort in a scalable cloud-based environment. This step
is critical when needed to apply and optimize machine learning algorithms at large
scale in realistic scenarios. We have compared the performance of three neural network
architectures to perform classification of deeper RSNs representing over 50 functional
regions, with theMLP providing fastest inference times with a testing accuracy of 100%.
This study provides a foundation for an end-to-end rs-fMRI processing and classification
pipeline which can be extended to more robust multi-label/hierarchical classifications
in the future.
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Abstract. The idea of neural Ordinary Differential Equations (ODE)
is to approximate the derivative of a function (data model) instead of
the function itself. In residual networks, instead of having a discrete
sequence of hidden layers, the derivative of the continuous dynamics
of hidden state can be parameterized by an ODE. It has been shown
that this type of neural network is able to produce the same results as
an equivalent residual network for image classification. In this paper,
we design a novel neural ODE for the semantic segmentation task. We
start by a baseline network that consists of residual modules, then we
use the modules to build our neural ODE network. We show that our
neural ODE is able to achieve the state-of-the-art results using 57% less
memory for training, 42% less memory for testing, and 68% less number
of parameters. We evaluate our model on the Cityscapes, CamVid, LIP,
and PASCAL-Context datasets.

Keywords: Semantic segmentation · Neural ODE · Deep learning

1 Introduction

Neural Ordinary Differential Equations. In machine learning, we try to
iteratively find a function that best describes the data. There are two basic
approaches to finding this function. The first approach is to directly approximate
the function by an analytical or numerical method. An ordinary linear regression
falls into this category. The second approach is to approximate the derivative
of the function. This results in an Ordinary Differential Equation (ODE) which
by solving, we get the approximation of the function. We can parameterize the
derivative of the function as a neural network.

Now, consider a residual network [15] where all the hidden states have the
same dimension. Such networks generate an output by doing a sequence of trans-
formations to a hidden state [6]:

ht+1 = ht + f(ht, θt) (1)

By adding infinite number of layers, we get the continuous dynamics of hidden
units using an ODE defined by a neural network [6]:

dh(t)
dt

= f(h(t), t, θ) (2)
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Down-sampling The function f
(Wrapped in an ODE solver)

Up-sampling and
summation

Fig. 1. The overall structure of the proposed method. The down-sampling uses con-
volutions with stride = 2. For the up-sampling, we use bilinear interpolation to avoid
the checkerboard artifact [31].

where f(h(t), t, θ) is a neural network layer parameterized by θ at layer t. By
solving the integral:

h(t) = h(t0) +
∫ T

t0

f(h(t), t, θ) dt, (3)

we can get the output value of a hidden layer at some depth T .

Semantic Segmentation. Semantic segmentation refers to the process of
assigning each pixel in an image to a class label. Current state-of-the-art neural
networks for semantic segmentation require a considerable amount of memory for
training (especially with high-resolution images). Based on the fact that neural
ODEs use less memory [6], in this paper we propose a novel neural ODE design
for the semantic segmentation task. We evaluate our model on the Cityscapes
[8], CamVid [2], LIP [12], and PASCAL-Context [28] datasets and show that it is
able to produce the state-of-the-art results using 57% less memory for training,
42% less memory for testing, and 68% less number of parameters.

2 Related Work

Neural ODEs. Recently, several works have analyzed the relationship between
dynamical systems and deep neural networks. In [40], the authors propose the
idea of using continuous dynamical systems as a tool for machine learning. In [25],
it has been shown that many effective networks, such as ResNet [15], PolyNet
[43], FractalNet [19], and RevNet [11], can be interpreted as different numerical
discretizations of differential equations. When the discretization step approaches
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zero, it yields a family of neural networks, which are called neural ODEs [6].
[6] proposes to compute gradients using the adjoint sensitivity method [33],
in which there is no need to store intermediate quantities during the forward
pass of the network. In [46], an interpretation of Dense Convolutional Networks
(DenseNets) [17] and Convolutional Neural Networks with Alternately Updated
Clique (CliqueNets) [41] is provided from a dynamical systems view point.

Memory Usage Reduction. There are methods to reduce memory footprints.
Reduced precision formats are binary floating-point formats that occupy less
than 32 bits (four bytes) [9,27]. These formats either reduce the accuracy or
add some processing overhead for converting high precision to low precision.
Many other memory reduction techniques are derivatives of binomial gradient
check-pointing [7,14,35]. The overall idea of gradient checkpointing is that the
results of cheap operations such as batch normalization [18] or ReLU can be
dropped and then recomputed later. All the gradient check-pointing approaches
add processing overhead during training.

Semantic Segmentation. Current state-of-the-art methods for semantic seg-
mentation are based on convolutional neural networks. These networks have
different architectures. Encoder-decoder or hourglass networks are used in many
computer vision tasks like object detection [22], human pose estimation [29],
image-based localization [26], and semantic segmentation [1,23,30]. Generally,
they are made of an encoder and decoder parts such that, the encoder gradually
reduces the feature maps resolution and captures high-level semantic informa-
tion, and the decoder gradually recovers the low-level details. Because these
networks lose the image details during the encoder path, they are not able to
achieve the highest results without using skip connections. Spatial pyramid pool-
ing models perform spatial pyramid pooling [13,20] at different grid scales or
apply several parallel atrous convolution [4] with different rates. These models
include the two well-known PSPNet [44] and DeepLab [5]. High-resolution repre-
sentation networks [10,16,39,45] try to maintain a high-resolution hidden state
from input to output. By doing low-resolution convolutions in parallel streams,
high-level features are gained while low-level details are not lost. Since these net-
works require a lot of memory, they first down-sample the input image to a lower
resolution before the main body. Some approaches [3,4] do post-processing, such
as conditional random fields, on the network’s output to improve the segmen-
tation details, especially around the object boundaries. These approaches add
some processing overhead to training and testing.

Semantic Segmentation Using Neural ODEs. There are only a few meth-
ods for semantic segmentation that have partially incorporated neural ODEs in
the network design. In [32], a U-Net is modified to use neural ODEs. In this
design, the repeated residual blocks in each branch are replaced by a neural
ODE that wraps around only one convolutional block. Although U-Net is a well-
known network, more recent networks can achieve higher results than U-Net.
In this paper, we design our network based on the HRNetV2 [39] which can
achieve the state-of-the-art accuracy on the Cityscapes [8], CamVid [2], and LIP
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Fig. 2. The baseline network is created by repeating the last module from HRNetV2
[39] which has four branches with different feature-map resolutions. We use skip con-
nections at the module level (not drawn). So, each module is treated as a residual block.
Each small block in a module consists of one set of batch normalization [18], ReLU,
and convolutional layers. This network is not a neural ODE and is trained similarly to
HRNetV2.

[12] datasets. Similar to [32], another modified U-Net is introduced in [21]. This
time, instead of replacing a branch with a neural ODE block, a neural ODE block
is added at the end of each branch. In [38], a novel approach that combines neu-
ral ODEs and the Level Set method is proposed. This approach parameterizes
the derivative of the contour as a neural ODE that implicitly learns a forcing
function describing the evolution of the contour. This approach is limited to the
segmentation of images with one target class.

3 Method

We introduce a baseline network that is trained without the use of neural ODEs.
Then we introduce a neural ODE equivalent to the baseline network. Our goal
is to compare the results step by step, from a state-of-the-art network to the
baseline network, then to the neural ODE network.

3.1 Baseline Network

At the time of writing, one of the state-of-the-art methods in semantic segmen-
tation is HRNetV2 [39]. We try to adopt this network architecture and turn it
into a residual form such that each module is like a residual block. To this aim,
we repeat the last module in series, multiple times and treat each one of them as
a residual unit (as depicted in Fig. 2). This way, the network consists of multi-
ple residual modules, each module has four branches with different feature-map
resolutions, and each branch has multiple residual blocks. In our experiments in
this paper, we repeat the main module six times to keep the number of param-
eters close to HRNetV2. We use this baseline network to gradually evaluate the
design of our neural ODE network.

3.2 SegNode

Since the baseline network has an overall residual form, we can turn it into a
neural ODE. In this form, a single or multiple modules act as the function f in
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Table 1. Comparison of results on four datasets. We use † to mark methods pretrained
on Mapillary.

Method Cityscapes CamVid LIP PASCAL-Context

HRNetV2 [39] 81.6 80.9 55.9 54.0

HRNetV2+OCR [42] 83.0 81.7 56.6 56.2

HRNetV2+OCR† [42] 84.2 – – –

U-Node [32] 78.1 77.3 51.3 49.7

NODEs-UNet [21] 79.5 78.8 52.9 50.9

Baseline network 81.7 81.0 55.9 53.9

SegNode 81.8 81.1 55.8 54.1

SegNode+OCR 83.1 82.0 56.7 56.2

SegNode+OCR† 84.5 – – –

Eq. 1. This module (or modules) is wrapped in an ODE solver. Since the main
module has four convolutional streams with different resolutions and number of
channels, we use convolutional layers to create the input feature-maps with the
corresponding resolution and number of channels. The resulting four tensors are
fed to the ODE solver. The output of the ODE solver has the same format as its
input. By using four convolutional layers, the number of channels of the output
feature maps is changed to the number of classes. Then, the feature maps are
re-scaled to the higher resolution using bilinear interpolation and added together
to produce the final output (as shown in Fig. 1). Bilinear interpolation is used
to avoid the checkerboard artifact [31]. We call our network SegNode for short.

4 Experiments

We evaluate our approach on four datasets: Cityscapes [8], CamVid [2], LIP [12],
and PASCAL-Context [28]. Additionally, since the existing neural ODE methods
for semantic segmentation have not been evaluated on these datasets, we train
and test the two U-Net based methods [21,32] on these datasets and report their
accuracy.

4.1 Setup

We pretrain our baseline and SegNode networks on ImageNet [37] and use the
pre-trained networks in all our experiments. We use the mean Intersection over
Union (mIoU) metric to compare all the methods.

For the baseline network, we use AdamW optimizer [24] with a weight decay
of 0.05 and batch size of 16. We apply the “polynomial” learning rate policy
with a poly exponent of 0.9 and an initial learning rate of 0.0001.

For SegNode, we use the Runge-Kutta ODE solver provided by [6]. Also, we
use the adjoint sensitivity method [33] which is available in the same implemen-
tation. We use the SGD optimizer with a base learning rate of 0.1, a momentum
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Table 2. A comparison of a few important empirical computational measures on an
NVIDIA Tesla V100 32GB for CamVid [2] dataset. The training time per epoch is cal-
culated using the maximum batch size possible. Our method requires the least amount
of memory, but the longest computation time for training and testing.
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U-Net [34] 36 21.8 0.8 10 4 31.0

PSPNet [44] 24 31.2 0.8 18 5 23.7

Deeplab v3 [5] 24 31.3 1.0 24 16 58.6

HRNetV2 [39] 24 31.1 1.2 18 48 65.8

Baseline network 24 31.9 1.2 19 49 70.9

SegNode 62 13.4 0.7 34 117 20.9

of 0.9, and no weight decay. The polynomial learning rate decay function is used
with a poly exponent of 0.9.

For both the baseline network and SegNode, similar to HRNetV2 [39], we
use a stem for the input image, which consists of two stride-2 3× 3 convolutions
to decrease the resolution to 1/4, and is connected to the main body. The main
body outputs the feature maps with the same resolution (1/4), which are then
made larger as the original resolution using bilinear interpolation. Each stream
in the main body has 48, 96, 192, and 384 channels respectively from the highest
resolution to the lowest. We use two modules in the main body to achieve the
highest accuracy.

4.2 Cityscapes

The Cityscapes dataset [8] contains 5k high quality pixel-level finely annotated
street images. The finely annotated images are divided into 2,975/500/1,525
images for training, validation, and testing. Also, the dataset contains additional
20k coarsely annotated images. There are 30 classes, and 19 classes among them
are used for evaluation. We train on the training, validation, and coarse sets to
get the highest accuracy on the test set.
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Fig. 3. Segmentation results from trajectories at different times. This image shows how
the gradual transformations correct the segmentation over time.

4.3 CamVid

Compared to Cityscapes [8], CamVid [2] is a much smaller dataset focusing on
semantic segmentation for driving scenarios. The original version is composed of
701 annotated images in 32 classes with size 960× 720 from five video sequences.
However, most literature only focuses on the protocol proposed in [1] which splits
the dataset into 367 training, 101 validation, and 233 test images in 11 classes.
We follow this protocol for training on CamVid.

4.4 LIP

The LIP dataset [12] contains 50,462 human images with detailed annotations.
The dataset is divided into 30,462 training, 10,000 validation, and 10,000 test
images. The model evaluation is done on 20 categories (including the background
label). We follow the common testing protocol [36,39] and resize the images to
473×473.

4.5 PASCAL-Context

The PASCAL-Context dataset [28] adds annotations for more than 400 addi-
tional categories to the PASCAL VOC 2010 dataset. It contains 4,998 training
and 5,105 validation images, subsets of PASCAL VOC 2010 dataset. The dataset
annotations cover 100% of pixels while the previous annotations covered around
29%. We follow [39,42] and evaluate our method on 59 sub-categories.
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Fig. 4. The average mean IoU error of the trajectories during solving time, calculated
on the PASCAL-Context validation set.

4.6 Results

Table 1 compares the results of our proposed method to different variants of
HRNetV2 and existing neural ODE methods. On average our method performs
better than HRNetV2 and its variants by a small margin.

We tried and improved the existing neural ODE methods in our implemen-
tation by increasing the number of parameters and tuning hyper-parameters.
Still, our proposed design can achieve higher accuracy by a large margin. The
main reason is that we started our design from a better-performing network
architecture and modified it step-by-step towards the final design.

4.7 Empirical Computational Cost

In this section, we provide an empirical comparison between our approach and a
few well-known networks. We use an NVIDIA Tesla V100 32GB with the same
network hyper-parameters as used before. All the experiments are implemented
in Python using PyTorch. The results are calculated on CamVid [2] dataset with
an image size of 480 × 360.

Table 2 compares a few important empirical computational measures. Our
method requires the least amount of memory, but the longest computation time
for training and testing by a large margin. In particular, compared to HRNetV2
[39], while our method has 68% less number of parameters, it requires 57%
less memory for training and 42% less memory for testing. On the other side,
HRNetV2 requires 47% less training time and 59% less testing time.
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4.8 Trajectory Error

In this section, we show how the ODE solver gradually improves its output
during test time. Figure 3 visualizes the segmentation output of the network
trajectories over time for one sample image. This figure shows the steps that
the ODE solver takes during solving the network. To generate each step, the
corresponding hyper-parameter of the ODE solver is modified to partially solve
its input.

Figure 4 shows the average mean IoU error of the trajectories over time for
all the samples in the PASCAL-Context validation set. One of the biggest issues
with neural ODEs is that they require more computational resources during test
time. To alleviate this problem, it is possible to sacrifice accuracy for speed.
As an example, by sacrificing 3% of accuracy, the required computational time
decreases by 50%.

5 Conclusion

Based on a current state-of-the-art network, we proposed a novel neural ODE
design for semantic segmentation. The new idea of neural ODEs helped us to
reduce the memory requirement with the cost of more processing time. While
using a notably less amount of memory, our method (SegNode) was able to
achieve state-of-the-art results. The proposed method can be used for all the
computer vision tasks that can make use of dense 2D predictions such as human
pose estimation and object detection tasks.
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Abstract. We present a novel approach for the visual prediction of human-object
interactions in videos. Rather than forecasting the human and object motion or
the future hand-object contact points, we aim at predicting (a) the class of the on-
going human-object interaction and (b) the class(es) of the next active object(s)
(NAOs), i.e., the object(s) that will be involved in the interaction in the near
future as well as the time the interaction will occur. Graph matching relies on
the efficient Graph Edit distance (GED) method. The experimental evaluation of
the proposed approach was conducted using two well-established video datasets
that contain human-object interactions, namely the MSR Daily Activities and the
CAD120. High prediction accuracy was obtained for both action prediction and
NAO forecasting.

Keywords: Activity prediction · Next active object prediction · BP-GED

1 Introduction

Prediction provides smart agents the ability to take a look into the future in order to
proactively foresee possible outcomes or adverse, high-risk events. This enables them
to plan timely responses for early intervention or corrective actions [15,16,26]. Such a
competence is rather important when it comes to the observation of the environment or
scenes in a wide variety of applications such as assistive robots in domestic or industrial
environments [30] or pedestrian/obstacle trajectory prediction for autonomous vehi-
cles [36] and more. Our study focuses on prediction of the semantics of a partially
observed activity, before its completion, and of the next active objects that will be
involved in order to complete the ongoing activity. Specifically, the proposed approach
aspires to model the spatio-temporal relationships between the human and the visible
scene objects in order to predict the classes of a varying number of the next active
objects that will be handled by the human in order to complete the ongoing activity.
Current methods lack the ability to predict more than one next active object [7,9,11].
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To the best of our knowledge, this is the first approach that is able to jointly predict the
semantics of the ongoing activity and multiple next active objects. Moreover, one aspect
that can be of great importance to such prediction systems is the ability to forecast the
time in which NAOs will be involved in the current scenario. Our method is the first to
predict NAOs along with the time that they will be involved in the activity.

Fully Observed Video

Time

Predicted Activity Label:

Predicted Next Active Object:

Observed Unobserved

Stacking Objects

Partially Observed Video Output:

Fig. 1. By matching a partially executed and observed activity, to a prototype, fully observed
one, we are able to infer correspondences of similar objects and human joints between the two
videos. This, in turn, enables to perform activity and next-active-object prediction in the partially
observed activity. The example in this figure refers to the “stacking objects” activity, which is
performed with a different number and types of objects in the partially and the fully observed
activities.

In this paper, we propose to jointly forecast the activity and the objects that will par-
ticipate in the execution of the activity till its completion. Instead of predicting the inter-
action hotspots [19,20,25] of a NAO, we propose a holistic understanding of the activ-
ity regarding the human and objects present in the scene. Our approach is based upon
calculating the dissimilarity of graphs representing the entities that constitute the activ-
ity [29]. Specifically, the human body joints of the acting person and the scene objects
are represented as nodes of a graph and the semantic and motion relations between the
nodes are represented as edges. The dissimilarity of graphs is calculated using the graph
edit distance (GED) [1].

We showcase our approach on video datasets of human-object interactions of vary-
ing complexity. The well-known MSR-Daily Activities dataset [37] includes activities
where none or one object is handled by a single subject. We further evaluate the perfor-
mance of the proposed method using the CAD-120 dataset [18] that contains long and
complex activities. Instances of the activities are performed by different subjects using
different types and a varying number of objects. As an example, different executions of
the “stacking objects” activity are performed using 4 boxes and 5 plates, respectively
(see Fig. 1). The main contributions can be summarized as follows:
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– We propose Graphing The Future (GTF), a method that can jointly predict the activ-
ity label and the next-active-objects by calculating the dissimilarity of videos with
the use of GED as well as the time instance at which these objects will be used in
the ongoing activity.

– Our work is the first to address the prediction of multiple NAOs in human-object
interaction scenarios.

– GTF models the pairwise correspondences of objects and human joints between two
comparing videos based on their semantic similarity as well as their (intra-video)
spatio-temporal relationships in each video. Therefore, predictions are in principle
possible even when a particular interaction with an object of a specific class has
never been observed before.

2 Related Work

Activity Prediction: Action prediction aims to forecast the label of an action based on
limited/partial observations. The majority of the proposed methods that tackle this prob-
lem consider (first person) egocentric videos [2,33,35,41,43], mainly due to the avail-
ability of large amounts of relevant video data and annotations [6,13,31]. In [12], Video
Transformers are proposed to accurately anticipate future actions. Without supervision
the method learns to focus on the image areas where the hands and objects appear, while
attends the most relevant frames for the prediction of the next action. Rodin et al. [34]
tackles the problem of anticipation in untrimmed videos in an attempt to generalize
and deal with unconstrained conditions in real world scenarios. An advantage of the
work proposed by Furnari et al. [10,11] is the ability to make predictions not only in
first-person but also in third-person videos. Their work focuses on making predictions
using multiple modalities such as RGB frames, optical flow and object-based features.
Their architecture uses one LSTM for encoding the past time steps while the second
LSTM makes predictions about the future. Manousaki et al. [22,23] focused their work
on predicting action sequences by using temporal alignment algorithms. They aligned
complete and partially observed actions using the Segregational Soft Dynamic Time
Warping (SSDTW) algorithm by fusing the human and object motion. Wu et al. [39]
opted to solve the problem of activity prediction by exploring spatio-temporal relations
between humans and objects. They used a graph-based neural network to encode the
spatial relations between video entities at different time-scales.

Next-Active-Object Prediction: Having correctly predicted the activity label, recent
studies focus their attention on predicting the next-active-object. Dessalene et al. [7]
define an active object as the object presently in contact with a hand while next-active-
object is the object which will next come into contact with that hand. We argue that an
object can be the next-active-object without having the need to come in contact with the
hand. For example, imagine a scenario in which a hand pushes an object, which comes
in contact with another object which is pushed, too. The hand never comes in contact
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Fig. 2. Graph matching of a complete video (reference) and an incomplete/partially observed
(test) video. First, the fully connected graphs of each video are created based on the video entities.
On the basis of these graphs, a bipartite graph between the action graphs is constructed. By
calculating the GED, we are able to correspond nodes between the two original action graphs.

with the second object. However, the second object is definitely part of the interaction.
So, we define next-active-object as the object that is the next to be involved in the
progress of an action.

In the course of an activity many actions can take place. These actions can be
performed with or without the use of objects. Some consecutive actions may use the
same object. In case there is no change of the active object between actions, the object
used in consequent actions is not considered as next-active-object only because the
action has changed. Our work differs from other approaches towards the prediction of
objects. Other approaches [12,43] perform prediction of the object of the next seg-
ment/action, which in some cases can be the current active object of the ongoing seg-
ment. Liu et al. [20] predict future hand trajectories and object interaction hotspots,
while in [42] hand-object contact prediction (contact or no-contact) is modelled using
hand and object tracks throughout the video. This task if different from our target task
of next-active-object prediction.

The first approach to tackle the problem of next-active-object prediction was Furnari
et al. [9]. A sliding window was utilized in conjunction with an object detector in order
to model each tracked trajectory and classify it as passive or active using random forests.
The paper argues that the next-active-object can be distinguished from its frames imme-
diately before it turns active. One very interesting characteristic of the method they
propose is its ability to generalise to unseen object classes. However, their experiments
show a loss of accuracy when dealing with unseen object classes thus proposing to train
the method with the object classes that will be present in the test set for better results.

The work of Dessalene et al. [7] employs graphs to predict the partially observed
action and produce Contact Anticipation Maps which provide pixel-wise information of
the anticipated time-to-contact involving one hand, either the left or the right. Also, they
perform next-active-object segmentation by localizing candidate next active objects.
These localizations are evaluated with the calculation of the Intersection over Union
(IoU) value of the bounding boxes produced from the Faster-RCNN model. This work
predicts the hand-object time-to-contact in egocentric videos but this does imply that
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this can be the next-active-object or that this object will be used immediately. Also,
this is trained on annotated object classes of the dataset which implies that it cannot
generalize to unseen object classes.

3 The Proposed Method - GTF

We introduce the GTF method that jointly tackles the tasks of activity prediction and of
next active object(s) prediction in videos using graph-based representation of an activity
and graph matching technique based on the Graph Edit Distance measure to compare
pairs of videos. The activity prediction task can be defined as the problem of inferring
the label of an ongoing activity before its actual completion. Let an activity, noted as A,
that starts at time ts and ends at time te, thus has a duration d = te − ts. Its observation
time is defined in proportions of 10% of d. The goal is to predict the correct class as
early as possible which implies access to fewer observations. We also note the task of
next-active-object prediction as the problem of the inference of the semantic label of an
object that will be used in the progress of an activity. Multiple objects may be used in
the progress of a given activity A. Related works [7,11] predict the next-active-object
in the segment preceding it’s use, i.e., an amount of time (measured in seconds) before
the start of the action that involves the object of interest.

Our approach relies on a graph-based representation of an activity that is captured
in video. The entities in a video regard the tracked human skeletal joints and the observ-
able/visible objects. Each video entity is represented as a node of an undirected graph,
which also models both semantic information (object label) and its motion (2D or 3D
trajectory). Each graph edge connecting two nodes represents the semantic similarity
and the spatio-temporal relationships of the interconnected video entities, as described
in Sect. 3. Our goal is to devise a novel approach that is able to identify human joints
and/or objects in two different videos, one fully and one partially observed video,
that exhibit similar behaviors and interactions with other entities using bipartite graph-
matching. As shown in Fig. 2 a fully and a partially observed video are represented as
two action graphs whose nodes represent the detected and tracked objects and human
joints.

Video Representation: Given a video of duration T frames, it can be seen, at an object-
level, as a complete and undirected graph, noted asG = (V,E). In the course of a video,
entities such as human body joints and foreground objects are localized and tracked
using 2D or 3D human body pose estimation and tracking as well as object detection
methods, respectively. Each graph node is noted as v ∈ V and graph edges are noted
as eij = (vi, vj) ∈ E between nodes vi, vj ∈ V , where i �= j. The relations between
the nodes describe their dissimilarity in the form of edge weights. The dissimilarity
is described based on the semantic dissimilarity si and the motion dissimilarity mi.
The edge weight between two connected nodes is defined as the weighted sum of the
semantic and motion dissimilarity as follows:

wij = (1 − λ) ∗ mij + λ ∗ sij . (1)
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The parameter lamda ∈ [0, 1] is user-defined and controls the contribution of the
semantic and motion information. On the extremity of lamda = 0, only motion infor-
mation is considered while when lamda = 1, only semantic information is used. In
the experimental section of this paper, we present an investigation of the effect of this
parameter on the performance of the proposed method.

Semantic Dissimilarity: The weights sij represent the semantic dissimilarity between
the labels of the nodes vi and vj . The node labels are retrieved based on ground truth
annotations or object recognition methods. The semantic similarity of nodes vi and
vj with recognized labels li and lj is described as S(li, lj) and is estimated using the
WordNet [8] lexical database and the Natural Language Toolkit [21] to compute the
path-based Wu-Palmer scaled metric [40]. The similarity is in the range (0, 1] with 1
identifying identical words so semantic weight is:

sij = 1 − S(li, lj). (2)

Motion Dissimilarity: Each node in the graph is described by a feature vector which
can encode information such as the 2D/3D human joint location, the 2D/3D loca-
tion of the object centroid or any other feature such as appearance, optical flow,
etc. The extracted motion features for each dataset are described in Sect. 4.2. The
acquired 2D/3D skeletal-based pose features or the 2D/3D object-based pose features
are described by a trajectory t(vi) encoding the movement of the video entity during
the activity. A pair of trajectories t(vi) and t(vj) can be aligned temporally using the
Segregational Soft Dynamic Time Warping (SSDTW) [22] algorithm. The alignment
cost of the trajectories t(vi) and t(vj) describes the motion dissimilarity of the graph
nodes vi and vj and is divided by the summation of the length of the trajectory of the
incomplete sequence t(vi) and the length of the trajectory of the reference sequence
t(vj) that matched with t(vi) as proposed by the authors [22]. Thus, the weight mij of
an edge connecting the graph nodes vi and vj is:

mi,j =
SSDTW (t(vi), t(vj))

(len(t(vi)) + len(t(vj)))
. (3)

Graph Operations: Having represented one partially observed and one complete
video as graphs, we estimate their dissimilarity by using Graph Edit Distance
(GED) [1]. GED is calculated by considering the edit operations (insertions, deletions
and substitutions of nodes and/or edges) that are needed in order to transform one
graph into another with minimum cost. Our GTF approach is inspired by the approach
of Papoutsakis et al. [29] which uses the GED in order to solve the problem of co-
segmentation in triplets of videos. Different from [29] we propose to assess the GED
between a pair of videos in order to perform activity prediction. Comparably to [29]
our approach is based on semantic and motion similarity of the entities but instead of
using the EVACO cosegmentation method [28] to compute the alignment cost of the
co-segmented sub-sequences we employ the SSDTW algorithm [22] to align the trajec-
tories between pairs of nodes. The SSDTW algorithm has been shown to have better
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performance in aligning incomplete/ partially observed sequences for the task of action
prediction.

We create a graph for each video GI ((I)ncomplete video) and GR ((R)eference
video) and assess their graph distance. WI and WR are the dissimilarity matrices of
action graphs GI and GR with size NI × NI and NR × NR, respectively, where NI

and NR are the number of vertices of each graph. As seen in Fig. 2 the next step is to
create the bipartite graph GIR of the action graphs GI and GR. The edge weights WH

connecting the nodes of graph GI to nodes of graph GR are calculated using Eq. (1).
In order to calculate the GED on the bipartite graph we need to employ the Bipartite
Graph Edit Distance (BP-GED) which solves an assignment problem on the complete
bipartite graph using the Kuhn-Munkres algorithm [24]. The weights of the complete

bipartite graph GIR are: WIR =
[
0NI ,NI

WH

WH
T 0NR,NR

,

]
where 0x,y stands for an x × y

matrix of zeros. The solution of this assignment problem requires the definition of the
graph edit operations and their associated costs.

Node Operations: Consist of node insertions, deletions and substitutions. The cost of
inserting and deleting a node v is:

ndin(empty node −→ vi) = τv, nddel(vi −→ empty node) = τv (4)

while the cost of substitution of node v with node u is:

ndsb(vi −→ uj) = [
1
2τv

+ exp (−av ∗ WH(i, j) + σv)]−1. (5)

The parameters of the cost operations for the nodes where set experimentally to τv =
0.4, αv = 0.1 and σv = 0.0.

Edge Operations: also consist of insertions, deletions and substitutions. The costs of
inserting and deleting an edge from node n of graph GI to node u of graph GR is:

ein(eGI
ij −→ eGR

mn) = τe, edel(eGI
ij −→ eGR

mn) = τe. (6)

Finally, the cost of edge substitution is defined as:

esb(eGI
ij −→ eGR

mn) =
[

1
2τe

+ exp (−αe · (WI(i, j) + WR(m,n))/2 + σe)
]−1

. (7)

The parameters of the cost operations for the edges where set experimentally to
τe = 0.3, αe = 0.1 and σe = 100.

Action Distance: The dissimilarity between a pair of graphs (GI , GR) is computed
by the BP-GED which calculates the exact GED [1]. With GED the minimum edit
operations are calculated for transforming graph GI to graph GR. The dissimilarity,
denoted as BP-GED(GI , GR), in the work of [29] is normalized by the total number
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Fig. 3. Activity prediction results for the (left) MSR Daily Activities and (right) CAD-120
datasets for different observation ratios.

of objects. This normalization is effective when looking for commonalities between
videos but is ineffective for activity prediction. In our work we need to be flexible in
the number of objects that can be used during an activity while discarding irrelevant
objects. In order to achieve this, we found that the best option is to normalize by the
number of pairs of matched objects (MO). This helps us to assess our method on the
objects that are important for the prediction and discard objects that may be present but
with no use in the activity performed. Thus, the dissimilarity D(GI , GR) of graphs GI ,
GR is defined as:

D(GI , GR) = BP -GED(GI , GR)/MO. (8)

4 Experiments

4.1 Datasets

MSR Daily Activity 3D Dataset [37]: The activities contained in this dataset involve
human-object interactions in trimmed video executions. The dataset contains 16 activity
classes the executions of which are performed bymale and female subjects, the first time
by standing up and the second by laying down. The dataset contains the 3D locations
of the human body joints. The evaluation split of the related works [22,23,32] is used
for a fair comparative evaluation.

CAD-120 Dataset [18]: Contains complex activities that represent human-object inter-
actions performed by different subjects. The activities are performed using 10 different
objects and are observed from varying viewpoints. Each of the 10 activities contains
interactions with multiple object classes in different environments. The dataset pro-
vides annotations regarding the activity and sub-activity labels, object labels, affordance
labels and temporal segmentation of activities. The split of the related work [39] is used
for a fair comparative evaluation.
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Fig. 4. Exploration of the user-defined λ parameter on the CAD-120 dataset. The values of the λ
parameter are in the range [0, 1]. Some curves may be partially visible due to occlusions. Plots
are separated in two figures to aid readability.

Fig. 5. Observing the activity and making object predictions for [2 s, 1.75 s, 1.5 s, 1.25 s, 1 s,
0.75 s, 0.5 s, 0.25 s] before the beginning of the next action as in [11].

4.2 Feature Extraction

The employed datasets are recorded from a third-person viewpoint, therefore they pro-
vide information for the whole or upper body of the acting subjects. We decided to
align with the existing work of [22] and consider only the upper body human joints for
both datasets. For the MSR Daily Activity 3D Dataset the features used are the 3D joint
angles and 3D skeletal joint positions [22]. Object classes and 2D object positions are
obtained from YoloV4 [4]. For the CAD-120 Dataset the 3D location of the joints of
the upper body are used. As for the objects, the ground truth labels are used along with
their 3D centroid locations [22,23].

4.3 Evaluation Metrics

Activity Prediction: Activities are observed in a range from 10% to 100% of their total
duration with steps equal to 10%. At every step, the accuracy of the predicted activity
label is evaluated compared to the ground truth.

Next-Active-Object Prediction: At variable time steps before the start of the next seg-
ment (see Fig. 5) where the next-active-object will be used, we estimate the accuracy
of the predicted object label compared to the ground truth label. Also, we calculate the
time at which the next-active-object will be used in the activity. For the aforementioned
time steps the prediction error is calculated as the difference of the predicted time of
use and the ground truth time, divided by the length of the video.
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Table 1. Next-active-object prediction accuracy for [2 s, 1.75 s, 1.5 s, 1.25 s, 1 s, 0.75 s, 0.5 s,
0.25 s] before the beginning of the next action for the CAD-120 dataset.

Next-active-object prediction accuracy

Time 2.00 s 1.75 s 1.50 s 1.25 s 1.00 s 0.75 s 0.50 s 0.25 s

RULSTM [11] 18.6% 18.6% 18.0% 18.6% 18.6% 19.3% 20.0% 22.0%

GTF (proposed) 87.0% 87.0% 86.6% 89.1% 90.0% 91.0% 95.0% 97.0%

4.4 Results

Activity Prediction/Early Recognition: Activity label prediction is performed by con-
sidering observation ratios in chunks of 10% until the end of the video. The label pre-
diction at 100% can be regarded as activity recognition. The test video is compared
with all the reference videos by calculating the GED and is assigned to the label of the
minimum. In Fig. 3 (left) a comparison of our method against the competitive methods
for the MSR dataset is shown. Our method outperforms the works of Cao et al. [5],
Alfaifi et al. [3] and others [3,27,32] by a large margin. Our work also outperforms
the method presented by Manousaki et al. [22] by a large margin at small observation
ratios. Results of the competitive methods are taken as shown in [22].

CAD-120 is a challenging dataset due to the number of objects and their inter-
changeability in different executions of activities. In this dataset, our method outper-
forms the works of Manousaki et al. [22], Furnari et al. [11] and other competitive
methods [14,17,44] by a large margin. It also outperforms the approach ofWu et al. [39]
that holds the state-of-art performance, for all observation ratios greater than 20% (see
Fig. 3, right). The results of the [14,17,44] and [39] methods are taken from the work of
Wu et al. [39] while for our previous work (Manousaki et al. [22]) we trained and tested
using the activities (instead of actions) with the parameters mentioned in that paper.

The Impact of Parameter λ: Edge weights are determined based on the proportion
of the semantic and motion information they convey. This proportion is quantified by
the user-defined parameter λ (see Eq. (1)). In Fig. 4 we present results that explore the
impact of λ on the performance of our approach on the CAD-120 dataset. When λ = 0
(only motion features) and λ = 1 (only semantic features) the results are alike in terms
of having the lowest ability to make accurate predictions. Their combination carries a
lot more information and gives the best results. Some values are not visible in the plots
because for different values of the λ parameter, accuracy values remain the same. After
experimental evaluation the best value across datasets is λ = 0.8.

Next-Active-Object Prediction: Our method is designed to accommodate videos cap-
tured from a third-person viewpoint as we need to have a view of the human joints
and the surrounding objects. The most related work to ours is the work of Dessalene et
al. [7] which is currently limited only to egocentric videos. This does not allow for a
comparison with that approach. We compare our method to the recent work of Furnari
et al. [11]. This work performs on both egocentric and third-view datasets and is the
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Table 2. Time prediction error is the offset of the predicted time of the next-active-object use to
the ground truth time of use compared to video length. Predictions are made from 0.25 s to 2 s
prior to the start of the next action.

CAD120 Next-active-object time prediction error

Time 2.00 s 1.75 s 1.50 s 1.25 s 1.00 s 0.75 s 0.50 s 0.25 s

GTF (Proposed) 0.471 0.463 0.46 0.457 0.443 0.405 0.36 0.325

Table 3. Accuracy for predicting multiple next-active-objects for different observation ratios.

CAD120 Multiple next-active-objects prediction accuracy

Observation ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%

GTF (proposed) 41.7% 43.2% 45.6% 45.6% 47.1% 47.1% 48.6% 50% 55.9%

method that [7] compares with. Their performance is comparable for the task of next-
active-object prediction. However, instead of following their experimental scheme and
evaluating only the accuracy of the prediction of the next-active-object, we also evalu-
ate the accuracy of the prediction in relation to the time prior to the start of the action
where the next-active-object will be used. Predictions are made in the range [2 s, 1.75 s,
1.5 s, 1.25 s, 1 s, 0.75 s, 0.5 s, 0.25 s] before the beginning of the action (see Fig. 5). As
seen in Table 1 our method can correctly predict more objects as we move closer in time
while [11] can predict less accurately the objects and is not affected by the time hori-
zon. By comparing the graph of the partially observed video with those of the reference
videos, the pair of graphs that have the smaller graph edit distance and object correspon-
dences between the graphs are estimated (test and reference videos may have different
number of objects). The work of Furnari et al. [11] is tested using the CAD120 dataset
and the publicly available implementation. We extracted the 1024-dimensional features
by using TSN [38] and calculated object features using the ground truth annotations.
Their code accommodates the extraction of predictions at different seconds before the
beginning of the action as described above.

