
Diego Arroyuelo
Barbara Poblete (Eds.)

LN
CS

 1
36

17

String Processing
and Information Retrieval
29th International Symposium, SPIRE 2022
Concepción, Chile, November 8–10, 2022
Proceedings

Lecture Notes in Computer Science 13617

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Diego Arroyuelo • Barbara Poblete (Eds.)

String Processing
and Information Retrieval
29th International Symposium, SPIRE 2022
Concepción, Chile, November 8–10, 2022
Proceedings

123

Editors
Diego Arroyuelo
Universidad Técnica Federico Santa María
Valparaíso, Chile

Millennium Institute for Foundational
Research on Data
Santiago, Chile

Barbara Poblete
Universidad de Chile
Santiago, Chile

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-20642-9 ISBN 978-3-031-20643-6 (eBook)
https://doi.org/10.1007/978-3-031-20643-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
Chapter “Engineering Compact Data Structures for Rank and Select Queries on Bit Vectors” is licensed under
the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2509-8097
https://doi.org/10.1007/978-3-031-20643-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Preface

The 29th International Symposium on String Processing and Information Retrieval,
SPIRE 2022, was held during November 8–10, 2022, in Concepción, Chile. SPIRE
started in 1993 as the South American Workshop on String Processing, and therefore it
was held in Latin America until 2000. Then, SPIRE moved to Europe, and from then
on it has been held in Australia, Japan, the UK, Spain, Italy, Finland, Portugal, Israel,
Brazil, Chile, Colombia, Mexico, Argentina, Bolivia, Peru, the USA, and France. In
this edition, SPIRE was back in Chile, continuing the long and well-established tra-
dition of encouraging high-quality research at the broad nexus of string processing,
information retrieval, and computational biology. After two years running online
(because of the COVID-19 pandemic), this year SPIRE returned to onsite mode (al-
lowing also online attendants).

This volume contains the accepted papers presented in SPIRE 2022. There was a
total of 43 submissions. We thank all authors who submitted their work for consid-
eration to SPIRE 2022. Each submission received at least three single blind reviews
and, after intensive discussion, the Program Committee decided to accept 23 papers.
These were classified into seven tracks: string algorithms, string data structures, string
compression, information retrieval, computational biology, space-efficient data struc-
tures, and pattern matching. Authors of accepted papers come from 14 countries across
four continents (Asia, Europe, North America, and South America). We thank the
authors for their valuable contributions and presentations at the conference. We also
want to especially thank the Program Committee members and the external reviewers
for their valuable work during the review and discussion phases. The SPIRE 2022
program also included two invited talks:

– “De Bruijn Graphs: Solving Biological Problems in Small Space”, by Leena Sal-
mela, and

– “LZ-End Parsing: Upper Bounds”, by Dominik Kempa,

and the tutorial “Graph Databases” by Aidan Hogan and Domagoj Vrgoč. We thank
them for accepting our invitation and for their enlightening presentations.

We are also grateful to the organizing committee, chaired by José Fuentes and
Cecilia Hernández (Universidad de Concepción), whose excellent work allowed SPIRE
2022 to become a reality. Also, we want to thank the financial support of the Institute
for Foundational Research on Data (IMFD), the Centre for Biotechnology and Bio-
engineering (CeBiB), the Vicerrectoría and the Facultad de Ingeniería of Universidad
de Concepción, and R9 Ingeniería, which was crucial to fund the invited speakers,
tutorial, streaming service, free student registration (to encourage onsite student par-
ticipation, after two years of online activities), and the auditorium for the conference.

To complete the event, SPIRE 2022 had a Best Paper Award sponsored by Springer,
which was announced at the conference.

November 2022 Diego Arroyuelo
Barbara Poblete

vi Preface

Organization

Program Committee Chairs

Diego Arroyuelo Universidad Técnica Federico Santa María and
Millennium Institute for Foundational Research on
Data, Chile

Barbara Poblete University of Chile, Chile, and Amazon, USA

Program Committee

Amihood Amir Bar-Ilan University, Israel
Ricardo Baeza-Yates Northeastern University, USA, Pompeu Fabra

University, Spain, and University of Chile, Chile
Hideo Bannai Tokyo Medical and Dental University, Japan
Altigran da Silva Universidade Federal do Amazonas, Brazil
Antonio Fariña University of A Coruña, Spain
Gabriele Fici University of Palermo, Italy
Travis Gagie Dalhousie University, Canada
Pawel Gawrychowski University of Wroclaw, Poland
Marcos Goncalves Federal University of Minas Gerais, Brazil
Inge Li Gørtz Technical University of Denmark, Denmark
Meng He Dalhousie University, Canada
Wing-Kai Hon National Tsing Hua University, Taiwan
Shunsuke Inenaga Kyushu University, Japan
Dominik Köppl Tokyo Medical and Dental University, Japan
Thierry Lecroq University of Rouen Normandy, France
Zsuzsanna Lipták University of Verona, Italy
Felipe A. Louza Universidade Federal de Uberlândia, Brazil
Giovanni Manzini University of Pisa, Italy
Joao Meidanis University of Campinas and Scylla Bioinformatics,

Brazil
Alistair Moffat University of Melbourne, Australia
Viviane P. Moreira Universidade Federal do Rio Grande do Sul, Brazil
Gonzalo Navarro University of Chile, Chile
Nadia Pisanti University of Pisa, Italy
Solon Pissis Centrum Wiskunde & Informatica, The Netherlands
Nicola Prezza Ca’ Foscari University of Venice, Italy
Simon Puglisi University of Helsinki, Finland
Rajeev Raman University of Leicester, UK
Kunihiko Sadakane The University of Tokyo, Japan

Srinivasa Rao Satti Norwegian University of Science and Technology,
Norway

Marinella Sciortino University of Palermo, Italy
Diego Seco University of A Coruña, Spain
Sharma V. Thankachan University of Central Florida, USA
Rossano Venturini University of Pisa, Italy
Nivio Ziviani Federal University of Minas Gerais, Brazil

Steering Committee

Ricardo Baeza-Yates Northeastern University, USA, Pompeu Fabra
University, Spain, and University of Chile, Chile

Christina Boucher University of Florida, USA
Nieves R. Brisaboa University of A Coruña, Spain
Thierry Lecroq University of Rouen Normandy, France
Simon Puglisi University of Helsinki, Finland
Berthier Ribeiro-Neto Google Inc. and Federal University of Minas Gerais,

Brazil
Sharma Thankachan University of Central Florida, USA
Hélène Touzet CNRS, France
Nivio Ziviani Federal University of Minas Gerais, Brazil

Organizing Committee

José Fuentes-Sepúlveda Universidad de Concepción and Millennium Institute
for Foundational Research on Data, Chile

Cecilia Hernández Universidad de Concepción, Chile

Additional Reviewers

Paniz Abedin
Fabiano Belém
Luciana Bencke
Giulia Bernardini
Itai Boneh
Davide Cenzato
Dustin Cobas
Guillermo De Bernardo
Daniel Xavier De Sousa
Jonas Ellert
Massimo Equi
Celso França
José Fuentes-Sepúlveda
Younan Gao
Samah Ghazawi

Daniel Gibney
Sara Giuliani
Adrián Gómez-Brandón
Keisuke Goto
Veronica Guerrini
Tomohiro I
Michael Itzhaki
Varunkumar Jayapaul
Seungbum Jo
Serikzhan Kazi
Eitan Kondratovsky
William Kuszmaul
Francesco Masillo
Takuya Mieno
Yuto Nakashima

viii Organization

Takaaki Nishimoto
Francisco Olivares
Lucas Oliveira
Kunsoo Park
Pierre Peterlongo
Giulio Ermanno Pibiri
Jakub Radoszewski
Giuseppe Romana
Yoshifumi Sakai

Ayumi Shinohara
Tatiana Starikovskaya
Guilherme Telles
Cristian Urbina
Adriano Veloso
Felipe Viegas
Kaiyu Wu
Wiktor Zuba

Organization ix

Abstracts of Invited Talks

De Bruijn Graphs: Solving Biological Problems
in Small Space

Leena Salmela

Department of Computer Science, University of Helsinki, Helsinki, Finland
leena.salmela@helsinki.fi

Abstract. De Bruijn graphs have become a standard data structure in analysing
sequencing data due to its ability to represent the information in a sequencing
read set in small space. They represent the sequencing reads by the k-mers, i.e.,
substrings of length k occurring in the reads. Classically, the edges of a de
Bruijn graph are defined to be the k-mers and the nodes are the k � 1-length
prefixes and suffixes of the k-mers. The construction of a de Bruijn graph starts
by counting the k-mers occurring in the reads. Many good methods exist for
extracting exact k-mers from read data and counting the number of their
occurrences. However, sequencing read sets can contain a significant number of
sequencing errors, which limits the usefulness of counting exact k-mers to short
k-mers. Recently, we have developed methods for extracting longer k-mers from
noisy data by using spaced seeds and strobemers.
De Bruijn graphs were originally introduced for solving the genome assembly

problem, where the goal is to reconstruct the genome based on sequencing
reads. In practice, genome assembly is solved with de Bruijn graphs by reporting
unitigs, which are non-branching paths in the de Bruijn graphs. The choice of k
is a crucial matter in de-Bruijn-graph-based genome assembly. A too small k
will make the graph tangled, resulting in short unitigs, while a too large k will
fragment the graph, again resulting in short unitigs. A variable-order de Bruijn
graph, which represents de Bruijn graphs of all orders k in a single data
structure, has been presented as a solution to the choice of k. However, it is not
clear how the definition of unitigs can be extended to variable-order de Bruijn
graphs.
In this talk, we present a robust definition of assembled sequences in

variable-order de Bruijn graphs and an algorithm for enumerating them. Apart
from genome assembly, de Bruijn graphs are used in many other problems such
as sequencing error correction, reference free variant calling, indexing read sets,
and so on. At the end of this talk, we will review some of these applications and
their de-Bruijn-graph-based solutions.

Keywords: de Bruijn graph � k-mer � Genome assembly

Supported by Academy of Finland (grant 323233).

https://orcid.org/0000-0002-0756-543X

LZ-End Parsing: Upper Bounds
and Algorithmic Techniques

Dominik Kempa

Stony Brook University,
Stony Brook, New York, USA

kempa@cs.stonybrook.edu

Abstract. Lempel–Ziv (LZ77) compression is the most commonly used lossless
compression algorithm. The basic idea is to greedily break the input string into
blocks (called “phrases”), every time forming as a phrase the longest prefix
of the unprocessed part that has an earlier occurrence. In 2010, Kreft and
Navarro introduced a variant of LZ77 called LZ-End, that additionally requires
the previous occurrence of each phrase to end at the boundary of an already
existing phrase. Due to its excellent practical performance as a compression
algorithm and a compressed index, they conjectured that it achieves a com-
pression that can be provably upper-bounded in terms of the LZ77 size. Despite
the recent progress in understanding such relation for other compression algo-
rithms (e.g., the run-length encoded Burrows–Wheeler transform), no such
result is known for LZ-End. In this talk, we give an overview of the recent
progress on the above problem. More precisely, we prove that for any string of
length n, the number ze of phrases in the LZ-End parsing satisfies
ze ¼ O z log2 n

� �
, where z is the number of phrases in the LZ77 parsing. This is

the first non-trivial upper bound on the size of LZ-End parsing in terms of LZ77,
and it puts LZ-End among the strongest dictionary compressors. Using our
techniques, we also derive bounds for other variants of LZ-End and with respect
to other compression measures. Our second contribution is a data structure that
implements random access queries to the text in O zeð Þ space and O poly log nð Þ
time. This is the first linear-size structure on LZ-End that efficiently implements
such queries. All previous data structures either incur a logarithmic penalty in
the space or have slow queries. We also show how to extend these techniques to
support longest-common-extension (LCE) queries. This work was carried out in
collaboration with Barna Saha and was presented at the 2022 ACM-SIAM
Symposium on Discrete Algorithms (SODA 2022).

Keywords: LZ-End � LZ77 � Dictionary compression

This work was supported by NIH HG011392, NSF DBI-2029552, Simons Foundation Junior Faculty
Fellows Grant, NSF CAREER Award 1652303, NSF 1909046, NSF HDR TRIPODS Grant 1934846,
and an Alfred P. Sloan Fellowship.

Contents

String Algorithms

Subsequence Covers of Words . 3
Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski,
Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba

Maximal Closed Substrings . 16
Golnaz Badkobeh, Alessandro De Luca, Gabriele Fici,
and Simon J. Puglisi

Online Algorithms for Finding Distinct Substrings with Length
and Multiple Prefix and Suffix Conditions . 24

Laurentius Leonard, Shunsuke Inenaga, Hideo Bannai,
and Takuya Mieno

The Complexity of the Co-occurrence Problem. 38
Philip Bille, Inge Li Gørtz, and Tord Stordalen

String Data Structures

Reconstructing Parameterized Strings from Parameterized Suffix and LCP
Arrays . 55

Amihood Amir, Concettina Guerra, Eitan Kondratovsky,
Gad M. Landau, Shoshana Marcus, and Dina Sokol

Computing the Parameterized Burrows–Wheeler Transform Online 70
Daiki Hashimoto, Diptarama Hendrian, Dominik Köppl, Ryo Yoshinaka,
and Ayumi Shinohara

Accessing the Suffix Array via /�1-Forest . 86
Christina Boucher, Dominik Köppl, Herman Perera,
and Massimiliano Rossi

On the Optimisation of the GSACA Suffix Array Construction Algorithm . . . 99
Jannik Olbrich, Enno Ohlebusch, and Thomas Büchler

String Compression

Balancing Run-Length Straight-Line Programs . 117
Gonzalo Navarro, Francisco Olivares, and Cristian Urbina

Substring Complexities on Run-Length Compressed Strings 132
Akiyoshi Kawamoto and Tomohiro I

Information Retrieval

How Train–Test Leakage Affects Zero-Shot Retrieval 147
Maik Fröbe, Christopher Akiki, Martin Potthast, and Matthias Hagen

Computational Biology

Genome Comparison on Succinct Colored de Bruijn Graphs 165
Lucas P. Ramos, Felipe A. Louza, and Guilherme P. Telles

Sorting Genomes by Prefix Double-Cut-and-Joins . 178
Guillaume Fertin, Géraldine Jean, and Anthony Labarre

KATKA: A KRAKEN-Like Tool with k Given at Query Time 191
Travis Gagie, Sana Kashgouli, and Ben Langmead

Computing All-vs-All MEMs in Run-Length-Encoded Collections of HiFi
Reads . 198

Diego Díaz-Domínguez, Simon J. Puglisi, and Leena Salmela

Space-Efficient Data Structures

Internal Masked Prefix Sums and Its Connection to Fully Internal
Measurement Queries . 217

Rathish Das, Meng He, Eitan Kondratovsky, J. Ian Munro,
and Kaiyu Wu

Compressed String Dictionaries via Data-Aware Subtrie Compaction. 233
Antonio Boffa, Paolo Ferragina, Francesco Tosoni,
and Giorgio Vinciguerra

On Representing the Degree Sequences of Sublogarithmic-Degree
Wheeler Graphs . 250

Travis Gagie

Engineering Compact Data Structures for Rank and Select Queries on
Bit Vectors. 257

Florian Kurpicz

Pattern Matching on Strings, Graphs, and Trees

Matching Patterns with Variables Under Edit Distance. 275
Paweł Gawrychowski, Florin Manea, and Stefan Siemer

xvi Contents

On the Hardness of Computing the Edit Distance of Shallow Trees. 290
Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes,
and Oren Weimann

Quantum Time Complexity and Algorithms for Pattern Matching
on Labeled Graphs . 303

Parisa Darbari, Daniel Gibney, and Sharma V. Thankachan

Pattern Matching Under DTW Distance . 315
Garance Gourdel, Anne Driemel, Pierre Peterlongo,
and Tatiana Starikovskaya

Author Index . 331

Contents xvii

String Algorithms

Subsequence Covers of Words

Panagiotis Charalampopoulos1(B) , Solon P. Pissis2,3 ,
Jakub Radoszewski4 , Wojciech Rytter4 , Tomasz Waleń4 ,

and Wiktor Zuba2

1 Birkbeck, University of London, London, UK
p.charalampopoulos@bbk.ac.uk

2 CWI, Amsterdam, The Netherlands
{solon.pissis,wiktor.zuba}@cwi.nl

3 Vrije Universiteit, Amsterdam, The Netherlands
4 University of Warsaw, Warsaw, Poland

{jrad,rytter,walen}@mimuw.edu.pl

Abstract. We introduce subsequence covers (s-covers, in short), a new
type of covers of a word. A word C is an s-cover of a word S if the
occurrences of C in S as subsequences cover all the positions in S.

The s-covers seem to be computationally much harder than standard
covers of words (cf. Apostolico et al., Inf. Process. Lett. 1991), but, on
the other hand, much easier than the related shuffle powers (Warmuth
and Haussler, J. Comput. Syst. Sci. 1984).

We give a linear-time algorithm for testing if a candidate word C is
an s-cover of a word S over a polynomially-bounded integer alphabet.
We also give an algorithm for finding a shortest s-cover of a word S,
which in the case of a constant-sized alphabet, also runs in linear time.
Furthermore, we complement our algorithmic results with a lower and an
upper bound on the length of a longest word without non-trivial s-covers,
which are both exponential in the size of the alphabet.

Keywords: String algorithms · Combinatorics on words · Covers ·
Shuffle powers · Subsequence covers

1 Introduction

The problem of computing covers in a word is a classic one in string algorithms;
see [1,2,11] and also [5] for a recent survey. In its most basic type, we say that
a word C is a cover of another longer word S if every position of S lies within
some occurrence of C as a factor (subword) in S [1].

In this paper we introduce a new type of cover, in which instead of subwords
we take subsequences (scattered subwords). Such covers turn out to be related to
shuffle problems [4,12,13]. Formally the new type of cover is defined as follows:

J. Radoszewski and T. Waleń—Supported by the Polish National Science Center, grant
no. 2018/31/D/ST6/03991.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 3–15, 2022.
https://doi.org/10.1007/978-3-031-20643-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_1&domain=pdf
http://orcid.org/0000-0002-6024-1557
http://orcid.org/0000-0002-1445-1932
http://orcid.org/0000-0002-0067-6401
http://orcid.org/0000-0002-9162-6724
http://orcid.org/0000-0002-7369-3309
http://orcid.org/0000-0002-1988-3507
https://doi.org/10.1007/978-3-031-20643-6_1

4 P. Charalampopoulos et al.

Definition 1. A word C is a subsequence cover (s-cover, in short) of a word
S if every position in S belongs to an occurrence of C as a subsequence in S.
We also write S ∈ C⊗, where C⊗ is the set of words having C as an s-cover.

We say that an s-cover C of a word S is non-trivial if |C| < |S|. A word S is
called s-primitive if it has no non-trivial s-cover.

An example s-primitive word is the Zimin word Sk [10], that is, a word over
alphabet {1, . . . , k} given by recurrences of the form

S1 = 1, Si = Si−1iSi−1 for i > 1.

The word Sk has length 2k − 1.
Clearly, if a word C is a (standard) cover of a word S, then C is an s-cover

of S. However the converse implication is false: ab is an s-cover of aab, but is not
a standard cover. For another example of an s-cover, see the following example.

Example 1. Figure 1 shows that C = abcab is an s-cover of S = abcbacab. In fact
C is a shortest s-cover of S.

a b c a b

a b c a b

a b c a b

a b c b a c a b

Fig. 1. An illustration of the fact that C = abcab is an s-cover of S = abcbacab.

We now provide some basic definitions and notation. An alphabet is a finite
nonempty set of elements called letters. A word S is a sequence of letters over
some alphabet. For a word S, by |S| we denote its length, by S[i], for i =
0, . . . , |S| − 1, we denote its ith letter, and by Alph(S) we denote the set of
letters in S, i.e., {S[0], . . . , S[|S| − 1]}. The empty word is the word of length 0.

For any two words U and V , by U · V = UV we denote their concatenation.
For a word S = PUQ, where P , U , and Q are words, U is called a factor of S;
it is called a prefix (resp. suffix) if P (resp. Q) is the empty word. By S[i . . j]
we denote a factor S[i] . . . S[j] of S; we omit i if i = 0 and j if j = |S| − 1.

A word V is a k-power of a word U , for integer k ≥ 0, if V is a concatenation
of k copies of U , in which case we denote it by Uk. It is called a square if k = 2.

Remark 1. If a word S contains a non-empty square factor U2, then S has a
non-trivial s-cover resulting by removing any of the two consecutive copies of U .
Further, if a word S has a factor being a gapped repeat UV U (see [9]), such that
Alph(V) ⊆ Alph(U), then S has a non-trivial s-cover resulting by removing V U
from the gapped repeat. Moreover, if C is an s-cover of S, then C is an s-cover
of S concatenated with any concatenation of suffixes of C.

Subsequence Covers of Words 5

A different version of covers, where we require that position-subsequences are
disjoint, is the shuffle closure problem. The shuffle closure of a word U , denoted
by U�, is the set of words resulting by interleaving many copies of U ; see [13].
The words in U� are sometimes called shuffle powers of U .

The following problems are NP-hard for constant-sized alphabets:

(1) Given two words U and S, test if S ∈ U�; see [13].
(2) Given a word S, check if there exists a word U such that |U | = |S|/2 and

S ∈ U� (this was originally called the shuffle square problem); see [4]. An
NP-hardness proof for a binary alphabet was recently given in [3].

(3) Given a word S, find a shortest word U such that S ∈ U�; its hardness is
trivially reduced from (2).

The following observation links s-covers and shuffle closures.

Observation 1. Let S be a word of length n. Then

S ∈ C⊗ ⇒ ∃ r0, r1 . . . , rn−1 ∈ Z+ : S[0]r0S[1]r1 . . . S[n − 1]rn−1 ∈ C�.

In this paper we show that problems similar to (1) and (3) for s-covers, when
we replace � by ⊗, are tractable: notably, the first one is solved in linear time
for any polynomially-bounded integer alphabet; and the last one in linear time
for any constant-sized alphabet.

Our Results and Paper Organization:

– In Sect. 2 we present a linear-time algorithm for checking if a word C is an
s-cover of a word S, assuming that C and S are over a polynomially-bounded
integer alphabet {0, . . . , |S|O(1)}. We also discuss why an equally efficient
algorithm for this problem without this assumption is unlikely.

– Let γ(k) denote the length of a longest s-primitive word over an alphabet of
size k. In Sect. 3 we present general bounds on this function as well as its
particular values for small values of k.

– In Sect. 4 we show that computing a non-trivial s-cover is fixed-parameter
tractable for parameter k = |Alph(S)|. In particular we obtain a linear-time
algorithm for computing a shortest s-cover of a word over a constant-sized
alphabet.

– Finally in Sect. 5 we explore properties of s-covers that are significantly dif-
ferent from properties of standard covers. In particular, we show that a word
can have exponentially many different shortest s-covers, which implies that
computing all shortest s-covers of a word (over a superconstant alphabet)
requires exponential time.

6 P. Charalampopoulos et al.

2 Testing if a Word is an s-Cover

Consider words C = C[0 . . m − 1] and S = S[0 . . n − 1]. We would like to check
whether C is an s-cover of S.

Let sequences FirstOcc = (p1, p2, . . . , pm) and LastOcc = (q1, q2, . . . , qm)
be the lexicographically first and last position-subsequences of S containing C,
where p1 = 0 and qm = n − 1. If there are no such subsequences of positions
then C is not an s-cover, so we assume they exist and are well defined.

For all i ∈ {0, . . . , n − 1}, we define

Right [i] = min({j : qj > i} ∪ {m + 1}),
Pref [i] = max({j : pj ≤ i ∧ S[pj] = S[i]} ∪ {0}).

Intuitively, if position i is in any subsequence occurrence of C in S, then there is a
subsequence occurrence of C in S that consists of the prefix of FirstOcc of length
Pref [i] and an appropriate suffix of LastOcc. All we have to do is check, for all
i, whether such a pair of prefix and suffix exists. See Fig. 2 for an illustration of
the argument and Lemma 1 for a formal statement of the condition that needs
to be satisfied.

p1 p2 q1 p3 i p4 q2 p5 q3 q4 p6 q5 q6

Fig. 2. Assume that for some words C and S the sequences FirstOcc (red) and LastOcc
(green) are as in the figure. Further assume that Pref [i] = 2 (i.e., we have S[i] =
S[p2] �= S[p3]). As shown, we have Right [i] = 2. Thus, we have Right [i] ≤ Pref [i] + 1
and consequently the position i is covered by an occurrence of C as a subsequence
using positions (p1, i, q3, q4, q5, q6). (Color figure online)

Lemma 1. Let us assume that FirstOcc and LastOcc are well defined. Then
C is an s-cover of S if and only if for each position 0 ≤ i ≤ n − 1 we have:
Pref [i] > 0 and Right [i] ≤ Pref [i] + 1.

Proof. First, observe that if Pref [i] = 0 for any i, then C is not an s-cover of S.
This follows from the greedy computation of FirstOcc, which implies that the
prefix of C that precedes the first occurrence of S[i] in C does not have a subse-
quence occurrence in S[0 . . i − 1]; else, i would be in FirstOcc, a contradiction.

We henceforth assume that Pref [i] > 0 for every i and show that, in this case,
C is an s-cover of S if and only if Right [i] ≤ Pref [i]+1 for all i ∈ {0, . . . , n− 1}.

(⇐) Assume that Right [i] ≤ Pref [i]+1. In this case position i can be covered by
a subsequence occupying positions p1, . . . , pj−1, i, qj+1, . . . , qm, for j = Pref [i].
As S[pj] = S[i] this subsequence is equal to C, and as pj ≤ i and qj+1 > i
(j +1 ≥ Right [i]) those positions form an increasing sequence (that is, we obtain
a valid subsequence).

Subsequence Covers of Words 7

(⇒) On the other hand assume that for some j there exists an increasing
sequence

r1, r2, . . . , rj−1, i, rj+1, . . . , rm,

such that S[r1]S[r2] . . . S[rj−1]S[i]S[rj+1] . . . S[rm] = C.
By induction for k = 1, . . . , j, rk ≥ pk (including rj = i) and for k =

m, . . . , j + 1, rk ≤ qk. But this means that Pref [i] ≥ j and Right [i] ≤ j + 1.
Hence Right [i] ≤ Pref [i] + 1. This completes the proof. �
The sequence FirstOcc can be computed with a simple left-to-right pass over
S and C; the computation of LastOcc is symmetric. The table Right can be
computed via a right-to-left pass. The table Pref [i] is computed on-line using an
additional table PRED indexed by the letters of the alphabet. The algorithm is
formalized in the following pseudocode.

Algorithm 1: TEST (C,S)

Input: word C = C[0 . . m − 1] and word S = S[0 . . n − 1]
Output: true if and only if C is an s-cover of S

compute FirstOcc = (p1, . . . , pm) and LastOcc = (q1, . . . , qm)
� compute Right

k := m + 1
for i := n − 1 down to 0 do

Right [i] := k
if k > 1 and i = qk−1 then k := k − 1

� compute Pref
PRED [c] := 0 ∀c ∈ Σ
k := 1
for i := 0 to n − 1 do

if i = pk then
PRED [S[i]] := k
if k < m then k := k + 1

Pref [i] := PRED [S[i]]

return ∀i=0,...,n−1 (Pref [i] > 0 and Right [i] ≤ Pref [i] + 1)

The correctness of the algorithm follows from Lemma 1 (inspect also Fig. 2).
Note that, under the assumption of a polynomially-bounded integer alphabet,
the table PRED can be initialized and updated deterministically in linear total
time by first sorting the letters of S. We thus arrive at the following result.

Theorem 1. Given words C and S over an integer alphabet {0, . . . , |S|O(1)},
we can check if C is an s-cover of S in O(|S|) time.

In the standard setting (cf. [2]), one can check if a word C is a cover of
a word S—what is more, find the shortest cover of S—in linear time for any
(non-necessarily integer) alphabet. We show below that the existence of such an
algorithm for testing a candidate s-cover is rather unlikely.

8 P. Charalampopoulos et al.

Let us introduce a slightly more general version of the s-cover testing problem
in which, if C is an s-cover of S, we are to say, for each position i in S, which
position j of C is actually used to cover S[i]; if there is more than one such
position j, any one of them can be output. Let us call this problem the witness
s-cover testing problem. In particular, our algorithm solves the witness s-cover
testing problem with the answers stored in the Pref array. Actually it is hard to
imagine an algorithm that solves the s-cover testing problem and not the witness
version of it. We next give a comparison-based lower bound for the latter.

Theorem 2. The witness s-cover testing problem for a word S of length n
requires Ω(n log n) time in the comparison model.

Proof. Let us consider a word C of length m that is composed of m distinct
letters and a family of words of the form S = CTC, where T is a word of length
m such that Alph(T) ⊆ Alph(C). Then C is an s-cover of each such word S.
Each choice of word T implies a different output to the witness s-cover testing
problem on C and S. There are mm different outputs, so a decision tree for this
problem must have depth Ω(log mm) = Ω(m log m) = Ω(n log n). �

Let us further notice that even if C turns out not to be an s-cover of S,
our algorithm actually computes the positions of S that can be covered using
occurrences of C (they are exactly the positions i for which Pref [i] > 0 and
Right [i] ≤ Pref [i]+1). Hence our algorithm may be useful to find partial variants
of s-covers, defined analogously as for the standard covers [6–8].

3 Maximal Lengths of s-Primitive Words

Let us recall that γ(k) denotes the length of a longest s-primitive word over an
alphabet of size k. It is obvious that γ(2) = 3; the longest s-primitive binary
words are aba and bab. The case of ternary words is already more complicated; we
study it in Sect. 3.1. General bounds on the function γ(k) are shown in Sect. 3.2.
A discussion on computing γ(k) for small k > 3 is presented in Sect. 3.3. In
particular, we were not able to compute the exact value of γ(5).

3.1 Ternary Alphabet

Fact 1 γ(3) = 8.

Proof. The word S = abcabacb is of length 8 and it is s-primitive, hence γ(3) ≥ 8.

We still have to show that each 3-ary word of length 9 is not s-primitive
(there are 19683 ternary words). The number of words to consider is substantially
reduced by observing that relevant words are square-free and do not contain the
structure specified in the following claim.

Claim. If a word S over a ternary alphabet contains a factor of the form abXbc
for some (maybe empty) word X and different letters a, b, c, then it is not s-
primitive.

Subsequence Covers of Words 9

a b

a

c
a

b a c
c

b a b c
c

c
a

b
a c

a
b a

c

c
b a

b
c ac

b
a b c

c a
b c

abacabac

abacabc

abacbabc

abacbc

abcabaca

abcabacba

abcabacbc

abcacbab

abcacbaca
abcacbc
abcbabc
abcbaca

abcbacbc

Fig. 3. A trie of all ternary square-free words starting with ab, truncated at words that
are not s-primitive (in leaves). Only one word in a leaf (abcabacba) does not contain the
structure specified in the claim inside the proof of Fact 1, but it still has a non-trivial
s-cover abcba. The trie has depth 9 (the leaves with words of length 9 are shown in
frames and the internal nodes of depth 8 corresponding to s-primitive words are drawn
as green circles), so γ(3) = 8. (Color figure online)

Proof. The factor abXbc has abc as its s-cover, and thus it is not s-primitive.
Consequently, the whole word S is not s-primitive. �

Figure 3 shows a trie of all ternary square-free words starting with ab, trun-
cated at words that are not s-primitive (in leaves). The words in all leaves but
one contain the structure from the claim, and for the remaining word, a non-
trivial s-cover can be easily given. The trie shows that words of length 9 over a
ternary alphabet are not s-primitive. �

3.2 General Alphabet

Definition 2. For a word S over alphabet Alph(S) of size k, let first(S) (resp.
last(S)) denote the length-k word containing all the letters of Alph(S) in the
order of their first (resp. last) occurrence in S.

Example 2. first(abadbcd) = abdc, last(abadbcd) = abcd.

Lemma 2. Let C be an s-cover of S. Then first(C) = first(S) and last(C) =
last(S).

Proof. Assume that letter a appears before letter b in first(S), but after letter
b in first(C). Then Pref [i] = 0 (see Sect. 2 for the definition) for i = min{j :
S[j] = a}. This proves that first(C) = first(S); a proof that last(C) = last(S)
follows by symmetry. �

10 P. Charalampopoulos et al.

Example 3. Using a computer one can check that S = abacadbabdcabcbadac is
an s-primitive word of length 19 over a quaternary alphabet. Thus γ(4) ≥ 19.

For a word X we define X− (resp. X−) as the word obtained from X by
deleting the first (resp. last) letter.
By shrink(S) we denote the word obtained from S by merging any non-zero
number of consecutive copies of the same letter into just one copy. For example
shrink(abbacccbdd) = abacbd. We define

FaLaFeL(S) = shrink(F · L− · F− · L), where F = first(S), L = last(S).

Example 4. For S = ababbacbcaabb we have

F = first(S) = abc, L = last(S) = cab, F− = bc, L− = ca, and

shrink(F L) = abcab, FaLaFeL(S) = shrink(abc ca bc cab) = abc a bc ab.

Observation 2. The word shrink(F L) is an s-cover of FaLaFeL(S). However,
it is possible that shrink(F L) is an s-cover of S, while FaLaFeL(S) is not (as in
the example).

Lemma 3. If the word FaLaFeL(S) is a subsequence of S, then shrink(FL) is
an s-cover of S.

Proof. We need to show that each position i of S is covered by an occurrence of
shrink(FL) as a subsequence.

There exists a position j in S such that shrink(FL−) is a subsequence of
S[. . j] and shrink(F−L) is a subsequence of S[j . .]. We can assume that i ≤ j;
the other case is symmetric.

Let p be the index such that F [p] = S[i]. It suffices to argue that:

(1) F [. . p − 1] is a subsequence of S[. . i − 1]; and

(2) shrink(FL)[p + 1 . .] is a subsequence of S[i + 1 . .].

Point (1) follows by the definition of F = first(S).
As for point (2), if i < j, then S[i + 1 . .] has a subsequence shrink(F−L) by

the definition of j and shrink(FL)[p + 1 . .] is a suffix of shrink(F−L).
If p > 0, then S[i . .] has a subsequence shrink(F−L) and so S[i + 1 . .] has a

subsequence shrink(FL)[2 . .].
Finally if i = j and p = 0, then S[i + 1 . .] has a subsequence shrink(F−L)

because F−[0] �= F [0] = S[i]. �
We will apply the following lemma for Z = FaLaFeL(S).

Lemma 4. Let S, Z be words and x be a positive integer such that |Alph(S)| =
k, |S| = 2kx + 1 and |Z| ≤ 4k − 2. We assume that each factor of S of length
x + 1 contains all k letters, and the length-(x + 1) prefix/suffix of S contains,
as a subsequence, the length-k prefix/suffix of Z, respectively. If shrink(Z) = Z,
then S contains Z as a subsequence.

Subsequence Covers of Words 11

x + 1

. . .

contains C
contains B

contains A

2k blocks

S :

Fig. 4. Illustration of the proof of Lemma 4. Let Z = ABC where |A| = |C| = k. Each
block represents a factor of length x + 1 containing all letters and starting at a given
position. The blocks overlap by one letter. We have |S| = 2kx + 1.

Proof. Let us cover S with 2k blocks, each of length x + 1, with overlaps of one
position between consecutive blocks; see Sect. 4.

Let Z = ABC where |A| = |C| = k. By the assumption of the lemma, the first
and the last block in S contain A and C as a subsequence, respectively. Let us
choose some 2k positions in S that form these occurrences. Each of the remaining
2k − 2 blocks contains a copy of each of the letters in Alph(S); in particular, we
can choose the letters from the word B in them. No two consecutive letters in
B are the same, so we will not choose the same position twice. �
Observation 3. If a letter a occurs in a word S = S′aS′′ only once, then every
s-cover of S has a form C ′aC ′′, where C ′, C ′′ are s-covers of S′, S′′, respectively.

Theorem 3. For k ≥ 4 we have

5 · 2k−2 − 1 ≤ γ(k) ≤ 2k−1 k!.

Proof. We separately prove the lower and upper bounds.

Lower Bound. We can take the sequence of words S4 = abacadbabdcabcbadac,
and for k > 4:

Sk = Sk−1akSk−1, where ak is a new letter.

We have |Sk| = 5·2k−2−1, and Sk has no non-trivial s-cover, due to Observation
3 and Example 3. Hence γ(k) ≥ 5 · 2k−2 − 1.

Upper Bound. We will show that

γ(k) ≤ 2k · γ(k − 1). (1)

Let us assume that |Alph(S)| = k and |S| > 2k · γ(k − 1) + 1. Let x = γ(k − 1).
If any factor U of S of length x + 1 does not contain all k letters, then U is not
s-primitive by the definition of γ. If S = PUQ where U has a non-trivial s-cover
C, then PCQ is a non-trivial s-cover of S and, consequently, S is not s-primitive.

12 P. Charalampopoulos et al.

Otherwise, by Lemma 4 applied for a prefix of S of length 2kx + 1 and
Z = FaLaFeL(S), FaLaFeL(S) is a subsequence of S. By Lemma 3, shrink(FL)
is an s-cover of S. It is non-trivial as for k ≥ 3, shrink(FL) is shorter than
FaLaFeL(S). In either case, S is not s-primitive and (1) holds. Using a simple
induction we get γ(k) ≤ 2k−1k!. �

3.3 Behaviour of the Function γ(k) for Small k

The values of γ for small k are as follows (see also Table 1):

– γ(1) = 1 – trivial;
– γ(2) = 3 – using square-free words;
– γ(3) = 8 – due to Fact 1 and Fig. 3;
– γ(4) = 19 – through computer experiments1;
– 39 ≤ γ(5) ≤ 190 – due to Inequality (1) and γ(4) = 19.

Table 1. The values of γ for small alphabet-size k.

k γ(k) Examples of s-primitive words

1 1 a

2 3 aba

3 8 abcabacb

4 19 abacadbabdcabcbadac

abcdabacadbdcbabdac

5 ≥ 39 abacadbabdcabcbadaceabacadbabdcabcbadac

Remark 2. There are 2·3! = 12 s-primitive words of length γ(3) = 8 over ternary
alphabet (cf. Sect. 3.1 and Fig. 3, for each pair of distinct letters there are two
s-primitive words starting with these letters). This accounts for less than 0.2%
among all 38 ternary words of length 8. For a 4-letter alphabet, our program
shows that the relative number of s-primitive words of length γ(4) = 19 is very
small. There are exactly 2496 such words, out of 419, which gives a fraction
less than 10−8. This suggests that s-primitive 5-ary words of length γ(5) are
extremely sparse and finding an s-primitive word over a 5-letter alphabet of
length γ(5), if γ(5) > 39, could be a challenging task.

4 Computing s-Covers

The following observation is a common property of s-covers and standard covers.

1 The optimized C++ code used for the experiments can be found at https://www.
mimuw.edu.pl/∼jrad/code.cpp. The program reads k and computes γ(k); it finishes
within 1 min for k ≤ 4.

https://www.mimuw.edu.pl/~jrad/code.cpp
https://www.mimuw.edu.pl/~jrad/code.cpp

Subsequence Covers of Words 13

Observation 4. If C is an s-cover of S and C ′ is an s-cover of C, then C ′ is
an s-cover of S.

Theorem 4. Let S be a length-n word over an integer alphabet of size k = nO(1).

(a) A shortest s-cover of S can be computed in O(n · min(2n, kγ(k))) time.
(b) One can check if S is s-primitive and, if not, return a non-trivial s-cover of

S in O(n + 2γ(k)γ(k)) time.
(c) An s-cover of S of length at most γ(k) can be computed in O(n2γ(k)γ(k))

time.

Proof. (a) By Theorem 3, there are O(kγ(k)) s-primitive k-ary words and, by
Observations 4, the shortest s-cover of S must be one of them. On the other
hand, there are 2n subsequences of S. Hence, there are min(2n, kγ(k)) candidates
to be checked. With the aid of the algorithm from Lemma 1 we can check each
candidate in O(n) time. This gives the desired complexity.

(b) If n ≤ γ(k), we can use the algorithm from (a) which works in
O(2γ(k)γ(k)) time. Otherwise, we know by Theorem 3 that S is not s-primitive.
We can find a non-trivial s-cover of S as follows. Let S = S′S′′ where |S′| =
γ(k) + 1. We can use the algorithm from (a) to compute a shortest s-cover C of
S′ in O(2γ(k)γ(k)) time. By Theorem 3, C is a non-trivial s-cover of S′. Then,
we can output CS′′ as a non-trivial s-cover of S. This takes O(n + 2γ(k)γ(k))
time.

(c) By Observations 4, any s-cover of an s-cover of S will be an s-cover of
S. We can thus repeatedly apply the algorithm underlying (b); apart from out-
putting the computed non-trivial s-cover. As each application of this algorithm
removes at least one letter of S, the number of steps is at most n − γ(k). Each
step takes O(2γ(k)γ(k)) time and hence the conclusion follows. �
Corollary 1. A shortest s-cover of a word over a constant-sized alphabet can be
computed in linear time.

5 The Number of Distinct Shortest s-Covers

In the case of standard covers, if a word S has two covers C,C ′, then one of
C,C ′ is a cover of the other. This property implies, in particular, that a word
has exactly one shortest cover.

In this section we show that analogous properties do not hold for s-covers.
There exist words S having two s-covers C,C ′ such that none of C,C ′ is an
s-cover of the other; e.g. S = abcabcabcb, C = abcb and C ′ = abcacb. Moreover,
a word can have many different shortest s-covers, as shown in Theorem 5.

Theorem 5. For every positive integer n there exists a word of length n over
an alphabet of size O(log n) that has at least 2�n+1

16 � different shortest s-covers.

Proof. We start with an example of a word with two different shortest s-covers
and then extend it recursively.

14 P. Charalampopoulos et al.

a b c a d c b a

a b c a d c b a

a b c a d b c a c b d a c b a

Fig. 5. C1 = abca d cba is a shortest s-cover of S = abca d bcacb d acba. S is a
palindrome, hence C2 = abc d acba is also its s-cover.

Claim. The word S = abca d bcacb d acba has two different s-covers of length 8,
C1 = abca d cba and C2 = abc d acba (cf. Fig. 5). It does not have any shorter
s-cover.

Proof. Any s-cover of this word must contain the letter d and before its first
occurrence letters a, b, c (in that order) must appear. Symmetrically, after this
letter, letters c, b, a must appear. The only word of length smaller than 8 which
satisfies this property is abc d cba; however, this is not an s-cover of S (as it does
not cover the middle letter a in S). �
We now construct a sequence of words Ti such that T0 = S and Ti = Ti−1aiTi−1

for i > 0, where ai is a new letter.
The word Ti has length 16 ·2i −1 = 2i+4 −1. Let us consider an infinite word

T = limi→∞ Ti (this word is well defined as each Ti is a prefix of Ti+1).
We show by induction, using Observations 3, that T [0 . . n − 1] has at least

2�n+1
16 � different shortest covers.
The base case for n ≤ 15 holds as every word has a shortest s-cover and for

n = 15 we apply the previous claim as T [. . n − 1] = S. Assume that n > 15.
Let i be a non-negative integer such that 2i+4 ≤ n < 2i+5. Then T [0 . . n − 1] =
Ti+1[. . n−1] = Ti ai Ti[. . n−2i+4−1]. By Observations 3, the number of shortest
s-covers of T [. . n − 1] is the number of shortest s-covers of Ti times the number
of shortest s-covers of T [. . n − 2i+4 − 1], that is, at least

2
2i+4
16 · 2�n−2i+4+1

16 � = 2�n+1
16 �, as desired. �

6 Final Remarks

There are several natural questions concerning the following problems:

1. Is a given word s-primitive?
2. What is its shortest s-cover?
3. What is the number of its different s-covers?
4. What is the exact value of γ(5)?
5. Let us define γ′(1) = 1, γ′(k + 1) = 2 γ′(k) + k for k > 1.

We have γ(k) = γ′(k) for 1 ≤ k < 5. Is it always true?
6. Is there a really short, understandable and computer-avoiding proof of s-

primitiveness of the word a b a c a d b a b d c a b c b a d a c ?

We believe that the first three problems are NP-hard for general alphabets.

Subsequence Covers of Words 15

Acknowledgements. We thank Juliusz Straszyński for his help in conducting com-
puter experiments.

References

1. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for
strings. Inf. Process. Lett. 39(1), 17–20 (1991). https://doi.org/10.1016/0020-
0190(91)90056-N

2. Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44(6),
345–347 (1992). https://doi.org/10.1016/0020-0190(92)90111-8

3. Bulteau, L., Vialette, S.: Recognizing binary shuffle squares is NP-hard. Theor.
Comput. Sci. 806, 116–132 (2020). https://doi.org/10.1016/j.tcs.2019.01.012

4. Buss, S., Soltys, M.: Unshuffling a square is NP-hard. J. Comput. Syst. Sci. 80(4),
766–776 (2014). https://doi.org/10.1016/j.jcss.2013.11.002

5. Czajka, P., Radoszewski, J.: Experimental evaluation of algorithms for computing
quasiperiods. Theor. Comput. Sci. 854, 17–29 (2021). https://doi.org/10.1016/j.
tcs.2020.11.033

6. Flouri, T., et al.: Enhanced string covering. Theor. Comput. Sci. 506, 102–114
(2013). https://doi.org/10.1016/j.tcs.2013.08.013

7. Kociumaka, T., Pissis, S.P., Radoszewski, J., Rytter, W., Waleń, T.: Fast algorithm
for partial covers in words. Algorithmica 73(1), 217–233 (2014). https://doi.org/
10.1007/s00453-014-9915-3

8. Kociumaka, T., Pissis, S.P., Radoszewski, J., Rytter, W., Walen, T.: Efficient
algorithms for shortest partial seeds in words. Theor. Comput. Sci. 710, 139–147
(2018). https://doi.org/10.1016/j.tcs.2016.11.035

9. Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of gapped
repeats and subrepetitions in a word. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner,
P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 212–221. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-07566-2 22

10. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics
and its Applications, Cambridge University Press (2002). https://doi.org/10.1017/
CBO9781107326019

11. Moore, D.W.G., Smyth, W.F.: A correction to “An optimal algorithm to compute
all the covers of a string”. Inf. Process. Lett. 54(2), 101–103 (1995). https://doi.
org/10.1016/0020-0190(94)00235-Q

12. Rizzi, R., Vialette, S.: On recognizing words that are squares for the shuffle product.
In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 235–245.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38536-0 21

13. Warmuth, M.K., Haussler, D.: On the complexity of iterated shuffle. J. Comput.
Syst. Sci. 28(3), 345–358 (1984). https://doi.org/10.1016/0022-0000(84)90018-7

https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1016/0020-0190(92)90111-8
https://doi.org/10.1016/j.tcs.2019.01.012
https://doi.org/10.1016/j.jcss.2013.11.002
https://doi.org/10.1016/j.tcs.2020.11.033
https://doi.org/10.1016/j.tcs.2020.11.033
https://doi.org/10.1016/j.tcs.2013.08.013
https://doi.org/10.1007/s00453-014-9915-3
https://doi.org/10.1007/s00453-014-9915-3
https://doi.org/10.1016/j.tcs.2016.11.035
https://doi.org/10.1007/978-3-319-07566-2_22
https://doi.org/10.1007/978-3-319-07566-2_22
https://doi.org/10.1017/CBO9781107326019
https://doi.org/10.1017/CBO9781107326019
https://doi.org/10.1016/0020-0190(94)00235-Q
https://doi.org/10.1016/0020-0190(94)00235-Q
https://doi.org/10.1007/978-3-642-38536-0_21
https://doi.org/10.1016/0022-0000(84)90018-7

Maximal Closed Substrings

Golnaz Badkobeh1 , Alessandro De Luca2 , Gabriele Fici3(B) ,
and Simon J. Puglisi4

1 Department of Computing, Goldsmiths University of London, London, UK
g.badkobeh@gold.ac.uk

2 DIETI, Università di Napoli Federico II, Naples, Italy
alessandro.deluca@unina.it

3 Dipartimento di Matematica e Informatica, Università di Palermo, Palermo, Italy
gabriele.fici@unipa.it

4 Department of Computer Science, University of Helsinki, Helsinki, Finland
simon.puglisi@helsinki.fi

Abstract. A string is closed if it has length 1 or has a nonempty border
without internal occurrences. In this paper we introduce the definition
of a maximal closed substring (MCS), which is an occurrence of a closed
substring that cannot be extended to the left nor to the right into a longer
closed substring. MCSs with exponent at least 2 are commonly called
runs; those with exponent smaller than 2, instead, are particular cases
of maximal gapped repeats. We show that a string of length n contains
O(n1.5) MCSs. We also provide an output-sensitive algorithm that, given
a string of length n over a constant-size alphabet, locates all m MCSs
the string contains in O(n logn + m) time.

Keywords: Closed word · Maximal closed substring · Run

1 Introduction

The distinction between open and closed strings was introduced by the third
author in [8] in the context of Sturmian words.

A string is closed (or periodic-like [6]) if it has length 1 or it has a border
that does not have internal occurrences (i.e., it occurs only as a prefix and as
a suffix). Otherwise the string is open. For example, the strings a, abaab and
ababa are closed, while ab and ababaab are open. In particular, every string
whose exponent — the ratio between the length and the minimal period — is
at least 2, is closed [1].

In this paper, we consider occurrences of closed substrings in a string with the
property that the substring cannot be extended to the left nor to the right into
another closed substring. These are called the maximal closed substrings (MCS)

Gabriele Fici is partly supported by MIUR project PRIN 2017 ADASCOML –
2017K7XPAN. Simon J. Puglisi is partly supported by the Academy of Finland,
through grant 339070.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 16–23, 2022.
https://doi.org/10.1007/978-3-031-20643-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_2&domain=pdf
http://orcid.org/0000-0001-5550-7149
http://orcid.org/0000-0003-1704-773X
http://orcid.org/0000-0002-3536-327X
http://orcid.org/0000-0001-7668-7636
https://doi.org/10.1007/978-3-031-20643-6_2

Maximal Closed Substrings 17

of the string. For example, if S = abaabab, then the set of pairs of starting and
ending positions of the MCSs of S is

{(1, 1), (1, 3), (1, 6), (2, 2), (3, 4), (4, 8), (5, 5), (6, 6), (7, 7), (8, 8)}

This notion encompasses that of a run (maximal repetition) which is a MCS
with exponent 2 or larger. It has been conjectured by Kolpakov and Kucherov [12]
and then finally proved, after a long series of papers, by Bannai et al. [2], that
a string of length n contains less than n runs.

On the other hand, maximal closed substrings with exponent smaller than 2
are particular cases of maximal gapped repeats [11]. An α-gapped repeat (α ≥ 1)
in a string S is a substring uvu of S such that |uv| ≤ α|u|. It is maximal if
the two occurrences of u in it cannot be extended simultaneously with the same
letter to the right nor to the left. Gawrychowski et al. [10] proved that there are
words that have Θ(αn) maximal α-gapped repeats.

In this paper, we address the following problems:

1. How many MCSs can a string of length n contain?
2. What is the running time of an algorithm that, given a string S of length n,

returns all the occurrences of MCSs in S?

We show that:

1. A string of length n contains O(n1.5) MCSs.
2. There is an algorithm that, given a string of length n over a constant-size

alphabet, locates all m MCSs the string contains in O(n log n + m) time.

2 Preliminaries

Let S = S[1..n] = S[1]S[2] · · · S[n] be a string of n letters drawn from an alphabet
Σ of constant size. The length n of a string S is denoted by |S|. The empty
string has length 0. A prefix (resp. a suffix) of S is any string of the form S[1..i]
(resp. S[i..n]) for some 1 ≤ i ≤ n. A substring of S is any string of the form
S[i..j] for some 1 ≤ i ≤ j ≤ n. It is also commonly assumed that the empty
string is a prefix, a suffix and a substring of any string.

An integer p ≥ 1 is a period of S if S[i] = S[j] whenever i ≡ j (mod p). For
example, the periods of S = aabaaba are 3, 6 and every n ≥ 7 = |S|.

We recall the following classical result:

Lemma 1 (Periodicity Lemma (weak version) [9]). If a string S has peri-
ods p and q such that p + q ≤ |S|, then gcd(p, q) is also a period of S.

Given a string S, we say that a string β �= S is a border of S if β is both
a prefix and a suffix of S (we exclude the case β = S but we do consider the
case |β| = 0). Note that if β is a border of S, then |S| − |β| is a period of S;
conversely, if p ≤ |S| is a period of S, then S has a border of length |S| − p.

18 G. Badkobeh et al.

The following well-known property of borders holds:

Property 1. If a string has two borders β and β′, with |β| < |β′|, then β is a
border of β′.

The border array BS [1..n] of string S = S[1..n] is the integer array where
BS [i] is the length of the longest border of S[1..i]. When the string S is clear
from the context, we will simply write B instead of BS .

For any 1 ≤ i ≤ n, let B1[i] = B[i] and Bj [i] = B[Bj−1[i]] for j ≥ 2. We set

B+[i] = {|β| | β is a border of S[1..i]}.

By Property 1, we have B+[i] = {Bj [i] | j ≥ 1}.
For example, in the string S = aabaaaabaaba, we have B+[6] = {0, 1, 2}.

Indeed, B[6] = 2, and B2[6] = B[2] = 1, while Bj [6] = 0 for j > 2.
The OC array [5] OCS [1..n] of string S is a binary array where OCS [i] = 1 if

S[1, i] is closed and OCS [i] = 0 otherwise.
We also define the array PS where PS [i] is the length of the longest repeated

prefix of S[1..i], that is, the longest prefix of S[1..i] that has at least two occur-
rences in S[1..i]. Again, if S is clear from the context, we omit the subscripts.

Let S be a string of length n. Since for every 1 ≤ i ≤ n, the longest repeated
prefix vi of S[1..i] is the longest border of S[1..j], where j ≤ i is the ending
position of the second occurrence of vi, we have that

P[i] = max
1≤j≤i

B[j]. (1)

Lemma 2 ([7]). Let S be a string of length n. For every 1 ≤ i ≤ n, one has

P[i] =
i∑

j=1

OC[j] − 1, (2)

that is, P[i] is the rank of 1’s in OC[1..i] minus one.

Proof. For every repeated prefix v of S, the second occurrence of v in S deter-
mines a closed prefix of S; conversely, every closed prefix of S of length greater
than 1 ends where the second occurrence of a repeated prefix of S ends. Indeed,
the length of the longest repeated prefix increases precisely in those positions in
which we have a closed prefix. That is, P[i] = P[i− 1]+OC[i], for any 1 < i ≤ n,
which, together with P[1] = 0 = OC[1] − 1, yields (2). ��

As a consequence of (1) and (2), if two strings have the same border array,
then they have the same OC array, but the converse is not true in general (take
for example aaba and aabb).

The OC array of a string can be obtained from its P array by taking the
differences of consecutive values, putting 1 in the first position (cf. [8]). Since
the border array can be easily computed in linear time [13], it is possible to
compute the OC array in linear time.

Maximal Closed Substrings 19

Example 1. The OC, B, and P arrays for S = aabaaaabaaba are shown in the
following table:

i 1 2 3 4 5 6 7 8 9 10 11 12

S a a b a a a a b a a b a

OC 1 1 0 0 1 0 0 1 1 1 0 0
B 0 1 0 1 2 2 2 3 4 5 3 4
P 0 1 1 1 2 2 2 3 4 5 5 5

3 A Bound on the Number of MCS

The goal of this section is to prove our bound O(n1.5) in the number of MCSs
in a string of length n. This will be derived from a bound on the number of runs
(in the sense of maximal blocks of identical symbols, not to be confused with
maximal repetitions mentioned in the introduction) in the OC array.

In the next lemmas, we gather some structural results on the OC array.

Lemma 3 ([7, Remark 8]). If OC[i] = 1, then B[i] = P[i], and B[i−1] = P[i−1]
(provided i > 1).

Lemma 4. For all i and k such that OC[i+1..i+ k +1] = 0k1, if P[i] ≥ k then
P[i] − k ∈ B+[i].

Proof. By Lemma 2 and Lemma 3, P[i + k + 1] = P[i] + 1 is the length of the
longest border of S at position i+ k + 1. The assertion is then a consequence of
the following simple observation: Let u, v and x be strings; if ux is a border of
vx, then u is a border of v. In fact, letting v = S[1..i], and x = S[i+1..i+k+1],
as B+[i + k + 1] > k, the longest border of vx can be written as ux for some u
of length P[i] + 1 − k − 1 = P[i] − k. ��
Lemma 5. For all i and k such that OC[i..i + k + 1] = 10k1, if P[i] ≥ k then
P[i] − k ∈ B+[P[i]].

Proof. Immediate by Lemmas 3 and 4, as B[i] = P[i] and P[i] − k ∈ B+[i]. ��
Lemma 6. If OC[i..i + k1 + k2 + t + 1] = 10k11t0k21 and k1, k2 > 0, then
P[i] < k1 + k2.

Proof. By contradiction. Assume P[i] ≥ k1 + k2. Then by Lemma 5 we have
P[i] − k1 ∈ B+[P[i]], which implies that k1 is a period of S[1..P[i]]. Similarly, k2
is a period of S[1..P[i]+t] and then of S[1..P[i]+1] and S[1..P[i]], since P[i] ≥ k2.
By the Periodicity Lemma 1 we know that K = gcd(k1, k2) is also a period of
S[1..P[i]]. Note that k1 − k2 is divisible by K.

Furthermore, S[i + 1] �= S[i + 1 + k1] because OC[i + 1] is not 1. By Lemma
4, we have P[i] + 1 − k1 ∈ B+[i + 1], which implies S[i + 1] = S[P[i] + 1 − k1].

However, S[i + 1 + k1] = S[P[i] + 1] = S[P[i] + 1 − k2] = S[P[i] + 1 − k2 −
(k1 − k2)] = S[P[i] + 1 − k1] = S[i + 1], which is a contradiction. ��

20 G. Badkobeh et al.

Theorem 1. Let S be a string of length n. Then the number of runs in its OC
array is O(

√
n).

Proof. Let OCS = 1t10k1 · · · 1tm0km , where km ≥ 0 and all other exponents are
positive. By Lemma 6, we have for 1 < i < m,

ki−1 + ki ≥
i−1∑

r=1

tr ≥ i − 1 .

This implies

n =
m∑

i=1

(ti+ki) ≥ m+

m−1

2 �∑

j=1

(k2j−1+k2j) ≥ m+

m−1

2 �∑

j=1

(2j−1) = m+
⌊

m − 1
2

⌋2

so that n = Ω(m2) and then m = O(
√

n). ��
The bound in the previous proposition is tight. Indeed, there exists a

binary string whose OC array is
∏

k>0 10
k. Actually, the string is uniquely

determined by its OC array and can be defined by u = a
∏

k>0 u[k]u[1..k] =
abaaabbabababaa · · · .

The following proposition is a direct consequence of the definition of MCS.
Essentially, it says that we can check if S[i..j] is a MCS by looking at the OC
array of the suffixes starting at position i and i − 1.

Proposition 1. Let S be a string of length n. If S[i..j] is a MCS, then
OCS[i..n][j − i + 1] = 1 and either j − i + 1 = n or OCS[i..n][j − i + 2] = 0.
Moreover, either i = 1 or OCS[i−1..n][j − i + 2] = 0.

Example 2. Let S = aabaaaabaaba. The OC arrays of the first few suffixes of S
are displayed below.

S a a b a a a a b a a b a

OCS[1..n] 1 1 0 0 1 0 0 1 1 1 0 0
OCS[2..n] 1 0 1 0 0 0 1 1 1 0 0
OCS[3..n] 1 0 0 0 0 1 1 1 0 0
OCS[4..n] 1 1 1 1 0 0 0 0 0
OCS[5..n] 1 1 1 0 0 0 0 0
OCS[6..n] 1 1 0 0 1 1 1

One can check for instance that S[4..7] is a MCS, because the 4 = (7−4+1)th
entry of OCS[4..n] is a 1 which does not have another 1 on its right nor on top
of it (i.e., in the OC array of the previous suffix). Similarly, S[6..12] is a MCS
because the last entry of OCS[6..n] is 1 with a 0 on top.

Maximal Closed Substrings 21

As a consequence of the previous proposition, the number of MCSs in S is
bounded from above by the total number of runs of 1s in all the OC arrays of
the suffixes of S.

From Theorem 1, we therefore have a bound of O(n
√

n) on the number of
MCSs in a string of length n.

4 An Algorithm for Locating All MCS

In the previous section, we saw that one can locate all MCSs of S by looking
at the OC arrays of all suffixes of S. However, since the OC array of a string
of length n requires Ω(n) time to be constructed, this yields an algorithm that
needs Ω(n2) time to locate all MCSs.

We now describe a more efficient algorithm for computing all the maximal
closed substrings in a string S of length n. For simplicity of exposition we assume
that S is on a binary alphabet {a, b}, however the algorithm is easily adapted
for strings on any constant-sized alphabet. The running time is asymptotically
bounded by n log n plus the total number of MCSs in S.

The inspiration for our approach is an algorithm for finding maximal pairs
under gap constraints due to Brodal, Lyngsø, Pedersen, and Stoye [3]. The central
data structure is the suffix tree of the input string, which we now define.

Definition 1 (Suffix tree). The suffix tree T (S) of the string S is the com-
pressed trie of all suffixes of S. Each leaf in T (S) represents a suffix S[i..n] of
S and is annotated with the index i. We refer to the set of indices stored at the
leaves in the subtree rooted at node v as the leaf-list of v and denote it LL(v).
Each edge in T (S) is labelled with a nonempty substring of S such that the path
from the root to the leaf annotated with index i spells the suffix S[i..n]. We refer
to the substring of S spelled by the path from the root to node v as the path-label
of v and denote it L(v).

At a high level, our algorithm for finding MCSs processes the suffix tree
(which is a binary tree, for binary strings) in a bottom-up traversal. At each
node the leaf lists of the (two, for a binary string) children are intersected. For
each element in the leaf list of the smaller child, the successor in the leaf list of
the larger child is found. Note that because the element from the smaller child
and its successor in the larger child come from different subtrees, they represent
a pair of occurrences of substring L(v) that are right-maximal. To ensure left
maximality, we must take care to only output pairs that have different preceding
characters. We explain how to achieve this below.

Essential to our algorithm are properties of AVL trees that allow their efficient
merging, and the so-called “smaller-half trick” applicable to binary trees. These
proprieties are captured in the following lemmas.

Lemma 7 (Brown and Tarjan [4]). Two AVL trees of size at most n and m
can be merged in time O(log

(
n+m

n

)
).

22 G. Badkobeh et al.

Lemma 8 (Brodal et al. [3], Lemma 3.3). Let T be an arbitrary binary
tree with n leaves. The sum over all internal nodes v in T of terms that are
O(log

(
n1+n2

n1

)
), where n1 and n2 are the n1 numbers of leaves in the subtrees

rooted at the two children of v, is O(n log n).

As stated above, our algorithm traverses the suffix tree bottom up. At a
generic step in the traversal, we are at an internal node v of the suffix tree. Let
the two children of node v be v� and vr (recall the tree is a binary suffix tree,
so every internal node has two children). The leaf lists of each child of v are
maintained in two AVL trees — note, there are two AVL trees for each of the
two children, two for v� and two for vr. For a given child, say vr, one of the two
AVL trees contains positions where L(vr) is preceded by an a symbol, and the
other AVL tree contains positions where L(vr) is preceded by a b symbol in S.
Call these the a-tree and b-tree, respectively.

Without loss of generality, let vr be the smaller of v’s children. We want to
search for the successor and predecessor of each of the elements of vr’s a-tree
amongst the elements v�’s b-tree, and, similarly the elements of vr’s b-tree with
the elements from v�’s a-tree. Observe that the resulting pairs of elements repre-
sent a pair of occurrences of L(v) that are both right and left maximal: they have
different preceding characters and so will be left maximal, and they are siblings
in the suffix tree and so will be right maximal. These are candidate MCSs. What
remains is to discard pairs that are not consecutive occurrences of L(v), to arrive
at the MCSs. Discarding is easy if we process the elements of LL(vr) in order
(which is in turn easy, because they are stored in two AVL trees). To see this,
consider two consecutive candidates that have the same right border position
(a successor found in LL(v�); discarding for left borders is similar). The first of
these candidates can clearly be discarded because there is an occurrence of L(v)
(from LL(vr)) in between the two borders, preventing the pair of occurrences
from forming an MCS. Because we only compute a successor/predecessor for
each of the elements of the smaller of v’s children, by Lemma 8 the total time
for all successor/predecessor searches will be O(n log n) (discarding also takes
time proportional to the smaller subtree, and so does not increase this complex-
ity). After this, the a-tree and b-tree of the smaller child are merged with their
counterparts from the larger child.

Thus, by Lemmas 7 and 8, the overall processing is bounded by O(n log n)
in addition to the number of MCSs that are found.

The above approach is easily generalized from strings on binary alphabets
to those on any alphabet of constant size by replacing nodes of the suffix tree
having degree d > 2 with binary trees of height log d. This does not increase
the height of the suffix tree asymptotically and so preserves the runtime stated
above. It would be interesting to design algorithms for general alphabets, and
we leave this as an open problem.

Maximal Closed Substrings 23

References

1. Badkobeh, G., Fici, G., Lipták, Z.: On the number of closed factors in a word.
In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015.
LNCS, vol. 8977, pp. 381–390. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15579-1_29

2. Bannai, H.I.T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “runs”
theorem. SIAM J. Comput. 46(5), 1501–1514 (2017)

3. Brodal, G.S., Lyngsø, R.B., Pedersen, C.N.S., Stoye, J.: Finding maximal pairs
with bounded gap. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS,
vol. 1645, pp. 134–149. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48452-3_11

4. Brown, M.R., Tarjan, R.E.: A fast merging algorithm. J. ACM 26(2), 211–226
(1979)

5. Bucci, M., De Luca, A., Fici, G.: Enumeration and structure of trapezoidal words.
Theor. Comput. Sci. 468, 12–22 (2013)

6. Carpi, A., de Luca, A.: Periodic-like words, periodicity, and boxes. Acta Informatica
37(8), 597–618 (2001). https://doi.org/10.1007/PL00013314

7. De Luca, A., Fici, G., Zamboni, L.Q.: The sequence of open and closed prefixes of
a Sturmian word. Adv. Appl. Math. 90, 27–45 (2017)

8. Fici, G.: Open and Closed Words. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS
123, 140–149 (2017)

9. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. P. Am. Math.
Soc. 16(1), 109–114 (1965)

10. Gawrychowski, P., I, T., Inenaga, S., Köppl, D., Manea, F.: Tighter bounds and
optimal algorithms for all maximal α-gapped repeats and palindromes. Theor.
Comput. Syst. 62(1), 162–191 (2017). https://doi.org/10.1007/s00224-017-9794-5

11. Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of gapped
repeats and subrepetitions in a word. J. Discrete Algorithms 46–47, 1–15 (2017).
https://doi.org/10.1007/978-3-319-07566-2_22

12. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear
time. In: 40th Annual Symposium on Foundations of Computer Science, FOCS
1999, 17–18 October 1999, New York, NY, USA, pp. 596–604. IEEE Computer
Society (1999)

13. Morris, J.H., Pratt, V.R.: A linear pattern-matching algorithm. Technical Report
40, University of California, Berkeley (1970)

https://doi.org/10.1007/978-3-319-15579-1_29
https://doi.org/10.1007/978-3-319-15579-1_29
https://doi.org/10.1007/3-540-48452-3_11
https://doi.org/10.1007/3-540-48452-3_11
https://doi.org/10.1007/PL00013314
https://doi.org/10.1007/s00224-017-9794-5
https://doi.org/10.1007/978-3-319-07566-2_22

Online Algorithms for Finding Distinct
Substrings with Length and Multiple

Prefix and Suffix Conditions

Laurentius Leonard1(B) , Shunsuke Inenaga2 , Hideo Bannai3 ,
and Takuya Mieno4

1 Department of Information Science and Technology, Kyushu University,
Fukuoka, Japan

laurentius.leonard.705@s.kyushu-u.ac.jp
2 Department of Informatics, Kyushu University,

Fukuoka, Japan
inenaga@inf.kyushu-u.ac.jp

3 M&D Data Science Center, Tokyo Medical and Dental University,
Tokyo, Japan

hdbn.dsc@tmd.ac.jp
4 Department of Computer and Network Engineering,
University of Electro-Communications, Chofu, Japan

tmieno@uec.ac.jp

Abstract. Let two static sequences of strings P and S, representing pre-
fix and suffix conditions respectively, be given as input for preprocessing.
For the query, let two positive integers k1 and k2 be given, as well as a
string T given in an online manner, such that Ti represents the length-i
prefix of T for 1 ≤ i ≤ |T |. In this paper we are interested in computing
the set ansi of distinct substrings w of Ti such that k1 ≤ |w| ≤ k2, and w
contains some p ∈ P as a prefix and some s ∈ S as a suffix. More specif-
ically, the counting problem is to output |ansi |, whereas the reporting
problem is to output all elements of ansi , for each iteration i. Let σ denote
the alphabet size, and for a sequence of strings A, ‖A‖ =

∑
u∈A |u|. Then,

we show that after O((‖P‖+‖S‖) log σ)-time preprocessing, the solutions
for the counting and reporting problems for each iteration up to i can
be output in O(|Ti| log σ) and O(|Ti| log σ + |ansi |) total time. The pre-
processing time can be reduced to O(‖P‖+‖S‖) for integer alphabets of
size polynomial with regard to ‖P‖+ ‖S‖. Our algorithms have possible
applications to network traffic classification.

Keywords: Pattern matching · Counting algorithm · Suffix array ·
Suffix tree

1 Introduction

Pattern matching has long been a central topic in the field of string algo-
rithms [4], leading to various applications, including DNA analysis in bioin-
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 24–37, 2022.
https://doi.org/10.1007/978-3-031-20643-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_3&domain=pdf
http://orcid.org/0000-0001-8477-7033
http://orcid.org/0000-0002-1833-010X
http://orcid.org/0000-0002-6856-5185
http://orcid.org/0000-0003-2922-9434
https://doi.org/10.1007/978-3-031-20643-6_3

Online Algorithms for Distinct Substrings with Conditions 25

formatics [7,13] as well as packet classification [3,6,16,21] and anti-spam email
filtering in network security [17].

In this paper, we propose algorithms for counting and reporting distinct
substrings of an online text T that have some p ∈ P as a prefix and some s ∈ S as
a suffix, and whose length is within the interval [k1..k2], where P and S are static
sequences of strings given as input for preprocessing, and integers k1, k2 and the
characters of T are given as query. A similar yet different problem where patterns
are given in the form of a pair of a prefix and a suffix condition, i.e. pΣ∗s patterns,
rather than a pair of sequences where one is of prefixes and the other of suffixes,
is well-studied as the followed-by problem [2,14] or the Dictionary Recognition
with One Gap (DROG) [1,12,20] problem. The problem of this paper is also of
importance with possible applications in network traffic classification: All the
application signatures in [19], for example, can be expressed as an instance of
our problem, as discussed in Sect. 4 and demonstrated in Appendix A. Note that
while traffic classification via these signatures was shown to be highly accurate,
there are still cases of false positives. When analyzing which patterns give false
positives, we may be interested in which patterns match the signatures, in which
case the distinct condition of our problem helps prevent wasting computation
time on repeated occurrences of each pattern. Another possible application is in
computing the distinct substrings of an online text T whose lengths are at least
k and belong to a (k, r)-TTSS language [18]; the words of length ≥ k in a (k, r)-
TTSS language defined by the 4-tuple (Ik, Fk, Tk,r, g) are the words that have
some element of Ik as a prefix, some element of Fk as a suffix, and includes, for
each t ∈ Tk,r, at most g(t) occurrences of t as substring. Here, the elements of Ik
and Fk are strings of length k − 1 and the elements of Tk,r are strings of length
between 1 to k inclusive, and g is a function that projects Tk,r → {0, 1, · · · , r−1}.
A direct application of our algorithms can check whether w fulfills the prefix
and suffix condition, while the condition of restricted segments, i.e. the number
of occurrences of Tk,r can also be considered by implementing the following
modification: for each iteration i, maintain the minimum start-index res of the
suffix of Ti that meets the condition of restricted segments, and use it to exclude
any suffixes longer than Ti[res..i] from the solution.

Our proposed algorithms take O((‖P‖+‖S‖) log σ) preprocessing time, while
processing T itself in an online manner and outputting the solutions up to itera-
tion i takes O(|Ti| log σ) and O(|Ti| log σ+ |ansi|) cumulative time for the count-
ing and reporting problems respectively, using O(|Ti|+‖P‖+‖S‖) working space.
Here, Ti denotes the length-i prefix of T , ‖P‖ and ‖S‖ denote the total length
of strings in P and S respectively, σ is the alphabet size, |ansi| is the number of
substrings reported for each Ti, and cumulative time refers to the total amount
of running time up to iteration i, as opposed to the running time of only iteration
i. In addition, the preprocessing time can be reduced to O(‖P‖ + ‖S‖) in the
case of integer alphabets of size polynomial in ‖P‖ + ‖S‖.

Also note that, the problems addressed in this paper differ from those of [11],
in which a different set of solution strings is output for each p ∈ P where each
solution must have that specific element of P as a prefix, unlike the problem

26 L. Leonard et al.

in this paper where only a single set of solution strings is output, where its
elements can have any p ∈ P as a prefix. Also, in [11] there is only one suffix
condition and no length condition, and the algorithm is offline w.r.t. T , unlike
in this paper.

2 Preliminaries and Definitions

2.1 Strings

Let Σ be an alphabet of size σ. An element of the set Σ∗ is a string. The
length of a string w is denoted by |w|. The empty string is denoted by ε. That
is, |ε| = 0. For a string w = pts, p, t, and s are called a prefix, substring, and
suffix of w, respectively. A prefix p (resp. suffix s) of a string w is called a
proper prefix (resp. proper suffix) of w if |p| < |w| (resp. |s| < |w|). For a string
w, w[i] denotes the i-th symbol of w for 1 ≤ i ≤ |w|, and w[i..j] denotes the
substring w[i]w[i + 1] · · · w[j] for 1 ≤ i ≤ j ≤ |w|. For a sequence S of strings,
let ‖S‖ =

∑
u∈S |u|.

2.2 Suffix Array and LCP Array

The suffix array [15] of a string w is a lexicographically sorted array of suffixes
of w, where each suffix is represented by its start-index. The LCP array is an
auxiliary array commonly used alongside the suffix array, that stores the length
of the longest common prefix of each adjacent pair of suffixes in the suffix array.
More specifically, if SA and LCP are the suffix array and LCP array of the
same string w, for x ∈ [2..|w|], LCP [x] is the length of longest common prefix of
the suffixes w[SA[x]..|w|] and w[SA[x − 1]..|w|]. In this paper, we will use suffix
arrays for some strings, in which we denote by LCP the LCP array of the same
string of the suffix array being discussed. It is well-known that the suffix array
and LCP array of a string w can be built in O(|w|) time for integer alphabets
of polynomial size in |w| [8–10], and in O(|w| log σ) time for general ordered
alphabets [22].

2.3 The Problems

The problems considered in the paper are as follows.

Definition 1 (Online substring counting and reporting problem with
distinctness, multiple prefixes, multiple suffixes and length range
conditions). Given two sequences of strings P = (p1, · · · , pn) and S =
(s1, · · · , sm), two integers k1 and k2, and a string T given in an online manner
(i.e., T0 = ε and for each iteration i = 1, . . . , |T |, the i-th character is appended
to Ti−1 to form Ti), let ansi denote the set of distinct substrings of Ti that have
some p ∈ P as a prefix, some s ∈ S as a suffix, and whose length falls within the
interval [k1..k2].

Online Algorithms for Distinct Substrings with Conditions 27

The counting problem. On each iteration i, output |ansi|.
The reporting problem. On each iteration i, output ansi \ ansi−1.

This paper excludes the empty string ε from the solutions.

3 Algorithm

3.1 Sketch of Algorithm

In this section, we describe the general idea of our algorithm. During each iter-
ation i, we need either to compute the size of ansi \ ansi−1 to add it to the
counting solution, or to report all its elements. All elements of ansi \ ansi−1

must be suffixes of Ti, and thus for the suffix condition, Ti itself must have some
element of S as a suffix; otherwise clearly ansi \ ansi−1 = ∅ and there is no
need to output a solution for the current iteration. Thus, let us consider the case
where Ti has at least one element of S as a suffix, and call the shortest of them
s. To help keep track of which suffixes of Ti fulfill the prefix condition, let us
maintain a linked list pList that contains in increasing order, all distinct indices
j such that there is an element of P that occurs in Ti with start-index j. Clearly,
the elements of pList represent a bijection to the suffixes of Ti that have an
element of P as a prefix, which are candidates for elements of the solution set
ansi \ansi−1. Specifically, for all j ∈ pList , the string u = Ti[j..i] ∈ ansi \ansi−1

iff u fulfills all the following conditions:

(a) u has s as a suffix.
(b) u does not occur in Ti−1.
(c) |u| ≥ k1 .
(d) |u| ≤ k2.

Here, (a) u has s as a suffix iff |u| ≥ |s|, and (b) u does not occur in Ti−1 iff
|u| > |lrsi|, where lrsi denotes the longest repeating suffix of Ti, i.e. the longest
suffix of Ti that occurs at least twice in Ti. Thus, conditions (a) to (c) set a
lower bound for the length of suffixes of Ti corresponding to elements of pList
that can be a solution while condition (d) sets an upper bound. If we visualize
pList horizontally as shown in Fig. 1, conditions (a) to (c) exclude some elements
from the right while condition (d) excludes some element from the left.

Take the maximum among the number of elements excluded by conditions
(a) to (c) and denote it by excludeRight , and denote the number of elements
excluded by condition (d) by excludeLeft . Then, |ansi\ansi−1| =max (0, |pList |−
excludeLeft −excludeRight), giving us the solution for the counting problem. For
the reporting problem, let us maintain start , a pointer to the smallest element
in pList not excluded by condition (d). Then report all elements traversed by
starting at start and moving to the right |ansi \ ansi−1| − 1 times.

Example 1. The example in Fig. 1 occurs when Ti = coldcocoaold, P =
(cave, coco, cocoa, d, oao, old), S = (aold, oaold), k1 = 3, and k2 = 8. Then,
pList = (2, 4, 5, 8, 10, 12). 10, 12 correspond to old, d which are shorter than

28 L. Leonard et al.

Fig. 1. A visualized example of pList .

s = aold, and thus excluded by condition (a). lrsi = old and thus condition
(b) also excludes 10 and 12, while condition (c) excludes only 12 which corre-
sponds to d. Therefore, excludeRight = max (2, 2, 1) = 2. Meanwhile, condition
(d) excludes 2 and 4 which correspond to oldcocoaold and dcocoaold and so
excludeLeft = 2. Thus, we have that |ansi \ ansi−1| = max (0, 6 − 2 − 2) = 2.
For the reporting solution, we have that start points to 5. Traversing 2 elements
starting from 8 gives us 5 and 8, each corresponding to cocoaold and oaold,
exactly the elements of ansi \ ansi−1.

3.2 Removing Redundant Elements

We say that pk ∈ P is redundant iff there exists pk′ of P s.t. either pk has pk′

as a proper prefix, or pk = pk′ ∧ k > k′. Similarly, sk ∈ S is redundant iff there
exists sk′ of S s.t. either sk has sk′ as a proper suffix, or sk = sk′ ∧ k > k′.

It is not hard to see why they are called redundant; when multiple copies of
the same string exist in P , keeping only one copy suffices, and when pk ∈ P has
pk′ ∈ P as a proper prefix, the strings that have pk as a prefix is a subset of
strings that have pk′ as a prefix, and thus the solution remains the same even if
we delete pk from P . The same can be said for redundant elements of S.

As one part of the preprocessing, we rebuild P and S so that the redun-
dant elements are deleted. First, we describe how to rebuild P . Let Pseq =
$p1$p2$ · · · pn, where $ 	∈ Σ and $ ≺ c for all c ∈ Σ, and let SA be the suffix
array of Pseq .

Then, each SA[x] for x ∈ [2..n + 1] corresponds to the start-index of $p
in Pseq , for some p ∈ P . Starting from x = 2, output the corresponding p,
namely the unique p ∈ P s.t. p occurs on index SA[x]. Then, increment x (at
least once) until we have that LCP [x] < |$p|, i.e. until we find an index that
corresponds to $p′ where p′ ∈ P does not have p as a prefix. Output the element
of P corresponding to the new x, then again increment x in the same manner.
Repeat this until x > n + 1, and we have that all non-redundant elements of P
are output.

Other than the construction of the suffix array and LCP array, clearly this
takes O(‖P‖) time, and the same method can be used to compute non-redundant
elements of S: Let S−1 = (s−1

1 , . . . , s−1
m) be the sequence of reversed elements of

S, then apply the above algorithm to S−1 and reverse each string in the output to

Online Algorithms for Distinct Substrings with Conditions 29

get the non-redundant elements of S. Thus, both P and S are rebuilt to exclude
redundant elements in O(‖P‖+ ‖S‖) time, in addition to the construction time
of the suffix array and LCP array, which depends on the alphabet.

Example 2. Let P =(abc, ab, acc, ab, cab). Then, Pseq =abcabaccabcab
and we have the table as shown in Fig. 2. x = 2 corresponds to the occurrence
of $ab, which occurs on Pseq on index SA[2] = 5. Thus, ab is determined to be
non-redundant, and we have that |$ab| = 3, so increment x until we have that
LCP [x] < 3. This skips over x = 3, 4, correctly determining their corresponding
elements of P , namely the second ab and abc to be redundant. When x = 5,
LCP [x] = 2 < 3 and so the corresponding p = acc is output. Similarly, for x = 6,
LCP [x] = 1 < 4 and thus cab is output. Afterwards, x is incremented beyond
the interval [2..n+1] and thus the algorithm terminates and the non-redundant
elements (ab, acc, cab) are output.

Fig. 2. The table for Pseq = abcabaccab$cab

For the rest of the paper, we will assume that the above preprocessing is
done and thus P = (p1, . . . , pn) and S = (s1, . . . , sm) from this point refer to the
rebuilt sequences that have no redundant elements.

3.3 Detecting P and S Occurrences

As discussed, on each iteration i we need to detect whenever an element of S
occurs as a suffix of Ti. Additionally, we will also need to detect when an element
of P occurs as a suffix of Ti, in order to maintain pList . This can be done
by building an Aho-Corasick automaton for P and S separately. Constructing
both automata takes O((‖P‖ + ‖S‖) log σ) preprocessing time in general, and
O(‖P‖+‖S‖) time in the case of integer alphabets of size polynomial with regard

30 L. Leonard et al.

to ‖P‖+ ‖S‖ [5]. Running each automaton up to iteration i takes O(|Ti| log σ +
occ) cumulative time, where occ is the number of occurrences detected. Here,
the occurrences of elements of P in Ti must have distinct start-indices, as two
occurrences with a shared start-index imply that one of them is redundant.
Similarly, occurrences of elements of S must have distinct end-indices and thus
occ ∈ O(|Ti|) for both automata, and so the cumulative running time becomes
O(|Ti| log σ).

3.4 Maintaining pList

To maintain pList , whenever some p ∈ P is detected to occur as a suffix of Ti, its
start-index j needs to be added to pList while maintaining the increasing order.
Doing this naively would take O(|pList |) = O(|Ti|) time for every insertion which
gives quadratic time overall, so a more efficient scheme is necessary.

During any iteration i, the elements of P that occur as suffixes of Ti are
detected in decreasing order of length, because we use Aho-Corasick automaton.
Let p be such an element detected, and j be the start-index of its occurrence,
i.e. j = i − |p| + 1. We need to add j into pList so that the increasing order of
its elements are maintained.

To do that, we need to find the minimum j′ among the current elements
of pList such that j′ > j. Here, j′ being an element of pList implies that j′

corresponds to an occurrence of p′ ∈ P starting at j′ and ending at some i′ ≤ i.
We can see that in fact i′ < i, for if i′ = i, j′ was added to pList in the current
iteration i before j, while j′ > j ∧ i′ = i implies |p′| < |p|, contradicting the fact
that the Aho-Corasick automaton detects the occurrences in decreasing order of
length. Thus, j′ > j and i′ < i, meaning the occurrence of p′ falls completely
within p[2..|p| − 1].

Our scheme is then as follows: We precompute, for each pk ∈ P , the minimum
value y such that there is some pk′ ∈ P that occurs in pk[2..|pk| − 1] on start-
index y+1. If there is no such pk′ , then let y = ∞. Then, we will store the values
on the array successorOffset that maps each pk ∈ P to its corresponding y.

Additionally, maintain also an array pArray such that pArray [j] points to the
element of pList whose value is j if it exists, or null otherwise. Then, whenever
some pk ∈ P occurs as a suffix of Ti with start-index j, we can just add j into
pList exactly before the element pointed to by pArray[j + successorOffset [k]].
Clearly, once successorOffset is computed, adding each element of pList takes
only constant time and thus maintaining pList and pArray takes cumulative
O(|Ti|) time, as the number of elements of pList for any given iteration i is
bounded by |Ti|.

Computing successorOffset . Let Pconcat = p1$p2$ · · · pn. Note that it differs
from Pseq not only with regard to the positioning of $, but also in that redundant
elements of P are not included. For k ∈ [1..n], let PL[k] denote the start-index of
pk in Pconcat , i.e. PL[k] = 1+

∑
k′∈[1..k) (|pk′ | + 1). For j ∈ [1..|Pconcat |], let PI [j]

be the index of the element of P covering index j in Pconcat . That is, PI [j] = k

Online Algorithms for Distinct Substrings with Conditions 31

Fig. 3. Example of PL and PI .

where j ∈ [PL[k]..PL[k] + |pk| − 1] if such k exists, otherwise PI [j] = null . See
Fig. 3 for an example.

Next, we construct the suffix array SAP of Pconcat . We can then compute
successorOffset . The general idea is that for each pk, we find all its occurrences
using the suffix array, and when the occurrence falls within some pk′ ∈ P , we
update successorOffset [k′]. A more detailed description is as follows:

– Initialize successorOffset [k] = ∞ for all pk ∈ P .
– Using the LCP array, find the subinterval [�..r] in SAP that corresponds to

occurrences of pk, i.e. each of SAP [x] for all x ∈ [�..r] corresponds to some
start-index of occurrences of pk in Pconcat .

– For each such occurrence, whenever it falls within pk′ [2..|pk′ | − 1] for some
pk′ ∈ P , then assign to successorOffset [k′] the minimum value between
itself and the offset distance SAP [x] − PL[k′]. Formally, for all x ∈ [�..r],
if Pconcat [SAP [x]+ |p|] 	= $, assign to successorOffset [PI [SAP [x]]] the follow-
ing value:

min (successorOffset [PI [SAP [x]]],SAP [x] − PL[PI [SAP [x]]]) (1)

Computing Pconcat and PI trivially takes O(‖P‖) time. To compute the
subinterval corresponding to occurrences of pk, simply find the longest subinter-
val [�..r] of SAP that includes the index SAP−1[PL[k]] and LCP [x] ≥ |pk| for
all x ∈ [� + 1..r]. This takes linear time w.r.t. to the subinterval length, which
all adds up to the total number of occurrences of elements of P in Pconcat . As
no occurrence may share a start-index, it is bounded by |Pconcat | ∈ O(‖P‖).
Thus, this preprocessing takes O(‖P‖) time, in addition to the time required to
compute SAP and LCP which depends on the alphabet.

3.5 Computing excludeLeft , excludeRight , and start

As discussed, the algorithm runs the Aho-Corasick automaton for S to check
whether there is some s ∈ S that occurs as a suffix of Ti, for each iteration i. In

32 L. Leonard et al.

case such s exists, all of the computations below are performed, otherwise only
maintaining start is necessary.

excludeRight

Exclusion by s. When s ∈ S occurs as a suffix of Ti, the suffix u = Ti[j..i] for
each j ∈ pList is excluded from the solution iff j > i − |s| + 1. That is, u fails
to meet condition (a) of Sect. 3.1 iff j corresponds to an occurrence of p ∈ P in
s[2..|s|]. Thus, if we preprocess the number of occurrences of elements of P that
occur within s[2..|s|] for each s ∈ S, we can compute the number of elements of
pList excluded by s in constant time.

Example 3. In the case shown by Example 1, the elements 10 and 12 are excluded
by s, which we can obtain from the fact that there are two occurrences of elements
of P within s[2..|s|] = old; one each of old and d.

A suffix array-based approach that is similar to what we used to compute
successorOffset can be used here. Let

PSconcat = p1$ · · · pn$s1[2..|s1|]$ · · · sm[2..|sm|],
and construct its suffix array SAPS . Define an array SI such that SI [j] = k
when j belongs to the part made up by sk[2..|sk|] in PSconcat , similar to PI .
Then, for all p ∈ P , compute the subinterval [�..r] in SAPS corresponding to
suffixes of PSconcat that start with p, again using SAPS−1 and LCP arrays. For
all x ∈ [�..r], then increment sPCount [SI [SAPS [x]]] by one, where sPCount is
an array that maps each s ∈ S to the number of occurrences of elements of P
that occur within s[2..|s|]. Naturally, sPCount initially maps all elements of S
to zero before the counts are incremented.

The total of size of subintervals is bounded by the number of occurrences of
elements of P in PSconcat , which is O(|PSconcat |) = O(‖P‖ + ‖S‖). Thus, com-
puting successorOffset takes O(‖P‖+‖S‖) time, in addition to the construction
time of SAPS and LCP which depends on the alphabet. After the preprocessing,
the number of elements of pList excluded by s when s occurs as a suffix of Ti

can be computed in constant time by simply referring to sPCount [s].

Exclusion by lrsi. It is known that Ukkonen’s algorithm [22] maintains the locus
of lrsi during each iteration i where it builds the suffix tree of Ti, and thus we can
compute its start-index i − |lrsi| + 1 by simply running Ukkonen’s algorithm.
Then, clearly j ∈ pList is excluded by condition (b) of Sect. 3.1 iff j ≥ i −
|lrsi|+1. Furthermore, the start-index is non-decreasing between iterations, i.e.
i − |lrsi| + 1 ≥ (i − 1) − |lrsi−1| + 1 for any iteration i. Thus, we can always
maintain the count |{j ∈ pList | j ∈ [i − |lrsi| + 1..i]}| for each i as follows:

– During some iterations, i − |lrsi| + 1 > (i − 1) − |lrsi−1| + 1 which we will
know from Ukkonen’s algorithm. In that case, for each j ∈ [(i−1)−|lrsi−1|+
2..i − |lrsi| + 1] such that j ∈ pList , increment the count by one.

– Whenever a new element j is added to pList such that j ∈ i − |lrsi| + 1,
increment the count.

Online Algorithms for Distinct Substrings with Conditions 33

We can check whether j ∈ pList in constant time for any j using pArray , and
both the left end i−|lrsi|+1 and right end i of the interval only ever increases and
is within 1 to i, so the above method takes cumulative O(|Ti|) time, dominated
by the runtime of Ukkonen’s algorithm which is cumulative O(|Ti| log σ) time.

Exclusion by k1. The same approach can be used to find the number of elements
of pList excluded by k1: we maintain the number of j ∈ pList such that i−j+1 <
k1 ⇔ j ∈ [i − k1 + 2..i] for each iteration i. Since both endpoints of this interval
can only increase and are always between 1 to i inclusive, maintaining the count
can be done in cumulative O(|Ti|) time.

excludeLeft and start

Maintaining excludeLeft . Similarly, excludeLeft is the number of j ∈ pList such
that i − j + 1 > k2 ⇔ j ∈ [1..i − k2], and the same approach can be used to
maintain this count in O(|Ti|) time.

Maintaining start . We can easily maintain start so that it points to the minimum
element of pList of value at least i+1−k2 in cumulative O(|Ti|) time as follows:

– Initialize start to null .
– During each iteration i, if start is not null and start < i + 1 − k2, then let

start point to the next element in pList .
– Whenever a new element j is added to pList such that j ≥ i + 1 − k2, if

start = null or start > j, let start point to j.

3.6 Summarizing the Algorithm

In the preprocessing, suffix arrays and LCP arrays are constructed and used
to remove redundant elements of P and S, as well as compute successorOffset .
Additionally, Aho-Corasick automata for P and S are built. For general ordered
alphabets, this preprocessing takes O((‖P‖+‖S‖) log σ) time, with the construc-
tion time for Aho-Corasick automata and suffix arrays being the bottleneck. In
the case of integer alphabets of size polynomial w.r.t. ‖P‖ + ‖S‖, the construc-
tion times, and consequently the whole preprocessing time, can be reduced to
O(‖P‖ + ‖S‖) time.

For the query processing time up to any iteration i, excludeLeft , excludeRight ,
and start are computed in O(|Ti| log σ) cumulative time, giving us the solution
for the counting problem. For the reporting problem, we traverse a total of |ansi|
elements in pList , giving us O(|Ti| log σ+ |ansi|) cumulative time, assuming the
solution strings are output in the form of index pairs.

Additionally, all the data structures used require only O(|Ti| + ‖P‖ + ‖S‖)
total working space. Thus, we have the following results.

Theorem 1. There are algorithms that solve the counting and solving prob-
lems from Definition 1 for general ordered alphabets, such that after O((‖P‖ +
‖S‖) log σ) preprocessing time, the solutions are output for each iteration up to
i in O(|Ti| log σ) time for the counting problem, and O(|Ti| log σ + |ansi|) time
for the reporting problem, using O(|Ti| + ‖P‖ + ‖S‖) total working space.

34 L. Leonard et al.

Corollary 1. The preprocessing time in Theorem 1 can be reduced to O(‖P‖+
‖S‖) time in case of integer alphabets of size polynomial with regard to ‖P‖+‖S‖.

4 Applying the Algorithm for Traffic Classification

We show in Appendix A the input sets that match each of the application sig-
natures described in [19].

Note that the signatures shown in [19] are generally characterized in the for-
mat of p followed by s, where p ∈ P and s ∈ S for sets or lists P and S. In
general, this differs from our problem in that occurrences of p and s overlapping
should not be counted as a match. For example, ab followed by bc means abc
should not be counted as a match, while our algorithms do count this as a match.
Nevertheless, such matches, which would be erroneous in the context of imple-
menting the signatures, do not occur with the input sets listed in Appendix A,
as the elements of P and S simply cannot overlap. For example, with Gnutella
signatures each element of P ends with the character :, which no element of S
contains, so no string w ∈ Σ∗ exists such that has some p ∈ P as prefix, s ∈ S as
suffix, and p and s overlap (i.e. |w| < |p|+ |s|). Note also that this problem also
differs from the followed-by problem of [2,14], which does share the intolerance
of such overlaps, but differs in that the inputs are given as pairs of p and s rather
than pair of sets or lists P and S. Naively solving the pair-of-sets problem using
algorithms for the pairs of p and s problem would take |P | × |S| queries, as we
need one query for each pair of p ∈ P and s ∈ S. This is clearly inefficient for
large |P | and |S|, and hence the necessity remains for our proposed algorithms.

5 Conclusion and Future Work

In this paper, we proposed online algorithms for counting and reporting all
distinct substrings of an online text T that has some p ∈ P as a prefix, some s ∈ S
as a suffix, and whose length is within the interval [k1..k2], where P and S are
static sequences of strings given as input for preprocessing, while positive integers
k1, k2 and the characters of T are given as query. Our algorithms take O((‖P‖+
‖S‖) log σ) preprocessing time for general ordered alphabets, which is reduced
to O(‖P‖+ ‖S‖) time for integer alphabets of size polynomial w.r.t. ‖P‖+ ‖S‖.
The computation up to the i-th character of T takes O(|Ti| log σ) cumulative
time for the counting problem, and O(|Ti| log σ+ |ansi|) cumulative time for the
reporting problem. Furthermore, we have shown that it has possible applications
in traffic classification, by showing that all of the application signatures in [19]
can be represented as input sets of our proposed problems.

A few problems remain to be considered as future work:

– As the discussion in Sect. 4 implies, solving the problem where the prefix
and suffix strings are not allowed to overlap, i.e. substrings are in the form
of pΣks, where k ∈ [k1..k2], p ∈ P, s ∈ S, while retaining the distinctness
condition as well as that the input sets be given as pairs of lists P and S, can

Online Algorithms for Distinct Substrings with Conditions 35

be useful in case we have a signature implemented with P, S such that there
does exist a string w such that w has p ∈ P as prefix, s ∈ S as suffix and
|w| < |p|+ |s|, and we want to exclude such w from matches. Is it possible to
devise an algorithm that solve this problem efficiently?

– In practice, how do the running times of our algorithms compare to the sig-
nature implementations used in [19]?

Acknowledgements. This work was supported by JSPS KAKENHI Grant Num-
bers JP20H04141 (HB) and JP22H03551 (SI), and by JST PRESTO Grant Number
JPMJPR1922 (SI).

A Appendix

Below, we show the input sets that match the each of the application signatures
described in [19] (Table 1).

Table 1. Input sets corresponding to application signatures

Application List of P elements List of S elements k1 k2

Gnutella User − Agent :, UserAgent :, Server : LimeWire, BearShare, Gnucleus,

MorpheusOS, XoloX, MorpheusPE,

gtkgnutella, Acquisition,

Mutella − 0.4.1, MyNapster,

Mutella0.4.1, Mutella − 0.4, Qtella,

AquaLime, NapShare, Comeback, Go,

PHEX, SwapNut, Mutella − 0.4.0,

Shareaza, Mutella − 0.3.9b,

Morpheus, FreeWire, Openext,

Mutella − 0.3.3, Phex

1 ∞

eDonkey 0xe3 (in hex) (the packet length) 5-byte long

DirectConnect $MyNick, $Lock, $Key, $Direction,

$GetListLen, $ListLen, $MaxedOut,

$Error, $Send, $Get, $FileLength,

$Canceled, $HubName,

$ValidateNick, $ValidateDenide,

$GetPass, $MyPass, $BadPass,

$Version, $Hello, $LogedIn,

$MyINFO, $GetINFO, $GetNickList,

$NickList, $OpList, $To,

$ConnectToMe, $MultiConnectToMe,

$RevConnectToMe, $Search,

$MultiSearch, $SR, $Kick,

$OpForceMove, $ForceMove, $Quit

| 1 ∞

BitTorrent
the 20-byte string where the first byte is 19
(0 × 13) and the next 19 bytes are the string
19BitTorrent protocol

20-byte long

Kazaa GET, HTTP X − Kazaa 1 ∞

References

1. Amir, A., Levy, A., Porat, E., Shalom, B.R.: Online recognition of dictionary with
one gap. Inf. Comput. 275, 104633 (2020)

36 L. Leonard et al.

2. Baeza-Yates, R.A., Gonnet, G.H.: Fast text searching for regular expressions or
automaton searching on tries. J. ACM (JACM) 43(6), 915–936 (1996)

3. Choi, Y.H., Jung, M.Y., Seo, S.W.: L+ 1-mwm: a fast pattern matching algorithm
for high-speed packet filtering. In: IEEE INFOCOM 2008-The 27th Conference on
Computer Communications, pp. 2288–2296. IEEE (2008)

4. Crochemore, M., Rytter, W.: Text algorithms. Maxime Crochemore (1994)
5. Dori, S., Landau, G.M.: Construction of Aho Corasick automaton in linear time for

integer alphabets. In: Apostolico, A., Crochemore, M., Park, K. (eds.) Combinato-
rial Pattern Matching, pp. 168–177. Springer, Berlin Heidelberg, Berlin, Heidelberg
(2005). https://doi.org/10.1007/11496656_15

6. Fuchino, T., Harada, T., Tanaka, K., Mikawa, K.: Acceleration of packet classifica-
tion using adjacency list of rules. In: 2019 28th International Conference on Com-
puter Communication and Networks (ICCCN) (2019). https://doi.org/10.1109/
icccn.2019.8846923

7. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and
Computational Biology. Cambridge University Press (1997). https://doi.org/10.
1017/cbo9780511574931

8. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM (JACM) 53(6), 918–936 (2006)

9. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir, A. (ed.)
CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-48194-X_17

10. Kim, D.K., Sim, J.S., Park, H., Park, K.: Constructing suffix arrays in linear time.
J. Discrete Algorithms 3(2), 126–142 (2005). https://doi.org/10.1016/j.jda.2004.
08.019

11. Leonard, L., Tanaka, K.: Suffix tree-based linear algorithms for multiple pre-
fixes, single suffix counting and listing problems (2022). https://doi.org/10.48550/
ARXIV.2203.16908

12. Levy, A., Shalom, B.R.: Online parameterized dictionary matching with one gap.
Theoret. Comput. Sci. 845, 208–229 (2020). https://doi.org/10.1016/j.tcs.2020.09.
016

13. Makinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm
Design. Cambridge University Press, Cambridge, England (May (2015)

14. Manber, U., Baeza-Yates, R.: An algorithm for string matching with a sequence
of don’t cares. Inf. Process. Lett. 37(3), 133–136 (1991). https://doi.org/10.1016/
0020-0190(91)90032-D

15. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993). https://doi.org/10.1137/0222058

16. Mikawa, K., Tanaka, K.: Run-based trie involving the structure of arbitrary bit-
mask rules. IEICE Trans. Inf. Syst. E98.D(6), 1206–1212 (2015). https://doi.org/
10.1587/transinf.2013EDP7087

17. Pampapathi, R., Mirkin, B., Levene, M.: A suffix tree approach to anti-spam email
filtering. Mach. Learn. 65(1), 309–338 (2006). https://doi.org/10.1007/s10994-006-
9505-y

18. Ruiz, J., España, S., García, P.: Locally threshold testable languages in strict
sense: application to the inference problem. In: Honavar, V., Slutzki, G. (eds.)
ICGI 1998. LNCS, vol. 1433, pp. 150–161. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054072

https://doi.org/10.1007/11496656_15
https://doi.org/10.1109/icccn.2019.8846923
https://doi.org/10.1109/icccn.2019.8846923
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1016/j.jda.2004.08.019
https://doi.org/10.1016/j.jda.2004.08.019
https://doi.org/10.48550/ARXIV.2203.16908
https://doi.org/10.48550/ARXIV.2203.16908
https://doi.org/10.1016/j.tcs.2020.09.016
https://doi.org/10.1016/j.tcs.2020.09.016
https://doi.org/10.1016/0020-0190(91)90032-D
https://doi.org/10.1016/0020-0190(91)90032-D
https://doi.org/10.1137/0222058
https://doi.org/10.1587/transinf.2013EDP7087
https://doi.org/10.1587/transinf.2013EDP7087
https://doi.org/10.1007/s10994-006-9505-y
https://doi.org/10.1007/s10994-006-9505-y
https://doi.org/10.1007/BFb0054072
https://doi.org/10.1007/BFb0054072

Online Algorithms for Distinct Substrings with Conditions 37

19. Sen, S., Spatscheck, O., Wang, D.: Accurate, scalable in-network identification of
p2p traffic using application signatures. In: Proceedings of the 13th International
Conference on World Wide Web, pp. 512–521. WWW 2004, Association for Com-
puting Machinery, New York, NY, USA (2004). https://doi.org/10.1145/988672.
988742

20. Shalom, B.R.: Parameterized dictionary matching and recognition with one gap.
Theoret. Comput. Sci. 854, 1–16 (2021). https://doi.org/10.1016/j.tcs.2020.11.017

21. Tongaonkar, A.S.: Fast pattern-matching techniques for packet filtering. Ph.D.
thesis, Stony Brook University (2004)

22. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995). https://doi.org/10.1007/BF01206331

https://doi.org/10.1145/988672.988742
https://doi.org/10.1145/988672.988742
https://doi.org/10.1016/j.tcs.2020.11.017
https://doi.org/10.1007/BF01206331

The Complexity of the Co-occurrence
Problem

Philip Bille , Inge Li Gørtz , and Tord Stordalen(B)

Technical University of Denmark, DTU Compute, Kgs. Lyngby, Denmark
{phbi,inge,tjost}@dtu.dk

Abstract. Let S be a string of length n over an alphabet Σ and let
Q be a subset of Σ of size q ≥ 2. The co-occurrence problem is to con-
struct a compact data structure that supports the following query: given
an integer w return the number of length-w substrings of S that con-
tain each character of Q at least once. This is a natural string prob-
lem with applications to, e.g., data mining, natural language processing,
and DNA analysis. The state of the art is an O(

√
nq) space data struc-

ture that—with some minor additions—supports queries in O(log log n)
time [CPM 2021].

Our contributions are as follows. Firstly, we analyze the problem in
terms of a new, natural parameter d, giving a simple data structure that
uses O(d) space and supports queries in O(log log n) time. The prepro-
cessing algorithm does a single pass over S, runs in expected O(n) time,
and uses O(d + q) space in addition to the input. Furthermore, we show
that O(d) space is optimal and that O(log log n)-time queries are opti-
mal given optimal space. Secondly, we bound d = O(

√
nq), giving clean

bounds in terms of n and q that match the state of the art. Further-
more, we prove that Ω(

√
nq) bits of space is necessary in the worst case,

meaning that the O(
√

nq) upper bound is tight to within polylogarithmic
factors. All of our results are based on simple and intuitive combinatorial
ideas that simplify the state of the art.

Keywords: Strings · Data structures · Lower bounds

1 Introduction

We consider the co-occurrence problem which is defined as follows. Let S be a
string of length n over an alphabet Σ and let Q be a subset of Σ of size q ≥ 2. For
two integers i and j where 1 ≤ i ≤ j ≤ n, let [i, j] denote the discrete interval
{i, i + 1, . . . , j}, and let S[i, j] denote the substring of S starting at S[i] and
ending at S[j]. The interval [i, j] is a co-occurrence of Q in S if S[i, j] contains
each character in Q at least once. The goal is to preprocess S and Q into a data
structure that supports the query

Philip Bille and Inge Li Gørtz are supported by Danish Research Council grant DFF-
8021-002498.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 38–52, 2022.
https://doi.org/10.1007/978-3-031-20643-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_4&domain=pdf
http://orcid.org/0000-0002-1120-5154
http://orcid.org/0000-0002-8322-4952
http://orcid.org/0000-0002-1525-0104
https://doi.org/10.1007/978-3-031-20643-6_4

The Complexity of the Co-occurrence Problem 39

– coS,Q(w): return the number of co-occurrences of Q in S that have length w,
i.e., the number of length-w substrings of S that contain each character in Q
at least once.

For example, let Σ = {A, B, C, -}, Q = {A, B, C} and

S = -
1

-
2

-
3

-
4

B
5

C
6

-
7

A
8

C
9

C
10

B
11

-
12

-
13

.

Then

– coS,Q(3) = 0, because no length-three substring contains all three characters
A, B, and C.

