
On the Optimisation of the GSACA Suffix
Array Construction Algorithm

Jannik Olbrich(B) , Enno Ohlebusch, and Thomas Büchler

University of Ulm, 89081 Ulm, Germany
{jannik.olbrich,enno.ohlebusch,thomas.buechler}@uni-ulm.de

https://www.uni-ulm.de/in/theo

Abstract. The suffix array is arguably one of the most important data
structures in sequence analysis and consequently there is a multitude
of suffix sorting algorithms. However, to this date the GSACA algorithm
introduced in 2015 is the only known non-recursive linear-time suffix
array construction algorithm (SACA). Despite its interesting theoretical
properties, there has been little effort in improving the algorithm’s sub-
par real-world performance. There is a super-linear algorithm DSH which
relies on the same sorting principle and is faster than DivSufSort, the
fastest SACA for over a decade. This paper is concerned with analysing
the sorting principle used in GSACA and DSH and exploiting its properties
in order to give an optimised linear-time algorithm. Our algorithm is not
only significantly faster than GSACA but also outperforms DivSufSort
and DSH.

Keywords: Suffix array · Suffix sorting · String algorithms

1 Introduction

The suffix array contains the indices of all suffixes of a string arranged in lex-
icographical order. It is arguably one of the most important data structures in
stringology, the topic of algorithms on strings and sequences. It was introduced
in 1990 by Manber and Myers for on-line string searches [9] and has since been
adopted in a wide area of applications including text indexing and compres-
sion [12]. Although the suffix array is conceptually very simple, constructing it
efficiently is not a trivial task.

When n is the length of the input text, the suffix array can be constructed
in O(n) time and O(1) additional words of working space when the alphabet
is linearly-sortable (i.e. the symbols in the string can be sorted in O(n) time)
[7,8,10]. However, algorithms with these bounds are not always the fastest in
practice. For instance, DivSufSort has been the fastest SACA for over a decade
although having super-linear worst-case time complexity [3,5]. To the best of
our knowledge, the currently fastest suffix sorter is libsais, which appeared
as source code in February 2021 on Github1 and has not been subject to peer
1 https://github.com/IlyaGrebnov/libsais, last accessed: August 22, 2022.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 99–113, 2022.
https://doi.org/10.1007/978-3-031-20643-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_8&domain=pdf
http://orcid.org/0000-0003-3291-7342
https://github.com/IlyaGrebnov/libsais
https://doi.org/10.1007/978-3-031-20643-6_8


100 J. Olbrich et al.

review in any academic context. The author claims that libsais is an improved
implementation of the SA-IS algorithm and hence has linear time complexity
[11].

The only non-recursive linear-time suffix sorting algorithm GSACA was intro-
duced in 2015 by Baier and is not competitive, neither in terms of speed nor
in the amount of memory consumed [1,2]. Despite the new algorithm’s entirely
novel approach and interesting theoretical properties [6], there has been little
effort in optimising it. In 2021, Bertram et al. [3] provided a faster SACA DSH
using the same sorting principle as GSACA. Their algorithm beats DivSufSort in
terms of speed, but also has super-linear time complexity.

Our Contributions. We provide a linear-time SACA that relies on the same
grouping principle that is employed by DSH and GSACA, but is faster than both.
This is done by exploiting certain properties of Lyndon words that are not used
in the other algorithms. As a result, our algorithm is more than 11% faster than
DSH on real-world texts and at least 46% faster than Baier’s GSACA implementa-
tion. Although our algorithm is not on par with libsais on real-world data, it
significantly improves Baier’s sorting principle and positively answers the ques-
tion whether the precomputed Lyndon array can be used to accelerate GSACA
(posed in [4]).

The rest of this paper is structured as follows: Sect. 2 introduces the defini-
tions and notations used throughout this paper. In Sect. 3, the grouping prin-
ciple is investigated and a description of our algorithm is provided. Finally, in
Sect. 4 our algorithm is evaluated experimentally and compared to other relevant
SACAs.

This is an abridged version of a longer paper available on arXiv [13].

2 Preliminaries

For i, j ∈ N0 we denote the set {k ∈ N0 : i ≤ k ≤ j} by the interval notations
[i .. j] = [i .. j + 1) = (i − 1 .. j] = (i − 1 .. j + 1). For an array A we analogously
denote the subarray from i to j by A [i .. j] = A [i .. j + 1) = A (i − 1 .. j] =
A (i − 1 .. j + 1) = A[i]A[i + 1] . . . A[j]. We use zero-based indexing, i.e. the first
entry of the array A is A[0]. A string S of length n over an alphabet Σ is a
sequence of n characters from Σ. We denote the length n of S by |S| and the
i’th symbol of S by S[i − 1], i.e. strings are zero-indexed. Analogous to arrays
we denote the substring from i to j by S [i .. j] = S [i .. j + 1) = S (i − 1 .. j] =
S (i − 1 .. j + 1) = S[i]S[i + 1] . . . S[j]. For j > i we let S [i .. j] be the empty
string ε. The suffix i of a string S of length n is the substring S [i .. n) and is
denoted by Si. Similarly, the substring S [0 .. i] is a prefix of S. A suffix (prefix)
is proper if i > 0 (i + 1 < n). For two strings u and v and an integer k ≥ 0 we
let uv be the concatenation of u and v and denote the k-times concatenation
of u by uk. We assume totally ordered alphabets. This induces a total order on
strings. Specifically, we say a string S of length n is lexicographically smaller