Next-Active-Object Time Prediction: Another aspect of great importance is the abil-
ity to forecast the time at which the object will be used in the activity. With the use of
the GTF method we are able to compare the partially observed video with the reference
videos from the training. After finding the pair of graphs that have the smaller graph
edit distance, we acquire the information about object correspondences. This ability to
infer the object correspondences between the two videos allows us to have the same
number of objects between the videos in order to perform video alignment with the use
of SSDTW. The alignment provides the ability to find the point of the reference video
that corresponds to the current point in time in the test video (matching point). This
projection of time from the reference video to the test one, permits the forecasting of
the time at which the next-active-objects will be engaged in the interaction. The predic-
tion error is calculated as the offset of the predicted time of use from the ground truth
time of use of the next-active-object compared to the duration of the video. The error is



310 V. Manousaki et al.

calculated upon the correct predictions of the next-active-object. In Table 2 we observe
that this error is low, which means that we are able to accurately predict the time at
which the next-active-object will be used in the activity.

Multiple Next-Active-Objects Prediction: Our method is capable of predicting not
just one, but multiple next-active-objects. These predictions can be performed at differ-
ent observation ratios from to 10% to 90% (an observation ratio equal to 100% means
that the whole video is observed, so next object prediction is not defined). The accuracy
for each observation ratio for the predicted next-active-objects is presented at Table 3.
The prediction is made through the correspondence of the objects between the refer-
ence and test graphs. By knowing the order in which the objects in the reference video
are used, we can infer the order in which the objects of the test video will be used.
After finding the matching point (see the previous section) we can infer the order of the
matched objects from that point till the end. Prediction of multiple next-active-objects
is challenging due to long time horizons involved and the related increased uncertainty.

5 Conclusions

We introduced GTF, a method that is based on matching complete and partially
observed videos which are represented as graphs, with the use of Bipartite Graph match-
ing. Human joints and objects were represented as nodes whereas their semantic and
motion similarity was captured by the edges. We showed that through this formulation
and process, we are able to perform activity and next-active-object prediction providing
state-of-art results. Moreover, we proposed to solve the problem of predicting the time
at which the next-active-object will be used as well as the prediction of multiple next-
active-objects. Future research will be focused on compiling and experimenting with
larger and more complex datasets of human-object interactions in which users will be
handling a broader variety of objects in several ways.
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Abstract. A framework has been proposed for detecting fall actions
from videos to solve the problem of imbalance between fall action
data and Activity of Daily Life (ADL) data. In the framework, a 3D-
convolutional variational auto-encoder (VAE) was used to reconstruct
ADL videos, and reconstruction errors were used to recognize fall actions.
In this paper, we propose an improved method using unsupervised clus-
tering learning to cluster fall actions. The 3D-convolutional VAE extracts
representations from videos, and additionally proposed fully-connected
VAE to gather those representations into two clusters, where represen-
tations of fall actions are distinguished from distribution of ADL data.
The experimental results showed that our method achieved a promising
level of accuracy and better generalization ability compared to methods
using supervised learning with well-labeled data. We further show visu-
alization results of latent variables during unsupervised clustering, which
showed the representations were clustered into two distinct clusters.

Keywords: Fall detection · Auto-encoder · Weakly-supervised
learning · Unsupervised clustering learning

1 Introduction

Population aging is a widespread problem across the world and is very severe in
highly developed countries. Since solitary elderly people are more likely to fall
indoors and cannot obtain assistance in time, demands for stable fall-detecting
systems are increasing. However, it is challenging to detect whether a person
falls by using computer vision due to complicated real-life situations.

Until the age of deep learning, hand-crafted features were extracted from
images and were used to detect fall actions. However, they are not sufficient to
discriminate against fall actions due to complicated human behaviors, viewpoints
of cameras, and other factors. Recently, deep learning methods using supervised
neural networks have been proposed to detect fall actions. In those methods
[10,23], neural networks were used to classify input data as fall actions or normal
actions by training with manually labeled data. If supervised neural networks
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are trained with enough, balanced, and well-labeled data, they perform well.
However, there is a problem in the field of fall detection that well-labeled data is
not abundant, since it is labor-consuming to label each frame of hours of videos
with tags of falling, sitting, drinking water, and other actions in daily life. There
is another problem that quantities of Activity of Daily Life (ADL) data and fall
action data are imbalanced. In most videos, fall actions do not happen or happen
only within several seconds, and the rest is about activities of daily life. Those
problems can adversely affect the performance of supervised neural networks.

Therefore, some researchers proposed utilizing the idea of anomaly detection
[15] for fall detection, since there is sometimes an imbalance between regular
events and anomalous events like ADL data and fall action data. Some methods
using unsupervised neural networks [7,26] were proposed to overcome the imbal-
ance between anomalous data and regular data. In these methods, auto-encoders
(AE) which are a kind of unsupervised neural network and do not depend on
well-labeled data were used to detect abnormal events. First, AE-based networks
learn the distribution of regular videos by compressing and reconstructing regu-
lar videos. When training is finished, an abnormal sample is input to the networks
and still is reconstructed to be normal, which makes reconstruction errors large,
and the sample is classified as an anomaly. Those methods belong to weakly
supervised learning, which uses data with imprecise labels since training data
has imprecise labels, namely training data only contains regular videos.

A framework [27] has been proposed for fall detection has been proposed
where a Variational Auto-encoder (VAE) [14] with 3D-convolutional residual
blocks [12] learns to reconstruct ADL videos, and reconstruction errors are used
to recognize fall actions. In this paper, the contributions of our work are as
follows:

i) We propose an improved method using unsupervised clustering learning to
cluster fall actions. The 3D-convolutional VAE extracts representations from
videos, and we further propose a fully-connected VAE to gather those rep-
resentations into two distinct clusters, where representations of fall actions
are distinguished from distribution of ADL data.

ii) The experimental results show that the proposed method obtain better accu-
racies and generalization ability than methods using supervised learning with
well-labeled data.

iii) We verify that a combination of weakly supervised learning and unsuper-
vised cluster learning can be used to ease the lack of well-labeled data, and
abundant ADL data can be taken good use of to overcome the adverse effect
of imbalanced data.

2 Related Work

2.1 Fall Detection

Until the age of deep learning, handcrafted features were used to detect fall
actions, such as fitting an ellipse to a body [16,21]. In these methods, whether a
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fall action happens or not is detected depending on variations of the short and
long axis, the area, etc. of the fitted ellipse in videos. For example, if a vertical
and thin ellipse becomes horizontal, it may indicate that a fall action happened.
Such hand-crafted features are not sufficient to discriminate against fall actions.

In some studies, handcrafted features were used as inputs to neural net-
works for fall detection. For example, skeleton information is extracted by using
Microsoft Kinect, treated as biomechanical features, and then used as inputs to
a recurrent neural network with long short-term memory units [25]. Since visual
information is lost when extracting skeleton information, and the performance
may become unstable, it would be more appropriate to directly use pixel-level
information to train neural networks. Due to complicated human behaviors,
viewpoints of cameras, and other factors, it is more reasonable to automatically
extract features by using deep neural networks.

Recently, supervised learning methods using deep neural networks have been
proposed to detect fall actions [1,10,23]. In these methods, a neural network is
trained with manually labeled data to classify input data as a fall action or a nor-
mal action. Well-labeled data usually is precious since it is tiresome to label tags
on a large amount of data, and lacking well-labeled data will lead to the overfit-
ting of supervised neural networks. Moreover, the amount of fall action data and
the amount of ADL data are imbalanced. Therefore, a large amount of ADL data
is abandoned to keep the balance and allow supervised neural networks to work
normally, which further aggravates the lack of well-labeled data.

2.2 Weakly Supervised Learning

Since there is an imbalance between fall action data and ADL data like anoma-
lous videos and regular videos, the idea of anomaly detection [15] was proposed
to detect fall actions. Anomaly detection is a kind of weakly supervised learn-
ing method since training data with imprecise labels is used. In the case of fall
detection, all training data is from ADL videos.

A spatiotemporal auto-encoder [7,26] was proposed to detect abnormal
events. In these methods, AE-based networks were used to model regular video
data, and the networks learn how to reconstruct regular videos. When training
is finished, if an abnormal sample is an input, the networks still try to recon-
struct it to be a regular video, which makes reconstruction errors large, and
the sample is classified as an anomaly. The higher the reconstruction error is,
the more possibly an abnormal event happens. An AE-based network was also
proposed for fall detection, and experiments were conducted using a fall dataset
consisting of thermal and depth images [22]. A 3D-convolutional VAE network
for detecting fall actions using RGB videos was proposed [27]. In this method,
the network learned a data distribution of ADL videos that follows a normal dis-
tribution, which made representations of ADL videos compact in a latent space.
Since representations learned by a VAE are more compact than those learned by
an AE, they are more discriminative for fall action recognition. Additionally, a
region extraction technique was proposed to make the network focus on learning
human actions from RGB videos.
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2.3 Unsupervised Clustering Learning

Using handcrafted thresholds of reconstruction errors cannot detect fall actions
well in various situations, but metrics such as clustering learned for different
situations can overcome that weakness.

Some classical clustering methods such as k-means [19] and Gaussian Mix-
ture Models [5] tend to suffer from the curse of dimensionality [3] when high-
dimensional data such as videos are input. Various clustering methods such as
spectral clustering [17], density-based clustering [9], etc., were proposed to take
good use of more flexible distance metrics to process high-dimensional data.
However, they lead to other problems such as memory and time-consuming.

With the development of deep learning, some methods assembled both repre-
sentation learning and clustering learning. Deep Embedding Clustering (DEC)
was proposed [24] in which an auto-encoder compresses the dimensionality of
input data, and minimized the KL divergence between predictions and auxil-
iary target distribution. DEC achieved progressive performance on clustering
tasks. Variational Deep Embedding (VaDE) [13] and Gaussian Mixture VAE
(GMVAE) [8] were proposed respectively where there was an assumption that
low-dimensional latent space of compressed input data follows a mixture of gaus-
sian distribution. Besides, we refer to [20] for a comprehensive literature study
of clustering with deep learning.

Fig. 1. Overview of our framework for fall detection. A 3D-convolutional VAE [27]
extracts representations from videos (as shown with a background of light orange),
and a fully-connected VAE gathers those representations into two distinct clusters (as
shown with a background of light blue). (Color figure online)

3 Method

An overview of our framework for fall detection is shown in Fig. 1. There are
mainly two parts to the framework. A 3D-convolutional VAE [27] learns repre-
sentations of ADL data by reconstructing ADL videos since videos include lots
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of redundant information and should be reduced to lower dimensionality. Addi-
tionally, a fully-connected VAE is needed to further cluster all representations
of ADL data and fall action data into two distinct clusters since a discriminative
boundary between representations of ADL data and fall action data is still not
clear enough for classification.

Handcrafted thresholds of reconstruction errors are usually used to distin-
guish fall actions since videos of fall actions are reconstructed worse than ADL
videos by VAEs according to previous research [7,22,26,27]. However, it is more
reasonable to directly cluster representations in the high-dimensional latent
space using a deep neural network. Therefore, we propose to use additional fully-
connected VAE (FCVAE) that learns cluster centers of distributions of ADL data
and fall action data as shown in the part with a light blue background in Fig. 1.

Representations {x1, x2, ..., xi, ...}, xi ∈ R
D, where D denotes dimensionality,

are extracted by the trained encoder of 3D-convolutional VAE from both ADL
data and fall action data and are taken as a set. Then, the FCVAE learns to
distinguish between ADL data and fall action data by simultaneously learning
two cluster centers denoted by γ1, γ2 ∈ R

D and reconstructing input data.
In the branch of clustering learning, cluster centers are firstly initial-

ized by using k-means, and similarity sij between representation embeddings
{μ1, μ2, ..., μi, ...}, μi ∈ R

D and cluster centers in the high-dimensional latent
space is calculated using Student’s t-distribution following [18,24]:

sij =
(1 + ‖μi − γj‖2)−1

∑
j′(1 + ‖μi − γj′‖2)−1

,

where i = 1, 2, ..., N, j = 1, 2. Those values of similarities are normalized between
0 and 1 using

sij ← sij∑
j′ sij′

and compose a distribution (si1, si2) which represents label assignment possibil-
ity. We additionally apply a sharpening function to obtain pseudo ground truth
[4,11]

qij = fsharpen(sij) =
s2ij∑
j′ s2ij′

which can reduce the entropy of assignment distribution, namely encouraging the
network to make an assignment as certain as possible. We use a KL divergence
loss between predicted assignment distribution (si1, si2) and the pseudo ground
truth (qi1, qi2) to gradually reduce the entropy as follows:

Lassign =
N∑

i=1

2∑

j=1

sij log
sij
qij

.

Clustering learning and reconstruction learning are conducted simultane-
ously. Reconstruction learning of xi is needed since it implicitly makes middle
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representation embeddings be assigned based on input data. We use an MSE
loss during the reconstruction learning as follows:

Lrecon =
N∑

i=1

‖xi − x̂i‖2.

Finally, the optimization objective is L = αLassign+βLrecon. The larger α is, the
more obvious the clustering effect is. It is reasonable if α is much bigger than β.
We set α = 0.8 and β = 0.2 in this study.

(a) An example of ADL data from Le2i dataset.

(b) An example of fall action data from Le2i dataset.

Fig. 2. Examples including input images (top), reconstructed images (middle), and
heatmaps of reconstruction errors (bottom). (For better showing, 16 frames are resam-
pled to 8 frames.)

4 Experiment

We conducted experiments using a PC having a 4.2 GHz i7-7700K CPU, 16
GB RAM, and a GTX 1070 GPU. As shown in Table 1, we compared networks
with supervised learning, networks with weakly supervised learning only, and
networks with weakly supervised learning and unsupervised clustering, which
use the same architecture with different numbers of layers, for training and
evaluating on different datasets and cropped images [27].
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Table 1. Experimental results of different networks by using evaluation of reconstruc-
tion error thresholds.

Method Learning fashion Training set
(#Fall/#ADL)

Evaluation set
(#Fall/#ADL)

TPR
(%)

TNR
(%)

ACC
(%)

F1
(%)

MCC

ResVAE-18 (proposed) Weakly supervised
learning
Unsupervised
clustering learning

HQFD (0/12266)
HQFD (0/12266)

HQFD (282/300)
Le2i (130/200)

90
97.5

87.9
96

88.9
96.6

88.7
95.5

0.778
0.928

ResVAE-18 [27] Weakly supervised
learning

HQFD (0/12266)
HQFD (0/12266)

HQFD (282/300)
Le2i (130/200)

94
92.3

83.7
84

88.7
87.3

88.9
85.1

0.778
0.748

ResVAE-34 [27] Weakly supervised
learning

HQFD (0/12266)
HQFD (0/12266)

HQFD (282/300)
Le2i (130/200)

80.5
92.3

83.3
84.5

82
87.6

81.2
85.4

0.639
0.753

ResNet-18 Supervised learning HQFD (225/9812)
HQFD (225/240)
HQFD (282/12266)
HQFD (282/300)

HQFD (57/2454)
HQFD (57/60)
Le2i (130/200)
Le2i (130/200)

5.3
75.4
0.8
93.8

100
96.7
100
79.5

97.8
86.3
60.9
85.2

10
84.3
1.5
83.3

0.227
0.741
0.68
0.717

ResNet-34 Supervised learning HQFD (225/9812)
HQFD (225/240)
HQFD (282/12266)
HQFD (282/300)

HQFD (57/2454)
HQFD (57/60)
Le2i (130/200)
Le2i (130/200)

17.5
47.5
2.3
70.8

100
98.3
100
79.5

98.1
73.5
61.5
76.1

29.9
63.5
4.5
70

0.415
0.535
0.119
0.501

TPR denotes the true positive rate, which is a measure of how many falling
samples were classified correctly. TNR denotes the true negative rate, which
is a measure of how many ADL samples are classified correctly. ACC denotes
average accuracy. F1 denotes the F1-score, which is the harmonic average of the
precision and recall. MCC denotes the Matthews correlation, coefficient which is
a balanced measure of the quality of binary classifications. The closer an MCC
value is to a positive one, the better the prediction is.

4.1 Dataset

We used the High Quality Simulated Fall Dataset (HQFD) [2] and the Le2i Fall
Dataset (Le2i) [6].

ADL videos have a resolution of 640 × 480, multiple frames and RGB chan-
nels. They are separated into several segments, and each segment included 16
frames which were uniformly sampled from 64 frames. The region of human
motion was extracted from an entire image by using the AlphaPose estimator
and was resized to 96 by 96 pixels. Regarding fall action data for evaluation, we
manually trimmed each video to exactly include one fall action at first and then
applied the same preprocessing operations as those on the ADL data. The data
structure was in the form of (3, 16, 96, 96), which denotes 3 channels (RGB), 16
frames, a height of 96, and a width of 96. As training sets for weakly supervised
learning, all samples were ADL data. As evaluation sets for weakly supervised
learning, besides all fall samples, there was also a moderate amount of ADL
samples. Some examples of ADL data and fall action data are shown in Fig. 2.

HQFD. The HQFD dataset contains 275 fall videos and 85 ADL videos which
range from 50 s to 35.5 min in duration. They were captured by RGB cameras
from 5 different viewpoints. After preprocessing, there were 12266 ADL samples
and 282 fall samples. An evaluation set for weakly supervised learning consisted
of 282 fall samples and 300 ADL samples.
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Le2i. The Le2i dataset contains 192 fall videos and 57 ADL videos which were
captured by a single RGB camera and range from 10 s to 45 s in duration. After
preprocessing, there were 834 ADL samples and 130 fall samples. Some videos
after preprocessing with too few frames were abandoned. An evaluation set for
weakly supervised learning consisted of 130 fall samples and 200 ADL samples.

4.2 Implementation

The encoder and decoder of the 3D-convolutional VAE (ResVAE) respectively
consisted of 8 residual blocks named ResVAE-18 or 16 residual blocks named
ResVAE-34 [27]. Each residual block comprised two batch normalization layers,
two activation layers, and two convolution layers (or transposed convolution
layers). The networks were optimized using an Adam optimizer with a learning
rate of 0.0001. The batch size was 32 in ResVAE-18 and 24 in ResVAE-34.

The encoder of the FCVAE consisted of two full-connected layers with ReLU
activation layers and another two full-connected layers with following dimen-
sions: Input data (dim = 512) → FC(dim = 2048) → FC(dim = 2048) → FC-
μ(dim = 512) & FC-σ2(dim = 512). The decoder consisted of two full-connected
layers with ReLU activation layers and another full-connected layer with fol-
lowing dimensions: z = μ + σ × ε ∼ N(0, I) (dim = 512) → FC(dim = 2048) →
FC(dim = 2048) → FC(dim = 512). Cluster centers were also regarded as param-
eters and were jointly optimized with the FCVAE using an Adam optimizer with
a learning rate of 0.0001 and a batch size of 64.

For the training of ResVAEs, networks were trained for 500 epochs. For
the training of FCVAEs, networks were trained for 100 epochs. For training of
standard ResNets, training was stopped if the value of the loss function was
consecutively less than 0.00001 for ten epochs.

For evaluation using a threshold of reconstruction errors, the mean and vari-
ance of reconstructed errors of ADL samples in the evaluation dataset are cal-
culated, and reconstruction errors of all samples are normalized using the mean
and variance of training samples. The threshold was determined so that 85%
of the ADL samples are always classified as normal samples. An unknown sam-
ple is classified as falling if its normalized reconstructed error is larger than a
threshold.

For evaluation using unsupervised clustering learning, we used unsupervised
classification accuracy:

ACC = max
m

1
n

n∑

i=1

1{li = m(ci)},

where li denotes the ground-truth label, ci denotes the cluster assignment, and
m denotes possible bijection functions between clusters and labels. Since there
are only two classes, fall action data, and ADL data, there are two bijection
functions.
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4.3 Results and Analysis for Learning of ResVAE

Reconstructed data learned by the ResVAE and difference heatmaps between
input data and reconstructed data were shown in Fig. 2. In heatmap images
of ADL data shown in Fig. 2(a), it was seen that pixels of the subject and
block edges are reconstructed well since motion changes smoothly, and blobs
of reconstruction errors were rare. However, in heatmap images of Fig. 2(b),
at the falling moment, many blobs of large reconstruction errors were produced,
since the pose of falling was a rare case in the training data, and ResVAE cannot
reconstruct it well.

As shown in Table 1, in the experiments using imbalanced data, supervised
ResNets performed badly, which showed that imbalanced data was fatal for
supervised learning. To maintain the balance, a lot of ADL data must be aban-
doned. The accuracy of supervised learning methods with balanced data sharply
increased compared with those with imbalanced data. Since abandoning ADL
data was unnecessary for weakly supervised learning methods, ResVAEs had
better performance than standard ResNets.

For training and evaluation on different datasets with different persons and
situations, the performance of ResVAEs was still better than that of standard
ResNets. The ResVAEs showed good generalization ability since the proposed
method adopts a kind of weakly supervised learning architecture.

Besides, the result of ResVAE-34 was worse than that of ResVAE-18 when
training and evaluating on the same dataset. A possible reason was that ResVAE-
34 may need more training for obtaining stable and better performance. Another
possible reason was that overfitting happens in ResVAE-34 due to deeper layers.

Fig. 3. Visualization results of representation embeddings in the 500-dimensional latent
space during clustering learning period.

4.4 Results and Analysis for Learning of FCVAE

Visualization results of representation embeddings learned by FCVAE during
clustering learning are shown in Fig. 3. At the beginning (e.g. the first epoch),
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the boundary of ADL data and fall action data was unclear, and a part of the
sample points was mixed up. With training going on, similar representations
were continuously gathered, and discrepant representations were continuously
made distant. Finally, sample points formed two clear clusters, and classification
results were obtained by using a metric of unsupervised classification accuracy.

As shown in Table 1, the proposed network with additional clustering learn-
ing that was trained on the HQFD dataset and evaluated on the Le2i dataset
obtained a large improvement in the aspect of generalization ability. It was shown
that measurements learned by deep neural networks were superior to handcrafted
thresholds of reconstruction errors.

5 Conclusion

We proposed a fully-connected VAE (FCVAE) with a combination of weakly
supervised learning and unsupervised clustering learning to detect fall actions.
The experimental results showed that the proposed method achieved a competi-
tive level of accuracy and better generalization ability compared with supervised
learning with well-labeled data. Our method overcame the imbalance between
ADL data and fall action data, and obtain good generalization ability when the
network is evaluated on different datasets.

6 Future Work

The proposed method can be used in tasks of binary classification. However, not
only fall action data is difficult to collect. We think it is meaningful to extend the
method to handling multi-class classification for solving other visual problems.

Besides, cropped images which are extracted by using skeleton information
were used for the training in our method. In the future, more complex networks
will have to be designed to extract features from non-preprocessed images so
that the method will be less sensitive to extracted skeleton information.

References

1. Albawendi, S., Appiah, K., Powell, H., Lotfi, A.: Video based fall detection with
enhanced motion history images. In: Proceedings of the 9th ACM International
Conference on PErvasive Technologies Related to Assistive Environments, pp. 1–7
(2016)

2. Baldewijns, G., Debard, G., Mertes, G., Vanrumste, B., Croonenborghs, T.: Bridg-
ing the gap between real-life data and simulated data by providing a highly realistic
fall dataset for evaluating camera-based fall detection algorithms. Healthc. Tech-
nol. Lett. 3(1), 6–11 (2016)

3. Bellman, R.E.: Adaptive Control Processes: A Guided Tour. Princeton University
Press, Princeton (2015)

4. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.:
MixMatch: a holistic approach to semi-supervised learning. In: Advances in Neural
Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)



Detecting Fall Actions Using WSL and Unsupervised Clustering Learning 323

5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

6. Charfi, I., Miteran, J., Dubois, J., Atri, M., Tourki, R.: Optimized spatio-temporal
descriptors for real-time fall detection: comparison of support vector machine and
adaboost-based classification. J. Electron. Imaging 22(4), 041106 (2013)

7. Chong, Y.S., Tay, Y.H.: Abnormal event detection in videos using spatiotempo-
ral autoencoder. In: Cong, F., Leung, A., Wei, Q. (eds.) ISNN 2017. LNCS, vol.
10262, pp. 189–196. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59081-3 23

8. Dilokthanakul, N., et al.: Deep unsupervised clustering with gaussian mixture vari-
ational autoencoders. CoRR (2016)

9. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp.
226–231 (1996)

10. Fan, Y., Levine, M.D., Wen, G., Qiu, S.: A deep neural network for real-time
detection of falling humans in naturally occurring scenes. Neurocomputing 260,
43–58 (2017)

11. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In:
Saul, L., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing
Systems, vol. 17. MIT Press (2005)

12. Hara, K., Kataoka, H., Satoh, Y.: Learning spatio-temporal features with 3D resid-
ual networks for action recognition. In: Proceedings of the IEEE International
Conference on Computer Vision Workshops, pp. 3154–3160 (2017)

13. Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational deep embed-
ding: An unsupervised and generative approach to clustering. arXiv preprint
arXiv:1611.05148 (2016)

14. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

15. Kiran, B.R., Thomas, D.M., Parakkal, R.: An overview of deep learning based
methods for unsupervised and semi-supervised anomaly detection in videos. J.
Imaging 4(2), 36 (2018)

16. Lin, C.Y., Wang, S.M., Hong, J.W., Kang, L.W., Huang, C.L.: Vision-based fall
detection through shape features. In: Proceedings of the IEEE Second International
Conference on Multimedia Big Data (BigMM), pp. 237–240. IEEE (2016)

17. Luxburg, U.V.: A tutorial on spectral clustering (2007)
18. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.

Res. 9(11) (2008)
19. MacQueen, J., et al.: Some methods for classification and analysis of multivariate

observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

20. Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., Long, J.: A survey of clustering
with deep learning: From the perspective of network architecture. IEEE Access 6,
39501–39514 (2018)

21. Nguyen, V.A., Le, T.H., Nguyen, T.T.: Single camera based fall detection using
motion and human shape features. In: Proceedings of the Seventh Symposium on
Information and Communication Technology, pp. 339–344 (2016)

22. Nogas, J., Khan, S.S., Mihailidis, A.: Deepfall: non-invasive fall detection with deep
spatio-temporal convolutional autoencoders. J. Healthc. Inform. Res. 4(1), 50–70
(2020)

23. Nunez-Marcos, A., Azkune, G., Arganda-Carreras, I.: Vision-based fall detection
with convolutional neural networks. Wirel. Commun. Mob. Comput. 2017 (2017)

https://doi.org/10.1007/978-3-319-59081-3_23
https://doi.org/10.1007/978-3-319-59081-3_23
http://arxiv.org/abs/1611.05148
http://arxiv.org/abs/1312.6114


324 J. Zhou and T. Komuro

24. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering
analysis. In: International Conference on Machine Learning, pp. 478–487. PMLR
(2016)

25. Xu, T., Zhou, Y.: Elders’ fall detection based on biomechanical features using
depth camera. Int. J. Wavelets Multiresolut. Inf. Process. 16(02), 1840005 (2018)

26. Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., Hua, X.S.: Spatio-temporal autoen-
coder for video anomaly detection. In: Proceedings of the 25th ACM International
Conference on Multimedia, pp. 1933–1941 (2017)

27. Zhou, J., Komuro, T.: Recognizing fall actions from videos using reconstruction
error of variational autoencoder. In: 2019 IEEE International Conference on Image
Processing (ICIP), pp. 3372–3376 (2019)



Multi-property Tensor-Based Learning
for Abnormal Event Detection

Nikolaos Bakalos1(B) , Nikolaos Doulamis1, Anastasios Doulamis1,
and Konstantinos Makantasis2

1 National Technical University of Athens, 15773 Athens, Greece
bakalosnik@mail.ntua.gr

2 Institute of Digital Games, University of Malta, Msida 2080, MSD, Malta

Abstract. In this paper, we propose a novel abnormal event detection scheme
for video surveillance systems using an unsupervised learning process. Our con-
tribution includes intra and inter property feature encoding to reduce informa-
tion redundancy within (intra) and across (inter) image features. Intra property
encoding is carried out using convolutional auto-encoders. Inter-property encod-
ing is performed using an unsupervised tensor-based learning mode to handle the
dimensionality issue arising in cases when different properties are inter-related
together. Comprehensive experiments are performed on two benchmarks: Avenue,
and ShanghaiTech.
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1 Introduction

Abnormal event detection in video surveillance, a process to detect specific frames
containing an anomaly, has been drawn a great attention in image processing research
mainly due to its advantages in many applications [1–4]. Examples include surveillance
in industrial environments [2] or critical infrastructures [3] for safety/security and quality
assurance, traffic flow management [4] and intelligent monitoring of public places [5].

Someworks address abnormal event detection as amulti-class classification problem
under a supervised paradigm [2, 3]. The main, however, limitation of such approaches
is that abnormal events sporadically occur in real-world videos. Additionally, what is
an abnormal event is vague and tough to model. This means that the distribution of
normal versus abnormal events is severely imbalanced which result in low classification
performance. One solution to address this issue is to use semi-supervised learning [6,
7]. However, again the problem of data imbalance among normal and abnormal cases
cannot be handled. For this reason, the abnormal event detection problem is modeled
as outlier detector. In particular, the model learns the normality from data samples and
then it identifies the abnormal events as the ones which deviate from the normal learnt
cases [8–10].

In this context, unsupervised learning has been applied to handle abnormal event
detection [11–13]. The methods partition the normal space into coherent clusters in
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contrast to the outlier-detector models that they use a common global model for the
whole normal space. Then, the abnormality is detected as those events which cannot be
represented by the normal space. Usually, k-means clustering algorithm is utilized (as
in [11]) combined with SVM learning.

In this paper, we handle the abnormal event detection problem as an unsupervised
learning paradigm. However, the limitations of the current approaches in this field, such
as the work of [11], are: i) the number of clusters, that a normal space is partitioned to,
is a priori given and ii) the model assumes no interrelations for events across different
clusters, conditions that are not valid for real-life cases. To address these difficulties,
in this paper, we introduce a framework for intra and inter property (feature) encoding
to take into account property interrelations. In addition, a tensor-based unsupervised
learning scheme is incorporated to handle the dimensionality issue arising in cases when
different properties are inter-related together.

1.1 Related Work

Weconcentrate onworks handling abnormal event detection either as an outlier detection
or using deep/unsupervised learning schemes. Regarding outlier detection, the works of
[8, 10, 14] learn dictionary of sub-events, through a training process, and then those
events that do not lie in the partitioned sub-space are marked as abnormal ones.

Regarding deep learning, the work of [13] employs convolutional auto-encoders
(ConvAE) to learn temporal regularity in videos, while auto-encoders are exploited in
[15] to learn feature and reconstruct the input images. Then, one-class Support Vec-
tor Machines (SVMs) are used for detecting the abnormal events. The work of [16]
introduces a hybrid scheme which aggregates ConvAE with Long Short-Term Memory
(LSTM) encoder-decoder. Recently, deep generative models have been applied [17–20].
These models are trained to produce normal events while the abnormal ones are given
as the difference between the original frames and the generated ones.

Recently, unsupervised learning models are utilized for abnormal event detection.
In [21], the anomalies in videos are scored independently of temporal ordering and
without any training by simply discriminating between abnormal frames and the normal
ones. Other approaches exploit on-line incremental coding [22], deep cascading neural
networks [12], and unmasking (a technique previously used for authorship verification
in text documents) [23]. Recently, the works of [11, 31, 32] incorporate autoencoders
and supervised learning for abnormal event detection. Other approaches employ tracking
algorithms to extract salient motion information which is then classified either as normal
or abnormal [24, 25]. However, tracking fails in complex visual scenes of multiple
humans’ presence.

1.2 Our Contribution

Our approach uses a two-fold scheme towards unsupervised abnormal event detection;
the Intra and Inter-Property Encoding. In this way, we eliminate the correlated informa-
tionwithin and across image property features of video frames. Intra property encoding is
implemented through auto-encoders as in [11], while a novel tensor-based unsupervised
learning model is utilized as far as inter-property encoding is concerned. The current
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approaches, such as the work of [11], adopts a simple concatenation mechanism for fus-
ing the intra-property compressed latent features. However, such an approach inherently
implies that each property representation is independent from each other, an assumption
which it is not valid. For example, the gradient property is highly correlated with the
appearance as well as the saliency property. To address this difficulty, in this paper, we
introduce an alternative approach for fusing the intra-property compressed latent fea-
tures together using a tensor-based unsupervised learning model. Tensor-based learning
i) addresses the assumption that the partitions of the normal event space are a priori known
and ii) reduces the dimensionality of space removing the inter-relationships across dif-
ferent properties. Tensor learning compacts the normal space partitioning, increasing
the performance and generalization of the abnormal event detection.

Fig. 1. The proposed twofold architecture for abnormal event detection.

2 Intra/Inter Property Encoding

Figure 1 presents the proposed methodology consisting of two main parts; the intra and
inter property encoding.

2.1 Intra-property Encoding

The first part of the proposed methodology includes a set of convolutional auto-encoders
each associated for an image property. The purpose of these auto-encoders is to reduce
the redundant information of a property extracting key property components in a hidden
(latent) way. In this paper, three image properties are considered; the appearance, the
gradient and the saliency.

The first two property features are in a similar line with previous works such as [11],
while saliency property is extracted to make our abnormal event detector more generic
to different event types. The Appearance Property consists of the actual frame capturing.
The Motion Property captures the movement of objects by taking as input the gradient
of the frame. Specifically, batches of 10 frames (current frame plus the previous 9) are
used to compute the gradient vector of each frame. Finally, the Saliency Property reflects
how likely a window of the frame covers an object of any category. This property creates
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a saliency map with the same size as the frame that covers all objects in an image in a
category independent manner.

2.2 Inter-property Encoding

To generate a reliable partition of the feature space, we need to appropriately combine
all into a stacked representation so as to extract inter-property relations. The current
approaches such as the work of [11] adopt a simple concatenation mechanism, which
implies that each property is independent, an assumption that is not valid in a visual
analysis. In this paper, we fuse the intra-property features through the outer product of
them. In particular, let us denote as xi, i = 1,…, N the N compressed (encoded) version
of an image property (N = 3 in our case). Then, the fused feature is

X = outer(x1,x2, . . . , xN ) (1)

Fused Feature Property
(Outer Product)

Input Projection to
the Decomposed

Weights
. . .

Rank-1 Canonical Decomposition of the
Weight

Inner Product

Non-Linear
Relationship

Inter – Property
Compression

Fig. 2. The tensor-based learning algorithm adopted in the unsupervised tensor-based network

In Eq. (1) function outer(·) implements the outer product operator of the tensors xi
and it produces all possible correlations of the compressed property features, sincewe are
not a priori aware which correlations of the property space should be taken into account.
However, this generates quite large tensors of high redundant information, confusing
the direct application of an unsupervised clustering (e.g., k-means) for normal space
partitioning. To overcome this difficulty, we introduce a novel tensor-based unsupervised
learning,with themain purpose of partitioning the normal space based on the fused tensor
information X.

3 Tensor-Based Unsupervised Learning for Inter-property
Encoding

The inter-property encoding part is also an autoencoder but we now involve non-linear
neuron operations instead of convolutions through a tensor-based scheme (see Fig. 2).

3.1 Unsupervised Tensor-Based Learning

Let us assume that we form a neural network-based auto-encoder, in which its
inputs/outputs coincide with tensors X . Each neuron implements a non-linear relation-
ship g(·), relied on the sigmoid function. We also assume that we have Q neurons at
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the hidden layer. The input X is weighted through parameters wi and the inner product
< wi,X > is given as input to g(·). The response of the i-th hidden neuron is

ui = g(< wi,X >) (2)

weights wi are tensors since the input X is a hyper-cube.
In Eq. (2), tensor ui is a transformed version of X at the i-th hidden neuron. The

decoder part receives as input the compressed signal ui and transforms it to an output
signal which should be as close as possible to X . In the decoder, tensor ui are first
weighted by parameters v and then are inputted to neurons to generate an estimate X

∧

of
X .

X
∧

=< y, g(< v, ui >) > (3)

In Eq. (3), y denotes the parameters that weigh the outputs of the decoder to produce
estimates of X . Since the network weights are huge due to the outer product, a tensor-
based unsupervised learning is proposed for reducing significantly its parameters and
consequently the number of data samples.

3.2 The Rank-1 Canonical Decomposition of Network Parameters

Let us assume that the weights wi are rank-1 canonically decomposed into the weights
w1
i ,w

2
i , . . . ,w

D
i , where wD

i refers to the D-th rank-1 canonical decomposition of the
weight wi [26]. Therefore, we have that

wi = wD
i ⊗ · · · ⊗ w1

i (4)

In Eq. (4), the ⊗ refers to the Kronecker product of the tensors w1
i ,w

2
i , . . . ,w

D
i .

Using tensor algebra, the inner product of < wi · X > can be written as

< wi,X >=< wD
i ⊗ · · · ⊗ w1

i ,X >=

=< wl
i ,X�=l > (5)

whereX�=l is a transformed version of the input signalX independent from the l-th rank-1
canonical decomposition wl

i . More specifically, the X�=l is given as

X�=l = X (wD
i � . . .wl+1

i � wl−1
i · · · � w1

i ) (6)

In Eq. (6) the � denotes the Khatri-Rao product in tensor algebra. Using Eq. (5) and
(6) one can re-write the encoding part of Eq. (2) as

ui = g(< wi,X >) = g(< wl
i ,X�=l >) (7)

In a similar way, we can re-write the decoding part of the network using rank-1
canonical decomposition.
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3.3 The Learning Algorithm

Using Eq. (7) we are able to train the network with a significant reduction in the number
of its parameters.We initially fix all the weightsw1

i ,w
2
i , . . . ,w

D
i apart from the l-th. This

way, the transformed version X�=l is computer from Eq. (6). Then, using the backprop-
agation algorithm, we update only the weight wl

i to minimize the error so that network
output resembles as much as possible the respective inputs. Therefore, network param-
eters are solved in an iterative way with respect to one of the D canonical decomposed
weight vectors, assuming the remaining fixed [27].

Normal Activity Space 
Partitioning

Input Signal 

Intra - Property 
Compression

Inter - Property 
Compression

Abnormal 
Event 

Fig. 3. Our approach for Abnormal Event Detection as outliers of normal space partitioning by
the unsupervised tensor learning algoirthm

3.4 Unsupervised Abnormal Event Detection

The output of the encoding part of the unsupervised tensor-based learning module is
used to partition the normal activity space into sub-groups. This is depicted in Fig. 3.
Therefore, a way for detecting an abnormal event detection compared with a normal
activity is to compare the event with respect to its distance to the normal activity space.
In case that the reconstructed error with respect to the normal activity subgroups (rep-
resenting by the tensors ui) is high the event is considered not normal and therefore
abnormal.