– coS,Q(4) = 2, because both [5, 8] and [8, 11] are co-occurrences of Q.
– coS,Q(8) = 6, because all six of the length-eight substrings of S are co-

occurrences of Q.

Note that only sublinear-space data structures are interesting. With linear space
we can simply precompute the answer to coS,Q(i) for each i ∈ [0, n] and support
queries in constant time.

This is a natural string problem with applications to, e.g., data mining,
and a large amount of work has gone towards related problems such as find-
ing frequent items in streams [6–8,10] and finding frequent sets of items in
streams [1,3,4,9,11,12,16]. Furthermore, it is similar to certain string problems,
such as episode matching [5] where the goal is to determine all the substrings of
S that occur a certain number of times within a given distance from each other.
Whereas previous work is mostly concerned with identifying frequent patterns
either in the whole string or in a sliding window of fixed length, Sobel, Bertram,
Ding, Nargesian and Gildea [14] introduced the problem of studying a given pat-
tern across all window lengths (i.e., determining coS,Q(i) for all i). They motivate
the problem by listing potential applications such as training models for natural
language processing (short and long co-occurrences of a set of words tend to
represent respectively syntactic and semantic information), automatically orga-
nizing the memory of a computer program for good cache behaviour (variables
that are used close to each other should be near each other in memory), and
analyzing DNA sequences (co-occurrences of nucleotides in DNA provide insight
into the evolution of viruses). See [14] for a more detailed discussion of these
applications.

Our work is inspired by [14]. They do not consider fast, individual queries,
but instead they give an O(

√
nq) space data structure from which they can

determine coS,Q(i) for each i = 1, . . . , n in O(n) time. Supporting fast queries
is a natural extension to their problem, and we note that their solution can be
extended to support individual queries in O(log log n) time using the techniques
presented below.

A key component of our result is a solution to the following simplified prob-
lem. A co-occurrence [i, j] is left-minimal if [i + 1, j] is not a co-occurrence.
The left-minimal co-occurrence problem is to preprocess S and Q into a data
structure that supports the query

40 P. Bille et al.

– lmcoS,Q(w): return the number of left-minimal co-occurrences of Q in S that
have length w.

We first solve this more restricted problem, and then we solve the co-occurrence
problem by a reduction to the left-minimal co-occurrence problem. To our knowl-
edge this problem has not been studied before.

1.1 Our Results

Our two main contributions are as follows. Firstly, we give an upper bound that
matches and simplifies the state of the art. Secondly, we provide lower bounds
that show that our solution has optimal space, and that our query time is optimal
for optimal-space data structures. As in previous work, all our results work on
the word RAM model with logarithmic word size.

To do so we use the following parametrization. Let δS,Q be the differ-
ence encoding of the sequence lmcoS,Q(1), . . . , lmcoS,Q(n). That is, δS,Q(i) =
lmcoS,Q(i) − lmcoS,Q(i − 1) for each i ∈ [2, n] (note that lmco(1) = 0 since
|Q| ≥ 2). Let ZS,Q = {i ∈ [2, n] | δ(i) �= 0} and let dS,Q = |ZS,Q|. For the
remainder of the paper we will omit the subscript on lmco, co, Z, and d when-
ever S and Q are clear from the context. Note that d is a parameter of the
problem since it is determined exclusively by the input S and Q. We prove the
following theorem.

Theorem 1. Let S be a string of length n over an alphabet Σ, let Q be a subset
of Σ of size q ≥ 2, and let d be defined as above.

(a) There is an O(d) space data structure that supports both lmcoS,Q- and coS,Q-
queries in O(log log n) time. The preprocessing algorithm does a single pass
over S, runs in expected O(n) time and uses O(d + q) space in addition to
the input.

(b) Any data structure supporting either lmcoS,Q- or coS,Q-queries needs Ω(d)
space in the worst case, and any d logO(1) d space data structure cannot
support queries faster than Ω(log log n) time.

(c) The parameter d is bounded by O(
√

nq), and any data structure supporting
either lmcoS,Q- or coS,Q-queries needs Ω(

√
nq) bits of space in the worst

case.

Theorem 1(a) and 1(b) together prove that our data structure has optimal
space, and that with optimal space we cannot hope to support queries faster
than O(log log n) time. In comparison to the state of the art by Sobel et al. [14],
Theorem 1(c) proves that we match their O(

√
nq) space and O(log log n) time

solution, and also that the O(
√

nq) space bound is tight to within polylogarith-
mic factors. All of our results are based on simple and intuitive combinatorial
ideas that simplify the state of the art.

Given a set X of m integers from a universe U , the static predecessor problem
is to represent X such that we can efficiently answer the query predecessor(x) =
max{y ∈ X | y ≤ x}. Tight bounds by Pătraşcu and Thorup [13] imply that

The Complexity of the Co-occurrence Problem 41

O(log log |U |)-time queries are optimal with m logO(1) m space when |U | = mc

for any constant c > 1. The lower bound on query time in Theorem 1(b) follows
from the following theorem, which in turn follows from a reduction from the
predecessor problem to the (left-minimal) co-occurrence problem.

Theorem 2. Let X ⊆ {2, . . . , u} for some u and let |X| = m. Let n, q,
and d be the parameters of the (left-minimal) co-occurrence problem as above.
Given a data structure that supports lmco- or co-queries in ft(n, q, d) time using
fs(n, q, d) space, we obtain a data structure that supports predecessor queries on
X in O(ft(2u2, 2, 8m)) time using O(fs(2u2, 2, 8m)) space.

In particular, if fs(n, q, d) = d logO(1) d then we obtain an m logO(1) m-space
predecessor data structure on X. If also u = mc, then it follows from the lower
bound on predecessor queries that ft(2u2, 2, 8m) = Ω(log log u), which in turn
implies that ft(n, q, d) = Ω(log log n), proving the lower bound in Theorem 1(b).

The preprocessing algorithm and the proof of Theorem 2 can be found in
Appendices A and B, respectively.

1.2 Techniques

The key technical insights that lead to our results stem mainly from the structure
of δ.

To achieve the upper bound for lmco-queries we use the following very simple
data structure. By definition, lmco(w) =

∑w
i=2 δ(i). Furthermore, by the defini-

tion of Z it follows that for any w ∈ [2, n] we have that lmco(w) = lmco(wp) where
wp is the predecessor of w in Z. Our data structure is a predecessor structure
over the set of key-value pairs {(i, lmco(i)) | i ∈ Z} and answers lmco-queries
with a single predecessor query. There are linear space predecessor structures
that support queries in O(log log |U |) time [15]. Here the universe U is [2, n] so
we match the O(d) space and O(log log n) time bound in Theorem 1(a).

Furthermore, we prove the O(
√

nq) upper bound on space by bounding d =
O(

√
nq) using the following idea. In essence, each δ(z) for z ∈ Z corresponds to

some length-z minimal co-occurrence, which is a co-occurrence [i, j] such that
neither [i + 1, j] nor [i, j − 1] are co-occurrences (see below for the full details
on δ). We bound the cumulative length of all the minimal co-occurrences to
be O(nq); then there are at most d = O(

√
nq) distinct lengths of minimal co-

occurrences since d = ω(
√

nq) implies that the cumulative length of the minimal
co-occurrences is at least 1 + . . . + d = Ω(d2) = ω(nq).

To also support co-queries and complete the upper bound we give a straight-
forward reduction from the co-occurrence problem to the left-minimal co-
occurrence problem. We show that by extending the above data structure to
also store

∑z
i=2 lmco(i) for each z ∈ Z, we can support co-queries with the same

bounds as for lmco-queries.
On the lower bounds side, we give all the lower bounds for the left-minimal

co-occurrence problem and show that they extend to the co-occurrence prob-
lem. To prove the lower bounds we exploit that we can carefully design lmco-
instances that result in a particular difference encoding δ by including minimal
co-occurrences of certain lengths and spacing. Our lower bounds on space in

42 P. Bille et al.

Theorem 1(b) and 1(c) are the results of encoding a given permutation or set in
δ, respectively.

Finally, as mentioned above, we prove Theorem 2 (and, by extension, the
lower bound on query time in Theorem 1(b)) by encoding a given instance of
the static predecessor problem in an lmco-instance such that the predecessor of
an element x equals lmco(x).

2 The Left-Minimal Co-occurrence Problem

2.1 Main Idea

Let [i, j] ⊆ [1, n] be a co-occurrence of Q in S. Recall that then each character
from Q occurs in S[i, j] and that [i, j] is left-minimal if [i + 1, j] is not a co-
occurrence. The goal is to preprocess S and Q to support the query lmco(w),
which returns the number of left-minimal co-occurrences of length w.

We say that [i, j] is a minimal co-occurrence if neither [i + 1, j] nor [i, j − 1]
are co-occurrences and we denote the μ minimal co-occurrences of Q in S by
[�1, r1], . . . , [�μ, rμ] where r1 < . . . < rμ. This ordering is unique since at most
one minimal co-occurrence ends at a given index. To simplify the presentation we
define rμ+1 = n + 1. Note that also �1 < . . . < �μ due to the following property.

Property 1. Let [a, b] and [a′, b′] be two minimal co-occurrences. Either both
a < a′ and b < b′, or both a′ < a and b′ < b.

Proof. If a < a′ and b ≥ b′ then [a, b] strictly contains another minimal co-
occurrence [a′, b′] and can therefore not be minimal itself. The other cases are
analogous. �	
We now show that given all the minimal co-occurrences we can determine all
the left-minimal co-occurrences.

Lemma 1. Let [�1, r1], . . . , [�μ, rμ] be the minimal co-occurrences of Q in S
where r1 < . . . < rμ and let rμ+1 = n + 1. Then

(a) there are no left-minimal co-occurrences that end before r1, i.e., at an index
k < r1, and

(b) for each index k where ri ≤ k < ri+1 for some i, the left-minimal co-
occurrence ending at k starts at �i.

Proof. See Fig. 1 for an illustration of the proof.

(a) If [j, k] is a left-minimal co-occurrence where k < r1, it must contain some
minimal co-occurrence that ends before r1—obtainable by shrinking [j, k]
maximally—leading to a contradiction.

(b) Let ri ≤ k < ri+1. Then [�i, k] is a co-occurrence since it contains [�i, ri].
We show that it is left-minimal by showing that [�i + 1, k] is not a co-
occurrence. If it were, it would contain a minimal co-occurrence [s, t] where
�i < s and t < ri+1. By Property 1, �i < s implies that ri < t. However,
then ri < t < ri+1, leading to a contradiction. �	

The Complexity of the Co-occurrence Problem 43

S =
[j,k]

︷ ︸︸ ︷· · · · · · · ◦ · · · · · · · ◦︸ ︷︷ ︸
[�1,r1]

· · · · · · S = · · · · · · ◦
�i

(�1,k]
︷ ︸︸ ︷· · · ◦

ri

· ·
︸ ︷︷ ︸
[s,t]

· ◦
k
· · · ◦

ri+1
· · · · · ·

Fig. 1. Left (Lemma 1(a)): Any left-minimal co-occurrence [j, k] must contain a min-
imal co-occurrence ending at or before k. If k < r1 this contradicts that r1 is the
smallest endpoint of a minimal co-occurrence. Right (Lemma 1(b)): [�i, k] is a co-
occurrence because it contains [�i, ri]. However, [�i + 1, k] is not a co-occurrence; if it
were it would contain a minimal co-occurrence [s, t] that ends between ri and k, leading
to a contradiction since ri < t < ri+1.

Let len(i, j) = j−i+1 denote the length of the interval [i, j]. Lemma 1 implies
that each minimal co-occurrence [�i, ri] gives rise to one additional left-minimal
co-occurrence of length k for k = len(�i, ri), . . . , len(�i, ri+1) − 1. Also, note that
each left-minimal co-occurrence is determined by a minimal co-occurrence in this
manner. Therefore, lmco(w) equals the number of minimal co-occurrences [�i, ri]
where len(�i, ri) ≤ w < len(�i, ri+1). Recall that δ(i) = lmco(i) − lmco(i − 1) for
i ∈ [2, n]. Since lmco(1) = 0 (because |Q| ≥ 2) we have lmco(w) =

∑w
i=2 δ(i). It

follows that

δ(w) =
μ∑

i=1

⎧
⎪⎨

⎪⎩

1 if len(�i, ri) = w

−1 if len(�i, ri+1) = w

0 otherwise

since the contribution of each [�i, ri] to the sum
∑w

i=2 δ(i) is one if len(�i, ri) ≤
w < len(�i, ri+1) and zero otherwise. We say that [�i, ri] contributes plus one and
minus one to δ(len(�i, ri)) and δ(len(�i, ri+1)), respectively.

However, note that only the non-zero δ(·)-entries affect the result of lmco-
queries. Denote the elements of Z by z1 < z2 < . . . < zd and define pred(w) such
that zpred(w) is the predecessor of w in Z, or pred(w) = 0 if w has no predecessor.
We get the following lemma.

Lemma 2. For any w ∈ [z1, n] we have that

lmco(w) =
pred(w)∑

i=1

δ(zi) = lmco(zpred(w)).

For w ∈ [0, z1), w has no predecessor in Z and lmco(w) = 0.

Proof. The proof follows from the fact that lmco(w) =
∑w

i=2 δ(i) and δ(i) = 0
for each i �∈ Z. �	

2.2 Data Structure

The contents of the data structure are as follows. Store the linear space pre-
decessor structure from [15] over the set Z, and for each key zi ∈ Z store the

44 P. Bille et al.

data lmco(zi). To answer lmco(w), find the predecessor zpred(w) of w and return
lmco(zpred(w)). Return 0 if w has no predecessor.

The correctness of the query follows from Lemma 2. The query time is
O(log log |U |) [15] which is O(log log n) since the universe is [2, n], i.e., the domain
of δ. The predecessor structure uses O(|Z|) = O(d) space, which we now show
is O(

√
nq). We begin by bounding the cumulative length of the minimal co-

occurrences.

Lemma 3. Let [�1, r1], . . . , [�μ, rμ] be the minimal co-occurrences of Q in S.
Then

μ∑

i=1

len(�i, ri) = O(nq).

Proof. We prove that for each k ∈ [1, n] there are at most q minimal co-
occurrences [�i, ri] where k ∈ [�i, ri]; the statement in the lemma follows directly.
Suppose that there are q′ > q minimal co-occurrences [s1, t1], . . . , [sq′ , tq′] that
contain k and let t1 < . . . < tq′ . By Property 1, and because each minimal
occurrence contains k, we have

s1 < . . . < sq′ ≤ k ≤ t1 < . . . < tq′

Furthermore, for each si we have that S[si] = p for some p ∈ Q; otherwise
[si + 1, ti] would be a co-occurrence and [si, ti] would not be minimal. Since
q′ > q there is some p ∈ Q that occurs twice as the first character, i.e., such that
S[si] = S[sj] = p for some i < j. However, then [si + 1, ti] is a co-occurrence
because it still contains S[sj] = p, contradicting that [si, ti] is minimal. �	

By the definition of δ, we have that δ(k) �= 0 only if there is some minimal
co-occurrence [�i, ri] such that either len(�i, ri) = k or len(�i, ri+1) = k. Using
this fact in conjunction with Lemma 3 we bound the sum of the elements in Z.

∑

z∈Z

z =
∑

k where δ(k) �=0

k ≤
μ∑

i=1

len(�i, ri) + len(�i, ri+1)

=
μ∑

i=1

len(�i, ri) +
(
len(�i, ri) + len(ri + 1, ri+1)

)

=
μ∑

i=1

2 · len(�i, ri) +
μ∑

i=1

len(ri + 1, ri+1)

= O(nq) + O(n)

Since the sum over Z is at most O(nq) we must have d = O(
√

nq), because with
d = ω(

√
nq) distinct elements in Z we have

∑

z∈Z

z ≥ 1 + 2 + . . . + d = Ω(d2) = ω(nq).

The Complexity of the Co-occurrence Problem 45

3 The Co-occurrence Problem

Recall that co(w) is the number of co-occurrences of length w, as opposed to the
number of left-minimal co-occurrences of length w. That is, co(w) counts the
number of co-occurrences among the intervals [1, w], [2, w +1], . . . , [n−w +1, n].
We reduce the co-occurrence problem to the left-minimal co-occurrence problem
as follows.

Lemma 4. Let S be a string over an alphabet Σ, let Q ⊆ Σ and let lmco be
defined as above. Then

co(w) =

(
w∑

i=2

lmco(i)

)

− max(w − r1, 0).

Proof. For any index k ≥ w, the length-w interval [k − w + 1, k] ending at k is a
co-occurrence if and only if the length of the left-minimal co-occurrence ending
at index k is at most w. The sum

∑w
i=2 lmco(i) counts the number of indices

j ∈ [1, n] such that the left-minimal co-occurrence ending at j has length at most
w. However, this also includes the left-minimal co-occurrences that end at any
index j ∈ [r1, w − 1]. While all of these have length at most w − 1, none of the
length-w intervals that end in the range [r1, w−1] correspond to substrings of S,
so they are not co-occurrences. Therefore, the sum

∑w
i=2 lmco(i) overestimates

co(w) by w − r1 if r1 < w and by 0 otherwise. �	
We show how to represent the sequence

∑2
i=2 lmco(i), . . . ,

∑n
i=2 lmco(i) com-

pactly, in a similar way to what we did for lmco-queries. Recall that the elements
of Z are denoted by z1 < . . . < zd, that zpred(x) is the predecessor of x in Z, and
that pred(x) = 0 if x has no predecessor. Then, for any w ≥ 2 we get that

w∑

i=2

lmco(i) =
w∑

i=2

pred(i)∑

j=1

δ(zj)

=
pred(w)∑

k=1

δ(zk)(w − zk + 1)

= (w + 1)
pred(w)∑

k=1

δ(zk)

︸ ︷︷ ︸
lmco(w)

−
pred(w)∑

k=1

zkδ(zk)

(1)

The first step follows by Lemma 2 and the second step follows because δ(zk)
occurs in

∑pred(i)
j=1 δ(zj) for each of the w − zk + 1 choices of i ∈ [zk, w].

To also support co-queries we extend our data structure from before as fol-
lows. For each zk in the predecessor structure we store

∑k
i=1 ziδ(zi) in addition

to lmco(zk). We also store r1. Using Lemma 4 and Eq. 1 we can then answer
co-queries with a single predecessor query and a constant amount of extra work,
taking O(log log n) time. The space remains O(d) = O(

√
nq). This completes the

proof of Theorem 1(a), as well as the upper bound on space from Theorem 1(c).

46 P. Bille et al.

4 Lower Bounds

In this section we show lower bounds on the space complexity of data structures
that support lmco- or co-queries. In Sect. 4.1 we introduce a gadget that we use in
Sect. 4.2 to prove that any data structure supporting lmco- or co-queries needs
Ω(d) space (we use the same gadget in Appendix B to prove Theorem 2). In
Sect. 4.3 we prove that any solution to the (left-minimal) co-occurrence problem
requires Ω(

√
nq) bits of space in the worst case.

All the lower bounds are proven by reduction to the left-minimal co-
occurrence problem. However, they extend to data structures that support co-
queries by the following argument. Store r1 and any data structure that supports
co on S and Q in time t per query. Then this data structure supports lmco-queries
in O(t) time, because by Lemma 4 we have that

co(w) − co(w − 1)

=

(
w∑

i=2

lmco(i) − max(w − r1, 0)

)

−
(

w−1∑

i=2

lmco(i) − max(w − 1 − r1, 0)

)

= lmco(w) − max(w − r1, 0) + max(w − 1 − r1, 0)

4.1 The Increment Gadget

Let Q = {A, B} and U = {2, . . . , u}. For each i ∈ U we define the increment
gadget

Gi = A $ · · · $ B
︸ ︷︷ ︸

i

$ · · · $
︸ ︷︷ ︸

u

where $ · · · $ denotes a sequence of characters that are not in Q.

Lemma 5. Let Q = {A, B}, U = {2, . . . , u}, and let Gi be defined as above.
Furthermore, for some E = {e1, e2, . . . , em} ⊆ U let S be the concatenation of
c1 > 0 copies of Ge1 , with c2 > 0 copies of Ge2 , and so on. That is,

S = Ge1 · · · Ge1︸ ︷︷ ︸
c1

. Gem
· · · Gem︸ ︷︷ ︸
cm

Then δ(ei) = ci for each ei ∈ E and δ(e) = 0 for any e ∈ U \ E. Furthermore,
m ≤ d ≤ 8m and n ≤ 2uC where C =

∑m
i=1 ci is the number of gadgets in S.

Proof. Firstly, |Gj | = j + u ≤ 2u since j ∈ U , so the combined length of the C
gadgets is at most 2uC.

Now we prove that δ(ei) = ci for each ei ∈ E and δ(e) = 0 for each e ∈ U \E.
Consider two gadgets Gj and Gk that occur next to each other in S.

Gj

︷ ︸︸ ︷
A $ · · · $ B
︸ ︷︷ ︸

j

$ · · · $
︸ ︷︷ ︸

u

Gk
︷ ︸︸ ︷
A $ · · · $ B
︸ ︷︷ ︸

k

$ · · · $
︸ ︷︷ ︸

u

The Complexity of the Co-occurrence Problem 47

Three of the minimal co-occurrences in S occur in these two gadgets. Denote
them by [s1, t1],[s2, t2] and [s3, t3].

︸ ︷︷ ︸
[s1,t1]

A $ · · · $
[s2,t2]

︷ ︸︸ ︷
B $ · · · $ A $ · · · $ B

︸ ︷︷ ︸
[s3,t3]

$ · · · $

The two first minimal co-occurrences start in Gj . They contribute

– plus one to δ(x) for x ∈ {len(s1, t1), len(s2, t2)} = {j, u + 2}.
– minus one to δ(x) for x ∈ {len(s1, t2), len(s2, t3)} = {j + u + 1, k + u + 1}.

Hence, each occurrence of Gj contributes plus one to δ(j), and the remaining
contributions are to δ(x) where x �∈ U . The argument is similar also for the last
gadget in S that has no other gadget following it. For each ei ∈ E there are ci

occurrences of Gei
so δ(ei) = ci. For each e ∈ U \ E there are no occurrences of

Ge so δ(e) = 0.
Finally, note that each occurrence of GjGk at different positions in S con-

tributes to the same four δ(·)-entries. Therefore the number of distinct non-zero
δ(·)-entries is linear in the number of distinct pairs (j, k) such that Gj and Gk

occur next to each other in S. Here we have no more than 2m distinct paris
since Gei

is followed either by Gei
or Gei+1 . Each distinct pair contributes to at

most four δ(·)-entries so d ≤ 8 m. Finally each Gei
contributes at least to δ(ei)

so m ≤ d, concluding the proof. �	

4.2 Lower Bound on Space

We prove that any data structure supporting lmco-queries needs Ω(d) space
in the worst case. Let U and Q be defined as in the increment gadget and
let P = p2, . . . , pm be a sequence of length m − 1 where each pi ∈ U (the
first element is named p2 for simplicity). We let S be the concatenation of p2
occurrences of G2, with p3 occurrences of G3, and so on. That is,

S = G2 . . . G2︸ ︷︷ ︸
p2

· · · · · · · · · Gm . . . Gm︸ ︷︷ ︸
pm

Then any data structure supporting lmco on S and Q is a representation of P ;
by Lemma 5 we have that δ(i) = pi for i ∈ [2,m] and by definition we have
δ(i) = lmco(i) − lmco(i − 1).

The sequence P can be any one of (u − 1)m−1 distinct sequences, so any
representation of P requires

log((u − 1)m−1) = (m − 1) log(u − 1) = Ω(m log u)

bits—or Ω(m) words—in the worst case. By Lemma 5 this is Ω(d).

48 P. Bille et al.

4.3 Lower Bound on Space in Terms of n and q

Here we prove that any data structure supporting lmco needs Ω(
√

nq) bits of
space in the worst case.

The main idea is as follows. Given an integer α and some k ∈ {2, . . . , α}, let
V be the set of even integers from {k + 1, . . . , kα}, and let T be some subset of
V . We will construct an instance S and Q where

– the size of Q is q = k
– the length of S is n = O(kα2)
– for each i ∈ V we have δ(i) = 1 if and only if i ∈ T .

Then, as above, any data structure supporting lmco-queries on S and Q is a
representation of T since δ(i) = lmco(i) − lmco(i − 1). There are 2Ω(kα) choices
for T , so any representation of T requires

log 2Ω(kα) = Ω(kα) = Ω(
√

k2α2) = Ω(
√

nq)

bits in the worst case.
The reduction is as follows. Let Q = {C1, . . . , Ck} and let $ be a character not

in Q. Assume for now that |T | is a multiple of k − 1 and partition T arbitrarily
into t = O(α) sets T1, . . . , Tt, each of size k − 1. Consider Tj = {e1, . . . , ek−1}
where e1 < e2 < . . . < ek−1. We encode Tj in the gadget Rj where

– the length of Rj is 3kα.
– Rj [1, k] = C1C2 . . . Ck.
– Rj [i + ei] = Ci for each Ci except Ck. This is always possible since i + ei <

(i + 1) + ei+1.
– all other characters are $.

See Fig. 2 for an illustration both of the layout of Rj and of the minimal co-
occurrences contained within it. There are k minimal co-occurrences contained
in Rj which we denote by [s1, t1], . . . , [sk, tk].

– The first one, [s1, t1] = [1, k], starts and ends at the first occurrence of C1 and
Ck, respectively.

– For each i ∈ [2, k], the minimal co-occurrence [si, ti] starts at the first
occurrence of Ci and ends at the second occurrence of Ci−1, i.e., [si, ti] =
[i, i − 1 + ei−1].

Consider how these minimal co-occurrences contribute to δ. Each [si, ti] con-
tributes plus one to δ(len(si, ti)). For the first co-occurrence, len(s1, t1) = k
(which is not a part of the universe V). Each of the other co-occurrences [si, ti]
has length

len(si, ti) = ti − si + 1 = (i − 1 + ei−1) − i + 1 = ei−1

Therefore, the remaining minimal co-occurrences contribute plus one to of each
the δ(·)-entries e1, . . . , ek−1.

The Complexity of the Co-occurrence Problem 49

Fig. 2. Top: Shows the layout of the gadget Rj , where $ · · · $ denotes a sequence of
characters not in Q. The first k characters are C1 . . . Ck. For i ∈ [1, k−1] there is another
occurrence of Ci at index i + ei. Note that the second occurrence of C1 occurs before
the second occurrence of C2, and so on. All other characters are $. Since |Rj | = 3kα
and k−1+ek−1 ≤ 2kα, Rj ends with at least kα characters that are not in Q. Bottom:
Shows the k minimal co-occurrences in Rj denoted by [s1, t1], . . . , [sk, tk]. Each of the
k−3 minimal co-occurrences that are not depicted start at the first occurrence of some
Ci and ends at the second occurrence of Ci−1.

Furthermore, each [si, ti] contributes negative one to δ(len(si, ti+1)), where we
define tk+1 = |Rj |+1. For i < k we have that len(si, ti+1) = 1+ len(si+1, ti+1) =
1 + ei since si + 1 = si+1. Note that 1 + ei is odd since ei is even, and therefore
not in V . For i = k, we get that ti+1 = tk+1 = |Rj | + 1. The last kα (at least)
characters of Rj are not in Q, so len(sk, |Rj | + 1) > kα and therefore not in V .

Hence, Rj contributes plus one to δ(e1), . . . , δ(ek−1) and does not contribute
anything to δ(i) for any other i ∈ V \Tj . To construct S, concatenate R1, . . . , Rt.
Note that any minimal co-occurrence that crosses the boundary between two
gadgets will only contribute to δ(i) for i > kα due to the trailing characters of
each gadget that are not in Q. Since S consists of t = O(α) gadgets that each
have length O(kα), we have n = O(kα2) as stated above.

Finally, note that the assumption that |T | is a multiple of k − 1 is not neces-
sary. We ensure that the size is a multiple of k − 1 by adding at most k − 2 even
integers from {kα + 1, . . . , 2kα} and adjusting the size of the gadgets accord-
ingly. The reduction still works because we add even integers, the size of S is
asymptotically unchanged, and any minimal co-occurrence due to the extra ele-
ments will have length greater than kα and will not contribute to any relevant
δ-entries.

Acknowledgement. We would like to thank the anonymous reviewers for their com-
ments, which improved the presentation of the paper.

A Preprocessing

Finding Minimal Co-occurrences. To build the data structure, we need to find all
the minimal co-occurrences in order to determine δ. For j ≥ r1, let lm(j) denote
the length of the left-minimal co-occurrence ending at index j. By Lemma 1,

50 P. Bille et al.

lm(ri) = len(�i, ri) for each i ∈ [1, μ]. Furthermore, for j ∈ [ri + 1, ri+1 − 1] we
have lm(j) = lm(j − 1) + 1 since both of the left-minimal co-occurrences ending
at these two indices start at �i. However, lm(ri) ≤ lm(ri − 1) for each i ∈ [2, μ];
the left-minimal co-occurrence ending at ri starts at least one index further to
the right than the left-minimal co-occurrence ending at ri − 1 because �i−1 < �i,
so it cannot be strictly longer.

We determine �1, . . . , �μ and r1, . . . , rμ using the following algorithm. Tra-
verse S and maintain lm(j) for the current index j. Whenever lm(j) �= lm(j−1)+1
the interval [j − lm(j) + 1, j] is one of the minimal co-occurrences. Note that
this algorithm finds the minimal co-occurrences in order by their rightmost end-
point. We maintain lm(j) as follows. For each character p ∈ Q let dist(j, p) be the
distance to the closest occurrence of p on the left of j. Then lm(j) is the maxi-
mum dist(j, ·)-value. As in [14], we maintain the dist(j, ·)-values in a linked list
that is dynamically reordered according to the well-known move-to-front rule.
The algorithm works as follows. Maintain a linked list over the elements in Q,
ordered by increasing dist-values. Whenever you see some p ∈ Q, access its node
in expected constant time through a dictionary and move it to the front of the
list. The least recently seen p ∈ Q (i.e., the p with the largest dist(j, ·)-value) is
found at the back of the list in constant time. The algorithm uses O(q) space
and expected constant time per character in S, thus it runs in expected O(n)
time.

Building the Data Structure We build the data structure as follows. Traverse
S and maintain the two most recently seen minimal co-occurrences using the
algorithm above. We maintain the non-zero δ(·)-values in a dictionary D that
is implemented using chained hashing in conjunction with universal hashing [2].
When we find a new minimal co-occurrence [�i+1, ri+1] we increment D[len(�i, ri)]
and decrement D[len(�i, ri+1)]. Recall that Z = {z1, . . . , zd} where zj < zj+1 is
defined such that δ(i) �= 0 if and only if i ∈ Z. After processing S the dictionary
D encodes the set {(z1, δ(z1)), . . . , (zd, δ(zd))}. Sort the set to obtain the array
E[j] = δ(zj). Compute the partial sum array over E, i.e. the array

F [j] =
j∑

i=1

E[i] =
j∑

i=1

δ(zi) = lmco(zj). (we use 1-indexing)

Build the predecessor data structure over Z and associate lmco(zj) with each
key zj .

The algorithm for finding the minimal co-occurrences uses O(q) space and
the remaining data structures all use O(d) space, for a total of O(d + q) space.
Finding the minimal co-occurrences and maintaining D takes O(n) expected
time, and so does building the predecessor structure from the sorted input.

Furthermore, we use the following sorting algorithm to sort the d entries in D
with O(d) extra space in expected O(n) time. If d < n/ log n we use merge sort
which uses O(d) extra space and runs in O(d log d) = O(n) time. If d ≥ n/ log n
we use radix sort with base

√
n, which uses O(

√
n) extra space and O(n) time. To

The Complexity of the Co-occurrence Problem 51

elaborate, assume without loss of generality that 2k bits are necessary to repre-
sent n. We first distribute the elements into 2k = O(

√
n) buckets according to the

most significant k bits of their binary representation, partially sorting the input.
We then sort each bucket by distributing the elements in that bucket according
to the least significant k bits of their binary representation, fully sorting the
input. The algorithm runs in O(n) time and uses O(

√
n) = O(n/ log n) = O(d)

extra space.

B Lower Bound on Time

We now prove Theorem 2 by the following reduction from the predecessor prob-
lem. Let U , Q and Gi be as defined in Sect. 4.1 and let X = {x1, x2, . . . , xm} ⊆ U
where x1 < . . . < xm. Define

S = Gx1 · · · Gx1︸ ︷︷ ︸
x1

Gx2 · · · Gx2︸ ︷︷ ︸
x2−x1

. Gxm
· · · Gxm︸ ︷︷ ︸

xm−xm−1

By Lemma 5 we have that δ(x1) = x1, δ(xi) = xi − xi−1 for i ∈ [2,m] and
δ(i) = 0 for i ∈ U \ X. Then, if the predecessor of some x ∈ U is xp, we have

lmco(x) =
x∑

i=2

δ(i) = x1 + (x2 − x1) + . . . + (xp − xp−1) = xp

On the other hand, if x < x1 then
∑x

i=0 δ(i) = 0, unambiguously identifying
that x has no predecessor.

Applying Lemma 5 again, we have d ≤ 8m. Furthermore, there are x1+(x2−
x1) + . . . + (xm − xm−1) = xm ≤ u gadgets in total so n ≤ 2u2. Hence, given a
data structure that supports lmco in ft(n, q, d) time using fs(n, q, d) space, we
get a data structure supporting predecessor queries on X in O(ft(2u2, 2, 8m))
time and O(fs(2u2, 2, 8m)) space, proving Theorem 2.

References

1. Amagata, D., Hara, T.: Mining top-k co-occurrence patterns across multiple
streams (extended abstract). In: Proceeding 34th ICDE, pp. 1747–1748 (2018).
https://doi.org/10.1109/ICDE.2018.00231

2. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979). https://doi.org/10.1016/0022-0000(79)90044-8

3. Chang, J.H., Lee, W.S.: Finding recently frequent item sets adaptively over online
transactional data streams. Inf. Syst. 31(8), 849–869 (2006). https://doi.org/10.
1016/j.is.2005.04.001

4. Dallachiesa, M., Palpanas, T.: Identifying streaming frequent items in ad hoc time
windows. Data Knowl. Eng. 87, 66–90 (2013). https://doi.org/10.1016/j.datak.
2013.05.007

5. Das, G., Fleischer, R., Gasieniec, L., Gunopulos, D., Kärkkäinen, J.: Episode
matching. In: Proceeding 8th CPM, pp. 12–27 (1997). https://doi.org/10.1007/
3-540-63220-4 46

https://doi.org/10.1109/ICDE.2018.00231
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/j.is.2005.04.001
https://doi.org/10.1016/j.is.2005.04.001
https://doi.org/10.1016/j.datak.2013.05.007
https://doi.org/10.1016/j.datak.2013.05.007
https://doi.org/10.1007/3-540-63220-4_46
https://doi.org/10.1007/3-540-63220-4_46

52 P. Bille et al.

6. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of internet
packet streams with limited space. In: Proceeding 10th ESA, pp. 348–360 (2002).
https://doi.org/10.1007/3-540-45749-6 33

7. Golab, L., DeHaan, D., Demaine, E.D., López-Ortiz, A., Munro, J.I.: Identifying
frequent items in sliding windows over on-line packet streams. In: Proceeding 3rd
ACM IMC, pp. 173–178 (2003). https://doi.org/10.1145/948205.948227

8. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm for finding fre-
quent elements in streams and bags. ACM Trans. Database Syst. 28, 51–55 (2003).
https://doi.org/10.1145/762471.762473

9. Li, H., Lee, S.: Mining frequent itemsets over data streams using efficient window
sliding techniques. Expert Syst. Appl. 36(2), 1466–1477 (2009). https://doi.org/
10.1016/j.eswa.2007.11.061

10. Lim, Y., Choi, J., Kang, U.: Fast, accurate, and space-efficient tracking of time-
weighted frequent items from data streams. In: Proceeding 23rd CIKM, pp. 1109–
1118 (2014). https://doi.org/10.1145/2661829.2662006

11. Lin, C., Chiu, D., Wu, Y., Chen, A.L.P.: Mining frequent itemsets from data
streams with a time-sensitive sliding window. In: Proceeding 5th SDM, pp. 68–
79 (2005). https://doi.org/10.1137/1.9781611972757.7

12. Mozafari, B., Thakkar, H., Zaniolo, C.: Verifying and mining frequent patterns
from large windows over data streams. In: Proceeding 24th ICDE, pp. 179–188
(2008). https://doi.org/10.1109/ICDE.2008.4497426

13. Patrascu, M., Thorup, M.: Randomization does not help searching predecessors.
In: Proceedimg 18th SODA, pp. 555–564 (2007). https://dl.acm.org/citation.cfm?
id=1283383.1283443

14. Sobel, J., Bertram, N., Ding, C., Nargesian, F., Gildea, D.: AWLCO: all-window
length co-occurrence. In: Proceeding 32nd CPM, pp. 24:1–24:21. LIPIcs (2021).
https://doi.org/10.4230/LIPIcs.CPM.2021.24

15. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space
Θ(N). Inf. Process. Lett. 17(2), 81–84 (1983). https://doi.org/10.1016/0020-
0190(83)90075-3

16. Yu, Z., Yu, X., Liu, Y., Li, W., Pei, J.: Mining frequent co-occurrence patterns
across multiple data streams. In: Proceeding 1th EDBT, pp. 73–84 (2015). https://
doi.org/10.5441/002/edbt.2015.08

https://doi.org/10.1007/3-540-45749-6_33
https://doi.org/10.1145/948205.948227
https://doi.org/10.1145/762471.762473
https://doi.org/10.1016/j.eswa.2007.11.061
https://doi.org/10.1016/j.eswa.2007.11.061
https://doi.org/10.1145/2661829.2662006
https://doi.org/10.1137/1.9781611972757.7
https://doi.org/10.1109/ICDE.2008.4497426
https://dl.acm.org/citation.cfm?id=1283383.1283443
https://dl.acm.org/citation.cfm?id=1283383.1283443
https://doi.org/10.4230/LIPIcs.CPM.2021.24
https://doi.org/10.1016/0020-0190(83)90075-3
https://doi.org/10.1016/0020-0190(83)90075-3
https://doi.org/10.5441/002/edbt.2015.08
https://doi.org/10.5441/002/edbt.2015.08

String Data Structures

Reconstructing Parameterized Strings
from Parameterized Suffix and LCP

Arrays

Amihood Amir1,2, Concettina Guerra2, Eitan Kondratovsky3,
Gad M. Landau4,5, Shoshana Marcus6(B), and Dina Sokol7

1 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
amir@esc.biu.ac.il

2 College of Computing, Georgia Institute of Technology, 801 Atlantic Drive,
Atlanta, GA 30318, USA

3 Cheriton School of Computer Science, Waterloo University, Waterloo, Canada
e2kondra@uwaterloo.ca

4 Department of Computer Science, University of Haifa, Haifa 31905, Israel
landau@univ.haifa.ac.il

5 NYU Tandon School of Engineering, New York University, Brooklyn, NY, USA
6 Department of Mathematics and Computer Science, Kingsborough Community

College of the City University of New York, Brooklyn, NY, USA
shoshana.marcus@kbcc.cuny.edu

7 Department of Computer and Information Science, Brooklyn College and The
Graduate Center, City University of New York, Brooklyn, NY, USA

sokol@sci.brooklyn.cuny.edu

https://u.cs.biu.ac.il/amir/, https://www.u.cs.biu.ac.il/kondrae/,

http://www.cs.haifa.ac.il/~landau/,

http://www.sci.brooklyn.cuny.edu/~sokol

Abstract. Reconstructing input from a data structure entails determin-
ing whether an instance of the data structure is in fact valid or not, and
if valid, discovering the underlying data that it represents. In this paper
we consider the parameterized suffix array (pSA) along with its corre-
sponding parameterized longest-common-prefix (pLCP) array and solve
the following problem. Given two arrays of numbers as input, A and P ,
does there exist a parameterized string S such that A is its pSA and P
is its pLCP array? If the answer is positive, our algorithm produces a
string S whose pSA is A and whose pLCP array is P . Although the naive
approach would have to consider an exponential number of possibilities
for such a string S, our algorithm’s time complexity is only O(n2) for
input arrays of size n.

A. Amir—Partially supported by Grant No. 2018141 from the United States-Israel
Binational Science Foundation (BSF) and Israel Science Foundation Grant 1475-18.
C. Guerra—Partially supported by BSF Grant No. 2018141.
G. M. Landau—Partially supported by Grant No. 2018141 from the United States-
Israel Binational Science Foundation (BSF) and Israel Science Foundation Grant 1475-
18.
D. Sokol—Partially supported by BSF Grant No. 2018141.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 55–69, 2022.
https://doi.org/10.1007/978-3-031-20643-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-20643-6_5

56 A. Amir et al.

Keywords: Strings · Parameterized strings · Suffix array · Longest
common prefix array

1 Introduction

Parameterized pattern matching, introduced by Baker [9,10], is a form of pattern
matching that allows for interchange in the alphabet. More formally, a param-
eterized string (p-string) consists of characters from both a static alphabet Σ
and a parameterized alphabet Π. Two p-strings of the same length are said to
parameterized match (p-match) if one string can be transformed into the other
by using a bijection on Σ ∪ Π, with the restriction that the bijection must be
the identity on the static characters of Σ. In other words, the bijection maps
any a ∈ Σ to a itself, while symbols in Π can be interchanged with a bijection.
For example, let Π = {a, b, c}, Σ = {X,Y,Z}, r =bcbXbcZ, s =abaXabY and
t =bcbXbcY. We can say that p-strings s and t p-match each other, while r and
s do not p-match. Parameterized pattern matching has many applications.

An optimal algorithm for parameterized pattern matching appeared in [4]. In
this problem the pattern and the text are given as input and one seeks to report
all parameterized occurrences. Approximate parameterized pattern matching was
investigated in [7,9,17]. Idury and Schäffer [18] considered matching of multiple
parameterized patterns.

Parameterized matching has proven useful in other contexts as well. An inter-
esting problem is searching for color images (e.g. [3,8,20]). Assume, for example,
that we are seeking a given icon in any possible color map. If the colors were
fixed, then this is exact two-dimensional pattern matching [2]. However, if the
color map is different, the exact matching algorithm would not find the pat-
tern. Parameterized two-dimensional search is precisely what is needed. If, in
addition, one is also willing to lose resolution, then a two dimensional function
matching search should be used, where the renaming function is not necessarily
a bijection [1].

Parameterized matching can be solved in linear time, when a constant-sized
alphabet is considered [4]. Baker [9] showed that a parameterized suffix tree
can be constructed in linear time for a text over a constant-sized alphabet. Lee
et al. [19] showed that it can be constructed online in randomized linear time
for unbounded alphabets, where online means that extensions by letters are
supported, which then cost constant amortized time. Later, it was shown how
to support extension of letters in worst case time per each extension [5]. This
result was then improved [6].

Baker [9] introduced the prev encoding of a p-string which maintains each
static character ∈ Σ and maps each parameterized character ∈ Π to a number,
the distance to its previous occurrence in the p-string (or 0 if it is the first
occurrence). Baker showed that two p-strings p-match iff their prev encodings
are equivalent [14]. For example, the prev encodings of both s = abaXabY and
t = bcbXbcY are 002X24Y. Thus, the parameterized matching problem amounts
to efficiently comparing the prev encodings of p-strings.

Reconstructing p-Strings from pSA and pLCP Arrays 57

In this paper we focus on the problem of reverse engineering a parameterized
suffix array along with its corresponding parameterized longest common prefix
(pLCP) array. We find a p-string whose p-suffix array and pLCP array are equal
to the given arrays of integers, if there is a suitable p-string. We develop an
algorithm that runs in O(n2) time for a p-string of size n. Reverse engineering
of standard suffix arrays has already been worked out in linear time [11,13]. It is
more challenging to derive a p-string from its p-suffix array than to derive a string
from its suffix array since fundamental properties inherent in the relationship
between strings and their substrings do not hold true for prev encodings of
p-strings and prev encodings of their suffixes. We exploit properties of prev-
encoded suffixes to derive an efficient algorithm to reconstruct a parameterized
string from its parameterized suffix array and pLCP array, or determine that
such a reconstruction is impossible.

This paper is organized as follows. We begin by formulating the problem and
presenting key definitions in Sect. 2. Then we introduce an efficient algorithm in
Sect. 3. All figures appear in the Appendix.

2 Preliminaries

Definition 1. [14] The prev encoding of a p-string x of length n is the string
prev(x) over the alphabet Σ ∪ {0, ..., n − 1} and is defined as follows:

prev(x)[i] =

⎧
⎪⎨

⎪⎩

x[i] if x[i] ∈ Σ,

0 if x[i] ∈ Π and x[i] �= x[j] for any 1 ≤ j < i,

i − j if x[i] ∈ Π, x[i] = x[j] and x[i] �= x[k] for any j < k < i.

In this paper we call each numerical value in a prev-encoded string a num-
char. The num-chars are by definition integers between 0 and n − 1.

On every two p-strings T, S, we define an order based on the prev transfor-
mation such that S < T if and only if prev(S) < prev(T). Numbers are lexico-
graphically smaller than the static letters, i.e., n < σ for any n ∈ {0}∪N, σ ∈ Σ.

Definition 2. [14] The Parameterized Suffix Array (pSA) of a p-string S of
length n is an array pSA[1 . . . n] of integers such that pSA[i] = j if and only if
prev(S[j . . . n]) is the ith lexicographically smallest string in {prev(S[i . . . n])|i =
1, . . . , n}.
Definition 3. A p-suffix of a p-string S is the prev-encoding of the correspond-
ing suffix. For 1 ≤ i ≤ n, p-suffix pi = prev(S[i . . . n]).

Definition 4. The Parameterized LCP (pLCP) Array of a p-string S of length
n is an array pLCP [1 . . . n − 1] of integers such that pLCP [i], for any i ∈
{1, . . . , n − 1} is the longest common prefix between prev(S[pSA[i] . . . n]) and
prev(S[pSA[i + 1] . . . n]).

58 A. Amir et al.

Deguchi et al. [12] introduced the parameterized suffix array (pSA). Fujisato
et. al. [14] developed the first linear time algorithm that directly computes the
parameterized suffix and LCP arrays. For a string over static alphabet Σ and
parameterized alphabet Π, the algorithm runs in O(nπ) time and O(n) words
of space, where π is the number of distinct symbols of Π in the string. (This
is worst-case linear time when when there are a constant number of distinct
parameterized symbols in the string.)

A suffix array lists the suffixes of a string in lexicographic sorted order. With
standard strings, a substring is identical whether it occurs as a prefix, as a suffix,
or as a stand-alone string. However, this equivalence does not hold for the prev
encodings of p-strings. A substring of a prev encoding can be different than the
prev encoding of the corresponding substring. The prev encoding is dependent on
the context of a substring within a larger string. For example, consider the sub-
string bba that occurs within abba. The long string abba has prev encoding 0013
and the substring bba has prev encoding 010. Even though bba is a substring
of abba, 010 does not occur within 0013. Hence, algorithms for reconstructing
standard strings from their suffix arrays do not readily extend to reconstructing
parameterized strings from their p-suffix arrays. In this paper, the input pSA is
augmented with its pLCP array which provides valuable information that our
algorithm exploits.

It is interesting to note that the strings abba and abbc do not p-match, have
different prev encodings, yet they share the same p-suffix array of {4, 3, 1, 2} and
pLCP array of {1, 2, 1}.

It is also interesting to observe that when a < b and c < d, the strings abaab
and dcddc have the same p-suffix arrays, yet different suffix arrays. However, the
strings abaab and cdccd have both the same suffix arrays and p-suffix arrays.

The following lemma demonstrates that the static characters can be handled
with no additional cost. Thus, in the rest of the paper we focus on p-strings that
consist of only parameterized characters and no static characters.

Lemma 1. Let Π,Σ be the parameterized and static alphabets, respectively.
Assume A,P are the input under Π ∪ Σ. Then, there exist A′, P ′ such that
A′, P ′ are p-suffix array, and pLCP array under Π if and only if A,P are the
p-suffix array, and pLCP array under Π ∪ Σ.

Proof. The proof will appear in the journal version. ��

3 Algorithm

Input: A pSA, A, of size n (a permutation of the numbers 1 through n) and a
pLCP array, P , of size n.
Output: Does there exist a parameterized string S of size n such that A is its
pSA and P is its pLCP array? If yes, construct such a parameterized string S.

The straightforward approach to solving this problem would be to attempt
to reconstruct the p-string S directly from the pSA and pLCP arrays. Some
characters would be trivial, such as those that are part of single character runs.

Reconstructing p-Strings from pSA and pLCP Arrays 59

However, there are many decision points that will have a choice of characters,
possibly the size of the alphabet. Once a decision is made, it is often necessary
to backtrack later in the string, resulting in an algorithm that has exponential
time complexity.

Our algorithm actually builds the prev-encoding of each suffix (i.e. each p-
suffix) exploiting the data given in the pSA and pLCP arrays and then derives
a p-string S from its list of p-suffixes. We are essentially reconstructing the
underlying data structure which has size O(n2) and our algorithm accomplishes
this in time and space O(n2). In some cases, there are inherent contradictions
between the pSA and pLCP arrays and this always becomes apparent when
attempting to build the p-suffixes. Thus, we conclude that the input is invalid
when a state of contradiction is detected. In case we miss any contradictions
along the way, we verify that the p-string we construct actually corresponds to
the input pSA and pLCP array.

We discern in the Central Observation (Observation 1) that it is not necessary
to reconstruct each p-suffix in its entirety in order to reconstruct S.

Observation 1 (Central Observation). Any num-char in a p-suffix that is
never compared to another num-char in a different p-suffix during the sort that
generates a p-suffix array has no effect on the sorting of p-suffixes.

We define two tables that the algorithm uses to reconstruct the p-suffixes.
Both tables store the list of p-suffixes, however, one is left aligned, and one is
right aligned, hence we call them the Left-Table and the Right-Table. The Left-
Table imposes the constraints of the pSA and pLCP arrays and the Right-Table
enforces consistency among the p-suffixes.

Left-Table: This table stores the truncated p-suffixes in the order of the
given pSA. Formally, let pSA[h] = i, 1 ≤ h ≤ n. Then row h of this table
corresponds to a prefix of pi. Since the p-suffixes are left-aligned, column c
corresponds to location c in each p-suffix.

Right-Table: This table stores the truncated p-suffixes in reverse order of
the original string S, that is, from p-suffix of length 1 to length n, with row i
corresponding to the p-suffix beginning at S[n − i + 1]. The table is filled in a
way that would result in the complete p-suffixes being right aligned, resulting in
a lower right triangle in an n × n array with zeros on the diagonal. Column c in
this table corresponds to position c in S, across all p-suffixes. Column c begins
in row c, for 1 ≤ c ≤ n.

Algorithm Outline

1. Fill in the Left-Table.
2. Resolve mismatch following pLCPs.
3. Fill in the Right-Table.
4. Reconstruct p-string.
5. Verify Output.

To reconstruct the p-suffixes, we begin by following the order of the pSA. The
combination of the pSA and pLCP arrays guide us in identifying the prefixes

60 A. Amir et al.

of p-suffixes that are identical, along with the position of mismatch at which
they diverge and the sorted order of the num-chars at the position of divergence.
Then we put the prefixes of p-suffixes in the positional order in which they occur,
corresponding to their positions of origin within the p-string. This way we can
line up the corresponding positions in the different p-suffixes to ensure that we
generate prev-encodings that are consistent with one another. It is sufficient for
us to produce the prefixes of the p-suffixes that are used to establish the order
of the p-suffix array. As we go along, we use both the sorting constraints and
the rules of prev-encodings to resolve the unknown num-chars in the p-suffixes.

Our algorithm proceeds through all the steps sequentially unless it arrives at
a state of contradiction. A contradiction can be expressed as either being forced
to use two different num-chars at the same location in a p-suffix, or being forced
to arrive at a p-suffix that is not a valid prev-encoding, or if the original pSA
is not in fact the sorted order of the p-suffixes we construct, when adhering to
the structure imposed by the p-suffix and pLCP arrays. If any of these scenarios
occur, we conclude that it is not possible to reconstruct S.

We describe some of the key properties of the p-suffixes in Lemma 2 and
properties of the pLCP array in Lemma 3 that are intuited by our algorithm.
Then in the following subsections we detail the steps of the algorithm.

Lemma 2. Let S be a p-string of length n over parameterized alphabet Π. The
p-suffixes pi, 1 ≤ i ≤ n, of S have the following properties:

1. Every p-suffix begins with 0. Furthermore, every p-suffix begins with either 00
or 01 (except the shortest p-suffix which is simply 0).

2. Let zi be the the number of zeros that occur in p-suffix pi, 1 ≤ i ≤ n. zi ≤ |Π|
and zi ≥ zi+1. More specifically, either zi = zi+1 or zi = zi+1 + 1

Proof. The proof will appear in the journal version. ��
Lemma 3. Let S be a p-string of length n over parameterized alphabet Π with
a p-suffix array and pLCP array. The pLCP array has the following properties:

1. pLCP [i] ≥ 1, for all 1 ≤ i < n. In addition, pLCP [1] = 1.
2. There exists at most one 1 < i < n such that pLCP [i] = 1. All p-suffixes pj

such that pSA[h] = j and h ≤ i begin with 00 and all p-suffixes pk such that
pSA[g] = k and g > i begin with 01.

Proof. The proof will appear in the journal version. ��
If the properties of Lemma 3 do not occur in the input, we conclude that the

input is not reconstructable. Similarly, our algorithm halts if the input pSA is
not a permutation of the numbers 1 through n.

3.1 Step 1: Left-Table

Our reconstruction process begins by following the order of the pSA to fill in
the Left-Table. Lemma 4 and Corollary 1 demonstrate that it is sufficient for
our algorithm to consider a specific prefix of each p-suffix pi, 1 ≤ i ≤ n. We can
truncate each p-suffix after this point.

Reconstructing p-Strings from pSA and pLCP Arrays 61

Lemma 4 (Unique substring). Let α be a substring of the input string S
that has a unique prev-encoding prev-α over all substrings of length |α|. The
parameterized characters in S following α are not related to those preceding α
for the construction of the p-suffix array.

Proof. The proof will appear in the journal version. ��
Corollary 1. The pLCP array indicates the interesting num-chars in the p-
suffixes. For each p-suffix, it is sufficient to reconstruct the positions up to and
including the mismatch at the end of the pLCP with both of its neighbors in the
p-suffix array.

For 1 ≤ i ≤ n, suppose i = pSA[h], j = pSA[h + 1], and k = pSA[h − 1]. Let
mi = max{pLCP (pi, pj), pLCP (pk, pi)}, i.e., the larger pLCP between pi and
its neighboring p-suffixes in the pSA. We work with the entire pi if at least one of
the pLCPs is as long as pi, i.e., mi = n − i + 1. Otherwise, when mi < n − i + 1,
we truncate pi at the position of mismatch following mi since the num-chars
past that point are irrelevant to the reconstruction of S. From here on, when
we refer to a p-suffix pi, 1 ≤ i ≤ n, we are referring to the truncated p-suffix of
length di = min(n− i+1,mi +1) that we reconstruct in our algorithm. Lemma
4 and Corollary 1 show that this is sufficient.

We fill each row of the Left-Table with the first di num-chars in each p-suffix
pi. The pSA and pLCP arrays are a roadmap for reconstructing the p-suffixes
since they express both the necessary similarity and dissimilarity that need to
be incorporated in the p-suffixes. We use the actual num-chars when we know
them and use upper-case letters as placeholders for num-chars that are as of yet
unknown and need to be resolved as our algorithm proceeds. We know that each
p-suffix begins with either 00 or 01, by Lemma 2. We know from Lemma 3 that
in the sorted set of p-suffixes, the pLCP of 1 serves as a demarcation between
the subset of p-suffixes beginning with 00 and the subset of p-suffixes beginning
with 01. Thus, we go down the sorted list of p-suffixes in the Left-Table and fill
in the first two num-chars; in the first subset we use 00 and in the second subset
we use 01 (and the shortest p-suffix is simply a 0).

After filling in the first two num-chars of each p-suffix, we go down the
Left-Table and copy num-chars based on the pLCPs between adjacent p-suffix
array entries. We use identical placeholders for unknown num-chars that need to
conform, occurring within a pLCP. In the case that a pLCP extends to the end
of one of the p-suffixes it relates to, we do not need to identify the num-char at
the position of mismatch in the longer p-suffix. On the other hand, when a pLCP
does not extend to the end of either p-suffix in which it occurs, we compute the
num-chars at the point of divergence in the next stage of the algorithm.

Consider the left side of Fig. 1 which depicts a set of input pSA and pLCP
arrays alongside its Left-Table with the unknown placeholders representing mis-
match following the pLCPs rendered in red. We have pLCP (p5, p11) = 4 and
we know that both p5 and p11 begin with 00. We record p5 as 00ABC and p11
as 00ABD. In the next step we will use Algorithm 1 to compute the values of
C and D. On the other hand, even though pLCP (p13, p3) = 4, we record them

62 A. Amir et al.

both as 00PQ and do not incorporate an unknown mismatch num-char at the
end of the pLCP, since p13 ends after these 4 num-chars.

3.2 Step 2: Reconstruct Point of Mismatch

In this section we present a deterministic method of computing each num-char
at the point of mismatch following a pLCP. Algorithm 1 will identify each of
these unknown num-chars unless there is an inconsistency in the pSA and pLCP
arrays, in which case the algorithm will exit with failure.

Figure 1 shows a Left-Table before and after this step of the algorithm deploys
Algorithm 1 to resolve the mismatches at the end of pLCPs to their values. The
unknown placeholders that are resolved in this step appear in red. The figure
depicts the placeholders in red on the left side and their corresponding values in
red on the right side.

The pLCP array provides pLCPs of p-suffixes that are adjacent to one
another in the pSA. With linear time preprocessing, we can use RMQ [15,16] in
the pLCP array to obtain the pLCP between any two p-suffixes in O(1) time.
Then we go through each pair of p-suffixes pi and pj that are adjacent in the
pSA, and we use Algorithm 1 to recover the mismatch following each pLCP, i.e.,
pi[lcp(pi, pj) + 1] and pj [lcp(pi, pj) + 1], when the pLCP does not span either
complete p-suffix.

To recover the unknown num-char at the position of mismatch, the algo-
rithm examines what happens to the pLCP and the sorted order as we eliminate
one num-char at a time at the start of both p-suffixes. A way of deducing the
unknown num-char is by removing the first num-char from both p-suffixes and
seeing if this affects their sorted order. Generally, as we move along and remove
the initial num-char from p-suffixes that share a pLCP, either the p-suffixes
remain unchanged or they are both modified in the same way. However, when
we remove a position that only one of them points to, that p-suffix has an addi-
tional 0. The first position at which this can occur is the position of mismatch
at the end of the pLCPs.

Suppose the position of mismatch following the pLCP of pi and pj is a num-
char Γ > 0, i.e., pi[lcp(pi, pj)+1] = Γ or pj [lcp(pi, pj)+1] = Γ . After lcp(pi, pj)
iterations, the Γ will surely change to 0. We will uncover the missing value in the
larger p-suffix before the smaller since a larger value will fall off more quickly,
as it refers to an earlier position in the p-suffix.

As we move along and remove one position at a time from the beginning of
the p-suffix, the pLCP either ends in the same place or grows (to one position
further). If the pLCP continues to end at the same position, it is of interest
if the sorted order changes. The inversion of the sorted order indicates that
the larger value has become 0, and the smaller value remains non-zero. If the
modified pLCP extends one position further, this indicates that the positions of
mismatch have now both become 0.

In the algorithm, there are two cases. Either one of the values at the position
of mismatch resolves to zero or they both resolve to non-zero values. In the
former case, in which one of the values is 0, we discover the non-zero value

Reconstructing p-Strings from pSA and pLCP Arrays 63

once the pLCP grows, which indicates that the position of mismatch in both
p-suffixes contains only zeros. In the latter case, in which both unknown num-
chars are non-zero, the sorted order will change once we have lost the position
that the larger value refers to. Then the smaller value is uncovered when we get
to the state that both p-suffixes contain only zeros at the position of mismatch,
resembling the first case. The sorted order will change only at the points that
we discover a value and a non-zero num-char changes to 0 at the position of
interest.

As we iterate through shrinking p-suffixes, the algorithm halts if it recognizes
a contradiction in the input pSA and/or pLCP arrays. If the pLCP shrinks to
end at an earlier position than it had previously, the algorithm halts since it has
arrived at an impossible state.

Algorithm 1. Resolve unknown characters representing mismatch at end of
pLCP

Input: i, j such that pi and pj are adjacent suffixes in the pSA, i.e. j = pSA[h],
i = pSA[h+1], where 1 ≤ h < n, and lcp(pi, pj) < n−i+1 and lcp(pi, pj) < n−j+1.
Output: Recover pi[lcp(pi, pj) + 1] and pj [lcp(pi, pj) + 1].
� ← lcp(pi, pj)
pj [� + 1] ← 0
for k ← 1 to lcp(pi, pj) do � go through all lengths possible

�′ ← lcp(pi+k, pj+k)
r′ ← order(pi+k, pj+k)
r′′ ← order(pi+k−1, pj+k−1)

if � − k < �′ then
� The larger suffix with respect to the order r′′ must have � − k + 1 at

position � + 1.
if r′′ = −1 then � pi+k−1 > pj+k−1

pi[� + 1] ← � − k + 1
else � pi+k−1 < pj+k−1

pj [� + 1] ← � − k + 1
end if
Break

else if � − k = �′ then
if r′ �= r′′ then

� Larger suffix with respect to orig order r′′ has �−k +1 at position �+1.
pi[� + 1] ← � − k + 1

end if
else

Halt � Contradiction
end if

end for

We refer to Fig. 1 for several examples. First we look at an example that
does not need to go through all possible values of k. We look at the computation

64 A. Amir et al.

of Q and R, which begins by considering � = pLCP (p3, p9) = 3. We initialize
p3[4] = 0. Then, when k = 1 we consider �′ = pLCP (p4, p10) = 5. Since � − k =
2 < �′ = 5, the algorithm terminates after the first iteration and sets p9[4] = 3.
Thus, we obtain Q = 0 and R = 3.

Now we go through an example in which one mismatch num-char is 0 and
the other is non-zero. We look at the computation of C and D, which begins
by setting � = pLCP (p5, p11) = 4. We initialize p5[5] = 0. When k = 1, �′ =
pLCP (p6, p12) = 3. � − k = 3 = �′ and the order remains the same so we move
on. When k = 2, �′ = pLCP (p7, p13) = 2. � − k = 2 = �′ and the order remains
the same so we move on. When k = 3, �′ = pLCP (p8, p14) = 1 and the order
remains the same so we move on to the last possible iteration. When k = 4,
�′ = pLCP (p9, p15) = 2. �−k = 0 < �′ = 2 so we set p11[5] = 1. Thus, we obtain
C = 0 and D = 1.

Now we look at an example in which both mismatch num-chars are non-
zero. We consider the computation of D and E, which begins by setting � =
pLCP (p11, p6) = 4. When k = 1, �′ = pLCP (p12, p7) = 3. �−k = 3 = �′ and the
order remains the same so we move on. When k = 2, �′ = pLCP (p13, p8) = 2.
� − k = 2 = �′ and the order has switched, so we set p6[5] = 3. We move on to
k = 3, in which �′ = pLCP (p14, p9) = 1. � − k = 1 = �′ so we move on. When
k = 4, �′ = pLCP (p15, p10) = 1. � − k = 0 < �′ = 1 so we set p11[5] = 1. Thus,
we obtain D = 1 and E = 3.

Lemma 5 (Algorithm 1 Correctness). For any i, j such that pi and pj are
adjacent suffixes in the pSA, and both pi and pj end at least one position after
the end of their pLCP, Algorithm 1 recovers the characters pi[lcp(pi, pj) + 1]
and pj [lcp(pi, pj) + 1].

Proof. The proof will appear in the journal version ��
Lemma 6 (Algorithm 1 Time). For specific i, j ∈ [1, n], Algorithm 1 runs in
O(n) time.

Proof. The proof will appear in the journal version. ��
At most, we run Algorithm 1 for all n − 1 pairs of integers i, j such that p-

suffixes pi and pj are adjacent in the pSA. This brings the total time for running
Algorithm 1 to O(n2).

For each num-char Δ that has been resolved with Algorithm 1, we update
any other occurrences of Δ in the other p-suffixes to enforce consistency among
the LCPs.

3.3 Step 3: Right-Table

Once the Left-Table is complete, and we have resolved the unknown placeholders
that occur where the pLCPs diverge, we shift our focus to the the Right-Table
to enforce positional consistency among the p-suffixes. We copy the p-suffixes of
the Left-Table into their corresponding positions in the Right-Table, maintaining

Reconstructing p-Strings from pSA and pLCP Arrays 65

all the unknowns as placeholders. Then we resolve the remaining unknowns
to num-chars that they can possibly represent, so that we can reconstruct an
underlying p-string, or determine that there is a contradiction that prevents the
reconstruction from succeeding.

We demonstrate in Lemma 7 that each column of the Right Table follows a
predictable structure.

Lemma 7. (Property of Right-Table Columns) Consider column 1 ≤ c ≤ n in
the Right-Table. Column c begins with a 0 in row c. If column c contains a num-
char μ > 0, then all entries on rows c ≤ r < c + μ are 0 and all entries on rows
c + μ ≤ r ≤ n are μ.

Proof. The proof will appear in the journal version. ��
The following implicit constraints form a system of rules we must follow to

correctly resolve the remaining unknown placeholders in the p-suffixes. If we
need to violate any of the constraints, we are in a state of contradiction and
halt.

1. Consistency: Ensure we consistently replace all occurrences of an unknown
num-char, to enforce the pLCPs.

2. Column: Make sure each column of the Right-Table is valid, i.e., each column
adheres to the Property of Right-Table Columns (Lemma 7).

3. Row: Make sure each row of the Right-Table forms a valid prev-encoded p-
suffix. In other words, each p-suffix must consist of several linked lists that
all begin with the num-char 0.

We have already filled in the first two num-chars in each p-suffix. Based
on the Property of Right-Table Columns (Lemma 7), we can determine which
unknowns resolve to 1. Any 1’s in the Right-Table will appear in columns that
begin with a 0 followed by a 1 and we can propagate these 1’s down the columns
in which they appear. In a similar way we can complete the columns of the
Right-Table that contain a non-zero value computed by Algorithm 1.

Now we can arbitrarily assign values to the remaining unknowns so long as
they match other copies of themselves, are consistent with other p-suffixes that
span the same position, and each p-suffix is a valid prev-encoding. To satisfy the
implicit constraints while keeping the algorithm simple, we will set all remaining
unknowns to the num-char 0.

If we have succeeded this far in the reconstruction process, we can answer in
the affirmative that yes there is a p-string S that corresponds to the input pSA
A and pLCP array P .

The left side of Fig. 2 shows how we set up the Right-Table corresponding
to the Left-Table of Fig. 1. First we copy each p-suffix from the Left-Table into
its appropriate row in the Right-Table. Then we resolve the remaining unknown
placeholders that can be determined from context within their columns using
the Property of Right-Table Columns. In this way, S is set to 0 since 0 occurs
below it (in both instances) and L is set to 1 since 1 appears above it (in both

66 A. Amir et al.

instances). Then we remain with only two unknown placeholders, T and U . Since
their values cannot be determined from their context within their columns, we
will set them to 0. The updated Right-Table is portrayed on the right side of
Fig. 2.

3.4 Step 4 Reconstruct P-String

It is straightforward to reconstruct a p-string from left to right following the
p-suffixes in the Right-Table. S[i] corresponds to column i in the Right-Table,
1 ≤ i ≤ n. We begin by choosing any character for S[1] since column 1 contains a
single 0. Then we use the following rule to insert a character for each subsequent
S[i], 2 ≤ i ≤ n. If column i contains a num-char μ greater than 0, we set S[i]
to the character in S[i − μ]. Otherwise, a column of only zeros indicates a new
character for the p-suffixes that span this column in the Right-Table. In this
case, we can choose any character that has not appeared yet in the lowest suffix
in this column. That is, if column i spans p-suffixes k . . . k + a, we set S[i] to be
any character that does not occur in the reconstructed S[k . . . i − 1]. The right
side of Fig. 2 shows a complete Right-Table along with two possible p-strings
that can be reconstructed for it.

3.5 Step 5 Verify Output

The last step of our algorithm is to construct the pSA and pLCP arrays that
correspond to the p-string we construct and verify that they are the same as the
input. If these pSA and pLCP arrays do not match, we conclude that the input
is not reconstructable. There can only be discrepancies between these pSA and
pLCP arrays in the case that there are inherent contradictions in the input that
prevent us from correctly constructing a p-string for the input.

3.6 Proofs of Correctness and Efficiency

Lemma 8. If the given pSA and pLCP arrays are reconstructable then we can
construct a Right-Table.

Proof. The proof will appear in the journal version. ��
Lemma 9. Our algorithm correctly decides whether the input pSA and pLCP
arrays are reconstructable.

Proof. The proof will appear in the journal version. ��
Lemma 10. In O(n) time we can reconstruct a possible p-string S of length n
or determine that it is impossible to construct a p-string for the given pSA and
pLCP arrays.

Proof. The proof will appear in the journal version. ��
We implemented the algorithm on all possible pSA and pLCP arrays of length
up to 12 and verified that our algorithm gave the correct output each time. We
have ideas on how to speed up the algorithm to O(n log n) time and also how
to modify the algorithm to output the p-string with minimal alphabet size. The
details will appear in the journal version of this paper.

Reconstructing p-Strings from pSA and pLCP Arrays 67

A Appendix

Fig. 1. (left) The input p-suffix and pLCP arrays. (center) The Left-Table is con-
structed with unknown placeholders representing mismatch at the end of the pLCPs
depicted in red. (right) The Left-Table after using Algorithm 1 to resolve the unknowns
in red and updating other occurrences of the same unknowns, to maintain consistency.
(Color figure online)

Fig. 2. (left) We initially fill the Right-Table by copying p-suffixes from the Left-
Table into their places in the Right-Table. The unknown placeholders we are able to
resolve from context within their columns are shown in yellow. The remaining unknown
placeholders are colored orange. (right) The completed Right-Table and two different
possible p-strings corresponding to it. (Color figure online)

68 A. Amir et al.

References

1. Amir, A., Aumann, A., Lewenstein, M., Porat, E.: Function matching. SIAM J.
Comput. 35(5), 1007–1022 (2006)

2. Amir, A., Benson, G., Farach, M.: An alphabet independent approach to two
dimensional pattern matching. SIAM J. Comp. 23(2), 313–323 (1994)

3. Amir, A., Church, K.W., Dar, E.: Separable attributes: a technique for solving the
submatrices character count problem. In: Proceedings 13th ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 400–401 (2002)

4. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Inf. Process. Lett. 49(3), 111–115 (1994). https://doi.org/10.1016/0020-
0190(94)90086-8

5. Amir, A., Kondratovsky, E.: Sufficient conditions for efficient indexing under dif-
ferent matchings. In: Pisanti, N., Pissis, S.P. (eds.) 30th Annual Symposium on
Combinatorial Pattern Matching, CPM 2019, 18–20 June 2019, Pisa, Italy. LIPIcs,
vol. 128, pp. 6:1–6:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019).
https://doi.org/10.4230/LIPIcs.CPM.2019.6

6. Amir, A., Kondratovsky, E.: Towards a real time algorithm for parameterized
longest common prefix computation. Theor. Comput. Sci. 852, 132–137 (2021).
https://doi.org/10.1016/j.tcs.2020.11.023

7. Apostolico, A., Erdös, P.L., Lewenstein, M.: Parameterized matching with mis-
matches. J. Discrete Algorithms 5(1), 135–140 (2007). https://doi.org/10.1016/j.
jda.2006.03.014

8. Babu, G., Mehtre, B., Kankanhalli, M.: Color indexing for efficient image retrieval.
Multimedia Tools Appl. 1(4), 327–348 (1995)

9. Baker, B.S.: Parameterized pattern matching: algorithms and applications. J. Com-
put. Syst. Sci. 52(1), 28–42 (1996). https://doi.org/10.1006/jcss.1996.0003

10. Baker, B.S.: Parameterized duplication in strings: algorithms and an application
to software maintenance. SIAM J. Comput. 26(5), 1343–1362 (1997). https://doi.
org/10.1137/S0097539793246707

11. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M.: Inferring strings from graphs
and arrays. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 208–
217. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45138-9 15

12. Deguchi, S., Higashijima, F., Bannai, H., Inenaga, S., Takeda, M.: Parameterized
suffix arrays for binary strings. In: Holub, J., Zdárek, J. (eds.) Proceedings of the
Prague Stringology Conference 2008, Prague, Czech Republic, 1–3 September 2008,
pp. 84–94. Prague Stringology Club, Department of Computer Science and Engi-
neering, Faculty of Electrical Engineering, Czech Technical University in Prague
(2008). http://www.stringology.org/event/2008/p08.html

13. Duval, J., Lefebvre, A.: Words over an ordered alphabet and suffix permutations.
RAIRO Theor. Inform. Appl. 36(3), 249–259 (2002). https://doi.org/10.1051/ita:
2002012

14. Fujisato, N., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Direct linear
time construction of parameterized suffix and LCP arrays for constant alphabets.
In: Brisaboa, N.R., Puglisi, S.J. (eds.) SPIRE 2019. LNCS, vol. 11811, pp. 382–391.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32686-9 27

15. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geom-
etry problems. In: DeMillo, R.A. (ed.) Proceedings of the 16th Annual ACM Sym-
posium on Theory of Computing, April 30 - May 2 1984, Washington, DC, USA,
pp. 135–143. ACM (1984). https://doi.org/10.1145/800057.808675

https://doi.org/10.1016/0020-0190(94)90086-8
https://doi.org/10.1016/0020-0190(94)90086-8
https://doi.org/10.4230/LIPIcs.CPM.2019.6
https://doi.org/10.1016/j.tcs.2020.11.023
https://doi.org/10.1016/j.jda.2006.03.014
https://doi.org/10.1016/j.jda.2006.03.014
https://doi.org/10.1006/jcss.1996.0003
https://doi.org/10.1137/S0097539793246707
https://doi.org/10.1137/S0097539793246707
https://doi.org/10.1007/978-3-540-45138-9_15
http://www.stringology.org/event/2008/p08.html
https://doi.org/10.1051/ita:2002012
https://doi.org/10.1051/ita:2002012
https://doi.org/10.1007/978-3-030-32686-9_27
https://doi.org/10.1145/800057.808675

Reconstructing p-Strings from pSA and pLCP Arrays 69

16. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2), 338–355 (1984). https://doi.org/10.1137/0213024

17. Hazay, C., Lewenstein, M., Sokol, D.: Approximate parameterized matching. In:
Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 414–425. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30140-0 38

18. Idury, R.M., Schäffer, A.A.: Multiple matching of parameterized patterns. In:
Crochemore, M., Gusfield, D. (eds.) CPM 1994. LNCS, vol. 807, pp. 226–239.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58094-8 20

19. Lee, T., Na, J.C., Park, K.: On-line construction of parameterized suffix trees. In:
Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 31–38.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03784-9 4

20. Swain, M., Ballard, D.: Color indexing. Int. J. Comput. Vision 7(1), 11–32 (1991)

https://doi.org/10.1137/0213024
https://doi.org/10.1007/978-3-540-30140-0_38
https://doi.org/10.1007/3-540-58094-8_20
https://doi.org/10.1007/978-3-642-03784-9_4

Computing the Parameterized
Burrows–Wheeler Transform Online

Daiki Hashimoto1, Diptarama Hendrian1(B) , Dominik Köppl2 ,
Ryo Yoshinaka1 , and Ayumi Shinohara1

1 Tohoku University, Sendai, Japan
daiki_hashimoto@shino.ecei.tohoku.ac.jp,

{diptarama,ryoshinaka,ayumis}@tohoku.ac.jp
2 TMDU, Tokyo, Japan
koeppl.dsc@tmd.ac.jp

https://www.iss.is.tohoku.ac.jp, https://dkppl.de

Abstract. Parameterized strings are a generalization of strings in that
their characters are drawn from two different alphabets, where one is
considered to be the alphabet of static characters and the other to be
the alphabet of parameter characters. Two parameterized strings are a
parameterized match if there is a bijection over all characters such that
the bijection transforms one string to the other while keeping the static
characters (i.e., it behaves as the identity on the static alphabet). Gan-
guly et al. [SODA 2017] proposed the parameterized Burrows–Wheeler
transform (pBWT) as a variant of the Burrows–Wheeler transform for
space-efficient parameterized pattern matching. In this paper, we propose
an algorithm for computing the pBWT online by reading the characters
of a given input string one-by-one from right to left. Our algorithm works
in O(|Π| log n/ log log n) amortized time for each input character, where
n and Π denote the size of the input string and the alphabet of the
parameter characters, respectively.

Keywords: Burrows–Wheeler transform · Parameterized string ·
Online algorithm

1 Introduction

The parameterized matching problem (p-matching problem) [2] is a generalization
of the classic pattern matching problem in the sense that we here consider two
disjoint alphabets, the set Σ of static characters and the set Π of parameter
characters. We call a string over Σ ∪ Π a parameterized string (p-string). Two
equal-length p-strings X and Y are said to parameterized match (p-match) if
there is a bijection that renames the parameter characters in X so X becomes
equal to Y . The p-matching problem is, given a text p-string T and pattern
p-string P , to output the positions of all substrings of T that p-match P . The p-
matching problem is motivated by applications in the software maintenance [1,2],
the plagiarism detection [5], the analysis of gene structures [17], and so on. There
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 70–85, 2022.
https://doi.org/10.1007/978-3-031-20643-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_6&domain=pdf
http://orcid.org/0000-0002-8168-7312
http://orcid.org/0000-0002-8721-4444
http://orcid.org/0000-0002-5175-465X
http://orcid.org/0000-0002-4978-8316
https://doi.org/10.1007/978-3-031-20643-6_6

Computing the Parameterized Burrows–Wheeler Transform Online 71

exist indexing structures that support p-matching, such as parameterized suffix
trees [1,17], parameterized suffix arrays [7,10], and so on [4,6,13,14]; see also [12]
for a survey. A drawback of these indexing structures is that they have high space
requirements.

A more space-efficient indexing structure, the parameterized Burrows–
Wheeler transform (pBWT), was proposed by Ganguly et al. [8]. The pBWT
is a variant of the Burrows–Wheeler transform (BWT) [3] that can be used as
an indexing structure for p-matching using only o(n log n) bits of space. Later
on, Kim and Cho [11] improved this indexing structure by changing the encod-
ing of p-strings used for defining the pBWT. Recently, Ganguly et al. [9] aug-
mented this index with capabilities of a suffix tree while keeping the space within
o(n log n) bits. However, as far as we are aware of, none research related to the
pBWT [8,9,11,18] has discussed how to construct their pBWT-based data struc-
tures in detail. Their construction algorithms mainly rely on the parameterized
suffix tree. Given the parameterized suffix tree of a p-string T of length n, the
pBWT of T can be constructed in O(n log(|Σ| + |Π|)) time offline.

In this paper, we propose an algorithm for constructing pBWTs and related
data structures used for indexing structures of p-matching. Our algorithm con-
structs the data structures directly in an online manner by reading the input
text from right to left. The algorithm uses the dynamic array data structures
of Navarro and Nekrich [15] to maintain our growing arrays. For each charac-
ter read, our algorithm takes O(|Π| log n/ log log n) amortized time, where n is
the size of input string. Therefore, we can compute pBWT of a p-string T of
length n in O(n|Π| log n/ log log n) time in total. In comparison, computing the
standard BWT on a string T (i.e., the pBWT on a string having no parame-
ter characters) can be done in O(n log n/ log log n) time with the dynamic array
data structures [15] (see [16] for a description of this online algorithm). Looking
at our time complexity, the factor |Π| also appears in the time complexity of an
offline construction algorithm of parameterized suffix arrays [7] as O(n|Π|) and
a right-to-left online construction algorithm of parameterized suffix trees [13] as
O(n|Π| log(|Π| + |Σ|)). This suggests it would be rather hard to improve the
time complexity of the online construction of pBWT to be independent of |Π|.

2 Preliminaries

We denote the set of nonnegative integers by N and let N+ = N \ {0} and
N∞ = N+ ∪ {∞}. The set of strings over an alphabet A is denoted by A∗. The
empty string is denoted by ε. The length of a string W ∈ A∗ is denoted by |W |.
For a subset B ⊆ A, the set of elements of B occurring in W ∈ A∗ is denoted
by B � W . We count the number of occurrences of characters of B in a string W
by |W |B . So, |W |A = |W |. When B is a singleton of b, i.e., B = {b}, we often
write |W |b instead of |W |{b}. When W is written as W = XY Z, X, Y , and Z
are called prefix, factor, and suffix of W , respectively. The i-th character of W
is denoted by W [i] for 1 ≤ i ≤ |W |. The factor of W that begins at position
i and ends at position j is W [i : j] for 1 ≤ i ≤ j ≤ |W |. For convenience, we

72 D. Hashimoto et al.

abbreviate W [1 : i] to W [: i] and W [i : |W |] to W [i :] for 1 ≤ i ≤ |W |. Let
Rot(W, 0) = W and Rot(W, i+1) = Rot(W, i)[|W |]Rot(W, i)[: |W | − 1] be the i-
th right rotation of W . Note that Rot(W, i) = Rot(W, i+ |W |). For convenience
we denote Wi = Rot(W, i). Let LeftW (a) and RightW (a) be the leftmost and
rightmost positions of a character a ∈ A in W , respectively. If a does not occur
in W , define LeftW (a) = RightW (a) = 0.

2.1 Parameterized Burrows–Wheeler Transform

Throughout this paper, we fix two disjoint ordered alphabets Σ and Π. We call
elements of Σ static characters and those of Π parameter characters. Elements of
Σ∗ and (Σ ∪Π)∗ are called static strings and parameterized strings (or p-strings
for short), respectively.

Two p-strings S and T of the same length are a parameterized match (p-
match), denoted by S ≈ T , if there is a bijection f on Σ ∪Π such that f(a) = a
for any a ∈ Σ and f(S[i]) = T [i] for all 1 ≤ i ≤ |T | [2]. We use Kim and Cho’s
version of p-string encoding [11], which replaces 0 in Baker’s encoding [1] by ∞.
The prev-encoding 〈T 〉 of T is the string over Σ ∪ N∞ of length |T | defined by

〈T 〉[i] =

⎧
⎪⎨

⎪⎩

T [i] if T [i] ∈ Σ,

∞ if T [i] ∈ Π and RightT [:i−1](T [i]) = 0,
i − RightT [:i−1](T [i]) if T [i] ∈ Π and RightT [:i−1](T [i]) 	= 0

for 1 ≤ i ≤ |T |. When T [i] ∈ Π, 〈T 〉[i] represents the distance between i and the
previous occurrence position of the same parameter character. If T [i] does not
occur before the position i, the distance is assumed to be ∞. We call a string
W ∈ (Σ ∪ N∞)∗ a pv-string if W = 〈T 〉 for some p-string T . For any p-strings
S and T , S ≈ T if and only if 〈S〉 = 〈T 〉 [2]. For example, given Σ = {a, b}
and Π = {u, v, x, y}, S = uvvauvb and T = xyyaxyb are a p-match by f with
f(u) = x and f(v) = y, where 〈S〉 = 〈T 〉 = ∞∞1a43b.

For defining pBWT, we use another encoding �T � given by

�T �[i] =

{
T [i] if T [i] ∈ Σ,

|Π � Tn−i[1 : LeftTn−i
(T [i])]| if T [i] ∈ Π

for 1 ≤ i ≤ |T |. When T [i] ∈ Π, �T �[i] counts the number of distinct parameter
characters in T between i and the next occurrence of T [i], if T [i] occurs after i. If i
is the rightmost occurrence position of T [i], then we continue counting parameter
characters from the left end to the right until we find T [i]. Since T [i] occurs
in Tn−i as the last character, �T �[i] cannot be zero. Note that �Rot(T, i)� =
Rot(�T �, i) by definition. It is not hard to see that for any p-strings S and T ,
S ≈ T if and only if �S� = �T � (see Proposition 1 in the appendix). For example,
the two strings S and T given above are encoded as �S� = �T � = 212a22b.

Hereafter in this section, we fix a p-string T of length n which ends with a
special static character $ which occurs nowhere else in T . We extend the linear

Computing the Parameterized Burrows–Wheeler Transform Online 73

Table 1. The pBWT pBWT (T) = LT = a33131$22aa of the example string T =
xayzzazyza$ with related arrays, where Σ = {a} and Π = {x, y, z}.

i Ti 〈Ti〉 RAT [i] LCP∞
T [i] 〈TRAT [i]〉 FT [i] �TRAT [i]� LT [i]

1 $xayzzazyza $∞a∞∞1a252a 1 0 $∞a∞∞1a252a $ $3a211a233a a

2 a$xayzzazyz a$∞a∞∞1a252 2 0 a$∞a∞∞1a252 a a$3a211a233 3

3 za$xayzzazy ∞a$∞a∞61a25 10 2 a∞∞1a252a$∞ a a211a233a$3 3

4 yza$xayzzaz ∞∞a$∞a661a2 6 0 a∞∞2a$∞a661 a a233a$3a211 1

5 zyza$xayzza ∞∞2a$∞a661a 3 1 ∞a$∞a∞61a25 3 3a$3a211a23 3

6 azyza$xayzz a∞∞2a$∞a661 7 1 ∞a2∞2a$∞a66 1 1a233a$3a21 1

7 zazyza$xayz ∞a2∞2a$∞a66 11 1 ∞a∞∞1a252a$ 3 3a211a233a$ $

8 zzazyza$xay ∞1a2∞2a$∞a6 8 1 ∞1a2∞2a$∞a6 1 11a233a$3a2 2

9 yzzazyza$xa ∞∞1a252a$∞a 4 2 ∞∞a$∞a661a2 3 33a$3a211a2 2

10 ayzzazyza$x a∞∞1a252a$∞ 9 2 ∞∞1a252a$∞a 2 211a233a$3a a

11 xayzzazyza$ ∞a∞∞1a252a$ 5 0 ∞∞2a$∞a661a 2 233a$3a211a a

order over Σ to Σ∪N∞ by letting $ < a < i < ∞ for any a ∈ Σ \{$} and i ∈ N+.
The order over N+ coincides with the usual numerical order.

The pBWT of T is defined through sorting �Tp� for p = 1, . . . , n using 〈Tp〉
as keys.

Definition 1 (Parameterized rotation array). The parameterized rotation
array RAT of T is an array of size n such that RAT [i] = p with 1 ≤ p ≤ n if and
only if 〈Tp〉 is the i-th lexicographically smallest string in { 〈Tp〉 | 1 ≤ p ≤ n }.
We denote its inverse by RA−1

T , i.e., RA−1
T [p] = i iff RAT [i] = p.

Note that RAT and RA−1
T are well-defined and bijective due to the presence

of $ in T . Here, we have RAT [i] = n − pSAT [i] + 1, where pSAT refers to the
suffix array pSA∞ in [11]. The array gives an n×n square matrix (�TRAT [i]�)ni=1,
which we call the rotation sort matrix of T , whose (i, p) entry is �TRAT [i]�[p].
The pBWT of T is formed by the characters in the last column of the matrix.

Definition 2 (pBWT [11]). The parameterized Burrows–Wheeler transform
(pBWT) of a p-string T , denoted by pBWT (T), is a string of length n such that
pBWT (T)[i] = �TRA[i]�[n].

An example pBWT can be found in Table 1. We will use LT as a synonym
of pBWT (T), since it represents the last column of the matrix (�TRAT [i]�)ni=1.
When picking up the characters from the first column, we obtain another array
FT . That is, FT [i] = �TRAT [i]�[1] for all i ∈ {1, . . . , n}. Those arrays LT and FT

are “linked” by the following mapping.

Definition 3 (LF mapping). The LF mapping LFT : {1, . . . , n} → {1, . . . , n}
for T is defined as LFT (i) = j if TRA[i]+1 = TRA[j].

By rotating Tp to the right by one, the last character moves to the first position in
Tp+1. Roughly speaking, LT [i] and FT [LFT (i)] “originate” in the same character

74 D. Hashimoto et al.

occurrence of T , which implies LT [i] = FT [LFT (i)] in particular. One can recover
�T � as �T �[p] = LT [LF−p(kT)]] for 1 ≤ p ≤ n where kT = RA−1

T [n]. LT , FT , and
LFT are used for pattern matching based on pBWT. See [11] for the details.

Our pBWT construction algorithm maintains neither RAT nor LFT , but
involves some helper data structures in addition to LT and FT . Among those,
the array LCP∞

T is worth explaining before going into the algorithmic details. For
two pv-strings X and Y , let lcp∞(X,Y) = |W |∞ be the number of ∞’s in the
longest common prefix W of X and Y . The following array counts the number
of ∞’s in the longest common prefixes of two adjacent rows in (〈T 〉RAT [i])ni=1.

Definition 4 (∞-LCP array). The ∞-LCP array LCP∞
T of T is an array of

size n such that LCP∞
T [n] = 0 and LCP∞

T [i] = lcp∞(〈TRAT [i]〉, 〈TRAT [i+1]〉) for
1 ≤ i < n.

Table 1 shows an example of a pBWT and related (conceptual) data structures.
We can compute lcp∞(〈TRAT [i]〉, 〈TRAT [j]〉) using LCP∞

T as follows.

Lemma 1. For 1 ≤ i < j ≤ n, lcp∞(〈TRAT [i]〉, 〈TRAT [j]〉) = mini≤k<j LCP
∞
T [k].

Kim and Cho [11] showed some basic relations among LT , LFT , and lcp∞.
We rephrase Lemma 3 of [11] into a form convenient for our discussions.

Lemma 2. Consider i and j with 1 ≤ i < j ≤ n and TRAT [i][n], TRAT [j][n] ∈ Π.
Then, LFT (i) < LFT (j) iff min{LT [i] − 1, lcp∞(〈TRAT [i]〉, 〈TRAT [j]〉)} < LT [j].

Corollary 1 ([11]). If i < j and LT [i] = LT [j], then LFT (i) < LFT (j).

To maintain LT , FT , and LCP∞
T dynamically, our algorithm uses the data

structure for dynamic arrays by Navarro and Nekrich [15] that supports the
following operations on an array Q of size m in O(log m

log log m) amortized time.

1. access(Q, i): returns Q[i] for 1 ≤ i ≤ m;
2. ranka(Q, i): returns |Q[: i]|a for 1 ≤ i ≤ m;
3. selecta(Q, i): returns i-th occurrence position of a for 1 ≤ i ≤ ranka(Q,m);
4. inserta(Q, i): inserts a between Q[i − 1] and Q[i] for 1 ≤ i ≤ m + 1;
5. delete(Q, i): deletes Q[i] from Q for 1 ≤ i ≤ m.

Corollary 1 implies that we can compute LFT (i) and its inverse LF−1
T (j) by

LFT (i) = selectx(FT , rankx(LT , i)) where x = LT [i],

LF−1
T (j) = selecty(LT , ranky(FT , j)) where y = FT [j].

3 Computing pBWT Online

This section introduces our algorithm computing pBWTT in an online manner
by reading a p-string T from right to left. Let T = cS for c ∈ Σ ∪ Π \ {$} and
n = |S| ≥ 1. We consider updating LS to LT . Hereafter, we assume that Σ is
known and |Σ| ≤ |T | as in [16]. Among the rows of the rotation matrices of S and
T , the rows of �S� = �Sn� and �T � = �Tn+1� play important roles when updating.
Let kS = RA−1

S [n] and kT = RA−1
T [n + 1]. We note that LS [kS] = LT [kT] = $.

First, we observe RAT is obtained from RAS just by “inserting” n+1 at kT .

Computing the Parameterized Burrows–Wheeler Transform Online 75

Algorithm 1: PBWT update algorithm
1 Function UpdateAll(c, n, L,F,Right, Left,RM,C, LCP∞)
2 k = select$(L, 1); // = kS

3 L,F,Right, Left,RM = UpdateLF(c, n, L,F,Right, Left,RM, k);
// = L◦

T ,F◦
T ,RightT , LeftT ,RM◦

T

4 L,F,C, k′ = InsertRow(n, L,F,C, k); // = LT ,FT ,CT , kT

5 foreach a ∈ Π do
6 if RM[a] ≥ k′ then RM[a] = RM[a] + 1; // = RMT [a]

7 x = UpdateLCP(L,F, LCP∞, k′); // = LCP∞
T [kT]

8 LCP∞[k′ − 1] = UpdateLCP(L,F, LCP∞, k′ − 1); // = LCP∞
T [kT − 1]

9 insertx(LCP
∞, k′);

10 return n + 1, L,F,Right, Left,RM,C, LCP∞;

Lemma 3. For 1 ≤ i ≤ n + 1,

RAT [i] =

⎧
⎪⎨

⎪⎩

RAS [i] if i < kT ,

n + 1 if i = kT ,

RAS [i − 1] if i > kT .

In the BWT, where S and T have no parameter characters, this implies that
LT [i] = TRAT [i][n + 1] = SRAS [i][n] = LS [i] for i < kT and LT [i + 1] =
TRAT [i+1][n + 1] = SRAS [i][n] = LS [i] for i > kT , except when i = kS . There-
fore, for computing LT from LS , we only need to update LS [kS] = $ to c and
to find the position kT = RA−1

T [n + 1] where $ should be inserted. However
in the pBWT, RAT [i] = RAS [i] does not necessarily imply that the values
LT [i] = �TRAT [i]�[n + 1] and LS [i] = �SRAS [i]�[n] coincide, since it is not always
true that �S� = �T �[2 :]. So we also need to update the values of the encoding.

Algorithm 1 shows our update procedure, which maintains the array F and
other auxiliary data structures in addition to L. After getting the key position
kS as the unique occurrence position of $ in LS at Line 2, to update the values
of L and F from LS and FS to LT and FT , respectively, we compute intermediate
arrays L◦

T and F◦
T of length n, which satisfy

L◦
T [i] = �TRAS [i]�[n + 1] and F◦

T [i] = �TRAS [i]�[1]

for 1 ≤ i ≤ n using UpdateLF at Line 3. In other words, L◦
T and F◦

T are extracted
from the last and the first columns of the n × (n + 1) matrix (�TRAS [i]�)ni=1,
respectively, which can conceptionally be obtained by deleting the kT -th row of
the rotation sort matrix of T . We then find the other key position kT and inserts
appropriate values into L◦

T and F◦
T at kT to turn them into LT and FT , respec-

tively, by InsertRow at Line 4. The rest of the algorithm is devoted to maintaining
some of the helper arrays. Particularly, a dedicated function UpdateLCP is used
to update the ∞-LCP array. In the remainder of this section, we will explain
those functions and involved auxiliary data structures in respective subsections.
Table 2 shows an example of our 2-step update.

76 D. Hashimoto et al.

Table 2. An example of our update step for S = xayzzazyza$ and T = yS. The
updated and inserted values are highlighted. In the arrays 〈TRAS [i]〉, updated/inserted
values appear only after $. Lemmas 3 and 8 are immediate consequences of this obser-
vation.

FS [i] 〈SRAS [i]〉 LS [i]

$ $∞a∞∞1a252a a

a a$∞a∞∞1a252 3

a a∞∞1a252a$∞ 3

a a∞∞2a$∞a661 1

3 ∞a$∞a∞61a25 3

1 ∞a2∞2a$∞a66 1

3 ∞a∞∞1a252a$ $

1 ∞1a2∞2a$∞a6 2

3 ∞∞a$∞a661a2 2

2 ∞∞1a252a$∞a a

2 ∞∞2a$∞a661a a

F◦
T [i] 〈TRAS [i]〉 L◦

T [i]

$ $∞∞a3∞1a252a a

a a$∞∞a3∞1a252 3

a a∞∞1a252a$4∞ 3

a a∞∞2a$4∞a361 1

3 ∞a$∞∞a361a25 2

1 ∞a2∞2a$4∞a36 1

3 ∞a∞∞1a252a$4 2

1 ∞1a2∞2a$4∞a3 2

2 ∞∞a$4∞a361a2 2

2 ∞∞1a252a$4∞a a

2 ∞∞2a$4∞a361a a

FT [i] 〈TRAT [i]〉 LT [i]

$ $∞∞a3∞1a252a a

a a$∞∞a3∞1a252 3

a a∞∞1a252a$4∞ 3

a a∞∞2a$4∞a361 1

3 ∞a$∞∞a361a25 2

1 ∞a2∞2a$4∞a36 1

3 ∞a∞∞1a252a$4 2

1 ∞1a2∞2a$4∞a3 2

2 ∞∞a$4∞a361a2 2

2 ∞∞a3∞1a252a$ $

2 ∞∞1a252a$4∞a a

2 ∞∞2a$4∞a361a a

3.1 Step 1: UpdateLF Computes L◦
T [i] and F◦

T [i]

When c ∈ Σ, computing L◦
T and F◦

T from LS and FS , respectively, is easy.

Lemma 4. If c ∈ Σ, then for any i ∈ {1, . . . , n}, F◦
T [i] = FS [i] and L◦

T [i] = LS [i]
except for L◦

T [kS] = c.

Concerning the case c ∈ Π, first let us express the values of �T � using �S�.

Lemma 5. Suppose c ∈ Π.

�T �[1] =

{
|Π � S| + 1 if LeftS(c) = 0,
|Π � S[1 : LeftS(c)]| otherwise.

For 1 ≤ p ≤ n, if S[p] ∈ Σ or p 	= RightS(S[p]), then �T �[p + 1] = �S�[p]. If
S[p] = a ∈ Π and p = RightS(a), then

�T �[p + 1] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|Π � S[p + 1 : n]| + 1 if a = c,

�S�[p] + 1 if LeftS(c) = 0 or
LeftS(a) < LeftS(c) ≤ RightS(c) < RightS(a),

�S�[p] otherwise.

Based on Lemmas 4 and 5, Algorithm 2 computes F◦
T [i] and L◦

T [i] from FS [i]
and LS [i], as well as other auxiliary data structures. Note that, since the inter-
mediate matrix (TRAS [i])ni=1 misses a row corresponding to �T �, the value �T �[1]
does not matter for F◦

T , whereas it appears as L◦
T [kS] = L◦

T [RA
−1
S [n]]. When

c ∈ Π, Lemma 5 implies that, other than L◦
T [kS] = �T �[1], we only need to

update the values at the positions in L and F corresponding to the rightmost

Computing the Parameterized Burrows–Wheeler Transform Online 77

Algorithm 2: Computing L◦
T and F◦

T

1 Function UpdateLF(c, n, L,F,Right, Left,RM, k)
2 if c ∈ Σ then L[k] = c;
3 else
4 foreach a ∈ Π with Left[a] �= 0 do

// Computing L◦
T [RM[a]] = F◦

T [LFS(RM[a])]
5 i = RM[a];
6 j = selectL[i](F, rankL[i](L, i)); // j = LFS(i)
7 if a = c then
8 cnt = 0;
9 foreach b ∈ Π with Left[b] �= 0 do

10 if Left[a] ≥ Right[b] then cnt = cnt + 1;
11 else
12 cnt = L[i];
13 if Left[c] = 0 or Left[a] > Left[c] ≥ Right[c] > Right[a] then
14 cnt = cnt + 1;

15 L[i] = cnt ; F[j] = cnt ;
// Computing L◦

T [kS] = �T �[1]
16 cnt = 1;
17 if Left[c] = 0 then
18 foreach a ∈ Π with Left[a] �= 0 do cnt = cnt + 1;
19 Right[c] = n + 1; Left[c] = n + 1; RM[c] = k;
20 else
21 foreach a ∈ Π with Left[a] > Left[c] do cnt = cnt + 1;
22 Left[c] = n + 1;
23 L[k] = cnt ;
24 return L,F,Right, Left,RM;

occurrence position p = RightS(a) of each parameter character a ∈ Π in S. By
rotating S to the right by n − p, that occurrence comes to the right end and
appears in the pBWT. That is, the array L needs to be updated only at i such
that RAS [i] = n−RightS(a). The algorithm maintains such position i as RMS [a]
for each a ∈ Π � S, i.e. RMS [a] = RA−1

S [n − RightS(a)]. Similarly, we only need
to update F at LFS(RMS [a]), where F◦

T [LFS(RMS [a])] = L◦
T [RMS [a]]. In our

algorithm, as alternatives of LeftS and RightS , we maintain two arrays Left and
Right that store the leftmost and rightmost occurrence positions of parameter
characters counting from the right end, respectively, i.e., LeftS [a] = RightS(a)
and RightS [a] = LeftS(a) for each a ∈ Π, where S is the reverse of S.

Algorithm 2 also updates RM to RM◦
T , which indicates the row of L◦

T corre-
sponding to the rightmost occurrence of each parameter character in T . That is,
RM◦

T [a] = i iff RAS [i] = RightT [a], as long as a occurs in T . When c ∈ Π and
it appears in the text for the first time, we have RM◦

T [c] = kS (Line 19). Other
than that, RM◦

T [a] = RMS [a] for every a ∈ Π.

78 D. Hashimoto et al.

Lemma 6. Algorithm 2 computes L◦
T [i], F◦

T [i], RightT , LeftT , and RM◦
T in

O(|Π| log n
log log n) amortized time.

3.2 Step 2: InsertRow Computes LT and FT

To transform F◦
T and L◦

T into FT and LT , we insert the values �T �[1] and �T �[n+1]
at the position kT , respectively. We know those values as �T �[1] = L◦

T [kS] and
�T �[n + 1] = $. Therefore, it is enough to discuss how to find the position kT .

In the case c ∈ Σ, the position kT can be calculated similarly to the case of
BWT for static strings thanks to Corollary 1. Define Σ<b = |{ a ∈ Σ | a < b }|.
Lemma 7. If c ∈ Σ, kT = |T |Σ<c

+ |{ i | L◦
T [i] = c, 1 ≤ i ≤ kS }|.

In the case c ∈ Π, we will use Lemma 2 for finding kT in Lemma 9 below. We
first observe that one can use LCP∞

S to calculate lcp∞(〈Tp〉, 〈Tq〉) for most cases.

Lemma 8. For 1 ≤ p < q ≤ n, lcp∞(〈Tp〉, 〈Tq〉) = lcp∞(〈Sp〉, 〈Sq〉).
Lemma 9. Suppose c ∈ Π. Let �i = lcp∞(〈SRAS [i]〉, 〈SRAS [kS]〉) for 1 ≤ i ≤ n.
Then,

kT = 1 + |T |Σ
+ |{ i | 1 ≤ L◦

T [i] ≤ L◦
T [kS], 1 ≤ i < kS }| (1)

+ |{ i | �i < L◦
T [kS] < L◦

T [i], 1 ≤ i < kS }| (2)
+ |{ i | 1 ≤ L◦

T [i] ≤ min{L◦
T [kS] − 1, �i}, kS < i ≤ n }| . (3)

Proof. By definition,

kT = 1 + |T |Σ + |{ j | FT [j] ∈ N+, 1 ≤ j < kT }| ,

of which we focus on the last term. Let h = LF−1
T (kT) and mi = lcp∞(〈TRAT [i]〉,

〈TRAT [h]〉) for 1 ≤ i ≤ n + 1. By Lemma 2, FT [j] ∈ N+ and 1 ≤ j < kT iff for
i = LF−1

T (j), either

1. 1 ≤ i < h and 1 ≤ LT [i] ≤ LT [h],
2. 1 ≤ i < h and mi < LT [h] < LT [i], or
3. h < i ≤ n + 1 and 1 ≤ LT [i] ≤ min{LT [h] − 1, mi}.

Those three cases are mutually exclusive. Let m◦
i = lcp∞(〈TRAS [i]〉, 〈TRAS [kS]〉).

Counting each of the above cases is equivalent to counting i such that

1. 1 ≤ i < kS and 1 ≤ L◦
T [i] ≤ L◦

T [kS],
2. 1 ≤ i < kS and m◦

i < L◦
T [kS] < L◦

T [i], or
3. kS < i ≤ n and 1 ≤ L◦

T [i] ≤ min{L◦
T [kS] − 1, m◦

i }.

Computing the Parameterized Burrows–Wheeler Transform Online 79

Algorithm 3: Inserting �T �[1] to F and �T �[n + 1] to L

1 Function InsertRow(n, L,F,C, k)
2 x = L[k]; // = �T �[1]
3 if x ∈ Σ then
4 k′ = selectx(C, 1) − |Σ<x| − 1 + rankx(L, k);

// kT = |S|Σ<c + |{ i | L◦
T [i] = c, 1 ≤ i ≤ kS }|

5 insertx(C, selectx(C, 1));
6 else
7 k′ = 1 + |C| − |Σ|; // = 1 + |S|Σ
8 for y = 1 to x do k′ = k′ + ranky(L, k − 1); // Term (1)
9 j = 0;

10 for y = 0 to x − 1 do
11 if ranky(LCP

∞, k − 1) �= 0 then
12 j = max{j, selecty(LCP

∞, ranky(LCP
∞, k − 1))};

// j = max({j} ∪ { i | LCP∞[i] = y and 1 ≤ i < kS })
13 for y = x + 1 to |Π| do k′ = k′ + ranky(L, j); // Term (2)
14 j = n; // j0 = n
15 for y = 1 to x − 1 do // Term (3)
16 if ranky−1(LCP

∞, k − 1) < ranky−1(LCP
∞, n) then

17 j = min{j, selecty−1(LCP
∞, ranky−1(LCP

∞, k − 1) + 1)};
// jy = min({jy−1} ∪ { i | LCP∞[i] = y − 1 and kS ≤ i ≤ n })

18 k′ = k′ + ranky(L, j − 1) − ranky(L, k);

19 insert$(L, k′); insertx(F, k′);
20 return L,F,C, k′;

This is because the matrix (�TRAS [i]�)ni=1 can conceptionally be obtained by
removing the kT -th row of the matrix of (�TRAT [i]�)n+1

i=1 , where the row kS

of (�TRAS [i]�)ni=1 corresponds to the row h of (�TRAT [i]�)n+1
i=1 in particular

(RAS [kS] = RAT [h] = n), and i = kT = RA−1
T [n + 1] is not counted due to

T [n + 1] = $ ∈ Σ.
Lemma 8 implies m◦

i = �i, which completes the proof. �
Based on Lemmas 7 and 9, Algorithm 3 finds the key position kT .
For handling the case c ∈ Σ, we maintain a dynamic array C by which one

can obtain the value |T |Σ<c
= |S|Σ<c

quickly. The array CS can be seen as a
string of the form CS = a

|S|a1+1
1 . . . a

|S|aσ+1
σ , where a1, . . . , aσ enumerate the

static characters of Σ in the lexicographic order (σ = |Σ|) and as denotes the
sequence of a of length s. Then, |T |Σ<c

= selectc(CS , 1) − |Σ<c| − 1. The other
term |{ i | L◦

T [i] = c, 1 ≤ i ≤ kS }| in Lemma 7 is calculated as rankc(L◦
T , kS). We

remark CS has a|S|a+1 rather than a|S|a so that selectc(C, 1) is always defined.
Suppose c ∈ Π. The term |T |Σ of the equation of Lemma 9 is calculated as

|T |Σ = |S|Σ = |C| − |Σ|. Let x = L◦
T [kS]. Term (1) is obtained at Line 8 by

(1) =
∑x

y=1 ranky(L◦
T , kS − 1) .

