
Anti-pattern Detection in Process-Driven
Decision Support Systems

Jonas Kirchhoff(B) and Gregor Engels

Department of Computer Science, Paderborn University, Paderborn, Germany
{jonas.kirchhoff,engels}@upb.de

Abstract. Decision makers increasingly rely on decision support sys-
tems for optimal decision making. Recently, special attention has been
paid to process-driven decision support systems (PD-DSS) in which a
process model prescribes the invocation sequence of software-based deci-
sion support services and the data exchange between them. Thus, it is
possible to quickly combine available decision support services as needed
for optimally supporting the decision making process of an individual
decision maker. However, process modelers may accidentally create a pro-
cess model which is technically well-formed and executable, but contains
functional and behavioral flaws such as redundant or missing services.
These flaws may result in inefficient computations or invalid decision
recommendations when the corresponding PD-DSS is utilized by a deci-
sion maker. In this paper, we therefore propose an approach to validate
functionality and behavior of a process model representing a PD-DSS.
Our approach is based on expressing flaws as anti-patterns for which the
process model can be automatically checked via graph matching. We pro-
totypically implemented our approach and demonstrate its applicability
in the context of decision making for energy network planning.

Keywords: Decision support systems · Process-driven applications ·
Process model validation · Citizen development · Digital ecosystem

1 Introduction

Current business environments require corporate decision makers to consider
many frequently changing influencing factors with uncertain future developments
and unknown cause-effect relationships during decision making [6,21]. For this
reason, many decision makers rely on a digital decision support system (DSS) to
assist them in the identification of optimal decisions utilizing a combination of
(model-based) simulation and optimization [29]. DSS developers face two related
challenges [15]: First, the requirements and preferences for decision support of
decision makers are often very individual (cf. [25, p. 4]). For instance, decision

Partially supported by the North Rhine Westphalian Ministry of Economic Affairs,
Innovation, Digitalisation and Energy (MWIDE) through grant 005-2011-0022 and the
European Regional Development Fund (ERDF) through grant EFRE-0801186.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. Carroll et al. (Eds.): ICSOB 2022, LNBIP 463, pp. 227–243, 2022.
https://doi.org/10.1007/978-3-031-20706-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20706-8_16&domain=pdf
https://doi.org/10.1007/978-3-031-20706-8_16

228 J. Kirchhoff and G. Engels

makers’ requirements are influenced by decision goals, constraints imposed by
their business or the law, and availability of data and time to identify an opti-
mal decision. This individuality implies that decision makers should ideally be
provided with a DSS which is tailored to their individual requirements for deci-
sion support to ensure the recommendation of optimal decisions. Second, the
volatility of business environments requires a quick availability of such a tailored
DSS [23]. Otherwise, decisions are delayed or suboptimal decisions are accepted
due to a lack of computation time. Both delayed and suboptimal decisions –
regardless whether they originate from a misalignment with decision support
requirements or an untimely supply of the DSS – may result in a decreased
competitiveness of the business and therefore must be avoided.

Businesses recently show an increased interest in low-code or no-code devel-
opment platforms which enable domain experts with no programming skills
(sometimes also referred to as citizen developers) to quickly create individual
software applications by utilizing concepts from model-driven engineering [28].
This can also be applied to DSS development: Non-programmers, in particular
domain experts or decision makers themselves, could quickly create a tailored
DSS for their individual decision support requirements by combining multiple
automated, interoperable decision support services encapsulating reusable deci-
sion support functionality provided by DSS developers [15]. The combination of
decision support services can be formally described by a process model which
specifies the invocation sequence of services and the exchange of data between
them. This approach of describing a DSS as a process-based composition of ser-
vices is referred to as a process-driven decision support system (PD-DSS) [14].

A challenge of this process-driven approach to DSS creation is ensuring the
correctness of the process model representing a PD-DSS (cf. [2]). During process
execution, i.e., PD-DSS usage, any flaws introduced during process design could
potentially result in invalid decision recommendations or the inability to com-
pute any decision recommendations at all. In previous work, we have therefore
focused on validating a correct dataflow between decision support services [14]
and checking the alignment of selected services and a decision maker’s require-
ments for decision support [16]. In this paper, we focus on detecting additional
functional and behavioral flaws in the process model which may represent an
actual (semantic) error or at least a deviation from the widely accepted norm.
For instance, the process model may specify repetitive invocations of the same
service although a subsequent invocation will not yield any new insights and
therefore only introduce a delay during DSS execution; or a post-processing is
missing which is required to reverse a previous pre-processing to ensure that
the computed recommendations actually apply to the original data. These flaws
usually occur accidentally, either due to carelessness, or due to an unfamiliarity
of domain experts and decision makers with the decision support services pro-
vided by DSS developers. Nevertheless, they negatively impact effectiveness or
efficiency of the corresponding PD-DSS when used by the decision maker.

The remainder of this paper is structured as follows: Sect. 2 provides addi-
tional background on PD-DSS creation to support the explanations throughout

Anti-pattern Detection in Process-Driven Decision Support Systems 229

the paper. We discuss related work on process validation in Sect. 3 and derive
requirements for an approach to detect functional and behavioral flaws in PD-
DSS throughout Sect. 4. We explain our proposed PD-DSS validation approach
in Sect. 5 which is based on describing flaws as visual process anti-patterns that
can be automatically identified in the PD-DSS process model via graph match-
ing. Section 6 discusses our approach with respect to the initially formulated
requirements using insights of a prototypical implementation which was applied
the example domain of electricity distribution network planning. Section 7 sum-
marizes our findings and presents future work.

