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Abstract. Let D be a digraph. A proper coloring C and a path P of D
are orthogonal if P contains exactly one vertex of each color class in C.
In 1982, Berge defined the class of χ-diperfect digraphs. A digraph D is
χ-diperfect if for every minimum coloring C of D, there exists a path P
orthogonal to C and this property holds for every induced subdigraph of
D. Berge showed that some super-orientations of an odd cycle of length
at least five and of its complement are not χ-diperfect. In 2022, de Paula
Silva, Nunes da Silva and Lee characterized which super-orientations
of such graphs are χ-diperfect. In this paper, we show that there are
other minimal non-χ-diperfect digraphs with stability number two and
three. In particular, the underlying graph of these digraphs with stability
number two that we have found are subgraphs of the complement of
an odd cycle with at least seven vertices. Motivated by this fact, we
introduce a class of graphs, called nice graphs, which consist of all 2-
connected graphs in which every odd cycle has length exactly five. We
characterize which super-orientations of the complement of a nice graph
are χ-diperfect.
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1 Introduction

Let G = (V (G), E(G)) be a graph. We use the concepts of path and cycle as
defined in [2]. We may think of a path or cycle as a subgraph of G. The length of
a path (respectively, cycle) is its number of edges. The order of a path P , denoted
by |P |, defined as its number of vertices, that is, |P | = |V (P )|. Similarly, the
order of a cycle is its number of vertices. Let Ck denote the graph isomorphic
to a cycle of length k ≥ 3 and let G denote the complement of G.

We also use the concepts of stable set and clique as defined in [2]. The stability
number of G is the cardinality of a maximum stable set, denoted by α(G). The
cardinality of a maximum clique is denoted by ω(G).
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A (proper) coloring C = {C1, C2, ..., Cm} of a graph G is a partition of V (G)
into stable sets, also called color classes. A coloring C of G is minimum if C
has the smallest possible number of color classes. The cardinality of a minimum
coloring, denoted by χ(G), is the chromatic number of G.

For every concept for graphs, we may have an analogue for digraphs. Let
D = (V (D), A(D)) be a digraph. The underlying graph of D, denoted by U(D),
is the simple graph with vertex set V (D) such that u and v are adjacent in
U(D) if and only if either (u, v) ∈ A(D) or (v, u) ∈ A(D) or both. We borrow
terminology from undirected graphs when dealing with a digraph D by consid-
ering its underlying graph U(D). In particular, a coloring of a digraph D is
a coloring of its underlying graph U(D). Similarly, we may obtain a directed
graph D from a graph G by replacing each edge uv of G by an arc (u, v), or
an arc (v, u), or both; such directed graph D is called a super-orientation of G.
A super-orientation which does not contain a digon (a directed cycle of length
two) is an orientation. A digraph D is symmetric if D is a super-orientation of
a graph G in which every edge uv of G is replaced by both arcs (u, v) and (v, u).

If (u, v) is an arc of D, then we say that u dominates v and v is dominated by
u. If v is not dominated by any of its neighbors, then we say that v is a source.
Similarly, if v does not dominate any of its neighbors in D, then we say that v
is a sink. A directed path or directed cycle is an orientation of a path or cycle,
respectively, in which each vertex dominates its successor in the sequence.

Henceforth, when we say path of a digraph, we mean directed path but we
will not use the same convention for cycles. When we say a cycle of a digraph,
we mean either a super-orientation of an undirected cycle with length at least
three or a digon. We denote by λ(G) (λ(D)) the cardinality of a maximum path
in a graph (digraph). A path in a graph or digraph is hamiltonian if it contains
all of its vertices. In 1934, Rédei [10] proved the following classical result.

Theorem 1 (Rédei [10]). Every super-orientation of a complete graph has a
hamiltonian path.

A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G.
It is easy to show that if G is perfect, then G cannot contain either an odd
cycle of order at least five or its complement as an induced subgraph. Berge [3]
conjectured that the converse was true as well. In 2006, Chudnovsky, Robert-
son, Seymour and Thomas [3] proved this long standing open conjecture and it
became known as the Strong Perfect Graph Theorem:

Theorem 2 (Chudnovsky et al. [3]). A graph G is perfect if and only if G
does not contain an odd cycle with five or more vertices or its complement as an
induced subgraph.

In 1982, Berge [1] introduced the concept of χ-diperfection of digraphs. Anal-
ogously to Theorem 2, he was interested in obtaining a characterization of such
digraphs in terms of forbidden subdigraphs. Let C be a coloring and let P be
a path of D. We say that C and P are orthogonal if |V (P ) ∩ C| = 1 for every
C ∈ C. We also say that C is orthogonal to P and vice versa. A digraph D is
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χ-diperfect if every induced subdigraph H of D has the following property: for
every minimum coloring C of H, there exists a path P of H such that C and P
are orthogonal. A digraph D is diperfect if U(D) is perfect. Berge [1] showed that
diperfect digraphs and symmetric digraphs are χ-diperfect. For ease of further
references, let us state the following.