80 D. Hashimoto et al.

Concerning Term (2), we first find the range of i < kS satisfying �i < x. By
Lemma 1, �i = mini≤j<kS

LCP∞
S [j]. Thus, for any i < kS , �i < x iff i ≤ j∗ =

max{ j | LCP∞
S [j] < x, j < kS }. The for loop of Line 10 computes such j∗.

Then, (2) is computed at Line 13 as

(2) = |{ i | x < L◦
T [i], 1 ≤ i ≤ j∗ }| = ∑|Π|

y=x+1 ranky(L◦
T , j∗) .

We compute Term (3) by summing up the numbers of positions i > kS

such that L◦
T [i] = y ≤ �i for all y = 1, . . . , x − 1 in the for loop of Line 15.

To this end, we find the range of i > kS such that �i ≥ y. By Lemma 1,
�i = minkS≤j<i LCP

∞
S [j]. Thus, for every i > kS , �i ≥ y iff i < jy = min{ j |

LCP∞
S [j] < y, kS ≤ j ≤ n }. Note that jy = min({jy−1} ∪ { j | LCP∞

S [j] =
y − 1, kS ≤ j ≤ n }) for any y ≥ 1 assuming j0 = n. Line 17 computes jy as the
first occurrence of y − 1 after those in LCP∞[1 : kS − 1]. Then, (3) is calculated
by

(3) = |{ i | 1 ≤ L◦
T [i] ≤ x − 1, kS < i < jy }|

=
∑x−1

y=1

(
ranky(L◦

T , jy − 1) − ranky(L◦
T , kS)

)
.

Lemma 10. Algorithm 3 computes LT , FT , CT , and kT in O(|Π| log n
log log n) amor-

tized time.

3.3 Step 3: Updating LCP∞ by UpdateLCP

What remains to do is updating the arrays RM and LCP∞. On the one hand,
updating RM from RM◦

T to RMT is easy. RM◦
T [a] should be incremented by one

just if RM◦
T [a] ≥ kT . Otherwise, RMT [a] = RM◦

T [a]. On the other hand, Lemma
8 implies LCP∞

T is almost identical to LCP∞
S .

Corollary 2. LCP∞
T [i] = LCP∞

S [i] if i < kT − 1, and LCP∞
T [i] = LCP∞

S [i − 1] if
i > kT .

By Corollary 2, we only need to compute LCP∞
T [kT − 1] and LCP∞

T [kT], to
which Lemma 8 cannot directly be applied. The following lemma allows us
to reduce the calculation of LCP∞

T [k] = lcp∞(〈TRAT [k]〉, 〈TRAT [k+1]〉) to that of
lcp∞(〈TRAT [LF−1

T (k)]〉, 〈TRAT [LF−1
T (k+1)]〉), to which Lemma 8 may be applied.

Lemma 11. Let 1 ≤ i, j ≤ n + 1, p = RAT [i], q = RAT [j], � =
lcp∞(〈Tp〉, 〈Tq〉), i′ = LF−1

T (i), j′ = LF−1
T (j), p′ = RAT [i′], q′ = RAT [j′], and

�′= lcp∞(〈Tp′〉, 〈Tq′〉).
1. If FT [i] = FT [j] ∈ Σ, then � = �′.
2. If FT [i] 	= FT [j] and either FT [i] ∈ Σ or FT [j] ∈ Σ, then � = 0.
3. If FT [i],FT [j] ∈ N+, then

� =

⎧
⎪⎨

⎪⎩

�′ + 1 if �′ < min{FT [i],FT [j]},

�′ if �′ ≥ FT [i] = FT [j],
min{FT [i],FT [j]} otherwise.

Computing the Parameterized Burrows–Wheeler Transform Online 81

Algorithm 4: Updating LCP∞[i]
1 Function UpdateLCP(L,F, LCP∞, i)
2 j = i + 1; x = 0;
3 if F[i] = F[j] or F[i],F[j] ∈ N+ then
4 i′ = selectF[i](L, rankF[i](F, i)); // i′ = LF−1

T (i)

5 j′ = selectF[j](L, rankF[j](F, j)); // j′ = LF−1
T (i + 1)

6 for y = |Π| downto 0 do
7 if ranky(LCP

∞, i′ − 1) �= ranky(LCP
∞, j′ − 1) then x = y;

// x = lcp∞(〈SRAS [i′]〉, 〈SRAS [j′]〉)
8 if F[i],F[j] ∈ N+ then
9 if x < min{F[i],F[j]} then x = x + 1;

10 else if F[i] �= F[j] then x = min{F[i],F[j]};
11 return x;

Proof. Let Tp = aU , Tq = bV , Tp′ = Ua and Tq′ = V b.
1. If a = b ∈ Σ, then � = �′ = lcp∞(〈U〉, 〈V 〉).
2. In the case a 	= b and {a, b} ∩ Σ 	= ∅, clearly 〈Tp〉[1] 	= 〈Tq〉[1]. Thus � = 0.
3. In the case a, b ∈ Π, let W be the longest common prefix of 〈Tp′〉 and 〈Tq′〉,

u and v be the first occurrence positions of a in Tp′ and b in Tq′ , respectively,
and w be the �′-th occurrence position of ∞ in W .

Suppose �′ < min{FT [i],FT [j]} = min{LT [i′], LT [j′]}. That is, |W |∞ <
min{|〈Tp′〉[: u]|∞, |〈Tq′〉[: v]|∞}. This means |W | < min{u, v} and thus ∞W is
the longest common prefix of 〈Tp〉 and 〈Tq〉. Thus, we have � = |∞W |∞ = �′ +1.

Suppose �′ ≥ FT [i] = FT [j], i.e., |W |∞ ≥ |〈Tp′〉[: u]|∞ = |〈Tq′〉[: v]|∞. Then
|W [: u]|∞ = |W [: v]|∞ and W [u] = W [v] = ∞ implies u = v. Let Z be the longest
common prefix of 〈Tp〉 and 〈Tq〉. Then, W and Z can be written as W = X∞Y
and Z = ∞XuY , where |X| = u − 1. Therefore, � = �′.

Otherwise, FT [i] 	= FT [j] and �′ ≥ min{FT [i],FT [j]}. Assume FT [i] < FT [j]
(the case FT [j] < FT [i] is symmetric). Then u ≤ |W |. Moreover, we have u < v,
since otherwise, 〈Tq′〉[: v] had to be a prefix of 〈Tp′〉[: u], which is impossible by
FT [i] < FT [j]. Let 〈Tp[: |W | + 1]〉 = ∞XuY , where |X| = u − 1. Then we have
〈Tq[: |W | + 1]〉 = ∞X∞Y ′ for some Y ′ ∈ (Σ ∪ N∞)∗. Thus � = |∞X|∞ = FT [i]. �
One can compute �′ = lcp∞(〈Tp′〉, 〈Tq′〉) in Lemma 11 for 1 ≤ p′ < q′ ≤ n using
Lemmas 8 and 1 as

lcp∞(〈Tp′〉, 〈Tq′〉) = lcp∞(〈Sp′〉, 〈Sq′〉) = min{ LCP∞
S [h] | i′ ≤ h < j′ }

= min({0} ∪ { y | ranky(LCP∞
S , i′ − 1) 	= ranky(LCP∞

S , j′ − 1) }) .

Finally, when q′ = n+1, we have FT [j] = $ 	= FT [i], and thus lcp∞(〈Tp〉, 〈Tq〉) =
0. Algorithm 4 computes LCP∞

T [i] using FT , LT , and LCP∞
S .

Lemma 12. Algorithm 4 computes LCP∞
T [i] in O(|Π| log n

log log n) amortized time.

By Lemmas 6, 10, and 12, we have the following theorem.

82 D. Hashimoto et al.

Theorem 1. Given c ∈ Σ ∪ Π, n = |S|, L = LS, F = FS, Right = RightS,
Left = LeftS, RM = RMS, C = CS, and LCP∞ = LCP∞

S for some S ∈ (Σ ∪ Π)∗,
Algorithm 1 computes |T |, LT , FT , RightT , LeftT , RMT , CT , and LCP∞

T for T =
cS in O(|Π| log n

log log n) amortized time per input character.

Corollary 3. For a p-string T of length n, pBWTT can be computed in an
online manner by reading T from right to left in O(n|Π| log n

log log n) time.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Num-
bers JP19K20208 (DH), JP21K17701 (DK), JP21H05847 (DK), JP22H03551 (DK),
JP18H04091 (RY), JP18K11150 (RY), JP20H05703 (RY), and JP21K11745 (AS).

A Proofs

Proposition 1. For any p-strings S and T , S ≈ T if and only if �S� = �T �.

Proof. For simplicity, assume that S and T contain no static character. Suppose
S ≈ T . Since S[i] = S[j] iff T [i] = T [j] for any indices i, j, we have

�S�[i] = |Π � Sn−i[1 : LeftSn−i
(S[i])]| = |Π � Tn−i[1 : LeftTn−i

(T [i])]| = �T �[i] .

for all i.
Suppose S 	≈ T . Let i be the leftmost position such that 〈S〉[i] 	= 〈T 〉[i]. We

may assume without loss of generality that 〈S〉[i] < 〈T 〉[i]. Let j = i − 〈S〉[i].
Then,

�S�[j] = |Π � S[j + 1 : i]| = |Π � S[j : i − 1]| = |Π � T [j : i − 1]| ,
since S[j : i − 1] ≈ T [j : i − 1]. The fact S[j] /∈ Π � S[j + 1 : i − 1] implies
T [j] /∈ Π �T [j+1 : i−1]. Moreover, 〈S〉[i] < 〈T 〉[i] implies T [i] /∈ Π �T [j : i−1].
Hence,

�T �[j] ≥ |(Π � T [j : i − 1]) ∪ {T [i]}| > |Π � T [j : i − 1]| = �S�[j] .

�
Lemma 3 is a corollary to the following lemma.

Lemma 13. For any i and j such that 1 ≤ i < j ≤ n, RA−1
S [i] < RA−1

S [j] iff
RA−1

T [i] < RA−1
T [j].

Proof. Let Si = U$V and Sj = XY $Z, where |U$| = |X| = i<j≤n. We have
Ti = U$cV and Tj = XY $cZ. Since $ does not occur in X, 〈U$〉 	= 〈X〉. Thus,

RA−1
S [i] < RA−1

S [j] ⇐⇒ 〈U$〉 < 〈X〉 ⇐⇒ RA−1
T [i] < RA−1

T [j] .

�
Lemma 4. If c ∈ Σ, then for any i ∈ {1, . . . , n}, F◦

T [i] = FS [i] and L◦
T [i] = LS [i]

except for L◦
T [kS] = c.

Computing the Parameterized Burrows–Wheeler Transform Online 83

Proof. If c ∈ Σ, then �S� = �T �[2 :] by definition. So, for any i ∈ {1, . . . , n},

F◦
T [i] = �TRAS [i]�[1] = �SRAS [i]�[1] = FS [i]

and

L◦
T [i] = �TRAS [i]�[n + 1] =

{
�SRAS [i]�[n] = LS [i] if RAS [i] 	= n,

c if RAS [i] = n.

�
Lemma 5. Suppose c ∈ Π.

�T �[1] =

{
|Π � S| + 1 if LeftS(c) = 0,
|Π � S[1 : LeftS(c)]| otherwise.

For 1 ≤ p ≤ n, if S[p] ∈ Σ or p 	= RightS(S[p]), then �T �[p + 1] = �S�[p]. If
S[p] = a ∈ Π and p = RightS(a), then

�T �[p + 1] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|Π � S[p + 1 : n]| + 1 if a = c,

�S�[p] + 1 if LeftS(c) = 0 or
LeftS(a) < LeftS(c) ≤ RightS(c) < RightS(a),

�S�[p] otherwise.

Proof. The claim on value of �T �[1] is clear by definition. For p ≥ 1, if T [p+1] =
S[p] ∈ Σ, then �T �[p + 1] = �S�[p].

Let us consider the case S[p] = a ∈ Π. If p 	= RightS(a), then a occurs
somewhere after p in S. Let q > p be the first occurrence position of a after p in
S. By definition, �S�[p] = |Π � S[p + 1 : q]| = |Π � T [p + 2 : q + 1]| = �T �[p + 1].

Suppose p = RightS(a) for some a ∈ Π. If a = c, since T [1] = c and
c 	∈ Π�S[p+1 : n], we have �T �[p+1] = |Π�S[p+1 : n]∪{c}| = |Π�S[p+1 : n]|+1.
If RightS(c) = 0 or LeftS(a) < LeftS(c) ≤ RightS(c) < RightS(a) = p, �S�[p]
counts the number of distinct p-characters in S[p + 1 :]S[: LeftS(a)], where c
does not occur. On the other hand, �T �[p+ 1] counts the ones in S[p+ 1 :]cS[:
LeftS(a)]. That is, �T �[p + 1] = �S�[p] + 1. Otherwise, if LeftS(c) < LeftS(a)
or RightS(a) < RightS(c), we already have c in S[p + 1 :]S[: LeftS(a)]. Thus
�T �[p + 1] = �S�[p]. �
Lemma 7. If c ∈ Σ, kT = |T |Σ<c

+ |{ i | L◦
T [i] = c, 1 ≤ i ≤ kS }|.

Proof. By definition, kT = |T |Σ<c
+ |{ j | FT [j] = c, 1 ≤ j ≤ kT }|. By Corollary

1 and the bijectivity of LFT , the second term equals

|{ i | LT [i] = c, 1 ≤ i ≤ LF−1
T (kT) }|

and further more equals

|{ i | L◦
T [i] = c, 1 ≤ i ≤ kS }|

because LT and L◦
T are different only in that LT has an extra element $ < c, and

the position LF−1
T (kT) in LT corresponds to the position kS in L◦

T . �

84 D. Hashimoto et al.

Lemma 8. For 1 ≤ p < q ≤ n, lcp∞(〈Tp〉, 〈Tq〉) = lcp∞(〈Sp〉, 〈Sq〉).
Proof. Let Sp = U$V and Sq = XY $Z, where |U$| = |X| = p < q = |XY $|.
Then, Tp = U$cV and Tq = XY $cZ. Since $ does not appear in X,

lcp∞(〈Sp〉, 〈Sq〉) = lcp∞(U$,X) = lcp∞(〈Tp〉, 〈Tq〉) .

�

References

1. Baker, B.S.: A theory of parameterized pattern matching: algorithms and applica-
tions. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of
Computing (STOC 1993), pp. 71–80 (1993)

2. Baker, B.S.: Parameterized pattern matching: algorithms and applications. J. Com-
put. Syst. Sci. 52(1), 28–42 (1996)

3. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm.
Technical report 124, Digital Equipment Corporation (1994)

4. Diptarama, Katsura, T., Otomo, Y., Narisawa, K., Shinohara, A.: Position heaps
for parameterized strings. In: Proceedings of the 28th Annual Symposium on Com-
binatorial Pattern Matching (CPM 2017), pp. 8:1–8:13 (2017)

5. Fredriksson, K., Mozgovoy, M.: Efficient parameterized string matching. Inf. Pro-
cess. Lett. 100(3), 91–96 (2006)

6. Fujisato, N., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Right-to-left
online construction of parameterized position heaps. In: Proceedings of the Prague
Stringology Conference 2018 (PSC 2018), pp. 91–102 (2018)

7. Fujisato, N., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Direct linear
time construction of parameterized suffix and LCP arrays for constant alphabets.
In: Proceedings of the 26th International Symposium on String Processing and
Information Retrieval (SPIRE 2019), pp. 382–391 (2019)

8. Ganguly, A., Shah, R., Thankachan, S.V.: pBWT: achieving succinct data struc-
tures for parameterized pattern matching and related problems. In: Proceedings of
the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017),
pp. 397–407 (2017)

9. Ganguly, A., Shah, R., Thankachan, S.V.: Fully functional parameterized suffix
trees in compact space. In: Proceedings of the 49th International Colloquium on
Automata, Languages, and Programming (ICALP 2022), pp. 65:1–65:18 (2022)

10. I, T., Deguchi, S., Bannai, H., Inenaga, S., Takeda, M.: Lightweight parameterized
suffix array construction. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA
2009. LNCS, vol. 5874, pp. 312–323. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-10217-2_31

11. Kim, S., Cho, H.: Simpler FM-index for parameterized string matching. Inf. Pro-
cess. Lett. 165, 106026 (2021)

12. Mendivelso, J., Thankachan, S.V., Pinzón, Y.J.: A brief history of parameterized
matching problems. Discret. Appl. Math. 274, 103–115 (2020)

13. Nakashima, K., et al.: DAWGs for parameterized matching: online construction
and related indexing structures. In: Proceedings of the 31st Annual Symposium on
Combinatorial Pattern Matching (CPM 2020), pp. 26:1–26:14 (2020)

https://doi.org/10.1007/978-3-642-10217-2_31
https://doi.org/10.1007/978-3-642-10217-2_31

Computing the Parameterized Burrows–Wheeler Transform Online 85

14. Nakashima, K., Hendrian, D., Yoshinaka, R., Shinohara, A.: An extension of linear-
size suffix tries for parameterized strings. In: SOFSEM 2020 Student Research
Forum, pp. 97–108 (2020)

15. Navarro, G., Nekrich, Y.: Optimal dynamic sequence representations. SIAM J.
Comput. 43(5), 1781–1806 (2014)

16. Policriti, A., Prezza, N.: Fast online Lempel-Ziv factorization in compressed space.
In: Proceedings of the the 22nd International Symposium on String Processing and
Information Retrieval (SPIRE 2015), pp. 13–20 (2015)

17. Shibuya, T.: Generalization of a suffix tree for RNA structural pattern matching.
Algorithmica 39(1), 1–19 (2004)

18. Thankachan, S.V.: Compact text indexing for advanced pattern matching prob-
lems: parameterized, order-isomorphic, 2D, etc. (invited talk). In: Proceedings of
the 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022), pp.
3:1–3:3 (2022)

Accessing the Suffix Array via φ−1-Forest

Christina Boucher1, Dominik Köppl2(B), Herman Perera1,
and Massimiliano Rossi1

1 Department of Computer and Information Science and Engineering,
Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA

{christinaboucher,hperera1,rossi.m}@ufl.edu
2 Tokyo Medical and Dental University, M&D Data Science Center, Tokyo, Japan

koeppl.dsc@tmd.ac.jp

Abstract. Kärkkainen et al. (CPM, 2009) defined the concept of φ that
later became key to the construction of the r-index. Given a string
S[1..n], its suffix array SA and its inverse suffix array ISA, we define
φ as the permutation of {1, . . . , n} such that φ(i) = SA[ISA[i] − 1] if
ISA[i] > 1, and φ(i) = SA[n] otherwise. Gagie et al. (JACM, 2020)
showed that it is possible to store O(r) words such that the permu-
tations φ and φ−1 are evaluated in O(log logw(n/r))-time, which was
improved to O(1)-time by Nishimoto and Tabei (ICALP, 2021). In this
paper, we introduce the concept of φ−1-forest, which is a data structure
using sampled SA values to speed up random access to SA. We imple-
mented our approach and compared its performance with respect to the
r-index.

Keywords: Compressed suffix array · r-index · φ function ·
Burrows–Wheeler transform

1 Introduction

Biological public datasets have become increasingly large, extensive and numer-
ous. Currently, for almost every biomedically or agriculturally interesting species,
there exists a sequencing consortium aimed at sequencing a large number of
individuals or cultivars of that species. For example, with relative ease you can
download over 5,000 human genomes, over 3 million SARS-COVID sequence
datasets, and over 5 petabytes sequence data from The Cancer Genome Atlas
(TCGA). Fortunately or unfortunately the majority of methods that aim to ana-
lyze these and other large datasets rely on the use of succinct data structures
that are capable of being constructed and stored in relatively small amount of
space and time, while performing efficient queries. In this paper, we focus on
developing a data structure that provides efficient access to the suffix array,
which is defined as follows: SA[1..n] is an array that is a permutation of 1, . . . , n
such that the suffixes of S starting at the consecutive positions indicated in SA
are in lexicographical order.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 86–98, 2022.
https://doi.org/10.1007/978-3-031-20643-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-20643-6_7

Accessing the Suffix Array via φ−1-Forest 87

The suffix array, however, predates read alignment or even high-throughput
sequencing as it was first introduced by Manber and Myers [12]. The lexicograph-
ical order implies that the starting positions of the longest match of a pattern P
is within a contiguous range in SA. When combined with the Burrows–Wheeler
Transform (BWT) of S [3], this range can be found in 2|P | rank queries via
backward search. This is one of the main features that read alignment methods,
such as Bowtie [9] and BWA [10], exploit in order to efficiently align reads to a
database of genomes. Hence, given this application and the ever-increasing size
of public, biological datasets, there has been significant interest in reducing the
construction size and time of the SA while still allowing for efficient queries.
There has been a significant amount of work in developing more efficient com-
pressed suffix array representations and implementations. Most recently Puglisi
and Zhukova [15] showed that the suffix array can be compressed via relative
Lempel–Ziv (RLZ) dictionary compression in a manner that does not greatly
affect the time to access the elements of the SA. In a different direction, Gagie
et al. [7] showed that a single element of the SA for each run of the BWT is
needed, and that all elements of the SA can be recovered via a small auxiliary
data structure (e.g., φ). The resulting data structures of Gagie et al. is referred
to as the r-index, where r stands for the number of single character runs in
the BWT. Then Cobas et al. [5] improved upon the space usage of the r-index
by a more careful sampling of the elements of the SA. Their resulting method,
referred to as the subsampled r-index or the sr-index, was shown to be between
1.5 to 3.0 times smaller than the r-index in practice.

Although the methods of Gagie et al. and Cobas et al. are provably and
practically space efficient, the time required to access the elements of the SA
(which relies on φ or φ−1) is slow in practice. In this paper, we revisit the problem
of providing efficient access to the suffix array in the sampled suffix array of Gagie
et al. via a small auxiliary data structure that exploits the iterative properties of
φ. We implemented our method and compared it to the r-index on Chromosome
19 sequences from the 1000 Genomes Project [17] and the Pizza&Chili repetitive
corpus [1]. We showed that the runtime for random access of our new method
was favorable to that of the r-index. We report our new method was consistently
faster on the Pizza&Chili, offering between 3x and 6x speed-up on all Pizza&Chili
datasets except for one (cere) where both methods performed comparably. Our
method is publicly available at https://github.com/koeppl/rasarindex.

2 Preliminaries

We define a string S as a finite sequence of characters S = S[1..n] = S[1] · · · S[n]
over an alphabet Σ = {c1, . . . , cσ}. We denote by ε the empty string, and the
length of S as |S|. We denote by S[i..j] the substring S[i] · · · S[j] of S starting
in position i and ending in position j, with S[i..j] = ε if i > j. For a string S
and 1 ≤ i ≤ n, S[1..i] is called the i-th prefix of S, and S[i..n] is called the i-th
suffix of S.

Given an array A[1..n] of n integers over a universe U = {1, ..., |U|}, for all
i ∈ U we define predA(i) as the predecessor of i in A, i.e., predA(i) = max{A[j] ≤

https://github.com/koeppl/rasarindex

88 C. Boucher et al.

Table 1. SA, BWT, and rotations matrix of the string S = GATTACAT$GATACAT$GATTA

GATA#. The SA samples at the beginning and end of each run of the BWT are high-
lighted in bold. We have r = 13.

S = GATTACAT$GATACAT$GATTAGATA#

i SA BWT rotations matrix

0 26 A #GATTACAT$GATACAT$GATTAGATA

1 8 T $GATACAT$GATTAGATA#GATTACAT

2 16 T $GATTAGATA#GATTACAT$GATACAT

3 25 T A#GATTACAT$GATACAT$GATTAGAT

4 4 T ACAT$GATACAT$GATTAGATA#GATT

5 12 T ACAT$GATTAGATA#GATTACAT$GAT

6 21 T AGATA#GATTACAT$GATACAT$GATT

7 6 C AT$GATACAT$GATTAGATA#GATTAC

8 14 C AT$GATTAGATA#GATTACAT$GATAC

9 23 G ATA#GATTACAT$GATACAT$GATTAG

10 10 G ATACAT$GATTAGATA#GATTACAT$G

11 1 G ATTACAT$GATACAT$GATTAGATA#G

12 18 G ATTAGATA#GATTACAT$GATACAT$G

13 5 A CAT$GATACAT$GATTAGATA#GATTA

14 13 A CAT$GATTAGATA#GATTACAT$GATA

15 22 A GATA#GATTACAT$GATACAT$GATTA

16 9 $ GATACAT$GATTAGATA#GATTACAT$

17 0 # GATTACAT$GATACAT$GATTAGATA#

18 17 $ GATTAGATA#GATTACAT$GATACAT$

19 7 A T$GATACAT$GATTAGATA#GATTACA

20 15 A T$GATTAGATA#GATTACAT$GATACA

21 24 A TA#GATTACAT$GATACAT$GATTAGA

22 3 T TACAT$GATACAT$GATTAGATA#GAT

23 11 A TACAT$GATTAGATA#GATTACAT$GA

24 20 T TAGATA#GATTACAT$GATACAT$GAT

25 2 A TTACAT$GATACAT$GATTAGATA#GA

26 19 A TTAGATA#GATTACAT$GATACAT$GA

i | 1 ≤ j ≤ n}. Analogously, we define succA(i) as the successor of i in A, i.e.,
succA(i) = min{A[j] ≥ i | 1 ≤ j ≤ n}.

Next, to define the suffix array for a string S of length n, we consider all
rotations of S in lexicographical order. The index of the starting positions in S
of each rotation defines the SA of S. Related to the suffix array, given a string

Accessing the Suffix Array via φ−1-Forest 89

S and the suffix array of S, we define the inverse suffix array (ISA) of S as the
indexes in the SA of every suffix of S, i.e., ISA[i] = j if and only if SA[j] = i.

In what follows, we assume that S ends with a unique character # smaller
than all other characters appearing in S. Then the BWT of S is a permutation
of S such that BWT[i] = S[SA[i]−1] and BWT[i] = # if SA[i] = 1. The BWT is
often run-length compressed, i.e., representing maximal consecutive appearances
of the same character, also called runs, by a single occurrence of this character
and an exponent reflecting the length of this run. We denote the number of the
runs in BWT by r. See Table 1 for an example.

Throughout this paper, we assume working in the RAM model with machine
word size w. Let us fix the length n of a given input string S. Kärkkainen et al. [8]
defined the concept of the φ function that later became key to the construction of
the r-index. Given a string S[1..n], its suffix array SA and its inverse suffix array
ISA, we define φ as the permutation of {1, . . . , n} such that φ(i) = SA[ISA[i]−1]
if ISA[i] > 1, and φ(i) = SA[n] otherwise. Later, Gagie et al. [7] showed that it is
possible to store O(r) words such that the permutations φ and φ−1 are evaluated
in O(log logw(n/r))-time. We note that this was later improved by Nishimoto
and Tabei [13] to O(1) time. In particular, let E be the list of the SA samples at
the end of each run of the BWT such that E [i] is the sample corresponding to
the i-th run. Analogously, let S be the list of the SA samples at the beginning of
each run such that S[i] is the sample corresponding to the i-th run. See Table 2
for an example of E and S.

Given Gagie et al.’s representation of φ, we can implement random access
queries to the suffix array by iterating the φ function as follows. Let i be a
position in the suffix array, and let j ≥ i be a sampled position of the suffix
array, then SA[i] = φj−i(SA[j]). This solution works in O(r) space, since E and
S each contain r SA samples. The running time can be bounded by the length
of the longest run.

Table 2. Lists S and E of our running example with costs ci and limits �i.
BWT[S[x]..E [x]] is a unary string, for x ∈ [1..r].

i 1 2 3 4 5 6 7 8 9 10 11 12 13

E [i] 26 21 14 18 22 9 0 17 24 3 11 20 19

S[i] 26 8 6 23 5 9 0 17 7 3 11 20 2

ci 5 3 1 2 0 0 0 4 0 0 0 0 2

�i 1 1 3 1 2 2 3 1 2 6 3 2

3 Access Data Structures to SA

In what follows, we assume that we have the SA samples of S and E as defined
by Gagie et al. [7], and describe a method for accessing the missing SA samples

90 C. Boucher et al.

via the construction of an auxiliary data structure that exploits the iterative
computation of φ−1. We note that we selected to describe our methods in terms
of φ−1, and due to the symmetry of φ−1 and φ everything can be described
analogously for φ.

The key observation of our technique is that the difference between SA[i] and
SA[i + 1] keeps the same when iteratively exchanging i with the index j such
that SA[j] = SA[i] − 1 as long as BWT[i] = BWT[i + 1]. This is also known as
a part of the so-called toehold lemma [6, Lemma 3.1]. In Table 1, when starting
with i = 1, we have SA[i] = 8 and SA[i + 1] − SA[i] = 8. Then we exchange
i with 19 such that SA[i] = 7 but SA[i + 1] − SA[i] = 8. The difference is the
same up until SA[i] = 3 with i = 22 (for SA[j] = 2 with j = 25 we have
SA[j + 1]−SA[j] = 17). We can also observe that the number of iterations from
SA value 8 to SA value 3 is five, which is the longest common suffix of Rows 1
and 2 of the rotations matrix. In particular, among all SA values stored in E , 3
is the preceding text position of 8. In other terms, this iteration ends whenever
we visit the predecessor stored in E since at that time we know we are at a run
boundary and therefore the next value in BWT has to differ. We can make use
of this phenomenon for computing φ−1 as follows. First, having E and S, we can
compute φ−1 for all SA samples stored in E because φ−1(E [x]) = S[x + 1] for
all x = [1..r − 1], and φ−1(E [r]) = S[1]. Now, given a text position i ∈ [1..n],
let s = predE(i) ∈ E be an SA sample for which we can evaluate φ−1. Then,
by the above observation, the difference between s and s’s succeeding value in
SA is the same as the difference of i and i’s succeeding value in SA. Hence,
φ−1(i) = SA[ISA[i] + 1] = SA[ISA[s] + 1] + (i − s) = φ−1(s) + (i − s).

3.1 Access via φ−1-Graph

We first give two definitions before defining our auxiliary data structure.

Definition 1 (Costs and Limits). For i ∈ [1..r − 1], we define the cost ci =
S[i + 1] − predE(i + 1), and the limit to be �i = succE(E [i] + 1) − E [i].

Informally, costs reflect the distances in our above key observation. Starting with
an initial cost of zero, by adding up the costs and moving to elements of E , we
can simulate Φ−1 as long as the costs are bounded by the limits. The limits
reflect the fact that our key observation only works up to the point that the
predecessor in E keeps the same, therefore when the distances become too large,
we would move into the next run with predecessor succE(E [i] + 1). Using costs
and limits, we define the following directed graph with edge labels.

Definition 2 (φ−1-Graphs). Given E and S, we build a directed graph G =
(V,E) such that there exists a node in G for each sample at the end of each BWT
run, i.e., V = E, and an edge from vi (corresponding to E [i]) to vj (corresponding
to E [j]) if and only if E [j] is the predecessor of S[i + 1] in E. Lastly, we label
edge (vi, vj) with the cost and limit < ci, �i >.We refer to this as the φ−1-graph.

Accessing the Suffix Array via φ−1-Forest 91

An example of the φ−1-graph is depicted in Fig. 1. We observe that all nodes
of the φ−1-graph have at most one outgoing edge due to the uniqueness of the
predecessor function, and the only node with no outgoing edges is the node
corresponding to E [r] since S[r + 1] is not defined. In what follows, we refer to
the node of the φ−1-graph corresponding to E [i] as vi, and the edge outgoing
from vi to vj as ei = (vi, vj). This induces an injective mapping from edges ei

to nodes vi (we identify an edge by its outgoing node).
Given the φ−1-graph G, we can compute recursive applications of φ−1 as

follows. Given a position 1 ≤ s ≤ n in the suffix array, let vi ∈ V be the node
corresponding to predE(SA[s]) and let ei = (vi, vj) be the edge outgoing from vi,
labeled with < ci, �i >. First, we consider the simplest case where SA[s] is the
end of the i-th run. In this case, we can compute φ−1 directly with the equation

φ−1(SA[s]) = SA[s + 1] = S[i + 1] = E [j] + S[i + 1] − E [j] = E [j] + ci.

In our example, if we start from the node corresponding to the SA sample 26,
by following the edge connecting 26 with 3, we have that φ−1(26) = 3 + 5 = 8.

Next, suppose we want to compute φ−1(SA[s + 1]). Let ej = (vj , vk) be the
edge outgoing from vj , labeled with < cj , �j >. Hence,

φ−1(SA[s + 1]) = φ−1(φ−1(SA[s])) = φ−1(S[i + 1]) = φ−1(E [j] + ci).

If predE(S[i + 1]) = E [j] then φ−1(E [j] + ci) = φ−1(E [j]) + ci = E [k] + cj + ci.
This shows that as long as the condition predE(S[i + 1]) = E [j] holds, we can
compute iterated applications of φ−1 by traversing the graph and summing the
costs stored at the edge labels.

Back to our example, we continue at the node corresponding to the SA sample
3, having already gathered a cumulative cost of 5. We now follow the edge
connecting 3 with 11, and obtain φ−1(8) = φ−1(3)+5 = 16. Note that we cannot
compute φ−1(16) by following the edge connecting 11 and 20, since predE(16) =
14 �= 11.

In the case where SA[s] is not at the end of a run, let E [i] = predE(SA[s]).
We can write φ−1(SA[s]) = E [j] + ci + c0 = S[i+1]+ c0, where c0 = SA[s]−E [i]
by definition of φ−1. We refer to c0 as the initial cost.

Therefore, given SA[s], where predE(SA[s]) = E [i1], we let c0 = SA[s] − E [i1]
and vi1 , vi2 , . . . , vim be the m-length path outgoing from vi. If predE(E [ij] +
∑j−1

k=1 cik + c0) = E [ij+1] for all j = 2, ...,m − 1, then after m iterations of φ−1,
we have

φ−m(SA[s]) = S[im + 1] = E [im] +
m−1∑

k=1

cik + c0.

We note that checking that predE(E [ij] +
∑j−1

k=1 cik + c0) = E [ij+1] for all
j = 2, ...,m − 1 is equivalent to checking that

E [ij] +
j−1∑

k=1

cik + c0 = S[ij−1 + 1] + c0 < succE(E [ij] + 1) = E [ij] + �ij ,

92 C. Boucher et al.

26

21

18

24

3 11 20 0 17

14 22 9 19

5, 1

3, 1

2, 1

0, 2

0, 6 0, 3 2, 1

0, 2

0, 3

1, 3 0, 2

4, 1

SA BWT

26 A
8 T
16 T
25 T
4 T
12 T
21 T
6 C
14 C
23 G
10 G
1 G
18 G
5 A
13 A
22 A
9 $
0 #
17 $
7 A
15 A
24 A
3 T
11 A
20 T
2 A
19 A

Fig. 1. The φ−1-graph corresponding to the string S = GATTACAT$GATACAT$GATTA

GATA#. Each node is labeled with the SA value at the end of each run. Each edge
is labeled with its cost and its limit, which are shown in red. On the right we have the
SA and BWT of the string S as derived in Table 1. (Color figure online)

that is equivalent to determining that for all j = 2, ...,m − 1

j−1∑

k=1

cik + c0 < �j .

Hence, it follows that we can access the SA samples via computing the costs in
G with the condition that it is less than the limits at all visited edges.

On our running example, we can follow the edge connecting 3 and 11 since
predE(8) = 3, which can be obtained checking if the cost 5 is smaller than the
limit on the edge that is 6. However, we cannot traverse the edge between 11 and
20 starting with a total cost of 5, since predE(16) = 14 �= 11 which is witnessed
by the limit on the edge being 3, which is smaller than the cumulative cost of 5,
given by the sum of costs on the edges between 26 and 3, and between 3 and 11.

3.2 Access via φ−1-Forest

After we have the φ−1-graph G, we can extract (long) paths from G and use
them to speed up the computation for random access by allowing us to skip
iterations of φ−1 to find a missing SA sample. We refer to this as fast-forwarding
the random access. Given a path of length m in G, say vi1 , vi2 , . . . , vim , we want

Accessing the Suffix Array via φ−1-Forest 93

26 3 11 20 0 17 x5, 1 0, 6 0, 3 2, 1 0, 3

4, 1

5,1 0,6 0,2 2,1 0,3 4,1

5,1 2,1 4,1 0,-1

7,-4 4,-5

11,-9

Fig. 2. Example of a balanced binary tree described in Sect. 3.2 on the path
[26, 3, 11, 20, 0, 17, 3] of the φ−1-graph of Fig. 1. By adding dummy nodes like the right-
most one with label (0, −1), we make the tree full binary. This is not a requirement,
but used in our implementation to keep all leaves on the same level such that we can
store them consecutively in an array for leveraging data locality. That is because we
alternatively can scan this array of leaves instead of walking through the tree if we
know that we will only perform a short traversal. The downside is that we need to take
care of the dummy nodes. The negative limits (0, −1) of the dummy nodes prevents
the algorithm from exploring the non-existent children of this node.

to build a data structure that solves the following problem: for a given 1 ≤ j ≤ m
and a value c0, find the largest index k such that

∑h−1
x=j cix + c0 < �h, for all

h = j, ..., k − 1.
To solve this problem, we build a balanced binary tree, where the leaves

represent the edges ei1 , ei2 , . . . , eim−1 of the path. Each node p of the tree stores
a pair of integers < cp, �p > such that p is the j-th leaf < cp, �p > corresponding
to the edge label of eij if and only if cp = cij and �p = �ij . Otherwise, if p is an
internal node, we let u and v be the left and right children of p respectively, and
cp = cu + cv and �p = min(�u, �v − cu). We note that the definition of the costs
and limits for the internal nodes guarantee that we can traverse all the edges in
the subtree of the node p if we start from the leftmost leaf in the subtree of p
with a cost c < �p. See Fig. 2 for an example.

Given a suffix array sample SA[s], we can query the tree as follows. Let
i be such that E [i] = predE(SA[s]), c0 = SA[s] − E [i], and let v be the leaf
corresponding to the edge ei = eij . In order to find the largest index k such that
∑h−1

x=j cix + c0 < �h for all h = j, ..., k − 1, we divide the query into two phases.

– In the first phase (Line 4 of Algorithm 1), we traverse the tree from the leaf
v towards the root as follows. We consider a cumulative cost c, which we
initialize to c0. Now let p be the parent of v. If v is a right child of p we move
to the parent of p. If v is a left child of p let u be the right child of p. If c < �u

then we add cu to c and we move to the parent of p. Otherwise, if c ≥ �u or
v is the root, we stop and continue with the second phase.

– In the second phase (Line 13 of Algorithm 1), we begin descending the tree
starting from the right child u of p. Let q be the left child of u. If c < �q we

94 C. Boucher et al.

Algorithm 1 . Computes the largest number of φ−1 steps in φ−1-graph via
φ−1-forest
1: function. Fast-forward(T , v, c0)
2: Let v ∈ T be the j-th leaf of T , i.e., v = vij .
3: c ← c0.
4: while c < �v and v is not the root do
5: p ← parent(v).
6: if v = left-child(p) then
7: u ← right-child(p).
8: if c < �u then c ← c + cu.
9: else p ← u.

10: v ← p.

11: if v is not leaf then
12: v ← right-child(v).

13: while v is not leaf do
14: q ← left-child(v).
15: if c < �q then
16: c ← c + cq.
17: v ← right-child(v).
18: else v ← q.

19: Let ik−1 be the index of v in T .
20: return (ik, c, k − j)

move to the right child of u and update the value of c to c + cq; otherwise
we move to q. We repeat this procedure as long as u is not a leaf. At the
end of the procedure we arrive at the leaf corresponding to the edge eik−1 . In
addition to the node vik that corresponds to the sample E [ik], we report also
the total cost c and the number of traversed edges d = k − j so that we can
recover the suffix array sample SA[s + d] = E [ik] + c.

The steps of both phases are summarized in Algorithm 1 and we refer to them
as fast-forward query. A trivial case is when all costs are less than the limits; in
such a case we would ascend to the root and then descend to the rightmost leaf
stored in the tree.

We can easily extend the fast-forward query by including a constraint on the
total number of leaves that can be traversed, i.e., solving the following problem:
given 1 ≤ j ≤ m, a value c0, and an integer d, find the largest index k ≤ d
such that

∑h−1
x=j cix + c0 < �h, for all h = j, ..., k − 1. We refer to this function as

bounded fast-forward. Thus, applying the above procedures to perform SA access
is straightforward when we have a limit on the total number of leaves that can be
traversed. We decompose the φ−1-graph into non-overlapping paths, i.e., that no
pair of paths of the decomposition shares an edge of the graph, in order to obtain
a set of trees. We can build one φ−1-tree for each path in the decomposition and
use the trees collectively to compute φ−1. Lastly, we note that we can choose any
set of non-overlapping paths of the φ−1-graph. In our implementation, we omit

Accessing the Suffix Array via φ−1-Forest 95

Algorithm 2. SA access via φ−1-forest
1: function SA Access(SA, i)
2: Let j be the end of a BWT run preceding i.
3: Let d ← i − j and let v be the node corresponding to SA[j].
4: s ← SA[j].
5: while d > 0 do
6: Let v be the node in G corresponding to predE(s).
7: Let c0 = s − predE(s).
8: if v in one of φ−1-forest then
9: Let T be the tree containing v.

10: (ik, c, t) ← Bounded Fast-forward(T , v, c0, d).
11: s ← E [ik] + c.
12: else
13: s ← predE(s) + c0.
14: t ← 1.
15: d ← d − t.

16: return s

paths that are too short to observe speedups gained by a fast-forward query.
Therefore, we deal with nodes not present in the φ−1-forest separately.

Given the set of trees (i.e., the forest) built on the non-overlapping paths, we
can use them to speed up the random access computation as follows. Let i be a
position in the suffix array. We first compute the position j of the end of a BWT
run immediately preceding i. The number of iterations of φ−1 to be applied to
SA[j] are d = i − j. We start from s = SA[j], and find the node v in the φ−1-
graph corresponding to predE(s). Subsequently, we set c0 = s − predE(s). Next,
we check if v is stored in φ−1-forest.

– If v is stored in a tree of φ−1-forest (Line 8 in Algorithm 2), we perform
a bounded fast-forward query on this tree, starting from the node v, with
initial cost c0, and a limit to the total number of leaves to be traversed to be
d. The bounded fast-forward query will return the index ik in the graph of
the reached leaf, the final cost c, and the number of traversed edges t. Hence,
we compute SA[i − d + t] = E [ik] + c, and update the remaining steps d to
d − t.

– Otherwise (Line 12 in Algorithm 2), we apply the standard computation of
φ−1 to obtain SA[i − d + 1] = predE(s) + c0. Subsequently, we decrement the
remaining steps d by one.

We iterate this procedure until no further steps are required to be computed,
i.e., until we obtain d = 0. We summarize this procedure in Algorithm 2. For
simplicity, we assume there that we are not in the first run. Otherwise, we set
j = n = E [r] and write d ← i − j + n mod n. In φ−1-graph, E [r] is always
represented by a node having no outgoing edge. Therefore, we initially run into
the else branch in Line 12.

96 C. Boucher et al.

Fig. 3. Illustration of the SA access time (left) and space (right) of the r-index and
rasa on increasingly larger numbers of Chromosome 19 sequences.

Theorem 1. Given a string S[1..n], the r-index of S augmented by φ−1-forest,
and an index 1 ≤ i ≤ n, we can compute SA[i] in O((i−j)(log logw(n/r)+log r))
time, where j is the position of the end of a run preceding i and w is the machine
word size, with O(r) additional space to the r-index.

Proof. First, we note that our SA access only requires, in addition to the r-index,
φ−1-forest since all other components (including predecessor access) are part of
the r-index. There exists at most one node for each SA entry in E in φ−1-forest,
and each node has at most one outgoing edge. Hence, it follows that φ−1-forest
requires O(r)-space since the size of E is at most r. For the query time, in the
case that no node is stored in any φ−1-tree, we preform one predecessor query
for each SA value between j and i, which takes O((i − j) log logw(n/r)) time. In
the case that a tree is used, one bounded fast-forward query can be performed
in O(log r) time. Hence, we have O((i − j)(log logw(n/r) + log r)) time. ��

4 Experiments

Experimental Details. We evaluated the performance on two different datasets.
First, we compared the methods using Chromosome 19 sequences from the
1000 Genomes Project [17]. From this project, we created datasets consisting
of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024 sequences, which we call
chr.x in the following, where x is the number of assigned individuals. Next,
we compared the methods using the Pizza&Chili repetitive corpus [1]. We per-
formed all experiments on an AMD EPYC 75F3 32-core processor running at
2.95 GHz with 512 GB of RAM with 64-bit Linux. Time was measured using
std::chrono::system clock from the C++ standard library.

Competing Methods. We augmented the r-index implementation of Rossi et
al. [16] with our data structure, which we refer to as rasa. We compared rasa to
the standard φ implementation in the r-index of Rossi et al. We refer to this as
r-index. We note that the sr-index of Cobas et al. [5] is up to 6x times smaller

Accessing the Suffix Array via φ−1-Forest 97

Fig. 4. Illustration of the SA access time (left) and space (right) of the r-index and
rasa on Pizza&Chili repetitive corpus. We sampled 100,000 suffix array index positions
between 1 and n at random and calculated the mean CPU time to perform an SA access.

but showed no significant difference in the SA access time than the r-index
since it uses the same φ implementation. The block-tree CSA implementation
of Cáceres and Navarro [4] and RLCSA of Mäkinen et al. [11] (rlcsa) used
standard backward search. We wanted to compare against RLZCSA [14] but no
implementation is available, even upon request.

Random Access. In order to evaluate our implementation of φ−1, we randomly
selected 100,000 SA entries and performed the SA random access 5 time for each
entry. Figures 3 and 4 illustrate the average query times. On the Chromosome
19 datasets, the query times were comparable as they differed by at most half
a microsecond. On Pizza&Chili the r-index the results were more pronounced
as the rasa was between 3x and 6x times faster on all datasets except for cere
where there was negligible difference in the running time of the methods. On all
datasets, rasa required more memory, which is expected since it required the
addition of the φ−1-forest. However, even on the largest datasets, the additional
memory was less than 3 GB.

5 Conclusion

In this paper, we introduced the concept of φ−1-forest and demonstrated how
it can be used to access the SA. Again, we note that it can be implemented
analogously for φ. To the best of our knowledge, this is the third data structure
for φ/φ−1 since the development of the r-index—with Nishimoto and Tabei [13]
and sr-index [5] being the other two data structures. And although Brown et
al. [2] implemented the LF data structure of Nishimoto and Tabei, the φ data
structure of Nishimoto and Tabei has yet to be implemented. Our φ−1-forest
is competitive to the standard SA access of the r-index in practice, and also
provides a graphical representation that we believe can be exploited to gain
further insight into decreasing the theoretical time to access an entry of the SA
if we store only sampled values.

98 C. Boucher et al.

Acknowledgments. DK was supported by JSPS KAKENHI (Grant No.
JP21K17701, JP21H05847, and JP22H03551). CB and MR were supported by NIH
NHGRI (R01HG011392) and NSF EAGER (Grant No. 2118251). CB and HP were
funded by NSF SCH:INT (Grant No. 2013998).

References

1. Pizza & Chili Repetitive Corpus. http://pizzachili.dcc.uchile.cl/repcorpus.html..
Accessed June 2022

2. Brown, N.K., Gagie, T., Rossi, M.: RLBWT tricks. In Schulz, C., Uçar, B. (eds.)
20th International Symposium on Experimental Algorithms (SEA 2022), Volume
233 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 16:1–16:16,
Dagstuhl, Germany. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

3. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical report 124, Digital Equipment Corporation (1994)

4. Cáceres, M., Navarro, G.: Faster repetition-aware compressed suffix trees based on
block trees. Inf. Comput. 285, 104749 (2021)

5. Cobas, D., Gagie, T., Navarro, G.: A fast and small subsampled R-Index. In:
32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2021)

6. Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs
bounded space. In: Proceedings SODA, pp. 1459–1477 (2018)

7. Gagie, T., Navarro, G., Prezza, N.: Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM 67(1), 21–254 (2020)

8. Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix array.
In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 181–192.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02441-2 17

9. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol. 10(3), 1–10
(2009)

10. Li, H., Durbin, R.: Fast and accurate long-read alignment with Burrows-Wheeler
transform. Bioinformatics 26(5), 589–595 (2010)

11. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comput. Biol. 17(3), 281–308 (2010)

12. Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

13. Nishimoto, T., Tabei, Y.: Optimal-time queries on BWT-runs compressed indexes.
In: Proceedings of the 48th International Colloquium on Automata, Languages,
and Programming, (ICALP 2021), volume 198 of LIPIcs, pp. 101:1–101:15 (2021)

14. Puglisi, S.J., Zhukova, B.: Relative Lempel-Ziv compression of suffix arrays. In:
Boucher, C., Thankachan, S.V. (eds.) SPIRE 2020. LNCS, vol. 12303, pp. 89–96.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59212-7 7

15. Puglisi, S.J., Zhukova, B.: Smaller RLZ-compressed suffix arrays. In: Proceedings
of the 31st Data Compression Conference, (DCC 2021), pp. 213–222. IEEE (2021)

16. Rossi, M., Oliva, M., Langmead, B., Gagie, T., Boucher, C.: MONI: a pangenomic
index for finding maximal exact matches. J. Comput. Biol. 29(2), 169–187 (2022)

17. The 1000 Genomes Project Consortium. A global reference for human genetic
variation. Nature 526 68–74 (2015)

http://pizzachili.dcc.uchile.cl/repcorpus.html.
https://doi.org/10.1007/978-3-642-02441-2_17
https://doi.org/10.1007/978-3-030-59212-7_7

On the Optimisation of the GSACA Suffix
Array Construction Algorithm

Jannik Olbrich(B) , Enno Ohlebusch, and Thomas Büchler

University of Ulm, 89081 Ulm, Germany
{jannik.olbrich,enno.ohlebusch,thomas.buechler}@uni-ulm.de

https://www.uni-ulm.de/in/theo

Abstract. The suffix array is arguably one of the most important data
structures in sequence analysis and consequently there is a multitude
of suffix sorting algorithms. However, to this date the GSACA algorithm
introduced in 2015 is the only known non-recursive linear-time suffix
array construction algorithm (SACA). Despite its interesting theoretical
properties, there has been little effort in improving the algorithm’s sub-
par real-world performance. There is a super-linear algorithm DSH which
relies on the same sorting principle and is faster than DivSufSort, the
fastest SACA for over a decade. This paper is concerned with analysing
the sorting principle used in GSACA and DSH and exploiting its properties
in order to give an optimised linear-time algorithm. Our algorithm is not
only significantly faster than GSACA but also outperforms DivSufSort
and DSH.

Keywords: Suffix array · Suffix sorting · String algorithms

1 Introduction

The suffix array contains the indices of all suffixes of a string arranged in lex-
icographical order. It is arguably one of the most important data structures in
stringology, the topic of algorithms on strings and sequences. It was introduced
in 1990 by Manber and Myers for on-line string searches [9] and has since been
adopted in a wide area of applications including text indexing and compres-
sion [12]. Although the suffix array is conceptually very simple, constructing it
efficiently is not a trivial task.

When n is the length of the input text, the suffix array can be constructed
in O(n) time and O(1) additional words of working space when the alphabet
is linearly-sortable (i.e. the symbols in the string can be sorted in O(n) time)
[7,8,10]. However, algorithms with these bounds are not always the fastest in
practice. For instance, DivSufSort has been the fastest SACA for over a decade
although having super-linear worst-case time complexity [3,5]. To the best of
our knowledge, the currently fastest suffix sorter is libsais, which appeared
as source code in February 2021 on Github1 and has not been subject to peer
1 https://github.com/IlyaGrebnov/libsais, last accessed: August 22, 2022.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 99–113, 2022.
https://doi.org/10.1007/978-3-031-20643-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_8&domain=pdf
http://orcid.org/0000-0003-3291-7342
https://github.com/IlyaGrebnov/libsais
https://doi.org/10.1007/978-3-031-20643-6_8

100 J. Olbrich et al.

review in any academic context. The author claims that libsais is an improved
implementation of the SA-IS algorithm and hence has linear time complexity
[11].

The only non-recursive linear-time suffix sorting algorithm GSACA was intro-
duced in 2015 by Baier and is not competitive, neither in terms of speed nor
in the amount of memory consumed [1,2]. Despite the new algorithm’s entirely
novel approach and interesting theoretical properties [6], there has been little
effort in optimising it. In 2021, Bertram et al. [3] provided a faster SACA DSH
using the same sorting principle as GSACA. Their algorithm beats DivSufSort in
terms of speed, but also has super-linear time complexity.

Our Contributions. We provide a linear-time SACA that relies on the same
grouping principle that is employed by DSH and GSACA, but is faster than both.
This is done by exploiting certain properties of Lyndon words that are not used
in the other algorithms. As a result, our algorithm is more than 11% faster than
DSH on real-world texts and at least 46% faster than Baier’s GSACA implementa-
tion. Although our algorithm is not on par with libsais on real-world data, it
significantly improves Baier’s sorting principle and positively answers the ques-
tion whether the precomputed Lyndon array can be used to accelerate GSACA
(posed in [4]).

The rest of this paper is structured as follows: Sect. 2 introduces the defini-
tions and notations used throughout this paper. In Sect. 3, the grouping prin-
ciple is investigated and a description of our algorithm is provided. Finally, in
Sect. 4 our algorithm is evaluated experimentally and compared to other relevant
SACAs.

This is an abridged version of a longer paper available on arXiv [13].

2 Preliminaries

For i, j ∈ N0 we denote the set {k ∈ N0 : i ≤ k ≤ j} by the interval notations
[i .. j] = [i .. j + 1) = (i − 1 .. j] = (i − 1 .. j + 1). For an array A we analogously
denote the subarray from i to j by A [i .. j] = A [i .. j + 1) = A (i − 1 .. j] =
A (i − 1 .. j + 1) = A[i]A[i + 1] . . . A[j]. We use zero-based indexing, i.e. the first
entry of the array A is A[0]. A string S of length n over an alphabet Σ is a
sequence of n characters from Σ. We denote the length n of S by |S| and the
i’th symbol of S by S[i − 1], i.e. strings are zero-indexed. Analogous to arrays
we denote the substring from i to j by S [i .. j] = S [i .. j + 1) = S (i − 1 .. j] =
S (i − 1 .. j + 1) = S[i]S[i + 1] . . . S[j]. For j > i we let S [i .. j] be the empty
string ε. The suffix i of a string S of length n is the substring S [i .. n) and is
denoted by Si. Similarly, the substring S [0 .. i] is a prefix of S. A suffix (prefix)
is proper if i > 0 (i + 1 < n). For two strings u and v and an integer k ≥ 0 we
let uv be the concatenation of u and v and denote the k-times concatenation
of u by uk. We assume totally ordered alphabets. This induces a total order on
strings. Specifically, we say a string S of length n is lexicographically smaller

On the Optimisation of the GSACA Suffix Array Construction Algorithm 101

a

0

c

1

e

2

d

3

c

4

e

5

b

6

c

7

e

8

e

9

c

10

e

11

$

12

12 0 6 10 4 1 7 3 11 5 2 9 8SA
12 4 3 4 6 6 12 10 9 10 12 12 13nss
-1 0 1 1 0 4 0 6 7 7 6 10 -1pss

-1
0

1
2 3

4
5

6
7

8 9
10

11

12

Fig. 1. Shown are the Lyndon prefixes of all suffixes of S = acedcebceece$ and the
corresponding suffix array, nss-array, pss-array and pss-tree. Each box indicates a
Lyndon prefix. For instance, the Lyndon prefix of S7 = ceece$ is L7 = cee. Note that
Li is exactly S[i] concatenated with the Lyndon prefixes of i’s children in the pss-tree
(see Lemma 4), e.g. L6 = S[6]L7L10 = bceece.

than another string S′ of length m if and only if there is some � ≤ min {n,m}
such that S [0 .. �) = S′ [0 .. �) and either n = � < m or S[�] < S′[�]. If S is
lexicographically smaller than S′ we write S <lex S′.

A non-empty string S is a Lyndon word if and only if S is lexicographically
smaller than all its proper suffixes [14]. The Lyndon prefix of S is the longest
prefix of S that is a Lyndon word. We let Li denote the Lyndon prefix of Si.

In the remainder of this paper, we assume an arbitrary but fixed string S of
length n > 1 over a totally ordered alphabet Σ with |Σ| ∈ O(n). Furthermore,
we assume w.l.o.g. that S is null-terminated, that is S[n − 1] = $ and S[i] > $
for all i ∈ [0 .. n − 1).

The suffix array SA of S is an array of length n that contains the indices of the
suffixes of S in increasing lexicographical order. That is, SA forms a permutation
of [0 .. n) and SSA[0] <lex SSA[1] <lex . . . <lex SSA[n−1].

Definition 1 (pss-tree [4]). Let pss be the array such that pss[i] is the index
of the previous smaller suffix for each i ∈ [0 .. n) (or -1 if none exists). Formally,
pss[i] := max ({j ∈ [0 .. i) : Sj <lex Si} ∪ {−1}). Note that pss forms a tree with
-1 as the root, in which each i ∈ [−1 .. n) is represented by a node and pss[i]
is the parent of node i. We call this tree the pss-tree. Further, we impose an
order on the nodes that corresponds to the order of the indices represented by the
nodes. In particular, if c1 < c2 < · · · < ck are the children of i (i.e. pss[c1] =
· · · = pss[ck] = i), we say ck is the last child of i.

Analogous to pss[i], we define nss[i] := min {j ∈ (i .. n] : Sj <lex Si} as the
next smaller suffix of i. Note that Sn = ε is smaller than any non-empty suffix
of S, hence nss is well-defined.

In the rest of this paper, we use S = acedcebceece$ as our running example.
Figure 1 shows its Lyndon prefixes and the corresponding pss-tree.

102 J. Olbrich et al.

12 0 6 4 10 1 7 3 2 5 8 9 11

$

acedcebceece

bceece ce ced cee d e
G1 G2 G3 G4 G5 G6 G7 G8

Fig. 2. A Lyndon grouping of acedcebceece$ with group contexts.

Definition 2. Let Pi be the set of suffixes with i as next smaller suffix, that is

Pi = {j ∈ [0 .. i) : nss[j] = i}
For instance, in the example we have P4 = {1, 3} because nss[1] = nss[3] = 4.

3 GSACA

We start by giving a high level description of the sorting principle based on
grouping by Baier [1,2]. Very basically, the suffixes are first assigned to lexico-
graphically ordered groups, which are then refined until the suffix array emerges.
The algorithm consists of the following steps.

– Initialisation: Group the suffixes according to their first character.
– Phase I: Refine the groups until the elements in each group have the same

Lyndon prefix.
– Phase II: Sort elements within groups lexicographically.

Definition 3 (Suffix Grouping, adapted from [3]). Let S be a string of
length n and SA the corresponding suffix array. A group G with group context α
is a tuple 〈gs, ge, |α|〉 with group start gs ∈ [0 .. n) and group end ge ∈ [gs .. n)
such that the following properties hold:

1. All suffixes in SA [gs .. ge] share the prefix α, i.e. for all i ∈ SA [gs .. ge] it holds
Si = αSi+|α|.

2. α is a Lyndon word.

We say i is in G or i is an element of G and write i ∈ G if and only if i ∈
SA [gs .. ge]. A suffix grouping for S is a set of groups G1, . . . ,Gm, where the
groups are pairwise disjoint and cover the entire suffix array. Formally, if Gi =
〈gs,i, ge,i, |αi|〉 for all i, then gs,1 = 0, ge,m = n − 1 and gs,j = 1 + ge,j−1 for
all j ∈ [2 ..m]. For i, j ∈ [1 ..m], Gi is a lower (higher) group than Gj if and
only if i < j (i > j). If all elements in a group G have α as their Lyndon prefix
then G is a Lyndon group. If G is not a Lyndon group, it is called preliminary.
Furthermore, a suffix grouping is Lyndon if all its groups are Lyndon groups,
and preliminary otherwise.

With these notions, a suffix grouping is created in the initialisation, which
is then refined in Phase I until it is Lyndon, and further refined in Phase II
until the suffix array emerges. Figure 2 shows a Lyndon grouping of our running
example.

In Subsects. 3.1 and 3.2 we explain Phases II and I, respectively, of our
suffix array construction algorithm. Phase II is described first because it is much
simpler.

On the Optimisation of the GSACA Suffix Array Construction Algorithm 103

A[0] ← n − 1;
for i = 0 → n − 1 do

for j ∈ PA[i] do
Let k be the start of the group containing j;
remove j from its current group and put it in a new group 〈k, k, |Lj |〉 immediately
preceding j’s old group;

A[k] ← j;
end

end
Algorithm 1: Phase II of GSACA [1,2]

3.1 Phase II

In Phase II we need to refine the Lyndon grouping obtained in Phase I into the
suffix array. Let G be a Lyndon group with context α and let i, j ∈ G. Since Si =
αSi+|α| and Sj = αSj+|α|, we have Si <lex Sj if and only if Si+|α| <lex Sj+|α|.
Hence, in order to find the lexicographically smallest suffix in G, it suffices to find
the lexicographically smallest suffix p in {i + |α| : i ∈ G}. Note that removing
p − |α| from G and inserting it into a new group immediately preceding G yields
a valid Lyndon grouping. We can repeat this process until each element in G
is in its own singleton group. As G is Lyndon, we have Sk+|α| <lex Sk for each
k ∈ G. Therefore, if all groups lower than G are singletons, p can be determined
by a simple scan over G (by determining which member of {i + |α| : i ∈ G} is
in the lowest group). Consider for instance G4 = 〈3, 4, |ce|〉 from Fig. 2. We
consider 4 + |ce| = 6 and 10 + |ce| = 12. Among them, 12 belongs to the
lowest group, hence S10 is lexicographically smaller than S4. Thus, we know
SA[3] = 10 and remove 10 from G4 and repeat the process with the emerging
group G′

4 = 〈4, 4, |ce|〉. As G′
4 only contains 4 we know SA[4] = 4.

If the groups are refined from lower to higher as just described, each time a
group G is processed, all groups lower than G are singletons. However, sorting
groups in such a way leads to a superlinear time complexity. Bertram et al. [3]
provide a fast-in-practice O (n log n) algorithm for this, broadly following the
described approach.

In order to get a linear time complexity, we turn this approach on its head
like Baier does [1,2]: Instead of repeatedly finding the next smaller suffix in a
group, we consider the suffixes in lexicographically increasing order and for each
encountered suffix i, we move all suffixes that have i as the next smaller suffix
(i.e. those in Pi) to new singleton groups immediately preceding their respective
old groups. Corollary 1 implies that this procedure is well-defined.

Lemma 1. For any j, j′ ∈ Pi we have Lj �= Lj′ if and only if j �= j′.

Corollary 1. In a Lyndon grouping, the elements of Pi are in different groups.

Accordingly, Algorithm 1 correctly computes the suffix array from a Lyndon
grouping. A formal proof of correctness is given in [1,2]. Figure 3 shows Algorithm
1 applied to our running example.

104 J. Olbrich et al.

12 0 6 4 10 1 7 3 2 5 8 9 11
Since S is nullterminated, SA[0] = n − 1 = 12. Hence we insert P12 =
{0, 6, 10, 11}.

12 0 6 10 4 1 7 3 11 2 5 8 9
We skip SA[1] since P0 = ∅. Thus, P6 = {4, 5} is inserted next.

12 0 6 10 4 1 7 3 11 5 2 8 9
Next we have P10 = {7, 9}.

12 0 6 10 4 1 7 3 11 5 9 2 8
Next we have P4 = {1, 3}.

12 0 6 10 4 1 7 3 11 5 9 2 8
The only remaining nonempty Pi are P3 = {2} and P9 = {8}, which are
considered in that order. Inserting them gives the suffix array.
12 0 6 10 4 1 7 3 11 5 9 2 8

Fig. 3. Refining a Lyndon grouping for S = acedcebceece$ (see Fig. 2) into the suffix
array, as done in Algorithm 1. Inserted elements are colored green. (Color figure online)

Note that each element i ∈ [0 .. n − 1) has exactly one next smaller suffix,
hence there is exactly one j with i ∈ Pj and thus i is inserted exactly once into
a new singleton group in Algorithm 1. Therefore, it suffices to map each group
from the Lyndon grouping obtained from Phase I to its current start; we use an
array C that contains the current group starts.

There are two major differences between our Phase II and Baier’s, both are
concerned with the iteration over the Pi-sets.

The first difference is the way in which we determine the elements of Pi for
some i. The following observations enable us to iterate over Pi.

Lemma 2. Pi is empty if and only if i = 0 or Si−1 <lex Si. Furthermore, if
Pi �= ∅ then i − 1 ∈ Pi.

Lemma 3. For some j ∈ [0 .. i), we have j ∈ Pi if and only if j’s last child is
in Pi, or j = i − 1 and Sj >lex Si.

Specifically, (if Pi is not empty) we can iterate over Pi by walking up the pss-
tree starting from i−1 and halting when we encounter a node that is not the last
child of its parent.2 Baier [1,2] tests whether i − 1 (pss[j]) is in Pi by explicitly
checking whether i − 1 (pss[j]) has already been written to A using an explicit
marker for each suffix. Reading and writing those markers leads to bad cache
performance because the accessed memory locations are unpredictable (for the
CPU/compiler). Lemmata 2 and 3 enable us to avoid reading and writing those
markers. In fact, in our implementation of Phase II, the array A is the only
memory written to that is not always in the cache. Lemma 2 tells us whether
we need to follow the pss-chain starting at i − 1 or not. Namely, this is the case
if and only if Si−1 >lex Si, i.e. i − 1 is a leaf in the pss-tree. This information is
required when we encounter i in A during the outer for-loop in Algorithm 1, thus
2 Note that n−1 is the last child of the artificial root -1. This ensures that we always

halt before we actually reach the root of the pss-tree. Moreover, Corollary 1 implies
that the order in which we process the elements in Pi is not important.

On the Optimisation of the GSACA Suffix Array Construction Algorithm 105

A ← (n − 1)⊥n−1 ; // set A[0] = n − 1, fill the rest with “undefined”
Q ← queue containing only n − 1;
i ← 1; // current index in A
while Q is not empty do

s ← Q.size();
repeat s times // insert elements that are currently in the queue

v ← Q.pop();
if pss[v] is marked then // v is last child of pss[v]

Q.push(pss[v]);
end
A[C[G[v]]] ← v; // insert v
if pss[v] + 1 < v then mark A[C[G[v]]]; // v − 1 is leaf
C[G[v]] ← C[G[v]] + 1; // increment current start of v’s old group

end
while Q.size() < w ∧ i < n ∧ A[i] �= ⊥ do // refill the queue

if A[i] is marked then // A[i] − 1 is leaf
Q.push(A[i] − 1);

end
i ← i + 1;

end
end

Algorithm 2: Breadth-first approach to Phase II. The constant w is the max-
imum queue size and G[i] is the index of the group start pointer of i’s group
in C.

we mark such an entry i in A if and only if Pi �= ∅. Implementation-wise, we use
the most significant bit (MSB) of an entry to indicate whether it is marked or
not. By definition, we have Si−1 >lex Si if and only if pss[i]+1 < i. Since pss[i]
must be accessed anyway when i is inserted into A (for traversing the pss-chain),
we can insert i marked or unmarked into A. Further, Lemma 3 implies that we
must stop traversing a pss-chain when the current element is not the last child
of its parent. We mark the entries in pss accordingly, also using the MSB of
each entry. In the rest of this paper, we assume pss to be marked in this way.

Consider for instance i = 6 in our running example. As 6 − 1 = 5 is a leaf
(cf. Fig. 1), we have 5 ∈ P6. We can deduce the fact that 5 is indeed a leaf from
pss[6] = 0 < 5 alone. Further, 5 is the last child of pss[5] = 4, so 4 ∈ P6. Since
4 is not the last child of pss[4] = 0, we have P6 = {4, 5}.

The second major change concerns the cache-unfriendliness of traversing the
Pi-sets. This bad cache performance results from the fact that the next pss-
value (and the group start pointer) cannot be fetched until the current one is in
memory. Instead of traversing the Pi-sets one after another, we opt to travers-
ing multiple such sets in a sort of breadth-first-search manner simultaneously.
Specifically, we maintain a small (≤ 210 elements) queue Q of elements (nodes
in the pss-tree) that can currently be processed. Then we iterate over Q and
process the entries one after another. Parents of last children are inserted into Q
in the same order as the respective children. After each iteration, we continue to
scan over A and for each encountered marked entry i insert i−1 into Q until we
either encounter an empty entry in A or Q reaches its maximum capacity. This
is repeated until the suffix array emerges. The queue size could be unlimited, but
limiting it ensures that it fits into the CPU’s cache. Figure 4 shows our Phase II
on the running example and Algorithm 2 describes it formally in pseudo code.

106 J. Olbrich et al.

12 0 6 10 4 1 7 3 11 2 5 8 9

The first step is the same as in Fig. 3. Note that P0 = ∅, hence 0 is not marked for further
processing.

Now 6 − 1 = 5 and 10 − 1 = 9 are inserted into the queue and 6 and 10 are unmarked.
12 0 6 10 4 1 7 3 11 2 5 8 9 Q = 5 9

In the next step, the elements in the queue are inserted and replaced in the queue with their
parents (if they are last children, which happens to be the case for 5 and 9). Note that they
must be inserted in the same order as they appear in Q.
12 0 6 10 4 1 7 3 11 5 9 2 8 Q = 4 7

Neither 4 nor 7 are the last child of their respective parent.
12 0 6 10 4 1 7 3 11 5 9 2 8 Q is empty

However, we can advance the scan over A and insert 4 − 1 = 3 into Q.
12 0 6 10 4 1 7 3 11 5 9 2 8 Q = 3

Next, 3 is inserted into A. As 3 is the last child of 1, we insert 1 into Q and in the next step
into A. As 1 is not the last child of pss[1] = 0, Q is now empty.

12 0 6 10 4 1 7 3 11 5 9 2 8 Q is empty
We can continue the scan over A and insert 3 − 1 = 2 and 9 − 1 = 8 into Q.
12 0 6 10 4 1 7 3 11 5 9 2 8 Q = 2 8

Finally, the elements in the queue can be inserted and the suffix array emerges.
12 0 6 10 4 1 7 3 11 5 9 2 8

Fig. 4. Refining a Lyndon grouping for S = acedcebceece$ (see Fig. 2) into the suffix
array using Algorithm 2. Marked entries are coloured blue while inserted but unmarked
elements are coloured green. Note that the uncoloured entries are not actually present
in the array A but only serve to indicate the current Lyndon grouping. (Color figure
online)

Theorem 1. Algorithm 2 correctly computes the suffix array from a Lyndon
grouping.

3.2 Phase I

In Phase I, a Lyndon grouping is derived from a suffix grouping in which the
group contexts have length (at least) one. That is, the suffixes are sorted and
grouped by their Lyndon prefixes. Lemma 4 describes the relationship between
the Lyndon prefixes and the pss-tree that is essential to Phase I.

Lemma 4. Let c1 < · · · < ck be the children of i ∈ [0 .. n) in the pss-tree. Li is
S[i] concatenated with the Lyndon prefixes of c1, . . . , ck. More formally:

Li = S [i .. nss[i]) = S[i]S [c1 .. c2) . . . S [ck .. nss[i]) = S[i]Lc1 . . . Lck

We start from the initial suffix grouping in which the suffixes are grouped
according to their first characters. From the relationship between the Lyndon
prefixes and the pss-tree in Lemma 4 one can get the general idea of extend-
ing the context of a node’s group with the Lyndon prefixes of its children (in
correct order) while maintaining the sorting [1]. Note that any node is by def-
inition in a higher group than its parent. Also, by Lemma 4 the leaves of the
pss-tree are already in Lyndon groups in the initial suffix grouping. Therefore,
if we consider the groups in lexicographically decreasing order (i.e. higher to
lower) and append the context of the current group to each parent (and insert

On the Optimisation of the GSACA Suffix Array Construction Algorithm 107

12 0 6 1 4 7 10 3 2 5 8 9 11

e
In the initial suffix grouping, the suffixes are grouped according to their first
characters.

The first considered group contains the elements 2, 5, 8, 9 and 11 and has
context e. The parents of the elements are 1, 4, 10 and 7, where the former
three each have one child in the current group and the latter has two. All
are in the group with context c. Thus, we first move 7 to a new group with
context cee and then 1,4 and 10 to a new group with context ce.

12 0 6 1 4 10 7 3 2 5 8 9 11

d

Next the group with context d containing 3 is processed. The parent of 3 is 1
in a group with context ce, so it is moved to a new group with context ced.
Note that 4 and 10 are now also in a Lyndon group (still with context ce).

12 0 6 4 10 1 7 3 2 5 8 9 11

cee

The next processed group contains 7 and has context cee. The parent 6 is
moved to a new group with context bcee. (As 6 is already in a singleton
group, the actual grouping remains the same except for the context of 6’s
group.)

12 0 6 4 10 1 7 3 2 5 8 9 11

cedce

The next group again contains only one element, namely 1 with parent
0. Thus, 0 is put into a new group with context aced. Following that, the
next group contains 4 and 10, hence their parents 0 and 6 are put into new
groups with contexts acedce and bceece.

12 0 6 4 10 1 7 3 2 5 8 9 11

bceece

Finally, the only remaining element with a non-root parent is 6 (with parent
0) in a group with context bceece. Hence, 0 is put into a Lyndon group with
context acedcebceece. Afterwards, there is nothing more to do and we obtain
the Lyndon grouping from Fig. 2.

Fig. 5. Refining the initial suffix grouping for S = abccabccbcc$ (see Fig. 2) into the
Lyndon grouping. Elements in Lyndon groups are marked gray or green, depending on
whether they have been processed already. Note that the applied procedure does not
entirely correspond to our algorithm for Phase I; it only serves to illustrate the sorting
principle. (Color figure online)

them into new groups accordingly), each encountered group is guaranteed to
be Lyndon [1]. Consequently, we obtain a Lyndon grouping. Figure 5 shows this
principle applied to our running example. Formally, the suffix grouping satisfies
the following property during Phase I before and after processing a group:

Property 1. For any i ∈ [0 .. n) with children c1 < · · · < ck there is j ∈ [0 .. k]
such that (a) c1, . . . , cj are in groups that have already been processed, (b)
cj+1, . . . , ck are in groups that have not yet been processed, and (c) the context
of the group containing i is S[i]Lc1 . . . Lcj . Furthermore, each processed group
is Lyndon.

Additionally and unlike in Baier’s original approach, all groups created during
our Phase I are either Lyndon or only contain elements whose Lyndon prefix is
different from the group’s context.

Definition 4 (Strongly preliminary group). We call a preliminary group
G = 〈gs, ge, |α|〉 strongly preliminary if and only if G contains only elements

108 J. Olbrich et al.

whose Lyndon prefix is not α. A preliminary group that is not strongly prelimi-
nary is called weakly preliminary.

Lemma 5. For any weakly preliminary group G = 〈gs, ge, |α|〉 there is some g′ ∈
[gs .. ge) such that G′ = 〈gs, g

′, |α|〉 is a Lyndon group and G′′ = 〈g′ + 1, ge, |α|〉
is a strongly preliminary group.

For instance, in Fig. 5 there is a group containing 1,4 and 10 with context ce.
However, 4 and 10 have this context as Lyndon prefix while 1 has ced. Conse-
quently, 1 will later be moved to a new group. Hence, when Baier (and Bertram
et al.) create a weakly preliminary group (in Fig. 5 this happens while process-
ing the Lyndon group with context e), we instead create two groups, the lower
containing 4 and 10 and the higher containing 1.

During Phase I we maintain the suffix grouping using the following data struc-
tures. Two arrays A and I of length n each, where A contains the unprocessed
Lyndon groups and the sizes of the strongly preliminary groups, and I maps
each element s ∈ [0 .. n) to the start of the group containing s. We call I[s] the
group pointer of s. Further, we store the starts of the already processed groups
in a list C . Let G = 〈gs, ge, |α|〉 be a group. For each s ∈ G we have I[s] = gs. If
G is Lyndon and has not yet been processed, we also have s ∈ A [gs .. ge] for all
s ∈ G and A[gs] < A[gs+1] < · · · < A[ge]. If G is Lyndon and has been processed
already, there is some j such that C[j] = gs. If G is (strongly) preliminary we
have A[gs] = ge + 1 − gs and A[k] = 0 for all k ∈ (gs .. ge].

There are several reasons why our Phase I is much faster than Baier’s. Firstly,
we do not write preliminary groups to A. Secondly, we compute pss beforehand
using an algorithm by Bille et al. [4] instead of on the fly as Baier does [1,2].
Furthermore, we have the Lyndon groups in A sorted and store the sizes of the
strictly preliminary groups in A as well. The former makes finding the number
of children a parent has in the currently processed group easier and faster. The
latter makes the separate array of length n used by Baier [1,2] for the group sizes
obsolete and is made possible by the fact that we only write Lyndon groups to
A. For reasons why these changes lead to a faster algorithm see [13].

As alluded above, we follow Baier’s general approach and consider the Lyn-
don groups in lexicographically decreasing order while updating the groups
containing the parents of elements in the current group. Since children are in
higher groups than their parents by definition, when we encounter some group
G = 〈gs, ge, |α|〉, the children of any element in G are in already processed groups.
Hence, by Property 1 G must be Lyndon. For a formal proof see [1].

In the rest of this section we explain how to actually process a Lyndon group.
Let G = 〈gs, ge, |α|〉 be the currently processed group and w.l.o.g. assume that

no element in G has the root −1 as parent (we do not have the root in the suffix
grouping, thus nodes with the root as parent can be ignored here). Furthermore,
let A be the set of parents of elements in G (i.e. A = {pss[i] : i ∈ G, pss[i] ≥ 0})
and let G1 < · · · < Gk be those (necessarily preliminary) groups containing
elements from A. For each g ∈ [1 .. k] let αg be the context of Gg.

As noted in Fig. 5, we have to consider the number of children an element in
A has in G. Specifically, we need to move two parents in A which are currently

On the Optimisation of the GSACA Suffix Array Construction Algorithm 109

in the same group to different new groups if they have differing numbers of
children in G. Let A� contain those elements from A with exactly � children in
G. Maintaining Property 1 requires that, after processing G, for some g ∈ [1 .. k]
the elements in Gg ∩ A� are in groups with context αgα

�. For any � < �′, we
have αgα

� <lex αgα
�′
, thus the elements in Gg ∩ A� must form a lower group

than those in Gg ∩A�′ after G has been processed [1,2]. To achieve this, first the
parents in A|G| are moved to new groups immediately following their respective
old groups, then those in A|G|−1 and so on [1,2].

We proceed as follows. First, determine A and count how many children
each parent has in G. Then, sort the parents according to these counts using a
bucket sort.3 Further, partition the elements in each bucket into two sub-buckets
depending on whether they should be inserted into Lyndon groups or strongly
preliminary groups. Then, for the sub-buckets (in the order of decreasing count;
for equal counts: first strongly preliminary then Lyndon sub-buckets) move the
parents into new groups.4 Because of space constraints, we do not describe the
rather technical details. These can be found in the extended paper [13].

4 Experiments

Our implementation FGSACA of the optimised GSACA is publicly available.5
We compare our algorithm with the GSACA implementation by Baier [1,2],

and the double sort algorithms DS1 and DSH by Bertram et al. [3]. The latter
two also use the grouping principle but employ integer sorting and have super-
linear time complexity. DSH differs from DS1 only in the initialisation: in DS1 the
suffixes are sorted by their first character while in DSH up to 8 characters are
considered. We further include DivSufSort 2.0.2 and libsais 2.7.1 since the
former is used by Bertram et al. as a reference [3] and the latter is the currently
fastest suffix sorter known to us.

The algorithms were evaluated on real texts (in the following PC-Real), real
repetitive texts (PC-Rep-Real) and artificial repetitive texts (PC-Rep-Art) from
the Pizza & Chili corpus. To test the algorithms on texts for which a 32-bit suffix
array is not sufficient, we also included larger texts (Large), namely the first
1010 bytes from the English Wikipedia dump from 01.06.2022 and the human
DNA concatenated with itself. For more detail on the data and our testing
methodology see the longer version of this paper [13].

All algorithms were faster on the more repetitive datasets, on which the dif-
ferences between the algorithms were also smaller. On all datasets, our algorithm

3 Note that the sum of the counts is |G|, hence the time complexity of the bucket sort
is linear in the size of the group.

4 Note that Baier broadly follows the same steps (determine parents, sort them, move
them to new groups accordingly) [1,2]. However, each individual step is different
because of our distinction between strongly preliminary, weakly preliminary and
Lyndon groups.

5 https://gitlab.com/qwerzuiop/lfgsaca.

https://gitlab.com/qwerzuiop/lfgsaca

110 J. Olbrich et al.

0

1

2
1.

58

0.
53

0.
54 0.
66 0.

98

T
im

e
(s

1
0

M
iB
)

PC-Rep-Art

0.
87

0.
73

0.
75 0.

93

1.
76

PC-Rep-Real

0.
98

0.
88 1 1 .

1

2.
28

PC-Real

1.
97

1.
69 1.

96 2.
11

Large

D
i
v
S
u
f
S
o
r
t

F
G
S
A
C
A

D
S
H

D
S
1

G
S
A
C
A

0
5

10
15

9.
84

11
.3

7

12
.6

3

12

ex
tr
a
by

te
s/
n

D
i
v
S
u
f
S
o
r
t

F
G
S
A
C
A

D
S
H

D
S
1

G
S
A
C
A

8 .
61 6.
84

7.
56

12

D
i
v
S
u
f
S
o
r
t

F
G
S
A
C
A

D
S
H

D
S
1

G
S
A
C
A

8.
4 7.
01

7.
83

12

D
i
v
S
u
f
S
o
r
t

F
G
S
A
C
A

D
S
H

D
S
1

16
.5

4 8.
64

9.
3

Initialisation Phase I Phase II

Fig. 6. Normalised running time and working memory averaged for each category. The
horizontal red line indicates the time for libsais. For Large we did not test GSACA
because Baier’s reference implementation only supports 32-bit words. (Color figure
online)

is between 46% and 60% faster than GSACA and compared to DSH about 2% faster
on repetitive data, over 11% faster on PC-Real and over 13% faster on Large.

Especially notable is the difference in the time required for Phase II: Our
Phase II is between 33% and 50% faster than Phase II of DSH. Our Phase I is
also faster than Phase I of DS1 by a similar margin. Conversely, Phase I of DSH
is much faster than our Phase I. However, this is only due to the more elaborate
construction of the initial suffix grouping as demonstrated by the much slower
Phase I of DS1. Compared to FGSACA, libsais is between 46% and 3% faster.

Memory-wise, for 32-bit words, FGSACA uses about 8.83 bytes per input char-
acter, while DS1 and DSH use 8.94 and 8.05 bytes/character, respectively. GSACA
always uses 12 bytes/character. On Large, FGSACA expectedly requires about
twice as much memory. For DS1 and DSH this is not the case, mostly because
they use 40-bit integers for the additional array of length n that they require
(while we use 64-bit integers). DivSufSort requires only a small constant amount
of working memory and libsais never exceeded 21kiB of working memory on
our test data.

Acknowledgements. This work was supported by the Deutsche Forschungsgemein-
schaft (DFG - German Research Foundation) (OH 53/7-1).

On the Optimisation of the GSACA Suffix Array Construction Algorithm 111

A Proofs

Lemma 1. For any j, j′ ∈ Pi we have Lj �= Lj′ if and only if j �= j′.

Proof. Let j, j′ ∈ Pi and j �= j′. By definition of Pi we have nss[j] = nss[j′] = i.
Since Lj = S [j .. nss[j]) and Lj′ = S [j′ .. nss[j′]), Lj and Lj′ have different
lengths, implying the claim.

Lemma 2. Pi is empty if and only if i = 0 or Si−1 <lex Si. Furthermore,
if Pi �= ∅ then i − 1 ∈ Pi.

Proof. P0 = ∅ by definition. Let i ∈ [1 .. n). If Si−1 >lex Si we have nss[i−1] = i
and thus i − 1 ∈ Pi. Otherwise (Si−1 <lex Si), assume there is some j < i − 1
such that nss[j] = i. By definition, Sj >lex Si and Sj <lex Sk for each k ∈ (j .. i).
But by transitivity we also have Sj >lex Si−1, which is a contradiction, hence
Pi must be empty.

Lemma 3. For some j ∈ [0 .. i), we have j ∈ Pi if and only if j’s last child is
in Pi, or j = i − 1 and Sj >lex Si.

Proof. By Lemma 2 we may assume Pi �= ∅ and j + 1 < i, otherwise the claim
is trivially true. If j is a leaf we have nss[j] = j + 1 < i and thus j /∈ Pi by
definition. Hence assume j is not a leaf and has j′ > j as last child, i.e. pss[j′] = j
and there is no k > j′ with pss[k] = j. It suffices to show that j′ ∈ Pi if and
only if j ∈ Pi. Note that pss[j′] = j implies nss[j] > j′.

=⇒ : From nss[j′] = i and thus Sk >lex Sj′ >lex Sj (for all k ∈ (j′ .. i)) we
have nss[j] ≥ i. Assume nss[j] > i. Then Si >lex Sj and thus pss[i] = j, which
is a contradiction.

⇐= : From Si <lex Sj <lex Sj′ we have nss[j′] ≤ i. Assume nss[j′] < i for a
contradiction. For all k ∈ (j .. j′), pss[j′] = j implies Sk >lex Sj′ . Furthermore,
for all k ∈ [j′ .. nss[j′]) we have Sk >lex Snss[j′] by definition. In combination
this implies Sk >lex Snss[j′] for all k ∈ (j .. nss[j′]). As nss[j] = i > nss[j′] we
hence have pss[nss[j′]] = j, which is a contradiction.

Theorem 1. Algorithm 2 correctly computes the suffix array from a Lyndon
grouping.

Proof. By Lemmata 2 and 3, Algorithms 1 and 2 are equivalent for a maximum
queue size of 1. Therefore it suffices to show that the result of Algorithm 2 is
independent of the queue size. Assume for a contradiction that the algorithm
inserts two elements i and j with Si <lex Sj belonging to the same Lyndon
group with context α, but in a different order as Algorithm 1 would. This can
only happen if j is inserted earlier than i. Note that, since i and j have the same
Lyndon prefix α, the pss-subtrees Ti and Tj rooted at i and j, respectively, are
isomorphic (see [4]). In particular, the path from the rightmost leaf in Ti to i
has the same length as the path from the rightmost leaf in Tj to j. Thus, i and
j are inserted in the same order as Si+|α| and Sj+|α| occur in the suffix array.
Now the claim follows inductively.

112 J. Olbrich et al.

Lemma 4. Let c1 < · · · < ck be the children of i ∈ [0 .. n) in the pss-
tree. Li is S[i] concatenated with the Lyndon prefixes of c1, . . . , ck. More for-
mally:

Li = S [i .. nss[i]) = S[i]S [c1 .. c2) . . . S [ck .. nss[i]) = S[i]Lc1 . . . Lck

Proof. By definition we have Li = S [i .. nss[i]). Assume i has k ≥ 1 children
c1 < · · · < ck in the pss-tree (otherwise nss[i] = i + 1 and the claim is trivial).
For the last child ck we have nss[ck] = nss[i] from Lemma 3. Let j ∈ [1 .. k) and
assume nss[cj] �= cj+1. Then we have nss[cj] < cj+1, otherwise cj+1 would be a
child of cj . As we have Snss[cj] <lex Scj and Scj <lex Scj′ for each j′ ∈ [1 .. j) (by
induction), we also have Snss[cj] <lex Si′ for each i′ ∈ (i .. nss[cj]). Since nss[i] >
nss[cj], nss[cj] must be a child of i in the pss-tree, which is a contradiction.

Lemma 5. For any weakly preliminary group G = 〈gs, ge, |α|〉 there is some g′ ∈
[gs .. ge) such that G′ = 〈gs, g

′, |α|〉 is a Lyndon group and G′′ = 〈g′+1, ge, |α|〉 is
a strongly preliminary group.

Proof. Let G = 〈gs, ge, |α|〉 be a weakly preliminary group. Let F ⊂ G be the
set of elements from G whose Lyndon prefix is α. By Lemma 6 (below) we
have Si <lex Sj for any i ∈ F, j ∈ G \ F . Hence, splitting G into two groups
G′ = 〈gs, gs + |F | − 1, |α|〉 and G′′ = 〈gs + |F | , ge, |α|〉 results in a valid suffix
grouping. Note that, by construction, the former is a Lyndon group and the
latter is strongly preliminary.

Lemma 6. For strings wu and wv over Σ with u <lex wu and v >lex wv we
have wu <lex wv.

Proof. Note that there is no j such that wv = wj since otherwise v would be a
prefix of wv and v <lex wv would hold. Hence, there are k ∈ N, � ∈ [0 .. |w|) , b ∈
Σ and m ∈ Σ∗ such that wv = wkw [0 .. �) bm and b > w[�]. There are two cases:

– wu = wj for some j ≥ 1
• If j |w| ≤ k |w| + �, then wu is a prefix of wv.
• Otherwise, the first different symbol in wu and wv is at index p = k |w|+�

and we have (wu)[p] = wj [p] = w[�] < b = (wv)[p].
– There are i ∈ N, j ∈ [0 .. |w|) , a ∈ Σ and q ∈ Σ∗ such that wu = wiw [0 .. j) aq

and a < w[j].
• If |wiw [0 .. j) | ≤ |wkw [0 .. �) |, the first different symbol is at position

p = |wiw [0 .. j) | with wu[p] = a < w[j] ≤ wv[p].
• Otherwise, the first different symbol is at position p = |wkw [0 .. �) | with

wv[p] = b > w[�] = wu[p].

In all cases, the claim follows.

On the Optimisation of the GSACA Suffix Array Construction Algorithm 113

References

1. Baier, U.: Linear-time suffix sorting. Master’s thesis, Ulm University (2015)
2. Baier, U.: Linear-time suffix sorting - a new approach for suffix array construc-

tion. In: Grossi, R., Lewenstein, M. (eds.) 27th Annual Symposium on Combina-
torial Pattern Matching. Leibniz International Proceedings in Informatics, vol. 54.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

3. Bertram, N., Ellert, J., Fischer, J.: Lyndon words accelerate suffix sorting. In:
Mutzel, P., Pagh, R., Herman, G. (eds.) 29th Annual European Symposium on
Algorithms. Leibniz International Proceedings in Informatics, vol. 204, pp. 15:1–
15:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

4. Bille, P., et al.: space efficient construction of Lyndon arrays in linear time. In: Czu-
maj, A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium on Automata,
Languages, and Programming. Leibniz International Proceedings in Informatics,
vol. 168, pp. 14:1–14:18. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

5. Fischer, J., Kurpicz, F.: Dismantling DivSufSort. In: Holub, J., Žd’árek, J. (eds.)
Proceedings of the Prague Stringology Conference 2017, pp. 62–76 (2017)

6. Franek, F., Paracha, A., Smyth, W.F.: The linear equivalence of the suffix array
and the partially sorted Lyndon array. In: Holub, J., Žd’árek, J. (eds.) Proceedings
of the Prague Stringology Conference 2017, pp. 77–84 (2017)

7. Goto, K.: Optimal time and space construction of suffix arrays and LCP arrays for
integer alphabets. In: Holub, J., Žd’árek, J. (eds.) Proceedings of the 23rd Prague
Stringology Conference, pp. 111–125 (2017)

8. Li, Z., Li, J., Huo, H.: Optimal in-place suffix sorting. Inf. Comput. 285, 104818
(2022). https://doi.org/10.1016/j.ic.2021.104818. ISSN 0890-5401

9. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. In:
Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 319–327. Society for Industrial and Applied Mathematics (1990)

10. Nong, G.: Practical linear-time O(1)-workspace suffix sorting for constant alpha-
bets. ACM Trans. Inf. Syst. 31(3), 1–15 (2013)

11. Nong, G., Zhang, S., Chan, W.H.: Linear suffix array construction by almost pure
induced-sorting. In: 2009 Data Compression Conference, pp. 193–202 (2009)

12. Ohlebusch, E.: Bioinformatics algorithms: sequence analysis, genome rearrange-
ments, and phylogenetic reconstruction. Oldenbusch Verlag (2013)

13. Olbrich, J., Ohlebusch, E., Büchler, T.: On the optimisation of the GSACA suffix
array construction algorithm (2022). https://doi.org/10.48550/ARXIV.2206.12222

14. Pierre Duval, J.: Factorizing words over an ordered alphabet. J. Algorithms 4(4),
363–381 (1983)

https://doi.org/10.1016/j.ic.2021.104818
https://doi.org/10.48550/ARXIV.2206.12222

String Compression

Balancing Run-Length Straight-Line
Programs

Gonzalo Navarro, Francisco Olivares, and Cristian Urbina(B)

CeBiB — Center for Biotechnology and Bioengineering, Department of Computer
Science, University of Chile, Santiago, Chile

crurbina@dcc.uchile.cl

Abstract. It was recently proved that any SLP generating a given string
w can be transformed in linear time into an equivalent balanced SLP
of the same asymptotic size. We show that this result also holds for
RLSLPs, which are SLPs extended with run-length rules of the form
A → Bt for t > 2, deriving exp(A) = exp(B)t. An immediate conse-
quence is the simplification of the algorithm for extracting substrings of
an RLSLP-compressed string. We also show that several problems like
answering RMQs and computing Karp-Rabin fingerprints on substrings
can be solved in O(grl) space and O(log n) time, grl being the size of the
smallest RLSLP generating the string, of length n. We extend the result
to solving more general operations on string ranges, in O(grl) space and
O(log n) applications of the operation. In general, the smallest RLSLP
can be asymptotically smaller than the smallest SLP by up to an O(log n)
factor, so our results can make a difference in terms of the space needed
for computing these operations efficiently for some string families.

Keywords: Run-length straight-line programs · Substring range
problems · Repetitive strings

1 Introduction

Enormous collections of data are being generated at every second nowadays.
Already storing this data is becoming a relevant and practical challenge. Com-
pression serves to represent the data within reduced space. Still, just storing
the data in compressed form is not sufficient in many cases; one also requires
to construct data structures that support various queries within the compressed
space. For example, index data structures support the search for short patterns
in compressed strings. In areas like Bioinformatics, these collections of strings
are often very repetitive [22], which makes traditional compressors and indexes
based on Shannon’s entropy unsuitable for this task [19].

Over the years, several compressors and data structures exploiting repeti-
tiveness have been devised. Examples of this are the Lempel-Ziv family [16,18]

Funded in part by Basal Funds FB0001, Fondecyt Grant 1-200038, and two Conicyt
Doctoral Scholarships, ANID, Chile.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 117–131, 2022.
https://doi.org/10.1007/978-3-031-20643-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-20643-6_9

118 G. Navarro et al.

and the run-length Burrows-Wheeler transform (BWT) [3,8]. While compressors
based on Lempel-Ziv achieve the best compression ratios, indexes based on them
are not very fast and provide limited functionality. On the other hand, indexes
based on the BWT can efficiently solve a variety of queries over strings, but their
compression ratio is far from optimal for repetitive sequences [13].

Somewhere in between of Lempel-Ziv and BWT compression is grammar
compression. This approach consists in constructing a deterministic context-free
grammar generating only the string to be compressed; such grammars are called
straight-line programs (SLPs). Although finding the smallest SLP generating a
string is NP-complete [4], there exist several heuristics [17,20] and approxima-
tions [11,23] producing SLPs of small size. The popularity of SLPs probably
comes from their simplicity to expose repetitive patterns on strings, which is
useful to avoid redundant computation in compressed space [15,25]. This makes
SLPs ideal for indexing and answering queries in compressed space [2,10].

A problem that complicates such computations is that the parse tree of the
grammars can be arbitrarily tall. While tasks like accessing a symbol of the
string in time proportional to the parse tree height is almost trivial, achiev-
ing O(log n) time on general grammars requires much more sophistication [2].
Recently, Ganardi et al. [10] showed that any SLP can be balanced without pay-
ing an (asymptotic) increase in its size. This simplified several problems that were
difficult for general SLPs, but easy if the depth of their parse tree is O(log n).
Accessing a symbol in time O(log n) is nearly optimal, actually [24].

An extended grammar compression mechanism are the run-length SLPs
introduced by Nishimoto et al. [21]. An RLSLPs is an SLP extended with run-
length rules of the form A → Bt for some t > 2, which derive exp(A) = exp(B)t.
While the size of the smallest SLP generating a string of length n is always
Ω(log n), the smallest RLSLP can be of size O(1) for some string families, which
exhibit a logarithmic gap between the compression power of SLPs and RLSLPs.
RLSLP have recently gained popularity for indexing. For example, all known
locally consistent grammars are RLSLPs, and they have been a key component
in the most recent indices for repetitive text collections. A locally consistent
grammar is built through consecutive applications of a locally consistent pars-
ing, which is a method to partition a string into non-overlapping blocks, such
that equal substrings are equally parsed with the possible exception of their mar-
gins. Gagie et al. [9] built an index based on locally consistent grammars using
O(r log log n) space, with which they were able to count the occ occurrences
of a length-m pattern in optimal time O(m) and locate them in optimal time
O(m + occ), where r is the number of runs in the BWT [3] of the string. Koci-
umaka et al. [5] also built a locally consistent grammar to index a string. Their
grammar can count and locate the pattern in optimal time using O(γ log n

γ logε n)
space, where γ is the size of the smallest string attractor of the string [14].

In this paper we extend the results of Ganardi et al. to RLSLPs, that is, we
show that one can always balance an RLSLP in linear time without increasing its
asymptotic size. This result yields a considerable simplification to the algorithm
for accessing any symbol of the string in logarithmic time [5, Appendix A]. It has

Balancing Run-Length Straight-Line Programs 119

other implications, like computing range minimum queries (RMQs) [7] or Karp-
Rabin fingerprints [12], in O(log n) time and within O(grl) space. We generalize
those concepts and show how to compute a wide class of semiring-like functions
over substrings of an RLSLP-compressed string within O(grl) space and O(log n)
applications of the function.

2 Terminology

2.1 Strings

Let Σ be any finite set of symbols (an alphabet). A string w is any finite tuple of
elements in Σ. The length of a string is the length of the tuple, and the empty
string of length 0 is denoted by ε. The set Σ∗ is formed by all the strings that
can be defined over Σ. For any string w = w1 . . . wn, its i-th symbol is denoted
by w[i] = wi. Similarly, w[i : j] = wi . . . wj with 1 ≤ i ≤ j ≤ n, or ε if j < i. We
also define w[: i] = w1 . . . wi and w[i :] = wi . . . wn. If x[1 : n] and y[1 : m] are
strings, the concatenation operation xy is defined as xy = x1 . . . xny1 . . . ym. If
w = xyz, then y (resp. x, z) is a substring (resp. prefix, suffix) of w.

2.2 Straight-Line Programs

A straight-line program (SLP) is a deterministic context-free grammar gener-
ating a unique string w. More formally, an SLP is a context free grammar
G = (V,Σ,R, S) where V is the set of variables (or non-terminals), Σ is the
set of terminal symbols (disjoint from V), R ⊆ V × (V ∪ Σ)∗ is the set of rules
and S is the initial variable; satisfying that each variable has only one rule asso-
ciated, and that the variables are ordered in such a way that the starting variable
is the greater of them, and any variable can only refer to other variables strictly
lesser than itself or terminals, in the right-hand side of its rule. Any variable
A derives a unique string exp(A), and the string generated by the SLP, is the
string generated by its starting variable. The size of an SLP is defined as the
sum of the lengths of the right-hand side of its rules. The size of the smallest
SLP generating a string is denoted by g, and is a relevant measure of repetitive-
ness. An SLP generating a non-empty string is often given in so-called Chomsky
Normal Form, that is, with all its rules being of the form A → BC or A → a for
A,B,C variables, and a a terminal symbol.

While computing the smallest grammar is an NP-hard problem [4], there exist
several heuristic providing log-approximations of the smallest SLP [11,23]. SLPs
are popular as compression devices because several problems over strings can
be solved efficiently using their SLP representation, without ever decompressing
them. Examples of this are accessing to arbitrary positions of w, extracting
substrings, and many other kind of queries [2]. For several queries, it is convenient
to have a balanced SLP, that is, an SLP whose parse tree has O(log n) depth.
Recently, Ganardi et al. showed that any SLP can be balanced [10].

120 G. Navarro et al.

2.3 Directed Acyclic Graph of an SLP

A directed acyclic graph (DAG) is a directed multigraph D without cycles (nor
loops). We denote by |D| the number of edges in this DAG. For our purposes,
we assume that any DAG has a distinguished node r, satisfying that any other
node can be reached from r, and has no incoming edges. We also assume that
if a node has k outgoing edges, they are numbered from 1 to k. The sink nodes
of a DAG are the nodes without outgoing edges. The set of sink nodes of D
is denoted by W . We denote the number of paths from u to v as π(u, v), and
π(u, V) =

∑
v∈V π(u, v) for a set V of nodes. The number of paths from the root

to the sink nodes is n(D) = π(r,W).
One can interpret an SLP generating a string w as a DAG D: There is a node

for each variable in the SLP, the root node is the initial variable, terminal rules
of the form A → a are the sink nodes, and a variable with rule A → B1B2 . . . Bk

has outgoing edges (A, i,Bi) for i ∈ [1..k]. Note that if D is a DAG representing
G, then n(D) = |exp(G)| = |w|.

2.4 Run-Length Straight-Line Programs

A run-length straight-line program (RLSLP) is an SLP extended with run-length
rules [21]. An RLSLP can have rules of the form:

– A → a, for some terminal symbol a.
– A → A1A2 . . . Ak, for some variables A1, . . . , Ak and k > 1.
– A → Bt, for some t > 2.

The string generated by a variable A with rule A → Bt is exp(B)t. A run-
length rule is considered to have size 2 (one word is needed to store the exponent).
We denote by grl to the size of the smallest RLSLP generating the string. The
depth of the RLSLP is the depth of its associated equivalent SLP, obtained by
unfolding its run-length rules A → Bt into rules of the form A → BB . . . B
of length t. Observe that a rule of the form A → A1A2 . . . Ak can always be
transformed into O(k) rules of size 2, with one of them derivating the same
string as A. Doing this for all rules can increase the depth of the RLSLP, but if
k is bounded by a constant, then this increase is only by a constant factor.

3 Balancing Run-Length Straight-Line Programs

The idea utilized by Ganardi et al. to transform an SLP G into an equivalent
balanced SLP of size O(|G|) [10, Theorem 1.2], can be adapted to work with
RLSLPs. First, we state some definitions and results proved in their work, which
we need to obtain our result.

Definition 1. (Ganardi et al. [10, page 5]) Let D be a DAG, and define the pairs
λ(v) = (�log2 π(r, v)�, �log2 π(v,W))�). The symmetric centroid decomposition
(SC-decomposition) of a DAG D produces a set of edges between nodes with the
same λ pairs defined as Escd(D) = {(u, i, v) ∈ E |λ(u) = λ(v)}, partitioning D
into disjoint paths called SC-paths (some of them possibly empty).

Balancing Run-Length Straight-Line Programs 121

A0 → A1A12

A1 → A11A2

A2 → A5A3

A3 → A4A6

A4 → A5
5

A5 → A11A6

A6 → A7A12

A7 → A8A12

A8 → A10A9

A9 → A4
10

A10 → A11A12

A11 → 0

A12 → 1

A01 92

A11 91

A21 90

A31 77

A41 65

A56 13

A67 12

A77 11

A87 10

A97 8

A1035 2

A1142 1 A1250 1

Fig. 1. The DAG and SC-decomposition of an unfolded RLSLP generating the string
0(0(01)512)6(01)513. The value to the left of a node is the number of paths from the
root to that node, and the value to the right is the number of paths from the node to
sink nodes. Red edges belong to the SC-decomposition of the DAG. Blue (resp. green)
edges branch from an SC-path to the left (resp. to the right). (Color figure online)

The set Escd can be computed in O(|D|) time. If D is the DAG of an SLP
G this becomes O(|G|). The following lemma justifies the name “SC-paths”.

Lemma 1. (Ganardi et al. [10, Lemma 2.1]) Let D = (V,E) be a DAG. Then
every node has at most one outgoing and at most one incoming edge from
Escd(D). Furthermore, every path from the root r to a sink node contains at
most 2 log2 n(D) edges that do not belong to Escd(D).

Note that the sum of the lengths of all SC-paths is at most the number of
nodes of the DAG, or the number of variables of the SLP. An example of the
SC-decomposition of a DAG can be seen in Fig. 1.

The following definition and technical lemma are needed to construct the
building blocks of our balanced RLSLPs.

Definition 2. (Ganardi et al. [10, page 7]) A weighted string is a string w ∈ Σ∗

equipped with a weight function || · || : Σ → N\{0}, which is extended homomor-
phically. If A is a variable in an SLP G, then we also write ||A|| for the weight
of the string exp(A) derived from A.

122 G. Navarro et al.

Lemma 2. (Ganardi et al. [10, Proposition 2.2]) For every non-empty weighted
string w of length n one can construct in linear time an SLP G with the following
properties:

– G contains at most 3n variables
– All right-hand sides of G have length at most 4
– G contains suffix variables S1, ..., Sn producing all non-trivial suffixes of w
– every path from Si to some terminal symbol a in the derivation tree of G has

length at most 3 + 2(log2 ||Si|| − log2 ||a||)
We prove that any RLSLP can be balanced without asymptotically increasing

its size. Our proof generalizes that of [10, Theorem 1.2] for SLPs.

Theorem 1. Given an RLSLP G generating a string w, it is possible to con-
struct an equivalent balanced RLSLP G′ of size O(|G|), in linear time, with only
rules of the form A → a,A → BC, and A → Bt, where a is a terminal, B and
C are variables, and t > 2.

