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Abstract. There has been a long-standing interest in computing diverse
solutions to optimization problems. In 1995 J. Krarup [28] posed the
problem of finding k-edge disjoint Hamiltonian Circuits of minimum
total weight, called the peripatetic salesman problem (PSP). Since then
researchers have investigated the complexity of finding diverse solutions
to spanning trees, paths, vertex covers, matchings, and more. Unlike the
PSP that has a constraint on the total weight of the solutions, recent
work has involved finding diverse solutions that are all optimal.

However, sometimes the space of exact solutions may be too small
to achieve sufficient diversity. Motivated by this, we initiate the study
of obtaining sufficiently-diverse, yet approximately-optimal solutions to
optimization problems. Formally, given an integer k, an approximation
factor c, and an instance I of an optimization problem, we aim to obtain
a set of k solutions to I that a) are all c approximately-optimal for I
and b) maximize the diversity of the k solutions. Finding such solutions,
therefore, requires a better understanding of the global landscape of the
optimization function.

Given a metric on the space of solutions, and the diversity measure as
the sum of pairwise distances between solutions, we first provide a gen-
eral reduction to an associated budget-constrained optimization (BCO)
problem, where one objective function is to optimized subject to a bound
on the second objective function. We then prove that bi-approximations
to the BCO can be used to give bi-approximations to the diverse approx-
imately optimal solutions problem.

As applications of our result, we present polynomial time approxi-
mation algorithms for several problems such as diverse c-approximate
maximum matchings, s − t shortest paths, global min-cut, and minimum
weight bases of a matroid. The last result gives us diverse c-approximate
minimum spanning trees, advancing a step towards achieving diverse c-
approximate TSP tours.

c© Springer Nature Switzerland AG 2022
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We also explore the connection to the field of multiobjective opti-
mization and show that the class of problems to which our result
applies includes those for which the associated DUALRESTRICT prob-
lem defined by Papadimitriou and Yannakakis [35], and recently explored
by Herzel et al. [26] can be solved in polynomial time.

Keywords: Diversity · Minimum spanning tree · Maximum
matching · Shortest path · Travelling salesman problem · Dispersion
problem

1 Introduction

Techniques for optimization problems focus on obtaining optimal solutions to
an objective function and have widespread applications ranging from machine
learning, operations research, computational biology, networks, to geophysics,
economics, and finance. However, in many scenarios, the optimal solution is
not only computationally difficult to obtain, but can also render the system
built upon its utilization vulnerable to adversarial attacks. Consider a patrolling
agent tasked with monitoring n sites in the plane. The most efficient solution
(i.e., maximizing the frequency of visiting each of the n sites) would naturally be
to patrol along the tour of shortest length1 (the solution to TSP - the Traveling
Salesman Problem). However, an adversary who wants to avoid the patroller
can also compute the shortest TSP tour and can design its actions strategi-
cally [39]. Similarly, applications utilizing the minimum spanning tree (MST)
on a communication network may be affected if an adversary gains knowledge
of the network [13]; systems using solutions to a linear program (LP) would
be vulnerable if an adversary gains knowledge of the program’s function and
constraints.

One way to address the vulnerability is to use a set of approximately opti-
mal solutions and randomize among them. However, this may not help much
to mitigate the problem, if these approximate solutions are combinatorially too
“similar” to the optimal solution. For example, all points in a sufficiently small
neighborhood of the optimal solution on the LP polytope will be approximately
optimal, but these solutions are not too much different and the adversaries can
still effectively carry out their attacks. Similarly one may use another tree instead
of the MST, but if the new tree shares many edges with the MST the same vulner-
ability persists. Thus k-best enumeration algorithms [18,24,30,31,33] developed
for a variety of problems fall short in this regard.

One of the oldest known formulations is the Peripatetic Salesman problem
(PSP) by Krarup [28], which asks for k-edge disjoint Hamiltonian circuits of
minimum total weight in a network. Since then, several researchers have tried to
compute diverse solutions for several optimization problems [4,5,16,23]. Most of
these works are on graph problems, and diversity usually corresponds to the size
1 We assume without loss of generality that the optimal TSP is combinatorially unique

by a slight perturbation of the distances.
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of the symmetric difference of the edge sets in the solutions. Crucially, almost
all of the aforementioned work demands either every solution individually be
optimal, or the set of solutions in totality (as in the case of the PSP) be optimal.
Nevertheless, the space of optimal solutions may be too small to achieve
sufficient diversity, and it may just be singular (unique solution). In addition,
for NP-complete problems finding just one optimal solution is already difficult.
While there is some research that takes the route of developing FPT algorithms
for this setting [5,17], to us it seems practical to also consider the relaxation to
approximately-optimal solutions.

This motivates the problem of finding a set of diverse and approximately
optimal solutions, which is the problem considered in this article. The number
of solutions k and the desired approximation factor c > 1 is provided by the
user as input. Working in the larger class gives one more hope of finding diverse
solutions, yet every solution has a guarantee on its quality.

