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Abstract. We consider here two new variants of K-dimensional binary
search trees (K-d trees): median K-d trees and hybrid-median K-d trees.
These two kinds of trees are designed with the aim to get a tree as
balanced as possible. This goal is attained by heuristics that choose for
each node of the K-d tree the appropriate coordinate to discriminate. In
the case of median K-d trees, the chosen dimension to discriminate at
each node is the one whose point value at that node is the most centered
one. In hybrid-median K-d trees, the heuristic is similar except that it
should be followed in a cyclic way, meaning that, at every path of the
tree, no dimension can be re-selected to discriminate unless all the other
dimensions have already been selected. We study the expected internal
path length (IPL) and the expected cost of random partial match (PM)
searches in both variants of K-d trees. For both variants, we prove that
the expected IPL is of the form cK ·n log2 n+lower order terms, and the
expected cost of PM is of the form Θ(nα) with α = α(s, K). We give
the explicit equations satisfied by the constants cK and the exponents α
which we can then numerically solve. Moreover, we prove that as K → ∞
the trees in both variants tend to be perfectly balanced (cK → 1) and we
also show that α → log2(2 − s/K) for median K-d trees when K → ∞.
In the case of hybrid median K-d trees we conjecture that α → 1− s/K,
when K → ∞, which would be optimal.

Keywords: K-d trees · Multidimensional data structures · Partial
match queries · Analysis of algorithms

1 Introduction

In this work we study two variants of K-dimensional binary search trees [1,14]
(K-d trees, for short): median K-d tree and hybrid median K-d tree; both were
introduced by Pons [12] in 2010. When built from uniformly distributed input
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data sets, these two simple variants of K-d trees achieve better costs for exact
searches and insertions than other variants of K-d trees. They also perform better
with respect to partial match queries which in turn implies better performance
in other associative queries like orthogonal range or nearest neighbour queries.

Recall that a K-d tree is a binary search tree that stores a collection F of
items, each endowed with a K-dimensional key x = (x0, . . . , xK−1). In addition
to the data point key x, each node 〈x, j〉 of a K-d tree stores a discriminant, a
value j, 0 ≤ j < K, which is the coordinate that will be used to split the inserted
keys into the left and right subtrees rooted at 〈x, j〉: the data points with a key
y such that yj < xj are recursively inserted into the left subtree, whereas those
with a key z such that xj < zj are recursively inserted into the right one1.

The original K-d trees —we will refer to these as standard K-d tree— were
introduced by Bentley in the mid 70s [1] with a rule that assigns discriminants
in a cyclic way. Thus, a node at level � ≥ 0 has discriminant � mod K. Several
variants of K-d trees differ in the way in which the discriminants are assigned to
nodes, whereas other variants apply local (for example, Kdt trees [2]) or global
rebalancing rules (for example, divided K-d tree [8]). Among the variants that
use alternative rules to assign discriminants we have relaxed K-d tree [4], which
assign discriminants uniformly and independently at random, and squarish K-d
tree [3], which try to get a partition as balanced as possible of the data space.

Median K-d trees and hybrid median K-d trees also aim to build a more
balanced tree. In median K-d trees the rule is to choose as discriminant at each
node the coordinate that would presumably divide the forthcoming elements as
evenly as possible into the two subtrees of the node. While this can be easily
accomplished if we have the collection of n items beforehand, median K-d trees
achieve a similar outcome using a heuristic based on the usual assumption that
the keys from which the tree is built are drawn uniformly at random in [0, 1]K .
Besides, hybrid median K-d trees combine the heuristics of standard and median
K-d trees: at every node the coordinate used to discriminate is chosen using the
median K-d tree heuristic but, in a cyclic way as in standard K-d trees.

We use here the internal path length (IPL)2 [7] of median K-d trees and
hybrid median K-d trees as a measure of their degree of balance and of the
cost of building the tree and of exact (successful) searches. As general purpose
data structures, K-d trees provide efficient (not necessarily optimal and only
on expectation) support for dynamic insertions, exact searches and several asso-
ciative queries. In particular, we focus here on random partial match queries
(random PM queries), first because of their own intrinsic interest and second
because their analysis is a fundamental block in the analysis of other kind of
associative queries such as orthogonal range and nearest neighbour queries.

1 We have omitted on purpose what to do with elements v such that xj = vj ; several
alternatives exist to cope with such situation, but in the random model which we
will use for the analysis such event does not occur and hence the strategy used to
cope with such situation becomes unimportant.

