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Abstract. The minimal complexity support vector machine is a fusion
of the support vector machine (SVM) and the minimal complexity
machine (MCM), and results in maximizing the minimum margin and
minimizing the maximum margin. It works to improve the generalization
ability of the L1 SVM (standard SVM) and LP (Linear Programming)
SVM. In this paper, we discuss whether it also works for the LS (Least
Squares) SVM. The minimal complexity LS SVM (MLS SVM) is trained
by minimizing the sum of squared margin errors and minimizing the
maximum margin. This results in solving a set of linear equations and
a quadratic program, alternatingly. According to the computer exper-
iments for two-class and multiclass problems, the MLS SVM does not
outperform the LS SVM for the test data although it does for the cross-
validation data.

1 Introduction

A classifier is designed to achieve high generalization ability for unknown data
by maximizing class separability. The support vector machine (SVM) [1,2] real-
izes this by maximizing the minimum margin, where a margin of a data sample
is defined as its distance from the separating hyperplane. Although the SVM
works relatively well for a wide range of applications, there is still a room for
improvement. Therefore, in addition to maximizing the minimum margin, con-
trolling the margin distribution is considered. One approach controls the low
order statistics [3–8]. In [5], a large margin distribution machine (LDM) was
proposed, in which the average margin is maximized and the margin variance is
minimized. Because the LDM includes an additional hyperparameter compared
to the SVM, in [6,7], the unconstrained LDM (ULDM) was proposed, which has
the same number of hyperparameters as the SVM. The least squares SVM (LS
SVM) [3,4] is consider to be based on low order statistics because it minimizes
the sum of squared margin errors.

Another approach [9–15] minimizes the VC (Vapnik-Chervonenkis) dimen-
sion [1]. In [9], the minimal complexity machine (MCM) that minimizes the VC
dimension was proposed, which is reduced to minimizing the sum of margin
errors and minimizing the maximum margin. According to the analysis in [10],
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however, the solution of the MCM was shown to be non-unique and unbounded.
These disadvantages can be solved by introducing the regularization term into
the MCM, which is a fusion of the LP (Linear Programming) SVM and the
MCM called MLP SVM. The soft upper-bound minimal complexity LP SVM
(SLP SVM) [14] is a soft upper-bound version of the MLP SVM. The ML1 SVM
[11,12] is the fusion of the MCM and the standard SVM (L1 SVM) and the SL1
SVM [15] is a soft upper-bound version of the ML1 SVM. According to the com-
puter experiments, in general, the fusions, i.e., minimization of the maximum
margin in the SVMs, improved the generalization ability of the base classifiers,
and the ML1v SVM, which is a variant of the ML1 SVM performed best.

In this paper, we discuss whether the idea of minimizing the VC dimension,
i.e., minimizing the maximum margin, also works for the LS SVM, which con-
trols the margin distribution by the second order statistics. We formulate the
minimal complexity LS SVM (MLS SVM) by minimizing the maximum margin
as well as maximizing the minimum margin in the LS SVM framework. We derive
the dual form of the MLS SVM and the training method that trains the MLS
SVM alternatingly by matrix inversion and by the SMO (Sequential Minimal
Optimization) based Newton’s method [16]. By computer experiments, we show
whether the MLS SVM performs better than the LS SVM.

In Sect. 2, we discuss the architecture of the MLS SVM and derive its dual
problem. Then we discuss the training method of the MLS SVM. And in Sect. 3,
we compare generalization performance of the MLS SVM with the LS SVM and
other SVM-based classifiers using two-class and multiclass problems.

2 Minimal Complexity Least Squares Support Vector
Machines

In this section we discuss the architecture of the MLS SVM, the KKT conditions,
and a training method.

2.1 Architecture

For a two-class problem, we consider the following decision function:

D(x) = w�φ(x) + b, (1)

where w is the l-dimensional vector, b is the bias term, and φ(x) is the l-
dimensional vector that maps m-dimensional vector x into the feature space.
If D(x) > 0, x is classified into Class 1 and if D(x) < 0, Class 2.

