
315

Chapter 16
Landslide Susceptibility Mapping Using 
Supervised Learning Methods – Case 
Study: Southwestern Colombia

N. A. Correa-Muñoz, L. J. Martinez-Martinez, and C. A. Murillo-Feo

Abstract  Landslides are among the more severe geological hazards that threaten 
and influence infrastructure stability in populated areas. Landslide susceptibility is 
defined as the spatial distribution of favourable conditions for future landslide 
events. This research aimed to integrate explanatory variables, such as geo-
morphometric, soil properties, and climate, into a random forest (RF) analysis and 
logistic regression (LR) to identify areas susceptible to landslides. Landslide inven-
tory data were used to develop prediction models and validate them. The prediction 
of landslide events with the LR had an area under the curve (AUC) of 0.91, and the 
more important predicting factors were road distance, soil silt, soil sand and soil 
clay contents, elevation, soil drainage, TRI, landscape, soil depth, and slope. The 
landslide type prediction based on the RF analysis had an overall accuracy of 72%, 
with elevation, soil silt content, slope, TRI, landscape unit, soil clay and sand con-
tents, and roads distance as the more important predictors.

Keywords  Landslide · Terrain analysis · DEM · Soil survey · Random forest · 
Logistic regression
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16.1 � Introduction

Landslide hazard maps represent susceptibility, which is the likelihood of a poten-
tially damaging landslide occurring within a given area (Department of Regional 
Development and Environment 1991). The purpose of susceptibility studies is to 
identify areas where landslides can initiate and propagate (Guzzetti et  al. 2005), 
based on a hazard and risk evaluation. Landslides can occur because of the interac-
tion of natural and anthropic factors and cause economic and environmental damage 
and human losses. The Servicio Geológico Colombiano (2017) published a hazard 
map for landslides, 1:100,000 scale, and concluded that approximately 4% of the 
country has an extremely high hazard, 20% has a high hazard, 22% has a medium 
hazard, and 50% has low susceptibility. According to Suárez (1998), tropical moun-
tainous areas are very susceptible to mass movements because of the interaction of 
slope, seismicity, rock type, and heavy rain, which are crucial factors for land-
slide events.

Different landslide-conditioning factors have been identified and can be used to 
establish landslide susceptibility assessments, including rainfall, drainage and soil 
properties (Metz and Bear-Crozier 2014), landcover (Shu et  al. 2019) lithology, 
lineaments, geomorphology, soil type, and depth, slope angle, slope aspect, curva-
ture, altitude, properties of the lithological material, land use patterns, and drainage 
networks (Youssef and Pourghasemi 2021), human activities (Achour and 
Pourghasemi 2020), and soil moisture (Ray et al. 2010). According to Gruber et al. 
(2009), mass movements are strongly controlled by land-surface form. A landslide 
process can be triggered by heavy and prolonged rainfall, cutting into slopes for the 
construction of roads, mining excavation without adequate preventive management, 
volcanoes, land-use change, and deforestation (Guzzetti et al. 2005).

The assessment of landslide susceptibility at different scales can be accom-
plished with statistical methods, heuristic approaches, physical models, and spatial 
models. For mapping landslide susceptibility, various methods have been developed 
that involve the identification of causative factors and the spatial analysis of interac-
tions, usually supported by remote sensing data. For detailed landslide vulnerability 
mapping, Yuvaraj and Dolui (2021) used frequency ratio and binary logistic regres-
sion, Yu et  al. (2021) studied the influence of rock and soil factors on landslide 
susceptibility mapping with LR modelling, an artificial neural network and support 
vector machine, Guo et al. (2021) presented a machine learning approach based on 
the C5.0 decision tree model and the K-means cluster algorithm to produce a 
regional landslide susceptibility map, Zhou et al. (2021) developed a hybrid model 
to optimize the factors and enhance the predictive ability of landslide susceptibility 
modelling, and (S. Lee et al. 2003) carried out a landslide susceptibility analysis 
using an artificial neural network, weights of evidence (Q. Wang et al. 2019), and 
LR (Dahoua et al. 2017).