2 The internal path length of a binary search tree is the sum, over all its internal
nodes, of the paths from the root to every node of the tree.
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A random PM query is a pair 〈q,u〉, where q = (q0, . . . , qK−1) is a K-
dimensional point independently drawn from the same continuous distribution
as the data points, and u = (u0, . . . , uK−1) is the pattern of the query; each
ui = S (the i-th attribute of the query is specified) or ui = ∗ (the i-th attribute
is unspecified). The goal of the PM search is to report all data points x =
(x0, . . . , xK−1) in the tree such that xi = qi whenever ui = S where s is the
number of specified coordinates; the interesting cases arise when 0 < s < K.

Our main tool for the analysis of the expected IPL and the expected cost
of random PMs is the continuous master theorem (CMT, for short) [13] and
some “extensions” developed here to cope with systems of divide-and-conquer
recurrences. In particular, we give the main order term of the expected IPL
of median K-d trees and hybrid median K-d trees: in both cases it is of the
form ∼ cKn log2 n for a constant cK depending on K and on the variant of K-d
tree considered (Theorems 1 and 3); median K-d trees and hybrid median K-d
trees perform better than other variants, for all K ≥ 2, since cK < 2 —while
cK = 2 for all K in standard, relaxed and squarish K-d trees. Moreover, in
median K-d trees and hybrid median K-d trees cK → 1 as K → ∞, which is
optimal for data structures built using key comparisons. We also show that the
expected cost of random PM searches will be always Θ(nα) for an exponent α
which depends on the variant of K-d trees, the dimension K and the number
s of coordinates which are specified in the PM query. We give the equations
satisfied by the exponent α in each case (Theorems 2 and 4). Although in general
these equations are not analytically solvable, it is possible to provide accurate
numerical approximations. In the case of median K-d trees, the expected cost
of PM queries lies somewhere between that of standard K-d trees and that of
relaxed K-d trees, and α → log2(2 − s/K) as K → ∞. For hybrid median K-d
trees the expected PM cost outperforms that of relaxed and standard K-d trees
for all K ≥ 2, and we conjecture that α → 1−s/K as K → ∞, which is optimal.
Table 1 summarizes our results comparing them to other variants of K-d trees.

Table 1. An abridged comparison of median K-d trees and hybrid median K-d trees
with other families of K-d trees, giving the coefficient of n log n for IPL and the expo-
nent α for PM where ∗ indicates conjectured.

Family IPL Partial match s = 1, s = K/2,

K = 2 K → ∞ K = 2 K → ∞
Standard K-d trees [1,6] 2 2 0.56155 0.56155

Relaxed K-d trees [4,10] 2 2 0.618 0.618

Squarish K-d trees [3] 2 2 0.5 0.5

Median K-d trees [this paper] 1.66 → 1.443 0.602 → 0.585

Hybrid median K-d trees [this paper] 1.814 → 1.443 0.546 → 0.5∗
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This paper is organized as follows. In Sect. 2 we give the definition of random
median K-d trees as well as the previous known results on them and we present
the analysis of their expected IPL (Subsec. 2.1) and the expected cost of random
PMs (Subsec. 2.2). In Sect. 3 we proceed as in the preceding section, now with
the analysis of random hybrid median K-d trees. Finally, in Sect. 4 we give our
conclusions and guidelines for future work.

2 Median K-d Trees

Median K-d trees were introduced by Pons [12] and they are a simple variant of
standard K-d trees: the only difference lies in the way to choose the dimension
used to discriminate at each node.

As happens in plane binary search trees, in K-d trees the insertion of an item
creates a new node that replaces a leaf of the current tree. It is worth noting
that every leaf of a K-d tree corresponds to a region of the space from which the
elements are drawn and hence the whole tree induces a partition of the space
—[0, 1]K in our case. The region delimited by the leaf that a new node replaces
at the moment of its insertion into the tree is known as its bounding box.

In median K-d trees, when a new data point x = (x0, . . . , xK−1) is inserted
in the bounding box R = [�0, u0] × · · · [�K−1, uK−1] the discriminant j is chosen
as follows,

j = arg min0≤i<K

{∣∣∣∣xi − �i

ui − �i
− 1

2

∣∣∣∣
}

.

An example of median K-d tree together with its induced partition of the space
is shown in Fig. 1.

Fig. 1. Example of a median K-d tree built from 2-dimensional points.

