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Preface

This volume contains the papers presented at the 15th Latin American Theoretical
Informatics Symposium (LATIN 2022) held during November 7–11, 2022, in
Guanajuato, Mexico. Previous editions of LATIN took place in São Paulo, Brazil
(1992), Valparaíso, Chile (1995), Campinas, Brazil (1998), Punta del Este, Uruguay
(2000), Cancún, Mexico (2002), Buenos Aires, Argentina (2004), Valdivia,
Chile (2006), Búzios, Brazil (2008), Oaxaca, Mexico (2010), Arequipa, Perú (2012),
Montevideo, Uruguay (2014), Ensenada, Mexico (2016), Buenos Aires, Argentina
(2018), and São Paulo, Brazil (2021).

The symposium received 114 submissions from around the world. Each submission
was reviewed by four Program Committee members, and carefully evaluated on
quality, originality, and relevance to the conference. Committee members often
reviewed the submissions with the help of additional external referees. Based on an
extensive electronic discussion, the committee selected 46 papers. In addition to the
accepted contributions, the symposium featured keynote talks by David Eppstein
(University of California, Irvine, USA), Mauricio Osorio (Universidad de las Américas,
Mexico), Merav Parter (Weizmann Institute of Science, Israel), and Jeffrey D. Ullman
(Stanford University, USA).

LATIN 2022 featured two awards: the 2022 Imre Simon Test-of-Time Award and
the Alejandro López-Ortiz Best Paper Award. In this edition, the Imre Simon
Test-of-Time Award winner was Johannes Fischer for his paper “Optimal Succinctness
for Range Minimum Queries,” which appeared in LATIN 2010. For the Alejandro
López-Ortiz Best Paper Award, the Program Committee selected the paper “Theoretical
Analysis of Git Bisect,” by Julien Courtiel, Paul Dorbec, and Romain Lecoq. We thank
Springer for supporting both awards.

A round table to honor the research and legacy of Héctor García-Molina was held as
part of the LATIN 2022 program. The panel comprised Carlos Coello Coello
(Cinvestav, Mexico), Jeffrey D. Ullman (Stanford University, USA), and Gio
Wiederhold (Stanford University, USA). The round table was moderated by Mariano
Rivera (CIMAT, Mexico).

The program of the symposium included tutorial sessions devoted mainly to theory
students and young researchers. Edgar Chávez (CICESE, Mexico) chaired the Tutorial
Session Committee.

The main organizer of the conference was the Centro de Investigación en
Matemáticas (CIMAT), located in Guanajuato, Mexico. Mariano Rivera chaired the
Local Arrangements Committee.

Many people helped to make LATIN 2022 possible. First, we would like to rec-
ognize the outstanding work of the members of the Program Committee. Their com-
mitment contributed to a very detailed discussion on each of the submitted papers.
The LATIN Steering Committee offered valuable advice and feedback; the conference
benefitted immensely from their knowledge and experience. We would also like to



recognize Conrado Martínez, Jacques Sakarovitch, and Yoshiko Wakabayashi for their
work in the 2022 Imre Simon Test-of-Time Award Committee.

Finally, the conference would not have been possible without our generous spon-
sors, Springer, the Cryptography Research Center of the Technology Innovation
Institute, Abu Dhabi, United Arab Emirates, and the Centro de Investigación en
Matemáticas (CIMAT), Guanajuato, Mexico. We are also grateful for the facilities
provided by EasyChair for paper evaluation and the preparation of this volume.

November 2022 Armando Castañeda
Francisco Rodríguez-Henríquez
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The Imre Simon Test-of-Time Award

The winner of the 2022 Imre Simon Test-of-Time Award, considering papers up to the
2012 edition of the Latin American Theoretical Informatics Symposium (LATIN), is

Optimal Succinctness for Range Minimum Queries by Johannes Fischer,
LATIN 2010, LNCS 6034, 158–169, 2010.

Range Minimum Query (RMQ) is used on arrays to find the position of an element
with the minimum value between two specified indices. This simple problem—in its
formulation—has many different applications including the fundamental problem of
finding the least common ancestor (LCA) of two nodes in a tree or the longest common
prefix problem (LCP), as well as other exact and approximate string matching prob-
lems. A witness of the relevance of these problems is the first Imre Simon Test-of-Time
award won in 2012 by the LATIN 2000 paper The LCA Problem Revisited, by Martin
Farach-Colton and Michael Bender.

In order to make RMQs very efficient, there has been a long quest for preprocessing
algorithms and data structures with which RMQs could later be answered very effi-
ciently, ideally in constant time. The first non-trivial solution to the problem, presented
by Berkman and Vishkin (SIAM J. Computing, 1993), required linear time for pre-
processing and linearithmic space (Hðn log nÞ bits, for an array of n items). Many
authors have thus been looking for succinct data structures; in this case, data structures
using a linear number of bits, without sacrificing the preprocessing or the query times.
The first solution which does not need to keep the original input to answer RMQs
(non-systematic, in the terminology of the awarded paper) was by Sadakane (J. Discrete
Algorithms, 2007), using 4n + o(n) bits for the balanced-parentheses-encoding of the
Cartesian tree. Besides the query and preprocessing times, the space used in the final
data structure and during the preprocessing phase has been of concern. The LATIN
paper of 2010 presented the first scheme achieving O(1) time for queries, O(n) pre-
processing time, using only 2n + o(n) bits in the final succinct data structure to answer
queries—thus meeting the information-theoretic bound—, and only n + o(n) additional
bits during construction time.

To achieve the space and time efficiency above, the paper introduced 2d-min-heaps,
which are equivalent to the also well-known LRM-trees (left-to-right minima trees) of
Navarro and Sadakane (ACM Trans. Algorithms, 2014). The 2d-min-heaps were
originally intended to efficiently support RMQs, but they have proved also very useful
for several other applications, e.g., the succinct representation of ordinal trees.

Fischer’s contributions in the LATIN 2010 paper made their way into the journal
article Space-Efficient Preprocessing Schemes for Range Minimum Queries on Static
Arrays, published in SIAM Journal on Computing 40(2):465–492, together with Volker
Heun, in 2011. That paper became very influential in the area of compressed and
succinct data structures, and it is a milestone in the quest for the best solutions in time
and space to RMQs, with numerous quotations and references too.



The relevance of the problem addressed, the originality of the technique used to
solve it, the clarity of presentation, and the continued and widespread recognition of
this contribution throughout the years since its publication heavily weighed in the
committee’s choice.

The committee for the 2022 Imre Simon Test-of-Time Award.

Conrado Martínez
Jacques Sakarovitch

Yoshiko Wakabayashi

viii The Imre Simon Test-of-Time Award
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Abstract. For a graph property Π, Subgraph Complementation to Π
is the problem to find whether there is a subset S of vertices of the
input graph G such that modifying G by complementing the subgraph
induced by S results in a graph satisfying the property Π. We prove
that the problem of Subgraph Complementation to T -free graphs is NP-
Complete, for T being a tree, except for 41 trees of at most 13 vertices
(a graph is T -free if it does not contain any induced copies of T ). This
result, along with the 4 known polynomial-time solvable cases (when T
is a path on at most 4 vertices), leaves behind 37 open cases. Further, we
prove that these hard problems do not admit any subexponential-time
algorithms, assuming the Exponential Time Hypothesis. As an additional
result, we obtain that Subgraph Complementation to paw-free graphs can
be solved in polynomial-time.

Keywords: Subgraph complementation · Graph modification · Trees ·
Paw

1 Introduction

A graph property is hereditary if it is closed under vertex deletions. It is well
known that every hereditary property is characterized by a minimal set of for-
bidden induced subgraphs. For example, for chordal graphs, the forbidden set is
the set of all cycles on at least four vertices, for split graphs, the forbidden set
is {2K2, C4, C5}, for cluster graphs it is {P3}, and for cographs it is {P4}. The
study of structural and algorithmic aspects of hereditary graph classes is central
to theoretical computer science.

A hereditary property is called H-free if it is characterized by a singleton
set {H} of forbidden subgraphs. Such hereditary properties are very interesting
for their rich structural and algorithmic properties. For example, triangle-free
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graphs could be among the most studied graphs classes. There is an extensive
list of structural studies of H-free graphs, for examples, see [1] for claw-free
graphs, [2] for cographs, and [3] for paw-free graphs. There are many important
hard problems, such as Independent Set [4–8], which admit polynomial-time
algorithms for H-free graphs, for various graphs H.

Graph modification problems refer to problems in which the objective is
to transform the input graph into a graph with some specific property Π. The
constraints on the allowed modifications and the property Π define a graph mod-
ification problem. For an example, the objective of the Chordal Vertex Deletion
problem is to check whether it is possible to transform the input graph by delet-
ing at most k vertices so that the resultant graph is a chordal graph. Graph
modification problems, where the target property is H-free, have been studied
extensively for the last four decades under various paradigms - exact complex-
ity [9–22], parameterized complexity [23–25], kernelization complexity [13,15,26–
34], and approximation complexity [12,16,17,35]. We add to this long list by
studying the exact complexity of a graph modification problem known as Sub-
graph Complementation, where the target property is H-free.

A subgraph complement of a graph G is a graph G′ obtained from G by
flipping the adjacency of pairs of vertices of a subset S of vertices of G. The
operation is known as subgraph complementation and is denoted by G′ = G⊕S.
The operation was introduced by Kamiński et al. [36] in relation with clique-
width of a graph. For a class G of graphs, subgraph complementation to G is
the problem to check whether there is a set of vertices S in the input graph G
such that G ⊕ S ∈ G. A systematic study of this problem has been started by
Fomin et al. [37]. They obtained polynomial-time algorithms for this problem
for various classes of graphs including triangle-free graphs and P4-free graphs.
A superset of the authors of this paper studied it further [11] and settled the
complexities of this problem (except for a finite number of cases) when G is
H-free, for H being a complete graph, a path, a star, or a cycle. They proved
that subgraph complementation to H-free graphs is polynomial-time solvable
if H is a clique, NP-Complete if H is a path on at least 7 vertices, or a star
graph on at least 6 vertices, or a cycle on at least 8 vertices. Further, none
of these hard problems admit subexponential-time algorithms, assuming the
Exponential-Time Hypothesis. Very recently, an algebraic study of subgraph com-
plementation distance between two graphs – the minimum number of subgraph
complementations required to obtain one graph from the other – has been initi-
ated by Buchanan, Purcell, and Rombach [38].

We study subgraph complementation to H-free graphs, where H is a tree. We
come up with a set T of 41 trees of at most 13 vertices such that if T /∈ T , then
subgraph complementation to T -free graphs is NP-Complete. Further, we prove
that, these hard problems do not admit subexponential-time algorithms, assum-
ing the Exponential-Time Hypothesis. These 41 trees include some paths, stars,
bistars (trees with 2 internal vertices), tristars (trees with 3 internal vertices),
and some subdivisions of claw. Among these, for four paths (P�, for 1 ≤ � ≤ 4),
the problem is known to be polynomial-time solvable. So, our result leaves behind
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only 37 open cases, which are listed in Fig. 1. Additionally, we prove that the
problem is hard when H is a 5-connected non-self-complementary prime graph
with at least 18 vertices. As a separate result, we obtain that the problem can
be solved in polynomial-time when H is a paw (the unique connected graph on
4 vertices having a single triangle).

We use 9 reductions to obtain our results on Subgraph Complementation to
T -free graphs (SC-to-F(T )) - each of them is either from 3-SAT (or from a
variant of it) or from SC-to-F(T ′), where T ′ is an induced subgraph of T . Due
to space constraints we have moved all proofs, except that of the main Theorem
(Theorem 2) and that of two reductions (in Sect. 3) which are representatives of
the two types of reductions that we use. The omitted proofs have been moved
to a full version of this paper due to space constraints.

Fig. 1. The trees T for which the complexity of SC-to-F(T ) is open

2 Preliminaries

For a graph G, the vertex set and edge set are denoted by V (G) and E(G)
respectively. A graph G is H-free if it does not contain H as an induced subgraph.
By F(H) we denote the class of H-free graphs. The vertex connectivity, K(G),
of a graph G is the minimum number of vertices in G whose removal either
causes G disconnected or reduces G to a graph with only one vertex. A graph
G is said to be k-connected if K(G) ≥ k. By Kn, nK1, K1,n−1, Cn, and Pn,
we denote the complete graphs, empty graphs, star graphs, cycles, and paths on
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n vertices respectively. A graph G which is isomorphic to its complement G is
called a self -complementary graph. If G is not isomorphic to G, then it is called
non-self-complementary. By G+H, we denote the disjoint union of two graphs
G and H. By rG, we denote the disjoint union of r copies of a graph G. For a
subset X of vertices of G, by G − X we denote the graph obtained from G by
removing the vertices in X.

The open neighborhood of a vertex v ∈ V (G), denoted by N(v), is the set
of all the vertices adjacent to v, and the closed neighborhood of v, denoted by
N [v], is defined as N(v) ∪ {v}. Let u be a vertex and X be a vertex subset of
G. By NX(u) and NX(u), we denote the neighborhood of u inside the sets X
and V (G)\X, respectively. We extend the notion of adjacency to sets of vertices
as: two sets A and B of vertices of G are adjacent (resp., non-adjacent) if each
vertex of A is adjacent (resp., non-adjacent) to each vertex of B. By replacing a
vertex u with a graph H in G, we mean the graph obtained by deleting u from
G and introducing H, and making every vertex in H adjacent to all neighbors
of u in G. We say that a graph H is obtained from H ′ by vertex duplication, if
H is obtained from H ′ by replacing each vertex vi in H ′ by an independent set
of size ri ≥ 1.

A tree is a connected acyclic graph, and a disjoint union of trees is called a
forest. The internal tree T ′ of a tree T is a tree obtained by removing all the
leaves of T . A bistar graph Tx,y, for x ≥ 1 and y ≥ 1, is a graph obtained by
making a and b adjacent, where a and b are the centers of two star graphs K1,x

and K1,y respectively. Similarly, tristar graph Tx,y,z, for x ≥ 1, y ≥ 0 and z ≥ 1,
is a graph obtained by joining the centers a, b, and c of three star graphs K1,x,
K1,y, and K1,z respectively in such a way that {a, b, c} induces a P3 with b as
the center. A subdivision of claw, denoted by Cx,y,z for 1 ≤ x ≤ y ≤ z, is a graph
obtained from the claw, K1,3, by subdividing its three edges x − 1 times, y − 1
times, and z − 1 times respectively. Similarly, a subdivision of a star K1,a, for
a ≥ 3, is denoted by Cx1,x2,...,xa

, where 1 ≤ x1 ≤ x2 ≤ . . . ≤ xa.
A vertex subset X of G is a module if NX(u) = NX(v) for all u, v ∈ X.

The trivial modules of a graph G are ∅, V (G), and all the singletons {v} for
v ∈ V (G). A graph is prime if it has at least 3 vertices and all its modules are
trivial, and nonprime otherwise. A nontrivial module M is a strong module of a
graph G if for every other module M ′ in G, if M ∩M ′ 	= ∅, then either M ⊆ M ′

or M ′ ⊆ M . A module which induces an independent set is called independent
module and a module which induces a clique is called clique module. Let G be
a nonprime graph such that both G and G are connected graphs. Then there
is a unique partitioning P of V (G) into maximal strong modules. The quotient
graph QG of G has one vertex for each set in P and two vertices in QG are
adjacent if and only if the corresponding modules are adjacent in G.

In a 3-SAT formula, every clause contains exactly three literals of distinct
variables and the objective of the 3-SAT problem is to find whether there exists
a truth assignment which assigns TRUE to at least one literal per clause. The
Exponential-Time Hypothesis (ETH) and the Sparsification Lemma imply that
3-SAT cannot be solved in subexponential-time, i.e., in time 2o(n+m), where n
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is the number of variables and m is the number of clauses in the input formula.
To prove that a problem does not admit a subexponential-time algorithm, it
is sufficient to obtain a linear reduction from a problem known not to admit
a subexponential-time algorithm, where a linear reduction is a polynomial-time
reduction in which the size of the resultant instance is linear in the size of the
input instance. All our reductions are trivially linear and we may not explicitly
mention the same. We refer to the book [39] for a detailed description of these
concepts. In a k-SAT formula, every clause contains exactly k literals. The objec-
tive of the k-SAT≥2 problem is to find whether there is a truth assignment for
the input k-SAT formula such that at least two literals per clause are assigned
TRUE. For every k ≥ 4, by two simple standard linear reductions from 3-SAT
to 4-SAT≥2 and then to k-SAT≥2, one can prove the hardness of k-SAT≥2.

Proposition 1 (folklore). For k ≥ 4, k-SAT≥2 is NP-Complete. Further, the
problem cannot be solved in time 2o(n+m), assuming the ETH.

By G ⊕ S, for a graph G and S ⊆ V (G), we denote the graph obtained from
G by flipping the adjacency of pairs of vertices in S. The problem that we deal
with in this paper is given below.

SC-to-F(H) : Given a graph G, find whether there is a set S ⊆ V (G) such
that G ⊕ S is H-free.

Proposition 2 ([11]). Let T be a path on at least 7 vertices or a star on at least
6 vertices. Then SC-to-F(T ) is NP-Complete. Further, the problem cannot be
solved in time 2o(|V (G)|), unless the ETH fails.

We say that two problems A and B are linearly equivalent, if there is a linear
reduction from A to B and there is a linear reduction from B to A.

Proposition 3 ([11]). SC-to-F(H) and SC-to-F(H) are linearly equivalent.

3 Reductions for General Graphs

In this section, we introduce two reductions which will be used in the next
section to prove hardness for SC-to-F(H), when H is a tree. We believe that
these reductions will be useful in an eventual dichotomy for the problem for
general graphs H. The first reduction is a linear reduction from SC-to-F(H ′)
to SC-to-F(H) where H is obtained from H ′ by vertex duplication. The second
reduction proves that for every 5-connected non-self-complementary prime graph
H with a clique or independent set of size 4, SC-to-F(H) is NP-Complete and
does not admit a subexponential-time algorithm, assuming the ETH.

Graphs with Duplicated Vertices. Here, with the help of a linear reduction,
we prove that the hardness results for a prime graph H ′ translate to that for H,
where H is obtained from H ′ by vertex duplication.
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Lemma 1. Let H ′ be a prime graph with vertices V (H ′) = {v1, v2, . . . , vt}.
Let H be a graph obtained from H ′ by replacing each vertex vi in H ′ by an
independent set Ii of size ri, for some integer ri ≥ 1. Then there is a linear
reduction from SC-to-F(H ′) to SC-to-F(H).

Let H ′ and H be graphs mentioned in Lemma 1. Let r be the maximum
integer among the ris, i.e., r = maxi=t

i=1 ri. We note that H ′ is the quotient graph
of H.

Construction 1. Given a graph G′ and an integer r ≥ 1, the graph G is con-
structed from G′ as follows: for each vertex u of G′, replace u with a set Wu

which induces an rKr. The so obtained graph is G.

Lemma 2. If G′ ⊕S′ ∈ F(H ′) for some S′ ⊆ V (G′), then G⊕S ∈ F(H), where
S is the union of vertices in Wu for every vertex u ∈ S′.

Proof. Let an H be induced by A (say) in G ⊕ S. Recall that G is constructed
by replacing each vertex u in G′ with a module Wu which induces an rKr. If
A ⊆ Wu for some vertex u in G′, then H is an induced subgraph of either rKr

(if u /∈ S′) or rKr (if u ∈ S′). Then H ′, the quotient graph of H, is either an
independent set or a complete graph. This is not true as H ′ is a prime graph.
Therefore, A has nonempty intersection with more than one Wus. For a vertex
u in G′, either Wu is a subset of S (if u ∈ S′) or Wu has empty intersection with
S (if u /∈ S′). Therefore, if A has nonempty intersection with Wu, then A ∩ Wu

is a module of the H induced by A. Therefore, A ∩ Wu ⊆ Ii for some 1 ≤ i ≤ t.
Let Ui be the set of vertices u in G′ such that Ii (in the H induced by A) has a
nonempty intersection with Wu. Arbitrarily choose one vertex from Ui. Let A′

be the set of such chosen vertices for all 1 ≤ i ≤ t. We claim that A′ induces an
H ′ in G′ ⊕S′. Let ui and uj be the vertices chosen for Ii and Ij respectively, for
i 	= j. Since A ∩ Wui

⊆ Ii and A ∩ Wuj
⊆ Ij , and i 	= j, we obtain that ui 	= uj .

It is enough to prove that ui and uj are adjacent in G′ ⊕ S′ if and only if vi and
vj are adjacent in H ′. If ui and uj are adjacent in G′ ⊕ S′, then Wui

and Wuj

are adjacent in G ⊕ S. This implies that Ii and Ij are adjacent in H. Hence vi

and vj are adjacent in H ′. For the converse, assume that vi and vj are adjacent
in H ′. This implies that Ii and Ij are adjacent in H. Therefore, Wui

and Wuj

are adjacent in G ⊕ S. Hence ui and uj are adjacent in G′ ⊕ S′.

Lemma 3. If G ⊕ S ∈ F(H) for some S ⊆ V (G), then G′ ⊕ S′ ∈ F(H ′),
where S′ is a subset of vertices of G′ obtained in such a way that whenever all
vertices of a Kr from a module Wu (which induces an rKr) are in S, then the
corresponding vertex u in G′ is included in S′.

Proof. Suppose G′ ⊕ S′ contains an H ′ induced by a set A′ = {v1, v2, . . . , vt}.
If a vertex u in G′ is in S′, then all vertices of a Kr from Wu in G are in S.
Therefore, there is an independent set of size r in Wu ∩ S in G ⊕ S . Similarly,
if u /∈ S′, then there is an independent set of size r in Wu \ S in G ⊕ S formed
by one vertex, which is not in S, from each copy of Kr in Wu which is not in S.
We construct A as follows: for each vertex vi ∈ A′, if vi ∈ S′, include in A an
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independent set Ii ⊆ Wvi
∩ S such that |Ii| = ri, and if vi /∈ S′, include in A an

independent set Ii ⊆ Wvi
\ S such that |Ii| = ri. We claim that A induces an H

in G ⊕ S. Note that each chosen Ii is a module in G ⊕ S. Since Ii ⊆ S if and
only if vi ∈ S′, we obtain that Ii and Ij are adjacent in G ⊕ S if and only if vi

and vj are adjacent in the H ′ induced by A′. This completes the proof.

Lemma 1 follows directly from Lemma 2 and 3. When the lemma is applied
on trees, we get the following corollary. We note that the quotient tree QT of a
tree is prime if and only if T is not a star graph.

Corollary 1. Let T be a tree which is not a star graph, and let QT be its quotient
tree. Then there is a linear reduction from SC-to-F(QT ) to SC-to-F(T ).

5-Connected Graphs. Here, we obtain hardness results for SC-to-F(H),
where H is a 5-connected graph satisfying some additional constraints.

Theorem 1. Let H be a 5-connected non-self-complementary prime graph with
an independent set of size 4 or with a clique of size 4. Then SC-to-F(H) is
NP-Complete. Further, the problem cannot be solved in time 2o(|V (G)|), unless
the ETH fails.

Let H be a 5-connected graph satisfying the constraints mentioned in Theo-
rem 1. Let H have t vertices and let V ′ ⊆ V (H) induce either a K4 or a 4K1 in
H. We use Construction 2 for a reduction from 4-SAT≥2 to prove Theorem 1.

Construction 2. Let Φ be a 4-SAT formula with n variables X1,X2, · · · ,Xn,
and m clauses C1, C2, · · · , Cm. We construct the graph GΦ as follows. For each
variable Xi in Φ, the variable gadget also named as Xi consists of the union of
two special sets Xi1 = {xi} and Xi2 = {xi}, and t − 2 other sets Xi3,Xi4 . . . Xit

such that each Xij, for 3 ≤ j ≤ t induces an H. Make the adjacency between
these Xijs in such a way that taking one vertex each from these sets induces an
H, where Xi1 and Xi2 correspond to two non-adjacent vertices, if V ′ forms a
K4, and correspond to two adjacent vertices, if V ′ forms a 4K1. If V ′ forms a
clique then add an edge between Xi1 and Xi2, and if V ′ forms an independent
set, then remove the edge between Xi1 and Xi2. The vertices xis and xis are
called literal vertices denoted by a set L, which induces a clique, if V ′ is a clique,
and induces an independent set, if V ′ is an independent set.

For each clause Ci of the form (�i1 ∨ �i2 ∨ �i3 ∨ �i4) in Φ, the clause gadget
also named as Ci consists of t−4 copies of H denoted by Cij, for 1 ≤ j ≤ (t−4).
Let the four vertices introduced (in the previous step) for the literals �i1, �i2, �i3,
and �i4 be denoted by Li = {yi1, yi2, yi3, yi4}. The adjacency among each of these
Cijs and the literal vertices Li is in such a way that, taking one vertex from each
Cijs and the vertices in Li induces an H. This completes the construction.

An example of the construction is shown in Fig. 3 for a graph H given in
Fig. 2. Keeping a module isomorphic to H guarantees that not all vertices in the
module is present in a solution S of GΦ (i.e., GΦ ⊕ S is H-free). The purpose
of variable gadget Xi is to make sure that both xi and xi are not placed in a
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solution S, so that we can assign TRUE to all literals corresponding to literal
vertices placed in S, to get a valid truth assignment for Φ. On the other hand, any
truth assignment assigning TRUE to at least two literals per clause makes sure
that the set S formed by choosing literal vertices corresponding to TRUE literals
destroys copies of H formed by clause gadgets Ci and the corresponding sets Li

of literal vertices. Now, to prove Theorem 1, we use Lemma 4 and Lemma 5.

Fig. 2. An example of a 5-connected non-self-complementary prime graph with a K4

(formed by the lower four vertices)

Fig. 3. An example of Construction 2 for the formula Φ = C1 where C1 = x1 ∨ x2 ∨
x3 ∨ x4 corresponding to the graph H shown in Fig. 2 with a K4. The lines connecting
two rectangles indicate that each vertex in one rectangle is adjacent to all vertices in
the other rectangle. If there is no line shown between two rectangles, then the vertices
in them are non-adjacent, with the exceptions – (i) all the vertices in a red rectangle
(dashed) together form a clique; (ii) the rectangles in each green rectangle (dashed)
are adjacent.

Lemma 4. Let Φ be a yes-instance of 4-SAT≥2 and ψ be a truth assignment
satisfying Φ. Then GΦ ⊕ S is H-free where S is the set of literal vertices whose
corresponding literals were assigned TRUE by ψ.

Proof. Let GΦ ⊕ S contain an H induced by A (say). Since H is a prime graph
and H is not isomorphic to H, |A∩Y | ≤ 1 where Y is a module isomorphic to H.
Thus, |A ∩ Xij | is at most one. Therefore, since {xi, xi} is not a subset of S, we
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obtain that Xi does not have an induced H in GΦ ⊕ S. Recall that, the vertices
in Xij (for 3 ≤ j ≤ t) are non-adjacent to V (G)\Xi, and H is 5-connected. This
implies that A ∩ (Xi \ {xi, xi}) = ∅.

Since Ci contains t − 4 sets of Hs, |Ci ∩ A| ≤ t − 4. Now assume that A
contains vertices from two clause gadgets Ci and Cj . Since the vertices in Ci are
only adjacent to the four literal vertices corresponding to the clause Ci, and H is
5-connected, removing the four literal vertices corresponding to Ci disconnects
the graph which is not possible –note that Ci and Cj are non-adjacent. Hence,
A contains vertices from at most one clause gadget Ci.

Note that L induces a Kn × nK1 in GΦ ⊕ S, if V ′ induces a clique, and
induces a Kn + nK1 in GΦ ⊕ S, if V ′ induces an independent set. Therefore, H
is not an induced subgraph of the graph induced by L in GΦ ⊕S. Recall that the
vertices in A∩C are from at most one clause gadget Ci, and at most one vertex
from each of the sets Cij in Ci is in A ∩ Ci . We know that Ci is non-adjacent
to all literal vertices corresponding to the literals not in the clause Ci, and H is
5-connected. Therefore, A ∩ L = {yi1, yi2, yi3, yi4}. Since at least two vertices in
A ∩ L are in S, the graph induced by A in G ⊕ S is not isomorphic to H.

Lemma 5. Let Φ be an instance of 4-SAT≥2. If GΦ ⊕ S is H-free for some
S ⊆ V (GΦ), then there exists a truth assignment satisfying Φ.

Proof. Let GΦ ⊕ S be H-free for some S ⊆ V (GΦ). We want to find a satisfying
truth assignment of Φ. Since each of the Cijs in Ci, for 1 ≤ i ≤ m and 1 ≤ j ≤
t − 4, induces an H, there is at least one vertex in each Cij which is not in S.
Then, if at least two vertices from Li are not in S, then there is an induced H
by vertices in Li and one vertex each from Cij \ S, for 1 ≤ j ≤ t − 4. Therefore,
at least two vertices from Li are in S. Next we prove that {xi, xi} is not a subset
of S. For each Xij (for 3 ≤ j ≤ t), since each of them induces an H, at least
one vertex is not in S. Then, if both xi and xi are in S, then there is an H
induced by xi, xi, and one vertex each from Xij \ S, for 3 ≤ j ≤ t. Now, it
is straight-forward to verify that assigning TRUE to every literal xi such that
xi ∈ S, is a valid satisfying truth assignment of Φ.

4 Trees

By T we denote the set P ∪ T1 ∪ T2 ∪ T3 ∪ C, where P = {Px | 1 ≤ x ≤ 5}, T1 =
{K1,x | 1 ≤ x ≤ 4}, T2 = {Tx,y | 1 ≤ x ≤ y ≤ 4}, T3 = {T1,0,1, T1,0,2} ∪ {Tx,y,z |
x = 1, 1 ≤ y ≤ 4, 1 ≤ z ≤ 5}, and C = {C1,1,1, C1,1,2, C1,1,3, C1,2,2, C1,2,3, C1,3,3,
C2,2,2, C2,2,3}. These sets denote the paths, stars, bistars, tristars, and subdivi-
sions of claw not handled by our reductions.

We note that |P| = 5, |T1| = 4, |T2| = 10, |T3| = 22, and |C| = 8. However,
a star graph K1,x is a path in P if x ≤ 2, the bistar graph T1,1 is the path
P4, the tristar graphs T1,0,1 is the path P5, and the subdivision of claw C1,1,1

is the star graph K1,3, C1,1,2 is the bistar graph T1,2, C1,1,3 is the tristar graph
T1,0,2, and C1,2,2 is the tristar graph T1,1,1. Therefore, |T | = 41, and the tree of
maximum order in T is T1,4,5 with 13 vertices. We prove the following theorem
in this section, which is the main result of the paper.
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Theorem 2. Let T be a tree not in T . Then SC-to-F(T ) is NP-Complete.
Further, the problem cannot be solved in time 2o(|V (G)|), unless the ETH fails.

This task is achieved in three parts. In the first part, we give two general reduc-
tions for trees. First we prove that there is a linear reduction from SC-to-F(T ′)
to SC-to-F(T ), where T is a prime tree and T ′ is its internal tree. Then we deal
with trees with at least 4 leaves and at least 3 internal vertices, and satisfying
some additional constraints. In the second part, we deal with various subclasses
of trees - bistars, tristars, paths, and subdivisions of claw. We combine all these
results in the third part to prove Theorem 2.

General Reductions for Trees. Here, with a very simple reduction, we obtain
that the hardness transfers from T ′ to T , where T is a prime tree and T ′ is its
internal tree.

Lemma 6. Let T be a prime tree and let T ′ be its internal tree. Then there is
a linear reduction from SC-to-F(T ′) to SC-to-F(T ).

Next, we obtain hardness results for SC-to-F(T ), when T is a tree with
at least 4 leaves and at least 3 internal vertices, and satisfying some additional
constraints. The reduction is from k-SAT≥2, where k is the number of leaves in
T .

Theorem 3. Let T be a tree with at least 4 leaves and at least 3 internal vertices.
Let T ′ be the internal tree of T . Assume that the following properties are satisfied.

(i) If T ′ is a star graph, then at least one of the following conditions are satisfied:
(a) every leaf of T ′ has at least two leaves of T as neighbors, or
(b) the center of the star T ′ has no leaf of T as neighbor, or
(c) T is either a C1,2,2,2, or a C1,2,2,2,2.

(ii) There are no two adjacent vertices of degree 2 in T such that neither of them
is adjacent to any leaf of T .

Then SC-to-F(T ) is NP-Complete. Further, the problem cannot be solved in
time 2o(|V (G)|), unless the ETH fails.

Corollary 2. Let x, y, z be integers such that 1 ≤ x ≤ z, y ≥ 0 and either of
the following conditions is satisfied.

(i) x = 1, y = 0, z ≥ 3, or
(ii) x ≥ 2

Then SC-to-F(Tx,y,z) is NP-Complete. Further, the problem cannot be solved
in time 2o(|V (G)|), unless the ETH fails.

Bistars, Tristars, Paths, and Subdivisions of Claw. It turns out that, given
the general reductions obtained in Sect. 3 and the general reductions for trees,
it is sufficient to handle the following subclasses of trees - paths, stars, bistars,
tristars, and subdivisions of claw. By Proposition 2, we know that SC-to-F(Pt)
is hard for t ≥ 7. Here, we resolve the case of P6, which is in fact essential to
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reduce the unsolved cases to a finite set. Stars, except for claw and K1,4, have
already been handled in [11] - See Proposition 2. Here we prove the hardness for
bistars and tristars, except for 10 bistars and 22 tristars. We also resolve the cases
of subdivisions of claw, except for 8 subdivisions of claw. These results are listed
below. Theorem 4 along with Proposition 2 implies Corollary 3, and a linear
reduction from SC-to-F(K1,y) is used to prove the hardness of SC-to-F(Tx,y)
in Theorem 5.

Theorem 4. SC-to-F(P6) is NP-Complete. Further, the problem cannot be
solved in time 2o(|V (G)|), unless the ETH fails.

Corollary 3. Let � ≥ 6 be an integer. Then SC-to-F(P�) is NP-Complete.
Further, the problem cannot be solved in time 2o(|V (G)|), unless the ETH fails.

Theorem 5. Let x, y be two integers such that 1 ≤ x ≤ y and y ≥ 5. Then
SC-to-F(Tx,y) is NP-Complete. Further, the problem cannot be solved in time
2o(|V (G)|), unless the ETH fails.

Recall that, as a corollary (Corollary 2) of the theorem (Theorem 3) which
deals with trees with at least 4 leaves and three internal vertices, we have resolved
some cases of tristar graphs: we proved that SC-to-F(Tx,y,z) is hard if z ≥ x ≥ 2
or if x = 1, y = 0, z ≥ 3. In this section, we handle the rest of the cases when
x = 1 and y ≥ 1, except for a finite number of cases. Firstly, a linear reduction
from SC-to-F(Ty,z−1) is used to prove the hardness of SC-to-F(Tx,y,z). This
will take care of the cases when y ≥ 5 or z ≥ 6 (recall that the problem for Ty,z−1

is hard if y ≥ 5 or z ≥ 6). But, for the reduction to work, there is an additional
constraint that z ≥ 3. So, to handle the case when z ≤ 3, we use another
reduction which is from SC-to-F(K1,y) and does not have any constraint on
z. Thus, we have the following result, which along with Corollary 2 implies
Theorem 6.

Lemma 7. Let 1 ≤ x ≤ z, and y ≥ 0 be integers such that y ≥ 5 or z ≥ 6.
Then SC-to-F(Tx,y,z) is NP-Complete. Further, the problem cannot be solved
in time 2o(|V (G)|), unless the ETH fails.

Theorem 6. Let 1 ≤ x ≤ z and y ≥ 0 be integers such that at least one of
the following conditions is satisfied: (i) x ≥ 2, or (ii) y ≥ 5, or (iii) z ≥ 6, or
(iv) x = 1, y = 0, z ≥ 3. Then SC-to-F(Tx,y,z) is NP-Complete. Further, the
problem cannot be solved in time 2o(|V (G)|), unless the ETH fails.

A subdivision of a claw has exactly three leaves. Due to this, we cannot handle
them using the reduction used to handle trees with 4 leaves (Theorem 3). Let
T = Cx,y,z be a subdivision of claw, where x ≤ y ≤ z. If x = y = 1, then T is
obtained from Pz+2 by duplicating a leaf. Therefore, we can use Lemma 1 and
Corollary 3 to prove the hardness, when z ≥ 4. If y > 1, then T is prime and
if T has at least 9 vertices, then T is 5-connected and has an independent set
of size 4. Then the hardness results for 5-connected prime graphs (Theorem 1)
can be used to prove the hardness for T and hence for T (Proposition 3). But,
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there is a particular subdivision of claw, C1,2,4, which is not handled by any of
these reductions. Further, there is an infinite family of trees, which is obtained
by duplicating the leaf adjacent to the center of the claw in C1,2,4, not handled
by Theorem 3, as each tree in the family violates condition (ii) of Theorem 3.
This requires us to handle C1,2,4 separately.

Theorem 7. SC-to-F(C1,2,4) is NP-Complete. Further, the problem cannot be
solved in time 2o(|V (G)|), unless the ETH fails.

We observe that, for any integer t ≥ 4, the subdivision of claw C1,1,t−2 is
obtained by introducing a false-twin for a leaf of a Pt. Then, Observation 8
follows directly from Lemma 1.

Observation 8. There is a linear reduction from SC-to-F(Pt) to SC-to-
F(C1,1,t−2).

Theorem 9. Let x ≤ y ≤ z be integers such that at least one of the following
conditions are satisfied.

(i) x = 1, y = 2, z = 4, or
(ii) x = y = 1, and z ≥ 4, or
(iii) x + y + z ≥ 8.

Then SC-to-F(Cx,y,z) is NP-Complete. Further, the problem cannot be solved
in time 2o(|V (G)|), unless the ETH fails.

Corollary 4. Let T be a subdivision of claw not in {C1,1,1, C1,1,2, C1,1,3, C1,2,2,
C1,2,3, C1,3,3, C2,2,2, C2,2,3}. Then SC-to-F(T ) is NP-Complete. Further, the
problem cannot be solved in time 2o(|V (G)|), unless the ETH fails.

Putting Them Together. Here, we prove the main result (Theorem 2) of this
paper by using the results proved so far. The proof makes use of the follow-
ing observation, which essentially says that if a prime tree T does not satisfy
condition (ii) of Theorem 3, then T is handled by Theorem 1, Corollary 3, or
Theorem 7.

Observation 10. Let T be a prime tree such that there are two adjacent inter-
nal vertices u, v which are not adjacent to any leaf of T . Then either of the
following conditions is satisfied.

(i) T has an independent set of size 4 and T is 5-connected, or
(ii) T is either a P6, or a P7, or the subdivision of claw C1,2,4.

Now, we are ready to prove the main result of the paper.

Proof. (Proof of Theorem 2). Let p be the number of internal vertices of T . If
p = 1, then T is a star graph and the statements follow from Proposition 2.
If p = 2, then T is a bistar graph and the statements follow from Theorem 5.
If p = 3, then T is a tristar graph and the statements follow from Theorem 6.
Assume that p ≥ 4. If T has only two leaves, then T is isomorphic to P�, for
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� ≥ 6. Then the statements follow from Corollary 3. If T has exactly three leaves,
then T is a subdivision of claw. Then the statements follow from Corollary 4.
Assume that T has at least four leaves.

Let QT be the quotient tree of T . If QT has two adjacent internal vertices
which are not adjacent to any leaves, then by Observation 10, either (i) QT has
an independent set of size 4 and QT is 5-connected or (ii) QT is either a P6,
or a P7, or a C1,2,4. If (i) is true, then by Theorem 1, SC-to-F(QT ) is NP-
Complete and cannot be solved in subexponential-time (assuming the ETH).
Then, so is for SC-to-F(QT ), by Proposition 3. Then the statements follow
from Lemma 1. If (ii) is true, then SC-to-F(QT ) is hard by Corollary 3 and
Theorem 7. Then the statements follow from Lemma 1. Therefore, assume that
QT has no two adjacent internal vertices not adjacent to any leaves of QT . Hence,
T has no two adjacent internal vertices not adjacent to any leaves of T . Then, if
T ′, the internal tree of T , is not a star graph, then the statements follow from
Theorem 3. Assume that T ′ is a star graph. If the condition (i) of Theorem 3
is satisfied, then we are done. Assume that the condition (i) of Theorem 3 is
not satisfied, i.e., the center of T ′ has at least one leaf of T as a neighbor, one
leaf of T ′ has exactly one leaf of T as a neighbor, and T is neither C1,2,2,2 nor
C1,2,2,2,2. Assume that T has exactly 4 internal vertices. Then T ′ is a claw and
QT is C1,2,2,2. Then by Theorem 3, SC-to-F(QT ) is NP-Complete and cannot be
solved in subexponential-time (assuming the ETH). Then the statements follow
from Corollary 1. Similarly, when T has exactly 5 internal vertices, we obtain that
QT is C1,2,2,2,2 and then the statements follow from Theorem 3 and Corollary 1.
Assume that T has at least 6 internal vertices. Then, T ′ is a K1,a, for some
a ≥ 5. Then by Lemma 6, there is a linear reduction from SC-to-F(K1,a) to
SC-to-F(QT ). By Proposition 2, SC-to-F(K1,a) is NP-Complete and cannot
be solved in subexponential-time (assuming the ETH). Then the statements
follow from Corollary 1.

5 Polynomial-Time Algorithm

In this section, we prove that SC-to-F(paw) can be solved in polynomial-time,
where paw is the unique graph on 4 vertices having exactly one vertex with
degree 1. We use a result by Olariu [3] that every component of a paw-free
graph is either triangle-free or complete mutitpartite.

A graph is complete multipartite if and only if it does not contain any K2+K1

as an induced subgraph. It is known that SC-to-F(K3) and SC-to-F(K2+K1)
can be solved in polynomial-time. The former is proved in [37] and the latter
is implied by another result from [37] that Subgraph Complementation prob-
lems admit polynomial-time algorithms if the target graph class is expressible
in MSO1 and has bounded clique-width.
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Algorithm for SC-to-F(paw)
Input: A graph G.
Output: If G is a yes-instance of SC-to-F(paw), then returns YES;
returns NO otherwise.
Step 1 : If G is paw-free, then return YES.
Step 2 : If G is a yes instance of SC-to-F(K3), or a yes-instance of

SC-to-F(K2 + K1), then return YES.
Step 3 : For every triangle uvw in G, if (N(u)∩ N(v))∪ (N(u)∩ N(w))∪

(N(v) ∩ N(w)) is a solution, then return YES.
Step 4 : For every ordered pair of adjacent vertices (u, v), do the following:

(i) Compute Ru and Rv, the lists of component partitions of N(u)\N [v]
and N(v) \ N [u] respectively.

(ii) For every (Xu, Yu) in Ru, and for every (Xv, Yv) in Rv, if Yu ∪ Yv ∪
(N [u] ∩ N [v]) is a solution, then return YES.

(iii) Let Nuv be N(u) ∩ N(v).
(iv) For every (Xv, Yv) in Rv, and for every subset S′

1 of Nuv such that
|S′

1| ≥ |Nuv|−2, and for every set V ′
2 of at most three mutually non-

adjacent vertices in G, and for every set S′
2 of at most three mutually

adjacent vertices in G, do the following:
(a) S′′

1 = Yv ∪ S′
1 ∪ {u}

(b) V ′′
2 = Xv ∪ V ′

2

(c) Let Z2 be the set of vertices such that every vertex in Z2 is
adjacent to every vertex in S′′

1 and at least one vertex in V ′′
2 .

(d) S′′
2 = S′

2 ∪ Z2

(e) If S′′
1 ∪ S′′

2 is a solution, then return YES.
(f) Let S′′

2 be the set of vertices part of clique components K in the
graph G − S′′

1 such that every vertex in K is adjacent to every
vertex S′′

1 .
(g) If S′′

1 ∪ S′′
2 is a solution, then return YES.

Step 5 : Return NO.

Let G be an input graph of SC-to-F(paw). We define a component partition
of a graph G as a partition of its vertices into two sets P,Q such that P induces
a single component or an independent set of size at most 3, and Q contains the
remaining vertices. We observe that all component partitions of a graph can be
found in polynomial-time.

Before running the algorithm, we preprocess the input graph by removing
paw-free components and by replacing independent (clique) modules of size at
least 4 in G by independent (clique) modules of size 3. The correctness of the
former rule is trivial and that of the latter rule follows from the fact that a paw
does not contain an independent or clique module of size 3. Therefore, we can
assume that the input graph does not have any paw-free components and that
there are no independent (clique) modules of size at least 4 present in the graph.

The algorithm works as follows. First we check whether G is a trivial yes-
instance by checking whether G is a paw-free graph or not (Step 1). Next we



Cutting a Tree with Subgraph 17

check whether G can be transformed into a triangle-free graph or a complete mul-
tipartite graph by Subgraph Complementation, using the algorithms from [37]
(Step 2). If yes, then the instance is a yes-instance and we are done. If not, then
every solution of G transforms G into a graph having multiple components, at
least one of it is guaranteed to be a complete multipartite component (disjoint
union of two triangle-free graphs is triangle-free). Let S be a solution of G and
let G1, G2, . . . , Gt be the components of G ⊕ S. Let Si be S ∩ V (Gi) and Vi be
V (Gi) \ Si, for 1 ≤ i ≤ t. Clearly, S intersects with each Gi, otherwise Gi is a
paw-free component in G, which contradicts with our assumption that G has no
paw-free components. Further, every vertex in Si is adjacent to every vertex in Sj

for i 	= j. Assume that G ⊕ S has at least three components. Let u ∈ S1, v ∈ S2,
and w ∈ S3. Then, S is the union of common neighbors of u and v, common
neighbors of u and w, and the common neighbors of v and w (Step 3). The only
case left is when t = 2, i.e., G⊕S has exactly two components for every solution
S. Let u ∈ S1 and v ∈ S2. Assume that G1 is a complete multipartite compo-
nent. Consider W = N(u) \ N [v]. The vertices in W ∩ V1 is not adjacent to the
vertices in W ∩S2. Further, since W ∩V1 induces a complete mutlipartite graph,
we obtain that W induces either a connected graph or an independent set of size
at most 3 (every independent set of the complete multipartite graph induced by
V1 is a module in G and hence cannot have size more than 3). Therefore, by
enumerating all component partitions (Xu, Yu) of the graph induced by W , we
obtain the one in which Xu = W ∩ V1 and Yu = W ∩ S2.

As we noted already, at least one component must be complete multipartite.
Then there are two cases to consider - in the first case both G1 and G2 are
complete multipartite graphs and in the second case G1 is triangle-free and G2

is complete multipartite. The algorithm returns YES in Step 4(ii) in the first
case and in Step 4(vi) in the second case.

Theorem 11. SC-to-F(paw) can be solved in polynomial-time.

6 Concluding Remarks

In this paper, we resolved the computational complexity of SC-to-F(T ), for all
trees T , except for 37 trees listed in Fig. 1. Among these open cases, we would
like to highlight the tree C1,2,2. If we can prove that SC-to-F(C1,2,2) is hard,
then the list of open cases reduces to 17 trees, i.e., all the trees numbered 18
to 37 in the list vanishes due to Corollary 1. The tree resisted all our attempts
to cut it down. Among other open cases, we believe that those with 5 vertices
(P5,K1,4, and T1,2) are the most challenging - we do not have any result so far
on non-trivial 5-vertex graphs. The case of P5 was stated as an open problem
in [37]. We also believe that the claw may admit a polynomial-time algorithm,
similar to paw - the difficulty in getting such a result seems to reside in the
intricacies of the structure theorem for claws.

To get a complete P versus NP-Complete dichotomy for SC-to-F(H), for
general graphs H, one major hurdle is to tackle the graphs which are self-
complementary. Introducing H in a reduction for SC-to-F(H) helps us to make
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sure that at least one vertex in a set of vertices is untouched by any solution. We
find it very difficult to find alternate reductions which do not use H – a reason
why we do not have hardness results so far for any self-complementary graphs.
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Abstract. An elastic-degenerate (ED) string is a sequence of n finite
sets of strings of total length N , introduced to represent a set of related
DNA sequences, also known as a pangenome. The ED string match-
ing (EDSM) problem consists in reporting all occurrences of a pattern
of length m in an ED text. The EDSM problem has recently received
some attention by the combinatorial pattern matching community, cul-
minating in an Õ(nmω−1) + O(N)-time algorithm [Bernardini et al.,
SIAM J. Comput. 2022], where ω denotes the matrix multiplication
exponent and the Õ(·) notation suppresses polylog factors. In the k-
EDSM problem, the approximate version of EDSM, we are asked to
report all pattern occurrences with at most k errors. k-EDSM can be
solved in O(k2mG + kN) time under edit distance, where G denotes
the total number of strings in the ED text [Bernardini et al., Theor.
Comput. Sci. 2020]. Unfortunately, G is only bounded by N , and so
even for k = 1, the existing algorithm runs in Ω(mN) time in the worst
case. Here we make progress in this direction. We show that 1-EDSM
can be solved in O((nm2 + N) log m) or O(nm3 + N) time under edit
distance. For the decision version of the problem, we present a faster
O(nm2√log m + N log log m)-time algorithm. Our algorithms rely on
non-trivial reductions from 1-EDSM to special instances of classic com-
putational geometry problems (2d rectangle stabbing or range empti-
ness), which we show how to solve efficiently.
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1 Introduction

String matching (or pattern matching) is a fundamental task in computer sci-
ence, for which several linear-time algorithms are known [18]. It consists in find-
ing all occurrences of a short string, known as the pattern, in a longer string,
known as the text. Many representations have been introduced over the years to
account for unknown or uncertain letters in the pattern or in the text, a phe-
nomenon that often occurs in real data. In the context of computational biology,
for example, the IUPAC notation [26] is used to represent locations of a DNA
sequence for which several alternative nucleotides are possible. Such a notation
can encode the consensus of a population of DNA sequences [1,2,22,32] in a
gapless multiple sequence alignment (MSA).

Iliopoulos et al. generalized these representations in [25] to also encode inser-
tions and deletions (gaps) occurring in MSAs by introducing the notion of elastic-
degenerate strings. An elastic-degenerate (ED) string T̃ over an alphabet Σ is
a sequence of finite subsets of Σ∗ (which includes the empty string ε), called
segments. The number of segments is the length of the ED string, denoted by
n = |T̃ |; and the total number of letters (including symbol ε) in all segments is
the size of the ED string, denoted by N = ‖T̃‖. Inspect Fig. 1 for an example.

In Table 1, m is the length of the pattern, n is the length of the ED text,
N is its size, and ω is the matrix multiplication exponent. These algorithms
are also on-line: the ED text is read segment-by-segment and occurrences are
reported as soon as the last segment they overlap is processed. Grossi et al. [24]
presented an O(nm2 + N)-time algorithm for EDSM. This was later improved
by Aoyama et al. [5], who employed fast Fourier transform to improve the time
complexity of EDSM to O(nm1.5

√
log m+N). Bernardini et al. [8] then presented

a lower bound conditioned on Boolean Matrix Multiplication suggesting that it
is unlikely to solve EDSM by a combinatorial algorithm in O(nm1.5−ε + N)
time, for any ε > 0. This was an indication that fast matrix multiplication may
improve the time complexity of EDSM. Indeed, Bernardini et al. [8] presented
an O(nm1.381 + N)-time algorithm, which they subsequently improved to an
Õ(nmω−1) + O(N)-time algorithm [9], both using fast matrix multiplication,
thus breaking through the conditional lower bound for EDSM.

Fig. 1. An MSA of three sequences and its (non-unique) representation T̃ as an ED
string of length n = 7 and size N = 20. The only two exact occurrences of P = TTA in
T̃ end at positions 6 (black underline) and 7 (blue overline); a 1-error occurrence of
P in T̃ ends at position 2 (green underline); and another 1-error occurrence of P in T̃
ends at position 3 (red overline). Note that other 1-error occurrences of P in T̃ exist
(e.g., ending at positions 1 and 5). (Color figure online)
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Table 1. The upper-bound landscape of the EDSM problem.

EDSM Features Running time

Grossi et al. [24] Combinatorial O(nm2 +N)

Aoyama et al. [5] Fast Fourier transform O(nm1.5
√
logm+N)

Bernardini et al. [8] Fast matrix multiplication O(nm1.381 +N)

Bernardini et al. [9] Fast matrix multiplication Õ(nmω−1) + O(N)

Table 2. The state of the art result for k-EDSM and our new results for k = 1. Note
that n ≤ G ≤ N . All algorithms underlying these results are combinatorial and the
reporting algorithms are all on-line.

k-EDSM Features Running time

Bernardini et al. [10] k errors O(k2mG+ kN)

This work 1 error O(nm3 +N)

This work 1 error O((nm2 +N) logm)

This work 1 error (decision) O(nm2
√
logm+N log logm)

Our Results and Techniques. In string matching, a single extra or missing letter in
a potential occurrence results in missing (many or all) occurrences. Hence, many
works are focused on approximate string matching for standard strings [4,13,17,
23,27,28]. For approximate EDSM (k-EDSM), Bernardini et al. [7,10] gave an on-
line O(k2mG+ kN)-time algorithm under edit distance and an on-line O(kmG+
kN)-time algorithm under Hamming distance, where k is the maximum allowed
number of errors (edits) or mismatches, respectively, and G is the total number of
strings in all segments. Unfortunately, G is only bounded by N , and so even for
k = 1, the existing algorithms run in Ω(mN) time in the worst case.

Let us remark that the special case of k = 1 is not interesting for approximate
string matching on standard strings: the existing algorithms have a polynomial
dependency on k and a linear dependency on the length n of the text, and
thus for k = 1 we trivially obtain O(n)-time algorithms under edit or Hamming
distance. However, this is not the case for other string problems, such as text
indexing with errors, where the first step was to design a data structure for 1
error [3]. The next step, extending it to k errors, required the development of new
highly non-trivial techniques and incurred some exponential factor with respect
to k [16]. Interestingly, k-EDSM seems to be the same case, which highlights the
main theoretical motivation for this paper. In Table 2, we summarize the state of
the art result for k-EDSM and our new results for k = 1. Note that the reporting
algorithms underlying our results are also on-line.

Indeed, to arrive at our main results, we design a rich combination of algo-
rithmic techniques. Our algorithms rely on non-trivial reductions from 1-EDSM
to special instances of classic computational geometry problems (2d rectangle
stabbing or 2d range emptiness), which we show how to solve efficiently.
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The combinatorial algorithms we develop here for approximate EDSM are
good in the following sense. First, the running times of our algorithms do not
depend on G, a highly desirable property. Specifically, all of our results replace
m · G by an n · poly(m) factor. Second, our Õ(nm2 + N)-time algorithms are at
most one log m factor slower than O(nm2 +N), the best-known bound obtained
by a combinatorial algorithm (not employing fast Fourier transforms) for exact
EDSM [24]. Last, our O(nm3 + N)-time algorithm has a linear dependency on
N , another highly desirable property (at the expense of an extra m-factor).

Paper Organization. In Sect. 2, we provide the necessary definitions and nota-
tion, we describe the basic layout of the developed algorithms, and we formally
state our main results. In Sect. 3, we present our solutions under edit distance.
In Sect. 4, we conclude with some basic open questions for future work.

2 Preliminaries

We start with some basic definitions and notation following [18]. Let X =
X[1] . . . X[n] be a string of length |X| = n over an ordered alphabet Σ whose
elements are called letters. The empty string is the string of length 0; we denote
it by ε. For any two positions i and j ≥ i of X, X[i . . j] is the fragment of
X starting at position i and ending at position j. The fragment X[i . . j] is an
occurrence of the underlying substring P = X[i] . . . X[j]; we say that P occurs
at position i in X. A prefix of X is a fragment of the form X[1 . . j] and a suffix
of X is a fragment of the form X[i . . n]. By XY or X ·Y we denote the concate-
nation of two strings X and Y , i.e., XY = X[1] . . . X[|X|]Y [1] . . . Y [|Y |]. Given
a string X we write XR = X[|X|] . . . X[1] for the reverse of X.

An elastic-degenerate string (ED string) T̃ = T̃ [1] . . . T̃ [n] over an alphabet
Σ is a sequence of n = |T̃ | finite sets, called segments, such that for every
position i of T̃ we have that T̃ [i] ⊂ Σ∗. By N = ||T̃ || we denote the total length
of all strings in all segments of T̃ , which we call the size of T̃ ; more formally,
N =

∑n
i=1

∑|T̃ [i]|
j=1 |T̃ [i][j]|, where by T̃ [i][j] we denote the jth string of T̃ [i]. (As

an exception, we also add 1 to account for empty strings: if T̃ [i][j] = ε, then we
have that |T̃ [i][j]| = 1.) Given two sets of strings S1 and S2, their concatenation
is S1 · S2 = {XY | X ∈ S1, Y ∈ S2}. For an ED string T̃ = T̃ [1] . . . T̃ [n], we
define the language of T̃ as L(T̃ ) = T̃ [1] · . . . · T̃ [n]. Given a set S of strings we
write SR for the set {XR | X ∈ S}. For an ED string T̃ = T̃ [1] . . . T̃ [n] we write
T̃R for the ED string T̃ [n]R . . . T̃ [1]R.

Given a string P and an ED string T̃ , we say that P matches the fragment
T̃ [j . . j′] = T̃ [j] . . . T̃ [j′] of T̃ , or that an occurrence of P starts at position j and
ends at position j′ in T̃ if there exist two strings U, V , each of them possibly
empty, such that P = Pj · . . . · Pj′ , where Pi ∈ T̃ [i], for every j < i < j′,
U · Pj ∈ T̃ [j], and Pj′ · V ∈ T̃ [j′] (or U · Pj · V ∈ T̃ [j] when j = j′). Strings U, V

and Pi, for every j ≤ i ≤ j′, specify an alignment of P with T̃ [j . . j′]. For each
occurrence of P in T̃ , the alignment is, in general, not unique. In Fig. 1, P = TTA
matches T̃ [5 . . 6] with two alignments: both have U = ε, P5 = TT, P6 = A, and
V is either C or CAC.
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We will refer to P as the pattern and to T̃ as the ED text. We want to accept
matches with edit distance at most 1.

Definition 1. Given two strings P and Q over an alphabet Σ, we define the
edit distance dE(P,Q) between P and Q as the length of a shortest sequence of
letter replacements, deletions, and insertions, to obtain P from Q.

Lemma 1 ([18]). The function dE is a distance on Σ∗.

We define the main problem considered in this paper as follows:

1-Error EDSM
Input: A string P of length m and an ED string T̃ of length n and size N .
Output: All positions j′ in T̃ such that there is at least one string P ′ with
an occurrence ending at position j′ in T̃ , and with dE(P, P ′) ≤ 1 (reporting
version); or YES if and only if there is at least one string P ′ with an occurrence
in T̃ , and with dE(P, P ′) ≤ 1 (decision version).

Let P ′ be a string starting at position j and ending at position j′ in T̃
with dE(P, P ′) = 1. We call this an occurrence of P with 1 error (or a 1-error
occurrence); or equivalently, we say that P matches T̃ [j . . j′] with 1 error. Let
UP ′

j , . . . , P
′
j′V be an alignment of P ′ with T̃ [j . . j′] and i ∈ [j, j′] be an integer

such that the single replacement, insertion, or deletion required to obtain P
from P ′ = P ′

j · . . . · P ′
j′ occurs on P ′

i . We then say that the alignment (and the
occurrence) has the 1 error in T̃ [i]. (It should be clear that for one alignment
we may have multiple different i.) We show the following theorem.

Theorem 1. Given a pattern P of length m and an ED text T̃ of length n
and size N , the reporting version of 1-Error EDSM can be solved on-line in
O(nm2 log m+N log m) or O(nm3+N) time. The decision version of 1-Error
EDSM can be solved off-line in O(nm2

√
log m + N log log m) time.

Definition 2. For a string P = P [1 . . m], an ED string T̃ = T̃ [1] . . . T̃ [n], and
a position 1 ≤ i ≤ n, we define three sets:

– APi ⊆ [1,m], such that j ∈ APi if and only if P [1 . . j] is an active prefix of
P in T̃ ending in the segment T̃ [i], that is, a prefix of P which is also a suffix
of a string in L(T̃ [1] . . . T̃ [i]).

– ASi ⊆ [1,m], such that j ∈ ASi if and only if P [j . . m] is an active suffix
of P in T̃ starting in the segment T̃ [i], that is, a suffix of P which is also a
prefix of a string in L(T̃ [i] . . . T̃ [n]).

– 1-APi ⊆ [1,m], such that j ∈ 1-APi if and only if P [1 . . j] is an active prefix
with 1 error of P in T̃ ending in the segment T̃ [i], that is, a prefix of P which
is also at edit distance at most 1 from a suffix of a string in L(T̃ [1] . . . T̃ [i]).

For convenience we also define AP0 = ASn+1 = 1-AP0 = ∅.
The following lemma shows that the computation of active suffixes can be

easily reduced to computing the active prefixes for the reversed strings.
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Lemma 2. Given a pattern P = P [1 . . m] and an ED text T̃ = T̃ [1 . . n], a suffix
P [j . . m] of P is an active suffix in T̃ starting in the segment T̃ [i] if and only
if the prefix PR[1 . . m − j + 1] = (P [j . . m])R of PR is an active prefix in T̃R,
ending in the segment T̃R[n − i + 1] = (T̃ [i])R.

Proof. If P [j . . m] is a prefix of S ∈ L(T̃ [i . . n]), then PR[1 . . m − j + 1] is a
suffix of SR ∈ L(T̃ [1 . . . n]R). From the definition of T̃R we have T̃ [i . . n]R =
( ˜T [n])R . . . ( ˜T [i])R = T̃R[1 . . n − i + 1], hence SR ∈ L(T̃R[1 . . n − i + 1]). This
proves the forward direction of the lemma; the converse follows from symmetry.


�
The efficient computation of active prefixes was shown in [24], and constitutes

the main part of the combinatorial algorithm for exact EDSM. Similarly, com-
puting the sets 1-AP plays the key role in the reporting version of our algorithm
for 1-Error EDSM (see Fig. 2). Finding active prefixes (and, by Lemma 2,
suffixes) reduces to the following problem, formalized in [8].

Active Prefixes Extension (APE)
Input: A string P of length m, a bit vector U of size m, and a set S of strings
of total length N .
Output: A bit vector V of size m with V [j] = 1 if and only if there exists
S ∈ S and i ∈ [1,m], such that P [1 . . i] · S = P [1 . . j] and U [i] = 1.

Lemma 3 ([24]). The APE problem for a string P of length m and a set S of
strings of total length N can be solved in O(m2 + N) time.

Given an algorithm for the APE problem working in f(m) + N time, we can
find all active prefixes for a pattern P of length m in an ED text T̃ = T̃ [1] . . . T̃ [n]
of size N in O(nf(m) + N) total time:

Corollary 1 ([24]). For a pattern P of length m and an ED text T̃ =
T̃ [1] . . . T̃ [n] of total size N , computing the sets APi for all i ∈ [1, n] takes
O(nm2 + N) time.

As depicted in Fig. 2, the computation of active prefixes with 1 error (1-APi)
and the reporting of occurrences with 1 error reduce to a problem where the error
can only occur in a single, fixed T̃ [i]. In particular, this problem decomposes into
4 cases, which we formalize in the following proposition.

Proposition 1. Let T̃ = T̃ [1] . . . T̃ [n] be an ED text and P be a pattern that
has an occurrence with 1 error in T̃ . For each alignment corresponding to such
occurrence, at least one of the following is true:

Easy Case: P matches T̃ [i] with 1 error for some 1 ≤ i ≤ n.
Anchor Case: P matches T̃ [j . . j′] with 1 error in T̃ [i] for some 1 ≤ j < i <

j′ ≤ n. T̃ [i] is called the anchor of the alignment.
Prefix Case: P matches T̃ [j . . i] with 1 error in T̃ [i] for some 1 ≤ j < i ≤ n,

implying an active prefix of P which is a suffix of a string in L(T̃ [j . . i − 1]).
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Fig. 2. The layout of the algorithms for computing APi, 1-APi, and reporting occur-
rences. The green areas correspond to the (partial) matches in T̃ [i], and the symbol ∗
indicates the position of the error. The vertical bold lines indicate the beginning/the
end of an occurrence or a 1-error occurrence. The cases without a label allow only exact
matches and were already solved by Grossi et al. in [24]. (Color figure online)

Suffix Case: P matches T̃ [i . . j′] with 1 error in T̃ [i] for some 1 ≤ i < j′ ≤ n,
implying an active suffix of P which is a prefix of a string in L(T̃ [i + 1 . . j′]).