The landslide inventory for Colombia indicates a high occurrence, in mountain-
ous area, and, although there are various statistical, physical, and heuristic models 
to determine susceptibility, not all of them apply to every area since several factors 
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that affect landslides have a local behaviour that must be analyzed. On the other 
hand, it is important to have methods that use information that is more commonly 
available in various countries, such as soil studies, digital elevation models, and 
climate data. This research aimed to evaluate the use of supervised learning meth-
ods for mapping susceptibility to landslides in mountainous areas to generate infor-
mation for decisions in risk and hazard assessments, planning, infrastructure 
development, and promotion of economic activities.

16.2 � Materials and Method

16.2.1 � Study Area

The study area was in southwestern Colombia, specifically in Cauca (Fig. 16.1), 
within the coordinates 0°57'27.07" N, 77°19'48.75" W, and 2°15'57.60" N, 
76°04'33.53" W, in eleven municipalities covering 8488 km2. The climate is tropi-
cal, with an average annual rainfall of 2382 mm per year. The study area included 
the Cauca Boot, an area with important ecological and geological meaning since it 
includes the Santa Rosa link, which connects the Central and East mountainous 
ranges in Colombia, generating geographic knotting (Hubach 1982), and is a natural 
access to the Colombian Amazon region.

16.2.2 � Data Collection

A SRTM DEM with a spatial resolution of 1 arcsec was compared in terms of accu-
racy to a self-produced model using an interpolated 1:25,000 topographic digital 
map. The fill sinks algorithm (L. Wang and Liu 2006) was applied to identify and 
fill surface depressions in the DEM to prepare the data for the analysis. The accu-
racy assessment of the DEMs was performed using the DEMANAL software devel-
oped by Leibniz University (Jacobsen 2019).

The following parameters were obtained from the DEM with the software SAGA 
(Conrad et al. 2012): elevation as the primary data given by the DEM; slope defined 
as the tangent of a plane relative to the surface topography; the aspect, which refers 
to the direction of slope (Olaya 2009); curvature calculated based on second deriva-
tives for a topographic attribute that describes the convexity or concavity of a terrain 
surface (Romstad and Etzelmüller 2012); flow accumulation determined by accu-
mulating the weight for all cells that flow into each downslope cell (O’Callaghan 
and Mark 1984) and was derived with the Top-Down method in SAGA software, as 
described by (Szypuła 2017), topographic wetness index (TWI), calculated as a 
second-order derivative of the DEM and used as an indicator of water accumulation 
in an area of the landscape where water is likely to concentrate through runoff 
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Fig. 16.1  Location of the study area

(Quinn et al. 1991), or, as described by (Vijith 2019), is a parameter that describes 
the tendency of a cell to accumulate water, topographic ruggedness index (TRI) 
expresses the elevation difference between adjacent cells of a DEM (Shawn Riley 
et al. 1999), stream power index (SPI) measures the erosive power of flowing water 
based on slope and specific catchment area (Moore et al. 1991), LS factor slope 
length (LS) factor as used by the Universal Soil Loss Equation (USLE) (Böhner and 
Selige 2006), topographic position index (TPI) indicates the altitude of each data 
point evaluated against its neighbours, (Guisan et al. 1999), and a description of 
these landform elements found in (Pike et al. 2009).

The landscape units and soil properties sand, silt and clay contents, soil depth, 
drainage class, and soil moisture regime were obtained from the General Soil Survey 
of the Cauca Department, scale 1:100,000 (Instituto Geográfico Agustin Codazzi 
2009). Mean annual rainfall data were obtained from the Worldclim dataset (Fick 
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and Hijmans 2017), the landslide map of the study area was created with the national 
landslide inventory (SIMMA) (Servicio Geológico Colombiano 2021).