In the analysis of the expected IPL and the expected cost of random PM in
a median K-d tree of size n, we will assume, as usual in the literature, that the
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tree is randomly built. That is, that the n points are random and independently
drawn from [0, 1]K , with each coordinate xi of a data point x independently and
uniformly drawn from [0, 1].

In [12] it is shown that (i) the expected IPL of random median K-d trees
is In ∼ cKn log2 n for a constant cK depending on K; it is also stated there
without formal proof that cK → 1 as K → ∞; and (ii) that, for K = 2 and
K = 3, the expected cost of a random PM is Θ(nα) with α(1, 2) ≈ 0.60196 . . .,
α(2, 3) ≈ 0.74387 . . . and α(1, 3) ≈ 0.42756 . . ..

Here, using the CMT, we obtain the same results for the expected IPL and
extend the analysis of the expected cost of random PM to any value of K and s
proving also that α → log2(2 − s/K) as K grows (and s/K remains constant).

In order to proceed with the analysis, we need to compute the probability
that the left subtree of a random median K-d tree is of size j, given that the tree
is of size n. This is crucial in order to set up the recurrences for the expected IPL
and the expected cost of partial matches in the next subsections, and it enables
the systematic application of the CMT (see [13] or Appendix A of [5]) to solve
the recurrences, instead of the ad-hoc arguments given in [12].

Let x = (x0, x1, . . . , xK−1) be the key stored at the root of a median K-
d tree T that contains n data points. We can define the rank vector of x as
r = r(x, T ) = (r0, r1, . . . , rK−1) where ri is the number of data points in T with
i-th coordinate smaller or equal to xi. If the root of T discriminates with respect
to the i-th coordinate then —because we assume that the tree is randomly built–
the size of the left subtree L of T will be ri − 1 and the size of the right subtree
will be n − ri. In an idealization of median K-d trees the chosen discriminating
coordinate will be i if ri is the closest rank to �(n + 1)/2� —ties are resolved in
favor of the coordinate with smallest index. It follows that

P {|L| = j | |T | = n} = P {Zn,K = j + 1} , 0 ≤ j < |T |,

where Zn,K denotes the closest integer to �(n + 1)/2� (equivalently the closest
integer to n/2�) in a set of K given integers independently and uniformly drawn
from {1, . . . , n}.

For example, let K = 2 and Z := Zn,2. Then we have

P {Z = j} =

{
4j−1
n2 if j ≤ ⌊

n
2

⌋
,

4(n−j)+1
n2 if j >

⌊
n
2

⌋
.

(1)

To see why, suppose that n = 2λ + 1 and j ≤ λ = �n/2�. Then Z = j will
occur if (1) both ranks are equal to j, this happens with probability 1/n2 or
(2) one rank is j the other is < j or ≥ n + 1 − j, which will happen with
probability 2 · (1/n) · (j − 1 + j)/n = (4j − 2)/n2. Hence the probability of
Z = j when j ≤ λ is (4j − 1)/n2. The case for j > λ + 1 is similar except
that ties in the distance to the center are resolved in favor of the smallest rank:
thus if j > λ + 1 then n − j + 1 will be at the same distance to the center
but smaller than j hence Z = j requires one rank to be j and the other be
smaller than n + 1 − j.Thus, the probability that Z = j when j > λ + 1 is
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1/n2 + 2 · 2(n − j)/n2 = (4(n − j) + 1)/n2. On the other hand, if j = λ + 1 then
we will have Z = j no matter what the other rank is; we have that the probability
of Z = λ+1 is 1/n2+2(n−1)/n2 = (2n−1)/n2 = (4λ+1)/n2 = (4(n−j)+1)/n2.
Therefore, we can write that the probability of Z = j when j ≥ λ + 1 > �n/2�
is (4(n − j) + 1)/n2. For even n, when n = 2λ, the arguments are identical and
Eq. (1) holds too.

For the general case, we can reason in an analogous way, assuming that � ≥ 1
of the K ranks are j and K − � are either smaller that j or greater than n − j.
If j ≤ �n/2� then

P {Z = j} =
1

nK
· [

(2j)K − (2j − 1)K
]
,

and if j > �n/2� then the analysis is analogous but we need a small correction
as we cannot allow any coordinate to be n + 1 − j, hence in that case

P {Z = j} =
1

nK
· [

(2(n − j) + 1)K − (2(n − j))K
]
.