Proof. Without loss of generality, assume that G has rules of length at most 2,
so it is almost in Chomsky Normal Form, except that it has run-length rules.
Transform the RLSLP G into an SLP H by unfolding its run-length rules, and
then obtain the SC-decomposition Escd(D) of the DAG D of H. Observe that
the SC-paths of H use the same variables of G, so it holds that the sum of
the lengths of all the SC-paths of H is less than the number of variables of
G. Also, note that any variable A of G having a rule of the form A → Bt for
some t > 2 is necessarily an endpoint of an SC-path in D, otherwise A would
have t outgoing edges in Escd(D), which cannot happen.1 This implies that the
balancing procedure of Ganardi et al. over H, which transforms the rules of
variables that are not the endpoint of an SC-path in the DAG D, will not touch
variables that originally were run-length in G.

Let ρ = (A0, d0, A1), (A1, d1, A2), . . . , (Ap−1, dp−1, Ap) be an SC-path of D.
It holds that for each Ai with i ∈ [0..p − 1], in the SLP H, its rule goes to
two distinct variables, one to the left and one to the right. For each variable
Ai, with i ∈ [0..p − 1], there is a variable A′

i+1 that is not part of the path.
Let A′

1A
′
2 . . . A′

p be the sequence of those variables. Let L = L1L2 . . . Ls be the
subsequence of left variables of the previous sequence. Then construct an SLP
of size O(s) ≤ O(p) for the sequence L (seen as a string) as in Lemma 2, using
|exp(Li)| in H as the weight function. In this SLP, any path from the suffix
nonterminal Si to a variable Lj has length at most 3 + 2(log2 ||Si|| − log2 ||Lj ||).
Similarly, construct an SLP of size O(t) ≤ O(p) for the sequence R = R1R2 . . . Rt

of right symbols in reverse order, as in Lemma 2, but with prefix variables Pi

instead of suffix variables. Each variable Ai, with i ∈ [0..p − 1], derives the same
string as w�Apwr, for some suffix w� of L and some prefix wr of R. We can find
rules deriving these prefixes and suffixes in the SLPs produced in the previous

1 Seen another way, λ(A) �= λ(B) because log2 π(A, W) = log2(t · π(B, W)) > 1 +
log2 π(B, W).

Balancing Run-Length Straight-Line Programs 123

step, so for any variable Ai, we construct an equivalent rule of length at most
3. Add these equivalent rules, and the left and right SLP rules to a new RLSLP
G′. Do this for all SC-paths. Finally, we add the original terminal variables and
run-length variables of the RLSLP G, so G′ is an RLSLP equivalent to G.

The SLP constructed for L has all its rules of length at most 4, and 3s ≤ 3p
variables. The same happens with R. The other constructed rules also have
length at most 3, and there are p of them. Summing over all SC-paths we have
O(|G|) size. The original terminal variables and run-length variables of G have
rules of size at most 4, and we keep them. Thus, the RLSLP G′ has size O(|G|).

Any path in the derivation tree of G′ is of length O(log n). To see why, let
A0, . . . , Ap be an SC-path. Consider a path from a variable Ai to an occurrence
of a variable that is in the right-hand side of Ap in G′. Clearly this path has
length at most 2. Now consider a path from Ai to a variable A′

j in L with
i < j ≤ p. By construction this path is of the form Ai → Sk →∗ A′

j for
some suffix variable Sk (if the occurrence of A′

j is a left symbol), and its length
is at most 1 + 3 + 2(log2 ||Sk|| − log2 ||A′

j ||) ≤ 4 + 2 log2 ||Ai|| − 2 log2 ||A′
j ||.

Analogously, if A′
j is a right variable, the length of the path is bounded by

1+3+2(log2 ||Pk||− log2 ||A′
j ||) ≤ 4+2 log2 ||Ai||−2 log2 ||A′

j ||. Finally, consider
a maximal path to a leaf in the parse tree of G′. Factorize it as

A0 →∗ A1 →∗ · · · →∗ Ak

where each Ai is a variable of H (and also of G). Paths Ai →∗ Ai+1 are like
those defined in the paragraph above, satisfying that their length is bounded by
4 + 2 log2 ||Ai|| − 2 log2 ||Ai+1||. Observe that between each Ai and Ai+1, in the
DAG D there is almost an SC-path, except that the last edge is not in Escd.
The length of this path is at most

k−1∑

i=0

(4 + 2 log2 ||Ai|| − 2 log2 ||Ai+1||) ≤ k + 2 log2 ||A0|| − 2 log2 ||Ak||

By Lemma 1, k ≤ 2 log2 n, which yields the O(log n) upper bound. The con-
struction time is linear, because the SLPs of Lemma 2 are constructed in linear
time in the lengths of the SC-paths (summing to O(|G|)), and Escd(D) can
be obtained in time O(|G|) (instead of O(H)) if we represent in the DAG D
the edges of a variable A with rule A → Bt as a single edge extended with
the power t. This way, when traversing the DAG from root to sinks and sinks
to root to compute λ values, it holds that π(A,W) = t · π(B,W), and that
π(r,B) = t · π(r,A) + c, where c are the paths from root incoming from other
variables. Thus, each run-length edge must be traversed only once, not t times.

To have rules of size at most two, delete rules in G′ of the form A → B
(replacing all A’s by B’s), and note that rules of the form A → BCDE or
A → BCD can be decomposed into rules of length 2, with only a constant
increase in size and depth. 	

124 G. Navarro et al.

4 Substring Range Operations in O(grl) Space

4.1 Karp-Rabin Fingerprints

To answer signature κ(w[p : q]) = (
∑q

i=p w[i] · ci−p) mod μ, for a suitable integer
c and prime number μ, we use the following identity for any p′ ∈ [p..q − 1]:

κ(w[p : q]) =
(

κ(w[p : p′]) + κ(w[p′ + 1 : q]) · cp′−p+1

)

mod μ (1)

and then it holds

κ(w[p : p′]) =
(

κ(w[p : q]) − κ(w[p′ + 1 : q]) · cp′−p+1

)

mod μ

κ(w[p′ + 1 : q])· =
(

κ(w[p : q]) − κ(w[p : p′])
cp′−p+1

)

mod μ,

which implies that, to answer κ(w[p : q]), we can compute κ(w[1 : p − 1]) and
κ(w[1 : q]) and then subtract one to another. For that reason, we only consider
computing fingerprints of text prefixes. Then, the recursive calls to our algorithm
just need to know the right boundary of a prefix, namely computing signature
on the substring exp(A)[1 : j] of the string expanded by a symbol A of our
grammar can be expressed as κ(A, j).

Suppose that we want to compute the signature of a prefix w[1 : j] and that
there is a rule A → BC such that exp(A) = w[1 : q], with j ≤ q. If j = |exp(B)|
or j = q, we can have stored κ(exp(A)) and κ(exp(B)) and answer directly the
query. On the other hand, if j < |exp(B)|, we can answer κ(exp(B)[1 : j]) by
descending in the derivation tree of B. Otherwise, |exp(B)| < j < |exp(A)|,
then we can use Eq. 1 and answer (κ(exp(B)) + κ(exp(C)[1 : j − |exp(B)|] ·
c|exp(B)|) mod μ, where κ(exp(C)[1 : j − |exp(B)|] is obtained by descending
in the derivation tree of C. Then, in addition to storing κ(exp(A)) for every
nonterminal A, we also need to store c|exp(A)| mod μ and |exp(A)|. Therefore,
the cost of computing fingerprints is just the depth of the derivation tree of A.

The same does not apply for run-length rules A → Bt, because we cannot
afford the space consumption of storing ct′·|exp(B)| mod μ for every 1 ≤ t′ ≤ t, as
this could give us a structure bigger than O(grl). Instead, we can treat run-length
rules as regular rules A → B . . . B. Then, we can use the following identity

κ(exp(Bt′
)) =

(

κ(exp(B)) · c|exp(B)|·t′ − 1
c|exp(B)| − 1

)

mod μ.

Namely, to compute κ(exp(Bt′
)) we can have previously stored c|exp(B)| mod

μ and (c|exp(B)| − 1)−1 mod μ and then compute the exponentiation in time
O(log t). With this, if j ∈ [t′ · |exp(B)| + 1..(t′ + 1) · |exp(B)|] we can handle
run-length rules signatures κ(exp(Bt)[1 : j]) as

(

κ(exp(Bt′
)) + κ(exp(B)[1 : j − t′ · |exp(B)|]) · ct′·|exp(B)|

)

mod μ,

Balancing Run-Length Straight-Line Programs 125

where κ(exp(B)[1 : j − t′ · |exp(B)|]) is obtained by descending in the derivation
tree of B. We are saving space by storing our structure at the cost of increasing
computation time. As we show later, this time is in fact logarithmic.

A Structure for Karp-Rabin Signatures. We construct a structure over
a balanced RLSLP from Theorem 1, using some auxiliary arrays. We define
an array L[A] = |exp(A)| consisting of the length of the expansion of each
nonterminal A. For terminals a, we assume L[a] = 1. Also, we define arrays K1

and K2 such that, for each nonterminal A,

K1[A] = κ(exp(A)),

K2[A] = cL[A] mod μ,

with the Karp-Rabin fingerprint of the string expanded by A and the last power
of c used in the signature multiplied by c, namely the first power needed for
signing the second part of the string expanded by A. For terminals a we assume
K1[a] = a mod μ and K2[a] = c mod μ. In addition, for rules A → Bt we store

E[A] = (K2[B] − 1)−1 mod μ.

The arrays L, Kj , and E add only O(grl) extra space. With these auxiliary
structures, we can compute fingerprints in O(log n) time.

Theorem 2 (cf. [1,5]). It is possible to construct an index of size O(grl) sup-
porting Karp-Rabin fingerprints for prefixes of w[1 : n] in O(log n) time.

Proof. Let G be a balanced RLSLP of size O(grl) constructed as in Theorem 1.
We construct arrays L, Ki, and E as shown above. To compute κ(A, j), we do
as follows:

1. If j = L[A], return K1[A].
2. If A → BC, then:

(a) If j ≤ L[B], return κ(B, j).
(b) If L[B] < j, return

(
K1[B] + κ(C, j − L[B]) · K2[B]

)
mod μ.

3. If A → Bt for t > 2, then:
(a) If j ≤ L[B], return κ(B, j).
(b) If j ∈ [t′L[B] + 1..(t′ + 1)L[B]] with 1 ≤ t′ < t, let e = K2[B]t

′
and

f = (e − 1) · E[A] mod μ, then return
(
K1[B] · f + κ(B, j − t′L[B]) · e

)
mod μ.

Every step of the algorithm takes O(1) time, so the cost is the depth of the
derivation tree of G. The only exception is case 3(b), in which we have an expo-
nentiation. For a non-terminal A → Bt, this exponentiation takes O(log t) time,
which is O(log(|exp(A)|/|exp(B)|)) time for managing every run-length rule. We
show next that O(log(|exp(A)|/|exp(B)|)) telescopes to O(log |exp(A)|), thus we
obtain O(log n) time for the overall algorithm time.

126 G. Navarro et al.

A0 → A1A2

A1 → A3A4

A2 → A4A5

A3 → A3
7

A4 → A7A6

A5 → A3
6

A6 → 1
A7 → 0

κ(A0, 9) = (K1[A1] + κ(A2, 4) · K2[A1]) mod 3 = 2

κ(A2, 4) = (K1[A4] + κ(A5, 2) · K2[A4]) mod 3 = 2

κ(A5, 2) = (K1[A6] · f + κ(A6, 1) · e) mod 3 = 0

κ(A6, 1) = K1[A6] = 1

Fig. 2. Example of a balanced RLSLP for the string 041014 (left) and fingerprint
computation over a length-8 prefix of the string generated by this RLSLP (right), with
c = 2, μ = 3, K1[A1, A4, A6] = [1, 2, 1], K2[A1, A4, A6] = [2, 1, 2], f = 1, and e = 2.

The telescoping argument is as follows. We prove by induction that the cost
k(A) to compute κ(A, j) is at most h(A)+log |exp(A)|, where h(A) is the height
of the parse tree of A and j is arbitrary. Then in case 2 we have k(A) ≤ 1 +
max(k(B), k(C)), which by induction is ≤ 1 + max(h(B), h(C)) + log |exp(A)| =
h(A)+log |exp(A)|. In case 3 we have k(A) ≤ 1+log(|exp(A)|/|exp(B)|)+k(B),
and since by induction k(B) ≤ h(B) + log |exp(B)|, we obtain k(A) ≤ h(A) +
log |exp(A)|. Since G is balanced, this implies k(A) = O(log n) when A is the
root symbol. 	

Figure 2 shows an example of this procedure.

4.2 Range Minimum Queries

A range minimum query (RMQ) over a string returns the position of the leftmost
occurrence of the minimum within a range. For these type of queries, we can
provide an O(grl) space and O(log n) time solution. In the Appendix A we also
show how to efficiently compute the related PSV/NSV queries.

Theorem 3. It is possible to construct an index of size O(grl) supporting RMQs
in O(log n) time.

Proof. Let G be a balanced RLSLP of size O(grl) constructed as in Theorem 1.
We define rmq(A, i, j) as the pair (a, k) where a is the least symbol in exp(A)[i :
j], and k is the absolute position within exp(A) of the leftmost occurrence of a
in exp(A)[i : j]. Store the values L[A] = |exp(A)|, and M [A] = rmq(A, 1, L[A]),
for every variable A, as arrays. These arrays add only O(grl) extra space. To
compute rmq(A, i, j), do as follows:

1. If i = 1 and j = L[A], return M [A].
2. If A → BC, then:

(a) If i, j ≤ L[B], return rmq(B, i, j).
(b) If i, j > L[B], let (a, k) = rmq(C, i−L[B], j −L[B]). Return (a, L[B]+k).

Balancing Run-Length Straight-Line Programs 127

(c) If i ≤ L[B] and L[B] < j with j − i + 1 < L[A], let (a1, k1) =
rmq(B, i, L[B]) and (a2, k2) = rmq(C, 1, j − L[B]). Return (a1, k1) if
a1 ≤ a2, or (a2, L[B] + k2) if a2 < a1.

3. If A → Bt for t > 2, then:
(a) If i, j ∈ [t′L[B]+1..(t′ +1)L[B]], let (a, k) = rmq(B, i−t′L[B], j−t′L[B]).

Return (a, t′L[B] + k)
(b) If i ∈ [t′L[B]+1..(t′ +1)L[B]] and j ∈ [t′′L[B]+1..(t′′ +1)L[B]] for some

t′ < t′′. Let (al, kl) = rmq(B, i − t′L[B], L[B]), (ar, kr) = rmq(B, 1, j −
t′′L[B]) and (ac, kc) = M [B] (only if t′′−t′ > 1). Return (a, k), where a =
min(al, ar, ac), and k is either t′L[B]+kl, t′′L[B]+kr, or (t′ +1)L[B]+kc

(only if t′′ − t′ > 1), depending on which of these positions correspond to
an absolute position of a in exp(A), and is the leftmost of them.

We analyze the number of recursive calls of the algorithm above. For cases 2(a),
2(b) and 3(a) there is only one recursive call, over a variable which is deeper in
the derivation tree of G. In cases 2(c) and 3(b), it could be that two recursive
calls occur, but overall, this can happen only one time in the whole run of
the algorithm. The reason is that when two recursive calls occur at the same
depth, from that point onward, the algorithm will be computing rmq(·) over
suffixes or prefixes of expansions of variables. If we try to compute for example
rmq(A, i, L[A]), and A is of the form A → BC, if i < L[B], the call over B
is again a suffix call. If A → Bt for some t > 2, and we want to compute
rmq(A, i, L[A]), we end with a recursive call over a suffix of B too. Hence, there
are only O(log n) recursive calls to rmq(·). The non-recursive step takes constant
time, even for run-length rules, so we obtain O(log n) time. 	

4.3 More General Functions

More generally, we can compute a wide class of functions in O(grl) space and
O(log n) applications of the function.

Theorem 4. Let f be a function from strings to a set of size nO(1), such that
f(xy) = h(f(x), f(y), |x|, |y|) for any strings x and y, where h is a function
computable in time O(time(h)). Let w[1 : n] be a string. It is possible to construct
an index to compute f(w[i : j]) in O(grl) space and O(time(h) · log n) time.

Proof. Let G be a balanced RLSLP of size grl constructed as in Theorem 1.
Store the values L[A] = |exp(A)| and F [A] = f(exp(A)), for every variable A,
as arrays. These arrays add only O(grl) extra space because the values in F fit
in O(log n)-bit words. To compute f(A, i, j) = f(exp(A)[i : j]), we do as follows:

1. If i = 1 and j = L[A], return F [A].
2. If A → BC, then:

(a) If i, j ≤ L[B], return f(B, i, j).
(b) If i, j > L[B], return f(C, i − L[B], j − L[B]).
(c) If i ≤ L[B] < j, return

h(f(B, i, L[B]), f(C, 1, j − L[B]), L[B] − i + 1, j − L[B]).

128 G. Navarro et al.

3. If A → Bt for t > 2, then:
(a) If i, j ∈ [t′L[B] + 1..(t′ + 1)L[B]], return f(B, i − t′L[B], j − t′L[B]).
(b) If i ∈ [t′L[B]+1..(t′ +1)L[B]] and j ∈ [t′′L[B]+1..(t′′ +1)L[B]] for some

t′ < t′′, let

fl = f(B, i − t′L[B], L[B])
fr = f(B, 1, j − t′′L[B])

fc(0) = f(ε)
fc(1) = F [B]

fc(i) = h(fc(i/2), fc(i/2), L[B]i/2, L[B]i/2) for even i

fc(i) = h(fc(1), fc(i − 1), L[B], L[B]i−1) for odd i

hl = h(fl, fc(t′′ − t′ − 1), (t′ + 1)L[B] − i + 1, (t′′ − t′ − 1)L[B])

then return

h(hl, fr, (t′ + 1)L[B] − i + 1 + (t′′ − t′ − 1)L[B], j − t′′L[B] + 1)

Just like when computing RMQs in Theorem 3, there is at most one call in the
whole algorithm invoking two non-trivial recursive calls. To estimate the cost
of each recursive call, the same analysis as for Theorem 2 works, because the
expansion of whole nonterminals is handled in constant time as well, and the
O(log t) cost of the run-length rules telescopes in the same way.

The precise telescoping argument is as follows. We prove by induction that
the cost c(A) to compute f(A, i, L[A]) or f(A, 1, j) (i.e., the cost of suffix or prefix
calls) is at most time(h) · (h(A) + log |exp(A)|), where h(A) is the height of the
parse tree of A and i, j are arbitrary. Then in case 2 we have c(A) ≤ time(h) +
max(c(B), c(C)), which by induction is at most time(h) · (1 + max(h(B), h(C)) +
log |exp(A)|) = time(h) · (h(A) + log |exp(A)|). In case 3 we have that the cost
is c(A) ≤ time(h) · log(|exp(A)|/|exp(B)|) + c(B), which by induction yields

c(A) ≤ time(h) · (log(|exp(A)|/|exp(B)|) + h(B) + log |exp(B)|))
≤ time(h) · (h(A) + log |exp(A)|)

In the case that two non-trivial recursive calls are made at some point when
computing f(Ak, i, j), this is the unique point in the algorithm where it happens,
so we charge only time(h) · (h(Ak) + log |exp(Ak)|) to the cost of Ak. Then
the total cost of the algorithm starting from A0 is at most time(h) · (h(A0) +
log |exp(A0)|) plus the cost time(h) · (h(Ak) + log |exp(Ak)|) that we did not
charge to Ak. This at most doubles the cost, maintaining it within the same
order. Because the grammar is balanced, we obtain O(time(h) · log n) time. 	

5 Conclusion

In this work, we have shown that any RLSLP can be balanced in linear
time without increasing it asymptotic size. This allows us to compute sev-
eral substring range queries like RMQ, PSV/NSV (in the Appendix A), and

Balancing Run-Length Straight-Line Programs 129

Karp-Rabin fingerprints O(log n) time within O(grl) space. More generally, in
O(grl) space we can compute the wide class of substring functions that satisfy
f(xy) = h(f(x), f(y), |x|, |y|), in O(log n) times the cost of computing h. Our
work also simplifies some previously established results like retrieving substrings
in O(log n) space and within O(grl) space.

An open challenge is to efficiently count the number of occurrences of a
pattern in the string, within O(grl) space [5, Appendix A].

A PSV and NSV Queries

Other relevant queries are previous smaller value (PSV) and next smaller value
(NSV) [6,9], defined as follows:

– psv(i) = max({j | j < i, w[j] < w[i]} ∪ {0})
– nsv(i) = min({j | j > i, w[j] < w[i]} ∪ {n + 1})
– psv′(i, d) = max({j | j < i, w[j] < d} ∪ {0})
– nsv′(i, d) = min({j | j > i, w[j] < d} ∪ {n + 1})

Note that the first two queries can be computed by accessing w[i] in O(log n)
time, and then calling one of the latter two queries, respectively. We show that
the latter queries can be answered in O(grl) space and O(log n) time.

Theorem 5. It is possible to construct an index of size O(grl) supporting PSV
and NSV queries in O(log n) time.

Proof. Let G be a balanced RLSLP of size O(grl) constructed as in Theorem 1.
Store the values L[A] = |exp(A)| and M [A] = min({exp(A)[i] | i ∈ [1..L[A]]}),
for every variable A, as arrays. These arrays add only O(grl) extra space. To
compute psv′(A, i, d), do as follows:

1. If i = 1 or M [A] ≥ d, return 0.
2. If A → a, return 1.
3. If A → BC, then:

(a) If i ≤ L[B] + 1, return psv′(B, i, d).
(b) If L[B] + 1 < i, let k = psv′(C, i − L[B], d). If k > 0, return L[B] + k,

otherwise, return psv′(B, i, d).
4. If A → Bt for t > 2, then:

(a) If i ≤ L[B] + 1, return psv′(B, i, d).
(b) If i ∈ [t′L[B] + 1..(t′ + 1)L[B]], let k = psv′(B, i − t′L[B], d). If k > 0,

return t′L[B] + k. Otherwise, return (t′ − 1)L[B] + psv′(B, i, d).
(c) If L[A] < i, return (t − 1)L[B] + psv′(B, i, d).

The guard in point 1 guarantees that, in the simple case where i is beyond
|exp(A)|, at most one recursive call needs more than O(1) time. In general, we
can make two calls in case 3(b), but then the second call (inside B) is of the
simple type from there on. The case of run-length rules is similar. Thus, we
obtain O(log n) time. The query nsv′ is handled similarly. 	

130 G. Navarro et al.

References

1. Bille, P., Gørtz, I.L., Cording, P.H., Sach, B., Vildhøj, H.W., Vind, S.: Fingerprints
in compressed strings. J. Comput. Syst. Sci. 86, 171–180 (2017). https://doi.org/
10.1016/j.jcss.2017.01.002, https://www.sciencedirect.com/science/article/pii/S00
22000017300028

2. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.: Ran-
dom access to grammar-compressed strings and trees. SIAM J. Comput. 44(3),
513–539 (2015). https://doi.org/10.1137/130936889

3. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm.
Tech. report, DIGITAL SRC RESEARCH REPORT (1994)

4. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005)

5. Christiansen, A., Ettienne, M., Kociumaka, T., Navarro, G., Prezza, N.: Optimal-
time dictionary-compressed indexes. ACM Trans. Algorithms 17, 1–39 (2020).
https://doi.org/10.1145/3426473

6. Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix
trees. Theoret. Comput. Sci. 410(51), 5354–5364 (2009)

7. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011). https://doi.
org/10.1137/090779759

8. Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs
bounded space. In: Proceedings 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1459–1477 (2018)

9. Gagie, T., Navarro, G., Prezza, N.: Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM 67(1), 1–54 (2020). https://doi.
org/10.1145/3375890

10. Ganardi, M., Jeż, A., Lohrey, M.: Balancing straight-line programs. J. ACM 68(4),
1–40 (2021). https://doi.org/10.1145/3457389

11. Jeż, A.: Approximation of grammar-based compression via recompression. Theoret.
Comput. Sci. 592, 115–134 (2015)

12. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987). https://doi.org/10.1147/rd.312.0249

13. Kempa, D., Kociumaka, T.: Resolution of the burrows-wheeler transform conjec-
ture. Commun. ACM 65(6), 91–98 (2022). https://doi.org/10.1145/3531445

14. Kempa, D., Prezza, N.: At the roots of dictionary compression: string attractors.
In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Com-
puting (2018). https://doi.org/10.1145/3188745.3188814

15. Kini, D., Mathur, U., Viswanathan, M.: Data race detection on compressed traces.
In: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
pp. 26–37. ESEC/FSE 2018, Association for Computing Machinery, New York,
NY, USA (2018). https://doi.org/10.1145/3236024.3236025

16. Kreft, S., Navarro, G.: Lz77-like compression with fast random access. In: 2010
Data Compression Conference, pp. 239–248 (2010)

17. Larsson, N., Moffat, A.: Offline dictionary-based compression. In: Proceedings DCC
1999 Data Compression Conference (Cat. No. PR00096), pp. 296–305 (1999)

18. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory
22(1), 75–81 (1976)

https://doi.org/10.1016/j.jcss.2017.01.002
https://doi.org/10.1016/j.jcss.2017.01.002
https://www.sciencedirect.com/science/article/pii/S0022000017300028
https://www.sciencedirect.com/science/article/pii/S0022000017300028
https://doi.org/10.1137/130936889
https://doi.org/10.1145/3426473
https://doi.org/10.1137/090779759
https://doi.org/10.1137/090779759
https://doi.org/10.1145/3375890
https://doi.org/10.1145/3375890
https://doi.org/10.1145/3457389
https://doi.org/10.1147/rd.312.0249
https://doi.org/10.1145/3531445
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1145/3236024.3236025

Balancing Run-Length Straight-Line Programs 131

19. Navarro, G.: Indexing highly repetitive string collections, part I: repetitiveness
measures. ACM Comput. Surv. 54(2), article 29 (2021)

20. Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences:
a linear-time algorithm. J. Artif. Intell. Res. 7(1), 67–82 (1997)

21. Nishimoto, T., Inenaga, S., Bannai, H., Takeda, M.: Fully dynamic data structure
for LCE queries in compressed space. In: 41st International Symposium on Math-
ematical Foundations of Computer Science (MFCS 2016). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 58, pp. 72:1–72:15 (2016)

22. Przeworski, M., Hudson, R., Di Rienzo, A.: Adjusting the focus on human variation.
Trends Genetics: TIG 16(7), 296–302 (2000)

23. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoret. Comput. Sci. 302(1), 211–222 (2003)

24. Verbin, E., Yu, W.: Data structure lower bounds on random access to grammar-
compressed strings. In: Proceedings 24th Annual Symposium on Combinatorial
Pattern Matching (CPM), pp. 247–258 (2013)

25. Zhang, M., Mathur, U., Viswanathan, M.: Checking LTL[F, G, X] on compressed
traces in polynomial time. In: Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 131–143. ESEC/FSE 2021, Association for Computing
Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3468264.3468557

https://doi.org/10.1145/3468264.3468557

Substring Complexities on Run-Length
Compressed Strings

Akiyoshi Kawamoto(B) and Tomohiro I

Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
kawamoto.akiyoshi256@mail.kyutech.jp, tomohiro@ai.kyutech.ac.jp

Abstract. Let ST (k) denote the set of distinct substrings of length k
in a string T , then its cardinality |ST (k)| is called the k-th substring
complexity of T . Recently, δ = max{|ST (k)|/k : k ≥ 1} has been shown
to be a good compressibility measure of highly-repetitive strings. In this
paper, given T of length n in the run-length compressed form of size ρ, we
show that δ can be computed in Csort(ρ, n) time and O(ρ) space, where
Csort(ρ, n) = O(min(ρ lg lg ρ, ρ lgρ n)) is the time complexity for sorting ρ
integers with O(lg n) bits each in O(ρ) space in the Word-RAM model
with word size Ω(lgn).

Keywords: Substring complexity · Compressibility measure ·
Run-length compression

1 Introduction

Data compression has been one of the central topics in computer science and
recently has become even more important, as data continues growing faster
than ever before. One data category that is rapidly increasing is highly-repetitive
strings, which have many long common substrings. Typical examples of highly-
repetitive strings are genomic sequences collected from similar species and ver-
sioned documents. It is known that highly-repetitive strings can be compressed
much smaller than entropy-based compressors by utilizing repetitive-aware data
compressions such as LZ76 [14], bidirectional macro scheme [21], grammar
compression [12], collage system [11], and run-length compression of Burrows-
Wheeler Transform [4]. Moreover, much effort has been devoted to designing
efficient algorithms to conduct useful operations on compressed data (without
explicitly decompressing it) such as random access and string pattern matching.
We refer readers to the comprehensive surveys [16,17] for recent developments
in this area.

Since the compressibility of highly-repetitive strings is not captured by the
information entropy, how to measure compressibility for highly-repetitive strings
is a long standing question. Addressing this problem, Kempa and Prezza [10] pro-
posed a new concept they call string attractors; a set of positions Γ is called an
attractor of a string T if and only if every substring of T has at least one occur-
rence containing a position in Γ . They showed that there is a string attractor
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 132–143, 2022.
https://doi.org/10.1007/978-3-031-20643-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_10&domain=pdf
http://orcid.org/0000-0001-9106-6192
https://doi.org/10.1007/978-3-031-20643-6_10

Substring Complexities on Run-Length Compressed Strings 133

behind existing repetitive-aware data compressions and the size γ of the small-
est attractor lower bounds and well approximates their size. In addition, this
and subsequent studies revealed that it is possible to design “universal” com-
pressed data structures built upon any string attractor Γ to support operations
such as random access and string pattern matching [10,18,19]. A drawback of
string attractors is that computing the size γ of the smallest string attractors
is NP-hard [10]. As a substitution of γ, Christiansen et al. [5] proposed another
repetitive-aware compressibility measure δ defined as the maximum of normal-
ized substring complexities max{|ST (k)|/k : k ≥ 1}, where ST (k) denotes the set
of substrings of length k in T . They showed that δ ≤ γ always holds and there
is an O(δ lg(n/δ))-size data structure for supporting efficient random access and
string pattern matching.

Although substring complexities were used in [20] to approximate the number
of LZ76 phrases in sublinear time, only recently δ gained an attention as a gold
standard of repetitive-aware compressibility measures [5]. Recent studies have
shown that δ possesses desirable properties as a compressibility measure. One of
the properties is the robustness. For example, we would hope for a compressibility
measure to monotonically increase while appending/prepending characters to a
string. It was shown that δ has this monotonicity [13] while γ does not [15].
Akagi et al. [1] studied the sensitivity of repetitive measures to edit operations
and the results confirmed the robustness of δ.

From an algorithmic perspective, for a string of length n, δ can be computed
in O(n) time and space [5]. This contrasts with γ and the smallest compression
size in some compression schemes like bidirectional macro scheme, grammar
compression and collage system, which are known to be NP-hard to compute.
Exploring time-space tradeoffs, Bernardini et al. [3] presented an algorithm to
compute δ with sublinear additional working space. Efficient computation of δ
has a practical importance for the O(δ lg(n/δ))-size data structure of [5] as once
we know δ, we can reduce the main-memory space needed to build the data
structure (see Conclusions of [5]).

In this paper, we show that δ can be computed in Csort(ρ, n) time and O(ρ)
space, where Csort(ρ, n) is the time complexity for sorting ρ integers with O(lg n)
bits each in O(ρ) space in the Word-RAM model with word size Ω(lg n). We
can easily obtain Csort(ρ, n) = O(ρ lg ρ) by comparison sort and Csort(ρ, n) =
O(ρ lgρ n) by radix sort that uses Θ(ρ)-size buckets. Plugging in more advanced
sorting algorithms for word-RAM model, Csort(ρ, n) = O(ρ lg lg ρ) [8]. In ran-
domized setting, Csort(ρ, n) = O(ρ) if lg n = Ω(lg2+ε ρ) for some fixed ε > 0 [2],
and otherwise Csort(ρ, n) = O(ρ

√
lg lg n

lg ρ) [9].

2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a string over Σ. The
length of a string w is denoted by |w|. The empty string ε is the string of length
0, that is, |ε| = 0. Let Σ+ = Σ∗ − {ε}. The concatenation of two strings x
and y is denoted by x · y or simply xy. When a string w is represented by the

134 A. Kawamoto and T. I

concatenation of strings x, y and z (i.e. w = xyz), then x, y and z are called a
prefix, substring, and suffix of w, respectively. A substring x of w is called proper
if |x| < |w|.

The i-th character of a string w is denoted by w[i] for 1 ≤ i ≤ |w|, and the
substring of a string w that begins at position i and ends at position j is denoted
by w[i..j] for 1 ≤ i ≤ j ≤ |w|, i.e., w[i..j] = w[i]w[i+1] . . . w[j]. For convenience,
let w[i..j] = ε if j < i. For two strings x and y, let lcp(x, y) denote the length of
the longest common prefix between x and y. For a character c and integer e ≥ 0,
let ce denote the string consisting of a single character c repeated e times.

A substring w[i..j] is called a run of w if and only if it is a maximal repeat of
a single character, i.e., w[i−1] �= w[i] = w[i+1] = · · · = w[j−1] = w[j] �= w[j+1]
(the border cases w[i − 1] �= w[i] and w[j] �= w[j + 1] are simply ignored if i = 1
and j = |w|, respectively). We obtain the run-length encoding of a string by
representing each run by a pair of character and the number of repeats in O(1)
words of space. For example, a string aabbbaabb has four runs aa, bbb, aa and
bb, and its run-length encoding is (a, 2), (b, 3), (a, 2), (b, 2) or we just write as
a2b3a2b2.

Throughout this paper, we refer to T as a string over Σ of length n with ρ
runs and δ = max{|ST (k)|/k : k ≥ 1}. Our assumption on computational model
is the Word-RAM model with word size Ω(lgn). We assume that every character
in Σ is interpreted as an integer with O(1) words or O(lg n) bits, and the order
of two characters in Σ can be determined in constant time.

Let T denote the trie representing the suffixes of T that start with the run’s
boundaries in T , which we call the runs-suffix-trie of T . Note that T has at most
ρ leaves and at most ρ branching internal nodes, and thus, T can be represented
in O(ρ) space by compacting non-branching internal nodes and representing edge
labels by the pointers to the corresponding substrings in the run-length encoded
string of T . We call the compacted runs-suffix-trie the runs-suffix-tree. In order
to work in O(ρ) space, our algorithm actually works on the runs-suffix-tree of T ,
but our conceptual description will be made on the runs-suffix-trie considering
that non-branching internal nodes remain. A node is called explicit when we
want to emphasize that the node is present in the runs-suffix-tree, too.

Let V denote the set of nodes of T . For any v ∈ V , let str(v) be the string
obtained by concatenating the edge labels from the root to v, and d(v) = |str(v)|.
We say that v represents the string str(v) and sometimes identify v with str(v)
if it is clear from the context. For any v ∈ V and 1 ≤ k ≤ d(v), let strk(v) be
the suffix of str(v) of length k. Let V̂ denote the set of nodes that do not have
a child v with str(v) = ce for some character c and integer e > 0. Figure 1 shows
an example of T for T = aabbbaabbaaa.

3 Connection Between ST(k) and the Runs-Suffix-Trie

We first recall a basic connection between ST (k) and the nodes of the suffix trie
of T that is the trie representing “all” the suffixes of T [7,22]. Since a k-length
substring w in T is a k-length prefix of some suffix of T , w can be uniquely

Substring Complexities on Run-Length Compressed Strings 135

Fig. 1. An example of runs-suffix-trie T for T = aabbbaabbaaa. The nodes in black
{ε, a, aa, b, bb} are the nodes in V − V̂ . With the notations introduced in Sect. 3, the
nodes in gray bba and bbaa cannot be deepest matching nodes due to bbba and bbbaa,
respectively. The other nodes belong to D and two integers in node v ∈ D represent
d(v) (upper integer) and |t(v)| (lower integer), where t(v) is defined in Sect. 3.

associated with the node v representing w by the path from the root to v. Thus,
the set ST (k) of substrings of length k is captured by the nodes of depth k. This
connection is the basis of the algorithm presented in [5, Lemma 5.7] to compute
δ in O(n) time and space.

We want to establish a similar connection between ST (k) and the nodes of the
runs-suffix-trie T of T . Since only the suffixes that start with run’s boundaries
are present in T , there could be a substring w of T that is not represented
by a path from the root to some node. Still, we can find an occurrence of any
non-empty substring w in a path starting from a node in V − V̂ : Suppose that
w = T [i..j] is an occurrence of w in T and i′ ≤ i is the starting position of
the run containing i, then there is a node v such that str(v) = T [i′..j] and
str|w|(v) = w. Formally, we say that node v is a matching node for a string w
if and only if str(v) = w[1]ew for some integer e ≥ 0. Note that there could be
more than one matching node for a string w, but the deepest matching node for
w is unique because two distinct matching nodes must have different values of
e. The following lemma summarizes the above discussion.

Lemma 1. For any substring w of T , there is a unique deepest matching node
in T .

The next lemma implies that a deepest matching node for some string is in V̂ .

Lemma 2. A node v /∈ V̂ cannot be a deepest matching node for any string
(Fig. 2).

136 A. Kawamoto and T. I

Fig. 2. Displaying the nodes in D2 in orange filled color. The nodes aaa, aab, bbb and
bbba are respectively the deepest matching nodes for aa, ab, bb and ba. (Color figure
online)

Proof. Since v /∈ V̂ , there exists a child v′ of v such that str(v′) = ce for some
character c and integer e > 0. It also implies that str(v) = ce−1. Thus, v′ is
always a deeper matching node for any suffix of str(v) and the claim of the
lemma follows.

Let D be the set of nodes v such that there is a string for which v is the
deepest matching node. Also, let Dk ⊆ D denote the set of nodes v such that
there is a string of length k for which v is the deepest matching node. For
fixed k, it is obvious that a node v in Dk is the deepest matching node for a
unique substring of length k, which is strk(v). Together with Lemma 1, there is
a bijection between ST (k) and Dk, which leads to the following lemma.

Lemma 3. For any 1 ≤ k ≤ n, |ST (k)| = |Dk|.
By Lemma 3, δ can be computed by max{|Dk|/k : k ≥ 1}.

Next we study some properties on D , which is used to compute δ efficiently.
For any v ∈ V̂ , let s(v) denote the longest proper prefix of the first run of str(v),
and let t(v) be the string such that str(v) = s(v) · t(v). In other words, t(v) is the
shortest string for which v is a matching node. For example, if str(v) = aabba
then s(v) = a and t(v) = abba.

Lemma 4. For any v ∈ V̂ , {k : v ∈ Dk} is [|t(v)|..d(v)] or ∅.

Proof. First of all, by definition it is clear that v cannot be a matching node
for a string of length shorter than |t(v)| or longer than d(v). Hence, only the
integers in [|t(v)|..d(v)] can be in {k : v ∈ Dk}, and the claim of the lemma says
that {k : v ∈ Dk} either takes them all or nothing.

Substring Complexities on Run-Length Compressed Strings 137

We prove the lemma by showing that if v is not the deepest matching node
for some suffix w of str(v) with |t(v)| ≤ |w| ≤ d(v), then v is not the deepest
matching node for any string. The assumption implies that there is a deeper
matching node v′ for w. Let c = t(v)[1], then str(v) = cet(v) with e = |s(v)|.
Note that w is obtained by prepending zero or more c’s to t(v), and hence, str(v′)
is written as ce′

w for some e′ > e. Therefore, v and v′ are matching nodes for
any suffix of str(v) of length in [|t(v)|..d(v)]. Since v′ is deeper than v, the claim
holds.

Lemma 5. For any u ∈ D , every child v of u is in D .

Proof. We show a contraposition, i.e., u /∈ D if v /∈ D . Let c = t(v)[1], then
str(v) = cet(v) with e = |s(v)|. Note that, by Lemma 4, v ∈ D if and only if v
is the deepest matching node for t(v). We assume that u ∈ V̂ since otherwise
u /∈ D is clear. Then, it holds that u ∈ D if and only if u is the deepest matching
node for t(v)[1..|t(v)| − 1]. The assumption of v /∈ D then implies that there is
a deeper matching node v′ for t(v) such that str(v′) = ce′

t(v) with e′ > e. Since
the parent u′ of v′ is deeper than u and a matching node for t(v)[1..|t(v)| − 1],
we conclude that u /∈ D .

By Lemma 5, we can identify some deepest matching node v such that all
the ancestors of v are not in D and all the descendants of v are in D . We call
such a node v a DMN-root, and let Droot denote the set of DMN-roots. In Sect. 4
we will show how to compute Droot in Csort(ρ, n) time and O(ρ) space.

Figure 3 shows how Dk changes when we increase k.
Now we focus on the difference αk = |Dk| − |Dk−1| between |Dk| and |Dk−1|,

and show that we can partition [1..n] into O(ρ) intervals so that αk remains the
same within each interval.

Lemma 6. |{k : αk+1 �= αk}| = O(ρ).

Proof. We prove the lemma by showing that |{k : |Dk+1−Dk| �= |Dk −Dk−1|}| =
O(ρ) and |{k : |Dk − Dk+1| �= |Dk−1 − Dk|}| = O(ρ).

It follows from Lemma 4 that a node v in (Dk+1 −Dk) satisfies k+1 = |t(v)|.
If the parent u of v is in D , then u ∈ (Dk−Dk−1) since k = |t(u)|. In the opposite
direction, every child of u ∈ (Dk−Dk−1) is in (Dk+1−Dk) by Lemma 5. Therefore
|Dk+1 − Dk| and |Dk − Dk−1| can differ only if one of the following conditions
holds:

1. there is a node v ∈ (Dk+1 −Dk) whose parent is not in D , which means that
v ∈ Droot;

2. there is a node u ∈ (Dk −Dk−1) that has either no children or more than one
child, which means that u is an explicit node.

Note that each node v in Droot contributes to the first case when k + 1 = |t(v)|
and each explicit node u can contribute to the second case when k = |t(u)|.
Hence |{k : |Dk+1 − Dk| �= |Dk − Dk−1|}| = O(ρ).

It follows from Lemma 4 that a node v in (Dk − Dk+1) satisfies k = d(v). If
the parent u of v is in D , then u ∈ (Dk−1−Dk) since k−1 = d(u). In the opposite

138 A. Kawamoto and T. I

Fig. 3. Displaying the nodes in Dk for k = 1, 2, . . . , 8 in orange filled color. Two
integers in node v ∈ D represent d(v) (upper integer) and |t(v)| (lower integer). By
Lemma 4, node v ∈ D belongs to Dk for any k ∈ [|t(v)|..d(v)]. (Color figure online)

Substring Complexities on Run-Length Compressed Strings 139

direction, every child of u ∈ (Dk−1 −Dk) is in (Dk −Dk+1) by Lemmas 5 and 4.
Therefore |Dk − Dk+1| and |Dk−1 − Dk| can differ only if one of the following
conditions holds:

1. there is a node v ∈ (Dk −Dk+1) whose parent is not in D , which means that
v ∈ Droot;

2. there is a node u ∈ (Dk−1 −Dk) that has either no children or more than one
child, which means that u is an explicit node.

Note that each node v in Droot contributes to the first case when k = d(v) and
each explicit node u can contribute to the second case when k −1 = d(u). Hence
|{k : |Dk − Dk+1| �= |Dk−1 − Dk|}| = O(ρ).

Putting all together, |{k : αk+1 �= αk}| = O(ρ).

The next lemma will be used in our algorithm presented in Sect. 4.

Lemma 7. Assume that αk = α for any k ∈ (k′..k′′]. Then, |ST (k)|/k, in the
range k ∈ [k′..k′′], is maximized at k′ or k′′.

Proof. For any k ∈ [k′..k′′] with k = k′ + x, |ST (k)|/k can be represented by

f(x) =
|ST (k′)| + αx

(k′ + x)
.

By differentiating f(x) with respect to x, we get

f ′(x) =
α(k′ + x) − (|ST (k′)| + αx)

(k′ + x)2
=

αk′ − |ST (k′)|
(k′ + x)2

.

Since f(x) is monotonically increasing if αk′ − |ST (k′)| > 0, and otherwise
monotonically non-increasing, |ST (k)|/k, in the range [k′..k′′], is maximized at
k′ or k′′.

4 Algorithm

Based on the properties of D established in Sect. 3, we present an algorithm,
given ρ-size run-length compressed string T , to compute δ in Csort(ρ, n) time
and O(ρ) space.

We first build the runs-suffix-tree of T .

Lemma 8. Given a string T in run-length compressed form of size ρ, the runs-
suffix-tree of T of size O(ρ) can be computed in Csort(ρ, n) time and O(ρ) space.

Proof. Let w be a string of length ρ that is obtained by replacing each run
of T with a meta-character in [1..ρ], where the meta-character of a run ce is
determined by the rank of the run sorted over all runs in T using the sorting key
of the pair (c, e) represented in O(lg n) bits. Since (c, e) is represented in O(lg n)
bits, we can compute w in Csort(ρ, n) time and O(ρ) space. Then we build the
suffix tree of w in O(ρ) time and space using any existing linear-time algorithm

140 A. Kawamoto and T. I

for building suffix trees over integer alphabets (use e.g. [6]). Since runs with the
same character but different exponents have different meta-characters, we may
need to merge some prefixes of edges outgoing from a node. Fixing this in O(ρ)
time, we get the runs-suffix-tree of T .

Note that we can reduce O(lg n)-bit characters to O(lg ρ)-bit characters dur-
ing the process of sorting in the proof of Lemma 8. From now on we assume that
a character is represented by an integer in [1..ρ]. In particular, pointers to some
data structures associated with each character can be easily maintained in O(ρ)
space.

We augment the runs-suffix-tree in O(ρ) time and space so that we can
support longest common prefix queries that compute the lcp value for any pair
of suffixes starting with run’s boundary in constant time. We can implement this
with a standard technique that employs lowest common ancestor queries over
suffix trees (see e.g. [7]), namely, we just compute the string depth of the lowest
common ancestor of two leaves corresponding to the suffixes.

Using this augmented runs-suffix-tree, we can compute the set Droot of DMN-
roots in O(ρ) time.

Lemma 9. Droot can be computed in O(ρ) time.

Proof. For each leaf l, we compute, in the root-to-leaf path, the deepest node
b(l) satisfying that there exists v such that t(b(l)) = t(v) and s(b(l)) is a proper
prefix of s(v). If b(l) is not a leaf, the child of b(l) (along the path) is the DMN-
root on the path. Since str(b(l)) and str(v) are the same if we remove their first
runs, we can compute the longest one by using lcp queries on the pair of leaves
having the same character in the previous run. Let rem(l) denote the string that
can be obtained by removing the first run from str(l).

For any character c, let Lc be the doubly linked list of the leaves starting
with the same character c and sorted in the lexicographic order of rem(·) (we
remark that it is not the lex. order of str(·)). Such lists for “all” characters c can
be computed in a batch in O(ρ) time by scanning all leaves in the lexicographic
order. Suppose that we arrive at a leaf l′ and there is a leaf l with str(l) = cestr(l′)
for some character c and integer e > 0, then we append l to Lc.

Now we focus on the leaves that start with the same character c. Given
Lc, Algorithm 1 computes |b(·)|’s in increasing order of the exponents of their
first runs. When we process a leaf l, every leaf with a shorter first run than
l is removed from the list so that we can efficiently find two lexicographically
closest leaves (in terms of rem(·) lex. order) with longer first runs. Let e be the
exponent of the first run of str(l). By a linear search to lex. smaller (resp. larger)
direction from l in the current list, we can find the lex. predecessor p (resp. the
lex. successor s) that have longer first run than e (just ignore it if such a leaf
does not exist or set sentinels at both ends of the list). Note that the exponent
of the first run of l′ is e for any leaf l′ in between p and s. Then, we compute
|b(l′)| = e+max(lcp(rem(l′), rem(p)), lcp(rem(l′), rem(s))) and remove l′ from the
list. We can process all the leaves in Lc in linear time since any leaf l in Lc is
visited once and removed from the list after we compute |b(l)| by two lcp queries.

Substring Complexities on Run-Length Compressed Strings 141

Algorithm 1. How to compute |b(·)| for the leaves in Lc.
Input. Doubly linked list Lc of the leaves starting with character c and sorted

in the lexicographic order of rem(·).
Output. |b(·)| for the leaves in Lc.

1 L ← Lc; /* initialize tentative list L by Lc */
2 foreach l in Lc in increasing order of the exponents of their first runs do
3 if l is removed from L then continue ;
4 e ← the exponent of the first run of l;
5 compute predecessor p of l (in rem(·) lex. order) that has longer first run

than e;
6 compute successor s of l (in rem(·) lex. order) that has longer first run than

e;
7 foreach l′ existing in between p and s in L do
8 output |b(l′)| = e +max(lcp(rem(l′), rem(p)), lcp(rem(l′), rem(s))) for l′;
9 remove l′ from L;

After computing |b(·)| for all leaves in O(ρ) total time, it is easy to locate
the nodes of Droot by traversing the runs-suffix-tree in O(ρ) time.

We finally come to our main contribution of this paper.

Theorem 1. Given ρ-size run-length compressed string T of length n, we can
compute δ in Csort(ρ, n) time and O(ρ) space.

Proof. Thanks to Lemma 7, in order to compute δ it suffices to take the maxi-
mum of |ST (k)|/k for k at which αk and αk+1 differ. According to the proof of
Lemma 6, we obtain {k : αk+1 �= αk} by computing the nodes contributing the
changes of αk, which are the DMN-roots and explicit nodes. As shown in Lem-
mas 8 and 9, DMN-roots can be computed in Csort(ρ, n) time and O(ρ) space.
Note that the contributions of v ∈ Droot to αk+1 − αk are 1 at k = |t(v)| − 1 and
−1 at k = d(v), and the contributions of an explicit node u in D to αk+1−αk are
h−1 at k = |t(u)| and 1−h at k = d(u)+1, where h is the number of children of u.
We list the information by the pairs (|t(v)| − 1, 1), (d(v),−1)}, (|t(u)|, h− 1) and
(d(u)+1, 1−h) and sort them in increasing order of the first element in Csort(ρ, n)
time. We obtain {k : αk+1 �= αk} by the set of the first elements, and we can
compute αk+1 − αk by summing up the second elements for fixed k. By going
through the sorted list, we can keep track of |ST (k′)| for k′ ∈ {k : αk+1 �= αk},
and thus, compute δ = max{|ST (k′)|/k′ : k′ ∈ {k : αk+1 �= αk}} in O(ρ) time
and space.

Acknowledgements. This work was supported by JSPS KAKENHI (Grant Number
22K11907).

142 A. Kawamoto and T. I

References

1. Akagi, T., Funakoshi, M., Inenaga, S. Sensitivity of string compressors and repet-
itiveness measures (2021). arXiv:2107.08615

2. Andersson, A., Hagerup, T., Nilsson, S., Raman, R.: Sorting in linear time? J.
Comput. Syst. Sci. 57(1), 74–93 (1998)

3. Bernardini, G., Fici, G., Gawrychowski, P., Pissis, S.P.: Substring complexity in
sublinear space (2020). arXiv:2007.08357

4. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm.
Technical report, HP Labs (1994)

5. Christiansen, A. R., Ettienne, M. B., Kociumaka, T., Navarro, G., Prezza, N.:
Optimal-time dictionary-compressed indexes. ACM Trans. Algorithms, 17(1):8:1–
8:39 (2021). https://doi.org/10.1145/3426473

6. Farach, M.: Optimal suffix tree construction with large alphabets. In: 38th Annual
Symposium on Foundations of Computer Science, FOCS 1997, Miami Beach,
Florida, USA, 19–22 October 1997, pp. 137–143 (1997)

7. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, New York (1997)

8. Han, Y.: Deterministic sorting in o(nloglogn) time and linear space. J. Algorithms
50(1), 96–105 (2004)

9. Han, Y., Thorup, M.: Integer sorting in 0(n sqrt (log log n)) expected time and lin-
ear space. In Proceedings of 43rd Symposium on Foundations of Computer Science
(FOCS) 2002. IEEE Computer Society, pp. 135–144 (2002)

10. Kempa, D., Prezza, N.: At the roots of dictionary compression: string attractors.
In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Com-
puting (STOC) 2018, pp. 827–840 (2018)

11. Kida, T., Matsumoto, T., Shibata, Y., Takeda, M., Shinohara, A., Arikawa, S.:
Collage system: a unifying framework for compressed pattern matching. Theor.
Comput. Sci. 1(298), 253–272 (2003)

12. Kieffer, J.C., Yang, E.-H.: Grammar-based codes: a new class of universal lossless
source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000)

13. Kociumaka, T., Navarro, G., Prezza, N.: Towards a definitive measure of repet-
itiveness. In: Kohayakawa, Y., Miyazawa, F.K. (eds.) LATIN 2021. LNCS, vol.
12118, pp. 207–219. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
61792-9_17

14. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory
22(1), 75–81 (1976)

15. Mantaci, S., Restivo, A., Romana, G., Rosone, G., Sciortino, M.: A combinatorial
view on string attractors. Theor. Comput. Sci. 850, 236–248 (2021)

16. Navarro, G.: Indexing highly repetitive string collections, part I: repetitiveness
measures. ACM Comput. Surv. 54(2):29:1–29:31 (2021)

17. Navarro, G.: Indexing highly repetitive string collections, part II: compressed
indexes. ACM Comput. Surv. 54(2):26:1–26:32 (2021)

18. Navarro, G., Prezza, N.: Universal compressed text indexing. Theor. Comput. Sci.
762, 41–50 (2019)

19. Prezza, N.: Optimal rank and select queries on dictionary-compressed text. In:
Pisanti, N., Pissis, S.P., (eds.) Proceedings of 30th Annual Symposium on Combi-
natorial Pattern Matching (CPM) 2019, vol. 128 of LIPIcs, pp. 4:1–4:12. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2019)

http://arxiv.org/abs/2107.08615
http://arxiv.org/abs/2007.08357
https://doi.org/10.1145/3426473
https://doi.org/10.1007/978-3-030-61792-9_17
https://doi.org/10.1007/978-3-030-61792-9_17

Substring Complexities on Run-Length Compressed Strings 143

20. Raskhodnikova, S., Ron, D., Rubinfeld, R., Smith, A.D.: Sublinear algorithms for
approximating string compressibility. Algorithmica 65(3), 685–709 (2013)

21. Storer, J.A., Szymanski, T.G.: Data compression via textural substitution. J. ACM
29(4), 928–951 (1982)

22. Weiner, P.: Linear pattern-matching algorithms. In: Proceedings of 14th IEEE
Annual Symposium on Switching and Automata Theory, pp. 1–11 (1973)

Information Retrieval

How Train–Test Leakage Affects
Zero-Shot Retrieval

Maik Fröbe1(B), Christopher Akiki2, Martin Potthast2, and Matthias Hagen1

1 Martin-Luther-Universität Halle-Wittenberg, Wittenberg, Germany
maik.froebe@informatik.uni-halle.de

2 Leipzig University, Leipzig, Germany

Abstract. Neural retrieval models are often trained on (subsets of) the
millions of queries of the MS MARCO/ORCAS datasets and then tested
on the 250 Robust04 queries or other TREC benchmarks with often
only 50 queries. In such setups, many of the few test queries can be
very similar to queries from the huge training data—in fact, 69% of
the Robust04 queries have near-duplicates in MS MARCO/ORCAS.
We investigate the impact of this unintended train–test leakage by
training neural retrieval models on combinations of a fixed number of
MS MARCO/ORCAS queries, which are very similar to actual test
queries, and an increasing number of other queries. We find that leak-
age can improve effectiveness and even change the ranking of systems.
However, these effects diminish the smaller, and thus more realistic, the
extent of leakage is in all training instances.

Keywords: Neural information retrieval · Train–test leakage · BERT ·
T5

1 Introduction

Training transformer-based retrieval models requires large amounts of data
unavailable in many traditional retrieval benchmarks [34]. Data-hungry train-
ing regimes became possible with the 2019 release of MS MARCO [10] and its
367,013 queries that were subsequently enriched by the ORCAS click log [8] with
10 million queries. Fine-tuning models trained on MS MARCO to other bench-
marks or using them without fine-tuning in zero-shot scenarios is often very effec-
tive [34,36,47]. For example, monoT5 [36] which was trained on MS MARCO
data only is the most effective model for the Robust04 document ranking task at
the time of writing.1 Furthermore, the reference implementations of monoT5 and
monoBERT [37] in retrieval frameworks such as PyTerrier [32] or Pyserini/Py-
Gaggle [26] all use models trained only on MS MARCO by default. However,
when MS MARCO was officially split into train and test data, cross-benchmark
use was not anticipated, so that MS MARCO’s training queries may overlap with
the test queries of other datasets (e.g., Robust04). We investigate the impact of

1 https://paperswithcode.com/sota/ad-hoc-information-retrieval-on-trec-robust04.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 147–161, 2022.
https://doi.org/10.1007/978-3-031-20643-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_11&domain=pdf
https://paperswithcode.com/sota/ad-hoc-information-retrieval-on-trec-robust04
https://doi.org/10.1007/978-3-031-20643-6_11

148 M. Fröbe et al.

Robust04 Topic 441

Title: lyme disease

Description: How do you
prevent and treat Lyme disease?

Narrative: Documents that
discuss current prevention
and treatment techniques for
Lyme disease are relevant.
Reports of research on new
treatments of the disease are
also relevant.

Query variants:
lyme disease treatments
prevent lyme disease
...

MS MARCO + ORCAS

lyme disease
how to treat lyme disease
how to prevent lyme disease
lyme disease treatment
prevent lyme disease

..
.

..
.

0.95

0.95

1.0

1.0

1.0

SBERT

Fig. 1. MS MARCO/ORCAS queries with high Sentence-BERT (SBERT) similarity
to Robust04 Topic 441.

such a train–test leakage by training neural models on MS MARCO document
ranking data with different proportions of controlled leakage to Robust04 and
the TREC 2017 and 2018 Common Core tracks as test datasets.

To identify probably leaking queries, we run a semantic nearest-neighbor
search using Sentence-BERT [38] and compare each MS MARCO/ORCAS query
to the title, description, and manual query variants [3,4] of the topics in Robust04
and the TREC 2017 and 2018 Common Core tracks. Figure 1 illustrates this pro-
cedure for Topic 441 (lyme disease) from Robust04. Our manual review of the
leakage candidates shows that 69% to 76% of the topics have near-duplicates in
MS MARCO/ORCAS. To analyze the effect of this potential train–test leakage
on neural retrieval models, we create three types of training datasets per test cor-
pus, in variants with 1,000 to 128,000 training instances (query + (non-)relevant
document): (1) a fixed number of instances derived from test queries from the test
corpora (1000 for Robust04 and 200 for each of the two Common Core tracks),
augmented by other random non-leaking MS MARCO/ORCAS instances to sim-
ulate an upper bound on train–test leakage effects, (2) a fixed number of leaking
MS MARCO/ORCAS instances (1000 for Robust04 and 200 each for the two
Common Core tracks) supplemented by other random non-leaking instances, and
(3) random MS MARCO/ORCAS instances, ensuring that no train–test leakage
candidates are included.

In our experiments, we observe leakage-induced improvements in effective-
ness for Robust04 and the two Common Core tracks, which can even change the
ranking of systems. However, the average improvements in overall effectiveness
are often not significant and decrease as the proportion of leakage in the train-
ing data becomes smaller and more representative of realistic training scenarios.
However, given the swaps in system rankings as well as leakage effects on search
results that we observed, we do advise caution: In any case, a rigorous exper-
imental setup demands for maximizing its reliability, so that train–test leaks
should still be avoided.2

2 All code and data is publicly available at https://github.com/webis-de/SPIRE-22.

https://github.com/webis-de/SPIRE-22

How Train–Test Leakage Affects Zero-Shot Retrieval 149

2 Background and Related Work

Disjoint training, validation, and test datasets are essential to properly evaluate
the effectiveness of machine learning models [7]. Duplication between training
and test data can lead to incorrectly high “effectiveness” by memorizing instances
rather than learning the target concept. In practice, however, the training and
test data often still contain redundancies. For text data, paraphrases, synonyms,
etc., can be especially problematic, resulting in train–test leaks [19,24,29]. For
instance, the training and test sets of the ELI5 dataset [13] for question answer-
ing were created using TF-IDF as a heuristic to eliminate redundancies between
them. This proved insufficient as 81% of the test questions turned out to be
paraphrases of training questions, which clearly favored models that memo-
rized the training data [24]. Recently, Zhan et al. [46] found that 79% of the
TREC 2019 Deep Learning track topics have similar or duplicated queries in the
training data and proposed new data splits to evaluate the interpolation and
extrapolation effectiveness of models. However, not all types of train–test leaks
are unintentional. The TREC 2017 and 2018 Common Core tracks [1] inten-
tionally reused topics from Robust04 to allow participants to use the relevance
judgments for training. Indeed, approaches trained on the Robust04 judgments
were more effective than others [1]. In this paper, we study whether a similar
effect can be observed for unintentional leakage from the large MS MARCO and
ORCAS datasets.

Training retrieval models on MS MARCO and applying them to another
corpus is a form of transfer learning [34]. Transfer learning is susceptible to
train–test leakage since the train and test data are often generated indepen-
dently without precautions to prevent leaks [6]. Research on leakage in transfer
learning focuses on membership inference [35,41] (predicting if a model has seen
an instance during training) and property inference [2,17] (predicting proper-
ties of the training data). Both inferences rely on the observation that neural
models may memorize some training instances to generalize through interpola-
tion [5,7] and to similar test instances [15,16]. It is unclear whether and how
neural retrieval models in a transfer learning scenario are affected by leakage.
Memorized relevant instances might reduce effectiveness for different test queries
while improving it for similar queries, like the examples in Fig. 1. We take the
first steps to investigate the effects of such a train–test leakage.

When the target corpus contains only few training instances, transferred
retrieval models are often more effective without fine-tuning, in a zero-shot set-
ting [47]; for instance, when training on MS MARCO and testing on TREC
datasets [34,36,47]. A frequently used target TREC dataset is Robust04 [42]
with 250 topics and a collection of 528,155 documents published between 1989
and 1996 by the Financial Times, the Federal Register, the Foreign Broad-
cast Information Service, and the LA Times.3 Later, the TREC Common Core
track 2017 [1] reused 50 of the 250 Robust04 topics on the New York Times Anno-

3 https://trec.nist.gov/data/cd45/index.html.

https://trec.nist.gov/data/cd45/index.html

150 M. Fröbe et al.

tated Corpus [39]4 (1,864,661 documents published between 1987 and 2007) and
the Common Core track 2018 reused another 25 Robust04 topics (and introduced
25 new topics) on the Washington Post Corpus5 (595,037 documents published
between 2012 and 2017). At the Robust04 track, 311,410 relevance judgments
were collected, 30,030 at the TREC 2017 Common Core track, and 26,233 at
the TREC 2018 Common Core track. Interestingly, every Robust04 topic and
every topic from the Common Core tracks 2017 and 2018 was augmented with
at least eight query variants compiled by expert searchers, and made available
as an additional resource [3,4].

Research on paraphrase detection [12,43] and semantic question match-
ing [40] is of great relevance to the identification of potentially leaking queries
between training and test data. Reimers and Gurevych [38] and Lin et al. [28]
showed that pooling or averaging the output of contextual word embeddings of
pre-trained transformer encoders like BERT [11] is not suited for paraphrase
detection—both, with respect to efficiency and accuracy. Sentence-BERT [38]
solves this issue by adopting a BERT-based triplet network structure and a con-
trastive loss that attempts to learn a global and a local structure suited for
detecting semantically related sentences. We therefore use Sentence-BERT in a
version specifically trained for paraphrase detection to identify leaking queries.

3 Identifying Leaking Queries

To examine the impact of possible leaks from MS MARCO/ORCAS to the
TREC datasets Robust04 and Common Core 2017 and 2018, we compare the for-
mer’s queries (367,013 plus 10 million) to the 275 topics of the latter three. Since
lexical similarity may not be sufficient, as indicated by the ELI5 issue [24] men-
tioned above, we compute semantic similarity scores using Sentence-BERT [38].6

We store the Sentence-BERT embeddings of all MS MARCO and ORCAS
queries in two Faiss indexes [23] and query them for the 100 nearest neighbors
(exact; cosine similarity) of each topic’s title, description, and query variants.

To determine the threshold for the Sentence-BERT similarity score beyond
which we consider a query a source of leakage for a topic, one human annotator
assessed whether a query is leaking for a TREC topic (title, description, query
variants) for a stratified sample of 100 pairs of queries and topics with a similarity
above 0.8. Against these manual judgments, a similarity threshold of 0.91 is the
lowest that yields a 0.9 precision for deciding that a query is leaking for a topic.
Table 1 shows the number of topics for which queries above this threshold can
be found. From MS MARCO and ORCAS combined, 3,960 queries are leakage
candidates for one of 181 Robust04 topics (72% of the 250 topics). From the
two Common Core tracks, 37 and 38 topics have leakage candidates (76% of the
50 topics, respectively)—high similarities mostly against the query variants.
4 https://catalog.ldc.upenn.edu/LDC2008T19.
5 https://trec.nist.gov/data/wapost/.
6 Of the available pre-trained Sentence-BERT models, we use the paraphrase detection

model: https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2.

https://catalog.ldc.upenn.edu/LDC2008T19
https://trec.nist.gov/data/wapost/
https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2

How Train–Test Leakage Affects Zero-Shot Retrieval 151

Table 1. Number of topics (T) in Robust04 and the TREC 2017 and 2018 Common
Core tracks for which similar queries (number as Q) in MS MARCO (MSM) and the
union of MSM and ORCAS (+ORC) exist in terms of the query having a Sentence-
BERT score > 0.91 against the topic’s title, description, or a query variant.

Candidates Robust04 Core 2017 Core 2018

MSM + ORC MSM + ORC MSM + ORC

T Q T Q T Q T Q T Q T Q

Title 33 83 140 1,775 2 12 23 176 2 2 21 110

Description 2 3 8 50 0 0 0 0 0 0 1 2

Variants 45 116 167 3,356 6 16 38 602 9 26 38 973

Union 53 151 181 3,960 7 18 38 645 9 26 38 973

Some of these leakage candidates still are false positives (threshold precision
of 0.9). To only use actual leaking queries in our train–test leakage experiments,
two annotators manually reviewed the 5 most similar candidates per topic above
the 0.91 threshold (a total of 827 candidates; not all topics had 5 candidates).
Given the title, description, and narrative of a topic, the annotators labeled the
similarity of a query to the topic title according to Jansen et al.’s reformula-
tion types [22]: a query can be identical to the topic title (differences only in
inflection or word order), be a generalization (subset of words), a specialization
(superset of words), a reformulation (some synonymous terms), or it can be on
a different topic. An initial kappa test on 103 random of the 827 candidates
showed moderate agreement (Cohen’s kappa of 0.59; 103 queries: we aimed for
100 but included all queries for a topic when one was selected). After discussing
the 103 cases with the annotators, they agreed on all cases and we had them
each independently label half of the remaining 724 candidates. Table 2 shows
the annotation results: 172 topics of Robust04 (i.e., 69%) have manually verified
leaking queries (648 total), as well as 37 topics of Common Core 2017 (74%) and
38 of Common Core 2018 (76%). A large portion of the true-positive leaking
queries are identical to or specializations of a topic’s title (57.5% of 721). In our
below train–test leakage experiments, we only use manually verified true-positive
leaking queries as the source of leakage from MS MARCO/ORCAS.

4 Experimental Analysis

Focusing on zero-shot settings, we train neural retrieval models on specif-
ically designed datasets to assess the effect of train–test leakage from
MS MARCO/ORCAS to Robust04 and TREC 2017 and 2018 Common Core. We
analyze the models’ effectiveness in five-fold cross-validation experiments, report
detailed results for varying training set sizes for monoT5 (which has the highest
effectiveness in our experiments), and study the effects of leaked instances on
the retrieval scores and the resulting rankings.

152 M. Fröbe et al.

Table 2. Statistics of the 827 manually annotated leakage candidate queries. (a) Num-
ber of true and false candidates. (b) Annotated query reformulation types.

(a) Manually annotated candidates.

Corpus Candidates Queries Topics

Robust04
true 648 172

false 93 53

Core 2017
true 138 37

false 21 11

Core 2018
true 157 38

false 19 7

(b) Reformulation types.

Type Queries

Identical 187

Generalization 124

Specialization 228

Reformulation 182

Different Topic 106

Training Datasets. For each of the three test scenarios (Robust04 and the two
Common Core scenarios), we construct three types of training datasets: (1) ‘No
Leakage’ with random non-leaking queries (balanced between MS MARCO and
ORCAS as in previous experiments [8]), (2) ‘MSM Leakage’ with a fixed num-
ber of random manually verified leaking queries from MS MARCO/ORCAS
(500 queries for Robust04, 100 queries for Common Core) supplemented by no-
leakage queries until a desired size is reached, and (3) ‘Test Leakage’ with a fixed
number of queries from the actual test data (500 for Robust04, 100 for Common
Core; oversampling: each topic twice (but different documents) to match ‘MSM
Leakage’) supplemented by no-leakage queries until a desired size is reached.
‘Test Leakage’ is meant as an “upper bound” for any train–test leakage effect.

For each type, we construct datasets with 1,000 to 128,000 instances (500 to
64,000 queries; each with one relevant and one non-relevant document). Since
MS MARCO/ORCAS queries only have annotated relevant documents, we fol-
low Nogueira et al. [36] and sample “non-relevant” instances from the top-100
BM25 results for such queries. For the ‘Test Leakage’ scenario, we use the actual
TREC judgments to sample the non-/relevant instances. In our 72 training
datasets (3 test scenarios, 3 types, 8 sizes), the number of leaked instances is
held constant to analyze the effect of a decreasing (and thus more realistic) ratio
of leakage. Larger training data would result in more costly training, but our
chosen sizes already suffice to observe a diminishing effect of train–test leakage.

Trained Models. For our experimental analyses, we use models based on mono-
BERT [37] and monoT5 [36] as implemented in PyGaggle [26], and models
based on Duet [33], KNRM [44], and PACRR [21] as implemented in Capre-
olus [45] (default configurations each). In pilot experiments with 32,000 ‘No
Leakage’ instances, these models had higher nDCG@10 scores on Robust04 than
CEDR [30], HINT [14], PARADE [25], and TK [20]. Following Nogueira et al.
[36], we use the base versions of BERT and T5 to spend the computational

How Train–Test Leakage Affects Zero-Shot Retrieval 153

Training Instances

0.1

0.2

0.3

0.4

0.5
nD

C
G

@
10

Robust04

1k 2k 4k 8k 16k 32k 64k 128k

Training Instances
1k 2k 4k 8k 16k 32k 64k 128k

Common Core 2017

Training Instances
1k 2k 4k 8k 16k 32k 64k 128k

Common Core 2018

Training Dataset

Test Leakage

MSM Leakage

No Leakage

Fig. 2. Effectiveness of monoT5 measured as nDCG@10 on the topics with leakage
(172 topics for Robust04, 37 and 38 for the 2017 and 2018 editions of the Common
Core track). Models trained on datasets of varying size with no leakage (No), leakage
from MS MARCO/ORCAS (MSM), or leakage from the test data (Test).

budget on training many models instead of a single large one. Since the train-
ing is not deterministic, each model is trained on each of the 72 training sets
five times for one epoch with varying seeds (used to shuffle the training queries;
configured in PyTorch). We use ir datasets [31] for data wrangling and, follow-
ing previously suggested training regimes [36,37,45], pass the relevant and the
non-relevant document of a query consecutively to a model in the same batch
during training. During inference, all models re-rank the top-100 BM25 results
(Capreolus, default configuration) and we break potential score ties in rankings
via alphanumeric ordering by document ID (with random IDs, this leads to a
random distribution for other document properties such as text length [27]).

Leakage-Induced nDCG Improvements for MonoT5. Figure 2 shows the average
nDCG@10 of monoT5, the most effective model in our experiments, for different
training set sizes, tested only on topics with leaked queries. For small train-
ing sets, monoT5 achieves rather low nDCG@10 values and cannot exploit the
leakage. The nDCG@10 increases with more training data on all benchmarks,
peaking at 16,000 or 32,000 instances. At the peaks, monoT5 trained with leak-
age is more effective than without, and training on test leakage leads to a slightly
higher nDCG@10 than leakage from MS MARCO/ORCAS (MSM). However, the
difference between test and MSM leakage is larger for Robust04 (with some doc-
uments published as early as 1989) compared to the newer Common Core tracks
(with documents published closer to the publication date of MS MARCO). On
the Common Core data, MSM leakage is almost as effective as test leakage.

Leakage-Induced Effectiveness Improvements for Other Models. We employ a
five-fold cross-validation setup for Duet, KNRM, monoBERT, monoT5, and
PACRR to study whether leakage-induced effectiveness improvements can also
be observed for other models when a grid search in the cross-validation setup
can choose the training set size with the highest leakage effect for each model.
We report the effectiveness of the models as nDCG@10, Precision@1, and the

154 M. Fröbe et al.

Table 3. Effectiveness on Robust04 (R04) as nDCG@10, mean first rank of a rele-
vant document (MFR), and Precision@1 (Prec@1) in a five-fold cross-validation setup
on all test topics. Models are trained with no leakage (None), leakage from MS
MARCO/ORCAS (MSM), or leakage from the test data (Test). Highest scores in
bold; † marks Bonferroni-corrected significant differences to the no-leakage baseline
(Student’s t-test, p = 0.05). Model order swaps induced by MSM leakage in red.

Model nDCG@10 on R04 MFR on R04 Prec@1 on R04

None MSM Test None MSM Test None MSM Test

Duet [33] 0.201 0.198 0.224† 2.420 2.682 2.340 0.297 0.261 0.304

KNRM [44] 0.194 0.214† 0.309† 2.348 2.309 1.976† 0.293 0.313 0.329

monoBERT [37] 0.394 0.373† 0.396 1.688 1.725 1.639 0.434 0.454 0.414

monoT5 [36] 0.461 0.457 0.478† 1.443 1.416 1.417 0.562 0.578 0.590

PACRR [21] 0.382 0.364† 0.391 1.663 1.604 1.579† 0.458 0.462 0.502

mean first rank of a relevant document (MFR) [18].7 While effectiveness scores
measured via nDCG@10 and Precision@1 have the property that higher values
are better (a score of 1 indicates “best” effectiveness), for MFR, lower scores
are better—but still a score of 1 is the best case indicating that the document
on rank 1 always is relevant. In all effectiveness evaluations, we conduct signifi-
cance tests via Student’s t-test (p = 0.05) with Bonferroni correction for multiple
testing as implemented in PyTerrier [32].

Table 3 shows the five-fold cross-validated effectiveness on Robust04 for the
five models when optimizing each fold for nDCG@10, MFR, or Precision@1 in
a grid search. Models trained on test leakage almost always are more effective
than their no-leakage counterparts (exception: Precision@1 of monoBERT) and
actual test leakage usually helps more than leakage from MS MARCO/ORCAS
(MSM; exceptions: MFR of monoT5 and Precision@1 of monoBERT). Overall,
on Robust04, models trained with MSM leakage are often less effective than
their no-leakage counterparts (e.g., the nDCG@10 of monoBERT). A possible
explanation might be the large time gap between the Robust04 document publi-
cation dates (documents published between 1987 and 2007) and the MS MARCO
data (crawled in 2018). A similar observation was made during the TREC 2021
Deep Learning track [9]. The transition from Version 1 of MS MARCO to Ver-
sion 2 (crawled three years later) caused some models to prefer older documents
since they saw old documents as positive instances and newer ones as negative
instances during training. Still, MSM leakage can lead to swaps in model ranking
on Robust04. For instance, KNRM trained with MSM leakage achieves a higher
nDCG@10 and Precision@1 than Duet without leakage, while KNRM trained
without leakage is less effective than Duet.

7 We use MFR instead of the mean reciprocal rank (MRR) as suggested by Fuhr [18].
His criticism of MRR was recently supported by further empirical evidence [48].

How Train–Test Leakage Affects Zero-Shot Retrieval 155

Table 4. Effectiveness on Common Core 2017 (CC17) as nDCG@10, mean first rank of
a relevant document (MFR), and Precision@1 (Prec@1) in a five-fold cross-validation
setup on all test topics. Models are trained with no leakage (None), leakage from MS
MARCO/ORCAS (MSM), or leakage from the test data (Test). Highest scores in bold; †
marks Bonferroni-corrected significant differences to the no-leakage baseline (Student’s
t-test, p = 0.05). Model order swaps induced by MSM leakage in red.

Model nDCG@10 on R04 MFR on R04 Prec@1 on R04

None MSM Test None MSM Test None MSM Test

Duet [33] 0.374 0.373 0.376 1.620 1.512 1.485 0.500 0.480 0.540

KNRM [44] 0.316 0.343† 0.330 1.587 1.512 1.568 0.480 0.520 0.480

monoBERT [37] 0.402 0.407 0.419 1.625 1.605 1.634 0.480 0.460 0.460

monoT5 [36] 0.445 0.464 0.490† 1.363 1.384 1.359 0.660 0.620 0.680

PACRR [21] 0.406 0.403 0.413 1.390 1.515 1.546 0.540 0.520 0.580

Table 4 shows the five-fold cross-validated effectiveness on the TREC 2017
Common Core track for the five models when optimizing each fold for nDCG@10,
MFR, or Precision@1 in a grid search. In contrast to Robust04, more models
improve their effectiveness when trained with MSM leakage as the time gap
between the New York Times Annotated Corpus and MS MARCO is smaller
than for Robust04. MonoT5 with actual test leakage is the most effective model
for all three measures, and monoT5 trained on MSM leakage is more effective
than the no-leakage counterpart in nDCG@10 and MFR. MSM leakage also may
cause model order swaps at higher positions in the systems’ nDCG@10 ordering:
monoBERT with MSM leakage would slightly overtake PACRR. Still, most of
the effectiveness improvements on this dataset caused by MSM leakage or test
leakage are not significant (exception: the nDCG@10 differences for monoT5 with
test leakage and KNRM with MSM leakage to the no-leakage counterparts).

Table 5 shows the five-fold cross-validated effectiveness on the TREC 2018
Common Core track for the five models when optimizing each fold for nDCG@10,
MFR, or Precision@1 in a grid search. In contrast to Robust04 and the 2017 edi-
tion of the Common Core track, training with MSM leakage improves the effec-
tiveness in all cases for all three measures. While most of the leakage-induced
effectiveness improvements are not statistically significant, the model order even
changes on the top MFR position, where PACRR with MSM leakage would
overtake monoT5 without leakage.

Discussion.
The results in Tables 3, 4 and 5 show that leakage from MS MARCO/
ORCAS (MSM) can have an impact on the retrieval effectiveness, even when only
a small number of instances are leaked, as in our experiments. While the changes
on Robust04 are rather negligible, the impact is larger for the Common Core
tracks with document publication dates closer to the ones from MS MARCO.
Interestingly, MSM leakage-induced nDCG@10 improvements sometimes can

156 M. Fröbe et al.

Table 5. Effectiveness on Common Core 2018 (CC18) as nDCG@10, mean first rank of
a relevant document (MFR), and Precision@1 (Prec@1) in a five-fold cross-validation
setup on all test topics. Models are trained with no leakage (None), leakage from MS
MARCO/ORCAS (MSM), or leakage from the test data (Test). Highest scores in bold; †
marks Bonferroni-corrected significant differences to the no-leakage baseline (Student’s
t-test, p = 0.05). Model order swaps induced by MSM leakage in red.

Model nDCG@10 on R04 MFR on R04 Prec@1 on R04

None MSM Test None MSM Test None MSM Test

Duet [33] 0.285 0.301 0.295 1.993 1.812 2.231 0.320 0.380 0.260

KNRM [44] 0.201 0.256† 0.238† 3.099 2.768 3.125 0.100 0.160 0.140

monoBERT [37] 0.364 0.380 0.366 1.810 1.683 1.719 0.460 0.560 0.460

monoT5 [36] 0.417 0.448 0.445 1.577 1.503 1.512 0.480 0.540 0.540

PACRR [21] 0.376 0.406 0.393 1.649 1.383† 1.485 0.520 0.560 0.540

lead to swaps in model ordering despite the improvements not being signifi-
cant in most cases. This exemplifies that experimental effectiveness comparisons
might be invalid when some models had access to leaked instances during train-
ing.

Memorization of Leaked Instances. To analyze whether the models memorize
leaked instances, we compare the retrieval scores and resulting ranks of leaked
documents in the test rankings when training includes or does not include leak-
age. For leaked documents not returned in the top-100 BM25 results—the models
only re-rank these—, we determine a hypothetical rank by calculating the score
of this document for the query and inserting the document at the correspond-
ing rank in the to-be-re-ranked 100 documents (including breaking score-ties by
document ID). Each leaked document thus has a maximal rank of 101.

Table 6 shows the mean rank of relevant documents when they were included
during training (with leakage) or not (without leakage). Models perfectly memo-
rizing their positive training instances (i.e., relevant documents for test queries)
would rank these documents at substantially higher positions than models that
did not see the same instance during training. However, while the mean rank of
leaked relevant documents improves for most cases, the improvement is mostly
negligible. For instance, the mean rank of leaked relevant documents for the
very effective monoT5 and monoBERT models improves only slightly compared
to their no-leakage counterparts on all three corpora. But the difference increases
(still rather negligibly, though) on the corpora on which leakage was more effec-
tive. In combination with the high standard deviations, one can hardly see mem-
orization effects for the positions of leaked relevant documents in the final rank-
ings. We thus also inspect the retrieval scores of the leaked documents.

Table 7 shows the mean retrieval score of the relevant documents when they
were included during training (with leakage) or not (without leakage). Mod-
els that memorize the leaked relevant training documents should increase their

How Train–Test Leakage Affects Zero-Shot Retrieval 157

Table 6. Mean rank of the (leaked) relevant training documents (± standard deviation)
for models trained with and without leakage from MS MARCO/ORCAS (MSM leak-
age) or from the test data (test leakage). Ranks macro-averaged over all topics for test
leakage and over all topics with leaking queries for MSM leakage.

Model Robust04 Common Core 17 Common Core 18

With Without With Without With Without

M
S
M

le
a
k
. Duet 41.70 ±45.88 46.79 ±46.51 34.52 ±32.67 35.98 ±32.93 43.39 ±33.52 45.67 ±32.99

KNRM 82.36 ±31.88 84.74 ±30.15 43.24 ±31.74 43.68 ±31.50 53.12 ±32.14 53.45 ±32.14

monoBERT 23.08 ±28.71 23.58 ±28.22 46.97 ±34.95 47.11 ±35.49 41.79 ±36.16 42.48 ±36.39

monoT5 20.13 ±26.77 20.15 ±26.64 35.68 ±31.69 36.46 ±31.88 29.86 ±28.24 30.31 ±28.27

PACRR 42.41 ±44.86 42.43 ±44.67 35.79 ±33.71 36.28 ±33.83 34.76 ±36.45 35.70 ±36.87

T
e
st

le
a
k
.

Duet 90.04 ±26.98 90.65 ±26.41 45.78 ±30.03 46.55 ±30.34 46.31 ±29.85 46.35 ±30.13

KNRM 89.95 ±26.43 91.20 ±25.24 47.37 ±32.80 47.49 ±32.81 50.53 ±32.40 50.13 ±32.26

monoBERT 47.01 ±31.84 47.39 ±31.80 46.64 ±31.51 47.12 ±31.51 43.19 ±31.51 44.04 ±31.66

monoT5 45.28 ±32.09 45.37 ±31.96 46.35 ±31.47 47.45 ±31.83 40.16 ±31.18 40.95 ±31.24

PACRR 80.89 ±34.05 82.60 ±33.07 53.59 ±31.49 52.91 ±31.26 52.25 ±32.69 52.28 ±32.32

Table 7. Mean retrieval score of the (leaked) relevant training documents (± standard
deviation; higher scores = “more relevant”) for models trained with/without leakage
from MS MARCO/ORCAS (MSM) or the test data (Test). Scores macro-averaged over
all topics for test leakage and over all topics with leaking queries for MSM leakage.

Model Robust04 Common Core 17 Common Core 18

With Without With Without With Without

M
S
M

le
a
k
. Duet 0.89 ±1.22 0.78 ±1.18 0.52 ±1.18 0.47 ±1.17 0.16 ±0.79 0.09 ±0.75

KNRM -2.06 ±3.64 -2.58 ±3.43 -2.53 ±3.75 -3.08 ±3.52 -2.32 ±3.24 -2.78 ±3.01

monoBERT -0.75 ±0.44 -0.72 ±0.41 -0.88 ±0.49 -0.85 ±0.47 -0.92 ±0.50 -0.89 ±0.48

monoT5 -1.05 ±1.14 -1.19 ±1.20 -1.32 ±1.26 -1.48 ±1.31 -1.51 ±1.34 -1.65 ±1.38

PACRR 2.59 ±3.25 2.29 ±3.11 2.78 ±3.35 2.46 ±3.20 2.25 ±3.08 1.95 ±2.96

T
e
st

le
a
k
.

Duet 0.07 ±0.61 -0.11 ±0.56 0.22 ±0.68 -0.01 ±0.66 0.30 ±0.69 0.09 ±0.68

KNRM -2.71 ±3.79 -3.41 ±3.71 -2.78 ±3.65 -3.28 ±3.63 -3.08 ±4.14 -3.59 ±4.14

monoBERT -0.91 ±0.45 -1.04 ±0.53 -0.85 ±0.44 -0.90 ±0.48 -0.85 ±0.46 -0.92 ±0.49

monoT5 -1.70 ±1.24 -2.37 ±1.53 -1.47 ±1.09 -1.98 ±1.37 -1.52 ±1.24 -2.01 ±1.50

PACRR 2.31 ±4.27 1.92 ±3.09 1.83 ±4.40 1.98 ±3.13 2.66 ±3.31 2.26 ±3.23

score, and we indeed observe that the retrieval score of leaked relevant docu-
ments increases in most cases compared to their no-leakage counterpart (excep-
tion: monoBERT for MSM leakage and PACRR for test leakage from Com-
mon Core 2017). The difference between the score differences of leakage mod-

158 M. Fröbe et al.

Table 8. Macro-averaged increase of the rank-offset between the leaked relevant and
non-relevant documents (± standard deviation) for models trained on MSM leakage
(Δ on MSM) or on test leakage (Δ on Test) over the no-leakage variants.

Model Δ on MSM Δ on Test

R04 C17 C18 R04 C17 C18

Duet 6.378 ±32.15 3.119 ±19.17 2.647 ±19.23 0.809 ±17.69 1.430 ±19.33 1.023 ±20.10

KNRM 0.640 ±19.22 0.979 ±15.23 0.398 ±14.55 1.335 ±11.75 0.012 ±14.92 0.140 ±15.18

monoBERT 0.692 ±17.97 0.076 ±17.19 0.369 ±20.04 3.886 ±20.39 0.980 ±17.44 3.497 ±25.98

monoT5 0.443 ±8.60 0.390 ±9.28 0.789 ±9.91 3.443 ±19.96 2.242 ±9.84 1.819 ±10.98

PACRR 0.043 ±19.30 0.764 ±10.93 0.452 ±12.38 1.952 ±17.71 0.271 ±16.96 0.753 ±14.16

els and non-leakage models is larger for leakage from the test data than for
MSM leakage in 13 of the 15 cases (with a maximum difference for monoT5
from a test leakage difference of 0.67 = 2.37−1.70 to an MSM leakage difference
of 0.14 = 1.19 − 1.05). To investigate the “full picture” with respect to also
negative leaked instances (i.e., non-relevant documents), we next also study the
rank offsets between the positive and the negative leaked instances.

Table 8 shows the macro-averaged increase in the rank difference of the leaked
relevant and non-relevant documents between models trained with and without
leakage. The leakage increases the rank offset for all five analyzed models (e.g.,
6.4 ranks for Duet on Robust04 with MSM leakage). Interestingly, an in-depth
inspection showed that most of the increased differences are caused by lowered
ranks of the leaked non-relevant documents (e.g., 2 ranks lower for monoT5)
while the leaked relevant documents improve their ranks only slightly (e.g.,
0.3 ranks higher for monoT5).

Discussion. Overall, our results in Tables 6, 7 and 8 indicate that memorization
happens but has little impact. Larger memorization effects might be desirable
in practical scenarios where a retrieval system that memorizes good results can
simply present them when the same query is submitted again. However, for
empirical evaluations in scientific publications or at shared tasks, (unintended)
leakage memorization at a larger scale might still lead to unwanted outcomes.

5 Conclusion

Our study of train–test leakage effects for neural retrieval models was inspired
by the observation that 69% of the Robust04 topics, a dataset often used to test
neural models, have very similar queries in the MS MARCO/ORCAS datasets,
that are often used to train neural models. At first glance, this overlap might
seem alarming since train–test leakage is known to invalidate experimental eval-
uations. We thus analyzed train–test leakage effects for five neural models (Duet,
KNRM, monoBERT, monoT5, and PACRR) in scenarios with different amounts

How Train–Test Leakage Affects Zero-Shot Retrieval 159

of leakage. While our experiments show leakage-induced effectiveness improve-
ments that may even lead to swaps in model ranking, our overall results are
reassuring: the effects on nDCG@10 are rather small and not significant in most
cases. They also become smaller the smaller (and more realistic) the amount of
leakage among all training instances is. Still, even if only a few nDCG@10 differ-
ences were significant, we noticed a memorization effect: the rank offset between
leaked relevant and non-relevant documents increased on all scenarios.

Train–test leakage should thus still be avoided in academic experiments
but the practical consequences for real search engines might be different. The
observed increased rank offset might be a highly desirable effect when presuming
that queries already seen during training are submitted again after a model has
been deployed to production. An interesting direction for future research is to
enlarge our experiments to investigate more of the few cases where train–test
leakage slightly reduced the effectiveness.

References

1. Allan, J., Harman, D., Kanoulas, E., Li, D., Gysel, C., Voorhees, E.: TREC 2017
common core track overview. In: Proceedings of TREC 2017, vol. 500–324. NIST
(2017)

2. Ateniese, G., Mancini, L., Spognardi, A., Villani, A., Vitali, D., Felici, G.: Hacking
smart machines with smarter ones: how to extract meaningful data from machine
learning classifiers. Int. J. Secur. Netw. 10(3), 137–150 (2015)

3. Benham, R., et al.: RMIT at the 2017 TREC CORE track. In: Proceedings of
TREC 2017, NIST Special Publication, vol. 500-324. NIST (2017)

4. Benham, R., et al.: RMIT at the 2018 TREC CORE track. In: Proceedings of
TREC 2018, NIST Special Publication, vol. 500-331. NIST (2018)

5. Berthelot, D., Raffel, C., Roy, A., Goodfellow, I.: Understanding and improving
interpolation in autoencoders via an adversarial regularizer. In: Proceedings of
ICLR 2019. OpenReview.net (2019)

6. Chen, C., Wu, B., Qiu, M., Wang, L., Zhou, J.: A comprehensive analysis of infor-
mation leakage in deep transfer learning. CoRR abs/2009.01989 (2020)

7. Chollet, F.: Deep Learning with Python. Simon and Schuster (2021)
8. Craswell, N., Campos, D., Mitra, B., Yilmaz, E., Billerbeck, B.: ORCAS: 20 million

clicked query-document pairs for analyzing search. In: Proceedings of CIKM 2020,
pp. 2983–2989. ACM (2020)

9. Craswell, N., Mitra, B., Yilmaz, E., Campos, D.: Overview of the TREC 2021 deep
learning track. In: Voorhees, E.M., Ellis, A. (eds.) Notebook. NIST (2021)

10. Craswell, N., Mitra, B., Yilmaz, E., Campos, D., Voorhees, E.: Overview of the
TREC 2019 deep learning track. In: Proceedings of TREC 2019, NIST Special
Publication. NIST (2019)

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of NAACL
2019, Minneapolis, Minnesota, pp. 4171–4186. Association for Computational Lin-
guistics (2019)

12. Dolan, W.B., Brockett, C.: Automatically constructing a corpus of sentential para-
phrases. In: Proceedings of the Third International Workshop on Paraphrasing
(IWP 2005) (2005)

160 M. Fröbe et al.

13. Fan, A., Jernite, Y., Perez, E., Grangier, D., Weston, J., Auli, M.: ELI5: long form
question answering. In: Proceedings of ACL 2019, pp. 3558–3567. ACL (2019)

14. Fan, Y., Guo, J., Lan, Y., Xu, J., Zhai, C., Cheng, X.: Modeling diverse relevance
patterns in ad-hoc retrieval. In: Proceedings of SIGIR 2018, pp. 375–384. ACM
(2018)

15. Feldman, V.: Does learning require memorization? A short tale about a long tail.
In: Proceedings of STOC 2020, pp. 954–959. ACM (2020)

16. Feldman, V., Zhang, C.: What neural networks memorize and why: discovering the
long tail via influence estimation. In: Proceedings of NeurIPS 2020 (2020)

17. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: Proceedings of CCS 2015, pp.
1322–1333. ACM (2015)

18. Fuhr, N.: Some common mistakes in IR evaluation, and how they can be avoided.
SIGIR Forum 51(3), 32–41 (2017)

19. He, H., Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng.
21(9), 1263–1284 (2009)

20. Hofstätter, S., Zlabinger, M., Hanbury, A.: Interpretable & time-budget-
constrained contextualization for re-ranking. In: Proceedings of ECAI 2020, Fron-
tiers in Artificial Intelligence and Applications, vol. 325, pp. 513–520. IOS Press
(2020)

21. Hui, K., Yates, A., Berberich, K., Melo, G.: PACRR: a position-aware neural IR
model for relevance matching. In: Proceedings of EMNLP 2017, pp. 1049–1058.
ACL (2017)

22. Jansen, B., Booth, D., Spink, A.: Patterns of query reformulation during web
searching. J. Assoc. Inf. Sci. Technol. 60(7), 1358–1371 (2009)

23. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE
Trans. Big Data 7(3), 535–547 (2021)

24. Krishna, K., Roy, A., Iyyer, M.: Hurdles to progress in long-form question answer-
ing. In: Proceedings of NAACL 2021, pp. 4940–4957. ACL (2021)

25. Li, C., Yates, A., MacAvaney, S., He, B., Sun, Y.: PARADE: passage representation
aggregation for document reranking. CoRR abs/2008.09093 (2020)

26. Lin, J., Ma, X., Lin, S., Yang, J., Pradeep, R., Nogueira, R.: Pyserini: a Python
toolkit for reproducible information retrieval research with sparse and dense rep-
resentations. In: Proceedings of SIGIR 2021, pp. 2356–2362. ACM (2021)

27. Lin, J., Yang, P.: The impact of score ties on repeatability in document ranking.
In: Proceedings of SIGIR 2019, pp. 1125–1128. ACM (2019)

28. Lin, S., Yang, J., Lin, J.: Distilling dense representations for ranking using tightly-
coupled teachers. CoRR abs/2010.11386 (2020)

29. Linjordet, T., Balog, K.: Sanitizing synthetic training data generation for question
answering over knowledge graphs. In: Proceedings of ICTIR 2020, pp. 121–128.
ACM (2020)

30. MacAvaney, S., Yates, A., Cohan, A., Goharian, N.: CEDR: contextualized embed-
dings for document ranking. In: Proceedings of SIGIR 2019, pp. 1101–1104. ACM
(2019)

31. MacAvaney, S., Yates, A., Feldman, S., Downey, D., Cohan, A., Goharian, N.:
Simplified data wrangling with ir datasets. In: Proceedings of SIGIR 2021, pp.
2429–2436. ACM (2021)

32. Macdonald, C., Tonellotto, N., MacAvaney, S., Ounis, I.: PyTerrier: declarative
experimentation in Python from BM25 to dense retrieval. In: Proceedings of CIKM
2021, pp. 4526–4533. ACM (2021)

How Train–Test Leakage Affects Zero-Shot Retrieval 161

33. Mitra, B., Diaz, F., Craswell, N.: Learning to match using local and distributed
representations of text for web search. In: Proceedings of WWW 2017, pp. 1291–
1299. ACM (2017)

34. Mokrii, I., Boytsov, L., Braslavski, P.: A systematic evaluation of transfer learning
and pseudo-labeling with BERT-based ranking models. In: Proceedings of SIGIR
2021, pp. 2081–2085. ACM (2021)

35. Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep
learning: passive and active white-box inference attacks against centralized and
federated learning. In: Proceedings of SP 2019, pp. 739–753. IEEE (2019)

36. Nogueira, R., Jiang, Z., Pradeep, R., Lin, J.: Document ranking with a pretrained
sequence-to-sequence model. In: Findings of EMNLP 2020, vol. EMNLP 2020, pp.
708–718. ACL (2020)

37. Nogueira, R., Yang, W., Cho, K., Lin, J.: Multi-stage document ranking with
BERT. CoRR abs/1910.14424 (2019)

38. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese
BERT-networks. In: Proceedings of EMNLP 2019, pp. 3980–3990. ACL (2019)

39. Sandhaus, E.: The New York times annotated corpus. Linguist. Data Consortium
Philadelphia 6(12), e26752 (2008)

40. Sharma, L., Graesser, L., Nangia, N., Evci, U.: Natural language understanding
with the Quora question pairs dataset. CoRR abs/1907.01041 (2019)

41. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: Proceedings of SP 2017, pp. 3–18. IEEE
(2017)

42. Voorhees, E.: The TREC robust retrieval track. SIGIR Forum 39(1), 11–20 (2005)
43. Wahle, J.P., Ruas, T., Meuschke, N., Gipp, B.: Are neural language models good

plagiarists? A benchmark for neural paraphrase detection. In: Proceedings of JCDL
2021, pp. 226–229 (2021)

44. Xiong, C., Dai, Z., Callan, J., Liu, Z., Power, R.: End-to-end neural ad-hoc ranking
with kernel pooling. In: Proceedings of SIGIR 2017, pp. 55–64. ACM (2017)

45. Yates, A., Arora, S., Zhang, X., Yang, W., Jose, K., Lin, J.: Capreolus: a toolkit for
end-to-end neural ad hoc retrieval. In: Proceedings of WSDM 2020, pp. 861–864.
ACM (2020)

46. Zhan, J., Xie, X., Mao, J., Liu, Y., Zhang, M., Ma, S.: Evaluating extrapolation
performance of dense retrieval. CoRR abs/2204.11447 (2022)

47. Zhang, X., Yates, A., Lin, J.: A little bit is worse than none: ranking with limited
training data. In: Proceedings of SustaiNLP 2020, pp. 107–112. Association for
Computational Linguistics (2020)

48. Zobel, J., Rashidi, L.: Corpus bootstrapping for assessment of the properties of
effectiveness measures. In: Proceedings of CIKM 2020, pp. 1933–1952. ACM (2020)

Computational Biology

Genome Comparison on Succinct Colored
de Bruijn Graphs

Lucas P. Ramos1(B) , Felipe A. Louza2 , and Guilherme P. Telles1

1 Instituto de Computação, UNICAMP, Campinas, SP, Brazil
lucaspr98@gmail.com

2 Universidade Federal de Uberlândia, Uberlândia, Brazil

Abstract. The improvements in DNA sequence technologies have
increased the volume and speed at which genomic data is acquired. Nev-
ertheless, due to the difficulties for completely assembling a genome,
many genomes are left in a draft state, in which each chromosome is
represented by a set of sequences with partial information on their rel-
ative order. Recently, some approaches have been proposed to compare
genomes by comparing extracted paths from de Bruijn graphs and com-
paring such paths. The idea of using data from de Bruijn graphs is inter-
esting because such graphs are built by many practical genome assem-
blers. In this article we introduce gcBB, a method for comparing genomes
represented as succinct de Bruijn graphs directly, without resorting to
sequence alignments, by means of the entropy and expectation measures
based on the Burrows-Wheeler Similarity Distribution (BWSD). We have
compared phylogenies of genomes obtained by other methods to those
obtained with gcBB, achieving promising results.

Keywords: Succinct de Bruijn graphs · Genomic comparison ·
Phylogenetics

1 Introduction

Computing similarity measures between strings is a problem that must be solved
often in many areas of Computer Science, such as bioinformatics, plagiarism
detection and classification. Similarity measures based on the Burrows-Wheeler
transform (BWT) [3], as the eBWT-based distances [12,13] and the Burrows-
Wheeler Similarity Distribution (BWSD) [22], are particularly attractive because
the BWT provides a self-index [14] and can be computed in linear time on the
string length.

In the process of sequencing a genome, a large amount of short strings (reads)
is first obtained. The reads cover each DNA nucleotide many times; such coverage
varies across sequencing projects and may be as high as 200 times per nucleotide
on average. The reads must then be assembled based on the overlaps among
them. This is a hard problem in general, further complicated by the huge number
of reads that may be obtained with the current DNA sequencing technologies,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 165–177, 2022.
https://doi.org/10.1007/978-3-031-20643-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_12&domain=pdf
http://orcid.org/0000-0002-3699-2991
http://orcid.org/0000-0003-2931-1470
http://orcid.org/0000-0003-2608-4807
https://doi.org/10.1007/978-3-031-20643-6_12

166 L. P. Ramos et al.

by the presence of repetitions in the target DNA, by sequencing errors and by
other sources of ambiguities and technical limitations. Completely assembling a
genome is thus a difficult task and many sequenced genomes are left in a draft
state, that is, a set of strings (contigs) that may include information on their
relative order (scaffolds) instead of a single string for each chromosome [16].

Different graphs have been used for genome assembly, such as overlap
graphs [17], de Bruijn graphs [4], string graphs [20] and repeat graphs [7]. A
graph is built early in the assembly process and then a series of algorithms
extracts paths and connectivity information to obtain a tentative sequence or
arrangement of sequences for the whole genome.

Many assemblers are based on the de Bruijn graph (e.g. [8,9,20]), that may
be stored succinctly using the BOSS representation [2], that is based on the
BWT. Colors may be added to the edges of a de Bruijn graph, enabling the
representation of a set of strings from distinct genomes on colored de Bruijn
graphs. Recent approaches have been proposed for the comparison of genomes
by the extraction of paths from their colored de Bruijn graphs [10,15].

In this paper we introduce gcBB, a space-efficient algorithm to compare
genomes using their BOSS representations and the BWSD. Given a set of
genomes, a colored de Bruijn graph in the BOSS representation is built for
each pair of genomes and BWSD measures are evaluated to assess the similarity
between the genomes. Our method showed promising resulting in experiments
that compared the phylogenies for genomes of 12 Drosophila species built with
gcBB and with the methods by Lyman et al. [10] and by Polevikov and Kol-
mogorov [15].

2 Definitions and Notation

A string is the juxtaposition of symbols from an ordered alphabet Σ. Let S
be a string of length n. We index its symbols from 1 to n. A substring of S is
S[i, j] = S[i] . . . S[j] with 1 ≤ i ≤ j ≤ n. The substring S[1, i] is referred to as
a prefix of S and S[i, n] is referred to as a suffix of S. The i-th circular rotation
(or conjugate or simply rotation) of S is the string S[i + 1] . . . S[n]S[1] . . . S[i].
When i = 0 the rotation is equal to S.

For clearer definitions it is convenient to use a special marker symbol $ at the
end of S. This symbol does not occur elsewhere in S and is the smallest symbol
in Σ. In this way, all rotations of S are distinct.

The suffix array [11] of a string S of length n is an array SA containing the
permutation of {1, . . . , n} that gives the suffixes of S in lexicographic order, that
is, S[SA[1], n] < S[SA[2], n] < . . . < S[SA[n], n].

By lcp(S1, S2) we denote the length of the longest common prefix of strings
S1 and S2. The LCP array for a string S of length n is the array of integers
containing the lcp of consecutive suffixes in the suffix array. Formally, LCP[i] =
lcp(S[SA[i], n], S[SA[i − 1], n]) for 1 < i ≤ n and LCP[1] = 0.

The Burrows-Wheeler Transform (BWT) [3] of a string S is a reversible
transformation of S that permutes its symbols. The resulting string, denoted by

Genome Comparison on Succinct Colored de Bruijn Graphs 167

i SA BWT LCP S[SA[i], n]
1 12 a 0 $
2 11 r 0 a$
3 8 d 1 abra$
4 1 $ 4 abracadabra$
5 4 r 1 acadabra$
6 6 c 1 adabra$
7 9 a 0 bra$
8 2 a 3 bracadabra$
9 5 a 0 cadabra$

10 7 a 0 dabra$
11 10 b 0 ra$
12 3 b 2 racadabra$

Fig. 1. Suffix array, BWT and LCP array for S = abracadabra$.

BWT, often allows better compression because equal symbols tend to be clus-
tered. Moreover, the BWT is the core of many indexing structures for text [14].

The BWT is the last column of a matrix M having the sorted rotations of S
as rows. In M, the first column is called F and the last column is called L. Since
S[n] = $, sorting the rotations of S is equivalent to sorting the suffixes of S and
the BWT may be defined in terms of the suffix array as BWT[i] = S[SA[i] − 1]
if SA[i] �= 1 or BWT[i] = $ otherwise. Figure 1 shows the suffix array, the LCP
array and the BWT for S = abracadabra$.

Let S = {S1, S2, . . . , Sd} be a collection of d strings of lengths n1, n2, . . . , nd.
We define the concatenation of all strings in S as Scat = S1[1, n1−1]$1S2[1, n2−
1]$2 · · · Sd[1, nd−1]$d that is, each terminal symbol $ is replaced by a (separator)
symbol $i, with $i < $j if and only if i < j. The length of Scat is N =

∑d
i=1 ni.

The suffix array for a collection S is the suffix array SA[1, N] computed for Scat.
The BWT for S is obtained from the SA of Scat as well.

We define the context of a suffix Scat[i,N] as the substring Scat[i, j] such that
Scat[j] is the first occurrence of some $k in Scat[i,N]. The document array is an
array of integers DA that stores which document each suffix in SA “belongs” to.
More formally, DA[i] = j if Scat[SA[i], N] has the context that ends with $j .

2.1 Burrows-Wheeler Similarity Distribution

The BWT of two strings S1 and S2 can be used to compute similarity measures
between the strings based on the observation that as more symbols of S1 and S2

are intermixed in the BWT, a larger number of substrings are shared between
them [12].

The Burrows-Wheeler similarity distribution (BWSD) [22] between S1 and
S2, denoted by BWSD(S1, S2), is a probability mass function defined as follows.
Given the BWT of S = {S1, S2}, we define a bitvector α of size n1 + n2 such
that α[p] = 0 if BWT[p] = $2 or BWT[p] ∈ S1 and α[p] = 1 if BWT[p] = $1
or BWT[p] ∈ S2. The bitvector α can be represented as a sequence of runs

168 L. P. Ramos et al.

r = 0k11k20k31k4 . . . 0km1km+1 where ikj means that i repeats kj times, and only
k1 and km+1 may be zero. The largest possible value for kj is kmax = max(n1, n2).