1.1 Our Contributions

We develop approximation algorithms for finding k solutions to the given opti-
mization problem: for every solution, the quality is bounded by a user-given
approximation ratio c > 1 to the optimal solution and the diversity of these k
solutions is maximized. Given a metric on the space of solutions to the problem,
we consider the diversity measure given by the sum (or average) of pairwise dis-
tances between the k solutions. Combining ideas from the well-studied problem
on dispersion (which we describe next), we reduce the above problem to a budget
constrained optimization (BCO) program.

1.2 Dispersion

Generally speaking, if the optimization problem itself is NP-hard, finding diverse
solutions for that problem is also NP-hard (see Proposition 1 for more detail).
On the other hand, interestingly, even if the original problem is not NP-hard,
finding diverse and approximately optimal solutions can still be NP-hard. This
is due to the connection of the diversity maximization objective with the general
family of problems that consider selecting k elements from the given input set
with maximum “dispersion”, defined as max-min distance, max-average distance,
and so on.

The dispersion problem has a long history, with many variants both in the
metric setting and the geometric setting [15,29,38]. For example, finding a subset
of size k from an input set of n points in a metric space that maximizes the
distance between closest pairs or the sum of distances of the k selected points
are both NP-hard [1,37]. For the max-sum dispersion problem, the best known
approximation factor is 2 for general metrics [7,25], although PTAS are available
for Euclidean metrics or more generally, metrics of negative type, even with
matroid constraints [10,11].

Dispersion in Exponentially-Sized Space. We make use of the general
framework of the 2-approximation algorithm [8,37] to the max-sum k-dispersion
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problem, a greedy algorithm where the i + 1th solution is chosen to be the most
distant/diverse one from the first i solutions. Notice that in our setting, there
is an important additional challenge to understand the space within which the
approximate solutions stay. In all of the problems we study, the total number of
solutions can be exponential in the input size. Thus we need to have a non-trivial
way of navigating within this large space and carry furthest insertion without
considering all points in the space. This is where our reduction to budget con-
strained problem comes in.

Self Avoiding Dispersion. Furthermore, even after implicitly defining the
i + 1th furthest point insertion via some optimization problem, one needs to
take care that the (farthest, in terms of sum of distances) solution does not turn
out to equal one of the previously found i solutions, as this is a requirement
for the furthest point insertion algorithm. This is an issue one faces because
of the implicit nature of the furthest point procedure in the exponential-sized
space of solutions: in the metric k-dispersion problem, it was easy to guarantee
distinctness as one only considered the n − i points not yet selected.

1.3 Reduction to Budget Constrained Optimization

Combining with dispersion, we reduce the diversity computational problem to a
budget constrained optimization (BCO) problem where the budget is an upper
(resp. lower) bound if the quality of solution is described by a minimization
(resp. maximization) problem. Intuitively the budget guarantees the quality of
the solution, and the objective function maximizes diversity. Recall that the
number of solutions k and the approximation factor c is input by the user; a
larger c allows for more diversity.

We show how using an (a, b) bi-approximation algorithm for the BCO prob-
lem provides a set of O(a)-diverse, bc approximately-optimal solutions to the
diversity computational problem (the hidden constant is at most 4). This main
reduction is described in Theorem 1.

The main challenge in transferring the bi-approximation results because of
a technicality that we describe next. Let S(c) be the space of c approximate
solutions. A (∗, b) bi-approximation algorithm to the BCO relaxes the budget
constraint by a factor b, and hence only promises to return a faraway point in
the larger space S(b · c). Thus bi-approximation of BCO do not simply give a
farthest point insertion in the space of solutions, and instead return a point in a
larger space. Nevertheless, we prove that in most cases, one loses a factor of at
most 4 in the approximation factor for the diversity.

Once the reduction to BCOs is complete, for diverse approximate match-
ings, spanning trees and shortest paths we exploit the special characteristics
of the corresponding BCO to solve it optimally (a = b = 1). For other prob-
lems such as global min-cut, diverse approximate minimum weight spanning
trees, and the more general minimum weight bases of a matroid, we utilize
known bi-approximations to the BCO to obtain bi-approximations for the diver-
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sity problem. For all problems except diverse (unweighted) spanning trees2, our
algorithms are the first polynomial time bi-approximations for these problems.

We also connect to the wide literature on multicriteria optimization and show
that our result applies to the entire class of problems for which the associated
DUALRESTRICT problem (defined by Papadimitriou and Yannakakis [35], and
recently studied by Herzel et al. [26]) has a polynomial time solution. We discuss
this in more detail after presenting our reduction.

