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Chapter 11
Algorithms for Quantitative Pedology

D. E. Beaudette, J. Skovlin, A. G. Brown, P. Roudier, and S. M. Roecker

Abstract  The Algorithms for Quantitative Pedology (AQP) project consists of a 
suite of packages for the R programming language that simplify quantitative analy-
sis of soil profile data. The “aqp” package provides a vocabulary (functions and data 
structures) tailored to the complexity of soil profile information. The “soilDB” 
package provides interfaces to databases and web services, leveraging the “aqp” 
vocabulary. The “sharpshootR” package provides tools to assist with summary and 
visualization. Bridging the gap between pedometric theory and practice is central to 
the purpose of the AQP project. The AQP R packages have been extensively tested 
and documented, applied to projects involving hundreds of thousands of soil pro-
files, and integrated into widely used tools such as SoilWeb. These packages serve 
an important role in routine data analysis within the U.S. Department of Agriculture 
and in other soil survey programs worldwide.

Keywords  Geomorphology · Pedology · Soil survey · Soil data analysis · Data 
visualization

Supplementary information: Annotated R code used to create the figures and table within this 
chapter are posted at https://github.com/ncss-tech/geopedology-chapter. The following package 
versions were used during the preparation of this content: aqp 1.42, soilDB 2.6.14, and sharp-
shootR 1.9.1.
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11.1 � Introduction

Soil survey data are a rich source of soil parent material information and observa-
tions relating to the distribution and extent of surficial deposits and geologic stratig-
raphy. The overlap of the domains of pedology and geomorphology, referred to as 
geopedology (Zinck 2016), emphasizes the need for clear relationships between soil 
parent materials and geomorphic concepts. Soil is the dynamic interface connecting 
the biosphere and the lithosphere (Wysocki et al. 2005). Soil provides a medium and 
conduit for water storage and nutrient flow. The development of soil properties is 
largely determined by the inherent nature of surficial deposits or soil parent material 
from which they originate. While soil survey has historically been grounded in a 
soil-landscape paradigm (Hudson 1992), geopedologic concepts aim to further inte-
grate geomorphic concepts with soil survey information for broader application 
within the earth science community.

Data alone cannot support decisions, generate useful conclusions, or convey 
embedded relationships without thoughtful analysis and processing. The wide array 
of data sources, formats, and conventions (even within a single institution) can fur-
ther complicate efforts to synthesize soil information from soil data sources. Growth 
in promising tools that link database APIs, spatial data, and enable the analysis of 
complex soil description data are expanding the potential for soil science data anal-
ysis within programming environments like R (R Core Team 2022).

The Algorithms for Quantitative Pedology (AQP) project are a suite of packages 
for the R programming language that simplify many facets of soil data analysis. The 
project began in 2006 as a loosely coordinated collection of R scripts used to sup-
port the management, analysis, and visualization of digital soil morphology records. 
By 2010, it became clear that an R package (code, manual pages, and example data 
following strict guidelines) hosted by CRAN would be the best route forward. The 
first version of the aqp package was submitted to CRAN in May of 2010; with a 
name and core functionality inspired by the concept of “quantitative pedology” 
(Jenny 1941), analysis by regular depth-intervals (Harradine 1963; Moore et  al. 
1972), and the characterization of depth-functions (Myers et al. 2011). A compan-
ion article by Beaudette et al. (2013b) contained a detailed description and simple 
demonstrations of the main package features.

As functionality evolved, the aqp package was split into three main categories 
which became R packages to increase modularity and divide administrative tasks: 
aqp (soil-specific data structures, profile sketches, color conversion, pedotransfer 
functions, etc.), soilDB (wrapper and convenience functions for accessing APIs and 
harmonization of results), and sharpshootR (specialized tasks and visualizations 
designed for use with soil database connections provided by soilDB and data struc-
tures provided by aqp). Like most R packages, the AQP suite of packages depends 
on other packages for optimized computation (Dowle and Srinivasan 2021), color 
conversion (Pedersen et  al. 2021; Zeileis et  al. 2020), numerical classification 
(Maechler et al. 2021), and methods for compositional data (e.g., sand, silt, and clay 
content) (Moeys 2018; van den Boogaart et al. 2021), to name a few. The authors 
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hope that other scientists will find a suitable foundation in aqp, soilDB, and sharp-
shootR, upon which more specialized tools can be built, documented, and delivered 
in the form of new R packages.

Since 2011, the AQP suite of R packages has been extensively updated and docu-
mented by U.S.  Department of Agriculture  – Natural Resources Conservation 
Service (USDA-NRCS) Staff to support routine operations within the Soil and Plant 
Science Division. Some examples include aggregation and synthesis of field data to 
support initial soil survey (new mapping), graphical comparisons and correlation 
analysis to support soil survey update projects (refinement of existing mapping), 
and visual presentation of soil survey data to the public via tools like SoilWeb 
(O’Geen et al. 2017). The soilDB package has become one of the most widely used 
interfaces to USDA-NRCS data sources, with support for queries that accept (and 
return) mixtures of spatial and tabular data from the Soil Survey Geographic 
Database (SSURGO) (Soil Survey Staff 2022b). Spatial formats defined by the sf 
(Pebesma 2018) and raster (Hijmans 2021) R packages are used extensively by the 
soilDB package to minimize data conversion or pre-processing steps.