4 Experimental Evaluation

The proposed method was tested using two popular benchmarking datasets, namely the
Avenue [10] and Shanghai Tech [28]. TheAvenue dataset includes 16 training videos and
a total of 15,328 frames as well as 21 test videos or 15,324 test frames. For each frame
ground truth locations of anomalies are provided. The Shanghai Tech dataset consists
of 330 training and 107 testing videos. It contains of about 130 abnormal events.
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The proposed method was implemented in Python. The autoencoders that imple-
ment the feature extraction (Appearance, Gradient and Saliency) were implemented in
Tensorflow and Keras, while the tensor based autoencoder was implemented in PyTorch
using the Tensorly library. The hyperparameter optimization of the learning algorithms
was determined using the Hyperband optimization method of [29], which employs a
principled early-stopping strategy to allocate resources, allowing it to evaluate orders-
of-magnitudemore configurations than black-box procedures likeBayesian optimization
methods [30].

Table 1. Abnormal event detection based on frame level AUC.

Method Avenue dataset Shanghai tech dataset XD-Violence

Lu et al. [10] 80.9 - -

Hasan et al. [13] 70.2 60.9 -

Del Giorno et al. 78.3 - -

Smeureanu et al. [31] 84.6 - -

Ionescu et al. [23] 80.6 - -

Luo et al. [28] 81.7 68.0 -

Liu et al. [18] 85.1 72.8 -

Liu et al. [32] 84.4 - -

Sultani et al. [33] - 76.5 75.68

Wu et al. [34] - - 75.41

Tian et al. [35] - 97.21 77.81

Ionescu et al. [11] 90.4 84.9 -

Our method 86.9 79.8 77.31

The Area Under Curve (AUC) metric was employed in assessing the performance
of the proposed method and the compared ones. The AUC is computed with regard to
ground-truth annotations at the frame-level and it is a commonmetric formany abnormal
event detection methods. The performance comparison of our method with other imple-
mentations is presented in Table 1. As we can see in the table above our outperforms
most techniques. [35] reaches a very high AUC score in the ShangaiTech dataset, how-
ever, this method does not perform as well across other datasets. [11] performs better in
both Avenue and ShangaiTech datasets. However, [11] uses an initial human detection
step for preprocessing. This allows only for the detection of abnormalities relevant to
specific objects, such as humans, that can be identified by the object detection method,
while also introducing a computational overhead as a result of the frame preprocessing.
Instead, our approach can be generalized to any type of object classes, such as falling
debris, natural disaster detection et which can be seen as abnormal events.

Figure 4 indicates the limitation of [11] in using k-means for normal event space
partitioning. It is clear that the number of clusters selected is highly related with the
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application scenario used. In this figure, we have implemented the approach of [11]
without the use of the initial object detection algorithm for different numbers of clusters.
This is the reason of why the results are not the same as Table 1, which they have been
optimized for a particular dataset. As is observed, the maximum accuracy is achieved
for different numbers of clusters between different datasets.

This drawback is also illustrated by the introduction of noise in the input video
stream. Themulti-property processing and the framewide analysis of our method results
in robustness towards noise introduced to the stream. Such noise can be the result of
poor visibility conditions. We have compared our method with a method that resembles
the one presented in [11]. It is worth mentioning here that the comparison was done not
with the actual model of [11], but rather with an implementation of the method from the
paper authors. Figure 5 presents this comparison with our method and [11] in this aspect.
The figure illustrates the variance of AUC scores as the input signal’s SNR drops. The
noise introduced is simple Gaussian noise.

The response of our system to various abnormalities in a test video can be viewed in
Fig. 6. In the figure we have averaged the reconstruction errors in batches of 10 frames,
for presentation purposes. The frames above are representative of the state captured in
the bounding boxes in the graph. The annotation of abnormalities comes from the ground
truth dataset.

Fig. 4. Performance difference between different number of k in the Shangai and Avenue Dataset.
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Fig. 5. Performance difference between different levels of noise in the video stream, Avenue
Dataset.

Fig. 6. Captured abnormalities and system response (Avenue Dataset). Axis x presents the frame
batch while axis y represents the average reconstruction error. Above the detected abnormalities
the annotated ground-truth data is presented

5 Conclusions

In this paper we introduce a novel method for abnormal event detection in video sys-
tems based on an intra/inter property feature information redundancy reduction. Intra
property redundancy reduction is carried out using auto-encoders while the inter prop-
erty one through tensor-based learning to take into account all potential interrelations of
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them. Experiments on benchmarked datasets show that our scheme outperforms all the
compared works but one.
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Abstract. Recent advances in deep learning resulted in the emergence
of accurate models for human pose estimation in color videos. Distance
between automatically estimated and manually annotated joint positions
is commonly used for the evaluation of such methods. However, from a
practical point of view, pose estimation is not a goal by itself. Therefore,
in this work, we study how useful are state-of-the-art deep learning pose
estimation approaches in a practical scenario of human action recogni-
tion. We compare different variants of pose estimation models with the
baseline provided by the Kinect skeleton tracking, which, until recently,
was the most widely used solution in such applications. We present a
comprehensive framework for pose-based action recognition evaluation,
which consists of both classical machine learning approaches, including
feature extraction, selection, and classification steps, as well as more
recent end-to-end methods. Extensive evaluation on four publicly avail-
able datasets shows, that by using state-of-the-art neural network models
for pose tracking, color-based action recognition matches, or even out-
performs, that of the depth-based one.

Keywords: Pose estimation · Human action recognition · Depth
modality · Color modality · Kinect

1 Introduction

Automatic human action recognition (HAR) is a widely researched topic in the
field of computer vision, due to multiple possible applications in domains such as
human-robot and human-computer interaction [14], sports analysis [9] or physi-
cal rehabilitation [12]. Early attempts at tracking human motion and recogniz-
ing actions from color videos included methods such as background subtraction,
estimation of changes between frames (e.g. optical flow), or gradient-based per-
son detection (e.g. histogram of oriented gradients) [20]. Once consumer-level,
affordable depth sensors were released on the market, the interest of the scientific
community shifted towards depth-based human motion tracking. The Microsoft
Kinect sensor became very popular, due to its built-in pose (skeleton) estima-
tion algorithm, which provided 3D positions of 20 joints, in real-time, and with
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reasonable accuracy and robustness. A wide range of methods was proposed for
action recognition based on either skeleton estimation alone, or a multimodal
combination of the skeleton, color, and depth data [5]. Recently, with exten-
sive development of deep learning, multiple neural network architectures were
proposed to accurately estimate pose from color videos, with no need for depth
data, making effective HAR possible even with mid-level mobile devices [19].

Pose estimation algorithms are commonly evaluated by comparing joint posi-
tion estimation to manually prepared ground truth annotations. However, in any
practical application, knowing joint positions is only a middle step and not a final
goal by itself. Therefore, in this work, we evaluate pose estimation algorithms by
their usefulness in the context of one of their main applications, namely action
recognition. Instead of focusing on pixel-level metrics, we consider accuracy in
distinguishing actions based on provided joint estimations. We compare, in terms
of HAR, state-of-the-art pose estimation neural networks using Kinect skeleton
tracking as a baseline, given that this was the most widely used consumer-level
motion tracking solution, prior to the emergence of deep learning color-based
approaches.

In particular we want to answer three research questions regarding HAR
applications: 1) Is color-based pose estimation as accurate as depth-based? 2)
How much more effective is 3D tracking compared to 2D tracking? 3) How does
neural network complexity correspond to the accuracy and efficiency of HAR?

To ensure a fair comparison between pose estimation methods we present a
holistic framework for action recognition based on joint positions. Our framework
includes both classical machine learning methods, such as feature extraction and
selection followed by the classification, as well as end-to-end approaches, such as
convolutional or recurrent neural networks. We conduct extensive experiments,
comparing HAR accuracy between Kinect skeleton tracking and several vari-
ants of two state-of-the-art deep learning pose estimation methods. We perform
the evaluation on four publicly available HAR datasets, using multiple machine
learning approaches to action classification. We consider employing 3D or 2D
only joint positions in order to study the importance of 3D tracking. Finally, we
analyze the results in terms of accuracy and efficiency.

2 Related Work

2.1 Pose Estimation

One of the first neural network architectures for pose estimation was Deep-
Pose [17], which performed a regression of joint location using a 7-layer convo-
lutional neural network. Moreover, a cascade of pose regressors was proposed
by the authors in order to fully capture both the context and the details.
PoseNet [11] adapted 22-layer GoogLeNet [16], with six inception modules,
for the pose regression task. Authors of [8] proposed DensePose - a model for
estimating a 3D surface-based representation of the human body. More recent
BlazePose [3] employs an encoder-decoder heat map-based network followed by
a regression encoder network, to estimate 33 joint positions in 3D. This model is
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currently part of the MediaPipe framework.1 MoveNet is yet another recent solu-
tion, employing feature pyramid networks [13] and CenterNet [23], with focus
on fast processing.

2.2 Action Recognition

Due to the popularity of the Kinect sensor, many skeleton-based solutions have
been proposed for action recognition. EignJoints action descriptor employs dif-
ferences between joint positions together with principal component analysis [22].
Histograms of oriented joints are used for view-invariant action recognition
in [21]. Authors of [1] propose a rate-invariant analysis of skeletal shape trajec-
tories. In [18] joints, edges and surfaces are used as input for a recurrent neural
network for learning action representations. Convolutional neural networks are
also used to create an efficient representation of skeleton sequences [10].

3 Methods

In this work, we decided to employ and compare against the Kinect baseline two
state-of-the-art pose estimators, namely BlazePose and MoveNet. We present
a holistic framework for the evaluation of pose estimation algorithms in HAR
scenario, to provide a comprehensive comparison.

3.1 Data Loading and Preprocessing

Our pipeline starts with loading and preprocessing the data, followed by optional
feature extraction and optional feature selection, and finished with different clas-
sification methods, see Fig. 1. Since each of the datasets employed in the exper-
iments (see Sect. 4.1) has a different file structure and naming convention, the
data loading layer includes separate modules for loading each dataset. It is fol-
lowed by pose estimation layer, responsible for computing and caching results
from different pose estimators. This is an easily extensible solution, which pro-
vides a unified data and metadata format for subsequent stages.

The preprocessing layer allows applying any number of data transformation
operations. In this work, we apply three preprocessing steps. The first is to
select relevant joints. Estimation of face parts (e.g. eyes or mouth position) is
provided by pose estimators, but those would introduce more noise than useful
information when used in action recognition, therefore they are filtered out in
this stage. Also, at this point, we can decide to use 2D or 3D positions, as well as
select joints specifically for the given dataset (e.g. one of the employed datasets
considers only lower body parts). The second preprocessing step is to interpolate
the estimated joint position sequence to a common length. This is necessary, as
most classifiers require fixed-length input. Also, this aids in making the action
recognition process robust to different motion speeds. The last step is to take

1 https://google.github.io/mediapipe/solutions/pose.html.

https://google.github.io/mediapipe/solutions/pose.html
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the first derivative of the data (in the time dimension) - we consider velocities
instead of positions, in order to make the classification robust to different body
structures and different positions of persons in the video frames.
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Fig. 1. Architecture of the action recognition framework

3.2 Feature Extraction and Classification

Feature extraction is a crucial step in classical machine learning approaches.
While many handcrafted features have been proposed in the literature, those
are prone to be scenario-specific. Therefore, for our comparison, we decided to
employ an automated approach, in which a large number of features is com-
puted and then filtered with the feature selection process. Time Series Feature
Extraction Library (TSFEL) [2] computes 60 different features in statistical,
temporal and spectral domains, including wavelet-based features. Two of them
(MFCC and LPCC) are audio-specific and therefore those are not used in our
experiments. All other features are computed per channel, where a channel is a
single component of coordinates of a single joint. E.g. in the case of Kinect pose
estimation, there are 20 joints tracked in 3D, which results in 60 channels. Some
of the features result in a sequence of values rather than a single value, there-
fore the final feature vector is large. Depending on the pose estimator, selected
joints, and used dimensions (2D/3D) the number of extracted features ranges
from 10K to 57K. Such representation carries a substantial redundancy of infor-
mation, which needs to be reduced before feeding the features to a classifier.
Therefore, we employ feature extraction on the basis of extremely randomized
trees (ERT) [7]. ERT is an ensemble classifier, that computes feature importance
at each step when growing the classification tree. Using min-max normalized
importance we select a minimal subset of features for which total importance is
at least 0.5. This operation greatly reduces the final feature vector size, which
ranges approx. from 200 to 1.7K, while preserving relevant information.

The final step of our pipeline is classification. To make our comparison more
comprehensive we consider both classical machine learning classifiers, as well as
end-to-end approaches. Full feature extraction and selection are applied when
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using support vector machines (SVM) and multilayer perceptron (MLP) classi-
fiers. Random forest (RF) classifier employs full feature vector, as it performs
feature importance estimation internally, similar to ERT. We consider two end-
to-end approaches - 1D convolutional neural network (CNN) which learns 1D
convolutions per channel, as well as recurrent neural network (RNN), which
employs gated recurrent units (GRU) to find temporal patterns in the data.
Both CNN and RNN take preprocessed input (interpolated velocities) rather
than extracted features.

Along the entire pipeline numerous hyper-parameters could be optimized
with various methods. However, our goal is not to achieve the best possible
recognition accuracy, but rather to provide a fair comparison of pose estimation
methods. To this end, we choose reasonable baseline parameters at each stage,
rather than perform wide optimization.

4 Experiments

4.1 Datasets

In our experiments, we employ four publicly available datasets. Our main require-
ment for selecting the datasets was that they would include synchronized Kinect
and RGB data, with a fully visible single person (multi-pose estimation is not
considered in this work). While several action recognition datasets are publicly
available, only a small number contains both Kinect and RGB data, and some of
those are no longer available or otherwise not usable in our scenario (e.g. one of
the considered datasets had only videos with inpainted joint positions). Our final
selection includes datasets as described further in this Section. See also Table 1
for more details. All datasets have videos in resolution 640× 480.

UTD-MHAD [4]. University of Texas at Dallas Multimodal Human Action
Dataset contains 27 actions, mostly performed with one or two hands, with a
small subset of leg and full body actions. The person is located in the center of
the frame, with a mostly clear background.

FFD [15]. Fencing Footwork Dataset contains 6 full-body actions from the fenc-
ing training domain. Due to the specifics of the actions only lower-body parts
are considered and only in 2D (actions are recorded in side-view). Also, 4 out of
6 actions are different variations of the same exercise, with similar trajectories,
but different dynamics. Learning to distinguish between those variations is the
main goal of this dataset. The action is performed in the center of the frame,
with a mostly clear background.

KARD [6]. Kinect Activity Recognition Dataset contains 18 actions similar to
those in the UTD-MHAD dataset - most performed with hands, some including
leg or body movement. The person is located in the center of the image, with
clear background.
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Table 1. Datasets summary (A - number of actions, P - number of persons, R - number
of repetitions of action per person)

Name A P R Actions

UTD-MHAD 27 8 4 Right arm swipe to the left, Right arm swipe to the
right, Right hand wave, Two hand front clap, Right arm
throw, Cross arms in the chest, Basketball shoot, Right
hand draw x, Right hand draw circle (clockwise), Right
hand draw circle (counter clockwise), Draw triangle,
Bowling (right hand), Front boxing, Baseball swing
from right, Tennis right hand forehand swing, Arm curl
(two arms), Tennis serve, Two hand push, Right hand
knock on door, Right hand catch an object, Right hand
pick up and throw, Jogging in place, Walking in place,
Sit to stand, Stand to sit, Forward lunge (left foot
forward), Squat (two arms stretch out)

FFD 6 10 11 Step forward, Step backward, Rapid lunge, Incremental
speed lunge, Lunge with waiting, Jumping-sliding lunge

KARD 18 10 3 Horizontal arm wave, High arm wave, Two hand wave,
Catch Cap, High throw, Draw X, Draw Tick, Toss
Paper, Forward Kick, Side Kick, Take Umbrella, Bend,
Hand Clap, Walk, Phone Call, Drink, Sit down, Stand
up

UT-Kinect 10 10 2 Walk, Sit down, Stand up, Pick up, Carry, Throw,
Push, Pull, Wave hands, Clap hands

UT-Kinect [21]. University of Texas Kinect-Action3D Dataset contains 10
actions including full body and hand motion. The person is located in differ-
ent parts of the image and moves around in some actions. Also, the background
is cluttered, which may constitute a challenge for color-based pose estimation.

4.2 Evaluation Protocol

As stated in Sect. 3 we decided to compare the Kinect with two state-of-the-
art pose estimators, namely BlazePose, which has a total of six variants, and
MoveNet, which has two variants. BlazePose has three basic variants - Lite,
Heavy and Full - each with better accuracy than the previous, but at the cost
of longer computation time. Those can run either in static mode, in which each
frame is processed separately, or non-static mode, in which information from
the previous frame is used for tracking in order to decrease the computation
time. BlazePose estimates 33 joint positions in 3D. MoveNet has two variations,
Lightning - the faster, but a less accurate one, and Thunder - slower, but more
accurate. It estimates only 17 joints in 2D. Our reference, the Kinect, estimates
20 joints in 3D. See Table 2 for more details.
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All datasets were evaluated using leave-one-person-out cross-validation, thus
each experiment run included n folds (n equal to the number of subjects in the
dataset), and in each fold, one subject was used for validation and all other were
used for training. Scores presented in this Section are accuracy metric averaged
over all folds.

As described in Sect. 3.2 no systematic hyper-parameter search was per-
formed, as this was not the goal of this study. Instead, reasonable set of hyper-
parameters was manually selected, based on our previous experience. SVM clas-
sifier has regularization parameter C = 1 and employs radial basis function
(RBF) kernel, with γ = 1/(n ∗ v), where n = number of features and v = vari-
ance of the training samples. MLP has two hidden layers with sizes 64 and 32.
RF creates 100 trees with no depth limit, using Gini impurity to measure the
split quality. CNN has two blocks, each containing two 1D convolutional layers
followed by 1D max-pooling layer. The first block has layers with 32 filters, and
the second one with 64 filters. The two blocks are followed by a dense layer with
a size of 64. RNN has a single GRU layer with 32 filters followed by a dense
layer with a size of 64.

4.3 Results

The comparison of pose estimators in terms of tracked joints and processing
time is presented in Table 2. Times were measured on a PC with Intel Core
i5 2.5 GHz processor. The Kinect pose estimation is performed on the Kinect
device, therefore time per frame does not apply, however, pose data is provided
with 30 frames per second.

Results for each dataset are presented in: Table 3 (UTD-MHAD), Table 4
(FFD), Table 5 (KARD) and Table 6 (UTKinect). Pose estimator versions are
abbreviated as follows: MedaPipe: (L) Lite, (LS) Lite static, (H) Heavy, (HS)
Heavy static, (F) Full, (FS) Full static; MoveNet (L) Lightning, (T) Thunder.
The feat. column denotes the number of selected features, which is relevant
only for SVM and MLP classifiers. Best results per dimensionality (2D/3D) are
indicated with boldface.

4.4 Discussion

In experiments with the UTD-MHAD dataset best action recognition accuracy
(0.92) for both the 2D and the 3D scenarios was obtained with the Full BlazePose
estimator and SVM classifier (equally with the MLP for the 3D case), little over
the Kinect baseline (0.89 for 2D and 0.91 for 3D). Lighter BlazePose models
performed almost as well as the Full, still outperforming the Kinect in the 2D
case. Moreover, 2D estimation was sufficient, as 3D tracking provided little to no
improvement in most cases. MoveNet pose estimations proved to be significantly
less efficient for action recognition (best accuracy 0.81).

Regarding the FFD dataset only 2D tracking was considered, as actions are
recorded from side-view and depth estimation is irrelevant. Kinect pose estima-
tion with SVM classifier outperformed all other approaches, obtaining accuracy
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Table 2. Pose estimators - tracked joints and processing time

Pose estimator Variant Time per

frame (ms)

Frames per

sec.

Num. of

joints

Joints

Kinect n/a 30 20 Head, Spine, Shoulder center,

Shoulders, Elbows, Wrists,

Hands, Hip center, Hips, Knees,

Ankles, Feet

BlazePose Lite 43 23 33 Nose, Eyes, Ears, Mouth,

Shoulders, Elbows, Wrists, Pinky

fingers, Index fingers, Thumbs,

Hips, Knees, Ankles, Heels, Feet

index fingers

Lite Static 94 10.5

Heavy 65 15.5

Heavy St 112 9

Full 229 4.5

Full Static 280 3.5

MoveNet Lightning 45 22 17 Nose, Eyes, Ears, Shoulders,

Elbows, Wrists, Hips, Knees,

Ankles
Thunder 135 7.5

Table 3. UTD-MHAD dataset action recognition accuracy

Pose estimator 2D 3D

Feat. SVM MLP RF CNN RNN Feat. SVM MLP RF CNN RNN

Kinect 1147 0.89 0.89 0.86 0.84 0.81 1097 0.91 0.91 0.89 0.87 0.84

BlazePose L 1053 0.91 0.89 0.88 0.86 0.76 1205 0.91 0.89 0.89 0.81 0.50

BlazePose Ls 1136 0.91 0.87 0.88 0.83 0.68 1320 0.90 0.89 0.88 0.75 0.27

BlazePose H 999 0.90 0.90 0.89 0.87 0.79 1094 0.90 0.90 0.88 0.80 0.48

BlazePose Hs 1069 0.91 0.88 0.87 0.88 0.71 1223 0.90 0.91 0.88 0.75 0.36

BlazePose F 963 0.90 0.90 0.89 0.85 0.79 1045 0.90 0.91 0.91 0.82 0.42

BlazePose Fs 1002 0.92 0.90 0.89 0.85 0.73 1122 0.92 0.92 0.89 0.79 0.16

MoveNet L 1719 0.68 0.67 0.67 0.56 0.21 – – – – – –

MoveNet T 1350 0.76 0.81 0.81 0.78 0.54 – – – – – –

Table 4. FFD dataset action recognition accuracy

Pose estimator 2D

Feat. SVM MLP RF CNN RNN

Kinect 287 0.84 0.81 0.78 0.77 0.72

BlazePose L 380 0.78 0.75 0.75 0.71 0.56

BlazePose Ls 384 0.79 0.77 0.75 0.72 0.56

BlazePose H 342 0.79 0.78 0.77 0.71 0.65

BlazePose Hs 349 0.80 0.79 0.76 0.70 0.62

BlazePose F 319 0.80 0.80 0.76 0.73 0.62

BlazePose Fs 317 0.79 0.78 0.75 0.71 0.62

MoveNet L 619 0.71 0.68 0.70 0.59 0.41

MoveNet T 509 0.75 0.72 0.71 0.61 0.44
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Table 5. KARD dataset action recognition accuracy

Pose estimator 2D 3D

Feat. SVM MLP RF CNN RNN Feat. SVM MLP RF CNN RNN

Kinect 524 0.97 0.98 0.96 0.92 0.72 518 0.98 0.98 0.97 0.95 0.76

BlazePose L 539 0.97 0.98 0.97 0.92 0.84 555 0.97 0.98 0.96 0.91 0.62

BlazePose Ls 617 0.97 0.96 0.96 0.95 0.79 651 0.97 0.96 0.96 0.86 0.49

BlazePose H 515 0.96 0.97 0.96 0.92 0.86 538 0.97 0.97 0.96 0.90 0.61

BlazePose Hs 567 0.97 0.97 0.96 0.92 0.84 600 0.98 0.97 0.96 0.87 0.47

BlazePose F 529 0.97 0.98 0.96 0.94 0.86 521 0.98 0.99 0.96 0.89 0.53

BlazePose Fs 581 0.97 0.97 0.96 0.94 0.83 585 0.98 0.98 0.96 0.89 0.36

MoveNet L 817 0.87 0.88 0.87 0.78 0.47 – – – – – –

MoveNet T 665 0.91 0.94 0.93 0.88 0.73 – – – – – –

Table 6. UTKinect dataset action recognition accuracy

Pose estimator 2D 3D

Feat. SVM MLP RF CNN RNN Feat. SVM MLP RF CNN RNN

Kinect 415 0.90 0.89 0.83 0.74 0.78 385 0.89 0.90 0.87 0.77 0.85

BlazePose L 495 0.78 0.81 0.74 0.65 0.63 511 0.78 0.82 0.81 0.53 0.36

BlazePose Ls 545 0.78 0.81 0.77 0.65 0.64 556 0.77 0.85 0.80 0.43 0.23

BlazePose H 438 0.75 0.79 0.77 0.71 0.63 454 0.82 0.88 0.82 0.60 0.28

BlazePose Hs 528 0.76 0.83 0.78 0.65 0.58 535 0.78 0.87 0.85 0.50 0.33

BlazePose F 458 0.79 0.83 0.76 0.71 0.65 469 0.83 0.88 0.83 0.59 0.29

BlazePose Fs 489 0.80 0.86 0.81 0.69 0.67 499 0.85 0.92 0.83 0.54 0.35

MoveNet L 621 0.68 0.74 0.69 0.39 0.24 – – – – – –

MoveNet T 556 0.78 0.82 0.73 0.43 0.44 – – – – – –

0.84, while best BlazePose result was 0.80. Since this dataset focuses on dis-
tinguishing similar actions on the basis of dynamics rather than trajectories, a
possible explanation is that the Kinect skeleton tracking is more stable. Again,
MoveNet was less efficient (best accuracy 0.75), however with a smaller gap than
the one observed in the UTD-MHAD results.

KARD dataset experimental results indicate that BlazePose and Kinect pose
estimations are equally well suited for recognizing actions, both obtaining close
to perfect results with MLP classifier (Kinect 0.98 for 2D and 3D, BlazePose
0.98 and 0.99 accordingly). MoveNet falls behind with the best accuracy of 0.94
obtained with the Thunder variant.

UTKinect dataset proved to be more difficult for the color-based pose esti-
mators, probably due to the cluttered background and more movement present
in the videos. Results obtained with BlazePose and MoveNet pose estimations
are generally worse than those obtained on the basis of Kinect, however, the
highest accuracy (0.92) was actually achieved with the BlazePose Full static
variant. The best accuracy of the Kinect-based approach is 0.90, while that of
MoveNet-based is only 0.82.

Considering all experiments, color-based pose estimation performed very well.
BlazePose pose estimation obtained the highest accuracy in 3 out of 4 datasets.
We can observe, that factors that are challenging for color-based approaches are
motion dynamics and cluttered background. There is little difference in action
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recognition accuracy based on 2D and 3D joint positions, even though the 3
datasets that employed 3D positions contained together over 50 actions. We can
expect that for some actions depth estimation will be relevant, however, those
will probably be rare in most practical scenarios. Also, we can observe that lighter
variants of the BlazePose estimator in most scenarios perform almost as well as
the full one, even though their processing is much faster. In all experiments,
end-to-end approaches were inferior to the classical machine learning methods.
This is most likely due to the low sizes of the datasets, as well as the relatively
simple architectures of the employed CNN and RNN. In terms of processing
times, BlazePose Lite and MoveNet Lightning both achieve close to real-time
performance, with 22–23 frames per second (target would be 30, as this is the
frame rate in most consumer-level cameras). It is worth noting, that further
processing of the joint positions is very fast, due to the low amount of data (up
to 33 joints in 2D or 3D), therefore there is almost no additional computational
overhead introduced by the action recognition itself.

5 Conclusions

In this work, we presented a study of color-based pose estimation in action recog-
nition. Our holistic framework provided a comprehensive evaluation of different
pose estimators and their variants, using the Kinect as a baseline. To conclude
answers to the research questions stated in Sect. 1: 1) state-of-the-art color-based
pose estimation performs equally well as depth-based one (and sometimes even
better) in the HAR context, 2) 2D tracking is as effective as 3D tracking for
most actions, 3) lighter variants of the BlazePose estimator are much faster, yet
almost as effective as the Full one. However, MoveNet proved to be less useful
for HAR, even with the more accurate Thunder variant.
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Abstract. Nowadays, deep learning approaches lead the state-of-the-
art scores in human activity recognition (HAR). However, the supervised
nature of these approaches still relies heavily on the size and the quality
of the available training datasets. The complexity of activities of existing
HAR video datasets ranges from simple coarse actions, such as sitting,
to complex activities, consisting of multiple actions with subtle varia-
tions in appearance and execution. For the latter, the available datasets
rarely contain adequate data samples. In this paper, we propose an app-
roach to exploit the action-related information in action label sentences
to combine HAR datasets that share a sufficient amount of actions with
high linguistic similarity in their labels. We evaluate the effect of inter-
and intra-dataset label linguistic similarity rate in the process of a cross-
dataset knowledge distillation. In addition, we propose a deep neural net-
work design that enables joint learning and leverages, for each dataset,
the additional training data from the other dataset, for actions with
high linguistic similarity. Finally, in a series of quantitative and qualita-
tive experiments, we show that our approach improves the performance
for both datasets, compared to a single dataset learning scheme.

Keywords: Human action recognition · Natural language processing ·
Deep learning · Video understanding

1 Introduction

In recent years deep learning has become the dominant learning direction in
several research fields, including computer vision. Human activity recognition
(HAR) is one of its challenging sub-fields, with a wide range of applications
from Human-Robot Collaboration (HRC) and assistive technologies for daily
living, to surveillance and entertainment. Deep learning models have dominated
the field due to their high representational power, long-range temporal mod-
elling capacity, as well as their end-to-end training capabilities. The majority of
these models rely on a supervised learning process, with the most powerful ones
requiring large-scale datasets with diverse video content and action/activity sets,
especially for layer-related hard optimization cases, such as 3D convolutional
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filter-based ones. However, the number of publicly available large-scale HAR
datasets is rather small. The most common workaround to improve performance
and generalization on small-scale datasets is to exploit a model that has been
trained on large-scale image or video recognition datasets, such as ImageNet [9]
or Kinetics [4], as a generic feature extractor and only train a shallow tem-
poral model on the target dataset [14], or fine-tune the entire spatio-temporal
model [11,26], a concept known as transfer learning.

Another direction is to consider action category commonalities between
dataset pairs, and apply a joint learning scheme (multi-task learning) for the
two action domains [21], leveraging of additional data for the class set that lies
in the shared label space, referred as supervised Domain Adaptation (DA) [30].
The evaluation of the contribution of this learning tactic is carried out in care-
fully selected dataset pairs that fulfill the criteria of having a sufficient number
of common action classes and similar motion and appearance characteristics, in
order to constrain the distribution gap due to the domain shift. In the existing
literature, there exists only a limited number of such dataset pairs, which are
defined via manual evaluation of the aforementioned attributes [5,7]. Under this
premise, the development of a generalized framework for automatically evaluat-
ing the potential compatibility of two or more datasets, is an interesting but still
unaddressed research direction. Our work is an attempt to tackle this problem,
with a flexible and interpretive domain adaptation-oriented dataset association
process based on label linguistic similarities for the considered datasets.

2 Related Work

Cross-Domain Learning in Action Recognition: aims at reducing the dis-
tribution gap between the feature spaces of the considered domains through
joint modelling. To achieve this, existing works have incorporated feature distri-
bution similarity measures, such as the Kullback-Leibler (KL) divergence, and
the Maximum Mean Discrepancy (MMD), along with the task of image [2,17],
video classification [5,31]. Expanding on the task of action recognition, a set of
deep learning works, instead of only relying on distribution similarity error met-
rics, attempt to reduce the domain gap at feature level, by introducing domain
alignment layers that consider batch-level statistics and cross-domain batch con-
tamination strategies [3,21] in their designs of a cross-dataset HAR learning deep
model, which operates on the concatenated label set of the datasets.

Dataset Association: has been considered in numerous works, as a means to
increase the generalization of models, expand the supported label space, and han-
dle imbalanced datasets [22,27]. In the contexts of video cross-domain learning
and DA, existing works have combined dataset pairs with a range of approaches.
These approaches include simple strategies, such as formulating a new dataset
comprised of the union of the label sets [21] or re-annotating the labels of the
second dataset following the annotation protocol of the first [15]. Delving into
the task of DA, a set of works considers only common actions between datasets
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Fig. 1. Hierarchical action label decomposition in coarse, fine action levels via verb-
POS analysis. Datasets: MHAD (A), J-HMDB (B)

to define the basis in which the shared latent subspace is defined [12,25]. This
set of common action classes can be further expanded by grouping semantically
similar action labels, considering notions such as word semantic similarity and
lexical hierarchy. These linguistic associations are usually exploited indirectly
via the inherent linguistic knowledge of the annotators, either in the form of
direct relabelling of the source dataset to the target [5], or, to provide annota-
tions regarding linguistic and semantic relations between the two label sets [28].
The advantage of the second approach is that these intermediate annotations
allow to further analyze the characteristics of the datasets, to compute the gen-
eral relevance score between the datasets, as well as to generation of a range of
dataset label fusions, by considering stronger or weaker label associations.

Different from these works, our work does not utilize annotators for the
derivation of the linguistic similarity between the labels, but instead exploits
the word semantic similarities and relations from large lexical databases, such
as WordNet [19], to define and control the strength of the label associations. In
addition, by exploiting dataset relevance statistics, in a similar basis with the
work of Yoshikawa et al [28], we are able to evaluate the resulting association.
Finally, we investigate the impact of the cross-dataset linguistic similarity rate
requirements and single dataset inter-class linguistic label sentence correlation
rate on the potential performance gain in a HAR deep model design that exploits
the joint label space in a multi-task learning scheme. The core design direction for
this model follows the principles of HAR-oriented DA models, and can be related
with the work of Bousmalis et al. [2], in that we also follow a combined dataset-
wise (private) and shared subspace learning scheme. In addition, compared to [2]
despite mitigating the problem of cross-domain knowledge transfer to the task
of action recognition, our model design aims to learn discrete representations for
both datasets and their respective action sets (multi-task learning).

3 Proposed Method

The proposed method provides a framework for the relation of video HAR
datasets based on the linguistic similarities of their label sentences. Our work
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shows that such associations can be exploited in a dual-dataset learning scheme
applicable to any deep HAR architecture with minor modifications. We argue
that such learning schemes and architectures access a richer training sample pool
for action classes that share the same or semantically similar linguistic defini-
tions. Our experiments show that as this sample pool size increases, the model’s
representational strength is enriched, leading to better action discrimination.

3.1 Dataset Label Association via NLP

The proposed method pipeline operates as follows. First, we present the NLP
tools utilized in the computation of label linguistic similarity, and, a label decom-
position process that provides an interpretive and precise definition of the lin-
guistic association between action labels. This process transforms the label set
of each dataset into two action granularity-based label sets, (a) a coarse-grained
action set, consisting of simple verb-based labels that denote the common action
motif between a set of associated actions (for the actions get the cup and get
the bottle, coarse label is the verb get), and, (b) a fine-grained action set, with
the initial labels enriched with coarse-grained membership information. Subse-
quently, we present a process to define association rules between a dataset pair
and highlight key elements and assumptions of this dataset relation process.

Dataset-Wise Label Association and Hierarchical Decomposition: In
our recent work [1] we presented an NLP-assisted label sentence analysis app-
roach to define a two-level action tree hierarchy from a given set of action labels,
either focusing on a specific part-of-speech (POS) or by exploring the semantic
relations between the entire label (via word-ordering & semantic content simi-
larities) relying on the work of Yuhua Li et al. [16]. In this work, we also follow
a verb-POS action label direction to group semantically similar labels based on
verb commonalities, or high verb semantic content similarity.

For the latter case, we evaluate the semantic relation between the verbs of
the label sentences based on two metrics. The first metric expresses the seman-
tic relation as defined within the WordNet [19] semantic knowledge base. We
define the verb semantic similarity rate between a label pair by thresholding the
normalized (to [0, 1]) length of the shortest path between the word (verb) nodes
relatively to the common word-ancestor node, as defined in WordNet, following
the direction of Redmon and Farhadi [22]. The second metric follows a more sim-
plified direction and directly compares the word embeddings of the two words
(verbs), generated via the Word2Vec [18] embedding model, using the cosine sim-
ilarity metric. We found that combining these metrics best expresses the relation
between the label sentences in terms of verb semantic content similarity.

Given the detected label associations we can define a two-level action hierar-
chy based on the verb semantic similarities between the action classes. The first
action tree level, consists of a set of coarse action classes, defined by the shared
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verbs,1 indicating the presence of a common coarse motion pattern between the
related actions. The second level contains the fine-grained action classes, belong-
ing to the dataset’s original set, enriched with info regarding the coarse class
to which each fine-grained label has been clustered. We should mention that a
more complex hierarchy could surface more informative clues,2 however more
complex semantic relation trees are scheduled to be explored in the future.

Inter-dataset Label Association: In a similar fashion, to associate a dataset
pair, we utilize NLP to identify action labels that are common or exhibit high
semantic similarity, focusing only on the verb POS sets (coarse classes), and
fuse the two action trees into a shared, two-level action tree hierarchy. The first
level now contains a set of coarse action classes that correspond to the verb-POS
elements that are shared between the class sets of the dataset pair, indicating a
similar coarse action primitive, as well as the remaining unique coarse classes of
both datasets. The second level consists of the fine-grained classes for which a
coarser action class was defined. Figure 1 shows a simplified illustration.

In more detail, for a pair of datasets A,B, with isolated verb label sets noted
as TA and TB , we define the shared coarse action label set C, with the verbs-
POS of the labels k, l in A, B, whose verbs are the same, TA ∩ TB, or, (a) the
relative path length in WordTree between verbk ∈ TA, verbl ∈ TB ≤ 0.5, and (b)
the cosine similarity between verbk ∈ TA, verbl ∈ TB ≥ 0.9. The gains for each
dataset from this formulation depend on the portion of action labels for each
dataset that are shared. A simple, intuitive criterion to define the dataset label
set fusion compatibility, is to set thresholds on the minimum portion of labels
of each dataset that needs to be included in the shared, coarse label set. Based
on this, we can define the label set compatibility for the dataset pair as follows:

Criterion for Assessing the Dataset Label Set Compatibility : |C∩TA| ≥
t1|TA| and |C ∩ TB | ≥ t2|TB | conditioned that t1+t2

2 ≥ t3, with t1, t2, t3 ∈ (0, 1].