2 Background: Process-Driven Decision Support Systems

In this section, we explain the environment for creating PD-DSS (Sect. 2.1),
provide an example process model representing a PD-DSS (Sect. 2.2), and discuss
the need for assistance in the form of process model validation during PD-DSS
creation (Sect. 2.3).

2.1 Decision Support Ecosystems for PD-DSS Creation

Section 1 presented the challenge of DSS developers to quickly provide each (cor-
porate) decision maker with a DSS that is tailored to the decision maker’s indi-
vidual requirements for decision support. Otherwise, there is a risk of decreased
competitiveness due to delayed or suboptimal decisions. As a solution to this
challenge, we previously proposed the concept of a decision support ecosystem
(DSE) [15]. Inspired by the citizen development concept of modern low-code
platforms [28], the idea of a DSE is to provide a shared platform where multiple
stakeholders can collaborate to assist decision makers in the creation of their
own, tailored DSS using concepts from model-driven software engineering.

A simplified architecture for the platform of a DSE is shown in Fig. 1: Ini-
tially, a decision maker formulates his or her requirements for decision support.
This information is used by a PD-DSS engineer to describe a tailored PD-DSS
by composing multiple interoperable (software-based) decision support services
provided by DSS developers via a public service repository. These services may
encapsulate a single simulation or optimization model, but can also provide
pre- or post-processing functionality such as data visualization. During compo-
sition, the PD-DSS engineer is supported by an assistance which ensures the
implementation of best practices documented by domain experts. The compo-
sition of services for a PD-DSS is specified using an executable process model.
The model-based composition combined with the composition assistance enables
domain experts or decision makers without programming skills to assume the
role of the PD-DSS engineer. After the process model representing the PD-DSS
has been created, it can be executed by the PD-DSS enactment application such
that a decision maker is under the impression of interacting with a regular DSS,
i.e., has to provide input data and is provided with output data in the form of
decision recommendations.

230 J. Kirchhoff and G. Engels

Phase 2:
Enactment

Phase 1: Composition

Decision Support
Service Description

PD-DSS Composition
Application

Decision Support
Service Provider

Decision Maker

Requirements for
Decision Support

Input
Data

Decision
Recommendations

Decision Support
Service

PD-DSS Engineer Assistance

Tailored PD-DSS
Process Model

PD-DSS Enactment
Application

Data

 Legend:

 Dataflow

 Interaction

Fig. 1. Overview of the DSE platform (based on [15]).

2.2 PD-DSS: DSS Specification Using Process Models

The usage of a process model to represent a tailored DSS is motivated by two
advantages [14]: First, process models have already been successfully applied
for service composition in (generic) service-oriented architectures in the form
of process-driven applications [34]. This can be explained by the fact that pro-
cess models are able to capture multiple perspectives, in particular, the func-
tional and behavioral perspective describing the conditional execution sequence
of activities, the informational perspective describing the data exchange between
activities, and the operational perspective documenting the software services exe-
cuting an activity [35]. Second, by using BPMN [24] – the “de-facto standard”
for process modeling popular with domain experts [2,20] – the creation of a
process model representing a tailored, process-driven DSS can even be done by
stakeholders with no programming skills and without professional or extensive
upfront training [14,27].

An example for a process model representing a PD-DSS in the application
domain of regional electricity distribution network planning [13] is given in Fig. 2.
Regional electricity distribution networks are responsible for transporting gen-
erated electricity to end consumers. During network planning, distribution net-
work operators must decide which parts of the network infrastructure such as
cables and transformers should be replaced within the next decade. In this con-
text, operators try to minimize investment costs while maintaining a high degree
of network reliability given the expected electricity demand of consumers. The
PD-DSS shown in Fig. 2 supports such an investment-minimizing planning for
an electricity network provided by the decision maker during PD-DSS execution
(shown as the “original network” input data object). Each activity is associated

Anti-pattern Detection in Process-Driven Decision Support Systems 231

apply network
reduction

{ NW_RED }

optimize
network

{ NW_OPT }

original
network

reduced
network

optimization
results (red.)

undo network
reduction

{ NW_RR }

optimization
results (orig.)

valid topology

invalid topology

visualize investment
recommendations

{ VIS_INV }

visualize
topology faults

{ VIS_TOP }

investment
recommendations

topology
faults

Fig. 2. Exemplary BPMN process for a PD-DSS.

with an automated software service used to execute the activity. The service
name is written in curly braces. Initially, a network reduction aggregates multi-
ple consumers and cables using the NW RED service to comply with network size
restrictions of the subsequent network optimization service NW OPT. The network
reduction must be reversed after network optimization using the NW RR service
to ensure that the optimization results computed for the aggregated network are
actually applicable to the original network. Next, the output of the optimization
output is checked using an exclusive gateway. In case the optimization encoun-
tered an error in the topology which made it infeasible to compute any invest-
ment recommendations, the topology errors are visualized using the VIS TOP
service. Otherwise, if optimization completed successfully, the investment rec-
ommendations are visualized using the VIS INV service. Any visualization will
be returned to the decision maker (as indicated by the BPMN output data
object).

2.3 Modeling Assistance to Reduce PD-DSS Flaws

Flaws accidentally introduced into the process model will either result in invalid
or no decision recommendations, which in turn result in suboptimal or delayed
decisions decreasing competitiveness. Flaws can affect all perspectives of the pro-
cess model. In previous work, we focused on detecting flaws in the informational
perspective, i.e., incompatible data being provided to a service [14], and flaws
in the operational perspective, i.e., the selection of a service incompatible with
a decision maker’s requirements for decision support [16].