11.1.1 � Example Data: Clarksville Soil Series (Fig. 11.1)

A curated set of soil morphologic and laboratory characterization data correlated to 
the Clarksville soil series (Loamy-skeletal, siliceous, semiactive, mesic Typic 
Paleudults) is used to demonstrate key functionality and visualization possibilities 
provided by the AQP suite of R packages. These data represent a very deep 
(>150 cm), somewhat excessively drained soil of large extent in the Ozark Highlands 
of southern Missouri, USA. Clarksville soils are formed in residual and colluvial 
soil parent materials of cherty dolomite or cherty limestone (Kabrick et al. 2008). 

Fig. 11.1  Clarksville series soil profile (left) and associated representative landscape (right). (Soil 
profile photo: Satchel Gaddie, landscape photo: Jayme LeBrun)
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These soils typically occur on ridges and steep side slopes, spanning summit, shoul-
der, and backslope positions of an idealized 2D hillslope. Mean annual air tempera-
ture ranges from 13–15 °C, mean annual precipitation ranges from 1150–1250 mm, 
with most precipitation falling as rain.

Clarksville soils are generally highly weathered, acidic with low to moderate 
base saturation, low cation exchange capacity and nutrient limiting for available 
phosphorus, calcium, and magnesium (Kabrick et  al. 2011; Singh et  al. 2015). 
Morphology of Clarksville soils commonly include soil textures high in silt with 
thick accumulations of translocated clay at depth. Although soils are generally high 
in rock fragments, silt-rich soil textures dominate surface soil horizons due the 
influence of wind-blown loess parent material. These landscapes support a mixed 
forest of black oak (Q. velutina Lam.), white oak (Quercus alba L.), blackjack oak 
(Q. marilandica Muench.), post oak (Q. stellata Wangenh.), shortleaf pine (Pinus 
echinata Mill.), black hickory (Carya texana Buckl.), red maple (A. rubrum L.), and 
dogwood (Cornus florida L.).

11.2 � Representing Collections of Soil Profiles in R

Soil profile data are complex, and typically consists of site description, soil morpho-
logic description, and optionally laboratory data. The SoilProfileCollection (SPC) is 
a data structure which attempts to capture this complexity and is designed to coor-
dinate linkages between those elements. Functions operating on the 
SoilProfileCollection include special constraints to ensure linkages are not broken 
during routine operations such as editing, sub-setting, or combining collections.

The first level of abstraction involves two main tiers: “site” and “horizon” data. 
“Site” data refers to above-ground or those properties that are specific to a single 
soil profile description (e.g., surface slope). “Horizon” data refers to below-ground 
or those properties that are specific to a single genetic soil horizon or layer. An addi-
tional level of abstraction is used to store spatial data (coordinates and coordinate 
reference system) and depth-interval information such as diagnostic horizons. The 
SoilProfileCollection structure provides a means of storing user-defined metadata 
such as units of measure, horizon designation column name, data source, and data 
citation. The SoilProfileCollection object was designed with data analysis in mind; 
as compared to other (more complex) data structures used for archival purposes, 
such as those used within the USDA-NRCS National Soil Information System 
(NASIS).

Of primary importance are the horizon data, or the layers that comprise the pro-
files in the collection. The SoilProfileCollection is “horizon data forward,” in that a 
user starts with a table of horizon data. Each horizon record must have an upper and 
lower boundary, a unique ID linking to a single soil profile observation, and any 
other observed or measured properties. There are no set limits on the number of 
horizons per profile, or profiles per collection, but available memory will dictate 
practical limitations. Horizon depths should be specified as integers (typically cen-
timeters) and should not overlap.
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A SoilProfileCollection is created through “promotion” of an R data.frame with 
the depths() function. Other data.frame-like objects such as tibble (Müller and 
Wickham 2021) or data.table (Dowle and Srinivasan 2021) can be used as input. 
Promoting a data.frame to SoilProfileCollection requires the following parameters: 
profile_id (the name of a column containing unique profile IDs), top_depth (the 
name of a column containing horizon upper depths) and bottom_depth (the name of 
a column containing horizon lower depths) along with any additional horizon data 
associated with the horizons in the profile. For example, the promotion of a data.
frame called x to SoilProfileCollection would follow depths(x) <- profile_id ~ top_
depth + bottom_depth.

In the R language, the tilde symbol ~ separates the left and right-hand sides of a 
formula. Commonly ~ is used in formulas to mean “modeled as.” In a 
SoilProfileCollection the geometry and ordering of horizons within each unique 
profile using the upper and lower depths is “modeled.” Performing this operation 
automatically sorts horizon data first by profile ID and then by horizon top depth.