16.2.3 � Method

A flowchart about the overall steps followed by the landslide susceptibility mapping 
is in Fig. 16.2.

All the variables were resampled at a cell size of 100 m and combined in a mul-
tidimensional raster in QGIS. The statistics of the multidimensional image were 
re-built using ArcCatalog of ArcGIS 10.8. Then, the RF method was run using the 
script adapted from the NASA-ARSET webinar in 2019 for SAR applications. 
Next, the accuracy metrics, such as OOB estimate of error rate, confusion matrix, 
mean decrease accuracy, overall accuracy, kappa, users, and producers’ accuracy, 
were obtained.

For mapping susceptibility to landslides, a RF classification was applied using 
version 2021.09.1 of the R statistical software (RStudio, Inc.). The RF tree was built 
by training each decision tree (ntree) with a random subset of the predictor-variable 
(mtry) from the training dataset. The algorithm was applied with the training dataset 
of landslides to obtain the supervised classifier algorithm and validation dataset of 
landslides to assess the accuracy of the produced landslide classification map. The 
prediction model of the RF classifier only required the number of classification trees 

Fig. 16.2  Flowchart of the supervised learning method for landslide susceptibility mapping
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(1000) and the number of prediction variables (18). The proportion used in this 
study was 75:25, as in the study by (Pham et al. 2018).

To map the probability of landslides occurrence, a binomial LR was applied. 
This statistical method has been well documented in geomorphological studies and 
is one of the most widespread methods for developing prediction models in geomor-
phology when system properties are represented by a binary variable (Schoch et al. 
2018). The analysis was performed in the R software, and a training model was built 
using the ‘glm’ function with the binomial family. This model was assessed with the 
Chi-squared test, generated with 75% of the landslides inventory data and assessed 
with the remaining 25% of landslide inventory data using the area under the curve 
(AUC) as a validation metric of the prediction model (Huang and Zhao 2018).

16.3 � Results and Discussion

16.3.1 � SRTM DEM Accuracy Assessment

The standard deviation of the height was 11.58 m (Table 16.1), the bias was −2.3 m, 
and the standard deviation of the height without bias was 11.35 m. The normalized 
median absolute deviation (NMAD) related to bias-corrected height differences was 
10.4 m. The SZ was greater than the NMAD because of a higher percentage of more 
significant discrepancies. This result agrees with the findings of Mukul et al.(2015), 
who compared the IGS and SRTM heights with the SRTM-DEM data in forest 
areas. The accuracy assessment of the SRTM DEM indicated an appropriate data 
quality for a landslide analysis since the results were equivalent to a scale about of 
1:25 K, and the landslide analysis was done at a 1:100,000 scale.

16.3.2 � Landslide Inventory

Table 16.2 shows the results of the landslide inventory of the study area, and its 
location is in Fig. 16.1. Following the Varnes classification (Hungr et al. 2014), it 
was found that 52.8% corresponded to slides that are displacements of material 
downslope, and 26.4% fit to falls that involve a collapse of material from the steep-
est area and accumulation in the base of the slope. 15.2% were classified as flows 
that are movements of materials down a hill as a fluid, 4.8% were creeps, defined as 
a slow downslope movement of material, and 0.8% were topples, the forward rota-
tion and movement of material out of a slope.

