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Abstract. Sepsis is a leading cause of death in the ICU. It is a disease
requiring complex interventions in a short period of time, but its optimal
treatment strategy remains uncertain. Evidence suggests that the prac-
tices of currently used treatment strategies are problematic and may
cause harm to patients. To address this decision problem, we propose a
new medical decision model based on historical data to help clinicians
recommend the best reference option for real-time treatment. Our model
combines offline reinforcement learning and deep reinforcement learning
to solve the problem of traditional reinforcement learning in the med-
ical field due to the inability to interact with the environment, while
enabling our model to make decisions in a continuous state-action space.
We demonstrate that, on average, the treatments recommended by the
model are more valuable and reliable than those recommended by clini-
cians. In a large validation dataset, we find out that the patients whose
actual doses from clinicians matched the decisions made by AI has the
lowest mortality rates. Our model provides personalized and clinically
interpretable treatment decisions for sepsis to improve patient care.

Keywords: Sepsis · Optimal treatment strategies · Offline
reinforcement learning · Continuous spaces

1 Introduction

Sepsis is a severe infection that can result in life-threatening acute organ dys-
function and is known as the leading cause of death in critically ill patients [1]. It
affects more than 49 million people around the world each year, killing between
one in six and one in three of those affected [2–4]. Early effective resuscitation and
haemodynamic management are crucial for the stabilisation of sepsis-induced tis-
sue hypoperfusion in sepsis and septic shock, and they are more important for
the prognosis [5,6]. Although the Surviving Sepsis Campaign (SSC) guidelines
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2021 recommend an initial target mean arterial pressure (MAP) of 65 mmHg [5],
the following questions are not answered: 1) what is the optimal dose of fluid
and how should it be titrated? 2) what is the optimal approach to selection and
dose titration for vasopressor therapy? 3) which patients should glucocorticoid
therapy be initiated for? To resolve these concerns, it is essential to carry out
personalized therapies in real time based on the individual characteristics and
status of patients.

In previous study, high-granularity dataset and reinforcement learning app-
roach were adopted to explore the sequential role of the therapy strategy [7,8].
However, its action and state are based on discrete space and there is a lack of
more refined guidance for the treatment received by patients. Therefore, in our
work, we propose a model to make medical decisions for sepsis patients based on
historical data. We model in a continuous state-action space, representing the
physiological state of a patient at a point in time as a continuous vector. LSTM
mechanism is applied to capture the historical information of treatment received
by the patient. In addition, offline deep reinforcement learning methods are used
to determine the optimal treatment strategy. Finally, we conduct experiments
to demonstrate that the strategy recommended by the model outperforms the
clinician’s strategy in terms of survival rate and safety rate. Also, we find out
that the mortality rate of patients is the lowest when the clinician’s treatment
strategy is similar to the recommended strategy of the model.

Our contributions are as follows. We have introduced the offline reinforce-
ment learning algorithms to better address the inability to interact with the
environment in the medical field. The deep reinforcement learning models with
continuous state-action spaces are implemented, and the optimal strategies are
learned to improve patient outcomes and reduce patient mortality. We design
experiments on the Medical Information Mart for Intensive Care version IV
(MIMIC-IV) dataset to validate the model. The results show that the survival
and safety rates of sepsis patients are significantly improved. At the same time,
the analysis of the results reveals that the current method of drug use can be
optimized, which is a guidance for the treatment of sepsis.

2 Related Work

Reinforcement learning approaches have been extensively explored in the treat-
ment of patients with severe sepsis.

In discrete space, the Fitted-Q Iteration algorithm [9] was applied to learn
treatment strategies for mechanical ventilation weaning from historical data [10];
Komorowski et al. [7] discretized the state and action space through k-means
clustering, and then performed Q-learning [11] to generate the optimal strategy
of managing intravenous fluids and vasopressors.