The site()<- method is used to move site-level data from horizon-level records 
(necessary when starting with a mixture of horizon and replicated site data in the 
same table), or to merge a new table of site-level data via common ID and left join 
(missing records in the new table are filled with NA). In a similar manner, the hori-
zons()<- method is used to merge a new table of horizon-level data into the 
SoilProfileCollection object via common ID (unique to specific horizons) and left 
join. Additional site and horizon data can be created or extracted one by one using 
the $ or [[ methods. When creating a new variable, the SoilProfileCollection will 
check whether the length of the vector matches either the number of “sites” or the 
number of “horizons.” Extracting horizon or site-level data as plain data.frame 
objects is performed with the horizons() and site() functions. A detailed explanation 
of the SoilProfileCollection object and associated methods for manipulation of 
these objects is presented in the “Introduction to SoilProfileCollection Objects” 
tutorial (Beaudette 2022).

The soilDB package for R provides a common interface to many of the National 
Cooperative Soil Survey databases. Several functions from this package return data 
as a SoilProfileCollection object: fetchKSSL() (laboratory characterization data), 
fetchOSD() (basic soil morphology from the Official Series Description), 
fetchSDA() (SSURGO and STATSGO data from Soil Data Access), and fetchNA-
SIS (National Soil Information System).

11.2.1 � Subsetting

The “bracket” methods are one of the primary ways that objects in R can be subset 
by rows and columns (e.g., data.frame) or element (e.g., list, vector, etc.). The 
SoilProfileCollection builds on these patterns to extract specific profiles and/or hori-
zon collections based on numeric or logical indices.
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The syntax used by the SoilProfileCollection bracket method is x[i, j, k]; where 
x is a SoilProfileCollection object, i is a profile index, j is a within-profile horizon 
index and k represent optional special functions that can operate on the horizon data 
in the collection to replace the profile-specific j-index (Fig. 11.2). To obtain the first 
profile in the collection use the syntax x[1, ]. For the first horizon in each profile use 
x[, 1]. To get the last horizon of each profile, use x[, , .LAST] where .LAST is a 
special “keyword” that can identify the j-index of the deepest horizon in each pro-
file. Subsets based on i, j and k indices of the SoilProfileCollection can be com-
bined, for instance: x[1:2, 1:2] gives the first two horizons of the first two profiles. 
Also, the k index can be combined with the i index, for instance x[1:2, , .LAST] 
gives the last horizon of the first two profiles (Fig. 11.2).

The representation of horizon position with the j-index can be extended to 
develop other “horizon spatial predicates” such as hzAbove(), hzBelow() and hzOff-
set(). The former two take logical expressions to match horizons and return the part 
of the collection adjacent to the match (above or below respectively). The hzOffset() 
function allows arbitrary horizon indices and offsets to be calculated. This type of 
logic is further helpful for inspecting and fixing horizon geometry for errors or 
inconsistencies.

Common querying operations with criteria in the form of logical expressions can 
be used to subset profiles or horizons in a collection that meet specific criteria of 
interest. The aqp functions subset() and subsetHz() can be used with logical expres-
sions in terms of the site or horizon variables to specify the constraints. These 
expressions make use of site or horizon-level variables in the collection. The sub-
set() function returns whole profiles, if criteria were specified for horizon data, then 
only some of the horizons of those profiles may meet criteria. More specifically, 
subsetHz() requires horizon-level expressions and returns only the portion of hori-
zons within profiles that meet criteria.

Fig. 11.2  Five soil profiles correlated to the Clarksville soil series (a). Examples of bracket meth-
ods for subsetting profiles, sequences of horizons and top or bottom horizons (b)

D. E. Beaudette et al.
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Partitioning soil profile collections on logical expressions of site and horizon 
level properties is powerful, but soil scientists often need to extract data within or 
overlapping specific depths. Two methods: glom(x, z1, z2, …) and trunc(x, z1, 
z2, …) facilitate this in aqp. The glom() function returns the subset of horizons in a 
collection that overlap with a specific depth interval [z1, z2]. The depth interval 
could be a point (only z1 specified) or a range (z1 and z2 specified) (Fig. 11.3).

The interval [z1, z2] can be constant across the collection or unique to each pro-
file. By default, the whole horizon is returned unmodified whether it falls fully 
within the range or not – creating a “ragged” SoilProfileCollection (Fig. 11.3). The 
upper and lower boundaries of the resulting horizons will be cleanly cut to the inter-
val specified using glom(truncate=TRUE) or via trunc() and resulting profiles will 
have consistent upper and lower boundaries assuming there are no missing data in 
the specified interval.

11.2.2 � Data Quality and Repairs

The aqp package provides several methods for identifying problematic profile 
geometry and attempts to “correct” it. Most soil databases and methods for storing 
soils information do not have front end validations that prevent entry of data with 
“illogical” content. Some analyses rely on having only one record of data per depth/
profile combination such as those involving depth-weighted averages or those that 
rely on having a “complete” set of records in all profiles over a particular interval.