This paper focuses on the detection of flaws in the functional and/or behav-
ioral perspective of a PD-DSS process model. A process model with such kind
of flaws is shown in Fig. 3 based on the same use case presented in Fig. 2. The
process contains three flaws: First (and still fairly easy to spot), the network opti-
mization is executed twice although the optimization of an already optimized
network does not yield any additional improvements. While this is not an error
which would prevent execution of the PD-DSS at runtime, it adds an unnecessary
delay when using the DSS due to the time consumption when (re-)creating the

232 J. Kirchhoff and G. Engels

apply network
reduction

{ NW_RED }

optimize
network

{ NW_OPT }

visualize investment
recommendations

{ VIS_INV }

original
network

reduced
network

optimization
results (red.)

investment
recommendations

optimize
network

{ NW_OPT }

optimization
results (red.)

Fig. 3. Exemplary BPMN process for a PD-DSS with flaws.

underlying optimization model. Second, the initially performed network reduc-
tion is not reversed after optimization. As a result, the investment recommen-
dations which are later presented to the decision maker are likely not applicable
to the original network, as for instance the recommendation to replace cable #7
would actually correspond to the replacement of cables #2, #3 and #5 in the
original network which – unknown to the decision maker – were aggregated into
cable #7 during network reduction. Third, it was not considered that the result
of network optimization does not always describe investment recommendations.
Instead, the result can also document faults in the network topology which pre-
vented the optimization from computing optimal investment recommendations
(cf. gateway in Fig. 2).

The example demonstrates that functional and behavioral flaws in a process
model representing a PD-DSS are often specific to a concrete application domain.
They may affect (non-)consecutive activities as well as the conditional execution
and non-existence of activities. Flaws contained in the process model during
design time can manifest as both errors or “bad smell” during process execution
when using the PD-DSS, i.e., invalid or delayed decision recommendations, and
consequently should be avoided.

3 Related Work

We already discussed the relation between our previously summarized concept
of a decision support ecosystem and variants of decision support systems, digital
ecosystems and end-user programming in previous work (cf. [15]). In alignment
with the focus of this paper, we subsequently discuss approaches for the func-
tional and behavioral validation and verification of executable process models
describing a software application in the context of a service-oriented architecture.

A software application characterized by an executable process model which
describes the composition of multiple software and data services has previously
been referred to as process-driven application (PDA) [34]. Schneid et al. present
approaches for the detection of errors in PDAs with respect to the data exchange
between activities/services, either based on static analysis [31,33] or test gener-
ation [32]. We also describe approaches for static validation of dataflow correct-
ness [14] and service selection [16] with a specific focus on PD-DSS. In the app-

Anti-pattern Detection in Process-Driven Decision Support Systems 233

roach by Schiffner et al. [30], an automatic validation verifies message exchange
between activities, while other aspects of the process model are validated man-
ually among stakeholders. The time consumption of such manual validation
is obstructive for the quick creation of a tailored PD-DSS. In summary, the
discussed validation approaches can only automatically detect informational or
operational flaws, but no functional or behavioral flaws.

Since process model validation for PDAs is limited, we also briefly assess the
reusability of validation and verification approaches for non-executable business
process models. Many approaches are based on formal (mathematical) verifica-
tion methods such as automata, petri-nets and process algebras [22]. The com-
plexity of these approaches requires experts to define validation rules, which in
turn target generic, domain-agnostic flaws such as deadlock detection to maxi-
mize reusability. Consequently, they cannot be immediately reused for the detec-
tion of domain-specific functional and behavioral flaws. Process anti-patterns or
weakness patterns are often domain-specific and have emerged as a (graphical)
abstraction which can sometimes be mapped to formal approaches for auto-
mated validation [11]. These types of patterns “represent typical problems a
process may have together with ideas of how to address them” [4]. The taxon-
omy of anti-patterns created by Koschmider et al. [17] shows that anti-patterns
can detect flaws regarding the process model syntax, control-flow, understand-
ability, cooperation, data-flow, business rules and the modeled business process
itself. However, when reviewing the publications of the (sub-)categories “rule-
related defects”, “need for process improvements” and “compliance” which seem
closest to the goal of our approach, we quickly found limitations that prevent
reuse for our use case: Unlike our paper, many approaches do not focus on flaws
in the functional and/or behavioral perspective, but instead consider flaws in
dataflow [10], security requirements [26], natural language labels [19], process
inefficiencies with respect to complexity or resource consumption [5], process
adaptation [9], or exchange across processes [18]. Some papers require the defi-
nition of anti-patterns in a query language such as SQL [4] or GMQL [7,8] which
is unsuitable in the citizen development context of our DSE. Other approaches
either explicitly require a manual detection [12] or do not describe the auto-
mated detection approach [3]. Four other papers which are listed by Koschmider
et al. [17] for the selected categories but are not discussed here present collections
of anti-patterns but no (automated) detection approaches.

4 Solution Requirements

The subsequently presented requirements for an approach to detect functional
and behavioral flaws in PD-DSS were identified based on experience in a research
project for energy distribution network planning [13] and the review of related
work (cf. Sect. 3). The requirements are grouped into two categories: Detec-
tion requirements (Sect. 4.1) focus on expressiveness required to detect flaws in
PD-DSS process models, while integration requirements (Sect. 4.2) focus on the
integration of our approach with our DSE concept (cf. Sect. 2.1).