2.1 Internal Path Length

Let us start writing down the recurrence for the expected IPL In of a random
median K-d tree T of size n, for n > 0. For that, we condition on the size of the
left subtree L, thus

In = n − 1 +
n−1∑
j=0

πn,j(Ij + In−1−j) = n − 1 +
n−1∑
j=0

πn,jIj +
n−1∑
j=0

πn,n−1−jIj

= n − 1 +
n−1∑
j=0

(πn,j + πn,n−1−j)Ij , (2)

with πn,j = P {|L| = j | |T | = n} = P {Zn,K = j + 1} and I0 = 0. Indeed, the
IPL of T is the sum of the IPL of its subtrees L and R, and we add +1 for
every internal node other than the root. In order to apply the continuous master
theorem we identify ωn,j = πn,j +πn,n−1−j as the weights sequence in the divide-
and-conquer recurrence. Substituting j by z ·n, multiplying by n and taking the
limit when n → ∞ we get the shape function

ωK(z) = lim
n→∞ n · ωn,z·n =

{
2K(2z)K−1 = K2KzK−1, if z ≤ 1/2,

2K(2(1 − z))K−1 = K2K(1 − z)K−1, if z ≥ 1/2.

When n → ∞, the shape function derived for the idealization using ranks
is the actual shape function for median K-d trees, where we would have had
to compute the probability that, given a random set of K points X0, . . . , XK−1

independently and uniformly drawn from [0, 1], we have Z ′
n,K = j with

Z ′
n,K = #{Xi |Xi < X�},
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where � = arg min0≤i<K{|Xi − 1/2|}.
Once we have the shape function for the divide-and-conquer recurrence, we

can get the const-entropies for all K ≥ 1:

HK = 1 −
∫ 1

0

z ωK(z) dz = 0.

As they all are zero, we need to compute the log-entropies:

H′
K = −

∫ 1

0

z ln(z)ωK(z) dz. (3)

No easy closed form for H′
K is available; but we can compute any value of H′

K

and thus of the expected IPL (see Table 2).

Theorem 1 (Pons, 2010). The expected IPL of random median K-d tree of
size n is

In = cKn ln n + o(n log n)

where

c−1
K = H′

K = −K2K
[
AK +

∑
0≤i<K

(
K − 1

i

)
(−1)iBi+1

]
,

with Bj = −(Aj + 1/(j + 1)2) and

Aj =
∫ 1/2

0

zj ln z dz = −1 + (j + 1) ln 2
2j+1(j + 1)2

,

The IPL gives a measure of the cost of building the K-d tree in the first place,
but also of the cost of exact successful searches. Indeed, In

n = cK ·ln n+o(log n) is
the expected depth of a random node. We can use the definition of H′

K to show
that H′

K < H′
K+1 and thus the coefficients cK = (H′

K)−1 are monotonically
decreasing with K. It is also easy to prove that cK → 1/ ln 2 which implies
that median K-d trees tend to get perfectly balanced, as K → ∞ (see Fig. 3
on page 12). Indeed, from the definition (3) of H′

K , if we let K → ∞ the shape
function under the integral sign degenerates to a Dirac’s delta distribution at
z = 1/2 and thus

H′
K → −

∫ 1

0

ln z δ1/2(z) dz = − ln(1/2) = ln 2.

2.2 Random Partial Match

Consider a random partial match with s specified coordinates, 0 < s < K.
Because of the symmetries of the problem all the coordinates are equivalent with
respect to the query pattern and thus we can assume without loss of generality
that the query is of the form q = (q0, . . . , qs−1, ∗, . . . , ∗) with qi a uniformly
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Table 2. Coefficient of the first order term in the expected IPL of random median K-d
trees.

K H′
K E {In} /(n ln n) ∼ cK = 1/H′

K

1 1/2 2

2 5/6 − 1/3 ln 2 ≈ 0.6023 1.660

3 4/3 − ln 2 ≈ 0.6402 1.562

4 131/60 − 11/5 ln 2 ≈ 0.6584 1.519

. . . . . . . . .