Theorem 3 (Berge [1]). Let D be a diperfect digraph. Then, D is χ-diperfect.

Berge also showed that for a cycle of length five and for the complement of
an odd cycle with at least five vertices, there are orientations which are not χ-
diperfect. In [9], de Paula Silva, Nunes da Silva and Lee present a characterization
of super-orientations of odd cycles (Theorem 4) and a characterization of super-
orientations of complements of odd cycles that are χ-diperfect (Theorem 5). Let
D be a super-orientation of an odd cycle C = (x1, x2, . . . , x2�+1, x1) of order at
least five. Let P = (xi, . . . , xj) be a subpath of C. We say that the subdigraph
D[V (P )] is a sector if each of xi and xj is a source or a sink in D; we say that the
sector is odd if P has odd length, otherwise it is even. We also use (xi, . . . , xj) or
xiCxj to denote the corresponding sector in D. We say that D is a conflicting
odd cycle if it contains at least two arc-disjoint odd sectors.

Theorem 4 (de Paula Silva et al. [9]). Let D be a super-orientation of an
odd cycle with order at least five. Then, D is χ-diperfect if and only if D is not
a conflicting odd cycle.

Theorem 5 (de Paula Silva et al. [9]). Let D be a super-orientation of the
complement of an odd cycle with order at least five. Then, D is χ-diperfect if
and only if every vertex of D belongs to a path of order χ(D).

We say that a digraph D is an obstruction if D a minimal non-χ-diperfect
digraph, i.e., D is non-χ-diperfect but every proper induced subdigraph of D is χ-
diperfect. Conflicting odd cycles and non-χ-diperfect super-orientations of com-
plements of odd cycles are examples of obstructions. Given the Strong Perfect
Graph Theorem and Theorems 4 and 5, it may be tempting to conjecture that
the set of obstructions is exactly the set of non-χ-diperfect super-orientations
of odd cycles and their complements. Investigating this question we found new
obstructions with stability number two and three. In this paper, we focus on
those with stability number two. Curiously, we noted that the underlying graph
of such obstructions that we have found so far are spanning (k + 1)-chromatic
subgraphs of a C2k+1 with k ≥ 3. Later we found out that we may build an
obstruction by deleting an arc from some non-χ-diperfect super-orientation of a
C2k+1 with k ≥ 3.

Motivated by these observations, we decided to investigate digraphs with
stability number two whose underlying graph does not contain spanning (k+1)-
chromatic subgraphs of a C2k+1 with k ≥ 3. In other words, we are interested
in a family H of digraphs in which D ∈ H if and only if α(D) = 2 and, for every
induced subdigraph D′ of D, it follows that U(D′) is not a spanning (k + 1)-
chromatic subgraph of a C2k+1 with k ≥ 3. One may note that this is equivalent
to saying that a digraph D ∈ H if and only if every odd cycle of U(D) has length
five.



On χ-Diperfect Digraphs with Stability Number Two 463

2 Related Results

In this section we present some results related to the problem we study in
this paper. The first theorem we present was proved independently by Roy in
1967 [11] and Gallai in 1968 [5].

Theorem 6 (Gallai-Roy [5,11]). Let D be a digraph. For every maximum
path P of D, there is a coloring C of D such that P and C are orthogonal. In
particular, χ(D) ≤ λ(D).

We may compare this with the definition of χ-diperfection. In a χ-diperfect
digraph, we require that for every minimum coloring C, there exists a path P
such that C and P are orthogonal. It is known that this property does not hold
for every digraph [1].

A path partition of D is a collection of vertex-disjoint paths of D that cover
V (D). Let π(D) denote the cardinality of a smallest path partition of D. We use
the terms initial vertex and terminal vertex for paths to indicate the first and the
last vertex in the sequence of a given path. We denote by ter(P ) (respectively,
ini(P )) the terminal (respectively, initial) vertex of a path P . Similarly, if P is a
collection of paths, we denote by ter(P) (ini(P)) the set of terminal (respectively,
initial) vertices of each path in P. A stable set S and a path partition P are
orthogonal if |S ∩ P | = 1 for every P ∈ P.

Theorem 6 has a dual version in which we exchange the roles of stable sets
and paths. This result is the celebrated Gallai-Milgram’s Theorem which follows
from the next lemma.

Lemma 1 (Gallai-Milgram [6]). Let D be a digraph and let P be a path
partition of D. Then,

(i) there is a path partition Q of D such that ini(Q) ⊂ ini(P), ter(Q) ⊂ ter(P)
and |Q| = |P| − 1, or

(ii) there is a stable set S which is orthogonal to P.