The aqp function checkHzDepthLogic() inspects a SoilProfileCollection object 
looking for four common errors in horizon depths: bottom depth shallower than top 

Fig. 11.3  A demonstration of selecting horizons that overlap with a depth interval via glom() and 
truncation to that interval via trunc()
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depth, equal top and bottom depth, missing top or bottom depths, and gap or overlap 
between adjacent horizons. With byhz = TRUE it is possible to perform the first 
three of the above logic checks on individual horizons.

Assumptions concerning horizon order based on horizon top depth are tested by 
the repairMissingHzDepths() function. This can be used to fill in some missing 
(bottom) horizon depths. This function will set missing bottom depths of a horizon 
to the next deepest (adjacent) top depth. Also, it adds a constant vertical offset to the 
top depth of bottom-most horizons missing bottom depth.

The fillHzGaps() function attempts to find “gaps” in the horizon records of a 
SoilProfileCollection object and fill with placeholder horizons (profile ID, horizon 
ID, top/bottom depths, all else NA). This function is for filling profiles to a static top 
and bottom depth. For instance, a morphologic description containing horizons with 
omitted upper or undetermined lower depth as in the case of undescribed organic 
horizons or soil profiles that have variable bedrock depth below depth of excavation.

11.3 � Soil Morphology

The field description of a soil profile (genetic horizon depths, boundaries, color, soil 
texture, rock fragment volume, structure, etc.) is typically the foundation upon 
which additional sampling, laboratory characterization, or soil survey are based. In 
aggregate, a complete collection of horizons, associated properties, and landscape 
context (e.g., catenary position or other geomorphic description) represent an 
atomic unit of pedologic inquiry: the pedon (Soil Science Division Staff 2017). The 
AQP family of R packages and the SoilProfileCollection data structure were 
designed specifically to elevate the pedon (and collections of pedons) to a conve-
nient abstraction (an object), enabling a simpler interface to what would otherwise 
be a complex hierarchy of above and below-ground records. In aqp, the more 
generic term “profile,” is used instead of pedon to accommodate incomplete data 
(missing above-ground information) or otherwise truncated horizon observations. 
Central to this approach is the specification of profile IDs and horizon depths, 
above-ground (“site”) vs. below-ground (“horizon”) attributes, and ideally horizon 
designation with associated attributes such as soil color.

11.3.1 � Soil Color

The color of soil material observed during field investigations is one of the most 
striking and useful properties recorded as part of a soil profile description. Typically 
recorded in the Munsell system (Munsell 1947; Simonson 1993; Soil Science 
Division Staff 2017) in the form of “hue, value/chroma,” the three components of 
this notation provide interpretive suggestions about iron oxides and oxidation state 
(hue and chroma) (Schwertmann 1993; Scheinost and Schwertmann 1999), soil 
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carbon (value) (Wills et al. 2007; Liles et al. 2013), as well as hints about the rela-
tive importance of catenary relationships (Brown et al. 2004). Several color-based 
metrics of soil development (Buntley and Westin 1965; Harden 1982), rubification 
(Barron and Torrent 1986; Hurst 1977), and melanization (Harden 1982; Thompson 
and Bell 1996) are implemented in the aqp package.

11.3.1.1 � Color Conversion

The aqp package provides several interfaces for conversion between Munsell nota-
tion and sRGB or CIELAB color spaces, largely based on the 1943 Munsell renota-
tion table (Centore 2012). Forward conversion from standard Munsell notation 
(e.g., 10YR 3/4) is performed via look-up table, derived from the renotation table, 
and interpolated to include odd chroma and 2.5 value. The function munsell2rgb() 
performs a direct transformation to sRGB-encoded colors in hexadecimal 
(#5C4222), sRGB coordinates scaled to the interval of 0–1 ([0.36187, 0.25989, 
0.13375]), or CIELAB coordinates ([30.273, 7.2731, 23.753]) (Beaudette et  al. 
2013a, b). Inverse transformation from sRGB coordinates is performed by the 
rgb2munsell() function, approximated by nearest-neighbor search of the Munsell-
sRGB look-up table using the CIE2000 color contrast metric (Pedersen et al. 2021). 
All color space coordinates are referenced to the CIE standard illuminant D65, 
which is a close approximation to average midday sunlight in the northern hemi-
sphere (Marcus 1998). sRGB and CIELAB color spaces were selected to address 
two common applications: sRGB, for digital representation of color on computer 
screens or reproduction on printed media, and CIELAB for the convenient align-
ment of axes and common pigments in the soil environment (Viscarra Rossel et al. 
2006; Liles et al. 2013).

Non-standard notation of Munsell colors (e.g., 10.6YR 3.3/5.5), as collected by 
digital colorimeter, can be converted to approximate sRGB coordinates using the 
getClosestMunsellChip() function. However, this approach uses rounding of value 
and chroma and snapping to the nearest standard hue (10YR). Exact conversion of 
non-standard Munsell notation can be performed using the munsellinterpol R pack-
age (Gama et al. 2021).