We introduce the idea of minimizing the VC dimension into the LS SVM: we
minimize the maximum margin as well as maximizing the minimum margin.
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The minimal complexity LS SVM (MLS SVM) is formulated as follows:

min
1
2
w�w +

C

2

M∑

i=1

ξ2i + Ch (h+ + h−) (2)

s.t. yi (w�φ(xi) + b) = 1 − ξi for i = 1, . . . , M, (3)
hi ≥ yi (w�φ(xi) + b) for i = 1, . . . , M, (4)
h+ ≥ 1, h− ≥ 1, (5)

where (xi, yi) (i = 1, . . . , M) are M training input-output pairs, yi = 1 if xi

belong to Class 1, and yi = −1 if Class 2, ξi are the slack variables for xi, C is
the margin parameter, h+ and h− are the upper bounds for the Classes 1 and 2,
respectively, and hi = h+ for yi = 1 and hi = h− for yi = −1. Here, if ξi ≥ 1, xi

is misclassified and otherwise, xi is correctly classified. Unlike L1 or L2 SVMs,
ξi can be negative. The first term in the objective function is the reciprocal
of the squared margin divided by 2, the second term is to control the number
of misclassifications, and C controls the tradeoff between the first and second
terms. The third term works to minimize the maximum margin. Parameter Ch

controls the upper bounds h+ and h−.
If we delete (4), (5), and the third term in (2), we obtain the LS SVM. And

if in the LS SVM we replace the equality constraints in (3) into the inequality
constraints (≥) and the square sum of slack variables in (2) into the linear sum
multiplied by 2, we obtain the L1 SVM, which is a standard SVM.

In the following, we derive the dual problem of the above optimization prob-
lem.

Introducing the Lagrange multipliers αi, αM+i (≥ 0), η+ (≥ 0), and η− (≥ 0)
into (2) to (5), we obtain the unconstrained objective function:

Q(w, b,α, ξ, h+, h−, η+, η−)

=
1
2
w�w +

C

2

M∑

i=1

ξ2i + Ch (h+ + h−) −
M∑

i=1

αi (yi(w�φ(xi) + b) − 1 + ξi),

−
M∑

i=1

αM+i (hi − yi (w�φ(xi) + b)) − η+ (h+ − 1) − η− (h− − 1) (6)

where α = (α1, . . . , αM , αM+1, . . . , α2M )�, and ξ = (ξ1, . . . , ξM )�.
Taking the partial derivatives of (6) with respect to w, b, ξ, h+, and h− and

equating them to zero, together with the equality constraints (3), we obtain the
optimal conditions as follows:
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w =
M∑

i=1

yi (αi − αM+i)φ(xi), (7)

M∑

i=1

yi (αi − αM+i) = 0, (8)

αi = C ξi for i = 1, . . . , M, (9)

Ch =
M∑

i=1,yi=1

αM+i + η+, Ch =
M∑

i=1,yi=−1

αM+i + η−, (10)

yi (w� φ(xi) + b) − 1 + ξi = 0 for i = 1, . . . , M, (11)
αM+i (hi − yi (w�φ(xi) + b)) = 0, αM+i ≥ 0 for i = 1, . . . , M, (12)
η+ (h+ − 1) = 0, η+ ≥ 0, η− (h− − 1) = 0, η− ≥ 0. (13)

From (9), unlike L1 or L2 SVMs, αi can be negative.
Now, we derive the dual problem. Substituting (7) and (8) into (6), we obtain

the objective function with respect to α, η+, and η−. Thus, we obtain the
following dual problem:

max Q(α, η+, η−) =
M∑

i=1

αi − 1
2

M∑

i,j=1

yi (αi − αM+i)

× yj (αj − αM+j)K(xi,xj) − 1
2C

M∑

i

α2
i + η+ + η−, (14)

s.t.
M∑

i=1

yi (αi − αM+i) = 0, (15)

Ch ≥
M∑

i=1,yi=1

αM+i, Ch ≥
M∑

i=1,yi=−1

αM+i, (16)

αM+i ≥ 0 for i = 1, . . . , M, (17)

where K(x,x′) is the kernel and K(x,x′) = φ�(x)φ(x′). Similar to the SVM,
defining K(x,x′), we can avoid the explicit treatment of variables in the feature
space.