In continuous space, Raghu et al. [12] used Dueling Double-Deep Q Network
[13,14] to learn medical treatment policies for sepsis. This approach used a vector
representation of continuous states to extend the treatment of sepsis to a con-
tinuous space. Sun et al. [15] combined reinforcement learning and supervised
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learning, with the DDPG method adopted to develop strategies in a continuous
value space.

In this work, we also focus on the treatment of sepsis, but aim to develop a
model that does not interact with the environment in a continuous state-action
space. In turn, it solves the performance problem of reinforcement learning in the
medical field that it cannot do the exploration, while optimizing the treatment
process. Additionally, more refined medical actions are taken.

3 Preliminaries

3.1 Reinforcement Learning

In reinforcement learning, time series data are often modeled with Markov Deci-
sion Processes (MDP) (S,A, pM , r, γ), with state space S, action space A, and
transition dynamics pM (s0|s, a). At each discrete time step, the agent performs
action a in the state s and arrives at the state s′, while the agent receives
a reward r ∈ R. The agent selects the action to maximize the expected dis-
counted future reward, known as the return defined as Rt =

∑T
t′=t γt′−trt′ ,

where γ ∈ (0, 1), represents the discount factor, capturing the tradeoff between
immediate and future rewards and T refers to the terminal timestep. The agent
selects action according to a policy π : S → A. And each policy π has a Q func-
tion Qπ(s, a) = Eπ[Rt|s, a]. For a given policy, the Q function can be computed
using the Bellman equation:

Qπ(st, at) = Ert,st+1∼E [r(st, at) + γEat+1∼π[Qπ(st+1, at+1)]] (1)

And if the target policy is deterministic, we use the policy directly:

Qπ(st, at) = Ert,st+1∼E [r(st, at) + γQπ(st+1, π(st+1))] (2)

We consider continuous state-action space model-free RL and use historical data
to find a good-quality policy π.

3.2 Extrapolation Error

As for reinforcement learning tasks in the medical field, it has to learn from
historical data because of the high cost incurred by the interaction between agent
and environment. This may lead to extrapolation errors. We define εMDP as the
extrapolation error. This accounts for the difference between the value function
Qπ

B computed with the history data and the value function Qπ computed with
the environment:

εMDP (s, a) = Qπ(s, a) − Qπ
B(s, a) (3)

Such errors will cause an even greater problem in continuous state space and
multidimensional action space. Avoiding extrapolation errors plays a critical role
in ensuring safe and effective patient care. Fujimoto et al. [16] relied on batch-
constrained reinforcement learning to solve this problem well. Additionally, Fuji-
moto et al. [16] demonstrated that the extrapolation error can be eliminated and
that BCQL can converge to the optimal policy on this MDP corresponding to
dataset B.
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4 Datasets

Our experimental data are obtained from the Multiparametric Intelligent Moni-
toring in Intensive Care (MIMIC-IV) database. We focus on those patients who
met sepsis-3 criteria [1] (6660 in total) within the first 24 h of admission to the
hospital. Sepsis is defined as a suspected infection (prescription of antibiotics
and sampling of bodily fluids for microbiological culture) combined with the evi-
dence of organ dysfunction, as defined by a SOFA score ≥ 2 within 24 h of admis-
sion. In line with previous research, we assume a baseline SOFA of zero for all
patients [6,17]. For each patient, we have the relevant physiological parameters,
including demographics, comorbidities, vital signs, laboratory values, treatment
interventions, intake/output events and 90 day mortality.

Since the first 24 h are extremely critical for the treatment of sepsis, we
extract data within 24 h of patient onset. The data are aggregated into 2-hour
windows. Besides, when there are several data points in a window, the average
or sum (as appropriate) is recorded. This produces a 41 × 1 feature vector for
each patient at each time period, which is the state st in the base MDP.