Proof. Suppose P has a 1-error occurrence matching T̃ [j . . j′] with 1 ≤ j ≤ j′ ≤
n. If j = j′ we are in the Easy Case. Otherwise, each alignment has an error in
some T̃ [i] for j ≤ i ≤ j′. If j < i < j′, we are in the Anchor Case; if j < i = j′,
we are in the Prefix Case; and if j = i < j′, we are in the Suffix Case. 
�

3 1-Error EDSM

In this section, we present algorithms for finding all 1-error occurrences of P
given by each type of possible alignment described by Proposition 1 (inspect
Fig. 3). The Prefix and Suffix Cases are analogous by Lemma 2; the only differ-
ence is in that, while the Suffix Case computes new 1-AP , the Prefix Case is
used to actually report occurrences. They are jointly considered in Sect. 3.3.

We follow two different procedures for the decision and reporting versions.
For the decision version, we precompute sets APi and ASi, for all i ∈ [1, n],
using Corollary 1, and we simultaneously compute possible exact occurrences
of P . Then we compute 1-error occurrences of P by grouping the alignments
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Fig. 3. Possible alignments of 1-error occurrences of P in T̃ . Each occurrence starts at
segment T̃ [j], ends at T̃ [j′], and the error occurs at T̃ [i]

depending on the segment i in which the error occurs, and using APi and ASi.
For the reporting version, we consider one segment T̃ [i] at a time (on-line) and
extend partial exact or 1-error occurrences of P to compute sets APi and 1-APi

using just sets APi−1 and 1-APi−1 computed at the previous step. We design
different procedures for the 4 cases of Proposition 1. We can sort all letters of
P , assign them rank values from [1,m], and construct a perfect hash table over
these letters supporting O(1)-time look-up queries in O(m log m) time [30]. Any
letter of T̃ not occurring in P can be replaced by the same special letter in O(1)
time. In the rest we thus assume that the input strings are over [1,m + 1].

Two problems from computational geometry have a key role in our solutions.
We assume the word RAM model with coordinates on the integer grid [1, n]d =
{1, 2, . . . , n}d. In the 2d rectangle emptiness problem, we are given a set P of n
points to be preprocessed, so that when one gives an axis-aligned rectangle as
a query, we report YES if and only if the rectangle contains a point from P. In
the “dual” 2d rectangle stabbing problem, we are given a set R of n axis-aligned
rectangles to be preprocessed, so that when one gives a point as a query, we
report YES if and only if there exists a rectangle from R containing the point.

Lemma 4 ([11,21]). After O(n
√

log n)-time preprocessing, we can answer 2d
rectangle emptiness queries in O(log log n) time.

Lemma 5 ([15,31]). After O(n log n)-time preprocessing, we can answer 2d
rectangle stabbing queries in O(log n) time.

In Sect. 3.4, we note that the 2d rectangle stabbing instances arising from 1-
Error EDSM have a special structure. We show how to solve them efficiently
thus shaving logarithmic factors from the time complexity.
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3.1 Easy Case

The Easy Case can be reduced to approximate string matching with at most 1
error (1-SM), for which we have the following well-known results.

1-SM
Input: A string P of length m and a string T of length n.
Output: All positions j in T such that there is at least one string P ′ ending
at position j in T with dE(P, P ′) ≤ 1.

Lemma 6 ([17,28]). Given a pattern P of length m, a text T of length n, and
an integer k > 0, all positions j in T such that the edit distance of T [i . . j] and
P , for some position i ≤ j on T , is at most k, can be found in O(kn) time or
in O(nk4

m + n) time.1 In particular, 1-SM can be solved in O(n) time.

We find occurrences of P with at most 1 error that are in the Easy Case for
segment T̃ [i] in the following way: we apply Lemma 6 for k = 1 and every string
of T̃ [i] whose length is at least m − 1 (any shorter string is clearly not relevant
for this case) as text. If, for any of those strings, we find an occurrence of P , we
report an occurrence at position i (inspect Fig. 3a). The time for processing a
segment T̃ [i] is O(Ni), where Ni is the total length of all the strings in T̃ [i].

3.2 Anchor Case

Let T̃ be an ED text and P be a pattern with a 1-error occurrence and an
alignment in the Anchor Case with anchor T̃ [i]. Further let L = P [1 . . �]S′

and Q = S′′P [q . . m] be a prefix and a suffix of P , respectively, for some � ∈
APi−1, q ∈ ASi+1, where S′, S′′ are a prefix and a suffix of some S ∈ T̃ [i],
respectively (strings S′, S′′ can be empty). By definition of the edit distance, a
pair L,Q gives a 1-error occurrence of P if one of the following holds:

1 mismatch: |L| + |Q| + 1 = m and |S′| + |S′′| + 1 = |S| (inspect Fig. 3b).
1 deletion in P : |L| + |Q| = m − 1 and |S′| + |S′′| = |S|.
1 insertion in P : |L| + |Q| = m and |S′| + |S′′| + 1 = |S|.

We show how to find such pairs with the use of a geometric approach. For
convenience, we only present the Hamming distance (1 mismatch) case. The
other cases are handled similarly.

Let λ ∈ APi−1 be the length of an active prefix, and let ρ be the length of
an active suffix, that is, m − ρ + 1 ∈ ASi+1. Note that APi−1 and ASi+1 can
be precomputed, for all i, in O(nm2 + N) total time by means of Corollary 1.
(In particular, ASi+1 is required only for the decision version; for the reporting
version, we explain later on how to avoid the precomputation of ASi+1 to obtain

1 Charalampopoulos et al. have announced an improvement on the exponent of k from

4 to 3.5; specifically they presented an O(nk3.5√
log m log k
m

+ n)-time algorithm [14].
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an on-line algorithm.) We will exhaustively consider all pairs (λ, ρ) such that
λ + ρ < m. Clearly, there are O(m2) such pairs.

Consider the length μ = m − (λ + ρ) > 0 of the substring of P still to be
matched for some prefix and suffix of P of lengths (λ, ρ), respectively. We group
together all pairs (λ, ρ) such that m−(λ+ρ) = μ by sorting them in O(m2) time.
We construct, for each such group μ, the compacted trie Tμ of the fragments
P [λ + 1 . . m − ρ], for all (λ, ρ) such that m − (λ + ρ) = μ, and analogously the
compacted trie TR

μ of all fragments PR[ρ + 1 . . m − λ]. For each group μ, this
takes O(m) time [29]. We enhance all nodes with a perfect hash table in O(m)
total time to access edges by the first letter of their label in O(1) time [20].

We also group all strings in segment T̃ [i] of length less than m by their
length μ. The group for length μ is denoted by Gμ. This takes O(Ni) time.
Clearly, the strings in Gμ are the only candidates to extend pairs (λ, ρ) such
that m − (λ + ρ) = μ. Note that the mismatch can be at any position of any
string of Gμ: its position determines a prefix S′ of length h and a suffix S′′ of
length k of the same string S, with h + k = μ − 1, that must match a prefix
and a suffix of P [λ + 1 . . m − ρ], respectively. We will consider all such pairs
of positions (h, k) whose sum is μ − 1 (intuitively, the minus one is for the
mismatch). This guarantees that L = P [1 . . λ]S′ and Q = S′′P [m − ρ + 1 . . m]
are such that |L|+ |Q|+1 = m. The pairs are (0, μ−1), (1, μ−2), . . . , (μ−1, 0).
This guarantees that L and Q are one position apart (|S′| + |S′′| + 1 = |S|).

The number of these pairs is O(μ) = O(m). Consider one such pair (h, k) and
a string S ∈ Gμ. We treat every such string S separately. We spell S[1 . . h] in Tμ.
If the whole S[1 . . h] is successfully spelled ending at a node u, this implies that
all the fragments of P corresponding to nodes descending from u share S[1 . . h]
as a prefix. We also spell SR[1 . . k] in TR

μ . If the whole of SR[1 . . k] is successfully
spelled ending at a node v, then all the fragments of P corresponding to nodes
descending from v share (SR[1 . . k])R as a suffix. Nodes u and v identify an
interval of leaves in Tμ and TR

μ , respectively. We need to check if these intervals
both contain a leaf corresponding to the same fragment of P . If they do, then
we obtain an occurrence of P with 1 mismatch (see Fig. 4). We now have two
different ways to proceed, depending on whether we need to solve the off-line
decision version or the on-line reporting version.

Decision Version. Recall that Tμ, TR
μ by construction are ordered based on

lexicographic ranks. For every pair (Tμ, TR
μ ), we construct a data structure for

2d rectangle emptiness queries on the grid [1, �]2, where � is the number of leaves
of Tμ (and of TR

μ ), for the set of points (x, y) such that x is the lexicographic
rank of the leaf of Tμ representing P [λ + 1 . . m − ρ] and y is the rank of the leaf
of TR

μ representing PR[ρ+1 . . m−λ] for the same pair (λ, ρ). This denotes that
the two leaves correspond to the same fragment of P . For every (Tμ, TR

μ ), this
preprocessing takes O(m

√
log m) time by Lemma 4, since � is O(μ) = O(m).

For all μ ≤ m groups, the whole preprocessing thus takes O(m2
√

log m) time.
We then ask 2d range emptiness queries that take O(log log m) time each by

Lemma 4. Note that all rectangles for S can be collected in O(|S|) = O(μ) time



30 G. Bernardini et al.

Fig. 4. An example of points and rectangles (solid shapes) for the decision ver-
sion of the Anchor Case with 1 mismatch. Here P = bbaaaabababb, APi−1 =
{1, 2, 4, 7, 8, 9}, ASi+1 = {5, 6, 9, 11, 12}, μ = 3, and T̃ [i] = {aaa, bba}. T3 and T R

3 are
built for 4 strings: P [2 . . 4] = baa, P [3 . . 5] = aaa, P [8 . . 10] = aba, P [9 . . 11] = bab; the
5 rectangles correspond to pairs (ε, aa), (a, a), (aa, ε), (ε, ab), (b, a), namely, the pairs
of prefixes and reversed suffixes of aaa and bba (rectangle (bb, ε) does not exist as T3

contains no node bb).

by spelling S through Tμ and SR through TR
μ , one letter at a time. Thus the total

time for processing all Gμ groups of segment i is O(m2
√

log m + Ni log log m).
If any of the queried ranges turns out to be non-empty, then P ′ such that
dH(P, P ′) ≤ 1 appears in L(T̃ ) with anchor in T̃ [i]; we do not have sufficient
information to output its ending position however.

Reporting Version. For this version, we do the dual. We construct a data
structure for 2d rectangle stabbing queries on the grid [1, �]2 for the set of rect-
angles collected for all strings S ∈ Gμ. By Lemma 5, for all μ groups, the whole
preprocessing thus takes O(Ni log Ni) time.

For every (Tμ, TR
μ ), we then ask the following queries: (x, y) is queried if and

only if x is the rank of a leaf representing P [λ+1 . . m−ρ] and y is the rank of a
leaf representing PR[ρ + 1 . . m − λ]. For every (Tμ, TR

μ ), this takes O(m log Ni)
time by Lemma 5 and by the fact that for each group Gμ there are O(m) pairs
(λ, ρ) such that m − (λ + ρ) = μ. For all groups Gμ (they are at most m), all
the queries thus take O(m2 log Ni) time. Thus the total time for processing all
Gμ groups of segment i is O((m2 + Ni) log Ni).

We are not done yet. By performing the above algorithm for active prefixes
and active suffixes, we find out which pairs can be completed to a full occurrence
of P with at most 1 error. This information is not sufficient to compute where
such an occurrence ends (and storing additional information together with the
active suffixes may prove costly). To overcome this, we use some ideas from



Elastic-Degenerate String Matching with 1 Error 31

the decision algorithm, appropriately modified to preserve the on-line nature of
the reporting algorithm. Instead of iterating ρ over the lengths of precomputed
active suffixes, we iterate it over all possible lengths in [0,m] (including 0 because
we may want to include m in 1-APi). A suffix of P of length ρ completes a
partial occurrence computed up to segment i exactly when m − ρ ∈ 1-APi (a
pair x ∈ 1-APi, x + 1 ∈ ASi+1 corresponds to an occurrence). We thus use the
reporting algorithm to compute the part of 1-APi coming from the extension of
APi−1 (see Fig. 2), and defer the reporting to the no-error version of the Prefix
Case for the right j′; which was solved by Grossi et al. [24] in linear time.

3.3 Prefix Case

Let T̃ be an ED text and P be a pattern with a 1-error occurrence and an
alignment in the Prefix Case with active prefix ending at T̃ [i − 1]. Let L =
P [1 . . �]S′, with � ∈ APi−1, be a prefix of P that is extended in T̃ [i] by S′; and
Q be a suffix of P occurring in some string of T̃ [i] (strings S′, Q can be empty).
By definition of the edit distance, we have 3 possibilities for any alignment of a
1-error occurrence of P in the Prefix Case:

1 mismatch: |L| + |Q| + 1 = m, S′ is a prefix of the same string in which Q
occurs, and they are one position apart (inspect Fig. 3c).

1 deletion in P : |L| + |Q| = m − 1, S′ is a prefix of the same string in which Q
occurs, and they are consecutive.

1 insertion in P : |L| + |Q| = m, S′ is a prefix of the same string in which Q
occurs, and they are one position apart.

For convenience, we only present the method for Hamming distance (1 mis-
match). The other possibilities are handled similarly. The techniques are similar
to those for the Anchor Case (Sect. 3.2). We group the prefixes of all strings in
T̃ [i] according to their length μ ∈ [1,m). The total number of these prefixes is
O(Ni). The group for length μ is denoted by Gμ. We construct the compacted
trie TGµ

of the strings in Gμ, and the compacted trie TR
Gµ

of the reversed strings
in Gμ. This can be done in O(Ni) total time for all compacted tries. To achieve
this, we employ the following lemma by Charalampopoulos et al. [12]. (Recall
that we have already sorted all letters of P . In what follows, we assume that
Ni ≥ m; if this is not the case, we can sort all letters of T̃ [i] in O(m+Ni) time.)

Lemma 7 ([12]). Let X be a string of length n over an integer alphabet of size
nO(1). Let I be a collection of intervals [i, j] ⊆ [1, n]. We can lexicographically
sort the substrings X[i . . j] of X, for all intervals [i, j] ∈ I, in O(n + |I|) time.

We concatenate all the strings of T̃ [i] to obtain a single string X of length Ni,
to which we apply, for each μ, Lemma 7, with a set I consisting of the intervals
over X corresponding to the strings in Gμ. By sorting, in this way, all strings
in Gμ (for all μ), and by constructing [19] and preprocessing [6] the generalized
suffix tree of the strings in T̃ [i] in O(Ni) time to support answering lowest
common ancestor (LCA) queries in O(1) time, we can construct all TGµ

in O(Ni)
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total time. We handle TR
Gµ

, for all μ, analogously. Similar to the Anchor Case we
enhance all nodes with a perfect hash table within the same complexities [20].

In contrast to the Anchor Case, we now only consider the set APi−1: namely,
we do not consider ASi+1. Let λ ∈ APi−1 be the length of an active prefix. We
treat every such element separately, and they are O(m) in total. Let μ = m−λ >
0 and consider the group Gμ whose strings are all of length μ. The mismatch
being at position h+1 in one such string S determines a prefix S′ of S of length
h that must extend the active prefix of P of length λ, and a fragment Q of S of
length k = μ−h−1 that must match a suffix of P . We will consider all such pairs
(h, k) whose sum is μ−1. The pairs are again (0, μ−1), (1, μ−2), . . . , (μ−1, 0),
and there are clearly O(μ) = O(m) of them.

Consider (h, k) as one such pair. We spell P [λ + 1 . . λ + h] in TGµ
. If the

whole P [λ+1 . . λ+h] is spelled successfully, this implies an interval of leaves of
TGµ

corresponding to strings from T̃ [i] that share P [λ + 1 . . λ + h] as a prefix.
We spell PR[1 . . k] in TR

Gµ
. If the whole PR[1 . . k] is spelled successfully, this

implies an interval of leaves of TR
Gµ

corresponding to strings from T̃ [i] that have
the same fragment (PR[1 . . k])R. These two intervals form a rectangle in the grid
implied by the leaves of TGµ

and TR
Gµ

. We need to check if these intervals both
contain a leaf corresponding to the same prefix of length μ of a string in T̃ [i]. If
they do, then we have obtained an occurrence with 1 mismatch in T̃ [i].

To do this we construct, for every (TGµ
, TR

Gµ
), a 2d range data structure for

the set of points (x, y) such that x is the rank of a leaf of TGµ
, y is the rank

of a leaf of TR
Gµ

, and the two leaves correspond to the same prefix of length μ

of a string in T̃ [i]. For every (TGµ
, TR

Gµ
), this takes O(|Gμ|√log |Gμ|) time by

Lemma 4. For all Gμ groups, the whole preprocessing takes O(Ni

√
log Ni) time.

We then ask 2d range emptiness queries each taking O(log log |Gμ|) time by
Lemma 4. Note that all rectangles for λ can be collected in O(m) time by spelling
P [λ+1 . . λ+μ− 1] through TGµ

and PR[1 . . μ− 1] through TR
Gµ

, one letter at a
time. This gives a total of O(m2 log log Ni + Ni

√
log Ni) time for processing all

Gμ groups of T̃ [i], because
∑

μ |Gμ| ≤ Ni.
To solve the Suffix Case (compute active prefixes with 1 error starting in

T̃ [i]) we employ the mirror version of the algorithm, but iterating λ over the
whole [0,m] instead of ASi+1 (like in the reporting version of the Anchor Case).

3.4 Shaving Logs Using Special Cases of Geometric Problems

Anchor Case: Simple 2d Rectangle Stabbing

Lemma 8. We can solve the Anchor Case (i.e., extend APi−1 into 1-APi) in
O(m3 + Ni) time.

Proof. By Lemma 5, 2d rectangle stabbing queries can be answered in O(log n)
time after O(n log n)-time preprocessing.

Notice that in the case of the 2d rectangle stabbing used in Sect. 3.2 the
rectangles and points are all in a predefined [1,m] × [1,m] grid. In such a case
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we can also use an easy folklore data structure of size O(m2), which after an
O(m2 + |rectangles|)-time preprocessing answers such queries in O(1) time.

Namely, the data structure consists of a [1,m + 1]2 grid Γ (a 2d-array of
integers) in which for every rectangle [u, v] × [w, x] we add 1 to Γ [u][w] and
Γ [v+1][x+1] and −1 to Γ [u][x+1] and Γ [v+1][w]. Then we modify Γ to contain
the 2d prefix sums of its original values (we first compute prefix sums of each row,
and then prefix sums of each column of the result). After these modifications,
Γ [x][y] stores the number of rectangles containing point (x, y), and hence after
O(m2 + |rectangles|)-time preprocessing we can answer 2d rectangle stabbing
queries in O(1) time. In our case we have a total of O(m) such grid structures,
each of O(m2) size, and ask O(m2) queries, and hence obtain an O(m3+Ni)-time
and O(m2)-space solution for computing 1-APi from APi−1. 
�

Prefix Case: A Special Case of 2d Rectangle Stabbing. Inspect the
example of Fig. 4 for the Anchor Case. Note that the groups of rectangles for
each string have the special property of being composed of nested intervals: for
each dimension, the interval corresponding to a given node is included in the
one corresponding to any of its ancestors. Thus for the Prefix Case, where we
only spell fragments of the same string P in both compacted tries, we consider
the following special case of off-line 2d rectangle stabbing.

Lemma 9. Let p1, . . . , ph and q1, . . . , qh be two permutations of [1, h]. We denote
by Π the set of h points (p1, q1), (p2, q2), . . . , (ph, qh) on [1, h]2. Further let R be a col-
lection of r axis-aligned rectangles ([u1, v1], [w1, x1]), . . . , ([ur, vr], [wr, xr]), such
that

[ur, vr] ⊆ [ur−1, vr−1] ⊆ · · · ⊆ [u1, v1] and [w1, x1] ⊆ [w2, x2] ⊆ · · · ⊆ [wr, xr].

Then we can find out, for every point from Π, if it stabs any rectangle from R in
O(h + r) total time.

Proof. Let H be a bit vector consisting of h bits, initially all set to zero. We
process one rectangle at a time. We start with ([u1, v1], [w1, x1]). We set H[p] = 1
if and only if (p, q) ∈ Π for p ∈ [u1, v1] and any q. We collect all p such that
(p, q) ∈ Π and q ∈ [w1, x1], and then search for these p in H: if for any p,
H[p] = 1, then the answer is positive for p. Otherwise, we remove from H every
p such that p ∈ [u1, v1] and p /∈ [u2, v2] by setting H[p] = 0. We proceed by
collecting all p such that (p, q) ∈ Π, q ∈ [w2, x2] and q /∈ [w1, x1], and then
search for them in H: if for any p, H[p] = 1, then the answer is positive for p.
We repeat this until H is empty or until there are no other rectangles to process.

The whole procedure takes O(h + r) time, because we set at most h bits on
in H, we set at most h bits back off in H, we search for at most h points in H,
and then we process r rectangles. 
�
Lemma 10. We can solve the Prefix (resp. Suffix) Case, that is, report 1-error
occurrences ending in T̃ [i] (resp. compute active prefixes with 1 error starting in
T̃ [i]) in O(m2 + Ni) time.
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Proof. We employ Lemma 9 to get rid of the 2d range data structure. The key
is that for every length-μ suffix P [λ+1 . . m] of the pattern we can afford to pay
O(μ + |Gμ|) time plus the time to construct TGµ

and TR
Gµ

for set Gμ. Because
the grid is [1, |Gμ|]2, we exploit the fact that the intervals found by spelling
P [λ + 1 . . λ + μ − 1] through TGµ

and PR[1 . . μ − 1] through TR
Gµ

, one letter
at a time, are subset of each other, and querying μ such rectangles is done in
O(μ + |Gμ|) time by employing Lemma 9. Since we process at most m distinct
length-μ suffixes of P , the total time is O(m2 + Ni), because

∑
μ |Gμ| ≤ Ni. 
�

3.5 Wrapping-up

To obtain Theorem 1 for the decision version of the problem we first compute
APi and ASi, for all i ∈ [1, n], in O(nm2 + N) total time (Corollary 1). We
then compute all the occurrences in the Easy Cases using O(N) time in total
(Sect. 3.1); and we finally compute all the occurrences in the Prefix and Suffix
Cases in

∑
i O(m2 + Ni) = O(nm2 + N) total time (Lemma 10).

Now, to solve the decision version of the problem, we solve the Anchor Cases
with the use of the precomputed APi−1 and ASi+1 for each i ∈ [2, n − 1]
in O(m2

√
log m + Ni log log m) time (Sect. 3.2), which gives O(nm2

√
log m +

N log log m) total time for the whole algorithm.
For the reporting version we proceed differently to obtain an on-line algo-

rithm; note that this is possible because we can proceed without ASi (see Fig. 2).
We thus consider one segment T̃ [i] at the time, for each i ∈ [1, n], and do the
following. We compute 1-APi, as the union of three sets obtained from:

– The Suffix Case for T̃ [i], computed in O(m2 + Ni) time (Lemma 10).
– Standard APE with 1-APi−1 as the input bit vector, computed in O(m2+Ni)

time (Lemma 3).
– Anchor Case computed from APi−1 in O((m2 + Ni) log Ni) (Sect. 3.2) or

O(m3 + Ni) time (Lemma 8).

If Ni ≥ m3, the algorithm of Lemma 8 works in the optimal O(m3+Ni) = O(Ni)
time, hence we can assume that the O((m2 + Ni) log Ni)-time algorithm is only
used when Ni ≤ m3, and thus it runs in O((m2+Ni) log m) time. Therefore over
all i the computations require O((nm2 + N) log m) or O(nm3 + N) total time.
For every segment i we can also check whether an active prefix from 1-APi−1

or from APi−1 can be completed to a full match in T̃ [i] using the algorithms of
Grossi et al. from [24] and Prefix Case, respectively, in O(m2 + Ni) extra time.

By summing up all these we obtain Theorem 1.

4 Open Questions

We leave the following basic questions open for future investigation:

1. Can we design an O(nm2 + N)-time algorithm for 1-EDSM?
2. Can our techniques be efficiently generalized for k > 1 errors?
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Abstract. We consider here two new variants of K-dimensional binary
search trees (K-d trees): median K-d trees and hybrid-median K-d trees.
These two kinds of trees are designed with the aim to get a tree as
balanced as possible. This goal is attained by heuristics that choose for
each node of the K-d tree the appropriate coordinate to discriminate. In
the case of median K-d trees, the chosen dimension to discriminate at
each node is the one whose point value at that node is the most centered
one. In hybrid-median K-d trees, the heuristic is similar except that it
should be followed in a cyclic way, meaning that, at every path of the
tree, no dimension can be re-selected to discriminate unless all the other
dimensions have already been selected. We study the expected internal
path length (IPL) and the expected cost of random partial match (PM)
searches in both variants of K-d trees. For both variants, we prove that
the expected IPL is of the form cK ·n log2 n+lower order terms, and the
expected cost of PM is of the form Θ(nα) with α = α(s, K). We give
the explicit equations satisfied by the constants cK and the exponents α
which we can then numerically solve. Moreover, we prove that as K → ∞
the trees in both variants tend to be perfectly balanced (cK → 1) and we
also show that α → log2(2 − s/K) for median K-d trees when K → ∞.
In the case of hybrid median K-d trees we conjecture that α → 1− s/K,
when K → ∞, which would be optimal.

Keywords: K-d trees · Multidimensional data structures · Partial
match queries · Analysis of algorithms

1 Introduction

In this work we study two variants of K-dimensional binary search trees [1,14]
(K-d trees, for short): median K-d tree and hybrid median K-d tree; both were
introduced by Pons [12] in 2010. When built from uniformly distributed input
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data sets, these two simple variants of K-d trees achieve better costs for exact
searches and insertions than other variants of K-d trees. They also perform better
with respect to partial match queries which in turn implies better performance
in other associative queries like orthogonal range or nearest neighbour queries.

Recall that a K-d tree is a binary search tree that stores a collection F of
items, each endowed with a K-dimensional key x = (x0, . . . , xK−1). In addition
to the data point key x, each node 〈x, j〉 of a K-d tree stores a discriminant, a
value j, 0 ≤ j < K, which is the coordinate that will be used to split the inserted
keys into the left and right subtrees rooted at 〈x, j〉: the data points with a key
y such that yj < xj are recursively inserted into the left subtree, whereas those
with a key z such that xj < zj are recursively inserted into the right one1.

The original K-d trees —we will refer to these as standard K-d tree— were
introduced by Bentley in the mid 70s [1] with a rule that assigns discriminants
in a cyclic way. Thus, a node at level � ≥ 0 has discriminant � mod K. Several
variants of K-d trees differ in the way in which the discriminants are assigned to
nodes, whereas other variants apply local (for example, Kdt trees [2]) or global
rebalancing rules (for example, divided K-d tree [8]). Among the variants that
use alternative rules to assign discriminants we have relaxed K-d tree [4], which
assign discriminants uniformly and independently at random, and squarish K-d
tree [3], which try to get a partition as balanced as possible of the data space.

Median K-d trees and hybrid median K-d trees also aim to build a more
balanced tree. In median K-d trees the rule is to choose as discriminant at each
node the coordinate that would presumably divide the forthcoming elements as
evenly as possible into the two subtrees of the node. While this can be easily
accomplished if we have the collection of n items beforehand, median K-d trees
achieve a similar outcome using a heuristic based on the usual assumption that
the keys from which the tree is built are drawn uniformly at random in [0, 1]K .
Besides, hybrid median K-d trees combine the heuristics of standard and median
K-d trees: at every node the coordinate used to discriminate is chosen using the
median K-d tree heuristic but, in a cyclic way as in standard K-d trees.

We use here the internal path length (IPL)2 [7] of median K-d trees and
hybrid median K-d trees as a measure of their degree of balance and of the
cost of building the tree and of exact (successful) searches. As general purpose
data structures, K-d trees provide efficient (not necessarily optimal and only
on expectation) support for dynamic insertions, exact searches and several asso-
ciative queries. In particular, we focus here on random partial match queries
(random PM queries), first because of their own intrinsic interest and second
because their analysis is a fundamental block in the analysis of other kind of
associative queries such as orthogonal range and nearest neighbour queries.

1 We have omitted on purpose what to do with elements v such that xj = vj ; several
alternatives exist to cope with such situation, but in the random model which we
will use for the analysis such event does not occur and hence the strategy used to
cope with such situation becomes unimportant.

2 The internal path length of a binary search tree is the sum, over all its internal
nodes, of the paths from the root to every node of the tree.
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A random PM query is a pair 〈q,u〉, where q = (q0, . . . , qK−1) is a K-
dimensional point independently drawn from the same continuous distribution
as the data points, and u = (u0, . . . , uK−1) is the pattern of the query; each
ui = S (the i-th attribute of the query is specified) or ui = ∗ (the i-th attribute
is unspecified). The goal of the PM search is to report all data points x =
(x0, . . . , xK−1) in the tree such that xi = qi whenever ui = S where s is the
number of specified coordinates; the interesting cases arise when 0 < s < K.

Our main tool for the analysis of the expected IPL and the expected cost
of random PMs is the continuous master theorem (CMT, for short) [13] and
some “extensions” developed here to cope with systems of divide-and-conquer
recurrences. In particular, we give the main order term of the expected IPL
of median K-d trees and hybrid median K-d trees: in both cases it is of the
form ∼ cKn log2 n for a constant cK depending on K and on the variant of K-d
tree considered (Theorems 1 and 3); median K-d trees and hybrid median K-d
trees perform better than other variants, for all K ≥ 2, since cK < 2 —while
cK = 2 for all K in standard, relaxed and squarish K-d trees. Moreover, in
median K-d trees and hybrid median K-d trees cK → 1 as K → ∞, which is
optimal for data structures built using key comparisons. We also show that the
expected cost of random PM searches will be always Θ(nα) for an exponent α
which depends on the variant of K-d trees, the dimension K and the number
s of coordinates which are specified in the PM query. We give the equations
satisfied by the exponent α in each case (Theorems 2 and 4). Although in general
these equations are not analytically solvable, it is possible to provide accurate
numerical approximations. In the case of median K-d trees, the expected cost
of PM queries lies somewhere between that of standard K-d trees and that of
relaxed K-d trees, and α → log2(2 − s/K) as K → ∞. For hybrid median K-d
trees the expected PM cost outperforms that of relaxed and standard K-d trees
for all K ≥ 2, and we conjecture that α → 1−s/K as K → ∞, which is optimal.
Table 1 summarizes our results comparing them to other variants of K-d trees.

Table 1. An abridged comparison of median K-d trees and hybrid median K-d trees
with other families of K-d trees, giving the coefficient of n log n for IPL and the expo-
nent α for PM where ∗ indicates conjectured.

Family IPL Partial match s = 1, s = K/2,

K = 2 K → ∞ K = 2 K → ∞
Standard K-d trees [1,6] 2 2 0.56155 0.56155

Relaxed K-d trees [4,10] 2 2 0.618 0.618

Squarish K-d trees [3] 2 2 0.5 0.5

Median K-d trees [this paper] 1.66 → 1.443 0.602 → 0.585

Hybrid median K-d trees [this paper] 1.814 → 1.443 0.546 → 0.5∗



Median and Hybrid Median K-Dimensional Trees 41

This paper is organized as follows. In Sect. 2 we give the definition of random
median K-d trees as well as the previous known results on them and we present
the analysis of their expected IPL (Subsec. 2.1) and the expected cost of random
PMs (Subsec. 2.2). In Sect. 3 we proceed as in the preceding section, now with
the analysis of random hybrid median K-d trees. Finally, in Sect. 4 we give our
conclusions and guidelines for future work.

2 Median K-d Trees

Median K-d trees were introduced by Pons [12] and they are a simple variant of
standard K-d trees: the only difference lies in the way to choose the dimension
used to discriminate at each node.

As happens in plane binary search trees, in K-d trees the insertion of an item
creates a new node that replaces a leaf of the current tree. It is worth noting
that every leaf of a K-d tree corresponds to a region of the space from which the
elements are drawn and hence the whole tree induces a partition of the space
—[0, 1]K in our case. The region delimited by the leaf that a new node replaces
at the moment of its insertion into the tree is known as its bounding box.

In median K-d trees, when a new data point x = (x0, . . . , xK−1) is inserted
in the bounding box R = [�0, u0] × · · · [�K−1, uK−1] the discriminant j is chosen
as follows,

j = arg min0≤i<K

{∣∣∣∣xi − �i

ui − �i
− 1

2

∣∣∣∣
}

.

An example of median K-d tree together with its induced partition of the space
is shown in Fig. 1.

Fig. 1. Example of a median K-d tree built from 2-dimensional points.

In the analysis of the expected IPL and the expected cost of random PM in
a median K-d tree of size n, we will assume, as usual in the literature, that the
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tree is randomly built. That is, that the n points are random and independently
drawn from [0, 1]K , with each coordinate xi of a data point x independently and
uniformly drawn from [0, 1].

In [12] it is shown that (i) the expected IPL of random median K-d trees
is In ∼ cKn log2 n for a constant cK depending on K; it is also stated there
without formal proof that cK → 1 as K → ∞; and (ii) that, for K = 2 and
K = 3, the expected cost of a random PM is Θ(nα) with α(1, 2) ≈ 0.60196 . . .,
α(2, 3) ≈ 0.74387 . . . and α(1, 3) ≈ 0.42756 . . ..

Here, using the CMT, we obtain the same results for the expected IPL and
extend the analysis of the expected cost of random PM to any value of K and s
proving also that α → log2(2 − s/K) as K grows (and s/K remains constant).

In order to proceed with the analysis, we need to compute the probability
that the left subtree of a random median K-d tree is of size j, given that the tree
is of size n. This is crucial in order to set up the recurrences for the expected IPL
and the expected cost of partial matches in the next subsections, and it enables
the systematic application of the CMT (see [13] or Appendix A of [5]) to solve
the recurrences, instead of the ad-hoc arguments given in [12].

Let x = (x0, x1, . . . , xK−1) be the key stored at the root of a median K-
d tree T that contains n data points. We can define the rank vector of x as
r = r(x, T ) = (r0, r1, . . . , rK−1) where ri is the number of data points in T with
i-th coordinate smaller or equal to xi. If the root of T discriminates with respect
to the i-th coordinate then —because we assume that the tree is randomly built–
the size of the left subtree L of T will be ri − 1 and the size of the right subtree
will be n − ri. In an idealization of median K-d trees the chosen discriminating
coordinate will be i if ri is the closest rank to �(n + 1)/2� —ties are resolved in
favor of the coordinate with smallest index. It follows that

P {|L| = j | |T | = n} = P {Zn,K = j + 1} , 0 ≤ j < |T |,

where Zn,K denotes the closest integer to �(n + 1)/2� (equivalently the closest
integer to n/2�) in a set of K given integers independently and uniformly drawn
from {1, . . . , n}.

For example, let K = 2 and Z := Zn,2. Then we have

P {Z = j} =

{
4j−1
n2 if j ≤ ⌊

n
2

⌋
,

4(n−j)+1
n2 if j >

⌊
n
2

⌋
.

(1)

To see why, suppose that n = 2λ + 1 and j ≤ λ = �n/2�. Then Z = j will
occur if (1) both ranks are equal to j, this happens with probability 1/n2 or
(2) one rank is j the other is < j or ≥ n + 1 − j, which will happen with
probability 2 · (1/n) · (j − 1 + j)/n = (4j − 2)/n2. Hence the probability of
Z = j when j ≤ λ is (4j − 1)/n2. The case for j > λ + 1 is similar except
that ties in the distance to the center are resolved in favor of the smallest rank:
thus if j > λ + 1 then n − j + 1 will be at the same distance to the center
but smaller than j hence Z = j requires one rank to be j and the other be
smaller than n + 1 − j.Thus, the probability that Z = j when j > λ + 1 is
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1/n2 + 2 · 2(n − j)/n2 = (4(n − j) + 1)/n2. On the other hand, if j = λ + 1 then
we will have Z = j no matter what the other rank is; we have that the probability
of Z = λ+1 is 1/n2+2(n−1)/n2 = (2n−1)/n2 = (4λ+1)/n2 = (4(n−j)+1)/n2.
Therefore, we can write that the probability of Z = j when j ≥ λ + 1 > �n/2�
is (4(n − j) + 1)/n2. For even n, when n = 2λ, the arguments are identical and
Eq. (1) holds too.

For the general case, we can reason in an analogous way, assuming that � ≥ 1
of the K ranks are j and K − � are either smaller that j or greater than n − j.
If j ≤ �n/2� then

P {Z = j} =
1

nK
· [

(2j)K − (2j − 1)K
]
,

and if j > �n/2� then the analysis is analogous but we need a small correction
as we cannot allow any coordinate to be n + 1 − j, hence in that case

P {Z = j} =
1

nK
· [

(2(n − j) + 1)K − (2(n − j))K
]
.

2.1 Internal Path Length

Let us start writing down the recurrence for the expected IPL In of a random
median K-d tree T of size n, for n > 0. For that, we condition on the size of the
left subtree L, thus

In = n − 1 +
n−1∑
j=0

πn,j(Ij + In−1−j) = n − 1 +
n−1∑
j=0

πn,jIj +
n−1∑
j=0

πn,n−1−jIj

= n − 1 +
n−1∑
j=0

(πn,j + πn,n−1−j)Ij , (2)

with πn,j = P {|L| = j | |T | = n} = P {Zn,K = j + 1} and I0 = 0. Indeed, the
IPL of T is the sum of the IPL of its subtrees L and R, and we add +1 for
every internal node other than the root. In order to apply the continuous master
theorem we identify ωn,j = πn,j +πn,n−1−j as the weights sequence in the divide-
and-conquer recurrence. Substituting j by z ·n, multiplying by n and taking the
limit when n → ∞ we get the shape function

ωK(z) = lim
n→∞ n · ωn,z·n =

{
2K(2z)K−1 = K2KzK−1, if z ≤ 1/2,

2K(2(1 − z))K−1 = K2K(1 − z)K−1, if z ≥ 1/2.

When n → ∞, the shape function derived for the idealization using ranks
is the actual shape function for median K-d trees, where we would have had
to compute the probability that, given a random set of K points X0, . . . , XK−1

independently and uniformly drawn from [0, 1], we have Z ′
n,K = j with

Z ′
n,K = #{Xi |Xi < X�},
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where � = arg min0≤i<K{|Xi − 1/2|}.
Once we have the shape function for the divide-and-conquer recurrence, we

can get the const-entropies for all K ≥ 1:

HK = 1 −
∫ 1

0

z ωK(z) dz = 0.

As they all are zero, we need to compute the log-entropies:

H′
K = −

∫ 1

0

z ln(z)ωK(z) dz. (3)

No easy closed form for H′
K is available; but we can compute any value of H′

K

and thus of the expected IPL (see Table 2).

Theorem 1 (Pons, 2010). The expected IPL of random median K-d tree of
size n is

In = cKn ln n + o(n log n)

where

c−1
K = H′

K = −K2K
[
AK +

∑
0≤i<K

(
K − 1

i

)
(−1)iBi+1

]
,

with Bj = −(Aj + 1/(j + 1)2) and

Aj =
∫ 1/2

0

zj ln z dz = −1 + (j + 1) ln 2
2j+1(j + 1)2

,

The IPL gives a measure of the cost of building the K-d tree in the first place,
but also of the cost of exact successful searches. Indeed, In

n = cK ·ln n+o(log n) is
the expected depth of a random node. We can use the definition of H′

K to show
that H′

K < H′
K+1 and thus the coefficients cK = (H′

K)−1 are monotonically
decreasing with K. It is also easy to prove that cK → 1/ ln 2 which implies
that median K-d trees tend to get perfectly balanced, as K → ∞ (see Fig. 3
on page 12). Indeed, from the definition (3) of H′

K , if we let K → ∞ the shape
function under the integral sign degenerates to a Dirac’s delta distribution at
z = 1/2 and thus

H′
K → −

∫ 1

0

ln z δ1/2(z) dz = − ln(1/2) = ln 2.

2.2 Random Partial Match

Consider a random partial match with s specified coordinates, 0 < s < K.
Because of the symmetries of the problem all the coordinates are equivalent with
respect to the query pattern and thus we can assume without loss of generality
that the query is of the form q = (q0, . . . , qs−1, ∗, . . . , ∗) with qi a uniformly
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Table 2. Coefficient of the first order term in the expected IPL of random median K-d
trees.

K H′
K E {In} /(n ln n) ∼ cK = 1/H′

K

1 1/2 2

2 5/6 − 1/3 ln 2 ≈ 0.6023 1.660

3 4/3 − ln 2 ≈ 0.6402 1.562

4 131/60 − 11/5 ln 2 ≈ 0.6584 1.519

. . . . . . . . .

∞ ln 2 ≈ 0.6931 1/ ln 2 ≈ 1.443

drawn real number in [0, 1]. Then the recurrence for the expected cost Pn :=
P

(K,s)
n of the PM is

Pn = 1 +
s

K

n−1∑

j=0

πn,j

(
j + 1

n + 1
Pj +

n − j

n + 1
Pn−1−j

)
+

K − s

K

n−1∑

j=0

πn,j(Pj + Pn−1−j)

= 1 +
s

K

n−1∑

j=0

(πn,j + πn,n−1−j)
j + 1

n + 1
Pj +

K − s

K

n−1∑

j=0

(πn,j + πn,n−1−j)Pj . (4)

To derive the recurrence above, we condition on the size of the left subtree, and
consider two possibilities: with probability s/K the discriminating coordinate of
the root is specified, and we have to continue recursively in the left or the right
subtree with probability proportional to their number of leaves of each subtree.
On the other hand, with probability (K − s)/K the discriminating coordinate
of the root is not specified and the PM must continue in both subtrees. We have
thus that the shape function is

ωK(z) =

{
K2KzK−1(ρz + 1 − ρ), if z ≤ 1/2,

K2K(1 − z)K−1(ρz + 1 − ρ), if z ≥ 1/2,

with ρ := s/K ∈ (0, 1). Then the const-entropy is

HK = 1 −
∫ 1

0

ωK(z) dz = ρ − 1,

which is always negative, since ρ < 1. In this situation the CMT tells us that
the expected PM cost will be Pn = Θ(nα), where α is the unique root in [0, 1]
of the equation ∫ 1

0

zαωK(z) dz − 1 = 0,

Theorem 2. The expected cost of a random partial match with s specified coor-
dinates out of K, 0 < s < K, in a random median K-d tree of size n is
Pn = Θ(nα), where α ∈ [0, 1] is the unique real solution of
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2−α

(
K(1 − ρ)
K + α

+
Kρ

2(K + α + 1)

)

+ K2K
{

ρB(1/2;K + 1, α + 1) + (1 − ρ)B(1/2;K,α + 1)
}

= 1, (5)

with B(z; a, b) =
∫ z

0
ta−1(1 − t)b−1 dt denoting the incomplete Beta function [11,

Ch. 8] and ρ = s/K.

While we cannot give a closed form for α in terms of K and ρ, Eq. (5) can
be used to compute numerical approximations with a high degree of accuracy.

We can also find the value of α as K grows and ρ = s/K remains constant.
For very large K, known asymptotic expansions of the incomplete Beta function
(see for instance [9] or [11, Ch. 8, pp. 183–184]) yield that α must satisfy

2−α
(
1 − ρ +

ρ

2

)
+ K2K

(
1
2

)α 1
K2K

(ρ/2 + 1 − ρ) = 2−α(2 − ρ) = 1,

and hence α = log2(2 − ρ). In it is interesting to note that it coincides with the
exponent of the expected cost of random PM in relaxed K-d tries [10].

Figure 2 plots the excess ϑ(x) := α(x) − (1 − x) in the exponent of the cost
of random PM of median K-d trees for various values of K (and x ≡ s/K),
and, for comparison, we also plot the excess ϑ(x) for relaxed K-d trees [4,10],
standard K-d trees [6] and the limit curve log2(2 − x) − 1 + x that corresponds
to the excess in the exponent for relaxed K-d tries [10].

3 Hybrid Median K-d Trees

Hybrid. K-d trees, also introduced in [12], combine two different rules to choose
discriminants. In particular, the hybridization of median K-d trees with standard
K-d trees are the so called hybrid median K-d trees, where, for an arbitrary
dimension K ≥ 2, the rule to assign the discriminants is the following:

1. Nodes at levels � ≡ 0 (mod K) discriminate with respect to the median rule
applied to all K coordinates

2. Nodes at levels � ≡ j (mod K), 0 < j < K, discriminate with respect the
median rule applied to all the coordinates not used as discriminant by any of
its j − 1 immediate ascendants.

The above implies that, in such a tree, in any path from the root to a leaf,
looking at the discriminants of the nodes along the path we will find a sequence
of permutations of order K (except for the last part of the path, which will
eventually contain only j < K distinct discriminants).

The analysis of the IPL and random partial match in hybrid median K-d trees
now becomes more complicated as it requires considering a system of divide-and-
conquer recurrences instead of a single divide-and-conquer recurrence as we had
when analyzing median K-d trees.
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Fig. 2. The excess ϑ(x) = α(x) − 1 − x for various median K-d trees and other K-d
trees.

3.1 Internal Path Length

Let us consider first the IPL of an hybrid median K-d tree. Let I
(�)
n denote

the expected IPL of an hybrid median K-d tree of size n where there are only
� available choices for the discriminant at the root (because the other K − �
discriminants have been already used for the immediate ancestors), then the
probability that the left subtree is of size j is given by π

(�)
n,j = P {Zn,� = j + 1}

and if � > 1 we have

I(�)n = n − 1 +
n−1∑
j=0

π
(�)
n,j

(
I
(�−1)
j + I

(�−1)
n−1−j

)
, 1 < � ≤ K and n > 0,

and

I(1)n = n − 1 +
n−1∑
j=0

π
(1)
n,j

(
I
(K)
j + I

(K)
n−1−j

)
, n > 0.

Define now the sequences of vectors Fn = (I(K)
n , . . . , I

(1)
n )T and tn = (n −

1, . . . , n − 1)T , and the sequence of weight matrices Ωn,k =
(
ω
(i,j)
n,k

)
K×K

, where

ω
(i,i+1)
n,k = π

(K+1−i)
n,k + π

(K+1−i)
n,n−1−k if i < K, ω

(K,1)
n,k = π

(1)
n,k + π

(1)
n,n−1−k and all other

ω
(i,j)
n,k = 0. Then we can compactly express the system for the IPL as

Fn = tn +
∑

0≤k<n

Ωn,k · Fk.
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Let us suppose that we substitute in the recurrences above each F
(i)
k ≡ I

(i)
k

by its corresponding “row” in the system. This substitution can be expressed in
terms of the following operation between weight sequences {ωn,k} and {ω′

n,k},
giving a new sequence {ω′′

n,k} defined by

ω′′
n,k = (ω ⊗ ω′)n,k :=

∑
k<j<n

ωn,j · ω′
j,k.

The operation can be naturally extended to sequences of square d × d matrices
(d = K in our instance). The (i, j) component of each matrix in the sequence
{Ω̃n,k} := {(Ω ⊗ Ω̂)n,k} = {Ωn,k} ⊗ {Ω̂n,k} is given by

Ω̃
(i,j)
n,k = (Ω ⊗ Ω̂)(i,j)n,k =

∑
�

(
ω(i,�) ⊗ ω̂(�,j)

)
n,k

.

Then we can write one substitution step as

Fn = tn +
∑

0≤k<n

Ωn,k · tk +
∑

0≤k<n

(Ω ⊗ Ω)n,k · Fk

The substitution process can be iterated repeatedly:

Fn = tn +
∑

0≤k<n

Ωn,k · tk +
∑

0≤k<n

Ω
[2]
n,k · tk + · · · +

∑
0≤k<n

Ω
[�−1]
n,k · tk

+
∑

0≤k<n

Ω
[�]
n,k · Fk,

where Ω[1] ≡ Ω and Ω[�] = Ω⊗Ω[�−1], for � > 1. This new operation ⊗ —let us
call it substitution product— of weight sequences is associative and commutative,
and distributes respect to the sum. Its extension to matrices is associative but
not commutative, exactly as ordinary matrix products. In the case of the IPL
of hybrid K-d trees it turns out that the matrix Ω

[K]
n,k is diagonal. This is a

very lucky circumstance since then we obtain a set of K independent divide-
and-conquer recurrences, and each one can be readily solved using the CMT. To
that end, we would only need to compute the weight matrix Ω

[K]
n,k and the new

toll function

t̂n = tn +
∑

0≤k<n

(
Ωn,k + Ω

[2]
n,k + · · · + Ω

[K−1]
n,k

)
· tk.

Rather than computing Ω
[�]
n,k for all � > 1, the special structure of the problem

can be further exploited to obtain our final result (Theorem 3 below, whose proof
is given in Appendix B of [5]). In particular, to prove the theorem we introduce
the shape matrix Ω(z) in which the (i, j) entry is the shape function for the
sequence {ω

(i,j)
n,k } and the matrices

Φ�(x) =

(∫ 1

0

(Ω [�](z))(i,j) zx dz

)

K×K

, Φ′
�(x) =

(
−

∫ 1

0

(Ω [�](z))(i,j) zx ln z dz

)

K×K
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which are the K-dimensional analogous of the const- and log-entropies of the
CMT. Properties of ⊗ (such as those proven in Appendix C of [5]) are used
to simplify the calculation and show that Fn ∼ (Φ′

K(1))−1t̂n ln n + o(1n log n),
where t̂n = (Kn,Kn, . . . ,Kn)T + o(1). We also show that Φ′

K(1) is a diagonal
matrix where all non-null entries are equal to H′

1 + · · · + H′
K , with H′

i the log-
entropy for the expected IPL in median i-dimensional trees.

Theorem 3. The expected IPL of a random hybrid median K-d tree of size n
is

In = c
[hm]
K n ln n + o(n log n)

where
c
[hm]
K =

K

H′
1 + . . . + H′

K

,

and the values of H′
i are those given in Theorem 1.

To conclude, let us observe that for all K, c
[hm]
K ≥ c

[med]
K = 1

H′
K

and also that

c
[hm]
K → 1/ ln 2, albeit the convergence speed is slower than for median K-d trees

(as can be seen in Fig. 3).

Fig. 3. The coefficient of n ln n in the average IPL of median K-d trees (red) and
hybrid median K-d trees (blue). (Color figure online)

3.2 Random Partial Match

Let P
(i,�)
n denote the expected cost of a random PM in a hybrid median K-d tree

of size n in which there are only i ≥ 1 coordinates to choose as discriminants —
the remaining K − i have been used in the immediate ancestors— and 0 ≤ � ≤ i

of them are specified in the query. We are interested in P
(K,s)
n with 0 < s < K.
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Suppose i > � ≥ 1. With probability �/i the discriminant coordinate —
chosen by the median rule among i choices— is specified and thus we will either
continue in the left subtree of size j or the right subtree of size n − 1 − j with
probability π

(i)
n,j

j+1
n+1 or π

(i)
n,j

n−j
n+1 , respectively, but now in the next level we will be

paying the expected cost of a random PM with only i−1 available coordinates of
which only � − 1 are specified. On the other hand, with probability (i − �)/i the
discriminant won’t be specified and the recursion will continue in both subtrees
with only i − 1 available coordinates to chose from to discriminate but still
� coordinates specified. If i = � > 0 the reasoning above applies with only
branching to either the left or the right subtrees; and if i > � = 0 then we will
continue in both subtrees as no specified coordinate is among those that can be
used as discriminants. Hence, if i > 1 and 0 ≤ � ≤ i we have

P (i,�)
n = 1 +

�

i

n−1∑
j=0

(
π
(i)
n,j + π

(i)
n,n−1−j

) j + 1
n + 1

P
(i−1,�−1)
j

+
i − �

i

n−1∑
j=0

(π(i)
n,j + π

(i)
n,n−1−j)P

(i−1,�)
j

The special cases are thus: (1) when i = 1 and � = 1, then the recursion
follows in the appropriate subtree but all the K discriminants become available
in the next level; and (2) when i = 1 and � = 0, then the recursion follows in
both subtrees but with all K coordinates again usable to discriminate. That is,

P (1,0)
n = 1 +

n−1∑
j=0

(π(1)
n,j + π

(1)
n,n−1−j)P

(K,s)
j

P (1,1)
n = 1 +

n−1∑
j=0

(
π
(1)
n,j + π

(1)
n,n−1−j

) j + 1
n + 1

P
(K,s)
j

The resulting call graph is more complicated than the one of IPL, and the
system of D&C recurrences will involve d = (K − s + 1)(s + 1) − 1 “algorithms”
with costs P

(i,�)
n , see for example Fig. 4 for the case K = 3 and s = 2.

Once we have set up the system of divide-and-conquer recurrences we can
construct a shape matrix Ω(z) in which the entry (u, v) is the shape function
ω(u,v)(z) corresponding to weight sequence ω

(u,v)
n,k ; vertices u and v correspond to

partial match algorithms with parameters (i, �) and (i′, �′). Many entries will be
null as algorithm u (or (i, �)) does not call algorithm v (or (i′, �′)). We can think
of this shape matrix as the adjacency matrix for the call digraph in which each
edge (u, v) is labelled by ω(u,v)(z). Likewise we can define the matrix Φ(x) in
which the entries are the definite integrals

∫ 1

0
ω(u,v)(z) zx dz. Then we can find

the expected cost P
(K,s)
n thanks to the following result.
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Fig. 4. Call graph for the system of D&C recurrences of the PM costs in hybrid median
K-d trees for K = 3 and s = 2.

Theorem 4. The expected cost of a random partial match with s specified coor-
dinates out of K, 0 < s < K, in a random hybrid median K-d tree of size n is
P

(K,s)
n = Θ(nα), where α ∈ [0, 1] is the unique real solution of det(I−Φ(x)) = 0,

where Φ(x) =
∫ 1

0
Ω(z) zx dz and Ω(z) is the shape matrix corresponding to the

system of d divide-and-conquer recurrences, with d = (K − s + 1)(s + 1) − 1.

The proof of this result can be found in Appendix D of [5]. It is based in the
properties of iterated substitution matrices Ω[K](z) (and ΦK(x)), and those of
the determinant of Φ(x) − I once we see it as the (weighted) adjacency matrix
of the call graph in which we add self-loops to every vertex of the call graph.

We report the values of α for K ≤ 6 in Table 3. Next to each entry we
give inside parentheses the corresponding values of α for standard K-d trees.
All values have been rounded to three significant figures. These values suggest
that random PM in hybrid median K-d trees perform better on average than in
standard K-d trees. Namely, we conjecture that α[hyb](s,K) < α[std](s,K) for
all s and K. Moreover, we conjecture that as K → ∞, α[hyb](s,K) → 1 − s/K,
which is optimal. One argument in favor of this conjecture is that hybrid median
K-d trees get increasingly balanced as K grows, but the hybridization guarantees
that we cycle over all K coordinates as we follow paths down the tree—any path
from a node at level r ·K to a node at level (r+1) ·K −1 has used all coordinates
as discriminants. Hence partial match in hybrid median K-d trees should behave
as in standard K-d tries [6], for which α(s,K) = 1 − s/K.
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Table 3. Values of α for the expected cost of PM in hybrid median K-d trees. In
parentheses, the corresponding values of α for standard K-d trees.

s

K 1 2 3 4 5

2 0.546 (0.562) – – – –

3 0.697 (0.716) 0.368 (0.395) – – –

4 0.771 (0.79) 0.53 (0.562) 0.275 (0.306) – –

5 0.815 (0.833) 0.624 (0.656) 0.425 (0.463) 0.218 (0.25) –

6 0.845 (0.862) 0.685 (0.716) 0.522 (0.562) 0.354 (0.395) 0.181 (0.211)

4 Conclusions and Final Remarks

Throughout this work we have considered two variants of K-d trees: median K-
d trees and hybrid median K-d trees. Both are simple and easy to implement,
and neither requires significant extra space. We show that both variants are
more balanced than most other well known variants of K-d trees based on key
comparisons, such as standard, relaxed and squarish K-d trees. This is due to
the fact that their expected IPL is ∼ cKn ln n with cK < 2 for all K ≥ 2, and
cK → 1/ ln 2 as K → ∞, while for the other mentioned variants cK = 2. We have
also shown that their expected cost for random PM is Θ(nα), where α = α(s,K).
For median K-d trees this expected cost is better than that of relaxed K-d trees
but not than that for standard K-d trees. In contrast, hybrid median K-d trees
outperfom standard and relaxed K-d trees and we conjecture that they approach
the optimal exponent —only attained by squarish K-d trees– α = 1− s/K as K
gets larger. In view of these results, good choices would be hybrid median K-d
trees if the efficiency of insertions and exact searches were to be prioritized —
while not deviating too much from the optimal performance in partial matches—
or squarish K-d trees if the priority were the efficiency of partial match, with
slightly worse expected costs for insertions and exact searches.

To derive analytic results, our main tool has been the continuous master
theorem —the CMT. For the analysis of median K-d trees the most challenging
step was to find the probability that a random median K-d tree of size n has
a left subtree of size j, but once computed an almost direct application of the
CMT provides the sought answers. Hybrid median K-d trees have posed an
entirely new challenge as we have had to cope with systems of divide-and-conquer
recurrences that can not be solved directly using the CMT. Nevertheless, we have
been able to exploit the special structure of the systems corresponding to the
IPL and the random PM in hybrid median K-d trees to find the constants cK

and the equations satisfied by the exponents α(s,K) by developing a limited
extension of the CMT to cope with systems of recurrences.

Last but not least, our work constitutes a new example of the power of
the CMT as a fundamental tool in the analysis of algorithms: without its help
the analysis of median K-d trees would be a daunting task. It would have been
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desirable to have a full developed set of results and tools in the spirit of the CMT
to cope with systems of divide-and-conquer recurrences such as those arising in
the analysis of hybrid median K-d trees. Indeed, the extensions of the CMT that
we have developed in this work could constitute a first step towards this goal.
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Abstract. A matching M is a P-matching if the subgraph induced
by the endpoints of the edges of M satisfies property P. As exam-
ples, for appropriate choices of P, the problems Induced Matching,
Uniquely Restricted Matching, Connected Matching and Dis-
connected Matching arise. For many of these problems, finding a
maximum P-matching is a knowingly NP-hard problem, with few excep-
tions, such as Connected Matching, which has the same time com-
plexity as the usual Maximum Matching problem. The weighted vari-
ant of Maximum Matching has been studied for decades, with many
applications, including the well-known Assignment problem. Motivated
by this fact, in addition to some recent research in weighted versions of
acyclic and induced matchings, we study the Maximum Weight Con-
nected Matching. In this problem, we want to find a matching M
such that the endpoints of its edges induce a connected subgraph and
the sum of the edge weights of M is maximum. Unlike the unweighted
Connected Matching problem, which is in P for general graphs, we
show that Maximum Weight Connected Matching is NP-hard even
for bounded diameter bipartite graphs, starlike graphs, planar bipartite
graphs, and subcubic planar graphs, while solvable in linear time for trees
and graphs having degree at most two. When we restrict edge weights to
be non-negative only, we show that the problem turns out to be polyno-
mially solvable for chordal graphs, while it remains NP-hard for most of
the other cases. In addition, we consider parameterized complexity. On
the positive side, we present a single exponential time algorithm when
parameterized by treewidth. As for kernelization, we show that, even
when restricted to binary weights, Weighted Connected Matching
does not admit a polynomial kernel when parameterized by vertex cover
number under standard complexity-theoretical hypotheses.
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1 Introduction

Matching problems have a long history and a vast literature in both structural
and algorithmic graph theory [13,22,24–28]. A matching is a subset M ⊆ E of
the edges of a graph G = (V,E) that do not share any endpoint. A P-matching
is a matching such that G[M ], the subgraph of G induced by the endpoints
of edges of M , satisfies property P. One of the most natural and important
properties in network applications is the connectivity of a graph. In this paper
we focus on matchings whose endpoints induce a connected graph.

The problem of deciding whether or not a graph admits a P-matching
of a given size has been investigated for many different properties P over
the years. One of the most well-known examples is the Induced Matching

problem, where P is the property of being 1-regular; in [8] it was shown to
be NP-complete even for bipartite graphs. Other NP-hard matching problems
include Acyclic Matching [17], k-Degenerate Matching [1], Uniquely

Restricted Matching [18], and Disconnected Matching [7,19]. One of
the few exceptions of a P-matching problem that is solvable in polynomial time
is Connected Matching [17], in which G[M ] has to be connected.

It is worth mentioning that the name Connected Matching is also used
for a different problem, where the aim is to find a matching M in a given graph
G such that every pair of edges in M has a common adjacent edge [9]. We
adopt the more recent meaning of Connected Matching, given by Goddard et
al. [17], who also proved that the sizes of a maximum matching and a maximum
connected matching in a connected graph coincide. In [7], it was shown that,
given a maximum matching and a graph G, a maximum connected matching of
G can be obtained in linear time.

Recently, some P-matching concepts were extended to edge-weighted prob-
lems, where, in addition to the matching to have a certain property P, the sum
of the weights of the matching edges must be sufficiently large. It was shown
that Maximum Weight Induced Matching can be solved in linear time for
convex bipartite graphs [21] and in polynomial time for circular-convex and
triad-convex bipartite graphs [29]. In [14], Fürst et al. showed that Maximum

Weight Acyclic Matching is solvable in polynomial time for P4-free graphs
and 2P3-free graphs.

Motivated by these studies, we consider connected matchings on edge-
weighted graphs. In particular, we investigate both the decision and optimization
versions, which we formally define as follows; note that the decision problem is
in NP.

Weighted Connected Matching

Instance: An edge-weighted graph G and an integer k.
Question: Is there a connected matching M of weight at least k?

Maximum Weight Connected Matching

Instance: An edge-weighted graph G.
Task : Find a connected matching M of G of maximum weight.



56 G. C. M. Gomes et al.

In some cases, we approach Weighted Connected Matching separately
when negative weights are allowed or not. Note that, unlike some weighted
matching problems, such as Maximum Weight Matching, negative weighted
edges are relevant and may even be required to be in an optimal solution.

Our Results. In this paper, we study the complexity of Weighted Con-

nected Matching under different constraints.
Our investigation begins with a starlike graphs, a subclass of chordal graphs,

where we show that the problem is NP-complete when arbitrary weights are
allowed. On the other hand, we present a polynomial-time algorithm for chordal
graphs if all weights are non-negative.

Afterwards, we turn our attention to bipartite graphs, first showing that
even for non-negative weights, Weighted Connected Matching remains NP-
complete, even if the graph is planar or its diameter is bounded. If negative
weights are allowed, we prove that the problem remains hard for subcubic planar
graphs.

We then prove the existence of polynomial-time algorithms for: (i) graphs
of maximum degree two, establishing a complexity dichotomy based on the
maximum degree, (ii) graphs of bounded treewidth, and (iii) trees; the lat-
ter is an improvement upon the treewidth algorithm, since it runs in lin-
ear time. The treewidth algorithm implies fixed-parameter tractability for the
treewidth parameterization, which leads us to our final result, where we prove
that no polynomial kernel exists when parameterizing by vertex cover unless
NP ⊆ coNP/poly. We summarize our main results in Table 1.

Table 1. Summary of our results for Weighted Connected Matching.