Theorem 7 (Gallai and Milgram [6]). Let D be a digraph. For every min-
imum path partition P of D, there is a stable set S such that P and S are
orthogonal. In particular, π(D) ≤ α(D).

For the sake of conciseness, we refer the interested reader to Berge’s paper [1]
and Sambinelli’s PhD thesis [12] for a survey of the known results on this subject.

3 Properties of Obstructions

Let D be a digraph with a fixed minimum coloring S. We say that a subdigraph
H of D is rainbow if no two vertices in H are in the same color class of S.
Similarly, a path P (respectively, cycle) in D is a rainbow path (respectively,
rainbow cycle) if no two vertices in P are in the same color class of S; moreover,
if |P | = k, then we may say that P is a k-rainbow path. Let D1 and D2 be two
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disjoint rainbow subdigraphs of D. We say that D1 and D2 are color-compatible
if D1 ∪ D2 contains exactly one vertex of each color class of S, i.e., D1 ∪ D2 is
a rainbow subdigraph of D with exactly χ(D) vertices. We also say that D1 is
color-compatible with D2 and vice versa. A graph G is (vertex) color-critical if
χ(G − X) < χ(G) for every non-empty X ⊆ V (G). Equivalently, color-critical
graphs may be characterized in the following way.

Theorem 8. A graph G is color-critical if and only if for every v ∈ V (G) there
is a minimum coloring of G in which v belongs to a singleton color class. �

Now we present the relation between color-critical graphs and χ-diperfection.

Lemma 2. If G is the underlying graph of an obstruction, then G is color-
critical.

Proof. Towards a contradiction, suppose that G is not color-critical. Let D be
a minimal non-χ-diperfect super-orientation of G. Let S be a minimum coloring
of D that does not admit a χ(D)-rainbow path. Let D′ be a proper subdigraph
of D such that χ(D) = χ(D′). Clearly, S restricted to D′ is a χ(D′)-coloring of
D′. Since D is a minimal non-χ-diperfect digraph, there is a χ(D′)-rainbow path
in D′. However, a χ(D′)-rainbow path of D′ is also a χ(D)-rainbow path of D,
a contradiction. �

Let D be a digraph and let G = U(D). We now look at G. If such graph
is disconnected, it is easy to see that G can be partitioned into two disjoint
subgraphs, say G1 and G2, such that every vertex of G1 is adjacent to every
vertex of G2. So in any coloring of S of G, no color class of S contains vertices
of both G1 and G2. Based on this fact, we show in Lemma 4 that G must be
2-connected when D is an obstruction. Before we state such result, we need to
present a lemma that is a straightforward application of Lemma 1 but it is also
useful in other places of the text.

Lemma 3. Let D be a digraph and let P1 and P2 be two disjoint paths of D.
If every vertex of P1 is adjacent to every vertex of P2, then D has a path P
such that (i) V (P ) = V (P1) ∪ V (P2), (ii) ini(P ) ∈ {ini(P1), ini(P2)} and (iii)
ter(P ) ∈ {ter(P1), ter(P2)}.
Proof. Let D′ = D[V (P1) ∪ V (P2)] and let P = {P1, P2} be a path partition
of D′. Since every vertex of P1 is adjacent to every vertex of P2, there is no
stable set orthogonal to P. By Lemma 1, D′ has a path partition P ′ such that
|P ′| = |P| − 1 = 1, ini(P ′) ⊂ ini(P) and ter(P ′) ⊂ ter(P). Hence, the path P
of P ′ satisfies properties (i)–(iii). �

Lemma 4. If G is the underlying graph of an obstruction, then G is 2-connected.

Proof. Let D be an obstruction and let S be a minimum coloring of D that does
not admit a χ(D)-rainbow path. Let F = G where G is the underlying graph
of D. Towards a contradiction, suppose that F is not 2-connected. Suppose first



On χ-Diperfect Digraphs with Stability Number Two 465

that F is disconnected. Let X be the vertex set of a component of F and let
Y = V (F ) − X. Note that, in D, every vertex of X is adjacent to every vertex
of Y . Thus, no color class of S has vertices in both X and Y . Moreover, S
restricted to X and S restricted to Y are minimum colorings of D[X] and D[Y ],
respectively. Since D is a minimal non-χ-diperfect digraph, there is a χ(D[X])-
rainbow path P1 in D[X] and a χ(D[Y ])-rainbow path P2 in D[Y ]. Since P1 and
P2 are color-compatible paths and every vertex of P1 is adjacent to every vertex
of P2, we may apply Lemma 3 to P1 and P2 and obtain a χ(D)-rainbow path of
D, a contradiction.