Layout: The rest of this paper is organized as follows: we survey related work
in Sect. 2, and formulate the problem in Sect. 3. In Sect. 4 we mention the con-
nection to dispersion and describe the reduction to the budget constrained opti-
mization problem (Theorem 1). Sections 5, 6, 7 and 8 describe four applications
of our technique to various problems such as diverse approximate matchings,
global min-cuts, shortest paths, minimum spanning trees, and minimum weight
bases of a matroid. We remark that this list is by no means exhaustive, and we
leave finding other interesting optimization problems which are amenable to our
approach for future research. Due to space constraints, all proofs can be
found in the publicly available full version of this paper at [19].

2 Related Work

Recently there has been a surge of interest in the tractability of finding diverse
solutions for a number of combinatorial optimization problems, such as span-
ning trees, minimum spanning trees, k-paths, shortest paths, k-matchings,
etc. [16,17,21–23]. Most of the existing work focuses on finding diverse opti-
mal solutions. In cases when finding the optimal solution is NP-complete, sev-
eral works have focused on developing FPT algorithms [5,17]. Nevertheless, as
pointed out in [22], it would be more practical to consider finding a set of diverse
“short” paths rather than one set of diverse shortest paths. They show that
finding a set of approximately shortest paths with the maximum diversity is
NP-hard, but leave the question of developing approximation algorithms open,
a question that we answer in our paper for several problems. Similarly the prob-
lem of finding diverse maximum matchings was proved to be NP-hard in [16].
We remark that the main difference between our result and previous work is that
our algorithms can find a diverse set of c-approximate solutions in polynomial
time. If the attained diversity is not sufficient for the application, the user can
input a larger c, in hopes of increasing it.

Multicriteria Optimization: In this domain, several optimization functions
are given on a space of solutions. Clearly, there may not be a single solution that
is the best for all objective functions, and researchers have focused on obtain-
ing Pareto-optimal solutions, which are solutions that are non-dominated by
other solutions. Put differently, a solution is Pareto-optimal if no other solution
2 While an exact algorithm for diverse unweighted spanning trees is known [23], we

give a faster (by a factor Ω(n1.5k1.5/α(n, m)) where α(·) denotes the inverse of the
Ackermann function), 2-approximation here.
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can have a better cost for all criteria. Since exact solutions are hard to find,
research has focused on finding ε Pareto-optimal solutions, which are a 1+ ε fac-
tor approximations of Pareto-optimal solutions. Papadimitriou and Yannakakis
[35] showed that under pretty mild conditions, any mutlicriteria optimization
problem admits an ε Pareto-optimal set of fully polynomial cardinality. In terms
of being able to find such an ε Pareto-optimal set, they show that a (FPTAS)
PTAS exists for the problem if and only if an associated GAP problem can be
solved in (fully) polynomial time. Very recently, Herzel et al. [26] study the class
of problems for which an FPTAS or PTAS exists for finding ε Pareto-optimal
solutions that are exact in one of the criteria. Such problems are a subset of the
ones characterized by GAP. Herzel et al. [26] characterize the condition simi-
larly: an FPTAS (PTAS) exists if and only if an associated DUALRESTRICT
problem can be solved in (fully) polynomial time. For more details we refer the
reader to the survey by Herzel at al. [27].

3 Diversity Computational Problem (DCP)

First, we define some notations. We use the definition of optimization problems
given in [3] with additional formalism as introduced in [20].

Definition 1 (Optimization Problem). An optimization problem Π is
characterized by the following quadruple of objects (IΠ ,SolΠ ,ΔΠ , goalΠ), where:

– IΠ is the set of instances of Π. In particular for every n ∈ N, IΠ(n) is the
set of instances of Π of input size at most n (bits);

– SolΠ is a function that associates to any input instance x ∈ IΠ the set of
feasible solutions of x;

– ΔΠ is the measure function3, defined for pairs (x, y) such that x ∈ IΠ and
y ∈ SolΠ(x). For every such pair (x, y), ΔΠ(x, y) provides a non-negative
integer which is the value of the feasible solution y;

– goalΠ ∈ {min,max} specifies whether Π is a maximization or minimization
problem.

We would like to identify a subset of our solution space which are (approxi-
mately) optimal with respect to our measure function. To this effect, we define
a notion of approximately optimal feasible solution.

Definition 2 (Approximately Optimal Feasible Solution). Let
Π(IΠ ,SolΠ ,ΔΠ , goalΠ) be an optimization problem and let c ≥ 1. For every
x ∈ IΠ and y ∈ SolΠ(x) we say that y is a c-approximate optimal solution
of x if for every y′ ∈ SolΠ(x) we have ΔΠ(x, y) · c ≥ ΔΠ(x, y′) if goalΠ = max
and ΔΠ(x, y) ≤ ΔΠ(x, y′) · c if goalΠ = min.

3 We define the measure function only for feasible solutions of an instance. Indeed if
an algorithm solving the optimization problem outputs a non-feasible solution, then
the measure just evaluates to -1 in case of maximization problems and ∞ in case of
minimization problems.
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Definition 3 (Computational Problem). Let Π(IΠ ,SolΠ ,ΔΠ , goalΠ) be an
optimization problem and let λ : N → N. The computational problem asso-
ciated with (Π,λ) is given as input an instance x ∈ IΠ(n) (for some n ∈ N)
and real c := λ(n) ≥ 1 find a c-approximate optimal feasible solution of x.