Graph class Complexity
Weights ≥ 0 Any weights

General NP-complete (Theorem 3)
Bipartite having diameter at most 4

Chordal P (Theorem 2) NP-complete (Theorem 1)
Starlike
Planar bipartite NP-complete (Theorem 4)

subcubic ? NP-complete (Theorem 5)
Δ ≤ 2 P (Theorem 6)
Tree P (Theorem 8)

Preliminaries. For an integer k, we define [k] = {1, . . . , k}. We use standard
graph theory notation and nomenclature as in [5,6], and refer to [10] for param-
eterized complexity. Let G be a graph, M ⊆ E(G), and V (M) be the set of
endpoints of edges of M , which are also called M -saturated vertices, or just
saturated. Let Δ(G) be the maximum vertex degree of G. For W ⊆ V (G), we
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denote by G[W ] the subgraph of G induced by W ; in abuse of notation, we
define G[M ] = G[V (M)]. A matching is said to be maximum if there is no other
matching of G with greater cardinality and to be maximum weight if there is no
other matching of G having greater sum of edge weights. A matching is perfect
if V (M) = V (G). Also, M is said to be connected if G[M ] is connected. Let
uv be an edge of G. We denote by w(uv) the weight of the edge uv and define
w(M) =

∑
uv∈M w(uv). The operations G−uv and G−v result, respectively, in

the graphs G′ = (V,E \ {uv}) and G[V \ {v}]. We denote by Ka,b the complete
bipartite graph with a vertices in one part and b vertices in the other. A star
is a graph isomorphic to K1,b, for some b. The graphs Pn and Cn are path and
cycle graphs having n vertices. A graph G is H-free if G has no copy of H as
an induced subgraph; G is chordal if it has no induced cycle with more than
three vertices. A clique tree of G is a tree T representing G in which vertices and
edges of T correspond, respectively, to maximal cliques and minimal separators
of G. A graph is a starlike graph if it is chordal and has a clique tree that is a
star graph. A graph is planar if it can be embedded in the plane without edge
crossings.

2 Chordal Graphs

We begin our study on chordal graphs and one of its subclasses, starlike graphs.
Weighted Connected Matching for these classes has different time complex-
ities depending on the admittance of negative weights on the input graph; more
specifically, we show that the problem is NP-complete if negative weights are
allowed and is in P otherwise. To reach this result, we prove the NP-completeness
for starlike graphs having weights in {−1,+1} in Sect. 2.1 and a polynomial-time
algorithm for chordal graphs having non-negative weights in Sect. 2.2.

2.1 Starlike Graphs

Our first result is a proof that Weighted Connected Matching is NP-
complete on starlike graphs having edge weights in {−1,+1}. Our reduction is
from the NP-complete problem 3SAT [16], with input given by the pair (X, C),
where X is the set of variables and C is the set of clauses; w.l.o.g. we assume
that each clause contains exactly three literals. We set the input of Weighted

Connected Matching as k = |X|+ |C| and GX,C built by the following rules:

(I) For each variable xi ∈ X, add a copy of C3 whose vertices are labeled xi,
x+

i and x−
i . Set weight −1 to edge x+

i x−
i and +1 to the other edges.

(II) For each pair of variables xi, xj ∈ X, add all possible edges between vertices
of {x−

i , x+
i } and {x−

j , x+
j } and set its weights to −1.

(III) For each clause Ci ∈ C, add a copy of K2 whose edge weight is +1 and
label its endpoints as c+i , and c−

i . Also, for each literal xj of Ci, connect
both c−

i and c+i to x−
j if x is negated, or x+

j otherwise; in both cases, the
added edges have weight −1.
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This graph is indeed starlike, as its clique tree is a star, having as center
the maximal clique containing the vertices {x+

i , x−
i | xi ∈ X}, one leaf clique

{xi, x
+
i , x−

i } for each xi ∈ X, and one leaf clique for each clause. A connected
matching of weight at least k in GX,C corresponds to an assignment of X such
that xi ∈ X is set to true if and only if x+

i is M -saturated.

Lemma 1. Given a solution for the 3SAT instance (X, C), we can obtain a
connected matching M in GX,C having weight |X| + |C|.
Proof. We show how to obtain the matching M . (i) For each clause Ci ∈ C, add
the edge c−

i c+i to M . Also, (ii) for each variable xi ∈ X, if xi is set to true, we
saturate the edge x+

i xi; otherwise, x−
i xi.

Next, we show that M is connected. Edges from (ii) are connected as each
one is incident to a vertex xi, which is part of the center clique. Each edge from
(i), obtained by clause Ci ∈ C, having xj as the variable related to the literal
that resolves to true in Cj , is connected. This holds because, if xj is negated,
then c+i x−

j ∈ E(GX,C) and x−
j is saturated. Otherwise, c+i x+

j ∈ E(GX,C) and x+
j

is saturated.

Lemma 2. Given an input (X, C) for 3SAT and a connected matching M in
GX,C having weight |X| + |C|, we can obtain an assignment R of X that solves
3SAT.

Proof. Denote by W−1 and W1 the edge sets from GX,C whose weights are,
respectively, −1 and 1. First, we show that a matching having weight |X| + |C|
contains exactly |X| + |C| edges from W1 and no edges from W−1.

Note that there can be at most |X|+ |C| edges from W1. This holds because,
for each variable xi ∈ X, a matching contains at most one edge of {x+

i xi, x
−
i xi},

since both have an endpoint in vertex xi. Also, for each clause Ci ∈ C, the edge
c−
i c+i can also be contained in the matching.

Since all edges contained in W−1 have negative weights, if there is a matching
with |X|+ |C| vertices from W1 and no vertices from W−1, then it is maximum.
Since M is a matching whose weight is |X| + |C|, then |M ∩ W1| = |X| + |C|
and |M ∩ W−1| = 0. Also, as M is connected, then, for each edge c+i c−

i ∈ M ,
there is a saturated vertex adjacent to c+i , either x+

j or x−
j , for xj ∈ Ci and

Ci ∈ C. Those vertices are exactly the ones representing a literal in clause Ci.
So, to obtain R, for each variable xi ∈ X, we set xi to true if and only if x+

i is
saturated.

Theorem 1. Weighted Connected Matching is NP-complete even for
starlike graphs whose edge weights are in {−1,+1}.
Proof. Note that the problem is in NP. According to the correspondence between
Weighted Connected Matching and 3SAT solutions described in Lemmas
1 and 2, the 3SAT problem, which is NP-complete, can be reduced to Weighted

Connected Matching using a starlike graph whose edge weights are either
−1 or +1. Therefore, Weighted Connected Matching is NP-complete even
for starlike graphs whose weights are in {−1,+1}.
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As an example, let an input of 3SAT be (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x5) ∧
(x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5). The related graph is illustrated in Fig. 1, as
well as a connected matching having weight |X| + |C| = 9, corresponding to the
assignment (F, T, F, F, T ) of the variables (x1, x2, x3, x4, x5), in this order.

Fig. 1. Example of a starlike graph built by the reduction and a connected matching.
Dashed edges have weight −1 and solid edges have weight 1. Vertices in the dashed
rectangle induce a clique in which the omitted edges have weight −1.

2.2 Chordal Graphs for Non-negative Weights

Theorem 1 directly implies that Weighted Connected Matching is also
NP-complete for chordal graphs. Interestingly, if the weights are restricted to
be non-negative, we can solve Weighted Connected Matching in polyno-
mial time in this class. To this end, we present a polynomial-time reduction to
the Maximum Weight Perfect Matching problem, which can be solved in
polynomial time [11,12]. In this problem, we are given a graph G and we want
to find a perfect matching M whose sum of the edge weights is maximum.

For the reduction, let G = (V,E) be the input graph to Maximum Weight

Connected Matching. We build the input graph Gp = (Vp, Ep) to Maximum

Weight Perfect Matching as follows:

(I) Set Vp = V . If |V | is odd, add a vertex h to Vp.
(II) Set Ep = E. Now, for each pair of non articulation vertices v1, v2 ∈ V ∪{h},

if v1v2 /∈ E, add the 0-weight edge v1v2 to Ep.

In the next lemma, we show that there is always a maximum weight connected
matching that saturates all articulations of a graph.

Lemma 3. Let G be a connected graph having no negative weight edge. There
is a maximum weight connected matching M that saturates all articulations.
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Proof. Let M be a maximum weight connected matching such that an articula-
tion v is not saturated. We show that we can saturate v only by adding edges to
M , in a way M is still connected. Let C = {C1, . . . , C|C|} be the connected com-
ponents of G− v. Note that |C| ≥ 2 and the edges of M are contained in exactly
one component Ci ∈ C, because, otherwise, G[M ] would not be connected. Let
U = ((

⋃
u∈V (M) N(u)) \ V (M)) \ {v}. Note that U ⊆ V (Ci). If U 	= ∅ and there

is a path P = (p1, . . . , pq) between p1 ∈ U and pq = v in G − V (M), saturate
pipi+1 for every possible i even. If q is odd, then v is saturated. If P does not
exist, or q is even or U = ∅, saturate v with any vertex of Cj 	= Ci of C.

Without loss of generality, there is also a maximum weight matching in a
chordal graph that saturates all articulations. Therefore, if Mp is a maximum
weight perfect matching in Gp, we can obtain in linear time a maximum weight
connected matching which saturates all articulations in G by the union of M∗ =
Mp ∩E with a maximal set S of 0-weight edges having endpoints in vertices not
saturated by M∗. This results in a connected matching, as otherwise we would
find a minimal separator of G that has at least two non-saturated vertices; since
G is chordal, these vertices are adjacent, which contradicts the maximality of S.
Hence, Weighted Connected Matching can be solved in polynomial time,
as stated in the following theorem.

Theorem 2. Maximum Weight Connected Matching for chordal graphs
whose edge weights are all non-negative can be solved in polynomial time.

3 Bipartite Graphs

The hardness result stated in Theorem 1 is highly dependent on the existence
of several non-trivial cliques, which are forbidden in some graph classes, includ-
ing bipartite graphs. This raises the question of whether or not the absence of
these structures makes the problem easier; in this section, we answer this in the
negative by showing that Weighted Connected Matching remains hard on
bipartite graphs having only binary weights.

Our proof is also based on a reduction from 3SAT, whose input is (X, C).
Let the input of Weighted Connected Matching be k = |X| + |C| + 1 and
the graph GX,C obtained by the following rules.

(I) Add two vertices, h+ and h−, connected by a 1-weight edge.
(II) For each variable xi ∈ X, add a copy of P3 whose edge weights are 1,

and label its endpoints as x+
i and x−

i . Moreover, connect the other vertex,
labeled xi, to h+ and set this edge weight to 0.

(III) For each clause Ci ∈ C, add a copy of K2 whose edge weight is 1 and label
its vertices as c+i and c−

i . Also, for each literal xj of Ci, add a 0-weight
edge c+i x−

j if xj is negated, or c+i x+
j otherwise.

A connected matching M of weight at least k of GX,C corresponds to an assign-
ment of X such that variable xi is set to true if and only if x+

i is M -saturated.
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Figure 2 presents an example where the input formula of 3SAT is (x1 ∨ x2 ∨
x4) ∧ (x1 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5). The illustrated connected
matching corresponds to the assignment (F, T, F, F, T ), in this order, of the
variables (x1, x2, x3, x4, x5).

Fig. 2. Example of a bipartite graph built by the reduction and a connected matching
of size |X|+|C|+1 = 10. Dashed and solid edges represent weights 0 and 1, respectively.

It is also possible to strengthen our NP-completeness proof in terms of the
graph diameter, adding a vertex u and the 0-weight edges defined by {c+i u | Ci ∈
C}∪{x+

i h−, x−
i h− | xi ∈ X}∪{xix

+
j , xix

−
j , xjx

+
i , xjx

−
i | xi, xj ∈ X}. Connected

matchings of weight k have the same properties and patterns as previously stated.
In next lemmas, we show that, given an input (X, C) for 3SAT, it is possible

to obtain in linear time a connected matching M in GX,C , w(M) = k, if we have
a solution for (X, C), and vice versa. Denote W0 and W1 by the edge sets from
GX,C whose weights are, respectively, 0 and 1.

Lemma 4. Given a solution for the 3SAT instance (X, C), we can obtain a
connected matching M having weight |X| + |C| + 1 in GX,C.

Proof. We show how to obtain the matching M . (i) For each clause Ci ∈ C, add
the edge c−

i c+i to M . Also, (ii) for each variable xi ∈ X, if xi is set to true, we
saturate the edge x+

i xi; otherwise, x−
i xi. Moreover, (iii) saturate the edge h+h−.

Now, we prove that this matching is connected. Edges from (ii) are connected
as they are connected to the edge h+h− of (iii). Each edge from (i), obtained by
clause Ci ∈ C, having xj as the variable related to a literal that resolves to true
in Ci, is connected. This holds because, if xj is negated, then c+i x−

j ∈ E(GX,C)
and x−

j is saturated. Otherwise, c+i x+
j ∈ E(GX,C) and x+

j is saturated.
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Lemma 5. Given an input (X, C) for 3SAT and a connected matching M in
GX,C having weight |X|+ |C|+1, we can obtain an assignment of X that solves
3SAT in polynomial time.

Proof. First, we show that a matching M having weight |X| + |C| + 1 contains
exactly |X|+ |C|+1 edges from W1 and no edges from W0. Note that |M ∩W1| ≤
|X| + |C| + 1 because, for each variable xi ∈ X, there is at most one matched
edge of {x+

i xi, x
−
i xi}, since both have an endpoint in vertex xi. Also, M can

contain the edges {h+h−} ∪ {c−
i c+i | Ci ∈ C}.

Observe that each edge from W0 has an endpoint in either {h+} or S1 = {c+i |
Ci ∈ C}. Saturating any of these vertices by a W0 edge will decrease the number
of possibly matched edges of W1 and the weight of M , resulting in w(M) < k.
Namely, if we saturate h+ or c+i ∈ S1, we are not able to saturate, respectively,
h+h− or c+i c−

i . Thus, |M ∩ W1| = |X| + |C| + 1 and |M ∩ W0| = 0.
If the matching M is connected, then, for each edge c+i c−

i ∈ M , there is a
M -saturated vertex adjacent to c+i , either x+

j or x−
j , for a variable xj contained

in clause Ci. Also, for each variable xi ∈ X, the vertex xi is saturated, which
is connected to the edge h+h−. Hence, to obtain an assignment to X, for each
variable xi ∈ X, we set xi to true if and only if x+

i is saturated.

Theorem 3. Weighted Connected Matching is NP-complete on bipartite
graphs of diameter 4 even if all edge weights are in {0, 1}.
Proof. Note that the problem is in NP. According to the correspondence between
Weighted Connected Matching and 3SAT solutions described in Lemmas 4
and 5, 3SAT, which is NP-complete, can be reduced to Weighted Connected

Matching using a bipartite graph whose diameter is 4 and the edge weights are
either 0 or 1. Hence, Weighted Connected Matching is NP-complete even
for bipartite graphs whose weights are in {0, 1} and diameter is 4.

A follow-up question is if there are subclasses of bipartite graphs that admit
polynomial-time algorithms. As we show in Sect. 5, there exists such algorithms
for trees and graphs of maximum degree two. Nevertheless, we would like to
study non-trivial classes, such as chordal bipartite graphs and planar bipartite
graphs. We leave the former as an open problem, but proceed to study the latter,
and other subclasses of planar graphs, in our next section.

4 Planar Graphs

Aside from the planar bipartite case, which is shown to be NP-complete in
Sect. 4.1, we investigate the complexity of Weighted Connected Matching

in planar graphs under degree constraints in Sect. 4.2, proving that the problem
remains hard in the subcubic case.
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4.1 Planar Bipartite Graphs

In this section, we prove the NP-completeness of Weighted Connected

Matching on planar bipartite graphs having weights either 0 or 1. We use a
polynomial-time reduction from a SAT variant that we explain in the following.

Let B be a conjunctive formula where C = {C1, . . . , Cq} and X =
{x1, . . . , xm} are the sets of clauses and variables of B, respectively. Let
Xc = (x1, . . . , xm) be an ordering of X. Let G(B) = (V,E) be the graph
in which there is a vertex for each clause and each variable of B, namely
V = {xi | xi ∈ X} ∪ {cj | Cj ∈ C}. The edge set E is partitioned in A1, A2

where A1 = {xicj | {xi, xi} ∩ Cj 	= ∅} and A2 = {xixi+1 | 1 ≤ i < m} ∪ {xmx1};
note that A2 induces a cycle containing all variable vertices and follows the
ordering Xc.

In [23], Lichtenstein defined a conjunctive formula B as planar if G(B) is
planar; he showed that, for every instance of SAT, we can build in polynomial
time an equivalent planar formula as well as its planar embedding. The problem
of finding a true assignment to a planar formula was named as Planar SAT,
and was proven to be NP-complete. Later in the paper, the author also proved
the NP-completeness of a Planar SAT variant of our interest. In this problem,
the input planar boolean formula B is monotone, that is, each of its clauses
consists only of positive literals or only of negative literals. Also, there is a
planar embedding of G(B) such that each edge referencing a positive(negative)
literal is connected to the top(bottom) of the variable vertices. We refer to it as
Planar Monotone SAT. We assume that Xc is also part of its input, since it
was shown in [23] how to obtain such embedding of G(B) in polynomial time.

We use a reduction from Planar Monotone SAT to Weighted Con-

nected Matching, for which the input is defined as k = 2|X| + |C| and the
planar bipartite graph, that we call H(B), obtained from G(B), with the addi-
tion of the following rules.

(I) For each variable xi ∈ X, generate four vertices, x+
i , x−

i , vi, ui. Also, add
the 1-weight edges {viui, xix

+
i , xix

−
i }.

(II) For each edge having an endpoint in xi, 1 ≤ i ≤ |X|, representing a
positive(negative) literal, we connect this edge to x+

i (x−
i ) instead of xi

and set its weight to 1.
(III) Remove all the edges from the variable vertices cycle, that is, from A2,

and add the 0-weight edges {vixi, vixi+1 | 1 ≤ i < |X|} ∪ {vmxm, vmx1}.
(IV) For each clause Ci ∈ C, we label the corresponding vertex as c+i and

connect it to a new vertex, c−
i , by a 1-weight edge.

Similarly to the reduction described in Sect. 3, a connected matching M
having weight at least k in H(B) corresponds to an assignment of B in such a
way that variable xi ∈ X is set to true if and only if x+

i is M -saturated.

Theorem 4. Weighted Connected Matching is NP-complete on planar
bipartite graphs whose edge weights are in {0, 1}.
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4.2 Subcubic Planar Graphs

Now, we approach subcubic planar graphs, showing the NP-completeness of
Weighted Connected Matching for this class where edge weights in
{−1,+1}. Our proof is very similar to another reduction, made by Marzio De
Biasi [2].

Let us define a polynomial-time reduction from Steiner Tree, one of Karp’s
original 21 NP-complete problems [20]. In this problem, we are given a graph
H = (VH , EH), a subset R ⊆ VH and an integer k′ > 0; we want to know if there
is a subgraph T = (VT , ET ) of H such that T is a tree, R ⊆ VT and |ET | ≤ k′.
Our reduction is from Steiner Tree in which the input graph is planar; Garey
and Johnson showed in [15] that this problem is NP-complete.

Let (H = (VH , EH), R, k′) be the input of Steiner Tree such that H is
planar. Also, let q = Δ(H), p = q(|VH | − |R|) + 1 and r = p|EH | + 1. For
Weighted Connected Matching input (G, k), we define k = r|R| − pk′ and
the graph G built by the following procedures:

(I) For each vertex w ∈ VH , add a copy of a cycle with 2r vertices if w ∈ R, or
2q otherwise. If this number is less than 3, instead, add a copy of a path with
the same number of vertices. Set the weights of all these edges to 1. Now,
for each u ∈ N(w), arbitrarily label one of the vertices of this subgraph as
vwu. We denote this subgraph by Cw.

(II) For each edge wu in EH , generate a copy of P2p whose edge weights are
−1 and make one of its endpoints vertices adjacent to vwu and the other to
vuw. We denote this subgraph by Pwu or Puw.

A connected matching of weight at least k in G corresponds to a tree T =
(VT , ET ) where VT = {w | w ∈ VH , V (Cw) ∩ V (M) 	= ∅} ⊆ R and ET = {wu |
wu ∈ EH , V (Pwu) ⊆ V (M)}.

As an example, consider the input for Steiner Tree as k′ = 1, R = {a, b}
and H = (VH , EH), isomorphic to C3, with VH = {a, b, c}. So, q = Δ(H) = 2,
p = q(|VH | − |R|)+ 1 = 3, r = p|EH |+1 = 10. For the Weighted Connected

Matching input, we set k = 17, and the graph as illustrated in Fig. 3.

Theorem 5. Weighted Connected Matching is NP-complete even for sub-
cubic planar graphs having edge weights in {−1,+1}.

5 Polynomial-Time Algorithms

So far, we have proven that Weighted Connected Matching is NP-complete
even when some constraints are imposed, such as limits on the weights, planarity
and degree bounds. In this section, we turn our attention to other tractable
cases, presenting algorithms for graphs of maximum degree two, trees and, more
generally, graphs of bounded treewidth.
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Fig. 3. Example of a subcubic planar graph G generated from a cycle of length three.
The connected matching represents the tree subgraph G[{a, b}] of G.

5.1 Graphs Having Degree at Most 2

Due to Theorem 5, we know that Maximum Weight Connected Matching

is NP-hard for graphs of maximum degree three. As such, we turn our attention
to graphs of maximum degree two, i.e. the disjoint unions of paths and cycles,
and prove that they allow for a linear time algorithm; in fact, for the case of
paths, we reuse the algorithm for trees previously described.

As for cycles, we use following method. Given graph G = (V,E), take two
arbitrary edges E′ = {uw,wv} ⊆ E. A maximum connected matching in G
contains one or none elements of E′. So, we compare three maximum connected
matchings, defined in G − uw, G − wv, and G − w; they can be obtained in
linear time, by using a dynamic programming if |E′ ∩ M | = 1, or by our linear
algorithm for trees(see Sect. 5.2) otherwise. Among these three, the matching
having the largest weight is a maximum weight connected matching.

Theorem 6. Maximum Weight Connected Matching can be solved in lin-
ear time for cycles. Furthermore, the problem can be solved in linear time for
graphs of maximum degree at most 2.

5.2 Bounded Treewidth Graphs

A tree decomposition of a graph G is a pair T = (T, B = {Bj | j ∈ V (T )}),
where T is a tree and B ⊆ 2V (G) is a family where:

⋃
Bj∈B Bj = V (G); for

every edge uv ∈ E(G) there is some Bj such that {u, v} ⊆ Bj ; for every i, j, q ∈
V (T ), if q is in the path between i and j in T , then Bi ∩ Bj ⊆ Bq. Each
Bj ∈ B is called a bag of the tree decomposition. G has treewidth at most t if it
admits a tree decomposition such that no bag has more than t + 1 vertices. For
further properties of treewidth, we refer to [30]. Our algorithm relies on the rank
based approach of Bodlaender et al. [3] for optimizing dynamic programming
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algorithms for connectivity problems; we omit the several additional definitions
it requires due to space constraints.

For each node x of a tree decomposition, our algorithm constructs a table
fx(S,U) ⊆ Π(Bx)×R, with S,U ⊆ Bx and Π(Bx) being the set of all partitions
of Bx. Intuitively, each entry (p,w) ∈ fx(S,U) corresponds to a matching M
of the subgraph induced by the bags of the subtree rooted at x with weight w,
where each block p ∈ Π(S ∪ U) is part of a distinct connected component of
G[M ].

Theorem 7. Given a tree decomposition of width t of the n-vertex input graph,
Maximum Weight Connected Matching can be solved in 2O(t)nO(1) time.

Trees. The algorithm described in Sect. 5.2 implies that Weighted Con-

nected Matchings can be solved in nO(1) time on trees. We strengthen this
result by a linear time algorithm for this class.

Given a tree T , we begin by rooting it in some vertex r ∈ V (T ). Then, we
traverse this rooted tree in post-order such a way that, when visiting vertex v, we
find the weight of a maximum weight connected matching in the subtree defined
by v and its descendants and such that v is saturated. The matching having the
largest weight is a maximum weight connected matching in T .

In Theorem 8, we give details about this algorithm, proving its correctness
and analyzing the running time.

Theorem 8. Maximum Weight Connected Matching on trees can be
solved in linear time.

Proof. We describe a linear algorithm that solves Weighted Connected

Matching for trees. Let T = (V,E) be a tree. We denote by T r the tree T
rooted in r. Moreover, for v ∈ V , T r

v is the subtree of T r that contains v and
all its descendants, and S(r, v) is the set of children of v in T r. Also, consider
Br,v as the weight of a maximum weight connected matching in T r

v such that, if
v is not a leaf, then v is saturated. Moreover, Br,v is the weight of a matching
M defined as the union of the maximum connected matchings in T r

u , for each
u ∈ S(r, v), such that G[V (M) ∪ {v}] is connected.

Next, we describe a dynamic programming that, for given a root r ∈ V , can
be used to obtain Br,v and Br,v for every v ∈ V . For the base case, the vertex v
is a leaf in T r

v , and then Br,v = Br,v = 0. Otherwise, v is not a leaf, and we can
obtain Br,v, Br,v as follows.

f(r, vu) = Br,u + w(vu) +
∑

s∈S(r,v)\{u}
max{Br,s, 0}

Br,v =
∑

u∈S(r,v)

max {Br,u, 0}

Br,v = max
u∈S(r,v)

f(r, vu)
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Next, we show that we can run this dynamic programming in linear time.
Clearly, summations Br,v =

∑
u∈S(r,v) max{Br,u, 0} for all vertices v ∈ V can

be calculated in linear time. For Br,v, note that it can also be written as follows.

Br,v = Br,v + max
u∈S(r,v)

(w(uv) + Br,u − Br,u)

This leads to a linear time procedure to obtain Br,v and Br,v, for every v ∈ V .
Now, we can find a maximum weight connected matching in T by reconstructing
the matching that generated weight Br,h, for the vertex h that maximizes Br,h.

6 Kernelization

Theorem 7 implies that Maximum Weight Connected Matching parame-
terized by treewidth is in FPT, which immediately prompts an investigation into
whether its decision version admits a polynomial kernel under the same parame-
terization. We answer this negatively by showing that Weighted Connected

Matching parameterized by vertex cover number does not admit a polynomial
kernel, unless NP ⊆ coNP/poly, even if the input is restricted to bipartite graphs
of bounded diameter and the allowed weights are in {0, 1}, which implies the
same result when parameterizing by treewidth, since treewidth is upper bounded
by the vertex cover number.

We prove our result through an OR-cross-composition [4] from the 3SAT

problem. Our construction is heavily inspired by the proof described in Sect. 3.
Formally let, H = {(X1, C1), . . . , (Xt, Ct)} be a set of t 3SAT instances such that
Xi = X = {x1, . . . , xn} for every i ∈ [t]. Also, let C =

⋃
i∈[t] Ci. Finally, let (G, k)

be the Weighted Connected Matching instance we are going to build.
We begin our construction by adding to G a pair of vertices cj , c

′
j for each

Cj ∈ C and a unit weight edge between them. Then, for each xi ∈ X, we add
vertices x−

i , x∗
i , x

+
i and edges x−

i x∗
i , x

∗
i x

+
i , each of weight 1. Now, for each Cj ∈ C

and i ∈ [n], if xi ∈ Cj , we add the 0-weight edge x+
i cj to G, otherwise, if xi ∈ Cj ,

we add the weight 0 edge x−
i cj . We conclude this first part of the construction

by adding a pair of vertices h, h′ to G, making them adjacent with an edge of
weight 1, and adding an edge of weight 0 between h and x∗

i for every xi ∈ X. At
this point, we have an extremely similar graph to the one constructed in Sect. 3.

For the next part of the construction, we add a copy of K1,t, where the
vertex on the smaller side is labeled q and, the vertices on the other side are
each assigned a unique label from the set Y = {y1, . . . , yt}, with each edge having
weight 1. Now, for each y� ∈ Y and Cj ∈ C \ C�, we add the 0-weight edges c′

jy�

and hy�. Finally, we set k = |C| + |X| + 2, i.e. we must pick one edge in each
clause gadget and vertex gadget plus the edge hh′ and one edge between q and
Y . Note that |V (G)| = 3|X| + 2|C| + |Y | + 3 ≤ 3|X| + 2|X|3 + |Y | + 3, which
implies that V (G) \ Y is a vertex cover of G of size O(|X|3), as required by
the cross-composition framework. Moreover, note that G is bipartite, as we can
partition it as follows: L = {q, h} ∪ {x+

i , x−
i | i ∈ [n]} ∪ {c′

j | Cj ∈ C} and
R = V (G) \ L, where both L and R are independent sets.



68 G. C. M. Gomes et al.

Theorem 9. Unless NP ⊆ coNP/poly, Weighted Connected Matching

does not admit a polynomial kernel when parameterized by vertex cover number
and required weight even if the input graph is bipartite and edge weights are in
{0, 1}.

7 Conclusions and Future Work

Motivated by previous works on weighted P-matchings, such as Weighted

Induced Matching [21,29] and Weighted Acyclic Matching [14], in this
paper we introduced and studied Weighted Connected Matching problem.

We begin our investigation on the complexity of the problem by imposing
restrictions on the input graphs and weights. In particular, we showed that the
problem is NP-complete on planar bipartite graphs and bipartite graphs of diam-
eter 4 for binary weights, and on subcubic planar graphs and starlike graphs
when weights are restricted to {−1,+1}. On the positive side, we presented
polynomial-time algorithms for Maximum Weight Connected Matching

on chordal graphs with non-negative weights, graphs having maximum degree
at most two with arbitrary weights, on trees and, more generally, on graphs of
bounded treewidth. The latter algorithm implies that Weighted Connected

Matching is fixed-parameter tractable under the treewidth parameterization.
This prompted our study of the problem from the kernelization point of view; our
inquiry showed that no polynomial kernel exists when parameterized by vertex
cover and the minimum required weight unless NP ⊆ coNP/poly.

Possible directions for future work include determining the complexity of the
problem for different combinations of graph classes and allowed edge weights. In
particular, we would like to know the complexity of Weighted Connected

Matching for diameter 3 bipartite graphs when weights are non-negative,
chordal bipartite graphs, and subcubic planar graphs under the same constraint.
Other graph classes of interest include cactus graphs and block graphs.

We are also interested in the parameterized complexity of the problem. In
terms of natural parameterizations, we see two possible directions: parameter-
izing by the number of edges in the matching or by the weight of the match-
ing; while we have some negative kernelization results for these parameters,
tractability is still unknown. Other possibilities include the study of other struc-
tural parameterizations, with the main open question being tractability for the
cliquewidth parameterization.
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Abstract. Given an array of size n from a total order, we con-
sider the problem of constructing a data structure that supports vari-
ous queries (range minimum/maximum queries with their variants and
next/previous larger/smaller queries) efficiently. In the encoding model
(i.e., the queries can be answered without the input array), we propose
a (3.701n + o(n))-bit data structure, which supports all these queries
in O(log(�) n) time, for any positive integer � (here, log(1) n = log n,
and for � > 1, log(�) n = log(log(�−1)n)). The space of our data struc-
ture matches the current best upper bound of Tsur (Inf. Process. Lett.,
2019), which does not support the queries efficiently. Also, we show that
at least 3.16n − Θ(log n) bits are necessary for answering all the queries.
Our result is obtained by generalizing Gawrychowski and Nicholson’s
(3n − Θ(log n))-bit lower bound (ICALP, 15) for answering range mini-
mum and maximum queries on a permutation of size n.

Keywords: Range minimum queries · Encoding model · Balanced
parenthesis sequence

1 Introduction

Given an array A[1, . . . , n] of size n from a total order and an interval [i, j] ⊂
[1, n], suppose there are k distinct positions i ≤ p1 ≤ p2 . . . ≤ pk ≤ j where
p1, p2, . . . , pk are the positions of minimum elements in A[i, . . . , j]. Then, for
q ≥ 1, range q-th minimum query on the interval [i, j] (RMin(i, j, q)) returns
the position pq (returns pk if q > k), and range minimum query on the interval
[i, j] (RMin(i, j)) returns an arbitrary position among p1, p2, . . . , pk. One can also
analogously define range q-th maximum query (resp. range maximum query) on
the interval [i, j], denoted by RMax(i, j, q) (resp. RMax(i, j)).

In addition to the above queries, one can define next/previous larger/smaller
queries as follows. When the position i is given, the previous smaller value query
on the position i (PSV(i)) returns the rightmost position j < i, where A[j] is
smaller than A[i] (returns 0 if no such j exists), and the next smaller value
query on the position i (NSV(i)) returns the leftmost position j > i where A[j]
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is smaller than A[i] (returns n + 1 if no such j exists). The previous (resp. next)
larger value query on the position i, denoted by PLV(i) (resp. NLV(i))) is also
defined analogously.

In this paper, we focus on the problem of constructing a data structure
that efficiently answers all the above queries. We consider the problem in the
encoding model [15], which does not allow access to the input A for answering
the queries after prepossessing. In the encoding data structure, the lower bound
of the space is referred to as the effective entropy of the problem. Note that for
many problems, their effective entropies have much smaller size compared to the
size of the inputs [15]. Also, an encoding data structure is called succinct if its
space usage matches the optimal up to lower-order additive terms. The rest of
the paper only considers encoding data structures and assumes a Θ(log n)-bit
word RAM model, where n is the input size.

Previous Work. The problem of constructing an encoding data structure for
answering range minimum queries has been well-studied because of its wide
applications. It is well-known that any two arrays have a different set of answers
of range minimum queries if and only if their corresponding Cartesian trees [19]
are distinct. Thus, the effective entropy of answering range minimum queries on
the array A of size n is 2n−Θ(log n) bits. Sadakane [17] proposed the (4n+o(n))-
bit encoding with O(1) query time using the balanced-parenthesis (BP) [11] of
the Cartesian tree on A with additional nodes. Fisher and Heun [7] proposed the
(2n+o(n))-bit data structure (hence, succinct), which supports O(1) query time
using the depth-first unary degree sequence (DFUDS) [2] of the 2d-min heap on
A. Here, a 2d-min heap of A is an alternative representation of the Cartesian
tree on A. By maintaining the encodings of both 2d-min and max heaps on A
(2d-max heap can be defined analogously to 2d-min heap), the encoding of [7]
directly gives a (4n+o(n))-bit encoding for answering both range minimum and
maximum queries in O(1) time. Gawrychowski and Nicholson [8] reduced this
space to (3n + o(n))-bit while supporting the same query time for both queries.
They also showed that the effective entropy for answering the range minimum
and maximum queries is at least 3n − Θ(log n) bits.

Next/previous smaller value queries were motivated from the parallel com-
puting [3], and have application in constructing compressed suffix trees [14].
If all elements in A are distinct, one can answer both the next and previous
smaller queries using Fischer and Heun’s encoding for answering range minimum
queries [7]. For the general case, Ohlebusch et al. [14] proposed the (3n+o(n))-bit
encoding for supporting range minimum and next/previous smaller value queries
in O(1) time. Fischer [6] improved the space to 2.54n+o(n) bits while maintain-
ing the same query time. More precisely, their data structure uses the colored
2d-min heap on A, which is a 2d-min heap on A with the coloring on its nodes.
Since the effective entropy of the colored 2d-min heap on A is 2.54n − Θ(log n)
bits [10], the encoding of [6] is succinct. For any q ≥ 1, the encoding of [6] also
supports the range q-th minimum queries in O(1) time [9].

From the above, the encoding of Fischer [6] directly gives a (5.08n + o(n))-
bit data structure for answering the range q-th minimum/maximum queries and
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Table 1. Summary of the upper and lower bounds results of encoding data structures
for answering q-th minimum/maximum queries and next larger/smaller value queries
on the array A[1, . . . , n], for any q ≥ 1 (here, we can choose � as any positive integer).
Note that all our upper bound results also support the range minimum/maximum and
previous larger/smaller value queries in O(1) time (the data structures of [6,9] with
O(1) query time also support these queries in O(1) time).

Array type Space (in bits) Query time Reference

Upper bounds
A[i] �= A[i + 1] for all i ∈ [1, n − 1] 4n + o(n) O(1) [9]

3.585n O(n) [18]
3.585n + o(n) O(log(�) n) This paper

General array 5.08n + o(n) O(1) [6,9]
4.088n + o(n) O(n) [9]
4.585n + o(n) O(1)

3.701n O(n) [18]
3.701n + o(n) O(log(�) n) This paper

Lower bounds
Permutation 3n − Θ(log n) [8]
General array 3.16n − Θ(log n) This paper

next/previous larger/smaller value queries in O(1) time by maintaining the data
structures of both colored 2d-min and max heaps. Jo and Satti [9] improved the
space to (i) 4n + o(n) bits if there are no consecutive equal elements in A and
(ii) 4.585n + o(n) bits for the general case while supporting all the queries in
O(1) time. They also showed that if the query time is not of concern, the space
of (ii) can be improved to 4.088n + o(n) bits. Recently, Tsur [18] improved the
space to 3.585n bits if there are no consecutive equal elements in A and 3.701n
bits for the general case. However, their encoding does not support the queries
efficiently (O(n) time for all queries).

Our Results. Given an array A[1, . . . , n] of size n with the interval [i, j] ⊂ [1, n]
and the position 1 ≤ p ≤ n, we show the following results:

(a) If A has no two consecutive equal elements, there exists a (3.585n + o(n))-
bit data structure, which can answer (i) RMin(i, j), RMax(i, j), PSV(p),
and PLV(p) queries in O(1) time, and (ii) for any q ≥ 1, RMin(i, j, q),
RMax(i, j, q), NSV(p), and NLV(p) queries in O(log(�) n) time1, for any pos-
itive integer �.

(b) For the general case, the data structure of (a) uses 3.701n + o(n) bits while
supporting the same query time.

Our results match the current best upper bounds of Tsur [18] up to lower-order
additive terms while supporting the queries efficiently.
1 Throughout the paper, we denote log n as the logarithm to the base 2.
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The main idea of our encoding data structure is to combine the BP of colored
2d-min and max heap of A. Note that all previous encodings in [8,9,18] combine
the DFUDS of the (colored) 2d-min and max heap on A. We first consider the
case when A has no two consecutive elements (Sect. 3). In this case, we show that
by storing the BP of colored 2d-min heap on A along with its color information,
there exists a data structure that uses at most 3n + o(n) bits while supporting
range minimum, range q-th minimum, and next/previous smaller value queries
efficiently. The data structure is motivated by the data structure of Jo and
Satti [9] which uses DFUDS of colored 2d-min heap on A. Compared to the data
structure of [9], our data structure uses less space for the color information.
Next, we show how to combine the data structures on colored 2d-min and max
heap on A into a single structure. The combined data structure is motivated by
the idea of Gawrychowski and Nicholson’s encoding [8] to combine the DFUDS
of 2d-min and max heap on A.

In Sect. 4, we consider the case that A has consecutive equal elements. In this
case, we show that by using some additional auxiliary structures, the queries on
A can be answered efficiently from the data structure on the array A′, which
discards all the consecutive equal elements from A.

Finally, in Sect. 5, we show that the effective entropy of the encoding to support
the range q-th minimum and maximum queries on A is at least 3.16n − Θ(log n)
bits. Our result is obtained by extending the (3n − Θ(log n))-bit lower bound of
Gawrychowski and Nicholson [8] for answering the range minimum and maximum
queries on a permutation of size n. We summarize our results in Table 1.

2 Preliminaries

This section introduces some data structures used in our results.

Fig. 1. Min(A) and Max(A) on the array A = 5 4 5 3 1 2 6 3 1.

2D Min-Heap and Max-Heap. Given an array A[1, . . . , n] of size n, the 2d
min-heap on A (denoted by Min(A)) [6] is a rooted and ordered tree with n + 1
nodes, where each node corresponds to the value in A, and the children are
ordered from left to right. More precisely, Min(A) is defined as follows:
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1. The root of Min(A) corresponds to A[0] (A[0] is defined as −∞).
2. For any i > 0, A[i] corresponds to the (i + 1)-th node of Min(A) according to

the preorder traversal.
3. For any non-root node corresponds to A[j], its parent node corresponds to

A[PSV(j)].

In the rest of the paper, we refer to the node i in Min(A) as the node corre-
sponding to A[i] (i.e., the (i + 1)-th node according to the preorder traversal).
One can also define the 2d-max heap on A (denoted as Max(A)) analogously.
More specifically, in Max(A), A[0] is defined as ∞, and the parent of node i > 0
corresponds to the node PLV(i) (see Fig. 1 for an example). In the rest of the
paper, we only consider Min(A) unless Max(A) is explicitly mentioned. The same
definitions, and properties for Min(A) can be applied to Max(A).

For any i > 0, Min(A) is the relevant tree of the node i if the node i is an
internal node in Min(A). From the definition of Min(A), Tsur [18] showed the
following lemma.

Lemma 1 ([18]). For any i ∈ {1, 2, . . . , n − 1}, the following holds:

(a) If Min(A) is a relevant tree of the node i, then the node (i+1) is the leftmost
child of the node i in Min(A).

(b) If A has no two consecutive equal elements, Min(A) (resp. Max(A)) is a
relevant tree of the node i if and only if the node i is a leaf node in Max(A)
(resp. Min(A)).

Fig. 2. cMin(A) and cMax(A) on the array A = 5 4 5 3 1 2 6 3 1. The nodes with
slash line indicate the valid nodes. (Color figure online)

Colored 2D Min-Heap and Max-Heap. The colored 2d-min heap of A
(denoted by cMin(A)) [6] is Min(A) where each node is colored red or blue as
follows. The node i in cMin(A) is colored red if and only if i is not the leftmost
child of its parent node, and A[i] �= A[j], where the node j is the node i’s
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immediate left sibling. Otherwise, the node i is colored blue. One can also define
the colored 2d-max heap on A (denoted by cMax(A)) analogously (see Fig. 2 for
an example). The following lemma says that we can obtain the color of some
nodes in cMin(A) from their tree structures.

Lemma 2. For any node i in cMin(A), the following holds:

(a) If the node i is the leftmost child of its parent node, the color of the node i
is always blue.

(b) If A has no two consecutive equal elements, the color of the node i is always
red if its immediate left sibling is a leaf node.

Proof. (a) is directly proved from the definition of cMin(A). Also, if the imme-
diate left sibling j of the node i is a leaf node, j is equal to i − 1 (note that
the preorder traversal of cMin(A) visits the node i immediately after visiting the
node j). Thus, if A has no consecutive equal elements, the color of the node i is
red. �	

We say the node i in cMin(A) is valid if the node i is a non-root node in
cMin(A) which is neither the leftmost child nor the immediate right sibling of
any leaf node. Otherwise, the node i is invalid. By Lemma 2, if A has no two
consecutive equal elements, the color of the invalid nodes of cMin(A) can be
decoded from the tree structure.

Rank and Select Queries on Bit Arrays. Given a bit array B[1, . . . , n] of
size n, and a pattern p ∈ {0, 1}+, (i) rankp(i, B) returns the number of occurrence
of the pattern p in B[1, . . . , i], and (ii) selectp(j, B) returns the first position of
the j-th occurrence of the pattern p in B. The following lemma shows that there
exists a succinct encoding, which supports both rank and select queries on B
efficiently.

Lemma 3 ([12,16]). Given a bit array B[1, . . . , n] of size n containing m 1s,
and a pattern p ∈ {0, 1}+ with |p|≤ log n

2 , the following holds:

– There exists a (log
(

n
m

)
+ o(n))-bit data structure for answering both

rankp(i, B) and selectp(j, B) queries in O(1) time. Furthermore, the data
structure can access any Θ(log n)-sized consecutive bits of B in O(1) time.

– If one can access any Θ(log n)-sized consecutive bits of B in O(1) time, both
rankp(i, B) and selectp(j, B) queries can be answered in O(1) time using o(n)-
bit auxiliary structures.

Balanced-Parenthesis of Trees. Given a rooted and ordered tree T with
n nodes, the balanced-parenthesis (BP) of T (denoted by BP(T )) [11] is a bit
array defined as follows. We perform a preorder traversal of T . We then add
a 0 to BP(T ) when we first visit a node and add a 1 to BP(T ) after visiting
all nodes in the subtree of the node. Since we add single 0 and 1 to BP(T )
per each node in T , the size of BP(T ) is 2n. For any node i in T , we define
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f(i, T ) and s(i, T ) as the positions of the 0 and 1 in BP(T ) which are added
when the node i is visited, respectively. When T is clear from the context, we
write f(i) (resp. s(i)) to denote f(i, T ) (resp. s(i, T )). If T is a 2d-min heap,
f(i, T ) = select0(i + 1, BP (T )) by the definition of 2d-min heap.

3 Data Structure on Arrays with No Consecutive Equal
Elements

In this section, for any positive integer �, we present a (3.585n + o(n))-bit
data structure on A[1, . . . , n], which supports (i) range minimum/maximum and
previous larger/smaller queries on A in O(1) time, and (ii) range q-th mini-
mum/maximum and next larger/smaller value queries on A in O(log(�) n) time
for any q ≥ 1, when there are no two consecutive equal elements in A. We first
describe the data structure on cMin(A) for answering the range minimum, range
q-th minimum, and next/previous smaller value queries on A. Next, we show how
to combine the data structures on cMin(A) and cMax(A) in a single structure.

Encoding Data Structure on cMin(A). We store cMin(A) by storing its
tree structure along with the color information of the nodes. To store the tree
structure, we use BP(cMin(A)). Also, for storing the color information of the
nodes, we use a bit array cmin, which stores the color of all valid nodes in
cMin(A) according to the preorder traversal order. In cmin we use 0 (resp. 1) to
indicate the color blue (resp. red). It is clear that cMin(A) can be reconstructed
from BP(cMin(A)) and cmin. Since BP(cMin(A)) and cmin takes 2(n + 1) bits
and at most n bits, respectively, the total space for storing cMin(A) takes at
most 3n + 2 bits. Note that a similar idea is used in Jo and Satti’s extended
DFUDS [9], which uses the DFUDS of cMin(A) for storing the tree structure.
However, extended DFUDS stores the color of all nodes other than the leftmost
children, whereas cmin does not store the color of all invalid nodes. The following
lemma shows that from BP(cMin(A)), we can check whether the node i is valid
or not without decoding the entire tree structure.

Lemma 4. The node i is valid in cMin(A) if and only if f(i) > 2 and both
BP (cMin(A))[f(i) − 2] and BP (cMin(A))[f(i) − 1] are 1.

Proof. If both BP (cMin(A))[f(i) − 2] and BP (cMin(A))[f(i) − 1] are 1, the
preorder traversal of cMin(A) must complete the traversal of two subtrees con-
secutively just before visiting the node i for the first time, which implies the
node i’s immediate left sibling is not a leaf node (hence the node i is valid).

Conversely, if BP (cMin(A))[f(i) − 1] = 0, cMin(A) is a relevant tree of the
node i−1. Thus, the node i is the leftmost child of the node (i−1) by Lemma 1.
Next, if BP (cMin(A))[f(i) − 2] = 0 and BP (cMin(A))[f(i) − 1] = 1, the node
(i−1) is the immediate left sibling of the node i since f(i)−2 is equal to f(i−1).
Also the node (i − 1) is a leaf node since f(i) − 1 is equal to s(i − 1). Thus, the
node i is invalid in this case. �	
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Now we describe how to support range minimum, range q-th minimum, and
next/previous smaller value queries efficiently on A using BP(cMin(A)) and cmin

with o(n)-bit additional auxiliary structures. Note that both the range minimum
and previous smaller value query on A can be answered in O(1) time using
BP (cMin(A)) with o(n)-bit auxiliary structures [5,13]. Thus, it is enough to
consider how to support a range q-th minimum and next smaller value queries
on A. We introduce the following lemma of Jo and Satti [9], which shows that one
can answer both queries with some navigational and color queries on cMin(A).

Lemma 5 ([9]). Given cMin(A), suppose there exists a data structure, which
can answer (i) the tree navigational queries (next/previous sibling, subtree size,
degree, level ancestor, child rank, child select, and parent2) on cMin(A) in t(n)
time, and the following color queries in s(n) time:

– color(i): return the color of the node i
– PRS(i): return the rightmost red sibling to the left of the node i.
– NRS(i): return the leftmost red sibling to the right of the node i.

Then for any q ≥ 1, range q-th minimum, and the next smaller value queries on
A can be answered in O(t(n) + s(n)) time.

Since all tree navigational queries in Lemma 5 can be answered in O(1) time
using BP(cMin(A)) with o(n)-bit auxiliary structures [13], it is sufficient to show
how to support color(i), PRS(i), and NRS(i) queries using BP(cMin(A)) and cmin.
By Lemma 3 and 4, we can compute color(i) in O(1) time using o(n)-bit auxiliary
structures by the following procedure: We first check whether the node i is valid
using O(1) time by checking the values at the positions f(i) − 1 and f(i) − 2
in BP(cMin(A)). If the node i is valid (i.e., both the values are 1), we answer
color(i) in O(1) time by returning cmin[j] where j is rank110(f(i),BP(cMin(A)))
(otherwise, by Lemma 4, we answer color(i) as blue if and only if the node i is
the leftmost child of its parent node). Next, for answering PRS(i) and NRS(i),
we construct the following �′-level structure (�′ will be decided later):

– At the first level, we mark every (log n log log n)-th child node and maintain
a bit array M1[1, . . . , n] where M1[t] = 1 if and only if the node t is marked
(recall that the node t is the node in Min(A) whose preorder number is t).
Since there are n/(log n log log n) = o(n) marked nodes, we can store M1 using
o(n) bits while supporting rank queries in O(1) time by Lemma 3 (in the rest of
the paper, we ignore all floors and ceilings, which do not affect to the results).
Also we maintain an array P1 of size n/(log n log log n) where P1[j] stores both
PRS(s) and NRS(s) if s is the j-th marked node according to the preorder
traversal order. We can store P1 using O(n log n/(log n log log n)) = o(n) bits.

– For the i-th level where 1 < i ≤ �′, we mark every (log(i) n log(i+1) n)-th child
node. We then maintain a bit array Mi which is defined analogously to M1.
We can store Mi using o(n) bits by Lemma 3.

2 refer to Table 1 in [13] for detailed definitions of the queries.
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Now for any node p, let cr(p) be the child rank of p, i.e., the number of
left siblings of p. Also, let pre(i−1)(p) (resp. next(i−1)(p)) be the rightmost
sibling of p to the left (resp. leftmost sibling of p to the right) which is
marked at the (i − 1)-th level. Suppose s is the j-th marked node at the
current level according to the preorder traversal order. Then we define an
array Pi of size n/(log(i) n log(i+1) n) as Pi[j] stores both (i) the smaller
value between cr(s) − cr(PRS(s)) and cr(s) − cr(pre(i−1)(s)), and (ii) the
smaller value between cr(NRS(s)) − cr(s) and cr(next(i−1)(s)) − cr(s). Since
both (i) and (ii) are at most log(i−1) n log(i) n, we can store Pi using
O(n log(i) n/(log(i) n log(i+1) n)) = o(n) bits. Therefore, the overall space is
O(n/log(�′+1) n) = o(n) bits in total for any positive integer �′.

To answer PRS(i) (the procedure for answering NRS(i) is analogous), we
first scan the left siblings of i using the previous sibling operation. Whenever
the node i1 is visited during the scan, we check whether (i) color(i1) = red, or
(ii) M�′ [i1] = 1 in O(1) time. If i1 is neither the case (i) nor (ii), we continue
the scan. If i1 is in the case (i), we return i1 as the answer. If i1 is in the case
(ii), we jump to the i1’s left sibling i2 whose child rank is cr(i1) − P�′ [j], where
j = rank1(i1,M�′−1). Since the node i2 always satisfies one of the following:
color(i2) = red or M�′−1[i2] = 1, we can answer PRS(i) by iteratively performing
child rank and rank operations at most O(�′) times after finding i2. Thus, we
can answer PRS(i) in O(�′) time in total (we scan at most O(�′) nodes to find
i2). By choosing � as �′ + 2, we obtain the following theorem.

Theorem 1. Given an array A[1, . . . , n] of size n and any positive integer �, we
can answer (i) range minimum and previous smaller value queries in O(1) time,
and (ii) range q-th minimum and next smaller value queries for any q ≥ 1 in
O(log(�) n) time, using BP(cMin(A)) and cmin with o(n)-bit auxiliary structures.

Theorem 1 implies that there exists a data structure of cMax(A) (composed
to BP(cMax(A)) and cmax with o(n)-bit auxiliary structures), which can answer
(i) range maximum and previous larger value queries in O(1) time, and (ii) range
q-th maximum and next larger value queries for any q ≥ 1 in O(log(�) n) time.

Combining the Encoding Data Structures on cMin(A) and cMax(A).
We describe how to combine the data structure of Theorem 1 on cMin(A) and
cMax(A) using 3.585n + o(n) bits in total. We first briefly introduce the idea of
Gawrychowski and Nicholson [8] to combine the DFUDS of Min(A) and Max(A).
In DFUDS, any non-root node i is represented as a bit array 0di1 where di is the
degree of i [2]. The encoding of [8] is composed of (i) a bit array U [1, . . . , n], where
U [i] indicates the relevant tree of the node i, and (ii) a bit array S = s1s2 . . . sn

where si is the bit array, which omits the first 0 from the DFUDS of the node i
on its relevant tree. To decode the DFUDS of the node i in Min(A) or Max(A),
first check whether the tree is the relevant tree of the node i by referring to U [i].
If so, one can decode it by prepending 0 to si. Otherwise, the decoded sequence
is simply 1 by Lemma 1(b). Also, Gawrychowski and Nicholson [8] showed that
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U and S take at most 3n bits in total. The following lemma shows that a similar
idea can also be applied to combine BP(cMin(A)) and BP(cMax(A)) (the lemma
can be proved directly from Lemma 1).

Lemma 6. For any node i ∈ {1, 2, . . . , n − 1}, if cMin(A) is a relevant
tree of the node i, f(i + 1, cMin(A)) = f(i, cMin(A)) + 1, and f(i +
1, cMax(A)) = f(i, cMax(A))+k, for some k > 1. Otherwise, f(i+1, cMax(A)) =
f(i, cMax(A)) + 1, and f(i + 1, cMin(A)) = f(i, cMin(A)) + k, for some k > 1.

Fig. 3. Combined data structure of cMin(A) and cMax(A). i-th column of the table
shows (i) the substring of BP(cMin(A)) and BP(cMax(A)) begin at position f(i−1)+1
and end at position f(i) (shown in the second and the third row, respectively), and (ii)
si for each i (shown in the fourth row).

We now describe our combined data structure of cMin(A) and cMax(A). We
first maintain the following structures to store BP(cMin(A)) and BP(cMax(A)):

1. The same bit array U [1, . . . , n−1] as in the encoding of [8]. We define U [i] = 0
(resp. U [i] = 1) if cMin(A) (resp. cMax(A)) is a relevant tree of the node i.
For example, U [6] = 0 since cMin(A) is a relevant tree of the node 6.

2. For each node i ∈ {1, 2, . . . , n−1}, suppose the tree T ∈ {cMin(A), cMax(A)}
is not a relevant tree of i, and let ki be the number of ones between f(i, T )
and f(i + 1, T ). Now let S = s1s2 . . . sn−1 be a bit array, where si is defined
as 1ki−10. For example, since there exist three 1’s between f(6) and f(7) in
cMax(A), s6 = 110. Then, S is well-defined by Lemma 6 (ki ≥ 1 for all i).
Also, since there are at most n−1 ones and exactly n−1 zeros by Lemma 1(b),
the size of S is at most 2(n−1). We maintain S using the following two arrays:
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(a) An array D[1, . . . n − 1] of size n where D[i] = 0 if si contains no ones,
D[i] = 1 if si contains a single one, and D[i] = 2 otherwise. For example,
D[6] = 2, since s6 has two ones. We maintain D using the data structure
of Dodis et al. [4], which can decode any Θ(log n) consecutive elements of
D in O(1) time using 
(n − 1) log 3� bits. Now let k and � be the number
of 1’s and 2’s in D, respectively.

(b) Let i2 be the position of the i-th 2 in D. Then, we store a bit array
E = e1e2, . . . , e� where ei is a bit array defined by omitting the first two
1’s from si2 . For example, since the 6 is the first position of D whose
value is 2 and s6 = 110, e1 is defined as 0. The size of E is at most
2(n − 1) − (n − 1) − (k + �) = n − k − �.

3. We store both f(n, cMin(A)), and f(n, cMax(A)) using O(log n) bits.

To store both cmin and cmax, we simply concatenate them into a single array
cminmax, and store the length of cmin using O(log n) bits. Then, by Lemma 4,
the size of cminmax is k+�. Thus, our encoding of cMin(A) and cMax(A) takes at
most (n−1)+(n−1) log 3+(n−k−�)+(k+�)+O(log n) = (2+log 3)n+O(log n) <
3.585n+O(log n) bits in total [18]. An overall example of our encoding is shown
in Fig. 3. Now we prove the main theorem in this section.

Theorem 2. Given an array A[1, . . . , n] of size n and any positive integer
�, suppose A has no two consecutive equal elements. Then there exists a
(3.585n + o(n))-bit encoding data structure which can answer (i) range min-
imum/maximum and previous larger/smaller value queries in O(1) time, and
(ii) range q-th minimum/maximum and next larger/smaller value queries in
O(log(�) n) time, for any q ≥ 1.

Proof. We show how to decode any log n consecutive bits of BP(cMin(A)), which
proves the theorem. Note that the auxiliary structures and the procedure for
decoding BP(cMax(A)) are analogous. Let B[1, . . . , f(n) − 1] be a subarray of
BP(cMin(A)) of size f(n)−1, which is defined as BP(cMin(A))[2, . . . , f(n)]. Then
it is enough to show how to decode log n consecutive bits of B in O(1) time using
o(n)-bit auxiliary structures (note that BP(cMin(A)) is 0 · B · 12n+2−f(n)). We
also denote f(n) − 1 by f ′(n) in this proof.

We first define correspondences between the positions of B and D, and
between the positions of B and E as follows. For each position j ∈ {1, . . . , f ′(n)}
of B, let α(j) and β(j) be the corresponding positions of j in D and E, respec-
tively. We define both α(1) and β(1) as 1, and for each j ∈ {2, . . . , f ′(n)}, we
define α(j) as rank0(j − 1, B). Next, let k be the number of 2’s in D[1, . . . , α(j)]
and j′ be the number of 1’s in B between B[j] and the and the leftmost 0 in
B[j, . . . , f(α(j + 1))]. Then β(j) is defined as (i) 1 if k = 0, (ii) select0(k,E) + 1
if k > 0 and D[α(j)] �= 2, and (iii) select0(k,E) − max (j′ − 3, 0) otherwise.
Then any subarray of B starting from the position j can be constructed from
the subarrays of U , D and E starting from the positions rank0(j, B), α(j) and
β(j), respectively.

Now, for i ∈ {1, 2, . . . , 
(f ′(n))/log n�}, let the i-th block of B be
B[
(i − 1) log n + 1� , . . . ,min (
i log n� , f ′(n))]. Then, it is enough to decode at
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most two consecutive blocks of B to construct any log n consecutive bits of B.
Next, we define the i-th block of U , D, and E as follows:

– i-th block of U is defined as a subarray of U whose starting and ending
positions are rank0(
(i − 1) log n� , B), and rank0(min (
i log n�−1, f ′(n)), B),
respectively. To decode the blocks of U without B, we mark all the starting
positions of the blocks of U using a bit array U1 of size f ′(n) where U1[i] = 1
if and only if the position i is the starting position of the block in U . Then,
since U1 contains at most O(f ′(n)/log n) = o(n) 1’s, we can store U1 using
o(n) bits while supporting rank and select queries in O(1) time by Lemma 3.

– i-th block of D is defined as a subarray of D whose starting and ending
positions are α(
(i − 1) log n� + 1) and α(min (
i log n� , f ′(n))), respectively.
Then, the size of each block of D is at most log n, since any position of D
has at least one corresponding position in B. We maintain a bit array D1

analogous to U1 using o(n) bits. Also, to indicate the case that two distinct
blocks of D share the same starting position, we define another bit array D2

of size 
f ′(n)/log n� where D2[i] = 1 if and only if i-th block of D has the
same starting position as the (i − 1)-th block of D. We store D2 using the
data structure of Lemma 3 using o(n) bits to rank and select queries in O(1)
time. Then, we can decode any block of D in O(1) time using rank and select
operations on D1 and D2.

– i-th block of E is defined as a subarray of E whose starting and ending
positions are β(
(i − 1) log n� + 1) and β(min (
i log n� , f ′(n))), respectively.
To decode the blocks of E, we maintain two bit arrays E1 and E2 analogous
to D1 and D2, respectively, using o(n) bits.
Note that, unlike D, the size of some blocks in E can be arbitrarily large since
some positions in E do not have the corresponding positions in B. To handle
this case, we classify each block of E as bad block and good block where the
size of bad block is at least at c log n for some constant c ≥ 9, whereas the
size of good block is less than c log n. If the i-th block of E is good (resp.
bad), we say it as i-th good (resp. bad) block.
For each i-th bad block of E, let Fi be a subsequence of the i-th bad block,
which consists of all bits at the position j where β−1(j) exists. We store Fi

explicitly, which takes Θ(n) bits in total (the size of Fi is at most log n). How-
ever, we can apply the same argument used in [8] to maintain min-bad block
due to the fact that each position in E corresponds to at least one position
in either BP(cMin(A)) or BP(cMax(A)). The argument says that for each i-th
bad block of E, one can save at least log n bits by maintaining it in a com-
pressed form. Thus, we can maintain Fi for all i-th bad blocks of E without
increasing the total space.
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Next, let g(u, d, e, b) be a function, which returns a subarray of B from the
subarrays of U , and D, and E as follows (suppose u = u[1] · u′ and d = d[1] · d′):

g(u, d, e, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε if u = ε or d = ε

0 · g(u′, d′, e, b) if u[1] �= b and d[1] �= 2
0 · g(u′, d′, e′, b) if u[1] �= b, d[1] = 2, and e = 1t0 · e′

10 · g(u′, d′, e, b) if u[1] = b and d[1] = 0
110 · g(u′, d′, e, b) if u[1] = b and d[1] = 1
1t · g(u, d, e′, b) if u[1] = b, d[1] = 2, and e = 1t · e′

1t+30 · g(u′, d′, e′, b) if u[1] = b, d[1] = 2, and e = 1t0 · e′

We store a precomputed table that stores g(u, d, e, b) for all possible u, d,
and e of sizes 1

4 log n and b ∈ {0, 1} using O(2
1
4 log n+ 3

2 · 14 log n+ 1
4 log n log n) =

O(n
7
8 log n) = o(n) bits.

To decode the i-th block of B, we first decode the i-block of U and D in
O(1) time using rank and select queries on U1, D1, and D2. Let these subarrays
be bu and bd, respectively. Also, we decode the i-th block of E using rank and
select queries on E1 and E2. We then define be as Fi if the i-th block of E is
bad. Otherwise, we define be as the i-th good block of E. Next, we compute
g(bu, bd, be, 0) in O(1) time by referring to the precomputed table O(1) times,
and prepend 0 if we decode the first block of B. Finally, note that there are at
most q ≤ 4 consecutive positions from p to p + q − 1 of B whose corresponding
positions are the same in both D and E. Because such a case can only occur
when B[p] = B[p+1] = · · · = B[p+ q −2] = 1 and B[p+ q −1] = 0, we maintain
an array R of size O(n/log n), which stores the four cases of the number of
consecutive 1’s (0, 1, 2, or at least 3) from the beginning of the i-th block of B.
Then, if the number of consecutive 1’s from the beginning of g(bu, bd, be, 0) is at
most 3, we delete some 1s from the beginning of g(bu, bd, be, 0) by referring to R
as the final step. �	

4 Data Structure on General Arrays

In this section, we present a (3.701n + o(n))-bit data structure to support the
range q-th minimum/maximum and next/previous larger/smaller value queries
on the array A[1 . . . , n] without any restriction. Let C[1, . . . , n] be a bit array of
size n where C[1] = 0, and for any i > 1, C[i] = 1 if and only if C[i − 1] = C[i].
If C has k ones, we define an array A′[1, . . . , n−k] of size n−k that discards all
consecutive equal elements from A. Then from the definition of colored 2d-min
and max heap, we can observe that if C[i] = 1, (i) the node i is a blue-colored leaf
node, and (ii) i’s immediate left sibling is also a leaf node, both in cMin(A) and
cMax(A). Furthermore, by deleting all the bits at the positions f(i, cMin(A)) −
1, and f(i, cMin(A)) from BP(cMin(A)) we can obtain BP(cMin(A′)). We can
also obtain BP(cMax(A′)) from BP(cMax(A′)) analogously. Now we prove the
following theorem.
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Fig. 4. Combined data structure of cMin(A) and cMax(A). Note that A′ is the same
array as the array in Fig. 3.