11.3.1.2 � Color Contrast

Color contrast (perceptual difference between two colors) within a soil sample is an 
important component of field-described redoximorphic features, concentrations, 
and mottles (Schoeneberger et al. 2012). Soil Survey products and wetland delinea-
tion protocols adopted by the National Cooperative Soil Survey (NCSS) currently 
use contrast classes (faint, distinct, and prominent) to describe color contrast, based 
on differences in Munsell hue, value, and chroma (Soil Survey Staff 2022c). The 
colorContrast() function in aqp computes differences in Munsell (hue, value/
chroma), soil color contrast class, and the CIE2000 color contrast metric (Sharma 
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Table 11.1  Output from the colorContrast() function includes: change in hue (dH), change in 
value (dV), change in chroma (dC), CIE2000 color contrast (dE00), and NCSS soil color contrast 
class (CC)

Color 1 Color 2 dH dV dC dE00 CC

10YR 3/3 10YR 3/4 0 0 1 3.13 Faint
7.5YR 6/6 5YR 4/6 1 2 0 21.1 Distinct
2.5Y 2/2 5G 4/8 9 2 6 30.5 Prominent

et al. 2005) for pairs of colors specified in Munsell notation. The function is fully 
vectorized meaning that multiple comparisons can be generated without explicit 
looping (Table 11.1).

Tabular color contrast output can be convenient when used as an intermediate 
step in a more complex workflow but can be difficult for non-specialists to interpret. 
A graphical representation of these data is created by the colorContrastPlot() func-
tion provided by aqp. For example, the differences between typical dry and moist 
soil colors for the Musick soil series (Fine-loamy, mixed, semiactive, mesic Ultic 
Haploxeralfs) are demonstrated in Fig.  11.4. While exact replication of Munsell 
colors is not possible on un-calibrated displays or printers, the sRGB approximation 
is sufficient to demonstrate relative differences in hue, value, and chroma.

To further aid with the calculation and interpretation of color contrast, “color 
contrast charts” can be created with the contrastChart() function provided by aqp. 
These charts are based on a source color in Munsell notation (e.g., 7.5YR 4/3) and 
select pages of Munsell hue. Pair-wise metrics of color contrast are evaluated 
between all color “chips” and the source color (outlined in red). Hue is split across 
panels in a familiar format with Munsell chroma on the x-axis and value on the 
y-axis. Soil color contrast class and CIE2000 values are printed below each color 
“chip” (Fig. 11.5).

11.3.2 � Soil Profile Sketches

Conceptual sketches of soil profiles that illustrate variation in morphology (e.g., 
horizon depths, horizon designations, color, texture, etc.) in relation to transect or 
catenary position are a pedologic staple. Either hand-drawn in field notes or care-
fully produced as part of a final soil survey manuscript, these sketches represent an 
important vehicle for communicating observation and context to technical and non-
technical audiences. A data-driven approach to creating soil profile sketches was 
one of the original motivations for the aqp R package (Beaudette et al. 2013a, b). 
Since 2010, the profile sketch authoring tools in aqp have progressed from basic 
layout of filled rectangles (profiles and horizons) to thematic coloring of horizons 
based on properties or classes, encoding of horizon boundary information, and han-
dling of label collision.
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Fig. 11.4  Color contrast plot, comparing the moist and dry soil colors of the Musick soil series. 
CIE2000 color contrast values are printed below soil color contrast classes. Smaller values describe 
smaller perceptual differences between colors

Fig. 11.5  Color contrast chart for 7.5YR 4/3 (chip outlined in red), including reference 5YR, 
7.5YR, and 10YR hue pages. Numbers below soil color chips represent CIE2000 color contrast 
values, as compared with the target color 7.5YR 4/3. Soil color contrast classes have been omitted 
for clarity

The plotSPC() function in the aqp package is the primary tool for creating soil 
profile sketches from SoilProfileCollection objects, using R’s “base graphics” sys-
tem. Figure 11.6 demonstrates several possible data sources, processing steps, and 
output generated from plotSPC(). Soil components (retrieved from the detailed Soil 
Survey via fetchSDA() as a SoilProfileCollection) within map unit “2vxq8” occur 
on summit and shoulder hillslope positions while components in map unit “2vxq9” 
occur on backslope, footslope and toeslope positions. USDA soil texture classes 
(<2 mm fraction) of each horizon are symbolized with color to show the variation 
of textures within the catena. Labeling of horizon depths (vs. common depth axis), 
leader lines, and collision detection (common with thin horizons) are optional 
enhancements to the standard output, specified via function arguments (Soil Survey 
Staff 2022a). Narrower profiles to the left of each component sketch represent data 
from the Official Series Descriptions via fetchOSD(). These data represent the typi-
cal morphology (horizon depths, designations, colors, etc.) for all soil series used in 
the US Soil Survey. Munsell colors (moist conditions) have been converted to sRGB 
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Fig. 11.6  Illustration of an idealized hillslope catena for soil components from two adjacent map 
units within the Ozark Highlands. SSURGO map unit soil components are placed within a geo-
morphic hillslope sequence to convey soil property to soil parent material relationships. Munsell 
soil colors from each official series description are displayed in tandem, companion profiles