Table 16.1  Results of the comparative of the 30 m SRTM DEM against 1:25 K topo-map DEM

Reference DEM 1:25K topo-DEM RMSZ (m) Bias (m) SZ without bias NMAD

DEM for analysis 30 m SRTM-DEM 11.583 -2.302 11.353 10.435
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Table 16.2  Classification of landslide inventory. (Adapted from Servicio Geológico 
Colombiano 2021)

Type
Frequency

Subtype
Frequency

Absolute Relative Absolute Relative

Falls 33 26.4% Rockfall 24 19.2%
Debris fall 6 4.8%
Earthfall 3 2.4%

Slides 66 52.8% Translational 46 36.8%
Rotational 9 7.2%
Planar 7 5.6%
Wedge 2 1.6%
Block slide 2 1.6%

Flows 19 15.2% Debris flow 7 5.6%
Mudflow 10 8.0%
By flow 1 0.8%
Earth flow 1 0.8%

Creeps 6 4.8% Soil creep 6 4.8%
Topples 1 0.8% Rock topples 1 0.8%
Total 125 100% 125 100%

Although the landslide distribution showed two geographically separated groups, 
the tendency of the mass movement distribution was preserved in each group. The 
dominant subtypes were translational debris (36.8%), rockfalls (19,2%), debris 
flows (5.6%) in the south-eastern zone, and mudflow (8%) in the north-western site. 
The landslide susceptibility analysis was developed using the type of movement for 
the RF method and the presence or absence of landslides as a binary dependent vari-
able in the LR model.

16.3.3 � Landslide Conditioning Factors

In this research, 18 landslide conditioning factors were selected based on literature 
review and the results of Colombian landslide inventory. A statistical summary of 
the distribution of each analyzed variable is in Table 16.3.

Elevations varied between 224 m.a.s.l. and 4158 m.a.s.l. (Fig. 16.3a) 26% of the 
area was below 1000 m.a.s.l, 33% was between 1000 and 2000 m.a.s.l., 29% was 
between 2000 and 3000, and 12% was over 3000 m.a.s.l.

The landscape units and its main characteristics are shown in Fig. 16.3f and in 
Table 16.4.A mountain landscape occupies 78% of the extension, hills represent 
11%, and an alluvial valley contains 9%, and plateau 2%. The mountain is charac-
terized by slopes greater than 30%, modelled by different geological phenomena 
associated with volcanic, structural, erosional, and depositional activity, which 
determines the current landscape characteristics. Most of the mountainous area was 
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Table 16.3  Statistics summary of the landslides conditioning factors

Layer Factor Unit Analysis Min Mean SD Max
CV 
(%)

1 Elevation m Morpho 224.0 1775.95 934.35 4157.85 53
2 Slope Degrees Morpho 0 16.72 10.51 75.74 63
3 Aspect Degrees Morpho 0.0004 187.77 101.09 360 54
4 Curvature Ordinal Morpho
5 Topographic 

position 
index

Ordinal Morpho

6 Terrain 
ruggedness 
index

None Morpho 0 22.52 14.05 406.30 62

7 Flow 
accumulation

Km2 Hydro 0.001 7.91 102.5 5148.68 1296

8 LS factor None Hydro 0 26.80 46.23 3973.30 173
9 Stream power 

index
None Hydro 0 5381.34 106425.39 20651448 1978

10 Topographic 
wetness 
index

None Hydro 2.99 7.94 2.78 23.79 35

11 Landscapes Category Geomorpho
12 Soil sand 

content
Percentage Pedology 24.5 52.83 7.35 77 14

13 Soil clay 
content

Percentage Pedology 5 20.4 10.61 47 52

14 Soil silt 
content

Percentage Pedology 12.5 26.18 6.18 37 24

15 Soil drainage Ordinal Pedology
16 Soil depth Ordinal Pedology
17 Soil moisture 

regime
Ordinal Pedology

18 Rainfall mm per 
year

Hydro 1320 2381.52 733 4705 31

Min minimum, SD standard deviation, Max maximum, CV coefficient of variation

developed on Cretaceous and Cenozoic sedimentary or on volcano-sedimentary and 
plutonic igneous rocks and is covered by volcanic ash. The hilly landscape is made 
up of areas with heights of less than 300 m with a slope between 7 and 12% although 
they can reach 50% locally, developed on Tertiary sedimentary rocks. The alluvial 
valley corresponds to flat areas formed by sediments transported by rivers and pla-
teau, which are flat areas located at the base of the hills. The dominant soils in the 
area are well-drained, deep to moderately deep, with loam, clay loam, sandy clay 
loam or sandy clay texture (Fig. 16.3d, e), and udic moisture regime. To a lesser 
extent, there are superficial or poorly drained soils or with an ustic or aquic mois-
ture regime.