In the above optimization problem, if we delete (αM+1, . . . , α2M ), η+, η−,
and their related terms, we obtain the LS SVM.
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Similar to the ML1v SVM [12], we assume that η+ = η− = 0. This means
that h+ ≥ 1 and h− ≥ 1. Then the optimization problem reduces to

max Q(α) =
M∑

i=1

αi − 1
2

M∑

i,j=1

(αi − αM+i) (αj − αM+j) yi yj K(xi,xj)

− 1
2C

M∑

i=1

α2
i , (18)

s.t.
M∑

i=1

yi αi = 0, (19)

Ch =
M∑

i=1,yi=1

αM+i =
M∑

i=1,yi=−1

αM+i, (20)

αM+i ≥ 0 for i = 1, . . . , M. (21)

Notice that because of (20), (15) reduces to (19).
We decompose the above optimization problem into two subprograms:

1. Subproblem 1 Solving the problem for α1, . . . , αM and b fixing αM+1,
. . . , α2M :

max Q(α0) =
M∑

i=1

αi − 1
2

M∑

i,j=1

(αi − αM+i) (αj − αM+j) yi yj K(xi,xj)

− 1
2C

M∑

i=1

α2
i , (22)

s.t.
M∑

i=1

yi αi = 0, (23)

where α0 = (α1, . . . , αM )�.
2. Subproblem 2 Solving the problem for αM+1, . . . , α2M fixing α0 and b:

max Q(αM ) = −1
2

M∑

i,j=1

(αi − αM+i) (αj − αM+j) yi yj K(xi,xj) (24)

s.t. Ch =
M∑

i=1,yi=1

αM+i =
M∑

i=1,yi=−1

αM+i, (25)

αM+i ≥ 0 for i = 1, . . . , M, (26)

where αM = (αM+1, . . . , α2M )�.

We must notice that as the value of Ch approaches zero, the MLS SVM reduces
to the LS SVM. Therefore, for a sufficiently small value of Ch, the MLS SVM
and LS SVM behave similarly.
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We consider solving the above subproblems alternatingly.
Here, because of (25), if we modify αM+i, another αM+j belonging to the

same class must be modified. Therefore, αM can be updated per class.

2.2 Solving Subproblem 1

Variables (α1, . . . , αM ) and b can be solved for using (7), (9), (11), and (23) by
matrix inversion. Substituting (7) and (9) into (11) and expressing it and (23)
in matrix form, we obtain

(
Ω 1
1� 0

)(
α′

b

)
=

(
d1

0

)
, (27)

or

Ωα′ + 1b = d1, (28)
1�α′ = 0, (29)

where 1 is the M -dimensional vector and

α′ = (y1 α1, . . . , yM αM )� (30)

Ωij = K(xi,xj) +
δij
C

, (31)

d1 = (d11, . . . , d1M )�, (32)

d1i = yi +
M∑

j=1

yj αM+j K(xi,xj), (33)

1 = (1, . . . , 1)�, (34)

where δij = 1 for i = j, and δij = 0 for i �= j.
If αM = 0, (27) reduces to solving the LS SVM.
Subproblem 1 is solved by solving (27) for α0 and b as follows. Because of

1/C (> 0) in the diagonal elements of Ω, Ω is positive definite. Therefore,

α′ = Ω−1(d1 − 1 b). (35)

Substituting (35) into (29), we obtain

b = (1�Ω−11)−11�Ω−1d1. (36)

Thus, substituting (36) into (35), we obtain α′.

2.3 Solving Subproblem 2

Subproblem 2 needs to be solved iteratively. We derive the KKT (Karush-Kuhn-
Tucker) conditions for Subproblem 2 for the convergence check. Because of
the space limitation, we skip the detailed training method based on the SMO
(Sequential Minimal Optimization) combined with Newton’s method [16].
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For Subprogram 2, training is converged if the KKT optimality condition
(12) is satisfied. Substituting (7) and (9) into (12), we obtain the following KKT
conditions:

αM+i (hi + yi Fi − yi b) = 0 for i = 1, . . . , M, (37)

where

Fi = −
M∑

j=1

yj(αj − αM+j)K(xi,xj). (38)

Here the value of b is determined in Subprogram 1.

KKT Conditions. We can classify the conditions of (37) into the following
two cases:

1. αM+i = 0. From hi ≥ −yi Fi + yi b,

Fi ≥ b − h+ for yi = 1, b + h− ≥ Fi for yi = −1. (39)

2. Ch ≥ αM+i > 0. From hi = −yi Fi + yi b,

b − h+ = Fi for yi = 1, b + h− = Fi for yi = −1. (40)

Then the KKT conditions for (37) are simplified as follows:

F̄i
+ ≥ b − h+ ≥ F̃i

+
for yi = 1,

F̄i
− ≥ b + h− ≥ F̃i

−
for yi = −1, for i = 1, . . . , M, (41)

where

F̄i
+ = Fi if αM+i ≥ 0, F̃i

+
= Fi if αM+i > 0, (42)