coordinates using munsell2rgb(), and horizon boundary distinctness codes have 
been converted into vertical offsets using hzDistinctnessCodeToOffset(). The 
plotSPC() function can encode horizon distinctness offsets as diagonal horizon 
boundaries, where increasingly steeper angles represent the following sequence of 
boundary distinctness: “very abrupt,” “abrupt,” “clear,” “gradual,” “diffuse” 
(Schoeneberger et  al. 2012). A visual explanation of the many arguments to 
plotSPC() is provided via explainPlotSPC() which shows the usage of ordering vec-
tors, graphical offsets and scaling factors within the graphical space. Detailed exam-
ples of plotSPC() usage are available in the function documentation (Soil Survey 
Staff 2022a) and associated tutorials (Beaudette 2022). Future developments to 
plotSPC() will include conversion to the more advanced “grid” graphics system, 
pattern fills (e.g., geologic and stratigraphic symbols), and tighter integration with 
other plotting libraries such as lattice and ggplot2.

11.3.3 � Functional Horizon Aggregation

Soil scientists use a common language of horizon designation nomenclature to 
describe and articulate the observed differences in soil horizons within a soil profile. 
These basic notations and the act of “naming” genetic horizons distills important 
information in the form of master horizons, characteristic subscripts, horizon and 
pedogenic sequences, and parent material discontinuities. Horizon designations 
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convey a qualitative description of soil properties and process while allowing flexi-
bility in how horizon designations are applied. Experienced soil scientists will gen-
erally apply horizon nomenclature consistently from site to site and through time 
due to the rigid guidelines and definitions of their application. However, among a 
group of soil scientists there will be variability in the exact designations used—each 
having their own unique training, field experiences, and tendencies towards “lump-
ing” (describing fewer and thicker horizons) or “splitting” (describing more and 
thinner horizons).

Building on the interpretation of horizon designations, the Generalized Horizon 
Label (GHL) concept seeks to unify functionally similar horizon designations for 
the purpose of aggregation, analysis, and summary operations (Beaudette et  al. 
2016; Roecker et al. 2016). The conceptual approach of functional aggregations of 
horizons within collections of soil profiles has been attempted as a framework for 
developing pedotransfer functions (Wagenet et al. 1991). The process of applying 
GHL to a collection of soil profiles involves a series of micro-correlations made by 
a soil scientist to determine which horizons have similar soil morphology and prop-
erties to be grouped together for aggregation across horizons within a 
SoilProfileCollection.

The application of GHL to a SoilProfileCollection is driven by Regular 
Expression (REGEX) pattern matching. REGEX provides a rich syntax for string-
matching of horizon designation sets into unified horizon GHL groups. A user 
developed set of REGEX rules are matched to an identified vector of horizonation 
by the generalize.hz() function in the aqp R package.

Features unique to the Clarksville soil series are argillic diagnostic horizons and 
parent material discontinuities as horizons transition along boundaries between 
cherty dolomite slope alluvium and colluvium over dolomite residuum. GHL can be 
used to identify these common features in a set of soils once applied (Fig. 11.7).

The depthOf() family of functions also utilize REGEX pattern matching of hori-
zon designations to determine the depth to horizons with matching designation. For 
example, the pattern “Bt” would match all horizon designations containing “Bt” 
(case sensitive). Within a SoilProfileCollection, the minDepthOf() and maxDep-
thOf() operations provide additional utility to find either the top (shallowest) or 
bottom (deepest) depth to a matching horizon pattern. These functions provide con-
venience handling for missing values or when target patterns are not found within a 
profile. Results are returned as a numeric vector for single profiles or a data.frame 
of results with profile ID, horizon ID, top or bottom depths, horizon designation and 
pattern provided. Profile sketches in Fig. 11.7 have been sorted by values returned 
by the depthOf() function, first according to depth of “3Bt4” GHL and second 
according to depth of “2Bt3” GHL.
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Fig. 11.7  A series of generalized horizon labels (GHL) applied to a collection of soil profiles of 
the Clarksville soil series from the Ozark Highlands, Missouri. Horizon labels within each soil 
profile show the original horizon designations while colors indicate assigned GHL