234 J. Kirchhoff and G. Engels

4.1 Detection Requirements

We define requirements D1–D4 for the functional capabilities of the detection
approach with illustrating examples referring to Sect. 2.2.

D1 – (Non-)Consecutiveness. Errors involving multiple activities must
consider the sequential flow between activities. In the simplest case, an activity
immediately follows another activity, e.g., the consecutive network optimization
in Fig. 3. However, other activities may happen in between activities involved in
the flaw. In example shown in Fig. 2, the network reduction just must be reversed,
but other activities such as network optimization will happen in between.

D2 – Conditionality. A BPMN process model supports the conditional
execution of activities, in particular using gateways and/or events. Consequently,
it must also be possible to consider conditional activity execution during the
definition of flaws, e.g., to ensure that different activities are performed based
on the optimization results (cf. Fig. 2). The conditional execution of activities
also implies multiple “execution paths” throughout the process model. Although
flaws may only be present in one of those paths, a single flawed path can already
limit the usefulness of the corresponding PD-DSS at runtime.

D3 – Missing Elements. A flaw may not only be characterized by the
existence of elements in the model, but also by the non-existence of elements.
In this case, “elements” may refer to activities, gateways, events and flows. For
instance with respect to Fig. 3, the reversal of a previously performed network
reduction or the conditional check of optimization results are missing.

D4 – Generalization. Some flaws can be generalized to multiple ser-
vices/activities. For instance, the double optimization in Fig. 3 should also be
avoided for network reduction and visualization of investment recommendations.
For this purpose, it should be possible to match arbitrary activities if desired. As
the “redundant invocation” example suggests, it might be necessary to identify
the matched activity/service across the remainder of the process model, e.g., to
ensure that two consecutive activities are implemented using the same service.

4.2 Integration Requirements

We define requirements I1–I4 for the integration of the error detection approach
in our proposed decision support ecosystem (DSE) concept (cf. Sect. 2.1):

I1 – Adaptability. Since our proposed DSE concept is agnostic of a concrete
application domain, the detection approach should also work for arbitrary appli-
cation domains. Within a concrete application domain, the approach should be
extensible to detect newly discovered flaws, acknowledging the continuous knowl-
edge gain in PD-DSS composition. Lastly, the detection approach should also
consider concrete preferences of a PD-DSS modeler, i.e., a modeler may disagree
with certain best practices and therefore prefer to ignore certain flaws.

I2 – Expert Definition. Our proposed DSE concept strives for citizen
development, i.e., the development of PD-DSS by decision makers and domain
experts without programming skills. Consequently, these stakeholders should
also be able to define flaws to be detected in a process model representing a

Anti-pattern Detection in Process-Driven Decision Support Systems 235

PD-DSS. As an additional benefit, stakeholders should be able to use a familiar
notation for the definition of these errors to minimize upfront training.

I3 – Traceability. The overall goal of the detection approach is the improve-
ment of a PD-DSS process model created by a DSE participant. Consequently,
instead of simply reporting that a flaw was discovered, it is instead necessary
to report which flaw was found and where in the process model it is located
in order to fix it quickly. For additional comprehensiveness, it is beneficial to
explain why the error is considered detrimental and how it can be fixed.

I4 – Continuous Feedback. The approach should enable continuous feed-
back – ideally whenever the PD-DSS modeler edits the process model. This
ensures that a flaw is detected early and subsequent “follow-up” flaws are
avoided. The ability to provide continuous feedback requires automatic detection
of flaws with a sufficient speed. However, it is hard to further quantify the speed
requirement as the detection runtime is influenced by the size of the process
model and the collection documenting potential flaws, as well as the execution
hardware.

5 Anti-pattern Detection in PD-DSS

Our solution approach to detect functional and behavioral flaws in PD-DSS is
based on visually describing flaws as process anti-patterns which can be identified
in the process model representing a PD-DSS via graph matching. Considering
our discussion of related work in Sect. 3, the motivation to use anti-patterns is
twofold: First, anti-patterns align with our use case of PD-DSS improvement as
they not only document flaws of a process model, but are usually also accompa-
nied with a description of how to address the flaw. Second, (visual) anti-patterns
provide an abstraction which enables any domain expert to describe composition
flaws which benefits the collaboration aspect of our proposed DSE (cf. Sect. 2.1).

The following subsections explain our solution architecture (Sect. 5.1), the
visual definition of anti-patterns (Sect. 5.2), and the translation of (anti-pattern)
process models into graph database queries to identify flaws (Sect. 5.3).

5.1 Solution Architecture

Figure 4 presents an architecture for the integration of our anti-pattern based
detection approach into our DSE concept. Domain experts use the anti-pattern
definition application to define an anti-pattern which is stored in the anti-
pattern repository. PD-DSS engineers use the PD-DSS composition application
(cf. Sect. 2.1) to define a composition of decision support services as a process
model. PD-DSS engineers also use the anti-pattern selection application to select
the anti-patterns they want to check their process model for, including a sever-
ity level for each anti-pattern of error, warning, etc. The resulting model and
selected anti-patterns are forwarded to the PD-DSS validation service which
checks whether the anti-patterns are present in the process model. For this
purpose, the validation service’s converter module initially converts the process

236 J. Kirchhoff and G. Engels

PD-DSS Engineer

PD-DSS
Modeling

Application

Anti-Pattern
Selection

Application

Anti-Pattern
Definition

Application
Domain Expert

Process Model

Anti-Pattern

Anti-Pattern
Selection

PD-DSS Validation Service

Anti-Pattern
Repository

Anti-Patterns

Converter
Module

Graph Database

Matcher
Module

Anti-Patterns

Feedback

Model Graph

Query Result

Appl. / Svc.