So we may assume that F is connected but has a cut vertex v. Let X be the
vertex set of a component of F − v and let Y = V (F ) \ (X ∪ {v}). Similarly
to the previous case, in D, every vertex of X is adjacent to every vertex of Y .
Without loss of generality, we may assume that, if there are other vertices in
the same color class of v, those vertices belong to X. Hence, no color class of
S has vertices in both X ∪ {v} and Y . Moreover, S restricted to X ∪ {v} and
S restricted to Y are minimum colorings of D[X ∪ {v}] and D[Y ], respectively.
Let k = χ(D[X ∪ {v}]) and � = χ(D[Y ]) (so, χ(D) = k + �). Since D is a
minimal non-χ-diperfect digraph, there is a k-rainbow path in D[X ∪ {v}] and
an �-rainbow path P2 in D[Y ]. First assume that there is a k-rainbow path P1 in
D[X ∪ {v}] such that v /∈ V (P1). Similarly to the previous case, P1 and P2 are
color-compatible paths and every vertex of P1 is adjacent to every vertex of P2.
Thus, we may apply Lemma 3 to P1 and P2 and obtain a χ(D)-rainbow path of
D, a contradiction.

Thus, we may assume that every k-rainbow path P1 of D[X ∪ {v}] contains
v. Let S ′ be S restricted to Y ∪ {v}. Suppose that S ′ is not a minimum color-
ing of D[Y ∪ {v}], i.e., χ(D[Y ∪ {v}]) = �. Note that this implies that v does
not belong to a singleton color class of S. Hence, S restricted to X must be a
minimum k-coloring of D[X]. However there is a k-rainbow path in D[X] that
does not contain v, a contradiction to our assumption. So we may assume that
S ′ is a minimum coloring of D[Y ∪ {v}] and hence χ(D[Y ∪ {v}]) = � + 1. Since,
by our assumption, no vertex in Y belongs to the same color class of v in S,
it follows that v must belong to a singleton color class in S ′. Thus, there is
an (� + 1)-rainbow path P3 in D[Y ∪ {v}] that contains v. Hence, assume that
P1 = (x1, . . . , xi = v, xi+1, . . . , xk) and P3 = (y1, . . . , yj = v, yj+1, . . . , y�+1).
Moreover, every vertex in {x1, . . . , xi−1, xi+1, . . . , xk} is adjacent to every ver-
tex in {y1, . . . , yj−1, yj+1, . . . , y�+1}. By Lemma 3 there is a path R1 such
that V (R1) = {x1, . . . , xi−1, y1, . . . , yj−1} and ter(R1) ∈ {xi−1, yj−1}. Simi-
larly, there is a path R2 such that V (R2) = {xi+1, . . . , xk, yj+1, . . . , y�+1} and
ini(R2) ∈ {xi+1, yj+1}. Since v is dominated by both xi−1 and yj−1 and v dom-
inates both xi+1 and yj+1, it follows that R1vR2 is a χ(D)-rainbow path of D,
a contradiction. �

We may now restrict our attention to color-critical graphs whose complement
is connected. We present below some results that provide us information on the
number of vertices and on the properties of minimum colorings in such graphs
(and so, in minimal non-χ-diperfect digraphs).



466 C. A. de Paula Silva et al.

In 1963, Gallai [4] showed a lower bound on the number of vertices of a graph
that is color-critical and whose complement is connected. In 2002, Stehĺık [13]
proved a slightly stronger result that implies Gallai’s lower bound.

Theorem 9 (Gallai [4]). Let G be a color-critical graph. If G is connected,
then G has at least 2χ(G) − 1 vertices.

Theorem 10 (Stehĺık [13]). Let G be a color-critical graph and let v ∈ V (G).
If G is connected, then G−v has a (χ(G)−1)-coloring in which every color class
has at least two vertices.

The following results are specific for digraphs with stability number two.

Lemma 5. Let G be the underlying graph of an obstruction. If G has stability
number two, then G has exactly 2χ(G) − 1 vertices.

Proof. By Lemmas 2 and 4, G is a color-critical and G is connected. Let n =
|V (G)|. By Theorem 9, it follows that n ≥ 2χ(G) − 1. Towards a contradiction,
suppose that n > 2χ(G)−1. Let v ∈ V (G) and let G′ = G−v. Note that G′ has
at least 2χ(G) − 1 vertices and α(G′) ≤ 2. Thus, χ(G′) ≥

⌈
2χ(G)−1

2

⌉
≥ χ(G).

However, this is a contradiction since G is color-critical and, hence, χ(G′) =
χ(G) − 1. �

Corollary 1. Let G be the underlying graph of an obstruction. If G has sta-
bility number two, then in every minimal coloring of G there exists exactly one
singleton color class and every other color class has size two. �

We use the concepts of (perfect) matching as defined in [2]. A graph F is
factor-critical if F − v has a perfect matching, for any v ∈ V (F ).

Corollary 2. Let G be the underlying graph of an obstruction. If G has stability
number two, then G is factor-critical. Moreover, every minimum coloring of G
corresponds to a maximum matching of G and vice versa.