On the Optimisation of the GSACA Suffix Array Construction Algorithm 101

a

0

c

1

e

2

d

3

c

4

e

5

b

6

c

7

e

8

e

9

c

10

e

11

$

12

12 0 6 10 4 1 7 3 11 5 2 9 8SA
12 4 3 4 6 6 12 10 9 10 12 12 13nss
-1 0 1 1 0 4 0 6 7 7 6 10 -1pss

-1
0

1
2 3

4
5

6
7

8 9
10

11

12

Fig. 1. Shown are the Lyndon prefixes of all suffixes of S = acedcebceece$ and the
corresponding suffix array, nss-array, pss-array and pss-tree. Each box indicates a
Lyndon prefix. For instance, the Lyndon prefix of S7 = ceece$ is L7 = cee. Note that
Li is exactly S[i] concatenated with the Lyndon prefixes of i’s children in the pss-tree
(see Lemma 4), e.g. L6 = S[6]L7L10 = bceece.

than another string S′ of length m if and only if there is some � ≤ min {n,m}
such that S [0 .. �) = S′ [0 .. �) and either n = � < m or S[�] < S′[�]. If S is
lexicographically smaller than S′ we write S <lex S′.

A non-empty string S is a Lyndon word if and only if S is lexicographically
smaller than all its proper suffixes [14]. The Lyndon prefix of S is the longest
prefix of S that is a Lyndon word. We let Li denote the Lyndon prefix of Si.

In the remainder of this paper, we assume an arbitrary but fixed string S of
length n > 1 over a totally ordered alphabet Σ with |Σ| ∈ O(n). Furthermore,
we assume w.l.o.g. that S is null-terminated, that is S[n − 1] = $ and S[i] > $
for all i ∈ [0 .. n − 1).

The suffix array SA of S is an array of length n that contains the indices of the
suffixes of S in increasing lexicographical order. That is, SA forms a permutation
of [0 .. n) and SSA[0] <lex SSA[1] <lex . . . <lex SSA[n−1].

Definition 1 (pss-tree [4]). Let pss be the array such that pss[i] is the index
of the previous smaller suffix for each i ∈ [0 .. n) (or -1 if none exists). Formally,
pss[i] := max ({j ∈ [0 .. i) : Sj <lex Si} ∪ {−1}). Note that pss forms a tree with
-1 as the root, in which each i ∈ [−1 .. n) is represented by a node and pss[i]
is the parent of node i. We call this tree the pss-tree. Further, we impose an
order on the nodes that corresponds to the order of the indices represented by the
nodes. In particular, if c1 < c2 < · · · < ck are the children of i (i.e. pss[c1] =
· · · = pss[ck] = i), we say ck is the last child of i.

Analogous to pss[i], we define nss[i] := min {j ∈ (i .. n] : Sj <lex Si} as the
next smaller suffix of i. Note that Sn = ε is smaller than any non-empty suffix
of S, hence nss is well-defined.

In the rest of this paper, we use S = acedcebceece$ as our running example.
Figure 1 shows its Lyndon prefixes and the corresponding pss-tree.



102 J. Olbrich et al.

12 0 6 4 10 1 7 3 2 5 8 9 11

$

acedcebceece

bceece ce ced cee d e
G1 G2 G3 G4 G5 G6 G7 G8

Fig. 2. A Lyndon grouping of acedcebceece$ with group contexts.

Definition 2. Let Pi be the set of suffixes with i as next smaller suffix, that is

Pi = {j ∈ [0 .. i) : nss[j] = i}
For instance, in the example we have P4 = {1, 3} because nss[1] = nss[3] = 4.

3 GSACA

We start by giving a high level description of the sorting principle based on
grouping by Baier [1,2]. Very basically, the suffixes are first assigned to lexico-
graphically ordered groups, which are then refined until the suffix array emerges.
The algorithm consists of the following steps.

– Initialisation: Group the suffixes according to their first character.
– Phase I: Refine the groups until the elements in each group have the same

Lyndon prefix.
– Phase II: Sort elements within groups lexicographically.

Definition 3 (Suffix Grouping, adapted from [3]). Let S be a string of
length n and SA the corresponding suffix array. A group G with group context α
is a tuple 〈gs, ge, |α|〉 with group start gs ∈ [0 .. n) and group end ge ∈ [gs .. n)
such that the following properties hold:

1. All suffixes in SA [gs .. ge] share the prefix α, i.e. for all i ∈ SA [gs .. ge] it holds
Si = αSi+|α|.

2. α is a Lyndon word.

We say i is in G or i is an element of G and write i ∈ G if and only if i ∈
SA [gs .. ge]. A suffix grouping for S is a set of groups G1, . . . ,Gm, where the
groups are pairwise disjoint and cover the entire suffix array. Formally, if Gi =
〈gs,i, ge,i, |αi|〉 for all i, then gs,1 = 0, ge,m = n − 1 and gs,j = 1 + ge,j−1 for
all j ∈ [2 ..m]. For i, j ∈ [1 ..m], Gi is a lower (higher) group than Gj if and
only if i < j (i > j). If all elements in a group G have α as their Lyndon prefix
then G is a Lyndon group. If G is not a Lyndon group, it is called preliminary.
Furthermore, a suffix grouping is Lyndon if all its groups are Lyndon groups,
and preliminary otherwise.

With these notions, a suffix grouping is created in the initialisation, which
is then refined in Phase I until it is Lyndon, and further refined in Phase II
until the suffix array emerges. Figure 2 shows a Lyndon grouping of our running
example.

In Subsects. 3.1 and 3.2 we explain Phases II and I, respectively, of our
suffix array construction algorithm. Phase II is described first because it is much
simpler.