F̄i
− = Fi if αM+i > 0, F̃i

−
= Fi if αM+i ≥ 0. (43)

To detect the violating variables, we define bsup and bslow as follows:

bsup = min
i

F̄i
s
, bslow = max

i
F̃i

s
, (44)

where s = +,−, b+ = b − h+, and b− = b + h−.
If the KKT conditions are satisfied,

bsup ≥ bslow. (45)

To speed up training we consider that training is converged if

max
s=+,− bslow − bsup ≤ τ, (46)

where τ is a small positive parameter.
And the upper bounds are estimated to be

h+
e = b − 1

2
(b+up + b+low), h−

e = −b +
1
2
(b−

up + b−
low). (47)
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2.4 Training Procedure

In the following we show the training procedure of the MLS SVM.

1. (Solving Subprogram 1) Solve (27) for α0 and b fixing αM with the solution
obtained in Step 2. Initially we set αM = 0.

2. (Solving Subprogram 2) Solve (24)–(26) for αM fixing α0 and b with the
solution obtained in Step 1. Initially, we set one αM+i in each class to Ch.

3. (Convergence check) If (46) is satisfied, finish training. Otherwise go to Step
1.

The objective function Q(α) is monotonic during training: In Step 1, the
objective function is maximized with the fixed αM . Therefore the objective
function is non-decreasing after α0 and b are corrected. In Step 2, the objective
function is maximized with the fixed α0 and b. Therefore, the objective function
is also non-decreasing after αM is corrected. In Step 2, so long as (45) is not
satisfied, the objective function is increased by correcting αM . Therefore, the
training stops within finite steps.

The hyperparameter values of γ, C, and Ch are determined by cross-
validation. To make the accuracy improvement over the LS SVM clear, in the
following performance evaluation, we determined the values of γ and C, with
Ch = 0, i.e., using the LS SVM. After they were determined, we determined
the Ch value of MLS SVM. By this method, we can make the accuracy of the
MLS SVM at least by cross-validation not lower than that of the LS SVM, if the
smallest value of Ch in cross-validation is sufficiently small.

3 Performance Evaluation

We evaluated whether the idea of minimizing the VC-dimension, i.e., minimizing
the maximum margin works to improve the generalization ability of the LS SVM.
As classifiers we used the MLS SVM, LS SVM, ML1v SVM, which is a variant
of ML1 SVM, L1 SVM, and ULDM. As a variant of the MLS SVM, we used
an early stopping MLS SVM, MLSe SVM, which terminates training when the
Subprogram 2 converges after matrix inversion for Subprogram 1 is carried out.
This was to check whether early stopping improves the generalization ability
when overfitting occurs.

To make comparison fair we determined the values of the hyperparam-
eters by fivefold cross-validation of the training data, trained the classifiers
with the selected hyperparameter values, and tested the accuracies for the
test data. (Because of the computational cost we did not use nested (double)
cross-validation.) We used two-class and multiclass problems used in [15]. The
two-class problems have 100 or 20 pairs of training and test data sets and
the multiclass problems, one, each. In cross-validation, the candidate values
for γ and C were the same as those discussed in [15]. Those for Ch in the
MLS SVM and MLSe SVM were {0.001, 0.01, 0.1, 1, 10, 50, 100, 500} instead of
{0.1, 1, 10, 50, 100, 500, 1000, 2000} in the ML1v SVM. This was to avoid deteri-
orating the cross-validation accuracy in determining the Ch value. In addition, a
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tie was broken by selecting a smallest value except for MLSe SVM; for the MLSe

SVM, a largest value was selected so that minimizing the maximum margin
worked.

Table 1 shows the average accuracies for the 13 two-class problems. In the
first column, in I/Tr/Te, I shows the number of inputs, Tr, the number of train-
ing data, and Te, the number of test data. For each problem, the best average
accuracy is in bold and the worst, underlined. The average accuracy is accom-
panied by the standard deviation. The plus sign attached to the accuracy shows
that the MLS SVM is statistically better than the associated classifier. Likewise,
the minus sign, worse than the associated classifier. The “Average” row shows
the average accuracy of the associated classifier for the 13 problems and B/S/W
denotes that the associated classifier shows the best accuracy B times, the sec-
ond best, S times, and the worst accuracy, W times. The “W/T/L” denotes
that the MLS SVM is statistically better than the associated classifier W times,
comparable to, T times, and worse than, L times.