Proof. Let u ∈ V (G) and let S be a minimum coloring in which u is a singleton
color class (such coloring exists by Theorem 8). By Corollary 1, it follows that
{u} must be the only singleton color class of S and every other color class of
S has size two. Let F = G. We may build a perfect matching M of F − u by
converting each color class {v1, v2} of S \ {u} into an edge v1v2 of M . �

4 New Obstructions

We were able to find a few more examples of obstructions that were not yet
known. All these digraphs have stability number two or three and they can be
found in de Paula Silva’s master’s dissertation [8]. At this moment, we do not
know if there are obstructions with stability number greater than three distinct
from the conflicting odd cycles.



On χ-Diperfect Digraphs with Stability Number Two 467

In this paper, we particularly focus on obstructions with stability number
two. Two examples of such digraphs are depicted in Fig. 1. One may verify by
inspection that neither of these digraphs contain conflicting odd cycles or non-
χ-diperfect super-orientations of C2k+1, with k ≥ 2. Note that the underlying
graph of both digraphs are spanning 4-chromatic subgraphs of a C7. We observe
that the underlying graph of all the obstructions with stability number two that
we have found are spanning (k + 1)-chromatic subgraphs of a C2k+1 with k ≥ 3.
In fact, we may show that we can build an obstruction from some non-χ-diperfect
super-orientation of a C2k+1 with k ≥ 3, as we state in Lemma 6. Due to space
limitation, we are not able to present the proof of this result here, but it can
also be found in [8].

Lemma 6 (de Paula Silva, Nunes da Silva and Lee [8]). For every k ≥ 3,
there is an obstruction that is obtained by deleting an arc from some non-χ-
diperfect super-orientation of a C2k+1. �

Fig. 1. Obstructions with stability number two.

In view of such observations, we decided to investigate digraphs with stabil-
ity number two whose underlying graph does not contain a spanning (k + 1)-
chromatic subgraph of a C2k+1 with k ≥ 3. In fact, we were able to characterize
which of these digraphs are χ-diperfect and we present our result in next section.

5 Characterization of a Special Class

Recall that H is the family of digraphs such that D ∈ H if and only if α(D) = 2
and for every induced subdigraph D′ of D it follows that U(D) is not a spanning
(k + 1)-chromatic subgraph of C2k+1 with k ≥ 3. Note that this is equivalent to
saying that every (not necessarily induced) odd cycle of U(D) has length five.

Let G be the underlying graph of an obstruction. By Lemma 4, G is 2-
connected. Moreover, Corollary 2 states that if α(G) = 2, then G is factor-critical
and every maximum matching of G corresponds to a minimum coloring of G and
vice versa. We present now some auxiliary results on 2-connected factor-critical
graphs that are helpful in understanding the structure of these digraphs.
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Lemma 7. Let F be a factor-critical graph and let u∗ ∈ V (F ). Let M be a
perfect matching of F − u∗. Then, there is an odd cycle C in F such that u∗ ∈
V (C) and M restricted to F − V (C) is a perfect matching.

Proof. Let v be a vertex that is adjacent to u∗. Let M ′ be a perfect matching
of F − v. Then, in MΔM ′ there is an even path P from u∗ to v whose edges
alternate between M and M ′. So, C = P + u∗v is an odd cycle. Since the only
vertex not covered by M restricted to C is u∗, M restricted to M −C is a perfect
matching. �

Let G be a graph and let G′ be a subgraph of G. A path P = (v1, v2 . . . , v�)
is an ear of G′ if v1, v� ∈ V (G) and v2, . . . , v�−1 ∈ V (G) \ V (G′). In other
words, the extremes of P belong to G′ but the internal vertices do not. An ear
decomposition of G is a sequence (G1, G2, . . . , G�) of subgraphs of G such that

– G1 is a cycle,
– Gi+1 = Gi ∪ Pi, where Pi is an ear of Gi with 1 ≤ i < �, and
– G� = G.

If every ear in {P1, . . . , P�−1} has odd length, then we say that (G1, G2, . . . , G�)
is an odd-ear decomposition of G. In 1972, Lovász [7] proved the following char-
acterization of 2-connected factor-critical graphs.

Theorem 11 (Lovász [7]). A 2-connected graph F is factor-critical if and
only if F has an odd-ear decomposition starting with an odd cycle.

Let F be a graph with 2k + 1 vertices, for k ≥ 2 and with at least one
induced cycle C of length five. We say that F is nice if the vertices of C
can be labelled as u1, . . . , u5 and the vertices of F − V (C) can be labelled as
x1, . . . , xk−2, y1, . . . , yk−2 so that

– for i ∈ {1, . . . , k − 2}, the neighbors of xi are yi and u1, and
– for i ∈ {1, . . . , k − 2}, the neighbors of yi are xi and u3.