On the Optimisation of the GSACA Suffix Array Construction Algorithm 103

A[0] ← n − 1;
for i = 0 → n − 1 do

for j ∈ PA[i] do
Let k be the start of the group containing j;
remove j from its current group and put it in a new group 〈k, k, |Lj |〉 immediately
preceding j’s old group;

A[k] ← j;
end

end
Algorithm 1: Phase II of GSACA [1,2]

3.1 Phase II

In Phase II we need to refine the Lyndon grouping obtained in Phase I into the
suffix array. Let G be a Lyndon group with context α and let i, j ∈ G. Since Si =
αSi+|α| and Sj = αSj+|α|, we have Si <lex Sj if and only if Si+|α| <lex Sj+|α|.
Hence, in order to find the lexicographically smallest suffix in G, it suffices to find
the lexicographically smallest suffix p in {i + |α| : i ∈ G}. Note that removing
p − |α| from G and inserting it into a new group immediately preceding G yields
a valid Lyndon grouping. We can repeat this process until each element in G
is in its own singleton group. As G is Lyndon, we have Sk+|α| <lex Sk for each
k ∈ G. Therefore, if all groups lower than G are singletons, p can be determined
by a simple scan over G (by determining which member of {i + |α| : i ∈ G} is
in the lowest group). Consider for instance G4 = 〈3, 4, |ce|〉 from Fig. 2. We
consider 4 + |ce| = 6 and 10 + |ce| = 12. Among them, 12 belongs to the
lowest group, hence S10 is lexicographically smaller than S4. Thus, we know
SA[3] = 10 and remove 10 from G4 and repeat the process with the emerging
group G′

4 = 〈4, 4, |ce|〉. As G′
4 only contains 4 we know SA[4] = 4.

If the groups are refined from lower to higher as just described, each time a
group G is processed, all groups lower than G are singletons. However, sorting
groups in such a way leads to a superlinear time complexity. Bertram et al. [3]
provide a fast-in-practice O (n log n) algorithm for this, broadly following the
described approach.

In order to get a linear time complexity, we turn this approach on its head
like Baier does [1,2]: Instead of repeatedly finding the next smaller suffix in a
group, we consider the suffixes in lexicographically increasing order and for each
encountered suffix i, we move all suffixes that have i as the next smaller suffix
(i.e. those in Pi) to new singleton groups immediately preceding their respective
old groups. Corollary 1 implies that this procedure is well-defined.

Lemma 1. For any j, j′ ∈ Pi we have Lj �= Lj′ if and only if j �= j′.

Corollary 1. In a Lyndon grouping, the elements of Pi are in different groups.

Accordingly, Algorithm 1 correctly computes the suffix array from a Lyndon
grouping. A formal proof of correctness is given in [1,2]. Figure 3 shows Algorithm
1 applied to our running example.



104 J. Olbrich et al.

12 0 6 4 10 1 7 3 2 5 8 9 11
Since S is nullterminated, SA[0] = n − 1 = 12. Hence we insert P12 =
{0, 6, 10, 11}.

12 0 6 10 4 1 7 3 11 2 5 8 9
We skip SA[1] since P0 = ∅. Thus, P6 = {4, 5} is inserted next.

12 0 6 10 4 1 7 3 11 5 2 8 9
Next we have P10 = {7, 9}.

12 0 6 10 4 1 7 3 11 5 9 2 8
Next we have P4 = {1, 3}.

12 0 6 10 4 1 7 3 11 5 9 2 8
The only remaining nonempty Pi are P3 = {2} and P9 = {8}, which are
considered in that order. Inserting them gives the suffix array.
12 0 6 10 4 1 7 3 11 5 9 2 8

Fig. 3. Refining a Lyndon grouping for S = acedcebceece$ (see Fig. 2) into the suffix
array, as done in Algorithm 1. Inserted elements are colored green. (Color figure online)

Note that each element i ∈ [0 .. n − 1) has exactly one next smaller suffix,
hence there is exactly one j with i ∈ Pj and thus i is inserted exactly once into
a new singleton group in Algorithm 1. Therefore, it suffices to map each group
from the Lyndon grouping obtained from Phase I to its current start; we use an
array C that contains the current group starts.

There are two major differences between our Phase II and Baier’s, both are
concerned with the iteration over the Pi-sets.

The first difference is the way in which we determine the elements of Pi for
some i. The following observations enable us to iterate over Pi.

Lemma 2. Pi is empty if and only if i = 0 or Si−1 <lex Si. Furthermore, if
Pi �= ∅ then i − 1 ∈ Pi.

Lemma 3. For some j ∈ [0 .. i), we have j ∈ Pi if and only if j’s last child is
in Pi, or j = i − 1 and Sj >lex Si.

Specifically, (if Pi is not empty) we can iterate over Pi by walking up the pss-
tree starting from i−1 and halting when we encounter a node that is not the last
child of its parent.2 Baier [1,2] tests whether i − 1 (pss[j]) is in Pi by explicitly
checking whether i − 1 (pss[j]) has already been written to A using an explicit
marker for each suffix. Reading and writing those markers leads to bad cache
performance because the accessed memory locations are unpredictable (for the
CPU/compiler). Lemmata 2 and 3 enable us to avoid reading and writing those
markers. In fact, in our implementation of Phase II, the array A is the only
memory written to that is not always in the cache. Lemma 2 tells us whether
we need to follow the pss-chain starting at i − 1 or not. Namely, this is the case
if and only if Si−1 >lex Si, i.e. i − 1 is a leaf in the pss-tree. This information is
required when we encounter i in A during the outer for-loop in Algorithm 1, thus
2 Note that n−1 is the last child of the artificial root -1. This ensures that we always

halt before we actually reach the root of the pss-tree. Moreover, Corollary 1 implies
that the order in which we process the elements in Pi is not important.