Theorem 3. Given an array A[1, . . . , n] of size n and any positive integer �,
there exists a (3.701n + o(n))-bit encoding data structure which can answer (i)
range minimum/maximum and previous larger/smaller value queries in O(1)
time, and (ii) range q-th minimum/maximum and next larger/smaller value
queries in O(log(�) n) time, for any q ≥ 1.

Proof. The data structure consists of C and the data structure of Theorem 2
on A′, which can answer all the queries on A′ in O(log(�) n) time (see Fig. 4 for
an example). By maintaining C using the data structure of Lemma 3, the data
structure takes at most (2 + log 3)(n − k) +

(
n
k

)
+ o(n) ≤ 3.701n + o(n) bits in

total [18] while supporting rank and select queries on C in O(1) time. For any
node i in cMin(A) and cMax(A), we can compute the color of the node i in O(1)
time as follows. If C[i] = 0, we return the color of the node (rank0(i, C) − 1) in
cMin(A′) and cMax(A′), respectively. Otherwise, we return blue. Now we describe
how to decode any log n consecutive bits of BP(cMin(A)) in O(1) time using o(n)-
bit auxiliary structures, which proves the theorem (the auxiliary structures and
the procedure for decoding BP(cMax(A)) are analogous). In the proof, we denote
BP(cMin(A)) and BP(cMin(A′)) as B and B′, respectively.

For each position j of B, we say j is original if B[j] comes from the bit in
B′, and additional otherwise. That is, the position j is additional if and only if
j is f(j′) − 1 or f(j′) where C[j′] = 1. For each original position j, let b′(j) be
its corresponding position in B′.

Now we divide B into the blocks of size log n except the last block, and let si

be the starting position of the i-th block of B. We then define a bit array MB′ of
size 2(n−k) as follows. For each i ∈ 1, . . . , 
(2(n + 1)/log n�, we set the b′(si)-th
position of MB′ as one if si is original. Otherwise, we set the b′(s′

i)-th position of
MB′ as one where s′

i is the leftmost original position from si to the right in B.
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All other bits in MB′ are 0. Also, let M ′
B′ a bit array of size 
(2(n + 1)/log n�

where M ′
B′ [i] is 1 if and only if we mark the same position for si and si−1.

Since MB′ has at most 
(2(n + 1)/log n� = o(n) ones, we can maintain both
MB′ and M ′

B′ in o(n) bits while supporting rank and select queries in O(1) time
by Lemma 3. Similarly, we define a bit array MC of size n as follows. If si is
original, we set the (rank0(si−1, B))-th position of MC as one. Otherwise, we set
the (rank0(si − 1, B))-th (resp. (rank0(si, B)-th) position of MC as one if B[si]
is 0 (resp. 1). We also maintain a bit array M ′

C analogous to M ′
B′ . Again, we

can maintain both MC and M ′
C using o(n) bits while supporting rank and select

queries on them in O(1) time.
Next, let h(b, c) be a function, which returns a subarray of B from the sub-

arrays of B′ and C, defined as follows (suppose c = c[1] · c′):

h(b, c) =

⎧
⎪⎨

⎪⎩

1t if b = 1t and c[1] = 0
1t0 · h(b′, c′) if b = 1t0 · b′ and c[1] = 0
10 · h(b, c′) if c[1] = 1

We store a precomputed table, which stores h(b, c) for all possible b, c of size
1
4 log n using O(2

1
2 log n log n) = O(

√
n log n) = o(n) bits.

To decode the i-th block of B, we first decode log n-sized subarrays of B′

and C, bb′ and bc, whose starting positions are select1(rank0(i,M ′
B′),MB′) and

select1(rank0(i,M ′
C),MC), respectively. We then compute h(bb′ , bc) in O(1) time

by referring to the precomputed table O(1) times. Finally, we store a bit array
of size o(n), which indicates whether the first bit of the i-th block of B is 0 or
not. As the final step, we delete the leftmost bit of h(bb′ , bc) if the i-th block of
B starts from 0, and si is additional (this can be done by referring to the bit
array). �	

5 Lower Bounds

This section considers the effective entropy to answer range q-th minimum and
maximum queries on an array of size n, for any q ≥ 1. Note that for any
i ∈ {1, . . . , n}, both PSV(i) and PLV(i) queries can be answered by comput-
ing q-th range minimum and maximum queries on the suffixes of the sub-
string A[1, . . . , i], respectively. Similarly, both NSV(i) and NLV(i) queries can
be answered by computing q-th range minimum and maximum queries on the
prefixes of the substring A[i, . . . , n], respectively.

Let An be a set of all arrays of size n ≥ 2 constructed from the following
procedure:

1. For any 0 ≤ k ≤ n− 1, pick arbitrary k positions in {2, . . . , n}, and construct
a Baxter Permutation [1] πn−k of size n − k on the rest of n − k positions.
Here, a Baxter permutation is a permutation that avoids the patterns 2−41−3
and 3−14−2.

2. For k picked positions, assign the rightmost element in πn−k to the left.
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Since the number of all possible Baxter permutations of size n − k is
at most 23(n−k)−Θ(log n) [8], the effective entropy of An is at least log|An|≥
log(

∑n−1
k=0 23(n−k)−Θ(log n) · (

n−1
k

)
) ≥ max k(3n − 3k + log

(
n
k

) − Θ(log n)) ≥
n log 9 − Θ(log n) ≥ 3.16n − Θ(log n) bits [18]. The following theorem shows
that the effective entropy of the encoding to support the range q-th minimum
and maximum queries on an array of size n is at least 3.16n − Θ(log n) bits.

Theorem 4. Any array A in An for n ≥ 2 can be reconstructed using range
q-th minimum and maximum queries on A.

Proof. We follow the same argument used in the proof of Lemma 3 in [8], which
shows that one can reconstruct any Baxter permutation of size n using range
minimum and maximum queries.

The proof is induction on n. the case n = 2 is trivial since only the possible
cases are {1, 1} or {1, 2}, which can be decoded by range first and second min-
imum queries. Now suppose the theorem statement holds for any size less than
n ≥ 3. Then, both A1 = A[1, . . . , n − 1] and A2 = A[2, . . . , n] from An−1 can be
reconstructed by the induction hypothesis. Thus, to reconstruct A from A1 and
A2, it is enough to compare A[1] and A[n].

If any answer of RMax(1, n, q) and RMin(1, n, q) contains the position 1 or n,
we are done. Otherwise, let x and y be the rightmost positions of the smallest
and largest element in [2, n − 1], which can be computed by RMax(1, n, q) and
RMin(1, n, q), respectively. Without a loss of generality, suppose x < y (other case
is symmetric). In this case, [8] showed that (i) there exists a position i ∈ [x, y],
which satisfies A[1] < A[i] < A[n] or A[1] > A[i] > A[n], or (ii) A[1] < A[n],
which proves the theorem (note that A[1] cannot be equal to A[n] in this case
since the same elements in A always appear consecutively). �	

6 Conclusion

This paper proposes an encoding data structure that efficiently supports
range (q-th) minimum/maximum queries and next/previous larger/smaller value
queries. Our results match the current best upper bound of Tsur [18] up to lower-
order additive terms while supporting the queries efficiently.

Note that the lower bound of Theorem 4 only considers the case that the
same elements always appear consecutively, which still gives a gap between the
upper and lower bound of the space. Improving the lower bound of the space for
answering the queries would be an interesting open problem.
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Abstract. Two recent lower bounds on the compressiblity of repetitive
sequences, δ ≤ γ, have received much attention. It has been shown that
a string S[1..n] can be represented within the optimal O(δ log n

δ
) space,

and further, that within that space one can find all the occ occurrences in
S of any pattern of length m in time O(m logn+ occ logε n) for any con-
stant ε > 0. Instead, the near-optimal search time O(m+(occ + 1) logε n)
was achieved only within O(γ log n

γ
) space. Both results are based on

considerably different locally consistent parsing techniques. The ques-
tion of whether the better search time could be obtained within the
δ-optimal space was open. In this paper, we prove that both techniques
can indeed be combined in order to obtain the best of both worlds,
O(m + (occ + 1) logε n) search time within O(δ log n

δ
) space.

1 Introduction

The amount of data we are expected to handle has been growing steadily in the
last decades [20]. The fact that much of the fastest-growing data is composed
of highly repetitive sequences has raised the interest in text indexes whose size
can be bounded by some measure of repetitiveness [17], and in the study of
those repetitiveness measures [16]. Since statistical compression does not capture
repetitiveness well [13], various other measures have been proposed for this case.
Two recent ones, which have received much attention because of their desirable
properties, are the size γ of the smallest string attractor [9] and the substring
complexity δ [3,10]. It holds that δ ≤ γ for every string [3] (with δ = o(γ) in some
string families [11]), and that γ asymptotically lower-bounds a number of other
measures sensitive to repetitiveness [9] (e.g., the size of the smallest Lempel–Ziv
parse [14]). On the other hand, any string S[1..n] can be represented within
O(δ log n

δ ) space, and this bound is tight for every n and δ [10,11,18].
A more ambitious goal than merely representing S in compressed space is to

index it within that space so that, given any pattern P [1..m], one can efficiently
find all the occ occurrences of P in S. Interestingly, it has been shown that, for
any constant ε > 0, one can index S within the tight O(δ log n

δ ) space, so as to
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search for P in time O(m log n+occ logε n) time [10,11]. If one allows the higher
O(γ log n

γ ) space, the search time can be reduced to O(m + (occ + 1) logε n) [3],
which is optimal in terms of the pattern length and near-optimal in the time
per reported occurrence. Within (significantly) more space, O(γ log n

γ log n), one
obtains truly optimal search time, O(m + occ).

The challenge of obtaining the near-optimal search time O(m + (occ +
1) logε n) within tight space O(δ log n

δ ) was posed [3,10,11], and this is what we
settle on the affirmative in this paper. Both previous results build a convenient
context-free grammar on S and then adapt a classical grammar-based index on
it [4,5]. The index based on attractors [3] constructs a grammar from a locally
consistent parsing [15] of S that forms blocks in S ending at every minimum of
a randomized mapping on the alphabet, collapsing every block into a nonter-
minal and iterating. The smaller grammar based on substring complexity [11]
uses another locally consistent parsing called recompression [7], which randomly
divides the alphabet into “left” and “right” symbols and combines every left-right
pair into a nonterminal, also iterating. The key to obtaining δ-bounded space is
to pause the pairing on symbols that become too long for the iteration where
they were formed [10,11]. We show that the pausing idea can be applied to the
first kind of locally consistent grammar as well and that, although it leads to
possibly larger grammars, it still yields the desired time and space complexities.
The next theorem summarizes our result.

Theorem 1.1. For every constant ε > 0, given a string S[1..n] with measure δ,
one can build in O(n) expected time a data structure using O(δ log n

δ ) words of
space such that, later, given a pattern P [1..m], one can find all its occ occurrences
in S in time O(m + logε δ + occ logε(δ log n

δ )) ⊆ O(m + (occ + 1) logε n).

2 Notation and Basic Concepts

A string is a sequence S[1..n] = S[1] ·S[2] · · · S[n] of symbols, where each symbol
belongs to an alphabet Σ = {1, . . . , σ}. We denote as Σ(S) the subset of Σ
consisting of symbols that occur in S. The length of S is denoted |S| = n. We
assume that the alphabet size is a polynomial function of n, that is, σ = nO(1).
The concatenation of strings S and S′ is denoted S · S′ = SS′. A string S′ is
a substring of S if S′ is the empty string ε or S′ = S[i..j] = S[i] · · · S[j] for
some 1 ≤ i ≤ j ≤ n. We also use “(” and “)” to denote non-inclusive intervals:
S(i..j) = S[i + 1..j − 1], S(i..j] = S[i + 1..j], and S[i..j) = S[i..j − 1]. With
the term fragment, we refer to a particular occurrence S[i..j] of a substring in S
(not just the substring content). We use Srev to denote the reverse of S, that is,
Srev = S[n] · S[n − 1] · · · S[1].

We use the RAM model of computation with word size w = Θ(log n) bits. By
default, we measure the space in words, which means that O(x) space comprises
of O(x log n) bits.

A straight line program (SLP) is a context-free grammar where each nonter-
minal appears once at the left-hand side of a rule, and where the nonterminals
can be sorted so that the right-hand sides refer to terminals and preceding non-
terminals. Such an SLP generates a single string. Furthermore, we refer to a
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run-length straight line program (RLSLP) as an SLP that, in addition, allows
rules of the form A → Am

1 , where A,A1 are nonterminals and m ∈ Z≥2, which
means that A is a rule composed by concatenating m copies of A1.

A parsing is a way to decompose a string S into non-overlapping blocks,
S = S1 · S2 · · · Sk. A locally consistent parsing (LCP) [1] is a parsing where,
if two fragments S[i..j] = S[i′..j′] appear inside equal long enough contexts
S[i − α..j + β] = S[i′ − α..j′ + β], then the same blocks are formed inside S[i..j]
and S[i′..j′]. The meaning of “long enough” depends on the type of LCP [1,3,6].

3 A New δ-Bounded RLSLP

The measure δ was originally introduced in a stringology context [18], but it was
formally defined later [3] as a way to construct a grammar of size O(γ log n

γ )
without knowing γ. For a given string S[1..n], let dk(S) be the number of dis-
tinct length-k substrings in S. The sequence of all values dk(S) is known as the
substring complexity of S. Then, δ is defined as

δ = max
{

dk(S)
k : k ∈ [1..n]

}
.

An RLSLP of size O(δ log n
δ ) was built [11] on top of the recompression

method [7]. In this section, we show that the same can be achieved on top of
the block-based LCP [15]. Unlike the previous construction, ours produces an
RLSLP with O(δ log n

δ ) rules in O(n) deterministic time, though we still need
randomization in order to ensure that the total grammar size is also O(δ log n

δ ).
We adapt the preceding construction [11], which uses the so-called restricted

recompression [12]. This technique pauses the processing for symbols whose
expansion is too long for the current stage. A similar idea was used [2,8] for
adapting another LCP, called signature parsing [19]. We apply restriction (the
pausing technique) to the LCP of [15] that forms blocks ending at local minima
of a randomized bijective function, which is interpreted as an alphabet permuta-
tion. This LCP will be used later to obtain near-optimal search time, extending
previous work [3]. We call our parsing restricted block compression.

3.1 Restricted Block Compression

Given a string S ∈ Σ+, our restricted block compression builds a sequence of
strings (Sk)k≥0 over the alphabet A defined recursively to contain symbols in
Σ, pairs formed by a symbol in A and an integer m ≥ 2, and sequences of at
least two symbols in A; formally, A is the least fixed point of the expression

A = Σ ∪ (A × Z≥2) ∪
∞⋃

i=2

Ai.

In the following, we denote
⋃∞

i=2 Ai with A≥2.
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Symbols in A \ Σ are non-terminals, which are naturally associated with
productions (A1, . . . , Aj) → A1 · · · Aj for (A1, . . . , Aj) ∈ A≥2 and (A1,m) → Am

1

for (A1,m) ∈ A × Z≥2. Setting any A ∈ A as the starting symbol yields an
RLSLP. The string generated by this RLSLP is exp(A), where exp : A → Σ+

is the expansion function defined recursively:

exp(A) =

⎧
⎪⎨
⎪⎩

A if A ∈ Σ,

exp(A1) · · · exp(Aj) if A = (A1, . . . , Aj) for A1, . . . , Aj ∈ A,

exp(A1)m if A = (A1,m) for A1 ∈ A and m ∈ Z≥2.

Then, for every string (Sk)k≥0 generated using restricted block compression,
if the expansion function is extended homomorphically to exp : A∗ → Σ∗, with
exp(A1 · · · Am) = exp(A1) · · · exp(Am) for A1 · · · Am ∈ A∗, then it must hold
that exp(Sk) = S for every k ∈ Z≥0. Starting from S0 = S, the strings (Sk)k≥1

are built by the alternate applications of two functions, both of which decom-
pose a string T ∈ A+ into blocks (by placing block boundaries between some
characters) and then collapse blocks of length m ≥ 2 into individual symbols
in A. In Definition 3.1, the blocks are maximal runs of the same symbol in a
subset B ⊆ A, and they are collapsed to symbols in A × Z≥2.

Definition 3.1 (Run-length encoding). Given T ∈ A+ and a subset of sym-
bols B ⊆ A, we define rleB(T ) ∈ A+ as the string obtained by decomposing T
into blocks and collapsing these blocks as follows:

1) For every i ∈ [1..|T |), place a block boundary between T [i] and T [i + 1] if
T [i] /∈ B, T [i + 1] /∈ B, or T [i] �= T [i + 1].

2) For each block T [i..i+m) of m ≥ 2 equal symbols A, replace T [i..i+m) = Am

with the symbol (A,m) ∈ A.

In Definition 3.3, the blocks boundaries are determined by local minima of a
permutation on A, and the blocks are collapsed to symbols in A≥2.

Definition 3.2 (Local minima). Given T ∈ A+ and a bijective function π :
Σ(T ) → [1..|Σ(T )|], we say that j ∈ (1..|T |) is a local minimum if

π(T [j − 1]) > π(T [j]) and π(T [j]) < π(T [j + 1]).

Definition 3.3 (Restricted block parsing). Given T ∈ A+, a bijective func-
tion π : Σ(T ) → [1..|Σ(T )|], and a subset of symbols B ⊆ A, we define
bcπ,B(T ) ∈ A+ as the string obtained by decomposing T into blocks and col-
lapsing these blocks as follows:

1) For every i ∈ [1..|T |), place a block boundary between T [i] and T [i + 1] if
T [i] /∈ B, T [i + 1] /∈ B, or i is a local mimimum with respect to π.

2) For each block T [i..i + m) of length m ≥ 2, replace T [i..i + m) with a symbol
(T [i], . . . , T [i + m − 1]) ∈ A.
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Note that B consists of active symbols that can be combined into larger
blocks; we say that the other symbols are paused. The idea of our restricted
block compression is to create successive strings Sk, starting from S0 = S. At
the odd levels k we perform run-length encoding on the preceding string Sk−1.
On the even levels k, we perform block parsing on the preceding string Sk−1.
We pause the symbols whose expansions have become too long for that level.

Definition 3.4 (Restricted block compression). Given a string S ∈ Σ+,
the strings Sk for k ∈ Z≥0 are constructed as follows, where �k :=

(
4
3

)�k/2�−1,
Ak := {A ∈ A : |exp(A)| ≤ �k}, and πk : Σ(Sk−1) → [1..|Σ(Sk−1)|] is a bijection
satisfying πk(A) < πk(B) for every A ∈ Σ(Sk−1) \ Ak and B ∈ Σ(Sk−1) ∩ Ak:

– If k = 0, then Sk = S.
– If k > 0 is odd, then Sk = rleAk

(Sk−1).
– If k > 0 is even, then Sk = bcπk,Ak

(Sk−1).

Note that exp(Sk) = S holds for all k ∈ Z≥0.

3.2 Grammar Size Analysis

Our RLSLP will be built by performing restricted block compression as long as
|Sk| > 1. Although the resulting RLSLP has infinitely many symbols, we can
remove those having no occurrences in any Sk. To define the actual symbols in the
grammar, for all k ∈ Z≥0, denote Sk := {Sk[j] : j ∈ [1..|Sk|]} and S :=

⋃∞
k=0 Sk.

We first prove an upper bound on |Sk| which, in particular, implies that
|Sk| = 1 holds after O(log n) iterations.

Lemma 3.5. For every k ∈ Z≥0, we have |Sk| < 1 + 4n
�k+1

.

Proof. We proceed by induction on k. For k = 0, we have |S0| = n < 1 + 4n =
1 + 4n

�1
. If k is odd, we note that |Sk| ≤ |Sk−1| < 1 + 4n

�k
= 1 + 4n

�k+1
. If k is even,

let us define
J = {j ∈ [1..|Sk−1|] : Sk−1[j] /∈ Ak}.

Since A /∈ Ak implies |exp(A)| > �k, we have |J | < n
�k

. Then, since no two
consecutive symbols can be local minima, we have

|Sk| ≤ 2 |J | + 1 + |Sk−1|−(2 J|+1)
2 = 1+|Sk−1|

2 + |J | < 1 + 2n
�k

+ n
�k

= 1 + 3n
�k

= 1 + 4n
�k+1

. 
�
Our next goal is to prove that restricted block compression is a locally con-

sistent parsing. For this, we associate Sk with a decomposition of S into phrases.

Definition 3.6 (Phrase boundaries). For every k ∈ Z≥0 and j ∈ [1..|Sk|],
we define the level-k phrases of S induced by Sk as the fragments

S(|exp(Sk[1..j))|..|exp(Sk[1..j])|] = exp(Sk[j]).

We also define the set Bk of phrase boundaries induced by Sk:

Bk = {|exp(Sk[1..j])| : j ∈ [1..|Sk|]}.
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Lemma 3.7. Consider integers k,m, α ≥ 0 with α ≥ 8�k, as well as positions
i, i′ ∈ [m + 2α..n − α] such that S(i − m − 2α..i + α] = S(i′ − m − 2α..i′ + α].

1) If i ∈ Bk, then i′ ∈ Bk.
2) If S(i − m..i] is a level-k phrase, then S(i′ − m..i′] is a level-k phrase corre-

sponding to the same symbol in Sk.

Proof. We proceed by induction on k, with a weaker assumption α ≥ 7�k for odd
k. In the base case of k = 0, the claim is trivial because Bk = [1..n) and Sk = S.
Next, we prove that the claim holds for integers k > 0 and α > �k assuming
that it holds for all k − 1 and α − ��k. This is sufficient for the inductive step:
If α ≥ 8�k for even k > 0, then α − ��k ≥ 7�k = 7�k−1. Similarly, if α ≥ 7�k for
odd k, then α − ��k ≥ 6�k = 8�k−1.

We start with the first item, where we can assume m = 0 without loss
of generality. For a proof by contradiction, suppose that S(i − 2α..i + α] =
S(i′ − 2α..i′ + α] and i ∈ Bk yet i′ /∈ Bk for some i, i′ ∈ [2α..n − α]. By
the inductive assumption (applied to positions i, i′), i ∈ Bk ⊆ Bk−1 implies
i′ ∈ Bk−1. Let us set j, j′ ∈ [1..|Sk−1|) so that i = |exp(Sk−1[1..j])| and i′ =
|exp(Sk−1[1..j′])|. By the assumptions on i, i′, the parsing of Sk−1 places a block
boundary between Sk−1[j] and Sk−1[j+1], but it does not place a block boundary
between Sk−1[j′] and Sk−1[j′ + 1]. By Definitions 3.1 and 3.3, the latter implies
Sk−1[j′], Sk−1[j′+1] ∈ Ak. Consequently, the phrases S(i′−�..i′] = exp(Sk−1[j′])
and S(i′..i′ +r] = exp(Sk−1[j′ +1]) around position i′ are of length at most ��k.
Since i′ − ��k ≤ i′ − � ≤ i′ + r ≤ i′ + ��k, the inductive assumption applied to
positions i′, i and i′ + r, i + r implies that S(i − �..i] and S(i..i + r] are parsed
into Sk−1[j] = Sk−1[j′] and Sk−1[j + 1] = Sk−1[j′ + 1], respectively.

If k is odd, then a boundary between two symbols in Ak is placed if and only
if the two symbols differ. Consequently, Sk−1[j′] = Sk−1[j′ + 1] and Sk−1[j] �=
Sk−1[j + 1]. This contradicts Sk−1[j] = Sk−1[j′] and Sk−1[j + 1] = Sk−1[j′ + 1].

Thus, it remains to consider the case of even k. Since the block pars-
ing places a boundary between Sk−1[j], Sk−1[j + 1] ∈ Ak, we conclude from
Definition 3.3 that j must be a local minimum with respect to πk, i.e.,
πk(Sk−1[j − 1]) > πk(Sk−1[j]) < πk(Sk−1[j + 1]). Due to Sk−1[j] ∈ Ak, the con-
dition on πk imposed in Definition 3.4 implies Sk−1[j − 1] ∈ Ak. Consequently,
the phrase S(i − �′..i − �] = exp(Sk−1[j − 1]) is of length at most ��k. Since
i′ − 2��k ≤ i′ − �′ ≤ i′ − � ≤ i′, the inductive assumption, applied to positions
i − �, i′ − � implies that S(i′ − �′..i′ − �] is parsed into Sk−1[j′ − 1] = Sk−1[j − 1].
Thus, πk(Sk−1[j′ − 1]) = πk(Sk−1[j − 1]) > πk(Sk−1[j′]) = πk(Sk−1[j]) <
πk(Sk−1[j′ + 1]) = πk(Sk−1[j + 1]), which means that j′ is a local minimum
with respect to πk and, by Definition 3.3, contradicts i′ /∈ Bk.

Let us proceed to the proof of the second item. Let Sk−1(j − m′..j] be the
block corresponding to the level-k phrase S(i − m..i]. By the inductive assump-
tion, S(i′ − m..i′] consists of level-(k − 1) phrases that, in Sk−1, are collapsed
into a fragment Sk−1(j′ − m′..j′] matching Sk−1(j − m′..j]. Moreover, by the
first item, the parsing of Sk−1 places block boundaries before Sk−1[j′ − m′]
and after Sk−1[j′], but nowhere in between. Consequently, Sk−1(j − m′..j] and
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Sk−1(j′ − m′..j′] are matching blocks, which means that they are collapsed into
matching symbols of Sk, Thus, the level-k phrases S(i − m..i] and S(i′ − m..i′]
are represented by matching symbols in Sk. 
�

Our next goal is to prove that |S| = O(δ log n
δ ) (Corollary 3.12). As a first

step, we show that |Ak+1 ∩ Sk| = O(δ) (Lemma 3.9). The idea for this proof
is to consider the leftmost occurrence of all symbols of Sk and then bound
the set of those occurrences in relation to δ (Claims 3.10 and 3.11). At a high
level, we build on the arguments of [11], where the same bound was proved
in expectation, but we obtain worst-case results with our parsing. We start by
generalizing Lemma 3.5.

Lemma 3.8. For every k ∈ Z≥0 and every interval I ⊆ [1..n], we have

|Bk ∩ I| < 1 + 4|I|
�k+1

.

Proof. We proceed by induction on k. For k = 0, we have |Bk ∩ I| = |I| <

1 + 4|I| = 1 + 4|I|
�1

. If k is odd, we note that Bk ⊆ Bk−1 and therefore |Bk ∩ I| ≤
|Bk−1 ∩ I| < 1 + 4|I|

�k
= 1 + 4|I|

�k+1
. If k is even, let us define

J = {j ∈ [1..|Sk−1|] : Sk−1[j] /∈ Ak},
JI = {j ∈ J : |exp(Sk−1[1..j))| ∈ I} ⊆ Bk−1 ∩ I.

Since A /∈ Ak implies |exp(A)| > �k, we have |JI | < |I|
�k

. Then, since no two
consecutive symbols can be local minima, we have

|Bk ∩ I| ≤ 2|JI | + 1 + |Bk−1∩I|−(2|JI |+1)
2 = 1+|Bk−1∩I|

2 + |JI |
< 1 + 2|I|

�k
+ |I|

�k
= 1 + 3|I|

�k
= 1 + 4|I|

�k+1
. 
�

The following result is used to bound both the number of symbols |S| (where
we only care about |Sk ∩ Ak+1|, i.e., the number of substrings with m = 1 active
symbol) and the size of the RLSLP resulting from restricted block compression.

Lemma 3.9. If the string S has measure δ, then, for all integers k ≥ 0 and
m ≥ 1, the string Sk contains O(mδ) distinct length-m substrings in A∗

k+1.

Proof. Denote α := �8�k� and � := 3α+�m�k+1, and let L be the set of positions
in S covered by the leftmost occurrences of substrings of S of length at most �,
as well as the trailing � positions in S. We first prove two auxiliary claims.

Claim 3.10. The string Sk contains at most |L ∩ Bk| distinct length-m sub-
strings in A∗

k+1.

Proof. Let us fix a length-m substring T ∈ A∗
k+1 of Sk and let Sk(j − m..j]

be the leftmost occurrence of T in Sk. Moreover, let p = |exp(Sk[1..j − m])|
and q = |exp(Sk[1..j])| so that S(p..q] is the expansion of Sk(j − m..j]. By
Sk(j − m..j] ∈ A∗

k+1, we have q − p ≤ m��k+1 ≤ � − 3α.
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We shall prove that q ∈ L; for a proof by contradiction, suppose that q /∈ L.
Due to (0..�] ∪ (n − �..n] ⊆ L, this implies that q ∈ (�..n − �] is not covered
by the leftmost occurrence of any substrings of length at most �. In particular,
S(p − 2α..q + α] must have an earlier occurrence S(p′ − 2α..q′ + α] for some
p′ < p and q′ < q. Consequently, Lemma 3.7, applied to subsequent level-k
phrases comprising S(p..q], shows that S(p′..q′] consists of full level-k phrases
and the corresponding fragment of Sk matches Sk(j − m..j] = T . By q′ < q,
this contradicts the assumption that Sk(j − m..j] is the leftmost occurrence of
T in Sk, which completes the proof that q ∈ L.

A level-k phrase ends at position q, so we also have q ∈ Bk. Since the position
q is uniquely determined by the substring T , this yields an upper bound of
|L ∩ Bk| on the number of choices for T . 
�
Claim 3.11. The set L forms O(δ) intervals of total length O(δ�).

Proof. Each position in L ∩ (0..n − �] is covered by the leftmost occurrence of
a substring of length exactly �, and thus L forms at most � 1

� |L| intervals of
length at least � each. Hence, it suffices to prove that the total length satisfies
|L| = O(δ�). For this, note that, for each position j ∈ L∩ [�..n− �], the fragment
S(j−�..j+�] is the leftmost occurrence of a length-2� substring of S; this because
any length-� fragment covering position j is contained within S(j − �..j + �].
Consequently, |L| ≤ d2�(S) + 2� = O(δ�) holds as claimed. 
�

By Claim 3.10, it remains to prove that |L∩Bk| = O(δm). Let I be the family
of intervals covering L. For each I ∈ I, Lemma 3.8 implies |Bk ∩ I| ≤ 1 + 4|I|

�k+1
.

By the bounds on I following from Claim 3.11, this yields the announced result:

|Bk ∩ L| ≤ |I| + 4
�k+1

∑
I∈I

|I| = O(δ + δ�
�k+1

) = O(δm). 
�

The proof of our main bound |S| = O(δ log n
δ ) combines Lemmas 3.5 and 3.9.

Corollary 3.12. For every string S of length n and measure δ, we have |S| =
O(δ log n

δ ).

Proof. Note that |S| ≤ 1 +
∑∞

k=0 |Sk \ Sk+1|. We combine two upper bounds on
|Sk \ Sk+1|, following from Lemmas 3.5 and 3.9, respectively.

First, we observe that Definition 3.4 guarantees Sk \ Sk+1 ⊆ Sk ∩ Ak+1.
Moreover, each symbol in Sk ∩Ak+1 corresponds to a distinct length-1 substring
of Sk+1, and thus |Sk \ Sk+1| ≤ |Sk ∩ Ak+1| = O(δ) holds due to Lemma 3.9.
Secondly, we note that |Sk \ Sk+1| = 0 if |Sk| = 1 and |Sk \ Sk+1| ≤ |Sk| ≤
2(|Sk| − 1) if |Sk| ≥ 2. Hence, Lemma 3.5 yields

|Sk \ Sk+1| ≤ 2(|Sk| − 1) ≤ 8n
�k+1

= O((34 )k/2n).
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We apply the first or the second upper bound on |Sk \ Sk+1| depending on
whether k < λ := 2�log4/3

n
δ . This yields

∞∑
k=0

|Sk \ Sk+1| =
λ−1∑
k=0

O(δ) +
∞∑

k=λ

O((34 )k/2n)

= 2�log4/3
n
δ  · O(δ) +

∞∑
i=0

O((34 )i/2δ) = O(δ log n
δ ).

Overall, we conclude that |S| = 1 + O(δ log n
δ ) = O(δ log n

δ ) holds as claimed. 
�
Next, we show that the total expected grammar size is O(δ log n

δ ).

Theorem 3.13. Consider the restricted block compression of a string S[1..n]
with measure δ, where the functions (πk)k≥0 in Definition 3.4 are chosen uni-
formly at random. Then, the expected size of the resulting RLSLP is O(δ log n

δ ).

Proof. Although Corollary 3.12 guarantees that |S| = O(δ log n
δ ), the remaining

problem is that the size of the resulting grammar (i.e., sum of production sizes)
can be larger. Every symbol in Σ∪(A×Z≥2) contributes O(1) to the RLSLP size,
so it remains to bound the total size of productions corresponding to symbols in
A≥2. These symbols are introduced by restricted block parsing, i.e., they belong
to Sk+1 \ Sk for odd k > 0. In order to estimate their contribution to grammar
size, we shall fix π0, . . . , πk and compute the expectation with respect to the
random choice of πk+1. In this setting, we prove the following claim:

Claim 3.14. Let k > 0 be odd and T ∈ Am
k be a substring of Sk. Restricted block

parsing bcπk+1,Ak+1(Sk) creates a block matching T with probability O(2−m).

Proof. Since Sk = rleAk
(Sk−1) and Ak+1 = Ak, every two subsequent symbols

of T are distinct. Observe that if T forms a block, then there is a value t ∈ [1..m]
such that πk+1(T [1]) < · · · < πk+1(T [t]) > · · · > πk+1(T [m]); otherwise, there
would be a local minimum within every occurrence of T in Sk−1. In particular,
denoting h := �m/2, we must have πk+1(T [1]) < · · · < πk+1(T [h + 1]) (when
t > h) or πk+1(T [m − h]) > · · · > πk+1(T [m]) (when t ≤ h). However, the
probability that the values πk+1(·) for h+1 consecutive characters form a strictly
increasing (or strictly decreasing) sequence is at most 1

(h+1)! : either exactly 1
(h+1)!

(if the characters are distinct) or 0 (otherwise); this is because πk+1 shuffles
Σ(Sk) ∩ Ak+1 uniformly at random. Overall, we conclude that the probability
that T forms a block does not exceed 2

(h+1)! ≤ 2−Ω(m log m) ≤ O(2−m). 
�

Next, note that every symbol in Sk+1 \Sk is obtained by collapsing a block of
m active symbols created within bcπk+1,Ak+1(Sk) (with distinct symbols obtained
from distinct blocks). By Lemma 3.9, the string Sk has O(δm) distinct substrings
T ∈ Am

k+1. By Claim 3.14, any fixed substring T ∈ Am
k+1 yields a symbol in Sk+1\

Sk with probability O(2−m). Consequently, the total contribution of symbols in
Sk+1 \ Sk to the RLSLP size is, in expectation,

∑∞
m=2 O(m · δm · 2−m) = O(δ).
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At the same time, Sk+1 \ Sk = ∅ if |Sk| = 1 and, if |Sk| ≥ 2, the contribution
of symbols in Sk+1 \ Sk to the RLSLP size is most |Sk| ≤ 2(|Sk| − 1) ≤ 8n

�k+1
=

O((34 )k/2n), where the bound on |Sk| follows from Lemma 3.5. This sums up to
O(δ) across all odd levels k > λ := 2�log4/3

n
δ . Overall, we conclude that the

total expected RLSLP size is O(δ log n
δ + (λ + 1)δ) = O(δ log n

δ ). 
�
We are now ready to show how to build an RLSLP of size O(δ log n

δ ) in linear
expected time.

Corollary 3.15. Given S[1..n] with measure δ, we can build an RLSLP of size
O(δ log n

δ ) in O(n) expected time.

Proof. We apply Definition 3.4 on top of the given string S, with functions πk

choices uniformly at random. It is an easy exercise to carry out this construction
in O(

∑
k≥0 |Sk|) = O(n) worst-case time.

The expected size of the resulting RLSLP is c ·δ log n
δ for some constant c; we

can repeat the construction (with fresh randomness) until it yields an RLSLP of
size at most 2c · δ log n

δ . By Markov’s inequality, we succeed after O(1) attempts
in expectation. As a result, in O(n) expected time, we obtain a grammar of total
worst-case size O(δ log n

δ ). 
�
Remark 3.16 (Grammar height). In the algorithm of Corollary 3.15, we can
terminate restricted block compression after λ := 2�log4/3

n
δ  levels and com-

plete the grammar with an initial symbol rule Aλ → Sλ[1] · · · Sλ[|Sλ|] so that
exp(Aλ) = S. Lemma 3.5 yields |Sλ| = O(1 + (34 )λ/2n) = O(δ), so the resulting
RLSLP is still of size O(δ log n

δ ); however, the height is now O(log n
δ ). 
�

4 Local Consistency Properties

We now show that the local consistency properties of our grammar enable fast
indexed searches. Previous work [3] achieves this by showing that, thanks to the
locally consistent parsing, only a set M(P ) of O(log |P |) pattern positions need
be analyzed for searching. To use this result, we now must take into account
the pausing of symbols. Surprisingly, this modification allows for a much simpler
definition of M(P ).

Definition 4.1. For every non-empty fragment S[i..j] of S, we define

Bk(i, j) = {p − i : p ∈ Bk ∩ [i..j)}

and

M(i, j)=
⋃

k≥0

(Bk(i, j) \ [2αk+1..j − i − αk+1) ∪ {min(Bk(i, j) ∩ [2αk+1..j − i − αk+1))}),

where αk = �8�k� and {min ∅} = ∅.
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Intuitively, the set Bk(i, j) lists (the relative locations of) all level-k phrase
boundaries inside S[i..j]. For each level k ≥ 0, we include in M(i, j) the phrase
boundaries that are close to either of the two endpoints of S[i..j] (in the light
of Lemma 3.7, it may depend on the context of S[i..j] which of these phrase
boundaries are preserved in level k + 1) as well as the leftmost phrase boundary
within the remaining internal part of S[i..j].

Lemma 4.2. The set M(i, j) satisfies the following properties:

1) For each k ≥ 0, if Bk(i, j) �= ∅, then min Bk(i, j) ∈ M(i, j).
2) We have |M(i, j)| = O(log(j − i + 2)).
3) If S[i′..j′] = S[i..j], then M(i′, j′) = M(i, j).

Proof. Let us express M(i, j) =
⋃

k≥0 Mk(i, j), setting

Mk(i, j) := Bk(i, j)\[2αk+1..j−i−αk+1)∪{min(Bk(i, j)∩[2αk+1..j−i−αk+1))}.

As for Item 1, it is easy to see that min Bk(i, j) ∈ Mk(i, j): we consider two
cases, depending on whether min Bk(i, j) belongs to [2αk+1..j − i−αk+1) or not.

As for Item 2, let us first argue that |Mk(i, j)| = O(1) holds for every k ≥ 0.
Indeed, each element q ∈ Bk(i, j) ∩ [0..2αk+1) corresponds to q + i ∈ Bk ∩
[i..i + 2αk+1) and each element q ∈ Bk(i, j) ∩ [j − i − αk+1..j − i) corresponds
to q + i ∈ Bk ∩ [j − αk+1..j). By Lemma 3.8, we conclude that |Mk(i, j)| ≤
1+(1+ 8αk+1

�k+1
)+(1+ 4αk+1

�k+1
) = O(1). Moreover, if �k > 4(j − i), then Lemma 3.8

further yields |Bk(i, j)| = |Bk ∩ [i..j)| ≤ 1. Since Mk(i, j) and Bk+1(i, j) are both
subsets of Bk(i, j), this means that

∣∣ ⋃
k:�k>4(j−i) Mk(i, j)

∣∣ ≤ 1. The number of
indices k satisfying �k ≤ 4(j − i) is O(log(j − i + 2)), and thus

|M(i, j)| ≤ O(1) · O(log(j − i + 2)) + 1 = O(log(j − i + 2)).

As for Item 3, we shall prove by induction on k that Mk(i, j) ⊆ M(i′, j′).
This implies M(i, j) ⊆ M(i′, j′) and, by symmetry, M(i, j) = M(i′, j′). In the
base case of k = 0, we have

M0(i, j) = ([0..2α1] ∪ [j − i − α1..j − i)) ∩ [0..j − i) = M0(i′, j′).

Now, consider k > 0 and q ∈ Mk(i, j). If q ∈ Bk(i, j) \ [2αk..j − i − αk), then
q ∈ Mk−1(i, j), and thus q ∈ M(i′, j′) holds by the inductive assumption. As for
the remaining case, Mk(i, j)∩ [2αk..j − i−αk) = Mk(i′, j′)∩ [2αk..j′ − i′ −αk) is
a direct consequence of Bk(i, j)∩ [2αk..j−i−αk) = Bk(i′, j′)∩ [2αk..j′ −i′ −αk),
which follows from Lemma 3.7. 
�
Definition 4.3. Let P be a substring of S and let S[i..j] be its arbitrary occur-
rence. We define M(P ) := M(i, j); by item 3 of Lemma 4.2, this does not depend
on the choice of the occurrence.

By Lemma 4.2, the set M(P ) is of size O(log |P |), yet, for every level k ≥ 0
and every occurrence P = S[i..j], it includes the leftmost phrase boundary in
Bk(i, j). Our index exploits the latter property for the largest k with Bk(i, j) �= ∅.
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5 Indexing with Our Grammar

In this section, we adapt the results on attractors [3, Sec. 6] to our modified
parsing, so as to obtain our main result.

Definition 5.1 ([3]). The grammar tree of a RLCFG is obtained by pruning
its parse tree: all but the leftmost occurrences of each nonterminal are converted
into leaves and their subtrees are pruned. We treat rules A → As

1 (assumed to be
of size 2) as A → A1A

[s−1]
1 , where the node labeled A

[s−1]
1 is always a leaf (A1 is

also a leaf unless it is the leftmost occurrence of A1).

Note that the grammar tree has exactly one internal node per distinct non-
terminal and its total number of nodes is the grammar size plus one. We identify
each nonterminal A with the only internal grammar tree node labeled A. We
also sometimes identify terminal symbols a with grammar tree leaves.

The search algorithm classifies the occurrences of a pattern P [1..m] in S
into “primary” and “secondary”, according to the partition of S induced by the
grammar tree leaves.

Definition 5.2 ([3]). The leaves of the grammar tree induce a partition of S
into phrases. An occurrence of P [1..m] at S[t..t + m) is primary if the lowest
grammar tree node deriving a range of S that contains S[t..t+m) is internal (or,
equivalently, the occurrence crosses the boundary between two phrases); otherwise
it is secondary.

The general idea of the search is to find the primary occurrences by looking
for prefix-suffix partitions of P and then find the secondary occurrences from
the primary ones [5].

5.1 Finding the Primary Occurrences

Let nonterminal A be the lowest (internal) grammar tree node that covers a
primary occurrence S[t..t + m) of P [1..m]. Then, if A → A1 · · · As, there exists
some i ∈ [1..s) and q ∈ [1..m) such that (1) a suffix of exp(Ai) matches P [1..q],
and (2) a prefix of exp(Ai+1) · · · exp(As) matches P (q..m]. The idea is to index
all the pairs (exp(Ai)rev, exp(Ai+1) · · · exp(As)) and find those where the first
and second component are prefixed by (P [1..q])rev and P (q..m], respectively.
Note that there is exactly one such pair per border between two consecutive
phrases (or leaves in the grammar tree).

Definition 5.3 ([3]). Let v be the lowest (internal) grammar tree node that
covers a primary occurrence S[t..t + m) of P . Let vi be the leftmost child of
v that overlaps S[t..t + m). We say that node v is the parent of the primary
occurrence S[t..t + m) of P and node vi is its locus.
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The index [3] builds a two-dimensional grid data structure. It lexicographi-
cally sorts all the components exp(Ai)rev to build the x-coordinates, and all the
components exp(Ai+1) · · · exp(As) to build the y-coordinates; then, it fills the
grid with points (exp(Ai)rev, exp(Ai+1) · · · exp(As)), each associated with the
locus Ai. The size of this data structure is of the order of the number of points,
which is bounded by the grammar size, g = O(δ log n

δ ) in our case. The structure
can find all the p points within any orthogonal range in time O((p + 1) logε g),
where ε > 0 is any constant fixed at construction time.

Given a partition P = P [1..q] · P (q..m] to test, they search for P [1..q]rev in
a data structure that returns the corresponding range in x, search for P (q..m]
in a similar data structure that returns the corresponding range in y, and then
perform the corresponding range search on the geometric data structure.

They show [3, Sec. 6.3] that the x- and y-ranges of any τ cuts of P can be
computed in time O(m + τ log2 m), within O(g) space. All they need from the
RLCFG to obtain this result is that (1) one can extract any length-� prefix or
suffix of any exp(A) in time O(�), which is proved for an arbitrary RLCFG; and
(2) one can compute a Karp–Rabin fingerprint of any substring of S in time
O(log2 �), which is shown to be possible for any locally contracting grammar,
which follows from our Lemma 3.8.

In total, if we have identified τ cuts of P that suffice to find all of its occur-
rences in S, then we can find all the occp ≤ occ primary occurrences of P in time
O(m + τ(logε g + log2 m) + occp logε g).

5.2 Parsing the Pattern

The next step is to set a bound for τ with our parsing and show how to find the
corresponding cuts.

Lemma 5.4. Using our grammar of Sect. 3, there are only τ = O(log m) cuts
P = P [1..q] · P (q..m] yielding primary occurrences of P [1..m]. These positions
belong to M(P ) + 1 (see Definition 4.3).

Proof. Let A be the parent of a primary occurrence S[t..t+m), and let k be the
round where A is formed. There are two possibilities:

(1) A → A1 · · · As is a block-forming rule, and for some i ∈ [1..s), a suffix of
exp(Ai) matches P [1..q], for some q ∈ [1..m). This means that q − 1 =
min Bk−1(t, t + m − 1).

(2) A → As
1 is a run-length nonterminal, and a suffix of exp(A1) matches P [1..q],

for some q ∈ [1..m). This means that q − 1 = min Bk−1(t, t + m − 1).

In either case, q ∈ M(P ) + 1 by Lemma 4.2. Further, |M(P )| = O(log m). 
�
The parsing is done in O(m) time almost exactly as in previous work [3,

Sec. 6.1], with the difference that we have to care about paused symbols. Essen-
tially, we store the permutations πk drawn when indexing S and use them to
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parse P in the same way, level by level. We then work for O(log m) levels on
exponentially decreasing sequences, in linear time per level, which adds up to
O(m). There are a few differences with respect to previous work, however [3]:

1) In the parsing of [3], the symbols are disjoint across levels, so the space to
store the permutations πk is proportional to the grammar size. In our case,
instead, paused symbols exist along several consecutive levels and participate
in several permutations. However, by Lemma 3.9, we have |Sk ∩Ak+1| = O(δ)
active symbols in Sk. We store store the values of πk+1 only for these symbols
and observe that the values πk+1 for the remaining symbols do not affect the
placement of block boundaries in Definition 3.3: If Sk[j], Sk[j + 1] ∈ Ak+1,
then, due condition imposed on πk+1 in Definition 3.4, j may only be a local
minimum if Sk[j − 1] ∈ Ak+1. When parsing P , we can simply assume that
πk+1(A) = 0 on the paused symbols A ∈ Σ(Sk) \ Ak+1 and obtain the same
parsing of S. By storing the values of πk only for the active symbols, we use
O(δ log n

δ ) total space.
2) They use that the number of symbols in the parsing of P halve from a level

to the next in order to bound the number of levels in the parse and the total
amount of work. While this is not the case in our parsing with paused symbols,
it still holds by Lemmas 3.5 and 3.8 that the number of phrases in round k is
less than 1 + 4m

�k+1
, which gives us, at most, h = 12 + 2�log4/3 m = O(log m)

parsing rounds and a total of
∑h

k=0(1 + 4m
�k+1

) = O(m) symbols processed
along the parsing of P .

5.3 Secondary Occurrences and Short Patterns

The occs secondary occurrences can be obtained in O(occs) time given the pri-
mary ones, with a technique that works for any arbitrary RLCFG and within
O(g) space [3, Sec. 6.4]. Plugged with the preceding results, the total space of our
index is O(δ log n

δ ) and its search time is O(m+ τ(logε g +log2 m)+occ logε g) =
O(m + logε g log m + occ logε g). This bound exceeds O(m + (occ + 1) logε g)
only when m = O(logε g log log g). In that case, however, the middle term is
O(logε g log log g), which becomes O(logε g) again if we infinitesimally adjust ε.

The final touch is to reduce the O(m + logε g + occ logε g) complexity to
O(m + logε δ + occ logε g). This is relevant only when occ = 0, so we need a way
to detect in time O(m + logε δ) that P does not occur in S. We already do this
in time O(m + logε g) by parsing P and searching for its cuts in the geometric
data structure. To reduce the time, we note that logε g ∈ O(logε(δ log n

δ )) ⊆
O(logε δ + log log n

δ ), so it suffices to detect in O(m) time the patterns of length
m ≤ � = log log n

δ that do not occur in S. By definition of δ, there are at most
δ� strings of length � in S, so we can store them all in a trie using total space
O(δ�2) ⊆ O(δ log n

δ ). By implementing the trie children with perfect hashing, we
can verify in O(m) time whether a pattern of length m ≤ � occurs in S. We then
obtain Theorem 1.1.
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6 Conclusions and Future Work

We have obtained the best of two worlds [3,10] in repetitive text indexing: an
index of asymptotically optimal size, O(δ log n

δ ), with nearly-optimal search time,
O(m + (occ + 1) logε n), which is built in O(n) expected time. This closes a
question open in those previous works.

Our result could be enhanced in various ways, as done in the past with γ-
bounded indexes [3]. For example, is it possible to search in optimal O(m +
occ) time within O(δ log n

δ logε n) space? Can we count the number of pattern
occurrences in O(m + log2+ε n) time within our optimal space, or in O(m) time
within O(δ log n

δ log n) space? We believe the answer to all those questions is
affirmative and plan to answer them in the extended version of this article.
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Abstract. A simplicial vertex of a graph is a vertex whose neighbor-
hood is a clique. It is known that listing all simplicial vertices can be
done in O(nm) time or O(nω) time, where O(nω) is the time needed
to perform a fast matrix multiplication. The notion of avoidable ver-
tices generalizes the concept of simplicial vertices in the following way:
a vertex u is avoidable if every induced path on three vertices with mid-
dle vertex u is contained in an induced cycle. We present algorithms for
listing all avoidable vertices of a graph through the notion of minimal tri-
angulations and common neighborhood detection. In particular we give
algorithms with running times O(n2m) and O(n1+ω), respectively. Addi-
tionally, based on a simplified graph traversal we propose a fast algorithm
that runs in time O(n2 + m2) and matches the corresponding running
time of listing all simplicial vertices on sparse graphs with m = O(n).
Moreover, we show that our algorithms cannot be improved significantly,
as we prove that under plausible complexity assumptions there is no truly
subquadratic algorithm for recognizing an avoidable vertex. To comple-
ment our results, we consider their natural generalizations of avoidable
edges and avoidable paths. We propose an O(nm)-time algorithm that
recognizes whether a given induced path is avoidable.

1 Introduction

Closely related to chordal graphs is the notion of a simplicial vertex, that is a
vertex whose neighborhood induces a clique. In particular, Dirac [11] proved that
every chordal graph admits a simplicial vertex. However not all graphs contain a
simplicial vertex. Due to their importance to several algorithmic problems, such
as finding a maximum clique or computing the chromatic number, it is natural
to seek for fast algorithms that list all simplicial vertices of a graph. For doing
so, the naive approach takes O(nm) time, whereas the fastest algorithms take
advantage of computing the square of an n × n binary matrix and run in O(nω)
and O(m2ω/(ω+1)) time [17]. Hereafter we assume that we are given a graph G
on n vertices and m edges; currently, ω < 2.37286 [2].
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A natural way to generalize the concept of simplicial vertices is the notion of
an avoidable vertex. A vertex u is avoidable if either there is no induced path on
three vertices with middle vertex u, or every induced path on three vertices with
middle vertex u is contained in an induced cycle. Thus every simplicial vertex is
avoidable, however the converse is not necessarily true. As opposed to simplicial
vertices, it is known that every graph contains an avoidable vertex [1,5,7,20].
Extending the notion of avoidable vertices is achieved through avoidable edges
and, more general, avoidable paths. This is accomplished by replacing the middle
vertex in an induced path on three vertices by an induced path on arbitrary k ≥ 2
vertices, denoted by Pk. Beisegel et al. [3] proved first that every non-edgeless
graph contains an avoidable edge, considering the case of k = 2. Regarding
the existence of an avoidable induced path of arbitrary length, Bonamy et al.
[9] settled a conjecture in [3] and showed that every graph is either Pk-free or
contains an avoidable Pk. Gurvich et al. [13] strengthened the later result by
showing that every induced path can be shifted in an avoidable path, in the
sense that there is a sequence of neighboring induced paths of the same length.
Although the provided proof in [13] is constructive and identifies an avoidable
path given an induced path, the proposed algorithm was not settled whether it
runs in polynomial time.

Since avoidable vertices generalize simplicial vertices, it is expected that
avoidable vertices find applications in further algorithmic problems. Indeed,
Beisegel et al. [3] revealed new polynomially solvable cases of the maximum
weight clique problem that take advantage of the notion of avoidable vertices.
Similar to simplicial vertices, the complexity of a problem can be reduced by
removing avoidable vertices, tackling the problem on the reduced graph. It is
therefore of interest to list all avoidable vertices efficiently. If we are only inter-
ested in computing two avoidable vertices this can be done in linear time by
using fast graph searches [3,5]. However, an efficient elimination process, such
as deleting or removing avoidable vertices, is not enough to recursively compute
the rest of the avoidable vertices. Thus, computing the set of all avoidable ver-
tices requires to decide for each vertex of the graph whether it is avoidable and
a usual graph search cannot guarantee to test all vertices.

Concerning lower bounds, it is known [18] that the problem of finding a
triangle in an n-vertex graph can be reduced in O(n2) time to the problem of
counting the number of simplicial vertices. Moreover, Ducoffe proved that under
plausible complexity assumptions computing the diameter of an AT-free graph
is at least as hard as computing a simplicial vertex [12]. For general graphs,
the quadratic time complexity of diameter computation cannot be improved
by much [22]. We note that the currently fastest algorithms for detecting a
triangle run in time O(nm) and O(nω) [16]. Notably, we show a similar lower
bound for recognizing an avoidable vertex. In particular, via a reduction form
the Orthogonal-Vector problem, we prove that under SETH, there is no truly
subquadratic algorithm for deciding whether a given vertex is avoidable. This
gives a strong evidence that our O(nm)- and O(nω)-recognition algorithms upon
which are based our listing algorithms cannot be improved significantly.
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A naive approach that recognizes a single vertex u of a graph G of whether
it is avoidable or not, needs to check if all neighbors of u are pairwise connected
in an induced subgraph of G. Thus the running time of recognizing an avoidable
vertex is O(n3 + n2m) or, as explicitly stated in [3], it can be expressed as
O(m · (n+m)) where m is the number of edges in the complement of G. Inspired
by both running times, we first show that we can reduce in linear time the
listing problem on a graph G having m ≥ n and m ≥ n. In a sense such a
result states that graphs that are sparse (m < n) or dense (m < n) can be
decomposed efficiently to smaller connected graphs for which their complement
is also connected. Towards this direction, we give an interesting connection with
the avoidable vertices on the complement of G. As a result, the naive algorithms
for listing all avoidable vertices take O(n3 ·m) and O(n ·m ·m) time, respectively.

Our main results consist of new algorithms for listing all avoidable vertices
in running times comparable to the ones for listing simplicial vertices. More
precisely, we propose three main approaches that result in algorithms for listing
all avoidable vertices of a graph G with the following running times:

– O(n2 ·m), by using a minimal triangulation of G. A close relationship between
avoidable vertices and minimal triangulation was already known [3]. However,
listing all avoidable vertices through the proposed characterization is ineffi-
cient, since one has to produce all possible minimal triangulations of G. Here
we strengthen such a characterization in the sense that it provides an efficient
recognition based on one particular minimal triangulation of G. More pre-
cisely, we take advantage of vertex-incremental minimal triangulations that
can be computed in O(nm) time [8].

– O(n2 + m2), by exploring structural properties on each edge of G. This
approach is based on a modified, traditional breadth-first search algorithm.
Our task is to construct search trees rooted at a particular vertex that reach
all vertices of a predescribed set S, so that every non-leaf vertex does not
belong to S. If such a tree exists then every path from the root to a leaf
that belongs to S is called an S-excluded path. It turns out that S-excluded
paths can be tested in linear time and we need to make 2m calls of a modified
breadth-first search algorithm.

– O(n1+ω), where O(nω) is the running time for matrix multiplication. For
applying a matrix multiplication approach, we contract the connected com-
ponents of G that are outside the closed neighborhood of a vertex. Then we
observe that a vertex u is avoidable if the neighbors of u are pairwise in dis-
tance at most two in the contracted graph. As the distance testing can be
encapsulated by the square of its adjacency matrix, we deduce an algorithm
that takes advantage of a fast matrix multiplication.

We should note that each of the stated algorithms is able to recognize if a given
vertex u of G is avoidable in time O(nm), O(d(u)(n + m)), and O(nω), respec-
tively, where d(u) is the degree of u in G. Further, all of our proposed algorithms
consist of basic ingredients that avoid using sophisticated data structures.

In addition, we consider the natural generalizations of avoidable vertices,
captured within the notions of the avoidable edges and avoidable paths. A naive
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algorithm that recognizes an avoidable edge takes time O(n2 · m) or O(m ·
m). Here we show that recognizing an avoidable edge of a graph G can be
done in O(n · m) time. This is achieved by taking advantage of the notions of
the S-excluded paths and their efficient detection by the modified breadth-first
search algorithm. Also notice that an avoidable edge is an avoidable path on two
vertices. We are able to reduce the problem of recognizing an avoidable path of
arbitrary length to the recognition of an avoidable edge. In particular, given an
induced path we prove that we can replace the induced path by an edge and test
whether the new added edge is avoidable or not in a reduced graph. Therefore
our recognition algorithm for testing whether a given induced path is avoidable
takes O(n ·m) time. As a side remark of the later algorithm, we partially resolve
an open question raised in [13].

2 Preliminaries

All graphs considered here are finite undirected graphs without loops and multi-
ple edges. We refer to the textbook by Bondy and Murty [10] for any undefined
graph terminology. We use n to denote the number of vertices of a graph and use
m for the number of edges. Given x ∈ VG, we denote by NG(x) the neighborhood
of x. The closed neighborhood of x, denoted by NG[x], is defined as NG(x)∪{x}.
For a set X ⊂ V (G), NG(X) denotes the set of vertices in V (G) \ X that have
at least one neighbor in X. Analogously, NG[X] = NG(X) ∪ X. The induced
path on k ≥ 2 vertices is denoted by Pk and the induced cycle on k ≥ 3 vertices
is denoted by Ck. For an induced path Pk, the vertices of degree one are called
endpoints. Notice that for any two vertices x and y of a connected graph there
is an induced path having x and y as endpoints. Given two vertices u and v of
a connected graph G, a set S ⊂ VG is called (u, v)-separator if u and v belong
to different connected components of G − S. We say that S is a separator if
there exist two vertices u and v such that S is a (u, v)-separator. A graph G
is co-connected if its complement G is connected and a co-component of G is a
connected component of G.

Given an edge e = xy, the contraction of e removes both x and y and replaces
them by a new vertex w, which is made adjacent to those vertices that were
adjacent to at least one of the vertices x and y, that is N(w) = (N(x) ∪ N(y)) \
{x, y}. Contracting a set of vertices S is the operation of substituting the vertices
of S by a new vertex w with N(w) = N(S).

A vertex v is called simplicial if the vertices of NG(v) induce a clique. Listing
all simplicial vertices of a graph can be done O(nm) time. The fastest algorithm
for listing all simplicial vertices takes time O(nω), where O(nω) is the time
needed to multiply two n × n binary matrices [17]. Avoidable vertices and edges
generalize the concept of simplicial vertices in a natural way.

Definition 2.1. A vertex v is called avoidable if every P3 with middle vertex
v is contained in an induced cycle. Equivalently, v is avoidable if dG(v) ≤ 1 or
for every pair x, y ∈ NG(v) the vertices x and y belong to the same connected
component of G − (NG[u] \ {x, y}).
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Every simplicial vertex is avoidable, however the converse is not necessarily
true. It is known that every graph contains an avoidable vertex [1,7,20]. Omitted
proofs of statements can be found in a preliminary full version [21].

Observation 2.1. Let G be a graph and let u be a vertex of G. Then u is non-
avoidable if and only if there is an (x, y)-separator S that contains u such that
S ⊂ NG[u] for some vertices x, y ∈ NG(u).

3 A Lower Bound For Recognizing an Avoidable Vertex

In the forthcoming sections, we give algorithms for recognizing an avoidable
vertex in O(nm) time and O(nω) time. Here we show that, under plausible
complexity assumptions, a significant improvement on the stated running times
is unlikely, as we show that there is no truly subquadratic algorithm for deciding
whether a given vertex is avoidable. By truly subquadratic, we mean an algorithm
with running time O(n2−ε), for some ε > 0 where n is the size of its input.

More precisely, the Strong Exponential-Time Hypothesis (SETH) states that
for any ε > 0, there exists a k such that the k-SAT problem on n variables cannot
be solved in O((2 − ε)n) time [15]. The Orthogonal-Vector problem (OV) takes
as input two families A and B of n sets over a universe C, and asks whether
there exist a ∈ A and b ∈ B such that a ∩ b = ∅. An instance of OV is denoted
by OV (A,B,C). It is known that under SETH, for any ε > 0, there exists a
constant c > 0 such that OV (A,B,C) cannot be solved in O(n2−ε), even if
|C| ≤ c · log n [25]. For deciding whether a given vertex is avoidable, we give a
reduction from OV.

Theorem 3.1. The OV problem with |A| = |B| = n and |C| = O(log n) can be
reduced in O(n log n) time to the problem of deciding whether a particular vertex
of an O(n)-vertex graph is avoidable.

Proof. Let OV (A,B,C) be an instance of OV. We construct a graph G as follows.
The vertex set of G consists of A∪B ∪C and three additional vertices u, cA, cB .
For the edges of G, we have:

– u is adjacent to every vertex of A ∪ B;
– cA is adjacent to every vertex of A and cB is adjacent to every vertex of B;
– for every a ∈ A and every c ∈ C, ac ∈ E(G) if and only if c ∈ a;
– for every b ∈ B and every c ∈ C, bc ∈ E(G) if and only if c ∈ b.

These are exactly the edges of G. In particular notice that G[C ∪ {u, cA, cB}] is
an independent set. Moreover, observe that G has 2n + |C| + 3 vertices and the
number of edges is O(n log n). We claim that OV (A,B,C) is a yes-instance if
and only if u is non-avoidable in G.

Assume that there are sets a ∈ A and b ∈ B such that a ∩ b = ∅. Let x ∈ A
and y ∈ B be the vertices of A and B that correspond to a and b, respectively.
By construction, x and y are non-adjacent in G. Moreover, by construction, x
and y have no common neighbor in C, as a∩b = ∅. Now notice that all neighbors
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of x and y that do not belong to NG[u] = A ∪ B ∪ {u} are in C ∪ {cA, cB} and
G[C∪{cA, cB}] is an edgeless graph. Thus x and y belong to different components
in G − (NG[u] \ {x, y}) and u is non-avoidable in G.