Thus, for every i ∈ {1, . . . , k − 2}, it follows that (u1, xi, yi, u3, u2, u1) is an
induced C5 (see Fig. 2 for an example with k = 4).

We may characterize nice graphs in terms of odd-ear decompositions. We
state such characterization below for ease of further reference.

Proposition 1. A graph F is nice if and only if there is an odd-ear decomposi-
tion (F1, F2, . . . , F�) of F such that:

(a) F1 is an odd cycle of length five,
(b) Fi+1 = Fi ∪ Pi, where Pi is an ear of length three of F1 with 1 ≤ i < �, and
(c) all the ears P1, . . . , P�−1 have as extremes the same pair of non-adjacent

vertices of F1. �
We can easily check that every odd cycle of a nice graph must have length

five. Moreover, by Theorem 11, a nice graph is 2-connected and factor-critical.
In fact, we prove that every 2-connected factor-critical graph in which every odd
cycle has length five must be isomorphic to a nice graph. Before we present such
result, we need an auxiliary lemma.
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Fig. 2. Nice graph with nine vertices.

Lemma 8. Let F be a graph in which every odd cycle has length five and let C
be an odd cycle of F . Let P be an ear of C. If the extremes of P are non-adjacent
in C, then the length of P is two or three. Otherwise, the length of P is four.

Proof. Let C = (u1, . . . , u5) be an odd cycle of F and let P = (v1, . . . , v�) be an
ear of C. Suppose first that the extremes of P are non-adjacent, say v1 = u1 and
v� = u3. Since F has no cycle of length three, the length of P is at least two.
Towards a contradiction, assume that the length of P is greater than three (so
� ≥ 5). Then, either (v1 = u1, v2, . . . , v� = u3, u2, u1) or (v1 = u1, v2, . . . , v� =
u3, u4, u5, u1) is an odd cycle of length greater than five, a contradiction. So
suppose that the extremes of P are adjacent, say v1 = u1 and v� = u2. Towards a
contradiction, suppose that the length of P is distinct from four (so � 	= 5). Then
either (v1 = u1, v2, . . . , v� = u2, u1) or (v1 = u1, v2, . . . , v� = u2, u3, u4, u5, u1) is
an odd cycle of length distinct from five, a contradiction. �

Lemma 9. Let F be a 2-connected factor-critical graph. If every odd cycle of F
has length five, then F is isomorphic to a nice graph.

Proof. By Theorem 11, F has an odd-ear decomposition (F1, . . . , F�) in which
F1 is an odd cycle. Let {P1, . . . , P�−1} be the ears in such ear-decomposition.
We show by induction on � that conditions (a) to (c) from Proposition 1 hold for
(F1, . . . , F�). Since every odd cycle of F has length five, condition (a) immediately
holds. Let C = F1 = (u1, u2, u3, u4, u5, u1). Clearly, if � = 1 then F = C is a
nice graph. Suppose now that � = 2. Since P1 is an ear of C (of odd length), by
Lemma 8, its length is exactly three and its extremes are non-adjacent vertices
of C. So property (b) is satisfied and property (c) trivially holds. So we may
assume that � ≥ 3. By Theorem 11, F�−1 is a 2-connected factor-critical graph
and, clearly, every odd cycle of F�−1 must have length five. Thus, by induction
hypothesis, F�−1 is a nice graph. By properties (b) and (c) from Proposition 1,
we may assume that Pi = (u1, xi, yi, u3) for every i ∈ {1, . . . , � − 2}. Now, it
suffices to show that P�−1 is an ear of C whose extremes are u1 and u3.

First, we show that P�−1 = (z1, . . . , zt) is an ear of C. Towards a contradic-
tion, suppose that at least one extreme of P�−1 does not belong to C. We may
assume without loss of generality that z1 = x1. Suppose first that zt /∈ V (C).
If there is j such that zt = yj then (u1, z1 = x1, . . . , zt = yj , u3) is an ear that
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contradicts Lemma 8 (see Fig. 3a for the case where j = 1 and see Fig. 3b for the
case where j > 1). So we may assume that there is j such that zt = xj . Then
(u3, y1, x1 = z1, . . . , zt = xj , u1) is an ear of C that contradicts Lemma 8 (see
Fig. 3c). Hence, we may assume that zt ∈ V (C).

Fig. 3. Auxiliary illustration for the proof of Lemma 9.

Since F has no C3, it follows that z1 = x1 is non-adjacent to vertices u2, u3

and u5. So, if the length of P�−1 is one, then P�−1 = (x1, u4) and (u3, y1, x1, u4)
is an ear of C that contradicts Lemma 8 (see Fig. 3d). Thus, we may assume
that the length of P�−1 is at least three (so t ≥ 4). If zt = u3, then (u1, z1 =
x1, . . . , zt = u3) is an ear of C that contradicts Lemma 8 (see Fig. 3e). Otherwise,
(u3, y1, x1 = z1, . . . , zt) is an ear of C of length greater than four, a contradiction
to Lemma 8 (see Fig. 3f for an example with zt = u5). Since all cases lead us
to a contradiction, it follows that P�−1 must be an ear of C. Also, recall that
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P�−1 has odd length by definition. By Lemma 8, it must have length three,
i.e., P�−1 = (z1, z2, z3, z4) and, furthermore, z1 and z4 are non-adjacent. Thus,
property (b) is satisfied.