The parameters t1, t2, t3 determine the required degree of similarity between
the two datasets in order to consider the content of their action sets as cor-
related. Thresholds t1, t2, express the portion of the dataset’s class set that is
encapsulated in the generated coarse action class set C. The degree of the over-
all dataset pair similarity rate is expressed with t3. The higher the t3 value, the
larger becomes the requirement for the datasets to exhibit higher label semantic
associations. With that in mind, we can define levels for the dataset association
power (low, partial, high) by setting dataset-appropriate values for t3. For this
purpose in our experiments we evaluated the aspect of inter-dataset compatibil-
ity by defining the dataset association levels, (a) t3 < 0.3 - low, (b) 0.3 < t3 < 0.6
- partial, and, (c) 0.6 < t3 < 0.9 - high, with t3 = 1 signifying full association.

1 For associated labels with different verbs, with high semantic similarity, the verb of
1st label is used as a coarse label.

2 For example, we could add a level that defines associations based on nouns, referring
to the presence of common objects in different actions.
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Fig. 2. Baseline BiLSTM DNN for dual-dataset learning. Batch consists of both dataset
samples. Each sample contains also a scalar ∈ [0, 1], indicating dataset membership.

The Importance of Intra-dataset Label Similarity: The information gain
from the fusion of two datasets will be higher as the amount of associated classes
increases. A factor that affects the gain is the dataset-wise intra-class label simi-
larity. Ideally, a high label relation threshold (high cosine similarity, short-length
paths between words in WordTree) guarantees that only labels with close seman-
tic contents are associated, and exploit the coarser representation knowledge that
is acquired from this learning scheme. However, it is interesting to examine the
effect of subtle linguistic relations between labels that have been included in the
shared set, and the ones that were not. To express this in set theory, for the two
datasets A and B, and their shared action set C, we define the relative comple-
ment of B in A as AD : (TA−TB), and the one of A in B as BD : (TB −TA). Our
goal is to assess the performance of the dataset association learning scheme based
on the degree of the lexical similarity between the labels in AD and the ones in
C, and, in similar fashion, for BD and C. In a similar factor assessment direction
to the one described for the dataset fusing compatibility, in our experiments we
examine the effect of the linguistic similarity rate between the intersection C,
and non-intersection, AD (or BD) sets, under the same three association lev-
els (no, partial, high). In addition, since it is difficult to find different dataset
pairs that satisfy these conditions, we design a simple algorithm which, given
the requested association condition, splits the MPII Cooking Activities [23], into
two subsets whose label sets satisfy the requirements. Details in the next section.

3.2 Dual-Dataset Learning Deep Architecture

We now present design directions, applicable to the majority of HAR DNNs,
that allow the utilization of the dataset association scheme in a dual-dataset
learning format, improving the model’s performance on one or both datasets.

The simplest HAR DNN design that allows the support of a dual-dataset
learning functionality is to merge the datasets into a new expanded action set,
A∪B, and classify an input sequence to the unified action label set. In this work
we propose a DNN structure, that mimics the hierarchical action decomposition
and dataset relation scheme that we defined earlier. It is a triple-branch DNN
design (Fig. 2), consisting of two distinct sub-nets assigned to model each dataset
and an additional sub-net that handles the spatio-temporal modelling of the
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shared coarser actions. Moreover, skip connections introduce the learned coarse-
grained representation as complementary information in the fine-grained sub-
nets, guiding them to learn representations towards finer action details.

Regarding the objective function, the network learns a shared representation
of two different distributions, thus, we need to evaluate the learned representa-
tion for the shared coarse action labels. For this we follow the guidelines of cross-
domain learning approaches and use the Maximum Mean Discrepancy (MMD)
loss [10] to compute the marginal distribution between the domain distributions.
The loss function to be minimized is defined as:

L = Ltask + LMMD(Gen, F ineA) + LMMD(Gen, F ineB), (1)
where Ltask refers to the classification problem between the coarse and fine
action classes, and LMMD refers to the MMD domain distribution distance loss.
In detail, the classification loss is defined as the cross-entropy loss for the two
action granularities (coarse, fine):

Ltask = −
K∑

k=0

T gen
k log (Y gen

k ) −
1∑

i=0

J∑

j=0

wi,jT
fine
i,j log

(
Y fine
i,j

)
, (2)

with (a) the wi vector denoting the dependencies between the fine-grained action
classes of the dataset i (details in [1]), T gen denoting the ground-truth labels for
the joint coarse-grained action set, (c) T fine

i being the ground-truth fine-grained
labels for dataset i, and, (d) (Y gen, Y fine

i ) being the estimated action classes for
the coarse- and the fine-grained action sets for dataset i.

The LMMD loss, is actually the summation of two MMD losses, between
the learned shared distribution and each dataset-specific learned distribution.
Intuitively, regarding the two design directions, the first is simpler to define and
learns a mapping from both input domains to the distinct concatenated output
label set. However, HAR model of this design can be harder to train. The reason
can be thought as a potential combination of, a) model capacity inadequacy
due to the fine-grained label space significant expansion, and, b) label cases
with similar characteristics combined with data scarcity, resulting in weaker
representations for each class that easily lead to mis-classifications.

3.3 Factors that Affect Learning

The performance of cross-domain and dataset fusion learning such as the one we
propose, is affected by a number of factors. The most important one that affects
the efficiency of learning in HAR datasets is the differentiation in the dataset
characteristics, such as whether the actions are performed in a constrained or
unconstrained environment, under a fixed or with multiple viewing angles, the
presence of moving objects in the background etc. In HAR cross-domain learn-
ing and domain-adaptation setups, the examined datasets share similar action
characteristics and are defined under more controlled conditions, such as envi-
ronments with static scenes with minimal background motions and noise. This
allows for the impact on the representation difference to be smaller since the
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appearance feature manifold is more constrained. To further restraint the effect
of such elements, in our experiments we limit the processing area in the actor’s
region, removing any background information that may induce a negative affect.

A consequence of the aforementioned domain-related differences between the
datasets is the distance between the learned representational sub-space in the
feature manifold to which the action set of each dataset is mapped to. Ideally,
when working with an action set consisting of the union of the label sets, for
the cases of actions that are shared, or associated via linguistic similarities, we
expect the learned representations to be mapped closely in feature space. How-
ever, in the appearance domain (RGB), variations in the background or in the
actor/object characteristics can expand the feature representation subspace of
each action and increase the representation gap between actions with similar
coarse motion motifs (take a bottle and grab a glass). To constrain the repre-
sentation gap for such cases we can work with high-level representation spaces,
such as optical flow (OF) or pose-based feature representations. In our experi-
ments we also follow this direction by utilizing OF data of, (a) the entire scene,
(b) human body part regions.

4 Experimental Setup

We evaluate the benefits and constraints of the proposed learning and DNN
design scheme on three known HAR datasets of ranging action complexity.
The first dataset pair consists of the Berkeley’s MHAD [20] (11-classes) and
J-HMDB [13] (21-classes) datasets. The specific dataset pair shares a number of
six coarser classes. The coarser action set for this dataset pair consists of (a) the
common coarser classes for both datasets, (b) the remainder of the coarser action
classes for the dataset A (MHAD), and, (c) the remainder of the coarser action
classes for the dataset B (J-HMDB). A simplified illustration is shown in Fig. 1.

The third dataset that has been explored is Max Planck’s Cooking dataset
(MPII Cooking Activities [23]), which is used to better understand the signifi-
cance and impact of the similarity rate on the proposed learning scheme. Specif-
ically, it’s action label size and complexity as well as the high inter-class sim-
ilarity (appearance&motion characteristics) between its action label set makes
it ideal to serve as the experimental basis for evaluating the inter- and intra-
dataset cases, presented in Sect. 3.1. To adjust MPII Cooking to this format, we
designed a simple algorithmic process that splits the dataset into two subsets
that satisfy the specifications of different scenarios of inter- and intra-dataset
label linguistic similarity. Details are presented in the next subsection.

For the reported scores, for MPII and J-HMDB, we report the accuracy
score on split-1, whereas for MHAD, we follow the provided train/test scheme.
Regarding input sources, we focus on the OF domain, and consider two feature
design strategies, (a) OF estimates on the actor’s region, and, (b) OF estimates
on distinct body-parts of the actor. OF data were generated with TV-L1 [29].
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4.1 Inter- and Intra-dataset Evaluation

To evaluate the notions in Sect. 3.1, instead of searching for dataset pairs that
satisfy the inter- and intra-dataset similarity cases, we manually construct them.
For this, we designed a simple algorithmic pipeline that splits MPII Cooking
Activities into two subsets MPIIA, MPIIB, that satisfy a specified configura-
tion for inter- and intra-dataset label linguistic similarity.

To decouple the inter- and intra-dataset similarity factors and assess their
impact, the algorithmic process3 contains two functionality sets:

Inter-dataset: generate random splits of the dataset class set into two subsets,
under the condition that the similarity rate between class sets of the two subsets
satisfies the required threshold, t3. To evaluate the satisfaction of the requested
inter-dataset similarity, we estimate the inter-dataset similarity score. For this,
we identify the verb-POS of the labels that have been assigned to each subset
and compare them using the metrics presented in Sect. 3.1. The achieved score
is evaluated based on t3. If the threshold is not satisfied the process is repeated.

Intra-dataset: To evaluate intra-dataset similarity for each of the possible
similarity rate scenarios, the initial step of the dataset splitting algorithm is
to define an intersecting class set MPIIC , and then proceed to gradually add
the non-intersecting classes to each subset, checking after each insertion the
satisfaction of the conditions of each case. This format allows for all generated
splits for each condition to share the same common coarse action set, in order
to exclude the impact of this factor from the assessment.

The examined association scenarios for the non-intersecting subsets of
MPIIA, MPIIB, noted as MPIIAD

, MPIIBD
, with the intersection MPIIC ,

are:

(1) MPIIAD
, MPIIBD

with a relative large portion of labels with high simi-
larity with the ones in MPIIC ,

(2) MPIIAD
, MPIIBD

with a relative small portion of labels with high simi-
larity with the ones in MPIIC ,

(3) MPIIAD
with a large portion of labels with high similarity with the ones

in MPIIC , and, MPIIBD
a low,

(4) MPIIBD
with a large portion of labels with high similarity with the ones

in MPIIC , and, MPIIAD
a low.

In detail, the process begins with the construction of the label self-similarity
matrix (LSM), by computing the pairwise cosine similarity of their respective
word-embeddings. Based on the LSM scores, we select the N most similar label
pairs, and use them as the basis for the intersection label set, MPIIC , assigning
from each pair, labeli in subset MPIIA, and, labelj in MPIIB. The rest of the
labels, MPII−MPIIC serve as the label pool to construct MPIIAD

,MPIIBD
.

3 The process utilizes the label set, and, the respective word embeddings.
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Table 1. Performance difference between a single dataset (NM), and, a dual dataset
(M) DNN designs. Inputs are OF frame sequences. For MPII, splits are A-31 classes,
B-33 classes, with intersection similarity rate of 0.38, leading to 11 coarse classes.

Architecture Datasets Acc.%, Input: OF

Design MHAD/JHMDB MPIIA/MPIIB

NM-lstm 60.18 38.75 28.17 29.65

M-lstm 63.59 41.87 36.45 29.74

NM-I3D [4] 86.37 49.89 47.05 48.33

M-I3D 90.67 49.58 46.62 49.83

This process involves first clustering these labels, using k-means, based on the
linguistic similarity of their verb-POS with the verb-POS of the labels in MPIIC ,
which allows the detection of the labels with the most impact on the intra-dataset
similarity scores, Sim(MPIIAD

,MPIIC), Sim(MPIIBD
,MPIIC). For each

label in each cluster, we use LSM to find each most similar label in the same
cluster, and, in MPIIC . We assign each of the two labels to the subset, whose
label in MPIIC exhibits the highest similarity with it. After all non-intersecting
labels have been assigned to one of the subsets, we compute the intra-dataset
similarity scores to evaluate their satisfaction. If the requested thresholds are
unsatisfied, we randomly select one label from the clusters with the highest
dissimilarity and assign the label to the opposite subset, and, recompute the
similarity rates. The process repeats until the goal constraints are satisfied.

4.2 Feature Extraction

For optical flow (OF), 16-OF frame sequences were used for the I3D network.
Contrary, for the case of the Bi-LSTM based architecture, the OF frames were
fed to VGG-16 [24]. We then extracted 2D feature maps from the last 2D layer,
resulting in a frame-wise feature tensor of 7-by-7-by-512 for the sequence. For the
second input modality, we follow the work of Chéron et al [6], to generate frame-
wise CNN-based features for the actor’s right hand, left hand, upper body, full
body and full image regions, utilizing the positions of body joints. This results
in frame-wise 5 × 4096 feature maps. The final descriptor formulation stage of
PCNN [6] involves a feature map aggregation scheme, that defines a spatial
descriptor for each part by computing minimum and maximum values for this
part following a max and min pooling scheme, leading to a 1×512 feature vector
for each part per frame, and finally concatenating the resulting body part spatial
descriptors. In this work we consider motion attributes by using OF as input.

4.3 Temporal Modelling Architectures

For the evaluation of the proposed DNN directions, we compared baseline single-
dataset architectures to their modified proposed dual-dataset versions.
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Table 2. Action recognition performance for the MHAD, JHMDB and MPII datasets
between a single dataset (NM), and, a dual dataset (M) DNN designs, d refers to the
usage of the MMD loss besides cross-entropy. Input source pose OF features [6].

Architecture Datasets Acc.%, Input: Body-part OF

Design MHAD/JHMDB MPIIA/MPIIB

NM-lstm 75.18 42.28 32.48 38.33

M-lstm 70.89 47.43 30.39 31.54

M-lstmd 80.31 55.29 36.02 39.14

Table 3. Inter-dataset similarity threshold and accuracy. Random split of MPII Cook-
ing under a inter-dataset similarity requirement t3. At each scenario we generate a new
splitting of MPII into MPIIA and MPIIB datasets, C contains MPIIA ∩ MPIIB .

Threshold MPII Acc.%, Input: Body-Part OF

Value Subsets (A/B) C Acc. %

NM-lstm 37/27 – 25.50/30.00

t3 < 0.3,M-lstmd 37/27 (0.2 ) 14 20.62/30.87

NM-lstm 31/33 – 32.48/38.33

t3 ∈ (0.3, 0.6),M-lstmd 31/33 (0.38 ) 11 36.02/39.14

NM-lstm 53/11 – 21.04/48.98

t3 > 0.6,M-lstmd 53/11 (0.72 ) 10 23.84/55.37

Baseline BiLSTM DNN and Modification: we design a two-layer BiLSTM
net with three Fully-Connected (FC) top layers, with activation functions, Leaky
ReLU x2 and soft-max for classification. Inputs are frame-wise deep embeddings.
To support dual-dataset learning, the modifications involve the use of a BiLSTM
layer as a shared temporal modelling layer between the datasets, followed by
decoupling into three sub-nets tasked with representation learning for datasets
A, B, and, set C of coarse classes. In detail, the coarse-level sub-net consists of a
BiLSTM layer followed by a two-level FC layer set, with Leaky ReLU and soft-
max. This sub-net generates probability distribution estimates for coarse-grained
classes. Contrary, the fine-grained sub-nets consist of a BiLSTM layer followed
by a three-FC layer set, with the first two using Leaky ReLU and dropout, and
the last a soft-max. The second FC layer input is the concatenation of the feature
maps of the first FC layers of the coarse and the dataset-specific sub-net.

I3D [4] and Modification: We maintain the original design up until the last
receptive field up-sampling layer-block, using the pre-trained weights on Ima-
geNet [8] and Kinetics [4], and fine-tune the last layers on the new datasets.
The design modifications to support the dual-dataset learning scheme, follow
the same coarse- and fine-grained sub-network structural principles as previous
with the difference of replacing BiLSTM with Conv3D layers.
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Table 4. Dataset-wise intra-class linguistic similarity impact. Random split of MPII
Cooking with tSsim = 0,34. A, B refer to MPIIA,MPIIB , C to MPIIA ∩ MPIIB .

Threshold MPII Acc.%, Input: Body-part OF

Value # classes of (A/B/C) Acc.

A/B 7/57 37.30/21.01%

Intra-Case 1 7 (0.32 )/ 57 (0.31 )/ 4 44.69/23.15%

A/B 31/33 21.39/23.72%

Intra-Case 2 31(0.54 )/ 33 (0.33 )/ 4 25.83/30.51%

A/B 29/35 23.63/25.24%

Intra-Case 3 29(0.52 )/ 35(0.38 )/ 4 30.09/29.32%

A/B 10/54 43.38/20.12%

Intra-Case 4 10 (0.33 )/ 54 (0.46 )/ 4 55.18/24.89%

5 Experimental Results

The first set of experiments, shown in Tables 1 and 2, illustrate the contribution
of a dual-dataset learning strategy, relying on the label-centered linguistic fusion
and action decomposition methodology. We can observe that for both modalities
and architecture variations there is a clear benefit, with improvements in accu-
racy reaching up to 9%. An additional observation is that the BiLSTM-based
DNN appears to benefit the most, with improvements being observed in both
datasets and modalities. Contrary, the proposed design scheme in an I3D-based
model, appears to assist recognition on the small-sized subsets, following the
observed learning trend reported in existing dual-dataset learning works [21]. It
is noted that in this experimental setup, MHAD has 9 training samples/class (a
single view was used), compared to J-HMDB that has around 3–4 times more
samples/class. For MPII Cooking, for the specific split, MPIIB has on average
44 samples/class, as opposed to the 47 of MPIIA. We aim to publicly release
the MPII splits created for intra-dataset evaluation.

MMD Loss Contribution: Table 2 presents the contribution of the distribu-
tion adaptation part of the objective function. We observe that for the body part
OF modality the inclusion of this term is crucial for the success of the proposed
method, improving recognition accuracy on both datasets.

Inter-dataset Label Similarity Rate: In Table 3 we present our findings on
the role of the inter-dataset label similarity rate on the proposed learning strat-
egy effectiveness. The results on 3 split versions of the MPII Cooking that satisfy
each case (low, partial, high relation), show that for the proposed method to be
beneficial, the pair has to show partial to high label set linguistic association.
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Intra-dataset Label Similarity Rate: In Table 4 we present our findings on
the role of the intra-dataset label similarity rate. The obtained results for the 4
identified scenarios (see Sect. 4.1), indicate that the presence of subtle linguistic
similarities between the labels in the intersecting and non-intersecting subsets of
a dataset, appear to affect the contribution of the proposed dataset fusion and
joint learning scheme. This can be observed from the fact that the inclusion of
new labels (in the smaller dataset A), that have high similarity with the labels
in the intersecting subset, leads to a decrease in the recognition accuracy.

6 Conclusions and Discussion

We proposed an approach to fuse HAR datasets pairs by exploiting NLP to
identify linguistic similarities on the label sets. To exploit such associations, we
designed a DNN to allow joint dataset learning, leveraging the dataset asso-
ciation knowledge under a multi-task learning scheme. We evaluated param-
eters that control its effectiveness like the intra-dataset label similarity. Our
method positively affects the performance of HAR DNNs, however its effective-
ness requires careful consideration of dataset characteristics and label linguistic
similarity.

An aspect of the method open for discussion is the context information
locality in Word2Vec’s embeddings and the fact that WordTree represents gen-
eral notions of word semantics. As such, they do not encode semantic relations
between a word and other parts-of-speech that co-exist in a sentence. Word2Vec
relies on local statistics, incorporates the local context information of the neigh-
boring words to the target word, defined within the corpus. This can lead to
semantic context ambiguities, with words associated to different semantic inter-
pretations. In simpler action datasets, this is not an issue as the label sentence
length and semantic context is constrained and simplified. However, for fine-
grained datasets larger sentences and multiple verbs/nouns are encountered.
Thus, a global word context relationship will lead to more informative embed-
dings. Non-local embedding methods or DNNs with text sequential ordering
and long-range dependency modelling mechanisms will be ideal for label simi-
larity evaluation in such datasets. We aim to explore such methods to enrich the
semantic context our method considers.
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Abstract. OpenGL is the most widely used API and programming lan-
guage in college-level computer graphics courses. However, OpenGL pro-
grams are difficult to comprehend and debug because they involve pro-
gramming for both CPU and GPU and the data transfer between them.
Modern OpenGL is a complex data flow machine with multiple pro-
grammable stages, and it is difficult to trace the partially hidden data
flows in the source code written in C++, OpenGL, and OpenGL Shad-
ing Language. We have developed a web-based data visualization tool
to analyze OpenGL source code and generate interactive data flow dia-
grams from the source code. The diagrams can help novice programmers
build clear mental images of complex data flows. The source code viewer
and the data flow diagram are synchronized so that a user can select an
OpenGL API call, and the corresponding component in the data flow
diagram is highlighted, and vice versa. A programmer can visually step
through the data flows and detect specific bugs that are otherwise diffi-
cult to find. The main contribution of this paper is an interactive learning
tool for computer graphics education.

Keywords: Software visualization · Debugging · Code
comprehension · Computer graphics · Computer science education

1 Introduction

Real-time 3D graphics programming is essential to virtual reality, augmented
reality, CAD, scientific visualization, game development, and visual simulations.
Computer graphics applications can be developed with high-level tools such as
game engines (e.g., Unity and Unreal) or low-level programming languages and
APIs such as OpenGL [36], Direct3D [26], Vulkan [37], and Metal [3]. Among
them, shader-based OpenGL is the most commonly taught programming lan-
guage in college-level computer graphics courses [6].

College students generally consider OpenGL programming difficult to learn.
There are several reasons for this. First, a real-time computer graphics program
is a parallel program that runs on both CPU and GPU. Therefore, an OpenGL
programmer needs to write code for two different processors and handle the data
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Bebis et al. (Eds.): ISVC 2022, LNCS 13598, pp. 365–376, 2022.
https://doi.org/10.1007/978-3-031-20713-6_28
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transfer between them. Second, OpenGL is a low-level language that requires
programmers to implement many low-level details such as data transfer from
CPU to GPU, 3D transformations, lighting, texture mapping, etc.

Third, OpenGL is a complex data flow machine with multiple programmable
stages [2], but data flows in an OpenGL program are not always explicitly
expressed in the source code. Many data flows are created by multiple OpenGL
API calls that are difficult to understand. Data connections are often based on
implicit connections between API calls. In addition, there can be multiple ways
to transfer the same type of data from CPU to GPU. Some parts of the data
flows are hidden and can only be understood by a deep understanding of the 3D
graphics pipeline and the OpenGL language. A subtle error in data flow con-
struction can cause the program to malfunction without warning messages. 3D
graphics debugging tools are also not very helpful in detecting data flow errors.
An experienced 3D graphics programmer may be able to mentally connect these
low-level details to create a mental picture of data flows, but novice computer
graphics programmers often have difficulty making such connections. As a result,
students find OpenGL programs difficult to understand and debug, particularly
data flows between a CPU and a GPU.

There is a lack of tools to support OpenGL learning. Most computer graphics
courses were taught using traditional methods, such as textbooks, PowerPoint
slides, websites, and PDF documents. Innovative learning tools are needed to
address some of the difficulties discussed above. This is the primary motivation
for this project.

To help students better understand and debug 3D graphics programs, we
have developed a web-based, interactive visualization tool for creating data flow
diagrams in OpenGL programs through static code analysis. The diagrams pro-
vide a clear view of both the explicit and hidden data flows, helping students
construct a mental model of the program’s data flows. The source code viewer
and the interactive data flow diagram are synchronized so that a student can
select an OpenGL API call, and the corresponding component in the data flow
diagram will be highlighted, and vice versa. The data flow diagrams serve as an
instructional scaffolding technique to help students understand the sophisticated
source code. Using these diagrams, a programmer can visually step through the
data flows and detect certain bugs that are otherwise difficult to find.

2 Related Work

2.1 OpenGL in Computer Science Education

There are many programming languages or libraries for 3D graphics program-
ming. OpenGL [36] is a cross-platform programming language and API specifica-
tion for computer graphics. WebGL [38] is a variation of OpenGL for web-based
applications. In this paper, we use the term OpenGL to cover both OpenGL and
WebGL. Vulkan [37] is the successor of OpenGL as the cross-platform industry
standard but is much more complicated to learn and code. Direct3D [26] is the
3D graphics library developed by Microsoft for Windows and Xbox platforms.
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Metal [3] is a 3D graphics library developed by Apple for Mac computers, iPads,
and iPhones.

We collected and analyzed 30 publicly accessible online syllabi of undergrad-
uate computer graphics courses taught in North American universities within the
last six years (2017–2022). The course titles are Computer Graphics, Introduc-
tion to Computer Graphics, Interactive Computer Graphics, and Fundamentals
of Computer Graphics.

The survey showed that shader-based OpenGL is the most widely taught
programming language (GLSL) and library (OpenGL API) in college-level com-
puter graphics courses. They were taught in 19 of the 30 courses we surveyed.
The other courses used C, Java, or Python but did not use any graphics pro-
gramming libraries. Vulkan was briefly introduced in one course. Direct3D and
Metal were not taught in any of the courses we surveyed. This finding is con-
sistent with an earlier survey by Balreira, et al. [6]. Based on this survey, we
decided to focus on analyzing and visualizing OpenGL programs.

2.2 Program Comprehension and Debugging

Previous studies have shown that there is very little correspondence between the
ability to write a program and the ability to read one, and therefore both need to
be taught [35]. An essential skill for code comprehension is code tracing, which
is also important for debugging [25]. Debugging and code tracing are among the
most challenging issues for students learning programming [25,35].

Previous studies have also shown that creating proper mental models is
important for program comprehension [8] and debugging [30]. A study by Fix et
al. [16] showed that experts had more sophisticated mental models than novices
and could use them more effectively to debug programs. One of the most influ-
ential theories for program comprehension is the two-phase theory by Penning-
ton [31]. Based on this theory, programmers go through two phases to understand
a program. Programmers first develop a mental model about the program’s con-
trol flow and then a mental model about the program’s data flow. Visualization
can help novice programmers build such models. For example, the study by
Navarro-Prieto and Canas [28] showed that visual data flow programming could
help build mental models for data flow.

2.3 Benefits of Program Visualization for Code Comprehension
and Debugging

Based on the software visualization taxonomy by Price, et al. [34], the pro-
posed visualization belongs to the category of program visualization and the
sub-category of data flow visualization (B.1.2 in [34]).

Many previous studies have shown that software visualization can help pro-
gram comprehension and debugging [4,5,12,14,15,17,18,20,22–24,29,39]. For
example, Nguyen, et al. [29] showed that a Callflow diagram can help improve
the comprehension of parallel programs. Jacobs, et al. [19] and Pilskalns, et
al. [32] used reverse engineered UML diagrams to help debugging.
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Although there are many visual data flow programming languages, there are
relatively few program visualization tools for data flow analysis and very few
for computer graphics programs. We studied many surveys of software visualiza-
tion [7,10,11,13,21,22] and found only a small number of software visualizations
that explicitly visualize data flows. For example, Message Passing net (MP net)
is a formal model for visualizing the message communication within MPI applica-
tions [40]. Butler, et al. [9] developed a taxonomy to help users manually create a
data flow diagram in binary software for vulnerability analysis. Mysore, et al. [27]
developed a Data Flow Tomography tool to visualize the interactions between
complex and interwoven components of a software system. Our work is different
from previous work because our focus is on computer graphics programs.

2.4 Program Visualization for Computer Graphics

There is very little previous work on visualizing computer graphics programs.
In our previous work [33], we developed a program visualization tool that could
automatically generate data flow diagrams from OpenGL API logs. This visual-
ization tool could help detect certain bugs but might not be helpful for program
comprehension. First of all, the program must be executable, which is not always
possible. When a bug is found in a diagram, it may not be easy to trace back to
a particular line of code when there are many similar function calls.

The key difference in our work is that we try to automatically generate data
flow diagrams through static code analysis, not OpenGL API call logs. In our
case, the program does not need to be executable. So the visualization can be
used throughout the development process. Since the diagram is synchronized
with the source code, if a bug is detected in the diagram, it can be quickly
traced back to the source code.

3 OpenGL Overview

3.1 Program Structure

An OpenGL program consists of a host program and a number of shader pro-
grams. The host program is typically written in C or C++, uses OpenGL API
and other libraries, and runs on the CPU. Shaders are written in OpenGL Shad-
ing Language and run on GPU. The most commonly used shaders are vertex
shader(s) and fragment shader(s).

The host program loads 3D geometry data and passes them to shader pro-
grams as vertex attributes. It also passes uniform variables (e.g., transformation
matrices and lighting parameters) and texture images to shader programs.

A vertex program receives vertex attributes and performs model, view, and
projection transformations. It then passes the data to a fragment shader that
calculates lighting, texture mappings, and perhaps other tasks. The data is then
passed to graphics hardware for the final processing and display.
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3.2 Data Flows in OpenGL

There are three types of data flows in OpenGL programs.

– Vertex attribute connections: Connect a vertex array in a host program
to a vertex attribute variable in a shader program.

– Uniform variable connections: Connect a variable in a host program to
a uniform variable in a shader program.

– Texture sampler connections: Connect a texture object in a host program
to a sampler variable in a shader program.

In a typical OpenGL program, data needs to be transferred from a host
program (running on the CPU) to a shader program (running on the GPU). For
example, vertex positions in a host program need to be connected to the vertex
position variable in a shader program. If the connection is broken, the vertex
positions will not be transferred to the shader, and the object is not displayed. If
the vertex positions are connected to the wrong shader variable, the object may
be displayed incorrectly. Therefore, identifying a broken or misdirected data
connection is an important part of the debugging process. However, it is not
always easy to identify a broken or misdirected data connection by reading source
code, especially for long programs. Drawing a data flow diagram makes it easier.

3.3 Explicit and Implicit Links

A data flow diagram contains nodes and links. Each node is a variable in either
a host program or a shader program. The link between two variables is estab-
lished by certain OpenGL API calls involving either or both variables. There
are two types of links: explicit links and implicit links. An explicit link is cre-
ated by one OpenGL API that contains both variables. For example, vPos =
glGetAttribLocation(shaderProgram, "vPos"); establishes an explicit link
between host program variable vPos and shader variable vPos because both
variables appear in the same OpenGL API call.

An implicit link is established by two or more OpenGL API calls that each
contains one variable. Implicit links are more difficult to identify because the
two OpenGL API calls may be in different parts of the program, and it requires
a deeper understanding of how OpenGL works. For example, the two API calls
below establish a link between variable vPos and VBO vertexArrayBufferID.
These two variables are in two different API calls.

glBindBuffer(GL_ARRAY_BUFFER, vertexArrayBufferID);
...
glVertexAttribPointer(vPos, numComponentsPerVertex,

GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));

4 Creating Data Flow Diagrams (DFDs)

Our data flow diagram consists of three symbols: data store (rectangle), process
(rounded rectangle), and data connection (arrow). A data store must be con-
nected to a process and cannot be connected directly to another data store. Here
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a data store is a 3D graphics data structure, such as a vertex buffer object, a ver-
tex attribute, a uniform variable, or a texture sampler. A process is a function,
usually an OpenGL API.

In this work, we only visualize data transfer from CPU to GPU, not the
data transfer between shaders on GPU. Data transfer between shaders is not
programmable and is entirely hidden from programmers.

Three types of data are transferred from CPU to GPU: vertex attributes,
uniform variables, and textures. Accordingly, there are three types of data flow
diagrams. In the following sections, we will discuss the rules for creating each
type of data flow diagram (DFD).

4.1 Vertex Attribute DFD

Each vertex has multiple attributes, such as position, normal vectors, and tex-
ture coordinates. These attributes are stored as arrays in the main memory and
need to be transferred to the GPU memory. Specifically, each vertex attribute
in the OpenGL host program needs to be connected to an “in” (input) vari-
able in a vertex shader via a sequence of OpenGL API calls. First, a Vertex
Buffer Object (VBO) is generated by calling glGenBuffers(). Each VBO must
be bound with a buffer using glBindBuffer(). The array that stores a ver-
tex attribute (e.g., position) is copied to a VBO by calling glBufferData().
The buffer (or sub-buffer) bound with the VBO is then connected with an
“in” variable in a vertex shader by calling glEnableVertexAttribArray() and
glVertexAttribPointer(). The “in” variable is in the GPU memory.

If the code is correct, there should be an unbroken path between a vertex
attribute array and its corresponding input variable in a vertex shader. An error
can be visually detected if the path is broken or the path connects a vertex
attribute to the wrong input variable in a shader. Therefore, the DFD can help
programmers detect errors in data flows.

4.2 Uniform Variable DFD

Uniform variables contain the data used by shader programs to calculate trans-
formations, lighting, camera projection, texture mapping, etc. Uniform variables
are usually specified on a per-object (not per-vertex) basis. Each uniform vari-
able in the OpenGL host program needs to be connected to a uniform variable
in a shader program via OpenGL API calls.

If the code is correct, there should be an unbroken path between each uniform
variable in the host program and its corresponding uniform variable in a shader
program.

4.3 Texture Sampler DFD

A texture object stores texture images and their related parameters. The
texture object is connected to a sampler variable in a shader program via
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multiple OpenGL API calls. First, a texture object is bound to a texture
unit via glActiveTexture() and glBindTexture(). A sampler variable in a
shader program is connected with a sampler variable in the host program via
glGetUniformLocation(). The texture unit index is connected with the sampler
variable in the host program via glUniform*().

Figure 1 shows how a texture data flow can be constructed by analyzing
specific parameters in specific OpenGL API calls.

If the code is correct, there should be an unbroken path between the texture
object and its corresponding sampler variable in a shader program.

4.4 Interactive Visualization

We have developed an interactive web interface to help students connect the
OpenGL source code with data flow diagrams (Fig. 2). We build our program
using JavaScript and HTML based on the open-source project diagrams.net [1].
The web interface has a source code window and a DFD window. Users copy and
paste their source code into the source code window. Our program will automat-
ically detect data flow connections based on the rules discussed above and create
a data flow diagram. If a user selects a line of code in the source code window,
the corresponding component in the DFD will be highlighted. If a user clicks on
a component in a DFD, the corresponding line of code will be highlighted in the
source code window. Such synchronized views will help students better under-
stand how data flows are implemented in OpenGL programs. It helps students
detect bugs in DFD and quickly trace the problem back to the source code.

4.5 When to Draw a Data Flow Diagram?

The following guidelines may help students decide which type of data flow dia-
gram they need to draw.

– If an object is not displayed or not displayed correctly, draw a vertex attribute
connection diagram for the vertex position array.

– If the transformation is incorrect, draw a uniform variable diagram for trans-
formation parameters, such as transformation matrices.

– If the lighting is incorrect, draw a uniform variable connection diagram for
the lighting parameters and a vertex attribute connection diagram for the
normal array.

– If the texture mapping is incorrect, draw a texture connection diagram and
a vertex attribute connection diagram for the vertex

5 A Debugging Case Study

The example below shows how to use DFD to detect a subtle error that is
otherwise difficult to find. Due to space limitations, we only show the OpenGL
API calls, not the complete program.
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textureID =
load_texture_img();

glActiveTexture(GL_TEXTURE1);

glBindTexture(GL_TEXTURE_2D, textureID);

glUniform1i(textureSamplerID, 1);

GL_TEXTURE1

1

textureSamplerID

textureSamplerID =
glGetUniformLocation(shaderProgram, "tex");

// shaderProgram
#version 330
uniform sampler2D tex;

void main() {...}

Fig. 1. This figure shows how to construct texture data flows by identifying parame-
ters in specific OpenGL API calls. The parameters that indicate data connections are
marked in red. The dashed line indicates an implicit connection by matching numbers
(1 and GLTEXTURE1). (Color figure online)

...
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, textureObjID);
...
textureSamplerID =

glGetUniformLocation(shader, "tex");
...
glUniform1i(textureSamplerID, 2);
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Fig. 2. This screenshot shows the UI of our program. A box in the data flow diagram
(glUniform1i()) is selected, and the corresponding line of code is highlighted in the
source code window. This DFD also shows a broken data flow, indicating an error in
the code. There is no link between GL TEXTURE1 and the texture unit number 2
because the text unit numbers do not match.

In this case, the texture object is bound with texture unit 1 (glActiveText
ure(GL TEXTURE1)), but the textureSamplerID is connected with texture unit 2
(glUniform1i(textureSamplerID, 2)). The text unit numbers do not match.
Therefore, the texture image is not transferred properly to the shader program
on GPU. This error is often difficult to detect by running or reading the code
because there is no error message, these two lines of code are buried in a long
program, and the connection between these two lines is not obvious. However, in
the automatically generated data flow diagram (Fig. 2), it is clear that texture
data flow is broken.

6 Discussion

Due to the complexity of coding, it is not always possible to automatically detect
data connections by analyzing the parameters of OpenGL API calls. We plan to
add features that allow users to manually select and group OpenGL API calls
to help the program analyze the code and generate DFDs.

There are different ways of transferring data from CPU to GPU. Due to
space limitations, we did not discuss vertex element arrays, vertex array buffer
(VAO), or uniform buffer object (UBO). However, the approach discussed above
can also be applied to VAO and UBO.
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7 Conclusion and Future Work

We have presented a method to visualize data flows in OpenGL programs. It can
help programmers understand the complex data flow between CPU and GPU.
It also helps to detect bugs that are otherwise difficult to find. The interactive,
synchronized views of source code and data flow diagrams help programmers
quickly connect the visual data flow diagrams with the abstract source code.
Since OpenGL is still the most widely taught programming tool in computer
graphics courses, our tool can benefit many college students interested in 3D
graphics programming. We are improving our static code analysis functions to
handle more sophisticated code and expand program visualization to general-
purpose GPU programming tools such as CUDA.
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Abstract. Degree-k Voronoi domains of a periodic point set are con-
centric regions around a fixed centre consisting of all points in Euclidean
space that have the centre as their k-th nearest neighbour. Periodic point
sets generalise the concept of a lattice by allowing multiple points to
appear within a unit cell of the lattice. Thus, periodic point sets model
all solid crystalline materials (periodic crystals), and degree-k Voronoi
domains of periodic point sets can be used to characterise the relative
positions of atoms in a crystal from a fixed centre. The paper describes
the first algorithm to compute all degree-k Voronoi domains up to any
degree k ≥ 1 for any two or three-dimensional periodic point set.