From the Average measure, the ULDM performed best and the MLSe SVM,
the worst. And both the MLS SVM and MLSe SVM were inferior to the LS
SVM. From the B/S/W measure, also the ULDM was the best and the LS SVM
was the second best. From the W/T/L measure, the MLS SVM was better than
the MLSe SVM and comparable or almost comparable to the LS SVM, ML1v
SVM, and ULDM. Although the MLS SVM was statistically comparable to or
better than other classifiers, from the Average measure, it was inferior to the
LS SVM. To investigate, why this happened, we compared the average accuracy
obtained by cross-validation, which is shown in Table 2. From the table, the MLS
SVM showed the best average accuracies for all the problems. This shows that
the idea of minimizing the maximum margin worked for the MLS SVM at least
for the cross-validation accuracies. But from Table 1, the MLS SVM was better
than or equal to the LS SVM for only three problems: the diabetes, flare-solar,
and splice problems. This shows that in most cases overfitting occurred for the
MLS SVM. On the other hand, the MLSe SVM was inferior to the LS SVM
except for the test data accuracy of the titanic problem. Thus, in most cases,
inferior performance was caused by underfitting.

Table 4 shows the accuracies of the test data for the multiclass problems. The
original MNIST data set has 6000 data points per class and it is difficult to train
the low order statistic-based classifiers by matrix inversion. Therefore, to reduce
the cross-validation time, we switched the roles of training and test data sets for
the MNIST problem and denote it as MNIST (r). From the Average measure,
the ML1v SVM performed best, the ULDM the second best, and the MLS SVM
and MLSe SVM, worst. From the B/S/W measure, the MLSe SVM was the best
and the MLS SVM the worst. For the MLSe SVM, the accuracy for the thyroid
problem was the worst. Comparing the MLSe SVM and LS SVM, the MLSe

SVM performed better than the LS SVM six times, but the MLS SVM, only
once. Therefore, the MLSe SVM performed better than the LS SVM but MLS
SVM did not.
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Table 1. Average accuracies of the test data for the two-class problems

Problem I/Tr/Te MLS MLSe LS ML1v L1 ULDM

Banana 2/400/4900 89.16± 0.68 89.02± 0.79 89.17± 0.66 89.13± 0.70 89.17± 0.74 89.12± 0.69

Cancer 9/200/77 72.99± 4.66 71.01+ ± 4.38 73.13± 4.68 73.14± 4.38 72.99± 4.49 73.70± 4.42

Diabetes 8/468/300 76.21± 2.01 74.76+ ± 2.77 76.19± 2.00 76.36± 1.84 76.23± 1.80 76.51± 1.95

Flare-solar 9/666/400 66.25± 1.98 63.62+ ± 2.65 66.25± 1.98 66.99− ± 2.16 66.99− ± 2.12 66.28± 2.05

German 20/700/300 76.00± 2.28 74.72+ ± 3.31 76.10± 2.10 75.88± 2.18 76.01± 2.12 76.12± 2.30

Heart 13/170/100 82.43± 3.53 82.35± 3.61 82.49± 3.60 82.89± 3.33 82.72± 3.40 82.57± 3.64

Image 18/1300/1010 97.50± 0.57 97.14+ ± 0.52 97.52± 0.54 97.28± 0.46 97.16+ ± 0.41 97.16± 0.68

Ringnorm 20/400/7000 98.18± 0.35 97.29+ ± 1.56 98.19± 0.33 98.01± 1.11 98.14± 0.34 98.16± 0.35

Splice 60/1000/2175 89.00± 0.71 88.93± 0.82 88.98± 0.70 88.99± 0.83 88.89± 0.84 89.16± 0.53

Thyroid 5/140/75 95.04± 2.56 94.84± 2.60 95.08± 2.55 95.35± 2.48 95.39± 2.43 95.15± 2.27

Titanic 3/150/2051 77.30± 1.27 77.42± 0.78 77.39± 0.83 77.42± 0.74 77.35± 0.80 77.46± 0.91

Twonorm 20/400/7000 97.40± 0.28 97.05+ ± 0.60 97.43± 0.27 97.37± 0.28 97.38± 0.27 97.41± 0.26

Waveform 21/400/4600 90.01± 0.58 89.32+ ± 1.15 90.05± 0.59 89.66+ ± 0.76 89.72+ ± 0.70 90.18− ± 0.54