For the converse, assume that u is non-avoidable in G. Since N(u) = A ∪ B
there are vertices x, y ∈ A ∪ B such that x and y lie in different components
in G − (NG[u] \ {x, y}). If both x and y belong to A, then they have a com-
mon neighbor cA in G − (NG[u] \ {x, y}) which is not possible. Similarly, both
x and y do not belong to B due to vertex cB . Thus x ∈ A and y ∈ B. As
there are no edges in G[C ∪ {cA, cB}], we deduce that x and y have no common
neighbor in C. Hence there are sets in A and B that correspond to the ver-
tices x and y, respectively, that have no common element and OV (A,B,C) is a
yes-instance. 	


4 Avoidable Vertices in Sparse or Dense Graphs

Here we show how to compute efficiently all avoidable vertices on sparse or dense
graphs. In particular, for a graph G on n vertices and m edges, we consider
the cases in which m < n (sparse graphs) or m < n (dense graphs), where
m = |E(G)|. Our main motivation comes from the naive algorithm that lists all
avoidable vertices in O(n·m·(n+m)) time that takes advantage of the non-edges
of G [3]. We will show that we can handle the non-edges in linear time, so that
the running time of the naive algorithm can be written as O(n3 · m). For doing
so, we consider the behavior of avoidable vertices on the complement of a graph
by considering the connected components in both G and G.

It is not difficult to handle sparse graphs. Observe that m < n implies that
G is disconnected or G is a tree. The connectedness assumption of the input
graph G follows from the fact that a vertex u is avoidable in G if and only if u
is avoidable in the connected component containing u, since there are no paths
between vertices of different components. Moreover, trees have a trivial solution
as the leaves are exactly the set of avoidable vertices. We include both properties
in the following statement.

Observation 4.1. Let u be a vertex of G and let C(u) be the connected com-
ponent of G containing u. Then u is avoidable if and only if u is avoidable in
G[C(u)]. Moreover, if G is a tree then u is avoidable if and only if u is a leaf.

We can follow almost the same approach on the complement of G. For doing
so, we first prove the following result which interestingly relates avoidability on
G and G. Note, however, that the converse is not necessarily true (e.g., consider
the C5 in which all vertices are avoidable in both G and G).

Lemma 4.1. Let u be a non-avoidable vertex of G. Then, u is avoidable in G.

Proof. Since u is a non-avoidable vertex in G, there is a separator S that contains
u such that S ⊂ NG[u] by Observation 2.1. Let C1, . . . , Ck be the connected
components of G − S, with k ≥ 2. Notice that at least two components of
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C1, . . . , Ck contain a neighbor of u. Without loss of generality, assume that
C1 ∩ NG(u) �= ∅ and C2 ∩ NG(u) �= ∅. Consider the complement G and let x, y
be two neighbors of u in G. Observe that both x and y do not belong to S,
since S ⊂ NG[u]. Thus x ∈ Ci and y ∈ Cj , for 1 ≤ i, j ≤ k. We show that
either xy ∈ E(G) or there is a path in G between x and y that avoids vertices of
NG(u). If i �= j then xy ∈ E(G), because every vertex of Ci is adjacent to every
vertex of Cj in G. Suppose that x, y ∈ Ci. If Ci �= C1 then there is a vertex
w1 ∈ C1 ∩ NG(u) such that w1u /∈ E(G) and w1x,w1y ∈ E(G). If Ci = C1 then
there is a vertex w2 ∈ C2 ∩ NG(u) such that w2u /∈ E(G) and w2x,w2y ∈ E(G).
Thus in both cases there is a path of length two between x and y that avoids
vertices NG(u). Therefore, u is avoidable in G. 	


We next deal with the case in which G is disconnected. Notice that if G = Kn

then every vertex of G is simplicial and thus avoidable.

Lemma 4.2. Let G �= Kn, u ∈ V (G), and let C(u) be the co-component con-
taining u. Then, u is avoidable in G if and only if |C(u)| > 1 and u is avoidable
in G[C(u)].

In general, avoidability is not a hereditary property with respect to induced
subgraphs, even when restricted to the removal of non-avoidable vertices. How-
ever, the removal of universal vertices does not affect the rest of the graph.

Lemma 4.3. Let G be a graph and let w be a universal vertex of G. Then w
is avoidable if and only if G is a complete graph. Moreover, any vertex u ∈
V (G) \ {w} is avoidable in G if and only if u is avoidable in G − w.

To conclude the cases for which m < n, we consider graphs whose complement
is a tree. By Observation 4.1 we restrict ourselves on connected graphs.

Lemma 4.4. Let G be a connected graph such that G is a tree T . A vertex u of
G is avoidable if and only if u is a non-leaf vertex in T .

Based on the previous results, we can reduce our problem to a graph G that
is both connected and co-connected and neither G nor G are isomorphic to trees.
To achieve this in linear time we apply known techniques that avoid computing
explicitly the complement of G, since we are mainly interested in recursively
detecting the components and co-components of G. Such a decomposition, known
as the modular decomposition, can be represented by a tree structure, denoted by
T (G), of O(n) size and can be computed in linear time [19,24]. More precisely,
the leaves of T (G) correspond to the vertices of G and every internal node w of
T (G) is labeled with three distinct types according to whether the subgraph of
G induced by the leaves of the subtree rooted at w is (i) not connected, or (ii)
not co-connected, or (iii) connected and co-connected. Moreover the connected
components and the co-components of types (i) and (ii), respectively, correspond
to the children of w in T (G). Let G be a collection of maximal vertex-disjoint
induced subgraphs of G that are both connected and co-connected. Then T (G)
determines all graphs of G in linear time. In addition, we call G, typical collection
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of G if for each graph H ∈ G: H is connected and co-connected, |V (H)| ≤ |E(H)|,
|V (H)| ≤ |E(H)|, and every avoidable vertex in H is an avoidable vertex in G.
The results of this section deduce the following algorithm.

Theorem 4.1. Let G be a graph and let A(G) be the set of avoidable vertices
in G. There is a linear-time algorithm, that computes a typical collection G
of maximal vertex-disjoint induced subgraphs of G and for every vertex v ∈
V (G) \ V (G), decides if v ∈ A(G).

5 Computing Avoidable Vertices Directly From G

Here we give two different approaches for computing all avoidable vertices. Both
of them deal with the input graph itself without shrinking any unnecessary
information, as opposed to the algorithms given in forthcoming sections. Our
first algorithm makes use of notions related to minimal triangulations of G and
runs in time O(n2m). The second algorithm runs in time O(n2 + m2) and is
based on a modified, traditional breadth-first search algorithm.

Let us first explain our algorithm through a minimal triangulation of G. We
first need some necessary definitions. A graph is chordal if it does not contain an
induced cycle of length more than three. In different terminology, G is chordal
if and only if G is (C4, C5, . . .)-free graph. A graph H = (V,E ∪ F ) is a minimal
triangulation of G = (V,E) if H is chordal and for every F ′ ⊂ F , the graph
(V,E ∪ F ′) is not chordal. The edges of F in H are called fill edges. Several
O(nm)-time algorithms exist for computing a minimal triangulation [4,6,14,23].
In connection with avoidable vertices, Beisegel et al. [3] showed the following.

Theorem 5.1 ([3]). Let u be a vertex of G. Then u is avoidable in G if and
only if u is a simplicial vertex in some minimal triangulation of G.

Although such a characterization is complete, it does not lead to an efficient
algorithm for deciding whether a given vertex is avoidable, since one has to
produce all possible minimal triangulations of G. Here we strengthen such a
characterization in the sense that it provides an efficient recognition based on a
particular, nice, minimal triangulation of G.

Lemma 5.1. Let u be a vertex of a graph G = (V,E) and let H = (V,E ∪ F )
be a minimal triangulation of G such that u is not incident to any edge of F .
Then u is avoidable in G if and only if u is simplicial in H.

Proof. If u is simplicial in H then by Theorem 5.1 we deduce that u is avoidable
in G. Suppose that u is non-simplicial in H. Then there are two vertices x, y ∈
NG(u) that are non-adjacent in H. Since G is a subgraph of H, we have xy /∈
E(G). We claim that there is no path in G between x and y that avoids any
vertex of NG[u] \ {x, y}. Assume for contradiction that there is such a path
P . Then V (P ) \ {x, y} is non-empty and contains vertices only from V \ N [u].
This means that x, y belong to the same connected component of H induced by
(V \ N [u]) ∪ {x, y}. As u is non-adjacent to any vertex of V \ N [u] in H, the
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vertices of (V \ N [u]) ∪ {x, y, u} induce an induced cycle of length at least four
in H. Then we reach a contradiction to the chordality of H. Therefore, there is
no such path between x and y, which implies that u is non-avoidable in G. 	


Next we show that such a minimal triangulation with respect to u, always
exists and can be computed in O(nm) time. Our approach for computing a nice
minimal triangulation of G is vertex incremental, in the following sense. We take
the vertices of G one by one in an arbitrary order (v1, . . . , vn), and at step i
we compute a minimal triangulation Hi of Gi = G[{v1, . . . , vi}] from a minimal
triangulation Hi−1 of Gi−1 by adding only edges incident to vi. This is possible
thanks to the following result.

Lemma 5.2 ([8]). Let G be an arbitrary graph and let H be a minimal trian-
gulation of G. Consider a new graph G′ = G+ v, obtained by adding to G a new
vertex v. There is a minimal triangulation H ′ of G′ such that H ′ − v = H.

We denote by H(v1, . . . , vn) a vertex incremental minimal triangulation of
G which is obtained by considering the vertex ordering (v1, . . . , vn) of G. Com-
puting such a minimal triangulation of G, based on any vertex ordering, can be
done in O(nm) time [8].

Lemma 5.3. Let u be a vertex of G and let X = NG(u) and A = V (G)\NG[u].
In any vertex incremental minimal triangulation H(A, u,X) of G, no fill edge is
incident to u.

Proof. Let H(A, u,X) = (V,E ∪ F ) be a vertex incremental minimal triangula-
tion of G. Consider the vertex ordering (A, u,X). Observe that when adding u to
H[A] no fill edge is required, as the considered graph H[A]+u is already chordal.
Moreover u is adjacent in G to every vertex appearing after u in the described
ordering (A, u,X). Thus u is non-adjacent to any vertex of A in H(A, u,X)
which means that no edge of F is incident to u. 	


A direct consequence of Lemmas 5.1 and 5.3 is an O(nm)-time recognition
algorithm for deciding whether a given vertex u is avoidable. For every vertex u,
we first construct a vertex incremental minimal triangulation H(A, u,X) of G by
applying the O(nm)-time algorithm given in [8]. Then we simply check whether
u is simplicial in the chordal graph H(A, u,X) by Lemma 5.1, which means that
the overall running time is O(nm). The details are given in Algorithm 1. By
applying Algorithm 1 on each vertex, we obtain the following result.

Theorem 5.2. Listing avoidable vertices by using Algorithm 1 takes O(n2m)
time.

5.1 A Fast Algorithm For Listing Avoidable Vertices

Our second approach is based on the following notion of protecting that we
introduce here. Given a set of vertices S ⊆ V , an S-excluded path is a path in
which no internal vertex belongs to S. Observe that an edge is an S-excluded
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Algorithm 1: Using a vertex incremental minimal triangulation
Input : A graph G, a minimal triangulation H of G, and a vertex u
Output: True iff u is avoidable in G

1 Let X = NG(u) and A = V (G) \ NG[u]
2 Initialize a new graph H ′ = H[A ∪ {u}]
3 Add the vertices of X in H ′ in an arbitrary order and maintain a minimal

triangulation H ′ of G by applying the O(nm)-time algorithm given in [8]
4 if u is simplicial in H ′ then return true
5 else return false

Algorithm 2: Detecting whether there is an S-excluded path.
Input : A graph G, a vertex x, and a target set S ⊆ V (G)
Output: True iff there is an S-excluded path between x and every vertex of S

1 Initialize a queue Q = {x}, set T = ∅, and mark x
2 while Q is not empty do
3 s = Q.pop()
4 for v ∈ N(s) do
5 if v is unmarked then
6 if v ∈ S then T = T ∪ {v}
7 else Q.add(v)
8 Mark v

9 return T == S

path, for any choice of S. By definition a single vertex is connected to itself by
the trivial path. Whenever there is an S-excluded path in G between vertices a
and b, notice that a can reach b through vertices of V (G) \ S.

Definition 5.1 (Protecting). Let x and y be two vertices of G. We say that x
protects y if there is a NG[y]-excluded path between x and every vertex of NG(y).
In other words, x protects y if for any z ∈ NG(y) \ {x}, either xz ∈ E(G) or x
can reach z through vertices of V (G) \ NG[y].

Let us explain how to check if x protects y in linear time, that is in O(n+m)
time. We consider the graph G′ = G − y and run a slight modification of a
breadth-first search algorithm on G′ starting from x. In particular, we try to
reach the vertices of NG(y) \ {x} (target set) from x in G′. Every time we
encounter a vertex v of the target set, we include v in a set T of discovered
target vertices and we do not continue the search from v by avoiding to place v
within the search queue. Consequently, no vertex of the target set is a non-leaf
node of the constructed search tree. Algorithm 2 shows in detail the considered
modification of a breadth-first search.

Lemma 5.4. Algorithm 2 is correct and runs in O(n + m) time.



114 C. Papadopoulos and A. E. Zisis

Algorithm 3: Detecting whether the neighbors of u protect u

Input : A graph G and a vertex u
Output: True iff u is avoidable in G

1 Let X = Nu and G′ = G − u
2 for x ∈ X do
3 Set S = X \ {x}
4 if Algorithm 2(G′, x, S) is not true then return false

5 return true

Proof. For the correctness, let T be the search tree discovered by the algorithm
when the search starts from x. Observe that the basic concepts of the breadth-
first search are maintained, so that the key properties with the shortest paths
between the vertices of G and the search tree T are preserved. If there is a leaf
vertex v in the constructed tree T such that v ∈ S then the unique path in T
is an S-excluded path in G between x and v, since no vertex of S is a non-leaf
vertex of T . On the other hand, assume that there is an S-excluded path in G
between x and every vertex of S. For every v ∈ S, among such S-excluded paths
between x and v, choose P (v) to be the shortest. Let p(v) be the neighbor of v in
P (v). Clearly x and every vertex p(v) belong to the same connected component
of G. Consider the graph G − S. Notice that every vertex p(v) belongs to the
same connected component with x in G − S, since for otherwise some vertices
of S separate x and a vertex v of S which implies that there is no S-excluded
path in G between x and v in G. Now let Tx be a breadth-first search tree of
G − S that contains x. Then the distance between x and p(v) in Tx corresponds
to the length of their shortest path in G − S. Construct T by attaching every
vertex v of S to be a neighbor of p(v) in Tx. Therefore T is a tree that contains
the shortest S-excluded paths between x and the vertices of S. Regarding the
running time, notice that no additional data structure is required compared to
the classical implementation of the breadth-first search. Hence the running time
of Algorithm 2 is bounded by the breadth-first search algorithm. 	


Therefore we can check whether x protects y by running Algorithm 2 on the
graph G−y with target set S = NG(y)\{x}. The connection to the avoidability
of a vertex, can be seen with the following result.

Lemma 5.5. Let u be a vertex of a graph G = (V,E). Then u is avoidable in
G if and only if x protects u for every vertex x ∈ NG(u).

Theorem 5.3. Listing all avoidable vertices by using Algorithm 3 takes O(n2 +
m2) time.

6 Avoidable Vertices via Contractions

Here we show how to compute all avoidable vertices of a graph G through con-
tractions. Given a graph G = (VG, EG) and a vertex u ∈ VG, we denote by Gu the
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graph obtained from G by contacting every connected component of G−NG[u].
We partition the vertices of Gu − u into (X,C), such that X = NG(u) and C
contains the contracted vertices of G − NG[u]. We denote by Gu(X,C) the con-
tracted graph where (X,C) is the vertex partition with respect to Gu. Observe
that Gu[X ∪ {u}] = G[X ∪ {u}] and Gu[C ∪ {u}] is an independent set.

Observation 6.1. Given a vertex u of G = (V,E), the construction of
Gu(X,C) can be done in O(n + m) time.

Next we show that Gu(X,C) holds all necessary information of important
paths of G with respect to the avoidability of u.

Lemma 6.1. Let u be a vertex of a graph G = (V,E). Then u is avoidable in
G if and only if u is avoidable in Gu(X,C).

Lemma 6.1 implies that we can apply all of our algorithms given in the previ-
ous section in order to recognize an avoidable vertex. Although such an approach
does not lead to faster theoretical time bounds, in practice the contracted graph
has substantial smaller size than the original graph and may lead to practical
running times. We next show that the contracted graph results in an additional
algorithm with different running time.

Let Gu(X,C) be the contracted graph of a vertex u. The filled-contracted
graph, denoted by Hu(X,C), is the graph obtained from Gu(X,C) by adding all
necessary edges in order to make every neighborhood of Ci ∈ C a clique. That
is, for every Ci ∈ C, NHu

(Ci) is a clique. The following proof resembles the
characterization given through minimal triangulations in Lemma 5.1. However
Hu(X,C) is not necessarily a chordal graph, because X � NGu

(C).

Lemma 6.2. A vertex u is avoidable in G if and only if Hu[X] is a clique.

We take advantage of Lemma 6.2 in order to recognize whether u is avoidable.
The naive construction of Hu(X,C) requires O(n3) time, since |X| ≤ n and
|C| ≤ n. Instead of constructing Hu(X,C), we are able to check Hu[X] in an
efficient way through matrix multiplication. To do so, we consider the graph
G′ obtained from Gu(X,C) by removing u and deleting every edge with both
endpoints in X. Observe that the resulting graph G′ is a bipartite graph with
bipartition (X,C), as Gu[C ∪ {u}] is an independent set. It turns out that it
is enough to check whether two vertices of X are in distance two in G′ which
can be encapsulated by the square of its adjacency matrix. Algorithm 4 shows
in details our proposed approach.

Theorem 6.1. Listing all avoidable vertices by using Algorithm 4 takes
O(n1+ω) time.

Proof. We apply Algorithm 4 on each vertex of G. Let us first discuss on the
correctness of Algorithm 4. By Lemma 6.2, it is enough to show that Hu[X] is
a clique if and only if M3[X] has non-zero entries in its non-diagonal positions.
Let G1 and G2 be the two constructed graphs in Algorithm 4. Observe that the
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Algorithm 4: Testing if u is avoidable by using matrix multiplication
Input : A graph G and a vertex u
Output: True iff u is avoidable in G

1 Construct the contracted graph Gu(X,C) of u
2 Let G1 = Gu(X,C) − u
3 Construct the adjacency matrix M1 of G1

4 Let G2 be the bipartite graph obtained from G1 by removing every edge having
both endpoints in X

5 Construct the adjacency matrix M2 of G2

6 Compute the square of M2, i.e., M2
2 = M2 · M2

7 Construct the matrix M3 = M1 + M2
2

8 for x, y ∈ X do
9 if the entry M3[x, y] is zero then return false

10 return true

square of G2, denoted by G2
2, is the graph obtained from the same vertex set of

G2 and two vertices u, v are adjacent in G2
2 if the distance of u and v is at most

two in G2. Thus the matrix M2
2 computed by Algorithm 4 corresponds to the

adjacency matrix of G2
2. Now it is enough to notice that two vertices x, y of X

are adjacent in Hu[X] if and only if xy ∈ E(G1) ∪ E(G2
2). In particular observe

that if x and y have a common neighbor w in G2 then w is a vertex of C since
there is no edge between vertices of X in G2 and u /∈ V (G2). Therefore M3[x, y]
has a non-zero entry if and only if x and y are adjacent in Hu[X].

Regarding the running time, notice that the construction of Gu take linear
time by Observation 6.1. All steps besides the computation of M2

2 can be done in
O(n2) time. The most time-consuming step is the matrix multiplication involved
in computing M2

2 , which can be done in O(nω) time. Hence the total running
time for recognizing all n vertices takes O(n1+ω) time. 	


7 Recognizing Avoidable Edges and Paths

Natural generalizations of avoidable vertices are avoidable edges and avoidable
paths. Here we show how to efficiently recognize an avoidable edge and an avoid-
able path. Recall that the two vertices having degree one in an induced path Pk

on k ≥ 2 vertices are called endpoints. Moreover, the edge obtained after remov-
ing the endpoints from an induced path P4 is called middle edge.

Definition 7.1 (Simplicial and avoidable edge). An edge uv is called sim-
plicial if there is no P4 having uv as a middle edge. An edge uv is called avoid-
able if either uv is simplicial, or every P4 with middle edge uv is contained in
an induced cycle.

Given two vertices x and y of G, we define the following sets of their neighbors:
B(x, y) contains the common neighbors of x and y; i.e., B(x, y) = NG(x)∩NG(y);
Ax contains the private neighbors of x; i.e., Ax = NG(x) \ (B(x, y) ∪ {y}); Ay
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contains the private neighbors of y; i.e., Ay = NG(y) \ (B(x, y) ∪ {x}). Under
this terminology, observe that Ax ∩ Ay = ∅ and NG({x, y}) is partitioned into
the three sets B(x, y), Ax, Ay.

Observation 7.1. An edge xy of G is simplicial if and only if Ax = ∅ or Ay = ∅
or every vertex of Ax is adjacent to every vertex of Ay.

By Observation 7.1, the recognition of a simplicial edge can be achieved in
O(n + m) time: consider the bipartite subgraph H(Ax, Ay) of G[Ax ∪ Ay] which
is obtained by removing every edge having both endpoints in either Ax or Ay.
Then it is enough to check whether H(Ax, Ay) is a complete bipartite graph.

We show that the more general concept of an avoidable edge can be recog-
nized in O(nm) time. For doing so, we will take advantage of Algorithm 2 and
the notion of protecting given in Definition 5.1.

Definition 7.2. An edge xy is protected if there is an (NG[x]∪NG[y])-excluded
path between every vertex of NG(x) and every vertex of NG(y).

We note that if an edge xy is protected then x protects y and y protects x
in accordance to Definition 5.1. However, the reverse is not necessarily true.

Lemma 7.1. Let xy be an edge of G. Then xy is an avoidable edge in G if and
only if xy is a protected edge in G − B(x, y).

Based on Lemma 7.1 and Algorithm 2, we deduce the following running
time for recognizing an avoidable edge. Notice that the stated running time is
comparable to the O(d(u)(n + m))-time algorithm for recognizing an avoidable
vertex u implied by Theorem 5.3.

Theorem 7.1. Recognizing an avoidable edge can be done in O(n · m) time.

Proof. Let xy be an edge of G. We first collect the vertices of B(x, y) in O(n)
time. By Lemma 7.1 we need to check whether xy is protected in H = G−B(x, y).
If xy is simplicial edge then xy is avoidable and, by Observation 7.1, this can be
tested in O(n + m) time. Otherwise, both sets Ax, Ay are non-empty. Without
loss of generality, assume that |Ax| ≤ |Ay|. In order to check if xy is protected,
we run |Ax| times Algorithm 2: for every vertex a ∈ Ax, run Algorithm 2 on
the graph (H − ((Ax \ {a}) ∪ {x, y}) started at vertex a with a target set Ay. In
particular, we test whether there is an Ay-excluded path between a and every
vertex of Ay without considering the vertices of (Ax \ {a}) ∪ {x, y}, that is on
the graph H − ((Ax \ {a}) ∪ {x, y}). If all vertices of Ax have an Ay-excluded
path with all the vertices of Ay on each corresponding graph, then such paths do
not contain any internal vertex from Ax ∪ Ay ∪ {y}. Since NH [x] = Ax ∪ {x, y}
and NH [y] = Ay ∪ {x, y}, we deduce that xy is a protected edge, and thus,
xy is avoidable in G. Regarding the running time, observe that we make at
most n ≥ |Ax| calls to Algorithm 2 on induced subgraphs of G. Therefore, by
Lemma 5.4, the total running time is O(nm). 	
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Let us now show how to extend the recognition of an avoidable edge towards
their common generalization of avoidable induced paths. The internal path of a
non-edgeless induced path P is the path obtained from P without its endpoints
and its vertex set is denoted by in(P ).

Definition 7.3 (Simplicial and avoidable path). An induced path Pk on
k ≥ 2 vertices is called simplicial if there is no induced path on k + 2 vertices
that contains Pk as an internal path. An induced path Pk on k ≥ 2 vertices is
called avoidable if either Pk is simplicial, or every induced path on k+2 vertices
that contains Pk as an internal path is contained in an induced cycle.

Let Pk be an induced path on k vertices of a graph G with k ≥ 3 having
endpoints x and y. We denote by I[Pk] the vertices of NG[in(Pk)] \ {x, y} and
we denote by G + xy the graph obtained from G by adding the edge xy.

Theorem 7.2 Let Pk be an induced path on k ≥ 3 vertices of a graph G having
endpoints x and y. Then Pk is an avoidable path in G if and only if xy is an
avoidable edge in G + xy − I[Pk]. Moreover, testing whether Pk is avoidable can
be done in O(n · m) time.

8 Concluding Remarks

The running times of our algorithms for listing all avoidable vertices are com-
parable to the corresponding ones for listing all simplicial vertices. The notion
of protecting and the relative S-excluded paths seem to tackle further prob-
lems concerning avoidable structures. Our recognition algorithm for avoidable
edges results in an algorithm for listing avoidable edges with running time
O(nm2) which is comparable to the O(m2)-algorithm for listing avoidable ver-
tices. Regarding avoidable paths on k vertices, one needs to detect first with
a naive algorithm a path Pk in O(nk) time and then test whether Pk being
avoidable or not. As observed in [9], such a detection is nearly optimal, since
we can hardly avoid the dependence of the exponent in O(nk). Therefore by
Theorem 7.1 we get an O(nk+1 · m)-algorithm for listing all avoidable paths on
k vertices.

An interesting direction for further research along the avoidable paths is to
reveal problems that can be solved efficiently by taking advantage the list of all
avoidable paths in a graph. For instance, one could compute a minimum length
of a sequence of shifts transforming an induced path Pk to an avoidable induced
path. Gurvich et al. [13] proved that each induced path can be transformed to
an avoidable one by a sequence of shifts, where two induced paths on k vertices
are shifts of each other if their union is an induced path on k + 1 vertices. To
compute efficiently a minimum length of shifts, one could construct a graph H
that encodes all neighboring induced paths on k vertices of G. In particular, the
nodes of H correspond to all induced paths on k vertices in G and two nodes in
H are adjacent if and only if their union is an induced path on k + 1 vertices
in G. Note that H contains O(nk) nodes and can be constructed in nO(k) time.
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Having the list of avoidable paths on k vertices, we can mark the nodes of H
that correspond to such avoidable paths. Now given an induced path Pk on k
vertices in G we may ask the shortest path in H from the node that corresponds
to Pk towards a marked node that corresponds to an avoidable path. Such a path
always exists from the results of [13] and can be computed in time linear in the
size of H. Therefore, for fixed k, our algorithm computes a minimum length of
sequence of shifts in polynomial time answering an open question given in [13].
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Abstract. We study Klee’s measure problem — computing the volume of
the union of n axis-parallel hyperrectangles in R

d — in the oblivious RAM
(ORAM) setting. For this, we modify Chan’s algorithm [12] to guarantee
memory access patterns and control flow independent of the input; this
makes the resulting algorithm applicable to privacy-preserving computa-
tion over outsourced data and (secure) multi-party computation.

For d = 2, we develop an oblivious version of Chan’s algorithm that
runs in expected O(n log5/3 n) time for perfect security or O(n log3/2 n)
time for computational security, thus improving over optimal general
transformations. For d ≥ 3, we obtain an oblivious version with perfect
security while maintaining the O(nd/2) runtime, i. e., without any over-
head.

Generalizing our approach, we derive a technique to transform divide-
and-conquer algorithms that rely on linear-scan processing into oblivious
counterparts. As such, our results are of independent interest for geomet-
ric divide-and-conquer algorithms that maintain an order over the input.
We apply our technique to two such algorithms and obtain efficient obliv-
ious counterparts of algorithms for inversion counting and computing a
closest pair in two dimensions.

Keywords: Klee’s measure problem · Oblivious RAM · Data-oblivious
algorithms · Data-oblivious divide-and-conquer algorithms

1 Introduction

First introduced by Klee [20] in 1977, Klee’s measure problem is a well-known
problem in computational geometry:

Given a set B of n axis-parallel hyperrectangles (for short: boxes) in R
d,

compute ‖
⋃

(B)‖. Here, ‖·‖ is the d-dimensional volume of a (measurable)
subset of Rd.

On the theoretical side, the problem is related to other geometric problems,
e. g., the depth and coverage problems [12]. There has been a series of works
improving the upper bounds for Klee’s measure problem [11,12,16,23]. The cur-
rently best runtime of O(n log n + nd/2) for any (fixed) number d of dimensions
is obtained by Chan’s algorithm [12].

A special case of Klee’s measure problem, computing the so-called hyper-
volume indicator, is used in, e. g., evaluating multi-objective optimizations [19].
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For the hypervolume indicator, the boxes are restricted to have a common lower
bound in all dimensions [12,19]. For this and other special cases, faster algo-
rithms than for the general problem are known [12].

Oblivious Algorithms. We design a data-oblivious (for short: oblivious) algo-
rithm for Klee’s measure problem. In the random access machine (RAM) con-
text, the notion of (data-)obliviousness was introduced by Goldreich and Ostro-
vsky [17]. Informally, the requirement is that the probe sequence, i. e., the
sequence of memory operations and memory access locations, must be inde-
pendent of the input. This guarantees that no information about the input can
be derived from observing the memory access patterns. Oblivious algorithms —
in combination with encryption — can be used to perform privacy-preserving
computation over outsourced data. Additionally, oblivious algorithms can be
transformed into efficient protocols for multi-party computation [15,25].

We distinguish two notions of obliviousness: Let x and y be two inputs of
equal length n. Then the probe sequences for x and y must be identically dis-
tributed (perfect security) or indistinguishable by any polynomial-time algorithm
except for negligible probability in n (computational security).1 In line with stan-
dard assumptions for oblivious algorithms [6,15], we include the control flow in
the probe sequence. Access to a constant number of private memory cells (regis-
ters) as well as the memory contents are not considered to be part of the probe
sequence (since we may assume that the memory is encrypted [17]).

As the underlying model of computation, we assume the word RAM model
(in line with standard assumptions for oblivious algorithms). However, we note
that our results with perfect security also hold in the real RAM model usu-
ally assumed in computational geometry. We use oblivious sorting as a building
block. There are oblivious sorting algorithms with O(n log n) runtime and perfect
security, e. g., due to asymptotically optimal sorting networks [1].

In recent years, there has been a lot of progress regarding oblivious algo-
rithms. It is known that — in general — transforming a RAM program into an
oblivious program incurs an Ω(log N) (multiplicative) overhead [17,21] (where N
is the space used by the program). On the constructive side, there is an ORAM
construction matching this lower bound [4]. This provides — for programs with
at least linear runtime — a black-box transformation to achieve obliviousness
with only a logarithmic overhead in runtime. Even with such general transforma-
tions, there are still some limitations: Optimal general ORAM transformations
currently entail high constant runtime factors that make them unsuitable for
practical application [4]. Additionally, all known optimal transformations only
satisfy the weaker requirement of computational security [7]. The state-of-the-
art general transformation with perfect security is due to Chan et al. [9] and
achieves a runtime overhead of O(log3 N/log log N).

To address these issues and overcome the Ω(log n) lower bound associated
with the general transformation, oblivious algorithms for specific problems have
1 See the definitions by Asharov et al. [3, Section 3] for a more formal introduction of

oblivious security applicable to oblivious algorithms.
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been proposed: examples include sorting algorithms [2,22], graph algorithms [6],
and some algorithms for fundamental geometric problems [15]. To the best of
our knowledge, oblivious algorithms for Klee’s measure problem and its variants
have not been considered in the literature so far.

Algorithm 1. Chan’s RAM algorithm [12] to compute Klee’s measure for d ≥ 2.
The coordinates of the boxes B are sorted in a pre-processing step.
1: function Measure(B, Γ )
2: if |B| ≤ some suitably chosen constant then
3: return ‖Γ \

⋃
(B)‖ (computed using a brute-force approach) � O(d)

4: Simplify(B, Γ ) � O(d · n)
5: 〈ΓL, ΓR〉 ← Cut(B, Γ ) � O(d · n)
6: BL ← all b ∈ B intersecting ΓL; BR ← all b ∈ B intersecting ΓR � O(d · n)
7: return Measure(BL, ΓL) + Measure(BR, ΓR)

2 Warm-Up: Shaving Off a log log n Factor

As a warm-up, we first show how to improve over general and naive transfor-
mations of Chan’s algorithm for d = 2 by a O(log log n) factor in runtime. We
also introduce the representation of the boxes used throughout the paper. In
Sect. 3, we build on this approach when showing how to improve the runtime for
d = 2 to our main result. For completeness, we first describe Chan’s algorithm
as presented in the original paper [12]. We will also briefly sketch how to obtain
an oblivious modification for d ≥ 3.

2.1 Original Algorithm

The input for Klee’s measure problem is a set B of n axis-parallel hyperrectan-
gles. Chan’s algorithm, shown in Algorithm 1, first computes the measure m of
the complement of

⋃
(B) relative to some box Γ (domain) containing all boxes

B. For the final result, m is subtracted from the measure of Γ . The algorithm to
compute m is — at its core — a simple divide-and-conquer algorithm with two
helper functions: Simplify and Cut. In each call, a set of boxes intersecting
the current domain Γ is processed. Throughout the algorithm, the coordinates
of the boxes B are maintained in sorted order for each dimension.

The main idea of Simplify is to remove the area covered by the boxes
D ⊆ B that cover the domain Γ in all but one dimension: For a given dimension
i ∈ {1, . . . , d}, let Di denote the boxes covering Γ in all but dimension i. The
simplification can be performed by first computing the union of the boxes Di

and then adjusting the xi-coordinates of all other boxes in B so that the volume
of all connected components of

⋃
(Di) is reduced to 0. Since the coordinates are

sorted in each dimension, this simplification can be realized with a linear scan
in each dimension. To maintain the measure of the complement, the extent of Γ
in dimension i (height) is reduced accordingly, i. e., by the height of

⋃
(Di).
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Intuitively, the simplification reduces the problem complexity by reducing the
number of sub-domains a box intersects with. Consider the problem for d = 2:
When cutting the domain Γ for the recursion, the simplification guarantees that
— on every level of the recursion — each box only has to be considered in a
constant number of sub-domains; this is since the area covered by the box is
removed from the covered sub-domains in-between.

For the Cut-step, a weighted median is computed that splits Γ into two
sub-domains ΓL and ΓR. Like in k-d-tree constructions, the algorithm cycles
through the dimensions in a round-robin manner. In the analysis, Chan shows
that cutting reduces the weight of each sub-domain by a factor of 22/d. Since
the weight is related to the number of boxes by a constant factor (depending
on d), this also provides an upper bound for the number of boxes in each sub-
domain. The runtime for Algorithm 1 is thus bounded by the recurrence T (n) =
2 · T (n / 22/d) + O(n). With the time O(n log n) for pre-sorting the coordinates
this implies a runtime of O(nd/2) for d ≥ 3 and a runtime of O(n log n) for d = 2
overall.

2.2 High Dimensions

Before presenting an oblivious modification of Chan’s algorithm for d = 2, we will
briefly consider higher dimensions d ≥ 3. Here, we note that Chan’s algorithm
can easily be transformed into an oblivious algorithm while maintaining the
runtime complexity. This leaves the planar case d = 2 as the “hard case”.

To see why the case d ≥ 3 is actually easier, consider again the recurrence
bounding the runtime: As we will discuss in Sect. 2.5, the main difficulty for
the oblivious algorithm is to maintain the sorted coordinates for an efficient
simplification. If we solve this naively by sorting, we have costs of O(n log n)
instead of O(n) in each recursive call. This results in a runtime bounded by the
recurrence T (n) = 2·T (n / 22/d)+O(n log n). A naive transformations thus leads
to a runtime of T (n) ∈ O(n log2 n) for d = 2, yet for d ≥ 3 this immediately
solves to T (n) ∈ O(nd/2), maintaining the runtime of the original algorithm.

There still remain challenges for an oblivious implementation of Chan’s algo-
rithm for d ≥ 3. We will briefly sketch how to address them: For the representa-
tion, it suffices to store the individual boxes with their bounds in each dimension;
the boxes can be duplicated and sorted as needed. An oblivious implementation
also needs to ensure that the input size for the recursive calls does only depend
on the problem size n, otherwise the runtimes for the recursive calls might leak
information about the input. For this, we note that the recurrence given by
Chan already bounds the number of boxes in the recursive calls. By carefully
padding the input with additional (empty) boxes we can always recursively call
with the worst-case size. Splitting the n boxes for the recursive calls can be done
by duplication and oblivious routing in O(n log n) time [18].

2.3 Oblivious Box Representation

For the planar case d = 2, Chan’s algorithm can be simplified to only cutting the
domain in the x-dimension [12]. Consequently, simplification is only performed
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Fig. 1. Simplification of a sub-domain Γ with 5 boxes to remove the area covered by
the hatched slabs. The result of the simplification is shown on the right.

for the y-dimension. We say a box b covers the domain Γ iff b spans over Γ in
the x-dimension; in this case we call b a slab. For d = 2 the cutting can also
be performed without weights, balancing the number of vertices in each sub-
domain. Note that since the initial domain contains all vertices and cuts are
only performed in the x-dimension, we only need to check the x-dimension to
see if a vertex is contained in a given sub-domain Γ .

We represent each box by its four vertices. The sequence of vertices is not
maintained in a fixed order; instead, we explicitly sort the sequence when needed.
Since we need information about the horizontal extent of the boxes when pro-
cessing the vertices, we keep the full x-interval in each vertex. We also store the
relative location in both dimensions, i. e., whether the vertex is a lower (lo) or
upper (hi) vertex. So overall, each vertex is represented by a tuple

b ∈ R
2 × {lo,hi}

︸ ︷︷ ︸
x-interval

×R × {lo,hi}
︸ ︷︷ ︸
y-coordinate

.

For a vertex b, we write bx, by to denote the coordinates and b[x] to denote the
x-interval. We write box(b) to refer to the box the vertex b (partially) represents.

Since our algorithms for the planar case are based on processing the vertices
in y-order, we simplify terminology by referring to the lower y-vertices as start-
and to the upper y-vertices as endpoints. Similarly, we will refer to the lower x-
vertices as left and to the upper x-vertices as right vertices. Storing the x-interval
in each vertex allows us to represent the box by either both left or both right
vertices. We will leverage this when cutting the box at sub-domain boundaries.

2.4 Simplification in One Sub-domain

For an oblivious modification of Chan’s algorithm we need a way to obliviously
simplify a given domain Γ , i. e., to remove the area covered by the slabs D. To do
so, we reverse the order of cutting and simplification: We remove the area covered
by slabs in a sub-domain (while maintaining the measure of the complement)
before recursing. This exchange of the two algorithmic steps means that in each
recursive call, the number of boxes (and vertices) remains unchanged — an
important requirement for not leaking any information about the input.

For the simplification, Chan’s algorithm first computes the connected com-
ponents of

⋃
(D) and then adjusts the coordinates of the remaining boxes in a
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Algorithm 2. Algorithm to remove the area covered by slabs D in Γ . The
return value is the combined height of all connected components of

⋃
(D).

1: procedure OblSimplify(B, Γ )
2: ylo ← undef; c ← 0; h ← 0 � y-anchor; overlap; height
3: for each vertex b ∈ B do � in y-order
4: if box(b) covers Γ then Update(〈ylo, c, h〉, b) � update the state

5: if b is in Γ then Adjust(〈ylo, c, h〉, b) � adjust the vertex

6: return h
7: procedure Update(〈ylo, c, h〉, b)
8: if b is a startpoint ∧ c = 0 then ylo ← by � start of a component

9: if b is a startpoint then c ← c + 1 else c ← c − 1

10: if b is an endpoint ∧ c = 0 then h ← h + (by − ylo) � end of the component

11: procedure Adjust(〈ylo, c, h〉, b)
12: Δ ← h
13: if c > 0 then Δ ← Δ + (by − ylo) � in the component

14: by ← by − Δ

synchronized traversal. Unfortunately, such traversal is infeasible in the oblivious
context since doing so might leak information about the coordinates’ distribu-
tion. To address this, we redesign the subroutine to perform a single linear scan:
The vertices B are processed in y-order (start- before endpoints); each vertex
b ∈ B contained in the sub-domain Γ (bx ∈ Γ[x]) is adjusted to remove the
area covered by the slabs D. Specifically, by is reduced by the height of

⋃
(D)

below by.
The resulting Algorithm 2 is the key ingredient to realize the subroutine

Simplify; we can maintain the measure of the complement by subtracting the
obtained value h from the height of Γ . An example of a simplification is shown
in Fig. 1. It is essential that the algorithm performs exactly one linear scan over
the entire input — processing (and potentially modifying) each vertex with a
constant number of operations — and uses only a constant amount of space
for the state 〈ylo, c, h〉. This immediately implies that this algorithm can be
implemented as a linear time, oblivious program.

Regarding the correctness of OblSimplify for a set B of vertices and a
domain Γ , we let BΓ := {box(b) | b ∈ B ∧ bx ∈ Γ[x]} be the boxes represented by
vertices in Γ and let DΓ := {box(b) | b ∈ B ∧ b[x] ⊇ Γ[x]} be the boxes covering
Γ . Let B′

Γ be the boxes BΓ after running the algorithm. By considering the
connected components of DΓ when projected on the y-axis we can easily prove:

Lemma 1. Given a sequence B of vertices sorted by their y-coordinate and a
domain Γ , OblSimplify adjusts the y-coordinates and returns a value h so that

∥
∥
∥
⋃

(B′
Γ )

∥
∥
∥ =

∥
∥
∥
⋃

(BΓ ) \
⋃

(DΓ )
∥
∥
∥ and

∥
∥
∥
⋃

(DΓ )
∥
∥
∥ = h · width(Γ )

where all measures are restricted to the domain Γ .
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There are two properties of this simple algorithm that are worth pointing out
as they are required for the correctness: Firstly note that, for a slab b ∈ D, it
does not matter whether we process the left, the right, or both pairs of vertices.
Processing both pairs temporarily increases the overlap, but — since both start-
and both endpoints have the same y-coordinate — effects neither the anchor
point ylo nor the height h. This property ensures the correctness of the complete
algorithm since we process both the left and the right vertices of a box before
eventually separating them by cutting at a sub-domain boundary.

Secondly, it may be that we adjust a vertex of a slab b ∈ D in Adjust, i. e.,
that we adjust a box that previously caused an update in Update. In this case
the height of b is reduced to 0. This implies that changes to ylo and c due to
the vertices of b in any subsequent invocation of OblSimplify have no effect;
for the analysis we can thus assume that the vertices b with bx ∈ Γ[x] ⊆ b[x] are
removed. We stress that no vertices are ever actually removed.

2.5 Oblivious Algorithm

While OblSimplify realizes an oblivious simplification, it still requires the ver-
tices to be sorted by their y-coordinate. This is necessary in each recursive call
of the divide-and-conquer algorithm. Chan’s RAM algorithm pre-sorts the coor-
dinates in each dimension and maintains these orders, e. g., with a doubly-linked
list over the boxes for each dimension. This is possible since both Simplify and
Cut do not effect the relative order. For d = 2, another option would be to
stably partition the vertices for the recursive calls.

Neither can be done efficiently in the ORAM model: The transformation
lower bound mentioned in the introduction implies a Ω(log n) lower bound on
random access to n elements, barring us from efficiently maintaining links. This
makes a direct implementation of Chan’s approach inefficient. Unfortunately,
there also is an Ω(n log n) lower bound on stable partitioning n elements (assum-
ing indivisibility) [22]; this implies that — unlike in the RAM model — stable
partitioning is no faster than sorting.

As we will show in Sect. 4, this challenge is not unique to this algorithm and
in fact arises for many geometric divide-and-conquer algorithms. Our approach
— instead of maintaining the order — is to re-sort the vertices by y-coordinate in
each recursive call. To make up for at least some part of this runtime overhead,
we increase the number of recursive calls from 2 to m (a value to be determined
below). Algorithm 3 shows our general outline for the combined cutting and
simplification with m ≥ 2 recursive calls. Remember that in contrast to Chan’s
algorithm, we simplify immediately after cutting.

To determine the boundaries of the m sub-domains Γ1, . . . , Γm, we first sort
the vertices by their x-coordinate. We ensure that both left vertices of a box
always end up in the same sub-domain, same for the right vertices. To avoid
leaking information about the input via the runtime of the recursive calls, the
number of vertices in each sub-domain must only depend on n: Since there may
be several vertices with identical x- and y-coordinates, we assign an additional
unique identifier to each box. By establishing a total order this allows us to ensure
an even distribution of the n := |B| vertices to the m sub-domains, independent
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Algorithm 3. Procedure for cutting the given vertices B into m sub-domains
and simplifying each sub-domain.
1: procedure CutAndSimplify(B, Γ )
2: sort B by x-coordinate � O(n log n)

3: det. sub-domains Γ1, . . . , Γm (boundaries: B[
 i·|B|
m

�]
x

for 1 ≤ i < m) � O(m)
4: sort B by y-coordinate � O(n log n)
5: for each sub-domain Γi (simultaneously) do � O(n · m)
6: hi ← OblSimplify(B, Γi)
7: height(Γi) ← height(Γi) − hi

8: sort B by x-coordinate � O(n log n)
9: return 〈Γ1, . . . , Γm〉

of the input configuration. The value for m only depends on n and we only
access the sub-domain representations in a non–input-dependent manner; thus
we can store the sub-domain representations in Θ(m) successive memory cells
and access them directly without violating the oblivious security requirement.

For the planar case d = 2 we consider, it suffices to partition the vertices,
there is no need to duplicate or explicitly remove vertices. This follows from the
properties of Algorithm 2: The initial domain Γ is recursively divided into sub-
domains. Any box b can — on any level of the recursion — partially cover no
more than two sub-domains, one for each of its vertical sides. The sub-domains
in-between are fully covered, and through the simplification the area covered by
b is removed from these sub-domains. If a left or right pair of vertices coincides
with the bounds of a sub-domain (and thus no longer forms a left or right box),
that box is implicitly removed by reducing its height to 0.

After determining the sub-domains, we can sort the vertices by their y-
coordinates to apply OblSimplify for simplification. Afterwards, we reduce
the height of Γi by the height hi removed in that sub-domain. Sequentially pro-
cessing the sub-domains might reduce the height of a slab covering the next
sub-domain, thus resulting in an incorrect simplification. To avoid this, we can
perform all simplifications simultaneously: We process all vertices b ∈ B, keeping
a separate state for each of the m sub-domains. Again, we can store the states in
Θ(m) successive memory cells. In each iteration, we process the current vertex
b for each sub-domain and keep track of the single adjustment to the vertex
(which we can apply before processing the next vertex). The final sorting step
partitions the vertices according to their sub-domain for the recursive calls.

To balance the costs of sorting and simplifying, we set m := max(
log2 n�, 2).
The recursion tree then has O(logm n) = O(log n/log log n) height; this yields
O(n log2 n/log log n) total runtime. Not only does this improve over an optimal
general transformation by a O(log log n) factor, our construction also guarantees
(deterministic) identical memory access patterns, implying perfect security.

3 Improved Processing Using Oblivious Data Structures

When processing the m sub-domains individually, the algorithm presented in the
previous section spends considerable time processing boxes not intersecting the
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current sub-domain and repeatedly adjusting vertices in different sub-domains
to remove the area covered by the same slab. Here, we show how to avoid both
of these, resulting in further improvement over the general transformation.

For our improved algorithm, we apply Algorithm 2 to m slabs simultaneously
in a hierarchical manner. As a prerequisite, we first note on how to construct
the necessary data structures with perfect and computational security. We then
describe a novel, tree-based data structure; using this data structure we construct
the improved algorithm and state its runtime and security properties.

3.1 Oblivious Data Structures

The conceptual idea of our oblivious data structure is to model the recursion tree
of a divide-and-conquer algorithm up to a certain height. For this, we first sketch
how to construct oblivious static binary trees from known oblivious primitives.
We then describe how to use the static binary trees to model the divide-and-
conquer recursion tree; for this, we will explicitly state some necessary conditions.

Oblivious Static Binary Tree. As observed by Wang et al. [27], it is possible
to build efficient oblivious data structures from position-based ORAM construc-
tions. Position-based ORAMs are often used as a building block to construct a
“full” ORAM [7,24,26] since they are efficient in practice [24,26] and suitable
to build ORAM constructions with perfect security [7,9].

To access the elements efficiently, position-based ORAMs assign a (tempo-
rary) label to each element. Accessing an element reveals its label, so to hide
the access pattern it is necessary to assign a new label every time an element is
accessed. The labels for all elements are maintained in a position map which — in
general — does not fit in the private memory. Recursive position-based ORAM
schemes address this by recursively storing the position map in a (smaller)
position-based ORAM until it fits in private memory [7,9,24,26]. Depending
on the construction, this recursion usually leads to an additional logarithmic
runtime overhead [7,24,26]. For data structures where the access pattern graph
exhibits some degree of predictability the recursion (with the associated over-
head) is not necessary [27]. An example are rooted trees with a bounded degree;
here, the labels of the O(1) direct successors can be encoded in the current
element.

We build on this insight to construct oblivious static binary trees with perfect
security. Wang et al. use Path ORAM [24] to represent oblivious binary trees [27]:
Their representation allows traversing a rooted path in a (static) binary tree with
N nodes and height h in O(h log N) time. However, due to the constraints of
the employed ORAM construction, they only achieve the (weaker) statistical
security and require a super-constant number of private memory cells [24].2 To

2 Most statistically-secure ORAM constructions incur a O(log n) time overhead to
achieve a security failure probability negligible in n [9]. This excludes many ORAM
construction with good performance in practice [24,26] for our range of parameters.



130 T. Thießen and J. Vahrenhold

achieve perfect security, we apply their technique to a position-based ORAM
construction with perfect security, e. g., the construction of Chan et al. [7].3

In conclusion, by leveraging the technique of Wang et al. [27], we can obtain
perfectly-secure oblivious static binary tree data structures. The runtime prop-
erties follow from the ORAM construction of Chan et al. [7].

Lemma 2. For a static binary tree T with N nodes and height h, both public
parameters, we can construct an oblivious representation with perfect security.
Then T requires O(N) space, O(1) private memory cells, and can be constructed
in O(N log N) time. A rooted path in T can be traversed in expected (over the
random choices) and amortized (over the path traversals) O(h log2 N) time.

We will refer to T as an oblivious binary tree. Note that for complete binary
trees h = 
log2(N + 1)�, thus N is effectively the only public parameter.

By relaxing the security requirement to computational security (and assum-
ing the existence of a family of pseudorandom functions with negligible security
failure probability), the query complexity stated in Lemma 2 can be reduced
by a O(log N) factor. For this, the tree nodes are stored as elements in an
asymptotically optimal ORAM construction, e. g., OptORAMa [4]. This results
in an amortized O(h log N) time for traversing a rooted path. As will become
clear later, we have (for a constant c > 1) some small number N ∈ Θ(2log

1/c n)
of nodes and a large number T ∈ O(nO(1)) of accesses. For these parameters,
we explicitly consider the parameter λ guarding the security failure probability
for OptORAMa: Choosing λ ∈ Θ(n), we can apply a theorem due to Asharov
et al. [4, Theorem 7.2] and simultaneously achieve an (amortized) O(h log N)
runtime and a negligible security failure probability.

Oblivious Processing Tree. We use the oblivious binary tree as a tool to
model the recursion tree of what we will refer to as a scan-based divide-and-
conquer algorithm: an algorithm that — in each invocation — performs a linear
processing scan over the input using O(1) additional space and then stably
partitions the input in preparation for some (constant) number a of recursive
calls. One example for such an algorithm is the closest-pair algorithm of Bentley
and Shamos [5] (see Sect. 4). Overall, these restrictions imply that the algorithm
is order-preserving, i. e., the processing order remains the same in all recursive
calls.

The challenge when obliviously implementing a scan-based divide-and-
conquer algorithm is the Ω(n log n) lower bound for stably partitioning n ele-
ments [22]. Thus, although conceptually simple, a naive oblivious computation
of such a divide-and-conquer algorithm up to some depth h would incur a run-
time of O(h · n log n) for a given input of size n. To avoid this, we explicitly
construct an oblivious tree T where the nodes correspond to the recursive calls

3 The state-of-the-art perfectly-secure ORAM construction [8] further improves the
runtime by a O(log log n) factor; this improvement is due to a reduction in the
recursion depth and therefore does not benefit our application.
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of the algorithm, i. e., the nodes of the recursion tree. Each node v ∈ T stores the
state of the processing step (state(v)) in the corresponding recursive call as well
as routing information, i. e., information on how the elements are partitioned
for the recursive calls. We then individually trace each element e through the
tree, guided by the routing information. For each node v on the path we update
state(v) by simulating the processing step with e as the current element.

This approach correctly simulates the recursion since we require the process-
ing step to be linear and sequence of elements processed in each node corresponds
to the sequence of elements processed in the corresponding recursive call. Since
we traverse paths of length h ∈ O(log m) in a tree with N ∈ O(m) nodes, the
oblivious binary trees described above yield:

Lemma 3. Using an oblivious binary tree we can obliviously simulate a scan-
based divide-and-conquer algorithm up to depth h, resulting in m := ah leaves.
The processing steps can be applied to n ∈ Ω(m) ∩ O(2log

c m) elements, for
c > 1, in expected O(n log3 m) time for perfect security or O(n log2 m) time for
computational security, O(m) additional space, and O(1) private memory cells.

3.2 Simplification in m Sub-domains

We now show how to simplify the m given sub-domains by processing all vertices
and sub-domains simultaneously in a single scan. Rather than concentrating on
the geometric details, we will derive this from Algorithm 2 in a general way by
applying the above processing technique. We use an oblivious binary tree with m
leaves as described above: This recreates the recursion structure of the original
algorithm (except we simplify before recursing). As in Sect. 2 the sub-domains
Γ1, . . . , Γm are determined in advance by sorting the vertices.

Each of the m sub-domains Γi corresponds to the i-th leftmost leaf �i in the
oblivious binary tree T . Then Γ�i = Γi is the domain of the leaf �i; the domain
Γv of an inner node v is exactly the union of sub-domains below v. To efficiently
traverse T , we annotate each inner node v with their left and right sub-domains
ΓL = Γleft(v) and ΓR = Γright(v). This allows us to easily identify whether a
vertex is contained in or a box covers the left or right sub-domain.

The algorithm is shown in Algorithm 4; see Fig. 2 for an example. To simulate
the recursion of the original algorithm, we trace each vertex b through the explicit
recursion tree T , adjusting b to remove the area covered by slabs. To simplify
the left and right sub-domains before recursing, we keep two separate states per
inner node v of the binary recursion tree: sL for simplification in the left and
sR for simplification in the right sub-domain of v. After processing all vertices
it remains to determine the combined height hi of the areas removed in each
sub-domain Γi. For this, we can traverse the paths to each leaf �i and sum the
heights h in the respective states (in sL for Γ�i ⊆ ΓL and in sR for Γ�i ⊆ ΓR).

We now state the correctness of OblCombinedSimplify. For each i ∈
{1, . . . , m}, let Bi := {box(b) | b ∈ B ∧ bx ∈ (Γi)[x]} be the set of boxes repre-
sented by the vertices in Γi and let Di := {box(b) | b ∈ B ∧ b[x] ⊇ (Γi)[x]} be the
slabs over Γi. Let each B′

i be the boxes Bi after running the algorithm:
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Fig. 2. Simplification of Γ1, Γ2, Γ3, Γ4 with 20 vertices. The boundaries are drawn in
gray and the vertices are indicated by the marks. Consider processing the vertex b: In
the root, b updates the state sR for the domain Γ3 ∪ Γ4 and is adjusted according to
the initial state sL. Then b is processed in the left successor where b updates the state
sR for Γ2 and is adjusted according to sL for Γ1; this results in the processed b′.

Algorithm 4. Algorithm to simplify in all sub-domains Γi simultaneously. The
procedures Update and Adjust correspond to the sub-routines in Algorithm
2.
1: procedure OblCombinedSimplify(B, Γ1, . . . , Γm)
2: T ← (complete) oblivious binary tree with m leaves � recursion tree
3: for each vertex b ∈ B do � in y-order
4: v ← root(T )
5: do
6: ΓL ← domain for left(v); ΓR ← domain for right(v)
7: 〈sL, sR〉 ← state(v) � read the simplification states
8: if box(b) covers ΓL then Update(sL, b) � update the states for

covered sub-domains9: if box(b) covers ΓR then Update(sR, b)

10: if b is in ΓL then Adjust(b, sL); v ← left(v) � adjust according to
the respective state11: if b is in ΓR then Adjust(b, sR); v ← right(v)

12: state(v) ← 〈sL, sR〉 � write back the simplification states
13: while v is not a leaf
14: return heights 〈h1, . . . , hm〉 of the boxes removed from each sub-domain

Lemma 4. Given a sequence B of vertices sorted by their y-coordinate and
m disjoint sub-domains Γ1, . . . , Γm, OblCombinedSimplify adjusts the y-
coordinates and returns values h1, . . . , hm so that

∥
∥
∥
⋃

(B′
i)

∥
∥
∥ =

∥
∥
∥
⋃

(Bi) \
⋃

(Di)
∥
∥
∥ and

∥
∥
∥
⋃

(Di)
∥
∥
∥ = hi · width(Γi)

for each i ≤ m where all measures are restricted to the respective domain Γi.

Proof (sketch). Let B̂ be a sorted sequence of vertices and B̂′ those vertices
adjusted to remove the area covered by some slabs D̂. For the sub-procedures
Update and Adjust we first show that orderly processing Update(s, b) for the
vertices b ∈ B̂′ maintains the height of

⋃
({box(b) | b ∈ B̂}) \

⋃
(D̂) in the state s.

We then proceed by induction over the levels of T , starting with the root: We
maintain the invariant that, for any node v ∈ T and any vertex b ∈ Γv, bv

y =
by −h≤by (

⋃
(
⋂

Γi⊆Γv
Di)) (∗). Here, bv

y is defined to be the y-coordinate of b before
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the iteration of the do-while loop for v and h≤y(S) is the height of S≤y := S ∩
R×(−∞, y], i. e., the one-dimensional measure of S≤y when projected onto the y-
axis. This invariant together with the above properties of Update and Adjust
implies that, for any v ∈ T with direct successor w, Update(s, ·) maintains the
height of

⋃
(Dw) \

⋃
(Dv) in the state s for the sub-domain Γw (�).

The first equality of Lemma 4 then follows from (∗) for the respective leaf v = �i

by considering the bounds of the connected components of
⋃

(B′
i). For the second

equality, consider the state s corresponding to each non-root node w (with parent
v) after processing the last vertex b: Clearly s.c = 0 and s.h = height(

⋃
(Dw)) −

height(
⋃

(Dv)) according to (�). By summing the heights s.h on the path to each
leaf �i we obtain hi = height(

⋃
(Di)). ��

With Lemma 3 and since the inner loop in Lines 6 to 12 only accesses a
constant number memory cells in the current node, the following properties
hold:

Lemma 5. OblCombinedSimplify obliviously simplifies m ∈ Ω(2log
1/c n) ∩

O(n) sub-domains, for c > 1, with a total of n vertices in expected O(n log3 m)
time for perfect security or O(n log2 m) time for computational security, O(m)
space, and O(1) private memory cells.

3.3 Putting Everything Together

To obtain a faster algorithm for Klee’s measure problem, we replace the one-
slab-at-a-time simplification (Algorithm 2) with the multi-slab simplification
(Algorithm 4) in Algorithm 3. As before, the returned values hi can be used
to update the heights of the sub-domains Γi.

Since adjusting the y-coordinates for m sub-domains can be done in expected
O(n logc m) time (with c = 2 for computational security and c = 3 for per-
fect security), we can balance the cost of sorting and updating the coordinates
by choosing m := max(2�log1/c

2 n�, 2). This leads to a recursion tree height of
O(logm n) = O(log1−1/c n) for the complete algorithm. With the time required
for sorting in each recursive call this yields a O(n log2−1/c n) runtime overall.

The security of Algorithm 4 immediately follows from the security of the
oblivious binary tree T : The algorithm repeatedly traverses rooted paths in T ,
performing a constant number of operations for each node. Algorithm 3 is secure
due to the security of oblivious sorting and the fact that the sub-domain access
is independent of the input. With a total order over the boxes, the input sizes
for the recursive calls solely depend on the problem size n. The base case for
O(1) boxes with runtime O(1) can trivially be transformed into an oblivious
algorithm. Since each recursive call processes the boxes in an oblivious manner,
the obliviousness of the full divide-and-conquer algorithm follows.

Theorem 1. There is an oblivious algorithm solving Klee’s measure problem for
d = 2 in expected O(n log5/3 n) time for perfect security or O(n log3/2 n) time for
computational security, O(n) additional space, and O(1) private memory cells.
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4 General Technique

Above we showed how to use the oblivious binary tree to construct an efficient
algorithm for Klee’s measure problem. The technique is not specific to Chan’s
algorithm and can be applied to other geometric divide-and-conquer algorithms
as well. In this section, we will outline the necessary conditions for the application
of our technique. As an illustration, we will also sketch the application to two
other problems, namely inversion counting and the closest-pair problem for d =
2. For both problems we will focus on the linear processing step; the runtime —
both for perfect and computational security — then immediately follows as for
Klee’s measure problem above.

Our technique for transforming divide-and-conquer algorithms into oblivious
counterparts requires that the following conditions are met:

(a) The input sizes for the recursive calls must only depend on the problem size.
(b) Each element must be contained in the input to at most one recursive call.
(c) Within each recursive call, the elements are processed with a linear scan

using O(1) additional memory cells.

The first condition (a) is necessary for security, otherwise the algorithm might
leak information via the runtime of the recursive calls. It is often possible to
accommodate small size variations without affecting the runtime by padding the
inputs with dummy elements. The conditions (b) and (c) are necessary to indi-
vidually trace the elements through the recursion tree. This individual tracing
also limits the information that can be passed to the recursive calls.

Inversion Counting. The inversion counting problem — for a sequence A
of length n — is to determine the number of indices i, j so that i < j and
A[i] > A[j]. In the RAM model, this problem can be solved in O(n log n) time
by an augmented merge-sort algorithm [14, Exercise 2-4 d].4 Since merging is a
linear-time operation in the RAM model, but has an Ω(n log n) lower bound in
the oblivious RAM model (assuming indivisibility) [22], a direct implementation
of this approach results in an O(n log2 n) time oblivious algorithm.

To improve over this, we interpret this algorithm as scan-based divide-and-
conquer algorithm: Since the RAM algorithm is a divide-and-conquer algorithm,
it remains to describe how to obliviously count inversion pairs using linear scans.
For this, note that it is possible to separate the merging and counting steps by
marking each element. Counting inversions can then be done in a linear scan by
counting the elements from the second half and adding the current count to the
number of inversions for every encountered element from the first half.

4 In the word RAM model of computation there is an O(n log1/2 n) time algorithm
due to Chan and Pătraşcu [13]. For computational security, it is thus also possi-
ble to obtain an O(n log3/2 n) time oblivious algorithm through optimal oblivious
transformation.
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For more efficient processing we split the input into m parts and recurse
for each part. We then annotate each element with its part, sort the elements,
and count inversions between the m parts using an oblivious binary tree: The
annotated parts identify the leafs and each node has a counter for the elements
belonging to a leaf in the right subtree. For the final number of inversions we
sum the inversions counted in all nodes and in the recursive calls.