Keywords: Degree-k Voronoi Domains · Periodic point sets · Crystals

1 Introduction: Motivations and Key Contributions

A discrete set C ⊂ R
n consists of (possibly, infinitely many) points whose pair-

wise distances have a positive lower bound. The Voronoi domain Z1(C; p) or
Wigner-Seitz cell or Brillouin zone of a point p ∈ C consits of all ambient points
in R

n that are (non-strictly) closer to p than to all other points of C. Figure 1
shows Voronoi domains in yellow when C is a lattice and p is the origin.

For any k ≥ 1, the degree-k Voronoi domain Zk(C; p) consists of all points
in R

n that have p as its k-th nearest neighbour in C, thus covering relative
positions of distant points beyond the closest neighbours, see Fig. 1. Our key
example of C is a periodic point set that generalises the concept of a lattice
by allowing multiple points to lie within a unit cell of the lattice. Such periodic
point sets geometrically model any solid crystalline material (briefly, a crystal)
whose atoms are represented by points, possibly with added chemical types.

Key physical properties of a crystal depend on atomic interactions beyond
immediate neighbours within larger degree-k Voronoi domains. These domains
were called k-th Brillouin zones in [13] for lattices and later helped compute
density functions [12, Theorem 6.1], which distinguish all periodic point sets
in general position up to isometry in R

3. Section 7 in [12] described how den-
sity functions detected a previously missing crystal in the Cambridge Structural
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Bebis et al. (Eds.): ISVC 2022, LNCS 13598, pp. 377–391, 2022.
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Fig. 1. The degree-k Voronoi domain is the union of polygons of the same colour,
and has the origin as its k-th nearest neighbour among all lattice points. Left: the
hexagonal lattice, degrees 1 ≤ k ≤ 12. Right: the square lattice, degrees 1 ≤ k ≤ 20.
(Color figure online)

Database. This paper complements [12] by describing structural results and a
practical algorithm for degree-k Voronoi domains for three-dimensional periodic
point sets.

The first algorithm to compute Voronoi domains for periodic point sets
appeared in [9], but did not consider degree-k Voronoi domains for k ≥ 2. The
algorithm for dual periodic Delaunay triangulations or mosaics was recently
improved in [23]. Previously, degree-k Voronoi domains were studied and com-
puted only for lattices whose motif is a single point [13].

In the more restrictive case of lattices, the Teaching and Learning Package
of Cambridge University [25] visualises the degree-k Voronoi domains only for:

• the square and hexagonal lattices up to k = 10 and k = 6 respectively;
• the cubic, body centred cubic and face centred cubic lattices up to k = 5.

Again restricted to lattices, Andrew et al. [1] described an algorithm
which approximates the domains simply by assigning each point of a fixed
square/cubical grid at a given resolution to the appropriate degree-k Voronoi
domain.

Degree-k Voronoi domains relate to the more widely known order-k Voronoi
domains, which have been studied for a long time. Only recently degree-k Voronoi
domains have begun to be properly investigated [10,11].

One could extend algorithms that compute order-k Voronoi domains to con-
struct the desired degree-k Voronoi domains. Though there are many algorithms
that for order-k Voronoi domains in dimension 2 [8], to the best of the authors’
knowledge, there is no publicly available algorithm for order-k Voronoi domains
in dimension 3, which has motivated us to propose the algorithm in this paper.
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We substantially improve on the past work in two ways: by generalising to
any periodic point set, and by computing exactly the polytopes that comprise
each domain, which can be used for visualisations and precise computations.

• Theorem 6 will describe the structure of the degree-k Voronoi domain
Zk(C; p) from Definition 4 for any point p in a periodic point set C ⊂ R

n.
• The total volume of the degree-k Voronoi domains Zk(C; p) over all points p

in a motif M of a periodic set C ⊂ R
n is independent of k, see Theorem 7.

• The algorithm in Sect. 4 computes any degree-k Voronoi domain Zk(C; p) of a
periodic point set in polynomial time in the motif size of C, see Theorem 17.
The actual runtime takes only milliseconds on a modest laptop, see Sect. 5.

Section 2 defines necessary concepts. Section 3 states Theorems 6 and 7.
Section 4 describes the practical algorithm for computing degree-k Voronoi
domains of periodic point sets in dimensions two and three. Section 5 contains
experimental analysis whose polynomial complexity is justified in Theorem 17.

2 Background Definitions from Computational Geometry

Any point p ∈ R
n can be represented by the vector p from the origin 0 ∈ R

n to p.
The symbol p also denotes all equal vectors with the same length and direction.
We use only the Euclidean distance |p − q| between points p, q ∈ R

n. The per-
pendicular bisector between p and q is an R

n−1-dimensional subspace composed
of all points that are equidistant from p and q, and has the property that p− q
is perpendicular to this subspace. For a standard orthonormal basis e1, . . . ,en

of Rn, the lattice Z
n ⊂ R

n consists of all points with integer coordinates.

Definition 1 (lattice Λ, periodic point set C). For n linearly independent vec-
tors v1, . . . ,vn in R

n, the set of integer combinations Λ = {∑n
i=1 civi | ci ∈ Z}

is called a lattice. The unit cell spanned by this basis is the parallelepiped
U = {∑n

i=1 tivi | ti ∈ [0, 1)}. The lattice generated by this basis or unit cell
is denoted by Λ(U). A motif M ⊂ U is a finite subset of U , and the periodic
point set C for M and Λ is the Minkowski sum M + Λ = {p +v | p ∈ M,v ∈ Λ},
see Fig. 2(right) for the doubled square cell 2U with k = 2. �

Fig. 2. Left: the green lattice Λ is generated by the orthonormal basis v1, v2. The blue
motif M consists of three points in the square unit cell U . The periodic set C = Λ+M
is the Minkowski sum of the lattice and the finite motif M of points. Right: if a unit
cell U ⊂ R

n has m motif points, then the 2-extended unit cell has 2nm motif points.
(Color figure online)
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Fig. 3. Four red line segments [p, q) go
from the centre p to points q in poly-
gons with indices k = ind(q) from Def-
inition 5 and intersect k − 1 bisectors.
(Color figure online)

Fig. 4. Degree-k Voronoi domains of a
periodic set (not a lattice) with a 2-
point motif.

The periodic point set C can be thought of as the union of translates of M
by all vectors of Λ, and hence is invariant under translations by all vectors of Λ.
If a periodic point set C is invariant only under translations by vectors v ∈ Λ,
then the lattice Λ and its unit cell U are called primitive for C.

One can consider any lattice Λ as a periodic point set on the lattice 2Λ with
a motif of 2n points inside the 2-extended unit cell more formally as follows.

Definition 2 (k-extended unit cell kU). Let a unit cell U ⊂ R
n have a basis

v1, . . . ,vn ∈ R
n and a finite motif M ⊂ U of m points. For any integer k > 1,

the k-extended unit cell kU has motif M +
n∑

i=1

civi of knm points obtained from

M by kn translations along the vectors
n∑

i=1

civi with ci ∈ {0, . . . , k − 1}.

�

Degree-k Voronoi domains of periodic point sets are introduced in Definition 4
as the relative complement between sequential index-k Voronoi domains below.

Definition 3 (Index-k Voronoi domains Vk(C; p)). For a finite or periodic set
C ⊂ R

n and a point p ∈ C, the index-k Voronoi domain Vk(C; p) is the (closure
of the) set of all points q ∈ R

n such that p is among the k nearest points of C
to q. In particular, V1(C; p) is the classical Voronoi domain V (C; p). �

The index-k Voronoi domain Vk(C; p) ⊂ R
n is defined as a closed set above

to cover all cases where p has equal distances to several neighbours, so a k-th
neighbour of p may not be unique. Unlike order-k Voronoi domains which tile
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R
n [15], index-k Voronoi domains form a nested sequence. Any Vk(C; p) is star-

convex, which means it contains all line segments connecting ∂Vk(C; p) to p.
Indeed, if p ∈ C is among the k nearest to q ∈ ∂Vk(C; p), then any intermediate
point in the line segment [p, q] has p among its k nearest neighbours of C.

An order-k Voronoi domain [14] is defined for a k-point subset Q ⊂ A ⊂ R
n

and consists of all points for whom the points in Q are the closest k points in A.

Definition 4 (Degree-k Voronoi domains Zk(C; p)). For any periodic point set
C ⊂ R

n and p ∈ C, the degree-k Voronoi domain is the difference between
successive closed index-k Voronoi domains: Zk(C; p) = Vk(C; p)−Vk−1(C; p) for
k ≥ 1, V0(C; p) = ∅, which differs from order-k Voronoi domains in [14]. �

Figure 4 shows degree-k Voronoi domains for a point in the periodic point
set C that has a 2-point motif. For a point p ∈ C ⊂ R

n, any q ∈ R
n

belongs to exactly one degree-k Voronoi domain Zk(C; p) for some k ≥ 1, hence
∪+∞

k=1Zk(C; p) covers Rn without overlaps. Unlike index-k Voronoi domains which
are closed, Zk(C; p) are neither open nor closed for k > 1. The closure of the
domain Zk(C; p) includes all points q for whom p is a non-unique k-th nearest
neighbour within C.

3 The Geometric Structure of Degree-k Voronoi Domains

The main results of this section are Theorem 6 describing the structure of degree-
k Voronoi domains and Theorem 7 saying that the total volume of the degree-k
Voronoi domains for all motif points is independent of k for a fixed set. So all
coloured regions in Fig. 3 have the same area, which might seem surprising.

Definition 5 (Zone index ind(q;C; p)). For a periodic set C ⊂ R
n and p ∈ C,

let b(C; p) be the set of perpendicular bisectors between p and all other points of
C. For any q ∈ R

n, consider the half-open line segment [p, q) joining p to q, but
not including q, see Fig. 3. Let i be the number of bisectors from b(C; p) that
intersect [p, q). The zone index of q relative to b(C; p) is ind(q;C; p) = i + 1. �

For any point q in the closed Voronoi domain V1(C; p), the half-open segment
[p, q) belongs to the interior of V1(C; p), and hence doesn’t intersect any bisectors
from b(C; p). Consider other polytopes obtained from R

n by cutting out all
bisectoral hyperplanes between p and other points q ∈ C. The zone indices of
these polytopes can be computed in gradual increments as we travel radially
outwards from p and count intersecting bisectors, see Fig. 3.

The following structural description of a degree-k Voronoi domain Zk(C; p)
justifies its spherical shape consisting of polytopes of the same degree k.

Theorem 6 (Structure of Voronoi domains). For any point p in a periodic point
set C ⊂ R

n, the closure of the degree-k Voronoi domain Zk(C; p) is a union of
convex polytopes whose interior points have zone index k. Moreover, the closure
of the degree-k Voronoi domain is spherical in the sense that its image under the
radial projection Zk(C; p) → Sn−1 covers the whole unit sphere Sn−1 ⊂ R

n. �
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Fig. 5. Top left: the Voronoi domain of the red point is bounded by red and black
bisectors. Top middle: both Voronoi domains of the red and blue points form the
Voronoi domain V (Λ; 0) of the lattice Λ of C. Top right: the Voronoi domain of the
blue point is bounded by blue and black bisectors. Bottom left: the degree-2 Voronoi
domain of the red point in C. Bottom middle: both degree-2 Voronoi domains form
V (Λ; 0) after applying translations of the polygons that form the degree-2 Voronoi
domains. Bottom right: the degree-2 Voronoi domain of the blue point. (Color figure
online)

Proof. First we prove that any point q ∈ R
n that has the central point p as its

exact k-th nearest neighbour in C should have zone index ind(q;C; p) = k, see
Definition 5. Let us slide a point s along the half-open line segment [p, q) starting
from the central point p as in Fig. 3. While s is in the interior of V1(C; p), our
point s has p as exactly its 1st nearest neighbour in C and ind(s;C; p) = 1.

When we slide the point s further along the half-closed line segment [p, q),
the zone index ind(s;C; p) jumps up only when we intersect a bisector separating
p from another point of C. If we intersect i ≥ 1 bisectors, then ind(s;C; p) jumps
by i. As the final point s = q has p as its exact k-th nearest neighbour in C,
s will intersect k − 1 bisectors as it travels along [p, q), and so the zone index
becomes k. Then Zk(C; p) is a finite union of convex polytopes (obtained from
R

n by cutting out bisectors) that includes all index k points. The boundary of
any such polytope includes points of index at most k − 1 (‘internal’ faces closer
to p) and points of index k (‘external’ faces further away from p).

So the closure of Zk(C; p) is the union of all convex polytopes whose internal
points have zone index k. Then any straight ray R emanating from p either
contains points of index k, hence intersects the interior of Zk(C; p), or R passes
through an intersection point a of several bisectors. In the latter case, when a
point s moves along R via the intersection a, the index of s can change from
k′ < k to k′′ > k. Then any small neighbourhood of a contains points of all
intermediate indices from k′ to k′′ (including k). So the closure of Zk(C; p)
contains a and its image under the radial projection covers the sphere Sn−1. �	
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Figure 5 illustrates the key idea for the periodic point set C ⊂ R
2, which

has the primitive square unit cell [−1, 1] × [−1, 1] containing the red point at
(−0.25, 0) and the blue point at (0.25, 0). The bottom row in Fig. 5 shows how
the polygons of the degree-2 Voronoi domain can be rearranged to form the
classical degree-1 Voronoi domain in the first row, see the proof of Theorem 7
below.

Theorem 7 (volumes of a degree-k Voronoi domain, extending [13, Sect-
ion 2.2]). For a periodic point set C = Λ + M , the sum of the volumes of the
degree-k Voronoi domains Zk(C; p) over all motif points p ∈ M is independent
of k. �

Definition 8 (open subdomains) V (k)(C; 0)). A lattice Λ of a periodic set
C = Λ + M is primitive if C is not a Minkowski sum Λ′ + M ′ whose motif M ′

has a smaller number of points than M . Then the subdomain V (k)(C; 0) in the
interior of the Voronoi domain V (Λ; 0) consists of all points that have a unique
k-th nearest neighbour in the set C. So this subdomain V (k)(C; 0) is obtained
from the classical Voronoi domain V (Λ; 0) around the origin 0 by removing the
measure 0 subset of points that have several k-th nearest neighbours in C. �

Definition 9 (subzone Z◦
k). Let Λ be a primitive lattice of a periodic set C. The

open subzone Z◦
k(C; p) in the interior of the degree-k Voronoi domain Zk(C; p)

consists of all points that have a unique closest node in Λ. �

Since V (k)(C; 0) is in the interior of V (Λ; 0), the origin 0 is a unique clos-
est point of Λ to every point of V (k)(C; 0). Since Z◦

k(C; p) is in the interior of
Zk(C; p), every point of Z◦

k(C; p) has a unique k-th nearest neighbour in C.

Definition 10 (half-open Voronoi domain Ṽ (Λ; 0)). For a lattice Λ ⊂ R
n,

the closed Voronoi domains V (Λ; q) of the lattice points q ∈ Λ tile R
n,

overlapping only at their boundaries. We define a half-open Voronoi domain
Ṽ (Λ; 0) ⊂ V (Λ; 0) to be such that all translational copies tile R

n without over-
laps. �

A half-open Voronoi domain Ṽ (Λ; 0) differs from V (Λ; 0) only by a measure 0
subset and can be obtained by removing boundary points of V (Λ; 0) until there
remains exactly one representative of each class of boundary points that are
related via lattice translations. Definition 11 adapts the piecewise shifts fi from
the case of lattices in [13, p. 754] to any periodic point set C ⊂ R

n.

Definition 11 (piecewise shift fk). For any periodic set C ⊂ R
n with lattice

Λ, any point p ∈ V (k)(C; 0) has a unique k-th nearest neighbour pk ∈ C. Since
all translates of Ṽ (Λ; 0) cover Rn without overlaps, pk is contained in a translate
Ṽ (Λ; 0) + qk for a unique lattice node qk ∈ Λ. Then we set fk(p) = p − qk. �

Lemma 12. The map fk : V (k)(C; 0) → ⋃

p∈C∩Ṽ (Λ;0)

Z◦
k(C; p) is a bijection. �
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Proof. We first show that the image of fk is in
⋃

p∈C∩Ṽ (Λ;0)

Z◦
k(C; p). Any p ∈

V (k)(C; 0) has a unique k-th nearest neighbour pk ∈ C, which is covered by
a unique translate Ṽ (Λ; 0) + qk for some qk ∈ Λ. Shifting these neighbouring
relations by −qk, we conclude that fk(p) = p−qk has the unique k-th neighbour
p′ = pk −qk ∈ C, which is covered by Ṽ (Λ; 0). Then fk(p) = p−qk ∈ Z◦

k(C; p′) ⊂⋃

p∈C∩Ṽ (Λ;0)

Z◦
k(C; p). To prove that fk is injective, let p, p′ ∈ V (k)(C; 0) have

unique k-th neighbours pk, p′
k ∈ C, which are covered by unique translates of

Ṽ (Λ; 0) along qk, q′
k ∈ Λ, respectively. If qk = q′

k, then fk(p) − fk(p′) = p − p′,
so that p 
= p′ implies fk(p) 
= fk(p′). Otherwise, if qk 
= q′

k, then fk(p) 
= fk(p′)
since they lie in the interiors of two different translates of Ṽ (Λ; 0). To prove
that fk is surjective, any point q in the target set belongs to a Z◦

k(C; pk) for
pk ∈ C ∩ Ṽ (Λ; 0). Then q has pk as its unique k-th neighbour in C and a unique
closest lattice node qk ∈ Λ such that V (Λ, 0) + qk covers q. Subtracting qk, we
conclude that p = q − qk has pk − qk as its unique k-th neighbour in C and 0 as
its unique closest lattice node in Λ. So p ∈ V (k)(C; 0) and fk(p) = q. �	
Proof of Theorem 7. By Lemma 12 the shifts fk from Definition 11 translate
different pieces of the Voronoi domain V (Λ; 0) to the union of degree-k Voronoi
domains over all motif points (modulo measure 0), so the volumes are equal. �	

4 Computing Degree-k Voronoi Domains of a Periodic
Set

Let the dimension n = 2 or 3. The algorithm input consists of:

• a unit cell U given by a basis v1, . . . ,vn with rational coordinates in practice;
• a finite motif M ⊂ U of points given by their coefficients in the basis of U ;
• a degree k ≥ 1 and a point p ∈ M that will be the centre of the degree-k

Voronoi domains Zk(C; p) of the periodic point set C = Λ + M ⊂ R
n.

Up to rigid motions, we can assume that the point p ∈ M is at the origin.

The output is the degree-k Voronoi domains Zi(C; 0), i = 1, . . . , k. Each
domain is a union of polygons (n = 2) or polytopes (n = 3) defined by:

• vertices: arbitrarily ordered points in R
n;

• edges: unordered pairs of vertices indexed above;
• 2-dimensional faces: cyclically ordered lists of edges indexed above for n = 3.

We introduce the algorithm for n = 2 in the plane R
2 for simplicity, while

the natural extension to R
3 will be described in an extended version.

Stage 1: Cell Reduction. A given basis of a unit cell U is reduced to a
Minkowski basis [22], see Lemma 15. A basis reduction is needed due to
Lemma 13 below.
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Fig. 6. If a unit cell U is not reduced, the extension by any fixed factor k may not
cover even the degree-1 Voronoi domain Z1(Λ; 0), see Lemma 13.

Lemma 13 (insufficiency of cell extensions). For any k > 1, any lattice Λ ⊂ R
n

has a unit cell U whose k-extension doesn’t cover the domain V (Λ; 0). �

Proof. The example in Fig. 6 can be generalised for any lattice Λ ⊂ R
n as follows.

One can choose a basis v1, . . . ,vn of Λ in such a way that the nearest neighbour
of the origin 0 ∈ R

n is the vertex v2 of the unit cell spanned by this basis. If we
add the multiple (k +1)v1 to v2, then the vertex v2 of the initial unit cell U will
not be covered by the k-extended cell Uk based on v1,v2 + (k + 1)v1, . . . ,vn,
see Fig. 6. Indeed, to reach the vertex v2, we need k + 1 subtractions from
v2 + (k + 1)v1. Hence at least the (k + 1)-extension of the cell Uk is needed. �	

The degree-1 Voronoi domain is covered by the 2-extension of a Minkowski-
reduced cell for n = 2, 3 as proved in [16, Appendix A.1]. For degrees k > 1, we
need the stronger Lemma 14 covering any degree-k Voronoi domain.

Lemma 14. Let n = 2 or 3. For any unit cell U with a Minkowski-reduced
basis, the unit cell 2kU ⊂ R

n (symmetrically extended around 0 ∈ R
n) covers

the degree-k Voronoi domain Zk(C; 0) ⊂ R
n for any periodic set C = Λ + M . �

Lemma 14 states that Zk(C; 0) is covered by 2kU (if U is Minkowski-
reduced). Since the boundary of Zk(C; 0) is defined by bisectors between 0 and
other points in C, we need to consider points that lie in the 4k-extended unit
cell.

Lemma 15 (Minkowski-reduced basis, Lemma 2.2.1 in [22]). A basis v1, . . . ,vn

of a lattice Λ ⊂ R
n is Minkowski-reduced if and only if for any i = 1, . . . , n and

integers c1, . . . , cn ∈ Z such that ci, . . . , cn have no common integer factor c > 1,
the inequality |∑n

i=j cjvj | ≥ |vj | holds. �

Lemma 16 (sufficiency of Minkowski-reduced cell extensions). For a unit cell
U of a lattice Λ ⊂ R

n, n ≤ 3, with a Minkowski-reduced basis v1, . . . ,vn, let
Λi, i ≥ 1, be the set of all points of Λ on the boundary of the 2i-extended unit
cell 2iU whose centre of symmetry is the origin 0. Then any point p ∈ R

n\2iU
is closer to at least one point of Λi than to 0 ∈ R

n. �

Proof. Set i = 1. By Appendix A.1 in [16], the Voronoi cell V (Λ; 0) is strictly
within 2U . Any point p on the boundary of 2U belongs to the Voronoi domain
V (Λ; v) of a lattice point v ∈ Λ\0. 2U + v must strictly contain V (Λ; v), and as
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p is on the boundary of 2U , we must have v ∈ Λ1. Therefore, any point on the
boundary of 2U is closer to a point of Λ1 than to 0, which implies that any point
p ∈ R

n\2U is closer to at least one point of Λ1 than to 0. For i ≥ 1, consider
the lattice iΛ with Minkowski-reduced basis vectors iv1, . . . , ivn and unit cell
iU. The above result holds for this new lattice, meaning that any p ∈ R

n\2iU is
closer to at least one point of iΛ1 than to 0. It remains to note that iΛ1 ⊂ Λi. �	
Proof of Lemma 14. It suffices to prove that Vk(Λ; 0) ⊂ 2kU only for a lattice
Λ, i.e. for a periodic set with a single point in a motif M . Indeed, adding any
extra points to M can only make the Voronoi domain Vk(Λ+M ; 0) smaller than
Vk(Λ; 0). Let U be the unit cell with a Minkowski-reduced basis v1, . . . ,vn. Take
any point p ∈ R

n − 2kU . Applying Lemma 16 for i = 1, . . . , k, we conclude that
p has k neighbours in ∪k

i=1Λi that are closer to p than 0. Hence p can not have 0
among its k nearest neighbours in Λ. Then p is outside the k-th Voronoi domain
Vk(Λ; 0). So p ∈ R

n − Vk(Λ; 0), Rn − 2kU ⊂ R
n − Vk(Λ; 0), Vk(Λ; 0) ⊂ 2kU . �	

Stage 2: Sorting Points from the Extended Motif. If the original motif
M ⊂ R

n had m points including the origin 0 ∈ R
n, the 4k-extended motif Mk

has (4k)nm points for any dimension n. All these points are inserted into a
balanced binary tree whose keys for comparison are distances to the origin.

Stage 3: A Loop over Motif Points. The loop processes all motif points from
the 2k-extended cell (except 0) in increasing order of their distance to 0 ∈ R

n.
For any point p 
= 0 in the extended motif Mk, the vector 0.5p represents the

mid-point of the line segment [0, p] ⊂ R
2. The bisector line L(p) ⊂ R

2 between 0
and p has the parametric equation 0.5p + tp⊥, where t ∈ R and the unit vector
p⊥ is orthogonal to p and anti-clockwisely oriented relative to 0 ∈ R

2.
In the loop of Stage 3, for each point p ∈ Mk\{0}, the bisector L(p) is

intersected with all previous bisectors. The resulting intersection points can be
ordered according to the direction of L(p). We keep these intersection points
in a balanced binary tree T (p) whose key for comparison is the parameter t
in the equation of L(p). So a tree T (q) of ordered intersections of L(q) will be
maintained for every point q in the extended motif Mk. This tree is implemented
using the multimap structure in C++ for fast searching and insertions. Every
oriented edge e ⊂ L(q) between successive intersection points has an ordered
pair of polygons attached to this edge. This pair is kept as extra information in
the tree T (q), for example assigned to the initial vertex a of e in Fig. 7.

To avoid unbounded regions, we restrict all polygons to a large square S
containing the extended motif Mk. Every polygon Q in the current splitting of
S by previous bisectors has the index ind(Q) defined similarly to Definition 5
as the number of intersections of all previous bisectors with a line segment [0, q)
for any internal point q ∈ Q, see Fig. 3. After finding a new intersection point a
of the bisector L(p) with a previous bisector L(q), we follow the steps below.
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Fig. 7. Left: the blue convex polygon Q after cutting out all bisectors and before
inserting the bisector of a more distant point p of the set C. Right: the new bisector
L(p) meets the previous four bisectors, creates four intersection points, then splits Q.
(Color figure online)

Step 3a: insert the intersection point a into the binary trees T (p), T (q)
according to its positions relative to other intersections of L(p), L(q), respec-
tively.
Step 3b: the appearance of the new intersection point a in the previous
bisector T (q) subdivides an edge e ⊂ L(q) and we mark the two polygons
that are attached to the edge e and should be later split by L(p).
Step 3c: splitting the polygons marked in Step 3b. After finding all intersec-
tions of L(p) with previous bisectors, we split each marked polygon Q into
two smaller polygons and update their zone indices: the polygon closer to 0
keeps its current index, while we increment by 1 the index of the more distant
polygon.

Theorem 17 says that degree-k Voronoi domains can be computed in poly-
nomial time in the number m of motif points. The polynomial dependence on m
and k seems inevitable, because in general position m(4k)n bisectors between a
fixed centre p and its neighbours in a k-extended motif can intersect each other.

Theorem 17 (Algorithm complexity). Let the dimension be n ≤ 3, and let
a periodic point set C ⊂ R

n have a motif of m points in a Minkowski-reduced
basis. Then the complexity to compute the first k degree-i Voronoi domains,
Zi(C; p), i = 1, . . . , k, is O(mn(4k)n2

(n log(4k) + log m)) for any point p ∈ C. �

Proof. Starting from a reduced basis in Stage 1, the 4k-extended motif Mk con-
sists of m(4k)n points. Sorting these points according to their distance from the
origin at Stage 2 takes O(m(4k)n(n log(4k) + log m)) time. Stage 3 loops over
m(4k)n points and computes all n-fold intersections of m(4k)n bisectors, which
explains the extra n-th power in the factor mn(4k)n2

. Inserting intersection
points into binary trees and marking polyhedra at Stage 3 requires only a log-
arithmic time in the number of intersection points between O(mn−1(4k)n(n−1))
1-dimensional lines (intersections of n− 1 ≥ 2 bisectors in any dimension n ≥ 3)
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and up to m(4k)n bisectors. Step 3c similarly needs to split only O(mn(4k)n2
)

polyhedra linearly depending on the number of intersection points. �	
The complexity to compute a Minkowski-reduced basis is quadratic in loga-

rithms of the lengths of initial basis vectors for dimensions n ≤ 3, see the exact
bounds in [22, Theorems 4.2.1 and 5.0.4]. Though the dependence of the time
estimate on the dimension n is exponential, the experiments in the next section
for n = 2 and n = 3 show that the algorithm is very fast in practice.

5 Experiments on Degree-k Voronoi Domains for n = 2, 3

The complexity bound from Theorem 17 has been experimentally illustrated as
follows. In R

2 we chose 6 different lattices: the square, hexagonal and rectangular
lattices, plus 3 more generic ones, as shown in Fig. 8. Given one of these lattices
and a fixed number m ∈ [1, 50], we randomly generated m motif points to get a
periodic point set. Repeating the random generation of motif points 100 times for
each of the 6 lattices, we get 600 periodic point sets in total for each m ∈ [1, 50],
see Fig. 9 for two periodic point sets with m = 2. In Figs. 10, 11, 12 and 13, each
cross represents the mean result, such as runtime in milliseconds, over the 600
periodic point sets of every value of the number m of motif points considered.
All experiments were performed on a MacBook Pro with 2.3 GHz, 8 GB RAM.

Fig. 8. The 2D lattices in the experiments in Sect. 5. 1st: a (black) generic lattice
with basis (1.25, 0.25), (0.25, 0.75). 2nd: a (blue) hexagonal lattice with basis (1, 0),
(0.5,

√
3/2). 3rd: an (orange) rhombic lattice with basis (1, 0.5), (1, −0.5). 4th: a (pur-

ple) rhombic lattice with basis (1, 1.5), (1, −1.5). 5th: a (red) square lattice with stan-
dard basis (1, 0), (0, 1). 6th: a (green) rectangular lattice with basis (2, 0), (0, 1). (Color
figure online)
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Fig. 9. The first 12 degree-k Voronoi domains of 0 ∈ R
2 for: Left: A periodic point

set with basis (1, 0.5), (1, −0.5); Right: A periodic point set with basis (1.25, 0.25),
(0.25, 0.75). In each image, the basis vectors are shown by thin black lines.
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Fig. 10. Runtime for 8 degree-k Voronoi
domains for m = 1, . . . , 50 motif points,
averaged over 600 2D periodic sets.
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Fig. 11. Runtime for degree-k Voronoi
domains for k = 1, . . . , 30, averaged over
600 2D periodic sets for m = 1, . . . , 5.

Figure 10 indicates that starting from about m = 10, the runtime increases
almost linearly with respect to the number m of motif points as expected by
Theorem 17. Figure 11 indicates that the runtime for n = 2 follows a slow
quadratic increase with respect to the degree k of Voronoi domains, see The-
orem 17 (Fig. 14).

The 3D experiments were for periodic sets with m motif points randomly
generated for the cubic lattice. Figure 15 shows degree-5 Voronoi domains for
the FCC (face-centred cubic) and BCC (body-centred cubic) lattices, and HCP
(hexagonal close packing). Figures 12 and 13 illustrate the time in Theorem 17
for n = 3.
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Fig. 12. Runtime to compute the degree-
k Voronoi domains for k = 1, . . . , 8, aver-
aged over 10 3D periodic point sets for
each value of m = 1, . . . , 5.
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Fig. 13. Runtime to compute the first 5
degree-k Voronoi domains as the num-
ber of motif points takes values m =
1, . . . , 10, averaged over 10 3D periodic
point sets.

Fig. 14. Degree-k Voronoi domains
Zk(Λ; 0) in the cubic lattice, k = 4, 5, 6.

Fig. 15. Degree-5 Voronoi domains for
FCC, BCC and HCP respectively.

The algorithm from Sect. 4 helped compute the density functions in [12]
without covering the new results in this paper. These functions were explicitly
described for any periodic 1D sequence in [5]. The C++ code for the algorithm
in Sect. 4 is available by request. This research opened the wider area of Geomet-
ric Data Science studying point sets up to isometry. Persistent homology turned
out to be a weaker isometry invariant than previously anticipated [24], but com-
plete isometry invariants with continuous and computable metrics were recently
constructed in [17]. Isometry invariants and continuous metrics of periodic sets
were initiated in [2,21], see the recent progress in [3,4,6,7,18–20,26–30].
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23. Osang, G., Rouxel-Labbé, M., Teillaud, M.: Generalizing CGAL periodic Delaunay

triangulations. In: European Symposium on Algorithms, pp. 75:1–75:17 (2020)
24. Smith, P., Kurlin, V.: Families of point sets with identical 1D persistence.

arxiv:2202.00577 (2022)
25. TLP. https://www.doitpoms.ac.uk/tlplib/brillouin zones/index.php
26. Torda, M., Goulermas, J.Y., Kurlin, V., Day, G.M.: Densest plane group packings

of regular polygons, Phys. Rev. E 106(5), 054603 (2022). APS
27. Vriza, A., et al.: Molecular set transformer: attending to the co-crystals in the

Cambridge structural database. Digital Discovery (2022)
28. Widdowson, D., Kurlin, V.: Resolving the data ambiguity for periodic crystals. In:

Advances in Neural Information Processing Systems (NeurIPS), vol. 35 (2022)
29. Widdowson, D., Mosca, M., Pulido, A., Cooper, A., Kurlin, V.: Average minimum

distances of periodic sets. MATCH Commun. Math. Comput. Chem. 87, 529–559
(2022)

30. Zhu, Q., et al.: Analogy powered by prediction and structural invariants. J. Am.
Chem. Soc. 144, 9893–9901 (2022)

https://doi.org/10.1023/A:1004272423695
http://arxiv.org/abs/2204.01076
http://arxiv.org/abs/2204.01077
https://doi.org/10.1007/BF02187681
http://arxiv.org/abs/2207.08502
http://arxiv.org/abs/2201.10543
http://arxiv.org/abs/2205.04388
https://doi.org/10.1145/1597036.1597050
http://arxiv.org/abs/2202.00577
https://www.doitpoms.ac.uk/tlplib/brillouin_zones/index.php


End-to-End Deep Neural Network
for Illumination Consistency and Global

Illumination

Huang Jingtao and Takashi Komuro(B)

Saitama University, Saitama 338-8570, Japan

komuro@mail.saitama-u.ac.jp

Abstract. In this study, we propose a real-time method for realizing
illumination consistency and global illumination in augmented reality
(AR). The proposed method uses pix2pix, which is a generative adver-
sarial network (GAN) for image-to-image translation. The network takes
an image with k channels as the input, and attempts to generate reflec-
tions and shadows of a virtual object corresponding to the illumination
condition. We also propose an approach for improving the applicability
of the method by combining RGB information with geometric informa-
tion (normal and depth) as the network input. For evaluating the pro-
posed method, we created a synthetic dataset by using Unreal Engine
4, which can render computer graphics (CG) images with global illumi-
nation. The results of an experiment indicated that although generated
images were not completely the same as the ground truth, the proposed
method reproduced natural-looking reflections and shadows of a virtual
object.

Keywords: Augmented reality · Illumination consistency · Global
illumination · Generative adversarial network

1 Introduction

Rendering virtual objects seamlessly onto real-world scenes is a very important
goal of augmented reality (AR). This difficult task requires the objects to be
lit consistently with the surfaces in their vicinity and that the interplay of light
between the objects and their surroundings to be properly simulated. Specifi-
cally, the objects should cast shadows and reflect light as real objects would do.
This visual coherence of illumination between the real world and virtual objects
is called illumination consistency. In order to add more realistic lighting to AR
scenes, it is necessary to take into account not only the light that comes directly
from light sources (direct illumination) but also the light that is reflected on
other surfaces (indirect illumination). Environmental objects affect the render-
ing of reflections and shadows of virtual objects. A group of algorithms used
for calculating indirect illumination between environment and virtual objects is
called global illumination.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Bebis et al. (Eds.): ISVC 2022, LNCS 13598, pp. 392–403, 2022.
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Most of existing solutions for achieving illumination consistency and global
illumination in AR involve two steps: illumination estimation and virtual object
rendering. In the first step, a panoramic high dynamic range (HDR) map needs
to be generated in order to obtain the illumination information of a scene. In the
second step, reflections and shadows of virtual objects are rendered according to
the illumination information. The HDR environment map can be generated by
placing light probes in the real environment, such as a spherical mirror or a 360-
degree camera [1–3]. As an another approach, Kán et al. rotated a mobile device
about 360◦ to scan the surrounding environment for reconstructing an HDR envi-
ronment map [4]. In recent years, with the progress of research on deep learning,
convolutional neural network (CNN) solutions for estimating HDR illumination
information from a low dynamic range (LDR) image with a limited field of view
have been proposed [5,6]. However, with these two-step solutions, it is difficult
to render a virtual object in real-time because it takes time to dynamically
construct the environment map and compute the global illumination.

Recently, end-to-end solutions, in which an input is received from one end
and an output is produced at the other end and all intermediate processing is
implemented by deep learning, have been used to implicitly estimate the illumi-
nation information of a scene. Thomas et al. [7] proposed a method for generat-
ing a global illumination scene from a direct illumination scene using pix2pix [8],
which is an image transformation network based on the Generative Adversarial
Network (GAN). Wang et al. [9] used pix2pixHD [10] for directly generating
diffuse reflections and shadows of virtual objects. However, existing end-to-end
solutions have been applied only to simple scenes, in which the intensity of light
sources was constant, and the positions of light sources and environment objects
were fixed. In addition, these studies only used a dataset with one virtual object
to train a neural network.

In this study, we try to extend existing end-to-end solutions to be applicable
to more complex scenes, in which the light sources and environment objects are
not fixed. We use an end-to-end network to generate the reflections and shadows
of a virtual object from RGB and geometric information of a scene, in order to
achieve illumination consistency and global illumination.

2 Proposed Method

2.1 Generating Reflections and Shadows of Virtual Objects

We use pix2pix [8], which is a GAN-based image-to-image translation network,
in order to realize illumination consistency and global illumination in AR.

As shown in Fig. 1, the pix2pix network consists of a generator and a discrim-
inator. The generator network is an auto-encoder, which takes an image with k
channels as the input, and that attempts to generate the reflections and shadows
of a virtual object corresponding to the illumination information.

The discriminator is a deep convolutional neural network, taking either the
ground truth output or the generated output from the generator, and classifies
them into real or fake, where “real” means that the input is an image that is
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Real
-channel
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Generated output

Ground truth
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pix2pix network [ Isola et al., 2017 ]

Fake

Fig. 1. Overview of the proposed method. k-channel data consisting of RGB and geom-
etry information is input to pix2pix [8] network.

rendered by a global illumination algorithm. Thus, the generator and discrimi-
nator play a min-max adversarial game where the generator tries its best to fool
the discriminator into thinking that the generated output is from the real distri-
bution and the discriminator tries to learn from the real and generated images
to classify them. This game will continue until the discriminator is unable to
distinguish between real and generated images.