The physiological features used in our model are as follows:
Demographics: gender, age, ethnicity;
Comorbidities: elixhauser premorbid status;
Vital Signs: heart rate, mean arterial pressure (MAP), temperature, respiratory
rate, peripheral capillary oxygen saturation (SpO2), glasgow coma scale (GCS);
Lab Values: white blood cell count (WBC), neutrophils, lymphocytes, platelets,
hemoglobin, alanine aminotransferase (ALT), aspartate aminotransferase (AST),
total bilirubin, blood urea nitrogen (BUN), creatinine, albumin, glucose, potas-
sium, sodium, calcium, chloride, potential of hydrogen (PH), partial pressure
of oxygen (PaO2), partial pressure of carbon dioxide (PaCO2), bicarbonate,
PaO2/FiO2 ratio, lactate, prothrombin time (PT), activated partial thrombo-
plastin time (APTT);
Organ Function Score: sequential organ failure assessment (SOFA) score;
Output Events: urine volume;
Treatment Interventions: 1) intravenous fluids volume; 2) the maximum dose
of vasopressors: norepinephrine, phenylephrine, vasopressin, angiotensinii, epine-
phrine, dopamine, dobutamine; 3) whether hydrocortisone was used;

5 Model Architecture

Our model architecture consists of four main components: History capture
model, Generative model, Perturbation model and Q-networks. By using this
model, the offline reinforcement problem of optimal decision-making in continu-
ous stateaction space is effectively solved.

5.1 History Capture Model

The goal of history capture model is to capture the change of states while incor-
porating the influence of the performed action over time. In the history capture
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model, the observation-action history is explicitly processed by an LSTM net-
work and fed as input into other networks. For each moment of the patient’s
state, we use the historical treatment process ({o1, a1}, ..., {ot, at−1}) as the input
of the LSTM for calculation. Also, we will get an embedding representation st of
the patient’s current status by combining historical status and treatment infor-
mation.

5.2 Generative Model

To avoid extrapolation error, a policy is supposed to induce a similar state-action
visitation to the batch. The purpose of generative models as a model of imitative
learning is to simulate the treatment strategies of clinicians by observing the
state of the patient. By using this method, the model’s strategies are distributed
over the range of the dataset.

For the generative model, we use a conditional variational auto-encoder
(VAE) [18]. The VAE Gω is defined by two networks, an encoder Eω1(s, a) and
decoder Dω2(s, z), where ω = {ω1, ω2}. The encoder takes a state-action pair
and outputs the mean μ and standard deviation σ of a Gaussian distribution
N(μ, σ). The state s, along with a latent vector z as sampled from the Gaussian,
is passed to the decoder Dω2(s, z) which outputs an action. The VAE is trained
with respect to the mean squared error of the reconstruction along with a KL
regularization term:

LV AE =
∑

(s,a)∈B
(Dω2(s, z) − a)2 + DKL(N (μ, σ)||N (0, 1)) (4)

5.3 Perturbation Model

To enhance the diversity of actions, we introduce a perturbation model
ξφ(s, a, ϕ). The perturbation model makes an adjustment based on action a
which is generated from the generative model in the range [−ϕ,ϕ]. In this way,
the output of the model is restricted to the scope of the dataset. This results in
the policy π:

π(s) = argmax
ai+ξφ(s,a,ϕ)

Qθ(s, ai + ξφ(s, a, ϕ)), ai ∼ Gω(s)n
i=1 (5)

The perturbation model ξφ can be trained to maximize the Qθ(s, a) through the
deterministic policy gradient algorithm by sampling a ∼ Gω(s):

φ ← argmax
φ

∑

(s,a)∈B

Qθ(s, a + ξφ(s, a, ϕ)) (6)

The choice of n and ϕ creates a trade-off between an imitation learning and
reinforcement learning algorithm. If ϕ = 0 and n = 1, the model exhibits the
characteristics of imitation learning, which imitates the clinician’s strategy. And
if ϕ is unconstrained and n → ∞, the model approaches DDPG (Deep Deter-
ministic Policy Gradient), an algorithm which searches the policy to greedily
maximize the value function over the entire action space.
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5.4 Q-Networks