Let tn be the number of occurrences of an exponent n in r. Let s = t1 + t2 +
. . . + tkj

+ . . . + tkmax . The BWSD(S1, S2) is the probability mass function

P{kj = k} = tk/s for k = 1, 2, . . . , kmax.

Two similarity measures were defined on the BWSD of S1 and S2.

Definition 1. DM (S1, S2) = E(kj) − 1, where E(kj) is the expectation of
BWSD(S1, S2).

Definition 2. DE(S1, S2) = −∑
k≥1,tk �=0(tk/s) log2(tk/s) is the Shannon

entropy of BWSD(S1, S2).

Note that if S1 and S2 are equal then kmax = 1, P{kj = 1} = n1+n2
n1+n2

= 1,
DM (S1, S2) = 0 and DE(S1, S2) = 0. Also, if the α for BWT(S1, S2) is equal
to the α for BWT(S2, S1), then both have the same BWSD and DE(S1, S2) =
DE(S2, S1) and DM (S1, S2) = DM (S2, S1).

2.2 Succinct de Bruijn Graphs

Let S = {S1, S2, . . . , Sd} be a collection of strings (reads of a genome). Assume
that S is modified by concatenating k symbols $ at the beginning of each string
in S. We will refer to a string of length k as a k-mer.

A de Bruijn graph (of order k) for S has one vertex for each k-mer in a string
in S. There is an edge from vertex u to vertex v labeled v[k] if the substring
u[1]u[2]. . .u[k]v[k] occurs in a string in S. We say that the k-mer related to a
vertex u is the vertex label and denote it by −→u . A de Bruijn graph may represent
a set of genomes by adding a color to each edge (colors and genomes are in a
one-to-one mapping) and allowing parallel edges. Such graph is called colored
de Bruijn graph.

Notice that (i) an edge from u to v corresponds to the existence of an overlap
of length k − 1 between the suffix of −→u and the prefix of −→v and (ii) the concate-
nation of edge labels along a path of length k that arrives at a vertex v whose
label does not have a $ will be −→v .

BOSS [2] is a succinct representation of the de Bruijn graph that enables
efficient navigation across vertices and edges. Let n and m be respectively
the number of vertices and edges of a de Bruijn graph G. Assume that the
vertices v1, v2, . . . , vn in G are sorted according to the co-lexicographic order
of their labels, i.e., the lexicographic order of the reverse of their labels,←−vi = −→vi [k] . . . −→vi [1] for each vertex vi.

We define Node as a conceptual matrix containing the co-lexicographically
sorted set of k-mers in S. For each vertex vi, we define Wi as the sequence of
symbols of the outgoing edges of vi in lexicographic order. If vi has no outgoing
edges then Wi = $.

Genome Comparison on Succinct Colored de Bruijn Graphs 169

The BOSS representation is composed by the following components:

1. The string W [1,m] = W1W2 . . . Wn. Observe that |W | = |Node| and Node[i]
denotes the vertex from which W [i] leaves.

2. The bitvector W−[1,m] such that W−[i] = 0 if there exists j < i such that
W [j] = W [i] and the suffixes of length k − 1 of Node[j] and of Node[i] are
identical, or W−[i] = 1 otherwise.

3. The bitvector last[1,m] such that last[i] = 1 if i = n or Node[i] is different
from Node[i + 1], or last[i] = 0 otherwise.

4. The counter array C[1, σ] such that C[c] stores the number of symbols smaller
than c in the last column of the conceptual matrix Node.

For DNA sequences the alphabet is Σ = {A, T, C, G, N, $} with size σ = 6.
Storing the string W requires m�log2 σ� = 3m bits, the bitvectors W− and
last require 2m bits and the counter array C requires σ log m = 6 log m bits.
Therefore, the overall space to store the BOSS structure is 5m + 6 log m bits.

Egidi et al. [5] proposed an algorithm called eGap for computing the multi-
string BWT and the LCP array in external memory. As an application the
authors showed how to compute the BOSS representation with a sequential scan
over the BWT and the LCP array built for the collection S with all strings
reversed in O(N) time.

3 gcBB – Genome Comparison Using BOSS and BWSD

Given a set of genomes (each one as a collection of reads) and a value for k,
our method, called gcBB, constructs the colored BOSS and then computes the
BWSD and the similarity measures for each pair. The output is a distance
matrix with the expectation and entropy BWSD distances among all pairs of
the genomes in the set. The intuition is that intermixed edges in the colored
BOSS are related to shared nodes in their graphs and to similarities in the
genomes. gcBB has three phases, as follows.

Phase 1: First, we construct the BWT and the LCP array for the collection of
reads of each genome in external memory using eGap [5]. We also compute an
auxiliary array that gives the lengths of each context, called CL. For each pair of
genomes, we merge their arrays while generating the document array DA. Note
that DA can be stored in a bitvector, since we merge only pairs of genomes. The
resulting arrays are written to external memory.

For the set of genomes S1 = {TACTCA, TACACT} and S2 = {GACTCG}, Fig. 2
shows the output of eGap for each set and the resulting merge.

Phase 2: From the merged BWT and LCP arrays we construct the colored BOSS
representation as described in [5] and we compute the bitvector colors[1,m] and
the array coverage[1,m]. The colors bitvector indicates from which genome
each edge came and can be easily obtained from DA. The coverage array gives
the number of times a (k + 1)-mer represented by an edge occurs in its genome.

170 L. P. Ramos et al.

i BWT LCP CL context
1 T 0 1 $1
2 T 0 1 $2
3 C 0 5 ACAT$2
4 $2 2 7 ACTCAT$1
5 C 1 3 AT$1
6 C 2 3 AT$2
7 T 0 6 CACAT$2
8 A 2 4 CAT$2
9 T 3 4 CAT$1

10 A 1 6 CTCAT$1
11 A 0 2 T$1
12 A 1 2 T$2
13 $1 1 7 TCACAT$2
14 C 3 5 TCAT$1

(a)

i BWT LCP CL context
1 G 0 1 $1
2 C 0 3 AG$1
3 T 0 4 CAG$1
4 G 1 6 CTCAG$1
5 A 0 2 G$1
6 $1 1 7 GCTCAG$1
7 C 0 5 TCAG$1

(b)

i BWT LCP CL DA context
1 T 0 1 0 $1
2 T 0 1 0 $2
3 G 0 1 1 $3
4 C 0 5 0 ACAT$2
5 $3 2 7 0 ACTCAT$1
6 C 1 3 1 AG$3
7 C 1 3 0 AT$1
8 C 2 3 0 AT$2
9 T 0 6 0 CACAT$2
10 T 2 4 1 CAG$3
11 A 2 4 0 CAT$1
12 T 3 4 0 CAT$2
13 G 1 6 1 CTCAG$3
14 A 4 6 0 CTCAT$1
15 A 0 2 1 G$3
16 $2 1 7 1 GCTCAG$3
17 A 0 2 0 T$1
18 A 1 2 0 T$2
19 $1 1 7 0 TCACAT$2
20 C 3 5 1 TCAG$3
21 C 3 5 0 TCAT$1

(c)

Fig. 2. The BWT, LCP and CL arrays output by eGap for genomes (a) S1 and (b)
S2. (c) Merged BWT, LCP, CL arrays and DA for S1S2. The context column is not
produced by eGap.

We also compute two extra arrays, LCS[1,m] and KL[1,m]. The LCS array
contains the longest common suffix between consecutive k-mers in Node and the
KL array contains the size of each vertex label not including the $ symbols.
These arrays are obtained from LCP and CL.

Consider the merged arrays of genomes S1 and S2 obtained in Phase 1 and
k = 3. The colored BOSS representation obtained for S1 and S2 is shown in
Fig. 3.

Phase 3: The distances between each pair of genomes are computed by evaluat-
ing the BWSD on the colors bitvector, obtaining the expectation and entropy
distance matrices. Note that the colored BOSS representation contains the edges
of every k′-mer from the merged genomes, for 1 ≤ k′ ≤ k. These edges are part
of the BOSS representation and are needed by the navigation operations. Since
we are just interested in the k-mers for the comparisons, we filtered out all the
edges of the colored BOSS where KL[j] < k, for 1 ≤ j ≤ m, during the BWSD
computation.

From the colored BOSS shown in Fig. 3 filtering edges from k′-mers of size
smaller than k we use the colors bitvector as the α bitvector of the BWSD,
thus we have α = {0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1}, r = 031103120211, t1 = 2, t2 =

Genome Comparison on Succinct Colored de Bruijn Graphs 171

i last Node W W− color coverage LCS KL
1 1 $1 T 1 0 2 0 0
2 1 $3 G 1 1 1 0 0
3 1 ACA C 1 0 1 0 3
4 1 TCA $3 1 0 1 2 3
5 1 $3GA C 1 1 1 1 2
6 1 $1TA C 1 0 2 1 2
8 1 CAC T 1 0 1 0 3
9 1 GAC T 0 1 1 2 3
10 0 TAC A 1 0 1 2 3
11 1 TAC T 0 0 1 3 3
12 0 CTC A 1 0 1 1 3
13 1 CTC G 1 1 1 4 3
14 1 $3G A 1 1 1 0 1
15 1 TCG $2 1 1 1 1 3
16 1 $1T A 1 0 1 0 1
17 0 ACT $1 1 0 1 1 3
18 0 ACT C 1 0 1 3 3
19 1 ACT C 0 1 1 3 3

Fig. 3. S1S2 merged colored BOSS representation with k = 3. Lines where KL values
are colored red represent edges from vertices not containing a symbol $. In this example,
we use $i instead of k symbols $. (Color figure online)

2, t3 = 2 and s = 6. Hence, the BWSD(S1,S2) is

P{kj = 1} =
2
6
, P{kj = 2} =

2
6
, P{kj = 3} =

2
6

Computing the distances we have DM (S1,S2) = 1 and DE(S1,S2) = 1.584.

Coverage Information. When handling a collection of reads from a real genome,
each (k + 1)-mer may occur multiple times and we can use this information in
the BWSD to weight the edges of the graph, aiming at improving the accuracy of
the results. The same (k + 1)-mer from distinct genomes can be detected in the
colored BOSS using the LCS array and the colors bitvector. These (k+1)-mers
will appear in the α array with a 0 followed by a 1. Note that this happens only
once independently of the number of times these (k + 1)-mers occurred in both
genomes. Whenever these (k + 1)-mers occurred many times in both genomes,
their similarity should be increased. To do that we also use the coverage array
during the BWSD computation.

For example, we added the string ACTC in sets S1 and S2 from the
previous example. Let S1

′ = {TACTCA, TACACT, ACTC, ACTC, ACTC} and S2
′ =

{GACTCG, ACTC, ACTC}. In both genomes we have to increment the coverage infor-
mation of the k-mers ACT with the outgoing edge C. The updated lines of the
BOSS representation are shown in Fig. 4.

Let α′ = {0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1} be a bitvector equal to α from the
previous example. The last 0 and 1 values from α′ represent the (k + 1)-mer

172 L. P. Ramos et al.

i last Node W W− color coverage LCS KL
...

...
...

...
...

...
...

...
...

18 0 ACT C 1 0 4 3 3
19 1 ACT C 0 1 3 3 3

Fig. 4. Lines with coverage incremented for the (k+1)-mer ACTC in the colored BOSS
for {S1

′,S2
′}. (Color figure online)

ACTC from both genomes. We apply the coverage value to the positions of r′

where these values occurred. That is, r′ = 0311031201+311+2 = 031103120413.
Finally, we expand r′ in the positions of the equal (k + 1)-mers while merging
them, that is r′ = 03110312010111011101110110. Then, we have t1 = 8, t2 = 1,
t3 = 2 and s = 11. And the BWSD(S1

′S2
′) is

P{kj = 1} =
9
12

, P{kj = 2} =
1
12

, P{kj = 3} =
2
12

Computing the distances we have DM (S1
′S2

′) = 0.41666 and DE(S1
′S2

′) =
1.04085. The effect of coverage on the similarity was analysed in our experiments.

Time and Space Analysis. Let n1 and n2 be the sizes of two genomes.
Phase 1 takes O((n1 + n2)maxlcp) time to construct and merge the BWT,

LCP and CL in external memory with eGap, where maxlcp is the maximum in
LCP.

Phase 2 takes O(n1 + n2) time to construct the BOSS representation. Let m
be the number of edges in the colored BOSS. The space required for the BOSS
representation is 5m + 6 log m bits, as shown in Sect. 2.2. The colors bitvector
and the coverage array require extra m bits and 4m bytes respectively. For
reads with less than 65K symbols both LCS and KL can be stored in arrays
of short integers, that is, 2m bytes for each one. Therefore, the overall space
required is 6m bytes plus 6m + 6 log m bits.

Phase 3 takes O(m) time to compute the BWSD from the colors bitvector,
LCS and KL arrays. The arrays r and t require O(m) bytes.

4 Experiments

We evaluated gcBB by reconstructing the phylogeny of the 12 Drosophila species
in Table 1, obtained from FlyBase [21]. The reads were obtained with a NextSeq
500 sequencer1 and have 302 bp on average, except that reads of D. grimshawi
were obtained with a MinION sequencer2 and have 6,520 bp on the average.

Our algorithm was implemented in C and compiled with gcc version 4.9.2.
The source code can be accessed at github3. We used eGap [5] to construct
1 https://www.illumina.com/systems/sequencing-platforms/nextseq.html.
2 https://nanoporetech.com/products/minion.
3 https://github.com/lucaspr98/gcBB.

https://www.illumina.com/systems/sequencing-platforms/nextseq.html
https://nanoporetech.com/products/minion
https://github.com/lucaspr98/gcBB

Genome Comparison on Succinct Colored de Bruijn Graphs 173

and merge the data structures during Phase 1. The experiments were conducted
on a system with Debian GNU/Linux 4.9.2 64 bits on Intel Xeon E5-2630 v3
20M Cache 2.40 GHz processors, 378 GB of RAM and 13 TB SAS storage. Our
experiments were limited to 48 GB of RAM.

Table 1. Information on the genomes of Drosophilas, that can be accessed through
their Run (SRR) or BioSample (SAMN) accessions at https://www.ncbi.nlm.nih.gov/
genbank/. The Bases column has the number of sequenced bases in Gbp. The Reference
column has the size of the complete genome in Mb. The sizes of data structures in Gb
are shown in columns BWT, LCP and CL, and the average LCP is shown in column
LCP avg.

Organism Run BioSample Bases Reference BWT LCP CL LCP avg

D. melanogaster 6702604 08511563 6.20 138.93 5.9 12 12 61.54

D. ananassae 6425991 08272423 7.13 215.47 6.7 14 14 55.56

D. simulans 6425999 08272428 9.22 131.66 8.7 18 18 58.96

D. virilis 6426000 08272429 11.16 189.44 11 21 21 55.06

D. willistoni 6426003 08272432 11.66 246.98 11 22 22 57.79

D. pseudoobscura 6426001 08272435 12.28 163.29 12 23 23 58.72

D. mojavensis 6425997 08272426 12.45 163.17 12 24 24 58.09

D. yakuba 6426004 08272438 12.78 147.90 12 24 24 59.98

D. persimilis 6425998 08272433 13.32 195.51 13 25 25 58.76

D. erecta 6425990 08272424 14.01 146.54 14 27 27 60.47

D. sechellia 6426002 08272427 14.44 154.19 14 27 27 61.25

D. grimshawi 13070661 16729613 14.50 191.38 14 27 27 43.07

During Phase 1, eGap was set to use up to 48 GB of RAM. The running
time for each genome and the sizes of the arrays can be seen in Table 1. The
longest running time was approximately 57 h, with the resulting arrays taking
about 68 GB of space on disk.

The average time to merge the data structures of each pair in Phase 1 depends
on their sizes. The fastest merge took approximately 27 h, between D. ananassae
and D. melanogaster, while the longest merge took approximately 60 h, between
D. grimshawi and D. sechellia. The size of the merged files was approximately
the sum of the sizes of the input files. The document array file has the same size
of the merged BWT file, since both store each value using one byte.

During Phase 2, the longest colored BOSS construction took approximately
1.5 h, while in Phase 3 the longest BWSD computation took less than 10 min.

The goal of our experiments was to analyse the ability of gcBB in recon-
structing a phylogeny in agreement with the one by Hahn et al. [6], which we
will refer to as reference phylogeny in the sequel. We ran gcBB for k = 15,
31 and 63, producing entropy and expectation BWSD distance matrices, with
and without coverage information. From the output of our algorithm, we used

https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/

174 L. P. Ramos et al.

Table 2. Robinson-Foulds distances computed between phylogenies by gcBB and the
reference phylogeny of Drosophila genomes in Table 1. The symbol c indicates the
phylogenies constructed by gcBB using coverage information.

15 15c 31 31c 63 63c

Entropy 7 2 2 1 2 1

Expectation 6 5 2 3 2 2

Fig. 5. (a) Reference phylogeny and (b) gcBB phylogeny for Drosophilas with k = 31,
coverage information and entropy. These phylogenies were generated using T-Rex [1].

the Neighbor-Joining [19] to reconstruct the phylogenies. Finally, we used the
Robinson-Foulds [18] distance to compare our phylogenies with the references.

Table 2 shows the Robinson-Foulds distance evaluated between the phylo-
genies by gcBB and the reference phylogeny. The phylogenies by gcBB which
are closer to the reference were constructed using k = 31 and k = 63, with
coverage information and the entropy measure. The reference phylogeny and
the phylogeny produced by gcBB for k = 31 are shown in Fig. 5. There is one
inconsistency involving D. grimshawi and D. virilis, which are swapped in our
phylogeny, but in the same subtree. Nonetheless, the high level groups division
agrees with the reference phylogeny.

In order to evaluate the effect of read sizes in the resulting phylogenies, we
considered sequencing data from an Illumina HiSeq 2000 for D. grimshawi. The
information on this genome, the running time taken by eGap to construct the
data structures and their sizes are shown in Table 3.

We executed gcBB using the same parameters and values of k. The best phy-
logeny was obtained with k = 15 and using coverage information. By computing
the Robinson-Foulds distance between these phylogenies and the reference phy-
logeny we obtained the values in Table 4.

We speculate that significantly different amounts of sequenced bases impairs
gcBB in its current form. In this experiment D. grimshawi has 1.80G sequenced
bases, while D. sechellia and D. simulans have more than 14G sequenced bases.

Genome Comparison on Succinct Colored de Bruijn Graphs 175

Table 3. Information on the genome of D. grimshawi, that can be accessed through
its Run (SRR) or BioSample (SAMN) accessions at https://www.ncbi.nlm.nih.gov/
genbank/. The Bases column has the number of sequenced bases in Gbp. The Reference
column has the size of the complete genome in Mb. The sizes of data structures in Gb
are shown in columns BWT, LCP and CL, and the average LCP is shown in column
LCP avg.

Organism Run BioSample Bases Reference BWT LCP CL LCP avg

D. grimshawi 7642855 09764638 1.80 191.38 1.80 3.5 3.5 28.74

Table 4. Robinson-Foulds distance computed between phylogenies with D. grimshawi
from another experiment and the reference phylogeny. The symbol c represents the
phylogenies constructed using coverage information.

15 15c 31 31c 63 63c

Entropy 7 5 5 5 5 5

Expectation 6 7 6 5 6 6

When constructing the BOSS representation for D. grimshawi and D. sechellia
there will be much more edges from D. sechellia than from D. grimshawi, and the
similarity between these genomes tends to be small. Moreover, when constructing
the BOSS representation for D. grimshawi and D. melanogaster there will also
be much more edges from D. melanogaster. The difference between the amount
of bases from D. melanogaster and D. grimshawi is around 4 GB, while from D.
sechellia to D. grimshawi is around 12 GB.

These results suggest that our method produces reasonable phylogenies when
k is closer to the average LCP of the reads. Also, the usage of coverage informa-
tion reduced the Robinson-Foulds distance to the reference in most cases. Finally,
the fact that all reads in the dataset were obtained using similar sequencing pro-
tocols and, on average, have a similar number of sequenced bases may have
helped obtaining favorable results.

5 Conclusions and Future Work

In this work we introduced a new method to compare genomes prior to assem-
bly using space-efficient data structures implemented as gcBB, an algorithm to
compare sets of reads of genomes using the BOSS representation and to compute
the similarity measures based on the BWSD.

We evaluated our algorithm reconstructing the phylogeny of 12 Drosophila
genomes. We used Neighbor-Joining over the matrices output by gcBB to recon-
struct phylogenetic trees. Then we computed the Robinson-Foulds distance
between the phylogenies by gcBB and a reference phylogeny. One issue when
working with the de Bruijn graph is setting the value of k. We observed that
values over the average LCP of the genomes lead to reasonable results. We

https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/

176 L. P. Ramos et al.

observed better results using the entropy measure and coverage information in
the BWSD computation.

Further experiments may help understanding the limits and the advantages
of the approach introduced in this work. Future research may also investigate
different strategies for dealing with coverage information, as the experiments
indicate a positive contribution of coverage to the resulting phylogenies. The
quality of sequenced bases may also be investigated in future work as a means
to improve the method.

Acknowledgements. The authors thank Prof. Marinella Sciortino for helpful discus-
sions and thank Prof. Nalvo Almeida for granting access to the computer used in the
experiments.

Funding. L.P.R. acknowledges that this study was financed by Coordenação de Aper-

feiçoamento de Pessoal de Nı́vel Superior (CAPES), Brazil, Financing Code 001. F.A.L.

acknowledges the financial support from CNPq (grant number 406418/2021-7) and

FAPEMIG (grant number APQ-01217-22). G.P.T. acknowledges the financial support

of Brazilian agencies CNPq and CAPES.

References

1. Boc, A., Diallo, A.B., Makarenkov, V.: T-REX: a web server for inferring, validat-
ing and visualizing phylogenetic trees and networks. Nucleic Acids Res. 40(W1),
W573–W579 (2012)

2. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de Bruijn graphs. In:
Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225–235. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33122-0 18

3. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical report. 124, Systems Research Center (1994)

4. De Bruijn, N.G.: A combinatorial problem. In: Proceedings of the Koninklijke
Nederlandse Academie van Wetenschappen, vol. 49, pp. 758–764 (1946)

5. Egidi, L., Louza, F.A., Manzini, G., Telles, G.P.: External memory BWT and
LCP computation for sequence collections with applications. Algorithms Mol. Biol.
14(1), 1–15 (2019)

6. Hahn, M.W., Han, M.V., Han, S.G.: Gene family evolution across 12 drosophila
genomes. PLoS Genet. 3(11), e197 (2007)

7. Kolmogorov, M., et al.: metaFlye: scalable long-read metagenome assembly using
repeat graphs. Nat. Methods 17(11), 1103–1110 (2020)

8. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat.
Methods 9(4), 357 (2012)

9. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25(14), 1754–1760 (2009)

10. Lyman, C.A., et al.: Whole genome phylogenetic tree reconstruction using colored
de Bruijn graphs. In: 2017 IEEE 17th International Conference on Bioinformatics
and Bioengineering (BIBE), pp. 260–265. IEEE (2017)

11. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

https://doi.org/10.1007/978-3-642-33122-0_18

Genome Comparison on Succinct Colored de Bruijn Graphs 177

12. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: An extension of the Burrows-
Wheeler transform. Theor. Comput. Sci. 387(3), 298–312 (2007)

13. Mantaci, S., Restivo, A., Sciortino, M.: Distance measures for biological sequences:
some recent approaches. Int. J. Approximate Reasoning 47(1), 109–124 (2008)

14. Navarro, G.: Compact Data Structures: A Practical Approach. Cambridge Univer-
sity Press, Cambridge (2016)

15. Polevikov, E., Kolmogorov, M.: Synteny paths for assembly graphs comparison.
In: 19th International Workshop on Algorithms in Bioinformatics (WABI 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

16. Rice, E.S., Green, R.E.: New approaches for genome assembly and scaffolding.
Ann. Rev. Animal Biosci. 7(1), 17–40 (2019)

17. Rizzi, R., et al.: Overlap graphs and de Bruijn graphs: data structures for de novo
genome assembly in the big data era. Quant. Biol. 7(4), 278–292 (2019)

18. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci.
53(1–2), 131–147 (1981)

19. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)

20. Simpson, J.T., Durbin, R.: Efficient de novo assembly of large genomes using com-
pressed data structures. Genome Res. 22(3), 549–556 (2012)

21. Thurmond, J., et al.: FlyBase 2.0: the next generation. Nucleic Acids Res. 47(D1),
D759–D765 (2018)

22. Yang, L., Zhang, X., Wang, T.: The Burrows-Wheeler similarity distribution
between biological sequences based on Burrows-Wheeler transform. J. Theor. Biol.
262(4), 742–749 (2010)

Sorting Genomes by Prefix
Double-Cut-and-Joins

Guillaume Fertin1 , Géraldine Jean1 , and Anthony Labarre2(B)

1 Nantes Université, CNRS, LS2N, UMR 6004, 44000 Nantes, France
{guillaume.fertin,geraldine.jean}@univ-nantes.fr

2 LIGM, CNRS, Université Gustave Eiffel, 77454 Marne-la-Vallée, France
anthony.labarre@univ-eiffel.fr

Abstract. In this paper, we study the problem of sorting unichromo-
somal linear genomes by prefix double-cut-and-joins (or DCJs) in both
the signed and the unsigned settings. Prefix DCJs cut the leftmost seg-
ment of a genome and any other segment, and recombine the severed
endpoints in one of two possible ways: one of these options corresponds
to a prefix reversal, which reverses the order of elements between the two
cuts (as well as their signs in the signed case). Depending on whether
we consider both options or reversals only, our main results are: (1) new
structural lower bounds based on the breakpoint graph for sorting by
unsigned prefix reversals, unsigned prefix DCJs, or signed prefix DCJs;
(2) a polynomial-time algorithm for sorting by signed prefix DCJs, thus
answering an open question in [7]; (3) a 3/2-approximation for sorting
by unsigned prefix DCJs, which is, to the best of our knowledge, the
first sorting by prefix rearrangements problem that admits an approxi-
mation ratio strictly smaller than 2 (with the obvious exception of the
polynomial-time solvable problems); and finally, (4) an FPT algorithm
for sorting by unsigned prefix DCJs parameterised by the number of
breakpoints in the genome.

Keywords: Genome rearrangements · Prefix reversals · Prefix DCJs ·
Lower bounds · Algorithmics · FPT · Approximation algorithms

1 Introduction

Genome rearrangements is a classical paradigm to study evolution between
species. The rationale is to consider species by observing their genomes, which
are usually represented as ordered sets of elements (the genes) that can be signed
(according to gene strand when known). A genome can then evolve by changing
the order of its genes, through operations called rearrangements, which can be
generally described as cutting the genome at different locations, thus forming seg-
ments, and rearranging these segments in a different fashion. Given two genomes,
a sorting scenario is a sequence of rearrangements transforming the first genome
into the other. The length of a shortest such sequence of rearrangements is called
the rearrangement distance. Several specific rearrangements such as reversals,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 178–190, 2022.
https://doi.org/10.1007/978-3-031-20643-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_13&domain=pdf
http://orcid.org/0000-0002-8251-2012
http://orcid.org/0000-0002-1534-2682
http://orcid.org/0000-0002-9945-6774
https://doi.org/10.1007/978-3-031-20643-6_13

Sorting Genomes by Prefix Double-Cut-and-Joins 179

translocations, fissions, fusions, transpositions, and block-interchanges have been
defined, and the rearrangement distance together with its corresponding sorting
problem have been widely studied either by considering one unique type of rear-
rangement or by allowing the combination of some of them [5]. The double-cut-
and-join (or DCJ) operation introduced by Yancopoulos et al. [10] encompasses
all the rearrangements mentioned above: it consists in cutting the genome in two
different places and joining the four extremities in any possible way. A DCJ is a
prefix DCJ whenever one cut is applied to the leftmost position of the genome.
The prefix restriction can be applied to other rearrangements such as prefix
reversals, which prefix DCJs generalise. Whereas the computational complex-
ity of the sorting problems by unrestricted rearrangements has been thoroughly
studied and pretty well characterised, there is still a lot of work to do to under-
stand the corresponding prefix sorting problems (see Table 1 in [7] for a summary
of existing results). Our interest in prefix rearrangements is therefore mostly the-
oretical: techniques that apply in the unrestricted setting do not directly apply
under the prefix restriction, and new approaches are therefore needed to make
progress on algorithmic issues and complexity aspects. Since DCJs generalise
several other operations, we hope that the insight we gain through their study
will shed light on other prefix rearrangement problems.

In this paper, we study the problem of Sorting by Prefix DCJs and,
for the sake of simplicity, we consider the case where the source and the target
genomes are unichromosomal and linear. This implies that genomes can be seen
as (signed) permutations (depending on whether the gene orientation is known
or not). Moreover, prefix DCJs applied to such genomes allow to exactly mimick
three kinds of rearrangement: (i) a prefix reversal when the segment between the
two cuts is reversed; (ii) a cycle extraction when the extremities of the segment
between the two cuts are joined; (iii) a cycle reincorporation when the cut occurs
in a cycle and the resulting linear segment is reincorporated at the beginning of
the genome where the leftmost cut occurs.

Based on the study of the breakpoint graph, we first show new structural lower
bounds for the problems Sorting by Unsigned Prefix DCJs and Sorting
by Signed Prefix DCJs. Since prefix reversals are particular cases of prefix
DCJs, we can extend this result to Sorting by Unsigned Prefix Rever-
sals (it has been already shown for Sorting by Signed Prefix Reversals
in [8]). Thanks to these preliminary results, we are able to answer an open ques-
tion from [7] by proving that Sorting by Signed Prefix DCJs is in P just
like the unrestricted case [10]. However, while sorting by unsigned DCJs is NP-
hard [4], the computational complexity of the prefix-constrained version of this
problem is still unknown. We provide two additional results: a 3/2-approximation
algorithm, which is, to the best of our knowledge, the first sorting by prefix rear-
rangements problem that admits an approximation ratio strictly smaller than 2
(with the obvious exception of the polynomial-time solvable problems); and an
FPT algorithm parameterised by the number of breakpoints in the genome. Due
to space constraints, some proofs have been omitted.

180 G. Fertin et al.

1.1 Permutations, Genomes, and Rearrangements

We begin with the simplest models for representing organisms.

Definition 1. A (unsigned) permutation of [n] = {1, 2, . . . , n} is a bijective
application of [n] onto itself. A signed permutation of {±1,±2, . . . ,±n} is a
bijective application of {±1,±2, . . . ,±n} onto itself that satisfies π−i = −πi.
The identity permutation is the permutation ι = (1 2 · · · n).

We study transformations based on the following well-known operation.

Definition 2. A reversal ρ(i, j) with 1 ≤ i < j ≤ n is a permutation that
reverses the order of elements between positions i and j:

ρ(i, j) =
(

1 · · · i − 1 i i + 1 · · · j − 1 j j + 1 · · · n

1 · · · i − 1 j j − 1 · · · i + 1 i j + 1 · · · n

)
.

A signed reversal ρ(i, j) with 1 ≤ i ≤ j ≤ n is a signed permutation that reverses
both the order and the signs of elements between positions i and j:

ρ(i, j) =
(

1 · · · i − 1 i i + 1 · · · j − 1 j j + 1 · · · n
1 · · · i − 1 −j − (j − 1) · · · − (i + 1) − i j + 1 · · · n

)
.

If i = 1, then ρ(i, j) (resp. ρ(i, j)) is called a prefix (signed) reversal.

A reversal ρ applied to a permutation π transforms it into another permu-
tation σ = πρ. When the distinction matters, we mention whether objects or
transformations are signed or unsigned; otherwise, we omit those qualifiers to
lighten the presentation. The following model is a straightforward generalisation
of unsigned permutations.

Definition 3. A genome G is a collection of vertex-disjoint paths and cycles
over {0, 1, 2, . . . , n+1}. It is linear if it consists of a single path with endpoints 0
and n+1. The identity genome is the path induced by the sequence (0, 1, 2, . . . , n+
1).

Let us note that a genome may contain loops or parallel edges (see Fig. 1).

Definition 4. Let e = {u, v} be an edge of a genome G. Then e is a breakpoint
if 0 /∈ e and either |u − v| �= 1, or e has multiplicity two. Otherwise, e is an
adjacency. The number of breakpoints of G is denoted by b(G).

For instance, the genome with edge set {{0, 4}, {4, 3}, {3, 6}, {1, 2}, {2, 1},
{5, 5}} has three breakpoints (underlined). Note that permutations can be
viewed as linear genomes using the following simple transformation: given a per-
mutation π, extend it by adding two new elements π0 = 0 and πn+1 = n+1, and
build the linear genome Gπ with edge set {{πi, πi+1} | 0 ≤ i ≤ n}. This allows us
to use the notion of breakpoints on permutations as well, with the understanding
that they apply to the extended permutation, and therefore b(π) = b(Gπ).

A reversal can be thought of as an operation that “cuts” (i.e., removes) two
edges from a genome, then “joins” the severed endpoints (by adding two new
edges) in such a way that the segment between the cuts is now reversed (see G1

in Fig. 1). The following operation builds on that view to generalise reversals.

Sorting Genomes by Prefix Double-Cut-and-Joins 181

Fig. 1. Cutting edges {0, 1} and {2, 4} from the nonlinear genome G produces genome
G1 with a reversed segment, if we add edges {0, 2} and {1, 4}, or genome G2 with an
extracted cycle if we add {0, 4} and {1, 2} instead.

Definition 5 [10]. Let e = {u, v} �= f = {w, x} be two edges of a genome
G. The double-cut-and-join (or DCJ for short) δ(e, f) applied to G transforms
G into a genome G′ by replacing edges e and f with either {{u,w}, {v, x}} or
{{u, x}, {v, w}}. δ is a prefix DCJ if either 0 ∈ e or 0 ∈ f .

DCJs that do not correspond to reversals extract paths from genomes and
turn them into cycles (see G2 in Fig. 1). Signed permutations can be generalised
to signed genomes as well. The definition of a signed linear genome is more
complicated than in the unsigned case, and is based on the following notion.

Definition 6. Let π be a signed permutation. The unsigned translation of π is
the unsigned permutation π′ obtained by mapping πi onto the sequence (2πi −
1, 2πi) if πi > 0, or (2|πi|, 2|πi| − 1) if πi < 0, for 1 ≤ i ≤ n; and adding two
new elements π′

0 = 0 and π′
2n+1 = 2n + 1.

Definition 7. A signed genome G is a perfect matching over the set {0, 1, 2, . . .,
2n + 1}. G is linear if there exists a signed permutation π such that E(G) =
{{π′

2i, π
′
2i+1} | 0 ≤ i ≤ n}. The signed identity genome is the perfect matching

{{2i, 2i + 1} | 0 ≤ i ≤ n}.
DCJs immediately generalise to signed genomes: they may cut any pair of

edges of the perfect matching, and recombine their endpoints in one of two ways.
Finally, we will be using different kinds of graphs in this work with a common

notation. The length of a cycle in a graph G is the number of elements1 it
contains, and a k-cycle is a cycle of length k: it is trivial if k = 1, and nontrivial
otherwise. We let c(G) (resp. c1(G)) denote the number of cycles (resp. 1-cycles)
in G.

1 The definition of an element will depend on the graph structure and will be explicitly
stressed.

182 G. Fertin et al.

1.2 Problems

We study several specialised versions of the following problem. A configuration
is a permutation or a genome, and the identity configuration is the identity
permutation or genome, depending on the type of the initial configuration.

sorting by Ω
Input: a configuration G, a number K ∈ N, and a set Ω of allowed operations.
Question: is there a sequence of at most K operations from Ω that transforms
G into the identity configuration?

Specific choices for Ω and the model chosen for G yield the following variants:

– Sorting by Unsigned Prefix DCJs, where G is a linear genome and Ω
is the set of all prefix DCJs;

– Sorting by Signed Prefix DCJs, where G is a signed linear genome and
Ω is the set of all prefix DCJs;

– Sorting by Unsigned Prefix Reversals, where G is an unsigned per-
mutation and Ω is the set of all prefix reversals;

– Sorting by Signed Prefix Reversals, where G is a signed permutation
and Ω is the set of all prefix signed reversals.

We refer to the smallest number of operations needed to transform G into the
identity configuration as the Ω-distance of G. A specific distance is associated
to each of the above problems; we use the following notation:

– pdcj(G) for the prefix DCJ distance of an unsigned genome G, and psdcj(G)
for its signed version;

– prd(π) for the prefix reversal distance of an unsigned permutation π, and
psrd(π) for its signed version.

2 A Generic Lower Bounding Technique

We present in this section a lower bounding technique which applies to both
the signed and the unsigned models, and on which we will build in subsequent
sections to obtain exact or approximation algorithms.

2.1 The Signed Case

We generalise a lower bounding technique introduced in the context of Sorting
by Signed Prefix Reversals [8]. It is based on the following structure.

Definition 8 [2]. Given a signed permutation π, let π′ be its unsigned transla-
tion. The breakpoint graph of π is the undirected edge-bicoloured graph BG(π)
with ordered vertex set (π′

0 = 0, π′
1, π

′
2, . . . , π

′
2n, π′

2n+1 = 2n + 1) and whose edge
set consists of:

Sorting Genomes by Prefix Double-Cut-and-Joins 183

– black edges {π′
2i, π

′
2i+1} for 0 ≤ i ≤ n;

– grey edges {π′
2i, π

′
2i + 1} for 0 ≤ i ≤ n.

See Fig. 2 for an example. Following Definition 7, the breakpoint graph of
a signed linear genome is simply the union of that genome (which plays the
role of black edges) and of the signed identity genome (which plays the role
of grey edges). Breakpoint graphs are 2-regular and as such are the union of
disjoint cycles whose edges alternate between both colours, thereby referred to
as alternating cycles. Black edges play the role of elements in that graph, so the
length of a cycle in a breakpoint graph is the number of black edges it contains.

0 2 1 7 8 6 5 4 3 9 10 11

Fig. 2. The breakpoint graph BG(π) of π = −1 4 −3 −2 5.

To bound the prefix DCJ distance, we use a connection between the effect
of a DCJ on the breakpoint graph and the effect of algebraic transpositions, or
exchanges, on the classical cycles of a permutation.

Definition 9. An exchange ε(i, j) with 1 ≤ i < j ≤ n is a permutation that
swaps elements in positions i and j:

ε(i, j) =

(
1 · · · i − 1 i i + 1 · · · j − 1 j j + 1 · · · n

1 · · · i − 1 j i + 1 · · · j − 1 i j + 1 · · · n

)
.

If i = 1, then ε(i, j) is called a prefix exchange.

We let Γ (π) denote the (directed) graph of a permutation π, with vertex
set [n] and which contains an arc (i, j) whenever πi = j. Exchanges act on
two elements that belong either to the same cycle in Γ (π) or to two different
cycles, and therefore |c(Γ (π)) − c(Γ (πε(i, j)))| ≤ 1. The following result allows
the computation of the prefix exchange distance ped(π) in polynomial time, and
will be useful to our purposes.

Theorem 1 [1]. For any unsigned permutation π, we have

ped(π) = n + c(Γ (π)) − 2c1(Γ (π)) −
{

0 if π1 = 1,
2 otherwise.

Theorem 2. For any signed linear genome G, we have

psdcj(G) ≥ n + 1 + c(BG(G)) − 2c1(BG(G)) −
{

0 if {0, 1} ∈ G,
2 otherwise. (1)

184 G. Fertin et al.

Proof. As observed in [10], a DCJ acts on at most two cycles of BG(G) and can
therefore change the number of cycles by at most one. This analogy with the
effect of exchanges on the cycles of a permutation is preserved under the prefix
constraint, and the lower bound then follows from Theorem 1. ��

Since (prefix) signed reversals are a subset of (prefix) signed DCJs, the result
below from [8] is a simple corollary of Theorem 2.

Theorem 3 [8]. For any signed permutation π, we have

psrd(π) ≥ n + 1 + c(BG(π)) − 2c1(BG(π)) −
{

0 if π1 = 1,
2 otherwise. (2)

2.2 The Unsigned Case

We now show that our lower bounds apply to the unsigned setting as well. The
definition of the breakpoint graph in the unsigned case is slightly different, but
the definition of the length of a cycle remains unchanged.

Definition 10 [2]. The unsigned breakpoint graph of an unsigned permutation
π is the undirected edge-bicoloured graph UBG(π) with ordered vertex set (π0 =
0, π1, π2, . . . , πn, πn+1 = n + 1) and whose edge set consists of:

– black edges {πi, πi+1} for 0 ≤ i ≤ n;
– grey edges {πi, πi + 1} for 0 ≤ i ≤ n.

Fig. 3. (a) The unsigned breakpoint graph UBG(π) of π = 3 2 5 4 1; (b) an optimal
decomposition of UBG(π) into two trivial cycles (thick) and one 4-cycle (dotted).

Figure 3(a) shows an example of an unsigned breakpoint graph. Following
Definition 3, the breakpoint graph of an unsigned linear genome is simply the
union of that genome (which plays the role of black edges) and of the iden-
tity genome (which plays the role of grey edges). Vertices 0 and n + 1 in the
unsigned breakpoint graph have degree 2, and all other vertices have degree 4.
The unsigned breakpoint graph also decomposes into alternating cycles, but the
decomposition is no longer unique.

For any genome G and an arbitrary decomposition D of UBG(G), let cD

(resp. cD1) denote the number of cycles (resp. trivial cycles) of UBG(G) in D .
We call D optimal if it minimises cD − 2cD1 (see Fig. 3(b)). The following result
characterises optimal decompositions (proof omitted).

Sorting Genomes by Prefix Double-Cut-and-Joins 185

Lemma 1. Let G be a genome and D be a decomposition of UBG(G). Then D
is optimal iff it maximises the number of trivial cycles and minimises the number
of nontrivial cycles.

As a result, we obtain the following lower bound on the prefix DCJ distance,
where c∗(UBG(G)) and c∗

1(UBG(G)) denote, respectively, the number of cycles
and the number of 1-cycles in an optimal decomposition of UBG(G).

Theorem 4. For any genome G, we have

pdcj(G) ≥ n + 1 + c∗(UBG(G)) − 2c∗
1(UBG(G)) −

{
0 if {0, 1} ∈ G,
2 otherwise. (3)

Proof. Follows from the fact that DCJs affect the number of cycles in a decom-
position by at most one, Theorem 1, and Lemma 1. ��

As an immediate corollary, the above lower bound is also a lower bound on
prd(π), since (prefix) reversals are a subset of (prefix) DCJs.

Corollary 1. For any unsigned permutation π, we have

prd(π) ≥ n + 1 + c∗(UBG(π)) − 2c∗
1(UBG(π)) −

{
0 if π1 = 1,
2 otherwise. (4)

We now show that an optimal decomposition can be found in polynomial
time. This contrasts with the problem of finding an optimal decomposition in the
case of sorting by unrestricted reversals, which was shown to be NP-complete [3]
(note that in that context, an optimal decomposition maximises the number of
cycles). Recall that an alternating Eulerian cycle in a bicoloured graph G is a
cycle that traverses every edge of G exactly once and such that the colours of
every pair of consecutive edges are distinct.

Corollary 2 [6,9]. A bicoloured connected graph contains an alternating Eule-
rian cycle iff the number of incident edges of each colour is the same at every
vertex.

Proposition 1. There exists a polynomial-time algorithm for computing an
optimal decomposition for UBG(G).

Proof. Straightforward: extract all trivial cycles from UBG(G). Each connected
component in the resulting graph then corresponds to a cycle (Corollary 2). ��

Finally, we note that the lower bound of Theorem 4 is always at least as large
as the number of breakpoints (proof omitted).

Proposition 2. For any unsigned genome G, the lower bound from Eq. 3 is
greater than or equal to b(G), and the gap that separates both bounds can be
arbitrarily large.

186 G. Fertin et al.

3 Prefix DCJs

3.1 Signed Prefix DCJs

We give a polynomial-time algorithm for Sorting by Signed Prefix DCJs.

Theorem 5. The Sorting by Signed Prefix DCJs problem is in P.

Proof. We show that the lower bound of Theorem 2 is tight. For convenience,
let g(G) denote the right-hand side of Eq. 1, and let π′ denote the unsigned
translation of the underlying signed permutation π from which G is obtained
(recall Definition 7 and the fact that G is linear):

– if π′
1 �= 1: then the grey edge {π′

1, x} connects by definition π′
1 to an element

x ∈ {π′
1 − 1, π′

1 + 1}. Let {x, y} be the black edge incident with x; then the
prefix DCJ that replaces {0, π′

1} and {x, y} with {0, y} and {π′
1, x} creates one

or two new 1-cycles, depending on the value of y. Let G′ denote the resulting
genome:
1. if y �= 1, then

g(G′) − g(G) = n + 1 + c(BG(G)) + 1 − 2(c1(BG(G)) + 1) − 2
− (n + 1 + c(BG(G)) − 2c1(BG(G)) − 2)
= −1.

2. if y = 1, then

g(G′) − g(G) = n + 1 + c(BG(G)) + 1 − 2(c1(BG(G) + 2))
− (n + 1 + c(BG(G)) − 2c1(BG(G)) − 2)
= −1.

Therefore, the value of the lower bound decreases by one in both cases.
– otherwise, let i be the smallest index such that |π′

2i−1 − π′
2i| �= 1. Then the

prefix DCJ that replaces black edges {0, π′
1} and {π′

2i−1, π
′
2i} with {0, π′

2i−1}
and {π′

1, π
′
2i} decreases the number of 1-cycles by 1. Let us again use G′ to

denote the resulting genome; then

g(G′) − g(G) = n + 1 + c(BG(G)) − 1 − 2(c1(BG(G)) − 1) − 2
− (n + 1 + c(BG(G)) − 2c1(BG(G)))
= −1.

��

3.2 Unsigned Prefix DCJs

The complexity of the Sorting by Unsigned Prefix DCJs problem remains
open, and we conjecture it to be NP-complete. Here, we prove two results, both

Sorting Genomes by Prefix Double-Cut-and-Joins 187

based on the number of breakpoints. The first one is a 3/2-approximation algo-
rithm for solving Sorting by Unsigned Prefix DCJs (Theorem 6), the sec-
ond one is a FPT algorithm with respect to b(G) (Theorem 7).

We start with our approximation algorithm. First, observe that prefix DCJs
on linear genomes may produce nonlinear genomes, but the structure of these
genomes is nonetheless not arbitrary. We characterise some of their properties
in the following result, which will be useful later on.

Lemma 2. Let G be a linear genome and S be an arbitrary sequence of prefix
DCJs that transform G into a new genome G′. Then:

1. G′ contains exactly one path, whose endpoints are 0 and n + 1;
2. if G′ contains any other component, then that component is a cycle.

Proof. By induction on k = |S|. If k = 0, then the claim clearly holds. Otherwise,
let δ be a prefix DCJ that cuts edges e = {0, v} and f = {w, x} from a genome
G′′ obtained from G by k − 1 prefix DCJs; by hypothesis, 0 and n + 1 are
the endpoints of the only path P of G′′. If both e and f belong to P , then
δ either extracts a subpath Q from P that will become a cycle, or reverses a
subpath R of P ; in both cases, neither Q nor R contains 0 nor n + 1, which
become extremities of P \ Q (or of the path obtained from P by reversing R).
Otherwise, since e = {0, v}, by hypothesis f belongs to a cycle, and both ways of
recombining the extremities of e and f yield a path starting with 0 and ending
with n + 1, preserving any other cycle of G′′. ��

We will need the following lower bound.

Lemma 3. For any genome G, we have pdcj(G) ≥ b(G). Moreover, if G is
unsorted and contains {0, 1} and {1, 2}, then pdcj(G) > b(G).

Proof. The first claim follows directly from Theorem 4 and Proposition 2. For
the second claim, if G is unsorted and contains {0, 1} and {1, 2}, then any new
edge {1, y} that would replace {0, 1} would yield a breakpoint — either because
1 and y cannot be consecutive in values or, in the event that y = 2, because edge
{1, 2} would get multiplicity 2 and thereby would also count as a breakpoint. ��

We are now ready to prove our upper bound on pdcj(G).

Lemma 4. For any linear genome G, we have pdcj(G) ≤ 3b(G)
2 .

Proof. Assume G is not the identity genome, in which case the claim trivially
holds. We have two cases to consider:

1. if {0, v} ∈ G with v �= 1, then G contains an element x ∈ {v −1, v +1} that is
not adjacent to v. By Lemma 2, every vertex in G has degree 1 or 2, so x has
a neighbour y such that {x, y} is a breakpoint (either because |x − y| �= 1 or
because {x, y} has multiplicity two). The prefix DCJ that replaces {0, v} and
the breakpoint {x, y} with the adjacency {v, x} and {0, y} yields a genome
G′ with b(G′) = b(G) − 1.

188 G. Fertin et al.

2. otherwise, {0, 1} ∈ G. If {1, 2} /∈ G, then 2 has a neighbour y in G such that
{2, y} is a breakpoint, in which case the prefix DCJ that replaces {0, 1} and
{2, y} with {0, y} and {1, 2} yields a genome G′ with b(G′) = b(G) − 1.
If {1, 2} ∈ G, then let k be the closest element to 0 in the only path of G
such that the next vertex
 forms a breakpoint with k. Then the prefix DCJ
δ1 that replaces {0, 1} and {k,
} with {0,
} and {1, k} yields a genome G′

which contains the cycle (1, 2, . . . , k) and with b(G′) = b(G). Although δ1 does
not reduce the number of breakpoints, G′ allows us to apply two subsequent
operations that do:
(a) since {0,
} ∈ G′ with
 �= 1, the analysis of case 1 applies and guarantees

the existence of a prefix DCJ δ2 that produces a genome G′′ with b(G′′) =
b(G′) − 1.

(b) δ2 replaces {0,
} and breakpoint {a, b} with {0, a} and adjacency {b,
}.
Since {k,
} was a breakpoint in G, we have k <
 − 1. Moreover, δ1
extracted from G a cycle consisting of all elements in {1, 2, . . . , k}. There-
fore, the breakpoint {a, b} cut by δ2 belongs to a component of G′′ dif-
ferent from that cycle, which means that a > k > 1 and in turn implies
that case 1 applies again: there exists a third prefix DCJ δ3 transforming
G′′ into a genome G′′′ such that b(G′′′) = b(G′′) − 1 = b(G) − 2.

This implies that, in the worst case, i.e. when {0, 1} ∈ G and {1, 2} ∈ G,
there exists a sequence of three prefix DCJs that yields a genome G′′′ with
b(G′′′) = b(G) − 2. Therefore, starting with b(G) breakpoints, we can decrease
this number by two using at most three prefix DCJs. Since the identity genome
has no breakpoint, we conclude that pdcj(G) ≤ 3b(G)

2 . ��
Lemma 3 and Lemma 4 immediately imply the existence of a 3/2-approxi-

mation for sorting by prefix DCJs, as stated by the following theorem.

Theorem 6. The Sorting by Unsigned Prefix DCJs problem is 3/2-ap-
proximable.

Note that Lemma 4 also allows us to show that our approximation algorithm
is tight for an unbounded number of genomes. Incidentally, this also shows that
the lower bound of Eq. 3 is optimal for an unbounded number of genomes (proof
omitted).

Observation 1. There exists an unbounded number of genomes for which the
algorithm described in proof of Lemma 4 is optimal.

We now turn to proving that Sorting by Unsigned Prefix DCJs is FPT,
as stated by the following theorem.

Theorem 7. The Sorting by Unsigned Prefix DCJs problem is FPT
parameterised by b(G).

Proof. The main idea is to use the search tree technique in a tree whose arity
and depth are both bounded by a function of b(G). For this, we will use the

Sorting Genomes by Prefix Double-Cut-and-Joins 189

notion of strip in a genome G, which is defined as a maximal set of consecutive
edges (in a path or a cycle of G) that contains no breakpoint. The length of a
strip is the number of elements it contains, strips of length k are called k-strips;
1-strips are also called singletons, and strips of length > 2 are called long strips.
We need the following result (proof omitted).

Observation 2. For any instance of Sorting by Unsigned Prefix DCJs,
there always exists a shortest sorting sequence of prefix DCJs that never cut a
long strip.

Now let us describe our search tree technique: at every iteration starting
from G, guess in which location, among the available 2-strips and breakpoints,
to operate the rightmost cut. Once this is done, guess among the two possibilities
allowed by a DCJ to reconnect the genome. By definition, every strip is framed
by breakpoints. Therefore, any genome G has at most b(G) 2-strips (recall that
{0, x} is never a breakpoint). Altogether, this shows that, at each iteration, the
rightmost cut has to be chosen among at most 2b(G) possibilities. Because there
are two ways to reconnect the cuts in a DCJ, the associated search tree has
arity at most 4b(G). Moreover, its depth is at most 3b(G)

2 since pdcj(G) ≤ 3b(G)
2

(Theorem 6). Thus the above described algorithm uses a search tree whose size
is a function of b(G) only, which proves the result. More precisely, the overall
complexity of the induced algorithm is in O∗((4b(G))1.5b(G)). ��

4 Conclusions and Future Work

In this paper, we focused on the problem of sorting genomes by prefix DCJs,
a problem that had not yet been studied in its prefix-constrained version. We
provided several algorithmic results for both signed and unsigned cases, includ-
ing computational complexity, approximation and FPT algorithms. Nevertheless,
several questions remain open: while we have shown that Sorting by Signed
Prefix DCJs is a polynomial-time solvable problem, what about the compu-
tational complexity of Sorting by Unsigned Prefix DCJs? We were able
to design a 3/2-approximation algorithm for the latter problem, which makes
it to the best of our knowledge the first occurrence of a prefix rearrangement
problem of unknown complexity where a ratio better than 2 has been obtained.
Is it possible to improve it further, by making good use of the new lower bound
introduced in Sect. 2? Whether or not this lower bound can help improve the
2-approximation ratios known for both Sorting by Unsigned Prefix Rever-
sals and Sorting by Signed Prefix Reversals remains open. Finally, we
have studied the case where both source and target genomes are unichromosomal
and linear; it would be interesting to extend this study to a more general context
where input genomes can be multichromosomal and not necessarily linear.

References

1. Akers, S.B., Krishnamurthy, B., Harel, D.: The star graph: an attractive alternative
to the n-cube. In: Proceedings of the Fourth International Conference on Parallel
Processing, pp. 393–400. Pennsylvania State University Press (1987)

190 G. Fertin et al.

2. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. SIAM
J. Comput. 25(2), 272–289 (1996)

3. Caprara, A.: Sorting permutations by reversals and Eulerian cycle decompositions.
SIAM J. Discret. Math. 12(1), 91–110 (electronic) (1999)

4. Chen, X.: On sorting unsigned permutations by double-cut-and-joins. J. Comb.
Optim. 25(3), 339–351 (2013)

5. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of
Genome Rearrangements. Computational Molecular Biology. MIT Press (2009)

6. Kotzig, A.: Moves without forbidden transitions in a graph. Matematický časopis
18(1), 76–80 (1968)

7. Labarre, A.: Sorting by prefix block-interchanges. In: Cao, Y., Cheng, S.-W., Li, M.
(eds.) 31st International Symposium on Algorithms and Computation (ISAAC).
Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, vol.
181, pp. 55:1–55:15. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

8. Labarre, A., Cibulka, J.: Polynomial-time sortable stacks of burnt pancakes. Theor.
Comput. Sci. 412(8–10), 695–702 (2011)

9. Pevzner, P.A.: DNA physical mapping and alternating Eulerian cycles in colored
graphs. Algorithmica 13(1/2), 77–105 (1995)

10. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–
3346 (2005)

KATKA: A KRAKEN-Like Tool with k
Given at Query Time

Travis Gagie1(B), Sana Kashgouli1, and Ben Langmead2

1 Dalhousie University, Halifax, Canada
travis.gagie@dal.ca

2 Johns Hopkins University, Baltimore, USA

Abstract. We describe a new tool, KATKA, that stores a phylogenetic
tree T such that later, given a pattern P [1..m] and an integer k, it can
quickly return the root of the smallest subtree of T containing all the
genomes in which the k-mer P [i..i+ k− 1] occurs, for 1 ≤ i ≤ m− k+1.
This is similar to KRAKEN’s functionality but with k given at query
time instead of at construction time.

1 Introduction

KRAKEN [13,14] is a popular tool that addresses the basic problem of determin-
ing where a fragment of DNA occurs in the Tree of Life, which arises for every
sequencing read in a metagenomic dataset. KRAKEN takes a phylogenetic tree
T and an integer k and stores T such that later, given a pattern P [1..m], it can
quickly return the root of the smallest subtree of T containing all the genomes
in which the k-mer P [i..i + k − 1] occurs, for 1 ≤ i ≤ m − k + 1. For example, if
T is the small phylogenetic tree shown in Fig. 1, k = 3, and P = TAGACA, then
KRAKEN returns

– 8 for TAG (which occurs in GATTAGAT and GATTAGATA),
– 6 for AGA (which occurs in AGATACAT, GATTAGAT and GATTAGATA),
– NULL for GAC (which does not occur in T),
– 2 for ACA (which occurs in GATTACAT, AGATACAT and GATACAT).

Notice that not all the genomes in the subtree returned for P [i..i + k] need
contain it: AGA does not occur in GATTACAT or GATACAT.

KRAKEN is widely used in metagenomic analyses, especially taxonomic clas-
sification, but there are some applications for which we would rather give k
at query time instead of at construction time. For example, Nasko et al. [7]
showed that “the [reference] database composition strongly influence[s] the per-
formance”, with larger k values generally working better as the database grows.
When the representation of strains or species in the database is skewed, there-
fore, it may be hard to choose a single k that works well for all of them. In
this paper we describe a new tool, KATKA, that allows k to be chosen at query
time. We are still optimizing, testing and extending KATKA and will report
experimental results in a future paper.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 191–197, 2022.
https://doi.org/10.1007/978-3-031-20643-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_14&domain=pdf
https://doi.org/10.1007/978-3-031-20643-6_14

192 T. Gagie et al.

4 9GATTACAT AGATACAT

GATACAT

GATTAGAT

GATTAGATA

1

2

3 5

6

7

8

Fig. 1. A small phylogenetic tree.

2 Design

To simplify our presentation, in this paper we assume T is binary (although
our approach generalizes to higher-degree trees). KATKA consists of three main
components:

– a modified LZ77-index [6] for the concatenation of the genomes in T , in the
order they appear from left to right in T and separated by copies of a special
character $;

– a modified LZ77-index for the reverse of that concatenation;
– a lowest common ancestor (LCA) data structure for T .

Given P [1..m] and k, we use the first and second indexes to find the leftmost
and rightmost genomes in T , respectively, that contain the k-mer P [i..i+ k − 1],
for 1 ≤ i ≤ m − k + 1; we then use the LCA data structure to find the lowest
common ancestor of those two genomes. Since the two indexes are symmetric
and the LCA data structure takes only about 2 bits per vertex in T and has
constant query time, we describe only the first index.

To build the index for the concatenation, we compute its LZ77 parse and
consider the phrases and co-lexicographically sort the set of their maximal non-
empty suffixes not containing $, and consider the suffixes of the concatenation
starting at phrase boundaries and lexicographically sort the set of their maximal
prefixes not containing $ (including the empty string ε after the last phrase
boundary). We discard any of those maximal prefixes that do not occur starting
at a phrase boundary immediately preceded by one of those maximal suffixes.

For our example, if the concatenation is

GATTACAT$AGATACAT$GATACAT$GATTAGAT$GATTAGATA,

then its LZ77 parse is

G A T TA C AT$ AG ATA CAT$G ATACAT$GATT AGAT$ GATTAGATA,

KATKA: A KRAKEN-Like Tool with k Given at Query Time 193

Fig. 2. The grid we build for the concatenation in our example.

the co-lexicographically sorted set of maximal suffixes is

A, TA, ATA, GATTAGATA, C, G, AG, T, GATT,

and the lexicographically sorted set of maximal prefixes is

ε, AGAT, AGATACAT, AT, ATACAT, ATTACAT, CAT,
GATTACAT, GATTAGATA, TACAT, TTACAT,

but we discard GATTACAT, AGATACAT and GATTAGATA because they do not occur
starting at a phrase boundary immediately preceded by one of the maximal
suffixes.

We build a grid with the number � at position (x, y) if the genome at the
�th vertex from the left in T is the first one in which there is a phrase boundary
immediately preceded by the co-lexicographically xth of the maximal suffixes
and immediately followed by the lexicographically yth of the maximal prefixes.
Notice this grid will be of size at most z×z with at most z numbers on it, where z
is the number of phrases in the LZ77 parse of the concatenation. Figure 2 shows
the grid for our example.

We store data structures such that given strings α and β, we can quickly find
the minimum number in the box [x1, x2] × [y1, y2] on the grid, where [x1, x2] is
the co-lexicographic range of the maximal suffixes ending with α and [y1, y2] is
the lexicographic range of the maximal prefixes starting with β. (For the index
for the reversed concatenation, we find the maximum in the query box.) In our
example, if α = G and β = AT, then we should find 1.

For example, we can store Patricia trees for the compact tries for the reversed
maximal suffixes and the maximal prefixes, together with a data structure sup-
porting fast sequential access to the concatenation starting at any phrase bound-
ary. In the literature (see [8] and references therein), the latter is usually an
augmented straight-line program (SLP) for the concatenation; if the genomes in
T are similar enough, however, then in practice it could probably be simply a

194 T. Gagie et al.

T

A

GATTAG

C G TA

A TAG

TA

GAT T ACAT TACAT

TACAT

ACAT

CAT

Fig. 3. The compact tries for the concatenation in our example.

VCF file. (We note that we can reuse the access data structure for the index
for the reversed concatenation, augmented to support fast sequential access also
at phrase boundaries in the reverse of the concatenation.) Figure 3 shows the
compact tries for our example, with each black leaf indicating that one of the
strings in the set ended at the parent of that leaf.

Nekrich [12] recently showed how to store the grid in O(z) space and support
2-dimensional range-minimum queries in O(logε z) time, for any constant ε > 0.
For simplicity, we consider his data structure in our analysis even though we are
not aware of any implementation yet.

3 Queries

Given a pattern P [1..m] and an integer k, for every substring P [i..j] of P with
length at most k, we find and verify the locus for the reverse of P [i..j] in the
compact trie for the reversed maximal suffixes, and the locus for P [i..j] in the
compact trie for the maximal prefixes. (Patricia trees can return false positives
when the sought pattern does not occur, so we must verify the loci by, for
example, extracting their path labels from the SLP).

By combining the searches for P [i], P [i..i + 1], . . . , P [i..i + k − 1], we make a
total of O(m) descents in the Patricia trees, each to a string-depth of at most
k; we extract O(m) substrings from the concatenation, each of length at most
k and starting at a phrase boundary, to verify the loci. With care, this takes a
total of O(km) time in the worst case. When searching standard LZ77-indexes
in practice, however, “queries often die in the Patricia trees” [10]—because of
mismatches between characters in the pattern and the first characters in edge
labels—which speeds up queries.

For each k-mer P [i..i+k − 1] in P and each way to split P [i..i+k − 1] into a
non-empty prefix P [i..j] and a suffix P [j + 1..i + k − 1], we use a 2-dimensional
range-minimum query to find the minimum number in the box for α = P [i..j]
and β = P [j + 1..i + k − 1] in O(logε z) time.

KATKA: A KRAKEN-Like Tool with k Given at Query Time 195

By the definition of the LZ77 parse, the first occurrence of P [i..i+k−1] in the
concatenation crosses or ends at a phrase boundary. It follows that, by taking
the minimum of the minima we find, in O(k logε z) time we find the leftmost
genome in T that contains P [i..i + k − 1]. Repeating this for every value of i
takes O(km logε z) time.

By storing symmetric data structures for the reverse of the concatenation and
querying them, we can find the rightmost genome in T that contains P [i..i+k−1],
for 1 ≤ i ≤ m−k+1. With the LCA data structure for T , we can find the lowest
common ancestor of the two genomes, which is the root of the smallest subtree
of T containing all the genomes in which the k-mer P [i..i + k − 1] occurs.

For our example, if P = TAGACA and k = 3, then we find and verify the loci
for

T, A, AT, G, GA, GAT, A, AG, AGA, C, CA, CAG, A, AC, ACA

in the compact trie for the reversed maximal suffixes, and the loci for

A, AG, AGA, G, GA, GAC, A, AC, ACA, C, CA, A

in the compact trie for the maximal prefixes.
For P [1..3] = TAG, we look up the minimum number 7 in the box for α = T

and the locus β = AGAT for AG; since G has no locus in the compact trie for
the maximal prefixes and GAT has no locus in the compact trie for the maximal
reversed suffixes, we correctly conclude that the leftmost genome in T containing
TAG is at vertex 7. A symmetric process with the index for the reversed concate-
nation tells us the rightmost genome in T containing TAG is at vertex 9, and then
an LCA query tells us that vertex 8 is the root of the smallest subtree containing
all the genomes in which TAG occurs.

Theorem 1. Given a phylogenetic tree T whose g genomes have total length n,
we can store T in O(z log n + g/ log n) space, where z is the number of phrases
in the LZ77 parse of the concatenation of the genomes in T (separated by copies
of a special character), such that when given a pattern P [1..m] and an integer k,
for 1 ≤ i ≤ m−k+1 we can find the root of the smallest subtree of T containing
all genomes in which the k-mer P [i..i+ k − 1] of P occurs, in O(km logε z) total
time. If no two genomes in the tree are identical, our space bound simplifies to
O(z log n).

Proof. The LCA data structure takes 2g + o(g) bits, which is O(g/ log n) words
(assuming Ω(log n)-bit words). If no two genomes are identical then each genome
crosses or ends at a phrase boundary, so g ≤ z and our space bound simplifies
to O(z log n) words. An SLP for the concatenation with bookmarks permit-
ting sequential access with constant overhead from the phrase boundaries in the
parses of the concatenation and its reverse, takes O(z log n) space. For the con-
catenation, the Patricia trees and the instance of Nekrich’s 2-dimensional range-
minimum data structure take O(z) space; for the reverse of the concatenation,
they take space proportional to the number of phrases in its LZ77 parse, which is
O(z log n). In total, we use O(z log n+ g/ log n) space. As we have described, we

196 T. Gagie et al.

make O(m) descents in the Patricia trees, each to string-depth at most k, and
extract only O(m) substrings, each of length at most k, from the concatenation
and its reverse. The time is dominated by the O(km) range-minimum queries,
which take O(logε z) time each.

4 Future Work

In addition to optimizing and testing KATKA, we are also investigating adapting
it to work with maximal exact matches (MEMs) instead of k-mers. For example,
if we store O(z)-space z-fast tries [2] for the Patricia trees then, for each way to
split P into a non-empty prefix P [1..i] and a suffix P [i + 1..m], we can find the
loci of P [1..i] reversed and P [i+1..m] in O(log m) time. We can verify those loci
in O(log n) time by augmenting the SLP to return fingerprints, without changing
its O(z log n) space bound [3].

With an O(z)-space data structure supporting heaviest induced ancestor
queries in O

(
log2 z

log log z

)
time [1,4,5], in that time we can find the longest substring

P [h..j] with h ≤ i ≤ j that occurs in T with P [h..i] immediately to the left of
a phrase boundary and P [h + 1..j] immediately to its right. Note P [h..j] must
be a MEM. With 2-dimensional range-minimum and range-maximum queries,
we can find the indexes of the leftmost and rightmost genomes in which P [h..i]
occurs immediately to the left of a phrase boundary and P [h+1..j] immediately
to its right. We still use a total of O(z log n + g/ log n) space and now we use a
total of O

(
m

(
log2 z

log log n + log n
))

time.
Unfortunately, we may not find every MEM this way: it may be that, for

some MEM P [h..j] and every i between h and j, either P [h..j] is not split into
P [h..i] and P [i+1..j] by any phrase boundary or some longer MEM is split into
P [h′..i] and P [i + 1..j′] by a phrase boundary. For any MEM we do not find,
however, we do find another MEM at least as long that overlaps it.

A more serious drawback to this scheme is that it is probably quite imprac-
tical (for example, we are not aware of any implementation of a data structure
supporting fast heaviest induced ancestor queries, either). Fortunately, there is
probably a simple and practical solution—although possibly without good worst-
case bounds—since the problems we are considering are similar to those covered
in Subsection 7.1 of Navarro’s [11] survey on wavelet trees.

Finally, we are investigating adapting results [9] using LZ77-indexes for
document-listing, in order to find the number of genomes in T in which each
k-mer of P occurs. It is easy to store a small data structure that reports the
number of genomes in the smallest subtree for a k-mer, so we may be able to
determine what fraction contain that k-mer.

Acknowledgments. Many thanks to Nathaniel Brown, Younan Gao, Simon Gog,
Meng He, Finlay Maguire and Gonzalo Navarro, for helpful discussions.

KATKA: A KRAKEN-Like Tool with k Given at Query Time 197

References

1. Abedin, P., Hooshmand, S., Ganguly, A., Thankachan, S.V.: The heaviest induced
ancestors problem: better data structures and applications. Algorithmica 1–18
(2022). https://doi.org/10.1007/s00453-022-00955-7

2. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Fast prefix search in little space,
with applications. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp.
427–438. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-
2 37

3. Bille, P., Gørtz, I.L., Cording, P.H., Sach, B., Vildhøj, H.W., Vind, S.: Fingerprints
in compressed strings. J. Comput. Syst. Sci. 86, 171–180 (2017)

4. Gagie, T., Gawrychowski, P., Nekrich, Y.: Heaviest induced ancestors and longest
common substrings. In: Proceedings of the CCCG (2013)

5. Gao, Y.: Computing matching statistics on repetitive texts. In: Proceedings of the
DCC (2022)

6. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comput. Sci. 483, 115–133 (2013)

7. Nasko, D.J., Koren, S., Phillippy, A.M., Treangen, T.J.: RefSeq database growth
influences the accuracy of k-mer-based lowest common ancestor species identifica-
tion. Genome Biol. 19(1), 1–10 (2018)

8. Navarro, G.: Compact Data Structures: A Practical Approach. Cambridge Univer-
sity Press, Cambridge (2016)

9. Navarro, G.: Document listing on repetitive collections with guaranteed perfor-
mance. Theor. Comput. Sci. 772, 58–72 (2019)

10. Navarro, G.: Personal communication (2013)
11. Navarro, G.: Wavelet trees for all. J. Discret. Algorithms 25, 2–20 (2014)
12. Nekrich, Y.: New data structures for orthogonal range reporting and range minima

queries. In: Proceedings of the SODA (2021)
13. Wood, D.E., Lu, J., Langmead, B.: Improved metagenomic analysis with KRAKEN

2. Genome Biol. 20(1), 1–13 (2019)
14. Wood, D.E., Salzberg, S.L.: KRAKEN: ultrafast metagenomic sequence classifica-

tion using exact alignments. Genome Biol. 15(3), 1–12 (2014)

https://doi.org/10.1007/s00453-022-00955-7
https://doi.org/10.1007/978-3-642-15775-2_37
https://doi.org/10.1007/978-3-642-15775-2_37

Computing All-vs-All MEMs
in Run-Length-Encoded Collections

of HiFi Reads

Diego Dı́az-Domı́nguez(B), Simon J. Puglisi, and Leena Salmela

Department of Computer Science, University of Helsinki, Helsinki, Finland
{diego.diaz,simon.puglisi,leena.salmela}@helsinki.fi

Abstract. We describe an algorithm to find maximal exact matches
(MEMs) among HiFi reads with homopolymer errors. The main novelty
in our work is that we resort to run-length compression to help deal with
errors. Our method receives as input a run-length-encoded string collec-
tion containing the HiFi reads along with their reverse complements.
Subsequently, it splits the encoding into two arrays, one storing the
sequence of symbols for equal-symbol runs and another storing the run
lengths. The purpose of the split is to get the BWT of the run symbols
and reorder their lengths accordingly. We show that this special BWT,
as it encodes the HiFi reads and their reverse complements, supports
bi-directional queries for the HiFi reads. Then, we propose a variation of
the MEM algorithm of Belazzougui et al. (2013) that exploits the run-
length encoding and the implicit bi-directional property of our BWT to
compute approximate MEMs. Concretely, if the algorithm finds that two
substrings, a1 . . . ap and b1 . . . bp, have a MEM, then it reports the MEM
only if their corresponding length sequences, �a1 . . . �ap and �b1 . . . �bp, do not
differ beyond an input threshold. We use a simple metric to calculate the
similarity of the length sequences that we call the run-length excess. Our
technique facilitates the detection of MEMs with homopolymer errors as
it does not require dynamic programming to find approximate matches
where the only edits are the lengths of the equal-symbol runs. Finally,
we present a method that relies on a geometric data structure to report
the text occurrences of the MEMs detected by our algorithm.

Keywords: Genomics · Text indexing · Compact data structures

1 Introduction

HiFi reads are a new type of DNA sequencing data developed by PacBio [30].
They are long overlapping strings with error rates (mismatches) comparable
to those of Illumina data. They have become popular in recent years as their
features improve the accuracy of biological analyses [21]. Still, mapping a col-
lection of HiFi reads against a reference genome or computing suffix-prefix over-
laps among them for de novo assembly remain important challenges as these

Supported by Academy of Finland Grants 323233 and 339070.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 198–213, 2022.
https://doi.org/10.1007/978-3-031-20643-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_15&domain=pdf
https://doi.org/10.1007/978-3-031-20643-6_15

Computing All-vs-All MEMs in Run-Length-Encoded Collections 199

tasks require approximate alignments of millions of long strings. Popular tools
that address these problems use seed-and-extend algorithms with minimizers as
seeds [19] for the alignments. This technique is a cheap solution that makes the
processing of HiFi reads feasible.

An alternative approach is to use maximal exact matches (MEMs) as seeds.
A MEM is a match S[a, b] = S′[a′, b′] between two strings S and S′ that can-
not be extended to the left or to the right without introducing mismatches or
reaching an end in one of the sequences. MEMs are preferable over minimizers
because they can capture long exact matches between the reads, thus reducing
the computational costs of extending the alignments with dynamic program-
ming. However, they are expensive to find in big collections.

A classical solution to detect MEMs among strings of a large collection is
to concatenate the strings in one sequence S (separated by sentinel symbols),
construct the suffix tree of S, and then traverse its topology to find MEMs in
linear time [13]. Still, producing the suffix tree of a massive collection, although
linear in time and space, is expensive for practical purposes. Common approaches
to deal with the space overhead are sparse suffix trees [16,28], hash tables with
k-mers [11,17], and Bloom filters [20].

Another way to deal with the space overhead is to find MEMs on top of a
compact suffix tree [23,27]. For instance, Ohlebusch et al. [24] described a method
that computes MEMs between two strings via matching statistics [6]. Their
technique requires only one of the strings to be indexed using a compact suffix
tree while the other is kept in plain format. Other more recent methods [3,25,26]
follow an approach similar to that of Ohlebusch et al., but they use the r-index [9]
instead of the compact suffix tree.

The problem with the algorithms that rely on matching statistics is that
they consider input collections with two strings (one indexed and the other in
plain format). It is not clear how to generalize these techniques to compute all-
vs-all MEMs in a collection with an arbitrary number of sequences. A simple
solution would be to implement classical MEM algorithms on top of the compact
suffix tree. Still, producing a full compact suffix tree is expensive for genomic
applications as it requires producing a sampled version of the suffix array [22],
the Burrows–Wheeler transform [4], and the longest common prefix array [15].
Although it is possible to obtain these composite data structures in linear time
and space, in practice, they might require an amount of working memory that
is several times the input size. In this regard, Belazzougui et al. [2] proposed
a MEM algorithm that only uses the bi-directional BWT of the text, although
their idea reports the sequences for the MEM, not their occurrences in the text.

Besides the input size, there is another relevant issue when computing MEMs
in HiFi data: homopolymer errors. Concretely, if a segment of the DNA being
sequenced has an equal-symbol run of length �, then the PacBio sequencer might
spell imprecise copies of that run in the reads that overlap the segment. These
copies have a correct1 DNA symbol, but the value � might be incorrect. In gen-

1 The symbol correctly represents the nucleotide that was read from the DNA
molecule.

200 D. Dı́az-Domı́nguez et al.

eral, homopolymer errors shorten the alignment seeds, which means that the
pattern matching algorithm will spend more time performing dynamic program-
ming operations to extend the alignments. In this work, we study the problem of
finding MEMs in HiFi reads efficiently. Our strategy is to use run-length encod-
ing to remove the homopolymer errors, and then try to filter out the matches
between different sequences that, by chance, were compressed to the same run-
length encoded string.

Our Contribution. We present a set of techniques to compute all-vs-all MEMs
in a collection of HiFi reads of n symbols. We build on the MEM algorithm of
Belazzougui et al. [2] that uses the bi-directional BWT, a versatile succinct text
representation that uses 2n log σ + o(2n log σ) bits of space. Strings in a DNA
collection have two complementary sequences that we need to consider for the
matches, meaning that we need to create a copy of the input with the comple-
mentary strings and merge all in one collection R. We describe a framework
that exploits the properties of these DNA complementary sequences to produce
an implicit bi-directional BWT for R without increasing the input size by a
factor of 4x. In addition, we define parameters to detect MEMs in a run-length-
encoded representation of R. Concretely, we propose the concept of run-length
excess, which we use to differentiate homopolymer errors from sporadic matches
generated by the run-length compression. Finally, we describe our variation of
the algorithm of Belazzougui et al. [2] for computing MEMs using our implicit
bi-directional BWT constructed on a run-length-encoded version of R, denoted
Rh. Let S be a sequence of length d = |S| that has x occurrences in Rh, with
l ≤ x of them having MEMs with other positions of Rh. Once our algorithm
detects S, it can report its MEMs in O(σ2 log σ+x2d) time, where σ is the alpha-
bet of Rh. We also propose an alternative solution that uses a geometric data
structure, and report the MEMs of S in O((x + σ)(1 + log nh/ log log nh) + l2d)
time, where nh is the number of symbols in Rh.

2 Preliminaries

Rank and Select Data Structures. Given a sequence B[1, n] of symbols over
the alphabet Σ = [1, σ], the operation ranka(B, i), with i ∈ [1, n] and a ∈ Σ,
returns the number of times the symbol a occurs in the prefix B[1, i]. On the
other hand, the operation selecta(B, r) returns the position of the rth occurrence
of a in B. For binary alphabets, B can be represented in n + o(n) bits so that it
is possible to solve ranka and selecta, with a ∈ {0, 1}, in constant time [7,14].

Wavelet Trees. Let S[1, n] be a string of length n over the alphabet Σ = [1, σ].
A wavelet tree [12] is a tree data structure W that encodes S in n log σ+o(n log σ)
bits of space and supports several queries in O(log σ) time. Among them, the
following are of interest for this work:

– access(W, i): retrieves the symbol at position T [i]
– ranka(W, i): number of symbols a in the prefix T [1, i]

Computing All-vs-All MEMs in Run-Length-Encoded Collections 201

– selecta(W, r): position j where the rth symbol a lies in S

The wavelet tree can also answer more elaborated queries efficiently [10].
From them, the following are relevant:

– rangeList(W, i, j) : the list of all triplets (c, rc
i , r

c
j) such that c is one of the

distinct symbols within S[i, j], rc
i is the rank of c in S[1, i − 1], and rc

j is the
rank of c in S[1, j].

– rangeCount(W, i, j, l, r) : number of symbols y ∈ S[i, j] such that l ≤ y ≤ r.

It is possible to answer rangeList in O(u log σ
u) time, where u is the number

of distinct symbols in S[i, j], and rangeCount in O(log σ) time.

Suffix Arrays and Suffix Trees. Consider a string S[1, n − 1] over alphabet
Σ[2, σ], and the sentinel symbol Σ[1] = $, which we insert at S[n]. The suffix
array [22] of S is a permutation SA[1, n] that enumerates the suffixes S[i, n] of S
in increasing lexicographic order, S[SA[i], n] < S[SA[i + 1], n], for i ∈ [1, n − 1].

The suffix trie [8] is the trie T induced by the suffixes of S. For every S[i, n],
there is a path U = v1, v2, . . . , vp of length p = n−i+2 in T , where v1 is the root
and vp is a leaf. Each edge (vj , vj+1) in U is labeled with a symbol in Σ, and
concatenating the edge labels from v1 to vp produces S[i, n]. The child nodes of
each internal node v are sorted from left to right according to the ranks of the
labels in the edges that connect them to v. Further, when two or more suffixes
of S have the same j-prefix, their paths in T share the first j + 1 nodes.

It is possible to compact T by discarding each unary path U = vi, . . . , vj

where every node vi, vi−1, . . . , vj−1 has exactly one child. The procedure consists
of removing the subpath U ′ = vi+1, . . . , vj−1 and connect vi with vj by an edge
labeled with the concatenation of the labels in U ′. The result is a compact trie
of n leaves and less than n internal nodes called the suffix tree [29].

The suffix tree can contain other special edges that connect nodes from dif-
ferent parts of the tree, not necessarily a parent with its children. These edges
are called suffix and Weiner links. Let us denote label(v) the string that labels
the path starting at the root and ending at v. Two nodes u and v are connected
by a suffix link (u, v) if label(u) = aW and label(v) = W . Similarly, an explicit
Weiner link (u, v) labeled a occurs if label(u) = W and label(v) = aW . A Weiner
link is implicit when, for label(u) = W , the sequence aW matches a proper prefix
of a node label (i.e., there is no node labeled aW). The suffix and Weiner links
along with the suffix tree nodes yield another tree called the suffix link tree.

The Burrows–Wheeler Transform. The Burrows–Wheeler transform
(BWT) [4] is a reversible string transformation that stores in BWT [i] the sym-
bol that precedes the ith suffix of S in lexicographical order, i.e., BWT [i] =
S[SA[i] − 1] (assuming S[0] = S[n] = $).

The mechanism to revert the transformation is the so-called LF mapping.
Given an input position BWT [j] that maps a symbol S[i], LF(j) = j′ returns
the index j′ such that BWT [j′] = S[i − 1] maps the preceding symbol of S[i].
Thus, spelling S reduces to continuously applying LF from BWT [1], the symbol
to the left of T [n] = $, until reaching BWT [j] = $.

202 D. Dı́az-Domı́nguez et al.

Implementing LF requires to encode BWT with a data structure that sup-
ports ranka. A standard solution is to use the wavelet tree of Sect. 2, which
enables to answer LF in O(log σ) time. It is also necessary to have an array C[1, σ]
storing in C[c] the number of symbols in S that are lexicographically smaller than
c. This enables the implementation of the inverse function for LF (denoted as
LF−1). That is, given the position BWT [j] that maps S[i], LF−1(j) = j′ returns
the index j′ such that BWT [j′] maps S[i + 1].

The BWT also allows to count the number of occurrences of a pattern P [1,m]
in S in O(m log σ) time. The method, called backwardsearch, builds on the
observation that if the range SA[sj , ej] encoding the suffixes of S prefixed by
P [j,m] is known, then it is possible to compute the next range SA[sj−1, ej−1]
with the suffixes of S prefixed by P [j − 1,m]. This computation, or step,
requires two operations: sj−1 = C[P [j − 1]] + rankP [j−1](BWT, sj − 1) + 1 and
ej−1 = C[P [j − 1]] + rankP [j−1](BWT, ej). Thus, after m steps of O(log σ) time
each, backwardsearch will find the range SA[s1, e1] encoding the suffixes of S
prefixed by P [1,m] (provided P exists as substring in S).

Bi-directional BWT. The bi-directional BWT [18] of a string S[1, n] is a
data structure that maintains the BWT of S and the BWT of the reverse of S
(denoted here as S̄). Belazzougui et al. [2] demonstrated that it is possible to
use this representation to visit the internal nodes in the suffix tree T of S in
O(n log σ) time.

The work of Belazzougui et al. exploits the fact that the suffixes of S prefixed
by the label of an internal node v in T are stored in a consecutive range SA[sv, ev],
and that BWT [sv, ev] encodes the labels for the Weiner links of v.

Let SAS and BWTS be the suffix array and BWT for S (respectively).
Equivalently, let SAS̄ and BWTS̄ be the suffix array and BWT for S̄. For any
sequence X, Belazzougui et al. maintain two pairs: (sX , eX) and (sX̄ , eX̄), where
SAS [sX , eX] stores the suffixes of S prefixed by X and SAS̄ [sX̄ , eX̄] stores the
suffixes of S̄ prefixed by X̄. They also define a set of primitives for the encoding
(sX , eX), (sX̄ , eX̄) of X:

– isLeftMaximal(X): 1 if BWTS [sX , eX] contains more than one distinct symbol,
and 0 otherwise.

– isRightMaximal(X): 1 if BWTS̄ [sX̄ , sX̄] contains more than one distinct sym-
bol, and 0 otherwise.

– enumerateLeft(X): list of distinct symbols in BWTS [sX , eX].
– enumerateRight(X): list of distinct symbols in BWTS̄ [sX̄ , eX̄]
– extendLeft(X, c): list (i, j), (i′, j′) where SAS [i, j] is the range for cX and

SAS̄ [i′, j′] is the range for X̄c
– extendRight(X, c): list (i, j), (i′, j′) where SAS [i, j] is the range for Xc and

SAS̄ [i′, j′] is the range for cX̄

The key aspect of the bi-directional BWT is that, every time it performs a
left or a right extension in (sX , eX) (respectively, (sX̄ , eX̄)), it also synchronizes
(sX̄ , eX̄) (respectively, (sX , eX)). By encoding BWTS and BWTS̄ as wavelet
trees (Sect. 2), it is possible to perform extendLeft and extendRight in O(log σ)

Computing All-vs-All MEMs in Run-Length-Encoded Collections 203

time using a backward search step (Sect. 2), and then synchronizing the other
range with rangeCount. The functions enumerateLeft and enumerateRight take
O(u log σ

u) time as they are equivalent to rangeList. Finally, both isLeftMaximal
and isRightMaximal run in O(log σ) time.

Belazzougui et al. use the primitives above to traverse the suffix link tree and
thus visiting the internal nodes of T in O(n log σ) time.

3 Our Contribution

3.1 Definitions

We consider the set {A, C, G, T} to be the DNA alphabet. For practical reasons,
we compact it to the set Σ = [2, 5], and regard Σ[1] = $ as a sentinel that is
lexicographically smaller than any other symbol. Given a string R in Σ∗, we
define an homopolymer as an equal-symbol run R[i, j] = (c, �) of maximal length
storing � = j − i+1 > 1 consecutive copies of a symbol c. Maximal length means
that i = 1 or R[i − 1] �= c, and j = |R| or R[j + 1] �= c.

We regard the DNA complement as a permutation π[1, σ] that reorders the
symbols in Σ, exchanging 2 (A) with 5 (T) and 3 (C) with 4 (G). The permutation
does not modify 1 ($) as it does not represent a nucleotide (i.e., π(1) = 1). The
reverse complement of R, denoted R̂, is the string formed by reversing R and
replacing every symbol R[i] by its complement π(R[i]). Given a DNA symbol
a ∈ Σ, let us define the operator a = π(a) to denote the DNA complement of a.

The input for our algorithm is a collection X = {R1, R2, . . . , Rk} of k HiFi
reads over the alphabet Σ. However, we operate over the expanded collection
R = {R1$, R̂1$, . . . , Rk$, R̂k$} storing the reads of X along with their reverse
complements, where all the strings have a sentinel appended at the end. R has
2k strings, with a total of n = Σk

i=12(|Ri|+1) symbols. We refer to every possible
sequence over the DNA alphabet that label a MEM in R as a MEM sequence.

3.2 Description of the Problem

Before developing our ideas, we formalize our problem as follows.

Definition 1. Let S = {S1, S2, . . . , Sk} be a string collection of k strings and n
total symbols. The problem of all-vs-all MEMs consists in reporting every possible
pair (Sx[a, b], Sy[a′, b′]) such that Sx, Sy ∈ S, Sx �= Sy, and Sx[a, b] = Sy[a′, b′]
is a MEM of length b − a + 1 = b′ − a′ + 1 ≥ τ , where τ is a parameter.

HiFi data is usually strand unspecific, meaning that, for any two reads
Ra, Rb ∈ X , there are four possible combinations in which we can have MEMs:
(Ra, Rb), (R̂a, Rb), (Ra, R̂b), (R̂a, R̂b). We can access all such combinations in
R, but not in X . Hence, our algorithmic framework solves the problem of Defi-
nition 1 using R as input.

204 D. Dı́az-Domı́nguez et al.

4 Bi-directional BWT and DNA Reverse Complements

In this section, we explain how to exploit the properties of the DNA reverse
complements to implement an implicit bi-directional BWT for R that does not
require the BWT of the reverse sequences of R (see Sect. 2). We assume the
BWT of R is the BCR BWT [1], a variation for string collections. This decision
is for technical convenience, and does not affect the output of our framework. We
begin by describing the key property in our implicit bi-directional representation:

Lemma 1. Let X be a string over alphabet Σ that appears as a substring in R.
Additionally, let the pairs (sX , eX) and (sX̂ , eX̂) be the ranges in SA of R storing
all suffixes prefixed by X and X̂, respectively. It holds that the sorted sequence
of DNA complement symbols in BWT [sX , eX] matches the right-context symbols
of the occurrences of X̂ when sorted in lexicographical order. This relationship
applies symmetrically to BWT [sX̂ , eX̂] and the sorted occurrences of X.

Proof. Assume the symbol a ∈ Σ appears to the left of p occurrences of Xb in R.
We know that for each occurrence of aXb in R there will be also an occurrence
of bX̂a as we enforce that property by including the DNA reverse complements
of the original reads (collection X of Sect. 3.1). As a result, BWT [sXb, eXb] will
contain p copies of a and BWT [sX̂a, eX̂a] will contain p copies of b.

We will use Lemma 1 to implement the functions enumerateRight, extendRight
and isRightMaximal (Sect. 2) on top of the BWT of the text. Unlike the technique
of Belazzougui et al., we synchronize the pairs (sX , eX), (sX̂ , eX̂). Another dif-
ference is that both pairs (sX , eX), (sX̂ , eX̂) map to the suffix array of the text.
In the original version, the second pair maps to the suffix array of the reverse
text. To implement the functions above, we need to update both pairs every
time we perform extendLeft and extendRight.

Belazzougui et al. implement extendLeft(X, c) by performing a backward
search step over BWT [sX , eX] using the symbol c. The result of this opera-
tion is the suffix array range for cX. To modify (sX̂ , eX̂) so it maps to the
suffix array range for X̂c, we sum the frequencies of the distinct symbols within
BWT [sX , eX] whose DNA reverse complements are lexicographically smaller
than c. This operation comes directly from Lemma 1. Assume the sum is y and
that the frequency of c in BWT [sX , eX] is z, then we compute sX̂c = sX̂ +y and
eX̂c = sX̂ + y + z. We use a special form of rangeCount to get the value for y. If
c < c, then we will use y = rangeCount(BWT, sX , eX , c+1, σ). In the other case,
c > c, we use rangeCount(BWT, sX , eX , 1, c − 1). The rationale for computing
rangeCount comes from the relationship between complementary nucleotides in
the permutation π of Sect. 3.1. The operation extendRight(X, c) is analogous; we
perform the backwardsearch step over BWT [sX̂ , eX̂] using c as input, and then
we count the number of symbols that are lexicographically smaller than c.

The functions enumerateRight(X) and isRightMaximal(X) are implemented
with minor changes. The only caveat is that, when we use enumerateRight, we
need to spell the DNA reverse complements of the symbols returned by rangeList.

Computing All-vs-All MEMs in Run-Length-Encoded Collections 205

Corollary 1. Given a collection X of DNA sequences and its expanded ver-
sion R that contains the strings of X along their reverse complement sequences,
we can construct an implicit bi-directional BWT index that does not require
the BWT of the reverse of R and that answers the queries enumerateRight,
extendRight and isRightMaximal in O(u log σ

u) and O(log σ) time, respectively,
where u is the number of distinct symbols within the input range for extendRight.

Observe the BWT for R is implicitly bi-directional as the DNA reverse com-
plements are just the reverse strings with their symbols permuted according to
π (see Definitions). However, in the case of R, both BWTs are merged in a
single representation. Producing a standard bi-directional BWT would increase
the size of X by a factor of 4. In real applications where the data is a multiset of
DNA sequencing reads, we have to transform X into R regardless if we construct
a bi-directional BWT as the reads are strand-unspecific (see Sect. 3.2).

Contraction Operations in the Implicit Bi-directional BWT. Given a
range SA[i, j] of suffixes prefixed by a string X, and a parameter w ≤ |X|, a
contraction operation returns the range i′ ≥ i, j ≤ j′ in SA storing the suffixes
of the text prefixed by X[1, w]. It is possible to solve this query efficiently with
either the wavelet tree of the LCP or with a compact data structure that encodes
the suffix tree’s topology. The problem with those solutions is that we have to
deal with the overhead of constructing and storing those representations. We
describe how to use our implicit bi-directional BWT to visit the ancestors of a
node v in the suffix tree in O(|label(v)| log σ) time to solve contraction operations.
This idea is slower than using the LCP or the suffix tree’s topology, but it does
not require extra space, and it is faster than the quadratic cost of using a regular
BWT. Our technique is a byproduct of our framework, and it is of independent
interest. The inputs for the ancestors’ traversal are the range SA[sv, ev] for v,
and its string depth d = |label(v)|. The procedure is as follows: starting from
BWT [sv], we perform d LF−1 operations to spell label(v). Simultaneously as
we spell the sequence, we also perform backward search steps using the DNA
complement of the symbols we obtain with LF−1. We use Lemma 1 to keep the
ranges of the backward search steps synchronised with the ranges for the distinct
prefixes of label(v). Recall that backwardsearch consumes the input from right
to left. In our case, this input is a sequence W that matches the DNA reverse
complement of label(v). Thus, by Lemma 1, we know that visiting the SA ranges
for the suffixes of W is equivalent to visit the SA ranges for the prefixes of
label(v). Finally, each time we obtain a new range SA[i′, j′] with the backward
search step, we use isLeftmaximal to check if BWT [i′, j′] is unary. If that is the
case, then we report the synchronized range of SA[i′, j′] as an ancestor of v. The
rationale is that if W is left-maximal, then Ŵ = label(v)[1, |W |] is right-maximal
too, and hence, its sequence is the label of an ancestor of v in the suffix tree.

206 D. Dı́az-Domı́nguez et al.

4.1 Homopolymer Errors and MEM Sequences

A MEM algorithm that runs on top of the suffix tree of R is unlikely to report
all the real2 matches if the input collection is HiFi data. The difficulty is that
some of the MEMs are “masked” in the suffix tree. More specifically, suppose
we have two nodes v and u, with label(v) �= label(u). It might happen that, by
removing or adding copies of symbols in the equal-symbol runs of label(u), we
can produce label(v). If those edits are small enough for the PacBio machine to
produce them during the sequencing process, then it is plausible to assume that
label(u) is an homopolymer error of label(v). This situation becomes even more
likely if label(u) is long and its frequency is low in the collection.

Looking for all the possible suffix tree nodes that only have small differences
in the length of homopolymer runs similar to v and u could be expensive. A
simple workaround is to run-length compress R and execute the suffix-tree-based
MEM algorithm with that as input. Now the problem is that we can report
false positive MEMs between different sequences that have the same run-length
representation but that are not homopolymer errors. Fortunately, filtering those
false positive is not so difficult. Before explaining our idea, we formally define
the notion of equivalence between sequences.

Definition 2. Let A be a string whose run-length encoding is the sequence of
pairs A = (a1, �1), (a2, �2), . . . , (ap, �p), where ai is the symbol of the ith equal-
symbol run, and �i ≥ 1 is its length. Additionally, let the operator rlc(A) =
a1, a2, . . . , ap denote the sequence of run heads for A. We say that two strings A
and B are equivalent iff rlc(A) = rlc(B).

We use equivalent sequences (Definition 2) to define a filtering parameter to
discard false positive MEMs. We call this parameter the run-length excess:

Definition 3. Let A and B be two distinct strings with rlc(A) = rlc(B). Addi-
tionally, let the pair sequences A = (x1, �

a
1), (x2, �

a
2), . . . , (xp, �

a
p) and B =

(x1, �
b
1), (x2, �

b
2), . . . , (xp, �

b
p) be the run-length encoding for A and B, respectively.

Each xi ∈ Σ is the ith run head, and �a
i , �b

i ≥ 1 are the lengths for xi in A and B,
respectively. Now consider the string E = |�a

1 −�b
1|, . . . , |�a

n −�b
n| storing the abso-

lute differences between the run lengths of A and B. We define the run-length
excess as rlexcess(A,B) = max(E[1], E[2], . . . , E[n]).

Intuitively, equivalent sequences that have a high run-length excess are
unlikely to have a masked MEM. The reason is because, although the PacBio
sequencing process makes mistakes estimating the lengths of the equal-symbol
runs, the error in the estimation is unlikely to be high.

Now that we have a framework to detect MEMs in run-length-compressed
space, we construct a new collection Rh of nh ≤ n symbols encoding the same
strings of R but with their homopolymers compacted. Namely, every equal-
symbol run Ru[i, j] = (c, �) of maximal length � > 1 in R is represented with

2 Those we would obtain in a collection with no homopolymer errors.

Computing All-vs-All MEMs in Run-Length-Encoded Collections 207

a special metasymbol c∗ /∈ Σ in Rh. We store the � values in another list H,
sorted as their respective homopolymers occur in R. Each element of Σ has its
own metasymbol, including the sentinel. We reorder the alphabet Σ ∪ Σh of Rh

to the set {$, A, A∗, C, C∗, G∗, G, T∗, T, $∗}, which we map to its compact version
Σhp = [1, 10]. This reordering will facilitate the synchronization of ranges when
we perform extendLeft or extendRight in our implicit bi-directional BWT.

Recall from Sect. 4 that, when we call the operation extendLeft(X, c) (respec-
tively, extendRight(X, c)), we need to perform rangeCount(BWT, sX , eX) to get
the number of symbols within BWT [sX , eX] whose DNA complements are
smaller than c. For this counting operation to serve to synchronize BWT [sX̂ , eX̂]
in constant time, we need the BWT alphabet to be symmetric. Concretely, the
permutation π for the DNA complements has to exchange Σhp[1] with Σhp[σ],
Σhp[2] with Σhp[σ−1], and so on. This is the reason why the sentinel has a meta-
symbol too, even though there are no sentinel homopolymers in R. Additionally,
we define a function g : Σhp → Σ to map metasymbols back to their nucleotides
in Σ. When the input for g is not a metasymbol, g returns the nucleotide itself.

The next step is to run the suffix-tree-based algorithm to solve the all-vs-all
MEM problem of Definition 1 (see Sect. 2) using Rh as input. However, we add
one extra step. For each candidate MEM (Ra[i, j], Rb[i′, j′]), with Ra, Rb ∈ Rh,
reported by the algorithm, we check if the run-length excess between Ra[i, j]
and Rb[i, j] is below some minimum threshold e. If that is not the case, then we
discard that pair as a MEM. We can easily compute the run-length excess value
using the suffix array of Rh and the vector H. If the MEM algorithm detects
that an internal node v of the suffix tree encodes a list of MEMs, then we use
the suffix array of Rh to access the text positions label(v). Subsequently, we map
those positions to H to get the lengths of the distinct variations of label(v) on
the text, and thus compute excess among them.

4.2 Computing MEMs in Compressed Space

We now have all the elements to solve Problem 1 in run-length-compressed space
using our implicit bi-directional BWT. Our input is the BWT of Rh (encoded
as a wavelet tree BWT), the array H storing the lengths of the homopolymers
in the HiFi reads, and the parameters τ and e for, respectively, the minimum
MEM length and the maximum run-length excess (see Sect. 4.1).

We resort to the algorithm of Belazzougui et al. [2] to visit the internal
nodes in the suffix tree T of Rh in O(nh log |Σhp|) time, with nh = Σ

|Rh|
1 |Ri|

(see Sect. 2). The advantage of their method is that we can use backward search
operations over BWT to navigate T without visiting its edge labels (i.e., unary
paths in the suffix trie of Rh). Algorithm 1 describes the procedure.

Each internal node v of T with more than one Weiner link (i.e., BWT [sv, ev]
is not unary) encodes a group of MEMs. This property holds because label(v) has
more than one left-context symbol and more than one right-context symbol in
the text. Thus, any possible combination of strings a·label(v)·b and y·label(v)·z
we can decode from v, with a, b, y, z ∈ Σhp, a �= y, and b �= z, corresponds to

208 D. Dı́az-Domı́nguez et al.

a MEM sequence (see Definitions). The sequences we obtain from v can have
multiple occurrences in Rh, and we need to report all of them. However, some of
them might be false positives. For instance, the pair of text positions conforming
a MEM are in the same string, or in strings that are DNA reverse complements
of each other. We filter those cases as they are artefacts in our model.

When we visit a node v with more than one Weiner link during the traver-
sal of T , we access its MEM sequences as follows: we use enumerateRight and
extendRight to compute every range SA[su, eu], with sv ≤ su ≤ eu ≤ ev, encod-
ing a child u of v. Then, over each SA[su, eu], we perform enumerateLeft and
extendLeft to compute every range SA[sc

u, ec
u] encoding a Weiner link c of u. This

procedure yields a set M = {I1, I2, . . . , Ip}, where p is the number of children
of v, and Iq, with q ∈ [1, p], is the set of ranges in SA for the Weiner links of the
qth child of v (from left to right).

The next step is to report the text positions of the MEM sequences encoded
by M. For this purpose, we consider the list of pairs {(Ie, Ig) | Ie, Ig ∈
M and Ie �= Ig}. Every element (SA[i, j], SA[i′, j′]) ∈ Ie × Ig is a pair of ranges
such that SA[i, j] stores the suffixes of Rh prefixed by a label a·label(v)·b and
SA[i′, j′] stores the suffixes of Rh prefixed by another label y·label(v)·z. We know
that b and z are different as they come from different children of v. However, the
symbols a and y might be equal, which means label(v) is not a MEM sequence
when we match a·label(v)·b and y·label(v)·z. We can find out this information
easily: if SA[i, j] and SA[i′, j′] come from different buckets3, then a �= y. If that
is the case, we have to report the MEMs associated to (SA[i, j], SA[i′, j′]). For
doing so, we first get the string depth d = |label(v)| of v. Then, we regard
X = {i, . . . , j} and O = {i′, . . . , j′} as two different sequences of consecutive
indexes in SA, and iterate over their Cartesian product X × O. When we access
a pair (SA[x], SA[o]), with (x, o) ∈ X × O, we compute the run-length excess e′

between Rh[SA[x] + 1, SA[x] + d] and Rh[SA[o] + 1, SA[o] + d] as described in
Sect. 4.1, and discard the MEM in (SA[x], SA[o]) if e′ ≥ e. We also discard it if
SA[x] and SA[o] map the same string or map different strings that are reverse
complements between each other. This procedure is described in Algorithm 2.

Theorem 1. Let Rh be the run-length encoded collection of HiFi reads, with an
alphabet of σh = |Σhp| symbols. Additionally, let v be an internal node in the
suffix tree of Rh that has more than one Weiner link. The string depth of v is
d = |label(v)| and its associated range SA[i, j] has length x = j − i + 1. We can
compute all the MEMs encoded by v in O(σ2

h log σh + x2d) time.

Proof. We first compute the ranges for the children of v with the operations
enumerateRight and extendRight. These two operations take O(σh log σh) time.
Then, for every child, we compute its Weiner links. The node v has up to σh

children, each child has up to σh Weiner links, and to compute each of these
takes log σh time via extendLeft, making O(σ2

h log σh) time in total. The number
of suffixes of Rh in M is x, and the total number of suffix pairs we visit during
the scans of the Cartesian products between sets of M is bound by x2. Each time
3 The bth bucket of SA is the range containing all suffixes prefixed by symbol b ∈ Σ.

Computing All-vs-All MEMs in Run-Length-Encoded Collections 209

we visit a pair of suffixes, computing the run-length excess between them takes us
O(d) time. Thus, the time for reporting the MEMs from v is O(σ2

h log σh +x2d).
�	

4.3 Improving the Time Complexity for Reporting MEMs

We can think of the problem of reporting MEMs from v as two-dimensional
sorting. We need the occurrences of label(v) to be sorted by their left and right
contexts at the same time (the dimensions) to report the MEMs from v efficiently.
We can implement this idea using a grid G with dimensions nh×nh. We (logically)
label the rows of G with the suffixes of Rh sorted in lexicographical order, and do
the same with the columns. We then store the values of SA in the grid cells, with
the (row,column) coordinate for each SA[j] being (j, LF(j)). We encode G with
the data structure of Chan et al. [5] that increases the space by O(nh log nh) +
o(nh log nh) bits and allows reporting of the occ points in the area [x1, x2], [y1, y2]
of G in O((occ+1)(1+log nh/ log log nh)) time. In exchange, we no longer require
SA.

The procedure to report MEMs is now as follows. When we reach v during
the suffix tree traversal, we perform extendLeft with each of v’s Weiner links.
This produces a list L of up to σh non-overlapping ranges in SA. We then create
another list Q with the ranges obtained by following v’s children. Notice that
the ranges of Q are a partition of the range [i, j] in SA for label(v). For every
[l1, l2] ∈ L, we extract the points in G in the area [l1, l2], [i, j], and partition
the result into subsets according to Q. The partition is simple as the points
can be reported in increasing order of the y coordinates (range [i, j]). The idea
is to generate a list I = {I1, I2, . . . , Ix} of at most σ2

h elements, where each
element is a point set for an area [l1, l2], [q1, q2] ∈ L × Q. Finally, we scan all
possible distinct pairs of I that yield MEMs, processing suffixes as in lines 18–
23 of Algorithm 2. Let Ii, Ij ∈ I be two point sets, extracted from the areas
[l1, l2], [q1, q2] and [l′1, l

′
2], [q

′
1, q

′
2] of G, respectively. The points of Ii will have

MEMs with the points of Ij if [l1, l2] �= [l′1, l
′
2] and [q1, q2] �= [q′

1, q
′
2]. See Fig. 1.

Corollary 2. By replacing SA with the grid of Chan et al. [5], reporting the
MEMs associated with internal node v of the suffix tree of Rh takes O((x +
σ)(1 + log nh/ log log nh) + l2d) time, where x is the number of occurrences of
label(v) in Rh, l ≤ x is the number of those occurrences that have MEMs, and
d = label(v).

5 Concluding Remarks

We presented a framework to compute all-vs-all MEMs in a collection of run-
length encoded HiFi reads. Our techniques can be adapted to other types of
collections with properties similar to that of HiFi data (e.g., Nanopore sequenc-
ing data, proteins, Phred scores, among others). The larger alphabet of proteins
and Phred scores make our MEM reporting algorithm that uses the geometric
data structure more relevant (as it avoids the σ2 complexity of our first method).
We are also applying these techniques to de novo assembly of HiFi reads.