Average (B/S/W) 85.19 (0/3/1) 84.42 (0/1/12) 85.23 (4/2/0) 85.27 (2/4/0) 85.24 (3/1/0) 85.31 (6/1/0)

W/T/L — 8/5/0 0/13/0 1/11/1 2/10/1 0/12/1

Table 2. Average accuracies by cross-
validation for the two-class problems

Problem MLS MLSe LS

Banana 90.60 90.21 90.50

Cancer 76.03 72.77 75.99

Diabetes 78.19 76.07 78.15

Flare-solar 67.38 63.59 67.36

German 76.59 74.36 76.58

Heart 84.70 83.99 84.59

Image 97.39 97.24 97.38

Ringnorm 98.65 97.53 98.60

Splice 89.02 89.01 88.94

Thyroid 97.44 97.04 97.37

Titanic 79.49 78.81 79.45

Twonorm 98.06 97.55 97.98

Waveform 91.06 90.05 91.00

Average 86.51 85.25 86.45

B/W 13/0 0/12 0/1

Table 3. Average accuracies by cross-
validation for the multiclass problems

Problem MLS MLSe LS

Numeral 99.63 99.51 99.63

Thyroid 95.97 95.02 95.97

Blood cell 94.83 94.54 94.83

Hiragana-50 99.67 99.70 99.67

Hiragana-13 99.86 99.83 99.86

Hiragana-105 99.98 99.98 99.98

Satimage 92.72 92.76 92.72

USPS 98.46 98.44 98.44

MNIST(r) 97.59 97.59 97.59

Letter 97.81 97.74 97.81

Average 97.65 97.51 97.65

B/W 8/2 4/6 7/3

Now examine the result from the cross-validation accuracies shown in Table 3.
The accuracies of the MLS SVM were the same as those of the LS SVM except for
the USPS problem. Therefore, from Table 4, the idea of minimizing the maximum
margin did not contribute in improving the accuracies of the test data except for
the blood cell problem. For the MLSe SVM, the adverse effect of early stopping
occurred for the thyroid problem: the worst accuracy of the test data in Table 4
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was caused by underfitting as seen from Table 3. For the remaining problems the
adverse effect was small or none.

Table 4. Accuracies of the test data for the multiclass problems

Problem I/C/Tr/Te MLS MLSe LS ML1v L1 ULDM

Numeral 12/10/810/820 [2] 99.15 99.39 99.15 99.76 99.76 99.39

Thyroid 21/3/3772/3428 [17] 95.39 94.57 95.39 97.23 97.26 95.57

Blood cell 13/12/3097/3100 [2] 94.29 94.29 94.23 93.65 93.19 94.61

Hiragana-50 50/39/4610/4610 [2] 99.20 99.28 99.48 99.11 98.98 98.92

Hiragana-13 13/38/8375/8356 [2] 99.87 99.88 99.87 99.92 99.76 99.90

Hiragana-105 105/38/8375/8356 [2] 100.00 100.00 100.00 100.00 100.00 100.00

Satimage 36/6/4435/2000 [17] 91.95 92.30 91.95 91.85 91.90 92.25

USPS 256/10/7291/2007 [18] 95.42 95.52 95.47 95.37 95.27 95.42

MNIST(r) 784/10/10000/60000 [19] 96.98 97.03 96.99 96.95 96.55 97.03

Letter 16/26/16000/4000 [17] 97.87 97.85 97.88 98.03 97.70 97.75

Average 97.01 97.01 97.04 97.18 97.04 97.08

B/S/W 1/1/1 4/2/1 2/2/1 4/1/1 3/0/5 3/2/1

For the experiment of the multiclass problems, we compared the accuracies
of the classifiers because we had only one training data set and one test data
set. It was possible to generate multiple training and test data sets from the
original data. However, we avoided this because of long cross-validation time.
To strengthen performance comparison, in the future, we would like to compare
classifiers statistically using multiple training and test data sets.

4 Conclusions

In this paper we proposed the minimal complexity least squares support vec-
tor machine (MLS SVM), which is a fusion of the LS SVM and the minimal
complexity machine (MCM). Unlike the ML1v SVM, which is a fusion of the
L1 SVM and the MCM, the MLS SVM did not show an improvement in the
accuracy for the test data over the LS SVM although the MLS SVM showed an
improvement for the cross-validation accuracy. However, early stopping of the
MLS SVM training sometimes showed improvement over the LS SVM.

In the future, we would like to compare performance of classifiers statistically
using multiple training and test data sets.
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