Now we show that property (c) of Proposition 1 holds for P�−1, i.e., we show
that z1 = u1 and zt = u3. Towards a contradiction, suppose that z1 = u2

and z4 = u4. Then, (u1, x1, y1, u3, z1 = u2, z2, z3, z4 = u4, u5, u1) is a C9, a
contradiction (see Fig. 3g). The argument is analogous to show that the extremes
of P�−1 cannot be u2 and u5. So suppose that z1 = u1 and z4 = u4. Then,
(z1 = u1, x1, y1, u3, u4 = z4, z3, z2, z1 = u1) is a C7, a contradiction (see Fig. 3h).
The argument is analogous to show that the extremes of P�−1 cannot be u3 and
u5. Hence, the extremes of P�−1 must be u1 and u3. �

The next proposition is an immediate consequence of Lemma 7 and it can be
easily verified recalling that, by Corollary 2, the complement of a color-critical
graph G with α(G) = 2 is factor-critical and every maximum matching of G
corresponds to a minimum coloring of G.

Proposition 2. Let G be the complement of a nice graph and let S be a mini-
mum coloring of G. Then, there is an induced cycle C = C5 of G such that the
vertices of C can be labelled as (v1, . . . , v5, v1) and the vertices in V (G) − V (C)
can be labelled as x1, . . . , xk−2, y1, . . . , yk−2 so that:

(a) the vertex u∗ in the singleton color class of S belongs to V (C),
(b) {xi, yi} is a color class of S for i ∈ {1, . . . , k − 2},
(c) for i ∈ {1, . . . , k − 2}, the non-neighbors of xi are yi and v1,
(d) for i ∈ {1, . . . , k − 2}, the non-neighbors of yi are xi and v2, and
(e) (v1, yi, v4, xi, v2, v1) is an induced odd cycle of length five.

�

Henceforth, we may assume that every complement of a nice graph has a
fixed minimum coloring S and its vertices are labelled as described in Proposi-
tion 2. Note that the cycle (v1, . . . , v5, v1) of G is the complement of the cycle
(u1, . . . , u5, u1) mentioned on the definition of a nice graph and on Lemma 9 (see
Fig. 4). We use the notation X 
→ Y to denote that every vertex of X dominates
every vertex of Y in D and no vertex of Y dominates a vertex of X in D. If
X = {u} (respectively, Y = {v}), we may write directly u 
→ Y (respectively,
X 
→ v).

Lemma 10. Let D be a super-orientation of the complement of a nice graph
with 2k + 1 vertices, for k ≥ 2. If D contains no conflicting odd cycle as an
induced subdigraph, then D has a (k + 1)-rainbow path.

Proof. By hypothesis, D contains no conflicting odd cycle. Then, by Theorem 4,
C has a 3-rainbow path P . Let X = {x1, . . . , xk−2} and let Y = {y1, . . . , yk−2}.
Note that D[X] and D[Y ] induce semicomplete digraphs and they are both color-
compatible with P . Suppose first that v1 /∈ V (P ). In this case, every vertex in
X is adjacent to every vertex of P . By Theorem 1, D[X] has a hamiltonian path
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v2=u3

v5=u4

v3=u5

x1

y1

x2

y2

v1=u1

v4=u2

Fig. 4. Example of labelling of a complement of a nice graph with nine vertices.

P ′. We may apply Lemma 3 to P ′ and P , and obtain a (k + 1)-rainbow of D.
The argument is symmetric in the case where v2 /∈ V (P ). Hence, we may assume
that every 3-rainbow path P of C contains both v1 and v2. Note that, since v4
is non-adjacent to both v1 and v2, we know that v4 	= u∗. Also, we may assume
without loss of generality, that u∗ = v1 or u∗ = v5. In both cases, note that v1
and v4 belong to distinct color classes. We consider the following two cases.

Case 1. There is no digon between v1 and v2.

By the Principle of Directional Duality, we may assume that v1 
→ v2. Let i ∈
{1, . . . , k−2}. Suppose that v1 
→ yi and xi 
→ v2. Since C ′ = (v4, yi, v1, v2, xi, v4)
is an induced C5 by definition, it follows that v4 must be dominated by yi. Oth-
erwise, (v1, yi) and (v1, v2) would be two arc-disjoint odd sectors of C ′. Hence,
C ′ is a conflicting odd cycle, a contradiction (see Fig. 5a). Thus, P ′ = (v1, yi, v4)
is a 3-rainbow path of C ′. Let Z = (Y \{yi})∪{v5}. Similarly to what happened
before, D[Z] induces a semicomplete digraph that is color-compatible with P ′.
Moreover, every vertex of Z is adjacent to every vertex of P ′. Since, by Theo-
rem 1, there is a hamiltonian path R in D[Z], we may obtain a (k + 1)-rainbow
path of D by applying Lemma 3 to P ′ and R.