Module

Dataflow

Data

Interaction

Legend:

DB

Fig. 4. Proposed architecture for flaw detection.

model into a graph representation which is stored in a graph database. Subse-
quently, each anti-pattern – which was translated into a database query during
its initial definition with the anti-pattern definition application – can be queried
against the graph database to check if the anti-pattern is contained in the pro-
cess model. This is done iteratively by the matcher module which also aggregates
and transforms the database results in a feedback format which is shown to the
PD-DSS engineer via the PD-DSS modeling application to highlight discovered
anti-patterns, i.e., flaws in the PD-DSS composition.

The described flow through the architecture can be viewed as iterative, i.e.,
whenever the PD-DSS engineer makes changes to the process model, the PD-
DSS validation service can check the (intermediate) model for the existence of
anti-patterns and provide feedback to the PD-DSS engineer. The anti-pattern
selection application can be omitted if all anti-patterns should always apply
with the same severity.

5.2 Anti-pattern Definition

Following the recommendations extracted by Koschmider et al. [17], our anti-
pattern definition consists of (1) a human-readable name for easier recognition,
(2) a visual specification of the anti-pattern as a partial process model, (3) the
reason for defining the anti-pattern to support acceptance and comprehensive-
ness, and (4) a natural language description of how to resolve the anti-pattern

Anti-pattern Detection in Process-Driven Decision Support Systems 237

{ <SERVICE> } { @<Placeholder> }

// [l..u]X X // [l..u]

... ...(a) (c)

(e)

(b) (d)

(h)(f) (i)(g) condition

Fig. 5. (Extended) BPMN elements to model anti-patterns.

{ @S } { @S }

(a) { NW_OPT } { @ }

(b)

{ NW_RED } { NW_RR }(c)
X //

{ NW_OPT }(d) { VIS_TOP }//

incorrect
topology

//

Fig. 6. Exemplary anti-patterns related to PD-DSS process models of Sect. 2.

to quickly improve the process model. Additionally, we consider (5) a default
severity level, e.g., error or warning. This information is specified by the anti-
pattern author during definition, although the severity level can be overwritten
by the DSS modeler during anti-pattern selection (cf. Sect. 5.1).

We use a visual yet formalized notation to support both anti-pattern defini-
tion by non-developers as well as a subsequent automatic anti-pattern detection.
Since we already use BPMN for the definition of PD-DSS process models, we
base our visual anti-pattern specification on BPMN-Q, an already established
visual query language for BPMN process models [1]. We nevertheless explain
all supported elements for anti-pattern specification as we slightly deviate from
BPMN-Q to better support our use case of detecting flaws in PD-DSS.

All elements available for anti-pattern definition are shown in Fig. 5. They
include (a) arbitrary events, (b) arbitrary gateways, (c) activities matching a spe-
cific service such as NW OPT, (d) a named or unnamed placeholder (always) match-
ing a concrete but arbitrary activity, (e) a sequential flow, (f) a non-existing
sequential flow, (g) a condition to augment (e) or (f), (h) a non-sequential flow
(“sometime later”), optionally with a minimum of l and a maximum number of
u nodes in between, and (i) a non-existing non-sequential flow.

Figure 6 shows the application of the elements to specify anti-patterns based
on the examples discussed in Sect. 2. In natural language, they can be described
as (a) “No consideration of different optimization outputs”, (b) “Consecutive
redundant activities”, (c) “Missing reversal of a network reduction”, and (d)
“Relying on the network optimization to detect topology faults” (because a spe-
cialized service may be faster or more precise than the optimization heuristic).

5.3 Translation to Graph Database

We translate the original process model into a graph representation suitable
for storage in a graph database, and anti-patterns into queries which can be
run against the database. Using a graph database is motivated by the fact that

238 J. Kirchhoff and G. Engels

a process model (and consequently the anti-patterns) already correspond to a
graph [8]. This reduces transformation effort and could potentially result in
faster query execution compared to other database types. Additionally, the cho-
sen graph database Neo4j 1 provides enterprise-grade robustness and is freely
available while we were unable to quickly find a BPMN-Q compatible toolchain.

Translation “Process Model to Graph”. Each activity, gateway and event
is translated into a node in the graph. The type (ACTIVITY, GATEWAY, EVENT)
and variant (e.g., EXCLUSIVE or PARALLEL for gateways and START or EXCEPTION
for events) of the element is preserved using labels. For activities, the variant
corresponds to the implementing service, e.g., NW OPT. Additionally, the ID and
name of the element in the original process model are recorded in the graph
for traceability. An edge is inserted between two nodes if a sequential flow exists
between the two elements in the process model. For conditional flows, a condition
label documents the condition associated with the flow. Elements are inserted
using CREATE queries expressed in Cypher, Neo4j ’s query and graph manipulation
language. We refer to Sect. 6 for exemplary Cypher queries for graph creation.