11.3.4 � Change of Depth Support

Soil data are typically collected either by genetic horizon with varying horizon 
depths, at regular depth intervals (every 10 cm), or from composite samples repre-
senting specified depth intervals (0–10 cm, 10–25 cm, etc.). The structure of these 
depth intervals will typically vary from one profile to the next. To facilitate analysis 
throughout the profile collection, profile horizon depths may need to be modified 
and/or harmonized comprising a change of depth support. A simple down-scaling of 
horizons (without interpolation) into a regular sequence of thinner depth slices, 
referred to as “slicing,” is implemented in the dice() function (Fig. 11.8a). The seg-
ment() function offers another approach to restructuring horizon depths, using 
horizon-thickness weighted mean values for conversion to fixed depth intervals 
(e.g., 0–25 cm). This is a common step in the thematic mapping of soil property 
data. A more complex change of horizon depths can be achieved using constrained 
interpolation. This method, popular for applications such as digital soil mapping (or 
other tasks requiring harmonized horizon depths) uses mass-preserving splines 
(Bishop et  al. 1999). In aqp, this type of down-scaling is performed with the 
spc2mpspline() function which provides a convenient interface to the mpspline2 
package (O’Brien 2022) suitable for SoilProfileCollection objects.

A change of support operation performed over all profiles in a collection result 
in a statistical summary of that collection. The slab() function performs this kind of 
operation by “slicing” horizon data (continuous or categorical) into 1  cm-thick 
depth intervals (Fig.  11.8a), then aggregating “across” those depth intervals 
(Harradine 1963; Beaudette et al. 2013a, b). Continuous values are reduced to select 
percentiles (or any user-defined function) per slice, and categorical values are 
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Fig. 11.8  Change of support demonstration using 25 pedons correlated to the Clarksville soil 
series. Generalized horizon labels (GHL) have been resampled to 1cm slices (a) via dice(), aggre-
gated across slices to GHL proportions (b) via slab(), and modeled via proportional-odds logistic 
regression (c)

reduced to proportions (Fig. 11.8b) (Beaudette et al. 2013a, b). Alternatively, sliced 
categorical data such as GHL can be aggregated using statistical models for ordinal 
data, such as the proportional-odds logistic regression model (Fig. 11.8c) (Beaudette 
et al. 2016).

11.4 � Numerical Classification of Soils

Since the 1960s (likely corresponding with increased availability of computing 
hardware) there has been considerable interest in the development of numerical 
alternatives to traditional soil classification systems such as Soil Taxonomy (Soil 
Survey Staff 1999) and World Reference Base (Chesworth et al. 2008). A “numeri-
cal taxonomy” (Sneath and Sokal 1973) of soil horizons or collections of horizons 
(i.e., soil profiles or aggregation thereof) relies on a deliberate selection of charac-
teristics (soil properties), distance metric (e.g., Euclidean) and criteria used to iden-
tify clusters (e.g., hierarchical vs. partitioning methods) (Arkley 1976). Selection of 
characteristics is complex because a limited set of soil properties cannot universally 
describe differences between individuals, and the use of all measurable properties is 
unfeasible – requiring a selection to be made prior to analysis (Sarkar et al. 1966; 
Arkley 1971). Furthermore, a generalized approach to the numerical classification 
of soil profiles is complicated by the hierarchical nature of linked site and horizon-
level properties, sampling style (depth-intervals vs. genetic horizons) and subtle 
differences in horizon designation (through time, regionally, etc.). Despite the many 
challenges, there have been many successful applications of numerical taxonomy to 
soil science and soil classification (Hole and Hironaka 1960; Rayner 1966; Moore 
et al. 1972; Dale et al. 1989; Carré and Jacobson 2009).
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The NCSP (Numerical Comparison of Soil Profiles) algorithm, implemented in 
the aqp package for R, attempts to address many of the long-standing difficulties 
with a numerical classification of entire soil profiles (Beaudette et  al. 2013a, b; 
Maynard et al. 2020). Building on methods suggested by Moore et al. (1972), pair-
wise distances (between soil profiles) are evaluated along regular depth-slices by 
Gower’s distance metric (Gower 1971), using any combination of continuous, cat-
egorical, or boolean attributes (Fig. 11.9). Total pair-wise dissimilarity is computed 
by taking the sum of slice-wise dissimilarities, to a user-defined depth. Variation in 
profile depth is accounted for by assigning maximum slice-wise dissimilarity to 
comparisons between soil and non-soil. Further customization of the NCSP algo-
rithm is described in Beaudette et al. (2013b). The resulting dissimilarity matrix can 
be used to assist with topics ranging from initial mapping (“similar/dissimilar” 
soils), comparisons below family-level classification in Soil Taxonomy, soil series 
correlation, map unit harmonization, and correlation between different taxonomic 
systems.