∞ ln 2 ≈ 0.6931 1/ ln 2 ≈ 1.443

drawn real number in [0, 1]. Then the recurrence for the expected cost Pn :=
P

(K,s)
n of the PM is

Pn = 1 +
s

K

n−1∑

j=0

πn,j

(
j + 1

n + 1
Pj +

n − j

n + 1
Pn−1−j

)
+

K − s

K

n−1∑

j=0

πn,j(Pj + Pn−1−j)

= 1 +
s

K

n−1∑

j=0

(πn,j + πn,n−1−j)
j + 1

n + 1
Pj +

K − s

K

n−1∑

j=0

(πn,j + πn,n−1−j)Pj . (4)

To derive the recurrence above, we condition on the size of the left subtree, and
consider two possibilities: with probability s/K the discriminating coordinate of
the root is specified, and we have to continue recursively in the left or the right
subtree with probability proportional to their number of leaves of each subtree.
On the other hand, with probability (K − s)/K the discriminating coordinate
of the root is not specified and the PM must continue in both subtrees. We have
thus that the shape function is

ωK(z) =

{
K2KzK−1(ρz + 1 − ρ), if z ≤ 1/2,

K2K(1 − z)K−1(ρz + 1 − ρ), if z ≥ 1/2,

with ρ := s/K ∈ (0, 1). Then the const-entropy is

HK = 1 −
∫ 1

0

ωK(z) dz = ρ − 1,

which is always negative, since ρ < 1. In this situation the CMT tells us that
the expected PM cost will be Pn = Θ(nα), where α is the unique root in [0, 1]
of the equation ∫ 1

0

zαωK(z) dz − 1 = 0,

Theorem 2. The expected cost of a random partial match with s specified coor-
dinates out of K, 0 < s < K, in a random median K-d tree of size n is
Pn = Θ(nα), where α ∈ [0, 1] is the unique real solution of
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2−α

(
K(1 − ρ)
K + α

+
Kρ

2(K + α + 1)

)

+ K2K
{

ρB(1/2;K + 1, α + 1) + (1 − ρ)B(1/2;K,α + 1)
}

= 1, (5)

with B(z; a, b) =
∫ z

0
ta−1(1 − t)b−1 dt denoting the incomplete Beta function [11,

Ch. 8] and ρ = s/K.

While we cannot give a closed form for α in terms of K and ρ, Eq. (5) can
be used to compute numerical approximations with a high degree of accuracy.

We can also find the value of α as K grows and ρ = s/K remains constant.
For very large K, known asymptotic expansions of the incomplete Beta function
(see for instance [9] or [11, Ch. 8, pp. 183–184]) yield that α must satisfy

2−α
(
1 − ρ +

ρ

2

)
+ K2K

(
1
2

)α 1
K2K

(ρ/2 + 1 − ρ) = 2−α(2 − ρ) = 1,

and hence α = log2(2 − ρ). In it is interesting to note that it coincides with the
exponent of the expected cost of random PM in relaxed K-d tries [10].

Figure 2 plots the excess ϑ(x) := α(x) − (1 − x) in the exponent of the cost
of random PM of median K-d trees for various values of K (and x ≡ s/K),
and, for comparison, we also plot the excess ϑ(x) for relaxed K-d trees [4,10],
standard K-d trees [6] and the limit curve log2(2 − x) − 1 + x that corresponds
to the excess in the exponent for relaxed K-d tries [10].

3 Hybrid Median K-d Trees

Hybrid. K-d trees, also introduced in [12], combine two different rules to choose
discriminants. In particular, the hybridization of median K-d trees with standard
K-d trees are the so called hybrid median K-d trees, where, for an arbitrary
dimension K ≥ 2, the rule to assign the discriminants is the following:

1. Nodes at levels � ≡ 0 (mod K) discriminate with respect to the median rule
applied to all K coordinates

2. Nodes at levels � ≡ j (mod K), 0 < j < K, discriminate with respect the
median rule applied to all the coordinates not used as discriminant by any of
its j − 1 immediate ascendants.

The above implies that, in such a tree, in any path from the root to a leaf,
looking at the discriminants of the nodes along the path we will find a sequence
of permutations of order K (except for the last part of the path, which will
eventually contain only j < K distinct discriminants).

The analysis of the IPL and random partial match in hybrid median K-d trees
now becomes more complicated as it requires considering a system of divide-and-
conquer recurrences instead of a single divide-and-conquer recurrence as we had
when analyzing median K-d trees.



Median and Hybrid Median K-Dimensional Trees 47

Fig. 2. The excess ϑ(x) = α(x) − 1 − x for various median K-d trees and other K-d
trees.