Translation “Anti-pattern to Query”. Since anti-patterns are partial pro-
cess models, translating an anti-pattern into a graph query fundamentally follows
the same translation concept previously applied for the process model. Addition-
ally, we must consider the elements introduced in Fig. 5. We describe their trans-
lation in Table 1 with respect to Cypher ’s fundamental query structure MATCH
p=... WHERE ... RETURN p which matches a path p containing the specified
nodes and fulfilling the specified conditions. Elements (a) to (d) match nodes
in the graph. Within parenthesis, a variable (e.g., n) identifies a matched node
while labels (e.g., ACTIVITY) are separated by a colon. We use two expressions
which must be replaced for a concrete element, i.e., <SERVICE> with the name
of the service implementing the activity and <VARIANT> with a gateway/event
variant (cf. process model transformation). For activity placeholders (d), the
service label is omitted and a condition is inserted which ensures the equality of
implementing services in case of named placeholders. Elements (e) to (i) focus
on edges between nodes which are fundamentally expressed as -[]->. Within
the square parenthesis, a variable name or repeatability can be specified. Due to
the augmentation aspect of conditions, (g) does not introduce a match clause.
For missing edges (f) & (i), a (non-consecutive) path to the end event should be
included in the anti-pattern to return the path where the node is missing instead
of the starting node only. Potentially missing activities are optionally matched.

Given a complete anti-pattern to translate into a query, each edge is traversed
and the MATCH and WHERE-statements of the associated elements as per Table 1
are collected. During this traversal, duplicate node matches are avoided and
unique variable names are ensured using global counters (instead of the generic
n,m,p,r in Table 1). Furthermore, nodes using named placeholders are tracked.

1 https://neo4j.com/.

https://neo4j.com/

Anti-pattern Detection in Process-Driven Decision Support Systems 239

Table 1. Translation of anti-pattern elements of Fig. 5 to partial Cypher queries.

Figure 5 MATCH WHERE

(a) (n:<VARIANT>:EVENT)

(b) (n:<VARIANT>:GATEWAY)

(c) (n:<SERVICE>:ACTIVITY)

(d) (n:ACTIVITY) (m:ACTIVITY) labels(n)=labels(m)

(e) p=(n)-[r]->(m)

(f) NOT exists((n)-[r]->(m))

(g) r.condition="..."

(h) p=(n)-[*<l>..<u>]->(m)

(i) NOT exists((n)-[*<l>..<u>]->(m))

After the anti-pattern has been traversed, the MATCH-statements are sorted to
ensure that nodes are matched before the edges they are involved in. Additional
WHERE-statements are added for ensuring placeholder equality which cannot be
done during edge traversal because placeholder activities may not immediately
follow each other. MATCH and WHERE-statements are concatenated using a logical
AND for WHERE-statements, and all matched paths variables are RETURNed. Again,
we refer to Sect. 6 for exemplary Cypher queries.

6 Demonstration and Discussion

We show the technical feasibility of our anti-pattern detection approach with
a publicly available demonstration2. We prototypically implemented the trans-
lation of anti-patterns to Neo4j ’s Cypher queries and applied it in the exam-
ple application domain of energy distribution network planning. Many exam-
ples from the demonstration have already been utilized to visualize concepts
explained in the paper, e.g., Figs. 2, 3 and 6. Interested readers may consult the
implementation for additional details such as the resulting Cypher queries. Based
on the demonstration and the explanations throughout the paper, we conclude
that our approach addresses the requirements presented in Sect. 4 as follows:

The detection requirements D1–D4 are primarily addressed by the anti-
pattern elements shown in Fig. 5. In particular, D1 – (Non-)Consecutiveness
is addressed with elements (e) to (i), D2 – Conditionality with elements (b) and
(g), D3 – Missing Elements with elements (f) and (i), and D4 – Generalization
with element (d). A sufficient expressiveness of these elements in anti-pattern
construction was confirmed throughout the demonstration using our prototypical
implementation based on Neo4j. However, at least to some extent, these require-
ments were derived from our experience in a particular application domain and
additional detection functionality may be needed in other domains.

2 https://github.com/krchf/process-graph-antipattern-detection.

https://github.com/krchf/process-graph-antipattern-detection

240 J. Kirchhoff and G. Engels

The integration requirements I1–I4 are primarily addressed by the solution
architecture discussed in Sect. 5.1. Extensibility required as part of I1 – Adapt-
ability is provided by the anti-pattern repository filled by domain experts using
the anti-pattern definition application (which also addresses I2 – Expert Defini-
tion by utilizing the graphical anti-pattern notation of Sect. 5.2). Preferences of
PD-DSS engineers are considered via the anti-pattern selection application. Fur-
thermore, the architecture can be instantiated in arbitrary application domains.
For I3 – Traceability, paths matching an anti-pattern can be translated to parts
of the original process model. I4 – Continuous Feedback is primarily addressed
by the repeated, automatic matching of anti-patterns. In our prototypical imple-
mentation, the uncached queries representing anti-patterns seldomly exceeded
15ms using Neo4j -Docker on a 2018 laptop. However, we found anti-patterns
including a missing flow between activities to take significantly longer, poten-
tially exceeding 100ms. Nevertheless, all subsequent queries usually completed
in less than 3ms, most likely due to caching. We believe the utilization of caching
is reasonable as process model changes do not require the re-generation of the
whole graph but only updates for affected elements. Furthermore, queries could
be optimized by combining node and edge matches as discussed in the prototyp-
ical implementation. While we can provide measurements for I4 – Continuous
Feedback, we acknowledge that other requirements call for additional studies,
e.g., with domain experts to evaluate I2 – Expert Definition or case studies in
other application domains to evaluate requirement I1 – Adaptability.