210 D. Dı́az-Domı́nguez et al.

Appendix

Algorithm 1. Computing MEMs in one traversal of the suffix tree T of Rh.
Arrays BWT , SA, and H are implicit in the pseudo-code. Each node v ∈ T
is encoded by the pair (v, d), where v = (i, j), (i′, j′) are the ranges in SA for
label(v) and its DNA reverse complement label(v̂), and d is the string depth.
Input: Suffix tree T for Rh encoded by the implicit bi-directional BWT.
Output: MEMs as described in Definition 1.
1: S ← ∅ � Empty stack
2: r ← (1, n + 1), (1, n + 1) � The root of T
3: push(S, (r, 0))
4: while S �= ∅ do
5: (v, d) ← top(S) � Extract suffix tree node v from the top of the stack
6: pop(S)
7: if d ≥ τ and isLeftMaximal(v) and isRightMaximal(v) then
8: repMEM(v, e, d)
9: end if

10: for c ∈ enumerateLeft(v) do � Continue visiting other suffix tree nodes
11: u ← extendLeft(v, c)
12: if isLeftMaximal(u) then
13: insert(S, (u, d + 1))
14: end if
15: end for
16: end while

Fig. 1. Reporting MEMs from an internal node v labeled label(v) = X using the grid
G. The rows are labeled with the suffixes prefixed by X, while the column are labeled
with the suffixes prefixed with the labels of v’s Weiner links. The horizontal red lines
represents the partition of the SA range for X induced by the children of v. The grey
numbers below the column labels are the LF−1 values. For each column j′, its associated
SA value is in the row LF−1(j′) = j.

Computing All-vs-All MEMs in Run-Length-Encoded Collections 211

Algorithm 2. Report all-vs-all MEMs from a suffix tree node v. Arrays BWT
and H for Rh are implicit in the pseudo-code. Node v is encoded as described
in Algorithm 1
Input: An internal node v ∈ T with more than one Weiner link, run-length excess

threshold e, and d = |label(v)|.
Output: List of MEMs among strings of Rh that can be computed from v.
1: procedure repMEM(v, d, e)
2: C ← ∅
3: for c ∈ enumerateRight(v) do � Partition SA[v.i, v.j] according v’s children
4: C ← C ∪ {extendRight(v, c)}
5: end for
6: M ← ∅
7: for x ← 1 to |C| do � Get Weiner links for every child of v
8: Ix ← ∅
9: for d ← enumerateLeft(C[x]) do

10: Ix ← Ix ∪ {extendLeft(C[x], d)}
11: end for
12: M ← M ∪ Ix

13: end for
14: for Ia, Ib ∈ M with Ia �= Ib do � Ia and Ib come from different children of v
15: for (X, Y) ∈ Ia × Ib do
16: if X and Y belong to distinct SA bucket then
17: for (q, e) ∈ X × Y do
18: Rq ← string in Rh for SA[q] + 1
19: Re ← string in Rh for SA[e] + 1
20: e′ ← rlExcess(SA[q] + 1, SA[e] + 1, d)
21: if e′ ≤ e then
22: Report MEM in (q, e)
23: end if
24: end for
25: end if
26: end for
27: end for
28: end procedure

References

1. Bauer, M.J., Cox, A.J., Rosone, G.: Lightweight algorithms for constructing and
inverting the BWT of string collections. Theor. Comput. Sci. 483, 134–148 (2013)

2. Belazzougui, D., Cunial, F., Kärkkäinen, J., Mäkinen, V.: Versatile succinct repre-
sentations of the bidirectional Burrows-Wheeler transform. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 133–144. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40450-4 12

3. Boucher, C., et al.: PHONI: streamed matching statistics with multi-genome ref-
erences. In: Proceedings of the 21st Data Compression Conference (DCC), pp.
193–202 (2021)

4. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical report 124, Digital Equipment Corporation (1994)

https://doi.org/10.1007/978-3-642-40450-4_12

212 D. Dı́az-Domı́nguez et al.

5. Chan, T., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the RAM,
revisited. In: Proceedings of the 27th Annual Symposium on Computational Geom-
etry (SoCG), pp. 1–10 (2011)

6. Chang, W.I., Lawler, E.L.: Sublinear approximate string matching and biological
applications. Algorithmica 12(4), 327–344 (1994)

7. Clark, D.: Compact PAT trees. Ph.D. thesis, University of Waterloo, Canada (1996)
8. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960)
9. Gagie, T., Navarro, G., Prezza, N.: Fully functional suffix trees and optimal text

searching in BWT-runs bounded space. J. ACM (JACM) 67(1), 1–54 (2020)
10. Gagie, T., Navarro, G., Puglisi, S.J.: New algorithms on wavelet trees and appli-

cations to information retrieval. Theor. Comput. Sci. 426, 25–41 (2012)
11. Grabowski, S., Bieniecki, W.: copMEM: finding maximal exact matches via sam-

pling both genomes. Bioinformatics 35(4), 677–678 (2019)
12. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In:

Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 841–850 (2003)

13. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

14. Jacobson, G.: Space-efficient static trees and graphs. In: Proceedings of the 30th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 549–554
(1989)

15. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir, A. (ed.)
CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-48194-X 17

16. Khan, Z., Bloom, J.S., Kruglyak, L., Singh, M.: A practical algorithm for find-
ing maximal exact matches in large sequence datasets using sparse suffix arrays.
Bioinformatics 25(13), 1609–1616 (2009)

17. Khiste, N., Ilie, L.: E-MEM: efficient computation of maximal exact matches for
very large genomes. Bioinformatics 31(4), 509–514 (2015)

18. Lam, T.W., Li, R., Tam, A., Wong, S., Wu, E., Yiu, S.-M.: High throughput short
read alignment via bi-directional BWT. In: Proceedings of the 3rd International
Conference on Bioinformatics and Biomedicine (BIBM), pp. 31–36 (2009)

19. Li, H.: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
34(18), 3094–3100 (2018)

20. Liu, Y., Zhang, L.Y., Li, J.: Fast detection of maximal exact matches via fixed sam-
pling of query k-mers and bloom filtering of index k-mers. Bioinformatics 35(22),
4560–4567 (2019)

21. Logsdon, G.A., Vollger, M.R., Eichler, E.E.: Long-read human genome sequencing
and its applications. Nat. Rev. Genet. 21(10), 597–614 (2020)

22. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

23. Ohlebusch, E., Fischer, J., Gog, S.: CST++. In: Proceedings of the 17th Interna-
tional Symposium on String Processing and Information Retrieval (SPIRE), pp.
322–333 (2010)

24. Ohlebusch, E., Gog, S., Kügel, A.: Computing matching statistics and maximal
exact matches on compressed full-text indexes. In: Chavez, E., Lonardi, S. (eds.)
SPIRE 2010. LNCS, vol. 6393, pp. 347–358. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-16321-0 36

25. Rossi, M., Oliva, M., Bonizzoni, P., Langmead, B., Gagie, T., Boucher, C.: Finding
maximal exact matches using the r-index. J. Comput. Biol. 29(2), 188–194 (2022)

https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1007/978-3-642-16321-0_36
https://doi.org/10.1007/978-3-642-16321-0_36

Computing All-vs-All MEMs in Run-Length-Encoded Collections 213

26. Rossi, M., Oliva, M., Langmead, B., Gagie, T., Boucher, C.: MONI: a pangenomic
index for finding maximal exact matches. J. Comput. Biol. 29(2), 169–187 (2022)

27. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput.
Syst. 41(4), 589–607 (2007)

28. Vyverman, M., De Baets, B., Fack, V., Dawyndt, P.: essaMEM: finding maximal
exact matches using enhanced sparse suffix arrays. Bioinformatics 29(6), 802–804
(2013)

29. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of the 14th Annual
Symposium on Switching and Automata Theory (SWAT), pp. 1–11 (1973)

30. Wenger, A.M., et al.: Accurate circular consensus long-read sequencing improves
variant detection and assembly of a human genome. Nat. Biotechnol. 37(10), 1155–
1162 (2019)

Space-Efficient Data Structures

Internal Masked Prefix Sums and Its
Connection to Fully Internal Measurement

Queries

Rathish Das1, Meng He2, Eitan Kondratovsky1(B), J. Ian Munro1,
and Kaiyu Wu1

1 Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
{rathish.das,eitan.kondratovsky,imunro,k29wu}@uwaterloo.ca

2 Faculty of Computer Science, Dalhousie University, Halifax, Canada
mhe@cs.dal.ca

https://cs.uwaterloo.ca/~imunro/, https://web.cs.dal.ca/~mhe/

Abstract. We define a generalization of the prefix sum problem in which
the vector can be masked by segments of a second (Boolean) vector. This
problem is shown to be related to several other prefix sum, set intersec-
tion and approximate string match problems, via specific algorithms,
reductions and conditional lower bounds. To our knowledge, we are the
first to consider the fully internal measurement queries and prove lower
bounds for them. We also discuss the hardness of the sparse variation
in both static and dynamic settings. Finally, we provide a parallel algo-
rithm to compute the answers to all possible queries when both vectors
are fixed.

1 Introduction

The prefix sums problem (also known as scans) is one in which one seeks to
preprocess an array of n numbers to answer prefix sum queries. This problem is
widely known and has been motivated by many fields such as parallel algorithm,
graph theory, and more [5,10]. Pătraşcu et al. [23] proved tight lower bounds for
the query time when using linear space. Later, Bille et al. [4] provided tight lower
bounds in the dynamic model where insertion, deletion, and modifications of the
array’s numbers are allowed. On the implementation side, Pibiri and Venturini
[24] give an overview of current techniques and how well they perform in practice.

The internal model has received much attention in recent years. In this set-
ting, the input is given as a sequential string and the queries are asked on different
substrings of the input. One of the first problems in this research field was the
internal pattern matching problem. In this problem, a string S is preprocessed
to answer queries of the form: “report all occurrences where a substring of S
is located in another substring of S” [15,17]. Since then, many internal query
problems were introduced. Examples include the longest common prefix of two
substrings of S, computing the periods of a substring of S, etc. We refer the
interested reader to [16], which contains an overview of the literature.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 217–232, 2022.
https://doi.org/10.1007/978-3-031-20643-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_16&domain=pdf
https://doi.org/10.1007/978-3-031-20643-6_16

218 R. Das et al.

The internal masked prefix sum problem takes as input an m-bit mask B and
an array A of n numbers, where m ≥ n, and supports the query: “report the
prefix sum of the numbers against some substring of the mask”. It is easy to
see that the subtraction of two such prefix sums supports any masked sum of a
substring of A. That is, subtracting the prefix sum until position i from the prefix
sum until position j > i, where i, j are the substring positions. A simplified case
of the problem is when A consist of binary values, i.e. A ∈ {0, 1}∗. In this case,
the masked prefix sums are the inner products of the substrings.

Clifford et al. [7] introduced the problem of dynamic data structure that sup-
ports the inner product (and other measurements) between an m-length pattern
and any m-length substring of the text, where m is fixed. Here dynamic means
that substitutions of letters in the pattern and in the text are allowed. The addi-
tional measurements that were considered are the Hamming distance and exact
matching with wildcards. It was shown that in the dynamic setting, both query
and update cannot be done in O(n

1
2−ε) time, for some ε > 0, unless the OMv

(Online Boolean Matrix-Vector Multiplication) conjecture is false.
Our contributions are the following.

1. We give a preprocess-query time trade-off that matches the lower bound of the
batched problem up to logarithmic factors. The trade-off algorithm works in
O(nm

f(n) log f(n))1 preprocessing time and O(nm
f(n)) space and answers queries

in O(f(n)) time, for any 1 ≤ f(n) ≤ n.
2. We prove a lower bound for the batched problem in which the algorithm

preprocesses the data to answer a batch of n queries, where n is the length of
the input. We show a lower bound of p(n)+nq(n) = Ω(n

3
2−ε), for any ε > 0,

where p(n) is the preprocessing time and q(n) is the query time. This lower
bound illustrates that queries that consist of substrings from both A and B
even in a static setting, have similar hardness as the dynamic setting but on
substrings with fixed length.

3. We show a (1 + ε)-approximation algorithm for the internal masked prefix
sums that works in near constant time for any ε > 0.

4. We give a parallel algorithm that computes all the internal prefix sums in
O(log n+logm) span and O(nm) work to answer all the possible queries that
are stored explicitly, or O(log n+logm) span and O(nm

log n) work for (implicit)
constant-time queries.

5. We consider the sparse internal inner product and we show conditional lower
bounds from SetDisjointness and 3SUM in the static and dynamic set-
tings, respectively.

The paper is organized as follows: In Sect. 2 we give the formal definition of
our problems and other data structures that we will be using as building blocks.
In Sect. 3 we study the internal masked prefix sum. We give the preprocess-query
trade-off data structure for the problem along with the conditional lower bound.
Furthermore, we study an approximate form of the problem and finally give a
1 We will use log to denote log2, though as our log all eventually end up in asymptotic

notation, the constant bases are irrelevant.

Internal Masked Prefix Sums 219

parallel algorithm that can be used in the preprocessing of the data structures.
In Sect. 4 we study the sparse internal inner product and give conditional lower
bounds for the problem. Finally, in Sect. 5 we discuss a related problem, of
calculating Hamming distances and how it can be reduced to the internal masked
prefix sum problem.

2 Preliminaries

Let Σ be an alphabet. A string S over Σ is a finite sequence of letters from
Σ. By S[i], for 1 ≤ i ≤ |S|, we denote the ith letter of S. The empty string is
denoted by ε. By S[i..j] we denote the string S[i] · · · S[j], called a substring of S
(if i > j, then the substring is the empty string). A substring is called a prefix if
i = 1 and a suffix if j = |S|.

In the paper, we assume that Σ consists of nonnegative numbers. The non-
negativity ensures that binary search on the partial prefix sums is well defined.

Definition 1 (MaskedPrefixSumProblem).
Input: A bit vector (mask) B and an array of numbers A of lengths m and n,
respectively. The goal is to preprocess a data structure that answers the masked
prefix sum queries of the following form.
Query: Given i and k, where 1 ≤ k ≤ |A|, 1 ≤ i ≤ |B| − k + 1. We wish to
report the sum of the first k numbers of A that corresponds to 1s in the k-length
submask of B located at position i. Formally,

k∑

j=1

A[j] · B[i + j − 1] = 〈A[1 . . . k], B[i . . . i + k − 1]〉.

Example 1. Let A = [1, 0, 2, 0, 0, 0, 4, 8] and B = 10100111001. For query k = 7
and i = 5 the answer is 6. To see this, we look at the first 7 numbers of A against
the 7-length submask starting at position 5. After masking out the elements of
A, which are against 0s, we are left with 2 and 4 which sum to 6.

Fig. 1. Highlighted cells are those used in the query.

Definition 2 (SparseMaskedPrefixInnerProduct).
Input: A bit vector (mask) B and a bit vector (numbers) A such that the sum
of the number of 1s in A and the number of 1s in B is n, i.e. the problem
can be represented by writing down the n positions of the ones. The goal is to

220 R. Das et al.

preprocess a data structure that answers the sparse internal inner product queries
of the following form.
Query: Given i and k, where 1 ≤ k ≤ |A|, 1 ≤ i ≤ |B| − k + 1. We wish to
report the inner product of the first k bits of A against the k-length submask of
B located at position i.

In the paper, we consider the RAM model with word size w = log n. We
assume that each integer fits into one log n-length RAM word. Thus the sum of
n integers is at most n2, and each prefix sum fits into constant number of RAM
words (more specifically 2). Notice that in some problems w = logU , where U
is the universe size of the problem. When the context is clear, we write a capital
U to indicate that this is the case.

In our solutions to the above MaskedPrefixSumProblem and the
SparseMaskedPrefixInnerProduct problems, we will extensively use data
structures for the predecessor/successor problem.

The predecessor problem is to preprocess a set S of N integers from a universe
of size U , to answer queries of the form: “Given an input i, return the largest
integer in S smaller than i”. The successor problem is analogous. We only state
the results for the predecessor query but all of the following data structures can
handle the successor query as well with the same complexities.

Willard’s y-fast tries [25] gives a O(N) word space solution to the problem
with O(log logU) query time. Another approach is Fredman and Willard’s fusion
trees [11], which also uses O(N) words of space and supports the predecessor
query in O(

√
logN) amortized time. Andersson [1] showed how to make the

query in worst case time O(
√
logN).

Combining these results, we obtain the following lemma. The decision on
which data structure to use follows from the values of U and N .

Lemma 1 (Predecessor Query). There is a data structure for the
predecessor problem that uses O(N) words of space and query time
O(min{log logU,

√
logN}).

We note that the data structure of Beame and Fich [3] gives a better running
time of O(min{ log log U

log log log U ,
√

log N
log log N }), at the cost of increasing the space to

O(NO(1)) words of space.

3 Data Structures for Masked Prefix Sum

In this section, we design data structures for masked prefix sum and some of
its variants. More specifically, we present a time-space trade-off for this prob-
lem (Sect. 3.1) and prove a conditional lower bound (Sect. 3.2). We also design
data structures for the dynamic version (Sect. 3.3) and the approximate ver-
sion (Sect. 3.4) of the masked prefix sum problem. Finally, we consider a related
problem of designing a parallel algorithms to compute the answers to all possible
queries over a given instance of this problem (Sect. 3.5).

Internal Masked Prefix Sums 221

3.1 Time-Space Trade-off

We now present a data structure for the masked prefix sum problem. With it, we
achieve a trade-off between space/preprocessing cost and query time. We note
that the data structure can be immediately generalized to solve other internal
measurements - such as those studied by Clifford et al. [7] by replacing the inner
product by any linear function, i.e., any function g over two strings that can be
written as

g(S, T) =
∑

i

g(S[i], T [i]).

The main result can be stated as:

Theorem 1. Given a bit vector B of length m and an array A of length n, there
is a data structure that uses mn

f(n) words of space that can answer masked prefix
sum queries in O(f(n)) time, for any function f(n) with 0 < f(n) < n. The
preprocessing time is O(mn

f(n) log f(n)).

Furthermore, for any c > 0, there is a data structure that uses mn
f(n) +

n1+c

c log n

words of space and can answer masked prefix sum queries in O(f(n)
c log n) time. The

preprocessing time is O(mn
f(n) log f(n) + n1+c

c log n).

Proof. We do this by writing down the answer to the queries for each ending
position in A that is a multiple of f(n) and each offset in B, using mn

f(n) words
of space. That is, we create a table D such that

D[i, k] :=
kf(n)∑

j=1

A[j] · B[i + j − 1]

For every query length k not a multiple of f(n), we find the largest multiple of
f(n) and write k = k′f(n) + �, where k′ = �k/f(n)	. We then break the sum
into

k∑

j=1

A[j] · B[i + j − 1] =
k′f(n)∑

j=1

A[j] · B[i + j − 1] +
k∑

j=k′f(n)+1

A[j] · B[i + j − 1]

The first term is D[i, k′], and we compute the second term by computing A[j] ·
B[i + j − 1] one by one, which requires O(f(n)) time. Thus, the query time is
O(f(n)).

To slightly improve the time, we consider all bit masks of length c log n, of
which there are nc such bit masks. For each index that is a multiple of c log n in
A and each possible bit mask M of length c log n, we write down

D′[M, j] :=
c log n−1∑

k=0

A[j + k] · M [k]

and we store these values in the table D′, using n1+c

c log n space.

222 R. Das et al.

This allows us to compute the sum of c log n elements at a time. To see this,
consider the second term in the previous sum

∑k
j=k′f(n)+1 A[j]·B[i+j−1], which

we summed one term at a time. Let h1 = �k′f(n)+1
c log n 	+1 and h2 = � k

c log n	. Then
we have k′f(n) + 1 < h1c log n < (h1 + 1)c log n < · · · < h2c log n ≤ k. Create
the masks Mh1−1 = ..000B[k′f(n) + 1, h1c log n − 1], Mh1 = B[h1c log n, (h1 +
1)c log n − 1], . . . , Mh2 = B[h2c log n, k]000.., where Mh1−1 and Mh2 are padded
with 0s so that their lengths are c log n. We can then write the sum as

k∑

j=k′f(n)+1

A[j] · B[i + j − 1] =
h2∑

i=h1−1

D′[Mi, ic log n]

Thus the time to sum the remainder would be O(f(n)
c log n).

We now show how to build these data structures. Computing all D[i, k] =∑kf(n)+1
j=1 A[j] · B[i+ j − 1], where i ∈ [m − kf(n)], 1 ≤ k ≤ n

f(n) can be done in
O(mn

f(n) log f(n)) time. The computation is done in two phases. First, for every
1 ≤ k ≤ n

f(n) , we consider the subarray A[(k−1)f(n)+1 . . . kf(n)], we call it Ak

for short. In the first stage of the computation, we wish to compute the following
sum, for every 1 ≤ k ≤ n

f(n) , and for every 1 ≤ i ≤ m − f(n) + 1.

f(n)∑

j=1

Ak[j] · B[i + j − 1]

Such sum is called a convolution of Ak and B as one can think of Ak slides
over B. It is well known that performing the generalized fast Fourier transform
(see for example, [8,14]) between each Ak and B computes such convolution. For
short, we refer to such an algorithm as FFT. The FFT computes the masked
sum of each Ak against every f(n)-length submask of B. Each of these FFTs is
done in O(m log f(n)) time. Thus, O(nm

f(n) log f(n)) overall time is required. The
second stage aggregates the sums of the smaller intervals for each offset in B. Let
i be an offset in B. We know 〈B[i . . . i+f(n)−1], A1〉, 〈B[i+f(n) . . . i+2f(n)−
1], A2〉, 〈B[i+2f(n) . . . i+3f(n)−1], A3〉 . . . 〈B[i+n−f(n) . . . i+n−1], A n

f(n)−1〉.
Thus we partially sum the entries, i.e. for array of values P , we compute
Σr

q=1P [q], for each 1 ≤ r ≤ |P | in linear time. The first stage requires
O(nm

f(n) log f(n)) time and the second stage requires O(nm
f(n)) time. The prepro-

cessing times given in the first half of this theorem thus follows.
Finally, as D′ has n1+c

c log n entries and each entry can be computed in O(1)

time, D′ can be constructed in O(n1+c

c log n) time, and we obtain the preprocessing
time in the second half of this theorem. To see this, fix a particular value of j and
compute values for different masks by ascending number of 1s in the mask. Mask
pattern M would then only introduce 1 new term over a previously computed
mask pattern.
�

Finally we note that for m = O(n), we may set f(n) =
√

n log n and c = 1/2
to obtain an O(n3/2/ log n)-word data structure with O(

√
n) query time and

O(n3/2) preprocessing time.

Internal Masked Prefix Sums 223

3.2 A Conditional Lower Bound

We now give a conditional lower bound to show the hardness of this problem.

Theorem 2. Let p(n) and q(n) respectively denote the preprocessing time and
query time of a masked prefix sum data structure constructed over a bit vector
mask of length n and an array of n bits. Then Boolean matrix multiplication
over two

√
n/2 × √

n/2 matrices can be solved in p(n) + nq(n) + O(n) time.

Proof. Let X and Y be two
√

n/2 × √
n/2 Boolean matrices and Z = X × Y .

Let xi,j , yi,j and zi,j denote the elements in row i and column j of matrices X,
Y and Z, respectively. We then construct an array A of n bits and a bit mask
B of length n as follows. A is obtained by storing the bits in X in row-major
order in its first half, i.e., A[(i − 1)

√
n/2 + j] = xi,j for any 1 ≤ i, j ≤ √

n/2,
and storing all 0s in its second half. The first n/2 bits of the mask B are also all
0s. Then we store the content of Y in B[n/2 + 1..n] in column-major order, i.e.,
B[n/2 + (j − 1)

√
n/2 + i] = yi,j for any 1 ≤ i, j ≤ √

n/2.
To compute zi,j for any 1 ≤ i, j ≤ √

n/2, observe that the ith row of X

form the content of A[(i − 1)
√

n/2 + 1..i
√

n/2] while the jth column of Y is
in B[n/2 + (j − 1)

√
n/2 + 1..n/2 + j

√
n/2]. It is then sufficient to answer the

following two masked prefix sum queries: The first query uses (i − 1)
√

n/2 and
n/2+(j−1)

√
n/2−(i−1)

√
n/2 as the mask length and offset of B, respectively,

while the second uses i
√

n/2 and n/2 + (j − 1)
√

n/2 − (i − 1)
√

n/2. Note that
by setting the offset of B to be n/2+(j −1)

√
n/2− (i−1)

√
n/2 in both queries,

we ensure that A[(i − 1)
√

n/2 + 1..i
√

n/2] (storing the ith row of X) is always
masked by B[n/2 + (j − 1)

√
n/2 + 1..n/2 + j

√
n/2] (storing the jth column of

Y). Hence the answer to the second query subtracted by that to the first will
give us the dot product of the ith row of X and the jth column of Y . Then,
zi,j = 0 if this product is 0, and zi,j = 1 otherwise. Hence, we can compute Z
by answering n masked prefix sum queries, and the theorem follows.
�

As the current best algebraic method of multiplying two n×n Boolean matri-
ces has complexity O(nω) with ω < 2.3727 [26], two

√
n/2×√

n/2 matrices can
be multiplied in O(nω/2) time. This implies that, with current knowledge, either
the preprocessing time p(n) must be Ω(nω/2) = Ω(n1.18635), or the query time
q(n) must be Ω(nω/2−1) = Ω(n0.18635). Furthermore, the running time of the
best known combinatorial approach for multiplying two n × n Boolean matrices
is only polylogarithmically faster than cubic [2,6,27]. Hence, by purely combi-
natorial methods with the current best knowledge, either the preprocessing time
p(n) must be Ω(n3/2) or the query time q(n) must be Ω(

√
n), save for polyloga-

rithmic speed-ups. On the other hand, the specific trade-off given in Theorem 1
gives a data structure with O(

√
n) query time and O(n3/2) preprocessing time,

for any m = O(n). Hence, it can be used to multiply two
√

n × √
n Boolean

matrices in O(n3/2) time, matching the time required for the best known com-
binatorial algorithm for Boolean matrix multiplication within polylogarithmic
factors.

224 R. Das et al.

3.3 Dynamic Masked Prefix Sum

In dynamic settings, we support the update to any entry of A or B by assigning
a new value to it. The following theorem presents our result.

Theorem 3. Given a bit vector B of length m and an array A of length n,
there is a data structure that uses O(mn

f(n) + m + n) words of space that can
answer masked prefix sum queries in O(f(n) + g(n)) time and support updates
in O(mn log f(n)

g(n)f(n) +g(n)) time, for any functions f(n) and g(n) with 0 < f(n) < n

and 0 < g(n) < m + n.
Alternatively, for any c > 0, there is a data structure that uses O(mn

f(n) +
n1+c

c log n + m + n) words of space and can answer masked prefix sum queries in

O(f(n)
c log n + g(n)) time and support updates in O(mn log f(n)

g(n)f(n) + n1+c

g(n) + g(n)) time.
If m = O(n), setting f(n) = n2/3 log n, g(n) = n2/3 and c = 1/3 yields an
O(n4/3/ log n)-word data structure with O(n2/3) query and update times.

For the full proof, see Appendix A.

3.4 Approximate Masked Prefix Sum

To achieve faster query time and decrease the space cost, we consider the problem
of building a data structure to answer the masked prefix sum problem approxi-
mately.

Theorem 4. Given a bit vector B of length m and an array A of length n,
there is a data structure that uses O((m log n)/ε) words of space and can answer
(1+ε)-approximate masked prefix sum queries in O(min{log log n,

√
log(log n/ε))

time for any ε ∈ (0, 1].

Proof. We first consider the approximate prefix sum solution on just the integer
vector A. Consider the n prefix sums S[j] =

∑j
k=1 A[k]. We build a mapping P

such that j ∈ P if (1+ ε)i ≤ S[j] < (1+ ε)i+1 for some i and S[j − 1] < (1+ ε)i.
That is, whenever the prefix sum reaches a power of (1 + ε), we write down the
index where the prefix sum reaches it. Furthermore, for these indices, we write
down the actual prefix sum, so that P [j] = S[j]. We may store this mapping in
linear space with a hash table. To answer the approximate query for an index �,
we find the predecessor of � in P and report the prefix sum at the predecessor.

By construction, if the predecessor of � is j and (1 + ε)i ≤ S[j] < (1 + ε)i+1,
then S[�] < (1 + ε)i+1, as otherwise there would be a predecessor of � where the
prefix sum reaches (1 + ε)i+1. Similarly, S[�] ≥ (1 + ε)i. Thus our output gives
a (1 + ε)-approximation to the actual result.

We note that the universe of the integers for the predecessor problem is
U = n, and the number of elements in the set is at most N = log(1+ε) n. Since 0 <
ε ≤ 1, by Taylor series expansion, log(1 + ε) = Θ(ε). Hence, N = O((log n)/ε).
Thus by Lemma 1 the predecessor data structure takes O((log n)/ε)) words of
space. The query time is O(min{log log n,

√
log(log n/ε)).

Internal Masked Prefix Sums 225

We now apply this solution to solve the masked prefix sum problem approxi-
mately, by building the above data structure for each index i of B on the integer
vector Ai defined as Ai[j] = A[j] ·B[i+ j −1] (we mask the integer vector by the
length n bit vector obtained from B starting at index i). This gives a solution
of O((m log n)/ε) words of space.
�

3.5 Parallel Algorithms

We now consider a related problem which is to design a parallel algorithm to
answer all queries of an instance of the masked prefix sum problem in the PRAM
model.

Lemma 2. Let A be the array of numbers of length n and let B be the bit
vector of length m in the masked prefix sum problem. Then there is an optimal
span (parallel running time) and work parallel algorithm that stores explicitly the
answers of all mn queries in O(log n+logm) span and performs Θ(mn) work in
the PRAM model. In the implicit model, the work can be improved to be O(mn

log n).

The proof will appear in the journal version.

4 Data Structures for Sparse Internal Inner Product

In this section, we study the SparseMaskedPrefixInnerProduct problem, in
both static (Sect. 4.1) and dynamic (Sect. 4.2) settings.

4.1 Static Sparse Internal Inner Product

We first present conditional lower bounds for the sparse internal inner product
problem, SparseIIP for short, by giving a reduction from the SetDisjointness
problem, which is defined as follows.

Definition 3 (SetDisjointness Problem). Preprocess a family F of m
sets, all from universe U , with total size n =

⋃
S∈F |S| so that given two query

sets S, S′ ∈ F one can determine if S ∩ S′ = ∅.

The following conjecture addresses the hardness of this problem.

Conjecture 1 (SetDisjointness Conjecture [19]). Any data structure for the
SetDisjointness problem with constant query time must use Ω̃(n2−ε) space,
while any data structure for this same problem that uses O(n) space must have
Ω̃(n1/2−ε) query time, where ε is an arbitrary small positive constant. This
conjecture is true unless the 3SUM conjecture is false. Where Ω̃(f(n)) means
Ω(f(n)

polylog(n)).

Recently, a stronger conjecture was proposed. A matching upper bound exists
for Conjecture 2 by generalizing the ideas from [9,18].

226 R. Das et al.

Conjecture 2 (Strong SetDisjointness Conjecture [12]). Any data structure
for the SetDisjointness problem that answers the query in x time must use
S = Ω̃(n2

x2) space for any x ∈ (0, n].

We now show our reduction from SetDisjointness to SparseIIP to prove
the following conditional lower bound:

Theorem 5. Unless the SetDisjointness Conjecture is false, any data struc-
ture for the SparseMaskedPrefixInnerProduct problem with constant query
time must use Ω̃(n2−ε) space, while any data structure for this same problem
that uses O(n) space must have Ω̃(n1/2−ε) query time, where ε is an arbitrary
small positive constant. Furthermore, unless the Strong SetDisjointness Con-
jecture is false, any data structure for the SparseMaskedPrefixInnerProduct
problem with query time x must use Ω̃(n2

x2) space for any x ∈ (0, n].

Proof. Let U = {1, . . . , u} ⊆ N, where u = |U |. Let F = {S1, . . . , Sm}, such that
n =

⋃
Si∈F |Si|. Each Si ∈ F is a set represented by a sparse bit vector Bi of

size u, where Bi[j] = 1 if and only if j ∈ Si. Let A = B = B1 · B2 · · · Bm, i.e.
the concatenation of all Bi one after another. It is easy to see that A and B
have n ones. We treat them as sparse bit vectors. A and B are the inputs to the
SparseMaskedPrefixInnerProduct.

The query Si ∩ Sj for any i, j ∈ [m] with i < j is done by performing two
prefix sum queries. The first has offset (j − i) · u+1 and length (i − 1) · u, while
the second has offset (j − i) · u+1 and length (i) · u. We subtract the first query
result from the second query result and check if the result is zero or not. The
answer is zero if and only if Si ∩ Sj = ∅.

A and B are represented using the predecessor data structure. Thus, the
reduction takes time linear in the number of ones.
�

We now design a quadratic space data structure with polylogarithmic query
time. Thus it matches the conditional lower bounds proved under the Strong
SetDisjointness Conjecture within a polylogarithmic factor in query time.

Theorem 6. Let A and B be two sparse U -bit vectors, and let n represent the
sum of the number of 1s in A and the number of 1s in B. There is a data
structure that uses O(n2) words of space that can answer a
SparseMaskedPrefixInnerProduct query in O(min{log logU,

√
log n}) time for

any p ∈ [1, n].

Proof. For each position k of B, create the vector Ak as we defined in Sect. 3.4,
with Ak[j] = A[j] · B[j + k]. Since there are at most n 1s in A and at most n
1s in B, the positions of the 1 bits in A can only form at most n2 pairs with
the positions of the 1 bits in B. Therefore, all these bit vectors, A1, A2, · · · , AU

have O(n2) 1 bits in total, where U is the length of A and B. If a bit vector Ak

does not have any 1s, we do not store it at all. Otherwise, we represent Ak using
Lemma 1 to answer predecessor queries, by viewing the position of each 1 bit as
an element of a subset of {1, 2, · · · , U}. We also augment this data structure by

Internal Masked Prefix Sums 227

storing the rank of each element present in the subset, so that, given an index i,
we can compute the number of 1s in Ak[1..i] in O(min{log logU,

√
log n}) time.

Since there are at most n2 1s in all Ak’s, these data structures use O(n2) space
in total. We further build a perfect hash table T of O(n2) space to record which
of these bit vectors have at least a 1, and for each such bit vector, a pointer to
its predecessor data structure.

With these data structures, we can answer a query as follows: Suppose we
need to compute the inner product of the first j bits of A against the j-length sub-
mask of B starting at position k. Then we check whether Ak has at least a 1 bit
using T . If it does not, we return 0. Otherwise, we find the predecessor of j in Ak

and return its rank as the answer, which requires O(min{log logU,
√
log n}) time.

Thus, we have an O(n2)-space data structure with O(min{log logU,
√
log n})

query time.
�

4.2 Dynamic Sparse Internal Inner Product

In this section, we assume that the sparse bit vectors support updates. That is,
we support the operation update(V, i, x) which sets the vector V (which is either
A or B) at position 1 ≤ i ≤ |V | to value x ∈ {0, 1}. We prove conditional lower
bounds and show tight upper bounds up to polylogarithmic factors.

Definition 4 (3SUM [22]). Let A, B, and C three sets of numbers in
[−n3, n3], where |A| + |B| + |C| = n. The goal is to determine whether there
is a triple a ∈ A, b ∈ B, c ∈ C such that a + b = c.

The 3SUM conjecture claims that it is not possible to solve the 3SUM
problem in O(n2−ε) time, for any ε > 0. It is believed that even when relaxing
the range to be [−n2, n2] the problem has the same lower bound. It was shown
that even if one can preprocess A or B (but not both [13,20]) the lower bound
holds [21]. It follows that the lower bound that we will prove holds for the case
in which updates are allowed in only one of the bit vectors.

Lemma 3. Unless the 3SUM conjecture is false, the SparseIIP problem in the
dynamic setting must have at least query or update in Ω(n1−ε) time, for ε > 0.

Proof. We initialize two empty bit vectors A′ and C ′ of length N = 2n3 + 1
corresponding to the range [−n3, n3]. In order to handle negative number, we
begin by setting bits in A′ to 1s at positions a+n3+1, for any a ∈ A. Similarly,
we set C[c + n3 + 1] to 1 for any c ∈ C. For each b ∈ B, we perform an internal
query in the following way. We ask for b as the offset and N − b as the length
of the inner product. If the inner product is not zero then we have a 3SUM
triple. Finding such a triple a + b = c is done by a binary search on the staring
and ending positions of the interval until one triple is left. Note that b is known,
thus, we only need to find the corresponding a and c. Overall the reduction
uses |A| + |C| = O(n) updates with |B| = O(n log n) queries. From the 3SUM
conjecture we have that either query or update uses O(n1−ε) time, for any ε > 0.

�

228 R. Das et al.

Lemma 4. The lower bounds of the dynamic SparseIIP are tight up to poly-
logarithmic factors.

The proof will appear in the journal version.

5 The Connections Between the Problems
and the Internal Measurements

It follows directly from the definition, solving the internal prefix sums also solves
the internal inner product problem. Thus, all the lower bound on the SparseIIP
apply on the sparse internal prefix sum. Moreover, all upper bound algorithms for
the internal prefix sums problem apply on the internal inner product problem. In
this section, we emphasize the connection of these two problems to the internal
measurements. The considered measurements are Hamming distance and Exact
Matching with wildcards.

Definition 5 (InternalHammingDistanceand InternalEMWW).
Let S, T be two strings of lengths n and m, respectively. The problem of Inter-
nalHammingDistance is to preprocess S and T to answer Hamming distance
queries between any equal-length substrings of S and T , where Hamming distance
counts the number of mismatches between the two substrings.

Similarly, the problem of InternalEMWW is to preprocess S and T to
answer exact matching with wildcards queries between any equal-length substrings
of S and T , where the query counts the number of mismatches between the two
substrings. However, mismatches with wildcards are not counted.

Lemma 5. Assume a constant-size alphabet Σ. Then, there is a linear-time
reductions from the InternalHammingDistance to the internal inner prod-
uct problem, and vice versa. Moreover, there is a linear-time reductions from
the InternalEMWW problem to the internal inner product problem, and vice
versa.

For the full proof, see Appendix B.

A Details Omitted from Sect. 3

Proof of Theorem 3. Given a bit vector B of length m and an array A of length
n, there is a data structure that uses O(mn

f(n) + m + n) words of space that can
answer masked prefix sum queries in O(f(n) + g(n)) time and support updates
in O(mn log f(n)

g(n)f(n) +g(n)) time, for any functions f(n) and g(n) with 0 < f(n) < n

and 0 < g(n) < m + n.
Alternatively, for any c > 0, there is a data structure that uses O(mn

f(n) +
n1+c

c log n + m + n) words of space and can answer masked prefix sum queries in

O(f(n)
c log n + g(n)) time and support updates in O(mn log f(n)

g(n)f(n) + n1+c

g(n) + g(n)) time.
If m = O(n), setting f(n) = n2/3 log n, g(n) = n2/3 and c = 1/3 yields an
O(n4/3/ log n)-word data structure with O(n2/3) query and update times.

Internal Masked Prefix Sums 229

Proof. We first present a data structure with amortized bounds on update oper-
ations. The main idea is to rebuild the data structures from Theorem 1 every
g(n) updates. Since Theorem 1 presents multiple trade-offs, in the rest of the
proof, we use s(m,n), p(m,n) and q(n) to represent the space cost, preprocessing
time and query time of the data structures in that theorem. Before a rebuilding
is triggered, we maintain two copies of the array and the bit mask: A and B
store the current content of this array and the bit mask, respectively, while A′

and B′ store their content when the previous rebuilding happened. Thus, the
data structure, D, constructed in the previous rebuilding, can be used to answer
masked prefix sum queries over A′ and B′. For the updates arrived after the pre-
vious rebuilding, we maintain two lists: a list LA that stores a sorted list of the
indexes of the entries of A that have been updated since the previous rebuilding,
and a list LB that stores a sorted list of the indexes of the entries of B that have
been updated since the previous rebuilding. Since the length of either list is at
most g(n) < m + n, all the data structures occupy O(s(m,n) + m + n) words.

We then answer a masked prefix sum query as follows. Let k and i be the
parameters of the query, i.e., we aim at computing

∑k
j=1 A[j] · B[i + j − 1]. We

first perform such a query using D in q(n) time and get what the answer would
be if there had been no updates since the last rebuilding. Since both LA and LB

are sorted, we can walk through them to compute the indexes of the elements
of A that have either been updated since the last rebuilding, or it is mapped by
the query to a bit in B that has been updated since the last rebuilding. This
uses O(g(n)) time. Then, for each such index d, we consult A, A′, B and B′

to compute how much the update, to either A[d] or B[d + i − 1], affects the
answer to the query compared to the answer given by D. This again requires
O(g(n)) time over all these indexes. This entire process then answers a query in
O(q(n) + g(n)) time.

For each update, it requires O(1) time to keep A and B up-to-date. It also
requires an update to the sorted list LA or LB , which can be done in O(g(n))
time. Finally, since the rebuilding requires O(p(m,n)) time and it is done every
g(n) updates, the amortized cost of each update is then O(p(m,n)/g(n)+g(n)).

The bounds in this theorem thus follows from the specific bounds on s(m,n),
p(m,n) and q(n) in Theorem 1.

Finally, to deamortize using the global rebuilding approach, instead of
rebuilding this data structure entirely during the update operation that trig-
gers the rebuilding, we rebuild it over the next g(n) updates. This requires us to
create two additional lists L′

A and L′
B : Each time a rebuilding starts, we rename

LA and LB to L′
A and L′

B , and create new empty lists LA and LB to maintain
indexes of the updates that arrive after the rebuilding starts. To answer a query,
we cannot use the data structure that is currently being rebuilt since it is not
complete, but we use the previous version of it and consult LA, LB , L′

A and
L′

B to compute the answer using ideas similar to those described in previous
paragraphs.
�

230 R. Das et al.

B Details Omitted from Sect. 5

Proof of Lemma 5. Assume a constant-size alphabet Σ. Then, there is a linear-
time reductions from the InternalHammingDistance to the internal inner
product problem, and vice versa. Moreover, there is a linear-time reductions
from the InternalEMWW problem to the internal inner product problem,
and vice versa.

Proof. The reduction from the InternalHammingDistance to the
internal inner product. For each letter σ ∈ Σ, we change S and T to be bit
vectors: σ in T become 1 and Σ \ {σ} become 0, while in S, σ become 0 and
Σ\{σ} become 1. That is, the Hamming distance query sums a constant number
of internal inner products in order to answer the query.
The reduction from the internal inner product problem to the Inter-
nalHammingDistance. Assume we have two bit vectors A and B. Every 1
in A is transferred to 001, and 0 to 010, while in B, each 1 is transferred to 001,
and 0 to 100. Let S and T be the transformed strings from A and B, respec-
tively. It is easy to see that only 1 against 1 in A against B causes 0 mismatches
between the corresponding substrings of S and T and any of the other 3 com-
binations results in 2 mismatches. Where corresponding substrings means that
the starting and ending positions of the substrings are chosen to fit the origi-
nal query, i.e. by multiplying the query indices by 3. Note that this reduction
transfers the internal inner product to the InternalEMWW, as well.
The reduction from the InternalEMWW problem to the internal
inner product. In a similar way, the inner product solves the exact matching
with wildcards problem. We repeat the same process as described previously for
Hamming distance but this time, wildcards are always transferred to 0 in both
S and T . It is easy to see that when the sum over all the inner products is 0,
there is an exact match with wildcards.

�

References

1. Andersson, A.: Faster deterministic sorting and searching in linear space. In 37th
Annual Symposium on Foundations of Computer Science, FOCS 1996, Burlington,
Vermont, USA, 14–16 October 1996, pp. 135–141. IEEE Computer Society (1996)

2. Bansal, N., Williams, R.: Regularity lemmas and combinatorial algorithms. Theory
Comput. 8(1), 69–94 (2012)

3. Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem and related
problems. J. Comput. Syst. Sci. 65(1), 38–72 (2002)

4. Bille, P., et al.: Dynamic relative compression, dynamic partial sums, and substring
concatenation. Algorithmica 80(11), 3207–3224 (2017). https://doi.org/10.1007/
s00453-017-0380-7

5. Blelloch Guy, E.: Prefix sums and their applications. In: Synthesis of Parallel Algo-
rithms, vol. 1, pp. 35–60. M. Kaufmann (1993)

6. Chan, T.M.: Speeding up the four Russians algorithm by about one more logarith-
mic factor. In: SODA, pp. 212–217 (2015)

https://doi.org/10.1007/s00453-017-0380-7
https://doi.org/10.1007/s00453-017-0380-7

Internal Masked Prefix Sums 231

7. Clifford, R., Grønlund, A., Larsen, K.G., Starikovskaya, T.: Upper and lower
bounds for dynamic data structures on strings. In: Niedermeier, R., Vallée, B.
(eds.) 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018,
28 February–3 March 2018, Caen, France, vol. 96, pp. 22:1–22:14. LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2018)

8. Clifford, R., Iliopoulos, C.S.: Approximate string matching for music analysis. Soft.
Comput. 8(9), 597–603 (2004). https://doi.org/10.1007/s00500-004-0384-5

9. Cohen, H., Porat, E.: Fast set intersection and two-patterns matching. Theor.
Comput. Sci. 411(40–42), 3795–3800 (2010)

10. Dhulipala, L., Blelloch, G.E., Shun, J.: Theoretically efficient parallel graph algo-
rithms can be fast and scalable. ACM Trans. Parallel Comput. 8(1), 1–70 (2021)

11. Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci. 47(3), 424–436 (1993)

12. Goldstein, I., Lewenstein, M., Porat, E.: On the hardness of set disjointness and set
intersection with bounded universe. In: Lu, P., Zhang, G. (eds.) 30th International
Symposium on Algorithms and Computation (ISAAC 2019), 8–11 December 2019,
Shanghai University of Finance and Economics, Shanghai, China, vol. 149, pp.
7:1–7:22. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

13. Golovnev, A., Guo, S., Horel, T., Park, S., Vaikuntanathan, V.: Data structures
meet cryptography: 3SUM with preprocessing. In: Makarychev, K., Makarychev,
Y., Tulsiani, M., Kamath, G., Chuzhoy, J. (eds.) Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL,
USA, 22–26 June 2020, pp. 294–307. ACM (2020)

14. Kalai, A.: Efficient pattern-matching with don’t cares. In: Eppstein, D. (ed.) Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 6–8 January 2002, San Francisco, CA, USA, pp. 655–656. ACM/SIAM
(2002)

15. Keller, O., Kopelowitz, T., Feibish, S.L., Lewenstein, M.: Generalized substring
compression. Theor. Comput. Sci. 525, 42–54 (2014)

16. Kociumaka, T.: Efficient data structures for internal queries in texts. PhD Thesis.
University of Warsaw (2019)

17. Kociumaka, T., Radoszewski, J., Rytter, W., Walen, T.: Internal pattern matching
queries in a text and applications. In: Indyk, P. (ed.) Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, 4–6 January 2015, pp. 532–551. SIAM (2015)

18. Kopelowitz, T., Pettie, S., Porat, E.: Dynamic set intersection. In: Dehne, F., Sack,
J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 470–481. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21840-3_39

19. Kopelowitz, T., Pettie, S., Porat, E.: Higher lower bounds from the 3SUM conjec-
ture. In: Krauthgamer, R. (ed.) Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, 10–12
January 2016, pp. 1272–1287. SIAM (2016)

20. Kopelowitz, T., Porat, E.: The strong 3SUM-INDEXING conjecture is false. arXiv
preprint arXiv:1907.11206 (2019)

21. Green Larsen, K.: Personal communication
22. Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: Schul-

man, L.J. (ed.) Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5–8 June 2010, pp. 603–610. ACM
(2010)

https://doi.org/10.1007/s00500-004-0384-5
https://doi.org/10.1007/978-3-319-21840-3_39
http://arxiv.org/abs/1907.11206

232 R. Das et al.

23. Patrascu, M., Demaine, E.D.: Tight bounds for the partial-sums problem. In: Ian
Munro, J. (ed.) Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, 11–14 January
2004, pp. 20–29. SIAM (2004)

24. Pibiri, G.E., Venturini, R.: Practical trade-offs for the prefix-sum problem. Softw.
Pract. Exp. 51(5), 921–949 (2021)

25. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space θ(N).
Inf. Process. Lett. 17(2), 81–84 (1983)

26. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In:
STOC, pp. 887–898 (2012)

27. Huacheng, Yu.: An improved combinatorial algorithm for Boolean matrix multi-
plication. Inf. Comput. 261, 240–247 (2018)

Compressed String Dictionaries via
Data-Aware Subtrie Compaction

Antonio Boffa(B) , Paolo Ferragina , Francesco Tosoni ,
and Giorgio Vinciguerra

Department of Computer Science, University of Pisa, Pisa, Italy
{antonio.boffa,francesco.tosoni}@phd.unipi.it,

paolo.ferragina@unipi.it, giorgio.vinciguerra@di.unipi.it

Abstract. String dictionaries are a core component of a plethora of
applications, so it is not surprising that they have been widely and deeply
investigated in the literature since the introduction of tries in the ’60s.

We introduce a new approach to trie compression, called COmpressed
COllapsed Trie (CoCo-trie), that hinges upon a data-aware optimisation
scheme that selects the best subtries to collapse based on a pool of suc-
cinct encoding schemes in order to minimise the overall space occupancy.
CoCo-trie supports not only the classic lookup query but also the more
sophisticated rank operation, formulated over a sorted set of strings.

We corroborate our theoretical achievements with a large set of experi-
ments over datasets originating from a variety of sources, e.g., URLs, DNA
sequences, and databases. We show that our CoCo-trie provides improved
space-time trade-offs on all those datasets when compared against well-
established and highly-engineered trie-based string dictionaries.

Keywords: String dictionaries · Tries · Compressed data structures

1 Introduction

Let S be a sorted set of n variable-length strings s1, s2, . . . , sn drawn from an
alphabet Σ = {1, 2 . . . , σ}. The String Dictionary problem consists of storing S
in a compressed format while supporting the rank operation that returns the
number of strings in S lexicographically smaller than or equal to a pattern P [1, p].

Some other classic operations such as lookup(P) (returning a unique stringID
for P if P ∈ S, and −1 otherwise), access(i) (returning the string in S having
stringID i), predecessor(P) (returning the lexicographically largest string in S
smaller than P), prefix range(P) (returning all strings in S that are prefixed
by P), longest prefix match(P) (returning the longest prefix of P which is
shared with one of the strings in S) can be implemented through the rank
operation, possibly using compact auxiliary data structures [19].

String dictionaries constitute a core component of a plethora of applications
such as query auto-completion engines [23,26,29], RDF and key-value stores [36,
50], computational biology tools [5,33], and n-gram language models [27,42], just
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 233–249, 2022.
https://doi.org/10.1007/978-3-031-20643-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_17&domain=pdf
http://orcid.org/0000-0002-8178-135X
http://orcid.org/0000-0003-1353-360X
http://orcid.org/0000-0001-8457-3866
http://orcid.org/0000-0003-0328-7791
https://doi.org/10.1007/978-3-031-20643-6_17

234 A. Boffa et al.

to mention a few. They are typically approached via the trie data structure, which
dates back to the ’60s [31, §6.3]. Since then, researchers have put a lot of effort to
improve the time and space efficiency of the näıve pointer-based implementation.
Some solutions compact paths [19,24,28,37] or subtrees [4,7,10,25,40,45,46], suc-
cinctly encode node fan-outs [9,15,32,34,43,48], apply sophisticated string trans-
formations [20,21] or proper disk-based layouts [8,18,22]. Many recent results aim
at reducing further the space occupancy of tries without impairing their efficient
query time via sophisticated compression techniques (see e.g. [4,6,10,11,14,28,
35,43,45,46,50]). As a result, this plethora of proposals offers different space-time
trade-offs over various datasets, but without a clear winner. Choosing the appro-
priate storage solution is indeed quite a daunting task, requiring specific expertise
and accurate analysis of the input datasets.

In this paper, we tackle this long-standing problem by introducing a fully-new
approach that exploits a principled and data-aware optimisation strategy to col-
lapse and compress subtries. More precisely, we make the following contributions:

• We revisit the subtrie compaction technique by introducing a novel repre-
sentation that encodes a collapsed subtrie via standard integer compressors.
Then, by means of a concrete motivating example, we observe that the effec-
tiveness of this compressed representation depends upon the “shape” of the
collapsed subtrie and its possibly long “edge labels” (Sect. 2).

• In light of this, we propose a new data structure, called CoCo-trie, which
stands for COmpressed and COllapsed trie.1 It orchestrates three main tools:
the above novel representation for collapsed subtries, a pool of succinct encod-
ing schemes to compress the edge labels, and an optimisation procedure that
selects the best subtries to collapse into macro-nodes to minimise the over-
all occupied space while guaranteeing efficient queries due to the shorter trie
traversal and the efficiently-searchable encoding schemes (Sect. 3).

• We corroborate our theoretical results with an experimental evaluation on
several datasets with different characteristics originating from a variety of
sources (e.g. URLs, XML, DNA sequences, and databases) and against
five well-established and highly-engineered competitors (namely, ART [32],
CART [49], ctrie++ [46], FST [50], and PDT [24]). To the best of our knowl-
edge, this is the very first work experimenting with all these implementations
together over a wide variety of datasets. Our results show that CoCo-trie is a
robust and flexible data structure since: in two cases, it significantly improves
the space-time performance of all competitors; in two other cases, it is on the
Pareto frontier of the best approaches (thus offering new competitive space-
time trade-offs); and, in the last case, it is very close to the Pareto frontier
(Sect. 4).

2 A Motivating Example

“Subtrie compaction” is a common technique in the design of compressed string
dictionaries. However, it has been mainly investigated in the restricted context
1 The source code is publicly available at https://github.com/aboffa/CoCo-trie.

https://github.com/aboffa/CoCo-trie

Compressed String Dictionaries via Data-Aware Subtrie Compaction 235

G T

A

A C

C

A C

A

ξ′ ξ

ξ
A B

A = 00 G = 10

C = 01 T = 11

A = 0 . . . 00 ξ′ = 1 . . . 10

C = 0 . . . 01
︸ ︷︷ ︸

b bits

ξ = 1 . . . 11
︸ ︷︷ ︸

b bits

Fig. 1. Two tries A and B built on two sets of four strings each: {AG, AT, CA, CC} on
the left, and {AA, AC, ξξ′, ξξ} on the right. A uses just four alphabet symbols, and B
uses a much larger alphabet in which ξ′ and ξ are the last two symbols.

of either bounding the subtrie height, to fit the branching substring into one
machine word [10,45,46]; or when bounding the macro-node fan-out so that
more space-time efficient data structures can be used for it [7,11,25].

In what follows, we firstly introduce a novel macro-node representation, and
then we provide a concrete example of the impact this technique can have on the
space-time efficiency of the resulting trie representation. Our technique consists
of properly choosing (i) the heights of the subtries to collapse into macro-nodes,
and (ii) the coding mechanisms to represent the corresponding branching sub-
strings (associated with the collapsed edge labels).

Consider the tries A and B of Fig. 1 built respectively on the string sets
S1 = {AG,AT,CA,CC} and S2 = {AA,AC, ξξ′, ξξ}, where ξ denotes the last
symbol in a (potentially large) alphabet Σ, and ξ′ denotes the symbol preceding ξ
in Σ. In A, the alphabet {A,C,G,T} consists of just 4 symbols, so we need 2 bits
to represent them. In B, the alphabet is assumed to be Σ = {A,C, . . . , ξ′, ξ} and
its symbols can be represented with b = �log2 |Σ|� bits.

Let us now consider two scenarios for both of the tries above: one in which the
trie T ∈ {A,B} succinctly encodes the individual branching symbols; the other
one in which the two levels of T are collapsed at the root node, thereby creating a
macro-root T c with branching macro-symbols of length 2 symbols. For evaluating
the space cost of encoding T and T c we consider the following succinct scheme:
for every node in level order, we store the first branching symbol explicitly and
then encode the gap between successive symbols using some coding tool, say
γ-code (see Appendix A for the definition of γ-code and the full calculations). If
we refer, say, to the root of A, its two branching symbols, namely A and C, are
encoded in 3 bits as enc(A) = 00, followed by γ(C − A) = γ(01 − 00) = 1.

The encoding of A takes 9 bits, while if we collapse the two levels of A in the
root of Ac, this root gets four children whose edge labels are {AG,AT,CA,CC},
and their succinct representation takes 7 bits. Hence, the representation of A
takes more space than the one of Ac. Surprisingly, one comes to the opposite
conclusion with B, despite having the same topology of A. Here, the larger
alphabet together with the different distribution of the edge labels changes the
optimal choice. Indeed, the encoding of B takes at most 5b+1 bits, while the one
of Bc takes 6b − 1 bits. Hence, it is better not to collapse B because its succinct
encoding takes b bits less than the one of Bc, and b can make this gap arbitrarily
large.

236 A. Boffa et al.

This example shows there is no a priori best choice about which subtrie to
collapse, thus opening a significant deal of possible improvements to the known
trie representations. In particular, the “best” choice depends upon several fea-
tures, such as the trie structure, the number of distinct branching symbols at
each node and their distribution among the trie edges. Consequently, designing
a principled approach to finding that “best” choice for each trie node is quite a
complex task, that we rigorously investigate throughout the rest of the paper.

3 CoCo-trie: Compressed Collapsed Trie

The simplest and most used approach to collapsing tries is to obtain the trie T�

by collapsing � levels of the subtries rooted at the nodes whose distances from
the root of T are multiple of �. In this way, one can seek for a pattern P [1, p]
over T� by traversing at most p/� (macro-)nodes and edges, that is, p/� branches
over (macro-)characters (e.g., in [10,45,46], � is the number of characters that
fit into a RAM word). Obviously, increasing � reduces the number of branching
steps, but it may increase (i) the computational cost of each individual step,
given that the number and the length of the branching characters increase; and,
(ii) the space occupancy of the overall trie, given that shared paths within the
collapsed subtries are turned into distinct substrings by macro-characters (see
e.g. the paths “e$” and “es” descending from v in Fig. 2, which share “e”).

Our proposal addresses three main questions:

Q1: Can we tackle in a principled algorithmic way the issues (i) and (ii) above
as � increases?

Q2: How does the choice about the number � of levels to collapse depend on the
dictionary of strings?

Q3: Should the choice of � be global, and thus unique to the entire trie, or should
it be local, and thus vary among trie nodes?

These questions admit surprising answers in theory, which have equally-
surprising impacts in practice. In particular, we will:

• answer Q1 affirmatively, by resorting to a pool of succinct encoding schemes
to compress the possibly long edge labels (i.e., branching macro-characters);

• show for Q2 that the choice for � has to account for the topology and edge
labelling of the trie T , and thus the characteristics of its indexed strings;

• show for Q3 that one has to find locally, i.e., node by node, the best value
of �, via a suitably-designed optimisation procedure aimed at minimising the
overall space occupancy.

Our algorithmic answer consists of six main steps. Firstly, we introduce a
novel compressed encoding for the collapsed subtries (Sect. 3.1). Secondly, we
provide an optimisation procedure to choose the subtries to collapse (Sect. 3.2).
Thirdly, we show how to select the best compression scheme for each collapsed
subtrie in a data-aware manner (Sect. 3.3). Fourthly, we present a further com-
pression step that exploits the local alphabet of the edge labels in the collapsed

Compressed String Dictionaries via Data-Aware Subtrie Compaction 237

Fig. 2. Collapsing � = 2 levels of the subtrie rooted at v.

subtrie (Sect. 3.4). Fifthly, we show how to trade space occupancy with query
time (Sect. 3.5). Sixthly, we describe how to implement the rank operation over
the resulting compressed trie structure (Sect. 3.6).

3.1 Compressed Encoding of Collapsed Subtries

Let us be given a trie T whose edges are drawn from an integer alphabet Σ =
{0, . . . , σ − 1} and sorted increasingly at each node. The special character 0
(indicated with $) is the string terminator. We formalise the notion of collapsed
subtries as follows.

Definition 1. Given an internal node v of a trie T and an integer � ≥ 1, the
collapsing of � levels of the subtrie of T rooted at v consists in replacing this
subtrie with a macro-node v� such that (i) the substrings branching out of v�

are the ones corresponding to the paths of length � descending from v in T , and
(ii) the children of v� are the nodes at distance � from v. If branching substrings
are shorter than �, we pad them with the character $.

This is depicted in Fig. 2, where five paths of length � = 2 are collapsed to
form the five branching edges {at, e$, es, is, os} of v�.

To encode a string s branching out of v�, we initially right-pad it with �− |s|
characters $ if |s| < �; then, we assign it the integer

enc�(s) =
�

∑

i=1

s[i] · σ�−i. (1)

Intuitively, we interpret enc�(s) as a branching macro-character of v� drawn
from the integer alphabet Σ� = {0, . . . , σ� − 1}.

Furthermore, we observe that enc� is monotonic, i.e., given two strings s′ and
s′′ such that s′ is lexicographically smaller than s′′, then enc�(s′) < enc�(s′′).

After computing each branching macro-character, we need to define a com-
pression scheme that guarantees efficient access to edge labels, so to support fast
pattern searches over the resulting collapsed trie. Let us assume that a macro-
node v� has m branching macro-characters, indicated with ci

v�
for i = 1, 2, . . . ,m.

238 A. Boffa et al.

We explicitly encode the first macro-character x = c1v�
using a fixed-size repre-

sentation taking log σ� bits,2 and we represent the other m−1 macro-characters
by encoding the sequence ci

v�
− x for i = 2, . . . ,m with Elias-Fano (EF) [16,17],

which takes (m− 1)(2+ log u
m−1) bits, where u = cm

v�
− c1v�

is the universe size of
the sequence. To decompress the EF sequence, we also need to store some small
metadata taking log log u

m ≤ log log σ�

m bits.
One should notice that other integer encoding schemes could be used in place

of EF, and indeed we do so in Sect. 3.3.
Summing up, the space occupancy of the collapsed and compressed macro-

node v� is (excluding EF’s metadata)

C(v�) = log σ� + (m − 1)
(

2 + log
u

m − 1

)

+ 2 bits, (2)

where the first term corresponds to the space for the first macro-character, the
second term accounts for the space to store the (m − 1) EF-coded integers, and
the last 2 bits account for the contribution of the node v� to the space required
by a succinct trie representation (we use LOUDS [39, §8.1]).

We underline that the subtraction of x has a subtle (yet paramount) impact
on the space occupancy of our trie representation. It indeed removes any possible
redundancy given by the longest common prefix (shortly, lcp) among the branch-
ing macro-characters. For instance, if we have � = 2 and the four branching
macro-characters {ha,he,hi,ho}, then our encoding scheme stores x = enc�(ha)
explicitly as the integer h ·σ1 +a ·σ0, and it encodes the following three branch-
ing macro-characters {he,hi,ho} as the difference with x, i.e., it encodes “he”
as enc�(he) = (h · σ1 + e · σ0) − x = (h · σ1 + e · σ0) − (h · σ1 + a · σ0) = e − a.
So our encoding scheme stores the lcp “h” only once in x, thereby getting rid of
much redundancy in the edge labels, and saving a big deal of space, especially
when � gets longer. As a matter of fact, we are reducing the value of the integers
enc�(ci

v�
), which are upper-bounded by σ�, to the values enc�(ci

v�
) − enc�(c1v�

),
which are upper-bounded by σ�−lcp.

3.2 On the Choice of the Subtries to Collapse

We now get down to the details of our algorithm that, given an input trie T ,
identifies which subtries of T to collapse (and for which height � each one), in
order to minimise the space occupancy of the resulting representation.

Our algorithm performs a post-order traversal of T , starting from the root.
Let h(v) denote the height of the subtrie rooted at v (and reaching its descending
leaves in T). For each node v, the algorithm evaluates the cost of encoding the
entire subtrie descending from v by taking into account the space cost C(v�) of
Eq. (2) referring to the subtrie of v limited to height �, plus the optimal space
cost C∗(d) of encoding recursively the entire subtries hanging from the nodes d
descending from v at distance �. We vary � = 1, . . . , h(v), thereby determining the

2 We omit ceilings for the sake of simplicity.

Compressed String Dictionaries via Data-Aware Subtrie Compaction 239

minimum space occupancy C∗(v). Formally, if desc(v, �) is the set of descendants
of v at distance � (recall that � ≤ h(v)), we have

C∗(v) = min
�=1,...,h(v)

{

C(v�) +
∑

d∈desc(v,�)

C∗(d)
}

. (3)

Note that if v is a leaf, we simply set C∗(v) = C(v1) = 2, since a leaf cannot be
collapsed and its cost in the LOUDS representation is 2 bits. Clearly, because of
the post-order visit, the values C∗(d) are available whenever we compute C∗(v).

When the root of T is eventually visited, the topology and the encoding of
all (macro-)nodes of our CoCo-trie have already been fully determined. Thus,
we know which subtries to collapse and for which height �, which may vary from
one subtrie to another. By Eq. (3), the resulting data structure is the space-
optimal one using the selected encoding scheme. The following result, proved in
Appendix B, bounds the space-time efficiency of this approach.

Theorem 1. The CoCo-trie of a given input trie T of height h and N nodes
can be computed in O(Nh) time and O(N) space.

We finally remark that in the above optimisation process we can upper bound
the maximum number � of collapsed levels so that the above time cost becomes
O(N). This is actually the approach we take in our experimental section, where
we bound � for each node v by setting h(v) = w/ log σ in Eq. (3), where w is
the RAM word size in bits (see also Sect. 3.4). This feature may remind similar
mechanisms adopted in ctrie [10,45] and ctrie++ [46], where a subtrie is packed
into a machine word. However, our approach is more powerful because the height
of the subtrie to collapse is not chosen in advance and equal over the whole trie,
but it is adaptively chosen on a single-node basis and in a data-aware manner
according to the subtrie topology and the distribution of its edge labels.

3.3 A Pool of Succinct Encoding Schemes

Thus far, we represented the m − 1 branching macro-characters ci
v�

of a macro-
node v� via the EF-encoding of the increasing integers ci

v�
− x, for i = 2, . . . , m,

where x = c1v�
is the first branching character we stored explicitly. This sequence

of m − 1 macro-characters is drawn from a universe of size u = cm
v�

− c1v�
+ 1.

Depending on m, u and the values of the branching macro-characters, it may be
beneficial in time, in space, or both, to resort to other kinds of encodings.

On the grounds of this observation and inspired by the hybrid integer-
encoding literature [12,30,41,44], we now equip the CoCo-trie optimisation algo-
rithm of the previous section with an assortment of encoding mechanisms so that
the compressed representation of every single node can be chosen in a data-aware
manner. This amounts to redefining the bit cost C(v�) of storing the macro-
node v� so as to consider the cost in bits of other compression schemes besides
EF. Specifically, when evaluating C(v�) during the traversal, whichever compres-
sion scheme gives the minimum bit-representation size for all collapsed subtries
descending from v is selected and returned as the result of C(v�) (see Eq. (3)).

240 A. Boffa et al.

For our experimental study of Sect. 4, we follow [41] and, alongside EF, we
adopt packed encoding (PA), characteristic bitvectors (BV), and dense encod-
ing (DE). PA uses a fixed amount log u of bits for each ci

v�
for a total of

(m − 1) log u bits. BV uses u bits initially set to 0, and then sets to 1 the m − 1
bits corresponding to each ci

v�
. DE comes into use whenever u = m − 1, i.e. for

representing a complete sequence of consecutive macro-characters; in this case,
no additional bits are required. These encoding schemes allow to implement the
predecessor search easily, as needed by the rank of CoCo-trie (see Sect. 3.6).

3.4 Squeezing the Universe of Branching Labels

We now describe an optimisation to further decrease the space requirements for
the macro-characters by means of an alphabet-aware encoding. The idea lies in
replacing the encoding function enc� defined in Eq. (1) with a new one that
depends on the alphabet of the branching macro-characters ci

v�
local to each

macro-node v� rather than on the global alphabet Σ of the whole trie.
Let Σv�

⊆ Σ be the alphabet of symbols occurring in the edge labels of the
collapsed macro-node v�. By changing σ = |Σ| in Eq. (1) with σv�

= |Σv�
|,

we can squeeze the size of the universe of the branching macro-characters of v�

from σ� to σ�
v�

. This, in turn, reduces the magnitude and the distance between
consecutive integers associated with the branching macro-characters and thus
allows a more effective compression. Also, we reduce the first space term of Eq.
(2) to log σ�

v�
.

Clearly, each macro-node v� adopting this optimisation must store a map-
ping between Σ and the local alphabet Σv�

, e.g., via a bitvector B[0, σ − 1]
where B[i] = 1 if symbol i appears in Σv�

. We observe this optimisation requires
modifying C(v�) to account for both the more efficient macro-characters repre-
sentation due to the squeezed universe and the size of the alphabet mapping
(i.e. σ bits).

Overall, the time complexity for building the CoCo-trie becomes O(Nh2)
since we cannot compute u� incrementally as described in the proof of Theorem
1 (in Appendix B); the space complexity instead does not change, as we do not
store the bitmaps B�[1, σ], but we compute them incrementally while visiting
the subtries as in the proof of Theorem 1.

3.5 On the Space-Time Trade-Off

Under some scenarios, it might be of interest to slightly readjust the optimisation
procedure to take into account query performance too, while possibly giving up
the space optimality. To accomplish this space-time trade-off, we rely on the
intuition that collapsing more levels generally improves the query time. As a
matter of fact, the more levels are collapsed, the faster each trie traversal will
be. But, on the other hand, as we collapse more levels, the fan-out of each
macro-node increases and so the time to traverse each individual macro-node
increases as well. However, we experimentally observed that this is not a major
concern, since our compressed encoding of collapsed subtries and our succinct

Compressed String Dictionaries via Data-Aware Subtrie Compaction 241

encoding schemes are in practice extremely efficient to be navigated; thus the
time reduction given by increasing the number of collapsed levels dominates the
increased access time due to the bigger node fan-out.

With this in mind, we modify the algorithm of Sect. 3.2 as follows. At each
visited internal node v, we compute C∗(v) as usual and denote by �∗ the value
of � minimising the right-hand side of Eq. (3). Then, we find the largest value
� ∈ {�∗, �∗ + 1, . . . , h(v)} that allows to represent the collapsed node adding just
a constant factor α ≥ 0 overhead over the optimal space C∗(v). We observe this
new approach has no impact on the construction complexity. We experiment
with it in Sect. 4, where α is expressed as a percentage.

3.6 Trie Operations

The lookup(P) in the CoCo-trie begins from the root macro-node r�, by com-
puting the integer x = enc�(P [1, �])−c1r�

. Then, we seek for x into the increasing
sequence ci

r�
, for i = 2, . . . ,m: if the search fails, we return −1; otherwise, we

obtain an index j of x, and proceed with the recursion in the j-th child of the
macro-node. The compressed and indexed macro-node encoding guarantees the
search for x is very efficient. We iteratively consume multiple characters at once
from the pattern P as we descend the CoCo-trie downwards via LOUDS. When
P is exhausted, we return the unique LOUDS index of the node we reach.

As for rank(P), we switch to the DFUDS encoding for the trie topology as
it allows us to compute the rank of a leaf efficiently, takes the same space of
LOUDS, and is still efficient in navigating the trie downwards [39, §8.3]. At each
macro-node v�, we seek for the largest index j such that cj

v�
≤ x, and we keep

searching recursively into the j-th child of r�. Again, the EF and hybrid schemes
for the cj

v�
s result in fast branching operations. If P is exhausted at an internal

node, the navigation proceeds downwards until the leftmost descendant of that
node. In any case, we eventually reach a leaf node and return its rank.

4 Experiments

We run our experiments on a machine equipped with a 2.30 GHz Intel Xeon
Platinum 8260M CPU and 384 GiB of RAM, running Ubuntu 20.04.3. We com-
pile our codebase using g++11.1 and the C++-20 language standard.

Datasets. We aimed at choosing very diverse datasets in terms of sources (such
as the Web, bioinformatics, and databases) and features (such as the number n
of strings, total number D of characters, alphabet size σ, and average/maximum
length of the lcp between consecutive sorted strings) to depict a broader spec-
trum of the performances of the tested string dictionaries. We preprocess each
dataset to keep, for each string s, the shortest prefix of s that distinguishes it
from all the other strings in the dataset. It is well known that, for any trie-based
structure, the remaining suffixes can be concatenated into a separate array and
efficiently retrieved when needed [39, §8.5.3]. Table 1 shows the datasets and
their characteristics after preprocessing.

242 A. Boffa et al.

Table 1. Datasets characteristics.

Name Description n/106 D/106 Avg lcp Avg length Max length σ

url URLs crawled from the web [13] 40.5 2 713.5 64.1 66.9 1 990 94

xml Rows of an XML dump of dblp [3] 2.9 107.8 34.4 36.5 248 95

protein Different sequences of amino acids [3] 2.9 155.6 36.7 53.3 16 191 26

dna Unique 12-mer from a DNA seq. [3] 13.7 164.5 10.5 11.9 12 15

tpcds-id Customers ids in TPC-DS-3TB [38] 30.0 446.4 13.4 14.8 15 16

State-of-the-art Competitors. We consider as competitors of our CoCo-trie the
following static string dictionaries implementations because they are either the
state of the art or offer efficient approaches to compact trie representations:

CART: a compact version of ART [32] obtained by constructing a plain ART
and converting it to a static version [1,49,50].

PDT: the Centroid Path Decomposed Trie [24]. We experiment with both the
vbyte version that encodes the labels of the edges with vbyte [47], and the
csp version that adds another layer of compression on top of the edge labels.

FST: the Fast Succinct Trie [50]. We use a slightly-modified code [2] that solves
lookup queries rather than range query filtering. We show the full space-time
performance of FST by varying its parameter R as 2i for i = 0, . . . , 10.

Apart from the above static data structures, we also tested ART [32] and
ctrie++ [46] as representative of the dynamic approaches. In our figures we do
not show ctrie++ since its space usage on our datasets is from 2.8 to 6.2× larger
than ART, which in turn uses up to one order of magnitude more space than the
other tested solutions, and since it is faster than ART only on url (by 14%).

We do not experiment with Masstree [34] because [11] shows it uses from
1.8 to 3× more space than ART. We also do not experiment with HOT [11]
because their implementation only supports strings shorter than 256, while our
datasets contain much longer strings. Finally, we do not experiment with the
implementation provided in [14,35] as we were unable to run its codebase in a
fair environment due to some old software dependencies and incompatibilities
with modern compilers.

Query Workloads. Given that our competitors do not implement rank (despite
their design does support it), we decided to measure the performance of lookup.
We can reasonably expect that rank would perform similarly to lookup, because
of the way the former can be derived from the latter in trie-based (rather than
hash-based) data structures, as the ones we experimentally test here.

Given a dataset of n strings, we measure the query time by averaging the
performance of 3 repetitions of a batch of size n, where half of the strings are
taken from the datasets and half are generated randomly. To generate each of
these latter strings, we (i) extract a randomly-chosen string belonging to the
dataset and truncate it to the average lcp of the entire dataset, and (ii) append
a random string whose length matches the average length of the strings in the

Compressed String Dictionaries via Data-Aware Subtrie Compaction 243

1 20 40 60
0

0.05

0.1

0.15

�

Fr
eq
.
m
ac
ro
-n
od

es
v �

url

1 10 20 30
0

0.1

0.2

�

xml

1 20 40 60
0

0.05

0.1

0.15

�

protein

1 2 3 4 5 6 7
0

0.2

0.4

0.6

�

dna

1 3 5 7 9 11
0

0.2
0.4
0.6
0.8
1

�

tpcds-id

Fig. 3. Normalised frequency of macro-nodes collapsing subtries having � levels.

dataset. This way, the queries we generate mimic a fair query workload that
guarantees a balance between existent and not existent queried strings, and for
the latter that the traversal does not stop at the very first steps because of a
mismatch.

Experimental Results. Figure 3 shows our first experimental result: the number of
macro-nodes collapsing a certain amount of levels forms a non-trivial distribution
whose shape differs from dataset to dataset. This provides a clear answer to both
questions Q2 and Q3 in Sect. 3: the number of levels to be collapsed in a subtrie
greatly depends on the strings the trie is built on, and it must be chosen locally.
Therefore, the data-aware approach to subtrie compaction implemented in our
CoCo-trie optimiser is essential to attain the most from these features.

In particular, on url and xml, the CoCo-trie optimiser selects many times
the lowest possible values of � (each horizontal axis ranges from � = 1 to the
largest � over all macro-nodes v�). For protein, instead, the CoCo-trie optimiser
selects high values of � (very often � ≈ 30) so that, in the end, the distribution
resembles a Gaussian one. On dna, CoCo-trie optimiser collapses at most � = 7
levels at a time and selects � = 4 for 67% of the times. The results on tpcds-id
are also of interest for their simplicity: due to the regularity of the dataset, the
CoCo-trie optimiser here creates a macro-node for the root that collapses � = 11
levels, and each of its 4096 children collapses � = 4 levels.

Figure 4 shows the results about the space and time performance of CoCo-trie
and the five competitors.

Firstly, we observe that ART and CART, though fast, are generally very
space-demanding (note the vertical axis is logarithmic). On url they are also
slower due to their large size and the high average lcp among the dictionary
strings, which causes longer trie traversals and thus more cache misses.

FST is dominated in space and time performance by our CoCo-trie (and also
by other data structures) on all the datasets. This is especially evident on url,
xml, and protein. We argue that this is due to the high average lcp of these
datasets that require FST to perform longer trie traversals that proceed one
character at a time (indeed, FST does not compact unary paths).

PDT shows overall a good space-time performance, with the exception of
dna and tpcds-id, for which the average height of the PDT nodes is 6.0 and
8.7, respectively. The average height of the macro-nodes in the CoCo-trie (see
the α = 0% configuration in Fig. 4) is instead 3.5 and 4.0, thus requiring nearly

244 A. Boffa et al.

2 4 6

102.5

103

Sp
ac
e
(M

B
)

url

1 1.2 1.4 1.6 1.8 2

101

102
xml

1 2 3 4

101.6

101.8

102

Time (µs / query)

protein

0.6 0.8 1 1.2 1.4 1.6

101

102

Time (µs / query)

Sp
ac
e
(M

B
)

dna

0.6 0.8 1 1.2 1.4

102

103

Time (µs / query)

tpcds-id

ART
CART
PDT (vbyte)
PDT (csp)
FST at varying R

CoCo-trie α = 0%
CoCo-trie α = 5%
CoCo-trie α = 10%
CoCo-trie α = 15%

Fig. 4. Space-time performance of the lookup query for various tested approaches. Note
that the y-axis is logarithmic and that the ranges of both axes change among the plots.

half accesses to nodes, on average. Indeed, CoCo-trie is 2.3× faster and 3× more
succinct than PDT on dna, and it is 2.6× faster and 2.4× more succinct than
PDT on tpcds-id. This means that, on these two datasets, the approach of
exploiting the small local alphabet at each macro-node is particularly effective.
On the rest of the datasets, CoCo-trie always has some configuration on the
Pareto frontier of PDT, thus offering other competitive space-time trade-offs.

In summary, with respect to the highly-engineered competitors we test on
the diverse five datasets, the CoCo-trie results space-time efficient, robust and
flexible: in fact, it significantly dominates the space-time performance of all com-
petitors on dna and tpcds-id; it is on the Pareto frontier of the best competitors
over url and xml; and, lastly, it is very close to the Pareto frontier for protein.

5 Conclusions and Future Work

We have introduced a new design of compressed string dictionaries that collapses
and succinctly encodes properly-chosen subtries via novel data-aware encoding of
(possibly long) edge labels and a space optimisation procedure. The experimental
results over a variety of the datasets and highly-engineered competitors suggest
that our CoCo-trie does advance the state of the art of string dictionaries.

The novel design scheme on which CoCo-trie hinges, paves the way to further
new approaches for the multicriteria optimisation of trie data structures that
take into account possibly other encoding schemes and different multi-objective
functions (e.g., over time, space, energy usage, etc.).

Compressed String Dictionaries via Data-Aware Subtrie Compaction 245

Acknowledgements. Supported by the Italian MUR PRIN project “Multicriteria
data structures and algorithms” (Prot. 2017WR7SHH), and by the EU H2020 projects
“SoBigData++: European Integrated Infrastructure for Social Mining and Big Data
Analytics” (grant #871042) and “HumanE AI Network” (grant #952026).

A Calculations for the Motivating Example of Sect. 2

We first recall that the γ-code of a positive integer x consists of a number of
0s equal to the number of bits minus one of the binary representation of x,
followed by that binary representation, e.g. γ(6) = 00 110. Thus, γ(x) takes
2	log2 x
 + 1 bits.

The case of trie A. The succinct representation of the edge labels in A takes
3 + 3 + 3 = 9 bits. In fact, the encoding of the edge labels {A,C} of the root is
enc(A) γ(C − A) = 00 γ(1) = 001, then the encoding of the edge labels {G,T}
of the first node at the second level is enc(G) γ(G − T) = 10 γ(1) = 101, and
finally the encoding of the edge labels {A,C} (again) of the second node at the
second level is enc(A) γ(C − A) = 001.

If, instead, we collapse the two levels of A in the root of Ac, this root gets
four children whose edge labels are {AG,AT,CA,CC}, and their succinct rep-
resentation takes 7 bits. In fact, we encode the first branching macro-symbol
enc(AG) = 0010 as it is, followed by the encoding of the other three branching
macro-symbols as: γ(AT − AG) = γ(0011 − 0010) = γ(1) = 1, γ(CA − AT) =
γ(0100 − 0011) = γ(1) = 1, and γ(CC − CA) = γ(0101 − 0100) = γ(1) = 1.

Thus in terms of space cost, A is worse than Ac. This result is even more
evident when accounting for the space cost for the topology, simply because A
has more nodes than Ac. We conclude that, under this setting, it is better to
collapse the trie and keep Ac.

The case of trie B. Surprisingly, one comes to the opposite conclusion with B,
despite having the same topology of A. Here, the larger alphabet together with
the different distribution of the edge labels changes the optimal choice.

The succinct representation of the edge labels in B takes at most 5b + 1 bits.
We can indeed represent the edge labels {A, ξ} of the root with enc(A) γ(|Σ|−1)
which takes at most 3b − 1 bits; the root gets followed by the encoding of the
edge labels {A, ξ} of the first node at the second level, namely enc(A) γ(1) which
takes b+1 bits, and by the encoding of the edge labels {ξ′, ξ} of the second node
at the second level, which is enc(ξ′) γ(1) which takes b + 1 bits.

Conversely, the succinct representation of Bc may take up to 6b−1 bits, since
we encode AA with 2b bits set to 0, followed by γ(AC − AA) = γ(1) = 1, then
by γ(ξξ′ − AC) = γ(01 . . . 101) (which takes 4b − 3 bits, because the γ-encoded
number consists of 2b − 1 bits), and finally by γ(ξξ − ξξ′) = γ(1) = 1.

Hence, differently from the example on A, here it is better not to collapse
B because its succinct encoding takes b − 2 bits less than the one of Bc, and b
can make this gap arbitrarily large, up to the point that the cost of representing
their topology becomes negligible.

246 A. Boffa et al.

B Proof of Theorem 1

Starting from a node v of height h(v), we can compute C(v�) for any � =
1, 2, . . . , h(v) by obtaining incrementally all the optimisation parameters u� and
m� from the already (inductively) known u�−1 and m�−1.

To compute the universe size u� for v� we need to determine the enc�-code of
the leftmost and rightmost length-� strings descending from v, and these can be
computed by extending the respective enc�−1-codes computed at the previous
step with one character, in constant time. This costs overall O(Nh) time because,
for each node, we have to visit the leftmost and rightmost branching strings that
are of length at most h.

To compute m� (i.e. the number of children of the collapsed macro-node v�),
we need to visit once the whole subtrie rooted at v. Knowing m�−1, we add to
it the number of leaves at the �-th level. Performing for every node v a complete
visit of its whole subtrie costs overall O(Nh) time: indeed, each of the N nodes
has at most h different ancestors and thus belongs to at most h different subtries,
thereby getting visited at most h times.

For every node v we maintain just the optimal C∗-cost, thus the required
space amounts to O(N).

References

1. ART and CART implementations. https://github.com/efficient/fast-succinct-trie/
tree/master/third-party/art. Accessed June 2022

2. FST implementation. https://github.com/kampersanda/fast succinct trie. Acces-
sed June 2022

3. Pizza&Chili corpus. http://pizzachili.dcc.uchile.cl/texts.html. Accessed June 2022
4. Acharya, A., Zhu, H., Shen, K.: Adaptive algorithms for cache-efficient trie search.

In: Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999. LNCS, vol. 1619, pp.
300–315. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48518-X 18

5. Apostolico, A., Crochemore, M., Farach-Colton, M., Galil, Z., Muthukrishnan, S.:
40 years of suffix trees. Commun. ACM 59(4), 66–73 (2016). https://doi.org/10.
1145/2810036

6. Arz, J., Fischer, J.: Lempel–Ziv-78 compressed string dictionaries. Algorithmica
80(7), 2012–2047 (2017). https://doi.org/10.1007/s00453-017-0348-7

7. Askitis, N., Sinha, R.: Engineering scalable, cache and space efficient tries for
strings. VLDB J. 19(5), 633–660 (2010). https://doi.org/10.1007/s00778-010-
0183-9

8. Bender, M.A., Farach-Colton, M., Kuszmaul, B.C.: Cache-oblivious String B-trees.
In: Proceedings of the 25th ACM Symposium on Principles of Database Systems
(PODS), pp. 233–242 (2006). https://doi.org/10.1145/1142351.1142385

9. Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and searching strings. In:
Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 360–369 (1997). https://doi.org/10.5555/314161.314321

10. Bille, P., Gørtz, I.L., Skjoldjensen, F.R.: Deterministic indexing for packed strings.
In: Proceedings of the 28th Annual Symposium on Combinatorial Pattern Match-
ing (CPM), vol. 78, pp. 6:1–6:11 (2017). https://doi.org/10.4230/LIPIcs.CPM.
2017.6

https://github.com/efficient/fast-succinct-trie/tree/master/third-party/art
https://github.com/efficient/fast-succinct-trie/tree/master/third-party/art
https://github.com/kampersanda/fast_succinct_trie
http://pizzachili.dcc.uchile.cl/texts.html
https://doi.org/10.1007/3-540-48518-X_18
https://doi.org/10.1145/2810036
https://doi.org/10.1145/2810036
https://doi.org/10.1007/s00453-017-0348-7
https://doi.org/10.1007/s00778-010-0183-9
https://doi.org/10.1007/s00778-010-0183-9
https://doi.org/10.1145/1142351.1142385
https://doi.org/10.5555/314161.314321
https://doi.org/10.4230/LIPIcs.CPM.2017.6
https://doi.org/10.4230/LIPIcs.CPM.2017.6

Compressed String Dictionaries via Data-Aware Subtrie Compaction 247

11. Binna, R., Zangerle, E., Pichl, M., Specht, G., Leis, V.: HOT: a height optimized
trie index for main-memory database systems. In: Proceedings of the ACM Inter-
national Conference on Management of Data (SIGMOD), pp. 521–534 (2018).
https://doi.org/10.1145/3183713.3196896

12. Boffa, A., Ferragina, P., Vinciguerra, G.: A learned approach to design compressed
rank/select data structures. ACM Trans. Algorithms (2022). https://doi.org/10.
1145/3524060

13. Boldi, P., Vigna, S.: The WebGraph framework I: compression techniques. In:
Proceedings of the 13th International World Wide Web Conference (WWW), pp.
595–601 (2004). https://law.di.unimi.it/webdata/it-2004/

14. Brisaboa, N.R., Cerdeira-Pena, A., de Bernardo, G., Navarro, G.: Improved com-
pressed string dictionaries. In: Proceedings of the 28th ACM International Con-
ference on Information and Knowledge Management (CIKM), pp. 29–38 (2019).
https://doi.org/10.1145/3357384.3357972

15. Darragh, J.J., Cleary, J.G., Witten, I.H.: Bonsai: a compact representation of trees.
Softw. Pract. Exp. 23(3), 277–291 (1993). https://doi.org/10.1002/spe.4380230305

16. Elias, P.: Efficient storage and retrieval by content and address of static files. J.
ACM 21(2), 246–260 (1974). https://doi.org/10.1145/321812.321820

17. Fano, R.M.: On the number of bits required to implement an associative memory.
Memo 61. Massachusetts Institute of Technology, Project MAC (1971)

18. Ferragina, P., Grossi, R.: The String B-tree: a new data structure for string search
in external memory and its applications. J. ACM 46(2), 236–280 (1999). https://
doi.org/10.1145/301970.301973

19. Ferragina, P., Grossi, R., Gupta, A., Shah, R., Vitter, J.S.: On searching com-
pressed string collections cache-obliviously. In: Proceedings of the 27th ACM Sym-
posium on Principles of Database Systems (PODS), pp. 181–190 (2008). https://
doi.org/10.1145/1376916.1376943

20. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and index-
ing labeled trees, with applications. J. ACM 57(1), 1–33 (2009). https://doi.org/
10.1145/1613676.1613680

21. Ferragina, P., Venturini, R.: The compressed Permuterm index. ACM Trans. Algo-
rithms 7(1), 1–21 (2010). https://doi.org/10.1145/1868237.1868248

22. Ferragina, P., Venturini, R.: Compressed cache-oblivious String B-tree. ACM
Trans. Algorithms 12(4), 1–17 (2016). https://doi.org/10.1145/2903141

23. Gog, S., Pibiri, G.E., Venturini, R.: Efficient and effective query auto-completion.
In: Proceedings of the 43rd ACM International Conference on Research and Devel-
opment in Information Retrieval (SIGIR), pp. 2271–2280 (2020). https://doi.org/
10.1145/3397271.3401432

24. Grossi, R., Ottaviano, G.: Fast compressed tries through path decompositions.
ACM J. Exp. Algorithmics 19(1), 1 (2014). https://doi.org/10.1145/2656332

25. Heinz, S., Zobel, J., Williams, H.E.: Burst tries: a fast, efficient data structure
for string keys. ACM Trans. Inf. Syst. 20(2), 192–223 (2002). https://doi.org/10.
1145/506309.506312

26. Hsu, B.J.P., Ottaviano, G.: Space-efficient data structures for Top-k completion. In:
Proceedings of the 22nd International Conference on World Wide Web (WWW),
pp. 583–594 (2013). https://doi.org/10.1145/2488388.2488440

27. Huston, S.J., Moffat, A., Croft, W.B.: Efficient indexing of repeated n-grams. In:
Proceedings of the 4th International Conference on Web Search and Web Data
Mining (WSDM), pp. 127–136 (2011). https://doi.org/10.1145/1935826.1935857

https://doi.org/10.1145/3183713.3196896
https://doi.org/10.1145/3524060
https://doi.org/10.1145/3524060
https://law.di.unimi.it/webdata/it-2004/
https://doi.org/10.1145/3357384.3357972
https://doi.org/10.1002/spe.4380230305
https://doi.org/10.1145/321812.321820
https://doi.org/10.1145/301970.301973
https://doi.org/10.1145/301970.301973
https://doi.org/10.1145/1376916.1376943
https://doi.org/10.1145/1376916.1376943
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1868237.1868248
https://doi.org/10.1145/2903141
https://doi.org/10.1145/3397271.3401432
https://doi.org/10.1145/3397271.3401432
https://doi.org/10.1145/2656332
https://doi.org/10.1145/506309.506312
https://doi.org/10.1145/506309.506312
https://doi.org/10.1145/2488388.2488440
https://doi.org/10.1145/1935826.1935857

248 A. Boffa et al.

28. Kanda, S., Köppl, D., Tabei, Y., Morita, K., Fuketa, M.: Dynamic path-
decomposed tries. ACM J. Exp. Algorithmics 25, 1–28 (2020). https://doi.org/
10.1145/3418033

29. Kang, Y.M., Liu, W., Zhou, Y.: QueryBlazer: efficient query autocompletion frame-
work. In: Proceedings of the 14th International Conference on Web Search and
Data Mining (WSDM), pp. 1020–1028 (2021). https://doi.org/10.1145/3437963.
3441725

30. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Hybrid compression of bitvectors for the
FM-index. In: Proceedings of the 24th Data Compression Conference (DCC), pp.
302–311 (2014). https://doi.org/10.1109/DCC.2014.87

31. Knuth, D.E.: The art of computer programming, vol. 3. 2 edn. Addison-Wesley
(1998)

32. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: ARTful indexing
for main-memory databases. In: Proceedings of the 29th IEEE International Con-
ference on Data Engineering (ICDE), pp. 38–49 (2013). https://doi.org/10.1109/
ICDE.2013.6544812

33. Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm
Design. Cambridge University Press, Cambridge (2015)

34. Mao, Y., Kohler, E., Morris, R.T.: Cache craftiness for fast multicore key-value
storage. In: Proceedings of the 7th European Conference on Computer Systems
(EuroSys), pp. 183–196 (2012). https://doi.org/10.1145/2168836.2168855

35. Mart́ınez-Prieto, M.A., Brisaboa, N.R., Cánovas, R., Claude, F., Navarro, G.: Prac-
tical compressed string dictionaries. Inf. Syst. 56, 73–108 (2016). https://doi.org/
10.1016/j.is.2015.08.008

36. Mavlyutov, R., Wylot, M., Cudré-Mauroux, P.: A comparison of data structures to
manage URIs on the web of data. In: Proceedings of the 12th European Semantic
Web Conference (ESWC), pp. 137–151 (2015). https://doi.org/10.1007/978-3-319-
18818-8 9

37. Morrison, D.R.: PATRICIA-practical algorithm to retrieve information coded in
alphanumeric. J. ACM 15(4), 514–534 (1968). https://doi.org/10.1145/321479.
321481

38. Nambiar, R.O., Poess, M.: The making of TPC-DS. In: Proceedings of the 32nd
International Conference on Very Large Data Bases (VLDB), pp. 1049–1058 (2006).
http://www.tpc.org/tpcds/

39. Navarro, G.: Compact Data Structures: A Practical Approach. Cambridge Univer-
sity Press, NY (2016)

40. Nilsson, S., Tikkanen, M.: Implementing a dynamic compressed trie. In: Proceed-
ings of the 2nd International Workshop on Algorithm Engineering (WAE), pp.
25–36 (1998)

41. Ottaviano, G., Venturini, R.: Partitioned Elias-Fano indexes. In: Proceedings of the
37th ACM International Conference on Research and Development in Information
Retrieval (SIGIR), pp. 273–282 (2014). https://doi.org/10.1145/2600428.2609615

42. Pibiri, G.E., Venturini, R.: Efficient data structures for massive n-gram datasets.
In: Proceedings of the 40th ACM International Conference on Research and Devel-
opment in Information Retrieval (SIGIR), pp. 615–624 (2017). https://doi.org/10.
1145/3077136.3080798

43. Poyias, A., Puglisi, S.J., Raman, R.: m-Bonsai: a practical compact dynamic trie.
Int. J. Found. Comput. Sci. 29(8), 1257–1278 (2018). https://doi.org/10.1142/
S0129054118430025

https://doi.org/10.1145/3418033
https://doi.org/10.1145/3418033
https://doi.org/10.1145/3437963.3441725
https://doi.org/10.1145/3437963.3441725
https://doi.org/10.1109/DCC.2014.87
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1145/2168836.2168855
https://doi.org/10.1016/j.is.2015.08.008
https://doi.org/10.1016/j.is.2015.08.008
https://doi.org/10.1007/978-3-319-18818-8_9
https://doi.org/10.1007/978-3-319-18818-8_9
https://doi.org/10.1145/321479.321481
https://doi.org/10.1145/321479.321481
http://www.tpc.org/tpcds/
https://doi.org/10.1145/2600428.2609615
https://doi.org/10.1145/3077136.3080798
https://doi.org/10.1145/3077136.3080798
https://doi.org/10.1142/S0129054118430025
https://doi.org/10.1142/S0129054118430025

Compressed String Dictionaries via Data-Aware Subtrie Compaction 249

44. Silvestri, F., Venturini, R.: VSEncoding: efficient coding and fast decoding of inte-
ger lists via dynamic programming. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management (CIKM), pp. 1219–1228
(2010). https://doi.org/10.1145/1871437.1871592

45. Takagi, T., Inenaga, S., Sadakane, K., Arimura, H.: Packed compact tries: a fast
and efficient data structure for online string processing. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. 100(9), 1785–1793 (2017). https://doi.org/10.
1587/transfun.E100.A.1785

46. Tsuruta, K., et al.: c-Trie++: a dynamic trie tailored for fast prefix searches. In:
Proceedings of the 30th Data Compression Conference (DCC), pp. 243–252 (2020).
https://doi.org/10.1109/DCC47342.2020.00032

47. Williams, H.E., Zobel, J.: Compressing integers for fast file access. Comput. J.
42(3), 193–201 (1999). https://doi.org/10.1093/comjnl/42.3.193

48. Yata, S.: Dictionary compression by nesting prefix/patricia tries. In: Proceedings
of the 17th Meeting of the Association for Natural Language (2011)

49. Zhang, H., Andersen, D.G., Pavlo, A., Kaminsky, M., Ma, L., Shen, R.: Reduc-
ing the storage overhead of main-memory OLTP databases with hybrid indexes.
In: Proceedings of the ACM International Conference on Management of Data
(SIGMOD), pp. 1567–1581 (2016). https://doi.org/10.1145/2882903.2915222

50. Zhang, H., et al.: SuRF: practical range query filtering with fast succinct tries.
In: Proceedings of the ACM International Conference on Management of Data
(SIGMOD), pp. 323–336 (2018). https://doi.org/10.1145/3183713.3196931

https://doi.org/10.1145/1871437.1871592
https://doi.org/10.1587/transfun.E100.A.1785
https://doi.org/10.1587/transfun.E100.A.1785
https://doi.org/10.1109/DCC47342.2020.00032
https://doi.org/10.1093/comjnl/42.3.193
https://doi.org/10.1145/2882903.2915222
https://doi.org/10.1145/3183713.3196931

On Representing the Degree Sequences
of Sublogarithmic-Degree Wheeler Graphs

Travis Gagie(B)

Dalhousie University, Halifax, Canada

travis.gagie@dal.ca

Abstract. We show how to store a searchable partial-sums data struc-
ture with constant query time for a static sequence S of n positive inte-

gers in o
(

logn
(log logn)2

)
, in nHk(S) + o(n) bits for k ∈ o

(
logn

(log logn)2

)
. It

follows that if a Wheeler graph on n vertices has maximum degree in

o
(

logn
(log logn)2

)
, then we can store its in- and out-degree sequences Din and

Dout in nHk(Din)+o(n) and nHk(Dout)+o(n) bits, for k ∈ o
(

logn
(log logn)2

)
,

such that querying them for pattern matching in the graph takes con-
stant time.

1 Introduction

A Wheeler graph [7] is a directed edge-labelled graph whose vertices can be
ordered such that vertices with no in-edges come first; if u has an in-edge labelled
a and v has an in-edge labelled b with a ≺ b then u < v; if edges (u, v) and
(w, x) are both labelled a and u < w then v ≤ x. Wheeler graphs are interesting
because graphs that arise in some important applications are Wheeler—such as
collections of edge-labelled paths and cycles, tries, and de Bruijn graphs—and
if a graph is Wheeler then we can build a small index for it such that, given a
pattern, we can quickly tell which vertices can be reached by paths labelled with
that pattern.

The index for a Wheeler graph consists of four components:

1. a data structure supporting sum queries on the list Dout of the vertices’ out-
degrees, with Dout.sum(i) returning the ith partial sum of the out-degrees (that
is, the sum of the out-degrees of the first i vertices in the Wheeler order);

2. a data structure supporting rank queries on the list L of edge labels sorted
by the edges’ origins, with L.ranka(i) returning the frequency of a among the
first i edge labels;

3. a data structure supporting sum queries on the list C of the edge labels’
frequencies, with C.sum(a) returning the sum of the frequencies of the edge
labels lexicographically strictly less than a;

4. a data structure supporting search queries on the list Din of the vertices’ in-
degrees, with Din.search(j) returning the largest i such that the sum of the
in-degrees of the first i vertices in the Wheeler order is at most j.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 250–256, 2022.
https://doi.org/10.1007/978-3-031-20643-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_18&domain=pdf
https://doi.org/10.1007/978-3-031-20643-6_18

On Representing the Degree Sequences of Sublogarithmic-Degree Wheeler 251

To see how the index works, first notice that, by the definition of a Wheeler
graph, the vertices reachable by paths labelled with a pattern P form a single
interval in the Wheeler order. In particular, all the vertices are reachable by paths
labelled with the empty string. Suppose we have already found the endpoints
VP .start and VP .end of the interval VP in the Wheeler order containing vertices
reachable by paths labelled P , and we want to find the endpoints VP · a.start and
VP · a.end of the interval VP · a in the Wheeler order containing vertices reachable
by paths labelled P · a, where · denotes concatenation.

We use the first data structure to find the endpoints EP, out.start =
Dout.sum(VP · a.start) + 1 and EP, out.end = Dout.sum(VP .end) of the interval
EP, out in L that contains the labels of the out-edges of the vertices in VP . We
then use the second and third data structures to find the endpoints EP · a.start =
L.ranka(EP, out.start− 1) + 1 + C.sum(a) and EP · a.end = L.ranka(EP, out.end) +
C.sum(a) of the interval EP · a in the list of edge labels sorted into lexico-
graphic order with ties broken by origin, that contains the copies of a in EP, out.
Finally, we use the fourth data structure to find the endpoints VP · a.start =
Din.search(EP · a.start) and VP · a.end = Din.search(EP · a.end) of VP · a.

This works because, again by the definition of a Wheeler graph, the list of
edge labels sorted into lexicographic order with ties broken by origin, is also
sorted by the ranks in the Wheeler order of the edges’ destinations. For the sake
of brevity, however, we refer the reader to Gagie et al.’s [7] original paper on
Wheeler graphs for a full proof of correctness, and offer here only the example
in Fig. 1 (modified from [4]), which shows the BOSS [5] representation of a de
Bruijn graph (with the out-edge leaving vertex ACT and labelled $ deleted).

Fig. 1. A Wheeler graph (upper left; [4]); a table with Dout, L and Din (right); C
(lower left); and a degenerate wavelet tree supporting sum on Dout (lower center).

252 T. Gagie

Suppose we have already found the endpoints VC.start = 4 and VC.end = 6 of
the interval VC of vertices reachable by paths labelled C, and we want to find the
endpoints VCG.start = 7 and VCG.end = 8 of the interval VCG of vertices reachable
by paths labelled CG. We compute

Dout.sum(4 − 1) + 1 = 4
Dout.sum(6) = 7

L.rankG(4 − 1) + 1 + C.sum(G) = 7
L.rankG(7) + C.sum(G) = 9

Din.search(7) = 7
Din.search(9) = 8

and correctly conclude VCG = [7, 8] (containing vertices ACG and TCG).
There have been many papers on how to represent L compactly while sup-

porting fast rank queries on it, and representing C compactly while supporting
fast sum queries on it is trivial unless the alphabet of edge labels is unusually
large, so in this paper we focus on how to represent Dout and Din compactly
while supporting fast sum and search queries on them. Specifically, we describe
the first searchable partial-sums data structure for a static sequence S of sublog-
arithmic positive integers, with constant query time and space bounded in terms
of the kth-order empirical entropy Hk(S) of S:

Theorem 1. Let S[1..n] be a static sequence of positive integers. If
maxi{S[i]}, k ∈ o

(
log n

(log log n)2

)
then we can store S in nHk(S) + o(n) bits and

support sum and search queries on it in constant time.

Theorem 1 may be of independent interest and it is easy to apply to support
sum queries on Dout and search queries on Din. To see how we can apply it to
Dout, notice that if D′

out is the sequence obtained from Dout by incrementing
each out-degree, then D′

out contains only positive integers, |D′
out|Hk(D′

out) =
|Dout|Hk(Dout) and Dout.sum(i) = D′

out.sum(i) − i. To see how we can apply
it to Din, notice that all the 0s in Din are at the beginning (by the definition
of a Wheeler graph), so if D′

in is the sequence obtained from Din by deleting its
leading 0s, then D′

in contains only positive integers, |D′
in|Hk(D′

in) ≤ |Din|Hk(Din)
and Din.search(j) = D′

in.search(j) + |Din| − |D′
in|. This gives us our main result:

Theorem 2. Let G be a Wheeler graph on n vertices with maximum degree
Δ. If Δ, k ∈ o

(
log n

(log log n)2

)
then we can store G’s out-degree sequence Dout in

nHk(Dout) + o(n) bits such that it supports sum queries in constant time, and
store G’s in-degree sequence Din in nHk(Din) + o(n) bits such that it supports
search queries in constant time.

On Representing the Degree Sequences of Sublogarithmic-Degree Wheeler 253

2 Intuition

The standard approach, proposed by Mäkinen and Navarro [8], to storing a
compact searchable partial-sums data structure for a static sequence S[1..n] of
positive integers that sum to u, is as a bitvector B in which there are S[1] − 1
copies of 0 before the first 1 and, for i > 1, there are S[i]− 1 copies of 0 between
the (i − 1)st and ith copies of 1. This takes n lg u

n + o(u) bits and supports
S.sum(i) = B.select1(i) and S.search(j) = B.rank1(j) in constant time. If we use
it to store the in- and out-degrees in a BOSS representation of a de Bruijn graph
then we use about lg σ + 2 bits per edge.

There are many other searchable partial-sums data structures (see, e.g., [3,9]
and references therein) but, as far as we know, only a very recent one by
Arroyuelo and Raman [1] achieves a space bound in terms of the empirical
entropy of S and still answers queries in constant time. It takes nH0(S) +
O

(
u(log log u)2

log u

)
bits so, if maxi{S[i]} ∈ o

(
log n

(log log n)2

)
, then u ∈ o

(
n log n

(log log n)2

)

and it takes nH0(S) + o(n) bits. If we apply this instead of Theorem 1 then we
obtain a slightly weaker form of Theorem 2, in which Hk is replaced by H0.

To prove Theorem 1, our starting point is Ferragina and Venturini’s [6] well-
known result about storing a static string in nHk-compressed space while sup-
porting fast random access to it:

Theorem 3 (Ferragina and Venturini). We can store S as a string of n
characters from an alphabet of size σ in

nHk(S) + O

(
n log σ

log n
(k log σ + log log n)

)

bits for k ∈ o
(

log n
log σ

)
such that we can extract any substring of S of length � in

O
(
1 + � log σ

log n

)
time.