Definition 4 (DCP - Diversity Computational Problem). Let
Π(IΠ ,SolΠ ,ΔΠ , goalΠ) be an optimization problem and let λ : N → N. Let σΠ,t

be a diversity measure that maps every t feasible solutions of an instance of IΠ

to a non-negative real number. The diversity computational problem asso-
ciated with (Π,σΠ,t, k, λ) is given as input an instance x ∈ IΠ(n) (for some
n ∈ N), an integer k := k(n), and real c := λ(n) ≥ 1, find k-many c-approximate
solutions y1, . . . , yk to x which maximize the value of σΠ,k(x, y1, . . . , yk).

Proposition 1. Let Π(IΠ ,SolΠ ,ΔΠ , goalΠ) be an optimization problem and let
λ : N → N. Let σΠ,t be a diversity measure that maps every t feasible solutions of
an instance of IΠ to a non-negative real number. If the computational problem
associated with (Π,λ) is NP-hard, then the diversity computational problem
associated with (Π,σΠ,t, λ) also is NP-hard.

Therefore the interesting questions arise when we compute problems asso-
ciated with (Π,λ) which are in P, or even more when, (Π,1) is in P where 1
is the constant function which maps every element of the domain to 1. For the
remainder of this paper, we will consider λ(n) to be the constant function, and
will simply refer to the constant as c.

Finally, we define bicriteria approximations for the diversity computational
problem:

Definition 5 ((α, β) Bi-approximation for the Diversity Computa-
tional Problem). Consider the diversity computational problem associated with
(Π,σΠ,t, k, c), and a given instance x ∈ IΠ(n) (for some n ∈ N). An algorithm
is called an (α, β) bi-approximation for the diversity computational problem if it
outputs k feasible solutions y1, . . . , yk such that a) yi is a β·c-approximate optimal
feasible solution to x for all 1 ≤ i ≤ k, and b) for any set y

′
1, . . . , y

′
k of k-many

c-approximate optimal feasible solutions, σΠ,k(y1, · · · , yk) ·α ≥ σΠ,k(y
′
1, · · · , y

′
k).

Furthermore, such an algorithm is said to run in polynomial time if the running
time is polynomial in n and k.

4 The Reduction: Enter Dispersion and Biobjective
Optimization

As stated in the introduction, our problems are related to the classical dispersion
problem in a metric space. Here we state the dispersion problem and use disper-
sion to reduce the problem of finding diverse, approximately optimal solutions
to solving an associated budget constrained optimization problem.
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4.1 Dispersion Problem

Definition 6 (k-Dispersion, Total Distance). Given a finite set of points
P whose pairwise distances satisfy the triangle inequality and an integer k ≥ 2,
find a set S ⊆ P of cardinality k so that W (S) is maximized, where W (S) is the
sum of the pairwise distances between points in S.

The main previous work on the k-dispersion problem relevant to us is [37],
where the problem was named as Maximum-Average Facility Dispersion problem
with triangle inequality (MAFD-TI). The problems are equivalent as maximizing
the average distance between the points also maximizes the sum of pairwise
distances between them and vice-versa.

The k-dispersion problem is NP-hard, but one can find a set S whose W (S)
is at least a constant factor of the maximum possible in polynomial time by a
greedy procedure [37]. We call the greedy procedure furthest insertion. It works
as follows. Initially, let S be a singleton set that contains an arbitrary point from
the given set. While |S| < k, add to S a point x /∈ S so that W (S ∪ {x}) ≥
W (S∪{y}) for any y /∈ S. Repeat the greedy addition until S has size k. The final
S is a desired solution, which is shown to be a 4-approximation in [37]. It is worth
noting that the furthest insertion in [37] initializes S as a furthest pair of points
in the given set, and the above change does not worsen the approximation factor.
In a later paper [8], the greedy algorithm of choosing an arbitrary initial point
is shown to be a 2-approximation, which is a tight bound for this algorithm [7].

Lemma 1 (Furthest Insertion in [8,37]). The k-dispersion problem can be
2-approximated by the furthest insertion algorithm.

The running time of the furthest insertion algorithm is polynomial in |S| (the
size of S), as it performs k iterations, each performing at most O(k|S|) distance
computations/lookups. Note that in our case S is the collection of objects of a
certain type (matchings, paths, trees, etc.). Hence the size of our metric space is
typically exponential in |V | and |E|. This adds a new dimension of complexity
to the traditional dispersion problems studied.

4.2 Reduction to Budget Constrained Optimization

Recall the definitions of the Diversity Computational Problem (Definition 4)
and (a, b) bi-approximations (Definition 5). As the input instance x ∈ IΠ will
be clear from context, we drop the dependence on x, and assume a fixed input
instance to a computational problem. Thus SolΠ will denote the set of feasible
solutions, and ΔΠ(y) the measure of the feasible solution y.