The loss function defines how the error between the network outputs G(x)
and the ground truth y is computed during training. For the network, the min-
max adversarial game refers to the minimization of the generator loss and the
maximization of the discriminator’s loss:

Lp = min
G

max
D

LGAN (G,D) + λLL1(G) (1)

where the discriminator seeks to maximize the average of the log probability of
real images (ground truth) and the log of the inverse probability for fake images
(generated outputs). The generator seeks to minimize the log of the inverse
probability predicted by the discriminator for fake images:

LGAN (G,D) = E(x,y)[log D(x, y)]
+ Ex[log(1 − D(x,G(x)))]

(2)

while L1 loss is used to reduct the artifact of generated outputs:

LL1(G) = E(x,y)[|y − G(x)|] (3)
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2.2 Combination of RGB and Geometric Data

We combine RGB and geometric data (normal and depth) as the input to the
network in order to improve the applicability of our method. Since normals
provide information of surface orientations, and depths provide structural infor-
mation of a scene, the network could robustly generate reflections and shadows
of a virtual object in a complex scene.

9-Channel Data Concatenating RGB, Depth, and Normal Data. As the
first solution, we concatenate the 3-channel RGB data of the background scene,
the 3-channel depth data of the entire scene containing both the background and
the virtual object, which is created by duplicating a single-channel depth data,
and the 3-channel normal data of the entire scene into an image with 9 channels
as shown in Fig. 2.

a b c

3 channels 3 channels 3 channels

Fig. 2. A sample of 9-channel data: (a) 3-channel RGB data of the background scene,
(b) 3-channel depth data of the entire scene, and (c) 3-channel normal data of the
entire scene.

In the background scene, there are several objects which are lit by light
sources and cast shadows in various directions. The directions and intensities of
shadows are highly correlated with the positions and intensities of light sources.
Thus, the shadow information provided by the RGB data is needed to estimate
illumination information. Since structure information of objects determines the
shape of shadows, we use the scene depth data to provide structure information
of both background and virtual objects. The surface orientations are related
to the luminance of reflected light, and we used the scene normal data to pro-
vide information of surface orientations, which would help better rendering of
reflections.

6-Channel Data Concatenating RGB and Normal Data. Since the geom-
etry of background scene is difficult to obtain without using a depth sensor, we
propose an optional solution for combining RGB and geometric information. In
this solution, we concatenate the 3-channel RGB data of the background scene
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and the 3-channel normal data of the virtual object into an image with 6 channels
as shown in Fig. 3.

a b

3 channels 3 channels

Fig. 3. A sample of 6-channel data: (a) 3-channel RGB data of the background scene,
and (b) 3-channel normal data of the virtual object.

3-Channel Data Fusing RGB and Normal Data. There is another simpli-
fication for combination that does not require an additional depth sensor.

As shown in Fig. 3(b), there are many pixels whose value is zero in the object
normal data. Since these pixels are redundant for training a neural network, we
fuse the background RGB data and object normal data into an image with 3
channels as shown in Fig. 4.

Fig. 4. A sample of 3-channel data.
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3 Experiment

3.1 Creating a Dataset

We created a synthetic dataset by using Unreal Engine 4 [11], which can render
CG images with global illumination, to evaluate the proposed method.

For generating image sets, we built virtual scenes, each of which consisted
of three elements: a background scene, a virtual object, and a camera as shown
in Fig. 5. In the background scene, we put 20 objects that have simple geomet-
ric structures and two different point light sources: a brighter one and a darker
one, in a cube room. The positions of background objects and light sources were
randomly determined for each scene. Then, the virtual object with a complex
geometric structure was placed in the middle of the room with the fixed posi-
tion and orientation. We used 14 kinds of virtual objects with the 3D models
downloaded from the Stanford 3D Scanning Repository. Finally, We placed a
camera on a hemisphere that was centered on the virtual object with randomly
changing the (θ, ϕ) of the spherical coordinate system (r, θ, ϕ).

Fig. 5. Overview of the virtual scene.

We used two kinds of metallic materials for virtual objects: nickel and steel.
The nickle material has blurred surfaces while the steel material reflects the
surrounding scene clearly as shown in Fig. 6. These materials were rendered
using the parameters shown in Table 1.
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(a) Nickel (b) Steel

Fig. 6. The materials used in the experiment.

Table 1. The parameters of the materials used in the experiment.

Parameter Material

Nickel Steel

BaseColor (0.95, 0.95, 0.95) (0.5, 0.5, 0.5)

Metallic 1 1

Specular 0 0

Roughness 0.4 0.2

In order to create the synthetic dataset of k-channel input data as shown in
Fig. 7, two types of CG images were rendered first: (a) background RGB data
and (b) scene RGB data (used as the ground truth). After rendering the scene
RGB data, (c) scene depth data and (d) scene normal data were extracted from
the g-buffer of Unreal Engine 4. We also created (e) object mask to generate (f)
object normal data and (g) 3-channel input data. All images were created with
256 × 256 pixels.

We rendered 1,000 sets of images for each kind of virtual object and each
material. Since there were 14 kinds of virtual objects, a total of 14,000 image
sets were created for each material. We used 10,000 of them for training and the
rest of them for testing.

3.2 Training the Network

We trained the network with a batch size of 1 for 200 epochs, using the Adam
optimization algorithm with a fixed learning rate of 0.0002. We conducted train-
ing using a PC having a 2.9 GHz i7-10700 CPU, 32 GB RAM, and an NVIDIA
GeForce RTX 2070 Super GPU. The training took approximately three days for
each types of input data.

3.3 Qualitative Results

Figure 8 shows the results of generated images for the nickel material. The nickel
material has higher roughness and there is little reflection of the surrounding
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Fig. 7. A sample of the image sets in our synthetic dataset: (a) background RGB data,
(b) scene RGB data, (c) scene depth data, (d) scene normal data, (e) object mask, (f)
object normal data, and (g) generated 3-channel input data.

scene. As shown in Fig. 8(a), our method successfully reproduced the base color
and the specular reflection of nickel material. In Fig. 8(b), although the repro-
duced reflection is not similar to that of the ground truth, our method reproduced
natural-looking reflection. By comparing the results of three different inputs, we
found that 6-channel input data produced the smoothest metal surfaces and 3-
channel and 9-channel input data tend to produce more noises and undesired
artifacts. In Fig. 8(c) and (d), the results show that the network learned from
the background objects to generate shadows of a virtual object. Although the
shape of the shadows is incorrect, the color and direction match the shadows of
the background objects.

Figure 9 shows the results of generated images for the steel material. The
results demonstrate that the network generated colorful reflections of the sur-
rounding scene on the surface of virtual objects. Although our input data was
provided in a limited view, the network learned to generate indirect reflections
from the walls.

In most cases, although generated images were not completely the same as
the ground truth, the proposed method reproduced natural-looking reflections
and shadows of a virtual object, which is probably thanks to the use of a GAN-
based network.

In some cases, however, our method failed to correctly reproduce the shadows
of a virtual object as shown in Fig. 10. The reason may be that the structure of
the virtual object is too complex, which causes the exact shape of the shadows
to be difficult to predict.
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9-channel 6-channel 3-channel Ground truth

(a)

(b)

(c)

(d)

Fig. 8. A selection of generated images on the test dataset of the nickel material.

3.4 Quantitative Results

The peak signal-to-noise ratio (PSNR) and the structural similarity index mea-
sure (SSIM) for each type of input data were calculated by using 4,000 pairs
of generated results and ground truth, in order to quantitatively evaluate the
performance of our method. The result for each material is shown in Table 2. We
found that the performance of 6-channel input data showed the highest SSIM
and PSNR values though the differences among the types of input data are small.
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We also measured the computational speed of image generation on the PC
which was used for training the network. The results are shown in Table 3, and
they prove that our method can generate images with illumination consistency
and global illumination in real-time.

9-channel 6-channel 3-channel Ground truth

(a)

(b)

(c)

(d)

Fig. 9. A selection of generated images on the test dataset of the steel material.

Table 2. PSNR and SSIM values for each material.

Material Metric 9-channel 6-channel 3-channel

Nickel PSNR 24.9450 25.1183 24.7196

SSIM 0.9068 0.9124 0.9060

Steel PSNR 26.6663 26.6974 26.8725

SSIM 0.9143 0.9147 0.9146
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9-channel 6-channel 3-channel Ground truth

Fig. 10. A selection of failure cases of reproducing shadows: (a) a failure sample of the
nickel material, and (b) a failure sample of the steel material.

Table 3. Computational speed of our method with different input.

Input data 9-channel 6-channel 3-channel

Computational speed (ms) 8.4229 8.1379 8.3075

4 Conclusion

We proposed a method for realizing illumination consistency and global illumi-
nation in real time by using a GAN-based network to reproduce reflections and
shadows of virtual objects. We also proposed a technique for combining RGB
data and geometric data as the input to the network so that the network can
reproduce reflection and shadows of a virtual object in a complex scene.

The results of experiments showed that our method successfully reproduced
reflections and shadows of a metallic object. Although generated images were
not completely the same as the ground truth, the proposed method reproduced
natural-looking reflections and shadows thanks to the use of a GAN-based net-
work.

The neural network was trained with a synthetic dataset in our experiment.
In the future, a real world dataset will have to be created so that we can verify
whether the proposed method is applicable to a real scene.
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Abstract. Image-based 3D reconstruction has increasingly stunning
results over the past few years with the latest improvements in computer
vision and graphics. Geometry and topology are two fundamental con-
cepts when dealing with 3D mesh structures. But the latest often remains
a side issue in the 3D mesh-based reconstruction literature. Indeed, per-
forming per-vertex elementary displacements over a 3D sphere mesh only
impacts its geometry and leaves the topological structure unchanged and
fixed. Whereas few attempts propose to update the geometry and the
topology, all need to lean on costly 3D ground-truth to determine the
faces/edges to prune. We present in this work a method that aims to
refine the topology of any 3D mesh through a face-pruning strategy that
extensively relies upon 2D alpha masks and camera pose information.
Our solution leverages a differentiable renderer that renders each face as
a 2D soft map. Its pixel intensity reflects the probability of being covered
during the rendering process by such a face. Based on the 2D soft-masks
available, our method is thus able to quickly highlight all the incorrectly
rendered faces for a given viewpoint. Because our module is agnostic to
the network that produces the 3D mesh, it can be easily plugged into
any self-supervised image-based (either synthetic or natural) 3D recon-
struction pipeline to get complex meshes with a non-spherical topology.

Keywords: Topology · 3D deep-learning · Computer graphics

1 Introduction

The image-based 3D reconstruction task aims at building a 3D representation of
a given object/scene depicted in a set of images. From a very early age, humans
learn to apprehend their surrounding 3-dimensional environment and thus have
high cognitive abilities for mentally representing the whole 3D scene structure
from a single image. Doing so for any vision algorithm is way more challeng-
ing since computers do not have such sensitive prior knowledge. Inferring 3D
information from a lower dimensional 2D space is thus an arduous task in visual
computing. Whereas literature has tackled image-based 3D reconstruction for
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decades in computer vision and graphics with robust and renowned techniques
such as Structure-from-Motion [14], the latest learning-based approaches address
the problem through the new prism of deep neural networks [4,9,21].

The single-image-based 3D reconstruction issue even brings the challenge one
step above as input information is solely constrained to a single image. From a
general perspective, the latest contributions in single-image 3D reconstruction
chose to work with mesh structures rather than 3D point clouds or voxels since
they offer a well-balanced trade-off between computational requirements and
tiny 3D details retrieval. Meshes also embed a notion of connectivity between
vertices, contrary to the point cloud representation where such valuable property
is inherently missing.

The rendering operation somehow fills the gap between the 3D world and the
2D image plane by mimicking the optical image formation process. Whereas the
procedure is well-known in graphics for decades, it has only been brought into
computer vision learning-based approaches for a few years. Indeed, the rasteri-
zation stage involved in any rendering process is intrinsically non-differentiable
(since it requires a face selection step), making its integration in any deep archi-
tecture intractable from a backward loss computational perspective. The latest
progress has led a few years ago to single-image 3D reconstruction methods
where 3D ground truth labels are no longer needed: supervisory signal directly
comes from a differentiable renderer at the 2-dimensional image level.

There are two main ways to update the topology of any mesh during 3D
object reconstruction: by either pruning some edges/ faces or, on the other hand,
by adopting the opposite strategy and thus adding edges or vertices at the cor-
rect location to generate new faces onto the mesh surface. Single-image 3D recon-
struction methods that require 3D supervision already apply these techniques in
their training pipeline [16,18,22]. However, most of the current state-of-the-art
methods in self-supervised single-image 3D reconstruction -where 3D labels are
thus no more needed- perform mesh reconstruction with a roughly similar app-
roach. An Encoder-Decoder network iteratively learns to predict an elementary
per-vertex displacement on a 3D template sphere to faithfully reconstruct, as
better as possible, the mesh associated with the input images. Such a strategy
only affects the geometry of the mesh and thus does not get consideration for its
topology. Indeed, vertice position impacts edges length and dihedral face angles
but leaves the overall topology unchanged: two faces sharing an edge at the
beginning of the training still do so at the end. These topological considerations,
yet fundamental when embracing 3D mesh structures, are often bypassed in the
current self-supervised single image-based 3D reconstruction literature. We thus
claim that the latest advances in differentiable rendering [12,20] are informative
enough to address this fundamental concept.

Our work thus brings topological considerations to the self-supervised image-
based 3D reconstruction issue. From a general perspective, our method leverages
the differentiable renderer from [20] to catch up through an efficient and fast
procedure the most likely mesh’s faces to prune without accounting for costly
3D supervision, as done in [16,18,22]. As far as we are informed, no attempts
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in the current literature exist in this direction. Our work is thus in line with
self-supervised image-based 3D reconstruction methods, while our topological
refinement method is agnostic to the mesh reconstruction network used.

We summarise our contribution through:

– A fast and efficient strategy to prune faces on a 3D mesh by only leveraging
2D alpha masks and camera pose.

– An agnostic topological refinement module to the 3D mesh reconstruction
network.

2 Related Works

Differentiable Renderer. Since our work aims to be integrated within a
deep architecture as an add-on module to perform complex 3D mesh recon-
struction, we naturally focus on existing state-of-the-art differentiable render-
ers. Even though they perform much better than their differentiable counter-
parts, they can not be plugged into learning-based networks: there will be a net-
work layer where back-propagation can no longer take place. OpenDR [15] paved
the way in 2014 regarding differentiable rendering. However, the such topic has
only gained significant interest over the past few years in deep learning-based
computer vision tasks. Compelling progress was reached in 2017 by Hiroharu
Kato et al. with an approximated gradient-based strategy called NMR [10]. But
SoftRasterizer [12] designed the first differentiable framework without gradient
approximation through a probability-distance-based formulation whereas Chen
et al. designed their differentiable renderer with foreground-background pixel
consideration in their DIB-R [1] method. In addition to those renderers that are
thus primarily designed to work with mesh, other types of renderers [8,17] also
emerged a few years ago to address the rendering of implicit 3D shape surfaces.

Single Image-Based 3D Reconstruction. Initiating works [2,5,27] related
to learning-based single image 3D reconstruction extensively leveraged on 3D
datasets [23,25] to let the generative network apprehends the 3D structure it
must learn. These methods lack the physical image formation process during
training since there is no need to consider it as soon as 3D labels are accessible.
In this way, existing 3D loss functions are sufficient to predict feasible 3D mesh
structures from a 3D sphere template. While tremendous works have leveraged
over 3D labels, the current trend in single image-based 3D reconstruction instead
tries to advantage differentiable renderers and thus limit the need for expensive
3D supervision. It led in the last few years to a new path of work called self-
supervised image-based 3D reconstruction [7,9,11,19] where 3D ground truth
meshes are no more needed. Differentiable rendering allows to render the pre-
dicted 3D mesh onto a 2D image plane and gets a meaningful 2D supervision
signal to train a mesh reconstruction network in an end-to-end way.

Topology. Implicit-based methods spontaneously handle complex topology
since any 3D object parameterises in a continuous 3-dimensional vector field
where the notion of connectivity is absent. Generated surfaces do not suffer
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from resolution limitations as soon as the 3D space is continuously defined.
Works relying on such formulation produce outstanding results but often require
extensive use of 3D supervision [21], even though the latest research achieved
reconstructing 3D implicit surfaces without 3D labels [13,17].

The topological issue on explicit-based formulation are already addressed
when it comes to supervise the mesh generation with 3D labels. Pix2Mesh [24]
leverages the capacity of Graph Neural Networks and their graph unpooling
operation to add new vertices on the initial template mesh during training.
With the same will to add a new vertex/face, GEOMetrics [22] considers an
explicit adaptive face splitting strategy to locally increase face density and thus
ensure that the generated mesh will have enough detail around the most complex
regions. The face splitting decision relies on local curvature consideration with a
fixed threshold. These two methods adopt a progressive mesh growing strategy
and thus start from a low-resolution template mesh to end up with a 3D mesh
which is complex only in the most challenging regions to reconstruct.

On the other hand, Junyi Pan et al. [18] paved the way to prune irrelevant
faces onto 3D mesh surface. They introduced a face-pruning method through a
3D point cloud-based error-estimation network. While [18] used a fixed scalar
threshold to determine whether or not to prune a face, Total3D [16] proposes a
refined version of such a method by performing edge pruning with an adaptative
thresholding strategy set on 3D local considerations.

To the best of our knowledge, such topological issue on 3D mesh structures
is currently not addressed in the state of the art methods that extensively rely
on 2D cues for training. Generated meshes are thus always isomorphic to a 3D
sphere.

3 Method

We introduce our method and the associated framework in this section. We draft
a complete overview of our methodology before digging into the implementation
details of the module we designed.

Regarding the notation, we denote by I ∈ R
H×W×4 the source RGBα image,

where α therefore refers to the (ground-truth) alpha mask. We aim to refine
the topology of a mesh M= (V, F) where V and F respectively stand for the
set of vertices and faces. We assume such mesh was obtained from a genus-0
template shape by any single-image 3D mesh reconstruction network (fed with
either the RGB image or its alpha mask counterpart). Finally, the camera pose
θ is parametrized by an azimuth and an elevation angle, leaving the distance
between the object and the camera fixed.

3.1 General Overview

As we extensively rely on the 2D information from α (even though the 3D cor-
responding camera pose θ is needed) to perform topological refinement over the
mesh surface, we must lean on a renderer to get back onto 2D considerations.
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We consider the differentiable one from PyTorch3D [20] since it allows the gen-
eration of meaningful per-face rendered maps that one can aggregate to produce
the final rendered mask. The core idea of our work is to identify the faces that
were re-projected the worst onto the 2D image plane during the rasterization
procedure through the prior information from α. Figure 1 depicts the general
overview of our face-pruning method.

Fig. 1. Architecture overview of our method. Based on a 3D mesh M and a camera
pose θ, our module leverages PyTorch3D rasterizer to detect and prune onto the mesh
surface by only getting consideration for the ground-truth alpha mask α.

Detecting those faces is driven through the computation of an Intersection
over Union (IoU) score between each per-face rendered map with ground-truth
α. Those faces can then be removed from the 3D mesh surface or directly dis-
carded in the shader stage of the renderer. Inspired by the thresholding strategy
introduced in TMN [18], we get consideration for t, an adaptative threshold
based on the IoU score distribution γ/Γ and quantile Qτ , τ ∈ [0, 1].

t = Qτ (γ/Γ ) (1)

In a similar fashion line to what TMN [18] did for the thresholding strategy
in their pipeline architecture, the setting of τ influences the number of pruned
faces: the lower τ is, the lower the number of faces detected as wrongly projected
will be.

3.2 Implementation Details

We implement our topological refinement strategy onto the renderer from the
PyTorch3D [20] library. The renderer’s modularity offered by [20] is worth men-
tioning since the entire rendering procedure can be adjusted as desired. We paid
attention to the rasterization stage for its connivance with the one from Soft-
Rasterizer [12].

One of the core differences between those two frameworks in the silhouette
rasterization process concerns the number of faces involved: while PyTorch3D
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only considers for each pixel location pi the top-K closest faces from the camera
center, SoftRasterizer equally considers all the faces of M. We denote by P ∈
R

K×(H×W ) the intermediate probability map produced by [20] which is highly
related to the one originally introduced in [12]. Considering any 2D pixel location
pi = (xi; yi) ∈ {0, ..H − 1}× ∈ {0, ..W − 1} and the kth closest face f i

k, the
distance based probability tensor P is expressed through:

P[k, pi] =
(
1 + e−d(fi

k,pi)/σ
)−1

(2)

where d(f i
k, pi) stands for the Euclidean distance between pi and f i

k, while σ is a
hyperparameter to control the sharpness of the rendered silhouette image. Both
d and σ are defined in SoftRasterizer [12].

It is worth emphasizing the indexing notation of P. Indeed, face indexes f i
k

and f i′
k′ , {i, k} �= {i′, k′} might refer to the same physical face on M because

a rendered one is likely to cover an area larger than a single pixel. One could
already build up an aggregation function to render a final predicted alpha mask
from P but the computational cost would not be optimal.

We thus introduced F as the set of unique faces from P involved in the
rendering of M. The larger K is, the more likely the cardinality of F will get
close to the total number of faces in the original mesh |F |.

We denote by D = {Dj}|F|
j=1 ∈ R

|F|×(H×W ) the probability map tensor, as
defined in [12], that accounts (contrary to P) on all the unique faces (indexed
fj) involved in the rendering process. Following Eq. 2 formulation, we have for
any pixel location pi:

Dj [pi] =
(
1 + e−d(fj ,pi)/σ

)−1

(3)

Our module status on pruning the face fj considering the degree of overlap
between the ground truth α and the corresponding probability map Dj . Since
each face fj ∈ F contributes to the final rendered, an Intersection over Union
(IoU) term is computed per face:

{
γj =

∑
pi∈α min (Dj [pi],α[pi])

Γj =
∑

pi∈α max (Dj [pi],α[pi])
(4)

The ratio γj/Γj gives the well-known IoU score. We extend the computation
for a single face fj to all the faces from F , and denote by γ/Γ ∈ R

|F| the
complete IoU score distribution.

We adopt a thresholding strategy partially inspired from [18] and set an
adaptative threshold t based on statistical quantile consideration: faces with a
lower IoU score than t = Qτ (γ/Γ ) are pruned from M to give a refined mesh
Mr.

Given all these considerations, two different predictions can be made on the
final rendered mask: {

α̂[pi] = 1 − ∏|F|
j=1(1 − Dj [pi])

α̂r[pi] = 1 − ∏|F\Fp|
j=1 (1 − Dj [pi])

(5)
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While α̂ to the original predicted alpha mask (without any faces pruned), α̂r

refers to the refined predicted silhouette, with Fp = {fp ∈ F|γp/Γp < t}.

4 Experiments

Dataset. We extensively tested our approach on ShapeNetCore [25]. In line with
the work from TMN [18], our experiments are thus limited to the topologically
challenging “chair” class from [25]. It contains 6774 different chairs, with 1356
instances in the testing set.

Metrics. We evaluate our method through both qualitative and quantitative
considerations. We use the 2D IoU metric to assess how well the refined mesh
produced by our module better matches the ground truth alpha mask compared
to the topologically non-refined mesh. We also use 3D metrics with the Chamfer
Distance (CD), F-Score and METRO distance to evaluate our method. The
METRO criterion was introduced in [3] and reconsidered in Thibault Groueix
et al.’s AtlasNet [6] work. Its use is motivated by its consideration for mesh
connectivity contrary to the CD or F-score metric that only reason onto 3D
point clouds distribution.

3D Mesh Generation Network. Our refinement module can be integrated
into any image-based 3D reconstruction pipeline and is thus agnostic to the
network responsible for producing the 3D mesh. We chose to work with the
meshes generated by [18]. Since we only want to focus on face-pruning consider-
ations, we only retrain the ResNet18 encoder and the first stage of their 3D mesh
reconstruction architecture, referred to as SubNet-1 in [18] and abbreviated as
TMN in this section. The TMN architecture thus consists of a deformation net-
work and a learnt topological modification module. It is worth mentioning the
TMN [18] architecture has been trained and used for inference with the provided
ground truth labels and rendered images from 3D-R2N2 [2]. We called “Base-
line” the deformation network preceding the topology modification network [18].
The genus-0 3D mesh produced by the Baseline network comes from a 3D sphere
template with 2562 vertices.

PyTorch3D Renderer. We use the PyTorch3D [20] differentiable renderer
and set K=30 and σ = 5.10−7 to get the alpha mask as sharp as possible.
All the 2D alpha masks, size 224× 224, were obtained with the PyTorch3D
renderer and have been centred. Similarly to what [2,12,26] did for the rendering
silhouette masks, we considered 24 views per meshes with a fixed camera distance
dcamera = 2.732m and an elevation angle set to 30◦. The azimuth angle varies
by 15◦ increment, from 0◦ to 345◦. All the meshes predicted by TMN [18] were
normalised in the same way as ShapeNetCore [25].

We both present qualitative and quantitative results of our pruning-based
method through 2D and 3D evaluation considerations. We demonstrate how
effective our strategy can be by only leveraging 2D alpha masks and the renderer
modularity.
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4.1 Topological Refinement Evaluation - Qualitative Results

We first seek to highlight to what extent we can detect irrelevant faces on the
3D mesh, i.e. those that might be pruned during rendering. Figure 2 depicts
the wrongly rendered faces (considered as is by our method) compared to the
ground-truth alpha mask on three different chairs. Based on these 2D silhouette
considerations, we achieve visually more appealing results than [18].

Fig. 2. Silhouette based comparison on several instance from the ShapeNetCore test
set. Faces rendered onto red regions should be pruned on 3D mesh surface - τ = 0.05 -
From left to right: Ground-Truth, Baseline, TMN [18], Ours with highlighted faces to
prune, Ours final result. (Color figure online)

Figure 3 somehow extends the later observation through 6 different view-
points from the same chair instance. In this example, the TMN pruning module
failed to detect some faces to discard. It produced the same mesh as the baseline
one, while our method successfully pruned the faces that have been rendered the
worst, according to the ground truth alpha mask. Pruned faces on each view are
independent of the other viewpoints.

Even the viewpoint associated with a tricky azimuth angle as the one depicted
in the last column of Fig. 3 is informative enough for our module to remove the
relevant faces during rendering.

4.2 2D and 3D-Based Quantitative Evaluation

We compare the performances of our method through different thresholds τ
in Table 1 with the meshes produced by the Baseline network and TMN [18].
From the 1356 inferred meshes in the ShapeNetCore [25] test set, we manu-
ally selected 50 highly challenging meshes (from a topological perspective) and
rendered them through 24 different camera viewpoints with the PyTorch3D
renderer. The intrinsic F-score threshold was set to 0.001. A total number of
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Fig. 3. Rendered silhouette mask results on 6 viewpoints - τ = 0.05 - From top to
bottom: Ground-Truth, TMN [18], Ours.

Table 1. 2D and 3D-based metric scores comparison with the Baseline and TMN [18]
- Presented results were averaged over the 50 instance from our manually curated test
set and over the 24 different viewpoints for the 3D metrics.

Method 2D IoU ↑ CD ↓ F-Score ↑ METRO ↓
Baseline 0.660 6.602 53.27 1.419

TMN [18] 0.681 6.328 54.23 1.293

Ours τ = 0.01 0.747 6.541 53.39 1.418

Ours τ = 0.03 0.755 6.539 53.39 1.417

Ours τ = 0.05 0.763 6.540 53.34 1.417

Ours τ = 0.1 0.778 6.551 53.27 1.416

Ours τ = 0.15 0.771 6.548 53.26 1.416

N=10.000 points have been uniformly sampled over the different meshes’ sur-
faces to compute the 3D metrics.

Our method outperforms the learned topology modification network from
TMN [18] according to Table 1 when compared using the 2D IoU score. It is worth
re-mentioning that presented results for TMN [18] come from the first learned
topological modification network. They thus do not consider the topological
refinement from the SubNet-2 and SubNet-3 networks. Whereas none of our
configurations (with different τ values) overperforms TMN [18] on 3D metrics,
we stress two points:

1. Topologically refined mesh by our method always get better results than the
ones produced by the Baseline.

2. Our face-pruning strategy only relies on a single 2D alpha mask and does not
require any form of 3D-supervised compared to [18].

Since the method we designed only relies on 2D considerations, the camera
viewpoint we considered to perform the topological refinement must influence
the different evaluation metrics. We show in Fig. 4 to which extent the camera
pose affects both the 2D IoU and the CD scores.



Pruning-Based Topology Refinement of 3D Mesh Using a 2D Alpha Mask 413

Fig. 4. Camera viewpoint influence over the 2D IoU (top, (a)) and Chamfer distance
(bottom, (b) scores.

Azimuth angles around the symmetrical pair {90◦, 270◦} are more challeng-
ing since there are not as informative as the viewpoints close to 180◦. Indeed,
our method struggles to get better results than the Baseline in these cases. Our
test set is imbalanced because it only contains more instances with topologically
complex back parts to refine than with armrests. Our method thus slightly per-
forms worse than the Baseline around both 90◦ and 270◦ angles as chairs’ back
complex structures are invisible from these viewpoints.

Finally, we also quantitatively confirm the intuited impact of τ during the
rendering process on the 2D IoU score: the higher τ is, the larger the number of
faces we discarded.

5 Limitations and Further Work

Our method shows encouraging results in 3D meshes topological refinement
through 2D alpha mask considerations but has few remaining limitations. Firstly
regarding the thresholding approach we used to prune whether or not a face on
the 3D mesh surface. While we require to set a fixed hyperparameter - τ - in our
method as [18] did, we align on [16] claims and emphasise the absolute need to
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rely on local 2D and 3D prior information to propose a clever and more robust
thresholding strategy. Moreover, our module might also incorrectly behave on
the rendered faces close to the silhouette boundary edges.

From a broader work perspective, our method currently relies on alpha masks
and thus leaves behind texture information from RGB images. While impressive
3D textured results exist with UV mapping on self-supervised image-based 3D
reconstruction methods with genus-0 meshes [11,19], no attempts have been
made to the best of our knowledge to go beyond such 0 order. Finally, since our
work is agnostic to the 3D mesh reconstruction network, a natural next move
would be the design of a complete self-supervised 3D reconstruction pipeline
with our topological refinement module integrated.

6 Conclusion

We proposed a new way to perform topological refinement onto a 3D mesh
surface by only getting consideration for a 2D alpha mask. PyTorch3D [20] ras-
terization framework allows our method to spot faces to discard from the mesh
at almost no cost. To the best of our knowledge, no attempt exist in our line
of work since both TMN [18] and Total3D [16] respectively perform faces and
edges pruning through 3D-supervised neural networks. In that way, our work
introduced a new research path to address the 3D mesh topology refinement
issue. The agnostic design of our method allows any self-supervised image-based
3D reconstruction pipeline - based on the PyTorch3D renderer framework - to
leverage the work we presented in this paper to reconstruct topologically com-
plex meshes. We obtained consistent and competitive results from a topological
perspective compared to the 3D-based pruning strategy from [18].
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Abstract. Deep learning has made a breakthrough in medical image
segmentation in recent years due to its ability to extract high-level fea-
tures without the need for prior knowledge. In this context, UNet is
one of the most advanced medical image segmentation models, with
promising results in mammography. Despite its excellent overall perfor-
mance in segmenting multimodal medical images, the traditional U-Net
structure appears to be inadequate in various ways. There are certain
U-Net design modifications, such as MultiResUNet, Connected-UNets
and AU-Net, that have improved overall performance in areas where the
conventional U-Net architecture appears to be deficient. Following the
success of UNet and its variants, we have presented two enhanced ver-
sions of the Connected-UNets architecture: ConnectedUNets+ and Con-
nectedUNets++. In ConnectedUNets+, we have replaced the simple skip
connections of Connected-UNets architecture with residual skip connec-
tions, while in ConnectedUNets++, we have modified the encoder decoder
structure along with employing residual skip connections. We have eval-
uated our proposed architectures on two publicly available datasets, the
Curated Breast Imaging Subset of Digital Database for Screening Mam-
mography (CBIS-DDSM) and INbreast.

Keywords: Convolutional Neural Network · Mammogram · Semantic
segmentation · U-Net · ConnectedU-Nets · MultiResUNet

1 Introduction

Breast cancer is the most frequent type of cancer that causes death in women,
with 44,130 instances reported in the United States in 2021 [1]. The need for
frequent mammography screening has been stressed in many studies in order
to reduce mortality rates by finding breast malignancies before they spread to
other normal tissues and healthy organs. A mammogram is an X-ray image of
the breast to record changes in the tissue. The disease is typically identified by
the presence of abnormal masses and microcalcifications in mammograms [2,3].
Radiologists examine a high number of mammograms on a daily basis looking for
abnormal lesions and assessing the location, shape, and type of any suspicious
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area in the breast. This is an important procedure which requires high precision
and accuracy, however, it is still costly and prone to errors since detecting these
regions is challenging as their pixel intensities often coincide with normal tissue.

Deep learning advances [4], especially Convolutional Neural Networks (CNN)
[5], have shown a lot of promise in addressing these issues. Despite being a game-
changer in computer vision, CNN architectures have a key drawback: they require
an enormous amount of training data. In order to solve this problem, U-Net [6] is
introduced which is built on a simple encoder-decoder network with multiple sets
of CNN. Even with a limited quantity of labeled training data, U-Net has demon-
strated tremendous promise in segmenting breast masses, to the point where it
has become the de-facto standard in medical image segmentation [7]. In light of
the success of U-Net, various U-Net versions, such as Connected-UNets [8] and
AU-Net [9], have been proposed. These variations have demonstrated promising
results but appear to be inefficient in terms of fully recovering the region of
interest in a given image.

In this work, we have proposed and experimented with two enhanced ver-
sions of the Connected-UNets architecture. Although the proposed networks
share an architectural similarity, they are designed for different use cases which
are crucial in real-world scenario. The proposed architectures take the entire
mammogram image as input and perform mass segmentation along with mass
boundary extraction. The main contributions of our work include:

1. We have proposed ConnectedUNets+ and ConnectedUNets++, two novel and
improved versions of the Connected-UNets, by utilizing residual skip connec-
tions and enhanced encoder-decoder in order to achieve better convergence.

2. We have assessed the proposed architectures using full mammogram images in
contrast to the baseline model which operates on cropped images of correctly
detected and classified masses by an object detection model.

3. We have experimented using all the images from two publicly available
datasets, the Curated Breast Imaging Subset of Digital Database for Screen-
ing Mammography (CBIS-DDSM) [10] and INbreast [11] for segmenting the
region of interest (ROI) of breast mass tumors.

To the best of our knowledge, our paper is the first to address the shortcom-
ings of other papers’ methodologies and to conduct an unbiased comparison. We
applied the same loss function, optimizer, and image size to all architectures to
maintain objectivity. Additionally, to ensure a fair and accurate comparison, we
used full mammograms as input for all the models and adopted a comparable
preprocessing approach.

2 Related Works

U-Net [6], a deep learning network having an encoder-decoder architecture, is
among the most prominent deep neural networks commonly employed in medical
image segmentation. The network has a symmetric architecture, with an encoder
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which extracts spatial information from the image and a decoder which con-
structs the segmentation map from the encoded data. The encoder and decoder
are linked by a series of skip connections which are the most innovative compo-
nent of the U-Net architecture since they enable the network to recover spatial
data that has been lost due to pooling procedures. Abdelhafiz et al. [12] used a
vanilla U-Net model to segment mass lesions in whole mammograms. To segment
suspicious regions in mammograms, Ravitha Rajalakshmi et al. [13] presented a
deeply supervised U-Net model (DS U-Net) combined with a dense Conditional
Random Field (CRF). Li et al. [14] proposed a Conditional Residual U-Net,
named CRUNet, to improve the performance of the basic U-Net for breast mass
segmentation.

Though U-Net is among the most popular and successful deep learning mod-
els for biomedical image segmentation, several improvements are still possible.
Specifically, the concatenation of encoder and decoder features reveals a signif-
icant semantic gap despite the preservation of dispersed spatial features, which
is a shortcoming of the simple skip connections. To deal with this issue, Ibte-
haz et al. [15] proposed the MultiResUNet architecture by incorporating some
convolutional layers along with shortcut connections in U-Net. Instead of sim-
ply concatenating the feature maps from the encoder stage to the decoder stage,
they first pass them through a chain of convolutional layers and then concatenate
them with the decoder features, which makes learning substantially easier. This
idea is inspired from the image-to-image conversion using convolutional neural
networks [16], where pooling layers are not favorable for the loss of informa-
tion. MultiResUNet has shown excellent results on different biomedical images,
however, the authors did not experiment with mammograms.

Based on the U-Net architecture, Baccouche et al. [8] proposed an improved
architecture that connects two simple U-Nets, called Connected-UNets. In addi-
tion to the original idea of the U-Net architecture, which includes skip connec-
tions between the encoder and decoder networks, it cascades a second U-Net and
adds skip connections between the decoder of the first U-Net and the encoder
of the second U-Net. The key idea was to recovering fine-grained characteristics
lost in U-Net’s encoding process. However, the authors first used YOLO [17] to
detect the location of masses in mammograms, and then applied their method
to segment only correctly localized masses. Such an approach is not optimum
in practical settings where it is desirable to simultaneously localize and segment
masses in whole mammograms rather than processing cropped mammograms.

Several modifications of the U-Net architecture have also been proposed by
incorporating an attention mechanism, which has shown to be extremely effec-
tive in medical image segmentation. Oktay et al. [18] proposed a new attention
U-Net by adding an attention gate into the conventional U-Net. This enhanced
the accuracy of the predictions. However, they didn’t evaluate their model for
breast mass segmentation. Similarly, Li et al. [19] built an attention dense U-
Net for breast mass segmentation, which was compared to U-Net [6], Attention
U-Net [18], and DenseNet [20]. In another study by Sun et al. [9], an attention-
guided dense upsampling network, called AUNet, was built for breast mass seg-
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mentation in full mammograms. The major drawback of the papers mentioned
above is they did not use all of the images available in the CBIS-DDSM dataset
for experimentation (i.e., they only used a portion of the images in the training
and test sets). As a result, higher scores were reported in their studies.