Assuming S consists of positive integers with maxi{S[i]} ∈ o
(

log n
(log log n)2

)
, we

have σ ∈ o
(

log n
(log log n)2

)
and the space bound in Theorem 3 is nHk(S)+o(n) bits

for k ∈ o
(

log n
(log log n)2

)
. Notice the extraction time is constant for � ∈ O

(
log n
log σ

)
.

In order to support sum and search on S in constant time, we augment
Ferragina and Venturini’s representation of S with sublinear data structures
similar to those Raman, Raman and Rao [10] used to support rank and select on
their succinct bitvectors. Since these augmentations are fairly standard, we omit
the details of the how we support sum and leave the details of how we support
search to the next section.

Lemma 1. We can add o(n) bits to Ferragina and Venturini’s representation
of S and support sum in constant time.

Lemma 2. We can add o(n) bits to Ferragina and Venturini’s representation
of S and support search in constant time.

254 T. Gagie

Combining Theorem 3 and Lemmas 1 and 2, we immediately obtain Theo-
rem 1. We note that we need σ ∈ o

(
log n

(log log n)2

)
only to prove Lemma 2. In the

full version of this paper we will show how we can store S in nHk(S)+ o(n) bits
of space and support sum queries on it in constant time even when σ is poly-
logarithmic in n, for example—which could be of interest when storing Wheeler
graphs with large maximum out-degree but small maximum in-degree, such as
some tries.

3 Proof of Lemma 2

Proof. We first store search(cσ lg2 n) for each multiple cσ lg2 n of σ lg2 n. Since
sum(n) ≤ σn, this takes a total of

O

(
σn

σ lg2 n
· lg n

)
⊂ o(n)

bits. We then store the difference

search

(
c · lg n

2 lg σ

)
− search

(
σ lg2(n) ·

⌊
c · lg n

2 lg σ

σ lg2 n

⌋)

for each multiple c · lg n
2 lg σ of lg n

2 lg σ and the preceding multiple σ lg2(n) ·
⌊

c· lg n
2 lg σ

σ lg2 n

⌋

of σ lg2 n. Since each of these differences is at most σ lg2 n, this takes a total of

O

(
σn log σ

log n
· log(σ log2 n)

)
⊂ o(n)

bits. Finally, we store a universal table that, for each possible lg n
2 -bit encoding

of a substring of S consisting of lg n
2 lg σ integers (each represented by lg σ bits)

and each value q between 1 and the maximum possible sum σ · lg n
2 lg σ of such

a substring, tells us how many of that substring’s integers we can sum before
exceeding q. This takes

2
lg n
2 +lg(σ· lg n

2 lg σ) lg
(

lg n

2 lg σ

)
∈ o(n)

bits.
To evaluate search(j) in constant time, we first look up search(

σ lg2(n) ·
⌊

j
σ lg2 n

⌋)
and

search

(
lg n

2 lg σ
·
⌊

j
lg n
2 lg σ

⌋)
− search

(
σ lg2(n) ·

⌊
j

σ lg2 n

⌋)
,

On Representing the Degree Sequences of Sublogarithmic-Degree Wheeler 255

which tells us search

(
lg n
2 lg σ ·

⌊
j

lg n
2 lg σ

⌋)
. Since

j − lg n

2 lg σ
·
⌊

j
lg n
2 lg σ

⌋
<

lg n

2 lg σ

and the integers in S are positive,

search(j) − search

(
lg n

2 lg σ
·
⌊

j
lg n
2 lg σ

⌋)
<

lg n

2 lg σ
.

It follows that we can find search(j) by extracting the substring of lg n
2 lg σ ∈

O
(

log n
log σ

)
characters starting at S

[
search

(
lg n
2 lg σ ·

⌊
j

lg n
2 lg σ

⌋)]
and using the uni-

versal table to learn how many of that substring’s integers we can sum before
exceeding

j − sum

(
search

(
lg n

2 lg σ
·
⌊

j
lg n
2 lg σ

⌋)
− 1

)
.

4 Postscript

We have not implemented Theorems 1 or 2 because there are other approaches
that perform poorly in the worst case but are likely unbeatable in practice.
If we store S as a degenerate wavelet tree, then we can implement an S.sum
query with σ rank queries on the wavelet trees bitvectors, together with σ mul-
tiplications and additions: for example, to find Dout.sum(8) for the sequence
Dout = 1, 1, 1, 2, 1, 1, 2, 1, 1, 0, 1 with the degenerate wavelet tree shown in Fig. 1,
we compute

1 · B1.rank0(8) + 2 · B2.rank0(8 − B1.rank0(8)) = 1 · 6 + 2 · 2 = 10 .

In practice σ is usually a small constant—often 4—and if the bitvectors in the
wavelet tree are entropy-compressed, then it takes nH0(S)+o(n log σ) bits. If we
store a minimal monotone perfect hash function [2] mapping each value S.sum(i)
to i, together with a small sample of those pairs, then we should also be able
to support S.search queries by computing a few hash values and S.sum queries,
quickly and in small space in practice. We leave the details for the full version
of this paper.

Acknowledgments. Many thanks to Jarno Alanko for bringing the topic of this paper
to our attention, to Rossano Venturini for pointing out Arroyuelo and Raman’s result,
and to Meng He, Gonzalo Navarro and Srinivasa Rao Satti for helpful discussions.

256 T. Gagie

References

1. Arroyuelo, D., Raman, R.: Adaptive succinctness. Algorithmica 84, 694–718 (2022)
2. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Theory and practice of monotone

minimal perfect hashing. ACM J. Exp. Algorithmics 16, 1–26 (2011)
3. Bille, P., Gørtz, I.L., Skjoldjensen, F.R.: Partial sums on the ultra-wide word RAM.

Theor. Comput. Sci. 905, 99–105 (2022)
4. Boucher, C., Bowe, A., Gagie, T., Puglisi, S.J., Sadakane, K.: Variable-order de

Bruijn graphs. In: Proceedings of the Data Compression Conference (DCC), pp.
383–392 (2015)

5. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de Bruijn graphs. In:
Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225–235. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33122-0 18

6. Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy
bounds. Theoret. Comput. Sci. 372, 115–121 (2007)

7. Gagie, T., Manzini, G., Sirén, J.: Wheeler graphs: a framework for BWT-based
data structures. Theoret. Comput. Sci. 698, 67–78 (2017)

8. Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theoret. Com-
put. Sci. 387, 332–347 (2007)

9. Pibiri, G.E., Venturini, R.: Practical trade-offs for the prefix-sum problem. Softw.
Pract. Exp. 51, 921–949 (2021)

10. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms
3, 43 (2007)

https://doi.org/10.1007/978-3-642-33122-0_18

Engineering Compact Data Structures
for Rank and Select Queries on Bit

Vectors

Florian Kurpicz(B)

Karlsruhe Institute of Technology, Karlsruhe, Germany

kurpicz@kit.edu

Abstract. Bit vectors are fundamental building blocks of succinct data
structures used in compressed text indices, e.g., in the form of the wavelet
trees. Here, two types of queries are of interest: rank and select queries.
In practice, the smallest (uncompressed) rank and select data structure
cs-poppy has a space overhead of ≈ 3.51 % [Zhou et al. SEA 2013] [26].
Using the same overhead, we present a data structure that can answer
queries up to 8 % (rank) and 16.5 % (select) faster compared with cs-
poppy.

Keywords: Rank and select · Bit vectors · SIMD · Succinct data
structures

1 Introduction and Related Work

Given a bit vector B of length n and α ∈ {0, 1}, rank and select are defined as:

rank: given i ∈ [0, n), rank returns the number of ones (or zeros) in B[0, i], i.e.,

B.rankα(i) = |{j ∈ [0, i] : B[j] = α}|
select: given a rank i, select returns the leftmost position where the bit vector

contains a one (or zero) with rank i, i.e.,

B.selectα(i) = min{j ∈ [0, n) : B.rankα(j) = i}
Bit vectors are building blocks of many important compact and succinct data

structures like wavelet trees [10] that have applications in many compressed full-
text indices (e.g., the FM-index [10] and r-index [11]; we point to the following
surveys [6,9,17,18] for more information on wavelet trees), succinct graph rep-
resentations (e.g., LOUDS [14]), and can also be used as a representation of
monotonic sequences of integers (e.g., Elias-Fano coding [7,8]) that supports
predecessor queries. It should be noted that all of the applications mentioned
above require rank and/or select queries on bit vectors.

Given a length-n bit vector, it is known how to solve rank and select queries
in constant time using only n + o(n) bits of space [5,14]. Here, the bit vector
c© The Author(s) 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 257–272, 2022.
https://doi.org/10.1007/978-3-031-20643-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_19&domain=pdf
http://orcid.org/0000-0002-2379-9455
https://doi.org/10.1007/978-3-031-20643-6_19

258 F. Kurpicz

occupies n bits. The rank and select data structures require only o(n) additional
bits. There also exist more precise results, when considering a length-n bit vector
containing k ones, focusing on applications where the number of ones is small.
Currently, the best known result requires lg

(
n
k

)
+ n

(lg n/t)t + Õ(n3/4) bits of space
and can answer rank and select queries in O(t) time [23] (by no explicitly storing
the bit vector).

Related Work. In this paper, we focus on practical space-efficient uncompressed
rank and select data structures that can handle bit vectors of arbitrary size.
Prominent implementations can be found in the popular succinct data struc-
ture library (SDSL) [12]. Furthermore, there exist highly tuned select-only data
structures by Vigna [25], which currently can answer select queries the fastest
while being reasonably space-efficient. The currently most space-efficient rank
and select data structure by Zhou et al. [26] requires only 3.51 % additional
space. There exists more work on practical space-efficient rank and select data
structures for bit vectors that require more space, answer queries slower, and/or
can handle only bit vectors up to size 232, e.g., [13,15,19], which we, therefore,
do not consider in this paper. There also exists work on compressed rank and
select data structures, e.g., [1–3,24] and on rank and select data structures for
mutable bit vectors, e.g., [21,22].

2 Preliminaries

Due to the simplicity of the problem, the notations in this paper are rather
simple. We have a bit vector of length n, where we can access each bit in constant
time. In the following descriptions, we make use of the notion of blocks. Here, a
block is an interval within the bit vector that covers the bits within the interval.
Given (a part of) a bit vector, the population count or popcount is the number
of ones within (the part of) the bit vector. Popcount instructions are supported
by most modern CPUs for up to 64 bit words. Since their first introduction,
rank and select data structures that require sub-linear additional space and can
answer rank and/or select queries in constant time have similar structures. In
this section, we briefly describe the commonly used designs for rank and select
data structures.

Almost all practical rank data structures follow the same layout. First, the bit
vector is partitioned into consecutive basic blocks, which are the smallest unit for
which any information is collected in an index. The rank of bits within a basic
block is determined directly on the bit vector. Then, there exists a hierarchy
of different (overlaying) blocks of different sizes. For each type of block, there
exists an index that stores information about the number of ones. The scope in
which the number of ones is considered can differ, e.g., the number of ones in the
block or the number of ones up to the beginning of the block from the beginning
of either the bit vector or another overlaying block. See Fig. 1 for an example.
Queries are then answered using the information provided by the blocks and the
popcount of the basic block up to the position. Depending on the sizes of the

Engineering Rank and Select Queries on Bit Vectors 259

blocks, the pertinent information in the indices can be accessed very efficiently.
It should be noted, that it suffices to store information about the number of ones
in each block, as rank0(i) = i − rank1(i).

Unlike rank data structures, select data structures come in two flavors: rank -
based and position-based. Rank-based select data structures utilize a rank data
structure that is enhanced by a small index containing sample positions for every
k-th one (or zero). To answer a query, we first determine the closest block using
the sampled positions. Then, we have to look at blocks until we have found the
basic block that contains the correct bit with the requested rank. The position in
the basic block can then easily be computed. While fast in practice (see Sect. 4),
this type of select data structure usually cannot guarantee a constant query time.

Position-based select data structures on the other hand only store sample
positions. Usually, they differentiate between different block sizes and densities,
e.g., for very sparse blocks, the answer of every select query can be stored directly.
One advantage of position-based select data structures is a constant worst-case
query time can be achieved, e.g., [25]. However, there is also a disadvantage of
position-based select data structures. Unlike when answering rank queries, we
cannot use a select1 query to answer a select0 query. The significant difference
between rank- and position-based select data structures is that we can easily
use the information in a rank-based data structure to answer both select0 and
select1 queries. We can simply transform the number of ones (or zeros) up to a
position to the number of zeros (or ones) up to that position.1 The same is not
possible with position-based select data structures.

3 Space Efficient Rank and Select Data Structures

First, in Sect. 3.1, we describe the design of a space efficient rank and select data
structure by Zhou et al. [26] named cs-poppy that makes use of fast popcount
instructions. In Sect. 3.2, we present our main result—a significantly faster rank
and select data structure—that requires the same space as cs-poppy and makes
use of SIMD. Finally, in Sect. 3.3, we present a new and relatively simple rank
data structure that provides better rank query times (in practice) by combining
some techniques from our main result with a slightly higher space usage.

3.1 CS-Poppy: Rank-Based Rank and Select Data Structure

We describe the rank and select data structure cs-poppy top-down, starting
with the largest blocks. For an overview, see Fig. 1. First, the bit vector is split
up into consecutive L0-blocks of size 232 bits. For each L0-block we store the
number of ones occurring in the bit vector before the L0-block in an L0-index.
To accommodate bit vectors of arbitrary size, each entry in the L0-index requires
64 bits. Note that the indices for the different block types are just plain arrays
where the entry of the i-th block is stored at the i-th array entry. Given a position

1 The sampled positions described above have to be stored for ones and zeros.

260 F. Kurpicz

Fig. 1. L0-index and interleaved L1- and L2-index of cs-poppy. Arrows indicate that
the popcount of the basic block is stored. Wasted bits are marked by red crosses. (Color
figure online)

in the bit vector, we can identify all blocks that cover the position by dividing
it by the block size (in bits). Next, each L0-block is split up into consecutive
L1-blocks of size 2048 bits. This time, we are interested in the number of ones
occurring in the L0-block before the L1-block. For each L1-block, we store this
information in the L1-index. Since the number of ones in an L0-block can be at
most 232, each entry in the L1-index requires only 32 bits. Finally, each L1-block
is split up into four L2-blocks of size 512, i.e., the basic blocks of cs-poppy. We
store the number of ones in the L2-blocks for the first three L2-blocks in each
L1-block in the L2-index. The number of ones in each L1-block’s last L2-block
is not stored, as it does not provide any information that cannot be computed
using the L1-index. (We can look at the number of one-bits occurring before
the next L1-block and subtract the number of one-bits seen before the fourth
L2-block.) A L2-index entry has to encode a number in [0, 512] and thus requires
10 bits.

One important technique used by the authors of cs-poppy is the interleaved
L1- and L2-index. Here, for each L1-block and the corresponding L2-blocks, a
64-bit word is used to store the entry of the L1- and L2-index. Since the L1-index
contains 32-bit words and the L2-index contains 10-bit entries (of which three
are pertinent to the L1-block), everything fits into 64 bits. While this approach
wastes two bits for each L2-block (0.09 % additional space), it reduces the number
of cache misses, as the required part of the L2-index should be loaded whenever
the L1-index is accessed. Zhou et al. [26] introduced more practical improvements
that can speed up answering rank and select queries using cs-poppy. We refer to
their paper for a detailed description.

Answering Rank Queries. Now, we want to answer a rank query for position
i. To this end, we first have to identify the L0- and L1-block the position is
covered by. We obtain both blocks by dividing i with the bit size of an L0-
and L1-block respectively. The corresponding entries in the L0- and L1-index
contain the number of bits occurring from the beginning of the bit vector to
the beginning of the L0-block and from the beginning of the L0-block to the
beginning of the L1-block. This is the first part of the result. Next, we have to
determine the number of ones within the L1-block up to the position. To this

Engineering Rank and Select Queries on Bit Vectors 261

Fig. 2. L0-index and interleaved L1- and L2-index of flat-popcount. Boxes indicate
that the number of ones in the L1-block up to this point is stored in the L2-index.

end, we scan the entries of the L2-index pertinent to the L1-block until we have
reached the L2-block that covers position i. We add entries of the L2-index we
have scanned to the result. Finally, we have to determine the number of ones
in the final L2-block directly on the bit vector. This can be done using fast
popcount instructions. Overall, rank queries can be answered in constant time
using cs-poppy.

Answering Select Queries. To answer a select query for a rank i, we first identify
the L0-block where the first position with rank i can occur. This can be done by
scanning the L0-index until we see an entry greater or equal to i. The position
has to be in the L0-block belonging to the previous entry in the L0-index. Now,
we have to scan the L1-index, until we have identified the L1-block that contains
the searched position. To speed up select queries, the position of every 8 192-th
one is sampled. We can use these samples to skip some parts of the L1-index.
When we have identified the correct L1-block, we continue scanning the L2-index
until we find the L2-block that contains the position we are looking for. During
each step, we subtract the number of ones in the L0-, L1-, and L2-entries from
the rank i, because otherwise, we could not identify the block containing the
result in the L1- and L2-index, resp. Finally, we have to identify the position
within the L2-block and return it. The search in the L2-block has been further
optimized by using SIMD by Pandey et al. [20]. Note that this query algorithm
requires linear time in the worst-case, but is fast in practice, see Sect. 4.

3.2 Flat-Popcount: Storing More Information Wasting No Bits

Now, we present the main result of this paper, a rank and select data structure
that requires the same space as cs-poppy but is faster in practice, see Sect. 4. We
call this data structure flat-popcount. To achieve this, we have to store additional
information about blocks without using any additional space. Here, we make use
of the two bits that cs-poppy wastes for every L1-block.

As mentioned before, we want to store additional information. To be more
precise, we store the number of ones that occur before each L2-block within
each L1-block—similar to the L0- and L1-index—see Fig. 2 for an example. If we
consider cs-poppy, we have to store numbers in [0, 1536], which require 11 bits

262 F. Kurpicz

each. Thus, there is not enough space to do so using only 32 bits. Our solution
to this problem is to double the size of an L1-block. We still have L2-blocks
that cover consecutive 512 bits of the bit vector. Therefore, we now have to
consider eight L2-blocks within one L1-block, i.e., each L1-block covers 4 096
bits (compared with 2 048 bits in cs-poppy).

On the other hand, we now have 128 bits to store any information regarding
the L1- and eight L2-blocks, i.e., two times 64 bits used in cs-poppy. As before,
we do not have to store any information regarding the last L2-block in the L1-
block, as we can compute this information using the information stored for the
next L1-block. We can therefore store the number of ones up to each L2-block
within the L1-block using 12 bits each, as the number of previously set bits is
in [0, 3 584]. This requires 7 · 12 = 84 bits, leaving us with 44 bits for the entry
in the L1-index. Similar to cs-poppy, we interleave the L1- and L2-index within
one 128-bit word, which is supported by almost all modern CPUs. Not only can
we now store more information for each L2-block, we can also increase the size
of the L0-blocks to 244 bits. This allows us to make the L0-index optional, as
it would be required only for bit vectors of size greater than 244 bits, which is
significantly larger than the 232 bits that cs-poppy supports without L0-index
and would require 2 TiB space for the bit vector alone.

The space requirements of both cs-poppy and flat-popcount are nearly the
same. However, there is one big advantage of our approach: in flat-popcount, we
have random access to the L2-index. When using cs-poppy, we have to scan the
entries in the L2-index, as they are delta encoded. Using flat-popcount, we store
the number of ones occurring to the left of the L2-block within the L1-block
directly, as for the L1- and L0-index. This allows us to answer both rank queries
slightly and select queries significantly more efficiently (in practice). We now
take a look at the changes in the query algorithms.

Answering Rank Queries with Flat-Popcount. Answering rank queries
for a position i in this data structure is similar to answering rank queries using
cs-poppy, which we describe in Sect. 3.1. At least for identifying the entries in
the L0- and L1-index. Here, nothing has changed, as we only improved on the
L2-index. As mentioned earlier, the main advantage of our new design is that
we do not have to scan all L2-entries to compute the number of one-bits up
the final L2-block. Thus, we can now determine the number of bits occurring in
the L1-block before the L2-block that contains the position i accessing only one
entry of the L2-index. This entry can be computed the same way we compute
the entries of the L0- and L1-index. In our experiments (see Sect. 4), we can
see that scanning up to three L2-entries and adding up their values contributes
significantly to the running time of a query.

Answering Select Queries with Flat-Popcount. Answering a select query
for a rank i is also very similar to cs-poppy. We still sample the position of every
8 192-th one in the bit vector and use the samples to speed up identifying the
L1-block that contains the first position that has rank i. Thus, the first part of

Engineering Rank and Select Queries on Bit Vectors 263

Fig. 3. Simplified transformation of four packed 12-bit integers to 16-bit integers. Each
block represents 8 bit. The split blocks contain 4 bit of two different entries.

the query algorithm that changes is the identification of the L2-block, where the
first position with rank i occurs. Due to us storing the number of ones occurring
(within the L1-block) before each L2-block, we have a monotonic increasing
sequence of integers, allowing us to search for the L2-block more efficiently.

Finding the Correct L2-Entry using Linear or Binary Search. When we use a
linear search, we scan the L2-index until we have found an entry that contains the
rank that we are looking for. Therefore, answering queries is not much different
than before, when using cs-poppy. However, since we do store the number of
ones before the L2-block, we save some additions (of L2-entries) when answering
queries, which results in a small improvement. Since the number of ones in the
L1-block occurring before each L2-block is a monotonic increasing sequence, we
can also use a binary search on the entries of the L2-index. As we store seven
entries in the L2-index for each L1-block, we can use a uniform binary search
[16, p. 414f], which always requires three iterations to identify the correct block.
Most importantly, we can pre-compute the whole decision tree and reuse entries
of the L2-index. Both of these approaches are rather simple and do not make use
of the fact that all entries of the L2-block that we are interested in are contained
in a single 128-bit word. Modern CPUs are able to compare multiple values
contained in such a word at the same time. However, there are some limitations,
which we describe in the following section.

Finding the Correct L2-Entry Using SIMD. In addition to these more obvi-
ous approaches described above, we can also search for the L2-block using the
streaming SIMD extension (SSE), which allows us to divide a 128-bit computer
word into consecutive blocks and apply operations on each of the blocks at the
same time. One limitation of these instructions is that all blocks must have the
same size and that the sizes of the block must be either 8, 16, 32, or 64 bits.
Our main goal is to use the compare operation mm cmpgt epi16 to compare
all seven entries of the L2-index that are covered by the L1-block at the same
time. Unfortunately, we cannot simply use the compare operation, because we
have to store the L2-entries using only 12 bits and there is no compare operation
working on 12-bit blocks.

264 F. Kurpicz

Therefore, our first objective is to transform the seven entries to use 16 bits
during the comparison. Of course, we cannot simply store the entries using 16
bits each, as this would increase the memory requirements significantly. Instead,
we have to unpack the 12-bit entries into consecutive 16-bit words, see Fig. 3.
To this end, we first consider the entries as 8-bit words. Now, three 8-bit words
contain two 12-bit entries: the first 8-bit word contains the upper part of the
first entry, the second 8-bit word contains the lower part of the first entry and
the upper part of the second entry, and the third 8-bit word contains the lower
part of the second entry. This pattern repeats for all entries.

We now can shift the words that have their upper part in a whole 8-bit word
four bits to the right (mm srli epi16) and mask the lower 12 bit of the other
entries (mm set1 epi16) to obtain 16-bit words containing the entries as results.
Then, we can take one 16-bit word of each result alternately to obtain our final
result, where each 12-bit entry is stored in consecutive 16-bit words. Using this
final result, we can compare (mm cmpgt epi16) with the remaining rank minus
one (because there does not exist a greater-or-equal comparison). As the compare
operation does not return the word, where the first match occurs, we have to
transform the result to the position of the block. The compare operation returns
a word, where the result of the compare operation is marked by all-ones (true)
or all-zeros (false). Therefore, we can take the most significant bit of each 8-bit
word (mm cmpgt epi16) and apply a simple popcount operation on the result,
because we are only interested in the first result where the entry is greater or
equal. Now, we can continue the select query as before.

3.3 Wide-Popcount: Faster Rank

As mentioned before, using 16 bits to store an entry of the L2-index would allow
us to directly use the SIMD instructions on the L2-index without transforming
it first. We do so in our final rank data structure that we call wide-popcount.
Since we now have 16 bits available for each entry in the L2-index, we also have
to make the L1-block bigger, because otherwise, the additional space required
by the index would be too much. Therefore, we do now let each L1-block cover
128 L2-blocks, or 65 536 bits. As before, we are only interested in the first 127
L2-blocks within each L1-block. Thus, each entry in the L2-index is in [0, 65 024]
and can be stored using 16 bits. For the L1-index, we use 64-bit words, because
then we do not need an L0-index. This increases the required space of the data
structure for rank queries to 3.198% additional space. On the other hand, we
have only two levels of indices instead of three. We also do not interleave the L1-
and L2-index, as there is no advantage because not all L2-entries can be loaded
directly into the cache together with the L1-entry, due to their size and number.

Answering rank and select queries works the same as with flat-popcount
(without an L0-index). In Sect. 4, we will see that this approach works very
well for rank queries, but it is not well suited for select queries. This is mostly
because we have to search through a lot of L2-entries during a select query. Even
when speeding up the search using a uniform binary search or SIMD instruc-
tions, answering select queries requires significantly more time than using flat-
popcount.

Engineering Rank and Select Queries on Bit Vectors 265

4 Experimental Evaluation

Our implementations are available at https://github.com/pasta-toolbox/bit
vector as open-source (GPLv3, header-only C++-library). In addition to the
source code of our implementations, we also provide scripts to easily reproduce
all results presented in this paper (https://github.com/pasta-toolbox/bit vector
experiments). Our experiments were conducted on a workstation equipped with
an AMD Ryzen 9 3950X (16 cores with frequencies up to 3.5 GHz, 32 KiB L1d
and L1i cache and 512 MiB L2 cache per core, and 4 times 16 MiB L3 cache) and
64 GiB DDR4 RAM running Ubuntu 20.04.2 LTS. Since our experiments are
sequential, only one core was used at a time. We compiled the code using GCC
10.2 with flags -03, -march=native, and -DNDEBUG and created the makefile
using CMake version 3.22.1.

In our experiments, we use two types of random inputs with different densities
of ones in the bit vector (10 %, 50 %, and 90 % of all bits are ones). For the first
type of input, the ones are uniformly distributed. This type of input should be
the easiest one of the two. The second type of input is an adversarial input
similar to the one used by Vigna [25]. Assume that k % of the bits in the bit
vector should be ones. Then, we set 99% of the ones in the last k % of the bit
vector and the remaining one percent in the first 100 − k % of the bit vector.
Here, the first part of the bit vector is very sparse while the second part of the
bit vector is very dense. Overall, these two types of distribution are the extreme
ends of distributions that can occur. All data structures are tested on the same
bit vectors and the same queries. The reported running times are the average
of three runs (each with a new bit vector and queries). During each run, we
constructed the data structure and then asked 100 million queries of each query
type supported by the data structure. We compare the following rank and select
data structures:

– cs-poppy is the space-efficient rank-based rank and select data structure
described in Sect. 3.1 by Zhou et al. [26],

– cs-poppy-fs is the same as cs-poppy but with the supposedly faster select
algorithm used for the final 64-bit word by Pandey et al. [20],

– simple-selectx is a position-based select data structure by Vigna [25] that
allows for tuning parameter x that determines the size of additional space
the data structure is allowed to allocate,

– simple-selecth is a version of simple-select by Vigna [25] that is highly tuned
for bit vectors that contain the same amount of ones and zeros,

– rank9select is a rank and select data structure by Vigna [25] that stores 9-bit
values to answer rank queries and positions to answer select queries,

– sdsl-mcl Clark’s select data structure [4] contained in the SDSL [12],
– sdsl-v is a simple rank data structure that requires 25 % additional memory

and is contained in the SDSL, and
– sdsl-v5 is a more space-efficient variant of the rank data structure above (only

6.25 % additional space) and also contained in the SDSL

https://github.com/pasta-toolbox/bit_vector
https://github.com/pasta-toolbox/bit_vector
https://github.com/pasta-toolbox/bit_vector_experiments
https://github.com/pasta-toolbox/bit_vector_experiments

266 F. Kurpicz

Table 1. Average additional space in percent used by all evaluated data structures on
bit vectors of different sizes over the uniform and adversarial distribution.

Name n = 1 · 109 2 · 109 4 · 109 8 · 109 16 · 109 32 · 109

cs-poppy 3.32 3.32 3.32

cs-poppy-fs 3.32 3.32 3.32

pasta-poppy 3.58 3.58 3.58 3.58 3.58 3.58

pasta-flatSIMD 3.58 3.58 3.58 3.58 3.58 3.58

pasta-wide 10.16 10.17 10.16 10.16 10.16 10.16

sdsl-v 25.00 25.00 25.00 25.00 25.00 25.00

sdsl-v5 6.25 6.25 6.25 6.25 6.25 6.25

sdsl-mcl 18.51 18.52 18.53 18.54 18.55 18.56

simple-select0 8.72 8.72 8.72 8.72 8.72 8.72

simple-select1 9.88 9.88 9.88 9.88 9.88 9.88

simple-select2 12.21 12.20 12.20 12.20 12.20 12.20

simple-select3 16.85 16.85 16.84 16.84 16.84 16.84

simple-selecth 15.62 15.63 15.63 15.63 15.63 15.63

rank9select 56.25 56.25 56.25 56.25 56.25 56.25

with our implementations that we describe in Sects. 3.1 to 3.3:

– pasta-poppy is our implementation of cs-poppy,
– pasta-flat t is the rank-based rank and select data structure that we describe

in Sect. 3.2 with t ∈ {linear, binary, SIMD}, and
– pasta-wide is the rank-data structure that we describe in Sect. 3.3.

Unfortunately, two competitors cs-poppy [26] and cs-poppy-fs [20] were not able
to compute the select queries on all inputs in a reasonable time (3 h for all queries
on a single bit vector). We were not able to find the error causing this problem,
but want to highlight that all queries asked were feasible queries.

We only include pasta-flatSIMD in the plots as it is overall the fastest variant.
For a comparison of the select query times of the three pasta-flat query versions,
see Fig. 6. The rank query times are identical, as the same data structure and
query algorithm is used. Note that we did not include the rank and select data
structures that have already been shown to be slower (and to require more
additional memory) than the ones included in the experimental evaluation, e.g.,
combined-sampling [19], which is slower than cs-poppy and only works for bit
vectors up to size 232 bits, BitRankF [13], which is slower than simple-select and
also requires more space, and the data structures described by Kim et al. [15].

Space Requirements and Select 0 & Select 1 Queries. First, we discuss the space
requirements of all data structures evaluated in this paper. For an overview,
see Table 1. We measured the additional space by overwriting malloc to see
all allocations on the heap of the different data structures. This is also the

Engineering Rank and Select Queries on Bit Vectors 267

Fig. 4. Average rank query time in nanoseconds on all tested inputs.

reason why it looks like cs-poppy and cs-poppy-fs require less space than pasta-
poppy and pasta-flat, because the former allocates memory on the stack to store
the samples for the select queries (which we did not modify to not change the
results of the running time experiments). This makes our new data structures, cs-
poppy, and cs-poppy-fs the most space-efficient rank and select data structures,
requiring roughly half the space that the smallest rank- and select-only data
structures (sdsl-v5 and simple-select0) require.

Rank Queries. Let us take a look at all data structures that support rank queries.
In Fig. 4, we report the average query time on all tested inputs. Here, we can see
that sdsl-v and sdsl-v5 provide the fastest query times. For large inputs, pasta-
wide has query times similar to sdsl-v and sdsl-v5. All these data structures can
only answer rank queries and require more space than our new data structures
(1.75–6.98 times as much). While rank9select also requires more memory it is
also significantly slower. Both pasta-poppy and pasta-flat have similar query
times and get slower for larger inputs. Nevertheless, they are roughly 8 % faster
than cs-poppy and cs-poppy-fs.

268 F. Kurpicz

Fig. 5. Average select query time in nanoseconds on all tested inputs.

Select Queries. We report select query times in Fig. 5. Here, we can see that sdsl-
mcl, rank9select, and simple-select0 are among the slowest approaches. Depend-
ing on the input, either simple-select1 or simple-select2 is always faster than our
new data structures. All other evaluated select data structures are somewhere
between pasta-flat and simple-select2 when it comes to select query times. This
comes without surprise, simple-select are highly tuned select-only data structures
that also use at least 2.43 times as much memory as pasta-flat. However, pasta-
flatSIMD is 16.5 % faster than cs-poppy and cs-poppy-fs, making it the fastest and
most space-efficient uncompressed rank and select data structure.

5 Conclusion

With pasta-flat, we present a space-efficient rank and select data struc-
ture that is fast in practice. It requires the same space as the pre-
viously most space-efficient rank and select data structure cs-poppy and

Engineering Rank and Select Queries on Bit Vectors 269

is between 8 % (rank) and 16.5 % (select) faster than cs-poppy. While
there exist faster rank- and select-only data structures, they require sig-
nificantly more memory and cannot easily answer both select0 and select1
queries, a necessity for many applications, e.g., wavelet trees [10] or suc-
cinct tree representations [14]. Pasta-flat can answer both (with a slowdown
of up to 1.5 for one of the queries) without requiring additional memory.

Acknowledgements. This project has received funding
from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 882500).

A Additional Experimental Results

A.1 Comparison of Our Implementations Only

For better readability, we only show our fastest select algorithm in the main part
of this paper. Here, in Fig. 6, we compare our implementations with each other.

Fig. 6. Average select query time on all tested inputs of our implementations.

270 F. Kurpicz

A.2 Construction Times

Finally, we want to report the construction times for the different data struc-
tures, see Fig. 7. While the query times of the data structures are definitely more
important, as we usually ask multiple queries but construct the data structure
only once, we discovered that there are huge differences. Overall, pasta-poppy,
pasta-flatSIMD, and pasta-wide are the fastest to construct, followed by the data
structures contained in the SDSL. All other data structures (all variants of
simple-select and cs-poppy) are orders of magnitude slower to construct. The
difference in construction time is so big, that we can answer more than 2 000 000
select queries using pasta-flatSIMD and simple-select2 requires the same amount
of time when we include the construction time.

Fig. 7. Average construction time in seconds over all inputs.

A.3 Answering Both Queries

Note that our implementations are the only ones that can answer select0 and
select1 without requiring twice the memory.2 Since all other select data struc-
tures in this evaluation are position-based, this is also the only data structure
that can do so without increasing the space required by the data structure.
In Table 2, we can see the slowdown of select0 queries compared with select1
queries, when the data structure is optimized for select1 queries. Surprisingly,
the binary search approach has the least slowdown. Here, we have a trade-off:
2 Per design, every rank-based select data structure can do so.

Engineering Rank and Select Queries on Bit Vectors 271

we can either double the required memory to answer both types of select queries
or we can use a data structure that answers one of the queries 1.5 times slower.

Table 2. Slowdown of select0 queries compared with select1 queries, when the ranks of
ones are stored for each block. Note that our implementations also support optimized
select0 queries.

Name Slowdown (uniform) Slowdown (adversarial)

pasta-poppy 1.632 1.559

pasta-flatbinary 1.526 1.402

pasta-flatSIMD 1.817 1.813

pasta-flatlinear 1.651 1.604

References

1. Arroyuelo, D., Weitzman, M.: A hybrid compressed data structure supporting rank
and select on bit sequences. In: SCCC, pp. 1–8. IEEE (2020). https://doi.org/10.
1109/SCCC51225.2020.9281244

2. Beskers, K., Fischer, J.: High-order entropy compressed bit vectors with rank/se-
lect. Algorithms 7(4), 608–620 (2014). https://doi.org/10.3390/a7040608

3. Boffa, A., Ferragina, P., Vinciguerra, G.: A learned approach to design compressed
rank/select data structures. ACM Trans. Algorithms 18(3), 1–28 (2022). https://
doi.org/10.1145/3524060

4. Clark, D.R.: Compact pat trees. Ph.D. thesis, University of Waterloo (1997)
5. Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage (extended

abstract). In: SODA, pp. 383–391. ACM/SIAM (1996)
6. Dinklage, P., Ellert, J., Fischer, J., Kurpicz, F., Löbel, M.: Practical wavelet tree

construction. ACM J. Exp. Algorithmics 26, 1–67 (2021). https://doi.org/10.1145/
3457197

7. Elias, P.: Efficient storage and retrieval by content and address of static files. J.
ACM 21(2), 246–260 (1974). https://doi.org/10.1145/321812.321820

8. Fano, R.M.: On the number of bits required to implement an associative memory
(1971)

9. Ferragina, P., Giancarlo, R., Manzini, G.: The myriad virtues of wavelet trees. Inf.
Comput. 207(8), 849–866 (2009). https://doi.org/10.1016/j.ic.2008.12.010

10. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
FOCS, pp. 390–398. IEEE Computer Society (2000). https://doi.org/10.1109/
SFCS.2000.892127

11. Gagie, T., Navarro, G., Prezza, N.: Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM 67(1), 1–54 (2020). https://doi.
org/10.1145/3375890

12. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326–337. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07959-2 28

13. González, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical implementation
of rank and select queries. In: WEA, pp. 27–38 (2005)

https://doi.org/10.1109/SCCC51225.2020.9281244
https://doi.org/10.1109/SCCC51225.2020.9281244
https://doi.org/10.3390/a7040608
https://doi.org/10.1145/3524060
https://doi.org/10.1145/3524060
https://doi.org/10.1145/3457197
https://doi.org/10.1145/3457197
https://doi.org/10.1145/321812.321820
https://doi.org/10.1016/j.ic.2008.12.010
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1145/3375890
https://doi.org/10.1145/3375890
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-319-07959-2_28

272 F. Kurpicz

14. Jacobson, G.: Space-efficient static trees and graphs. In: FOCS, pp. 549–554. IEEE
Computer Society (1989). https://doi.org/10.1109/SFCS.1989.63533

15. Kim, D.K., Na, J.C., Kim, J.E., Park, K.: Efficient implementation of rank and
select functions for succinct representation. In: Nikoletseas, S.E. (ed.) WEA 2005.
LNCS, vol. 3503, pp. 315–327. Springer, Heidelberg (2005). https://doi.org/10.
1007/11427186 28

16. Knuth, D.E.: The Art of Computer Programming, vol. III, 2nd Edn. Addison-
Wesley (1998)

17. Makris, C.: Wavelet trees: a survey. Comput. Sci. Inf. Syst. 9(2), 585–625 (2012).
https://doi.org/10.2298/CSIS110606004M

18. Navarro, G.: Wavelet trees for all. J. Discrete Algorithms 25, 2–20 (2014). https://
doi.org/10.1016/j.jda.2013.07.004

19. Navarro, G., Providel, E.: Fast, small, simple rank/select on bitmaps. In: Klasing,
R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 295–306. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30850-5 26

20. Pandey, P., Bender, M.A., Johnson, R.: A fast x86 implementation of select. arXiv
preprint arXiv:1706.00990 (2017)

21. Pibiri, G.E., Kanda, S.: Rank/select queries over mutable bitmaps. Inf. Syst. 99,
101756 (2021). https://doi.org/10.1016/j.is.2021.101756

22. Prezza, N.: A framework of dynamic data structures for string processing. In: SEA.
LIPIcs, vol. 75, pp. 11:1–11:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2017). https://doi.org/10.4230/LIPIcs.SEA.2017.11

23. Patrascu, M.: Succincter. In: FOCS, pp. 305–313. IEEE Computer Society (2008).
https://doi.org/10.1109/FOCS.2008.83

24. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms
3(4), 43 (2007). https://doi.org/10.1145/1290672.1290680

25. Vigna, S.: Broadword implementation of rank/select queries. In: McGeoch, C.C.
(ed.) WEA 2008. LNCS, vol. 5038, pp. 154–168. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68552-4 12

26. Zhou, D., Andersen, D.G., Kaminsky, M.: Space-efficient, high-performance rank
and select structures on uncompressed bit sequences. In: Bonifaci, V., Demetrescu,
C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 151–163.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38527-8 15

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1007/11427186_28
https://doi.org/10.1007/11427186_28
https://doi.org/10.2298/CSIS110606004M
https://doi.org/10.1016/j.jda.2013.07.004
https://doi.org/10.1016/j.jda.2013.07.004
https://doi.org/10.1007/978-3-642-30850-5_26
http://arxiv.org/abs/1706.00990
https://doi.org/10.1016/j.is.2021.101756
https://doi.org/10.4230/LIPIcs.SEA.2017.11
https://doi.org/10.1109/FOCS.2008.83
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1007/978-3-540-68552-4_12
https://doi.org/10.1007/978-3-642-38527-8_15
http://creativecommons.org/licenses/by/4.0/

Pattern Matching on Strings, Graphs,
and Trees

Matching Patterns with Variables Under
Edit Distance

Pawe�l Gawrychowski1 , Florin Manea2 , and Stefan Siemer2(B)

1 Faculty of Mathematics and Computer Science,
University of Wroc�law, Wroc�law, Poland

gawry@cs.uni.wroc.pl
2 Computer Science Department and CIDAS, Göttingen University,

Göttingen, Germany
{florin.manea,stefan.siemer}@cs.uni-goettingen.de

Abstract. A pattern α is a string of variables and terminal letters. We
say that α matches a word w, consisting only of terminal letters, if w
can be obtained by replacing the variables of α by terminal words. The
matching problem, i.e., deciding whether a given pattern matches a given
word, was heavily investigated: it is NP-complete in general, but can be
solved efficiently for classes of patterns with restricted structure. If we
are interested in what is the minimum Hamming distance between w
and any word u obtained by replacing the variables of α by terminal
words (so matching under Hamming distance), one can devise efficient
algorithms and matching conditional lower bounds for the class of regular
patterns (in which no variable occurs twice), as well as for classes of
patterns where we allow unbounded repetitions of variables, but restrict
the structure of the pattern, i.e., the way the occurrences of different
variables can be interleaved. Moreover, under Hamming distance, if a
variable occurs more than once and its occurrences can be interleaved
arbitrarily with those of other variables, even if each of these occurs just
once, the matching problem is intractable. In this paper, we consider
the problem of matching patterns with variables under edit distance. We
still obtain efficient algorithms and matching conditional lower bounds
for the class of regular patterns, but show that the problem becomes, in
this case, intractable already for unary patterns, consisting of repeated
occurrences of a single variable interleaved with terminals.

Keywords: Pattern with variables · Matching · Edit distance

1 Introduction

A pattern with variables is a string consisting of constant or terminal letters
from a finite alphabet Σ (e.g., a, b, c), and variables (e.g., x, y, x1, x2) from a
potentially infinite set X , with Σ ∩ X = ∅. In other words, a pattern α is an
element of PATΣ = (X ∪ Σ)+. A pattern α is mapped (by a function h called
substitution) to a word by substituting the variables by arbitrary strings of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 275–289, 2022.
https://doi.org/10.1007/978-3-031-20643-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_20&domain=pdf
http://orcid.org/0000-0002-6993-5440
http://orcid.org/0000-0001-6094-3324
http://orcid.org/0000-0001-7509-8135
https://doi.org/10.1007/978-3-031-20643-6_20

276 P. Gawrychowski et al.

terminal letters; as such, h simply maps the variables occurring in α to words
over Σ. For example, xxbbbyy can be mapped to aaaabbbbb by the substitution
h defined by (x → aa, y → b). In this framework, h(α) denotes the word obtained
by substituting every occurrence of a variable x in α by h(x) and leaving all the
terminals unchanged. If a pattern α can be mapped to a string of terminals w, we
say that α matches w; the problem of deciding whether there exists a substitution
which maps a given pattern α to a given word w is called the (exact) matching
problem.

Exact Matching Problem: Match
Input: A pattern α, with |α| = m, a word w, with |w| = n.
Question: Is there a substitution h with h(α) = w?

Match appears frequently in various areas of theoretical computer science,
such as combinatorics on words (e.g., unavoidable patterns [30], string solving
and the theory of word equations [29]), stringology (e.g., generalized function
matching [1]), language theory (e.g., pattern languages [2], the theory of extended
regular expressions with backreferences [6,17,20,21]), database theory (e.g., the
theory of document spanners [12,18,19,25,38,39]), or algorithmic learning the-
ory (e.g., the theory of descriptive patterns for finite sets of words [2,13,41]).

Match is NP-complete [2], in general. In fact, a detailed analysis [14–
16,35,37,40] of the matching problem has provided a better understanding of
the parameterized complexity of this problem, highlighting, in particular, sev-
eral subclasses of patterns for which the matching problem is polynomial, when
various structural parameters of patterns are bounded by constants. Prominent
examples in this direction are patterns with a bounded number of repeated
variables, patterns with bounded scope coincidence degree [35], patterns with
bounded locality [10], or patterns with a bounded treewidth [35]. See [10,14,35]
for efficient algorithms solving MatchP restricted to (or, in other words, param-
eterized by) to such classes P of patterns. In general, each of the structural
parameters defining such classes P is a number k characterizing in some way
the structure of the patterns of the class P and the matching algorithms for the
respective class of patterns runs in O(nck) for some constant c. Moreover, these
restricted matching problems are usually shown to be W [1]-hard [11] w.r.t. the
respective parameters.

In [22], the study of efficient matching algorithms for patterns with vari-
ables was extended to an approximate setting. More precisely, the problem of
deciding, for a pattern α from a class of patterns P (defined by structural restric-
tions), a word w, and a non-negative integer Δ, whether there exists a substi-
tution h such that the Hamming distance dHAM(h(α), w) between h(α) and w is
at most Δ was investigated. The corresponding minimization problem of com-
puting dHAM(α,w) = min{dHAM(h(α), w) | h is a substitution of the variables of α}
was also considered. The main results of [22] were rectangular time algorithms
and matching conditional lower bounds for the class of regular patterns Reg
(which contain at most one occurrence of any variable). Moreover, polynomial
time algorithms were obtained for unary patterns (also known as one-variable

Matching Patterns with Variables Under Edit Distance 277

patterns, which consist in one or more occurrences of a single variable, poten-
tially interleaved with terminal strings) or non-cross patterns (which consist in
concatenations of unary patterns, whose variables are pairwise distinct). How-
ever, as soon as the patterns may contain multiple variables, whose occurrences
are interleaved, the problems became NP-hard, even if only one of the variables
occurs more than once. As such, unlike the case of exact matching, the approx-
imate matching problem under Hamming distance is NP-hard even if some of
the aforementioned parameters (number of repeated variables, scope coincidence
degree, treewidth, but, interestingly, not locality) were upper bounded by small
constants.

Our Contribution. In this paper, inspired by, e.g., [4,5,7–9,26,32,33] where
various stringology patterns are considered in an approximate setting under edit
distance [27,28], and as a natural extension of the results of [22], we consider
the aforementioned approximate matching problems (parameterized by a class
of patterns P) for the edit distance dED(·, ·), instead of Hamming Distance:

Approximate Matching Decision Problem for MisMatchP

Input: A pattern α ∈ P , with |α| = m, a word w, with |w| = n, an
integer Δ ≤ m.

Question: Is dED(α,w) ≤ Δ?

Approximate Matching Minimisation Problem for MinMisMatchP

Input: A pattern α ∈ P , with |α| = m, a word w, with |w| = n.
Question: Compute dED(α,w).

Our paper presents two main results, which allow us to paint a rather com-
prehensive picture of the approximate matching problem under edit distance.

Firstly, we consider the class of regular patterns, and show that MisMatchReg
and MinMisMatchReg can be solved in O(nΔ) time (where, for MinMisMatch, Δ
is the computed result); a matching conditional lower bound follows from the
literature [3]. This is particularly interesting because the problem of computing
dED(α,w) for α = w0x1w1 . . . xkwk can be seen as the problem of computing the
minimal edit distance between any string in which w1, . . . , wk occur, without
overlaps, in this exact order and the word w.

Secondly, we show that, unlike the case of matching under Hamming distance,
MisMatchP becomes W [1]-hard already for P being the class of unary patterns,
with respect to the number of occurrences of the single variable. So, interest-
ingly, the problem of matching patterns with variables under edit distance is
computationally hard for all the classes (that we are aware of) of structurally
restricted patterns with polynomial exact matching problem, as soon as at least
one variable is allowed to occur an unbounded number of times.

To complement the results presented in this paper, we note that, for the
classes of patterns considered in [10,14,22,35], which admit polynomial-time
exact matching algorithms, one can straightforwardly adapt those algorithms to
work in polynomial time in the case of matching under edit distance, when a con-
stant upper bound k1 on the number of occurrences of each variable exists. The

278 P. Gawrychowski et al.

complexity of these algorithms is usually O(nf(k1,k2)), for a polynomial function
f and for k2 being a constant upper bound for the value of the structural param-
eter considered when defining these classes (locality, scope coincidence degree,
treewidth, etc.). If no restriction is imposed on the structure of the pattern,
Match (and, as such, the matching under both Hamming and edit distances) is
NP-hard even if there are at most two occurrences of each variable [15].

2 Preliminaries

Some basic notations and definitions regarding strings and patterns with vari-
ables were already given in the introduction and, for more details, we also refer
to [22,31]. We only recall here some further notations. The set of all patterns,
over all terminal-alphabets Σ, is denoted PAT =

⋃
Σ PATΣ . Given a word or

pattern γ, we denote by alph(γ) = B the smallest set (w.r.t. inclusion) B ⊆ Σ
and by var(γ) = Y the smallest set Y ⊆ X such that γ ∈ (B ∪ Y)�. For any
symbol t ∈ Σ ∪ X and α ∈ PATΣ , |α|t denotes the total number of occur-
rences of the symbol t in α. For a pattern α = w0x1w1 . . . xkwk, we denote by
term(α) = w0w1 . . . wk the projection of α on the terminal alphabet Σ.

For words u,w ∈ Σ�, the edit distance [27,28] between u and w is defined as
the minimal number dED(u,w) of letter insertions, letter deletions, and letter to
letter substitutions which one has to apply to u to obtain w.

We recall some basic facts about the edit distance. Assume that u is trans-
formed into w by a sequence of edits γ (i.e., u is aligned to w by γ). We can
assume without losing generality that the edits in γ are ordered left to right
with respect to the position of u where they are applied. Then, for each factor-
ization u = u1 . . . uk of u, there exists a factorization w = w1 . . . wk of w such
that wi is obtained from ui when applying the edits of γ which correspond to
the positions of ui, for i ∈ {1, . . . , k}. Note that this factorization of w is not
unique: we assume that the insertions applied at the beginning of u correspond
to positions of u1, the insertions applied at the end of u correspond to positions
of uk, but the insertions applied between ui−1 and ui can be split arbitrarily in
two parts: when considering them in the order in which they occur in γ (so left
to right w.r.t. the positions of u where they are applied) we assume to first have
a (possibly empty) set of insertions which correspond to positions of ui−1 and
then a (possibly empty) set of insertions which correspond to positions of ui.
On the other hand, if w = w1w2, we can uniquely identify the shortest prefix u1

(respectively, the longest prefix u′
1) of u from which, when applying the edits of

γ we obtain the prefix w1 of w.
Now, for a pattern α and a word w, we can define the edit distance

between α and w as dED(α,w) = min{dED(h(α), w) | h is a substitution of the
variables of α}. It is worth noting that dED(α,w) ≤ |w| + |term(α)|.

With these definitions, we can consider the two pattern matching problems
for families of patterns P ⊆ PAT , as already defined in the introduction. In
the first problem MisMatchP , which extends MatchP , we allow for a certain edit
distance Δ between the image h(α) of α under a substitution h and the target

Matching Patterns with Variables Under Edit Distance 279

word w instead of searching for an exact matching. In the second problem,
MinMisMatchP , we are interested in finding the substitution h for which the edit
distance between h(α) and the word w is minimal, over all possible choices of h.

As a remark, based on our general comments regarding the edit distance, the
following theorem follows.

Theorem 1. MisMatchPAT and MinMisMatchPAT can be solved in O(n2k2+k1)
time, where k1 is the maximum number of occurrences of any variable in the
input pattern α and k2 is the total number of occurrences of variables in α.

As mentioned in the Introduction, the result of the previous Theorem can be
improved if we consider the two problems for classes of patterns with restricted
structure, where we obtain algorithms whose complexity depends on the struc-
tural parameter associated to that class, rather than the total number of occur-
rences of variables.

3 Our Results

The first main result of our paper is about the class of regular patterns. A
pattern α over the terminal alphabet Σ is regular if α = w0(Πk

i=1xiwi) where,
for i ∈ {1, . . . , k}, wi ∈ Σ∗ and xi is a variable, and xi 	= xj for all i 	= j. The
class of regular patterns is denoted by Reg. We can show the following theorem.

Theorem 2. MisMatchReg can be solved in O(nΔ) time. For an accepted
instance w,α,Δ of MisMatchReg we also compute dED(α,w) (which is at most
Δ).

Proof. Preliminaries and setting. We begin with an observation. For α =
w0(Πk

i=1xiwi), we can assume w.l.o.g. that wi ∈ Σ+ for all i ≤ k as otherwise
we would have neighboring variables that could be replaced by a single vari-
able; thus, k ≤ |term(α)|. To avoid some corner cases, we can assume w.l.o.g.
that α and w start with the same terminal symbol (this can be achieved by
adding a fresh letter $ in front of both α and w). While not fundamental, these
simplifications make the exposure of the following algorithm easier to follow.

Before starting the presentation of the algorithm, we note that a solution for
MisMatchReg with distance Δ = 0 is a solution to MatchReg and can be solved in
O(n) by a greedy approach (as shown, for instance, in [14]). Further, the spe-
cial case x1w1x2 can be solved by an algorithm due to Landau and Vishkin [26]
in O(nΔ) time. In the following, we are going to achieve the same complexity
for the general case of MisMatchReg by extending the ideas of this algorithm to
accommodate the existence of an unbounded number of pairwise-distinct vari-
ables.

One important idea which we use in the context of computing the edit dis-
tance between an arbitrary regular pattern and a word is to interpret each
regular variable as an arbitrary amount of “free” insertions on that position,
where “free” means that they will not be counted as part of the actual dis-
tance (in other words, they do not increase this distance). Indeed, we can see

280 P. Gawrychowski et al.

that the factor which substitutes a variable should always be equal to the factor
to which it is aligned (after all the edits are performed) from the target word,
hence does not add anything to the overall distance (and, therefore, it is “free”).
As such, this factor can be seen as being obtained via an arbitrary amount of
letter insertions. Now, using this observation, it is easier to design an O(nm)-
time algorithm which computes the edit distance between the terminal words
β = term(α) (instead of the pattern α) and w with the additional property that,
for the positions Fg = |(Πg

i=0wi)| for 0 ≤ g ≤ k − 1, we have that the insertions
done between positions β[Fg] and β[Fg + 1] when editing β to obtain w do not
count towards the total edit distance between β and w. For simplicity, we denote
the set {Fg|0 ≤ g ≤ k − 1} by F , we set Fk = +∞, and note that |β| = m − k
(so |β| ∈ Θ(m)).

The description of our algorithm is done in two phases. We first explain how
MisMatchReg can be solved by dynamic programming in O(nm) time. Then, we
refine this approach to an algorithm which fulfills the statement of the theorem.

When presenting our algorithms, we refer to an alignment of prefixes β[1 : j]
of β and w[1 :] of w, which simply means editing β[1 : j] to obtain w[1 :].

First phase: a classical dynamic programming solution. We define the
(|β| + 1) × (n + 1) matrix D[·][·], where D[j][] is the edit distance between the
prefixes β[1 : j], with 0 ≤ j ≤ |β|, and w[1 :], with 0 ≤ 	 ≤ n, with the
additional important property that the insertions done between positions β[Fg]
and β[Fg + 1], for Fg ≤ j, are not counted in this distance (they correspond
to variables in the pattern α). As soon as this matrix is computed, we can
retrieve the edit distance between α and w from the element D[m−k][n]. Clearly,
now the instance (α,w,Δ) of MisMatchReg is answered positively if and only if
D[m − k][n] ≤ Δ. So, let us focus on an algorithm computing this matrix.

The elements of the matrix D[·][·] can be computed by dynamic programming
in O(mn) time (see full version [23]). Moreover, by tracing back the computation
of D[m − k][n], we obtain a path consisting in elements of the matrix, leading
from D[0][0] to D[m− k][n], which encodes the edits needed to transform β into
w. An edge between D[j − 1][] and D[j][] corresponds to the deletion of β[j];
and edge between D[j −1][−1] and D[j][] corresponds to a substitution of β[j]
by w[], or to the case where β[j] and w[] are left unchanged, and will be aligned
in the end. Moreover, an edge between D[j][− 1] and D[j][] corresponds to an
insertion of w[] after position j in β; this can be a free insertion too (and part
of the image of a variable of α), but only when j ∈ F . This concludes the first
phase of our proof.

Second phase: a succinct representation and more efficient computa-
tion of the dynamic programming table. In the second phase of our proof,
we will focus on how to solve MisMatchReg more efficiently. The idea is to avoid
computing all the elements of the matrix D[·][·], and compute, instead, only the
relevant elements of this matrix, following the ideas of the algorithm by Lan-
dau and Vishkin [26]. The main difference between the setting of that algorithm
(which can be directly used to compute the edit distance between two terminal
words or between a word w and a pattern α of the form xuy, xu, or uy, where

Matching Patterns with Variables Under Edit Distance 281

x and y are variables and u is a terminal word) and ours is that, in our case,
the diagonals of the matrix D[·][·] are not non-decreasing (when traversed in
increasing order of the rows intersected by the respective diagonal), as we now
also have free insertions which may occur at various positions in β (not only at
the beginning and end). This is a significant complication, which we will address
next.

The main idea of the optimization done in this second phase is that we
could actually compute and represent the matrix D[·][·] more succinctly, by only
computing and keeping track of at most Δ relevant elements on each diagonal of
this matrix, where relevant means that we cannot explicitly rule out the existence
of a path leading from D[0][0] to D[m − k][n] which goes through that element.

For the clarity of exposure, we recall that the diagonal d of the matrix D[·][·]
is defined as the array of elements D[j][] where 	 − j = d (ordered in increasing
order w.r.t. the first component j), where −|β| + 1 ≤ d ≤ n. Very importantly,
for a diagonal d, we have that if D[j][j +d] ≤ D[j +1][j +1+d] then D[j +1][j +
1 + d] − D[j][j + d] ≤ 1; however, it might also be the case that D[j][j + d] >
D[j + 1][j + 1 + d], when D[j + 1][j + 1 + d] is obtained from D[j + 1][j + d] by
a free insertion.

Analysis of the diagonals, definition of Md[δ] and its usage. Now, for
each diagonal d, with −|β| + 1 ≤ d ≤ n, and δ ≤ Δ, we define Md[δ] = max{j |
D[j][j +d] = δ, and D[j′][j′ +d] > δ for all j′ > j} (by convention, Md[δ] = −∞,
if {j | D[j][j + d] = δ, and D[j′][j′ + d] > δ for all j′ > j} = ∅). That is, Md[δ]
is the greatest row where we find the value δ on the diagonal d and, moreover,
all the elements appearing on greater rows on that diagonal are strictly greater
than δ (or Md[δ] = −∞ if such a row does not exist).

Note that if a value δ appears on diagonal d and there exists some j′ such
that D[j][j + d] ≥ δ for all j ≥ j′, then, due to the only relations which may
occur between two consecutive elements of d, we have that Md[δ] 	= −∞. In
particular, if a value δ appears on diagonal d then Md[δ] 	= −∞ if and only if
D[|β|][|β| + d] ≥ δ. Consequently, if there exists k > 0 such that Md[δ − k] = |β|
then Md[δ] = −∞.

In general, all values Md[δ] which are equal to −∞ are not relevant to our
computation. To understand which other values Md[δ] are not relevant for our
algorithm, we note that if there exist some k > 0 and s ≥ 0 such that Md+s[δ −
k] = |β| then it is not needed to compute Md−g[δ + h], for any g, h ≥ 0, at all,
as any path going from D[0][0] to D[|β|][n], which corresponds to an optimal
sequence of edits, does not go through D[Md−g[δ + h]][Md[δ + h] + d]. If s = 0,
then it is already clear that Md[δ] = −∞, and we do not need to compute it.
If s ≥ 1, it is enough to show our claim for h = 0 and g = 0. Indeed, assume
that the optimal sequence of edits transforming β into w corresponds to a path
from D[0][0] to D[|β|][n] going through D[Md[δ]][Md[δ] + d]. By the fact that
Md[δ] is the largest j for which D[j][j +d] ≤ δ, we get that this path would have
to intersect, after going through D[Md[δ]][Md[δ] + d], the path from D[0][0] to
D[Md+s[δ−k]][Md+s[δ−k]+d+s] = D[|β|][|β|+d+s] (which goes only through
elements ≤ δ − k). As k > 0, this is a contradiction, as the path from D[0][0]

282 P. Gawrychowski et al.

to D[|β|][n] going through D[Md[δ]][Md[δ] + d] goes only through elements ≥ δ
after going through D[Md[δ]][Md[δ] + d]. So, Md[δ] is not relevant if there exist
k > 0 and s > 0 such that Md+s[δ − k] = m.

Once all relevant values Md[δ] are computed, for d diagonal and δ ≤ Δ, we
simply have to check if Mn−|β|[δ] = |β| (i.e., D[|β|][n] = δ) for some δ ≤ Δ.
So, we can focus, from now on, on how to compute the relevant elements Md[δ]
efficiently. In particular, all these elements are not equal to −∞.

Towards an algorithm: understanding the relations between elements
on consecutive diagonals. Let us now understand under which conditions
D[j][] = δ holds, as this is useful to compute Md[δ]. In general, this means that
there exists a path leading from D[0][0] to D[j][] consisting only in elements
with value ≤ δ, and which ends with a series of edges belonging to the diagonal
d = 	 − j, that correspond to substitutions or to letters being left unchanged.
In particular, if all the edges connecting D[j′][j′ + d] and D[j][] on this path
correspond to unchanged letters, then β[j′ : j] is a common prefix of β[j′ :
|β|] and w[j′ + d : n]. Looking more into details, there are several cases when
D[j][] = δ.

If j /∈ F and β[j] 	= w[], then D[j − 1][− 1] ≥ δ − 1 and D[j − 1][] ≥ δ − 1
and D[j][−1] ≥ δ−1 and at least one of the previous inequalities is an equality
(i.e., one of the following must hold: D[j][− 1] = δ − 1 or D[j − 1][− 1] = δ − 1
or D[j − 1][] = δ − 1). If j /∈ F and β[j] = w[], then D[j − 1][− 1] ≥ δ and
D[j − 1][] ≥ δ − 1 and D[j][− 1] ≥ δ − 1 and at least one of the previous
inequalities is an equality.

If j ∈ F and β[j] 	= w[], then D[j − 1][− 1] ≥ δ − 1 and D[j − 1][] ≥ δ − 1
and D[j][− 1] ≥ δ and at least one of the previous inequalities is an equality.
If j ∈ F and β[j] = w[] then D[j − 1][− 1] ≥ δ and D[j − 1][] ≥ δ − 1 and
D[j][− 1] ≥ δ and at least one of the previous inequalities is an equality.

Moving forward, assume now that Md[δ] = j 	= −∞. This means that
D[j][] = δ, and D[j′′][j′′ + d] > δ for all j′′ > j. By the observations above,
there exists j′ ≤ j such that D[j′][j′ + d] = δ and the longest common prefix of
β[j′ : |β|] and w[j′ + d : n] has length j − j′ + 1, i.e., it equals β[j′ : j]. The last
part of this statement means that once we have aligned β[1 : j′] to w[1 : j′ + d],
we can extend this alignment to an alignment of β[1 : j] to w[1 : j +d] by simply
leaving the symbols of β[j′ + 1 : j] unchanged.

Let us see now what this means for the elements of diagonals d, d + 1, and
d − 1.

Firstly, we consider the diagonal d. Here we have that j′ ≥ Md[δ − 1] + 1.
Note that if δ − 1 appears on diagonal d then Md[δ − 1] 	= −∞.

Secondly, we consider the diagonal d+1. Here, for all rows 	 with j′ ≤ 	 ≤ j,
we have that D[− 1][+ d] ≥ δ − 1 and D[j′′ − 1][j′′ + d] > δ − 1, for all
j′′ with |β| ≥ j′′ > j. Therefore, if δ − 1 appears on diagonal d + 1, either
D[m][m + d + 1] ≤ d − 1 or Md+1[δ − 1] 	= −∞ and Md[δ − 1] + 1 ≤ j.

Finally, we consider the diagonal d − 1. Here, for all rows 	 with j′ ≤ 	 ≤ j,
we have that D[][+ d − 1] ≥ δ − 1 and D[j′′][j′′ + d − 1] ≥ δ, for all j′′ with
m ≥ j′′ > j. Thus, either all elements on the diagonal d − 1 are ≥ δ, or δ − 1

Matching Patterns with Variables Under Edit Distance 283

occurs on diagonal d − 1 and Md−1[δ − 1] 	= −∞. In the second case, when
Md−1[δ − 1] 	= −∞, we have that j ≥ Md−1[δ − 1] as, otherwise, we would have
that D[Md−1[δ − 1]][Md−1[δ − 1] + d] ≤ δ and Md−1[δ − 1] > j, a contradiction.

Still on diagonal d − 1, if δ occurs on it, then Md[δ] 	= −∞ holds. So, for
g ≤ k − 1 with Fg ≤ Md−1[δ] < Fg+1, we have that Fg ≤ Md[δ]. Indeed,
otherwise we would have two possibilities. If the path connecting D[0][0] to
D[Md−1[δ]][Md−1[δ]+d−1] via elements ≤ d intersects row Fg on D[Fg][Fg +d′]
for some d′ ≤ d, then D[Fg][Fg + d] ≤ D[Fg][Fg + d′] ≤ δ and Fg > j, a
contradiction. If the path connecting D[0][0] to D[Md−1[δ]][Md−1[δ] + d − 1]
via elements ≤ d intersects row Fg on D[Fg][Fg + d′] for some d′ > d, then
the respective path will also intersect diagonal d on a row > j before reaching
Md−1[δ], a contradiction with the fact that j is the last row on diagonal d where
we have an element ≤ δ.

So, for Md[δ] to be relevant, we must have D[|β|][|β| + d + 1] ≥ δ (so there
exists no k > 0 such that Md+1[δ − k] = |β|). In this case, if Md[δ] = j, then
the following holds. The path (via elements ≤ d) from D[0][0] to D[j][j + d]
goes through an element D[g][g + d′] = δ − 1. If the last such element on the
respective path is on diagonal d, then it must be Md[δ − 1]. If it is on diagonal
d − 1, then either g = Md−1[δ − 1] (and then the path moves on diagonal d
via an edge corresponding to an insertion) or g < Md−1[δ − 1] (and then the
path moves on diagonal d via an edge corresponding to an insertion); in this
second case, we could replace the considered path by a path connecting D[0][0]
to D[Md−1[δ−1]][Md−1[δ−1]+d−1] (via elements ≤ δ−1), which then moves on
diagonal d via an edge corresponding to an insertion, and continues along that
diagonal (with edges corresponding to letters left unchanged). If D[g][g+d′] is on
diagonal d+1 (i.e., d′ = d+1) then, just like in the previous case, we can simply
consider the path connecting D[0][0] to D[Md+1[δ − 1]][Md+1[δ − 1]+ d + 1] (via
elements ≤ δ − 1), which then moves on diagonal d via an edge corresponding
to a deletion, and then continues along diagonal d (with edges corresponding to
letters left unchanged). If D[g][g + d′] is on none of the diagonals d − 1, d, d + 1
then we reach diagonal d by edges corresponding to free insertions from some
diagonal d′′ < d. The respective path also intersects diagonal d−1 (when coming
from d′′ to d by free insertions), so diagonal d − 1 contains δ and Md−1[δ] 	= ∞,
and we might simply consider as path between D[0][0] and D[j][j + d] the path
reaching diagonal d − 1 on position D[Fg][Fg + d − 1] (via elements ≤ δ), where
Fg ≤ Md−1[δ] < Fg+1, which then moves on diagonal d by an edge corresponding
to a free insertion, and then continues along d (with edges corresponding to
letters left unchanged, as Fg is greater or equal to the row where the initial path
intersected diagonal d). This analysis covers all possible cases.

Computing Md[δ]. Therefore, if Md[δ] is relevant (and, as such, Md[δ] 	= −∞),
then Md[δ] can be computed as follows. Let g be such that Fg ≤ Md−1[δ] < Fg+1

(and g = −1 and Fg = −∞ if Md−1[δ] = −∞). Let H = max{Md−1[δ −
1], Fg,Md[δ−1]+1,Md+1[δ−1]+1} (as explained, in the case we are discussing,
at least one of these values is not −∞). Then we have that j ≥ H and the longest
common prefix of β[H +1 : |β|] and w[H +d+1 : n] is exactly β[H +1 : j] (or we

284 P. Gawrychowski et al.

could increase j). So, to compute j = Md[δ], we compute H and then we compute
the longest common prefix β[H + 1 : j] of β[H + 1 : |β|] and w[H + d + 1 : n].

In general, Md[δ] is not relevant either because there exists some s ≥ 0 and
δ′ < δ such that Md+s[δ′] = |β| or because all elements of diagonal d are strictly
greater than δ. In the second case, we note that all values Md−1[δ − 1], Fg,
Md[δ − 1], and Md+1[δ − 1] must be −∞ (as otherwise the diagonal d would
contain an element equal to δ), so our computation of Md[δ] returns −∞ (which
is correct).

Now, based on these observations, we can see a way to compute the relevant
values Md[δ], for −|β| ≤ d ≤ n and δ ≤ Δ (without computing the matrix D).

We first construct the word β and longest common prefix data structures for
the word βw, allowing us to compute LCP(β[h : |β|], w[h + d : n]), the length of
the longest common prefix of β[h : |β|] and w[h + d : n] for all h and d.

Then, we will compute the values of Md[0] for all diagonals d. Basically,
we need to identify, if it exists, a path from D[0][0] to D[Md[0]][Md[0] + d]
which consists only of edges corresponding to letters left unchanged, or to free
insertions. By an analysis similar to the one done above, we can easily show that
M0[0] is LCP(β[1 : |β|], w[1 : n]) (which is ≥ 1, by our assumptions). Further,
M [d][0] = −∞ for d < 0 and, for d ≥ 0, Md[0] = Fg +LCP(β[Fg +1 : |β|], w[Fg +
1 + d : n]), where Fg ∈ F is such that Fg ≤ Md−1[0] < Fg+1 (Md[0] = −∞ if
such an element Fg does not exist).

Further, for δ from 1 to Δ we compute all the values Md[δ], in order for d from
−|β|+1 to n. We first compute the largest diagonal d′ such that Md′ [δ−k] = |β|,
for some k > 0. We will only compute Md[δ], for d from d′ + 1 to n. For each
such diagonal d, we compute g such that Fg ≤ Md−1[δ] < Fg+1 and H =
max{Md−1[δ − 1], Fg,Md[δ − 1] + 1,Md+1[δ − 1] + 1}. Then we set Md[δ] to be
H + LCP(β[H + 1 : |β|], w[H + d + 1 : n]) − 1.

Conclusions. This algorithm, which computes all relevant values Md[δ],can be
implemented in O((n+m)Δ) time, as discussed in the full version [23] (where also
its pseudocode is given). As explained before, this allows us to solve MisMatchReg
for the input (α,w,Δ). Moreover, if the instance can be answered positively, the
value δ for which Mn−|β|[δ] = |β| equals dED(α,w). �

The following result now follows.

Theorem 3. MinMisMatchReg can be solved in O(nΦ) time, where Φ =
dED(α,w).

The upper bounds reported in Theorems 2 and 3 are complemented by the
following conditional lower bound, known from the literature [3, Thm. 3] (see
full version [23]).

Theorem 4. MisMatchReg can not be solved in time O(|w|hΔg) (or O(|w|h|α|g))
where h + g = 2 − ε with ε > 0, unless the Orthogonal Vectors Conjecture fails.

It is worth noting that the lower bound from Theorem 4 already holds for very
restricted regular patterns, i.e., for α = xuy, where u is a string of terminals and

Matching Patterns with Variables Under Edit Distance 285

x and y are variables. Interestingly, a similar lower bound (for such restricted
patterns) does not hold in the case of the Hamming distance, covered in [22].

Our second main result addresses another class of restricted patterns. To
this end, we consider the class of unary (or one-variable) patterns 1Var, which
is defined as follows: α ∈ 1Var if there exists x ∈ X such that var(α) = {x}. An
example of unary pattern is α1 = abxabxxbaab.

We can show the following theorem.

Theorem 5. MisMatch1Var is W [1]-hard w.r.t. the number of occurrences of the
single variable x of the input pattern α.

Proof (Sketch). We begin by recalling the following problem:

Median String: MS
Input: k strings w1, . . . , wk ∈ σ∗ and an integer Δ.
Question: Does there exist a string s such that

∑k
i=1 dED(wi, s) ≤ Δ?

(The string s for which
∑k

i=1 dED(wi, s) is minimum is called the
median string of the strings {w1, . . . , wk}.)

Without loss of generality, we can assume that Δ ≤ ∑k
i=1 |wi| as, otherwise,

the answer is clearly yes (for instance, for s = ε we have that
∑k

i=1 dED(wi, ε) ≤
∑k

i=1 |wi|). Similarly, we can assume that |s| ≤ Δ + max{|wi| | i ∈ {1, . . . , k}}.
In [34] it was shown that MS is NP-complete even for binary input strings and
W[1]-hard with respect to the parameter k, the number of input strings.

We will reduce now MS to MisMatch1Var, such that an instance of MS with k
input strings is mapped to an instance of MisMatch1Var with exactly k occur-
rences of the variable x (the single variable occurring in the pattern).

Thus, we consider an instance of MS which consists in the k binary
strings w1, . . . , wk ∈ {0, 1}∗ and the integer Δ ≤ ∑k

i=1 |wi|. The instance of
MisMatch1Var which we construct consists of a word w and a pattern α, such
that α contains exactly k occurrences of a variable x, and both strings are of
polynomial size w.r.t. the size of the MS-instance. Moreover, the bound on the
dED(α,w) defined in this instance of MisMatch1Var equals Δ. That is, if there
exists a solution for the MS-instance such that

∑k
i=1 dED(wi, s) ≤ Δ, then, and

only then, we should be able to find a solution of the MisMatch1Var-instance with
dED(α,w) ≤ Δ. The construction of the MisMatch1Var instance is realized in such
a way that the word w encodes the k input strings for MS, conveniently separated
by some long strings over two fresh symbols $,#, while α can be obtained from
w by simply replacing each of the words wi by a single occurrence of the variable
x. Intuitively, in this way, for dED(α,w) to be minimal, x should be mapped to the
median string of {w1, . . . , wk}. In this proof sketch, we just define the reduction.
The proof of its correctness is given in the long version of this paper [23].

For the strings w1, . . . wk ∈ {0, 1}∗, let S = 6(
∑k

i=1 |wi|); clearly, S ≥ 6Δ.
Let w = w1($S#S)Sw2($S#S)S . . . wk($S#S)S and α =

(
x($S#S)S

)k.
The constructed instance of MisMatch1Var (i.e., α,w,Δ) is of polynomial size

w.r.t. the size of the MS-instance (i.e., {w1, . . . , wk},Δ). Therefore, it (and our

286 P. Gawrychowski et al.

entire reduction) can be computed in polynomial time. Moreover, we can show
that the instance (w,α,Δ) of MisMatch1Var is answered positively if and only
if the original instance of MS is answered positively. Finally, as the number of
occurrences of the variable x blocks in α is k, where k is the number of input
strings in the instance of MS, and MS is W [1]-hard with respect to this parameter,
it follows that MisMatch1Var is also W [1]-hard when the number of occurrences
of the variable x in α is considered as parameter. The statement follows. �

A simple corollary of Theorem 1 is the following:

Theorem 6. MisMatch1Var and MinMisMatch1Var can be solved in O(n3|α|x)
time, where x is the single variable occurring in α.

Clearly, finding a polynomial time algorithm for MisMatch1Var, for which the
degree of the polynomial does not depend on |α|x, would be ideal. Such an algo-
rithm would be, however, an FPT-algorithm for MisMatch1Var, parameterized by
|α|x, and, by Theorem 5 and common parameterized complexity assumptions,
the existence of such an algorithm is unlikely. This makes the straightforward
result reported in Theorem 6 relevant, to a certain extent.

4 Conclusion

Our results regarding the problem MisMatch for various classes of patterns are
summarized in Table 1, which highlights the differences to the case of exact
matching and to the case of approximate matching under Hamming distance.

Note that the results reported in the first row of the rightmost column of
this table are based on Theorem 2 (the upper bound) and Theorem 4 (the lower
bound). The rest of the cells of that rightmost column are all consequences of
the result of Theorem 5. Indeed, the classes of patterns covered in this table,
which are presented in detail in [22], are defined based on a common idea. In
the pattern α, we identify for each variable x the x-blocks: maximal factors of
α (w.r.t. length) which contain only the variable x and terminals, and start
and end with x. Then, classes of patterns are defined based on the way the
blocks defined for all variables occurring in α are interleaved. However, in the
patterns of all these classes, there may exist at least one variable which occurs
an unbounded number of times, i.e., they all include the class of unary patterns.
Therefore, the hardness result proved for unary patterns carries over and, as the
structural parameters used to define those classes do not take into account the
overall number of occurrences of a variable, but rather the number of blocks
for the variables (or the way they are interleaved), we obtain NP-hardness for
MisMatch for that class, even if the structural parameters are trivial.

While our results, together with those reported in [22], seem to completely
characterize the complexity of MisMatch and MinMisMatch under both Hamming
and edit distances, there are still some directions for future work. Firstly, in [24]
the fine-grained complexity of computing the median string under edit distance
for k input strings is discussed. Their main result, a lower bound, was only

Matching Patterns with Variables Under Edit Distance 287

Table 1. Our new results are listed in column 4. The results overviewed in column 3
were all shown in [22]. We assume |w| = n and |α| = m.

Class Match(w, α) MisMatch(w, α, Δ) MisMatch(w, α, Δ)

for dHAM(·, ·) for dED(·, ·)
Reg O(n) [folklore] O(nΔ), matching O(nΔ), matching

cond. lower bound cond. lower bound

1Var O(n) [folklore] O(n) O(n3|α|x)

(var(α) = {x}) W[1]-hard w.r.t. |α|x
NonCross O(nm log n) [14] O(n3p) NP-hard

1RepVar O(n2) [14] O(nk+2m) NP-hard for k ≥ 1

k=# x-blocks W[1]-hard w.r.t. k

kLOC O(mkn2k+1) [10] O(n2k+2m) NP-hard for k ≥ 1

W[1]-hard w.r.t. k W[1]-hard w.r.t. k

kSCD O(m2n2k) [14] NP-hard for k ≥ 2 NP-hard for k ≥ 1

W[1]-hard w.r.t. k

kRepVar O(n2k) [14] NP-hard for k ≥ 1 NP-hard for k ≥ 1

W[1]-hard w.r.t. k

k-bounded O(n2k+4) [35] NP-hard for k ≥ 3 NP-hard for k ≥ 1

treewidth W[1]-hard w.r.t. k

shown for inputs over unbounded alphabets; it would be interesting to see if it
still holds for alphabets of constant size. Moreover, it would be interesting to
obtain similar lower bounds for MisMatch1Var, as the two problem seem strongly
related. To that end, it would be interesting if the upper bound of Theorem 6
can be improved, and brought closer to the one reported for median string in
[36]. Secondly, another interesting problem is related to Theorem 4. The lower
bound we reported in that theorem holds for regular patterns with a constant
number of variables (e.g., two variables). It is still open what is the complexity
of MisMatch for regular patterns with a constant number of variables under
Hamming distance.

References

1. Amir, A., Nor, I.: Generalized function matching. J. Discrete Algorithms 5, 514–
523 (2007). https://doi.org/10.1016/j.jda.2006.10.001

2. Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci.
21(1), 46–62 (1980)

3. Backurs, A., Indyk, P.: Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM J. Comput. 47(3), 1087–1097 (2018)

4. Bernardini, G., et al.: String sanitization under edit distance. In: 31st Annual
Symposium on Combinatorial Pattern Matching (CPM 2020). LIPIcs, vol. 161,
pp. 7:1–7:14 (2020). https://doi.org/10.4230/LIPIcs.CPM.2020.7

https://doi.org/10.1016/j.jda.2006.10.001
https://doi.org/10.4230/LIPIcs.CPM.2020.7

288 P. Gawrychowski et al.

5. Bernardini, G., Pisanti, N., Pissis, S.P., Rosone, G.: Approximate pattern matching
on elastic-degenerate text. Theor. Comput. Sci. 812, 109–122 (2020)

6. Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expres-
sions. Int. J. Found. Comput. Sci. 14, 1007–1018 (2003). https://doi.org/10.1142/
S012905410300214X

7. Charalampopoulos, P., Kociumaka, T., Mozes, S.: Dynamic string alignment. In:
31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020). LIPIcs,
vol. 161, pp. 9:1–9:13 (2020). https://doi.org/10.4230/LIPIcs.CPM.2020.9

8. Charalampopoulos, P., Kociumaka, T., Wellnitz, P.: Faster approximate pattern
matching: a unified approach. In: Irani, S. (ed.) 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, pp. 978–989. IEEE (2020). https://
doi.org/10.1109/FOCS46700.2020.00095

9. Charalampopoulos, P., Kociumaka, T., Wellnitz, P.: Faster pattern matching under
edit distance. arXiv preprint arXiv:2204.03087 (2022)

10. Day, J.D., Fleischmann, P., Manea, F., Nowotka, D.: Local patterns. In: Proceed-
ings of the 37th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2017). LIPIcs, vol. 93, pp. 24:1–24:14
(2017). https://doi.org/10.4230/LIPIcs.FSTTCS.2017.24

11. Downey, R.G., Fellows, M.R.: Parameterized complexity. In: Monographs in Com-
puter Science, Springer, NY (1999). https://doi.org/10.1007/978-1-4612-0515-9

12. Fagin, R., Kimelfeld, B., Reiss, F., Vansummeren, S.: Document spanners: a formal
approach to information extraction. J. ACM 62(2), 12:1–12:51 (2015). https://doi.
org/10.1145/2699442

13. Fernau, H., Manea, F., Mercas, R., Schmid, M.L.: Revisiting Shinohara’s algorithm
for computing descriptive patterns. Theor. Comput. Sci. 733, 44–54 (2018)

14. Fernau, H., Manea, F., Mercas, R., Schmid, M.L.: Pattern matching with variables:
efficient algorithms and complexity results. ACM Trans. Comput. Theory 12(1),
6:1–6:37 (2020). https://doi.org/10.1145/3369935

15. Fernau, H., Schmid, M.L.: Pattern matching with variables: a multivariate com-
plexity analysis. Inf. Comput. 242, 287–305 (2015). https://doi.org/10.1016/j.ic.
2015.03.006

16. Fernau, H., Schmid, M.L., Villanger, Y.: On the parameterised complexity of string
morphism problems. Theory Comput. Syst. 59(1), 24–51 (2016)

17. Freydenberger, D.D.: Extended regular expressions: succinctness and decidability.
Theory Comput. Syst. 53, 159–193 (2013). https://doi.org/10.1007/s00224-012-
9389-0

18. Freydenberger, D.D.: A logic for document spanners. Theory Comput. Syst. 63(7),
1679–1754 (2019)

19. Freydenberger, D.D., Holldack, M.: Document spanners: from expressive power to
decision problems. Theory Comput. Syst. 62(4), 854–898 (2018)

20. Freydenberger, D.D., Schmid, M.L.: Deterministic regular expressions with back-
references. J. Comput. Syst. Sci. 105, 1–39 (2019)

21. Friedl, J.E.F.: Mastering Regular Expressions, 3rd edn. O’Reilly, Sebastopol, CA
(2006)

22. Gawrychowski, P., Manea, F., Siemer, S.: Matching patterns with variables under
hamming distance. In: 46th International Symposium on Mathematical Founda-
tions of Computer Science, MFCS 2021. LIPIcs, vol. 202, pp. 48:1–48:24 (2021).
https://doi.org/10.4230/LIPIcs.MFCS.2021.48

23. Gawrychowski, P., Manea, F., Siemer, S.: Matching patterns with variables under
edit distance (2022). https://doi.org/10.48550/ARXIV.2207.07477

https://doi.org/10.1142/S012905410300214X
https://doi.org/10.1142/S012905410300214X
https://doi.org/10.4230/LIPIcs.CPM.2020.9
https://doi.org/10.1109/FOCS46700.2020.00095
https://doi.org/10.1109/FOCS46700.2020.00095
http://arxiv.org/abs/2204.03087
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.24
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1145/2699442
https://doi.org/10.1145/2699442
https://doi.org/10.1145/3369935
https://doi.org/10.1016/j.ic.2015.03.006
https://doi.org/10.1016/j.ic.2015.03.006
https://doi.org/10.1007/s00224-012-9389-0
https://doi.org/10.1007/s00224-012-9389-0
https://doi.org/10.4230/LIPIcs.MFCS.2021.48
https://doi.org/10.48550/ARXIV.2207.07477

Matching Patterns with Variables Under Edit Distance 289

24. Hoppenworth, G., Bentley, J.W., Gibney, D., Thankachan, S.V.: The fine-grained
complexity of median and center string problems under edit distance. In: 28th
Annual European Symposium on Algorithms (ESA 2020). LIPIcs, vol. 173, pp.
61:1–61:19 (2020). https://doi.org/10.4230/LIPIcs.ESA.2020.61

25. Kleest-Meißner, S., Sattler, R., Schmid, M.L., Schweikardt, N., Weidlich, M.: Dis-
covering event queries from traces: laying foundations for subsequence-queries with
wildcards and gap-size constraints. In: 25th International Conference on Database
Theory, ICDT 2022. LIPIcs, vol. 220, pp. 18:1–18:21 (2022). https://doi.org/10.
4230/LIPIcs.ICDT.2022.18

26. Landau, G.M., Vishkin, U.: Fast parallel and serial approximate string matching.
J. Algorithms 10(2), 157–169 (1989)

27. Levenshtein, V.: Binary codes capable of correcting spurious insertions and dele-
tions of ones. Probl. Inf. Transm. 1, 8–17 (1965)

28. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Sov. Phys. Dokl. 10, 707 (1966)

29. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997). https://doi.org/10.1017/CBO9780511566097

30. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002). https://doi.org/10.1017/CBO9781107326019

31. Manea, F., Schmid, M.L.: Matching patterns with variables. In: Mercaş, R., Rei-
denbach, D. (eds.) WORDS 2019. LNCS, vol. 11682, pp. 1–27. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-28796-2 1

32. Mieno, T., Pissis, S.P., Stougie, L., Sweering, M.: String sanitization under edit
distance: improved and generalized. In: 32nd Annual Symposium on Combinatorial
Pattern Matching, CPM 2021. LIPIcs, vol. 191, pp. 19:1–19:18 (2021)

33. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
33(1), 31–88 (2001)

34. Nicolas, F., Rivals, E.: Hardness results for the center and median string problems
under the weighted and unweighted edit distances. J. Discrete Algorithms 3(2–4),
390–415 (2005)

35. Reidenbach, D., Schmid, M.L.: Patterns with bounded treewidth. Inf. Comput.
239, 87–99 (2014)

36. Sankoff, D.: Minimal mutation trees of sequences. SIAM J. Appl. Math. 28(1),
35–42 (1975)

37. Schmid, M.L.: A note on the complexity of matching patterns with variables. Inf.
Process. Lett. 113(19), 729–733 (2013). https://doi.org/10.1016/j.ipl.2013.06.011

38. Schmid, M.L., Schweikardt, N.: A purely regular approach to non-regular core
spanners. In: Proceedings of the 24th International Conference on Database The-
ory, ICDT 2021. LIPIcs, vol. 186, pp. 4:1–4:19 (2021). https://doi.org/10.4230/
LIPIcs.ICDT.2021.4

39. Schmid, M.L., Schweikardt, N.: Document spanners - a brief overview of concepts,
results, and recent developments. In: PODS 2022: International Conference on
Management of Data, pp. 139–150. ACM (2022). https://doi.org/10.1145/3517804.
3526069

40. Shinohara, T.: Polynomial time inference of pattern languages and its applica-
tion. In: Proceedings of the 7th IBM Symposium on Mathematical Foundations of
Computer Science, MFCS, pp. 191–209 (1982)

41. Shinohara, T., Arikawa, S.: Pattern inference. In: Jantke, K.P., Lange, S. (eds.)
Algorithmic Learning for Knowledge-Based Systems. LNCS, vol. 961, pp. 259–291.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60217-8 13

https://doi.org/10.4230/LIPIcs.ESA.2020.61
https://doi.org/10.4230/LIPIcs.ICDT.2022.18
https://doi.org/10.4230/LIPIcs.ICDT.2022.18
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.1017/CBO9781107326019
https://doi.org/10.1007/978-3-030-28796-2_1
https://doi.org/10.1016/j.ipl.2013.06.011
https://doi.org/10.4230/LIPIcs.ICDT.2021.4
https://doi.org/10.4230/LIPIcs.ICDT.2021.4
https://doi.org/10.1145/3517804.3526069
https://doi.org/10.1145/3517804.3526069
https://doi.org/10.1007/3-540-60217-8_13

On the Hardness of Computing the Edit
Distance of Shallow Trees

Panagiotis Charalampopoulos1(B) , Pawe�l Gawrychowski2 , Shay Mozes3 ,
and Oren Weimann4

1 Birkbeck, University of London, London, UK
p.charalampopoulos@bbk.ac.uk

2 University of Wroc�law, Wroc�law, Poland
gawry@cs.uni.wroc.pl

3 Reichman University, Herzliya, Israel
smozes@idc.ac.il

4 University of Haifa, Haifa, Israel

oren@cs.haifa.ac.il

Abstract. We consider the edit distance problem on rooted ordered
trees parameterized by the trees’ depth. For two trees of size at most n
and depth at most d, the state-of-the-art solutions of Zhang and Shasha
[SICOMP 1989] and Demaine et al. [TALG 2009] have runtimes O(n2d2)
and O(n3), respectively, and are based on so-called decomposition algo-
rithms. It has been recently shown by Bringmann et al. [TALG 2020]
that, when d = Θ(n), one cannot compute the edit distance of two trees
in O(n3−ε) time (for any constant ε > 0) under the APSP hypothesis.
However, for small values of d, it is not known whether the O(n2d2) upper
bound of Zhang and Shasha is optimal. We make the following twofold
contribution. First, we show that under the APSP hypothesis there is
no algorithm with runtime O(n2d1−ε) (for any constant ε > 0) when
d = poly(n). Second, we show that there is no decomposition algorithm
that runs in time o(min{n2d2, n3}).

1 Introduction

Let F and G be two rooted and ordered trees of size n where each node is
assigned a label from an alphabet Σ. The edit distance between trees F and G
is the minimum cost of transforming F into G by a sequence of elementary edit
operations: changing the label of a node v, deleting a node v and setting the
children of v as the children of v’s parent (in the place of v in the left-to-right
order), and inserting a node v (defined as the inverse of a deletion); see Fig. 1.
The cost of these elementary operations is given by two cost functions: cdel(x)
is the cost of deleting or inserting a node with label x, and cmatch(x, y) is the
cost of changing the label of a node from x to y.

Tree edit distance is the most common similarity measure between labeled
trees. It is instrumental in computational biology [7,17,25,31], structured text

S. Mozes and O. Weimann—Supported by Israel Science Foundation grant 810/21.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 290–302, 2022.
https://doi.org/10.1007/978-3-031-20643-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_21&domain=pdf
http://orcid.org/0000-0002-6024-1557
http://orcid.org/0000-0002-6993-5440
http://orcid.org/0000-0001-9262-1821
http://orcid.org/0000-0002-4510-7552
https://doi.org/10.1007/978-3-031-20643-6_21

On the Hardness of Computing the Edit Distance of Shallow Trees 291

x

A

B
C

D
A

B
C

D
A

B
C

D

relabel node x to y

y

delete node y

insert node yrelabel node y to x

Fig. 1. The three edit operations on a node-labeled tree.

processing [10,11,16], programming languages [18], computer vision [6,19], char-
acter recognition [23], automatic grading [3], answer extraction [33], and many
more (see the popular survey of Bille [7] and the books of Apostolico and Galil [4]
and Valiente [29]).

The tree edit distance (TED) problem was introduced by Tai [27] as a
generalization of the well known string edit distance problem [30]. Zhang and
Shasha [35] showed that the classical dynamic-programming algorithm for string
edit distance naturally extends to tree edit distance. Namely, to compute the
edit distance of two forests F and G, consider the rightmost roots of F and G:
they are either matched or (at least) one of them is deleted. Checking all these
options generates a constant number of (smaller) recursive subproblems. Zhang
and Shasha [35] showed that when the depths of F and G are bounded by d
the total number of generated recursive subproblems (and hence the algorithm’s
running time) is O(n2d2). This is appealing for shallow trees, but can be as high
as Ω(n4) for trees of large depth.

Obviously, the choice of recursing on the rightmost root (and not the left-
most) is arbitrary. Klein [20] observed that if we carefully alternate between
recursing on the rightmost and the leftmost roots the running time improves
to O(n3 log n) (regardless of d). Dulucq and Touzet [14] called such algorithms
(i.e., that are based on the same dynamic programming but only differ in their
choices of rightmost and leftmost) decomposition algorithms and showed that
there is no o(n2 log2 n)-time decomposition algorithm. Demaine et al. [12] gave
an O(n3)-time decomposition algorithm and showed that for trees of depth
d = Ω(n) there is no o(n3)-time decomposition algorithm. Of course there may
be a faster TED algorithm that is not a decomposition algorithm. This however
is probably not the case for trees of depth d = Ω(n). For such trees, it was
shown in [9] that: (1) assuming the APSP hypothesis, there is no O(n3−ε) algo-
rithm for TED with alphabet-size |Σ| = Ω(n), and (2) assuming the stronger
k-Clique hypothesis, there is no O(n3−ε) algorithm for TED with alphabet-size
|Σ| = O(1). An important exception is the special case of unweighted TED where
cdel(a) = cmatch(a, b) = 1 and cmatch(a, a) = 0 (aka the Levenshtein distance)
for which very recently a non-decomposition strongly subcubic algorithm (for
any d) was devised by Mao [21]; the exponent of n was further reduced to 2.9149
by Dürr [15].

292 P. Charalampopoulos et al.

To sum it up, the fastest known algorithm for (weighted) TED runs in
O(min{n3, n2d2}) time, it is a decomposition algorithm, and its cubic runtime
when d = Ω(n) can probably not be improved by any polynomial factor. How-
ever, for smaller values of d = poly(n) (i.e., d = nδ for some constant 0 < δ < 1)
we do not yet know the right complexity. This raises the following questions:

1. Is there an O(n2d2−ε)-time decomposition algorithm?
(The lower bound of [12] does not rule this out.)

2. Is there an O(n2d2−ε)-time algorithm that is not a decomposition algorithm?
(The lower bound of [9] does not rule this out.)

We show that the answer to the first question is no. As for the second question,
we do not yet know if an O(n2d2−ε)-time algorithm exists, but we show that an
O(n2d1−ε)-time algorithm does not (assuming the APSP hypothesis).

Related Work. Pawlik and Augsten [22] developed a decomposition algo-
rithm whose performance on any input is not worse (and possibly better)
than that of any of the existing decomposition algorithms. Other attempts
achieved better running times by restricting the edit operations or the scoring
schemes [1,11,21,24,26,28,34], or by resorting to approximation [2,5,8]. How-
ever, in the worst case no algorithm currently beats O(min{n3, n2d2}) (not even
by a logarithmic factor). Finally, the edit distance between edge-labeled unrooted
trees, first studied by Klein [20], can be computed in O(n3) time as shown by
Dudek and Gawrychowski [13]. In addition, Dudek and Gawrychowski [13] pre-
sented a simple O(|input|)-time reduction from TED on node-labeled rooted
trees to TED on edge-labeled unrooted trees. This reduction replaces the two
rooted trees by unrooted trees with the same size and diameter asymptotically,
and hence our lower bounds also apply to the TED problem on edge-labeled
unrooted trees parameterized by the trees’ diameter.

2 Preliminaries

We denote the tree edit distance of two trees F and G by TED(F,G). The
alphabet is denoted by Σ.

Now, let us look more closely at the allowed edit operations. First, observe
that the insertion operation is redundant: an insertion to one of the trees is equiv-
alent to a deletion in the other. We can thus consider the problem of computing
a minimum-cost sequence of deletions and relabelings to both F and G that
yields identical trees. Further, as we argue next, without loss of generality, we
can assume that cdel(x) = 0 for all x ∈ Σ. Starting from general cost functions,
we can define new cost functions c′

match(x, y) := cmatch(x, y) − cdel(x) − cdel(y),
for all x, y ∈ Σ, and c′

del(x) := 0, for all x ∈ Σ, that preserve the tree edit
distance up to a linear-time computable additive constant equal to the cost of
deleting both trees with the original cdel function. Intuitively, we pay for the
deletion of all nodes up front and get refunded for nodes that are not deleted.

A left comb (resp. right comb) of depth n is a tree with 2n − 1 nodes that
consists of a path P of length n, with one endpoint of the path being the root

On the Hardness of Computing the Edit Distance of Shallow Trees 293

of the tree and the other one being a leaf, and n− 1 more leaf nodes, each being
the right (resp. left) child of a distinct node of P . We call a pair of left and a
right combs opposing combs. See Fig. 2 for an illustration.

Fig. 2. Two opposing combs of depth 5; the left comb is shown in the left.

3 Lower Bound Conditioned on the APSP Hypothesis

In this section we present a hardness proof of TED on trees of depth d = poly(n),
conditioned on the All-Pairs Shortest Paths (APSP) hypothesis.

Conjecture 1 (APSP hypothesis). For any ε > 0, there exists c > 0 such that
APSP on n-vertex graphs with edge weights in {1, . . . , nc} cannot be solved in
time O(n3−ε).

Instead of reducing APSP to TED, we will reduce from the equivalent
(see [32]) NegativeTriangle problem:

NegativeTriangle

Input: A complete tripartite graph H = (V,E) with three parts I, J , and
K, each of size at most n, and a weight function w : E → {−nc, . . . , nc}.
Output: Yes if and only if there exist vertices i ∈ I, j ∈ J , and k ∈ K such
that w(i, j) + w(j, k) + w(k, i) < 0.

Lemma 1. Consider an instance of NegativeTriangle comprised of a com-
plete tripartite graph H = (V,E) with parts of size at most n and a weight-
function w : E → {−nc, . . . , nc}. For any integer d ≤ n, this instance can
be reduced to deciding whether any of O((n/d)3) complete graphs on 3d vertices
contains a negative triangle. The time required for this reduction is O(n2+n3/d).

Proof. Let us split each of the three parts I, J , and K into �n/d� subsets,
each of size at most d. Then, it suffices to solve separately, for each of the
O((n/d)3) triplets of subsets A ⊆ I, B ⊆ J , and C ⊆ K, an instance of the
NegativeTriangle problem for the subgraph of G induced by A ∪ B ∪ C. We
consider each such induced subgraph and pad it with dummy vertices and edges
so that it is a complete graph on 3d vertices, ensuring that we do not introduce

294 P. Charalampopoulos et al.

any negative triangles. The latter can be achieved by setting the weights of
dummy edges to be twice as large as the largest absolute value of an edge-weight
in H. This reduction requires time linear in the total size of the input and the
output and hence the stated bound follows. 	

We will use the following reduction from NegativeTriangle to TED that
was presented in [9].

Lemma 2 ([9, Lemma 2 and Theorem 2]). Given a complete undirected n-
vertex graph H = (V,E) and a weight function w : E → {1, . . . , nc}, we can
construct, in linear time in the output size, an instance of TED of size O(n)
such that the minimum weight of a triangle in H can be extracted from the edit
distance. In particular, the constructed instance of TED satisfies the following:1

– cdel is an all-zeroes function;
– the trees are two opposing combs of depth 2n + 1;
– the edit distance of the two trees is equal to −3M2 plus the minimum weight

of a triangle in H, where M is a (sufficiently large) integer parameter that is
used to define cmatch.

In particular, the fact that the (shapes of the) trees in the above lemma are
fixed means that information about the NegativeTriangle instance (H,w)
is only encoded in the assignment of letters to nodes and the cost function
cmatch(·, ·). Hence, given t instances of NegativeTriangle of the same size,
one can construct

√
t left combs and

√
t right combs, such that each of the t

pairs of left and right combs corresponds to one of the NegativeTriangle
instances. We can then assign a distinct letter to each node in each of the combs
and define the cost function so that its restriction to any particular pair of left
and right combs coincides with the cost function that Lemma 2 would yield for
the NegativeTriangle instance corresponding to this pair.

In the following lemma, we combine the above idea with Lemma 1 into a
subcubic-time reduction from NegativeTriangle to TED.

Lemma 3. NegativeTriangle reduces in O(n2 + n3/d) time to an instance
of TED over O(n1.5/

√
d)-size and O(d)-depth trees.

Proof. We first apply Lemma 1 to reduce our NegativeTriangle instance to
the problem of deciding whether any of t = O((n/d)3) complete graphs on 3d
vertices contains a negative triangle. Our goal is to efficiently reduce the latter
problem to a TED instance with trees of depth O(d).

Let us denote the obtained graphs by H1,H2, . . . , Ht. We construct a TED
instance as follows. Let s =

√
t and assume that it is an integer in order to avoid

clutter. F consists of a root with 3s children, which we call available nodes. Each
of these available nodes has a left comb of depth 2 · 3d + 1 = 6d + 1 attached
to it. G consists of a root with s children, which we call decider nodes. Each of
the decider nodes has a right comb of depth 6d + 1 attached to it; see Fig. 3.
Observe that the sizes and the depths of these trees are as desired.
1 Not all of these properties are explicitly stated in [9, Lemma 2 and Theorem 2], but

they are evident from their proofs.

On the Hardness of Computing the Edit Distance of Shallow Trees 295

#

$ $ $ $ $ $ $ $ $

6d + 1

.

#

Fig. 3. A depiction of the instance of TED from the proof of Lemma 3 with t = 4
(and s = 2). Available nodes (in F) and selector nodes (in G) are colored yellow and
purple, respectively. A comb of depth 6d+1 is attached to each of the available/selector
nodes—we only show a few of them for clarity. (Color figure online)

Our goal is to define a cost function cmatch(·, ·) that ensures the following:

– the roots of the two trees are matched;
– each decider node is matched with an available node;
– the restriction of the cost function to the pair that consists of the (s + i)-th

left comb in F and the j-th comb in G, for i = 1, . . . , s and j = 1, . . . , s is
identical to the one yielded by Lemma 2 for Hm, where m = s · (i − 1) + j;

– the restriction of the cost function to each other pair that consists of a left
comb in F and a right comb in G is identical to the one yielded by Lemma
2 for some undirected graph on 3d vertices in which the minimum weight
of a triangle is zero, where all such applications of Lemma 2 use the same
(sufficiently large) integer parameter M .

To ensure the above properties, let us label the roots of both trees by # and
all decider/available nodes by $. In addition, let us label each other node with
a unique letter from an alphabet Σ that is disjoint from {#, $}. We populate a
table that corresponds to the cmatch function as follows:

– For all (x, y) ∈ Σ2 with x being a label of a node in F and y being a label
of a node in G, i.e., pairs of labels of nodes from opposing combs, the cost
cmatch(x, y) is given by an application of Lemma 2. Let us denote the sum of
the absolute values of all these costs by ψ.

– cmatch(#,#) = cmatch($, $) = −2ψ;
– cmatch(#, $) = ∞;
– cmatch(x, y) = ∞ for all pairs (x, y) ∈ {#, $} × Σ.

Claim. There is a negative triangle in at least one of H1,H2, . . . , Ht if and only
if TED(F,G) < η := −2ψ · (s + 1) − 3M2 · s.

296 P. Charalampopoulos et al.

Proof. Let us denote the comb attached to the i-th available node by Fi and the
one attached to the j-th decider node by Gj .

Now, the optimal solution must match the roots of the two trees and match
every decider node with an available node. This is because these yield a cost of
−2ψ · (s + 1), while the cost of any sequence of operations that do not match
these nodes cannot be smaller than −2ψ · s − ψ. Thus, the edit distance of F
and G equals

TED(F,G) = min
p

⎧
⎨

⎩
−2ψ · (s + 1) +

s∑

j=1

TED(Fp(j), Gj)

⎫
⎬

⎭

where the minimization is over all increasing functions p : {1, 2, . . . , s} →
{1, 2, . . . , 3s}. We therefore have two cases:

– If none of the graphs Hi contains a negative triangle, we might as well set
every p(j) to be j since the pairs (Fj , Gj) correspond to a graph in which the
minimum triangle is of zero weight. So in this case we have

TED(F,G) = −2ψ · (s + 1) +
s∑

j=1

TED(Fj , Gj) = η.

– Else, some graph Hi contains a negative triangle of weight −w. Let q =
�i/s� and r be an integer in {1, . . . , s} satisfying r ≡ i (mod s). Notice that
matching the pair (Fs+q, Gr) is cheaper than matching a pair corresponding
to a minimum weight triangle of value zero. We therefore have

TED(F,G) ≤ −2ψ · (s + 1) +
r−1∑

j=1

TED(Fj , Gj) + TED(Fs+q, Gr)

+
s∑

j=r+1

TED(Fj+2s, Gj) = η − w < η.

This completes the proof of the claim. 	

The lemma follows. 	

Theorem 1. There exists no algorithm that solves TED for trees of size at
most n and depth at most d = poly(n), with node labels from an alphabet of size
Ω(n), in O(n2d1−ε) time, for any constant ε > 0, unless the APSP hypothesis
fails.

Proof. To the contrary, suppose that there is such an algorithm with ε < 1. Let
N denote the size of an APSP instance. Using Lemma 3 with d = poly(N), we
obtain an algorithm for APSP with runtime O(N2+N3/d+(N1.5/

√
d)2 ·d1−ε) =

O(N3/dε), contradicting the APSP hypothesis. 	

On the Hardness of Computing the Edit Distance of Shallow Trees 297

4 Lower Bound for Decomposition Algorithms

Let us recall that the decomposition algorithm paradigm for the computation
of tree edit distance is based on the following observation: given two forests F
and G, the rightmost (or leftmost) roots of F and G are either matched or (at
least) one of them is deleted. This observation leads to a dynamic programming
approach: consider all three such options and recurse. The algorithm of Zhang
and Shasha [35] proceeds by always considering the rightmost roots of the forests,
while the algorithms of Klein [20] and Demaine et al. [12] use more intricate
strategies (based on heavy-path decompositions) to decide whether to consider
the rightmost or the leftmost roots of the forests in each step. In general, we
call a mapping S from pairs of forests to the set {left, right} a strategy. Previous
lower bounds on decomposition algorithms were established by proving a lower
bound on the number of different pairs of forests F ′ of F and G′ of G that
a decomposition algorithm will consider irrespective of the strategy S that it
follows; we do not deviate from this approach.