N. A. Correa-Muñoz et al.



323

Fig. 16.3  Some factors influencing the landslide susceptibility
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Table 16.4  Main characteristics of the landscape units

Landscape

Mean annual 
temperature (°C), 
mean annual 
rainfall (mm) Relief type Lithology

Number of 
mapping 
unit

Volcanic erosional 
plateau

18-24; 1000–2000 Plateau Igneous rocks 
alternating with 
sedimentary 
materials

1

Erosional hill 18-24; 2000–4000 Hills Volcanic ash layers 
over igneous rocks

3

18-24; 1000–2000 Hills Sedimentary rocks 4
>24; 2000–4000 Hills Metamorphic and 

sedimentary rocks
5

>24; 1000–2000 Small valleys 
and hills

Colluvial-alluvial 
deposits, igneous 
rocks

6

Glacio-volcanic 
mountain

<12; 2000–4000 Summits Igneous rocks 7

Fluvio-volcanic 
mountain

<12; 2000–4000 Summit, 
depressions

Volcanic ashes, 
organic materials

8

Volcanic-structural-
erosional mountain

<12; 2000–4000 Summit, hills Volcanic ashes 9

Volcanic mountain 12-18; 2000–4000 Summit, glacis Volcanic ashes 10
Erosional-structural 
Mountain

18-24; 4000–8000 Summit, hills Metamorphic rocks, 
volcanic ashes

11

Fluvio-volcanic 
mountain

18-24; 4000–8000 Summit, little 
valleys

Igneous rocks, 
colluvial deposits, 
volcanic ash

12

Erosional-structural 
Mountain, gravity 
flow

18-24; 2000–4000 Summit, hills, 
glacis

Sedimentary rocks, 
volcanic ash, igneous 
rocks

13

Structural erosional 
mountain and 
fluvial-gravitational 
mountain

18-24; 1000–2000 Summit, glacis Volcanic ashes, 
metamorphic rocks

14

Erosional-structural 
Mountain

>24; 4000–8000 Summit, hills Igneous rocks, 
volcanic and 
metamorphic rocks

15

Erosional-structural 
Mountain and small 
valley

>24; 1000–2000 Summit, fan, 
small valleys, 
flood plain

Sedimentary rocks, 
colluvial-alluvial 
deposits, igneous 
rocks

16

Alluvial valley >24; 2000–4000 Terrace Alluvial deposits 17
>24; 1000–2000 Flood plain Alluvial deposits 18
>24; 1000–2000 Flood plain, 

terrace
Alluvial deposits 19

Adapted from IGAC (2009)
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The slope varied between 0° and 76.4° (Fig. 16.3b). A classification of the land-
scape by its slope indicated a flat area in 13.6% of the study area, sloping areas in 
68.3% of the extension, and steep areas with slopes greater than 30° in 18.1% of the 
zone. The slope aspect, indicating the flow-line direction, was distributed at 14.2% 
north-eastern, 31.4% south-eastern, 32.6% southwestern, and 21.8% north-western. 
The curvature plan indicated a concave surface in 48.7% of the area and a convex 
surface in 51.3% of the study area. The curvature profile indicated a concave form 
in 52.0% of the area and a convex form in 48.0% of the zone. The tangential curva-
ture was concave in 48.2% of the cases and convex in 51.8% of the area.

The terrain ruggedness index varied between 0 and 275 and classified 53.6% of 
the area as smooth terrain, 42.0% as rough terrain, and 4.4% as irregular. The flow 
accumulation indicated that 92.5% of the drainage proportion was less than 
0.47  km2; this accumulation reached 2163  km2. The road distance (Fig.  16.3c) 
shows areas contiguous to the roads and others located up to 50 km.