3.1 Internal Path Length

Let us consider first the IPL of an hybrid median K-d tree. Let I
(�)
n denote

the expected IPL of an hybrid median K-d tree of size n where there are only
� available choices for the discriminant at the root (because the other K − �
discriminants have been already used for the immediate ancestors), then the
probability that the left subtree is of size j is given by π

(�)
n,j = P {Zn,� = j + 1}

and if � > 1 we have

I(�)n = n − 1 +
n−1∑
j=0

π
(�)
n,j

(
I
(�−1)
j + I

(�−1)
n−1−j

)
, 1 < � ≤ K and n > 0,

and

I(1)n = n − 1 +
n−1∑
j=0

π
(1)
n,j

(
I
(K)
j + I

(K)
n−1−j

)
, n > 0.

Define now the sequences of vectors Fn = (I(K)
n , . . . , I

(1)
n )T and tn = (n −

1, . . . , n − 1)T , and the sequence of weight matrices Ωn,k =
(
ω
(i,j)
n,k

)
K×K

, where

ω
(i,i+1)
n,k = π

(K+1−i)
n,k + π

(K+1−i)
n,n−1−k if i < K, ω

(K,1)
n,k = π

(1)
n,k + π

(1)
n,n−1−k and all other

ω
(i,j)
n,k = 0. Then we can compactly express the system for the IPL as

Fn = tn +
∑

0≤k<n

Ωn,k · Fk.
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Let us suppose that we substitute in the recurrences above each F
(i)
k ≡ I

(i)
k

by its corresponding “row” in the system. This substitution can be expressed in
terms of the following operation between weight sequences {ωn,k} and {ω′

n,k},
giving a new sequence {ω′′

n,k} defined by

ω′′
n,k = (ω ⊗ ω′)n,k :=

∑
k<j<n

ωn,j · ω′
j,k.

The operation can be naturally extended to sequences of square d × d matrices
(d = K in our instance). The (i, j) component of each matrix in the sequence
{Ω̃n,k} := {(Ω ⊗ Ω̂)n,k} = {Ωn,k} ⊗ {Ω̂n,k} is given by

Ω̃
(i,j)
n,k = (Ω ⊗ Ω̂)(i,j)n,k =

∑
�

(
ω(i,�) ⊗ ω̂(�,j)

)
n,k

.

Then we can write one substitution step as

Fn = tn +
∑

0≤k<n

Ωn,k · tk +
∑

0≤k<n

(Ω ⊗ Ω)n,k · Fk

The substitution process can be iterated repeatedly:

Fn = tn +
∑

0≤k<n

Ωn,k · tk +
∑

0≤k<n

Ω
[2]
n,k · tk + · · · +

∑
0≤k<n

Ω
[�−1]
n,k · tk

+
∑

0≤k<n

Ω
[�]
n,k · Fk,

where Ω[1] ≡ Ω and Ω[�] = Ω⊗Ω[�−1], for � > 1. This new operation ⊗ —let us
call it substitution product— of weight sequences is associative and commutative,
and distributes respect to the sum. Its extension to matrices is associative but
not commutative, exactly as ordinary matrix products. In the case of the IPL
of hybrid K-d trees it turns out that the matrix Ω

[K]
n,k is diagonal. This is a

very lucky circumstance since then we obtain a set of K independent divide-
and-conquer recurrences, and each one can be readily solved using the CMT. To
that end, we would only need to compute the weight matrix Ω

[K]
n,k and the new

toll function

t̂n = tn +
∑

0≤k<n

(
Ωn,k + Ω

[2]
n,k + · · · + Ω

[K−1]
n,k

)
· tk.

Rather than computing Ω
[�]
n,k for all � > 1, the special structure of the problem

can be further exploited to obtain our final result (Theorem 3 below, whose proof
is given in Appendix B of [5]). In particular, to prove the theorem we introduce
the shape matrix Ω(z) in which the (i, j) entry is the shape function for the
sequence {ω

(i,j)
n,k } and the matrices

Φ�(x) =

(∫ 1

0

(Ω [�](z))(i,j) zx dz

)

K×K

, Φ′
�(x) =

(
−

∫ 1

0

(Ω [�](z))(i,j) zx ln z dz

)

K×K
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which are the K-dimensional analogous of the const- and log-entropies of the
CMT. Properties of ⊗ (such as those proven in Appendix C of [5]) are used
to simplify the calculation and show that Fn ∼ (Φ′

K(1))−1t̂n ln n + o(1n log n),
where t̂n = (Kn,Kn, . . . ,Kn)T + o(1). We also show that Φ′

K(1) is a diagonal
matrix where all non-null entries are equal to H′

1 + · · · + H′
K , with H′

i the log-
entropy for the expected IPL in median i-dimensional trees.