Q-network is a method used to evaluate the value of a strategy with a neural
network to approximate the value function. Deep Q-Network is an off-policy app-
roach. Instead of using the real action of the next interaction for each learning,
the target value function is updated by using the action currently considered to
have the highest value. In this way, an overestimation of the Q value can occur.
Clipped Double Q-learning estimates the value by taking the minimum between
two Q-networks: Qθ1 and Qθ2. Also, taking the least operator also penalizes the
high variance estimates in the uncertainty region and facilitates the action of
strategy selection for the states contained in the dataset. In particular, we take
a convex combination of the two values, with a higher weight on the minimum,
to form a learning target which is used by both Q-networks:

r + γ max
ai

[λ min
j=1,2

Qθ′
j
(s′, a) + (1 − λ) max

j=1,2
Qθ′

j
(s′, a)] (7)

Here is a summary of the model framework, which maintains four
parametrized networks: a generative model Gω(S), a perturbation model ξφ(s, a),
and two Q-networks Qθ1 , Qθ2 . In the meantime, each of the perturbation and
Q-networks has 1 target network. Similar to the DQN method, the parameters
of the target network are updated after a certain period of time.

6 Experiment

This section describes the training details for our models.

6.1 Medical Action Selection

An immediate action for resolving hypotension should be taken as quickly as
possible for those sepsis patients with hypoperfusion. Fluid resuscitation and
vasopressor management are essential for the treatment of hypotension and
hypoperfusion. Norepinephrine and vasopressin are the first-line and second-
line vasopressor, respectively. Inotropes such as dobutamine and norepinephrine
are recommended to the patients with septic shock and cardiac dysfunction with
persistent hypoperfusion. Glucocorticoids (first choice is hydrocortisone) are also
recommended for refractory septic shock. Therefore, in the experiment, for the
choice of medical behaviors, we divide them into three parts of refinement. The
first part is the fluid input for patients every two hours. The second part is the
use of antihypertensive drugs, in which we classify norepinephrine and phenyle-
phrine as the first type of vasopressors, vasopressin and angiotensin II as the
second type of vasopressors, and epinephrine, dopamine and dobutamine as the
third type of vasopressors, according to pharmacological characteristics. In turn,
we optimize the three classes of antihypertensive drugs. The third part is the
use of hydrocortisone, which is a discrete type of decision-making behavior. The
above three parts are most critical to the treatment of sepsis and are of great
importance to clinical application (Table 1).
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Table 1. The selection of medical actions

Action Content Unit Typea

liquid Intravenous fluids milliliter/2h Continuous

vasopressor 1 Norepinephrine,
phenylephrine

microgramme/kg.min Continuous

vasopressor 2 Vasopressin,
angiotensinii

U/min continuous

vasopressor 3 Epinephrine, dopamine,
dobutamine

microgramme/kg.min Continuous

hydrocortisone Hydrocortisone – Discrete

a: Continuous type of action implies that we decide the specific value of the action.
Discrete type of action implies that we decide whether to adopt the action or not.

6.2 Reward Function

For the design of the patient reward function, we integrate the intermediate
treatment process of the patient with the final outcome. Since our goal is to
provide guidance for patients within 24 h after onset, we prefer to improve the
change of patients’ status within 24 h after onset. Therefore, for the change of
patients in status, we consider a combination of two indicators, including the
SOFA score and lactate level of patients. For the final outcome of the patient,
we use the fact of whether the patient died while in the ICU as the final outcome.

Our reward function for intermediate timesteps is designed as follows:

r = C0 sSOFA
t + C1 (sSOFA

t+1 − sSOFA
t ) + C2 tanh(sLactate

t+1 − sLactate
t+1 ) (8)

We conduct experiment with multiple parameters and opt to use C0 = −0.1,
C1 = −1, C2 = −2

At terminal timesteps, we set a reward of +25 if a patient survived their ICU
stay, and a negative reward of −25 otherwise.