Diversity and Similarity Measures from Metrics. Let d : SolΠ × SolΠ →
R

+ be a metric on the space of feasible solutions. When such a metric is available,
we will consider the diversity function σΠ,t : SolΠ ×· · ·×SolΠ → R

+ that assigns
the diversity measure

∑
i,j d(yi, yj) to a t-tuple of feasible solutions (y1, · · · , yt).

Also, given such a metric d, define D to be the diameter of SolΠ under d, i.e.,
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D = maxy,y′∈SolΠ d(y, y′). In many cases, we will be interested in the similarity
measure sΠ,t defined by sΠ,t(y1, · · · , yt) =

∑
i,j(D−d(yi, yj)). The examples the

reader should keep in mind are graph objects such as spanning trees, matchings,
shortest paths, Hamiltonian circuits, etc., such that d(y, y′) denotes the Ham-
ming distance, a.k.a. size of the symmetric difference of the edge sets of y and
y′, and s denotes the size of their intersection.

In the remainder of the paper we consider the above total distance (resp.
similarity) diversity measures σΠ,t arising from the metric d (resp. similarity
measure s), and we will parameterize the problem by d (resp. s) instead.

Definition 7 (Budget Constrained Optimization). Given an instance of
a computational problem Π, a constant c ≥ 1, and a set {y1, . . . , yi} of feasi-
ble solutions in SolΠ , define the metric budget constrained optimization
problem BCO(Π, (y1, . . . , yi), c, d) as follows:

– Ifgoalπ = min, defineΔ∗ := miny∈SolΠ ΔΠ(y).ThenBCO(Π, (y1, . . . , yi), c, d)
is the problem

max fd(y) :=
i∑

j=1

d(y, yj)

s.t. ΔΠ(y) ≤ c · Δ∗

y ∈ SolΠ\{y1, . . . , yi}

(1)

– Ifgoalπ = max,defineΔ∗ := maxy∈SolΠ ΔΠ(y).ThenBCO(Π, (y1, . . . , yi), c, d)
is the problem

max fd(y) :=
i∑

j=1

d(y, yj)

s.t. ΔΠ(y) · c ≥ Δ∗

y ∈ SolΠ\{y1, . . . , yi}

(2)

– Given a similarity measure s, define the similarity budget constrained
optimization problem BCO(Π, (y1, . . . , yi), c, s) with the same constraint
set as above (depending on goalπ), but with the objective function changed to
gs(y) := min

∑i
j=1 s(y, yj) instead of max

∑i
j=1 d(y, yj).

Definition 8 (Bi-approximation to BCO). An algorithm for an associated
BCO is called an (a, b) bi-approximation algorithm if for any 1 ≤ i ≤ k, it
outputs a solution y such that the following holds.

– If goalΠ = min and the associated BCO is BCO(Π, (y1, . . . , yi), c, d), then a)
y ∈ SolΠ\{y1, · · · , yi}, b) ΔΠ(y) ≤ b · c · Δ∗, and c) for all y′ satisfying the
constraints of BCO(Π, (y1, . . . , yi), c, d), fd(y) · a ≥ fd(y′).

– If goalΠ = max and the associated BCO is BCO(Π, (y1, . . . , yi), c, d), then a)
y ∈ SolΠ\{y1, · · · , yi}, b) ΔΠ(y) · b · c ≥ Δ∗, and c) for all y′ satisfying the
constraints of BCO(Π, (y1, . . . , yi), c, d), fd(y) · a ≥ fd(y′).
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– If goalΠ = min and the associated BCO is BCO(Π, (y1, . . . , yi), c, s), then a)
y ∈ SolΠ\{y1, · · · , yi}, b) ΔΠ(y) ≤ b · c · Δ∗, and c) for all y′ satisfying the
constraints of BCO(Π, (y1, . . . , yi), c, s), gs(y) ≤ gs(y′) · a.

– If goalΠ = max and the associated BCO is BCO(Π, (y1, . . . , yi), c, s), then a)
y ∈ SolΠ\{y1, · · · , yi}, b) ΔΠ(y) · b · c ≥ Δ∗, and c) for all y′ satisfying the
constraints of BCO(Π, (y1, . . . , yi), c, s), gs(y) ≤ gs(y′) · a.

Remark: Minimization and maximization are essentially equivalent (by chang-
ing the sign), and so optimally solving one solves the other. The reason why we
continue to treat them separately is because obtaining an approximation to min-
imizing total similarity gs(y) :=

∑i
j=1 s(y, yi) is not equivalent to an approxima-

tion to maximizing total distance fd(y) :=
∑i

j=1 d(y, yi)– in fact, these functions
are the “opposite” of each other, as fd(y) = Di − gs(y).

We are now ready to state our main theorem.

Theorem 1 (Reduction of DCP to BCO). Consider an input (Π, k, d, c)
to the diversity computational problem (DCP).