On the Optimisation of the GSACA Suffix Array Construction Algorithm 105

A ← (n − 1)⊥n−1 ; // set A[0] = n − 1, fill the rest with “undefined”
Q ← queue containing only n − 1;
i ← 1; // current index in A
while Q is not empty do

s ← Q.size();
repeat s times // insert elements that are currently in the queue

v ← Q.pop();
if pss[v] is marked then // v is last child of pss[v]

Q.push(pss[v]);
end
A[C[G[v]]] ← v; // insert v
if pss[v] + 1 < v then mark A[C[G[v]]]; // v − 1 is leaf
C[G[v]] ← C[G[v]] + 1; // increment current start of v’s old group

end
while Q.size() < w ∧ i < n ∧ A[i] �= ⊥ do // refill the queue

if A[i] is marked then // A[i] − 1 is leaf
Q.push(A[i] − 1);

end
i ← i + 1;

end
end

Algorithm 2: Breadth-first approach to Phase II. The constant w is the max-
imum queue size and G[i] is the index of the group start pointer of i’s group
in C.

we mark such an entry i in A if and only if Pi �= ∅. Implementation-wise, we use
the most significant bit (MSB) of an entry to indicate whether it is marked or
not. By definition, we have Si−1 >lex Si if and only if pss[i]+1 < i. Since pss[i]
must be accessed anyway when i is inserted into A (for traversing the pss-chain),
we can insert i marked or unmarked into A. Further, Lemma 3 implies that we
must stop traversing a pss-chain when the current element is not the last child
of its parent. We mark the entries in pss accordingly, also using the MSB of
each entry. In the rest of this paper, we assume pss to be marked in this way.

Consider for instance i = 6 in our running example. As 6 − 1 = 5 is a leaf
(cf. Fig. 1), we have 5 ∈ P6. We can deduce the fact that 5 is indeed a leaf from
pss[6] = 0 < 5 alone. Further, 5 is the last child of pss[5] = 4, so 4 ∈ P6. Since
4 is not the last child of pss[4] = 0, we have P6 = {4, 5}.

The second major change concerns the cache-unfriendliness of traversing the
Pi-sets. This bad cache performance results from the fact that the next pss-
value (and the group start pointer) cannot be fetched until the current one is in
memory. Instead of traversing the Pi-sets one after another, we opt to travers-
ing multiple such sets in a sort of breadth-first-search manner simultaneously.
Specifically, we maintain a small (≤ 210 elements) queue Q of elements (nodes
in the pss-tree) that can currently be processed. Then we iterate over Q and
process the entries one after another. Parents of last children are inserted into Q
in the same order as the respective children. After each iteration, we continue to
scan over A and for each encountered marked entry i insert i−1 into Q until we
either encounter an empty entry in A or Q reaches its maximum capacity. This
is repeated until the suffix array emerges. The queue size could be unlimited, but
limiting it ensures that it fits into the CPU’s cache. Figure 4 shows our Phase II
on the running example and Algorithm 2 describes it formally in pseudo code.



106 J. Olbrich et al.

12 0 6 10 4 1 7 3 11 2 5 8 9

The first step is the same as in Fig. 3. Note that P0 = ∅, hence 0 is not marked for further
processing.

Now 6 − 1 = 5 and 10 − 1 = 9 are inserted into the queue and 6 and 10 are unmarked.
12 0 6 10 4 1 7 3 11 2 5 8 9 Q = 5 9

In the next step, the elements in the queue are inserted and replaced in the queue with their
parents (if they are last children, which happens to be the case for 5 and 9). Note that they
must be inserted in the same order as they appear in Q.
12 0 6 10 4 1 7 3 11 5 9 2 8 Q = 4 7

Neither 4 nor 7 are the last child of their respective parent.
12 0 6 10 4 1 7 3 11 5 9 2 8 Q is empty

However, we can advance the scan over A and insert 4 − 1 = 3 into Q.
12 0 6 10 4 1 7 3 11 5 9 2 8 Q = 3

Next, 3 is inserted into A. As 3 is the last child of 1, we insert 1 into Q and in the next step
into A. As 1 is not the last child of pss[1] = 0, Q is now empty.

12 0 6 10 4 1 7 3 11 5 9 2 8 Q is empty
We can continue the scan over A and insert 3 − 1 = 2 and 9 − 1 = 8 into Q.
12 0 6 10 4 1 7 3 11 5 9 2 8 Q = 2 8

Finally, the elements in the queue can be inserted and the suffix array emerges.
12 0 6 10 4 1 7 3 11 5 9 2 8

Fig. 4. Refining a Lyndon grouping for S = acedcebceece$ (see Fig. 2) into the suffix
array using Algorithm 2. Marked entries are coloured blue while inserted but unmarked
elements are coloured green. Note that the uncoloured entries are not actually present
in the array A but only serve to indicate the current Lyndon grouping. (Color figure
online)

Theorem 1. Algorithm 2 correctly computes the suffix array from a Lyndon
grouping.

3.2 Phase I

In Phase I, a Lyndon grouping is derived from a suffix grouping in which the
group contexts have length (at least) one. That is, the suffixes are sorted and
grouped by their Lyndon prefixes. Lemma 4 describes the relationship between
the Lyndon prefixes and the pss-tree that is essential to Phase I.