6.3 Training Process

For our training process, our pseudocode is shown below. The details about our
specific implementation can be found in our project code https://github.com/
taihandong-330/BCADRQN.

https://github.com/taihandong-330/BCADRQN
https://github.com/taihandong-330/BCADRQN
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Algorithm 1. Batch-Constrained Action-specific Deep Recurrent Q-Network
Require: Records buffer B - observations O, actions A, reward function R;

Parameters - target network update rate τ , mini-batch size N , max pertur-
bation ϕ, number of sampled actions n, minimum weighting λ, number of epochs
M ;

1: Randomly initialize LSTM data processing net L, with parameter ψ
2: Randomly initialize VAE Gω = {Eω1, Dω2}, with parameter ω
3: Randomly initialize main perturbation net ξφ, with parameter φ
4: Randomly initialize main Crisis net Qθ1 , Qθ2 , with parameter θ1, θ2
5: Target perturbation net ξφ: φ′ ← φ
6: Target critic net Qθ′

1
, Qθ′

2
: θ′

1 ← θ1, θ
′
2 ← θ2

7: for m = 1 → M do:
8: Initialize the batch buffer D
9: for i = 1 → N do:

10: Initialize the first action a0 = no operation
11: Randomly select a patient at a time point t, sample a historical treatment

episode 〈({o1, a0}, ...{ot, at−1}, {ot+1, at}), rt〉 from B
12: Store the historical treatment episode into D
13: end for
14: s = L({o1, a0}, ...{ot, at−1}), s′ = L({o1, a0}, ...{ot+1, at}), a = at, r = tt

15: μ, σ = Eω1(s, a), ã = Dω2(s, z), z ∼ N (μ, σ)
16: ω, ψ ← argminω,ψ

∑
(a − ã)2 + DKL(N (μ, σ)||N (0, 1))

17: Sample n actions:{ai ∼ Gω(s′)}
18: Perturb each action:{ai = ai + ξφ(s′, ai, ϕ)}n

i=1

19: Set value target y = r + γ max
ai

[λ min
j=1,2

Qθ′
j
(s′, a) + (1 − λ) max

j=1,2
Qθ′

j
(s′, a)]

20: θ ← argminθ

∑
(y − Qθ(s, a))2

21: φ ← argmaxφ

∑
Qθ1(s, a + ξφ(s, a, ϕ)), a ∼ Gω(s)

22: Soft update target networks: θ′
i ← τθ + (1 − τ)θ′

i; φ
′ ← τφ + (1 − τ)φ′

23: end for

7 Results

7.1 Result Analysis

For the results of the model training, we show the distribution of the model’s
output strategies relative to the clinician’s original strategy. Figure 1 shows the
difference between the model and the clinician’s fluid input and the three classes
of vasopressor within 24 h of patient onset.

After analysis we find out that for intravenous fluids, the model’s strategy
is approximately the same as that of the clinicians. However, the proportion
of patients receiving vasopressors is only 10.7% and 11.8% for the first and
second two hours after the onset of sepsis, but these would have been 14.1%
and 13.7% if the recommendation made by AI Clinician was followed. There are
also significant differences in the doses of the three classes of vasopressors. We
find out that for the first and second classes of vasopressors, the model tends to
select larger dosages. While for the third class of vasopressors, the model tends
to select smaller dosages compared to the clinicians. In addition, we analyze the
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proportion of hydrocortisone use on the test set, discovering that the model use
is essentially the same as the use by the clinician.

(a) Intravenous fluids (b) Vasopressor

Fig. 1. The distribution of clinicians and AI strategies is shown for every two hours. The
value of the strategy represents the average measure of all patients at the corresponding
moment in time.

We further analyze the change in patient mortality when there is a difference
between the clinician’s decisions and those of the model. We find out that, for
the most part, patient mortality is lower when the clinician’s strategy differs
from the model’s strategy insignificantly. Also, when the difference between the
two is too large, the mortality rate of patients tends to increase substantially.
This also demonstrates the validity of our model (Fig. 2).