Closest Pair. For the planar closest-pair problem, we are given a set of n
points P ⊂ R

2 and want to determine a pair p, q ∈ P with minimal distance
according to some metric d. For an oblivious algorithm, we apply our technique
to the divide-and-conquer algorithm of Bentley and Shamos [5].5

As for the inversion counting above, we begin by describing the necessary
modifications to obtain a scan-based divide-and-conquer algorithm: After par-
titioning the points into PL and PR according to the median x-coordinate and
recursing, we have minimal distances δL and δR; let δ := min{δL, δR}. It remains
to check whether there is a pair in PL × PR with a smaller distance: While the
original algorithm performs a synchronized traversal over PL and PR, we need
to slightly modify this to adhere to the requirement that we may only perform
a linear scan over the complete input. We thus sort the points by increasing
y-coordinate and perform a linear scan over the sorted sequence. Using a stan-
dard packing argument [5], we maintain a queue Q of constant size that stores
all points within distance at most δ from the median x-coordinate and within
distance of at most δ below the current point. Whenever we encounter a point
p with |sx − px| ≥ δ where sx is the median x-coordinate, we simply ignore this
point; otherwise, we check p against all points currently in Q to see whether
d(p, q) < δ for any point q on the other side of sx. If we find such a point, we
update δ to d(p, q). We then put p into Q while pruning all points too far below
p or away from sx.

Again, we can utilize an oblivious binary tree by sorting the input according
to the x-coordinate and splitting evenly into m parts before recursing. We addi-
tionally store the separating x-coordinate sx in each node of the binary tree; then
we sort the elements by y-coordinate and process them so that for each node v
the state consists of the queue Q (of constant size) as well as the current closest
pair. Finally, we iterate over all nodes, updating the closest pair as needed.

5 Conclusion and Future Work

We gave an efficient oblivious modification of Chan’s algorithm [12] for Klee’s
measure problem for d = 2, both for perfect and computational security.

5 Eppstein et al. [15] discuss how to obliviously compute a closest pair in the plane in
O(n log n) time through an efficient construction of a well-separated pair decompo-
sition [10]. For this, the input points need to have integer coordinates or a bounded
spread. In contrast, our algorithm works without any such assumptions.
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For d ≥ 3, we sketched how to maintain the runtime of the original algorithm.
Our oblivious algorithms only require O(1) private memory cells and can be
used to construct a protocol for multi-party computation. We constructed our
results with a general technique for oblivious divide-and-conquer algorithms and
demonstrated its generality by applying it to the inversion counting and closest-
pair problems.

Some open problems remain: Most notably, is it possible to obliviously
solve Klee’s measure problem for d = 2 in Θ(n log n) time? From a more gen-
eral perspective, faster oblivious binary tree implementations would not only
improve our algorithm, but also a more general class of divide-and-conquer algo-
rithms using our technique. Designing efficient oblivious tree data structures
thus remains an interesting open problem.

Acknowledgments. We thank the reviewers for their constructive comments that
helped to improve the presentation.
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Abstract. In the Multiple Allocation k-Hub Center, we are given
a connected edge-weighted graph G, sets of clients C and hub locations H,
where V (G) = C ∪ H, a set of demands D ⊆ C2 and a positive integer k.
A solution is a set of hubs H ⊆ H of size k such that every demand (a, b)
is satisfied by a path starting in a, going through some vertex of H, and
ending in b. The objective is to minimize the largest length of a path.
We show that finding a (3−ε)-approximation is NP-hard already for pla-
nar graphs. For arbitrary graphs, the approximation lower bound holds
even if we parameterize by k and the value r of an optimal solution. An
exact FPT algorithm is also unlikely when the parameter combines k
and various graph widths, including pathwidth. To confront these hard-
ness barriers, we give a (2 + ε)-approximation algorithm parameterized
by treewidth, and, as a byproduct, for unweighted planar graphs, we give
a (2 + ε)-approximation algorithm parameterized by k and r. Compared
to classical location problems, computing the length of a path depends
on non-local decisions. This turns standard dynamic programming algo-
rithms impractical, thus our algorithm approximates this length using
only local information.

Keywords: Parameterized approximation algorithm · Hub location
problem · Treewidth

1 Introduction

In the classical location theory, the goal is to select a set of centers or facilities
to serve a set of clients [10,12,25,26]. Usually, each client is simply connected
to the closest selected facility, so that the transportation or connection cost is
minimized. In several scenarios, however, the demands correspond to connecting
a set of pair of clients. Rather than connecting each pair directly, one might select
a set of hubs that act as consolidation points to take advantage of economies
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of scale [8,22,30,31]. In this case, each origin-destination demand is served by a
path starting at the origin, going through one or more selected hubs and ending
at the destination. Using consolidation points reduces the cost of maintaining
the network, as a large number of goods is often transported through few hubs,
and a small fleet of vehicles is sufficient to serve the network [9].

Many hub location problems have emerged through the years, that vary
depending on the solution domain, whether it is discrete or continuous; on the
number of hub stops serving each demand; on the number of selected hubs, and
so on [1,16]. Central to this classification is the nature of the objective func-
tion: for median problems, the objective is to minimize the total length of the
paths serving the demands, while, for center problems, the objective is to find
a solution whose maximum length is minimum. In this paper, we consider the
Multiple Allocation k-Hub Center (MAkHC), which is a center problem
in the one-stop model [29,42], where clients may be assigned to multiple hubs
for distinct demands, and whose objective is to select k hubs to minimize the
worst connection cost of a demand.

Formally, an instance of MAkHC is comprised of a connected edge-weighted
graph G, sets of clients C and hub locations H, where V (G) = C ∪ H, a set of
demand pairs D ⊆ C2 and a positive integer k. The objective is to find a set of
hubs H ⊆ H of size k that minimizes max(a,b)∈D minh∈H d(a, h) + d(h, b), where
d(u, v) denotes the length of a shortest path between vertices u and v. In the
decision version of MAkHC, we are also given a non-negative number r, and the
goal is to determine whether there exists a solution of value at most r.

This problem is closely related to the well-known k-Center [23,26], where,
given an edge-weighted graph G, one wants to select a set of k vertices, called
centers, so that the maximum distance from each vertex to the closest center
is minimized. In the corresponding decision version, one also receives a num-
ber r, and asks whether there is a solution of value at most r. By creating a
demand (u, u) for each vertex u of G, one reduces k-Center to MAkHC, thus
MAkHC can be seen as a generalization of k-Center. In fact, MAkHC even
generalizes the k-Supplier [27], that is a variant of k-Center whose vertices
are partitioned into clients and locations, only clients need to be served, and
centers must be selected from the set of locations.

For NP-hard problems, one might look for an α-approximation, that is a
polynomial-time algorithm that finds a solution whose value is within a factor
α of the optimal. For k-Center, a simple greedy algorithm already gives a
2-approximation, that is the best one can hope for, since finding an approxima-
tion with smaller factor is NP-hard [23]. Analogously, there is a best-possible
3-approximation for k-Supplier [27]. These results have been extended to
MAkHC as well, which also admits a 3-approximation [39]. We prove this approx-
imation factor is tight, even if the input graph is unweighted and planar.

An alternative is to consider the problem from the perspective of parameter-
ized algorithms, that insist on finding an exact solution, but allow running times
with a non-polynomial factor that depends only on a certain parameter of the
input. More precisely, a decision problem with parameter w is fixed-parameter
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tractable (FPT) if it can be decided in time f(w) · nO(1), where n is the size of
the input and f is a function that depends only on w. Feldmann and Marx [19]
showed that k-Center is W[1]-hard for planar graphs of constant doubling
dimension when the parameter is a combination of k, the highway dimension
and the pathwidth of the graph. Blum [5] showed that the hardness holds even if
we additionally parameterize by the skeleton dimension of the graph. Under the
assumption that FPT �= W[1], this implies that k-Center does not admit an
FPT algorithm for any of these parameters, even if restricted to planar graphs
of constant doubling dimension.

Recently, there has been interest in combining techniques from parameterized
and approximation algorithms [18,36]. An algorithm is called a parameterized
α-approximation if it finds a solution within factor α of the optimal value and
runs in FPT time. The goal is to give an algorithm with improved approximation
factor that runs in super-polynomial time, where the non-polynomial factors of
the running time are dependent on the parameter only. Thus, one may possi-
bly design an algorithm that runs in FPT time for a W[1]-hard problem that,
although it finds only an approximate solution, has an approximation factor that
breaks the known NP-hardness lower bounds.

For k-Center, Demaine et al. [14] give an FPT algorithm parameterized by
k and r for planar and map graphs. All these characteristics seem necessary for
an exact FPT algorithm, as even finding a (2 − ε)-approximation with ε > 0
for the general case is W[2]-hard for parameter k [17]. If we remove the solution
value r and parameterize only by k, the problem remains W[1]-hard if we restrict
the instances to planar graphs [19], or if we add structural graph parameters,
such as the vertex-cover number or the feedback-vertex-set number (and thus,
also treewidth or pathwidth) [32].

To circumvent the previous barriers, Katsikarelis et al. [32] provide an effi-
cient parameterized approximation scheme (EPAS) for k-Center with different
parameters w, i.e., for every ε > 0, one can compute a (1 + ε)-approximation
in time f(ε, w) · nO(1), where w is either the cliquewidth or treewidth of the
graph. More recently, Feldmann and Marx [19] have also given an EPAS for
k-Center when it is parameterized by k and the doubling dimension, which
can be a more appropriate parameter for transportation networks than r. For
constrained k-Center and k-Supplier, Goyal and Jaiswal [24] give parameter-
ized approximations for variants such as capacitated, fault-tolerant, outlier and
�-diversity.

Our Results and Techniques. We initiate the study of MAkHC under the per-
spective of parameterized algorithms. We start by showing that, for any ε > 0,
there is no parameterized (3 − ε)-approximation for MAkHC when the param-
eter is k, the value r is bounded by a constant and the graph is unweighted,
unless FPT = W[2]. For unweighted planar graphs, finding a good constant-
factor approximation remains hard in the polynomial sense, as we show that it
is NP-hard to find a (3 − ε)-approximation for MAkHC in this case.

To challenge the approximation lower bound, one might envisage an
FPT algorithm by considering an additional structural parameter, such as
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vertex-cover and feedback-vertex-set numbers or treewidth. However, this is
unlikely to lead to an exact FPT algorithm, as we note that the hardness
results for k-Center [5,19,32] extend to MAkHC. Namely, we show that, unless
FPT = W[1], MAkHC does not admit an FPT algorithm when parameterized
by a combination of k, the highway and skeleton dimensions as well as the path-
width of the graph, even if restricted to planar graphs of constant doubling
dimension; or when parameterized by k and the vertex-cover number. Instead,
we aim at finding an approximation with factor strictly smaller than 3 that runs
in FPT time.

In this paper, we present a (2+ ε)-approximation for MAkHC parameterized
by the treewidth of the graph, for ε > 0. The running time of the algorithm is
O∗((tw/ε)O(tw)), where polynomial factors in the size of the input are omitted.
Moreover, we give a parameterized (2 + ε)-approximation for MAkHC when the
input graph is planar and unweighted, parameterized by k and r.

Our main result is a non-trivial dynamic programming algorithm over a tree
decomposition, that follows the spirit of the algorithm by Demaine et al. [14].
We assume that we are given a tree decomposition of the graph and consider
both k and r as part of the input. Thus, for each node t of this decomposition,
we can guess the distance from each vertex in the bag of t to its closest hub in
some (global) optimal solution H∗. The subproblem is computing the minimum
number of hubs to satisfy each demand in the subgraph Gt, corresponding to t.

Compared to k-Center and k-Supplier, however, MAkHC has two addi-
tional sources of difficulty. First, the cost to satisfy a demand cannot be com-
puted locally, as it is the sum of two shortest paths, each from a client in the
origin-destination pair to some hub in H∗ that satisfies that pair. Second, the
set of demand pairs D is given as part of the input, whereas every client must
be served in k-Center or in k-Supplier. If we knew the subset of demands D∗

t

that are satisfied by some hub in H∗ ∩ V (Gt), then one could solve every sub-
problem in a bottom-up fashion, so that every demand would have been satisfied
in the subproblem corresponding to the root of the decomposition.

Guessing D∗
t leads to an FPT algorithm parameterized by tw, r and |D|,

which is unsatisfactory as the number of demands might be large in practice.
Rather, for each node t of the tree decomposition, we compute deterministi-
cally two sets of demands Dt, St ⊆ D that enclose D∗

t , that is, that satisfy
Dt ⊆ D∗

t ⊆ Dt ∪ St. By filling the dynamic programming table using Dt instead
of D∗

t , we can obtain an algorithm that runs in FPT time on parameters tw and
r, and that finds a 2-approximation.

The key insight for the analysis is that the minimum number of hubs in Gt

that are necessary to satisfy each demand in Dt by a path of length at most r
is a lower bound on |H∗ ∩ V (Gt)|. At the same time, the definition of the set of
demands St ensures that each such demand can be satisfied by a path of length
at most 2r using a hub that is close to a vertex in the bag of t. This is the
main technical contribution of the paper, and we believe that these ideas might
find usage in algorithms for similar problems whose solution costs have non-local
components.
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Using only these ideas, however, is not enough to get rid of r as a parameter,
as we need to enumerate the distance from each vertex in a bag to its closest hub.
A common method to shrink a dynamic programming table with large integers
is storing only an approximation of each number, causing the solution value to
be computed approximately. This eliminates the parameter r from the running
time, but adds a term ε to the approximation factor. This technique is now
standard [34] and has been applied multiple times for graph width problems [4,
14,20,32].

Specifically, we employ the framework of approximate addition trees [34]. For
some δ > 0, we approximate each value {1, . . . , r} of an entry in the dynamic
programming table by an integer power of (1+δ), and show that each such value
is computed by an addition tree and corresponds to an approximate addition
tree. By results in [34], we can readily set δ appropriately so that the number of
distinct entries is polynomially bounded and each value is approximated within
factor (1 + ε).

Related Work. The first modern studies on hub location problems date several
decades back, when models and applications were surveyed [37,38]. Since then,
most papers focused on integer linear programming and heuristic methods [1,16].
Approximation algorithms were studied for the single allocation median variant,
whose task is to allocate each client to exactly one of the given hubs, minimiz-
ing the total transportation cost [2,21,28]. Later, constant-factor approximation
algorithms were given for the problem of, simultaneously, selecting hubs and
allocating clients [3]. The analog of MAkHC with median objective was consid-
ered by Bordini and Vignatti [7], who presented a (4α)-approximation algorithm
that opens

(
2α

2α−1

)
k hubs, for α > 1.

There is a single allocation center variant that asks for a two-level hub net-
work, where every client is connected to a single hub and the path satisfying
a demand must cross a given network center [35,41]. Chen et al. [11] give a 5

3 -
approximation algorithm and showed that finding a (1.5− ε)-approximation, for
ε > 0, is NP-hard. This problem was shown to admit an EPAS parameterized
by treewidth [4] and, to our knowledge, is the first hub location problem studied
in the parameterized setting.

Organization. The remainder of the paper is organized as follows. Section 2 intro-
duces basic concepts and describes the framework of approximate addition trees.
Section 3 shows the hardness results for MAkHC in both classical and parameter-
ized complexity. Section 4 presents the approximation algorithm parameterized
by treewidth, which is analyzed in Sect. 5. Section 6 presents the final remarks.

2 Preliminaries

An α-approximation algorithm for a minimization problem is an algorithm that,
for every instance I of size n, runs in time nO(1) and outputs a solution of
value at most α · OPT(I), where OPT(I) is the optimal value of I. A param-
eterized algorithm for a parameterized problem is an algorithm that, for every
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instance (I, k), runs in time f(k) · nO(1), where f is a computable function that
depends only on the parameter k, and decides (I, k) correctly. A parameter-
ized problem that admits a parameterized algorithm is called fixed-parameter
tractable, and the set of all such problems is denoted by FPT. Finally, a parame-
terized α-approximation algorithm for a (parameterized) minimization problem
is an algorithm that, for every instance I and corresponding parameter k, runs
in time f(k) · nO(1) and outputs a solution of value at most α · OPT(I). For a
complete exposition, we refer the reader to [13,36,40].

We adopt standard graph theoretic notation. Given a graph G, we denote
the set of vertices and edges as V (G) and E(G), respectively. For S ⊆ V (G), the
subgraph of G induced by S is denoted as G[S] and is composed by the vertices
of S and every edge of the graph that has both its endpoints in S.

A tree decomposition of a graph G is a pair (T ,X), where T is a tree and X
is a function that associates a node t of T to a set Xt ⊆ V (G), called bag, such
that:

(i) ∪t∈V (T )Xt = V (G);
(ii) for every (u, v) ∈ E(G), there exists t ∈ V (T ) such that u, v ∈ Xt;
(iii) for every u ∈ V (G), the set {t ∈ V (T ) : u ∈ Xt} induces a connected

subtree of T .

The width of a tree decomposition is maxt∈V (T ) |Xt| − 1 and the treewidth
of G is the minimum width of any tree decomposition of the graph. Also, for
a node t ∈ V (T ), let Tt be the subset of nodes that contains t and all its
descendants, and define Gt as the induced subgraph of G that has

⋃
t′∈Tt

Xt′ as
the set of vertices.

Dynamic programming algorithms over tree decompositions often assume
that the decomposition has a restricted structure. In a nice tree decomposition
of G, T is a binary tree and each node t has one of the following types:

(i) leaf node, which has no child and Xt = ∅;
(ii) introduce node, which has a child t′ with Xt = Xt′ ∪ {u}, for u /∈ Xt′ ;
(iii) forget node, which has a child t′ with Xt = Xt′ \ {u}, for u ∈ Xt′ ;
(iv) join node, which has children t′ and t′′ with Xt = Xt′ = Xt′′ .

Given a tree decomposition (T ,X) of width tw, there is a polynomial-time
algorithm that finds a nice tree decomposition with O(tw · |V (G)|) nodes and
the same width [33]. Moreover, we may assume without loss of generality that
our algorithm receives as input a nice tree decomposition of G whose tree has
height O(tw · log |V (G)|), using the same arguments as discussed in [4,6].

2.1 Approximate Addition Trees

An addition tree is an abstract model that represents the computation of a
number by successively adding two other previously computed numbers.

Definition 1. An addition tree is a full binary tree such that each leaf u is
associated to a non-negative integer input yu, and each internal node u with
children u′ and u′′ is associated to a computed number yu := yu′ + yu′′ .
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One can replace the sum with some operator ⊕, which computes each such
sum only approximately, up to an integer power of (1 + δ), for some parameter
δ > 0. The resulting will be an approximate addition tree. While the error of the
approximate value can pile up as more operations are performed, Lampis [34]
showed that, for some ε > 0, as long as δ is not too large, the relative error can
bounded by 1 + ε.

Definition 2. An approximate addition tree with parameter δ > 0 is a full
binary tree, where each leaf u is associated to a non-negative integer input zu,
and each internal node u with children u′ and u′′ is associated to a computed
value zu := zu′ ⊕ zu′′ , where a ⊕ b := 0 if both a and b are zero, and a ⊕ b :=
(1 + δ)�log1+δ(a+b)�, otherwise.

For simplicity, here we defined only a deterministic version of the approximate
addition tree, since we can assume that the height of the tree decomposition is
bounded by O(tw · log |V (G)|). For this case, Lampis showed the following result.

Theorem 1 ([34]). Given an approximate addition tree of height �, if δ < ε
2� ,

then, for every node u of the tree, we have max
{

zu

yu
, yu

zu

}
< 1 + ε.

2.2 Preprocessing

For an instance of MAkHC and a demand (a, b) ∈ D, define Gab as the induced
subgraph of G with vertex set V (Gab) = {v ∈ V (G) : d(a, v) + d(v, b) ≤ r}.

Notice that if a solution H has a hub h ∈ V (Gab), then the length of a path
serving (a, b) that crosses h is at most r. In this case, we say that demand (a, b)
is satisfied by h with cost r. Thus, in an optimal solution H∗ of MAkHC, for
every (a, b) ∈ D, the set H∗ ∩ V (Gab) must be non-empty.

Also, if there is v ∈ V (G) such that d(a, v) + d(v, b) > r for every (a, b) ∈ D,
then v does not belong to any (a, b)-path of length at most r, and can be safely
removed from G. From now on, assume that we have preprocessed G in polyno-
mial time, such that for every v ∈ V (G),

min
(a,b)∈D

d(a, v) + d(v, b) ≤ r.

Moreover, we assume that each edge has an integer weight and that the
optimal value, OPT, is bounded by O(1ε |V (G)|), for a given constant ε > 0. If
not, then we solve another instance for which this holds and that has optimal
value OPT′ ≤ (1 + ε)OPT using standard rounding techniques [40]. It suffices
finding a constant-factor approximation of value A ≤ 3OPT [39], and defining a
new distance function such that d′(u, v) =

⌈
3|V (G)|

εA d(u, v)
⌉
.

3 Hardness

Next, we observe that approximating MAkHC is hard, both in the classical and
parameterized senses. First, we show that approximating the problem by a factor
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better than 3 is NP-hard, even if the input graph is planar and unweighted. This
result strengthens the previous known lower bound and matches the approxima-
tion factor of the greedy algorithm [39].

Theorem 2. For every ε > 0, if there is a (3 − ε)-approximation for MAkHC
when G is an unweighted planar graph, then P = NP.

To find a better approximation guarantee, one might resource to a parameter-
ized approximation algorithm. The natural candidates for parameters of MAkHC
are the number of hubs k and the value r of an optimal solution. The next theo-
rem states that this choice of parameters does not help, as it is W[2]-hard to find
a parameterized approximation with factor better than 3, when the parameter
is k, the value r is bounded by a constant and G is unweighted.

Theorem 3. For every ε > 0, if there is a parameterized (3 − ε)-approximation
for MAkHC with parameter k, then FPT = W[2]. This holds even for the par-
ticular case of MAkHC with instances I such that OPT(I) ≤ 6.

Due to the previous hardness results, a parameterized algorithm for MAkHC
must consider different parameters, or assume a particular case of the problem.
In this paper, we focus on the treewidth of the graph, that is one of the most
studied structural parameters [13], and the particular case of planar graphs.
This setting is unlikely to lead to an (exact) FPT algorithm, though, as the
problem is W[1]-hard, even if we combine these conditions. The next theorem
follows directly from a result of Blum [5], since MAkHC is a generalization of
k-Center.

Theorem 4. Even on planar graphs with edge lengths of constant doubling
dimension, MAkHC is W[1]-hard for the combined parameter (k,pw, h, κ), where
pw is the pathwidth, h is the highway dimension and κ is the skeleton dimension
of the graph.

Note that MAkHC inherits other hardness results of k-Center by Kat-
sikarelis et al. [32], thus it is W[1]-hard when parameterized by a combination
of k and the vertex-cover number.

Recall that the treewidth is a lower bound on the pathwidth, thus the previ-
ous theorem implies that the problem is also W[1]-hard for planar graphs when
parameterized by a combination of k and tw. To circumvent these hardness
results, we give a (2 + ε)-approximation algorithm for MAkHC for arbitrary
graphs parameterized by tw, breaking the approximation barrier of 3.

4 The Algorithm

In this section, we give a (2 + ε)-approximation parameterized only by the
treewidth. In what follows, we assume that we receive a preprocessed instance
of MAkHC and a nice tree decomposition of the input graph G with width tw
and height bounded by O(tw · log |V (G)|). Also, we assume that G contains all
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edges connecting pairs u, v ∈ Xt for each node t. Moreover, we are given an inte-
ger r bounded by O((1/ε)|V (G)|). Our goal is to design a dynamic programming
algorithm that computes the minimum number of hubs that satisfy each demand
with a path of length r. The overall idea is similar to that of the algorithm for
k-Center by Demaine et al. [14], except that we consider a tree decomposition,
instead of a branch decomposition, and that the computed solution will satisfy
demands only approximately.

Consider some fixed global optimal solution H∗ and a node t of the tree
decomposition. Let us discuss possible candidates for a subproblem definition.
The subgraph Gt corresponding to t in the decomposition contains a subset of
H∗ that satisfies a subset D∗

t of the demands. The shortest path serving each
demand with a hub of H∗ ∩ V (Gt) is either completely contained in Gt, or it
must cross some vertex of the bag Xt. Thus, as in [14], we guess the distance i
from each vertex u in Xt to the closest hub in H∗, and assign “color” ↓i to u if
the corresponding shortest path is in Gt, and color ↑i otherwise.

Since the number of demands may be large, we cannot include D∗
t as part of

the subproblem definition. For k-Center, if the shortest path serving a vertex
in Gt crosses a vertex u ∈ Xt, then the length of this path can be bounded
locally using the color of u, and the subproblem definition may require serving
all vertices. For MAkHC, however, there might be demands (a, b) such that a is
in Gt, while b is not, thus the coloring of Xt is not sufficient to bound the length
of a path serving (a, b).

Instead of guessing D∗
t , for each coloring c of Xt, we require that only a

subset Dt(c) must be satisfied in the subproblem, and they can be satisfied by
a path of length at most 2r. Later, we show that the other demands in D∗

t

are already satisfied by the hubs corresponding to the coloring of Xt. More
specifically, we would like to compute At(c) as the minimum number of hubs in
Gt that satisfy each demand in Dt(c) with a path of length at most 2r and that
respect the distances given by c.

Since we preprocessed the graph in Sect. 2, there must be a hub in H∗ to
each vertex of Xt at distance at most r. Thus, the number of distinct colorings
to consider for each t is bounded by rO(tw). To get an algorithm parameterized
only by tw, we need one more ingredient: in the following, the value of each color
is stored approximately as an integer power of (1 + δ), for some δ > 0. Later,
using the framework of approximate addition trees, for any constant ε > 0, we
can set δ such that the number of subproblems is bounded by O∗((tw/ε)O(tw)),
and demands are satisfied by a path of length at most (1 + ε)2r.

The set of approximate colors is

Σ = {↓0} ∪ { ↑i, ↓i : j ∈ Z≥0 , i = (1 + δ)j , i ≤ (1 + ε)r }.

A coloring of Xt is represented by a function c : Xt → Σ. For each coloring c,
we compute a set of demands that are “satisfied” by c.

Definition 3. Define St(c) as the set of demands (a, b) for which there exists
u ∈ Xt with c(u) ∈ {↑i, ↓i} and such that d(a, u) + 2i + d(u, b) ≤ (1 + ε)2r.
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The intuition is that a demand (a, b) ∈ St(c) can be satisfied by a hub close
to u by a path of length at most (1 + ε)2r. Also, we compute a set of demands
that must be served by a hub in Gt by the global optimal solution.

Definition 4. Define Dt(c) as the set of demands (a, b) such that (a, b) /∈ St(c)
and either: (i) a, b ∈ V (Gt); or (ii) a ∈ V (Gt), b /∈ V (Gt) and there is
h ∈ V (Gab) ∩ V (Gt) such that d(h, V (Gab) ∩ Xt) > r/2.

We will show in Lemmas 4 and 5 that Dt(c) ⊆ D∗
t ⊆ Dt(c) ∪ St(c), thus we

only need to take care of demands in Dt(c) in the subproblem. Formally, for each
node t of the tree decomposition and coloring c of Xt, our algorithm computes
a number At(c) and a set of hubs H ⊆ H ∩ V (Gt) of size At(c) that satisfies the
conditions below.

(C1) For every u ∈ Xt, if c(u) =↓i, then there exists h ∈ H and a shortest path
P from u to h of length at most i such that V (P ) ⊆ V (Gt);

(C2) For every (a, b) ∈ Dt(c), minh∈H d(a, h) + d(h, b) ≤ (1 + ε)2r.

If the algorithm does not find one such set, then it assigns At(c) = ∞. We
describe next how to compute At(c) for each node type.

For a leaf node t, we have V (Gt) = ∅, then H = ∅ satisfies the conditions,
and we set At(c∅) = 0, where c∅ denotes the empty coloring.

For an introduce node t with child t′, let u be the introduced vertex, such
that Xt = Xt′ ∪ {u}. Let It(c) be the set of colorings c′ of Xt′ such that c′ is
the restriction of c to Xt′ and, if c(u) =↓i for some i > 0, there is v ∈ Xt′ with
c′(v) =↓j such that i = d(u, v) ⊕ j. Note that this set is either a singleton or is
empty. If It(c) is empty, discard c. Define:

At(c) = min
c′∈It(c):

Dt(c)⊆Dt′ (c′)

{
At′(c′) + 1 if c(u) =↓0,

At′(c′) otherwise.

If H ′ is the solution corresponding to At′(c′), we output H = H ′∪{u} if c(u) =↓0,
or H = H ′ otherwise.

For a forget node t with child t′, let u be the forgotten vertex, such that
Xt = Xt′ \ {u}. Let Ft(c) be the set of colorings c′ of Xt′ such that c is the
restriction of c′ to Xt and, if c′(u) =↑i, then there is v ∈ Xt such that c(v) =↑j
and i = d(u, v) ⊕ j. If Ft(c) is empty, discard c. Define:

At(c) = min
c′∈Ft(c):

Dt(c)⊆Dt′ (c′)∪St′ (c′)

At′(c′).

We output as solution the set H = H ′, where H ′ corresponds to the solution of
the selected subproblem in t′.

For a join node t with children t′ and t′′, we have Xt = Xt′ = Xt′′ . Let Jt(c)
be the set of pairs of colorings (c′, c′′) of Xt such that, for every u ∈ Xt, when
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c(u) is ↓0 or ↑i, then c′(u) = c′′(u) = c(u); else, if c(u) is ↓i, then (c′(u), c′′(u))
is either (↑i, ↓i) or (↓i, ↑i). If Jt(c) is empty, discard c. Define:

At(c) = min
(c′,c′′)∈Jt(c):

Dt(c)⊆Dt′ (c′)∪Dt′′ (c′′)

At′(c′) + At′′(c′′) − h(c),

where h(c) is the number of vertices u in Xt such that c(u) =↓0. We output
a solution H = H ′ ∪ H ′′, where H ′ and H ′′ are the solutions corresponding to
t′ and t′′, respectively.

The next lemma states that the algorithm indeed produces a solution of
bounded size that satisfies both conditions.

Lemma 1. If At(c) �= ∞, then the algorithm outputs a set H ⊆ H ∩ V (Gt),
with |H| ≤ At(c), that satisfies (C1) and (C2).

Let t0 be the root of the tree decomposition and c∅ be the empty coloring.
Since the bag corresponding to the root node is empty, we have St0(c∅) = ∅
and thus Dt0(c∅) = D. Therefore, if At0(c∅) ≤ k, Lemma 1 implies that the set
of hubs H computed by the algorithm is a feasible solution that satisfies each
demand with cost at most (1+ ε)2r. In the next section, we bound the size of H
by the size of the global optimal solution H∗.

5 Analysis

For each node t of the tree decomposition, we want to show that the number
of hubs computed by the algorithm for some coloring c of Xt is not larger than
the number of hubs of H∗ contained in Gt, that is, we would like to show that
At(c) ≤ |H∗ ∩V (Gt)|, for some c. If the distances from each vertex u ∈ Xt to its
closest hub in H∗ were stored exactly, then the partial solution corresponding
to H∗ would induce one such coloring c∗

t , and we could show the inequality for
this particular coloring. More precisely, for each u ∈ V (G), let h∗(u) be a hub
of H∗ such that d(u, h∗(u)) is minimum and P ∗(u) be a corresponding shortest
path. Assume that each P ∗(u) is obtained from a shortest path tree to h∗(u)
and that it has the minimum number of edges among the shortest paths. The
signature of H∗ corresponding to a partial solution in Gt is a function c∗

t on Xt

such that

c∗
t (u) =

{
↓d(u, h∗(u)) if V (P ∗(u)) ⊆ V (Gt),
↑d(u, h∗(u)) otherwise.

Since distances are stored approximately as integer powers of (1 + δ), the
function c∗

t might not be a valid coloring. Instead, we show that the algorithm
considers a coloring c̄t with roughly the same values of c∗

t and that its values
are computed by approximate addition trees. We say that an addition tree and
an approximate addition tree are corresponding if they are isomorphic and have
the same input values. Also, recall that a coloring c of Xt is discarded by the
algorithm if the set It(c), Ft(c) or Jt(c) corresponding to t is empty.
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Lemma 2. Let �t0 be the height of the tree decomposition. There exists a col-
oring c̄t that is not discarded by the algorithm and such that, for every u ∈ Xt,
the values c∗

t (u) and c̄t(u) are computed, respectively, by an addition tree and a
corresponding approximate addition tree of height at most 2�t0 .

By setting δ = ε/(2�t0 + 1), Theorem 1 implies the next lemma.

Lemma 3. For every u ∈ Xt, if c∗
t (u) ∈ {↑ i, ↓ i} and c̄t(u) ∈ {↑ j, ↓ j}, then

j ≤ (1 + ε)i.

Recall that H∗ is a fixed global optimal solution that satisfies each demand
with cost r. Our goal is to bound At(c̄t) ≤ |H∗∩V (Gt)| for every node t, thus we
would like to determine the subset of demands D∗

t that are necessarily satisfied
by hubs H∗ ∩ V (Gt) in the subproblem definition. This is made precise in the
following.

Definition 5. D∗
t = {(a, b) ∈ D : minh∈H∗\V (Gt) d(a, h) + d(h, b) > r}.

Since the algorithm cannot determine D∗
t , we show that, for each node t, it

outputs a solution H for the subproblem corresponding to At(c̄t) that satisfies
every demand in Dt(c̄t). In Lemma 4, we show that every demand in Dt(c̄t)
is also in D∗

t , as, otherwise, there could be no solution with size bounded by
|H∗ ∩V (Gt)|. Conversely, we show in Lemma 5 that a demand in D∗

t that is not
in Dt(c̄t) must be in St(c̄t), thus all demands are satisfied.

Lemma 4. Dt(c̄t) ⊆ D∗
t .

Proof. Let (a, b) ∈ Dt(c̄t) and consider an arbitrary hub h∗ ∈ H∗ that satis-
fies (a, b) with cost r. We will show that h∗ ∈ V (Gt), and thus (a, b) ∈ D∗

t . For
the sake of contradiction, assume that h∗ ∈ V (G) \ V (Gt).

First we claim that d(h∗, V (Gab)∩Xt) > r/2. If not, then let u ∈ V (Gab)∩Xt

be a vertex with c̄t(u) ∈ {↑i, ↓i} such that d(u, h∗) ≤ r/2. Because the closest
hub to u has distance at least i/(1+ ε), we have i ≤ (1+ ε)d(u, h∗) ≤ (1+ ε)r/2,
but since u ∈ V (Gab), this implies that (a, b) ∈ St(c̄t), and thus (a, b) /∈ Dt(c̄t).
Then, it follows that indeed d(h∗, V (Gab) ∩ Xt) > r/2.

Now we show that it cannot be the case that a, b ∈ V (Gt). Suppose that
a, b ∈ V (Gt). Consider the shortest path from a to h∗, and let u be the last
vertex of this path that is in V (Gt). Since Xt separates V (Gt) \ Xt from V (G) \
V (Gt), it follows that u ∈ Xt. From the previous claim, d(h∗, u) > r/2, and thus
d(h∗, a) > r/2. Analogously, d(h∗, b) > r/2, but then d(a, h∗) + d(h∗, b) > r,
which contradicts the fact that h∗ satisfies (a, b) with cost r. This contradiction
comes from supposing that a, b ∈ V (Gt). Thus, either a or b is not in V (Gt).

Assume without loss of generality that a ∈ V (Gt) and b /∈ V (Gt). From the
definition of Dt(c̄t), we know that there exists h ∈ V (Gab) ∩ V (Gt) such that
d(h, V (Gab)∩Xt) > r/2. Let P be a path from a to b crossing h∗ with length at
most r. Similarly, since h ∈ V (Gab), there exists a path Q from a to b crossing
h with length at most r. Let u be the last vertex of P with u ∈ Xt, and let v be
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Fig. 1. Closed walk formed by P and Q.

the last vertex of Q with v ∈ Xt (see Fig. 1). Concatenating P and Q leads to a
closed walk of length at most 2r. This walk crosses u, h∗, v and h, and thus

2r ≥ d(a, h∗) + d(h∗, b) + d(a, h) + d(h, b)
= d(u, h∗) + d(h∗, v) + d(v, h) + d(h, u) (1)
> 2r,

where we used the fact that each term in (1) is greater than r/2. This is a
contradiction, so h∗ ∈ V (Gt) and then (a, b) ∈ D∗

t . ��

Lemma 5. D∗
t ⊆ Dt(c̄t) ∪ St(c̄t).

Lemma 2 states that the coloring c̄t is not discarded by the algorithm for
each node t. Moreover, Lemmas 4 and 5 imply that the constraints of the recur-
rence are satisfied for this coloring. Thus, using induction, we can show that the
algorithm does not open too many hubs.

Lemma 6. At(c̄t) ≤ |H∗ ∩ V (Gt)|.

Theorem 5. For every ε > 0, there is a parameterized (2 + ε)-approximation
algorithm for MAkHC running in time O∗((tw/ε)O(tw)).

Proof. Consider a preprocessed instance (G, C,H,D, k) of MAkHC, in which the
optimal value OPT is an integer bounded by O(1ε |V (G)|). We run the dynamic
programming algorithm for each r = 1, 2, . . . , and output the first solution with
no more than k hubs. Next, we show that the dynamic programming algorithm
either correctly decides that there is no solution of cost r that opens k hubs,
or finds a solution of cost (1 + ε)2r that opens k hubs. Thus, when the main
algorithm stops, r ≤ OPT, and the output is a (2 + ε′)-approximation, for a
suitable ε′.

Assume H∗ is a solution that satisfies each demand with cost r with minimum
size. Recall t0 is the root of the tree decomposition and c∅ is the coloring of an
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empty bag. If At0(c∅) ≤ k, then Lemma 1 states that the dynamic programming
algorithm outputs a set of hubs H of size at most k that satisfies each demand in
Dt0(c∅) = D with cost (1 + ε)2r. Otherwise, k < At0(c∅), and Lemma 6 implies
k < At0(c∅) ≤ |H∗ ∩V (Gt0)| = |H∗|. Thus, by the minimality of H∗, there is no
solution of cost r that opens k hubs.

Finally, we bound the running time. Let n = |V (G)|. The tree decomposition
has O(tw · n) nodes and, for each node t, the number of colorings is |Σ|O(tw).
Also, each recurrence can be computed in time O∗(|Σ|O(tw)). Since r = O( 1ε n)
and δ = Θ

(
ε

tw·log n

)
, the size of Σ is

|Σ| = O
(
log1+δ r

)
= O

(
log r

log(1 + δ)

)
= O

(
log n + log(1/ε)

δ

)

= O
(
(tw/ε) (log2 n + log n log(1/ε))

)
= O

(
(tw/ε)2 log2 n

)
.

Notice that O(logO(tw) n) = O∗(2O(tw)), thus the total running time is bounded
by O∗ (

|Σ|O(tw)
)

= O∗ (
(tw/ε)O(tw)

)
. ��

The algorithm for unweighted planar graphs is built upon the bidimensional-
ity framework and some ideas applied to k-Center [15], where we use the fact
that a graph with no large grid has treewidth at most a function of k and r.

Theorem 6. For every ε > 0, there is a parameterized (2 + ε)-approximation
algorithm for MAkHC when the parameters are k and r, and the input graph is
unweighted and planar.

6 Final Remarks

Our results are analogous to k-Center, which has a 2-approximation lower
bound and does not admit an FPT algorithm. Unlike k-Center, however, we
left open whether MAkHC admits an EPAS when parameterized by treewidth.
The challenge seems to be the non-locality of the paths serving the demands,
thus established techniques are not sufficient to tackle this issue. In this paper, we
show how to compute a special subset of demands that must be served locally for
each subproblem. We hope this technique may be of further interest. A possible
direction of research is to consider the single allocation variant in the two-stop
model, which is a well-studied generalization of MAkHC [3,16].
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10. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation
algorithm for the k-median problem. J. Comput. Syst. Sci. 65(1), 129–149 (2002)

11. Chen, L.H., Cheng, D.W., Hsieh, S.Y., Hung, L.J., Lee, C.W., Wu, B.Y.: Approxi-
mation Algorithms for the Star k-Hub Center Problem in Metric Graphs, pp. 222–
234. Springer International Publishing, Cham (2016). https://doi.org/10.1007/
978-3-319-42634-1 18
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Abstract. In this paper, we consider the problem of finding a regression
in a version control system (VCS), such as git. The set of versions is
modelled by a Directed Acyclic Graph (DAG) where vertices represent
versions of the software, and arcs are the changes between different ver-
sions. We assume that somewhere in the DAG, a bug was introduced,
which persists in all of its subsequent versions. It is possible to query
a vertex to check whether the corresponding version carries the bug.
Given a DAG and a bugged vertex, the Regression Search Problem con-
sists in finding the first vertex containing the bug in a minimum num-
ber of queries in the worst-case scenario. This problem is known to be
NP-hard. We study the algorithm used in git to address this problem,
known as git bisect. We prove that in a general setting, git bisect

can use an exponentially larger number of queries than an optimal algo-
rithm. We also consider the restriction where all vertices have indegree
at most 2 (i.e. where merges are made between at most two branches at a
time in the VCS), and prove that in this case, git bisect is a 1

log2(3/2)
-

approximation algorithm, and that this bound is tight. We also provide
a better approximation algorithm for this case.

1 Introduction

In the context of software development, it is essential to resort to Version Control
Systems (VCS, in short), like git or mercurial. VCS enable many developers
to work concurrently on the same system of files. Notably, all the versions of the
project (that is to say the different states of the project over time) are saved by
the VCS, as well as the different changes between versions.

Furthermore, many VCS offer the possibility of creating branches (i.e. parallel
lines of development) and merging them, so that individuals can work on their
own part of the project, with no risk of interfering with other developers work.
Thereby the overall structure can be seen as a Directed Acyclic Graph (DAG),
where the vertices are the versions, also named in this context commits, and the
arcs model the changes between two versions.

The current paper deals with a problem often occurring in projects of large
size: searching the origin of a so-called regression. Even with intensive testing
techniques, it seems unavoidable to find out long-standing bugs which have been
lying undetected for some time. Conveniently, one tries to fix this bug by finding
the commit in which the bug appeared for the first time. The idea is that there
c© Springer Nature Switzerland AG 2022
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should be few differences between the code source of the commit that introduced
the bug and the one from a previous bug-free commit, which makes it easier to
find and fix the bug.

The identification of the faulty commit is possible by performing queries on
existing commits. A query allows to figure out the status of the commit: whether
it is bugged or it is clean. A single query can be very time-consuming: it may
require running tests, manual checks, or the compilation of an entire source code.
In some large projects, performing a query on a single commit can take up to a
full day (for example, the Linux kernel project [8]). This is why it is essential to
find the commit that introduced the bug with as few queries as possible.

The problem of finding an optimal solution in terms of number of queries,
known as the Regression Search Problem, was proved to be NP-complete by
Carmo, Donadelli, Kohayakawa and Laber in [6]. However, whenever the DAG
is a tree (oriented from the leaves to the root), the computational complexity of
the Regression Search Problem is polynomial [3,14], and even linear [13].

To our knowledge, very few papers in the literature deal with the Regression
Search Problem in the worst-case scenario, as such. The Decision Tree problem,
which is known to be NP-complete [11] as well as its approximation version
[12], somehow generalises the Regression Search Problem, with this difference
that the Decision Tree problem aims to minimise the average number of queries
instead of the worst-case number of queries.

Many variations of the Regression Search problem exist:

– the costs of the queries may vary [9,10];
– the queries return the wrong result (say it is clean while the vertex is bugged

or the converse) with a certain probability [10];
– one can just try to find a bugged vertex with at least one clean parent [4].

The most popular VCS today, namely git, proposes a tool for this problem:
an algorithm named git bisect. It is a heuristic inspired by binary search
that narrows down at each query the range of the possible faulty commits. This
algorithm is widely used and shows excellent experimental results, though to our
knowledge, no mathematical study of its performance have been carried out up
to now.

In this paper, we fill this gap by providing a careful analysis on the number
of queries that git bisect uses compared to an optimal strategy. This paper
does not aim to find new approaches for the Regression Search Problem.

First, we show in Sect. 2 that in the general case, git bisect may be as
bad as possible, testing about half the commits where an optimal logarithmic
number of commits can be used to identify exactly the faulty vertex. But in all
the cases where such bad performance occurs, there are large merges between
more than two branches,1 also named octopus merges. However, such merges are
highly uncommon and inadvisable, so we carry out the study of git bisect

1 According to https://www.destroyallsoftware.com/blog/2017/the-biggest-and-
weirdest-commits-in-linux-kernel-git-history, a merge of 66 branches happened in
the Linux kernel repository.

https://www.destroyallsoftware.com/blog/2017/the-biggest-and-weirdest-commits-in-linux-kernel-git-history
https://www.destroyallsoftware.com/blog/2017/the-biggest-and-weirdest-commits-in-linux-kernel-git-history
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performances with the assumption that the DAG does not contain any octopus
merge, that is every vertex has indegree at most two. Under such an assumption,
we are able to prove in Sect. 3 that git bisect is an approximation algorithm for
the problem, never using more than 1

log2(3/2) ≈ 1.71 times the optimal number
of queries for large enough repositories. We also provide a family of DAGs for
which the number of queries used by git bisect tends to 1

log2(3/2) times the
optimal number of queries.

This paper also describes in Sect. 4 a new algorithm, which is a refinement of
git bisect. This new algorithm, which we call golden bisect, offers a math-
ematical guaranteed ratio of 1

log2(φ)
≈ 1.44 for DAGs with indegree at most 2

where φ = 1+
√
5

2 is the golden ratio. The search of new efficient algorithms for
the Regression Search Problem seems to be crucial in software engineering (as
evidenced by [4]); golden bisect is an example of progress in this direction.

1.1 Formal Definitions

Throughout the paper, we refer to VCS repositories as graphs, and more precisely
as Directed Acyclic Graphs (DAG), i.e. directed graphs with no cycle. The set
V of vertices corresponds to the versions of the software. An arc goes from a
vertex p to another vertex v if v is obtained by a modification from p. We then
say that p is a parent of v. A vertex may have multiple parents in the case of a
merge. An ancestor of v is v itself or an ancestor of a parent of v.2 Equivalently,
a vertex is an ancestor of v if and only if it is co-accessible from v (i.e. there
exists a path from this vertex to v).

We use the convention to write vertices in bold (for example v), and the
number of ancestors of a vertex with the number letter between two vertical
bars (for example |v|).

In our DAGs, we consider that a bug has been introduced at some vertex,
named the faulty commit. This vertex is unique, and its position is unknown. The
faulty commit is supposed to transmit the bug to each of its descendants (that
is its children, its grand-children, and so on). Thus, vertices have two possible
statuses: bugged or clean. A vertex is bugged if and only if it has the faulty
commit as an ancestor. Other vertices are clean. This is illustrated by Fig. 1.

We consider the problem of identifying the faulty commit in a DAG D, where
a bugged vertex b is identified. Usually, since the faulty commit is necessarily
an ancestor of b, only the induced subgraph on b’s ancestors is considered, and
thus b is a sink (i.e. a vertex with no outgoing edge) accessible from all vertices
in the DAG. When the bugged vertex is not specified, it is assumed to be the
only unique sink of the DAG.

The problem is addressed by performing queries on vertices of the graph.
Each query states whether the vertex is bugged or clean, and thus whether or
not the faulty commit belongs to its ancestors or not. Once we find a bugged
vertex whose parents are all clean, it is the faulty commit.
2 Usually, v is not considered an ancestor of itself. Though for simplifying the termi-

nology, we use this special convention here.



160 J. Courtiel et al.

Fig. 1. An example of a DAG. The bugged vertices are colored. The crossed vertex
(6) is the faulty commit. The notation a/b along each vertex indicates that a is the
number of ancestors of the vertex, and b is the number of non-ancestors. The score (see
Definition 2) is displayed in black.

The aim of the Regression Search Problem is to design a strategy for finding
the faulty commit in a minimal number of queries.

Formally, a strategy (see for example [7]) for a DAG D is a binary tree S
where the nodes are labelled by the vertices of D. Inner nodes of S represent
queries. The root of S is the first performed query. If the queried vertex is bugged,
then the following strategy is given by the left subtree. If it is clean, the strategy
continues on the right subtree. At each query, there are fewer candidates for the
faulty commit. Whenever a single candidate remains, the subtree is reduced to
a leaf whose label is the only possible faulty commit.

For example, Fig. 2 shows a strategy tree for a directed path of size 5. Suppose
that the faulty commit is 4. In this strategy, we query in first 2. Since it is clean,
we query next 4, which appears to be bugged. We finally query 3: since it is
clean, we infer that the faulty commit is 4. We have found the faulty commit
with 3 queries. Remark that if the faulty commit was 1, 2 or 5, the strategy
would use only 2 queries.

The Regression Search Problem is formally defined as follows.

Definition 1. Regression Search Problem.
Input. A DAG D with a marked vertex b, known to be bugged.
Output. A strategy which uses the least number of queries in the worst-case
scenario.

In terms of binary trees, the least number of queries in the worst-case scenario
of a strategy corresponds to the height of the tree. For example, if the input DAG
is a directed path of size n, we know that there exists a strategy with �log2(n)�
queries in the worst-case scenario. Indeed, a simple binary search enables to
remove half of the vertices at each query.

A second interesting example is what we refer to as an octopus. In this
digraph, there is a single sink and all other vertices are parent of the sink (see
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Fig. 2. Left. A directed path on 5 vertices. Center. A possible strategy for the Regres-
sion Search Problem on the path on 5 vertices. Right. An octopus of size 6.

Fig. 2). When the faulty commit is the sink, we must query all other vertices to
make sure that the sink is faulty, regardless of the strategy. Thus, every strategy
is equivalent for the Regression Search Problem on the n-vertices octopus, and
uses n − 1 queries in the worst case.

These two examples actually constitute extreme cases for the Regression
Search Problem, as shown by the following proposition.

Proposition 1. For any DAG D with n vertices, any strategy that finds the
faulty commit uses at least �log2(n)� queries, and at most n − 1 queries.

Proof. Remember that a strategy is a binary tree with at least n leaves, and the
number of queries in the worst-case scenario corresponds to the height of the
tree. But the height of such a binary tree is necessarily at least �log2(n)�, which
proves the lower bound.

As for the upper bound, it is quite obvious because one can query at most
n − 1 vertices in the Regression Search Problem.

From a complexity point of view, the Regression Search Problem is hard:
Carmo, Donadelli, Kohayakawa and Laber proved in [6] that computing the
least number of queries for the Regression Search Problem is NP-complete.3

1.2 Description of git bisect

As said in the introduction, some VCS provide a tool for the Regression Search
Problem. The most known one is git bisect, but it has its equivalent in
mercurial (hg bisect [5]).

The algorithm git bisect is a greedy algorithm based on the classical binary
search. The local optimal choice consists in querying the vertices that split the
digraph in the most balanced way. To be more precise, let us define the notion
of score.

3 In reality, the problem they studied has an extra restriction: a query cannot be
performed on a vertex which was eliminated from the set of candidates for the
faulty commit (which occurs for example when an ancestor is known to be bugged).
However, the widget they used in the proof of NP-completeness also works for our
problem where we do not necessarily forbid such queries.
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Definition 2 (Score). Given a DAG with n vertices, the score of a vertex x
is

min(|x|, n − |x|),
where |x| is the number of ancestors of x (recall that x is an ancestor of itself).

If vertex x is queried and appears to be bugged, then there remain |x| candi-
dates for the faulty commit: the ancestors of x. If the query of x reveals on the
contrary that it is clean, then the number of candidates for the faulty commit
is n − |x|, which is the number of non-ancestors. This is why the score of x can
be interpreted as the least number of vertices to be eliminated from the set of
possible candidates for the faulty commit, when x is queried. For a DAG, each
vertex has a score and the maximum score is the score with the maximum value
among all.

For example, let us refer to Fig. 1: vertex 6 has 5 ancestors (1, 2, 3, 4 and
6). Its score is so min(5, 21 − 5) = 5.

We give now a detailed description of git bisect.

Algorithm 1 (git bisect)
Input. A DAG D and a bugged vertex b.
Output. The faulty commit of D.
Steps:

1. Remove from D all non-ancestors of b.
2. If D has only one vertex, return this vertex.
3. Compute the score for each vertex of D.
4. Query the vertex with the maximum score. If there are several vertices which

have the maximum score, select any one then query it.
5. If the queried vertex is bugged, remove from D all non-ancestors of the queried

vertex. Otherwise, remove from D all ancestors of the queried vertex.
6. Go to Step 2.

Take for example the DAG from Fig. 1. Vertex 17 has the maximum score
(8) so constitutes the first vertex to be queried. If we assume that the faulty
commit is 6, then the query reveals that 17 is clean. So all ancestors of 17 are
removed (that are 1,2,3,4,8,9,10,17). Vertex 14 is then queried because it
has the new maximum score 6, and so on.

The whole git bisect strategy tree is shown in Fig. 3. Notice that for this
DAG, the git bisect algorithm is optimal since in the worst-case scenario it
uses 5 queries and by Proposition 1, we know that any strategy uses at least
�log2(21)� = 5 queries.

The greedy idea behind git bisect (choosing the query which partitions the
commits as evenly as possible) is quite widespread in the literature. For example,
it was used to find a (log(n) + 1)-approximation for the Decision Tree Problem
[1], in particular within the framework of geometric models [2].
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Fig. 3. The git bisect strategy corresponding to the graph of Fig. 1. In case of score
equality, the convention we choose consists in querying the vertex with the smallest
label.

2 Worst-Case Number of Queries

This section addresses the complexity analysis of git bisect in the worst-case
scenario.

2.1 The Comb Construction

We describe in this subsection a way to enhance any DAG in such a way the
Regression Search Problem can always be solved in a logarithmic number of
queries.

Definition 3 (Comb addition). Let D be a Directed Acyclic Graph with n
vertices. Let v1 < v2 < . . . < vn be a topological ordering of D, that is a linear
ordering of the vertices such that if vivj is an arc, then vi < vj .

We say that we add a comb to D if we add to D:

– n new vertices u1, . . . ,un ;
– the arcs viui for i ∈ {1, . . . , n};
– the arcs uiui+1 for i ∈ {1, . . . , n − 1}.
The resulting graph is denoted comb(D). The new identified bugged vertex of
comb(D) is un .

Examples of comb addition are shown by Fig. 4 and Fig. 5.
The comb addition depends on the initial topological ordering, but the latter

will not have any impact on the following results. This is why we take the liberty
of writing comb(D) without any mention to the topological ordering.

Theorem 2. Let D be a Directed Acyclic Graph with n vertices and such that
the number of queries used by the git bisect algorithm is x. If we add a comb
to D, then the resulting DAG comb(D) is such that:

– the optimal strategy uses only �log2(2n)� queries;
– when n is odd, the git bisect algorithm uses x + 1 queries.
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Fig. 4. Illustration of the comb addi-
tion. The initial digraph is highlighted
in pink. (Color figure online)

Fig. 5. Comb(D) graph where D is an
octopus of size 7.

Proof. (Idea) On one hand, the optimal strategy for comb(D) can be naturally
achieved with a dichotomic search on the ui vertices. On the other hand, with
the assumption that n is odd, git bisect will necessarily query vn first since
its score is n, and the scores of the ui vertices are all even. This explains why
the git bisect algorithm uses x + 1 queries.

If the initial number of vertices n is even, there is no guarantee that git bisect
will perform x+1 queries on comb(D) – it will depend on whether the first queried
vertex is vn or un/2. However a referee of this paper rightly mentioned that the
odd hypothesis could be (almost) removed by tweaking the comb construction
whenever n is even. Indeed, by deleting the edge between un/2 and vn/2, git
bisect is forced to use x+1 queries in the worst-case scenario while a dichotomy
strategy uses �log2(2n) + 1� queries.

2.2 A Pathological Example for git bisect

The following corollary shows the existence of digraphs for which the git bisect
algorithm totally fails. The optimal number of queries is linear, while the git
bisect algorithm effectively uses an exponential number of queries.

Theorem 3. For any integer k > 2, there exists a DAG such that the optimal
number of queries is k, while the git bisect algorithm always uses 2k−1 − 1
queries.

Proof. Choose D as an octopus with 2k−1 − 1 vertices. The number of git
bisect queries is 2k−1 − 2 (like every other strategy). The wanted digraph is
then comb(D) (see Fig. 5 for an illustration). Indeed, by Theorem 2, the git
bisect algorithm uses 2k−1 − 1 git bisect queries to find the faulty commit
in comb(D), while an optimal strategy uses

⌈
log2

(
2k − 2

)⌉
= k queries.

This also shows that the git bisect algorithm is not a C-approximation
algorithm for the Regression Search Problem, for any constant C.
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3 Approximation Ratio for Binary DAGs

The pathological input for the git bisect algorithm has a very particular shape
(see Fig. 5): it involves a vertex with a gigantic indegree. However, in the con-
text of VCS, this structure is quite rare. It means that many branches have
been merged at the same time (the famous octopus merge). Such an operation
is strongly discouraged, in addition to the fact that we just showed that git
bisect becomes inefficient in this situation.

This motivates to define a new family of DAGs, closer to reality:

Definition 4 (Binary digraph). A digraph is binary if each vertex has inde-
gree (that is the number of ingoing edges) at most equal to 2.

Fig. 6. Left. A binary DAG. Right. A non-binary DAG.

Figure 6 illustrates this definition. If we restrict the DAG to be binary, git
bisect proves to be efficient.

We, the authors, reckon binary DAGs to be more natural in practice. Thus
we have made the choice to only present the binary case in the main part of
this paper, even if the following results can be easily generalised to DAGs whose
indegree is bounded by an arbitrary integer Δ.

Theorem 4. On any binary DAG with n vertices, the number of queries of the
git bisect algorithm is at most log2(n)

log2(
3
2 )

.

Corollary 1. The algorithm git bisect is a 1
log2(3/2) ≈ 1.71 approximation

algorithm on binary DAGs.

The key ingredient of the proof lies in the next lemma, which exhibits a core
property of the binary DAGs. It states that if the DAG is binary, there must be
a vertex with a “good” score.

Lemma 1. In every binary DAG with n vertices, there exists a vertex v such
that |v|, its number of ancestors, satisfies n

3 ≤ |v| ≤ 2n+1
3 .

By this lemma, we infer that git bisect removes at least approximately
one third of the remaining vertices at each query. The overall number of queries
is then equal to log3/2(n).

The idea of the proof, in a few words, is to consider the vertex whose number
of ancestors exceeds the number of non-ancestors by the narrowest of margins.
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If this vertex does not satisfy Lemma 1, then it must have two parents, and at
least one of them satisfies the lemma.

The upper bound of Theorem 4 is asymptotically sharp, as stated by the
following proposition.

Proposition 2. For any integer k, there exists a binary DAG Jk such that

– the number of git bisect queries on comb(Jk) is k + �log2(k)� + 3;
– an optimal strategy for comb(Jk) uses at most log2(

3
2 ) k + log2(3k + 6) + 2

queries.

(Remember that the comb operation is described by Definition 3.)

Figure 7 shows what Jk looks like for k = 3. The number of queries for
git bisect in the worst-case scenario is 7 (which occurs for example when c is
bugged).

By Proposition 2, we cannot find a better approximation ratio than
1/ log2(3/2) for git bisect.

Corollary 2. For any ε > 0, the git bisect algorithm is not a
(

1
log2(3/2) − ε

)

approximation algorithm for binary DAGs.

4 A New Algorithm with a Better Approximation Ratio
for Binary DAGs

In this section, we describe a new algorithm improving the number of queries in
the worst-case scenario compared to git bisect – theoretically at least.

4.1 Description of golden bisect

We design a new algorithm for the Regression Search Problem, which we name
golden bisect, which is a slight modification of git bisect. It is so called
because it is based on the golden ratio, which is defined as φ = 1+

√
5

2 .
The difference of golden bisect with respect to git bisect is that it may

not query a vertex with the maximum score if the maximum score is too “low”.
Let us give some preliminary definitions.

Definition 5. (Subsets B≥ and B<). Let D be a DAG. We define V ≥ as
the set of vertices which have more ancestors than non-ancestors. Let B≥ (for
“Best” or “Boundary”) denote the subset of vertices v of V ≥ such that no parent
of v belongs to V ≥ and B< be the set of parents of vertices of B≥.

The reader can look at Fig. 8 for an illustrative example.
Now, let us describe the golden bisect algorithm.
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Fig. 7. Binary DAG J3 which satisfies Proposition 2 for k = 3.

Algorithm 5 (golden bisect)
Input. A DAG D and a bugged vertex b.
Output. The faulty commit of D.
Steps:

1. Remove from D all non-ancestors of b.
2. If D has only one vertex, return this vertex.
3. Compute the score for each vertex of D.
4. If the maximum score is at least n

φ2 ≈ 38.2% × n (where φ = 1+
√
5

2 ),
query a vertex with the maximum score.

5. Otherwise, query a vertex of B≥∪B< which has the maximum score
among vertices of B≥ ∪ B<, even though it may not be the overall
maximum score.

6. If the queried vertex is bugged, remove from D all non-ancestors of the queried
vertex. Otherwise, remove from D all ancestors of the queried vertex.

7. Go to Step 2.

(The differences with git bisect are displayed in bold.)
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Fig. 8. A binary DAG with the 3 sets of vertices V ≥, B≥ and B<.

For example, consider the digraph from Fig. 8. We have 21/φ2 ≈ 8.02. The
maximum score 8 is smaller than this number, so we run Step 5 instead of
Step 4. Thus as its first query, golden bisect chooses indifferently 7 or 14,
which respectively belong to B< and B≥, and which have score 7. It diverges
from git bisect, which picked 17 (score 8) instead.

For a full example, the reader can refer to the strategy tree in Fig. 9. Note
that, even if it is different from git bisect, the golden bisect strategy uses
5 queries in the worst-case scenario.

Fig. 9. The golden bisect strategy tree for the digraph of Fig. 8. In case of equality
of score, the vertex with the smallest label is chosen.

4.2 Results for golden bisect on Binary DAGs

This subsection lists the main results about the complexity analysis of golden
bisect. First, note that Theorem 3 also holds for golden bisect, so the general
case (i.e. whenever the DAGs are not necessarily binary) is as bad as git bisect.

As for binary DAGs, we establish that the golden bisect algorithm has a
better upper bound for the number of queries, in comparison with git bisect.



Theoretical Analysis of git bisect 169

Theorem 6. On any binary DAG with n vertices, the number of golden

bisect queries is at most logφ(n) + 1 = log2(n)
log2(φ)

+ 1, where φ is the golden
ratio.

Proof. (Idea) The golden bisect algorithm has the remarkable following prop-
erty: starting from a graph with n vertices, either the subgraph remaining after
one query is of size at most n

φ , or the subgraph obtained after two queries is of
size at most n

φ2 . If we admit this point, the proof of Theorem 6 has no difficulty.
The reason why we have such a guarantee on the size of the remaining graph

after one or two queries comes from the choices of the sets B≥ and B<. If golden
bisect first queries a bugged vertex of B≥ with a “bad” score, then the parents
of this vertex must have a “really good” score in the new resulting graph.

Let us take a critical example: golden bisect queries a bugged vertex of
B≥, let us say b, with a score of (n− 1)/3—which is the worst possible score for
such vertices, by Lemma 1. In this case, each of the two parents of b will have
the really good score of (n − 1)/3 in the new graph, which is approximately half
of its size. So, even if the first query has just removed one third of the vertices,
the size of the graph after two queries is more or less n/3 (which is smaller than
n/φ2).

The ratio 1/φ appears in fact whenever we try to balance what could go
wrong after one query and what could go wrong after two queries.

Similar arguments hold whenever the first query concerns a vertex of B<.

As first corollary, since no power of φ is an integer, the number of golden

bisect queries for a binary DAG of size n is also at most �logφ(n)� =
⌈
log2(n)
log2(φ)

⌉
.

We can also deduce that it is a better approximation algorithm than git bisect
(in the binary case):

Corollary 3. For every ε > 0, golden bisect is a
(

1
log2(φ)

+ ε
)
-

approximation algorithm on binary DAGs with a sufficiently large size.

Moreover, we can find a family of graphs whose ratio “number of golden
bisect queries”/“optimal number of queries” tends to 1/ log2(φ). This point
will be more detailed in a longer version of this article.

Finally, this also gives an upper bound for the optimal number of queries in
the worst-case scenario, given a binary DAG of size n.