In this paper, we propose ConnectedUNets+ and ConnectedUNets++, two
enhanced versions of the Connected-UNets and Connected-ResUNets architec-
tures by focusing on the limitations of the aforementioned architectures. An
important contribution of our work is that we compared the proposed architec-
tures with previously reported works under identical conditions. Moreover, we
did not employ any object detection models for mass localization; instead, we
conducted all of our experiments using whole mammograms.

3 Methodology

3.1 Architecture

We have used Connected-UNets [8] as our baseline model because of its archi-
tectural elegance and performance. Even though, at first glance, Connect-
edUNets+ and ConnectedUNets++ may merely seem a logical extension of
Connected-UNets, the introduction of residual skip connections between the
encoder and decoder is essential for successful segmentation. This not only
improves the metric scores but also bridges the semantic barrier between
the encoder-decoder features. The most crucial distinction is that Connecte-
dUNets+ and ConnectedUNets++ have been designed to enable mass segmenta-
tion from full mammograms rather than cropped mammograms. Figure 1a shows
an overview of our proposed ConnectedUNets++ architecture. Please take note
that we have not included a separate illustration for the ConnectedUNets+ since
both the architectures are identical with the exception of the encoder-decoder
block, which has been maintained standard like the baseline model. For both
the models, we have replaced the simple skip connections of Connected-UNets
with more optimal residual skip connections between encoder and decoder and
between the UNets as well. However, for the ConnectedUNets++ architecture, we
have also modified the encoder-decoder block by including three 3 × 3 convolu-
tions and one residual connection followed by an activation layer ReLU (Rectified
Linear Unit) and a batch normalization (BN) layer as shown in Fig. 1b. Specif-
ically, the residual skip connections consist of four 3 × 3 convolutions where
each of them is accompanied by one 1 × 1 convolution. The architecture of the
residual skip connection is shown in Fig. 1c. The number of convolution blocks
decreases in the deeper layer of the network as the semantic gap between encoder
and decoder decreases due to getting closer to the bottleneck. Table 1 shows the
number of filters used in each of the residual skip connections for different layers.

As mentioned by Ibtehaz et al. [15] by adding these residual path connections,
the proposed architectures are more immune to perturbations, and outliers. They
also help to obtain better results in less time and fewer epochs. Additionally, we
have used Atrous Spatial Pyramid Pooling (ASPP) blocks to preserve the same
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bottleneck structure for both architectures as Connected-UNets. The architec-
tural details of the encoder, decoder and ASPP blocks are described in Table 2.

On the encoder side, each encoder block’s output is subjected to a maximum
pooling operation before the features are forwarded to the next encoder, and the
output of the last encoder passes through an ASPP block before being fetched to
the first decoder. Each decoder block is made up of a 2×2 transposed convolution
unit that up-samples the preceding block’s features before concatenating them
with the encoder features received by the residual skip connection; and these
features are then fetched to the decoder above. A second U-Net is connected via

Fig. 1. Detailed ConnectedUNets++ architecture



424 P. Sarker et al.

Table 1. ConnectedUNets++ and ConnectedUNets+ architecture details in terms of
residual skip connections. These specifics apply to both architectures.

Residual skip connection No. of conv. layer Conv. layer kernel size No of filters

Residual skip connection 4 3 × 3 32

01/08 4 1 × 1 32

Residual skip connection 3 3 × 3 64

02/05/09 3 1 × 1 64

Residual skip connection 2 3 × 3 128

03/06/10 2 1 × 1 128

Residual skip connection 1 3 × 3 256

04/07/11 1 1 × 1 256

Table 2. ConnectedUNets++ architecture details in terms of encoder-decoder and
ASPP block. Dilation rate of convolution layers in ASPP block is shown in corre-
sponding braces. ASPP block details also apply to ConnectedUNets+.

Block Layer Filters Block Layer Filters

Encoder (01/05)
Decoder (04/08)

3 × 3 Conv. 8 Encoder (02/06)
Decoder (03/07)

3 × 3 Conv. 17

3 × 3 Conv. 17 3 × 3 Conv. 35

3 × 3 Conv. 26 3 × 3 Conv. 53

1 × 1 Conv. 51 1 × 1 Conv. 105

Encoder (03/07)
Decoder (02/06)

3 × 3 Conv. 35 Encoder (04/08)
Decoder (01/05)

3 × 3 Conv. 71

3 × 3 Conv. 71 3 × 3 Conv. 142

3 × 3 Conv. 106 3 × 3 Conv. 213

1 × 1 Conv. 212 1 × 1 Conv. 426

ASPP Block
(Bottleneck)

3 × 3 Conv. 512 ASPP Block
(Output Layer)

3 × 3 Conv. 32

3 × 3 Conv.(6) 512 3 × 3 Conv.(6) 32

3 × 3 Conv.(8) 512 3 × 3 Conv.(8) 32

3 × 3 Conv.(12) 512 3 × 3 Conv.(12) 32

1 × 1 Conv. 512 1 × 1 Conv. 32

a new set of residual skip connections, which are utilized to transfer information
from the previous U-Net. The output of the final decoder block of the first U-Net
is fed into a 3× 3 convolution layer before it gets concatenated with itself again,
followed by an activation ReLU and a BN layer. This acts as the first encoder
block’s input to the second U-Net. The output of the max pooling operations of
each of the three encoder blocks is fed into a 3 × 3 convolution layer and then
concatenated with the output of the preceding decoder block of the first U-Net.
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The ASPP block receives the output features of the second U-Net’s last
encoder block; the remaining blocks are the same as discussed in the first U-Net.
Finally, the predicted segmentation mask is generated by passing the output
of the last decoder to another ASPP block followed by a 1 × 1 convolution
layer and a sigmoid activation layer. In contrast to the work presented in the
Connected-UNets paper [8], our work considers a full-fledged mammographic
image as input instead of only a ROI since it typically fails to detect micro
masses present in the image. The ROI extracted segmentation does not help in
the real life scenario because the detection and localization of the mask has to
be done using a different neural network or manually.

3.2 Dataset Preprocessing and Experimental Setup

We evaluated the proposed architecture on two publicly available datasets, CBIS-
DDSM [10] and INbreast [11]. CBIS-DDSM contains 2478 mammography images
from 1249 women and included both craniocaudal (CC) and mediolateral oblique
(MLO) views for most of the exams of which 1231 cases contain single or multiple
breast masses. This dataset includes real-world mammograms with background
artifacts, poor contrast, corners, borders, and different orientations. To address
these issues, we have applied several preprocessing steps which include border
cropping to tackle the white border or corner problem, normalizing pixel values
to the interval 0 to 1, eliminating background artifacts, and finally, applying
CLAHE for contrast enhancement. This improves the mammogram’s fine details,
textures, and features that would otherwise be challenging for the model to learn.
To preprocess the ground truth masks, we discarded the same amount of the
borders to get rid of any artifacts and used appropriate padding to make the
masks square. In the case of the CBIS-DDSM dataset, after preprocessing and
fusing multiple masks of the same image, we split the 1231 images in the training
set using an 85:15 ratio for training and validation (i.e., 1046 and 185 images,
respectively). The test dataset had 359 images.

INbreast dataset was built with full-field digital mammograms and has a
total of 115 cases which include both masses and calcifications. In total, the
dataset has only 107 images of breasts with masses. We have used 69 images for
training, 17 images for validation, and 21 images for testing. For preprocessing,
we have solely applied CLAHE both on the mammograms and the ROIs.

In all of the experiments, adam [21] optimizer is used with an initial learning
rate of 0.0001. Batch size of 16 is used during training and testing. We have
experimented with input size of 224 × 224 and 256 × 256. The best score for all
the architectures was obtained with the 224 × 224 input size, which is reported
in the results section. Most of the papers mentioned in the related work section
use a mixture of Dice and IOU loss. The primary motivation for directly using
this loss is to maximize those metrics. However, this gives no information about
convergence. So, to remove confusion regarding the convergence, the loss function
used here is binary crossentropy which is the standard loss function for image
segmentation task.
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3.3 Evaluation Metrics

In semantic segmentation, the region of interest typically occupies a small area of
the entire image. Therefore, metrics like precision and recall are inadequate and
often lead to a false sense of superiority, inflated by the perfection of detecting
the background. To evaluate our approach, we have considered four metrics in
our experiments: Dice score (F1 score), Jaccard Index (IoU Score), accuracy and
Hausdorff distance (H). Even though the Dice score (Eq. 1) and Jaccard index
(Eq. 2) are two widely used metrics for semantic segmentation, they are biased
towards large masses. The Hausdorff distance (Eq. 3) is an unbiased metric that
treats all objects equally independently of their size. It measures the maximum
deviation along the boundary between the ground truth and predictions.

Dice score(A,B) =
2 × Area of Intersection(A,B)

Area of(A) + Area of(B)
=

2 × (A ∩ B)
A + B

(1)

IoU score(A,B) =
Area of Intersection(A,B)

Area of Union(A,B)
=

A ∩ B

A ∪ B
(2)

H = max(h(GT, pred), h(pred,GT )) (3)

4 Experimental Results and Discussion

To assess the performance, all models have been run for 300 and 400 epochs for
the CBIS-DDSM and INbreast datasets, respectively with early stopping and
ReduceLROnPlateau callback function. Table 3 shows the comparison of the
proposed architectures’ results with some state-of-the-art methods on the CBIS-
DDSM dataset. As it can be observed, ConnectedUNets++ consistently outper-
forms the baseline model Connected-UNets and Connected-ResUNets along with
other models used for mass segmentation. ConncetedUNets+ performed bet-
ter than Connected-UNets on the test dataset even though the only difference
between them is the residual skip connections.

As seen in Table 3, the number of parameters of our proposed methods is
higher than the number of parameters of the baseline architectures since we
used residual skip connections between encoders and decoders as well as between
the two U-Nets. Furthermore, all of the architectures performed better on the
training and validation sets, but performed poorly on the test set. In particular,
the architectures fail to detect any mass from some of the images in the test set,
thus giving an output of no ROI and reducing the metric values. We speculate
that this is due to the inferior and substandard quality of the scanned images.
In Table 4, we compared our proposed architecture with the baseline model by
using individual cases from the CBIS-DDSM test dataset considering various
thresholds for different metrics. As shown, the proposed architecture was able
to predict more cases for each threshold with respect to Connected-ResUNets;
however, the average score was better for the baseline architecture. Here we argue
that ConnectedUNets++ has been able to correctly segment smaller masses more
accurately than Connected-ResUNets.
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Table 3. Comparison of the proposed architectures and state-of-the-art methods on
the CBIS-DDSM dataset. Here, DS: Dice score, JI: Jaccard index, Acc.: Accuracy,
Param.: No of parameters(in million).

Model name Param. Training Validation Test

DS JI Acc. DS JI Acc. DS JI Acc.

U-Net 7.8 0.73 0.57 99.85 0.73 0.58 99.87 0.41 0.27 99.69

MultiResUNet 7.3 0.74 0.59 99.89 0.76 0.61 99.88 0.40 0.26 99.7

AUNet 11.01 0.89 0.81 99.94 0.90 0.82 99.94 0.46 0.31 99.69

Connected-UNets 20.1 0.81 0.68 99.90 0.81 0.68 99.91 0.40 0.27 99.69

ConnectedUNets+ (ours) 23.5 0.78 0.64 99.88 0.77 0.63 99.89 0.44 0.30 99.7

Connected-ResUNets 20.7 0.84 0.73 99.91 0.84 0.72 99.92 0.47 0.32 99.69

ConnectedUNets++ (ours) 28.15 0.88 0.79 99.94 0.88 0.79 99.94 0.48 0.33 99.7

Table 4. Comparison of prediction on the CBIS-DDSM test dataset and correctly
predicted number of cases over multiple thresholds of Dice score (DS), Jaccard index
(JI) and Hausdorff distance (HD) metric between the baseline architecture and our
proposed architecture. Here, NC and AS represent the number of cases and average
score, respectively.

Architecture name DS ≥ 0.45 DS ≥ 0.65 JI ≥ 0.35 JI ≥ 0.55 HD ≤ 2.75

NC AS NC AS NC AS NC AS NC AS

Connected-ResUNets 160 0.78 134 0.82 154 0.66 119 0.73 174 1.85

ConnectedUNets++ (ours) 181 0.76 143 0.81 172 0.64 123 0.71 191 1.92

Table 5. Comparison of the proposed architectures and state-of-the-art methods on
INbreast dataset.

Model name Param. Training Validation Test

DS JI Acc. DS JI Acc. DS JI Acc.

U-Net 7.8 0.87 0.77 99.91 0.91 0.83 99.91 0.91 0.84 99.91

AUNet 11.01 0.94 0.89 99.94 0.96 0.90 99.93 0.94 0.89 99.94

Connected-UNets 22.4 0.94 0.89 99.99 0.97 0.95 99.95 0.97 0.94 99.99

ConnectedUNets+ (ours) 23.5 0.97 0.94 99.97 0.98 0.96 99.97 0.98 0.95 99.97

Connected-ResUNets 20.7 0.94 0.88 99.99 0.96 0.93 99.98 0.97 0.94 99.99

ConnectedUNets++ (ours) 28.15 0.97 0.95 99.99 0.98 0.97 99.98 0.99 0.97 99.99

In Table 5, we also compared the proposed architectures against the baseline
and other models on the INbreast dataset. As it can be observed, our model
performs noticeably better on the INbreast dataset. We hypothesize that this
is due to the two datasets’ disparate image quality. The mammograms in the
CBIS-DDSM dataset have been scanned, hence the images are of poor quality.
The images in the INbreast dataset, however, have been digitally enhanced, and
their quality is outstanding. Due to page restrictions, we had to omit comparison
of correctly predicted cases like Table 4 for the INbreast dataset.
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Fig. 2. Segmentation results of different networks. From left to right, the columns
correspond to the input images, the ground truth labels, the segmentation results of
AUNet, Connected-ResUNets, ConnectedUNets+ and ConnectedUNets++, respectively
on the INbreast and CBIS-DDSM dataset.

The introduction of residual skip connections between the encoder and
decoder has had a major impact on the segmentation task. The obscure
and vague boundaries which other architectures fail to correctly segment
(either under-segment or over-segment), are properly segmented by Connecte-
dUNets+ and ConnectedUNets++. Additionally, in some complex cases, because
of the quality and nature of the ROIs, it becomes challenging to segment homoge-
neous ROIs. Even in those cases, ConnectedUNets++ exceeds other architectures
in terms of Dice score, Jaccard index, and Hausdorff distance. As Hausdorff dis-
tance is highly recommended for cases with complex boundaries, our results
show that the proposed architecture can predict mass boundaries more accu-
rately. Since the boundary shape of a mass is a strong indicator of benign and
malignant cases [22], the proposed architecture is more suited for mass prediction
and segmentation in real-world scenarios.

Segmentation examples both for the INbreast and CBIS-DDSM datasets
are shown in Fig. 2. We have compared the segmentation result of Connecte-
dUNets+ and ConnectedNets++ with two best-performed architectures: AUNet
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and Connected-ResUNets. In all the cases, the proposed architectures outper-
formed all other architectures and achieved almost perfect scoring regardless of
the ROI’s shape. Figure 2 showcases how well the models worked not just for the
larger ROI (Case 2) but also for those with smaller ROI (Case 1) on INbreast
dataset. The models yield similar results for CBIS-DDSM dataset as well.

5 Conclusion

We started this work by thoroughly examining the Connected-UNets architec-
ture in order to identify potential areas for improvement. In this context, we
identified certain inconsistencies between the encoder’s and decoder’s features.
Inspired by MultiResUNet, we added some additional processing between them
to make them more homogeneous. Furthermore, to give Connected-UNets the
capacity to perform multi-resolutional analysis, we introduced residual blocks
into the encoder and decoder architecture which resulted in ConnectedUNets++,
a novel architecture that incorporates these changes. Unlike architectures pre-
viously discussed in the literature, we have used all of the available images for
training and testing. For future work, we plan to conduct additional experi-
ments to determine the ideal choice of nodes, layers, and hyperparameters. Fur-
thermore, we would also like to assess the efficacy of our model on datasets of
medical images from various modalities.
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Abstract. Endoscopic measurement of ulcerative colitis (UC) severity is impor-
tant since endoscopic disease severity may better predict future outcomes in UC
than symptoms. However, it is difficult to evaluate the endoscopic severity of UC
objectively because of the non-uniform nature of endoscopic features associated
with UC, and large variations in their patterns. In this paper, we propose a method
to classify UC severity in colonoscopy videos by learning from confusion. The
similar looking frames from the colonoscopy videos generate similar features, and
the Convolutional Neural Network (CNN) model trained using these similar fea-
tures is confused. Therefore, it cannot provide accurate classification. By isolating
these similar frames (features), we potentially reduce model confusion. We pro-
pose a new training strategy to isolate these similar frames (features), and a CNN
based method for classifying UC severity in colonoscopy videos using the new
training strategy. The experiments show that the proposed method for classifying
UC severity increases classification effectiveness significantly.

Keywords: CNN ·Medical image classification · Ulcerative colitis severity ·
Learning from confusion

1 Introduction

Ulcerative colitis (UC) is a chronic inflammatory disease of the colon characterized by
periods of relapses and remissions affecting more than 750,000 people in the United
States [1]. As mucosal healing is a specific treatment goal in UC, the importance of
endoscopic evaluation of disease activity in predicting outcomes is being increasingly
recognized [2]. Disease activity in UC has been extensively evaluated using various
scoring systems incorporating both clinical and endoscopic features [2]. These scoring
systems have been developed to evaluate systematically the responses to treatments being
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studied in UC patients [2]. Many scoring systems exist, but mainly two endoscopic score
systems of mucosal inflammation are used currently in clinical practice, which are the
Mayo Endoscopic Score (MES) and the Ulcerative Colitis Endoscopic Index of Severity
(UCEIS) [2]. In Table 1 we compare these two scoring systems and divide the disease
activity features into four different classes, Normal (Score 0), Mild (Score 1), Moderate
(Score 2), and Severe (Score 3), based on their endoscopic features.

Table 1. Comparisonof theMayoEndoscopicScore (MES) and theUlcerativeColitis Endoscopic
Index of Severity (UCEIS) Features

Score Disease activity Features for MES Features for UCEIS

0 Normal No abnormality, clear
vascular pattern

No abnormality, clear vascular
pattern

1 Mild Erythema, Decreased
vascular pattern, Mild
friability

Patchy obliteration of vascular
pattern, Mucosal bleeding,
Erosions

2 Moderate Marked erythema, Absent
vascular pattern, Friability,
Erosions

Complete obliteration of vascular
pattern, Luminal mild bleeding,
Superficial ulcer

3 Severe Absent vascular pattern,
Spontaneous bleeding,
Ulceration

Complete obliteration of vascular
pattern, Luminal moderate or
severe bleeding, Deep ulcer

Since disease severity may better predict future outcomes in UC than symptoms, UC
severity measurement by endoscopy is very important [3, 4]. However, even if we have
the scoring systems mentioned above, it is very difficult to evaluate the severity of UC
objectively because of non-uniform nature of endoscopic findings associated with UC,
and large variations in their patterns [5].

We proposed a Convolutional Neural Network (CNN) based approach evaluating
the severity of UC [6]. Its accuracy was reasonable at the video level, but its frame level
accuracy was very low (around 45%). We improved this CNN based approach in two
ways to provide better accuracy for the classification [7]. First, we added more thorough
and essential preprocessing. Second, we subdivided each class of UC severity based on
visual appearance and generated more sub-classes for the classification to accommodate
large variations in UC severity patterns. This method provided an improved frame-level
accuracy (around 60%) to evaluate the severity of UC.

In our next work [8], we focused on one common feature in both scoring systems
as seen in Table 1, which is ‘vascular (predominantly vein) pattern’. In Normal and
Mild disease activity, the vascular pattern is either clearly or somewhat visible, but it is
either mostly or completely lost in Moderate and Severe disease activity. We proposed
a CNN based method for classifying UC severity in colonoscopy videos by detecting
these vascular patterns which are defined specifically as the amount of blood vessels
in the video frames [8]. The proposed method for classifying UC severity by detecting
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these vascular patterns increased classification effectiveness by about 17% compared to
our previous work [7].

What we found is that very similar looking frames belong to different classes as
seen in Fig. 1. These similar looking frames generate similar features, and the CNN
model trained using these similar features is confused, and the model cannot classify
these frames accurately. By isolating these similar features, we potentially reduce model
confusion, which allows the model to focus on additional discriminative features for
each class. We propose a new training strategy to isolate these similar frames (features),
and a CNN based method for classifying UC severity in colonoscopy videos using
the new training strategy. For convenience, we call the proposed method as CNN_LfC
(Convolutional Neural Network with Learning from Confusion).

Fig. 1. Frames in Class of a) Normal, b) Mild, c) Moderate, and d) Severe.

Our contribution is that the proposed method for classifying UC severity by learn-
ing from confusion increases classification effectiveness by about 7% compared to our
previous work [8]. The rest of the paper is organized as follows. Section 2 discusses
the related work. Section 3 describes the proposed methodology. Section 4 shows our
experimental results. Finally, Sect. 5 summarizes our concluding remarks.

2 Related Work

In this section, we discuss some recent UC related work only. A deep network for
UC (DNUC) was constructed for real time analysis of endoscopic images with UC [9].
Using the annotation results provided by endoscopists, theDNUC identified patientswith
endoscopic remission in the prospective study. The experiment focused on classifying
4 classes of UC using UCEIS score. The training dataset includes 40,758 images from
2,012 UC patients, and the testing dataset has 4,187 images from 875 UC patients. The
training and test data were collected from different periods of time, and there was no
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overlap between training and test datasets for the experiment. The accuracy reported
was 90.1% with a kappa coefficient of 0.798.

A MES of 1, 2, or 3 was assigned to each of 777 endoscopic images. 90% of them
were used to train and validate a 101-layer CNN model, and 10% were held aside as a
holdout test set [10]. The model was assessed using Area Under the Curve (AUC) and
some performancemeasures such as precision, specificity, sensitivity, positive predictive
value (PPV) and negative predictive value (NPV). The final model returned AUC of 0.96
for MES 3 disease, 0.86 for MES 2 disease and 0.89 for MES 1 disease. The overall
accuracy reported was 77.2% on the holdout test set.

Another neural network-based approachnamed“EfficientAttentionMechanismNet-
work” (EAM-Net) was introduced, which combines the efficient channel attention net-
work with the spatial attention module [11]. To build and splice the attention map, the
features extracted by the CNN are split into two branches. One branch of these features
was passed as input to the Independently Recurrent Neural Network (IndRNN), and the
remaining features were pushed to the attention mechanism module. The attention mod-
ule generated an attention map and highlighted target features. This method was applied
on two colonoscopy image datasets containing 9,928 samples and 4,378 samples. Both
datasets were classified and validated by domain experts for 4 classes with MES of 0 to
3. It was reported by the study such as accuracy of 91.6%, precision of 85.9%, recall of
85.9% and F1-score of 85.8%.

A multi-instance learning (MIL) framework was proposed in a study which focused
on solving weakly labeled image samples [12]. The framework collected a small number
of instances from the dataset and used a CNN with a sigmoid function to generate frame
scores. A frame with maximum score was used to represent the entire video, and the
MES (Ranges from 0 through 3) was obtained by thresholding. The dataset consists
of 1,129,188 frames, which includes both training and test sets from 1,881 endoscopic
videos. AUC scores of 0.92 and 0.90 per video were reported in two different trials.

A semi-supervised learningmodelwas proposed forUCclassification,which is using
location and temporal ordering information [13]. A disentangled representation learning
was applied to extract UC temporal features. Also, an objective function was introduced
for order-guided learning that can capture effective features. 7,183 images were used
for training and 2,052 images were used for validation. A test set of 1,027 images were
used for three class classification. The model returned an accuracy of 84.5% with 77.5%
precision, 73.1% recall, and F1-score of 89.9%.

In a recent study, multiple deep learning-based architectures were evaluated using
a subset of Hyper-Kvasir [14]. The Hyper-kvasir dataset is a large public dataset for
the gastrointestinal tract which contains 110,079 images and 374 videos from different
sources with anatomical landmarks [15]. The experiment used a subset of 8,000 labeled
endoscopic images with MES score of 0–3. Pre-trained models of InceptionV3 [16],
ResNet50 [17], VGG19 [18] and DenseNet121 [19] were used for the experiment. All
network wights were initialized with ImageNet, and grid-search over 5-fold cross vali-
dation was used for identifying best hyperparameters. The best result was reported from
the DenseNet121 model with an accuracy of 87.50% and AUC of 0.90.
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3 Methodology

Our proposed method for classifying UC severity in colonoscopy videos uses a new
training strategy which focuses on distinguishing the features that confuse the model.
Distinguishing and isolating the similar features can help the model to focus on more
discriminative features, and improve model accuracy essentially. The overall procedure
of the proposed method is shown in Fig. 2.

1. Train Baseline Model

2.Understand Confusion

3.Distinguish Not-Sure Images

4. Refine the Training Set

5. Train the final Model 

The baseline model is trained on the initial training dataset

Understand classes most likely to be confused with each other

Distinguish not-sure images based on the class confusion

Refine the training dataset by discarding the not-sure images

Create a new model trained on the refined training dataset with hyperparameter tuning

Fig. 2. Overall procedure of the proposed method, CNN_LfC.

3.1 New Training Strategy

A baseline CNNmodel is trained as seen in Algorithm 1 using our initial training dataset
with the colonoscopy frames classified by the domain expert to the four classes of MES
discussed in Sect. 1. The baseline model was a ResNet-like [17] deep learning model
with 48 layers. Each layer consists of convolution layers followed bymax-pooling layers.
The convolution layer has a filter size of 3 * 3 with 64 filters. We used max-pooling with
stride size 2 after each convolution. 50 epochs which provided a best performance were
used for training with a batch size of 30. The learning rate was set to 0.001 with the
default loss function and the default setting for the Adam optimizer. We used Softmax
function for classification. No dropout was used throughout the training.

Algorithm 1 explains the new training strategy to generate the final model.We divide
our dataset into the initial training dataset (Dtrain) and testing dataset (Dtest). The baseline
model f 1 is trained using the initial training dataset (Dtrain) as seen in Step 1. The baseline
model f 1 is evaluated using all images in Dtrain as seen in Step 2. During the evaluation,
we can find some images that belong to one class but assigned to another class. We refer
these images as “Dmisclassified” images for convenience. We use the algorithm 2 to select
the not-sure images (DnotSure) from the misclassified images (Dmisclassified). DnotSure is a
subset of Dmisclassified, which has the misclassified images with majority. After all not-
sure images are distinguished, they are discarded from the initial training dataset (Dtrain).
We refer this remaining training dataset as Drefined. The final model is trained on Drefined,
in which it is trained with the intention of performing better than the baseline model
because it is using a refined dataset. The refined dataset generated using Step 3 and Step
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4 contains fewer confusing samples, therefore yielding more discriminative features for
the final model.

Algorithm 2 distinguishes the not-sure images (DnotSure) from the misclassified
images (Dmisclassified). In Dmisclassified, there are some images that belong to one class
(i.e., A) but assigned to another class (i.e., X, Y, or Z). We calculate the number of
images annotated as A but misclassified as class X (#A_Confused_As_X), the number of
images annotated as A but misclassified as class Y (#A_Confused_As_Y ), and the number
of images annotated as A but misclassified as class Z (#A_Confused_As_Z). . We also cal-
culate an average class confusion for class A (AVConfused_A) by dividing the number of
images annotated as class A, but misclassified as all the other classes (#A_Confused_As_X
+ #A_Confused_As_Y + #A_Confused_As_Z) by n− 1 where n is the total number of classes
in our dataset. We compare the average value with all other three values above. Any of
these three values is larger than the average value, then they are assigned to DnotSure. For
example, if #A_Confused_As_X is larger than AVConfused_A, then the images annotated as
A but misclassified as class X are assigned to DnotSure. The same process is repeated for
all other classes.

Algorithm 1: Proposed Training Strategy
Input: Dataset D = { , } with  classes,

ƒ1: Baseline CNN model,

Output: Model ƒ2 trained on 

1. Train ƒ1on   

2. Evaluate ƒ1 using all images in . The result is Dmisclassified, a set of 

images misclassified by f1.

3. Generate using Algorithm 2 with Dmisclassified.

4. =  −  

5. Train ƒ2 on 

6. Tune the hyperparameters of ƒ2
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3.2 Refine the Training Dataset and Train Final Model

We refine the training dataset by distinguishing and isolating all not-sure images as
mentioned above. Our hypothesis is that, class confusion is created by the images of one
class that is confused with other classes. The proposed training strategy aims to separate
these images to reduce the class-confusion for the model. A new refined dataset Drefined
is created by separating the not-sure images from the Dtrain. A new model f 2 is created
by training on the refined dataset. The number of confused samples is reduced, which
helps the model to learn more discriminative features. This allows the model to lower
the misclassification by capturing more representative features for the target classes. Our
final model f 2 consists of five convolutional blocks. The first block consists of 64 filters
of 3 * 3 size. The second block contains 128 filters of 3 * 3 size. The third block has three
convolution layers with 128 filter of same size 3 * 3, and it is followed by the fourth and
fifth convolution blocks. Both fourth and fifth blocks contain four convolutional layers
in total. Each of these two blocks has 512 filters of the same size. These five blocks are
separated by the max-pooling layer. The final two layers are fully connected layers with
2,048 neurons for each layer.

To ensure optimumparameters for the better accuracy,we performed hyperparameter
tuning as seen in [20] for our final model f 2. We also applied the grid search [21] over a
range of hyperparameters to obtain the best set of hyperparameter values. We performed
grid search over the range of values for each hyperparameter. For the batch size, the values
were 16, 32, 64, and 128. The values for the learning rate were 0.1, 0.02, 0.001, and
0.002. The values of epochs were 10, 20, 30, 40, and 50. The model performed best with
a 93% of training accuracy with the following set of hyperparameters: the batch size of
64, learning rate of 0.001, and the defaultAdam optimizer. To avoid the image translation
issues, we applied the image augmentation in the final model. The augmentation consists
of horizontal and vertical flipping, 180o rotation and image sheering-zooming (30%),
and these augmentations were applied randomly. Early stopping conditions were applied
to save the best model after every 10 epochs.
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4 Experimental Results

In this section, we discuss the datasets used for the experiments and the performance
evaluation of the proposed method. The experiments were implemented in a Linux
environment using NVIDIA GTX 1650 4 GB GPU on a system of 32 GB RAM and
core-i7 8th generation with 3.20 GHz processor. Keras, a python package, was used as
the framework for all the networks.

4.1 Testing and Comparison

For the experiments, we used the same datasets that we used in our previous work [6–8]
for a fair comparison. To train our baseline model, we used 52,674 frames which were
obtained from 135 videos from four different classes. In order to maintain the class
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balance, we ensured the number of samples for each as similar as possible. The details
of our initial training dataset for the baseline model are given in Table 2.

After the baseline model was trained, the confusion is calculated as discussed in
Sect. 3. The confusion log for the training data was obtained and used for distinguishing
the not-sure class. The proposed training method isolates the confusing frames to the
“not-sure” class and retains the remaining samples in their respective classes. After
the “not-sure” frames are moved to the target directory, all frames from the remaining
classes were collected. We refer this remaining dataset as a refined dataset because
all confusing frames are eliminated from the initial dataset. Since the refined dataset
contains less confusing frames, it yields more representative and discriminative features
for corresponding classes. To train the finalmodel, we ensured the refined training dataset
was roughly class balanced. A detail of the refined dataset is given in Table 3.

Table 2. Details of initial dataset for training baseline CNN model.

Classes Video clips Frames

Normal 35 12,725

Mild 51 15,490

Moderate 30 14,027

Severe 19 10,432

Total 135 52,674

Table 3. Details of refined dataset for training final CNN model.

Classes Video clips Frames

Normal 35 9,856

Mild 51 10,248

Moderate 30 10,789

Severe 19 9,289

Total 135 40,182

The final CNN model was trained using the refined dataset. We tuned the hyperpa-
rameter values of the final model to ensure the best performance. To evaluate the per-
formance of the final fine-tuned model hyperparameters, we used the same test dataset
we used in our previous work [6–8] for a fair comparison. It contains 14,925 samples
from four UC severity classes. These frames were extracted from 43 endoscopic videos
and labelled by the domain experts. The test dataset was kept intact and was not used
for any training and validation purposes. Table 4 shows the details of the test dataset.

We tested the final model with the test dataset and observed the model performance.
To measure the performance, we used the accuracy metric for a comparison. Accuracy is
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Table 4. Details of dataset for testing.

Classes Video clips Frames

Normal 12 3,623

Mild 12 4,400

Moderate 13 3,061

Severe 06 3,841

Total 43 14,925

defined as the proportion of correct predictions to all predictions formulticlass classifica-
tions. We compared the final model with our previous work [7, 8] to see the performance
improvement using the same dataset. The proposed model outperformed our previous
work [8] by an improvement of 7%. The proposed model showed remarkable improve-
ment in classification for individual classes. Table 5 shows the comparison of proposed
method with previous models.

Table 5. Comparisons of per-frame classification accuracy on test dataset.

Methods UCS-AlexNet [9] VCNN 1+2+3 [10] Proposed method CNN_LfC

Normal 63.2 81.2 87.23

Mild 61.4 74.6 85.96

Moderate 45.7 78.4 83.50

Severe 72.3 80.1 88.01

Average 61.5 78.4 85.18

The proposed method can classify normal and mild frames at an accuracy of 87.23%
and 85.96%, respectively. The UCS AlexNet [7] provided only 63.2% and 61.4% for
the same classes. Our previous work in [8] is a patch-based approach where each frame
is divided into 64 patches and the patches were fed into a model for classification. It
showed an average accuracy of 78.4% whereas the proposed method outperformed this
method by an increase of 6.75%. The direct performance comparison between other
existing methods and the proposed method is not reasonable because the experiments
were performed in different datasets. Due to the nature of our dataset, we focus more on
improvement compared with our previous work.

4.2 Severity Scores

ForUC classes, the domain experts manually graded a video clip’s intensity using her/his
own subjective scale: 0 for normal, 1 for mild, 2 for moderate, and 3 for severe. In our
work, we automatically assign a severity score for the entire clip based on the class label
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given to each frame in a video clip. We determine the severity score Sv, for a particular
video clip by averaging the class labels across all frames.

SV =
∑n

i=1Ci
n , where n is a total number of frames, and Ci is a class label (such as 0

for normal, 1 for mild, 2 for moderate, and 3 for severe) assigned to frame i of a given
video clip.

We calculated the severity scores for the test dataset in Table 4 using the equation
above. The results are shown in Table 6. The third and fourth columns show the severity
scores generated from our previous work, UCS-AlexNet [7]) and VCNN 1+2+3 [8],
respectively. The fifth column shows the severity scores generated from the proposed
method (CNN_LfC). All severity scores generated from the proposed method are closer
to our domain expert’s manual evaluations (the second column) compared to those from
our previous work.

To calculate how much they are closer, we calculated two Pearson correlation coef-
ficients (PCC) by class level (Normal, Mild, Moderate and Severe) for the entire set
of video clips in the test dataset in Table 4. The first and the second ones are between
the severity scores generated from our domain expert’s manual evaluations (the second
column) and those generated from our previous work [7, 8]. The third one is between
the severity scores generated from our domain expert’s manual evaluations and those
generated from the proposed method. These three Pearson correlation coefficients are
0.94, 0.96, and 0.97 respectively as seen in Table 6. Also, we calculated two Pearson
correlation coefficients by frame level using all testing frames in Table 4 using the same
way used for the class level. These three Pearson correlation coefficients are 0.80, 0.86,
and 0.91 respectively as seen in Table 6. These PCCs indicate that the proposedmethod’s
prediction is closer to the domain’s expert classification than the prediction by our previ-
ous work. One reason is that the proposed method provides better frame-level accuracies
as seen in Table 5.

Table 6. Comparison of average severity scores and pearson correlation co-efficient.

Methods Manual
evaluation

UCS-AlexNet [9] VCNN 1+2+3
[10]

Proposed method
CNN_LfC

Normal 0 0.44 0.27 0.23

Mild 1 1.09 0.95 0.94

Moderate 2 2.42 2.09 2.11

Severe 3 2.68 2.75 2.87

PCC by Class 0.94 0.96 0.97

PCC by Frame 0.80 0.86 0.91

5 Concluding Remarks

Since the CNN that we implemented in this paper is not of a recurrent architecture, we
can explore some CNN models using the interpretation methods recently reported in
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[22–25]. These methods are shown to be quite effective for non-recurrent deep models.
The current results may be sufficient for use in clinical practice. However, when used in
clinical practice, we will have to calculate segmental as well as whole colon UC scores
in order to distinguish a mostly normal colon with severe proctitis from mild pan-colitis
which both may have a similar whole colon UC score.
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Abstract. The chest X-ray is among the most widely used diagnostic imaging
for diagnosing many lung and bone-related diseases. Recent advances in deep
learning have shownmany good performances in disease identification from chest
X-rays. But stability and class imbalance are yet to be addressed. In this study, we
proposed a CX-Ultranet (Chest X-ray Ultranet) to classify and identify thirteen
thoracic lung diseases from chest X-rays by utilizing a multiclass cross-entropy
loss function on a compound scaling framework using EfficientNet as a baseline.
The CX-Ultra net achieves 88% average prediction accuracy on NIH Chest X-ray
Dataset. It takes ≈ 30% less time than pre-existing state-of-the-art models. The
proposed CX-Ultra net gives higher average accuracy and efficiently handles the
class imbalance issue. The training time in terms of Floating-Point Operations Per
Second is significantly less, thus setting a new threshold in disease diagnosis from
chest X-rays.