Lemma 4. Let c1 < · · · < ck be the children of i ∈ [0 .. n) in the pss-tree. Li is
S[i] concatenated with the Lyndon prefixes of c1, . . . , ck. More formally:

Li = S [i .. nss[i]) = S[i]S [c1 .. c2) . . . S [ck .. nss[i]) = S[i]Lc1 . . . Lck

We start from the initial suffix grouping in which the suffixes are grouped
according to their first characters. From the relationship between the Lyndon
prefixes and the pss-tree in Lemma 4 one can get the general idea of extend-
ing the context of a node’s group with the Lyndon prefixes of its children (in
correct order) while maintaining the sorting [1]. Note that any node is by def-
inition in a higher group than its parent. Also, by Lemma 4 the leaves of the
pss-tree are already in Lyndon groups in the initial suffix grouping. Therefore,
if we consider the groups in lexicographically decreasing order (i.e. higher to
lower) and append the context of the current group to each parent (and insert



On the Optimisation of the GSACA Suffix Array Construction Algorithm 107

12 0 6 1 4 7 10 3 2 5 8 9 11

e
In the initial suffix grouping, the suffixes are grouped according to their first
characters.

The first considered group contains the elements 2, 5, 8, 9 and 11 and has
context e. The parents of the elements are 1, 4, 10 and 7, where the former
three each have one child in the current group and the latter has two. All
are in the group with context c. Thus, we first move 7 to a new group with
context cee and then 1,4 and 10 to a new group with context ce.

12 0 6 1 4 10 7 3 2 5 8 9 11

d

Next the group with context d containing 3 is processed. The parent of 3 is 1
in a group with context ce, so it is moved to a new group with context ced.
Note that 4 and 10 are now also in a Lyndon group (still with context ce).

12 0 6 4 10 1 7 3 2 5 8 9 11

cee

The next processed group contains 7 and has context cee. The parent 6 is
moved to a new group with context bcee. (As 6 is already in a singleton
group, the actual grouping remains the same except for the context of 6’s
group.)

12 0 6 4 10 1 7 3 2 5 8 9 11

cedce

The next group again contains only one element, namely 1 with parent
0. Thus, 0 is put into a new group with context aced. Following that, the
next group contains 4 and 10, hence their parents 0 and 6 are put into new
groups with contexts acedce and bceece.

12 0 6 4 10 1 7 3 2 5 8 9 11

bceece

Finally, the only remaining element with a non-root parent is 6 (with parent
0) in a group with context bceece. Hence, 0 is put into a Lyndon group with
context acedcebceece. Afterwards, there is nothing more to do and we obtain
the Lyndon grouping from Fig. 2.

Fig. 5. Refining the initial suffix grouping for S = abccabccbcc$ (see Fig. 2) into the
Lyndon grouping. Elements in Lyndon groups are marked gray or green, depending on
whether they have been processed already. Note that the applied procedure does not
entirely correspond to our algorithm for Phase I; it only serves to illustrate the sorting
principle. (Color figure online)

them into new groups accordingly), each encountered group is guaranteed to
be Lyndon [1]. Consequently, we obtain a Lyndon grouping. Figure 5 shows this
principle applied to our running example. Formally, the suffix grouping satisfies
the following property during Phase I before and after processing a group:

Property 1. For any i ∈ [0 .. n) with children c1 < · · · < ck there is j ∈ [0 .. k]
such that (a) c1, . . . , cj are in groups that have already been processed, (b)
cj+1, . . . , ck are in groups that have not yet been processed, and (c) the context
of the group containing i is S[i]Lc1 . . . Lcj . Furthermore, each processed group
is Lyndon.

Additionally and unlike in Baier’s original approach, all groups created during
our Phase I are either Lyndon or only contain elements whose Lyndon prefix is
different from the group’s context.

Definition 4 (Strongly preliminary group). We call a preliminary group
G = 〈gs, ge, |α|〉 strongly preliminary if and only if G contains only elements



108 J. Olbrich et al.

whose Lyndon prefix is not α. A preliminary group that is not strongly prelimi-
nary is called weakly preliminary.

Lemma 5. For any weakly preliminary group G = 〈gs, ge, |α|〉 there is some g′ ∈
[gs .. ge) such that G′ = 〈gs, g

′, |α|〉 is a Lyndon group and G′′ = 〈g′ + 1, ge, |α|〉
is a strongly preliminary group.

For instance, in Fig. 5 there is a group containing 1,4 and 10 with context ce.
However, 4 and 10 have this context as Lyndon prefix while 1 has ced. Conse-
quently, 1 will later be moved to a new group. Hence, when Baier (and Bertram
et al.) create a weakly preliminary group (in Fig. 5 this happens while process-
ing the Lyndon group with context e), we instead create two groups, the lower
containing 4 and 10 and the higher containing 1.

During Phase I we maintain the suffix grouping using the following data struc-
tures. Two arrays A and I of length n each, where A contains the unprocessed
Lyndon groups and the sizes of the strongly preliminary groups, and I maps
each element s ∈ [0 .. n) to the start of the group containing s. We call I[s] the
group pointer of s. Further, we store the starts of the already processed groups
in a list C . Let G = 〈gs, ge, |α|〉 be a group. For each s ∈ G we have I[s] = gs. If
G is Lyndon and has not yet been processed, we also have s ∈ A [gs .. ge] for all
s ∈ G and A[gs] < A[gs+1] < · · · < A[ge]. If G is Lyndon and has been processed
already, there is some j such that C[j] = gs. If G is (strongly) preliminary we
have A[gs] = ge + 1 − gs and A[k] = 0 for all k ∈ (gs .. ge].