Theorem 3. The expected IPL of a random hybrid median K-d tree of size n
is

In = c
[hm]
K n ln n + o(n log n)

where
c
[hm]
K =

K

H′
1 + . . . + H′

K

,

and the values of H′
i are those given in Theorem 1.

To conclude, let us observe that for all K, c
[hm]
K ≥ c

[med]
K = 1

H′
K

and also that

c
[hm]
K → 1/ ln 2, albeit the convergence speed is slower than for median K-d trees

(as can be seen in Fig. 3).

Fig. 3. The coefficient of n ln n in the average IPL of median K-d trees (red) and
hybrid median K-d trees (blue). (Color figure online)

3.2 Random Partial Match

Let P
(i,�)
n denote the expected cost of a random PM in a hybrid median K-d tree

of size n in which there are only i ≥ 1 coordinates to choose as discriminants —
the remaining K − i have been used in the immediate ancestors— and 0 ≤ � ≤ i

of them are specified in the query. We are interested in P
(K,s)
n with 0 < s < K.
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Suppose i > � ≥ 1. With probability �/i the discriminant coordinate —
chosen by the median rule among i choices— is specified and thus we will either
continue in the left subtree of size j or the right subtree of size n − 1 − j with
probability π

(i)
n,j

j+1
n+1 or π

(i)
n,j

n−j
n+1 , respectively, but now in the next level we will be

paying the expected cost of a random PM with only i−1 available coordinates of
which only � − 1 are specified. On the other hand, with probability (i − �)/i the
discriminant won’t be specified and the recursion will continue in both subtrees
with only i − 1 available coordinates to chose from to discriminate but still
� coordinates specified. If i = � > 0 the reasoning above applies with only
branching to either the left or the right subtrees; and if i > � = 0 then we will
continue in both subtrees as no specified coordinate is among those that can be
used as discriminants. Hence, if i > 1 and 0 ≤ � ≤ i we have

P (i,�)
n = 1 +

�

i

n−1∑
j=0

(
π
(i)
n,j + π

(i)
n,n−1−j

) j + 1
n + 1

P
(i−1,�−1)
j

+
i − �

i

n−1∑
j=0

(π(i)
n,j + π

(i)
n,n−1−j)P

(i−1,�)
j

The special cases are thus: (1) when i = 1 and � = 1, then the recursion
follows in the appropriate subtree but all the K discriminants become available
in the next level; and (2) when i = 1 and � = 0, then the recursion follows in
both subtrees but with all K coordinates again usable to discriminate. That is,

P (1,0)
n = 1 +

n−1∑
j=0

(π(1)
n,j + π

(1)
n,n−1−j)P

(K,s)
j

P (1,1)
n = 1 +

n−1∑
j=0

(
π
(1)
n,j + π

(1)
n,n−1−j

) j + 1
n + 1

P
(K,s)
j

The resulting call graph is more complicated than the one of IPL, and the
system of D&C recurrences will involve d = (K − s + 1)(s + 1) − 1 “algorithms”
with costs P

(i,�)
n , see for example Fig. 4 for the case K = 3 and s = 2.

Once we have set up the system of divide-and-conquer recurrences we can
construct a shape matrix Ω(z) in which the entry (u, v) is the shape function
ω(u,v)(z) corresponding to weight sequence ω

(u,v)
n,k ; vertices u and v correspond to

partial match algorithms with parameters (i, �) and (i′, �′). Many entries will be
null as algorithm u (or (i, �)) does not call algorithm v (or (i′, �′)). We can think
of this shape matrix as the adjacency matrix for the call digraph in which each
edge (u, v) is labelled by ω(u,v)(z). Likewise we can define the matrix Φ(x) in
which the entries are the definite integrals

∫ 1

0
ω(u,v)(z) zx dz. Then we can find

the expected cost P
(K,s)
n thanks to the following result.
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Fig. 4. Call graph for the system of D&C recurrences of the PM costs in hybrid median
K-d trees for K = 3 and s = 2.