– For metric BCO,
1. An (a, 1) bi-approximation to BCO(Π, (y1, . . . , yi), c, d) can be used to

give a (2a, 1) bi-approximation to the DCP, and
2. An (a, b) bi-approximation to BCO(Π, (y1, . . . , yi), c, d) can be used to

give a (4a, b) bi-approximation to the DCP.
– For similarity BCO,

3. A (1, 1) bi-approximation to BCO(Π, (y1, . . . , yi), c, s) can be used to give
a (2, 1) bi-approximation to the DCP,

4. A (1, b) bi-approximation to BCO(Π, (y1, . . . , yi), c, s) can be used to give
(4, b) bi-approximation to the DCP,

5. A (1 + ε, 1) bi-approximation to BCO(Π, (y1, . . . , yi), c, s) can be used
to give (4, 1) bi-approximation to the DCP, under the condition that the
average pairwise distance in the optimal solution to the DCP is at least
D 4ε

1+2ε .

In all of the above, the overhead for obtaining a bi-approximation for the
DCP, given a bi-approximation for BCO problem, is O(k).

A few remarks are in order:

– The above theorem provides a recipe for solving the diversity computational
problem for any given optimization problem. As long as either the metric
or the similarity budget constrained optimization problems can be solved or
approximated in polynomial time, one has an analogous result for the DCP.

– In the remainder of this paper we will see several applications that follow from
the above 5 “types” of bi-approximations available. These include DCP for
Maximum Matching and Global Min-Cut (Type 1), DCP for shortest path
(Type 3), DCP for minimum weight bases of a matroid, minimum spanning
trees (Types 4 and 5).



232 J. Gao et al.

– Whenever either a or b (or both) is set to be 1+ ε, we call a bi-approximation
for the BCO problem an FPTAS if the running time is polynomial in 1/ε in
addition to being polynomial in d and k. Otherwise we call it a PTAS.

Relation to Multicriteria Optimization: Observe that for similarity BCOs,
we need either a or b to be 1. This class of biobjective problems that have a PTAS
that is exact in one of the criteria is a special case of the multicriteria problems
that have a PTAS that is exact in one of the criteria. Herzel et al. [26] showed that
this class is exactly the class of problems for which the DUALRESTRICT version
of the problem, posed by Diakonikolas and Yannakakis [14]), can be solved in
polynomial time. These are also the class of problems having a polynomial-
time computable approximate ε-Pareto set that is exact in one objective. This
equivalence means that our theorem is applicable to this entire class of problems.

4.3 Relaxed BCOs and Self-avoidance

Before we delve into our applications, we describe another challenge in directly
applying results from multicriteria optimization literature. For a BCO, the sec-
ond constraint demands that y ∈ SolΠ\{y1, · · · , yi}. Intuitively y is the farthest
point to the set of already discovered solutions {y1, · · · , yi}, and because it is
defined implicitly, without the second constraint y may equal one of the yj

(1 ≤ j ≤ i). Consider an alternate BCO, which we call BCOr where the con-
straint is relaxed to y ∈ SolΠ . For many graph problems, solving BCOr combined
with the approach by Lawler [30] gives a solution to the original BCO. This is
extremely useful because most of the literature on multicriteria optimization con-
cerns optimization of the relaxed type of problems BCOr, and one can borrow
results derived before without worrying about the second constraint. We remark
that for other problems, k-best enumeration algorithms (see [18,24,30,31,33] for
examples) may be useful to switch from the BCO to its relaxed version. Thus
any algorithm for BCOr can be used, modulo the self-avoiding constraint (to be
handled using Lawler’s approach), to give a polynomial time algorithm for the
Diversity Computational Problem with the same guarantees as in Theorem 1.
We provide examples of the approach by Lawler in subsequent sections where
we consider specific problems.

5 Application 1: Diverse Spanning Trees

In this section, we discuss the diverse spanning trees problem, which is the diver-
sity computational problem for spanning trees with Hamming distance function
as the diversity measure. Let G = (V,E) be an n-node m-edge undirected graph.
The problem aims to output a set S of k spanning trees T1, · · · , Tk of G such
that the sum of the pairwise distances

∑
i,j∈S d(Ti, Tj) is maximized, where d is

the Hamming distance between the edge sets of the trees. While this problem
actually has an exact algorithm running in time O((kn)2.5 m) [23], we get a
faster approximation algorithm.
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Theorem 2. Given an n-node m-edge undirected graph G = (V,E), there exists
an O(knm ·α(n,m))-time algorithm, where α(·) is the inverse of the Ackermann
function, that generates k spanning trees T1, · · · , Tk, such that the sum of all
pairwise Hamming distances is at least half of an optimal set of k diverse span-
ning trees.

We prove the above theorem by developing an exact (1, 1) polynomial time
subroutine for the associated BCO problem. The proof can be found in the full
version.