(a) Liquid (b) Vasopressor-1 (c) Vasopressor-2 (d) Vasopressor-3

Fig. 2. Compare how mortality varies with the difference between the dose recom-
mended by the optimal policy and the dose used by the clinicians. When the difference
is smaller, we see lower observed mortality rates, suggesting that patient survival can
be improved when clinicians act on the learned policy in AI.

7.2 Evaluation Metric

Since offline reinforcement learning is more difficult to measure in continuous
space, this experiment focuses on two metrics for evaluation and the result is
analyzed on the test set.
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Survival Rate. Improving patient mortality is particularly important in the
healthcare process. Survival rate is an important metric for evaluating system
performance. However, the offline reinforcement learning tasks in continuous
space cannot interact with the environment to obtain rewards. Therefore, we
use the Q function to evaluate the survival rate (Fig. 3).

Fig. 3. The relationship between Q and survival rate. The shadows are the result range
of 5-fold cross-validation and there is a positive correlation between Q and the survival
rate. Thus, a reasonable Q evaluation mechanism can be used to measure the result of
the strategy in the offline case.

Q vs. survival rate links expected returns Q to survival rates. The survival
rate of a Q value is:

survival rate (Q) =
#ofsurvival(s, a)Qi

#of(s, a)Qi

(9)

where the (s, a)Qi
means a state-action pair with Q(s, a) ∈ Qi. Qi is an range

of Q.
In our experiments, we take a perturbation parameter ϕ = 0.05, which cor-

responds to a modified clinician-based strategy. Our experiments result in our Q
value of 52.47, corresponding to a survival rate of 0.844, while the evaluated Q
value of the clinicians’ strategy is 13.19, corresponding to a survival rate of 0.813.
This indicates that our model is optimized based on the clinicians’ strategy.

Safe Rate. Another evaluation metric under our consideration is the safety
rate of the strategy. As for safety measures, we consider the AI-recommended
drug doses in the range of 70%–130% of the clinician’s strategy to be safe.

safe rate =
1
N

N∑

i=0

1
T

T∑

t=0

aj⋂
1(0.7 < (

V AI
aj

V real
aj

) < 1.3) (10)

The final result of the safety rate for our experiments is 0.902, which means
the safety of the model results is guaranteed to a large extent. In addition, the
data quality issue affects our safety rate calculation to some extent.
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8 Conclusions

In this paper, we implement an effective decision optimization system for sepsis
treatment in a continuous decision space. The experimental results show that the
optimized medical decisions can effectively improve the survival and prognosis
of patients. This work makes several key contributions.

At the algorithm level, on the one hand, our algorithm introduces an offline
reinforcement learning method, which is an effective solution to the extrapolation
error in the offline environment. On the other hand, we capture the patient’s
historical state, while extending the decision space to a continuous space, which
is very important in reality.

At the medical level, our approach can well address the treatment of sepsis
patients within 24 h, improving their prognosis. We also refines the action of three
kinds of vasopressor, fluid input, and hydrocortisone, which has more practical
implications for optimizing clinicians’ decision.

Our analysis identifies that for intravenous fluids, the AI strategy is approx-
imately the same as that of the clinician as well. Additionally, more fluid is
required in the first 12 h after the onset of sepsis. We also find out that such
vasopressors as norepinephrine and vasopressin need to be early initiated and
administered in larger doses. However, such inotropes as dobutamine and nore-
pinephrine may require lower doses in sepsis treatment because of increased
sympathetic stress and oxygen consumption. Finally, we also discover that com-
pared to the real strategy of clinicians, no more patients are needed to receive
glucocorticoid therapy.

In our future work, we will focus on improving more robust clinical reward
mechanisms and constructing interpretable deep learning models. At the same
time, we will continue generalizing them to a wider range of medical scenarios.
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China (2020AAA0109603).
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