Let us introduce some more terminology and notation. For a node v in a tree
T , we denote by Tv the subtree of T rooted at v. Further, we call v’s child u
such that Tu is largest heavy, resolving ties arbitrarily; all other children of v are
called light. If a node v in T has two children, this allows us to naturally refer
to the two subtrees of the children of v as v’s heavy and light subtrees. Further,
for a tree T , we denote by T ◦ the forest obtained by deleting the root of T .

We next specify our hard instance of TED. It consists of trees of size Θ(n)
and depth Θ(d) for any parameters d, n ∈ Z+ with n > 100d ≥ 300. For simplic-
ity, we assume that d divides n. Each of the trees that we will consider in this
lower bound consists of a path (also called spine) P of length d + 1, with one
endpoint of the path being the root of the tree and the other one being a leaf,
and d trees of size �n/d� and depth O(d), each attached to a distinct non-leaf
node of P , in an alternating fashion with regards to being left/right subtrees.
(The exact shape of these trees is not important.) See Fig. 4 for an illustration.
We call a non-leaf spine node u of F and a non-leaf spine node v of G opposing
if and only if their children that lie on the corresponding spine are in different
directions (i.e., left and right); two such opposing nodes are indicated in Fig. 4.

Let us fix an arbitrary strategy S and denote by U(S) the set of subproblems
that a decomposition algorithm with strategy S will encounter. Our goal is to
give an Ω(min{n2d2, n3}) lower bound on |U(S)|.

Consider a subproblem (F ′, G′) ∈ U(S). Suppose that the strategy S for this
subproblem is right. In this case, the subproblems obtained by (i) deleting the
root of the rightmost tree in F ′, (ii) deleting the root of the rightmost tree in
G′, and (iii) matching the roots of the rightmost trees in F ′ and G′, all belong
to U(S). In what follows, when we say that in such a scenario we delete from F
(resp. G), we mean that we concentrate our attention on the subproblem created
in option (i) (resp. (ii)) above. We stress that in reality both these subproblems
(as well as those created in option (iii) above) belong to U(S), but that for our
purposes it suffices to focus on a particular subproblem.

298 P. Charalampopoulos et al.

Fig. 4. An illustration of our hard instance for decomposition algorithms over shallow
trees. Here, d = 6 and each of the subtrees attached to a spine node is of size O(�n/6�) =
O(n) and depth O(1). A pair of opposing spine nodes is colored.

We rely on the following lemma from [12], stating that any strategy must
consider matching every pair of nodes.

Lemma 4 ([12, Lemma 2.3]). For any strategy S, for all u ∈ F , v ∈ G,
(F ◦

u , G◦
v) ∈ U(S).

Our plan is to start from such subproblems (F ◦
u , G◦

v) ∈ U(S), and, by choosing
an appropriate sequence of deletions from F and from G, to obtain sufficiently
many new subproblems. To make sure we do not double count subproblems
obtained in this way, we will charge a subproblem consisting of a pair of forests
F ′ and G′ to the pair of spine nodes p ∈ F and q ∈ G that are the lowest
common ancestors (LCAs) of the nodes of F ′ in F and of the nodes of G′ in G,
respectively. For a node v in a tree T , and for a positive integer x (resp. y) smaller
than the size of the left (resp. right) subtree of Tv, we denote by LxRy(Tv) the
forest obtained from T ◦

v by x deletions of the leftmost root and y deletions of
the rightmost root—we stress that the root of Tv has already been deleted prior
to these x + y deletions. Observe that v is the LCA of the nodes in LxRy(Tv).
In what follows, we refer to deletions of the leftmost and rightmost root as left
deletions and right deletions, respectively.

Lemma 5. Consider a spine node p in F of depth at most d/2 whose right child
c is heavy. Let q be an opposing spine node in G of depth at most d/2 whose
heavy child is w. Then, the total number of subproblems charged to (p, q), (c, q),
and (p,w) is Ω(min{n2, n3/d2}).

Proof. Observe that the heavy subtree of each of p, c, q, and w has at least n/3
nodes. Let Δ := {1, . . . , �n/4d�}. We distinguish between two cases.

Case I : For every (k,
) ∈ Δ2, there is a subproblem in U(S) with exactly k
deletions in the left subtree of Fp and exactly
 deletions in the right subtree
of Gq, at least �n/8� nodes in the heavy (i.e., right) subtree of Fp, and at least
�n/8� nodes in the heavy (i.e., left) subtree of Gq. In this case, starting from
each of these �n/4d�2 = Ω(n2/d2) pairs of forests, we consider the subproblems

On the Hardness of Computing the Edit Distance of Shallow Trees 299

generated by always performing deletions only in the heavy subtrees of both
Fp and Gq, i.e., deleting from F if and only if S = right. As each of these
subtrees has at least �n/8� nodes, we obtain Ω(n) distinct subproblems of the
form (LkRx(Fp), LyR�(Gq)) for each fixed k,
. Since k,
 < �n/4d�, LkRx(Fp)
(resp. LyR�(Gq)) contains nodes from both the left and right subtrees of Fp

(resp. Gq). Hence the LCA of the nodes of LkRx(Fp) (resp. LyR�(Gq)) is p (resp.
q). We thus obtain a total of Ω(n3/d2) subproblems that are charged to the pair
(p, q) of spine nodes. We are therefore done in this case.

For the remainder of the proof we can thus focus on the complementary case.
Case II : There is some pair (k,
) ∈ Δ2 for which we do not have a subproblem

with k deletions in the left subtree of Fp and
 deletions in the right subtree of Gq,
and at least �n/8� nodes in both heavy subtrees of Fp and Gq.

Claim. One of the following holds:

– for every integer y ∈ [n/16, �n/8�), there exists
′ <
 such that

(Lk(Fp), LyR�′
(Gq)) ∈ U(S),

– for every integer y ∈ [n/16, �n/8�), there exists k′ < k such that

(Lk′
Ry(Fp),R�(Gq)) ∈ U(S).

Proof. Consider applying the following sequence of operations starting from the
pair (F ◦

p , G◦
q), which is in U(S) by Lemma 4: delete from F whenever S = left

until we have reached Lk(Fp) and delete from G whenever S = right until we
have reached R�(Gq). Let us only consider the case where the strategy says left
k times before it says right
 times as the other case is symmetric.

Let A denote the subproblem obtained by performing k left deletions from Fp

and some number
′′ <
 right deletions from Gq. That is, A = (Lk(Fp),R�′′
(Gq)).

Since we are in Case II, for every integer y ∈ [n/16, �n/8�) we can, starting
from A, only make deletions in Gq, making y left deletions from Gq and mak-
ing less than
 −
′′ right deletions from Gq, thus obtaining the subproblem
(Lk(Fp), LyR�′

(Gq)) for some
′ satisfying
′′ ≤
′ <
. 	

Let us assume without loss of generality that we are in the first case of

the above claim, as the other case is symmetric. Let us fix some value of y ∈
[n/16, �n/8�) and the corresponding subproblem (Lk(Fp), LyR�′

(Gq)), where
′ <

. We prove the following claim.

Claim. There exist Ω(min{n, n2/d2}) quadruples (x,m, s, v) where x, m, and s
are integers, and v ∈ {p, c}, such that

(LxRm(Fv), LyRs(Gq)) ∈ U(S).

Proof. Starting from our fixed subproblem (Lk(Fp), LyR�′
(Gq)), we consider

making all left deletions in F . However, for each t ∈ Δ, we consider making

300 P. Charalampopoulos et al.

the first t right deletions in G and the remaining ones in F . We distinguish
between two cases depending on whether, for each pair (m, t) ∈ Δ2, we obtain
a subproblem of the form:

(LxRm(Fv), LyR�′+t(Gq)), for some integer x and v ∈ {p, c}.

1. If this is the case, we obtain Ω(n2/d2) of the desired quadruples, and we are
thus done.

2. Else, let (m′, t′) ∈ Δ2 be a pair for which there is no integer x and node
v ∈ {p, c} such that (LxRm′

(Fv), LyR�′+t′
(Gq)) ∈ U(S). This can only be the

case if we eliminate the entire heavy (i.e., left) subtree of Tc prior to making
the intended m′ + t′ right deletions. In other words, this can only happen if
along this computational path of the recursion, S says left Ω(n) times before
it says right m′ + t′ times. In this case, for each x ∈ [n/16, �n/8�), there exist
m′′, t′′ ∈ Δ2 such that (LxRm′′

(Fc), LyR�′+t′′
(Gq)) ∈ U(S). In this case, we

thus obtain Ω(n) quadruples of the desired form.

This completes the proof of the claim. 	

Thus, for each of Ω(n) values of y, we obtain Ω(min{n, n2/d2}) subproblems.
Over all such y, we thus obtain Ω(min{n2, n3/d2}) subproblems charged to (p, q)
and (c, q), thus completing the analysis of Case II. 	

As our instance of TED has Ω(d2) pairs of spine nodes p and q that satisfy
the conditions of Lemma 5, we obtain the main result of this section:

Theorem 2. Any decomposition algorithm for tree edit distance on trees of size
at most n and depth at most d requires Ω(min{n3, n2d2}) time.

References

1. Akmal, S., Jin, C.: Faster algorithms for bounded tree edit distance. In: 48th
ICALP, pp. 12:1–12:15 (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.12

2. Akutsu, T., Fukagawa, D., Takasu, A.: Approximating tree edit distance through
string edit distance. In: 17th ISAAC, pp. 90–99 (2006). https://doi.org/10.1007/
11940128 11

3. Alur, R., D’Antoni, L., Gulwani, S., Kini, D., Viswanathan, M.: Automated grading
of DFA constructions. In: 23rd IJCAI, pp. 1976–1982 (2013). http://dl.acm.org/
citation.cfm?id=2540128.2540412

4. Apostolico, A., Galil, Z. (eds.): Pattern Matching Algorithms. Oxford University
Press, Oxford, UK (1997)

5. Aratsu, T., Hirata, K., Kuboyama, T.: Approximating tree edit distance through
string edit distance for binary tree codes. Fundam. Inform. 101(3), 157–171 (2010).
https://doi.org/10.3233/FI-2010-282

6. Bellando, J., Kothari, R.: Region-based modeling and tree edit distance as a basis
for gesture recognition. In: 10th International Conference on Image Analysis and
Processing, ISIAP 1999, pp. 698–703 (1999). https://doi.org/10.1109/ICIAP.1999.
797676

https://doi.org/10.4230/LIPIcs.ICALP.2021.12
https://doi.org/10.1007/11940128_11
https://doi.org/10.1007/11940128_11
http://dl.acm.org/citation.cfm?id=2540128.2540412
http://dl.acm.org/citation.cfm?id=2540128.2540412
https://doi.org/10.3233/FI-2010-282
https://doi.org/10.1109/ICIAP.1999.797676
https://doi.org/10.1109/ICIAP.1999.797676

On the Hardness of Computing the Edit Distance of Shallow Trees 301

7. Bille, P.: A survey on tree edit distance and related problems. Theoret. Comput.
Sci. 337(1–3), 217–239 (2005). https://doi.org/10.1016/j.tcs.2004.12.030

8. Boroujeni, M., Ghodsi, M., Hajiaghayi, M., Seddighin, S.: 1+ε approximation of
tree edit distance in quadratic time. In: 51st STOC, pp. 709–720. ACM (2019).
https://doi.org/10.1145/3313276.3316388

9. Bringmann, K., Gawrychowski, P., Mozes, S., Weimann, O.: Tree edit distance
cannot be computed in strongly subcubic time (unless APSP can). ACM Trans.
Algorithms 16(4), 48:1-48:22 (2020). https://doi.org/10.1145/3381878

10. Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In: VLDB,
pp. 141–152 (2003). https://doi.org/10.1016/B978-012722442-8/50021-5

11. Chawathe, S.: Comparing hierarchical data in external memory. In: VLDB, pp.
90–101 (1999). http://www.vldb.org/conf/1999/P8.pdf

12. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition
algorithm for tree edit distance. ACM Trans. Algorithms 6(1), 2:1-2:19 (2009).
https://doi.org/10.1145/1644015.1644017

13. Dudek, B., Gawrychowski, P.: Edit distance between unrooted trees in cubic time.
In: 45th ICALP, pp. 45:1–45:14 (2018). https://doi.org/10.4230/LIPIcs.ICALP.
2018.45

14. Dulucq, S., Touzet, H.: Decomposition algorithms for the tree edit distance prob-
lem. J. Discrete Algorithms 3(2–4), 448–471 (2005). https://doi.org/10.1016/j.jda.
2004.08.018

15. Dürr, A.: Improved bounds for rectangular monotone min-plus product and appli-
cations. Arxiv 2208.02862v1 (2022)

16. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and index-
ing labeled trees, with applications. J. ACM 57, 1–33 (2009). https://doi.org/10.
1145/1613676.1613680

17. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

18. Hoffmann, C.M., O’Donnell, M.J.: Pattern matching in trees. J. ACM 29(1), 68–95
(1982). https://doi.org/10.1145/322290.322295

19. Klein, P.N., Tirthapura, S., Sharvit, D., Kimia, B.B.: A tree-edit-distance algo-
rithm for comparing simple, closed shapes. In: 11th SODA, pp. 696–704 (2000).
http://dl.acm.org/citation.cfm?id=338219.338628

20. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: 6th
ESA, pp. 91–102 (1998). https://doi.org/10.1007/3-540-68530-8 8

21. Mao, X.: Breaking the cubic barrier for (unweighted) tree edit distance. In: 62nd
FOCS, pp. 792–803 (2021). https://doi.org/10.1109/FOCS52979.2021.00082

22. Pawlik, M., Augsten, N.: Efficient computation of the tree edit distance. ACM
Trans. Database Syst. 40(1), 3:1-3:40 (2015). https://doi.org/10.1145/2699485

23. Rico-Juan, J.R., Micó, L.: Comparison of AESA and LAESA search algorithms
using string and tree-edit-distances. Pattern Recogn. Lett. 24(9–10), 1417–1426
(2003). https://doi.org/10.1016/S0167-8655(02)00382-3

24. Selkow, S.: The tree-to-tree editing problem. Inf. Process. Lett. 6(6), 184–186
(1977). https://doi.org/10.1016/0020-0190(77)90064-3

25. Shapiro, B.A., Zhang, K.: Comparing multiple RNA secondary structures using
tree comparisons. Comput. Appl. Biosci. 6(4), 309–318 (1990). https://doi.org/10.
1093/bioinformatics/6.4.309

26. Shasha, D., Zhang, K.: Fast algorithms for the unit cost editing distance
between trees. J. Algorithms 11(4), 581–621 (1990). https://doi.org/10.1016/0196-
6774(90)90011-3

https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1145/3313276.3316388
https://doi.org/10.1145/3381878
https://doi.org/10.1016/B978-012722442-8/50021-5
http://www.vldb.org/conf/1999/P8.pdf
https://doi.org/10.1145/1644015.1644017
https://doi.org/10.4230/LIPIcs.ICALP.2018.45
https://doi.org/10.4230/LIPIcs.ICALP.2018.45
https://doi.org/10.1016/j.jda.2004.08.018
https://doi.org/10.1016/j.jda.2004.08.018
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/322290.322295
http://dl.acm.org/citation.cfm?id=338219.338628
https://doi.org/10.1007/3-540-68530-8_8
https://doi.org/10.1109/FOCS52979.2021.00082
https://doi.org/10.1145/2699485
https://doi.org/10.1016/S0167-8655(02)00382-3
https://doi.org/10.1016/0020-0190(77)90064-3
https://doi.org/10.1093/bioinformatics/6.4.309
https://doi.org/10.1093/bioinformatics/6.4.309
https://doi.org/10.1016/0196-6774(90)90011-3
https://doi.org/10.1016/0196-6774(90)90011-3

302 P. Charalampopoulos et al.

27. Tai, K.: The tree-to-tree correction problem. J. ACM 26(3), 422–433 (1979).
https://doi.org/10.1145/322139.322143

28. Touzet, H.: Comparing similar ordered trees in linear-time. J. Discrete Algorithms
5(4), 696–705 (2007). https://doi.org/10.1016/j.jda.2006.07.002

29. Valiente, G.: Algorithms on Trees and Graphs. Springer, Cham (2002). https://
doi.org/10.1007/978-3-030-81885-2

30. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM
21(1), 168–173 (1974). https://doi.org/10.1145/321796.321811

31. Waterman, M.: Introduction to Computational Biology: Maps, Sequences and
Genomes, Chapters 13, 14. Chapman and Hall (1995)

32. Williams, V.V., Williams, R.R.: Subcubic equivalences between path, matrix,
and triangle problems. J. ACM 65(5), 27:1-27:38 (2018). https://doi.org/10.1145/
3186893

33. Yao, X., Durme, B.V., Callison-Burch, C., Clark, P.: Answer extraction as sequence
tagging with tree edit distance. In: HLT-NAACL 2013, pp. 858–867 (2013). http://
aclweb.org/anthology/N/N13/N13-1106.pdf

34. Zhang, K.: Algorithms for the constrained editing distance between ordered labeled
trees and related problems. Pattern Recogn. 28(3), 463–474 (1995). https://doi.
org/10.1016/0031-3203(94)00109-Y

35. Zhang, K., Shasha, D.E.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comput. 18(6), 1245–1262 (1989). https://
doi.org/10.1137/0218082

https://doi.org/10.1145/322139.322143
https://doi.org/10.1016/j.jda.2006.07.002
https://doi.org/10.1007/978-3-030-81885-2
https://doi.org/10.1007/978-3-030-81885-2
https://doi.org/10.1145/321796.321811
https://doi.org/10.1145/3186893
https://doi.org/10.1145/3186893
http://aclweb.org/anthology/N/N13/N13-1106.pdf
http://aclweb.org/anthology/N/N13/N13-1106.pdf
https://doi.org/10.1016/0031-3203(94)00109-Y
https://doi.org/10.1016/0031-3203(94)00109-Y
https://doi.org/10.1137/0218082
https://doi.org/10.1137/0218082

Quantum Time Complexity
and Algorithms for Pattern Matching

on Labeled Graphs

Parisa Darbari1, Daniel Gibney2(B), and Sharma V. Thankachan1

1 University of Central Florida, Orlando, Fl 32816, USA
2 Georgia Institute of Technology, Atlanta, GA 30332, USA

daniel.j.gibney@gmail.com

Abstract. The problem of matching (exactly or approximately) a pat-
tern P to a walk in an edge labeled graph G = (V, E), denoted PMLG,
has received increased attention in recent years. Here we consider con-
ditional lower bounds on the time complexity of quantum algorithms
for PMLG as well as a new quantum algorithm. We first provide a con-
ditional lower bound based on a reduction from the Longest Common
Subsequence problem (LCS) and the recently proposed NC-QSETH. For
PMLG under substitutions to the pattern, our results demonstrate (i)
that a quantum algorithm running in time O(|E|m1−ε + |E|1−εm) for
any constant ε > 0 would provide an algorithm for LCS on two strings
X and Y running in time Õ(|X||Y |1−ε + |X|1−ε|Y |), which is better
than any known quantum algorithm for LCS, and (ii) that a quan-

tum algorithm running in time O(|E|m 1
2 −ε + |E| 12 −εm) would violate

NC-QSETH. Results (i) and (ii) hold even when restricted to binary
alphabets for P and the edge labels in G. We then provide a quantum
algorithm for all versions of PMLG (exact, only substitutions, and sub-
stitutions/insertions/deletions) that runs in time Õ(

√|V ||E| · m). This
is an improvement over the classical O(|E|m) time algorithm when the
graph is non-sparse.

Keywords: Pattern matching · Labeled graphs · Quantum algorithms

1 Introduction

We consider an approximate version of the Pattern Matching on Labeled Graphs
problem (PMLG) under substitutions to the pattern, defined as follows: Given a
directed edge-labeled graph G = (V,E) with alphabet Σ, a string P of length m
also over alphabet Σ (which we call a pattern), and an integer δ ≥ 0, determine
if there exists a walk in G that matches a string P ′ such that dH(P, P ′) ≤ δ.
Here, dH(P, P ′) denotes the Hamming distance between P and P ′ and a walk
is a ordered list of edges in E, i.e., e1, ..., em where ei and ei+1 are incident
to the same vertex for 1 ≤ i < m. Edges are allowed to be repeated in a walk.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 303–314, 2022.
https://doi.org/10.1007/978-3-031-20643-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_22&domain=pdf
https://doi.org/10.1007/978-3-031-20643-6_22

304 P. Darbari et al.

Letting label(e) denote the edge label for an edge e ∈ E, we say a length m
string P ′[1,m] matches a walk e1, ..., em if P ′[i] = label(ei) for 1 ≤ i ≤ m.

PMLG was first considered in the context of pattern matching in hypertext [5,
30,32,33]. It has become increasingly important in Computational Biology where
labeled graphs are used as multi-genomic references and sets of reads obtained
through sequencing must be mapped to the reference [1,10,13,17,27,34]. PMLG
is also used in variant calling [9,12,25] and read error correction [28,31].

The theoretical aspects of PMLG have also received significant study. The
classical algorithm for PMLG is a dynamic programming solution that runs in
time O(|E|m) [5,32]. It was first shown in [15] that a PMLG algorithm running
in time O(|E|1−εm + |E|m1−ε) for any constant ε > 0 would contradict the
Strong Exponential Time Hypothesis (SETH) even for directed acyclic graphs
(DAGs) and δ = 0. These results were later strengthened in [18] to show that the
same lower bounds hold based on likely weaker assumptions in circuit complex-
ity. Nevertheless, there exist classes of graphs where the exact matching problem
can be solved in near-linear time, e.g., Wheeler graphs [16]. However, recogniz-
ing whether a given graph has these properties is a hard problem [4,19,20].
The version of the problem where modifications are allowed to labels in the
graph rather than the pattern has also been considered, which is NP-hard even
when restricted to only substitutions over binary alphabets on special classes of
graphs [5,21,26].

Despite the extent of the applied and theoretical work, there has been sparse
research on utilizing quantum computing to solve PMLG. Equi et al. recently
considered the problem for leveled DAGs, where they presented an algorithm
running in O(|E|+√

m) [14]. Several closely related problems have been studied
as well. In [2], quantum algorithms for the problem of determining whether a
string is contained in a regular language were considered. However, these regular
languages were represented as monoids rather than NFAs, meaning the input
representation could differ drastically from the labeled graphs used here. For
finding exact matches in a single string (which could be viewed as a path) there
exists a quantum algorithm running in Õ(

√
n+

√
m) time1 on a string of length

n and pattern of length m [24,36].
We provide the first hardness result for PMLG in the quantum computing

setting based on a reduction from the Longest Common Subsequence problem
(LCS) and the conjectured hardness NC-QSETH [8], along with a new algorithm
yielding a quantum speedup for non-sparse graphs.

1.1 Quantum Computing and Input Model

Quantum algorithms typically have their problem instance expressed as an ora-
cle, or a function that allows one to query the problem instance. On a quantum
computer, these queries can be made with an input that is the superposition
of multiple inputs, allowing for a type of parallelism. We refer the interested
reader to [23]. These oracles are often treated as black boxes, but they can also

1 Õ(·) suppresses poly-logarithmic factors.

Quantum Algorithms for PMLG 305

be provided as a Boolean circuit, or through an algorithmic description (under
the quantum random access assumption discussed more below). The query com-
plexity of a quantum algorithm is defined as the number of times that the oracle
gets queried by the algorithm, and the quantum time complexity is the number
of elementary gates2 needed to implement the quantum algorithm, in addition
to the number of queries.

A lower-level description of a quantum algorithm in terms of unitary oper-
ators acting on a state vector (a quantum circuit) is necessary for many of
the algorithms that are the fundamental building blocks of quantum computing.
These include, for example, quantum random walk algorithms for finding marked
vertices in a graph [29], period finding algorithms [35], and Grover’s search [22].
However, it is often possible to utilize these fundamental algorithms on a higher
level of abstraction. This accommodates algorithm descriptions more similar to
those used in imperative programming. Examples of this approach include the
graph algorithms presented in [11], the Õ(

√
n+

√
m) pattern matching algorithm

mentioned in the introduction [24], and a recent algorithm for finding the longest
common substring of two strings [3]. One useful assumption is quantum random
access, described in [3,7]. Using quantum random access, a classical T -time algo-
rithm can be invoked by a quantum search algorithm, like Grover’s search, in
O(T) time. We assume quantum random access here as well and provide our
algorithm description at a high level. In fact, our solution in Sect. 3 can be seen
as an algorithm (or even implemented as a small Boolean circuit) that utilizes
the oracles of the original PMLG instance to create new oracles that are then
used as input for a pre-existing quantum algorithm for shortest st-path in a
directed graph.

For PMLG, we assume that our oracles allow us to query the inde-
gree/outdegree and adjacency list of any vertex and the label of any edge. Any
symbol in the pattern P can also be queried by specifying an index.

1.2 NC-QSETH

When establishing computational complexity results for quantum algorithms,
using known lower bounds on query complexity has an immediate limitation
for proving super-linear lower bounds on quantum time complexity. For prob-
lems where the input represents something such as a graph, once a linear num-
ber of queries have been made, the entire input is obtained by the algorithm.
An alternative approach taken by the authors of [8] is to establish conditional
lower bounds on quantum time complexity using the hypothesized hardness NC-
QSETH. Although the details of NC-QSETH, which is based on a conjectured
hardness of determining properties of circuits in a subset of the circuit class NC,
are too complex to be covered here, we can use the result below.

Lemma 1 (LCS lower bounds based on NC-QSETH [8]). Under NC-
QSETH the Longest Common Subsequence problem (LCS) on two strings of
length n cannot be solved in quantum time Õ(n1.5−ε) for any constant ε > 0.
2 Elementary gates are defined in [6].

306 P. Darbari et al.

1.3 Our Results

We prove the following theorem in Sect. 2.

Theorem 1. There exists a reduction from LCS with strings X and Y over
alphabet Σ to PMLG with substitutions over a binary alphabet. This requires
O((|X|+ |Y |) log(|X|+ |Y |) · log2 |Σ|) time (on a classical computer) and outputs
a graph G = (V,E) where |V |, |E| = O(|X| log(|X| + |Y |) · log2 |Σ|) and pattern
P [1,m] where m = O(|Y | log(|X| + |Y |) · log2 |Σ|).
Theorem 1 gives us the following Corollaries.

Corollary 1. An algorithm for PMLG with substitutions to the pattern over a
binary alphabet running in quantum time Õ(|E|1−εm+|E|m1−ε) for any constant
ε > 0 would provide an algorithm running in quantum time Õ(|X||Y |1−ε +
|X|1−ε|Y |) for LCS.

It should be noted that no strongly sub-quadratic quantum algorithms for LCS
are known.

Corollary 2. An algorithm for PMLG with substitutions to the pattern over a
binary alphabet running in quantum time Õ(|E| 1

2−εm + |E|m 1
2−ε) for any con-

stant ε > 0, would provide an algorithm running in quantum time Õ(|X| 1
2−ε|Y |+

|X||Y | 1
2−ε) for LCS, violating NC-QSETH.

In Sect. 3, we provide an algorithm running in quantum time Õ(m
√|V ||E|)

for PMLG based on Durr et al.’s quantum algorithm for shortest path [11],
implying a quantum speedup over the classical algorithm when the graph is not
sparse, i.e., |E| = Ω(|V |1+ε). This algorithm also works when insertions and
deletions are allowed to the pattern in addition to substitutions.

2 Reduction from LCS to PMLG

We first present a simplified version of the reduction to PMLG with a larger
alphabet and then show how to modify it to obtain the result for PMLG on
binary alphabets. In the decision version of LCS, we are given two strings X, Y
and k ≥ 0 and have to decide where there exists a common subsequence of X
and Y having a length at least k. Suppose |Y | ≥ |X| and let n = |Y |.

We construct our graph G based on the string X. We start by making two
sets of vertices u1, u2, ..., u|X| and v1, v2, ..., v|X|. We add directed edges (vi, ui)
with labels X[i] for 1 ≤ i ≤ |X|. All remaining edges are labeled with a new
symbol # that is not found in either X or Y . We then create edges (ui, vi+1)
for 1 ≤ i ≤ |X| − 1. Next, for vi, 1 ≤ i ≤ |X| we create edges (vi, vi), (vi, vi+1),
(vi, vi+2), (vi, vi+4), ..., (vi, vi+2c) for the largest c such that i + 2c ≤ |X| and
the edge (u|X|, u|X|). See Fig. 1. Let δ = n − k and

P = #�log n�+1 Y [1] #�log n�+1 Y [2] #�log n�+1 . . . #�log n�+1 Y [n].

Quantum Algorithms for PMLG 307

Fig. 1. Reduction from LCS to PMLG for X = aababbbab. The dashed edges are
only shown from v1 but similar edges are present from every vi, 1 ≤ i ≤ |X|. If
Y = baabbabaa then P = #5b#5a#5a#5b#5b#5a#5b#5a#5a.

Lemma 2. The graph distance from vi to vj for any j > i is at most �log n�.
Proof. Let i′ be the largest value such that i ≤ i′ ≤ j and there exists edge
(vi, vi′) ∈ E. By construction i′ = i + 2x for some x ≥ 0. We claim i′ > j−i

2 + i.
Otherwise i′ = i + 2x ≤ j−i

2 + i implies i + 2x+1 ≤ j, contradicting that index
i′ was the largest possible. Since the distance between the current index and j
can always be at least halved, by repeatedly apply the same process, we need at
most �log n� additional edges before reaching j.

The correctness of the reduction is established by the following lemma.

Lemma 3. There exists an LCS of length at least k for strings X and Y iff
there exists a walk in G that matches P after at most δ = n − k substitutions to
P .

Proof. First assume there exists an LCS of length k′ ≥ k, with X[i1], X[i2],
..., X[ik′] matching Y [j1], Y [j2], ..., Y [jk′]. We obtain a walk on G as follows:
starting at vertex vi1 , we traverse the self-loop (vi1 , vi1) until we reach the Y [j1]
in P , substituting symbols in P to # as necessary. Then we follow edge (vi1 , ui1)
matching Y [j1] in P . We now traverse the edge (ui, vi+1) and the shortest path
from vi+1 to vi2 , which by Lemma 2 has at most �log n� edges. We next tra-
verse the self-loop (vi2 , vi2) until reaching the symbol Y [j2] in P , at which point
we match Y [j2] with the edge (vj2 , uj2). This process is repeated until Y [n] is
matched. Exactly n − k′ ≤ n − k = δ symbols in P are substituted to #.

Next suppose there exists a walk in G that matches P with δ′ ≤ δ substitu-
tions. This implies that n − δ′ of the non-#-symbols in P are not substituted
and instead matched with symbols on edges (vi, ui). By construction, once the
edge (vi, ui) is traversed, the next edge with a non-#-label traversed is an edge
(vi′ , ui′) where i′ > i. Hence, the non-# symbols in P matched with edges in G
correspond to a common subsequence of X and Y of length n − δ′ ≥ n − δ = k.

It can be easily shown that statement of Lemma 3 holds when deletions and
insertions are also allowed to P . Lemma 4 proves this result.

Lemma 4. Given graph G and path P as in our reduction, if a walk minimizes
the number of edits to P , we can assume only substitutions are made.

308 P. Darbari et al.

Proof. Any substring of P consisting of only # can be matched without edit
cost from any vertex vi, 1 ≤ i ≤ |X|. From vertices ui, 1 ≤ i ≤ |X|, an edge
with # needs to be traversed regardless so it would be suboptimal to delete
any # in P that could be matched on an edge (ui, vi+1). Combining these, an
optimal solution never deletes a substring of P of the form #x, x ≥ 1. This leaves
only substrings that contain some symbol Y [i]. However, the cost for deleting
any such substring is at least the cost of substituting Y [i] to a #-symbol. We
conclude that no deletions need to be made to P in an optimal solution.

For insertions, a similar argument holds. Any insertion of a substring of the
form #x, x ≥ 1, is clearly suboptimal since there exist enough #-symbols to
traverse from any two vertices vi and vj . An insertion that includes a non-#-
symbol is also unnecessary, since the edge matched against that symbol could
have been not traversed for the same cost.

2.1 Hardness of PMLG over Binary Alphabet

Let Σ′ = Σ ∪ {#}, σ = |Σ′| ≥ 3, and � = 2�log σ�. We will create our own
constant weight binary code (i.e., one where all codewords have the same number
of 1’s) for Σ′. We first take t = �log σ�. This makes

(
�
t

) ≥ σ and allows us to
assign to every symbol in Σ′ a distinct binary string of length � containing exactly
t 1’s. Let enc(α) denote this encoding for α ∈ Σ′. Controlling the number of 1’s
allows us to compute the cost of an optimal solution, as described next. We
modify the earlier reduction by replacing every edge (u, v) (allowing for v = u)
having label α ∈ Σ′ with:

– A directed path from u to v that matches (10t−2+�)t0t−1enc(α). These paths
are called symbol paths;

– A parallel directed path starting and ending at the same vertices (or vertex)
that matches the string (10t−2+�)t1t−10�. These are called escape paths.

See Fig. 2.

Fig. 2. Conversion of an edge in G with label α from u to v to two paths in G′.

We denote the resulting graph as G′. The pattern P ′ is created by replacing
every symbol P [i] with (10t−2+�)t1t−1enc(P [i]) for 1 ≤ i ≤ n. Let

δ′ = t(n − k) + (t − 1)(|P | − (n − k))
= t(n − k) + (t − 1)(n(�log n� + 2) − (n − k)).

Quantum Algorithms for PMLG 309

Note that |V ′|, |E′|, and |P ′| are O(n log n · log2 σ).

Lemma 5. Any walk in G′ matching P ′ with at most δ′ mismatches must start
at some vertex corresponding to an original vertex in V .

Proof. First, consider a walk starting at some vertex w internal to a subdivided
path (i.e., one not corresponding to an original vertex in G) and where w does
not have an edge with 1 leaving it. By construction, this causes substrings of
the form 10t−2+l in P to not be synchronised and creates at least t mismatches
for every complete sub-divided path traversed. To see this, for each substring
(10t−2+�)t1t−1enc(P [i]) in at most one of the 1’s in the prefix (10t−1+�)t can be
matched to an edge and at least one of the 0’s is mismatched to a 1 edge as well.

If the walk starts at a non-original vertex with an edge leaving it labeled
1, but not a edge internal to subpath labeled 1t in any escape path. Then for
each substring (10t−2+�)t1t−1enc(P [i]) in P ′, the substring enc(α) is forced to
traverse a subpath labeled 0t, causing at least t mismatches once again. Finally,
suppose the walk starts at a non-original vertex with an edge leaving it labeled
1, but an internal to subpath labeled 1t in some escape path. Then for each
substring (10t−2+�)t1t−1enc(P [i]) in P ′, the prefix (10t−2+�)t once again causes
t mismatches.

In all cases, at least t|P | > δ′ mismatches are causes in total.

Lemma 6. There exists an LCS of length at least k for strings X and Y iff
there exists a walk in G′ that matches P ′ after at most δ′ substitutions to P ′.

Proof. First, suppose there exists an LCS of length at least k. Follow the walk
in G′ corresponding to the walk in G that requires at most δ substitutions
to P . When doing so, take the symbol path when the symbol in P matched
the corresponding edge in G, and the escape path otherwise. This incurs t − 1
mismatches per subdivided edge corresponding to a match and t mismatches
per subdivided edge corresponding to a mismatch. Hence the total number of
mismatches is at most t(n − k) + (t − 1)(|P | − (n − k)) = δ′.

Next, suppose there exists a walk in G′ matching P ′ with at most δ′

mismatches. By Lemma 5, substrings of the form (10t−2+�)t1t−1enc(P [i]) are
matched (after substitutions) to sub-paths in the walk that start at the begin-
ning of symbol or escape paths. If enc(P [i]) 	= enc(α), then the number of mis-
matches for that substring is t since the number of mismatches for matching
the escape path is t (Hamming distance of 1t−1enc(P [i]) and 1t−10�), versus
the symbol path, which is at least t (Hamming distance of 1t−1enc(P [i]) and
0t−1enc(α)). If enc(P [i]) = enc(α), by matching the symbol path, the number
of mismatches is t − 1 (Hamming distance of 1t−1enc(P [i]) and 0t−1enc(α)).
We conclude that in an optimal solution the total number of mismatches is t
times the number of mismatched symbols between P and the corresponding
walk in G, plus t − 1 times the number of matched symbols between P and the
corresponding walk in G. Hence, if the number mismatches for G′ is at most
δ′ = t(n − k) + (t − 1)(|P | − (n − k)), the number mismatched symbols in G is
at most n − k = δ. By Lemma 3, this implies the LCS of X and Y is at least k.

This completes the proof of Theorem 1.

310 P. Darbari et al.

3 Quantum Algorithm for PMLG

We will use Durr et al.’s [11] single-source shortest path algorithm as a black box.
Their algorithm is a modification of Dijkstra’s algorithm that utilizes a minimum
finding version of Grover’s search to obtain quantum time/query complexity
Õ(

√|V ||E|) on a graph G = (V,E). It solves the st-shortest path problem
correctly with constant probability greater than 1

2 . The version of this algorithm
that we are using assumes the graph is represented using adjacency lists (in
the form of an oracle). Given that the outdegree vi is d+(vi), the oracles fi :
[d+(vi)]
→ {1, ..., |V |} × N have

fi(j) = (the jth vertex adjacent to vertex vi, the weight on the corresponding edge).

We assume that |E| = Ω(|V |) and assign an arbitrary ordering to V .
A reduction from PMLG to the Single Source Shortest Path problem on an

alignment graph was shown by Amir et al. in [5]. We will be using the oracles
for G to implicitly construct an alignment graph for G = (V,E) and P [1,m],
denoted G′. The number of vertices in G′ is Θ(|V |m) and the number of edges
is Θ(|E|m). Because of this, if we explicitly constructed the alignment graph,
the Θ(|E|m) edges would result in no speed up over the classical algorithm.
The key insight into efficiently using Durr et al.’s algorithm is that G′ need
not be explicitly constructed to simulate the oracles used by the shortest path
algorithm. We show how the output of the oracles for G′ can be computed in
constant time given the oracles for G and P .

Our algorithm allows for insertions and deletions in addition to substitutions.
Assume we have substitution cost S, deletion cost D, and insertion cost I. The
alignment graph G′ = (V ′, E′) is as follows: The vertex set is

V ′ = {vj
i | 1 ≤ i ≤ |V |, 1 ≤ j ≤ m + 1} ∪ {s, t}.

Indicating edges with the triple (start vertex, end vertex, weight), the edge set
is

E′ ={(s, v1
i , 0) | 1 ≤ i ≤ |V |} ∪

{(vj
i , v

j
h, I) | 1 ≤ j ≤ m, (vi, vh) ∈ E} ∪

{(vj
i , v

j+1
h , 0) | 1 ≤ j ≤ m, (vi, vh) ∈ E and label((vi, vh)) = P [j]} ∪

{(vj
i , v

j+1
h , S) | 1 ≤ j ≤ m, (vi, vh) ∈ E and label((vi, vh)) 	= P [j]} ∪

{(vj
i , v

j+1
i ,D) | 1 ≤ i ≤ |V |, 1 ≤ j ≤ m} ∪

{(vm+1
i , t, 0) | 1 ≤ i ≤ |V |}.

The linearized index for s is 0, for t it is (m+1)|V |+1, and for vj
i , 1 ≤ i ≤ |V |,

1 ≤ j ≤ m + 1, it is (j − 1)|V | + i.

Quantum Algorithms for PMLG 311

Fig. 3. An alignment graph G′ (bottom) that is constructed from the starting graph
G (top) and pattern P = baa. The edges labeled I correspond to insertion and have
weight I; the edges labeled S correspond to substitution and have weight S; the edges
labeled D correspond to deletion and have weight D; the black edges correspond to an
exact match and have weight 0.

For 1 ≤ i ≤ |V |, 1 ≤ j ≤ m, d+(vj
i) = 2d+(vi) + 1 and the oracle is

f j
i : [d+(vj

i)]
→ {0, ..., |V ′| − 1} × N, where

f
j
i (k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

((j − 1)|V | + fi(k), I) 1 ≤ k ≤ d+(vi)

(j|V | + fi(k − d+(vi)), 0) d+(vi) + 1 ≤ k ≤ 2d+(vi), label((vi, vfi(k−d+(vi))
)) = P [j]

(j|V | + fi(k − d+(vi)), S) d+(vi) + 1 ≤ k ≤ 2d+(vi), label((vi, vfi(k−d+(vi))
)) �= P [j]

(j|V | + i, D) k = 2d+(vi) + 1

For 1 ≤ i ≤ |V | and j = m + 1, d+(vj
i) = 1 and f j

i (1) = ((m + 1)|V | + 1, 0). For
vertex s and 1 ≤ k ≤ |V |, f0(k) = (k, 0). See Fig. 3 for an example alignment
graph.

Lemma 7 ([5]). There exists an st-path in the alignment graph G′ with total
weight δ iff there exists a walk in G that P matches after δ edits.

Applying the algorithm of Durr et al. and utilizing the oracles above gives
an algorithm running in quantum time Õ(

√|V ′||E′|) for PMLG. Using that

312 P. Darbari et al.

|V ′| = (m + 1)|V | + 2 and |E′| = Θ(m|E|) this has query/time complexity
Õ(m

√|V ||E|).
Theorem 2. There exists a quantum algorithm that solves PMLG (exact match-
ing, matching with substitutions to P , or matching with substitutions, inser-
tions, and deletions to P) with constant probability greater than 1

2 and has
Õ(m

√|V ||E|) quantum time and query complexity.

4 Discussion

We leave open the problem of establishing the same reduction from LCS to
PMLG when edits (substitutions, insertion, and deletions) are allowed to the
pattern and the PMLG alphabet is binary. Lemma 4 establishes this result for
polynomial sized alphabets. Note that the hardness of LCS under NC-QSETH
(Lemma 1) holds for constant-sized alphabets, thus Corollary 2 can be extended
to PMLG with edits to the pattern for constant-sized alphabets.

Our reduction from LCS creates a sparse graph. A subquadratic time reduc-
tion to a dense graph would give an improved quantum algorithm for LCS,
suggesting the challenge of finding such a reduction. Moreover, the graph in our
reduction is cyclic. This is interesting in light of improvements in the query com-
plexity of quantum algorithms for recognizing if a string is in a regular language
when the monoid representation of the regular language is acyclic [2]. If these
results for monoids can be efficiently transferred to acyclic NFAs, it suggests the
challenge of finding a reduction from LCS to PMLG on DAGs when δ = 0.

Acknowledgement. This research is supported in part by the U.S. National Science
Foundation (NSF) grants CCF-2146003 and CCF-2112643.

References

1. Pangaia, November 2020. https://www.pangenome.eu/
2. Aaronson, S., Grier, D., Schaeffer, L.: A quantum query complexity trichotomy

for regular languages. In: 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 942–965. IEEE (2019)

3. Akmal, S., Jin, C.: Near-optimal quantum algorithms for string problems. In:
Naor, J.S., Buchbinder, N. (eds.) Proceedings of the 2022 ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2022, Virtual Conference/Alexandria, VA,
USA, 9–12 January 2022, pp. 2791–2832. SIAM (2022). https://doi.org/10.1137/
1.9781611977073.109

4. Alanko, J., D’Agostino, G., Policriti, A., Prezza, N.: Regular languages meet prefix
sorting. In: Chawla, S. (ed.) Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, 5–8 January 2020, pp.
911–930. SIAM (2020). https://doi.org/10.1137/1.9781611975994.55

5. Amir, A., Lewenstein, M., Lewenstein, N.: Pattern matching in hypertext. J. Algo-
rithms 35(1), 82–99 (2000). https://doi.org/10.1006/jagm.1999.1063

6. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A
52(5), 3457 (1995)

https://www.pangenome.eu/
https://doi.org/10.1137/1.9781611977073.109
https://doi.org/10.1137/1.9781611977073.109
https://doi.org/10.1137/1.9781611975994.55
https://doi.org/10.1006/jagm.1999.1063

Quantum Algorithms for PMLG 313

7. Buhrman, H., Loff, B., Patro, S., Speelman, F.: Memory compression with quan-
tum random-access gates. CoRR abs/2203.05599 (2022). https://doi.org/10.48550/
arXiv.2203.05599

8. Buhrman, H., Patro, S., Speelman, F.: A framework of quantum strong
exponential-time hypotheses. In: Bläser, M., Monmege, B. (eds.) 38th Interna-
tional Symposium on Theoretical Aspects of Computer Science, STACS 2021,
Saarbrücken, Germany, 16–19 March 2021 (Virtual Conference). LIPIcs, vol. 187,
pp. 19:1–19:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://
doi.org/10.4230/LIPIcs.STACS.2021.19

9. Chen, S., Krusche, P., Dolzhenko, E., Sherman, R.M., Petrovski, R., Schlesinger,
F., Kirsche, M., Bentley, D.R., Schatz, M.C., Sedlazeck, F.J., et al.: Paragraph:
a graph-based structural variant genotyper for short-read sequence data. Genome
Biol. 20(1), 1–13 (2019). https://doi.org/10.1186/s13059-019-1909-7

10. The Computational Pan-Genomics Consortium: Computational pan-genomics: sta-
tus, promises and challenges. Briefings Bioinform. 19(1), 118–135 (2018)

11. Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complexity of
some graph problems. SIAM J. Comput. 35(6), 1310–1328 (2006). https://doi.
org/10.1137/050644719

12. Eggertsson, H.P., et al.: GraphTyper2 enables population-scale genotyping of struc-
tural variation using pangenome graphs. Nat. Commun. 10(1), 1–8 (2019)

13. Eizenga, J.M., et al.: Pangenome graphs. Ann. Rev. Genomics Hum. Genet. 21,
139–162 (2020)

14. Equi, M., de Griend, A.M., Mäkinen, V.: From bit-parallelism to quantum: break-
ing the quadratic barrier. CoRR abs/2112.13005 (2021). https://arxiv.org/abs/
2112.13005

15. Equi, M., Grossi, R., Mäkinen, V., Tomescu, A., et al.: On the complexity of string
matching for graphs. In: 46th International Colloquium on Automata, Languages,
and Programming (ICALP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2019)

16. Gagie, T., Manzini, G., Sirén, J.: Wheeler graphs: a framework for BWT-based
data structures. Theor. Comput. Sci. 698, 67–78 (2017). https://doi.org/10.1016/
j.tcs.2017.06.016

17. Garrison, E., et al.: Variation graph toolkit improves read mapping by representing
genetic variation in the reference. Nat. Biotechnol. 36(9), 875–879 (2018)

18. Gibney, D., Hoppenworth, G., Thankachan, S.V.: Simple reductions from formula-
SAT to pattern matching on labeled graphs and subtree isomorphism. In: Le, H.V.,
King, V. (eds.) 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual
Conference, 11–12 January 2021, pp. 232–242. SIAM (2021). https://doi.org/10.
1137/1.9781611976496.26

19. Gibney, D., Thankachan, S.V.: On the hardness and inapproximability of recogniz-
ing wheeler graphs. In: Bender, M.A., Svensson, O., Herman, G. (eds.) 27th Annual
European Symposium on Algorithms, ESA 2019, Munich/Garching, Germany, 9–
11 September 2019. LIPIcs, vol. 144, pp. 51:1–51:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ESA.2019.51

20. Gibney, D., Thankachan, S.V.: On the complexity of recognizing wheeler graphs.
Algorithmica 84(3), 784–814 (2022). https://doi.org/10.1007/s00453-021-00917-5

21. Gibney, D., Thankachan, S.V., Aluru, S.: The complexity of approximate pattern
matching on de Bruijn graphs. In: Pe’er, I. (ed.) RECOMB 2022. LNCS, vol.
13278, pp. 263–278. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
04749-7 16

https://doi.org/10.48550/arXiv.2203.05599
https://doi.org/10.48550/arXiv.2203.05599
https://doi.org/10.4230/LIPIcs.STACS.2021.19
https://doi.org/10.4230/LIPIcs.STACS.2021.19
https://doi.org/10.1186/s13059-019-1909-7
https://doi.org/10.1137/050644719
https://doi.org/10.1137/050644719
https://arxiv.org/abs/2112.13005
https://arxiv.org/abs/2112.13005
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1137/1.9781611976496.26
https://doi.org/10.1137/1.9781611976496.26
https://doi.org/10.4230/LIPIcs.ESA.2019.51
https://doi.org/10.1007/s00453-021-00917-5
https://doi.org/10.1007/978-3-031-04749-7_16
https://doi.org/10.1007/978-3-031-04749-7_16

314 P. Darbari et al.

22. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 212–219 (1996)

23. Gruska, J., et al.: Quantum Computing, vol. 2005. McGraw-Hill, London (1999)
24. Hariharan, R., Vinay, V.: String matching in õ(sqrt(n)+sqrt(m)) quantum time.

J. Discrete Algorithms 1(1), 103–110 (2003). https://doi.org/10.1016/S1570-
8667(03)00010-8

25. Hickey, G., et al.: Genotyping structural variants in pangenome graphs using the
vg toolkit. Genome Biol. 21(1), 1–17 (2020). https://doi.org/10.1186/s13059-020-
1941-7

26. Jain, C., Zhang, H., Gao, Y., Aluru, S.: On the complexity of sequence-to-graph
alignment. J. Comput. Biol. 27(4), 640–654 (2020)

27. Li, H., Feng, X., Chu, C.: The design and construction of reference pangenome
graphs with minigraph. Genome Biol. 21(1), 1–19 (2020). https://doi.org/10.1186/
s13059-020-02168-z

28. Limasset, A., Flot, J.F., Peterlongo, P.: Toward perfect reads: self-correction of
short reads via mapping on de Bruijn graphs. Bioinformatics 36(5), 1374–1381
(2020)

29. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM
J. Comput. 40(1), 142–164 (2011)

30. Manber, U., Wu, S.: Approximate string matching with arbitrary costs for text
and hypertext. In: Advances in Structural and Syntactic Pattern Recognition, pp.
22–33. World Scientific (1992)

31. Morisse, P., Lecroq, T., Lefebvre, A.: Hybrid correction of highly noisy long reads
using a variable-order de Bruijn graph. Bioinformatics 34(24), 4213–4222 (2018)

32. Navarro, G.: Improved approximate pattern matching on hypertext. Theor. Comput.
Sci. 237(1–2), 455–463 (2000). https://doi.org/10.1016/S0304-3975(99)00333-3

33. Park, K., Kim, D.K.: String matching in hypertext. In: Galil, Z., Ukkonen, E. (eds.)
CPM 1995. LNCS, vol. 937, pp. 318–329. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-60044-2 51

34. Paten, B., Novak, A.M., Eizenga, J.M., Garrison, E.: Genome graphs and the
evolution of genome inference. Genome Res. 27(5), 665–676 (2017)

35. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
New Mexico, USA, 20–22 November 1994, pp. 124–134. IEEE Computer Society
(1994). https://doi.org/10.1109/SFCS.1994.365700

36. Tzanis, E.: A quantum algorithm for string matching. In: Guimarães, N., Isáıas,
P.T. (eds.) AC 2005, Proceedings of the IADIS International Conference on Applied
Computing, Algarve, Portugal, 22–25 February 2005, vol. 2. pp. 374–377. IADIS
(2005)

https://doi.org/10.1016/S1570-8667(03)00010-8
https://doi.org/10.1016/S1570-8667(03)00010-8
https://doi.org/10.1186/s13059-020-1941-7
https://doi.org/10.1186/s13059-020-1941-7
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1016/S0304-3975(99)00333-3
https://doi.org/10.1007/3-540-60044-2_51
https://doi.org/10.1007/3-540-60044-2_51
https://doi.org/10.1109/SFCS.1994.365700

Pattern Matching Under DTW Distance

Garance Gourdel1,2(B), Anne Driemel3, Pierre Peterlongo2,
and Tatiana Starikovskaya1

1 DIENS, École normale supérieure de Paris, PSL Research University, Paris, France
garance.gourdel@gmail.com, starikovskaya@di.ens.fr

2 IRISA Inria Rennes, Rennes, France
pierre.peterlongo@inria.fr

3 Hausdorff Center for Mathematics, University of Bonn, Bonn, Germany

driemel@cs.uni-bonn.de

Abstract. In this work, we consider the problem of pattern matching
under the dynamic time warping (DTW) distance motivated by potential
applications in the analysis of biological data produced by the third gen-
eration sequencing. To measure the DTW distance between two strings,
one must “warp” them, that is, double some letters in the strings to
obtain two equal-lengths strings, and then sum the distances between
the letters in the corresponding positions. When the distances between
letters are integers, we show that for a pattern P with m runs and a
text T with n runs:
1. There is an O(m + n)-time algorithm that computes all locations

where the DTW distance from P to T is at most 1;
2. There is an O(kmn)-time algorithm that computes all locations

where the DTW distance from P to T is at most k.
As a corollary of the second result, we also derive an approximation
algorithm for general metrics on the alphabet.

Keywords: Dynamic time warping distance · Pattern matching ·
Small-distance regime · Approximation algorithms

1 Introduction

Introduced more than forty years ago [27], the dynamic time warping (DTW)
distance has become an essential tool in the time series analysis and its applica-
tions due to its ability to preserve the signal despite speed variation in com-
pared sequences. To measure the DTW distance between two discrete tem-
poral sequences, one must “warp” them, that is, replace some data items in
the sequences with multiple copies of themselves to obtain two equal-lengths
sequences, and then sum the distances between the data items in the corre-
sponding positions.

The DTW distance has been extensively studied for parameterized curves—
sequences where the data items are points in a multidimensional space—
specifically, in the context of locality sensitive hashing and nearest neighbor

This work was partially funded by the grants ANR-20-CE48-0001, ANR-19-CE45-0008
SeqDigger and ANR-19-CE48-0016 from the French National Research Agency.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Arroyuelo and B. Poblete (Eds.): SPIRE 2022, LNCS 13617, pp. 315–330, 2022.
https://doi.org/10.1007/978-3-031-20643-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20643-6_23&domain=pdf
https://doi.org/10.1007/978-3-031-20643-6_23

316 G. Gourdel et al.

search [7,9]. In this work, we focus on a somewhat simpler, but surprisingly
much less studied setting when the data items are elements of a finite set, the
alphabet. Following traditions, we call such sequences strings.

The classical textbook dynamic programming algorithm computes the DTW
distance between two N -length strings in O(N2) time and space. Unfortunately,
unless the Strong Exponential Time Hypothesis is false, there is no algorithm
with strongly subquadratical time even for ternary alphabets [1,5,17]. On the
other hand, very recently Gold and Sharir [12] showed the first weakly sub-
quadratic time algorithm (to be more precise, the time complexity of the algo-
rithm is O(N2 log log log N/ log log N)). Kuszmaul [17] gave a O(kN)-time algo-
rithm that computes the value of the distance between the strings if it is bounded
by k, assuming that the distance between any two distinct letters of the alphabet
is at least one, and used it to derive a subquadratic-time approximation algo-
rithm for the general case. Finally, it is known that binary strings admit much
faster algorithms: Abboud, Backurs, and Vassilevska Williams [1] showed an
O(N1.87)-time algorithm followed by a linear-time algorithm by Kuszmaul [19].

The problem of computing the DTW distance has also been studied in the
sparse and run-length compressed settings, as well as in the low distance regime.
In the sparse setting, we assume that most letters of the string are zeros. Hwang
and Gelfand [15] gave an O((s + t)N)-time algorithm, where s and t denote the
number of non-zero letters in each of the two strings. On sparse binary strings,
the distance can be computed in O(s+t) time [16,24]. Froese et al. [11] suggested
an algorithm with running time O(mN +nM), where M,N are the length of the
strings, and m,n are the sizes of their run length encodings. If n ∈ O(

√
N) and

m ∈ O(
√

M), their algorithm runs in time O(nm · (n + m)). For binary strings,
the DTW distance can be computed in O(nm) time [8].

Nishi et al. [25] considered the question of computing the DTW distance in
the dynamic setting when the stings can be edited, and Sakai and Inenaga [26]
showed a reduction from the problem of computing the DTW distance to the
problem of computing the longest increasing subsequence, which allowed them
to give polynomial-time algorithms for a series of DTW-related problems.

In this work, we focus on the pattern matching variant of the problem: Given
a pattern P and a text T , one must output the smallest DTW distance between P
and a suffix of T [1 . . r] for every position r of the text.

Our interest to this problem sparks from its potential applications in Third
Generation Sequencing (TGS) data comparisons. TGS has changed the genomic
landscape as it allows to sequence reads of few dozens of thousand of letters
where previous sequencing techniques were limited to few hundred letters [2].
However, TGS suffers from a high error rate (from ≈ 1 to 10% depending on
the used techniques) mainly due to the fact that the DNA sequences are read
and thus sequenced at an uneven speed. The uneven sequencing speed has a
major impact in the sequencing quality of DNA regions composed of two or
more equal consecutive letters. Those regions, called homopolymers, are hardly
correctly sequenced as, due to the uneven sequencing speed, their size cannot be
precisely determined [14]. In particular, a common post-sequencing task consists

Pattern Matching Under DTW Distance 317

in aligning the obtained reads to a reference genome. This enables for instance
to predict alternative splicing and gene expression [13] or to detect structural
variations [23]. All known aligners use the edit distance, most likely, due to
the availability of software tools for the latter (see [22] and references therein).
However, we find that the nature of TGS errors is much better described by the
DTW distance, which we confirm experimentally in Sect. 5.

Our Contribution. As a baseline, the problem of pattern matching under the
DTW distance can be solved using dynamic programming in time O(MN),
where M is the length of the pattern and N of the text (Eq. 1).

In this work, we aim to show more efficient algorithms for the low-distance
regime on run-length compressible data, which is arguably the most interesting
setting for the TGS data processing. Formally, in the k-DTW problem we are
given an integer k > 0, a pattern P and a text T , and must find all positions r of
the text such that the smallest DTW distance between the pattern P and a suffix
of T [1 . . r] does not exceed k. One might hope that the DTW distance is close
enough to the edit distance and thus is amenable to the techniques developed
for the latter, such as [20,21]. In the full version, we show that this is indeed the
case for k = 1:

Lemma 1. Given run-length encodings of a pattern P and of a text T over an
alphabet Σ and a distance d : Σ × Σ → Z

+, the 1-DTW problem can be solved
in O(m + n) time, where m is the number of runs in P and n is the number
of runs in T . The output is given in a compressed form, with a possibility to
retrieve each position in constant time.

Unfortunately, extending the approach of [20,21] to higher values of k seems
to be impossible as it is heavily based on the fact that in the edit distance
dynamic programming matrix the distances are non-decreasing on every diago-
nal, which is not the case for the DTW distance (see Fig. 1).

In Sect. 3 we develop a different approach. Interestingly, we show that the
value of any cell of the bottom row and the right column of a block of the
dynamic programming table (i.e. a subtable formed by a run in the pattern
and a run in the text) can be computed in constant time given a constant-time
oracle access to the left column and the top row. Combining this with a compact
representation of the k-bounded values, we obtain the following result:

Theorem 1. Given run-length encodings of a pattern P and of a text T over an
alphabet Σ and a distance d : Σ×Σ → Z

+, the k-DTW problem can be solved in
O(kmn) time, where m is the number of runs in P and n is the number of runs
in T . The output is given in a compressed form, with a possibility to retrieve
each position in constant time.

We note that while our algorithm can be significantly faster than the baseline,
its worst-case time complexity is cubic. We leave it as an open question whether
there exists an O(k ·(m+n))-time algorithm. Finally, in Sect. 4 we use Theorem 1
to derive an approximation algorithm for the general variant of pattern matching
under the DTW distance.

318 G. Gourdel et al.

Fig. 1. Consider P = AATTAT and T = GGTTTTCTTATTTTGGTGATA. A cell
(i, j) contains the smallest DTW distance between P [1 . . i] and T [1 . . j], where the
distance between two letters equals one if they are distinct and zero otherwise. A
non-monotone diagonal of the table is shown in red. (Color figure online)

2 Preliminaries

We assume a polynomial-size alphabet Σ with σ letters. A string X is a sequence
of letters. If the sequence has length zero, it is called the empty string. Otherwise,
we assume that the letters in X are numbered from 1 to n =: |X| and denote
the i-th letter by X[i]. We define X[i . . j] to be equal to X[i] . . . X[j] which we
call a substring of X if i ≤ j and to the empty string otherwise. If j = n, we call
a substring X[i . . j] a suffix of X.

Definition 1 (Run, Run-length encoding). A run of a string X is a max-
imal substring X[i . . j] such that X[i] = X[i + 1] = . . . = X[j]. The run-length
encoding of a string X, RLE(X) is a sequence obtained from X by replacing
each run with a tuple consisting of the letter forming the run and the length of
the run. For example, RLE(aabbbc) = (a, 2)(b, 3)(c, 1).

Let d : Σ × Σ → R
+ be a distance function such that for any letters a, b ∈

Σ, a �= b, we have d(a, a) = 0 and d(a, b) > 0. The dynamic time warping
distance DTWd(X,Y) between strings X,Y ∈ Σ∗ is defined as follows. If both
strings are empty, DTWd(X,Y) = 0. If one of the strings is empty, and the
other is not, then DTWd(X,Y) = ∞. Otherwise, let X = X[1]X[2] . . . X[r] and
Y = Y [1]Y [2] . . . Y [q]. Consider an r × q grid graph such that each vertex (i, j)
has (at most) three outgoing edges: one going to (i + 1, j) (if it exists), one to
(i + 1, j + 1) (if it exists), and one to (i, j + 1) (if it exists). A path π in the
graph starting at (1, 1) and ending at (r, q) is called a warping path, and its cost
is defined to be

∑
(i,j)∈π d(X[i], Y [j]). Finally, DTWd(X,Y) is defined to be the

minimum cost of a warping path for X,Y . Below we omit d if it is clear from
the context.

Let M = |P |, N = |T |, and D be an (M + 1) × (N + 1) table where the rows
are indexed from 0 to M , and the columns from 0 to N such that:

1. For all j ∈ [0, N], D[0, j] = 0;
2. For all i ∈ [1,M], D[i, 0] = +∞;

Pattern Matching Under DTW Distance 319

3. For all i ∈ [1,M] and j ∈ [1, N], D[i, j] equals the smallest DTW distance
between P [1 . . i] and a suffix of T [1 . . j].

(See Fig. 1). To solve the pattern matching problem under the DTW distance,
it suffices to compute the table D, which can be done in O(MN) time via a
dynamic programming algorithm, using the following recursion for all 1 ≤ i ≤
M, 1 ≤ j ≤ N :

D[i, j] = min{D[i − 1, j − 1],D[i − 1, j],D[i, j − 1]} + d(P [i], T [j]) (1)

In the subsequent sections, we develop more efficient solutions for the low-
distance regime on run-length compressible data. We will be processing the table
D by blocks, defined as follows: A subtable D[ip . . jp, it . . jt] is called a block if
P [ip . . jp] is a run in P or ip = jp = 0, and T [it . . jt] is a run in T or it = jt = 0.
For ip, it > 0, a block D[ip . . jp, it . . jt] is called homogeneous if P [ip] = T [it].
(For example, a block D[3 . . 4][3 . . 6] in Fig. 1 is homogeneous.) A block such
that all cells in it contain a value q, for some fixed integer q, is called a q-block.
(For example, a block D[5 . . 5][11 . . 14] in Fig. 1 is a 1-block.) The border of a
block is the set of the cells contained in its top and bottom rows, as well as first
and last columns. Consider a cell (a, b) in B. We say that a block B′ is the top
neighbor of B if it contains (a − 1, b), the left neighbor if it contains (a, b − 1),
and the diagonal neighbor if it contains (a − 1, b − 1).

The following lemma is shown by induction in Appendix A:

Lemma 2. Consider a block B = D[ip . . jp, it . . jt] and cell (a, b) in it. If ip ≤
a < jp, then D[a, b] ≤ D[a + 1, b] and if it ≤ b < jt, then D[a, b] ≤ D[a, b + 1].

By Eq. 1, inside a homogeneous block each value is equal to the minimum of
its neighbors. Therefore, the values in a row or in a column cannot increase and
we have the following corollary:

Corollary 1. Each homogeneous block is a q-block for some value q.

3 Main Result: O(kmn)-Time Algorithm

In this section, we show Theorem 1 that for a pattern P with m runs and a text T
with n runs gives an O(kmn)-time algorithm. We start with the following lemma
which is a keystone to our result:

Lemma 3. For a block D[ip . . jp, it . . jt] let h = jp − ip, w = jt − it, and d =
d(P [ip], T [it]). We have for every ip < x ≤ jp:

D[x, jt] =

{
D[ip, jt − (x − ip)] + (x − ip) · d if x − ip ≤ w;
D[x − w, it] + w · d otherwise.

(2)

For every it < y ≤ jt:

D[jp, y] =

{
D[jp − (y − it), it] + (y − it) · d if y − it ≤ h;
D[ip, y − h] + h · d otherwise.

(3)

320 G. Gourdel et al.

Proof. For a homogeneous block, we have d = 0, and by Corollary 1 all the
values in such a block are equal, hence the claim of the lemma is trivially true.

Assume now d > 0. Consider x, ip < x ≤ jp, and let us show Eq. 2, Eq. 3 can
be shown analogously. Let π be a warping path realizing D[x, jt]. Let (a, b) be
the first node of π belonging to the block. We have a ∈ [ip, jp] and b ∈ [it, jt]
and either a = ip or b = it. The number of edges of π in the block from (a, b) to
(x, jt) must be minimal, else there would be a shorter path, thus it is equal to
max{x − a, jt − b} and D[x, jt] = D[a, b] + max{x − a, jt − b} · d (Fig. 2).

Fig. 2. Cases of Lemma 3. Possible locations of the cell (a, b) are shown in blue. (Color
figure online)

Case 1: x − ip ≤ w. Consider a cell (ip, jt−(x−ip)). There is a path from (ip, jt−
(x− ip)) to (x, jt) that takes x− ip diagonal steps inside the block, and therefore
D[x, jt] ≤ D[ip, jt − (x− ip)]+(x− ip) ·d. We now show that D[x, jt] ≥ D[ip, jt −
(x − ip)] + (x − ip) · d, which implies the claim of the lemma.

(a) If a = ip and b ≥ jt − (x − ip), then max{x − ip, jt − b} = x − ip. We have
D[x, jt] = D[ip, b]+ (x− ip) ·d ≥ D[ip, jt − (x− ip)]+ (x− ip) ·d (Lemma 2).

(b) If a = ip and b < jt − (x − ip), then max{x− ip, jt − b} = jt − b. As there is
a path from (a, b) = (ip, b) to (ip, jt − (x − ip)) of length (jt − (x − ip) − b),
we have D[ip, jt − (x − ip)] ≤ D[ip, b] + (jt − (x − ip) − b) · d. Consequently,

D[x, jt] = D[ip, b] + (jt − b) · d

≥ D[ip, jt − (x − ip)] − (jt − (x − ip) − b) · d + (jt − b) · d (Eq. 1)
= D[ip, jt − (x − ip)] + (x − ip) · d

(c) If b = it, then ip ≤ a and max{x−a, jt −b} ≤ max{x− ip, w} = w. As there
is a path from (ip, it) to (ip, jt − (x − ip)) of length (jt − (x − ip) − it), we
have D[ip, jt − (x − ip)] ≤ D[ip, it] + (jt − (x − ip) − it) · d. Therefore,

D[x, jt] = D[a, it] + w · d ≥ D[ip, it] + w · d (Lemma 2)
≥ D[ip, jt − (x − ip)] − (jt − (x − ip) − it) · d + w · d

= D[ip, jt − (x − ip)] + (x − ip) · d

Pattern Matching Under DTW Distance 321

Case 2: x − ip > w. Consider a cell (x − w, it). There is a path from (x − w, it)
to (x, jt) that takes w diagonal steps inside the block, and therefore D[x, jt] ≤
D[x − w, it] + w · d. We now show that D[x, jt] ≥ D[x − w, it] + w · d, which
implies the claim of the lemma.

(a) If b = it and a ≥ x − w, then max{x − a, jt − b} = max{x − a,w} = w and
we have D[x, jt] = D[a, it] + w · d ≥ D[x − w, it] + w · d (Lemma 2).

(b) If b = it and a < x − w, then max{x − a, jt − b} = max{x − a,w} = x − a.
As there is a path from (a, it) to (x − w, it) of length (x − w − a), we have
D[x − w, it] ≤ D[a, it] + (x − w − a) · d by definition. Therefore,

D[x, jt] = D[a, it] + (x − a) · d

≥ D[x − w, it] − (x − w − a) · d + (x − a) · d

= D[x − w, it] + w · d

(c) If a = ip, b ≥ it and thus max{x − a, jt − b} ≤ max{x − ip, w} = x − ip.
Additionally, as there is a path from (ip, it) to (x−w, it) of length (x−w−ip)
we have D[x − w, it] ≤ D[ip, it] + (x − w − ip) · d. Consequently,

D[x, jt] = D[ip, b] + (x − ip) · d ≥ D[ip, it] + (x − ip) · d (Lemma 2)
≥ D[x − w, it] − (x − w − ip) · d + (x − ip) · d

= D[x − w, it] + w · d

�
We say that a cell in a border of a block is interesting if its value is at most k.

To solve the k-DTW problem it suffices to compute the values of all interesting
cells in the last row of D. Consider a block B = D[ip . . jp, it . . jt] and recall that
the values in it are non-decreasing top to down and left to right (Lemma 2). We
can consider the following compact representation of its interesting cells. For an
integer �, define q�

top ∈ [it, jt] to be the last position such that D[ip, q�
top] ≤ �,

and q�
bot ∈ [it, jt] the last position such that D[jp, q

�
bot] ≤ �. If a value is not

defined, we set it equal to it − 1. Analogously, define q�
left ∈ [ip, jp] to be the

last position such that D[q�
left, it] ≤ �, and q�

right ∈ [ip, jp] the last position
such that D[q�

right, jt] ≤ �. If a value is not defined, we set it equal to ip − 1.
Positions q0top, . . . , q

k
top uniquely describe the interesting border cells in the top

row of B, q0bot, . . . , q
k
bot in the bottom row, q0left, . . . , q

k
left in the leftmost column,

q0right, . . . , q
k
right in the rightmost column.

Lemma 4. The compact representations of the interesting border cells in the
top row and the leftmost column of a block B can be computed in O(k) time
given the compact representation of the interesting border cells in its neighbors.

Proof. We explain how to compute the representation for the leftmost col-
umn of B, the representation for the top row is computed analogously. Let
d = d(P [ip], T [it]). If d = 0 (the block is homogeneous), by Corollary 1 the block

322 G. Gourdel et al.

is a q-block for some value q which can be computed in O(1) time by Eq. 1 if it is
interesting (and otherwise we have a certificate that the value is not interesting).
We can then derive the values q�

left, � = 0, 1, . . . , k in O(k) time.
Assume now d > 0. We start by computing D[ip, it] using Eq. 1. We note

that if D[ip, it] ≤ k, then we know the values of its neighbors realizing it and
therefore can compute it, otherwise we can certify that D[ip, it] > k. Assume
D[ip, it] = v, which implies that q0left, . . . , q

min{k,v}−1
left equal ip − 1. We must now

compute q
min{k,v}
left , . . . , qk

left. Consider a cell (q, it) of the block with q > ip. The
second to the last cell in the warping path that realizes D[q, it] = � is one of
the cells (q − 1, it), (q − 1, it − 1) or (q, it − 1), and the value of the path up to
there must be � − d. Note that all the three cells belong either to the leftmost
column of B, or the rightmost column of its left neighbor. Consequently, for
all min{k, v} < � ≤ k, we have q�

left = min{max{q�−d
left , r�−d

right} + 1}, jt}, and the
positions q0left, . . . , q

k
left can be computed in O(k) time.
�

Lemma 5. The compact representations of the interesting border cells in the
bottom row and the rightmost column of a block B can be computed in O(k) time
given the compact representation of the interesting border cells in its leftmost
column and the top row.

Proof. We explain how to compute the representation for the bottom row, the
representation for the rightmost column is computed analogously.

Equation 3 and the compact representations of the leftmost column and the
top row of B partition the bottom row of B into O(k) intervals (some intervals
can be empty), and in each interval the values are described either as a constant
or as a linear function. (See Fig. 3.) Formally, let h = jp − ip. By Eq. 3, for
y ∈ [it, jp + it −qk

left −1]∩ [it, jt] we have D[jp][y] > k. For y ∈ [jp + it −q�
left, jp +

it − q�−1
left − 1] ∩ [it, jt], � = k, k − 1, . . . , 1, we have D[jp][y] = � + (y − it) · d.

For y ∈ [jp + it − q0left, jp + it − ip] ∩ [it, jt] we have D[jp][y] = (y − it) · d.
For y ∈ [it + h, q0top + h − 1] ∩ [it, jt] we have D[jp][y] = h · d. For y ∈ [q�

top +
h, q�+1

top + h − 1] ∩ [it, jt], � = 0, 1, . . . , k − 1, we have D[jp][y] = � + h · d. Finally,
for y ∈ [qk

top + h, jt], there is D[jp][y] > k again.
By Lemma 2, the values in the bottom row are non-decreasing. We scan the

intervals from left to right to compute the values q0bot, . . . , q
k
bot in O(k) time. In

more detail, let q�
bot be the last computed value, and [i, j] be the next interval.

We set q�+1
bot = q�

bot. If the values in the interval are constant and larger than
� + 1, we continue to computing q�+2

bot . If the values are increasing linearly, we
find the position of the last value smaller or equal to �+1, set q�+1

bot equal to this
position, and continue to computing q�+2

bot . Finally, if the values in the interval
are constant and equal to � + 1, we update q�+1

bot = j and continue to the next
interval. As soon as qk

bot is computed, we stop the computation.
�
Since there are O(mn) blocks in total, Lemmas 4 and 5 immediately imply

Theorem 1.

Pattern Matching Under DTW Distance 323

Fig. 3. Compressed representation of interesting border cells.

4 Approximation Algorithm

In this section, we show an approximation algorithm for computing the smallest
DTW distance between a pattern P and a substring of a text T . We assume that
the DTW distance is defined over a metric on the alphabet Σ. Kuszmaul [17]
showed that the problem of computing the smallest DTW distance over an arbi-
trary metric can be reduced to the problem of computing the smallest distance
over a so-called well-separated tree metric:

Definition 2 (Well-separated tree metric). Consider a rooted tree τ with
positive weights on the edges whose leaves form an alphabet Σ. The tree τ specifies
a metric μτ on Σ: The distance between two leaves a, b ∈ Σ is defined as the
maximum weight of an edge in the shortest path from a to b. The metric μτ is a
well-separated tree metric if the weights of the edges are not increasing in every
root-to-leaf path. The depth of μτ is defined to be the depth of τ .

Below we show that Theorem 1 implies the following result for well-separated
tree metrics:

Lemma 6. Given run-length encodings of a pattern P with m runs and a text T
with n runs over an alphabet Σ. Assume that the DTW distance is specified by
a well-separated tree metric μτ on Σ with depth h, and suppose that the ratio
between the largest and the smallest non-zero distances between the letters of Σ
is at most exponential in L = max{|P |, |T |}. For any 0 < ε < 1, there is an
O(L1−ε · hmn log L)-time algorithm that computes O(Lε)-approximation of the
smallest DTW distance between P and a substring of T .

By plugging the lemma into the framework of [17], we obtain:

Theorem 2. Given run-length encodings of a pattern P with m runs and of
a text T with n runs over an alphabet Σ. Assume that the DTW distance is
specified by a metric μ on Σ, and suppose that the ratio between the largest and
the smallest non-zero distances between the letters of Σ is at most exponential
in L = max{|P |, |T |}. For any 0 < ε < 1, there is a O(L1−ε · mn log3 L)-time

324 G. Gourdel et al.

algorithm that computes O(Lε)-approximation of the smallest DTW distance
between P and a substring of T correctly with high probability1.

The proof follows the lines of the full version [18] of [17], we provide it in
Appendix B for completeness. We now show Lemma 6. Compared to [17], the
main technical challenge is that our k-DTW algorithm (Theorem 1) assumes an
integer-valued distance function on the alphabet. We overcome this by developing
an intermediary 2-approximation algorithm for real-valued distances (see the two
claims below).

Proof of Lemma 6. For brevity, let δ be the smallest DTWμτ
distance between

P and a substring of T .

Claim. Let 0 < ε < 1. Assume that for all a, b ∈ Σ, a �= b, there is μτ (a, b) ≥
γ and that the value of μτ (a, b) can be evaluated in O(t) time. There is an
O(L1−εtmn)-time algorithm which either computes a 2-approximation of δ or
concludes that it is larger than γ · L1−ε.

Proof. Define a new distance function μ′
τ (a, b) = μτ (a, b)/γ�. For all a, b ∈ Σ,

a �= b, we have μτ (a, b) ≤ γ ·μ′
τ (a, b) ≤ μτ (a, b)+γ ≤ 2μτ (a, b). Consequently, for

all strings X,Y we have DTWμτ
(X,Y) ≤ γ · DTWμ′

τ
(X,Y) ≤ 2DTWμτ

(X,Y).
Let δ′ = minS− substring of T min{2k + 1,DTWμ′

τ
(P, S)} for k = L1−ε. By Theo-

rem 1, it can be computed in O(L1−εtmn) time. If δ′ = 2L1−ε + 1, we conclude
that δ ≥ γ · L1−ε, and otherwise, output γδ′.
�

W.l.o.g., the minimum non-zero distance between two distinct letters of Σ
is 1 and the largest distance is some value M , which is at most exponential in L.
We run the algorithm above for γ = 1, which either computes a 2-approximation
of δ which we can output immediately, or concludes that δ ≥ L1−ε. Below we
assume that δ ≥ L1−ε.

Definition 3 (r-simplification). For a string X ∈ Σ∗ and r ≥ 1, the r-
simplification sr(X) is constructed by replacing each letter a of X with its highest
ancestor a′ in τ that can be reached from a using only edges of weight ≤ r/4.

Fact 3 (Corollary of [17, Lemma 4.6], see also [4]). For all X,Y ∈ Σ≤L, the
following properties hold:

1. DTWμτ
(sr(X), sr(Y)) ≤ DTWμτ

(X,Y).
2. If DTWμτ

(X,Y) > Lr, then DTWμτ
(sr(X), sr(Y)) > Lr/2.

Fix r ≥ 1 and 0 < ε < 1. In the (Lε, r)-DTW gap pattern matching problem,
we must output 0 if the smallest DTW distance between P and a substring of T
is at most L1−εr/4 and 1 if it is at least Lr, otherwise we can output either 0
or 1.

1 The preprocessing time O(|Σ|2 log L) that is required to embed μ into a well-
separated metric is not accounted for in the runtime of the algorithm.

Pattern Matching Under DTW Distance 325

Claim. The (Lε, r)-DTW gap pattern matching problem can be solved in
O(L1−ε · hmn) time.

Proof. Let δr be the smallest DTWμτ
distance between sr(P) and a substring

of sr(T). If L1−ε > L/2, then L = O(1) and we can compute δ exactly in O(1)
time by Eq. 1. Otherwise, we run the 2-approximation algorithm for γ = r/4,
which takes O(L1−ε · hmn) time (we can evaluate the distance between two
letters in O(h) time). If the algorithm concludes that δr > L1−εr/4, then δ >
L1−εr/4 by Fact 3, and we can output 1. Otherwise, the algorithm outputs a
2-approximation δ′

r of δr, i.e. δr ≤ δ′
r ≤ 2δr. If δ′

r ≤ L1−εr ≤ Lr/2, then we
have δr ≤ Lr/2. Therefore, δ ≤ Lr by Fact 3 and we can output 0. Otherwise,
δ ≥ δr ≥ δ′

r/2 > L1−εr/2 > L1−εr/4, and we can output 1.
�
Consider the (Lε/2, 2i)-DTW gap pattern matching problem for 0 ≤ i ≤

log ML�. If the (Lε/2, 20)-DTW gap pattern matching problem returns 0, then
we know that δ ≤ L, and can return L1−ε as a Lε-approximation for δ. There-
fore, it suffices to consider the case where the (Lε/2, 20)-DTW gap pattern
matching problem returns 1. We can assume, without computing it, that the
(Lε/2, 2�log ML�)-DTW gap pattern matching returns 0 as δ ≤ ML. Conse-
quently, there must exist i∗ such that (Lε/2, 2i∗−1)-DTW gap pattern match-
ing returns 1 and (Lε/2, 2i∗−1)-DTW returns 0. We can find i∗ by a binary
search which takes O(L1−εhmn log log ML) = O(L1−εhmn log L) time. We have
δ ≥ 2i∗−1L1−ε/4 and δ ≤ 2i∗

L, and therefore can return 2i∗−1L1−ε/4 as a O(Lε)-
approximation of δ.
�

5 Experiments

This section provides evidence of the advantage of the DTW distance over the
edit distance when processing the third generation sequencing (TGS) data. Our
experiment compares how the two distances are affected by biological mutation
as opposed to sequencing errors, including homopolymer length errors.

We first simulate two genomes, G and G′, which can be considered as strings
on the alphabet Σ = {A,C,G, T}. The genome G is a substring of the E.coli
genome (strain SQ110, NCBI Reference Sequence: NZ CP011322.1) of length
10000 (positions 100000 to 110000, excluded). The genome G′ is obtained from G
by simulating biological mutations, where the probabilities are chosen according
to [6]. The algorithm initializes G′ as the empty string, and pos = 1. While
pos ≤ |G| it executes the following:

1. With probability 0.01, simulate a substitution: chose uniformly at random
a ∈ Σ, a �= G[pos]. Set G′ = G′a and pos = pos + 1.

2. Else, with probability 0.0005 simulate an insertion or a deletion of a sub-
string of length x, where x is chosen uniformly at random from an interval
[1, max len ID], where max len ID is fixed to 10 in the experiments:
(a) With probability 0.5, set pos = pos + x + 1 (deletion);

326 G. Gourdel et al.

(b) With probability 0.5, choose a string X ∈ Σx uniformly at random, set
G′ = G′X and pos = pos + 1 (insertion).

3. Else, set G′ = G′G[pos] and pos = pos + 1.

To simulate reads, we extract substrings of G′ and add sequencing errors:

1. For each read, extract a substring R of length 500 at a random position of G′.
As G′ originates from G, we know the theoretical distance from R to G, which
we call the “biological diversity”. The biological diversity is computed as the
sum of the number of letter substitutions, letter insertions, and letter deletions
that were applied to the original substring from G to obtain R.

2. Add sequencing errors by executing the following for each position i of R:
(a) With probability 0.001, substitute R[i] with a letter a ∈ Σ, a �= R[i]. The

letter a is chosen uniformly at random.
(b) If R[i] = R[i−1], insert with a probability phom a third occurrence of the

same letter to simulate a homopolymer error.

Figure 4 shows the difference between the biological diversity and the small-
est edit and DTW distances between a generated read and a substring of G
depending on phom. It can be seen that the DTW distance gives a good estima-
tion of the biological diversity, whereas, as expected, the edit distance is heavily
affected by homopolymer errors. To ensure reproducibility of our results, our
complete experimental setup is available at https://github.com/fnareoh/DTW.

Fig. 4. Edit and DTW distances offset by the biological diversity as a function of phom.
Each point is averaged over 600 reads (×30 coverage).

Appendix A

Lemma 2. Consider a block B = D[ip . . jp, it . . jt] and cell (a, b) in it. If ip ≤
a < jp, then D[a, b] ≤ D[a + 1, b] and if it ≤ b < jt, then D[a, b] ≤ D[a, b + 1].

https://github.com/fnareoh/DTW

Pattern Matching Under DTW Distance 327

Proof. Let us first give an equivalent statement of the lemma: if (a, b) and (a +
1, b) are in the same block, then D[a, b] ≤ D[a + 1, b], and if (a, b) and (a, b + 1)
are in the same block, then D[a, b] ≤ D[a, b + 1].

We show the lemma by induction on a + b. The base of the induction are
the cells such that a = 0 or b = 0, and for them the statement holds by the
definition of D. Consider now a cell (a, b), where a, b ≥ 1. Assume that the
induction assumption holds for all cells (x, y) such that x + y < a + b. By Eq. 1,
we have:

D[a, b] = min{D[a − 1, b − 1],D[a − 1, b],D[a, b − 1]} + d

D[a + 1, b] = min{D[a, b − 1],D[a, b],D[a + 1, b − 1]} + d

D[a, b + 1] = min{D[a − 1, b],D[a − 1, b + 1],D[a, b]} + d

Assume that (a, b) and (a + 1, b) are in the same block. We have D[a, b] ≤
D[a, b − 1] + d and trivially D[a, b] ≤ D[a, b] + d. By the induction assumption,
D[a, b − 1] ≤ D[a + 1, b − 1] (the cells (a, b − 1) and (a + 1, b − 1) must belong
to the same block). Therefore,

D[a + 1, b] = min{D[a, b − 1],D[a, b],D[a + 1, b − 1]} + d

= min{D[a, b − 1] + d,D[a, b] + d,D[a + 1, b − 1] + d}
≥ min{D[a, b],D[a, b],D[a, b − 1] + d}
≥ min{D[a, b],D[a, b],D[a, b]} = D[a, b].

Assume now that (a, b) and (a, b + 1) are in the same block. We have D[a, b] ≤
D[a−1, b]+d. Furthermore, as (a−1, b) and (a−1, b+1) are in the same block,
we have D[a − 1, b] ≤ D[a − 1, b + 1] by the induction assumption. Therefore,

D[a, b + 1] = min{D[a − 1, b],D[a − 1, b + 1],D[a, b]} + d

= min{D[a − 1, b] + d,D[a − 1, b + 1] + d,D[a, b] + d}
≥ min{D[a − 1, b] + d,D[a − 1, b] + d,D[a, b]}
≥ min{D[a, b],D[a, b],D[a, b]} = D[a, b].

This concludes the proof of the lemma.
�

Appendix B

Theorem 2. Given run-length encodings of a pattern P with m runs and of
a text T with n runs over an alphabet Σ. Assume that the DTW distance is
specified by a metric μ on Σ, and suppose that the ratio between the largest and
the smallest non-zero distances between the letters of Σ is at most exponential
in L = max{|P |, |T |}. For any 0 < ε < 1, there is a O(L1−ε · mn log3 L)-time
algorithm that computes O(Lε)-approximation of the smallest DTW distance
between P and a substring of T correctly with high probability (See Footnote 1).

328 G. Gourdel et al.

Proof. Any metric μ can be embedded in O(σ2) time into a well-separated tree
metric μτ of depth O(log σ) with expected distortion O(log σ) (see [10] and [3,
Theorem 2.4]). Furthermore, the ratio between the smallest distance and the
largest distance grows at most polynomially. Formally, for any two letters a, b
we have μ(a, b) ≤ μτ (a, b) and E(μτ (a, b)) ≤ O(log σ) · d(a, b). Therefore, we
have:

DTWμ(X,Y) ≤ DTWμτ
(X,Y) (4)

E(DTWμτ
(X,Y)) ≤ O(log σ) · DTWμ(X,Y) (5)

Let δ = minS− substr. of T DTWμ(P, S) and δτ = minS− substr. of T DTWμτ
(P, S).

Assume that δ is realised on a substring X, and δτ on a substring Xτ . By Eq. 4,
we then obtain:

δ = DTWμ(P,X) ≤ DTWμ(P,Xτ) ≤ δτ

And Eq. 5 gives the following:

E(δτ) ≤ E(DTWμτ
(P,X)) ≤ O(log σ) · DTWμ(P,X) = O(log σ) · δ

We apply the embedding log L times independently to obtain well-separated tree
metrics μi

τ , i = 1, 2, . . . , log L. From above and by Chernoff bounds,

min
i

min
S− substring of T

DTWi
μτ

(P, S)

gives an O(log σ) = O(log L) approximation of δ with high probability and can
be computed in time O(L1−ε · mn log3 L) by Lemma 6, concluding the proof of
the theorem.
�

References

1. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and other
sequence similarity measures. In: FOCS 2015, pp. 59–78. IEEE Computer Society
(2015). https://doi.org/10.1109/FOCS.2015.14

2. Amarasinghe, S.L., Su, S., Dong, X., Zappia, L., Ritchie, M.E., Gouil, Q.: Oppor-
tunities and challenges in long-read sequencing data analysis. Genome Biol. 21(1),
1–16 (2020)

3. Bansal, N., Buchbinder, N., Madry, A., Naor, J.: A polylogarithmic-competitive
algorithm for the k-server problem. In: FOCS 2011, pp. 267–276 (2011). https://
doi.org/10.1109/FOCS.2011.63

4. Braverman, V., Charikar, M., Kuszmaul, W., Woodruff, D.P., Yang, L.F.: The
one-way communication complexity of dynamic time warping distance. In: SoCG
2019. LIPIcs, vol. 129, pp. 16:1–16:15 (2019). https://doi.org/10.4230/LIPIcs.
SoCG.2019.16

5. Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for string
problems and dynamic time warping. In: FOCS 2015, pp. 79–97 (2015). https://
doi.org/10.1109/FOCS.2015.15

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1109/FOCS.2011.63
https://doi.org/10.1109/FOCS.2011.63
https://doi.org/10.4230/LIPIcs.SoCG.2019.16
https://doi.org/10.4230/LIPIcs.SoCG.2019.16
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1109/FOCS.2015.15

Pattern Matching Under DTW Distance 329

6. Chen, J.Q., Wu, Y., Yang, H., Bergelson, J., Kreitman, M., Tian, D.: Variation
in the ratio of nucleotide substitution and indel rates across genomes in mammals
and bacteria. Mol. Biol. Evol. 26(7), 1523–1531 (2009). https://doi.org/10.1093/
molbev/msp063

7. Driemel, A., Silvestri, F.: Locality-sensitive hashing of curves. In: SoCG 2017.
LIPIcs, vol. 77, pp. 37:1–37:16 (2017). https://doi.org/10.4230/LIPIcs.SoCG.2017.
37

8. Dupont, M., Marteau, P.-F.: Coarse-DTW for sparse time series alignment. In:
Douzal-Chouakria, A., Vilar, J.A., Marteau, P.-F. (eds.) AALTD 2015. LNCS
(LNAI), vol. 9785, pp. 157–172. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44412-3 11

9. Emiris, I.Z., Psarros, I.: Products of euclidean metrics and applications to proxim-
ity questions among curves. In: SoCG 2018. LIPIcs, vol. 99, pp. 37:1–37:13 (2018).
https://doi.org/10.4230/LIPIcs.SoCG.2018.37

10. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. In: STOC 2003, pp. 448–455 (2003). https://doi.org/10.
1145/780542.780608

11. Froese, V., Jain, B.J., Rymar, M., Weller, M.: Fast exact dynamic time warping
on run-length encoded time series. CoRR abs/1903.03003 (2019)

12. Gold, O., Sharir, M.: Dynamic time warping and geometric edit distance: breaking
the quadratic barrier. ACM Trans. Algorithms 14(4), 50:1–50:17 (2018). https://
doi.org/10.1145/3230734

13. Gonzalez-Garay, M.L.: Introduction to isoform sequencing using pacific biosciences
technology (Iso-Seq). In: Wu, J. (ed.) Transcriptomics and Gene Regulation.
TRBIO, vol. 9, pp. 141–160. Springer, Dordrecht (2016). https://doi.org/10.1007/
978-94-017-7450-5 6

14. Huang, Y.T., Liu, P.Y., Shih, P.W.: Homopolish: a method for the removal of
systematic errors in nanopore sequencing by homologous polishing. Genome Biol.
22(1), 95 (2021). https://doi.org/10.1186/s13059-021-02282-6

15. Hwang, Y., Gelfand, S.B.: Sparse dynamic time warping. In: Perner, P. (ed.)
MLDM 2017. LNCS (LNAI), vol. 10358, pp. 163–175. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62416-7 12

16. Hwang, Y., Gelfand, S.B.: Binary sparse dynamic time warping. In: MLDM 2019,
pp. 748–759. ibai Publishing (2019)

17. Kuszmaul, W.: Dynamic time warping in strongly subquadratic time: algorithms
for the low-distance regime and approximate evaluation. In: ICALP 2019. LIPIcs,
vol. 132, pp. 80:1–80:15 (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.80

18. Kuszmaul, W.: Dynamic time warping in strongly subquadratic time: algorithms
for the low-distance regime and approximate evaluation. CoRR abs/1904.09690
(2019). https://doi.org/10.48550/ARXIV.1904.09690

19. Kuszmaul, W.: Binary dynamic time warping in linear time. CoRR abs/2101.01108
(2021)

20. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string comparison. SIAM
J. Comput. 27(2), 557–582 (1998). https://doi.org/10.1137/S0097539794264810

21. Landau, G.M., Vishkin, U.: Fast string matching with k differences. J. Comput.
Syst. Sci. 37(1), 63–78 (1988). https://doi.org/10.1016/0022-0000(88)90045-1

22. Li, H.: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
34(18), 3094–3100 (2018). https://doi.org/10.1093/bioinformatics/bty191

23. Mahmoud, M., Gobet, N., Cruz-Dávalos, D.I., Mounier, N., Dessimoz, C., Sed-
lazeck, F.J.: Structural variant calling: the long and the short of it. Genome Biol.
20(1), 1–14 (2019). https://doi.org/10.1186/s13059-019-1828-7

https://doi.org/10.1093/molbev/msp063
https://doi.org/10.1093/molbev/msp063
https://doi.org/10.4230/LIPIcs.SoCG.2017.37
https://doi.org/10.4230/LIPIcs.SoCG.2017.37
https://doi.org/10.1007/978-3-319-44412-3_11
https://doi.org/10.1007/978-3-319-44412-3_11
https://doi.org/10.4230/LIPIcs.SoCG.2018.37
https://doi.org/10.1145/780542.780608
https://doi.org/10.1145/780542.780608
https://doi.org/10.1145/3230734
https://doi.org/10.1145/3230734
https://doi.org/10.1007/978-94-017-7450-5_6
https://doi.org/10.1007/978-94-017-7450-5_6
https://doi.org/10.1186/s13059-021-02282-6
https://doi.org/10.1007/978-3-319-62416-7_12
https://doi.org/10.4230/LIPIcs.ICALP.2019.80
https://doi.org/10.48550/ARXIV.1904.09690
https://doi.org/10.1137/S0097539794264810
https://doi.org/10.1016/0022-0000(88)90045-1
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1186/s13059-019-1828-7

330 G. Gourdel et al.

24. Mueen, A., Chavoshi, N., Abu-El-Rub, N., Hamooni, H., Minnich, A.: AWarp: fast
warping distance for sparse time series. In: ICDM 2016, pp. 350–359. IEEE (2016)

25. Nishi, A., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Towards effi-
cient interactive computation of dynamic time warping distance. In: Boucher, C.,
Thankachan, S.V. (eds.) SPIRE 2020. LNCS, vol. 12303, pp. 27–41. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-59212-7 3

26. Sakai, Y., Inenaga, S.: A reduction of the dynamic time warping distance to the
longest increasing subsequence length. In: ISAAC 2020. LIPIcs, vol. 181, pp. 6:1–
6:16 (2020). https://doi.org/10.4230/LIPIcs.ISAAC.2020.6

27. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Sig. Process. 26(1), 43–49 (1978)

https://doi.org/10.1007/978-3-030-59212-7_3
https://doi.org/10.4230/LIPIcs.ISAAC.2020.6

Author Index

Akiki, Christopher 147
Amir, Amihood 55

Badkobeh, Golnaz 16
Bannai, Hideo 24
Bille, Philip 38
Boffa, Antonio 233
Boucher, Christina 86
Büchler, Thomas 99

Charalampopoulos, Panagiotis 3, 290

Darbari, Parisa 303
Das, Rathish 217
De Luca, Alessandro 16
Díaz-Domínguez, Diego 198
Driemel, Anne 315

Ferragina, Paolo 233
Fertin, Guillaume 178
Fici, Gabriele 16
Fröbe, Maik 147

Gagie, Travis 191, 250
Gawrychowski, Paweł 275, 290
Gibney, Daniel 303
Gørtz, Inge Li 38
Gourdel, Garance 315
Guerra, Concettina 55

Hagen, Matthias 147
Hashimoto, Daiki 70
He, Meng 217
Hendrian, Diptarama 70

I, Tomohiro 132
Inenaga, Shunsuke 24

Jean, Géraldine 178

Kashgouli, Sana 191
Kawamoto, Akiyoshi 132
Kondratovsky, Eitan 55, 217
Köppl, Dominik 70, 86
Kurpicz, Florian 257

Labarre, Anthony 178
Landau, Gad M. 55
Langmead, Ben 191
Leonard, Laurentius 24
Louza, Felipe A. 165

Manea, Florin 275
Marcus, Shoshana 55
Mieno, Takuya 24
Mozes, Shay 290
Munro, J. Ian 217

Navarro, Gonzalo 117

Ohlebusch, Enno 99
Olbrich, Jannik 99
Olivares, Francisco 117

Perera, Herman 86
Peterlongo, Pierre 315
Pissis, Solon P. 3
Potthast, Martin 147
Puglisi, Simon J. 16, 198

Radoszewski, Jakub 3
Ramos, Lucas P. 165
Rossi, Massimiliano 86
Rytter, Wojciech 3

Salmela, Leena 198
Shinohara, Ayumi 70
Siemer, Stefan 275
Sokol, Dina 55
Starikovskaya, Tatiana 315
Stordalen, Tord 38

Telles, Guilherme P. 165
Thankachan, Sharma V. 303
Tosoni, Francesco 233

Urbina, Cristian 117

Vinciguerra, Giorgio 233

332 Author Index

Waleń, Tomasz 3
Weimann, Oren 290
Wu, Kaiyu 217

Yoshinaka, Ryo 70

Zuba, Wiktor 3

	Preface
	Organization
	Abstracts of Invited Talks
	De Bruijn Graphs: Solving Biological Problems in Small Space
	LZ-End Parsing: Upper Bounds and Algorithmic Techniques
	Contents
	String Algorithms
	Subsequence Covers of Words
	1 Introduction
	2 Testing if a Word is an s-Cover
	3 Maximal Lengths of s-Primitive Words
	3.1 Ternary Alphabet
	3.2 General Alphabet
	3.3 Behaviour of the Function (k) for Small k

	4 Computing s-Covers
	5 The Number of Distinct Shortest s-Covers
	6 Final Remarks
	References

	Maximal Closed Substrings
	1 Introduction
	2 Preliminaries
	3 A Bound on the Number of MCS
	4 An Algorithm for Locating All MCS
	References

	Online Algorithms for Finding Distinct Substrings with Length and Multiple Prefix and Suffix Conditions
	1 Introduction
	2 Preliminaries and Definitions
	2.1 Strings
	2.2 Suffix Array and LCP Array
	2.3 The Problems

	3 Algorithm
	3.1 Sketch of Algorithm
	3.2 Removing Redundant Elements
	3.3 Detecting P and S Occurrences
	3.4 Maintaining pList
	3.5 Computing excludeLeft, excludeRight, and start
	3.6 Summarizing the Algorithm

	4 Applying the Algorithm for Traffic Classification
	5 Conclusion and Future Work
	A Appendix
	References

	The Complexity of the Co-occurrence Problem
	1 Introduction
	1.1 Our Results
	1.2 Techniques

	2 The Left-Minimal Co-occurrence Problem
	2.1 Main Idea
	2.2 Data Structure

	3 The Co-occurrence Problem
	4 Lower Bounds
	4.1 The Increment Gadget
	4.2 Lower Bound on Space
	4.3 Lower Bound on Space in Terms of and

	A Preprocessing
	B Lower Bound on Time
	References

	String Data Structures
	Reconstructing Parameterized Strings from Parameterized Suffix and LCP Arrays
	1 Introduction
	2 Preliminaries
	3 Algorithm
	3.1 Step 1: Left-Table
	3.2 Step 2: Reconstruct Point of Mismatch
	3.3 Step 3: Right-Table
	3.4 Step 4 Reconstruct P-String
	3.5 Step 5 Verify Output
	3.6 Proofs of Correctness and Efficiency

	A Appendix
	References

	Computing the Parameterized Burrows–Wheeler Transform Online
	1 Introduction
	2 Preliminaries
	2.1 Parameterized Burrows–Wheeler Transform

	3 Computing pBWT Online
	3.1 Step 1: UpdateLF Computes LT[i] and FT[i]
	3.2 Step 2: InsertRow Computes LT and FT
	3.3 Step 3: Updating LCP by UpdateLCP

	A Proofs
	References

	Accessing the Suffix Array via -1-Forest
	1 Introduction
	2 Preliminaries
	3 Access Data Structures to SA
	3.1 Access via -1-Graph
	3.2 Access via -1-Forest

	4 Experiments
	5 Conclusion
	References

	On the Optimisation of the GSACA Suffix Array Construction Algorithm
	1 Introduction
	2 Preliminaries
	3 GSACA
	3.1 Phase II
	3.2 Phase I

	4 Experiments
	A Proofs
	References

	String Compression
	Balancing Run-Length Straight-Line Programs
	1 Introduction
	2 Terminology
	2.1 Strings
	2.2 Straight-Line Programs
	2.3 Directed Acyclic Graph of an SLP
	2.4 Run-Length Straight-Line Programs

	3 Balancing Run-Length Straight-Line Programs
	4 Substring Range Operations in O(grl) Space
	4.1 Karp-Rabin Fingerprints
	4.2 Range Minimum Queries
	4.3 More General Functions

	5 Conclusion
	A PSV and NSV Queries
	References

	Substring Complexities on Run-Length Compressed Strings
	1 Introduction
	2 Preliminaries
	3 Connection Between ST(k) and the Runs-Suffix-Trie
	4 Algorithm
	References

	Information Retrieval
	How Train–Test Leakage Affects Zero-Shot Retrieval
	1 Introduction
	2 Background and Related Work
	3 Identifying Leaking Queries
	4 Experimental Analysis
	5 Conclusion
	References

	Computational Biology
	Genome Comparison on Succinct Colored de Bruijn Graphs
	1 Introduction
	2 Definitions and Notation
	2.1 Burrows-Wheeler Similarity Distribution
	2.2 Succinct de Bruijn Graphs

	3 gcBB – Genome Comparison Using BOSS and BWSD
	4 Experiments
	5 Conclusions and Future Work
	References

	Sorting Genomes by Prefix Double-Cut-and-Joins
	1 Introduction
	1.1 Permutations, Genomes, and Rearrangements
	1.2 Problems

	2 A Generic Lower Bounding Technique
	2.1 The Signed Case
	2.2 The Unsigned Case

	3 Prefix DCJs
	3.1 Signed Prefix DCJs
	3.2 Unsigned Prefix DCJs

	4 Conclusions and Future Work
	References

	KATKA: A KRAKEN-Like Tool with k Given at Query Time
	1 Introduction
	2 Design
	3 Queries
	4 Future Work
	References

	Computing All-vs-All MEMs in Run-Length-Encoded Collections of HiFi Reads
	1 Introduction
	2 Preliminaries
	3 Our Contribution
	3.1 Definitions
	3.2 Description of the Problem

	4 Bi-directional BWT and DNA Reverse Complements
	4.1 Homopolymer Errors and MEM Sequences
	4.2 Computing MEMs in Compressed Space
	4.3 Improving the Time Complexity for Reporting MEMs

	5 Concluding Remarks
	References

	Space-Efficient Data Structures
	Internal Masked Prefix Sums and Its Connection to Fully Internal Measurement Queries
	1 Introduction
	2 Preliminaries
	3 Data Structures for Masked Prefix Sum
	3.1 Time-Space Trade-off
	3.2 A Conditional Lower Bound
	3.3 Dynamic Masked Prefix Sum
	3.4 Approximate Masked Prefix Sum
	3.5 Parallel Algorithms

	4 Data Structures for Sparse Internal Inner Product
	4.1 Static Sparse Internal Inner Product
	4.2 Dynamic Sparse Internal Inner Product

	5 The Connections Between the Problems and the Internal Measurements
	A Details Omitted from Sect.3
	B Details Omitted from Sect.5
	References

	Compressed String Dictionaries via Data-Aware Subtrie Compaction
	1 Introduction
	2 A Motivating Example
	3 CoCo-trie: Compressed Collapsed Trie
	3.1 Compressed Encoding of Collapsed Subtries
	3.2 On the Choice of the Subtries to Collapse
	3.3 A Pool of Succinct Encoding Schemes
	3.4 Squeezing the Universe of Branching Labels
	3.5 On the Space-Time Trade-Off
	3.6 Trie Operations

	4 Experiments
	5 Conclusions and Future Work
	A Calculations for the Motivating Example of Sect.2
	B Proof of Theorem 1
	References

	.26em plus .1em minus .1emOn Representing the Degree Sequences of Sublogarithmic-Degree Wheeler Graphs
	1 Introduction
	2 Intuition
	3 Proof of Lemma 2
	4 Postscript
	References

	Engineering Compact Data Structures for Rank and Select Queries on Bit Vectors
	1 Introduction and Related Work
	2 Preliminaries
	3 Space Efficient Rank and Select Data Structures
	3.1 CS-Poppy: Rank-Based Rank and Select Data Structure
	3.2 Flat-Popcount: Storing More Information Wasting No Bits
	3.3 Wide-Popcount: Faster Rank

	4 Experimental Evaluation
	5 Conclusion
	A Additional Experimental Results
	A.1 Comparison of Our Implementations Only
	A.2 Construction Times
	A.3 Answering Both Queries

	References

	Pattern Matching on Strings, Graphs, and Trees
	Matching Patterns with Variables Under Edit Distance
	1 Introduction
	2 Preliminaries
	3 Our Results
	4 Conclusion
	References

	On the Hardness of Computing the Edit Distance of Shallow Trees
	1 Introduction
	2 Preliminaries
	3 Lower Bound Conditioned on the APSP Hypothesis
	4 Lower Bound for Decomposition Algorithms
	References

	Quantum Time Complexity and Algorithms for Pattern Matching on Labeled Graphs
	1 Introduction
	1.1 Quantum Computing and Input Model
	1.2 NC-QSETH
	1.3 Our Results

	2 Reduction from LCS to PMLG
	2.1 Hardness of PMLG over Binary Alphabet

	3 Quantum Algorithm for PMLG
	4 Discussion
	References

	Pattern Matching Under DTW Distance
	1 Introduction
	2 Preliminaries
	3 Main Result: O(kmn)-Time Algorithm
	4 Approximation Algorithm
	5 Experiments
	A
	B
	References

	Author Index