Hence, we may assume that, there is no i ∈ {1, . . . , k − 2} such that v1 
→ yi

and xi 
→ v2. Let Y − be the subset of vertices of Y that dominate v1 and let
X+ be the subset of vertices of X such that xi ∈ X if and only if yi /∈ Y . Note
that, by our assumption, v2 must dominate every vertex in X+.

Recall that every 3-rainbow path P of C contains both v1 and v2 and v1 
→ v2.
Hence, P = (v5, v1, v2) or P = (v1, v2, v3). Thus, {v1, v2, v5} ∪ Y − ∪ X+ or
{v1, v2, v3} ∪ Y − ∪ X+ contains exactly one vertex of each color class of S. If
P = (v5, v1, v2), let T− = Y − ∪ {v5} and let T+ = X+; otherwise let T− = Y −

and let T+ = X+ ∪ {v3}. By Theorem 1, D[T−] has a hamiltonian path P1 and
D[T+] has a hamiltonian path P2. Since every vertex of T− dominates v1 and
v2 dominates every vertex of T+, it follows that P1v1v2P2 is a (k + 1)-rainbow
path of D (see Fig. 5b).
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Fig. 5. Auxiliary illustration for the proof of Lemma 10

Case 2. There is a digon between v1 and v2.

By the Principle of Directional Duality, we may assume that v5 dominates v1.
Let Y − be the subset of vertices of Y that dominate v1. Let X− be the subset
of vertices of X such that xi ∈ X− if and only if yi /∈ Y − and xi dominates v2.
Let W = X− ∪ Y − ∪ {v5}.

So, if there is a color class {xi, yi} such that xi /∈ W and yi /∈ W , then v1
dominates yi and v2 dominates xi. Let X+ be the subset of vertices of X such
that xi /∈ W and yi /∈ W and let Y + be the subset of vertices of Y such that
xi /∈ W and yi /∈ W . Note that xi ∈ X+ if and only if yi ∈ Y + and, hence, |X+| =
|Y +|. Moreover, note that D[W ∪ {v1, v2}] is color-compatible with D[X+] and
D[Y +], and D[W ],D[X+],D[Y +] induce semicomplete digraphs (see Fig. 5c).
Let P ′, P1 and P2 be hamiltonian paths of D[W ],D[X+],D[Y +], respectively
(such paths exist by Theorem 1). If ter(P ′) dominates v1, then P ′v1v2P2 is a
(k + 1)-rainbow path of D. Otherwise, ter(P ′) dominates v2 and P ′v2v1P1 is a
(k + 1)-rainbow path of D. �

Theorem 12. Let D be a digraph in which every odd cycle of U(D) has length
five. Then, D is χ-diperfect if and only if D does not contain a conflicting odd
cycle as an induced subdigraph.
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Proof. (Necessity) The necessity immediately follows by Theorem 4.
(Sufficiency) To show that D is χ-diperfect, it suffices to prove that, for any

minimum coloring of D, there is a χ(D)-rainbow path in D. So towards a contra-
diction, suppose that D is an obstruction i.e. there is a minimum coloring of D
that does not admit a χ(D)-rainbow path but every proper induced subdigraph
is χ-diperfect. Let G = U(D). By Lemmas 2 and 4, we may assume that G is
color-critical and that G is 2-connected. Since, by hypotheses, every odd cycle of
G has length five, it follows that α(G) = 2. By Corollary 2, G is a factor-critical
graph. Hence, by Lemma 9, G is isomorphic to a nice graph. Thus, by Lemma 10,
D has a χ(D)-rainbow path, a contradiction. �

6 Final Remarks

In this paper we showed that there are minimal non-χ-diperfect digraphs whose
underlying graphs are neither an odd cycle of length at least five nor its comple-
ment; all these obstructions we have found have stability number two or three.
In particular, the underlying graph of an obstruction with stability number two
that we have found is a subgraph of some complement of an odd cycle of length
at least seven.

Motivated by this fact we investigated a class of digraphs whose underlying
graphs have stability number two such that every odd cycle of their complement
has length exactly five. We proved that a digraph in this class is χ-diperfect
if and only if it does not contain an induced conflicting odd cycle. The proof
we presented is not straightforward, which suggests that figuring out the set of
obstructions may be difficult. It is still open whether there is some obstruction
with stability number at least four that is not a conflicting odd cycle.
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