6 Application 2: Diverse Approximate Shortest Paths

Given a graph G = (V,E), non-negative edge weights w(e), two vertices s and t,
and a factor c > 1, the diversity computational problem asks to output k many
st paths, such that the weight of each path is within a factor c of the weight of
the shortest st path, and subject to this constraint, the total pairwise distance
between the paths is maximized. Here the distance between two paths is again
the Hamming distance, or size of symmetric difference of their edge sets.

In [22], it is shown that finding k shortest paths with the maximum diversity
(i.e. the average Hamming distance between solutions) can be solved in polyno-
mial time, but finding k “short” paths with the maximum diversity is NP-hard.
In contrast, in what follows, we will show that finding k “short” paths with
constant approximate diversity is polynomial-time solvable.

We will show that the associated budget constrained optimization problem for
this is of Type 3 in Theorem 1. In other words, we will show that the BCO can
be solved exactly. This will result in a (2, 1) approximation algorithm for the
diversity computational problem.

Hence, we need an algorithm that implements: given a set S of c-approximate
shortest st-paths, find a c-approximate shortest st-path P /∈ S so that W (S ∪
{P}) is maximum among all W (S ∪ {P ′}) for c-approximate shortest st-path
P ′ /∈ S. Here, W (S′) is the sum of all pairwise Hamming distances between two
elements in S′. This is a special case of the bicriteria shortest paths, for which
there is an algorithm in [34]. In our case, one of the two weight functions is
an integral function with range bounded in [0, k]. Hence, it can be solved
more efficiently than the solution in [34], which can be summarized as following.

Lemma 2 (Exact solution to the relaxed BCOr problem). Given a real
c ≥ 1 and a directed simple graph G = (V ∪ {s, t}, E) associated with two weight
functions on edges ω : E → R

+ and f : E → {0, 1, . . . , r}, there is an O(r|V |3)-
time algorithm to output an st-path P ∗ so that

∑
e∈E(P ∗) f(e) is minimized while

retaining
∑

e∈E(P ∗) ω(e) ≤ c
∑

e∈E(P ) ω(e) for all st-paths P .

Self-avoiding Constraint. We now turn to solving the associated (non-
relaxed) BCO problem, by generalizing the above lemma to Corollary 1. Thus
Corollary 1 will help us avoid the situation that a furthest insertion returns a
path that is already picked by some previous furthest insertion.
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Corollary 1 (Exact solution to the BCO problem). Given a real c ≥ 1,
a directed simple graph G = (V ∪ {s, t}, E) associated with two weight functions
on edges ω : E → R

+, f : E → {0, 1, . . . , r}, and two disjoint subsets of edges
Ein, Eex ⊆ E so that all edges in Ein together form a directed simple path Pprefix

starting from node s, there exists an O(r|V |3)-time algorithm to output an c-
approximate shortest st-path P ∗ under ω so that

∑
e∈E(P ∗) f(e) is minimum

among all the c-approximate shortest st-paths P that contain Pprefix as a prefix
and contain no edges from Eex, if such an c-approximate shortest st-path exists.

We are ready to state our main result for the diverse c-approximate shortest
st-paths.

Theorem 3 ((2, 1) Bi-approximation to the Diversity Problem on
Shortest Paths). For any directed simple graph G = (V ∪ {s, t}, E), given
a constant c > 1 and an integer k ∈ N, there exists an O(k3|V |4)-time algorithm
that, if G contains at least k distinct c-approximate shortest st-paths, computes a
set S of k distinct c-approximate shortest st-paths so that the sum of all pairwise
Hamming distances between two paths in S is at least one half of the maximum
possible; otherwise, reports “Non-existent”.

7 Application 3: Diverse Approximate Maximum
Matchings, and Global Min-Cut

Consider the diversity computational problem for computing k many c-
approximate maximum matchings for undirected graphs. In [16], the authors
present an algorithm, among others, to find a pair of maximum matchings for
bipartite graphs whose Hamming distance is maximized. In contrast, our result
can be used to find k ≥ 2 approximate maximum matchings for any graph whose
diversity (i.e. the average Hamming distance) approximates the largest possible
by a factor of 2.

We show that this problem can be restated into the budgeted matching prob-
lem [6]. As noted in [6], though the budgeted matching is in general NP-hard,
if both the weight and cost functions are integral and have a range bounded
by a polynomial in |V |, then it can be solved in polynomial time with a good
probability by a reduction to the exact perfect matching problem [9,32]. The
exact running time for such a case is not stated explicitly in [6]. We combine the
algorithm in [6] and the approach by Lawler [30] to prove:

Theorem 4. There exists a O(k4|V |7 log3 k|V |) time, (2, 1) bi-approximation
to the diversity computational problem for c-approximate maximum matchings,
with failure probability 1/|V |Ω(1).