Corollary 4. For any binary DAG D with n vertices, the optimal number opt
of queries for the Regression Search Problem satisfies

�log2(n)� ≤ opt ≤ �logφ(n)�.

Note that the latter corollary is an analogue of Proposition 1, but for binary
DAGs. The lower bound is satisfied for a large variety of DAGs, the most obvious
ones being the directed paths. The upper bound is also reached for some families
of graphs.
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5 Conclusion

In summary, this paper has established that git bisect can be very inefficient
on very particular digraphs, but under the reasonable hypothesis that merges
must not concern more than 2 branches each, it is proved to be a good approxima-
tion algorithm. This study has also developed a new algorithm, golden bisect,
which displays better theoretical results than git bisect.

The natural next step will be to conduct experimental studies. The authors
are currently implementing git bisect and golden bisect, and are going to
put them to the test on benchmarks.

Notably, some open questions remain, and hopefully answers will be found
through the experiments. Here is a list of such open questions:

– Even if golden bisect is a better approximation algorithm than the git
bisect algorithm, it does not mean that golden bisect is overall better
than git bisect. Does there exist some instance of binary DAG for which
golden bisect is worst than the git bisect algorithm?

– In git bisect and in golden bisect, one never queries vertices which were
eliminated from the set of candidates for the faulty commit. However, we
could speed up the procedure by never removing any vertex after queries. For
example, consider the DAG from Fig. 5. If we choose v7 as first query and it is
bugged, then we remove all ui (the non-ancestors of v7). However, querying
the vertices ui in the comb would be more efficient. Could we improve git
bisect by authorising such queries?

– When we restrict the DAGs to be binary, is the Regression Search Problem
still NP-complete?

– If we restrict the DAGs to be trees (oriented from the leaves to the root), is git
bisect a good approximation algorithm? We conjecture that git bisect is
a 2−approximation algorithm for trees. (We have found examples where the
ratio is 2.)

Finally we envisage studying the number of queries in the worst-case scenario,
but whenever the input DAG is taken at random. Indeed, most of the examples
described in this paper are not very likely to exist in reality. The notion of ran-
domness for a digraph emanating from a VCS is therefore quite interesting and
deserves to be developed. We could for example define a theoretical probabilistic
model based on existing workflows. It will be also quite useful to use random
samplers for VCS repositories in order to constitute benchmarks on demand.
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Abstract. A path-decomposition of a graph G = (V, E) is a sequence
of subsets of V , called bags, that satisfy some connectivity properties.
The length of a path-decomposition of a graph G is the greatest dis-
tance between two vertices that belong to a same bag and the pathlength,
denoted by p�(G), of G is the smallest length of its path-decompositions.
This parameter has been studied for its algorithmic applications for sev-
eral classical metric problems like the minimum eccentricity shortest path
problem, the line-distortion problem, etc. However, deciding if the path-
length of a graph G is at most 2 is NP-complete, and the best known
approximation algorithm has a ratio 2 (there is no c-approximation with
c < 3

2
unless P = NP ). In this work, we focus on the study of the path-

length of simple sub-classes of planar graphs. We start by designing a
linear-time algorithm that computes the pathlength of trees. Then, we
show that the pathlength of cycles with n vertices is equal to �n

2
�. Finally,

our main result is a (+1)-approximation algorithm for the pathlength
of outerplanar graphs. This algorithm is based on a characterization of
almost optimal (of length at most p�(G) + 1) path-decompositions of
outerplanar graphs.

Keywords: Path-decomposition · Pathlength · Outerplanar graph ·
Dual

1 Introduction

Path-decompositions of graphs have been extensively studied since their intro-
duction in the Graph Minor theory of Robertson and Seymour, for their vari-
ous algorithmic applications. A path-decomposition of a graph G = (V,E) is a
sequence (X1, . . . , Xp) of subsets (called bags) of V such that (1)

⋃
i≤p Xi = V ,

(2) for all edges {u, v} ∈ E, there exists 1 ≤ i ≤ p such that u, v ∈ Xi, and
(3) for all 1 ≤ i ≤ z ≤ j ≤ p, Xi ∩ Xj ⊆ Xz. These constraints imply the
following fundamental property (widely used in the proofs): for all 1 ≤ i < p,
S = Xi ∩ Xi+1 separates A =

⋃
j≤i Xj \ S and B =

⋃
j>i Xj \ S (i.e. every path

between A and B goes through S).

This work is partially founded by projects UCA JEDI (ANR-15-IDEX-01), the ANR
project Digraphs (ANR-19-CE48-001) and EUR DS4H (ANR-17-EURE-004) Invest-
ments in the Future. Due to lack of space, some proofs are omitted or sketched. Full
proofs can be found in [5].
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The most classical measure of path-decompositions is their width correspond-
ing to the maximum size of the bags (minus one). The pathwidth of a graph G is
the minimum width of its path-decompositions. Typically, the famous theorem of
Courcelle implies that numerous NP-hard problems can be solved in polynomial
time in graphs of bounded pathwidth [2].

We focus on another measure of path-decompositions which, while less stud-
ied, has also numerous algorithmic applications. This measure, the length �(D)
of a path-decomposition D, is the maximum diameter of the bags of D, where
the diameter �(X) of a bag X is the largest distance (in G) between two vertices
of X. The pathlength p�(G) of a graph G, is the minimum length among all its
path-decomposition [6]. In particular, this measure captures several metric prop-
erties of graphs. For example, the line distortion problem can be approximated
(up to a constant factor) when the pathlength is bounded by a constant [7],
which has many applications in computer vision [16], computational chemistry
and biology [12], in network design and distributed protocol [10], etc. Moreover,
since the pathlength is an upper bound of the treelength: the Traveling Salesman
Problem admits a FPTAS in bounded pathlength graphs [14]; efficient compact
routing schemes and sparse additive spanners can be built in the class of graphs
with bounded pathlength [13]; computing the metric dimension is FPT in the
pathlength plus the maximum degree [1], etc.

Unfortunately, deciding if the pathlength of a graph is at most 2 is NP-
complete and there does not exist a c-approximation for any c < 3

2 (unless
P = NP ) [9]. On the other hand, there exists a 2-approximation in general
graphs [7]. While computing the pathwidth of planar graphs is known to be NP-
complete [15], the case of pathlength has not been studied yet. In this paper, we
initiate this study by considering outerplanar graphs. Note that the pathwidth
of outerplanar graphs is known to be polynomial-time solvable, but the best
known algorithm to compute the pathwidth of outerplanar n-node graphs has
complexity O(n11) [3]. Moreover, there exist 2-approximation algorithms for this
problem, with time complexity O(nlog(n)), that deal with the problem by rela-
ting the pathwidth of an outerplanar graph with the one of its weak dual [3,4].

Our Contributions. In Sect. 3, we first present a linear-time algorithm that
computes the pathlength of trees, and prove that p�(Cn) = �n

2 � for any cycle
Cn with n vertices. Section 4 is devoted to our main contribution. We design an
algorithm that computes, in time O(n3(n + p�(G)2)), a path-decomposition of
length at most p�(G) + 1 of any outerplanar n-node graph G. This algorithm
is based on a structural characterization of almost optimal (of length at most
p�(G) + 1) path-decompositions of outerplanar graphs.

2 Preliminaries

Let G = (V,E) be any graph. When it will not be specified below, n will always
be the number |V | of vertices. In what follows, any edge {x, y} is also considered
as the set of two vertices x and y. In particular, we say that X ⊆ V contains
an edge e if e ⊆ X. Given a vertex v ∈ V , let N(v) = {u ∈ V | {v, u} ∈ E} be
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the neighbourhood of v and let N [v] = N(v) ∪ {v} be its closed neighbourhood.
Given S ⊆ V , let N(S) = {v ∈ V \ S | ∃u ∈ S, {u, v} ∈ E} and let G[S] =
(S,E ∩ (S ×S)) be the subgraph of G induced by the vertices of S. The distance
distG(u, v) (or dist(u, v) if there is no ambiguity) between u ∈ V and v ∈ V
is the minimum length (number of edges) of a path between u and v in G. A
subgraph H of G is isometric if distH(u, v) = distG(u, v) for all u, v ∈ V (H). In
what follows, we will use the following result.

Lemma 1. [6] For every isometric subgraph H of G, p�(H) ≤ p�(G).

Let us say that a path-decomposition of G is optimal if it has length p�(G). Let
us say that a path-decomposition is reduced if no bag is contained in another one.
It is easy to check that any graph admits an optimal reduced path-decomposition.

Given two sequences D = (X1, · · · ,Xp) and D′ of subsets of V and S ⊆ V ,
let D∪S = (X1 ∪S, · · · ,Xp ∪S) (If S = {v}, we write D∪v instead of D∪{v}).
Let D ∩ S and D \ S be defined in a similar way (in these cases, the empty bags
that may be created are removed). Finally, let D 
 D′ be the sequence obtained
by concatenation of D and D′. The following proposition is straightforward (and
well known).

Proposition 1. Let D be a path-decomposition of G = (V,E) and S ⊆ V :

1. Then, D′ = D ∩ S (resp., D′ = D \ S) is a path-decomposition of G[V ∩ S]
(resp., of G\S). Moreover, if G[V ∩S] (resp., G\S) is an isometric subgraph
of G, then �(D′) ≤ �(D).

2. Let D′ be a path-decomposition of G[V \ S]. Then, D′ ∪ S is a path-
decomposition of G.

3. Let V = A ∪ B with A ∩ B = S and S separating A \ S and B \ S (there
does not exist any edge {u, v} ∈ E with u ∈ A \ S and v ∈ B \ S), let D1

be a path-decomposition of G[A] with last bag containing S, and let D2 be a
path-decomposition of G[B] with the first bag containing S. Then, D1 
D2 is
a path-decomposition of G of length at most max{�(D1), �(D2)}.

3 Pathlength of Trees and Cycles

We first begin by the trees, the easiest sub-class of planar graphs. Note that,
intuitively, the algorithm presented in Sect. 4, that computes the pathlength of
outerplanar graphs follows similar ideas as the one we present for trees.

Theorem 1. The pathlength of any tree T and an optimal path-decomposition
can be computed in linear time.

Sketch of Proof. Let P = (v0, . . . , vr) be a diameter of T , i.e., a longest path in
T . For any 0 ≤ i < r, let ei = {vi, vi+1} and Ti be the connected component
of T \ {ei, ei+1} containing vi. Let D be a path-decomposition built as follows.
The first bag of D is e0, then sequentially (from 1 ≤ i < r), we “add” the bags
containing a path between vi and a leaf of Ti (for each leaf of Ti ordered by any
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DFS ordering of Ti starting from vi), and then the bag ei+1 (see an illustration
in Fig. 1). Clearly, P and such a decomposition can be computed in linear time
using two BFS and one DFS. Moreover, this decomposition is optimal. Indeed,
let X be a bag with maximum diameter k = �(D), then it contains a leaf at
distance k from the path P . By maximality of P , T contains an isometric spider
Sk (three paths of length k joint by one of their end). Therefore, by Lemma 1,
p�(T ) ≥ k [6]. The full proof can be found in [5]. �

a b d f g

X Y Z W

Fig. 1. Example of a tree T (with p�(T ) = 2) and a path-decomposition
({ab}, {bc}, X, Y, {cd}, {de}, Z, W, {ef}, {fg}) obtained as in the proof of Theorem 1.

Remark 1. The above proof actually shows that, in any tree T , p�(T ) equals its
minimum eccentricity shortest-path. Note that it was already known that the
minimum eccentricity shortest-path of trees can be computed in linear time [8].

We will focus now on cycles. The full proof can be found in [5].

Theorem 2. Let Cn be a cycle of length n. We have that p�(Cn) = �n
2 �.

Sketch of Proof. Note first that, a decomposition with only one bag containing
all the vertices of Cn is a path-decomposition of length �n

2 �. It remains to prove
that this decomposition is optimal. Let u and v ∈ V be at distance �n

2 �. We
suppose that there is a path-decomposition D = (X1, . . . , Xp) such that �(D) <
�n
2 �. It implies that there exists 1 ≤ i < j ≤ p such that Xi is the last bag

containing u and Xj is the first bag containing v. Moreover, for any i < k ≤ j
Xk ∩Xk−1 separates u and v. We show that there exists i < k ≤ j such that Xk

contains u′ and v′ such that d(u′, v′) = �n
2 �, a contradiction. �

4 Outerplanar Graphs

This section is devoted to our main result: a polynomial-time algorithm for
computing a path-decomposition of any simple outerplanar graph G with length
at most p�(G) + 1. Due to lack of space and for simplicity, we only present the
proof for 2-connected simple outerplanar graphs. The proof of the result in the
case when the graph is not 2-connected can be found in [5].

A graph G = (V,E) is outerplanar if it can be embedded in the plane without
crossing edges and such that all vertices lie on the outer face (the unbounded
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face). An edge of an outerplanar graph is called an internal edge if it does not
lie on the outer face. Note that, since we only consider simple graphs, the fact
that an edge is internal or not does not depend on the outerplanar embedding.
Let Eint ⊆ E be the set of internal edges and Eout = E \Eint be the set of outer
edges. Note that any internal edge e ∈ Eint of an outerplanar graph G = (V,E)
is a separator (i.e., G\V (e) has several connected components). Moreover, since
we are considering 2-connected outerplanar graphs, for every e = {u, v} ∈ Eint,
G \ {u, v} has exactly two connected components.

Path-Decompositions with Fixed First and Last Elements: Let G =
(V,E) be a connected graph and let e ∈ E. A path-decompostion D =
(X1, · · · ,Xp) of G starts from e if e ⊆ X1. Similarly, D finishes with e if e ⊆ Xp.
Let x, y ∈ E, a path-decomposition of G starting from x and finishing with
y is called a {x, y}-path-decomposition. Let p�(G, x, y) be the minimum length
among all {x, y}-path-decompositions of G. A {x, y}-path-decomposition is an
optimal {x, y}-path-decomposition if its length is p�(G, x, y). Clearly, any {x, y}-
path-decomposition (X1, · · · ,Xp) corresponds to a {y, x}-path-decomposition
(Xp, · · · ,X1) of same length, and so:

Claim. For any connected graph G = (V,E) and x, y ∈ E, p�(G, x, y) =
p�(G, y, x).

The following claim directly holds by definition and because there always
exists a reduced optimal path-decomposition (note that, for any reduced path-
decomposition D of a connected graph, there exist x, y ∈ E such that D starts
from x and finishes with y).

Claim. For any connected graph G = (V,E), p�(G) = minx,y∈E p�(G, x, y).

For our purpose, we need to refine the above claim as follows. The proof can
be found in [5].

Lemma 2. For any 2-connected outerplanar graph G, p�(G) = minx,y∈Eout

p�(G, x, y).

By Lemma 2, the computation of p�(G) can be restricted to the O(n2) com-
putations of p�(G, x, y) for all fixed x, y ∈ Eout (since G is planar, |E| = O(n)).
Most of what follows is devoted to this task. Therefore, in Sects. 4.1 to 4.2, G
will always be a 2-connected outerplanar graph and x, y ∈ Eout will be fixed.
Section 4.1 is devoted to the “easy” cases. If x and y are separated by an internal
edge e, then it is possible to reduce the problem to the two connected components
of G \ e, and if x = y, we present a greedy algorithm that computes an opti-
mal {x, y}-path-decomposition of G. Sect. 4.2 is devoted to the remaining case:
roughly, when x and y are distinct and belong to a same internal (bounded)
face of G. In this latter case, we show that we can restrict our attention to
particular {x, y}-path-decompositions of G and that such an optimal decompo-
sition can be computed in polynomial time by dynamic programming. Finally,
Sect. 4.3 formally states our main result and describes our algorithm to compute
a path-decomposition of a 2-connected outerplanar graph with length at most
p�(G) + 1.
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4.1 Cases When Recursion or Greedy Algorithm are Possible

We say that x and y are separated in G if there exists z ∈ E such that x′ =
x \ z = ∅, y′ = y \ z = ∅ and all paths from x′ to y′ intersect z (recall that an
edge is seen as a set of two vertices). Note also that, since any outer edge does
not separate G in several connected components (because G is 2-connected),
z ∈ Eint. Note that the following lemma directly holds by Proposition 1. The
proof can be found in [5].

Lemma 3. Let G = (V,E) be a 2-connected simple outerplanar graph and
x, y ∈ Eout such that x and y are separated by z ∈ Eint. Let Cx and Cy be
the connected component of G \ z (the graph obtained from G by removing both
ends of z) containing (or intersecting) respectively x and y. Let D1 be an opti-
mal {x, z}-path-decomposition of G[V (Cx) ∪ z] and D2 be an optimal {z, y}-
path-decomposition of G[V (Cy) ∪ z]. Then, D1 
 D2 is an optimal {x, y}-path-
decomposition of G.

Now, if x = y, then a greedy path-decomposition P of G based on x is any
{x, x}-path-decomposition of G that can be obtained by the following recursive
algorithm called Greedy.

– If G is a cycle (v1, . . . , vn) (w.l.o.g., x = {v1, vn}), D = (X1, . . . , Xn−1) with,
for every 1 ≤ i ≤ n − 1, Xi = x ∪ {vi, vi+1}.

– Else, let (v1, . . . , vq) be the unique internal face containing x (the face is
unique since x is an outer edge) such that x = {v1, vq}. Since G is not a
cycle, there exists 1 ≤ j < q such that f = {vj , vj+1} ∈ Eint. Let C and
C ′ be the two connected components of G \ f and, w.l.o.g., C intersects x.
Let D1 be a greedy path-decomposition of G[V (C ′) ∪ f ] based on f and let
D2 = (X1, · · · ,Xp) be a greedy path-decomposition of G[V (C) ∪ f ] based on
x and let 1 ≤ h ≤ p be any integer such f ⊆ Xh and vj−1, vj+2 /∈ Xh (if j = 1,
then vj+2 /∈ Xh and if j = q − 1, then vj−1 /∈ Xh) (such an index h exists by
induction). Then, D = (X1, · · · ,Xh)
 (D1 ∪ (Xh ∩Xh+1))
 (Xh+1, · · · ,Xp)
is a greedy path-decomposition of G based on x.

It is easy to show by induction on |V (G)| (see [5]) that:

Proposition 2. Any sequence D = (X1, · · · ,Xp) returned by Algorithm Greedy
is a {x, x}-path-decomposition of G. Moreover, Algorithm Greedy proceeds in
linear time. Moreover, for all 1 < i ≤ p, |Xi \Xi−1| ≤ 1 and, if Xi \Xi−1 = {u},
then Xi consists of u, one of its neighbors u′ such that {u, u′} ∈ Eout, of x and
of all the vertices of each internal edge that separates u from x.

Finally, from this description of the bags, we can prove that these greedy
path-decompositions are optimal. The proof can be found in [5].

Theorem 3. Let G = (V,E) be a 2-connected simple outerplanar graph and
x ∈ Eout. An optimal {x, x}-path-decomposition of G can be computed in linear
time (in O(|E|)).
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4.2 Case When x and y Belong to a Same Face

In this section, we consider the last remaining case which is much more technical
than the previous ones. Namely, x = y and x and y lie on a same internal face
F of G (i.e., they are not “separated”).

In this setting, we first show that there always exists an almost optimal
{x, y}-path-decomposition satisfying specific properties (first, contiguous, then
g-contiguous and finally LtR g-contiguous, see formal definitions below). Then, a
dynamic programming algorithm to compute a {x, y}-path-decomposition with
minimum length (among such decompositions) is presented. We first need further
notation.

Let x = {x1, x2} and y = {y1, y2}. Let F (the internal face containing x
and y) consist of two internally disjoint paths Pup between x1 and y1 and Pdown

between x2 and y2 (x and y may share one vertex, in which case, we assume that
x2 = y2 and Pdown is reduced to x2). Let C be the set of connected components of
G\F . Let Cup (resp., Cdown) be the set of connected components C of G\F such
that N(C) ⊆ V (Pup) (resp., N(C) ⊆ V (Pdown)). For every C ∈ Cup ∪ Cdown, let
C̄ = C∪N(C) and let sC = N(C) (since G is outerplanar and 2-connected, sC is
an edge of F ). Before describing the contiguous property, we need the following
simple property which can be easily obtained thanks to Proposition 1 and to the
third property of path-decompositions. The proof can be found in [5].

Lemma 4. Let G = (V,E) be a 2-connected simple outerplanar graph and x, y ∈
Eout such that x = y and x and y lie on the same internal face F of G.
If p�(G, x, y) ≤ k, then there exists a {x, y}-path-decomposition (X1, · · · ,Xp) of
G with length at most k such that, for every C ∈ C, if Xi ∩C = ∅, then sC ⊆ Xi.

Let C be a component of G \ F . Let sC = {lC , rC} and let dC = maxv∈C∪sC

max{dist(v, rC), dist(v, lC)} and let MC = {v ∈ C ∪ sC | max{dist(v, rC),
dist(v, lC)} = dC}. Note that, for every v ∈ C∪sC , dist(v, lC)−1 ≤ dist(v, rC) ≤
dist(v, lC) + 1. If there exists v ∈ MC such that dist(v, rC) = dist(v, lC) = dC ,
then let h∗

C be such a vertex. Otherwise, let h∗
C be any vertex of MC .

If there exists a vertex v ∈ C ∪ sC with dist(v, rC) = dist(v, lC) = dC , we
say that C is a convenient component. The following claim is straightforward.

Proposition 3. Let C be a connected component of G\F and let v ∈ C and u ∈
G \ C. If C is convenient or v /∈ MC , then dist(v, u) ≤ dist(h∗

C , u). Otherwise,
dist(v, u) ≤ dist(h∗

C , u) + 1.

Toward g-Contiguous Decompositions. Let D = (X1, · · · ,Xp) be any
{x, y}-path-decomposition of G and let C ∈ C. The component C is said to
be contiguous (with respect to D) if there exist 1 ≤ aC ≤ bC ≤ p such that (1)
C ∩ Xi = ∅ if and only if i /∈ {aC , · · · , bC}, and sC ⊆ Xj for all aC ≤ j ≤ bC ,
and (2) there exists RC ⊆ V (F ) such that Xi \ C = RC for every aC ≤ i ≤ bC .
Intuitively, C is contiguous w.r.t. D if, once a vertex of C has been introduced
in D, no vertex of G \ C can be introduced in D before all vertices of C have
been introduced.
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A path-decomposition D is contiguous if every component of G \ F is con-
tiguous w.r.t. D.

In what follows, we show that there always exists an optimal (or almost
optimal) {x, y}-path-decomposition of G which is contiguous. Note that if
every component of C is convenient, then there exists a contiguous {x, y}-path-
decomposition of length p�(G, x, y). Unfortunately, if there is at least one compo-
nent in C that is not convenient, then every contiguous {x, y}-path-decomposition
of G might have length p�(G, x, y)+1. Later, we show that there exist 2-connected
simple outerplanar graphs for which the increase cannot be avoided.

Theorem 4. Let G = (V,E) be a connected simple outerplanar graph and x, y ∈
Eout such that x = y and x and y lie on the same internal face F of G.

If p�(G, x, y) ≤ k, then there exists a contiguous {x, y}-path-decomposition
D′ of G with length at most k + 1.

Proof. Let us say that a {x, y}-path-decomposition D = (X1, · · · ,Xp) of G
satisfies Property (∗) if: �(D) ≤ k + 1; for every 1 ≤ i ≤ p, every C ∈ C and
every u, v ∈ C ∩ Xi, dist(u, v) ≤ k; and, if C ∩ Xi = ∅, then sC ⊆ Xi.

Given a path-decomposition D, let Q(D) ⊆ C be a set of components C of
C such that there exist 1 ≤ aC ≤ bC ≤ p such that (1) C ∩ Xi = ∅ if and
only if aC ≤ i ≤ bC , and sC ∈ Xj for all aC ≤ j ≤ bC , and (2) there exists
RC ⊆ F ∪ ⋃

C′ /∈Q(D) C ′ such that, for every aC ≤ i ≤ bC , Xi \ C = RC , and (3)
for every 1 ≤ j ≤ p such that there exists no C ∈ Q(D) with aC ≤ j ≤ bC , then
�(Xj) ≤ k. Moreover, if there exist C,C ′ ∈ Q(D) with bC = j = aC′ − 1, then
�(Xj ∩ Xj+1) ≤ k.

Let D be a {x, y}-path-decomposition of G with length k. By Lemma 4, we
may assume that, for every C ∈ C, if Xi ∩ C = ∅, then sC ⊆ Xi. Hence, note
that D satisfies Property (∗). Then, such a set Q(D) is well defined (possibly,
Q(D) is empty).

Let us consider a {x, y}-path-decomposition D′ = (X1, · · · ,Xp) of G with
length at most k + 1 and satisfying Property (∗), and that maximizes |Q(D′)|.
If Q(D′) = C, then D′ is the desired path-decomposition. For purpose of contra-
diction, let us assume that C \ Q(D′) = ∅. Let C ∈ C \ Q(D′) and let 1 ≤ i ≤ p
be the smallest integer such that h∗

C ∈ Xi. Note that, sC ∈ Xi. Note also that,
there is no C ′ ∈ Q(D′) such that aC′ < i ≤ bC′ by definition of Q(D′).

Let Y = (D′ ∩ C) ∪ (sC ∪ (Xi−1 ∩ Xi) \ C) (Recall the definition of D ∩ X
and D ∪ X, when D is a path-decomposition of G and X ⊆ V (G), as defined in
Sect. 2. Recall also that an edge is a set of two vertices). By Property (∗) and
Proposition 3 and third item above, �(Y ) ≤ k + 1 (if C is convenient, we even
have �(Y ) ≤ k). Therefore, D′′ = (X1\C, · · · ,Xi−1\C)
Y 
(Xi\C, · · · ,Xp\C)
is a {x, y}-path-decomposition of G, with length at most k + 1 and satisfying
Prop. (∗), and such that Q(D′) ∪ {C} ⊆ Q(D′′), contradicting the maximality
of |Q(D′)|. ��

Unfortunately, the previous theorem cannot be improved:
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Lemma 5. There exists 2-connected outerplanar graphs G and x, y ∈ Eout

such that every contiguous {x, y}-path-decomposition of G has length at least
p�(G, x, y) + 1.

Fig. 2. Example of a 2-connected simple outerplanar graph G and x, y ∈ Eout such
that every contiguous {x, y}-path-decomposition of G has length at least p�(G, x, y)+1.
An edge with label q represents a path of length q.

Sketch of Proof. Let G be the graph depicted in Fig. 2. It can be proved that
p�(G, x, y) = 10, but in every {x, y}-path-decomposition of G of length 10, any
bag containing l contains only x2 in Pdown, while any bag containing r contains
only y2 in Pdown. Hence, the component C = G \ F cannot be added in a
contiguous way: to preserve the minimum length, some vertices of Pdown have
to be added in such decompositions after l is added and before r is added in the
decomposition. The full proof can be found in [5]. �

A contiguous {x, y}-path-decomposition D = (X1, · · · ,Xp) of G is said to
be g-contiguous if, for every C ∈ C, (DaC

∩ (C̄), · · · ,DbC
∩ (C̄)) is an optimal

greedy path-decomposition of G[C̄] = G[C ∪ sC ] based on sC .
Note that transforming a contiguous path-decomposition D = (X1, · · · ,Xp)

into a g-contiguous one can be done easily without increasing the length.
Indeed, for each component C ∈ C, there exists RC ⊆ V (F ) such that
(XaC

\RC , · · · ,XbC
\RC) is a path-decomposition of C̄ where each bag contains

sC . It is sufficient to replace, in D, this subsequence by the union of RC and a
greedy path-decomposition of C̄ based on sC . More precisely, the proof of the
following theorem can be found in [5].

Theorem 5. Let G = (V,E) be a connected simple outerplanar graph and x, y ∈
Eout such that x = y and x and y lie on the same internal face F of G.

If p�(G, x, y) ≤ k, then there exists a g-contiguous {x, y}-path-decomposition
D = (X1, · · · ,Xp) of G with length at most k + 1. Moreover, for every C ∈ C
and aC ≤ i ≤ bC and u, v ∈ Xi, dist(u, v) = k+1 only if u ∈ MC and v ∈ F \C̄.

Toward Left-to-Right g-Contiguous Decompositions: Recall that we are
considering a n-node 2-connected simple outerplanar graph G = (V,E) and
x, y ∈ Eout such that x = y and x and y lie on the same internal face F of G.
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Let x = {x1, x2} and let y = {y1, y2}. Let Pup = (x1 = u1, · · · , ut = y1)
and Pdown = (x2 = d1, · · · , ds = y2) be the two internally disjoint paths that
consist of all vertices of the face F . Note that, it may be possible that x1 = y1
or x2 = y2 but not both (in what follows, we assume that x1 = y1).

For every C ∈ Cup (i.e., such that sC ⊆ V (Pup)), let lC (resp., rC) be the
vertex of sC that is closest (resp., furthest) to x1 in Pup. Similarly, for every
C ∈ Cdown (i.e., such that sC ⊆ V (Pdown)), let lC (resp., rC) be the vertex of
sC that is closest (resp., furthest) to x2 in Pdown.

An edge e ∈ E(F ) \ {x, y} is said to be trivial if there does not exist C ∈ C
such that e = sC . While trivial edges are not related to any component of G\F ,
we need to include them in the analysis that follows. To unify the notation, let
C̄ = {C̄ = C ∪ sC | C ∈ C} ∪ {e ∈ E(F ) \ {x, y} | e is a trivial edge}. Intuitively,
every trivial edge e ∈ E(F ) \ {x, y} may be seen as e = sC for some dummy
empty component C = ∅. Similarly, let C̄up = {C̄ = C ∪ sC | C ∈ Cup} ∪ {e ∈
E(Pup) | e is a trivial edge} and C̄down = {C̄ = C ∪ sC | C ∈ Cdown} ∪ {e ∈
E(Pdown) | e is a trivial edge}. Note that C̄ = C̄up ∪ C̄down.

Let Oup = (Cu
1 , · · · , Cu

s′) be the ordering of C̄up such that, if lCu
i

is strictly
closer to x1 in Pup than lCu

j
(and so rCu

i
is strictly closer to x1 in Pup than rCu

j
),

then i < j. Similarly, let Odown = (Cd
1 , · · · , Cd

s′) be the ordering of C̄down such
that, if lCu

i
is strictly closer to x2 in Pdown than lCu

j
(and so if rCu

i
is strictly

closer to x1 in Pup than rCu
j
), then i < j. Intuitively, we order the components

of Cup and the trivial edges of Pup from x1 to y1 (resp., of Cdown and the trivial
edges of Pdown from x2 to y2), i.e., from “left to right” (“from x to y”).

In this section, we only consider g-contiguous {x, y}-path-decompositions
D = (X1, · · · ,Xp) of G. That is, for every C ∈ C, there exist 1 ≤ aC ≤ bC ≤ p,
and an interval IC = [aC , bC ] such that Xi ∩C = ∅ if and only if i ∈ IC , sC ∈ Xi

for all i ∈ IC and Xi \C = RC ⊆ V (F ) for all i ∈ IC . In particular, IC ∩ IC′ = ∅
for all distinct C,C ′ ∈ C (since C,C ′ are distinct components of G \ F ). We
say that C appears in D in the bag XaC

. Moreover, (XaC
∩ C̄, · · · ,XbC

∩ C̄)
is a greedy path-decomposition of G[C̄] based on sC . Recall also that we may
assume that the property of the last statement in Theorem 5 holds.

By definition, D induces a total order OD = (C̄1, · · · , C̄b) on C̄ such that,
for any 1 ≤ i < j ≤ b, C̄i appears in D before C̄j (i.e., bCi

< aCj
). We aim at

considering such g-contiguous {x, y}-path-decompositions D such that the total
orders OD they induce satisfy some extra property defined below.

Let H = H1 ∪ H2 be any set with H1 ∩ H2 = ∅. Let O = (H1, · · · ,Hq) be a
total ordering on H, and let Oi be a total ordering of Hi for i ∈ {1, 2}. A prefix
P = (H1, · · · ,Hq′) (q′ ≤ q) of H is compatible with Oi if P ∩ Hi is a prefix of
Oi for i ∈ {1, 2}. If q′ = q, then O is said to be compatible with O1 and O2.

Roughly, a contiguous {x, y}-path-decompositions D of G is said to be LtR
(letf to right) if OD is compatible with Oup and Odown. More precisely,

Definition 1. A contiguous {x, y}-path-decompositions D = (X1, · · · ,Xp) of G
is LtR if and only if (1), for every Cu

i , Cu
j ∈ Oup (resp., Cd

i , Cd
j ∈ Odown) with

i < j, bCu
i

< aCu
j
(resp., with bCd

i
< aCd

j
) and, moreover, (2), for every C ∈ C̄up
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(resp., C̄down), and i ∈ IC , Xi ∩ F = {lC , rC , fC} where fC is one vertex of
V (Pdown) (resp., of V (Pup)).

In what follows, we will iteratively transform a given g-contiguous {x, y}-
path-decomposition of G into different path-decompositions. During these trans-
formations, the obtained path-decomposition will always remain a g-contiguous
{x, y}-path-decomposition of G, but its length may be increased temporarily. To
deal with this difficulty, let us define the weak length, denoted by w�(D), of an
{x, y}-path-decomposition D = (X1, · · · ,Xp) of an outerplanar graph G (where
x and y are outer edges of a same face of G). The weak length, denoted by w�(Xi),
of a bag Xi (1 ≤ i ≤ p) is maxu∈Xi,v∈Xi∩Y dist(u, v) where Y = V (Pup) (resp.,
Y = V (Pdown)) if aC ≤ i ≤ bC for a component C̄ ∈ C̄down (resp., C ∈ C̄up).
Then, w�(D) = maxi≤p w�(Xi). By definition of LtR and of the weak length:

Lemma 6. [5] Let D = (X1, · · · ,Xp) be a LtR g-contiguous {x, y}-path-decom-
position of G of weak length k such that, for every C ∈ C and aC ≤ i ≤ bC and
u, v ∈ Xi, dist(u, v) > k only if u ∈ MC and v ∈ F \ C̄. Then, �(D) ≤ k.

The next theorem roughly says that, from a g-contiguous {x, y}-path-decom-
position, we can add the property that it is LtR without increasing the length.

Theorem 6. Let G = (V,E) be a connected simple outerplanar graph and x, y ∈
Eout such that x = y and x and y lie on the same internal face F of G.

Let us assume that there exists a g-contiguous {x, y}-path-decomposition D =
(X1, · · · ,Xp) of G with length k and such that, for every C ∈ C and aC ≤ i ≤ bC

and u, v ∈ Xi, dist(u, v) = k only if u ∈ MC and v ∈ F \ C̄.
Then, there exists a LtR g-contiguous {x, y}-path-decomposition of G with

weak length at most k and such that, for every C ∈ C and aC ≤ i ≤ bC and
u, v ∈ Xi, dist(u, v) = k only if u ∈ MC and v ∈ F \ C̄.

Proof. Let D = (X1, · · · ,Xp) be a g-contiguous {x, y}-path-decomposition of G
with weak length k. We say that D satisfies Property (∗) if, for every C ∈ C and
aC ≤ i ≤ bC and u, v ∈ Xi, dist(u, v) = k only if u ∈ MC and v ∈ F \ C̄.

Recall that Oup (resp., Odown) are uniquely defined since for any 1 ≤ i < t,
there is at most one component C such that sC = {ui, ui+1}.

Let D = (X1, · · · ,Xp) be g-contiguous {x, y}-path-decomposition of G with
weak length at most k satisfying Property (∗) that maximize 1 ≤ h ≤ p such
that (X1, · · · ,Xh) is compatible with Oup and Odown. Note that, if h = p, then
D is the desired path-decomposition. Hence, for purpose of contradiction, let us
assume that h < p.

Note that, because D is a contiguous {x, y}-path-decomposition and because
(X1, · · · ,Xh) is compatible with Oup and Odown, there exist 1 ≤ i ≤ s and
1 ≤ j ≤ t (recall that t and s are the number of vertices of Pup and Pdown

respectively) such that Xh ∩ Xh+1 = {ui, dj}.
Let OD = O 
 (C1, · · · , Cq) where O is the prefix of OD that corresponds

to the components appearing in (X1, · · · ,Xh). W.l.o.g., let us assume that C1 ∈
C̄up. Let Oup = O′ 
 (C ′

1, · · · , C ′
q′) where O′ = O ∩ C̄up. By maximality of h,
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C1 = C ′
1. More precisely, C1 = C ′

z for some 1 < z ≤ q′. There are two cases to
be considered.

– First, let us assume that, for every 1 ≤ α < z, for all h∗
C′

α
∈ MC′

α
,

dist(h∗
C′

α
, dj) ≤ k. Let

D′ = (X1, · · · ,Xh) 
 ((XaC′
1
, · · · ,XbC′

1
) ∩ C̄ ′

1) ∪ {dj}


((XaC′
2
, · · · ,XbC′

2
)∩ C̄ ′

2)∪{dj}
· · ·
 ((XaC′
z−1

, · · · ,XbC′
z−1

)∩ C̄ ′
z−1)∪{dj}


((Xh+1, · · · ,Xp) \ ((
⋃

1≤α<z

C̄ ′
α) \ {lC′

z
})).

Intuitively, all components that are between (in Oup) the last component of
O and C1 are “moved” just before C1 in the decomposition (in D all these
components were appearing after C1).
Because D is g-contiguous and satisfies Property (∗), then D′ is a
g-contiguous {x, y}-path-decomposition of G satisfying Property (∗).
Moreover, its weak length is at most k. In particular, for every bag B of
((XaC′

α
, · · · ,XbC′

α
)∩ C̄ ′

α)∪{dj} for 1 ≤ α < z, w�(B) ≤ k because D satisfies
Property (∗) and because, by assumption, dist(h∗

C′
α
, dj) ≤ k.

To conclude this case, D′ is g-contiguous {x, y}-path-decomposition of G with
w�(D′) ≤ k satisfying Property (∗) and with a larger prefix than D that is
compatible with Oup and Odown, contradicting the maximality of h.

– Else, for every decomposition D defined as above and maximizing h (where
z := z(D), defined as above, depends on D), there exists an integer 1 ≤ α <
z(D) and a vertex h∗

C′
α

∈ MC′
α

such that dist(h∗
C′

α
, dj) > k (otherwise, we

are back to the previous case). Let α(D) be the smallest such integer α for
the decomposition D.
Let 1 < α∗(D) ≤ q be such that C ′

α(D) = Cα∗(D).
Consider such a decomposition D (still maximizing h) that minimizes α∗(D).
From now on, we denote the integer α(D) (for this particular decomposition
D) by α and α∗(D) is denoted by α∗.
Let α < β ≤ z ≤ γ ≤ q′ be defined such that [β, γ] is the inclusion-maximal
interval (containing z) such that every component C ′

m with m ∈ [β, γ] appears
before Cα∗ in OD (i.e., for every m ∈ [β, γ], setting m′ such that C ′

m =
Cm′ , then 1 ≤ m′ < α∗). Note that, since the interval [β, γ] is inclusion-
maximal, it implies that the component Cβ−1 is either Cα or some component
that appears after Cα, and that the component Cγ + 1 does not exists (i.e.,
γ = t − 1) or Cγ appears after Cα in D. In all cases, every vertices from
(lCβ

, rCγ
)-path can be remove from the bags before XaCα∗ without breaking

any property of path-decomposition. Hence, let

D′ = (X1, · · · ,Xh) 
 ((Xh+1, · · · ,XaCα∗ −1) \ (
⋃

β≤m≤γ

C̄ ′
m))
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(XaCα∗ , · · · ,XbCα∗ ) 
 ((Xh+1 · · · ,XaCα∗ −1) ∩
⋃

β≤m≤γ

C̄ ′
m)∪

(XbCα∗ ∩ V (Pdown)) 
 (XbCα∗ +1, · · · ,Xp).

Intuitively, all components C ′
β , · · · , C ′

γ (and in particular, C1 = C ′
z) that

were appearing before Cα∗ in D (but that are greater than Cα∗ in Oup) are
“moved” after Cα∗ in D.
Because D is g-contiguous and satisfies Property (∗), then D′ is a g-contiguous
{x, y}-path-decomposition of G satisfying Property (∗). In particular, each
edge of G belongs to some bag because we have ensured that all components
intersecting

⋃
β≤m≤γ C̄ ′

m do not appear in (Xh+1, · · · ,XaCα∗ −1) (otherwise,
the interval is not inclusion-maximal). It remains to prove that its weak length
is at most k.
We will prove that every bag in ((Xh+1 · · · ,Xq) ∩ ⋃

β≤m≤γ C̄ ′
m) ∪ (XbCα∗ ∩

V (Pdown)) has weak length at most k (that are the only bags where some
vertices may be added compared with the bags of D). Since we are considering
the weak length, we actually need to prove that, for every v ∈ ⋃

β≤m≤γ C̄ ′
m

and every w ∈ XbCα∗ ∩ V (Pdown), dist(v, w) ≤ k. Actually, we will show
that dist(v, w) ≤ dist(h∗

C′
α
, w) (note that dist(h∗

C′
α
, w) ≤ k since w belongs to

every bag in XaC′
α
, · · · ,XbC′

α
).

Note that, because D is a path-decomposition, Xh ∩ Xh+1 ∩ V (Pdown) =
{dj} and y2 ∈ Xp, then w is between dj and y2 in Pdown. Moreover, since
dist(h∗

C′
α
, dj) > k and dist(h∗

C′
α
, w) ≤ k, then the shortest path between w

and h∗
C′

α
goes through y2.

Let β ≤ m ≤ γ such that v ∈ C̄ ′
m and let 1 ≤ δ < aC′

α
be such that v ∈ Xδ

(in D). Because D is a path-decomposition and dj ∈ Xh and w ∈ XaC′
α
,

there must be a vertex w′ ∈ Xδ which is between dj and w in Pdown, and
so dist(v, w′) ≤ k since D has weak length at most k. If the shortest path
between v and w′ goes through y2, we get that dist(v, w) ≤ dist(v, w′) ≤ k
and we are done. Otherwise, w is strictly between w′ and y2 (in particular
w = w′) (because the shortest path between h∗

C′
α

and w goes through y2, the
one between v and w′ goes through x2 and sC′

α
is closer to x2 than sC′

m
).

Note also that w′ belongs to every bag in XaC′
m

, · · · ,XbC′
m

and, in particular,
one of these bags contains a vertex h∗

C′
m

, and so dist(h∗
C′

m
, w′) ≤ k.

To sum up, dist(w′, lC′
m

) + dist(lC′
m

, h∗
C′

m
) = dist(h∗

C′
m

, w′) ≤ k <

dist(h∗
C′

α
, dj) ≤ dist(w′, lC′

α
) + dist(lC′

α
, h∗

C′
α
). Because lC′

α
is between x2 and

lC′
m

in Pup and the shortest path between lC′
m

and w′ goes through x2, we
get that dist(w′, lC′

m
) ≥ dist(w′, lC′

α
) and so dist(lC′

m
, h∗

C′
m

) < dist(lC′
α
, h∗

C′
α
).

Finally, k ≥ dist(h∗
C′

α
, w) = dist(h∗

C′
α
, rC′

α
)+dist(rC′

α
, w) ≥ dist(rC′

m
, h∗

C′
m

)+
dist(rC′

m
, w) = dist(h∗

C′
m

, w). The last inequality comes from the fact that
rC′

m
is between y1 and rC′

α
in Pup and the shortest path between lC′

α
and

w goes through y1 and y2. Hence, we get that dist(h∗
C′

m
, w) ≤ k and so,

dist(v, w) ≤ k by Property (∗).
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It remains to show that D′ contradicts the minimality of α∗. Let C be the
component that appears in D′ just after Xh.

• First, let us assume that C ∈ Cup.
If C ≤ C ′

α in Oup, then by definition of α, D′ corresponds to the first case
of the proof of the Theorem, i.e., C and all components smaller than C in
Oup can be moved just after Xh in D′ (recall that all these components
can be added with dj by definition of α).
Otherwise, by definition of α (and of dj), we have that α(D′) = α(D) = α
and, then Cα∗(D′) = Cα∗(D). Since Cα∗(D) is “closer” from Xh in D′ than
in D (since D′ is obtained from D by moving at least C1 after Cα∗(D)),
we get that α∗(D′) < α∗(D), contradicting the minimality of α∗(D).

• If C ∈ Cdown, then we repeat the process. Either we fall in the first
case, which contradicts the maximality of h, or we have to repeat the
transformation of the second case. This leads to a new decomposition D′′

with same prefix (X1, · · · ,Xh) and a component C ′ that appears just after
this prefix in D′′. If C ′ ∈ Cdown, then applying the above paragraph with
D′ and D′′ instead of D and D′ leads to a contradiction. Otherwise, since
the prefix (and so dj) is the same, then applying the paragraph above for
C ′ also contradicts the minimality of α∗(D) (i.e., α∗(D′′) < α∗(D)). ��

Computation of Optimal LtR g-Contiguous Decompositions. Finally, we
show how to compute LtR g-contiguous {x, y}-path-decompositions.

Theorem 7. Let G = (V,E) be a 2-connected simple outerplanar n-node graph
and x, y ∈ Eout such that x = y and x and y lie on the same internal face F .

Then, an LtR g-contiguous {x, y}-path-decomposition of G with length at
most p�(G, x, y) + 1 can be computed in time O(n + p�(G)2).

Sketch of Proof. Note first that a greedy path-decompositions DC based on sC

can be computed in linear time for each component C ∈ C. Then, we only need
to compute optimal orderings of the components in Cup = (Cu

1 , . . . , Cu
q ) and in

Cdown = (Cd
1 , . . . , Cd

q′). For every 0 ≤ i ≤ q, 0 ≤ j ≤ q′, let D[i, j] be a part
of an optimal LtR g−contiguous {x, y}-path-decomposition of G, i.e. the first
bag of D[i, j] contains x, the last bag of D[i, j] consist exactly in {rCup

i
, rCdown

j
}.

Moreover, D[i, j] can be computed in constant time, i.e., D[i, j] is either D[i −
1, j] 
 DCu

i
∪ {rCd

j
} or D[i, j − 1] 
 DCd

j
∪ {rCu

i
} depending on which one has

the smallest length. Hence, this ordering can be computed in time O(|F |2) =
O(p�(G)2) (because F is an isometric cycle) by dynamic programming.

By Theorem 5, there exists a g-contiguous {x, y}-path-decomposition of
length at most p�(G, x, y)+1, satisfying the properties of Theorem 5. Hence, by
Theorem 6, there exists a LtR g-contiguous {x, y}-path-decomposition of G sat-
isfying the properties of Theorem 5 and with weak length at most p�(G, x, y)+1.
Finally, by Lemma 6, it follows that there exists a LtR g-contiguous {x, y}-path-
decomposition of G with length at most p�(G, x, y)+1. This guaranties the length
of the computed decomposition since our algorithm computes a decomposition
with minimum length among the LtR g-contiguous {x, y}-path-decompositions
of G. The full proof can be found in [5]. �
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4.3 Polynomial-Time +1 Approximation

We are finally ready to prove our main theorem.

Theorem 8. There exists an algorithm that, for every n-node connected simple
outerplanar graph G = (V,E), computes in time O(n3(n + p�(G)2)) a path-
decomposition of G with length at most p�(G) + 1.

Proof. Due to lack of space, we assume that G is 2-connected, the full proof can
be found in [5]. For every x, y ∈ Eout (possibly x = y), the algorithm computes
a {x, y}-path-decomposition of G length at most p�(G, x, y) + 1. By Lemma 2,
such a decomposition with minimum length will be a path-decomposition of G
with length at most p�(G) + 1.

Let us fix x, y ∈ Eout, we design an algorithm that computes a {x, y}-path-
decomposition of G length at most p�(G, x, y) + 1 in time O(n(n + p�(G)2)). If
x = y, the Algorithm Greedy computes an optimal {x, y}-path-decomposition
of G in linear time by Theorem 3 and we are done. So let us assume that x = y.

First, in linear time, the internal edges separating x and y are computed
(this can be done, e.g., using SPQR trees [11]). Let {e0 = x, e1, · · · , eq−1, eq = y}
where ei ∈ Eint for every 0 < i < q be the set of those separators in order they are
met when going from x to y. For every 0 ≤ i < q, ei = ei+1 (they may intersect)
and ei and ei+1 share a same internal face Fi. Note that this decomposition
into several connected components is done once for all at the beginning of the
execution of the algorithm. It is not done anymore in the recursive calls described
below and therefore it counts only for a linear time in the time complexity.

Assume first that e1 = y. Let C ′ be the connected component of G \ e1
containing (or intersecting if e1 ∩ x = ∅) x. Let Gy = G[V \ C ′] and let Gx =
G[C ′∪e1]. Our algorithm first recursively computes a {e1, y}-path-decomposition
Dy of Gy with length at most p�(Gy, e1, y) + 1 in time O(|V (Gy)|(|V (Gy)| +
p�(G)2)). Then, note that x = e0 and e1 are outer edges of Gx, x = e1, and x and
e1 share a same internal face F0. Hence, the condition of Theorem 7 are fulfilled
and a {x, e1}-path-decomposition Dx of Gx with length at most p�(Gx, x, e1)+1
can be computed in time O(|V (Gx)| + p�(G)2). Finally, from Lemma 3, the
desired {x, y}-path-decomposition of G with length at most p�(G, x, y) + 1 is
obtained from Dx and Dy. So in total, in time O(|V (Gy)|(|V (Gy)| + k2)) +
O(|V (Gx)| + k2) = O(n(n + p�(G)2)). In the case where e1 = y, note that x = y
and x and y share an internal face F0. Hence, the conditions of Theorem 7
are fulfilled and a {x, e1}-path-decomposition Dx of Gx with length at most
p�(G, x, e1) + 1 can be computed in time O(|V (Gx)| + p�(G)2). ��

5 Further Work

The next step would be to design a polynomial time exact algorithm (if it exists)
to compute the pathlength of outerplanar graphs. Note that the increase of the
length (+1) in our approximation algorithm comes from the contiguous prop-
erty. The example of Fig. 2 shows that we cannot avoid this increase if we keep
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the contiguous property. Moreover, the LtR property has been proved from a
contiguous path-decomposition. Therefore, this proof needs also to be adapted
for the exact case. Another question would be to know whether our algorithm for
trees can be adapted to chordal graphs. Moreover, the complexity of computing
the pathlength (or treelength) of planar graphs is still open.
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Abstract. The Steiner Multicycle problem consists in, given a com-
plete graph G, a weight function w : E(G) → Q+, and a partition of V (G)
into terminal sets, finding a minimum-weight collection of disjoint cycles
in G such that, for every terminal set T , all vertices of T are in a same
cycle of the collection. This problem, which is motivated by applica-
tions on routing problems with pickup and delivery locations, general-
izes the Traveling Salesman problem (TSP) and therefore is hard to
approximate in general. Using an algorithm for the Survivable Net-
work Design problem and T -joins, we obtain a 3-approximation for
its metric case, improving on the previous best 4-approximation. Fur-
thermore, inspired by a result by Papadimitriou and Yannakakis for the
{1, 2}-TSP, we present an (11/9)-approximation for the particular case of
the Steiner Multicycle in which each edge weight is 1 or 2. This algo-
rithm can be adapted into a (7/6)-approximation when every terminal
set contains at least 4 vertices.

Keywords: Approximation algorithms · Steiner problems · Steiner
multicycle · Traveling salesman problem

1 Introduction

In the Steiner Multicycle problem, one is given a complete graph G, a weight
function w : E(G) → Q+, and a collection T ⊆ P(V (G)) of pairwise disjoint non-
unitary sets of vertices, called terminal sets. We say that a cycle C respects T
if, for all T ∈ T , either every vertex of T is in C or no vertex of T is in C,
and a set C of vertex-disjoint cycles respects T if all cycles in C respect T and
every vertex in a terminal set is in some cycle of C. The cost of such set C is the
sum of the edge weights over all cycles in C, a value naturally denoted by w(C).
The goal of the Steiner Multicycle problem is to find a set of vertex-disjoint
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cycles of minimum cost that respects T . We denote by opt(G,w, T ) the cost of
such a minimum cost set. Note that the number of cycles in a solution might be
smaller than |T |, that is, it might be cheaper to join some terminal sets in the
same cycle.

We consider that, in a graph G, a cycle is a non-empty connected subgraph
of G all of whose vertices have degree two. Consequently, such cycles have at
least three vertices. Here, as it is possible for a set T ∈ T to have only two
vertices, we would like to consider a single edge as a cycle, of length two, whose
cost is twice the weight of the edge, so that the problem also includes solutions
that choose to connected some set from T with two vertices through such a
length-2 cycle. So, for each set T ∈ T with |T | = 2, we duplicate in G the edge
linking the vertices in T , and allow the solution to contain length-2 cycles.

The Steiner Multicycle problem is a generalization of the Traveling
Salesman problem (TSP), thus it is NP-hard and its general form admits
the same inapproximability results as the TSP. It was proposed by Pereira et
al. [16] as a generalization of the so called Steiner Cycle problem (see Salazar-
González [18]), with the assumption that the graph is complete and the weight
function satisfies the triangle inequality. In this case, we may assume that the
terminal sets partition the vertex set. Indeed, because the graph is complete
and the weight function is metric, any solution containing non-terminal vertices
does not have its cost increased by shortcutting these vertices (that is, removing
them and adding the edge linking their neighbors in the cycle). We refer to such
an instance of the Steiner Multicycle problem as metric, and the problem
restricted to such instances as the metric Steiner Multicycle problem.

Pereira et al. [16] presented a 4-approximation algorithm for the metric
Steiner Multicycle problem, designed Refinement Search and GRASP based
heuristics, and proposed an integer linear programming formulation for the prob-
lem. Lintzmayer et al. [13] then considered the version restricted to the Euclidean
plane and presented a randomized approximation scheme for it, which combines
some techniques for the Euclidean TSP [2] and for the Euclidean Steiner
Forest [5].

On the practical side, the Steiner Multicycle problem models a collab-
orative less-than-truckload problem with pickup and delivery locations. In this
scenario, several companies, operating in the same geographic regions, need to
periodically transport products between different locations. To reduce the costs
of transporting their goods, these companies can collaborate in order to create
routes for shared cargo vehicles that visit the places defined by them for the
collection and delivery of their products (see Ergun et al. [9,10]).

In this paper, we address the metric case of the problem as well as the so
called {1, 2}-Steiner Multicycle problem, in which the weight of each edge
is either 1 or 2. Note that the latter is a particular case of the metric one and it
is a generalization of the {1, 2}-TSP, therefore it is also APX-hard [15]. In some
applications, there might be little information on the actual cost of the con-
nections between points, but there might be at least some distinction between
cheap connections and expensive ones. These situations could be modeled as
instances of the {1, 2}-Steiner Multicycle. For the metric case, we present
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a 3-approximation, improving on the previous best known. The proposed algo-
rithm uses an approximate solution S for a derived instance of the Survivable
Network Design problem and a minimum weight T -join in S, where T is the
set of odd degree vertices in S. Considering the {1, 2}-Steiner Multicycle, we
design an 11

9 -approximation following the strategy for the {1, 2}-TSP proposed
by Papadimitrou and Yannakakis [15].

The 3-approximation for the metric Steiner Multicycle is presented in
Sect. 2, together with a discussion involving the previous 4-approximation and
the use of perfect matchings on the set of odd degree vertices of intermediate
structures. The {1, 2}-Steiner Multicycle problem is addressed in Sect. 3,
and we make some final considerations in Sect. 4.

2 Metric Steiner Multicycle Problem

An instance for the Steiner Multicycle is also an instance for the well-known
Steiner Forest problem [21, Chapter 22], but the goal in the latter is to find a
minimum weight forest in the graph that connects vertices in the same terminal
set, that is, every terminal set is in some connected component of the forest. The
optimum value of the Steiner Forest is a lower bound on the optimum for
the Steiner Multicycle: one can produce a feasible solution for the Steiner
Forest from an optimal solution for the Steiner Multicycle by throwing
away one edge in each cycle, without increasing its cost.

The existing 4-approximation [16] for the metric Steiner Multicycle
problem is inspired in the famous 2-approximation for the metric TSP [17],
and consists in doubling the edges in a Steiner forest for the terminal sets,
and shortcutting an Eulerian tour in each of its components to a cycle. As
there are 2-approximations for the Steiner Forest problem, this leads to a
4-approximation.

It is tempting to try to use a perfect matching on the odd degree vertices
of the approximate Steiner forest solution, as Christofides’ algorithm [6] does to
achieve a better ratio for the metric TSP. However, the best upper bound we
can prove so far on such a matching is the weight of the approximate Steiner
forest solution, which implies that such a matching has weight at most twice the
optimum. With this bound, we also derive a ratio of at most 4.

Another problem that can be used with this approach is known as the Sur-
vivable Network Design problem [21, Chapter 23]. An instance for this
problem consists of the following: a graph G, a weight function w : E(G) → Q+,
and a non-negative integer rij for each pair of vertices i, j with i �= j, representing
a connectivity requirement. The goal is to find a minimum weight subgraph G′

of G such that, for every pair of vertices i, j ∈ V (G) with i �= j, there are at
least rij edge-disjoint paths between i and j in G′.

From an instance of the Steiner Multicycle problem, we can naturally
define an instance of the Survivable Network Design problem: set rij = 2
for every two vertices i, j in the same terminal set, and set rij = 0 otherwise.
As all vertices are terminals, all connectivity requirements are defined in this
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way. The optimum value of the Survivable Network Design problem is also
a lower bound on the optimum for the Steiner Multicycle problem: indeed
an optimal solution for the Steiner Multicycle problem is a feasible solution
for the Survivable Network Design problem with the same cost.

There also exists a 2-approximation for the Survivable Network Design
problem [12]. By applying the same approach of the 2-approximation for the
metric TSP, of doubling edges and shortcutting, we achieve again a ratio of 4
for the metric Steiner Multicycle. However, next we will show that one can
obtain a 3-approximation for the metric Steiner Multicycle problem, from a
2-approximate solution for the Survivable Network Design problem, using
not a perfect matching on the odd degree vertices of such solution, but the
related concept of T -joins.

2.1 A 3-Approximation Algorithm

Let T be a set of vertices of even size in a graph G. A set J of edges in G is a
T -join if the collection of vertices of G that are incident to an odd number of
edges in J is exactly T . Any perfect matching on the vertices of T is a T -join, so
T -joins are, in some sense, a generalization of perfect matching on a set T . It is
known that a T -join exists in G if and only if the number of vertices from T in
each component of G is even. Moreover, there are polynomial-time algorithms
that, given a connected graph G, a weight function w : E(G) → Q+, and an even
set T of vertices of G, find a minimum weight T -join in G. For these and more
results on T -joins, we refer the reader to the book by Schrijver [19, Chapter 29].

The idea of our 3-approximation is similar to Christofides [6]. It is presented
in Algorithm 1. Let (G,w, T ) be a metric instance of the Steiner Multicycle
problem. The first step is to build the corresponding Survivable Network
Design problem instance, and to obtain a 2-approximate solution G′ for this
instance. The procedure 2ApproxSND represents the algorithm by Jain [12] for
the Survivable Network Design. The second step considers the set T of the
vertices in G′ of odd degree and finds a minimum weight T -join J in G′. The pro-
cedure MinimumTJoin represents the algorithm by Edmonds and Johnson [8]
for this task. Finally, the Eulerian graph H obtained from G′ by doubling the
edges in J is built and, by shortcutting an Eulerian tour for each component
of H, one obtains a collection C of cycles in G that is the output of the algorithm.
The procedure ShortCutting represents this part in Algorithm1.

Because the number of vertices of odd degree in any connected graph is even,
the number of vertices with odd degree in each component of G′ is even. There-
fore there is a T -join in G′. Moreover, the collection C produced by Algorithm1
is indeed a feasible solution for the Steiner Multicycle.

Next we prove that the proposed algorithm is a 3-approximation.

Theorem 1. Algorithm1 is a 3-approximation for the metric Steiner Multi-
cycle problem.

Proof. Let us first observe that it suffices to prove that w(J) ≤ 1
2w(G′). Indeed,

because G′ is a 2-approximate solution for the Survivable Network Design
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Algorithm 1. SteinerMulticycleApprox General(G, w, T )
Input: a complete graph G, a weight function w : E(G) → Q+ satisfying the triangle

inequality, and a partition T = {T1, . . . , Tk} of V (G)
Output: a collection C of cycles that respects T
1: rij ← 2 for every i, j ∈ Ta for some 1 ≤ a ≤ k
2: rij ← 0 for every i ∈ Ta and j ∈ Tb for 1 ≤ a < b ≤ k
3: G′ ← 2ApproxSND(G, w, r)
4: Let T be the set of odd degree vertices in G′

5: Let w′ be the restriction of w to the edges in G′

6: J ← MinimumTJoin(G′, w′, T )
7: H ← G′ + J
8: C ← ShortCutting(H)
9: return C

problem, and the optimum for this problem is a lower bound on opt(G,w, T ), we
have that w(G′) ≤ 2 opt(G,w, T ). Hence we deduce that w(J) ≤ opt(G,w, T ),
and therefore that w(C) ≤ w(G′) + w(J) ≤ 3 opt(G,w, T ). We now proceed to
show that inequality w(J) ≤ 1

2w(G′) holds.
A bridge is an edge uv in a graph whose removal leaves u and v in different

components of the resulting graph. First, observe that we can delete from G′

any bridges, and the remaining graph, which we still call G′, remains a solution
for the Survivable Network Design problem instance. Indeed a bridge is
not enough to assure the connectivity requirement between two vertices in the
same terminal set, so it will not separate any such pair of vertices and hence it
can be removed. In other words, we may assume that each component of G′ is
2-edge-connected.

Edmonds and Johnson [8] gave an exact description of a polyhedra related
to T -joins. This description will help us to prove the claim. For a set S of edges
in a graph (V,E), let v(S) denote the corresponding |E|-dimensional incidence
vector (with 1 in the i-th coordinate if edge i lies in S and 0 otherwise). For a
set X of vertices, let δ(X) denote the set of edges with one endpoint in X and
the other in V \ X. An upper T-join is any superset of a T -join. Let P (G,T ) be
the convex hull of all vectors v(J) corresponding to the incidence vector of upper
T -joins J of a graph G = (V,E). The set P (G,T ) is called the up-polyhedra of
T -joins, and it is described by

∑

e∈δ(W )

x(e) ≥ 1 for every W ⊆ V such that |W ∩ T | is odd, (1)

0 ≤ x(e) ≤ 1 for every edge e ∈ E. (2)

(For more on this, see [19, Chapter 29].)
So, as observed in [3], any feasible solution x to the system of inequalities

above can be written as a convex combination of upper T -joins, that is, x =∑
αi v(Ji), where 0 ≤ αi ≤ 1 and

∑
i αi = 1, leading to the following.
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Corollary 1 (Corollary 1 in [3]). If all the weights w(e) are non-negative,
then, given any feasible assignment x(e) satisfying the inequalities above, there
exists a T -join with weight at most

∑
e∈E w(e)x(e).

Recall that, for each component C of G′, |V (C) ∩ T | is even. Hence, for
every W ⊆ V (G′) such that |W ∩ T | is odd, there must exist a component C
of G′ with V (C) ∩ W �= ∅, and V (C) \ W �= ∅. As a consequence, it holds
that |δ(W )| ≥ 2 because every component of G′ is 2-edge-connected. Consider
now the |E(G′)|-dimensional vector x̄ which assigns value 1/2 to each edge of G′.
From the discussion above, it is clear that x̄ satisfies inequalities (1) and (2)
for G′ and T . Then Corollary 1 guarantees that there is a T -join J in G′ such
that w(J) ≤ 1

2 w(G′). This completes the proof of the theorem. 
�

2.2 Matchings, T -Joins, and Steiner Forests

Because G is complete and w is metric, the proof of Theorem 1 in fact implies
that a minimum weight perfect matching in the graph G[T ] has weight at most
w(G′)/2, and therefore at most opt(G,w, T ). However, we have no direct proof
for this fact; only this argument that goes through a minimum weight T -join. But
this fact means that one can exchange line 6 to compute, instead, a minimum
weight perfect matching J in G[T ].