Applied to the same set of soil profiles highlighted in Fig. 11.7, the NCSP algo-
rithm was used to generate a distance matrix using only the GHL classes (ordinal 
values) to a depth of 175cm (Fig. 11.10). A dendrogram was created from the dis-
tance matrix via divisive hierarchical clustering (Kaufman and Rousseeuw 2005) 
and combined with profile sketches with the plotProfileDendrogram() function 
from the sharpshootR package. Profiles with similar GHL assignments, occurring at 
similar depths, are allocated to clusters defined by branching near the bottom of the 
dendrogram. When a combination of site (e.g., slope, drainage class, geoform, etc.) 
and horizon-level properties are requested, the final distance matrix is developed 
from a weighted average of the site and horizon-level distance matrices. Pair-wise 
distances between soil profiles can be difficult to interpret when a large number of 
properties are included in the calculation and may require a different approach to 
thematic coloring of profile sketches such as principal component analysis of the 
property matrix or principal coordinate analysis of the distance matrix scores. An 
alternative presentation of the data is possible by arranging profile sketches (with 
plotSPC()) according to the new axes created by 2-dimensional ordination, typically 
via non-Metric Multidimensional Scaling (nMDS) of the distance matrix.

Fig. 11.9  Graphical outline of the Numerical Classification of Soil Profiles (NCSP) algorithm. 
(Figure c/o Jon Maynard, adapted from Maynard et al. (2020))

D. E. Beaudette et al.



217

Fig. 11.10  Soil profile sketches from Fig. 11.7, arranged according to divisive hierarchical clus-
tering of the distance matrix generated by the Numerical Classification of Soil Profiles (NCSP) 
algorithm

11.5 � Water Balance

The soil forming state factor of climate and the interactions and timing of moisture 
and temperature are pivotal in understanding soil formation and describing site 
dynamics at local and regional scales. Water balance models accounting for inputs 
of precipitation and losses to evapotranspiration (Thornthwaite 1948) have evolved 
as a valuable tool for exploring the nuances of climate at a given point on the land-
scape. Water balance metrics relate to soil storage and the downward and upward 
flux of water through soil and associated soil property development as the soil acts 
as a sponge responding to atmospheric supply and demand (Arkley and Ulrich 
1962). Correlation of water balance metrics to vegetation growth at sites has become 
an important tool for the study of site conditions related to existing vegetation dis-
tribution (Stephenson 1998; Lutz et al. 2010) and forecasting site climate trajecto-
ries. High quality, widely accessible gridded climate data has increased the use of 
soil water balance models.

The sharpshootR package provides methods (via dependencies on the elevatr, 
daymetr, Evapotranspiration, and hyrdomad packages) for calculating water bal-
ance variables of precipitation (PPT), potential evapotranspiration (PET), actual 
evapotranspiration (AET), deficit (D), soil moisture storage (S), surplus (U), volu-
metric water content (VWC) on monthly and daily time steps (monthlyWB() and 
dailyWB() functions). The prepareDailyClimateData() function assembles the 
available water-holding capacity (AWC) values derived for major components in 
soil map units of the US Soil Survey for specific point coordinates. Gridded 
DAYMET climate data (Thornton et al. 2020) is then downloaded for the specified 
location and daily water balance metrics are estimated via dailyWB_SSURGO().
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The soilDB package provides query access to the station data in the USDA-
NRCS Soil Climate Analysis Network (SCAN). These stations provide above and 
below ground climate sensor networks that measure soil temperature, soil moisture, 
air temperature and precipitation. Many stations have associated soil characteriza-
tion data in the Kellogg Soil Survey Laboratory (KSSL) records. The data in 
Fig. 11.11 were assembled through separate calls to fetchSCAN() for the SCAN 
climate station data and dailyWB_SSURGO() which derives AWC for the Scholten 
soil component sampled at SCAN station 2194, assembles DAYMET data for the 
SCAN station location and runs a daily water balance model. Comparisons of mod-
eled and measured values allow for evaluation of water balance model utility and 
function.

11.6 � Conclusions

Pedology and geomorphology are inherently visual, field-based sciences that share 
a common paradigm and fundamental units of description. Geomorphic description 
of landforms or geoforms and a merging of these disciplines functionally defined as 
geopedology is a progression that elevates the geoform as a primary landscape con-
cept that can guide the operational inventory and integrated study of soil geomor-
phic relationships. Understanding the relevance and importance of contextual 

Fig. 11.11  Comparison of annual water balance metrics (volumetric water content and precipita-
tion) for 2018 at Soil Climate Analysis Network (SCAN) station 2194 in the Ozark Highlands
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linkages to geomorphology in soil survey products integrates soil information with 
other environmental data and is critical to informing the public and the wider scien-
tific community. Embracing a visual, quantitative analytical approach to collections 
of soil profiles and varying formats of soil survey data allows for creative abstrac-
tion of geopedologic concepts.

Complex data structures and increasing volumes of available data demand prog-
ress in methods that allow iterative aggregation, summary, and graphical expression 
of soil data. The AQP suite of packages works to provide examples and routines that 
meet these challenges with an emphasis on generalized methods that can be applied 
to common data structures. This collection of tools leverages the open-source flex-
ibility and extensibility of the R programming environment and the progress that 
can be gained from collaborative effort to solve common challenges in working 
with soil data. Providing visual alternatives for viewing soil morphologic data and 
improving the quality and accessibility of soil survey data will foster greater use and 
application of soil survey data to inform all users.
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