7 Summary and Future Work

We presented an approach for the detection of functional and behavioral flaws
in process models describing a process-driven decision support system as com-
position of software-based decision support services. Our approach is based on
the visual definition of flaws as process anti-patterns which can be automatically
detected in the original process model via graph matching. We furthermore pre-
sented an architecture to integrate our approach into a digital ecosystem for the
collaborative creation of PD-DSS. The technical feasibility of the approach was
demonstrated in the context of energy distribution network planning. In addi-
tion to the already discussed extensions, future work could adapt the approach
to support automatic anti-pattern fixes based on graph transformations (e.g., to
automatically remove redundant activities), exceptions to anti-patterns under
certain conditions, or full BPMN-Q compatibility.

References

1. Awad, A.: BPMN-Q: a language to query business processes. In: Enterprise Mod-
elling and Information Systems Architectures - Concepts and Applications, pp.
115–128. Gesellschaft für Informatik e. V. (2007)

Anti-pattern Detection in Process-Driven Decision Support Systems 241

2. Awad, A., Decker, G., Lohmann, N.: Diagnosing and repairing data anomalies in
process models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009.
LNBIP, vol. 43, pp. 5–16. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-12186-9 2

3. Becker, J., Bergener, P., Räckers, M., Weiß, B., Winkelmann, A.: Pattern-based
semi-automatic analysis of weaknesses in semantic business process models in the
banking sector. In: ECIS 2010 Proceedings (2010)

4. Becker, J., Bergener, P., Breuker, D., Raeckers, M.: An empirical assessment of
the usefulness of weakness patterns in business process redesign. In: ECIS 2012
Proceedings (2012)

5. Becker, J., Weiß, B., Winkelmann, A.: Automatic identification of structural pro-
cess weaknesses - experiences with semantic business process modeling in the finan-
cial sector. In: Wirtschaftsinformatik Proceedings 2011, pp. 787–807 (2011)

6. Bennett, N., Lemoine, G.J.: What a difference a word makes: understanding threats
to performance in a VUCA world. Bus. Horiz. 57(3), 311–317 (2014)

7. Bergener, P., Delfmann, P., Weiss, B., Winkelmann, A.: Detecting potential weak-
nesses in business processes. Bus. Process. Manag. J. 21(1), 25–54 (2015)

8. Delfmann, P., Steinhorst, M., Dietrich, H.A., Becker, J.: The generic model query
language GMQL - conceptual specification, implementation, and runtime evalua-
tion. Inf. Syst. 47, 129–177 (2015)

9. Döhring, M., Heublein, S.: Anomalies in rule-adapted workflows - a taxonomy and
solutions for vBPMN. In: 2012 16th European Conference on Software Maintenance
and Reengineering, pp. 117–126 (2012)

10. Eleftheriou, I., Embury, S.M., Brass, A.: Data journey modelling: predicting risk
for IT developments. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016.
LNBIP, vol. 267, pp. 72–86. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-48393-1 6

11. Förster, A., Engels, G., Schattkowsky, T., Van Der Straeten, R.: Verification of
business process quality constraints based on visual process patterns. In: First Joint
IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering (TASE
2007), pp. 197–208 (2007)

12. Held, M., Blochinger, W.: Structured collaborative workflow design. Futur. Gener.
Comput. Syst. 25(6), 638–653 (2009)

13. Kirchhoff, J., Burmeister, S.C., Weskamp, C., Engels, G.: Towards a decision sup-
port system for cross-sectoral energy distribution network planning. In: Energy
Informatics and Electro Mobility ICT (2021)

14. Kirchhoff, J., Gottschalk, S., Engels, G.: Detecting data incompatibilities in
process-driven decision support systems. In: Shishkov, B. (ed.) BMSD 2022.
LNBIP, vol. 453, pp. 89–103. Springer, Heidelberg (2022). https://doi.org/10.1007/
978-3-031-11510-3 6

15. Kirchhoff, J., Weskamp, C., Engels, G.: Decision support ecosystems: definition and
platform architecture. In: Cabral Seixas Costa, A.P., Papathanasiou, J., Jayaw-
ickrama, U., Kamissoko, D. (eds.) ICDSST 2022. LNBIP, vol. 447, pp. 97–110.
Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-06530-9 8

16. Kirchhoff, J., Weskamp, C., Engels, G.: Requirements-based composition of tai-
lored decision support systems. In: Bernhaupt, R., Ardito, C., Sauer, S. (eds.)
Human-Centered Software Engineering, pp. 150–162. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-14785-2 10

17. Koschmider, A., Laue, R., Fellmann, M.: Business process model anti-patterns: a
bibliography and taxonomy of published work. In: Proceedings of the 27th Euro-
pean Conference on Information Systems (ECIS) (2019)

https://doi.org/10.1007/978-3-642-12186-9_2
https://doi.org/10.1007/978-3-642-12186-9_2
https://doi.org/10.1007/978-3-319-48393-1_6
https://doi.org/10.1007/978-3-319-48393-1_6
https://doi.org/10.1007/978-3-031-11510-3_6
https://doi.org/10.1007/978-3-031-11510-3_6
https://doi.org/10.1007/978-3-031-06530-9_8
https://doi.org/10.1007/978-3-031-14785-2_10

242 J. Kirchhoff and G. Engels

18. Kurniawan, T.A., Ghose, A.K., Lê, L.-S.: Resolving violations in inter-process rela-
tionships in business process ecosystems. In: Ghose, A., et al. (eds.) ICSOC 2012.
LNCS, vol. 7759, pp. 332–343. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37804-1 34