Slope length (LS) is a topographic parameter used in soil erosion. Its mean value 
was 38 with a positively skewed distribution, which means that 88% of the distribu-
tion was less than 42.6. Stream power index describes potential flow erosion; its 
distribution was highly positively skewed. The topographic wetness index had a 
light, positively skewed distribution where about 88% of the distribution had an 
index less than 8.5 or a moderate wetness index. Finally, rainfall ranged from 
1322 mm to 4705 mm per year, with a favourable bias distribution of 80.7% of the 
study area, less than 2584 mm per year.

16.3.4 � LR Model for Landslide Probability Occurrence

The LR method was used to predict the probability of landslide occurrence based on 
the presence or absence of landslide events as a binary dependent variable based on 
18 landslide conditioning factors as explanatory variables.

16.3.4.1 � Training Model

Table 16.5 shows the results of the generalized linear model developed with a R 
script software using the glm-function and the logit-family of the binomial method. 
As with RF, the model was developed with 75% of the landslide data and validated 
with the remaining 25%. The results showed that road distance, highly significant 
relationship with the occurrence of landslides and in the limit, at a significance level 
of 0.01 are elevation and slope. The above indicated that the probability to obtain 
the coefficient of the model with respect to the hypothesis the true coefficient is zero 
was low. The coefficients of the other conditioning factors were not significant dif-
ferent to 0 they had no effect on the probability of landslide occurrence.

The chi square test (Table 16.6) indicated that the variables road distance, soil 
sand content and slope had a highly statistically significant association between the 
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Table 16.5  Results of the logit function in the landslide susceptibility analysis

Coefficients Estimated coefficient Code Coefficients Estimated coefficient Code

Intercept -5.291e+00 ns
Clay content -6.159e-02 ns Silt content 2.380e-02 ns
Sand content -6.326e-02 ns Landscape -5.514e-02 ns
Roads Distance -5.039e-04 *** Soil depth 1.246e-01 ns
Drainage -6.352e-02 ns Slope 2.084e-01 *
Elevation -5.660e-04 * TRI 4.178e-02 ns

Significance: *** (p-value =0), *(p-value <0.01), ns: no significance

Table 16.6  Results of the Chi-square test of the prediction model of landslide susceptibility

Coefficients Deviance Code Coefficients Deviance Code

Null
Clay content 4.741 * Silt content 0.000
Sand content 54.469 *** Landscape 3.898 *
Roads Distance 187.748 *** Soil depth 0.381 ns
Drainage 0.033 ns Slope 17.477 ***
Elevation 1.316 ns TRI 0.193 ns

Significance: *** (p-value =0), ** (p-value < 0.001), *(p-value <0.01), ns: no significance

observed and estimated values, soil clay content, and landscape unit had statistically 
effect on the landslide prediction.

The probability of landslide occurrence map was prepared with the LR equation 
using map algebra in ESRI’s ArcMap v10.8 and reclassified with four classes with 
the quantile method (Fig. 16.4). The highest probability of occurrence was found 
near roads, the remaining area presents medium probability.

Additionally, the information library of the R software was applied to the train-
ing geodatabase to compute the weight of evidence and information value metrics. 
Distance to roads was the most important variable to explain the occurrence of 
landslides (Fig. 16.5), followed by TRI, soil silt, sand and clay content, elevation, 
soil drainage, TRI, and landscape type. The greater probability of occurrence of 
landslides in certain areas is related to natural factors such as edaphic, geomorpho-
metric and climatic that facilitate the occurrence of events and with the anthropic 
activities, in this case roads construction, which are the trigger that activates the 
landslide phenomena.