Theorem 4. The expected cost of a random partial match with s specified coor-
dinates out of K, 0 < s < K, in a random hybrid median K-d tree of size n is
P

(K,s)
n = Θ(nα), where α ∈ [0, 1] is the unique real solution of det(I−Φ(x)) = 0,

where Φ(x) =
∫ 1

0
Ω(z) zx dz and Ω(z) is the shape matrix corresponding to the

system of d divide-and-conquer recurrences, with d = (K − s + 1)(s + 1) − 1.

The proof of this result can be found in Appendix D of [5]. It is based in the
properties of iterated substitution matrices Ω[K](z) (and ΦK(x)), and those of
the determinant of Φ(x) − I once we see it as the (weighted) adjacency matrix
of the call graph in which we add self-loops to every vertex of the call graph.

We report the values of α for K ≤ 6 in Table 3. Next to each entry we
give inside parentheses the corresponding values of α for standard K-d trees.
All values have been rounded to three significant figures. These values suggest
that random PM in hybrid median K-d trees perform better on average than in
standard K-d trees. Namely, we conjecture that α[hyb](s,K) < α[std](s,K) for
all s and K. Moreover, we conjecture that as K → ∞, α[hyb](s,K) → 1 − s/K,
which is optimal. One argument in favor of this conjecture is that hybrid median
K-d trees get increasingly balanced as K grows, but the hybridization guarantees
that we cycle over all K coordinates as we follow paths down the tree—any path
from a node at level r ·K to a node at level (r+1) ·K −1 has used all coordinates
as discriminants. Hence partial match in hybrid median K-d trees should behave
as in standard K-d tries [6], for which α(s,K) = 1 − s/K.
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Table 3. Values of α for the expected cost of PM in hybrid median K-d trees. In
parentheses, the corresponding values of α for standard K-d trees.

s

K 1 2 3 4 5

2 0.546 (0.562) – – – –

3 0.697 (0.716) 0.368 (0.395) – – –

4 0.771 (0.79) 0.53 (0.562) 0.275 (0.306) – –

5 0.815 (0.833) 0.624 (0.656) 0.425 (0.463) 0.218 (0.25) –

6 0.845 (0.862) 0.685 (0.716) 0.522 (0.562) 0.354 (0.395) 0.181 (0.211)

4 Conclusions and Final Remarks

Throughout this work we have considered two variants of K-d trees: median K-
d trees and hybrid median K-d trees. Both are simple and easy to implement,
and neither requires significant extra space. We show that both variants are
more balanced than most other well known variants of K-d trees based on key
comparisons, such as standard, relaxed and squarish K-d trees. This is due to
the fact that their expected IPL is ∼ cKn ln n with cK < 2 for all K ≥ 2, and
cK → 1/ ln 2 as K → ∞, while for the other mentioned variants cK = 2. We have
also shown that their expected cost for random PM is Θ(nα), where α = α(s,K).
For median K-d trees this expected cost is better than that of relaxed K-d trees
but not than that for standard K-d trees. In contrast, hybrid median K-d trees
outperfom standard and relaxed K-d trees and we conjecture that they approach
the optimal exponent —only attained by squarish K-d trees– α = 1− s/K as K
gets larger. In view of these results, good choices would be hybrid median K-d
trees if the efficiency of insertions and exact searches were to be prioritized —
while not deviating too much from the optimal performance in partial matches—
or squarish K-d trees if the priority were the efficiency of partial match, with
slightly worse expected costs for insertions and exact searches.

To derive analytic results, our main tool has been the continuous master
theorem —the CMT. For the analysis of median K-d trees the most challenging
step was to find the probability that a random median K-d tree of size n has
a left subtree of size j, but once computed an almost direct application of the
CMT provides the sought answers. Hybrid median K-d trees have posed an
entirely new challenge as we have had to cope with systems of divide-and-conquer
recurrences that can not be solved directly using the CMT. Nevertheless, we have
been able to exploit the special structure of the systems corresponding to the
IPL and the random PM in hybrid median K-d trees to find the constants cK

and the equations satisfied by the exponents α(s,K) by developing a limited
extension of the CMT to cope with systems of recurrences.

Last but not least, our work constitutes a new example of the power of
the CMT as a fundamental tool in the analysis of algorithms: without its help
the analysis of median K-d trees would be a daunting task. It would have been
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desirable to have a full developed set of results and tools in the spirit of the CMT
to cope with systems of divide-and-conquer recurrences such as those arising in
the analysis of hybrid median K-d trees. Indeed, the extensions of the CMT that
we have developed in this work could constitute a first step towards this goal.
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