There are several reasons why our Phase I is much faster than Baier’s. Firstly,
we do not write preliminary groups to A. Secondly, we compute pss beforehand
using an algorithm by Bille et al. [4] instead of on the fly as Baier does [1,2].
Furthermore, we have the Lyndon groups in A sorted and store the sizes of the
strictly preliminary groups in A as well. The former makes finding the number
of children a parent has in the currently processed group easier and faster. The
latter makes the separate array of length n used by Baier [1,2] for the group sizes
obsolete and is made possible by the fact that we only write Lyndon groups to
A. For reasons why these changes lead to a faster algorithm see [13].

As alluded above, we follow Baier’s general approach and consider the Lyn-
don groups in lexicographically decreasing order while updating the groups
containing the parents of elements in the current group. Since children are in
higher groups than their parents by definition, when we encounter some group
G = 〈gs, ge, |α|〉, the children of any element in G are in already processed groups.
Hence, by Property 1 G must be Lyndon. For a formal proof see [1].

In the rest of this section we explain how to actually process a Lyndon group.
Let G = 〈gs, ge, |α|〉 be the currently processed group and w.l.o.g. assume that

no element in G has the root −1 as parent (we do not have the root in the suffix
grouping, thus nodes with the root as parent can be ignored here). Furthermore,
let A be the set of parents of elements in G (i.e. A = {pss[i] : i ∈ G, pss[i] ≥ 0})
and let G1 < · · · < Gk be those (necessarily preliminary) groups containing
elements from A. For each g ∈ [1 .. k] let αg be the context of Gg.

As noted in Fig. 5, we have to consider the number of children an element in
A has in G. Specifically, we need to move two parents in A which are currently



On the Optimisation of the GSACA Suffix Array Construction Algorithm 109

in the same group to different new groups if they have differing numbers of
children in G. Let A� contain those elements from A with exactly � children in
G. Maintaining Property 1 requires that, after processing G, for some g ∈ [1 .. k]
the elements in Gg ∩ A� are in groups with context αgα

�. For any � < �′, we
have αgα

� <lex αgα
�′
, thus the elements in Gg ∩ A� must form a lower group

than those in Gg ∩A�′ after G has been processed [1,2]. To achieve this, first the
parents in A|G| are moved to new groups immediately following their respective
old groups, then those in A|G|−1 and so on [1,2].

We proceed as follows. First, determine A and count how many children
each parent has in G. Then, sort the parents according to these counts using a
bucket sort.3 Further, partition the elements in each bucket into two sub-buckets
depending on whether they should be inserted into Lyndon groups or strongly
preliminary groups. Then, for the sub-buckets (in the order of decreasing count;
for equal counts: first strongly preliminary then Lyndon sub-buckets) move the
parents into new groups.4 Because of space constraints, we do not describe the
rather technical details. These can be found in the extended paper [13].

4 Experiments

Our implementation FGSACA of the optimised GSACA is publicly available.5
We compare our algorithm with the GSACA implementation by Baier [1,2],

and the double sort algorithms DS1 and DSH by Bertram et al. [3]. The latter
two also use the grouping principle but employ integer sorting and have super-
linear time complexity. DSH differs from DS1 only in the initialisation: in DS1 the
suffixes are sorted by their first character while in DSH up to 8 characters are
considered. We further include DivSufSort 2.0.2 and libsais 2.7.1 since the
former is used by Bertram et al. as a reference [3] and the latter is the currently
fastest suffix sorter known to us.

The algorithms were evaluated on real texts (in the following PC-Real), real
repetitive texts (PC-Rep-Real) and artificial repetitive texts (PC-Rep-Art) from
the Pizza & Chili corpus. To test the algorithms on texts for which a 32-bit suffix
array is not sufficient, we also included larger texts (Large), namely the first
1010 bytes from the English Wikipedia dump from 01.06.2022 and the human
DNA concatenated with itself. For more detail on the data and our testing
methodology see the longer version of this paper [13].

All algorithms were faster on the more repetitive datasets, on which the dif-
ferences between the algorithms were also smaller. On all datasets, our algorithm

3 Note that the sum of the counts is |G|, hence the time complexity of the bucket sort
is linear in the size of the group.

4 Note that Baier broadly follows the same steps (determine parents, sort them, move
them to new groups accordingly) [1,2]. However, each individual step is different
because of our distinction between strongly preliminary, weakly preliminary and
Lyndon groups.

5 https://gitlab.com/qwerzuiop/lfgsaca.

https://gitlab.com/qwerzuiop/lfgsaca


110 J. Olbrich et al.

0

1

2
1.

58

0.
53

0.
54 0.
66 0.

98

T
im

e
(s

1
0

M
iB
)

PC-Rep-Art

0.
87

0.
73

0.
75 0.

93

1.
76

PC-Rep-Real

0.
98

0.
88 1 1 .

1

2.
28

PC-Real

1.
97

1.
69 1.

96 2.
11

Large

D
i
v
S
u
f
S
o
r
t

F
G
S
A
C
A

D
S
H

D
S
1

G
S
A
C
A

0
5

10
15

9.
84

11
.3

7

12
.6

3

12

ex
tr
a
by

te
s/
n

D
i
v
S
u
f
S
o
r
t

F
G
S
A
C
A

D
S
H

D
S
1

G
S
A
C
A

8 .
61 6.
84

7.
56

12

D
i
v
S
u
f
S
o
r
t

F
G
S
A
C
A

D
S
H

D
S
1

G
S
A
C
A

8.
4 7.
01

7.
83

12

D
i
v
S
u
f
S
o
r
t

F
G
S
A
C
A

D
S
H

D
S
1

16
.5

4 8.
64

9.
3

Initialisation Phase I Phase II

Fig. 6. Normalised running time and working memory averaged for each category. The
horizontal red line indicates the time for libsais. For Large we did not test GSACA
because Baier’s reference implementation only supports 32-bit words. (Color figure
online)

is between 46% and 60% faster than GSACA and compared to DSH about 2% faster
on repetitive data, over 11% faster on PC-Real and over 13% faster on Large.