Table 16.7 shows the most significant importance (values > +1) of the bivariate 
method of the weight of evidence. A positive weight indicates a positive correlation 
between the presence of the predictable variable and landslides (Jaafari et al., 2015). 
The conditioning factors within this category were road distance between 0 and 
1000 m, soil sand content between 14.5% and 37%, soil drainage moderately well-
drained, elevation in the range 607 m to 850 m, soil silt content in the range 36% to 
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Fig. 16.4  Probability of landslide occurrence based on the LR method

46%, and soil clay content between 30.5% to 32, landscape units structural ero-
sional mountain, mainly in ridges and back-slopes other factor showed also posi-
tive values.

16.3.4.2 � Performance of the LR Model

The ROC curve and the AUC are standard measures for binary classifier perfor-
mance. The ROC plot (Fig. 16.6) was obtained by plotting the valid positive rate 
(TPR) against the false positive rate (FPR), while AUC is the area under the ROC 
curve. As a rule of thumb, a model with good predictive ability should have an AUC 
greater than 0.5. The AUC of the landslide susceptibility model with regression 
analysis was 0.91. An analysis of scaling land-surface variables for landslide detec-
tion obtained AUC values between 0.73 and 0.80 (Sîrbu et al. 2019). AUC values 
between 0.7 and 0.9 indicate a reasonable agreement between the predicted land-
slides and test landslides (Lee et al. 2018).
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Table 16.7  Weight of evidence of the variables and range of the category

Landslide conditioning factor Unit Area WOE IV Category of the variable

Road distance m 9.4% 2.11 1.43 0 to 1000
Soil sand content % 9.6% 1.26 0.30 14.5 to 37
Soil drainage Category 10.5% 1.25 0.32 2 to 3 (moderately well-drained)
Elevation m a.s.l. 10.0% 1.18 0.28 606.8 to 850
Landscape Category 10.3% 1.02 0.33 16 to 19
Soil silt content % 12.8$ 0.88 0.80 36 to 46
Soil clay content % 9.3% 0.84 0.48 30.5 to 32

Fig. 16.5  Importance the conditioning factors in the LR model

16.3.5 � Landslide Susceptibility Zoning Based on RF Analysis

16.3.5.1 � Training Model

To develop the predictive model of the landslide susceptibility the slides and falls 
types were selected since these were the more frequent events, and the 16 factors 
selected as the most relevant for the study area. From the inventory of landslides, 
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Table 16.8  Results of the accuracy RF classification of the landslides

Type of movement
Class accuracy
User Producer

Falls 56.0% 66.7%
Slides 85.7% 79.2%
Overall accuracy 75.7%

Fig. 16.6  ROC curve of the LR-landslide susceptibility model

75% were selected to generate the model, and the remaining 25% were used to vali-
date it. To guarantee the stability of the model, 1000 trees were used, as recom-
mended by Lagomarsino et al. (2017).

The overall classification accuracy of developed model (Table 16.8) was 75.7%, 
slides were the mass movements that were better classified with a user accuracy of 
85.7%, which means the percentage of landslides that were correctly classified as 
compared to the landslide inventory. The producer accuracy refers to the commis-
sion error, which was 79.2%. The falls and flows of mass movements had lower user 
and producer accuracy. The general accuracy depended on the frequency of land-
slide events, the more frequent the occurrence of a landslide type, the greater accu-
racy obtained in the prediction, consistent with other researches (Tansey et al. 2004).

Although the general accuracy was low, when the classification for each land-
slide type was analyzed, good prediction accuracy was found for the landslides that 
are more frequent in the study area. The analysis was based on existing data, which 
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Fig. 16.7  Mean Decrease Accuracy in the study area

is one of the main limitations since some, such as climate and geology, were very 
general for the scale of the study.