Keywords: Chest X-ray · Disease detection · Thoracic disease · Medical
imaging

1 Introduction

For many decades, chest X-ray radiography (CXR) has been a central focus of imaging
modalities, and it is still the most commonly used radiological scan. According to the
Report of 2021X-rayDR/CRMarketOutlook, 126.8millionCXR scanswere performed
in the United States alone in 2021 [1]. In the last three years, CXR images increased
exponentially due to the COVID-19 around the world. Another reason for the high
demand forCXR images is their low radiation dose and cost-effectiveness and reasonable
sensitivity to a broad range of pathologies. The CXR is also used to study for screening,
diagnosis, andmanagement of a wide range of diseases and health conditions. Therefore,
the deep learning (DL) method is highly beneficial for achieving high accuracy with
limited time, especially in India, where the ratio of doctors to patients is 1: 100,000. The
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complete centralized cloud-based automatic analytical tool will help the people staying
in remote and rural areas. A lot of research focusing on the detection of single disease
from the chest x ray has been done. However, detecting multiple disease from a single
chest Xray is challenging task. Also, network stability and class-imbalance issues are
not addressed. In this study we have proposed CX-Ultranet which can detect thirteen
thoracic diseases with a stable network and can handle the class imbalance problem.

2 Literature Review

As an emerging technology deep learning has proved its remarkable strength in the field
of medical imaging such as disease detection and classification. Researchers are trying
their best to implement deep learning to detect diseases from a chest x-ray focusing
on different aspects. In the automatic detection of multiple diseases from a chest x-
ray, major challenges faced are the presence of unnecessary objects in the chest x-ray
and second is the reduced size due to the preprocessing process. In order to overcome
these challenges, a segmentation based deep fusion network was developed which gives
detailed information about the lung region [2].

Another major challenge is the imperfect dataset because of the domain and label
discrepancies. To tackle this problem [3] developed a model for multi-class thoracic
disease classification. A similar work [4] for 14 common thoracic disease detection with
a supervised multi-label classification framework based on deep convolutional neural
networks (CNNs) was implemented using the CheXpert dataset and achieved AUC as
0.940.

Another study for automatic detection of covid from chest x-ray using a deep learning
model was performed by [5]. A similar work [6], an automated covid screening system
was developed to detect the infected patients using a hierarchical approach to segregate
3 classes. A considerable amount of work has been carried out, but the key limit persists
in multi-disease classification, network stability and addressing the problem of class
imbalance. The goal of most researchers is to detect one disease. Furthermore, for many
image datasets, there is a higher possibility of negative data than positive data. A deep
neural net is already large when trained using images, which add to the computational
complexity when combined with large amounts of data. This eliminates the need to
evaluate negative data for training purposes, as well as the entire process of feature
extraction and training to the model, which makes the neural net heavier.

In a convolutional neural network, we also use the concepts of channel shuffling
and compound scaling. A similar channel shuffling strategy for image classification
was published in Shuffle NASNets [7], which demonstrated a 10% improvement in
accuracy on theCIFAR-10dataset. The exact settings of hyperparameterswere optimised
using the Grid Search Algorithm [8] to identify the ideal trade-off condition between
FLOPS, efficiency, and accuracy. We also developed a more advanced multi-class cross-
entropy loss function that we used in conjunction with the underlying CX-Ultranet to
achieve standard accuracy with cutting-edge true positive and false-positive rates. When
deploying a deep neural architecture on large datasets, a loss function becomes critical.
To produce correct findings, both compound scaling and the loss function continuously
monitor how much the model is missing. As a result, it continuously increases the
CX-learning Ultranet’s over time.
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3 Methodology

3.1 Dataset Description

In this study, we used two chest X-rays datasets provided by the National Institute of
Health (NIH) [12] andUniversity of California SanDiego, GuangzhouWomen andChil-
dren’s Medical Center (Mendeley Data) [13]. The NIH dataset consists of one hundred
twelve thousand one hundred twenty images with the size 1024× 1024 and correspond-
ing 13 pathologies labelled those data collected from 30,805 unique patients. A total
of 13 diseases, namely Cardiomegaly, Cardiomegaly Emphysema, Cardiomegaly Effu-
sion, Hernia, Infiltration,Mass, Nodule, Atelectasis, Pneumothorax, Pleural Thickening,
Pneumonia, Fibrosis, and Edema, are considered. The 2D chest X-rays are taken as input
and processed for image augmentation. Then we send the image as input to the neural
network trained on various diseases. The model is then tested to detect disease present
in a chest X-ray out of the training dataset, and the corresponding results are displayed.
The Mendeley dataset consist of thousands of Optical Coherence Tomography (OCT)
and Chest X-Ray Images and is used for testing our model. The dataset contains two
folders namely train and test, we directly used CX-Ultranet with its pre-trained weights
from NIH Dataset on the test folder to test the performance of our model. The test folder
contains 390 Pneumonia chest X-rays and 234 healthy chest X-rays.

3.2 Data Processing

In order to prevent data leakage, duplicate is removed. To get a normalized data, we
performed data augmentation. For data augmentation, we used Image data generator
class form keras library. Horizontal flipping is used for centreline extraction and disease
related to symmetrical position. For lower computational complexities image size is kept
at 320 × 320. The entire dataset is split into 1:1 for train and test. Around ≈ 50,000
images were used for training. The other half is used for testing.

3.3 Class Imbalance Problem

On performing exploratory data analysis, we find that most of the data belong to the neg-
ative class rather than the positive class. The contribution of the positive class becomes
significantly lower than the negative class.

The Weighted Loss Function for Multiclass Cross-Entropy: The loss function is modi-
fied by replacing the yi by the weight factor of the positive class, i.e., weightpositive and
(1− yi) includes the weighted average of the negative class, which is weightnegative. So,
the final weighted multiclass Cross-Entropy takes the form of

CIwce(u) = −(
wpv log(g(u)) + wn(1 − v)log(1 − g(u))

)
(1)

where CI represents class imbalance Cross entropy. g(u) is the output of the model and
xi are the input features, and v are the labels i.e., the probability of it being positive
(containing the disease) or negative (not including the disease). Table 1 shows the com-
parison of different methods to solve class imbalance problemwith the proposedmethod
with respect to time taken and accuracy on the NIH dataset.
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Table 1. Comparison of different class imbalance method.

Method Time taken to train CX-
UltraNet

Remarks Accuracy

Weighted
Multi-Class
Cross-Entropy

18407 s Proposed most
efficient solution for
solving the class
imbalance

86.47%–92.60%

Synthetic Minority
Oversampling
Technique (SMOTE)

32485 s Creates synthetic data
for the minority class
due to oversampling
technique, and
increases the training
set size

77.48%–82.98%

Ensembled
Techniques
– Bootstrap
Aggregation

25836 s Same test case being
chosen redundantly
due to relies on
random replacement of
data in the training set

69.53%–73.82%

3.4 Compound Scaling and Reduction Cells in CX-Ultranet

When very high-resolution images are used by the complex model, an increase in the
network depth is very essential. Scaling up any component of the model such as width,
depth, or resolution should result in improve the accuracy of the model. However, the
accuracy improved for complex models does not rise that much at a later point of time
and is slow in comparison to the initial increase at the beginning of the model.

Floating Point Operations Per Second (FP) of a regular CNN

FP ∝ d , ω2, and γ 2 (2)

where d = depth of the network, ω = Width of the network, and γ = resolution of the
network.

Compound Scaling Method: The compound scaling based technique is used to obtain
the most optimal solution with the optimized trade-off among the accuracy and time
taken.

depth(d) = aδ width(ω) = bδ resolution(γ ) = cδ (3)

where, δ User specified coefficient controlling the resources are available for model
scaling.

FP ∝ (a.b2.c2)
φ

(4)

where a, b and c specify how to assign these extra resources to network width, depth, and
resolution, determined by a small grid search. Now we constrain the value of (a.b2.c2)
≈ 2, Hence,

FP ∝ (2)φ (5)
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Compound Scaling: For model scaling, we use a similar approach [7]. We fix the value
of ϕ = 1. In order to find the values of a, b, and c we used simple grid-search algorithm
[8], which leads to the values as, a = 1.2, b = 1.1 and c = 1.14. The same values also
hold for (a.b2.c2) ≈ 2. By fixing the values of a, b, and c, we can enhance the value
of ϕ (Compound Coefficient), which improves the model accuracy. In order to get the
best results with the least value of ϕ and F of the corresponding model, we optimize the
product of the Model’s Accuracy to the time taken by the model.

OG = Accuracy(Model) × FP(Model) (6)

We try to maximize our optimization goal (OG) based on the two variables (Hyper-
parameter for controlling trade-offs between Accuracy and FP) in the least scaling
possible.

3.5 Implementing Reduction Cells

Our main focus is to make our model very efficient in terms of time and computational
complexity. We use the concept of ShuffleNet [6] and FractalNets [9]. The layers in the
architecture only receive half of the channel as input while the other half is skippedwhich
adds more skip connections to the model. The model hence created is not trained with
any identity function; however, channel widths are kept equal, which reduces memory
access cost. Skip connections help reduce the large group convolutions that are very
frequent in bigger models with deeper network architecture. The schematic diagram
of CX-Ultranet shows convolution layers with different channel widths and the cross-
entropy loss function (see Fig. 1). Most of the convolutions are kept at 3 × 3 for finer
detection as for diseases observations might be very minute. We kept the loss function
layer before the compound scaling network so that only optimized feature maps are
passed to the network. The compound scaling method benefits from this because if error
from the CNN is not minimized then the same also gets compounded depending upon
the value of δ from Eq. (4). The global and local reduction cells are more focused on
decreasing the training time.

The skip connections formed with the pooling layer is because of channel shuffling.
We have also used the learning rate scheduler from Keras Library [10]. Start and Max
parameters are kept at 0.000002 and 0.0001, respectively. The learning rate is kept at
0.0001, and no AmsGRAD is used. We have used Adam optimizers [11] to push the
model’s accuracy further and stabilize the model in the long run.

The model successfully predicts multiple diseases from among thirteen thoracic
diseases which utilizes the new weighted multi-class cross-entropy loss function. Our
method can also give the percentage probability of different diseases (Fig. 4 B). The
anomalies in the chestX-Ray are localized using theGrowing seed algorithm in3DU-Net
[14].We attained a similar training accuracy of nearly around 95%.We have also utilized
the learning weights to build attention maps and GRAD-CAM-based visualizations.
Because this is a multiclass detection and classification model, we utilized it to identify
more diseases coupled with X-Rays. Usually, the medical professionals only focus on
the highlighted disease instead of focusing on what additional medical disorders they
are overlooking.
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Fig. 1. The schematic flow includes the baseline network, cross-entropy loss function and
reduction cells

4 Results

To check the stability of the model we plot the learning curve of the model. The model is
trained by taking a subset of the data. For testing, we used a separate dataset which was
not included in the overall training of the model. The amount of data taken each time
is increased by 5% in the subsequent rounds, and every time it shows an improvement
in accuracy. The value of loss function and trained weights are not reset in every round
as some data becomes typical for every round. At the beginning of the model, we find
a very high learning rate which signifies the fact that the classes are perfectly balanced.
As a result, the model learns rapidly, as shown in Fig. 2. After achieving approximately
70% accuracy, the model achieves saturation point, which is very near to the highest
accuracy attained by the latest state of the art model. With the cumulative impact of
the loss function, learning rate scheduler, multiclass cross-entropy and Adam optimizer,
accuracy of the model reaches to the 85–90% region. These play a vital role as the value
of the loss function is not reset every time, and it learns by how much the model fails
for the cumulative addition of new data.
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Fig. 2. The learning rate of the model for a single disease based on % of training data.

Our model learns equally from both the classes. Figure 3 shows that the class
imbalance issue is resolved and there is no biasness towards a particular class.

Fig. 3. The contribution of both the class after the class imbalance problem is solved.

The visualization of multiclass disease and % of disease in single chest X-ray is
shown in Fig. 3. The disease with the highest % value (here Pneumothorax) is considered
a primary disease of the patient. The other diseases like atelectasis and pneumothorax
are the ones which the model also predicts. For better understanding, broad visualization
and heat map are also shown in Fig. 4.

We have repeated the same for other thirteen diseases namely Cardiomegaly, Emphy-
sema, Effusion, Hernia, Infiltration, Mass, Nodule, Atelectasis, Pleural Thickening,
Pneumonia, Fibrosis, and Edema (like Fig. 4). An average of 88% accuracy is achieved;
the highest accuracy is 92% in Atelectasis disease and the lowest at 84% in infiltration.
The mean ± standard deviation (SD), maximum, and minimum test accuracy of all 13



Detection and Classification of Lung Disease 451

Fig. 4. The various disease predicted using the CX-Ultra net. A) The input chest X-ray and
corresponding heat map and disease localization, and B) The classified anomalywhere the primary
disease is Pneumothorax, and the Percentage of other diseases is shown

diseases are shown in Table 2. Low SD reflect the consistency of the results and accuracy
of CX-Ultranet.
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Table 2. CX-Ultranet achieved the following accuracy for 13 different diseases.

Disease name Mean ± SD Maximum Minimum

Cardiomegaly 80.20 ± 12.9 92.1 68.4

Emphysema 82.95 ± 10.6 92.7 73.2

Effusion 82.85 ± 11.9 93.9 71.8

Hernia 81.80 ± 09.1 89.9 73.7

Infiltration 76.05 ± 18.5 93.7 58.4

Mass 79.65 ± 12.1 90.7 68.6

Nodule 87.30 ± 08.0 94.9 79.7

Atelectasis 88.55 ± 06.0 92.7 84.4

Pneumothorax 84.45 ± 11.5 95.1 73.8

Pleural-Thickening 82.65 ± 10.9 92.7 72.6

Pneumonia 84.05 ± 08.0 91.6 76.5

Fibrosis 85.30 ± 07.2 92.3 78.3

Edema 83.20 ± 09.5 92.0 74.4

5 Discussion

The Proposed model with modified binary cross-entropy loss function outperforms all
the previous models as we solved the class imbalance issue and training the loss function
repeatedly within the model. We have achieved an accuracy above 84% and the highest
accuracy achieved is 92% for Atelectasis disease. As our model is trained uniformly for
the positive and negative cases therefore the initial learning rate of themodel is incredibly
high. We also observe that in the 25% to 35% region, the learning rate flattens out, as
seen in Fig. 4. The loss function and compound scaling mechanism in CX-Ultra net are
solely responsible for the increased prediction accuracy. However, given the number of
times the model will reiterate, the increase in accuracy from these two components is
minimal.

In terms of accuracy, CX-Ultranet outperforms all other previous standard models in
image classification. A comparative studywith the existing state of the art models such as
AlexNet [15], U-Net (Encoder), Res-Net (Decoder) [16] andDenseNet121 [17] is shown
in Table 3. DenseNet121 is widely known for its classification application in medical
imaging. The U-Net (Encoder) Res-Net (Decoder) model is a double CNN network and
challenges our model in terms of prediction accuracy. However, since we proposed a
dual-channel CNN framework, it quickly falls off in computational complexity. Table 3
shows the time taken by the same is much higher than our CX-Ultranet.

In order to test the performance and applicability of our model we tested our model
on any entirely different dataset which was not used for the training purpose. We tested
our model for a single disease pneumonia to test the reproducibility of the model and
found that our model is performing very well for the unseen data as well. We evaluated
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Table 3. Accuracy metric of CX-Ultranet and five other comparative models.

Type of model AlexNet VGGNet U-Net
(Enc)
ResNet
(Dec)

DenseNET121 Efficientnet CX-Ultranet

Cardiomegally 61.0 65.6 79.6 83.6 78.3 88.2

Emphysema 58.0 51.3 82.8 85.9 79.6 89.7

Effusion 65.0 53.6 82.1 85.0 86.6 88.4

Hernia 47.0 67.1 79.0 82.3 81.3 87.2

Infiltration 62.0 51.9 78.0 72.0 81.0 84.4

Mass 58.6 57.6 81.0 76.4 82.9 86.6

Nodule 67.3 58.2 82.0 62.6 80.3 85.3

Atelectasis 61.2 63.7 89.0 74.4 79.0 92.6

Pneumothhorax 51.4 55.3 87.5 84.1 78.0 89.6

Pleural
thickening

68.1 59.8 87.2 74.5 84.2 88.6

Pneumonia 72.5 64.3 82.0 66.7 78.0 87.3

Fibrosis 59.4 66.1 83.4 70.6 73.6 87.3

Edema 53.6 51.3 88.4 84.6 81.0 88.7

Time taken
(sec)

31678 27545 34041 29967 23446 18407

our model on different parameters like precision, recall and F1 score. The values of
different parameters are shown in Table 4.

Table 4. Accuracy metric of CX-Ultranet on Mendeley data.

Disease name Precision Recall F1-Score Support

Pneumonia 0.93 0.96 0.94 390

Healthy Xray 0.92 0.88 0.90 234

6 Conclusion

In this paper, we proposed a novel system CX-ULTRA NET to fast and effectively
detect multiple thoracic diseases from a single radiographic image. We demonstrated
that deep learning algorithm can provide precise and timely solutions to the automation
for medical image analysis. To deal with the stability and learning rate of the model
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over the large dataset, we present a novel multiclass cross-entropy loss function with an
optimizer function. Also, the issue of class imbalance is resolved. The proposed system
gives better results on comparison with the state-of-the-art model. It can also assist
the experts quickly detect the multiple thoracic diseases. Extensive experiments on the
NIH dataset confirmed the efficacy of our proposed system, thus achieving 84%–92%
accuracy for multiple diseases, outperforming other methods in disease detection tasks.

Acknowledgement. This research work was supported by the RFIER-Jio Institute “CVMI-
Computer Vision in Medical Imaging” research project fund under the “AI for ALL” research
center.
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Abstract. Recent neural networks have shown impressive performance
in computer vision tasks. However, these models mainly focus on design-
ing deep architectures and strongly depend on the architectures them-
selves. This paper proposes a simple yet effective deep equilibrium model
(DEQ) that exploits the advantages of implicit deep learning and multi-
scale self-attention. In particular, our approach reduces the need for
simultaneously finding multiple fixed points at different scales in Multi-
scale Deep Equilibrium Models (MDEQs) to finding a unique fixed point
at the highest resolution. Therefore, our method is more memory efficient
and requires less computational complexity. To the best of our knowl-
edge, this is the first attempt toward building an effective DEQ for polyp
segmentation, and thus, we call the model PolypDEQ. Experiments on
five popular polyp segmentation benchmarks show that our proposed
method yields superior performance compared to previous MDEQ and
Transformers.

Keywords: Semantic segmentation · Polyp segmentation · Implicit
deep learning · Deep equilibrium models

1 Introduction

In recent years, the number of Colorectal cancer cases has rapidly increased.
Accurate polyp detection and diagnosis are vital to the treatment. Therefore,
computer-aided systems that can handle these tasks will greatly support doctors
and medical professionals.

Semantic segmentation is one of the computer tasks that has recently received
much attention from researchers. With the rise of deep learning-based methods,
semantic segmentation can be formulated as a pixel-level classification problem.
Most recent works in image segmentation are based on an Encoder-Decoder fash-
ion, which consists of two main components: An Encoder typically receives an
image and produces feature map(s) that are tensors containing abstract informa-
tion about the image; A decoder takes the produced feature map(s) and forms a
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G. Bebis et al. (Eds.): ISVC 2022, LNCS 13598, pp. 456–467, 2022.
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segmentation mask. Previous works used Fully Convolution Network (FCN) [13]
for both Encoder and Decoder, such as U-Net [16] - a standard FCN network
for image segmentation. With the aid of Vision Transformer (ViT), many new
architectures (e.g., SegFormer) have shown promising results, with on-par per-
formance compared to the traditional FCN architectures.

However, both approaches typically need to design explicit networks, also
referred to as architectures, which require a considerable number of parame-
ters to achieve good results. Bai et al. proposed a new class of implicit deep
learning models for computer vision tasks: Multi-scale Deep Equilibrium model
(or MDEQ) [3], which is proven to have superior memory efficiency and repre-
sentative power compared to the above “explicit” models while having on-par
performance. The proposed MDEQ model is rather simple, with only CNN lay-
ers with residual connections, and uses root-finding (equilibrium) solvers to find
the equilibrium points for prediction. Inspired by MDEQ, in this paper, we pro-
pose a model based on implicit deep learning that takes advantage of multi-scale
self-attention and the transformers-based architecture used in SegFormer [20],
with the intention to achieve better performance compared to MDEQ. Our main
contributions are:

– We propose a novel architecture called PolypDEQ that aggregates the idea
of implicit deep learning and multi-scale self-attention for semantic segmen-
tation. We facilitate the fixed point finding of the deep equilibrium models,
yielding a much simpler yet effective deep equilibrium model while still main-
taining a robust hierarchical representation.

– We compare the proposed PolypDEQ with the original MDEQ models and
SegFormer on several public benchmark datasets for polyp segmentation to
demonstrate the effectiveness of our method.

The rest of the paper is organized as follows: Sect. 2 reviews the general
knowledge regarding implicit neural networks and briefly explains the two types
of networks (MDEQ and SegFormer) that we took inspiration from. In Sect. 3.2,
we describe the proposed network architecture in detail. Section 4 outlines our
experiment settings. The results are presented and discussed in Sect. 5. Finally,
we conclude the paper and discuss future works in Sect. 6.

2 Related Work

2.1 Medial Image Segmentation

In order to prevent Colorectal cancer, scanning and removing polyps are
required. Colonoscopy analysis is an effective method that allows doctors to
detect both location and severity of polyps. However, due to the variations in
size, shape, and location of the polyps, it is still challenging to detect polyps with
human eyes from colonoscopy. Many deep learning-based methods nowadays can
support doctors via automatic colonoscopy analysis. More specifically, polyp seg-
mentation using deep learning has shown promising results both in accuracy



458 N. M. Chau et al.

and speed. Following the success of UNet in biomedical image segmentation,
several improved versions of UNet, such as UNet++ [22], ResUNet++ [12], AG-
ResUNet++ [10], are introduced and yield promising results. While both meth-
ods focus on segmentation of the polyp area only, PraNet [8] focuses on both the
area and boundary of polyps via Reverse Attention and achieves state-of-the-
art performance. NeoUnet [14], BlazeNeo [1] utilized the lightweight HardNet
backbone combined with attention mechanism and feature aggregation mod-
ules for polyp segmentation and neoplasm detection. TransFuse [21] combines
the power of both CNNs and Transformers into an efficient model in sizes and
inference speed with parallel structure. ColonFormer [7] uses pure Transformer
architecture and achieves state-of-the-art results for polyp segmentation task.
Nevertheless, these models require hand-crafted architecture design. They often
contain a large number of parameters and need a large amount of memory for
training and inference.

2.2 Implicit Deep Learning

Most deep learning models follow an explicit design, meaning they use explicit
computational graphs, also called “architecture”, for forward and backward
propagation. Recently, Bai et al. [2] proposed implicit deep learning models:
instead of defining a computational graph or an explicit architecture, they pro-
vide a criterion that the models must follow (e.g., the output of the network
must satisfy an equation). Implicit models operate forward and backward prop-
agation as root-finding problems (also referred to as finding equilibrium points),
using Newton, and Quasi-Newton algorithms, such as Broyden and Anderson,
as equilibrium solvers.

Implicit deep learning has been receiving much attention from researchers in
recent years. Neural ODEs (NODEs) [6] use just one residual block in a recursive
fashion and implicit solvers, which is equivalent to an infinite-depth ResNet [9].
Deep Equilibrium models (DEQs) [2] use equilibrium solvers (e.g., Broyden,
Anderson) to find the equilibrium (fixed) point of a model for sequential tasks,
which is equivalent to an infinite-depth network. Multi-scale Deep Equilibrium
models (MDEQs) [3] take the idea of DEQs and add multi-resolution feature
representations to perform computer vision tasks, etc.

3 Methodology

3.1 Multiscale Deep Equilibrium Models (MDEQs)

Multi-scale Deep Equilibrium models (MDEQs) [3], proposed by Bai et al., are
a class of implicit deep learning models. It takes the core idea of DEQs, which is
weight-tying: the same set of parameters can be shared across the layers of the
network. An L-layer weight-tied transformation is formulated in MDEQs with
parameter θ as follows:

z[i+1] = fθ(z[i];x), i = 0, .., L − 1 (1)
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Fig. 1. Model overview.

where x is the input representation that is injected into the model at each layer,
z[i] is the hidden state of the model at layer i, which can be a single tensor (as in
DEQs) or a set of tensors at different resolutions z = [z1, z2, ..., zn] (n is set to 4 in
the original MDEQ), hence the name Multiscale. Iterating this transformation,
under certain sufficient constraints, was shown to produce a stable state z∗ (an
equilibrium point). Alternatively, we can formulate this iterative transformation
as a root-finding problem:

gθ(z;x) := fθ(z;x) − z → z∗ = Rootfind(gθ;x) (2)

One can use Newton or Quasi-Newton solvers to solve the above equation and
obtain the network’s output at its infinite depth.

MDEQs use a simple design to formulate its iterative transformation fθ.
The internal state z is initialized as a set of zero-filled tensors at different scales
z = [z1, z2, ..., zn]. Each of them then goes through a sub-network that is identical
in structure, which consists of a residual block that preserves the resolution
at each scale to obtain the corresponding feature maps. The input image goes
through a shallow CNN network to obtain the input representation, which is
then injected into the highest scale only by adding in between the residual block
at that scale. The feature multi-scale maps are then mixed up using a fusion
network, which consists of up-sampling and down-sampling modules. The output
of the transformation is a new set of tensors z′ = [z′

1, z
′
2, ..., z

′
n]. MDEQs use

equilibrium solvers (e.g., Anderson, Broyden) to find the equilibrium point z∗ =
[z∗

1 , z∗
2 , ..., z∗

n] for all scales. Note that since the solvers are iterative, meaning we
use the previous state z[i] at step i as input for the transformation fθ at step
i + 1 until convergence. It forces the tensor(s) in z[i] and z[i+1] to have the same
shape (the output at each step must have the same size as the input). This is the
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basic rule to formulate any implicit deep models that use equilibrium solvers.
One can use the output equilibrium points of MDEQ z∗

1 , z
∗
2 , ..., z∗

n as feature
maps and make predictions out of them: the highest resolution map z∗

1 can be
used to produce masks for a segmentation task, whereas the lowest resolution
one z∗

n can be used for a classification task.

Limitations: The design of MDEQs is quite simple. Its transformation module
(DEQ module) fθ consists of only Convolution blocks and Residual connections.
We believe that with the aid of Vision Transformers, which has shown promising
results in computer vision in general, and semantic segmentation in particular, it
is possible to design an implicit deep learning model with superior performance.
Moreover, in MDEQs, one needs to use an equilibrium solver to find the equi-
librium points for all resolutions z∗

1 , z
∗
2 , ..., z∗

n. As stated by the authors in [3],
finding an equilibrium state for multiple resolution scales can improve the con-
vergence of the equilibrium solving process itself; however, we find that it makes
training MDEQ extremely slow. And since for segmentation, only the output
feature map with the highest resolution is used for prediction, we argue that for
this task specifically, one only needs to find the equilibrium state for the tensor
with the highest resolution (z1). Our model - PolypDEQ covers these problems
of MDEQs.

3.2 SegFormer

SegFormer [20] is a class of Transformer networks for semantic segmentation,
which has shown efficiency, accuracy, and robustness. Proposed by Xie et al., Seg-
Former has become the baseline for many other models for the task of semantic
segmentation:

SegFormer follows a typical architecture pattern of a semantic segmenta-
tion model, consisting of an Encoder module and a Decoder module. SegFormer
uses Mix Transformer encoders (MiTs) to generate a set of hierarchical feature
maps: it produces multi-level feature maps at different resolutions, unlike previ-
ous ViTs, which can only produce one feature map. Another difference between
MiTs and the traditional ViTs is that ViTs use Positional Embedding (PE) to
represent local information by a fixed-size tensor, meaning during inference, this
has to be interpolated for test images whose sizes are different from the training
ones; this typically results in performance drop; MiTs instead use a convolution
layer in the Feed-Forward Network (FFN), instead of pure Multi-Layer Percep-
tron (MLP) like ViTs to create Mix-FFN. This was shown to be able to provide
local information as well as allow SegFormer to adapt to new image resolutions
during inference without a performance drop.

For the decoder module, SegFormer uses just a simple lightweight All-MLP
decoder. It takes in the four feature maps produced by MiT Encoder, equalizes
their channel dimensions using MLP, then up-samples them to the same spatial
resolution and concatenates the results into a single tensor. Next, the tensor goes
through an MLP layer to “mix” the information from the four source feature
maps and, finally, another MLP layer to produce the prediction mask. This sim-
ple design is claimed to be sufficient enough to achieve good results. However, one



Towards Effective Transformer-Based Deep Equilibrium Models 461

can replace this All-MLP decoder with other decoder modules to achieve even
better performance. For example, as will be shown in this paper, we can use a U-
Net-like hierarchical decoder, which forms a U-Net-like model with a hierarchical
MiT Encoder and a hierarchical Decoder and achieves superior results.

3.3 Our PolypDEQ

We propose a novel neural network architecture named PolypDEQ, which is
built upon the ideas of implicit deep learning (MDEQs) and SegFormer. Figure 1
describes this overall architecture in detail.

Following the implicit deep learning approach, our central design is the iter-
ative transformation fθ, which can be described as follow: The input image is
fed into the first MiT Encoder Block, which consists of an Overlapped Patch
Embedding and a Transformer block (as in MiT encoder) to obtain a feature
map. We initialize z - our internal state as a single zero-filled tensor that has
the same resolution as the first input representation (or feature map) after the
first MiT Encoder Block. Unlike MDEQs, which find the equilibrium state for
multiple spatial resolutions (Multi-scale), we only find one equilibrium state z∗

for z at a single resolution scale. We combine z and the first feature map of
MiT Encoder to obtain another feature map with the same resolution. This step
simulates the effect of “input representation injection” as shown in [3]. There are
many strategies to combine the two tensors. This paper considers two methods:
direct element-wise adding and using a simple residual block. The feature map
then goes through three more MiT Encoder blocks to produce four feature maps
(including the first feature map with input injection). We use a simple Hierarchi-
cal Decoder module: it resembles the traditional U-Net decoder module, which
“decodes” the feature maps hierarchically from coarse to fine. At each resolu-
tion, the feature map is interpolated to match the resolution of the next larger
feature map. They are concatenated and go through a convolution layer. Our
decoder takes the four feature maps from our Encoder and produces a single
output tensor with the same resolution as z. Normally, for explicit models, we
would apply a Convolution Layer, or MLP layer, to obtain the predicted mask
here (or equivalent to iterating fθ for only one iteration); however, we take the
implicit deep learning approach. Hence, we then leverage Broyden’s equilibrium
solver to find the equilibrium point z∗ (equivalent to iterating fθ infinitely) and
then make predictions on it. Since solving for an equilibrium point is equivalent
to finding the model’s output at an infinite step [3], we can see this model as an
infinite number of weight-tied U-Net one after another. We have experimented
with two strategies: making predictions right after the first iteration of fθ (just
like an explicit model) and using the Broyden equilibrium solver to find the
equilibrium state z∗ and make predictions on it (implicit model). Therefore, we
use both approaches for each training configuration to obtain two corresponding
models: the explicit and implicit versions. The results of both approaches are
compared in Sect. 5.

For our iterative transformation fθ, which is a weight-tied U-Net, we use a
similar MiT Encoder as in SegFormer. The only modification is the injection
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of z and the input representation, which is required for an implicit model. The
SegFormer framework provides different versions of MiT Encoder, ranging from
MiT-B0 to MiT-B5. They are the same in architecture, only different in size,
with MiT-B0 being the smallest and MiT-B5 being the largest. Here, we use
only MiT-B0 for two reasons: firstly, the process of equilibrium solving requires
us to iterate through the model many times. Therefore, we cannot use a large-
size network to design our fθ. Secondly, even using a lightweight model, we
show that PolypDEQ still produces comparable results to its explicit SegFormer
counterparts.

We use two different strategies for the injection (combination of z and the first
feature map of MiT Encoder): direct element-wise adding and leveraging a resid-
ual block. In the first strategy, we simply perform element-wise adding for the
two tensors. We call this first version PolypDEQ-add. The second version, called
PolypDEQ-res, uses a simple residual block to combine the two tensors. Figure 2
describes the design of our residual block used for injection. First, the internal
state z goes through a simple 3 × 3 Convolution Layer, Group Normalization,
ReLU, and a 1 × 1 Convolution Layer. Then we perform element-wise adding
with the first feature map of MiT that we got from the input image. Finally, we
use a residual connection by adding z to the result after a Group Normalization.
We compare the performance of our model between the two methods in Sect. 5.

Fig. 2. Input injection using residual blocks.
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4 Experiments and Discussion

4.1 Benchmark Datasets

We perform experiments with a wide range of benchmark datasets for polyp
segmentation, as shown in Table 1.

Table 1. The properties of benchmark datasets.

Dataset Train images Test images Resolution

Kvasir-SEG [11] 900 100 Various

CVC-ClinicDB [5] 550 62 384 × 288

CVC-ColonDB [18] 0 380 574 × 500

ETIS-Larib PolypDB [17] 0 196 1225 × 966

EndoScene [19] 0 60 574 × 500

4.2 Experiment Settings

PolypDEQ is trained in two phases: the explicit and implicit phases. For the
explicit phase, we do not use equilibrium solvers (iterate fθ only once) and train
the model as an explicit model; we use AdamW optimizer, with the initial learn-
ing rate of 10−3, and a linear decay learning rate scheduler. The final learning
rate is 10−6. We train our explicit models for 100 epochs with a batch size of
16, using a multi-scale training strategy: for each training image, we resize it
to 0.25, 1, 1.25 times the original scale before feeding it into the model. After
the explicit phase, we obtain the explicit version of our model. For the implicit
phase, we first load the weight obtained from training the explicit model. This
is possible because the explicit and implicit versions of our model are identical
in structure. The only difference is the existence of the equilibrium solver. Then,
we continue training the model “explicitly” for 30 epochs before applying our
equilibrium solver and training it as an implicit model for 70 epochs. We use
the same training configurations as the first phase, except for the learning rate
scheduler. For this phase, we first initialize the learning rate to be 10−3, then
linear decrease it to 10−6 during the first 30 epochs of training, then reset the
learning rate to 5 × 10−4 and linear decrease it again to 10−6 for the rest of the
training. After this phase, we obtain our implicit model.

We use simple Data augmentations for training PolypDEQ, with a proba-
bility of 0.5. The following augmentations are applied: Horizontal/vertical flip,
random rotation, change of brightness, contrast, saturation, random cropping,
and random cut-mix (cropping part of a random image and put into another
image).

We evaluate models using mean Dice score (mDice) and mean Intersection
over Union (mIoU).
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5 Results and Discussion

5.1 Performance

Table 2 shows performance metrics for our proposed PolypDEQ, and MDEQ in
both versions: implicit model and explicit model on five polyp datasets. We also
compare the performance of PolypDEQ with two different injection strategies as
aforementioned. Note that the models are trained on subsets of the Kvasir and
CVC-ClinicDB datasets. Implicit PolypDEQ with injection using Residual Block
outperforms all other models on the Kvasir and CVC-ColonDB, while implicit
PolypDEQ with injection using element-wise adding outperforms others on the
CVC-ClinicDB and ETIS-Larib PolypDB dataset.

Table 2. Quantitative results on benchmark datasets. Note that SegFormer-B0� below
is equivalent to explicit PolypDEQ with the adding injection strategy.

Method Mode Kvasir CVC-Clinic CVC-Colon EndoScene ETIS

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

MDEQ [3] expl 0.846 0.773 0.836 0.769 0.585 0.487 0.787 0.693 0.485 0.404

MDEQ [3] impl 0.873 0.803 0.811 0.743 0.724 0.644 0.827 0.740 0.654 0.579

Segformer-B0� [20] expl 0.897 0.839 0.862 0.807 0.735 0.657 0.882 0.803 0.657 0.583

PolypDEQ-add impl 0.904 0.846 0.895 0.839 0.742 0.664 0.873 0.793 0.689 0.608

PolypDEQ-res impl 0.905 0.847 0.888 0.832 0.742 0.666 0.876 0.793 0.683 0.605

� indicates that we use UNet’s decoder instead of the All-MLP decoder proposed in [20]

Figure 3 shows example outputs for different models. PolypDEQ produces
noticeably better segmentation than MDEQs. This shows how the MiT Encoder
module has an impact on enhancing models’ performance.

It is worth noticing that the models that aggregate MiT Encoder: explicit and
implicit PolypDEQs outperform MDEQs by a considerable margin. Moreover, all
implicit models (MDEQ-implicit, PolypDEQ-implicit) outperform their explicit
versions, showing the power of implicit models: they can surpass their explicit
counterparts with the same structural design and number of parameters.

5.2 Time and Space Complexity

Table 3 compares the behavior of our models and MDEQs, for both versions:
implicit and explicit, in terms of time cost, memory usage, number of solver iter-
ations, and model sizes. We record these quantities on a device with a 3.60 GHz
CPU and an NVIDIA GeForce RTX 3090 GPU with 24576 MB of total memory.

We can see that both explicit and implicit versions of PolypDEQ have faster
inference time as well as lower memory usage and lower numbers of parameters.
However, we also notice that the number of solver iterations for PolypDEQ to
find the equilibrium state is also less than MDEQs by a considerable margin.
This might be due to the fact that for PolypDEQ, we only find the equilibrium
state for one tensor z, as compared to multiple tensors z = [z1, z2, ..., zn] in
MDEQs, which might also affect the time complexity.
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Fig. 3. Sample results from different models on the CVC-ClinicDB dataset. The first
column is the sampled images, the next three columns are the prediction segmentation
of the models, and the last column is the ground truth segmentation.

Table 3. Performance comparison in terms of inference time, memory usage, number
of parameters, and number of solver iterations.

Model Mode Time (s) MEM (MB) # Params # Solver iters

MDEQ [3] explicit 0.011 2174 8949410 –

MDEQ [3] implicit 0.774 2554 8949410 97.5

PolypDEQ-add explicit 0.0052 2090 5525121 –

PolypDEQ-add implicit 0.549 2292 5525121 57.5

PolypDEQ-res explicit 0.0053 2090 5544673 –

PolypDEQ-res implicit 0.560 2292 5544673 67.5

6 Conclusion

This paper has made the first attempt to build a deep implicit network for polyp
segmentation and perhaps the first in medical image analysis. Our PolypDEQ
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demonstrates its efficiency over the previous DEQs and other explicit models
of the same size. We hope this research can serve as a good baseline for future
works in applying implicit deep learning in medical image analysis.

In future work, we would like to accelerate the fixed point solvers to speed
up the training and inference processes. Some potential approaches can be men-
tioned as hypersolver [4] or skip DEQ [15].
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