Especially notable is the difference in the time required for Phase II: Our
Phase II is between 33% and 50% faster than Phase II of DSH. Our Phase I is
also faster than Phase I of DS1 by a similar margin. Conversely, Phase I of DSH
is much faster than our Phase I. However, this is only due to the more elaborate
construction of the initial suffix grouping as demonstrated by the much slower
Phase I of DS1. Compared to FGSACA, libsais is between 46% and 3% faster.

Memory-wise, for 32-bit words, FGSACA uses about 8.83 bytes per input char-
acter, while DS1 and DSH use 8.94 and 8.05 bytes/character, respectively. GSACA
always uses 12 bytes/character. On Large, FGSACA expectedly requires about
twice as much memory. For DS1 and DSH this is not the case, mostly because
they use 40-bit integers for the additional array of length n that they require
(while we use 64-bit integers). DivSufSort requires only a small constant amount
of working memory and libsais never exceeded 21kiB of working memory on
our test data.

Acknowledgements. This work was supported by the Deutsche Forschungsgemein-
schaft (DFG - German Research Foundation) (OH 53/7-1).



On the Optimisation of the GSACA Suffix Array Construction Algorithm 111

A Proofs

Lemma 1. For any j, j′ ∈ Pi we have Lj �= Lj′ if and only if j �= j′.

Proof. Let j, j′ ∈ Pi and j �= j′. By definition of Pi we have nss[j] = nss[j′] = i.
Since Lj = S [j .. nss[j]) and Lj′ = S [j′ .. nss[j′]), Lj and Lj′ have different
lengths, implying the claim.

Lemma 2. Pi is empty if and only if i = 0 or Si−1 <lex Si. Furthermore,
if Pi �= ∅ then i − 1 ∈ Pi.

Proof. P0 = ∅ by definition. Let i ∈ [1 .. n). If Si−1 >lex Si we have nss[i−1] = i
and thus i − 1 ∈ Pi. Otherwise (Si−1 <lex Si), assume there is some j < i − 1
such that nss[j] = i. By definition, Sj >lex Si and Sj <lex Sk for each k ∈ (j .. i).
But by transitivity we also have Sj >lex Si−1, which is a contradiction, hence
Pi must be empty.

Lemma 3. For some j ∈ [0 .. i), we have j ∈ Pi if and only if j’s last child is
in Pi, or j = i − 1 and Sj >lex Si.

Proof. By Lemma 2 we may assume Pi �= ∅ and j + 1 < i, otherwise the claim
is trivially true. If j is a leaf we have nss[j] = j + 1 < i and thus j /∈ Pi by
definition. Hence assume j is not a leaf and has j′ > j as last child, i.e. pss[j′] = j
and there is no k > j′ with pss[k] = j. It suffices to show that j′ ∈ Pi if and
only if j ∈ Pi. Note that pss[j′] = j implies nss[j] > j′.

=⇒ : From nss[j′] = i and thus Sk >lex Sj′ >lex Sj (for all k ∈ (j′ .. i)) we
have nss[j] ≥ i. Assume nss[j] > i. Then Si >lex Sj and thus pss[i] = j, which
is a contradiction.

⇐= : From Si <lex Sj <lex Sj′ we have nss[j′] ≤ i. Assume nss[j′] < i for a
contradiction. For all k ∈ (j .. j′), pss[j′] = j implies Sk >lex Sj′ . Furthermore,
for all k ∈ [j′ .. nss[j′]) we have Sk >lex Snss[j′] by definition. In combination
this implies Sk >lex Snss[j′] for all k ∈ (j .. nss[j′]). As nss[j] = i > nss[j′] we
hence have pss[nss[j′]] = j, which is a contradiction.

Theorem 1. Algorithm 2 correctly computes the suffix array from a Lyndon
grouping.

Proof. By Lemmata 2 and 3, Algorithms 1 and 2 are equivalent for a maximum
queue size of 1. Therefore it suffices to show that the result of Algorithm 2 is
independent of the queue size. Assume for a contradiction that the algorithm
inserts two elements i and j with Si <lex Sj belonging to the same Lyndon
group with context α, but in a different order as Algorithm 1 would. This can
only happen if j is inserted earlier than i. Note that, since i and j have the same
Lyndon prefix α, the pss-subtrees Ti and Tj rooted at i and j, respectively, are
isomorphic (see [4]). In particular, the path from the rightmost leaf in Ti to i
has the same length as the path from the rightmost leaf in Tj to j. Thus, i and
j are inserted in the same order as Si+|α| and Sj+|α| occur in the suffix array.
Now the claim follows inductively.



112 J. Olbrich et al.

Lemma 4. Let c1 < · · · < ck be the children of i ∈ [0 .. n) in the pss-
tree. Li is S[i] concatenated with the Lyndon prefixes of c1, . . . , ck. More for-
mally:

Li = S [i .. nss[i]) = S[i]S [c1 .. c2) . . . S [ck .. nss[i]) = S[i]Lc1 . . . Lck

Proof. By definition we have Li = S [i .. nss[i]). Assume i has k ≥ 1 children
c1 < · · · < ck in the pss-tree (otherwise nss[i] = i + 1 and the claim is trivial).
For the last child ck we have nss[ck] = nss[i] from Lemma 3. Let j ∈ [1 .. k) and
assume nss[cj ] �= cj+1. Then we have nss[cj ] < cj+1, otherwise cj+1 would be a
child of cj . As we have Snss[cj ] <lex Scj and Scj <lex Scj′ for each j′ ∈ [1 .. j) (by
induction), we also have Snss[cj ] <lex Si′ for each i′ ∈ (i .. nss[cj ]). Since nss[i] >
nss[cj ], nss[cj ] must be a child of i in the pss-tree, which is a contradiction.