19. Laue, R., Koop, W., Gruhn, V.: Indicators for open issues in business process
models. In: Daneva, M., Pastor, O. (eds.) REFSQ 2016. LNCS, vol. 9619, pp.
102–116. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30282-9 7

20. Lohmann, N., Nyolt, M.: Artifact-centric modeling using BPMN. In: Pallis, G.,
et al. (eds.) ICSOC 2011. LNCS, vol. 7221, pp. 54–65. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31875-7 7

21. Mack, O., Khare, A.: Perspectives on a VUCA world. In: Mack, O., Khare, A.,
Krämer, A., Burgartz, T. (eds.) Managing in a VUCA World, pp. 3–19. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-16889-0 1

22. Morimoto, S.: A survey of formal verification for business process modeling. In:
Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008. LNCS,
vol. 5102, pp. 514–522. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-69387-1 58

23. Mustafin, N., Kopylov, P., Ponomarev, A.: Knowledge-based automated service
composition for decision support systems configuration. In: Silhavy, R., Silhavy,
P., Prokopova, Z. (eds.) CoMeSySo 2021. LNNS, vol. 231, pp. 780–788. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-90321-3 63

24. Object Management Group: Business process model and notation (2014). https://
www.omg.org/spec/BPMN/. Accessed 21 June 2022

25. Parnell, G.S., Bresnick, T.A., Tani, S.N., Johnson, E.R.: Handbook of Decision
Analysis. Wiley, Hoboken (2013)

26. Ramadan, Q., Strüber, D., Salnitri, M., Riediger, V., Jürjens, J.: Detecting conflicts
between data-minimization and security requirements in business process models.
In: Pierantonio, A., Trujillo, S. (eds.) ECMFA 2018. LNCS, vol. 10890, pp. 179–198.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92997-2 12

27. Recker, J.: Opportunities and constraints: the current struggle with BPMN. Bus.
Process. Manag. J. 16(1), 181–201 (2010)

28. Sahay, A., Indamutsa, A., Di Ruscio, D., Pierantonio, A.: Supporting the under-
standing and comparison of low-code development platforms. In: 2020 46th Euromi-
cro Conference on Software Engineering and Advanced Applications (SEAA), pp.
171–178 (2020)

29. Savić, D.A., Bicik, J., Morley, M.S.: A DSS generator for multiobjective optimisa-
tion of spreadsheet-based models. Environ. Model. Softw. 26(5), 551–561 (2011)

30. Schiffner, S., Rothschädl, T., Meyer, N.: Towards a subject-oriented evolutionary
business information system. In: 18th International Enterprise Distributed Object
Computing Conference Workshops and Demonstrations, pp. 381–388 (2014)

31. Schneid, K., Kuchen, H., Thöne, S., Di Bernardo, S.: Uncovering data-flow anoma-
lies in BPMN-based process-driven applications. In: Proceedings of the 36th
Annual ACM Symposium on Applied Computing, SAC 2021, pp. 1504–1512. Asso-
ciation for Computing Machinery (2021)

32. Schneid, K., Stapper, L., Thöne, S., Kuchen, H.: Automated regression tests: a no-
code approach for BPMN-based process-driven applications. In: 2021 IEEE 25th
International Enterprise Distributed Object Computing Conference (EDOC), pp.
31–40 (2021)

33. Schneid, K., Usener, C.A., Thöne, S., Kuchen, H., Tophinke, C.: Static anal-
ysis of BPMN-based process-driven applications. In: Proceedings of the 34th

https://doi.org/10.1007/978-3-642-37804-1_34
https://doi.org/10.1007/978-3-642-37804-1_34
https://doi.org/10.1007/978-3-319-30282-9_7
https://doi.org/10.1007/978-3-642-31875-7_7
https://doi.org/10.1007/978-3-319-16889-0_1
https://doi.org/10.1007/978-3-540-69387-1_58
https://doi.org/10.1007/978-3-540-69387-1_58
https://doi.org/10.1007/978-3-030-90321-3_63
https://www.omg.org/spec/BPMN/
https://www.omg.org/spec/BPMN/
https://doi.org/10.1007/978-3-319-92997-2_12

Anti-pattern Detection in Process-Driven Decision Support Systems 243

ACM/SIGAPP Symposium on Applied Computing, SAC 2019, pp. 66–74. Associ-
ation for Computing Machinery (2019)

34. Stiehl, V.: Definition of process-driven applications. In: Stiehl, V. (ed.) Process-
Driven Applications with BPMN, pp. 13–41. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-07218-0 2

35. Sun, S.X., Zhao, J.L., Nunamaker, J.F., Sheng, O.R.L.: Formulating the data-flow
perspective for business process management. Inf. Syst. Res. 17(4), 374–391 (2006)

https://doi.org/10.1007/978-3-319-07218-0_2
https://doi.org/10.1007/978-3-319-07218-0_2

	Anti-pattern Detection in Process-Driven Decision Support Systems
	1 Introduction
	2 Background: Process-Driven Decision Support Systems
	2.1 Decision Support Ecosystems for PD-DSS Creation
	2.2 PD-DSS: DSS Specification Using Process Models
	2.3 Modeling Assistance to Reduce PD-DSS Flaws

	3 Related Work
	4 Solution Requirements
	4.1 Detection Requirements
	4.2 Integration Requirements

	5 Anti-pattern Detection in PD-DSS
	5.1 Solution Architecture
	5.2 Anti-pattern Definition
	5.3 Translation to Graph Database

	6 Demonstration and Discussion
	7 Summary and Future Work
	References