DCP for Global Min-Cuts: Next, consider the diversity computational prob-
lem for computing k many c-approximate global min-cuts: given a graph G and
a positive weight function w on its edges, a c-approximate min-cut is a cut C
whose cut-edge set E(C) satisfies

∑
e∈E(C) w(e) ≤ c

∑
e∈E(C′) w(e) for any other
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cut C ′. Given i cuts, we define the (integral) cost of an edge as the number of
cuts in which it appears as a cut edge. Consider the BCO with cost minimization
in the objective function (as the cost of a cut is now inversely proportional to
its sum of distances from the found cuts) and constraint with upper bound (the
weight of the cut should be at most c times that of a global min weight cut). In
[2] the authors provide a polynomial-time algorithm for this problem, implying
that the BCO can be solved exactly in polynomial time. This gives us a (2, 1) bi-
approximation to the diversity computational problem for c-approximate global
minimum cuts. We remark that one may be able to exploit integrality of our
cost function to obtain a faster algorithm than that in [2].

8 Application 4: Diverse Minimum Weight Matroid
Bases and Minimum Spanning Trees

One of the original ways to attack the peripatetic salesman problem (Krarup
[28]) was to study the k edge-disjoint spanning trees problem [12]. Note that the
existence of such trees is not guaranteed, and one can use our results in Sect. 5
to maximize diversity of the k trees found.

However, for an application to the TSP problem, cost conditions must be
taken into account. Here we study the diverse computational problem (DCP) on
minimum spanning trees: Given a weighted undirected graph G = (V,E) with
nonnegative weights w(e), c > 1 and a k ∈ N, return k spanning trees of G such
that each spanning tree is a c-approximate minimum spanning tree, and subject
to this, the diversity of the k trees is maximized. Here again the diversity of
a set of trees is the sum of pairwise distances between them, and the distance
between two trees is the size of their symmetric difference.

Our results in this section generalize to the problem of finding k diverse
bases of a matroid such that every basis in the solution set is a c approximate
minimum-weight basis. The DCP on MSTs is a special case of this problem.
However, in order to not introduce extra notation and definitions here, we will
describe our method for minimum spanning trees. We will then briefly sketch
how to extend the algorithm to the general matroid case.

Starting with T1 = MST (G) (a minimum spanning tree on G, computable
in polynomial time), assume we have obtained i trees T1, · · · , Ti, all of which
are c-approximate minimum spanning trees. Assign to each edge a length 
(e)
which equals |{j : 1 ≤ j ≤ i, e ∈ Tj}|.

Lemma 3. Given T1, · · · , Ti, finding Ti+1 that maximizes
∑i

j=1 d(T, Tj) is
equivalent to finding T that minimizes

∑
e∈T 
(e).

Proof. An explicit calculation reveals that
∑

e∈T 
(e) = (n−1)i−∑i
j=1 d(T, Tj).

Consider now the associated similarity budget constrained optimization prob-
lem
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min
∑

e∈T


(e)

s.t. w(T ) ≤ c · w(MST (G))
T ∈ SolΠ\{T1, . . . , Ti}

(3)

Here SolΠ is just the set of spanning trees on G. We will handle the self-
avoiding constraints in a similar fashion as in Sect. 5. For the moment con-
sider the relaxed BCOr where the last constraint is simply T ∈ SolΠ . This is
a budget constrained MST with two weights. This problem has been consid-
ered by Ravi and Goemans [36], who termed it the CMST problem. They pro-
vide a (1, 2) bi-approximation that runs in near-linear time, and a (1, 1 + ε)
bi-approximation that runs in polynomial time4. Also, they show that the
(1, 1 + ε) bi-approximation can be used as a subroutine to compute a (1 + ε, 1)
bi-approximation in pseudopolynomial time.

Applying their results and observing that we are in cases 4 and 5 of Theo-
rem 1, we get

Theorem 5 (DCP for Mininum Spanning Trees). There exists a

– polynomial (in n,m and k) time algorithm that outputs a (4, 2) bi-
approximation to the DCP problem for MSTs.

– polynomial (in n,m and k) and exponential in 1/ε time algorithm that outputs
a (4, 1 + ε) bi-approximation to the DCP problem for MSTs.

– pseudopolynomial time algorithm that outputs a (4, 1) bi-approximation to the
DCP problem for MSTs, as long as the average distance between the trees in
the optimal solution to the k DCP on c-approximate minimum spanning trees
does not exceed 4ε(n−1)

1+2ε .

Extension to Matroids: It is stated in the paper by Ravi and Goemans [36]
that the same result holds if one replaces the set of spanning trees by the bases of
any matroid. It is straightforward to show that the analog of Lemma 3 hold in the
matroid setting too. With a bit of work, one can also generalize the approach
of Lawler [30] to avoid self-intersection (the bases found so far), and thus all
the techniques generalize to the matroid setting. In all of this, we assume an
independence oracle for the matroid, as is standard. In [17], it is shown that,
given integers k, d, finding k perfect matchings so that every pair of the found
matchings have Hamming distance at least d is NP-hard. This hardness result
also applies to finding weighted diverse bases and weighted diverse common
independent sets.
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