Lemma 5. For any weakly preliminary group G = 〈gs, ge, |α|〉 there is some g′ ∈
[gs .. ge) such that G′ = 〈gs, g

′, |α|〉 is a Lyndon group and G′′ = 〈g′+1, ge, |α|〉 is
a strongly preliminary group.

Proof. Let G = 〈gs, ge, |α|〉 be a weakly preliminary group. Let F ⊂ G be the
set of elements from G whose Lyndon prefix is α. By Lemma 6 (below) we
have Si <lex Sj for any i ∈ F, j ∈ G \ F . Hence, splitting G into two groups
G′ = 〈gs, gs + |F | − 1, |α|〉 and G′′ = 〈gs + |F | , ge, |α|〉 results in a valid suffix
grouping. Note that, by construction, the former is a Lyndon group and the
latter is strongly preliminary.

Lemma 6. For strings wu and wv over Σ with u <lex wu and v >lex wv we
have wu <lex wv.

Proof. Note that there is no j such that wv = wj since otherwise v would be a
prefix of wv and v <lex wv would hold. Hence, there are k ∈ N, � ∈ [0 .. |w|) , b ∈
Σ and m ∈ Σ∗ such that wv = wkw [0 .. �) bm and b > w[�]. There are two cases:

– wu = wj for some j ≥ 1
• If j |w| ≤ k |w| + �, then wu is a prefix of wv.
• Otherwise, the first different symbol in wu and wv is at index p = k |w|+�

and we have (wu)[p] = wj [p] = w[�] < b = (wv)[p].
– There are i ∈ N, j ∈ [0 .. |w|) , a ∈ Σ and q ∈ Σ∗ such that wu = wiw [0 .. j) aq

and a < w[j].
• If |wiw [0 .. j) | ≤ |wkw [0 .. �) |, the first different symbol is at position

p = |wiw [0 .. j) | with wu[p] = a < w[j] ≤ wv[p].
• Otherwise, the first different symbol is at position p = |wkw [0 .. �) | with

wv[p] = b > w[�] = wu[p].

In all cases, the claim follows.



On the Optimisation of the GSACA Suffix Array Construction Algorithm 113

References

1. Baier, U.: Linear-time suffix sorting. Master’s thesis, Ulm University (2015)
2. Baier, U.: Linear-time suffix sorting - a new approach for suffix array construc-

tion. In: Grossi, R., Lewenstein, M. (eds.) 27th Annual Symposium on Combina-
torial Pattern Matching. Leibniz International Proceedings in Informatics, vol. 54.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

3. Bertram, N., Ellert, J., Fischer, J.: Lyndon words accelerate suffix sorting. In:
Mutzel, P., Pagh, R., Herman, G. (eds.) 29th Annual European Symposium on
Algorithms. Leibniz International Proceedings in Informatics, vol. 204, pp. 15:1–
15:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

4. Bille, P., et al.: space efficient construction of Lyndon arrays in linear time. In: Czu-
maj, A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium on Automata,
Languages, and Programming. Leibniz International Proceedings in Informatics,
vol. 168, pp. 14:1–14:18. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

5. Fischer, J., Kurpicz, F.: Dismantling DivSufSort. In: Holub, J., Žd’árek, J. (eds.)
Proceedings of the Prague Stringology Conference 2017, pp. 62–76 (2017)

6. Franek, F., Paracha, A., Smyth, W.F.: The linear equivalence of the suffix array
and the partially sorted Lyndon array. In: Holub, J., Žd’árek, J. (eds.) Proceedings
of the Prague Stringology Conference 2017, pp. 77–84 (2017)

7. Goto, K.: Optimal time and space construction of suffix arrays and LCP arrays for
integer alphabets. In: Holub, J., Žd’árek, J. (eds.) Proceedings of the 23rd Prague
Stringology Conference, pp. 111–125 (2017)

8. Li, Z., Li, J., Huo, H.: Optimal in-place suffix sorting. Inf. Comput. 285, 104818
(2022). https://doi.org/10.1016/j.ic.2021.104818. ISSN 0890-5401

9. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. In:
Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 319–327. Society for Industrial and Applied Mathematics (1990)

10. Nong, G.: Practical linear-time O(1)-workspace suffix sorting for constant alpha-
bets. ACM Trans. Inf. Syst. 31(3), 1–15 (2013)

11. Nong, G., Zhang, S., Chan, W.H.: Linear suffix array construction by almost pure
induced-sorting. In: 2009 Data Compression Conference, pp. 193–202 (2009)

12. Ohlebusch, E.: Bioinformatics algorithms: sequence analysis, genome rearrange-
ments, and phylogenetic reconstruction. Oldenbusch Verlag (2013)

13. Olbrich, J., Ohlebusch, E., Büchler, T.: On the optimisation of the GSACA suffix
array construction algorithm (2022). https://doi.org/10.48550/ARXIV.2206.12222

14. Pierre Duval, J.: Factorizing words over an ordered alphabet. J. Algorithms 4(4),
363–381 (1983)

https://doi.org/10.1016/j.ic.2021.104818
https://doi.org/10.48550/ARXIV.2206.12222

	On the Optimisation of the GSACA Suffix Array Construction Algorithm
	1 Introduction
	2 Preliminaries
	3 GSACA
	3.1 Phase II
	3.2 Phase I

	4 Experiments
	A  Proofs
	References