16.3.5.2 � Mean Decrease Accuracy (MDA)

The MDA was one of the outcomes of the RF analysis and indicated the degree of 
importance of each of the variables in the prediction. Figure 16.7 displays the MDA 
results, ranking the variables by importance. The more important variables in the RF 
prediction were elevation, soil silt content, slope, TRI, soil clay, landscape unit, soil 
sand content and roads distance. It was found that there was a relationship between 
some edaphic and geomorphometric characteristics with the presence of the main 
types of landslides. Most landslides were found in the structural erosional moun-
tain, in ridges and back-slopes, in loamy and sandy loam soils with a humid climate, 
and at an altitude between 300 and 1200 m asl.

16.3.5.3 � Accuracy of the Landslide Classification by the RF Method

The model assessment helped to evaluate the classifier performance for other data. 
Table 16.9 summarizes the accuracy metrics derived from the confusion matrixes, 
which compares the reference values with the predicted values.

The overall accuracy was 72% and indicated the percentage of landslide type 
correctly classified. When the accuracy of each class was evaluated, the slides had a 
better performance with 75% and 88.2% of user’s and producer’s accuracy, respec-
tively, while falls had low accuracy. The error of commission of slide classification 
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Table 16.9  Evaluation of the 
model classification 
performance

Type of movement
Class accuracy
User Producer

Falls 60.0% 37.5%
Slides 75.0% 88.2%
Overall accuracy 72.0%

was 25%, and the omission error was 11.8% for the classification model, differenti-
ating slides and non-slides for the study area.

According to Korup and Stolle (2014), predictive methods based on machine 
learning analysis achieve an overall success rate of 75–95%, these authors proposed 
doing more research on the selection of models, the model overfitting, and the effect 
of slope failure at a regional scale to improve predictions. In our case, another factor 
that influences the success of the predictions was the inventory of landslides, the 
relationship with the distance to the roads is sometimes due to that landslides were 
much more commonly recorded near roads (Stanley et al. 2020). The objective of 
our study was to evaluate predictive methods with data from the soil survey, geo-
morphometric parameters calculated from DEM and climate data available on the 
internet, however geology data were not included, and it could have effect on pre-
dictions. On the other hand, the rainfall data used had a spatial resolution of 900 m, 
which is exceptionally low compared to other data and therefore had no significant 
effect on the RF prediction.

The landslide classification map based on the results of the RF analysis (Fig. 16.8) 
shows the areas that meet the conditions required for the occurrence of the main 
landslide types and, therefore, are more likely to present this phenomenon. The 
classification showed that most of the area is susceptible to slides, and in less pro-
portion the area can be affected by falls.

16.4 � Conclusions

The probability of landslide events occurrence, estimated with LR, had an AUC of 
0.91, and the more important predicting factors were road distance, soil silt, sand 
and clay content, elevation, soil drainage, TRI, landscape, soil depth and 
TWI. Landslide occurrence is favour by natural factors, while anthropic activities 
like the construction of roads is the trigger that initiates the process of occurrence of 
landslides. The susceptibility of the study area to the occurrence of landslides type 
based on RF analysis had an overall accuracy of 72% with elevation, soil silt con-
tent, slope, TRI, landscape unit, soil clay and sand content, and road distance were 
the more important predictors.

The integration of the DEM as a data source with the results of the soil surveys 
using LR and RF made it possible to generate information with acceptable reliabil-
ity and level of detail for the susceptibility of mountain areas to landslides as a first 

16  Landslide Susceptibility Mapping Using Supervised Learning Methods – Case…



332

Fig. 16.8  RF classification of landslide type susceptibility areas

approximation for subsequent risks and hazard analyses. This is important consider-
ing that the required data is available for all of Colombia for applying more complex 
predictive models, where data availability and quality are limiting.

The distance to the roads was the factor that had the greatest incidence in the 
presence of landslides and in its distribution pattern. Consequently, it is also a factor 
that determines the probability of occurrence of landslides. Most of the study area 
has medium probability of occurrence but if roads are built it can change to high or 
very high probability.
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