We investigated the possibility that one could achieve a ratio of 3 using a
Steiner forest instead of a survivable network design solution. However the idea of
using a T -join does not work so well with the Steiner forest, once its components
are not 2-edge-connected. Indeed, if T is the set of odd degree vertices in a
Steiner forest F , a bound as in the proof of Theorem1 on a minimum weight
T -join in F would not hold in general: there are examples for which such a T -join
in F has weight w(F ).

In this paragraph, let optSND denote the optimum value for the Surviv-
able Network Design instance used in Algorithm1, and optSF denote the
optimum value for the Steiner Forest instance used in the 4-approximation
from the literature [16]. Let optSMC be the Steiner Multicycle optimum
value. Note that optSF ≤ optSND ≤ optSMC ≤ 2 optSF, where the last inequal-
ity holds because a duplicated Steiner forest solution leads to a cheaper feasible
solution for the Survivable Network Design and the Steiner Multicycle
instances. Let G′ and J be the subgraph and the T -join used in Algorithm1,
respectively, and let M be a minimum weight perfect matching in G[T ]. Then
w(M) ≤ w(J) ≤ 1

2w(G′) ≤ optSND ≤ w(G′). (For the first inequality, recall that
J is a T -join in G′ while M is a minimum weight perfect matching in G[T ].)
If T ′ is the set of odd degree vertices in an optimal Steiner forest and M ′ is a
minimum weight perfect matching in G[T ′], then w(M ′) ≤ 2optSF, and there are
instances for which this upper bound is tight. So, as far as we know, there might
be an instance where w(M ′) > optSMC. Even if this is not the case, in fact, what
we can compute in polynomial time is a minimum weight perfect matching M ′′

for the set of odd degree vertices in a 2-approximate Steiner forest solution, so
it would still be possible that w(M ′′) > optSMC for some instances. We tried to
find an instance where this is the case, but we have not succeeded so far.



194 C. G. Fernandes et al.

3 {1, 2}-Steiner Multicycle Problem

In this section, we will address the particular case of the metric Steiner Mul-
ticycle problem that allows only edge weights 1 or 2.

A 2-factor in a graph is a set of vertex-disjoint cycles that span all vertices of
the graph. It is a well-known result that there exists a polynomial-time algorithm
for finding a 2-factor of minimum weight in weighted graphs [14,20].

The algorithm for this case of the Steiner Multicycle problem starts from
a minimum weight 2-factor of the given weighted graph, and then repeatedly
joins two cycles until a feasible solution is obtained. The key to guarantee a
good approximation ratio is a clever choice of the cycles to join at each step. To
proceed with the details, we need the following definitions.

Let (G,w, T ) be an instance of the Steiner Multicycle problem with
w : E(G) → {1, 2}. Recall that

⋃
T∈T T = V (G), and that, for each set T ∈ T

with |T | = 2, we duplicated in G the edge linking the vertices in T , to allow
the solution to contain length-2 cycles. We say an edge e ∈ E(G) is an i-edge if
w(e) = i, for i ∈ {1, 2}. A cycle containing only 1-edges is called pure; otherwise,
it is called nonpure.

All steps of the procedure are summarized in Algorithm2 below. The auxil-
iary procedures shall be explained later on.

Algorithm 2. SteinerMulticycleApprox 12Weights(G, w, T )
Input: a complete graph G, a weight function w : E(G) → {1, 2}, and a partition

T = {T1, . . . , Tk} of V (G)
Output: a collection C of cycles that respects T
1: F ← Special2Factor(G, w)
2: B ← BuildBipartiteGraph(G,w,T ,F )
3: M ← MaximumMatching(B)
4: Let D be a digraph such that V (D) = F and there is an arc (C,C′) ∈ E(D) if C

is matched by M to a vertex of C′

5: D′ ← SpecialSpanningGraph(D)
6: C′ ← JoinComponentCycles(F , D′) (see Section 3.1)
7: C ← JoinDisrespectingCycles(C′, D′, T ) (see Section 3.1)
8: return C

Procedure Special2Factor finds a minimum weight 2-factor F of (G,w)
with the two following properties:

(i) F contains at most one nonpure cycle; and
(ii) if F contains a nonpure cycle, no 1-edge in G connects an endpoint of a

2-edge in the nonpure cycle to a pure cycle in F .

Given any minimum weight 2-factor F ′, one can construct in polynomial time a 2-
factor F from F ′ having properties (i) and (ii) as follows. To ensure property (i),
recall that the graph is complete, so we repeatedly join two nonpure cycles by
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removing one 2-edge from each and adding two appropriate edges that turn
them into one cycle. This clearly does not increase the weight of the 2-factor
and reduces the number of cycles. To ensure property (ii), while there is a 1-
edge yz in G connecting a 2-edge xy of the nonpure cycle to a 1-edge wz of
a pure cycle, we remove xy and wz and add yz and xw, reducing the number
of cycles without increasing the weight of the 2-factor. The resulting 2-factor is
returned by Special2Factor.

In order to modify F into a collection of cycles that respect T , without
increasing too much its weight, Algorithm 2 builds some auxiliary structures
that capture how the cycles in F attach to each other.

The second step of Algorithm 2 is to build a bipartite graph B (line 2) as
follows. Let V (B) = V (G) ∪ {C ∈ F : C is a pure cycle} and there is an edge
vC in E(B) if (i) v �∈ V (C) and C does not respect T , and (ii) there is a vertex
u ∈ V (C) such that uv is a 1-edge. Note that the only length-2 cycles in G,
and thus in F , are those that connecting a terminal set of size 2. So such cycles
respect T and, hence, if they are in B (that is, if they are pure), they are isolated
vertices in B. Procedure MaximumMatching in line 3 computes in polynomial
time a maximum matching M in B (e.g., using Edmonds’ algorithm [7]).

Algorithm 2 then proceeds by building a digraph D where V (D) = F and
there is an arc (C,C ′) ∈ E(D) if C is matched by M to a vertex of C ′. Note that
the vertices of D have outdegree 0 or 1, and the cycles in B unmatched by M have
outdegree 0 in D. In particular, all pure length-2 cycles in F have outdegree 0
in D, because they are isolated in B, and therefore unmatched. If there is a
nonpure cycle in F , it also has outdegree 0 in D. Therefore, any length-2 cycle
in F , pure or nonpure, has outdegree 0 in D. These vertices with outdegree 0
in D might however have indegree different from 0. Next, Algorithm2 applies
procedure SpecialSpanningGraph(D) to find a spanning digraph D′ of D
whose components are in-trees of depth 1, length-2 paths, or trivial components
that correspond to isolated vertices of D. This takes linear time, and consists
of a procedure described by Papadimitrou and Yannakakis [15], applied to each
nontrivial component of D. See Fig. 1 for an example of these constructions.

At last, Algorithm 2 joins some cycles of F in order to obtain a collection of
cycles that respect T . This will happen in two phases. In the first phase, we join
cycles that belong to the same component of D′. In the second (and last) phase,
we repeatedly join cycles if they have vertices from the same set in T , to obtain
a feasible solution to the problem. This final step prioritizes joining cycles that
have at least one 2-edge.

Details of these two phases, done by procedures JoinComponentCycles
and JoinDisrespectingCycles, as well as the analysis of the cost of join-
ing cycles are given in Sect. 3.1. For now, observe that all cycles at the end of
this process respect T . Also note that length-2 cycles exist in the final solution
only if they initially existed in F and connected terminals of some set T ∈ T
with |T | = 2. The analysis of the approximation ratio of the algorithm is dis-
cussed in Sect. 3.2.



196 C. G. Fernandes et al.

Fig. 1. Auxiliar graphs and structures built by Algorithm 2. (Color figure online)

3.1 Joining Cycles

In the first phase, we join cycles in F if they belong to the same component
of D′, which can be either an in-tree of depth 1 or a length-2 path.

An in-tree of depth 1 of D′ consists of a root C and some other cycles {Cj}t
j=1,

with t ≥ 1. Note that each arc (Cj , C) can be associated with a 1-edge from G
such that no two edges incide on the same vertex in C, because they came from
the matching M . Also note that, if the nonpure cycle or a length-2 cycle appears
in some in-tree, it could only be the root C. Let vj be the endpoint in C of the
edge associated with arc (Cj , C), for every j ∈ {1, . . . , t}. Rename the cycles
{Cj}t

j=1 so that, if we go through the vertices of C in order, starting from v1,
these vertices appear in the order v1, . . . , vt. We join all cycles in this in-tree into
one single cycle in the following manner. For each vi in C, if vi+1 is adjacent
to vi in C, then we join Ci and Ci+1 with C as in Fig. 2a. Otherwise, we join C
and Ci as in Fig. 2b. We shall consider that the new cycle contains at least one
2-edge.
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Fig. 2. Joining cycles that belong to in-trees of D′ into a unique cycle. The bold red
edges will be considered as 2-edges even if they are 1-edges. (Color figure online)

As for a component of D′ which is a length-2 path, let Ci, Cj , and Ck be
the three cycles that compose it, being Ci the beginning of the path and Ck its
end. Note that if the nonpure cycle appears in some length-2 path, it could only
be Ck. The arcs (Ci, Cj) and (Cj , Ck) are also associated with 1-edges of G, but
now it may be the case that such edges share their endpoint in Cj . If that is not
the case, then we join these three cycles as shown in Fig. 3a. Otherwise, we join
the three cycles as shown in Fig. 3b. We shall also consider that the new cycle
contains at least one 2-edge.

Fig. 3. Joining cycles that belong to length-2 paths of D′ into a unique cycle. The bold
red edges will be considered as 2-edges even if they are 1-edges. (Color figure online)
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Let C′ be the resulting set of cycles after the first phase. This is the output of
procedure JoinComponentCycles. It may still be the case that two separated
cycles in C′ contain terminals from the same set T ∈ T . So, in the last phase,
while there are two such cycles, join them in the following order of priority:
both cycles contain a 2-edge, exactly one of the cycles contains a 2-edge, none
of the cycles contain a 2-edge. The resulting set of cycles of this phase, denoted
by C, is computed by JoinDisrespectingCycles and is the one returned by
Algorithm 2.

Now we proceed analyzing the cost increase caused by joining cycles in these
two phases. Note that w(C) is equal to w(F ) plus some value due to the increases
caused by joining cycles.

For the first phase, we charge the increment of the cost for joining cycles to
some of the vertices in the cycles being joined. This is done in such a way that
each vertex is charged at most once according to the following.

Claim 2. Each vertex not incident to a 2-edge of F is charged at most 2/9
during the first phase, and no other vertex is charged.

Proof. Consider an in-tree of depth 1 with root C and cycles C1, . . . , Ct with
t ≥ 1. When we join cycles Ci and Ci+1 with C, as in Fig. 2a, note that the
increase on the cost is at most 1. We charge this cost to the vertices in Ci

and Ci+1, which are at least 6 (3 per cycle), thus costing at most 1/6 per vertex.
When we only join a cycle Ci with C, as in Fig. 2b, the increase is also at most 1.
We charge this cost to the vertices in Ci and also to the two vertices involved
in C. Since there are at least 3 vertices in Ci, each of these vertices is charged
at most 1/5. Note that indeed each vertex is charged at most once. Moreover,
if C is the nonpure cycle, then, by property (ii), the edges in C incident to vi

and to the next vertex in C must be 1-edges.
Consider now a length-2 path with vertices Ci, Cj , and Ck. The cycles Ci,

Cj , and Ck were joined, as in Figs. 3a and 3b, so the extra cost is at most 2,
which is charged to the at least 9 vertices that belong to these cycles, giving a
cost of at most 2/9 per vertex. 
�

As for the last phase, the increase in the cost will be considered for each
pair of cycles being joined. If both cycles contain 2-edges, joining them will not
increase the cost of the solution. If only one of the cycles contains a 2-edge, then
the increase in the cost is at most 1. Joining cycles that do not contain 2-edges
may increase the cost by 2.

Claim 3. The increase in the last phase is at most cp, where cp is the number
of pure cycles in F that do not respect T and are isolated in D′.

Proof. In the last phase, note that cycles that were generated in the first phase
will always contain a 2-edge. Therefore, the only possible increases in cost come
from joining one of these cp cycles. The increase is at most 2 if two such cycles
are joined, and at most 1 if one such cycle is joined to some cycle other than
these cp ones. So the increase in this phase is at most cp. 
�
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3.2 Approximation Ratio

Theorem 4 shows how Algorithm 2 guarantees an 11/9 approximation ratio while
Corollary 2 shows a case in which Algorithm 2 can be adapted to guarantee a 7/6
approximation ratio.

Theorem 4. Algorithm2 is an 11
9 -approximation for the {1, 2}-Steiner Mul-

ticycle problem.

Proof. Let (G,w, T ) be an instance of the {1, 2}-Steiner Multicycle prob-
lem. Let n = |V (G)| and denote by e2(X) the total amount of 2-edges in a
collection X of cycles.

We start with two lower bounds on opt(G,w, T ). Let F be the 2-factor used
in Algorithm 2 when applied to (G,w, T ). The first one is w(F ), because any
solution for Steiner Multicycle problem is a 2-factor in G. Thus

opt(G,w, T ) ≥ w(F ) = n + e2(F ) . (3)

The other one is related to pure cycles in F . Consider an optimal solution C∗ for
instance (G,w, T ). Thus opt(G,w, T ) = n+e2(C∗). Let C∗

1 , . . . , C∗
r be the cycles

of C∗, where C∗
i = (vi0, . . . , vi|C∗

i |) for each i ∈ {1, . . . , r}, with vi0 = vi|C∗
i |. Let

U = {vij : i ∈ {1, . . . , r}, j ∈ {0, . . . , |C∗
i | − 1}, and vijvi j+1 is a 2-edge} and

note that |U | = e2(C∗). Let � be the number of pure cycles in the 2-factor F that
contain vertices in U . Clearly e2(C∗) ≥ �, which gives us

opt(G,w, T ) ≥ n + � . (4)

Now let C be the collection of cycles produced by Algorithm 2 for input
(G,w, T ). Let us show an upper bound on the cost of C. Solution C has cost w(F )
plus the increase in the cost made in the first phase, and then in the final phase
of joining cycles. Let us start bounding the total cost increase in the first phase.
Let cp be as in Claim 3. Recall that these cp cycles are not matched by M .
Let n(cp) be the number of vertices in these cp cycles, and note that n(cp) ≥ 3cp,
because each such cycle does not respect T and hence has at least three vertices.
By Claim 2, the vertices incident to 2-edges of F are never charged. So there are
at least e2(F ) vertices of the nonpure cycle of F not charged during the first
phase. Thus, at most n − n(cp) − e2(F ) ≤ n − 3cp − e2(F ) vertices were charged
in the first phase. Also, by Claim 2, each such vertex was charged at most 2/9.
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By Claim 3, the increase in this phase is at most cp. Thus we have

w(C) ≤ w(F ) +
2
9
(n − 3cp − e2(F )) + cp

= n + e2(F ) +
2
9
(n − 3cp − e2(F )) + cp

=
11
9

n +
7
9
e2(F ) +

1
3
cp

≤ 11
9

n +
7
9
e2(F ) +

1
3
� (5)

≤ 7
9
(n + e2(F )) +

4
9
(n + �)

≤ 7
9

opt(G,w, T ) +
4
9

opt(G,w, T ) =
11
9

opt(G,w, T ) , (6)

where (5) holds by Claim 5, and (6) holds by (3) and (4). It remains to prove
the following.

Claim 5. cp ≤ �.

Proof. Recall that cp is the number of pure cycles in F that are isolated in D′

and do not respect T , and observe that � ≤ |U |.
We will describe a matching in the bipartite graph B with at most �

unmatched cycles. From this, because M is a maximum matching in B and
there are at least cp cycles not matched by M , we conclude that cp ≤ �.

For each i ∈ {1, . . . , r}, go through the vertices of C∗
i from j = 0 to |C∗

i | − 1
and if, for the first time, we find a vertex vij �∈ U that belongs to a pure cycle C
(which does not respect T ) such that vi j+1 is not in C, we match C to vi j+1

in B. Note that, as vij �∈ U , the edge between C and vi j+1 is indeed in B. Every
pure cycle that does not respect T will be matched by this procedure, except
for at most �. ♦ 
�

This analysis is tight. Consider the instance depicted in Fig. 4a, with 9 ver-
tices and T = {{a1, a2, a3}, {b1, b2, c1, c2, d1, d2}}. There is a Hamiltonian cycle
in the graph with only 1-edges, so the optimum costs 9. However, there is also
a 2-factor of cost 9 consisting of the three length-3 cycles C1, C2 and C3, as in
Fig. 4a. The matching in the graph B might correspond to the 1-edge between C2

and C1, and the 1-edge between C3 and C2, as in Fig. 4b. This leads to a length-2
path in D′, as in Fig. 4c. The process of joining these cycles, as the algorithm
does, might lead to an increase of 2 in the cost, resulting in the solution of cost 11
depicted in Fig. 4e, which achieves a ratio of exactly 11/9. This example can be
generalized to have n = 9k vertices, for any positive integer k.

Similarly to what Papadimitrou and Yannakakis [15] achieve for the {1, 2}-
TSP, we also derive the following.

Corollary 2. Algorithm2 is a 7
6 -approximation for the {1, 2}-Steiner Multi-

cycle problem when |T | ≥ 4 for all T ∈ T .
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Fig. 4. Tight example for Algorithm 2. (Color figure online)

Proof. For weights 1 and 2, there is a polynomial-time algorithm that computes
a minimum-weight 2-factor that contains no triangle [11, Section 3, Chapter 3].
Using this algorithm within Special2Factor in Algorithm 2, we can guarantee
that there are at least 4 vertices per cycle in the produced collection C. The
charging argument presented in Claim 2 can use the fact that the cycles have
length at least 4, which increases the number of vertices to distribute the cost
increase. For instance, when we join a cycle Ci with C, as in Fig. 2b, the increase
is at most 1, and we charge this cost to the vertices in Ci and also to the two
vertices involved in C. Now there are at least 4 vertices in Ci, so each of these
vertices is charged at most 1/6. The other case in which the charged cost was
more than 1/6 was when three cycles were joined, as in Figs. 3a and 3b. In this
case, the extra cost is at most 2, which is now charged to the at least 12 vertices
that belong to these cycles, giving a cost of at most 1/6 per vertex. So the value
charged per vertex is at most 1/6 in all cases, and the result follows. 
�

4 Final Remarks

When there is only one terminal set, the Steiner Multicycle turns into the
TSP. There is a 3

2 -approximation for the metric TSP, so the first natural question
is whether there is also a 3

2 -approximation for the metric Steiner Multicycle,
or at least some approximation with a ratio better than 3.

The difficulty in the Steiner forest is also a major difficulty in the Steiner
Multicycle problem: how to find out what is the right way to cluster the
terminal sets. Indeed, if the number k of terminal sets is bounded by a constant,
then one can use brute force to guess the way an optimal solution clusters the
terminal sets, and then, in the case of the Steiner Multicycle, apply any
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approximation for the TSP to each instance induced by one of the clusters. This
leads to a 3

2 -approximation for any metric instance with bounded number of
terminal sets. It also leads to better approximations for hereditary classes of
instances for which there are better approximations for the TSP.

It would be nice to find out whether or not the cost of a minimum weight
perfect matching on the set of odd vertices of a minimum weight Steiner forest
is at most the optimum value for the Steiner Multicycle.

Observe that, for the {1, 2}-Steiner Multicycle, we can achieve the same
approximation ratio than the modified algorithm for the {1, 2}-TSP, but for the
more general metric case, our ratio is twice the best ratio for the metric TSP.
This comes from the fact that the backbone structure used in the solution for
the metric TSP (the MST and the minimum weight 2-factor) can be computed
in polynomial time. For the {1, 2}-Steiner Multicyclewe can still use the 2-
factor, but the two adaptations of the MST for the metric Steiner Multicycle
(the Steiner forest and the survivable network design) are hard problems, for
which we only have 2-approximations, not exact algorithms.

In fact, for the {1, 2}-TSP, better approximation algorithms are known: there
is an 8

7 -approximation by Berman and Karpinski [4], and a 7
6 -approximation and

a faster 8
7 -approximation by Adamaszek et al. [1]. The latter algorithms rely on

some tools that we were not able to extend to the {1, 2}-Steiner Multicycle.
On the other hand, the 8

7 -approximation due to Berman and Karpinski seems
to be more amenable to an adaptation.
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Abstract. We consider the problem of packing a set of items, each of
them from a specific category, to obtain a solution set of high total profit,
respecting the capacities, and exhibiting a good balance in terms of the
categories represented by the chosen solution. Formally, this diversity
constraint is captured by including a general family of �p-norm con-
straints. These constraints make the problem considerably harder, and,
in particular, the relaxation of the feasible region of the optimization
problem we get is no longer convex. We show first that approximating
this family of problems up to any extent is hard, and then we design two
types of approximation schemes for them, depending on whether we are
willing to violate the capacity or the �p-norm constraints by a negligi-
ble amount. As a corollary, we get approximation schemes for Packing
problems with constraints on the Hill diversity of the solution, which
is a classical measure to quantify the diversity of a set of categorized
elements.

Keywords: Approximation algorithms · Packing problems · Diversity

1 Introduction

We consider the following classical packing problem:

max
{
p�x : Wx ≤ c and x ∈ {0, 1}n

}
, (1)

where p ∈ Z
n
+ is a non-negative profit vector, W ∈ Z

k×n
+ is a non-negative weight

matrix and c ∈ Z
k
+ is a non-negative capacity vector, which together induce a set

of k capacity constraints. This problem can be interpreted as selecting a subset
of items that satisfies certain capacity constraints given by the matrix W and
vector c so as to maximize its total profit, and it has been extensively studied
in the literature; in particular, it is known that this problem is NP-hard even if
k = 1 [31], but admits a PTAS when k is constant [20].

Following a current trend of recent results [1,5,39,41], we will also assume
that the set of items is partitioned into R ∈ [n] categories, with the goal in
mind not only to maximize the total obtained profit but also to control how
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each category is represented in the computed solution. In order to achieve such
a goal, we incorporate the following type of constraints on the norm of the
characteristic vector induced by the chosen items, denoted as norm constraints:

max
{
p�x : Wx ≤ c, �j ≤ ‖χ(x)‖qj

≤ uj for each j ∈ [t] and x ∈ {0, 1}n
}

(2)

In the previous formulation, χ(x) ∈ Z
R
+ denotes the characteristic vector of

x, which contains, in each coordinate r ∈ [R], the sum of the values xi such that
the corresponding item i belongs to category r. For each such extra constraint
j ∈ [t], we are given a lower bound �j ≥ 0 and an upper bound uj ≥ �j , plus a
parameter qj to specify the norm of the constraint. Recall that, for each q ≥ 1
and y = (y1, . . . , ym) ∈ R

m, the �q-norm of y is defined as ‖y‖q = (
∑m

i=1 |yi|q)1/q.
In particular, the �1-norm of y is defined as ‖y‖1 =

∑m
i=1 |yi|. We denote the

problem defined by formulation (2) as norm-constrained packing problem, and
in what follows we will assume that both k and t are constant.

The inclusion of �p-norm based constraints for Resource Allocation problems
has been done before in the literature (for instance, see [4,7,14] in the context
of load balancing), as it seems to accurately merge the objectives of optimizing
the cost while ensuring the assignment to be “fair”. In our context, and following
the same train of thought, the main motivation behind considering the afore-
mentioned norm-constrained packing problem is encoding a family of diversity
measures introduced by Hill, known as Hill numbers [26].

Definition 1 (Hill [26]). Given q ∈ (1,∞), R ∈ N and y = (y1, . . . , yR) ∈ Z
R
+,

the Hill number of order q of y is defined as

Dq(y) =

(
R∑

i=1

yq
i

‖y‖q
1

)1/(1−q)

. (3)

For any q > 1, Dq(y) ranges from 1 to R, being 1 when there exists i ∈ [R]
such that yi > 0 and yj = 0 for any j �= i, and being R when y1 = y2 = · · · = yR.
Hill numbers define diversity indices based solely on abundance, aiming to gauge
the variety or heterogeneity of a community without focusing on the specific
attributes of each individual. In particular, there is a longstanding consensus
in ecology on recommending the usage of Hill numbers [11,18,25,26] as they
satisfy key mathematical axioms and possess other desired properties [18]. This
class of indices includes the well-known Simpson dominance index [44], which
corresponds to the Hill number of order 2.

1.1 Our Results

We study the norm-constrained packing problem through the lens of polynomial
time approximation algorithms. More in detail, our results are the following:

1. We show first that, for any k ≥ 2 and t ≥ 1, the problem does not admit
any polynomial time approximation algorithm unless P = NP, as checking
feasibility of an instance is NP-hard (see Lemma 1).
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2. We provide polynomial time algorithms that, for any ε > 0, compute a (1+ε)-
approximate solution by either slightly violating the capacity constraints (see
Theorem 2) or the norm constraints (see Theorem 3). For the special case of
k = 1, we provide a PTAS (see Theorem 4).

3. We show how to apply the norm-constrained packing problem to incorpo-
rate diversity constraints based on Hill numbers, and discuss some further
applications to search-diversification problems (see Sect. 4).

In order to achieve our main results, we first provide a useful subroutine
that, given a category r ∈ [R] and an integer s ∈ [n], computes the best possible
solution to the classical packing problem defined by (1) of cardinality exactly s,
restricted to items of category r (see Definition 2). Similarly to Lemma 1, this
problem cannot be approximated in polynomial time, but it can be solved exactly
in pseudo-polynomial time. Via rounding techniques, it is possible to adapt this
subroutine so as to work in polynomial time by either increasing the capacities
or by discarding a negligible amount of items; this procedure is then used to
compute a family of candidate sets of items for each category, that are then used
to create a multiple-choice packing instance (see Definition 3), for which there
are known algorithms with good approximation guarantees. The multiple-choice
packing instance ensures that at most one candidate set per category is chosen,
while respecting the corresponding capacity and norm constraints.

1.2 Related Work

The classical packing problem defined by (1) has been extensively studied
through the years. The case of k = 1 is known as the knapsack problem and
is one of Karp’s 21 NP-complete problems [31], but admits a FPTAS [28,42]; for
the case of k ≥ 2, it is proved by Magazine et al. [35] that achieving a FPTAS is
NP-hard, but a PTAS is known for constant k [20]. The landscape when k is not
a part of the input is much different, as formulation (1) encodes problems with
strong inapproximability results such as the independent set problem [24,46]
(see [6] for some positive results). Many different variants of this problem have
been studied, such as multiple knapsack [13,29], geometric knapsack [22,23],
online packing [2,37], among many others. We refer the reader to [8,17,32] for
a comprehensive treatment of packing problems.

Diversity is a complex and multidimensional concept that is typically used to
summarize the structure of a community. Incorporating diversity constraints in
decision-making tasks and socio-technical systems at large has become a goal to
achieve fairness and equity. This has motivated the algorithms, machine learn-
ing and artificial intelligence communities to study the notion of diversity and
the related concepts of inclusion and representation [12,15,19,36]. Diversity has
become essential in many areas of algorithmic design and learning, including
fairness in data summarization [9,10,27] and fair clustering [3,16,21,30].

Close to our setting is the recent work by Patel, Khan and Louis [39], where
the authors design algorithms for the knapsack problem under group fairness
constraints. In this framework, each item belongs to a certain category, and the
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goal is to select a subset of items so that each category is represented in the
solution according to pre-specified ranges of total weight, total profit or total
number of items. Also recently, Pérez-Salazar, Torrico and Verdugo [41] incor-
porated Hill diversity constraints to a partitioning problem. Their approach,
and consequently ours, is mainly motivated from the ecology perspective, where
there is a spectrum of viewpoints to address diversity; on one side, rare species
are a main focus, but on the other side, communities are essential and only
measuring common species matters. In his influential work [44], Simpson intro-
duced a sample-driven metric of diversity based on the abundance and richness
of a population, which was later generalized to the Hill numbers [26], and more
generally, it has been derived as special case of entropy indices [33].

1.3 Organization of the Article

In Sect. 2, we describe more in detail our general algorithmic approach and review
some useful known results. Then, in Sect. 3, we describe in detail our main tech-
nical results, namely the approximation schemes for norm-constrained packing
problems. Finally, in Sect. 4, we describe how to use our results to incorporate
Hill diversity constraints to packing problems and some applications. Due to
space constraints, some proofs are deferred to the full version of this article.

2 Preliminaries

We will first provide some useful notation. For a given matrix A ∈ Z
m×n
+ , we

denote by Aj the j-th row of A and by A·,i the i-th column of A. Given two
vectors y, y′ ∈ Z

n
+, we say that y ≤ y′ if, for each coordinate i ∈ [n], it holds

that yi ≤ y′
i. We also define ‖y‖∞ = maxi∈[n] yi, i.e. the maximum entry of

vector y. For a given x ∈ {0, 1}n, we define as I(x) ⊆ [n] the set of indices where
x contains a 1; on the other hand, for a given set S ⊆ [n], we define a vector
φ(S) ∈ {0, 1}n containing a value 1 in each index i ∈ S and a value 0 otherwise.

In the following, we provide some results regarding the complexity of the
norm-constrained packing problem, and we introduce the algorithmic approach
that we use to devise approximation schemes in Sect. 3. First, we can show that
deciding the feasibility of a norm-constrained packing instance is NP-complete.

Lemma 1. The problem of deciding the existence of a feasible solution for a
norm-constrained packing instance is NP-complete.

Proof (sketch). We can reduce the problem of checking feasibility for a norm-
constrained packing problem with k ≥ 2 and t ≥ 1 from Equipartition, where
we are given 2m integer numbers and an objective value B, and the goal is to
decide whether the set can be partitioned into two sets of equal size, each one
having total sum B. Indeed, for each number in the Equipartition instance we
create an item of profit equal to its value, and can use the weights and capacity
constraints to ensure that the total sum of each side of the partition is exactly
B, while we can use the norm constraint to ensure that the size of each side of
the partition is exactly m. 	
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2.1 Algorithmic Approach: Efficient Search of Candidate Solutions

We define the following auxiliary problem, which will be key in the design of our
algorithms.

Definition 2. Given an instance of the packing problem defined by (1) and a
number s ∈ [n], the s-packing problem consists of finding the most profitable
feasible solution for the problem that contains exactly s items. That is,

max

⎧
⎨

⎩
p�x : Wx ≤ c,

∑

i∈[n]

xi = s and x ∈ {0, 1}n

⎫
⎬

⎭
. (4)

Our general algorithmic approach consists of solving a family of well defined
s-packing instances so as to reduce the search space to a polynomially bounded
family of candidate item sets, which we can then feed to an algorithm with the
goal to decide which candidate set from each category will be selected for the
final solution. For the last part of the algorithm, we use techniques devised for
the multiple-choice packing problem (see Definition 3).

Analogously to Lemma 1 regarding the norm-constrained packing problem,
computing a feasible solution for the s-packing problem in general is hard.

Proposition 1. The problem of deciding the existence of a feasible solution for
an s-packing problem is NP-complete.

Despite of the previous fact, the s-packing problem can be solved in pseudo-
polynomial time using dynamic programming. This is a classical result in the
field, whose proof can be found in the full version of this article.

Lemma 2. There exists an algorithm that solves the s-packing problem exactly
in time O(ns

∏k
j=1 cj).

The following problem will be helpful to compute our final solution once we
have defined a sensible family of candidate sets for each category.

Definition 3. In the multiple-choice packing problem, we are given an instance
(p,W, c) of the packing problem defined by (1), and furthermore the items are
divided into m categories. The goal is to find a feasible solution that contains at
most one item per category and maximizes the total profit.

Multiple-choice constraints have been studied in many different contexts [43,
45]. For this particular case, Patt-Shamir and Rawitz developed a PTAS [40]
when k is a constant, which will come useful for our purposes. For the special
case of k = 1, a faster approximation scheme is known [34]. We summarize these
two results in the following theorem.

Theorem 1 ([34,40]). For every ε > 0, there is a (1 + ε)-approximation algo-
rithm for the multiple-choice packing problem with running time O((nm)�k/ε�).
For the case of k = 1, there is a (1 + ε)-approximation algorithm with running
time O(n log n + mn/ε).
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3 Approximation Schemes

Our main results are (1+ ε)-approximation algorithms for the norm-constrained
packing problem under slight resource augmentation assumptions, in the sense
that our algorithms will always return a solution of almost optimal profit, but
may violate either the capacity constraints or the norm constraints by a ε-
fraction.

More specifically, we develop a first algorithm that computes an integral
solution xA of almost optimal profit, satisfying the norm constraints and satis-
fying that WxA ≤ (1 + ε)c (see Theorem 2), and a second algorithm computing
an integral solution xB of almost optimal profit that satisfies the capacity con-
straints and, for each j ∈ {1, . . . , t}, satisfies that (1 − ε)�j ≤ ‖χ(xB)‖qj

≤ uj

(see Theorem 3). In the special case where the lower bound vector � is zero,
our algorithm is indeed a PTAS, but in general the returned solution might not
be feasible for the original instance. However, we remark that no algorithm can
consistently return feasible solutions when k ≥ 2 and t ≥ 1, unless P = NP, as
showed in Lemma 1.

3.1 Approximation Scheme with Small Capacity Violation

As mentioned before, our algorithm consists of two main steps: First, we show
that there exists an algorithm that solves almost optimally the s-packing problem
if we are allowed to increase the capacities by a factor (1 + ε). In order to do
that, we show that it is possible to modify the instance so that the total weight
of any feasible solution now belongs to a set of candidates of polynomial size;
this modification requires to increase the capacities, but we show that capacities
increase by at most a (1+ ε)-factor. Then, with respect to the modified instance
(in particular, using the polynomially bounded set of possible total weights), we
define a family of profitable candidate sets of items that may be included in our
solution, and then feed them into a multiple-choice packing instance so as to
ensure that only one such set is chosen per category, while satisfying the norm
constraints.

The following proposition will imply that, under a slight resource augmen-
tation assumption on the given capacity constraints, the s-packing problem can
be solved almost optimally in polynomial time.

Proposition 2. Given an instance (p,W, c) of the packing problem defined
by (1), and given ε > 0, there exists an algorithm that computes another instance
(p,W ′, c′) such that:

(a) Every feasible solution for the original instance (p,W, c) is feasible for the
modified instance (p,W ′, c′);

(b) For every feasible solution y of the instance (p,W ′, c′), we have Wy ≤ (1 +
2ε)c; and

(c) ‖c′‖∞ ≤ (1 + ε)n/ε.
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Proof. For each j ∈ [k], let μj = εcj/n; we define the modified weight matrix
W ′ by setting W ′

j,i = �Wj,i/μj� = �nWj,i/εcj� for each j ∈ [k] and i ∈ [n], and
we define the modified capacity c′ by its coordinates c′

j = �(1+ε)cj/μj� for each
j ∈ [k]. Notice that c′

j = �(1 + ε)n/ε�, and computing W ′ and c′ takes time
O(nk). Let x be a feasible solution for the original instance (p,W, c). It holds
that, for any j ∈ [k],

W ′
jx ≤

⎢
⎢
⎢
⎣
∑

i∈I(x)

(
Wj,i

μj
+ 1

)
⎥
⎥
⎥
⎦

=

⎢
⎢
⎢
⎣
∑

i∈I(x)

Wj,i

μj
+ |I(x)|

⎥
⎥
⎥
⎦

≤
⌊
1
μj

(Wjx + nμj)
⌋

≤
⌊

cj + nμj

μj

⌋
=
⌊
(1 + ε) cj

μj

⌋
= c′

j .

Let y be a feasible solution for the instance (p,W ′, c′). If we consider the
same solution but for the original instance (p,W, c), then, for any j ∈ [k], we
have that:

Wjy ≤
∑

i∈I(y)

μj(W ′
j,i + 1)

≤ μj(W ′
jy + |I(y)|) ≤ μjc

′
j + nμj ≤ (1 + 2ε)cj ,

which concludes the proof of the proposition. 	

Thanks to Proposition 2, the algorithm from Lemma 2 has polynomial run-

ning time in the modified instance, and hence it can be used to compute good
candidate sets of s items for each category and each possible s ∈ [n], requiring
resource augmentation on the capacity constraints. With this tool we can prove
next our first main result. In what follows, xOPT denotes a fixed optimal solution
for a given instance of the norm-constrained packing problem, and OPT denotes
its total profit.

Theorem 2. For every ε > 0, there exists an algorithm for the norm-
constrained packing problem that computes a solution x ∈ {0, 1}n such that:

(i) p�x ≥ (1 − ε)OPT,
(ii) �j ≤ ‖χ(x)‖qj

≤ uj for each j ∈ [t], and
(iii) Wx ≤ (1 + ε)c.

The running time of this algorithm is (n/ε)O((k+t)2/ε).

Proof. We start by applying Proposition 2 with parameter ε′ = ε/2 to the
instance (p,W, c), to get a modified instance (p,W ′, c′). As a consequence, the
algorithm from Lemma 2 takes time O(nk+2((1 + ε)/ε)k) when applied to any
s-packing instance derived from this modified instance (i.e., defined by a subset
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of the items and possibly smaller capacities), which is polynomial. Furthermore,
since the profit is preserved through the modification performed by Proposi-
tion 2, the profit of the obtained solutions cannot decrease.

For each possible category r ∈ [R], each possible capacity vector c′′ ≤ c′

and each possible s ∈ [n], we apply Lemma 2 to an instance restricted to items
of category r, so as to obtain a solution xr,c′′,s for the corresponding s-packing
problem such that its total (modified) weight is at most c′′ (coordinate-wise),
it has s items of category r and its profit is at least the optimal profit for the
corresponding instance. These sets will act as candidates for the final solution to
our problem. If we denote by Kc the number of candidates, we have that Kc ∈
O
(
Rnk+1((1 + ε)/ε)k

)
. This step will then take time O(Rn2k+3((1 + ε)/ε)2k).

We now define a multiple-choice packing instance to obtain the desired solu-
tion as follows: For each i ∈ [Kc], we define an item representing each possible
candidate set I(xr,c′′,s) computed before, and these items are partitioned into
R groups according to the specified categories; the matrix W̃ of dimensions
(k + 2t) × Kc is defined so that, for each item i representing the candidate set
I(xr,c′′,s), we have that:

(i) W̃j,i = W ′
j · xr,c′′,s for every j ∈ [k],

(ii) W̃k+j,i = |I(xr,c′′,s)|qj for each j ∈ [t], and
(iii) W̃k+t+j,i = nqj − |I(xr,c′′,s)|qj for each j ∈ [t].

The vector c̃ ∈ Z
k+2t is given by c̃j = c′

j for every j ∈ [k], c̃k+j = u
qj

j and
c̃k+t+j = Rnqj − �

qj

j for each j ∈ [t]. On this instance, we apply Theorem 1
and finally return the solution xALG induced by the selected candidate sets. The
time required to compute this solution can thus be bounded by (n/ε)O((k+t)2/ε)

thanks to the guarantees of Theorem 1.
We claim that any feasible solution x for the original problem defines a fea-

sible solution y for the multiple choice instance if we consider I(x) partitioned
according to the categories as the selected candidate sets. Indeed, in terms of
capacity constraints, this holds thanks to Proposition 2. Regarding the norm
constraints, notice that, for each j ∈ [t], we have that

W̃k+jy = ‖χ(x)‖qj
qj

and W̃k+t+jy = Rnqj − ‖χ(x)‖qj
qj

,

and hence the corresponding constraints imply that ‖χ(xALG)‖qj
≤ uj and �j ≤

‖χ(xALG)‖qj
respectively. Thanks to the approximation guarantees of Theorem 1,

the retrieved solution xALG has profit at least (1 − ε)OPT, as in particular the
optimal solution for the original problem induces a feasible family of candidate
sets for the multiple-choice packing instance. Furthermore, it satisfies the norm
constraints, and we have that WxALG ≤ (1 + 2ε′)c = (1 + ε)c thanks to the
guarantees of Proposition 2 for each selected candidate. 	


3.2 Approximation Scheme with Small Norm Violation

Now we develop a complementary algorithm to the one from Theorem 2, in the
sense that it computes a solution satisfying the capacity constraints but that
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might violate the norm constraints. Our main tool will be an approximation
scheme for the s-packing problem that returns an almost optimal solution in
terms of profit, but potentially using slightly less than s items. This result is
achieved, roughly speaking, by using the algorithm from Lemma 2 and then
removing items of negligible total profit in order to satisfy the capacity con-
straints. This removal might violate the lower bounds on the �p-norm constraints.
However, we choose the removed items in such a way that at most an ε-fraction
from each category is removed, and hence in the end the norm constraints will be
violated by a factor (1−ε) at most. With this tool, we can compute a polynomial
family of candidate sets and write a multiple-choice packing instance, where we
can use Theorem 1 and retrieve our final solution. We first prove the following
couple of technical results.

Proposition 3. Consider a feasible solution x for an instance (p,W, c) of the
packing problem defined by (1), and let ε > 0. Suppose that |I(x)| ≥ k2/ε4. Then,
there exist three integral vectors xL, xS, xD ∈ {0, 1}n such that the following holds:

(a) x = xL + xS + xD.
(b) p�(xL + xS) ≥ (1 − ε2)p�x.
(c) |I(xD)| ≤ k/ε2.
(d) |I(xL)| ≤ k2/ε4 and W·,i ≤ ε2(c − WxL) for each i ∈ I(xS).

Proof. Recall that, given a set of items S ⊆ [n], we denote by φ(S) ∈ {0, 1}n

the vector having value 1 for each i ∈ S and zero otherwise. Consider a fixed
j ∈ [k]. Let L1 be the set of items i ∈ I(x) satisfying that Wj,i > ε2cj . If L1

has total profit at most ε2p�x/k, then we can define the vectors in the following
way: xL = 0, xD = φ(L1) and xS = x − xL − xD. In particular, I(xL) = ∅ and
I(xD) = L1, and thus all the items i ∈ I(x)\L1 satisfy that Wj,i ≤ ε2(c−WxL).
Otherwise, consider the set L2 of items i ∈ I(x) \ L1 satisfying that

Wj,i > ε2
(
cj −

∑

�∈L1

Wj,�

)
,

i.e., the items whose weight on dimension j is relatively large with respect to
the residual instance defined by L1. If L2 has total profit at most ε2p�x/k, then
we can define the vectors in the following way: xL = φ(L1), xD = φ(L2) and
xS = x − xL − xD. In particular, we have I(xL) = L1 and I(xD) = L2, and then
all the items in I(xS) have weight relatively small with respect to the residual
capacity as desired (notice that |L1| ≤ 1/ε2).

We continue with this procedure, defining at each iteration h ∈ N the set Lh

of items i ∈ I(x) \ ∪h−1
e=1Le such that

Wj,i > ε

⎛

⎝cj −
∑

�∈∪h−1
i=1 Li

Wj,�

⎞

⎠ ,

and checking whether the total profit of Lh is at most ε2p�x/k.
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Notice that, by construction, the sets Lh are disjoint and have size at most
1/ε2. Thus, a set Lh of total profit at most ε2p�x/k must be found after at most
k/ε2 iterations; if this does not occur, then we have a vector φ(∪k/ε2

i=1 Li) ≤ x
whose total profit is strictly larger than p�x, which is not possible. If we apply
the same procedure for each possible dimension j = 1, . . . , k iteratively, we then
obtain the final vectors which, by slightly abusing notation, we denote as xL

and xD. Notice that |I(xL)| ≤ k · k/ε2 · 1/ε2 ≤ k2/ε4, |I(xD)| ≤ k/ε2 and also
p�xD ≤ ε2p�x as claimed. 	

Proposition 4. Consider a feasible solution x for an instance (p,W, c) of the
packing problem defined by (1), and let ε > 0 such that 1/ε is integral. Suppose
that Wj,i ≤ ε2cj for every i ∈ I(x) and every j ∈ [k]. Then, it is possible to
compute an integral vector x′

D such that:

(a) p�x′
D ≤ εp�x and x′

D ≤ x.
(b) |I(x′

D)| ≤ ε|I(x)| + k.
(c) W (x − x′

D) ≤ (
1 − ε

k (1 − (k + 1)ε)
)
c.

Proof. Consider a fixed j ∈ [k]. If we have that
∑n

i=1 Wj,ixi ≤ (1 − ε)cj , then
the claims are satisfied in dimension j if we define x′

D = 0. Otherwise, we par-
tition the set of items into k/ε groups of relatively balanced total weight and
cardinality, so that the least profitable of them provides the desired set x′

D.
We sort the items i ∈ I(x) non-increasingly by their weight Wj,i (breaking

ties arbitrarily), and we assign them into sets S1, . . . , Sk/ε in a round-robin
fashion; that is, each set Si receives the items whose position in the previous
sorted list is equal to i mod k/ε, until the total weight of some set becomes at
least ε(1 − ε)cj/k. Notice that this must happen since the total weight of the
items is at least (1 − ε)cj ; furthermore, the last set where an item is assigned
must be S1 since ∑

�∈Si

Wj,� ≥
∑

�∈Si+1

Wj,�

for every i ∈ {1, 2, . . . , k/ε − 1}.
Observe that |Si| ≤ ε|I(x)|/k + 1 for every i ∈ {1, . . . , k/ε}. Moreover, the

total profit of each set is at most εp�x/k, and it also holds that the total weight
of each set Si on dimension j is at least ε(1 − ε)cj/k − ε2cj . In fact, due to the
way items are assigned to the sets, the second item assigned to S1 has weight
smaller than the first item assigned to Sk/ε, the third item assigned to S1 has
weight smaller than the second item assigned to Sk/ε and so on, and also we
have that |S1| = |Sk/ε| + 1. Hence, it holds that

∑

�∈Sk/ε

Wj,� ≥
∑

�∈S1

Wj,� − W ≥ ε

k
(1 − ε)cj − ε2cj ,

where W is the weight of the first item assigned to set S1 (see Fig. 1). In con-
clusion, if we define x′

D so that I(x′
D) corresponds to the least profitable of these

sets (whose total profit would be at most εp�x/k), then the claims of the lemma
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follow for dimension j. If we apply this procedure iteratively for each dimension,
we obtain analogous properties for all the dimensions simultaneously as claimed.

	


Fig. 1. Depiction of how items are partitioned into k/ε sets of balanced cardinality and
lower bounded total weight as in the proof of Lemma 4. The total weight of the sets is
non-increasing from left to right, but the highlighted set in Sk/ε has total weight of at
least the weight of the highlighted set in S1.

We can now use the previous two results to devise a procedure to compute
profitable candidates while slightly violating the cardinality constraints of the
corresponding s-packing instance.

Lemma 3. For every 0 < ε ≤ 2/(3k + 3), there exists an algorithm that com-
putes, for every s-packing instance (p,W, c), a solution x ∈ {0, 1}n such that:

(i) (1 − ε)s ≤ |I(x)| ≤ s;
(ii) p�x ≥ (1−ε)OPT, where OPT is the optimal value of the s-packing instance;

and
(iii) Wx ≤ c.

The running time of this algorithm is (kn/ε)O(k2/ε4).

Proof. Let xP,s be an optimal solution for the s-packing instance. We assume
that s > 16k2/ε4, as otherwise we can simply guess the optimal solution. Let
xL, xD and xS be the three integral vectors whose existence is ensured thanks to
Proposition 3, applied with parameter ε/2.

Let ε′ = ε/(6k). As a first step, we guess xL and xD, which can be done
efficiently since there are O(n16k2/ε4

) such possible vectors. Then, we remove
from [n] \ I(xL + xD) every item i satisfying that there exists j ∈ [k] such that
Wj,i > ε′2(cj − ∑

i∈I(xL)
Wj,i). That is, the items which are not relatively small
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with respect to the residual capacity defined by xL. From here we get a new
instance defined by (p,W, c − WxL). We apply Proposition 2 with parameter ε′

to the instance (p,W, c−WxL), obtaining a modified residual instance (p,W ′, c′),
and then we run the algorithm from Lemma 2 with cardinality parameter s −
|I(xL + xD)| on this instance, which takes time O(ns (k/ε + 1)k). Finally, we
apply Proposition 4 with parameter ε/2 on the previous solution for the residual
instance (p,W ′, c′), and return the outcome x̃ plus xL as the final solution xALG.

Notice that, since xS defines a feasible solution for the residual instance
(p,W ′, c′), the profit of the solution returned by Lemma 2 must be at least
p�xS, and accordingly, the profit of the final solution returned by our algorithm
will be at least

(1 − ε

2
)p�xS + p�xL ≥ (1 − ε)p�xP,s.

On the other hand, thanks to Proposition 2, the total weight of the solution
returned by Lemma 2 is at most (1 + ε/(3k))(c − WxL), and hence the total
weight of the solution after applying Proposition 4 is at most

(
1 − ε

2k

(
1 − k + 1

2
ε

))(
1 +

ε

3k

)
(c − WxL) ≤ c − WxL,

where we used the fact that ε ≤ 2/(3k+3); this implies that WxALG ≤ c. Finally,
regarding the cardinality, we notice that |I(xALG)| ≤ s as we only removed items
from the solution computed by Lemma 2, and also that

|I(xALG)| ≥ |I(xL)| +
(
1 − ε

2

)
(s − |I(xL + xD)|) − k

≥
(
1 − ε

2

)
s − |I(xD)| − k ≥ (1 − ε)s,

where we used the fact that |I(xD)| ≤ 4k/ε2 and s ≥ 16k2/ε4. This concludes
the proof. 	


The previous lemma can be then used to compute profitable candidate sets
for our final solution. In order to reduce the amount of candidate sets that are
required to be computed, we provide first the following classical rounding result
whose proof can be found in the full version of this article.

Proposition 5. For any instance (p,W, c) of the packing problem defined by (1)
and ε > 0, there exists a set C ⊆ Z

k
+ such that the following holds:

(a) For every feasible solution x of instance (p,W, c), there exists another solu-
tion x′ and a vector c̃ ∈ C such that c̃ ≤ c, x′ ≤ x, |I(x′)| ≥ (1 − ε)|I(x)|,
p�x′ ≥ (1 − ε)p�x and Wx′ ≤ c̃.

(b) |C| ∈ O(n(k/ε+k)2+2) and it can be computed in time nO((k/ε)2).

Now we can prove our second main result.

Theorem 3. For any ε > 0, there exists an algorithm for the norm-constrained
packing problem that computes a solution x such that:
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(i) p�x ≥ (1 − ε)OPT.
(ii) Wx ≤ c.
(iii) (1 − 2ε)�j ≤ ‖χ(x)‖qj

≤ uj for each j ∈ [t].

The running time of the algorithm is (n/ε)O((k+2t)5/ε6).

Proof. Let xOPT be the optimal solution for the instance (p,W, c). Let C be the
set guaranteed to exist from Proposition 5 with parameter ε. For each possible
category r ∈ [R], each c̃ ∈ C and each s ∈ [n], we compute a solution xr,c̃,s to
the instance of the s-packing problem defined by (p,W, c̃) restricted to items of
category r, using Lemma 3 with parameter ε. The running time of this step is
O(Rn32k2/ε4+7 (k/ε + 1)2k).

We now construct a multiple-choice packing instance as follows: for each
previous candidate set we define an item, and these items are partitioned into R
groups according to their specified categories; the matrix W̃ of (k + 2t) rows is
defined so that, for each item i representing the candidate set xr,c′′,s, we have:

1. W̃j,i = Wj · xr,c̃,s for every j ∈ [k],
2. W̃k+j,i = |I(xr,c′′,s)|qj for each j ∈ [t], and
3. W̃k+t+j,i = nqj − |I(xr,c′′,s)|qj for each j ∈ [t].

Finally, the capacity vector c̃ ∈ Z
k+2t is defined as c̃j = cj for every j ∈ [k],

c̃k+j = u
qj

j for each j ∈ [t], and c̃k+t+j = Rnqj − (1 − ε)�qj

j for each j ∈ [t]. On
this instance we apply Theorem 1 and obtain a solution induced by the selected
candidate sets. The time required to compute this solution can be bounded by
(n/ε)O((k+2t)5/ε6) thanks to the guarantees of Theorem 1.

For each r ∈ [R], let xOPT,r be the optimal solution restricted to items of
category r. Thanks to the guarantees of Lemma 3 and Proposition 5, there exists
an integer value s such that (1 − 2ε)|I(xOPT,r)| ≤ s ≤ |I(xOPT,r)| and a vector
c̃ ∈ C such that the solution xr,c̃,s has profit at least (1−2ε)p�xOPT,r, and hence
their union defines a feasible solution of total profit at least (1− 2ε)p�xOPT and
total weight at most c. Furthermore, regarding the norm constraints, we have
that, for each j ∈ [t], it holds that

‖χ(xALG)‖qj
≥ ‖(1 − 2ε)χ(xOPT)‖qj

≥ (1 − 2ε)‖χ(xOPT)‖qj
≥ (1 − 2ε)�j ,

where xALG is the computed solution. Applying Theorem 1 will thus return a
solution satisfying the claimed guarantees, hence proving the theorem. 	


3.3 Improved Algorithm for the Case of k = 1

In this section, we provide a PTAS for the norm-constrained packing problem
in the special case of k = 1. Our algorithm computes a feasible solution having
arbitrarily close to optimal profit, as opposed to the previous algorithms where
one of the family of restrictions is violated, which is unavoidable due to the
restrictions imposed by Lemma 1.
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We first round down the profits of the items so that they belong to a set of
polynomial size while losing negligible profit. More specifically, for a given item
i ∈ [n], we define its rounded profit as p̃i =

⌊
pin

ε‖p‖∞

⌋
ε‖p‖∞

n . In other words, we
round the profits down to the closest multiple of ε‖p‖∞/n. We lose a factor of
at most (1 + ε) in the approximation factor from this rounding, and hence from
now on we assume that the profits are rounded. The number of possible total
rounded profits for any feasible solution is at most n2/ε.

Following our algorithmic approach, we use the following result due to Patel
et al. [39] to compute candidate sets for each possible category, so as to feed them
as input for a multiple-choice packing instance. We restate this result adapted
to our purposes, and its proof can be found in the full version of this article.

Lemma 4 (Patel et al. [39]). Let k = 1. There exists an algorithm that, given
a profit p ∈ Z+, computes the solution for the s-packing problem of total profit
p having smallest total weight. The running time of this algorithm is O

(
n3s/ε

)
.

With these tools, we can prove our main result for this setting. The proof follows
our algorithmic approach in an analogous way to the previous cases, so we defer
its proof to the full version of this article.

Theorem 4. There exists a PTAS for the norm-constrained packing problem
when k = 1 that runs in time (tn/ε)O(1).

4 Packing Problems Under Hill Diversity Constraints

In this section, we discuss some consequences of our results in the context of
incorporating diversity considerations on how categories frequencies appear in
the computed solution. More in detail, we consider the following packing problem
with Hill diversity constraints (see Definition 1 for details of the function Dq(·)):
Definition 4. In the packing problem with Hill diversity constraints, we are
given an instance (p,W, c) of the classical packing problem defined by (1) and
two values, q, δ ≥ 1. The goal is to compute a solution that maximizes the total
profit among the feasible solutions x satisfying Dq(χ(x)) ≥ δ.

As mentioned before, in this problem we aim to balance the quality of the
solution in terms of profit and its diversity. The main advantage of this formula-
tion is that the decision-maker only fixes a threshold and the kind of measure to
be used, and then the diversity of the solutions is specified solely based on the
abundance of items from each category. In opposition, other frameworks require
the decision-maker to specify for each category what is a fair representation (for
instance, in the setting of group fairness studied by Patel et al. [39], it must be
decided a priori how much profit, weight or how many items from each category
are allowed in a feasible solution). Using Theorem 3, it is possible to obtain
an efficient algorithm for this packing problem with Hill diversity constraints.
Please refer to full version of this article.
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Theorem 5. Let ε > 0. There exists a polynomial-time algorithm that, given
an instance of the packing problem with Hill diversity constraints defined by
(p,W, c), q and δ, computes a solution x satisfying the following:

(i) x is feasible for the packing problem defined by (1) with instance (p,W, c).
(ii) p�x ≥ (1 − ε)OPT, where OPT is the optimal value for the instance of the

packing problem with Hill diversity constraints.
(iii) Dq(χ(x)) ≥ (1 − ε)δ.

Notice that, if we use Theorem 2 instead of Theorem 3, we can obtain a
solution that satisfies the Hill diversity constraints but violates the capacity
constraints by a small multiplicative factor. This result finds applications in the
context of search-diversification, where we receive a list of n categorized elements
with non-negative valuations and a parameter k ∈ [n], and the goal is to return
a set of k elements of high total profit that satisfies diversity constraints. This
problem models desired properties for search queries in databases, where we want
to retrieve the most relevant elements but to avoid unfair or biased responses
(see [1] for a detailed description and applications). In the context of our work,
search-diversification with Hill diversity constraints can be formulated as

max
{
p�x : δ ≤ Dq(χ(x)), ‖χ(x)‖1 = k and x ∈ {0, 1}n

}
, (5)

where p corresponds to the valuations of the elements, and q and δ are given.
Since there are no capacity constraints, by using our results we can directly
obtain a PTAS for the problem.

Corollary 1. There exists a PTAS for the search-diversification problem under
Hill diversity constraints.

Concluding Remarks

In this work, we have studied the norm-constrained packing problem and pro-
vided approximation schemes for it under slight violations of the constraints. We
mention some interesting open questions:

1. Our results assume that the number of capacity and norm constraints is
constant. As already mentioned, if the number of such constraints is not nec-
essarily constant, the problem is much more challenging, but still, algorithms
with different kinds of approximation guarantees could be designed (following
the line of Bansal et al. [6]).

2. We study the inclusion of Hill diversity constraints in a fundamental problem
such as the packing problem, but other classical problems can also incorporate
these constraints, such as bin packing, independent set, clustering, among
many others. We believe our techniques can be helpful in tackling this task
in the context of resource allocation problems.

3. It would be interesting to consider other diversity measures such as the Gini
coefficient [38] and entropy indices [33], or to incorporate more general norm
constraints such as weighted �p-norms [7].
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Abstract. There has been a long-standing interest in computing diverse
solutions to optimization problems. In 1995 J. Krarup [28] posed the
problem of finding k-edge disjoint Hamiltonian Circuits of minimum
total weight, called the peripatetic salesman problem (PSP). Since then
researchers have investigated the complexity of finding diverse solutions
to spanning trees, paths, vertex covers, matchings, and more. Unlike the
PSP that has a constraint on the total weight of the solutions, recent
work has involved finding diverse solutions that are all optimal.

However, sometimes the space of exact solutions may be too small
to achieve sufficient diversity. Motivated by this, we initiate the study
of obtaining sufficiently-diverse, yet approximately-optimal solutions to
optimization problems. Formally, given an integer k, an approximation
factor c, and an instance I of an optimization problem, we aim to obtain
a set of k solutions to I that a) are all c approximately-optimal for I
and b) maximize the diversity of the k solutions. Finding such solutions,
therefore, requires a better understanding of the global landscape of the
optimization function.

Given a metric on the space of solutions, and the diversity measure as
the sum of pairwise distances between solutions, we first provide a gen-
eral reduction to an associated budget-constrained optimization (BCO)
problem, where one objective function is to optimized subject to a bound
on the second objective function. We then prove that bi-approximations
to the BCO can be used to give bi-approximations to the diverse approx-
imately optimal solutions problem.

As applications of our result, we present polynomial time approxi-
mation algorithms for several problems such as diverse c-approximate
maximum matchings, s − t shortest paths, global min-cut, and minimum
weight bases of a matroid. The last result gives us diverse c-approximate
minimum spanning trees, advancing a step towards achieving diverse c-
approximate TSP tours.
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We also explore the connection to the field of multiobjective opti-
mization and show that the class of problems to which our result
applies includes those for which the associated DUALRESTRICT prob-
lem defined by Papadimitriou and Yannakakis [35], and recently explored
by Herzel et al. [26] can be solved in polynomial time.

Keywords: Diversity · Minimum spanning tree · Maximum
matching · Shortest path · Travelling salesman problem · Dispersion
problem

1 Introduction

Techniques for optimization problems focus on obtaining optimal solutions to
an objective function and have widespread applications ranging from machine
learning, operations research, computational biology, networks, to geophysics,
economics, and finance. However, in many scenarios, the optimal solution is
not only computationally difficult to obtain, but can also render the system
built upon its utilization vulnerable to adversarial attacks. Consider a patrolling
agent tasked with monitoring n sites in the plane. The most efficient solution
(i.e., maximizing the frequency of visiting each of the n sites) would naturally be
to patrol along the tour of shortest length1 (the solution to TSP - the Traveling
Salesman Problem). However, an adversary who wants to avoid the patroller
can also compute the shortest TSP tour and can design its actions strategi-
cally [39]. Similarly, applications utilizing the minimum spanning tree (MST)
on a communication network may be affected if an adversary gains knowledge
of the network [13]; systems using solutions to a linear program (LP) would
be vulnerable if an adversary gains knowledge of the program’s function and
constraints.

One way to address the vulnerability is to use a set of approximately opti-
mal solutions and randomize among them. However, this may not help much
to mitigate the problem, if these approximate solutions are combinatorially too
“similar” to the optimal solution. For example, all points in a sufficiently small
neighborhood of the optimal solution on the LP polytope will be approximately
optimal, but these solutions are not too much different and the adversaries can
still effectively carry out their attacks. Similarly one may use another tree instead
of the MST, but if the new tree shares many edges with the MST the same vulner-
ability persists. Thus k-best enumeration algorithms [18,24,30,31,33] developed
for a variety of problems fall short in this regard.

One of the oldest known formulations is the Peripatetic Salesman problem
(PSP) by Krarup [28], which asks for k-edge disjoint Hamiltonian circuits of
minimum total weight in a network. Since then, several researchers have tried to
compute diverse solutions for several optimization problems [4,5,16,23]. Most of
these works are on graph problems, and diversity usually corresponds to the size
1 We assume without loss of generality that the optimal TSP is combinatorially unique

by a slight perturbation of the distances.
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of the symmetric difference of the edge sets in the solutions. Crucially, almost
all of the aforementioned work demands either every solution individually be
optimal, or the set of solutions in totality (as in the case of the PSP) be optimal.
Nevertheless, the space of optimal solutions may be too small to achieve
sufficient diversity, and it may just be singular (unique solution). In addition,
for NP-complete problems finding just one optimal solution is already difficult.
While there is some research that takes the route of developing FPT algorithms
for this setting [5,17], to us it seems practical to also consider the relaxation to
approximately-optimal solutions.

This motivates the problem of finding a set of diverse and approximately
optimal solutions, which is the problem considered in this article. The number
of solutions k and the desired approximation factor c > 1 is provided by the
user as input. Working in the larger class gives one more hope of finding diverse
solutions, yet every solution has a guarantee on its quality.

1.1 Our Contributions

We develop approximation algorithms for finding k solutions to the given opti-
mization problem: for every solution, the quality is bounded by a user-given
approximation ratio c > 1 to the optimal solution and the diversity of these k
solutions is maximized. Given a metric on the space of solutions to the problem,
we consider the diversity measure given by the sum (or average) of pairwise dis-
tances between the k solutions. Combining ideas from the well-studied problem
on dispersion (which we describe next), we reduce the above problem to a budget
constrained optimization (BCO) program.

1.2 Dispersion

Generally speaking, if the optimization problem itself is NP-hard, finding diverse
solutions for that problem is also NP-hard (see Proposition 1 for more detail).
On the other hand, interestingly, even if the original problem is not NP-hard,
finding diverse and approximately optimal solutions can still be NP-hard. This
is due to the connection of the diversity maximization objective with the general
family of problems that consider selecting k elements from the given input set
with maximum “dispersion”, defined as max-min distance, max-average distance,
and so on.

The dispersion problem has a long history, with many variants both in the
metric setting and the geometric setting [15,29,38]. For example, finding a subset
of size k from an input set of n points in a metric space that maximizes the
distance between closest pairs or the sum of distances of the k selected points
are both NP-hard [1,37]. For the max-sum dispersion problem, the best known
approximation factor is 2 for general metrics [7,25], although PTAS are available
for Euclidean metrics or more generally, metrics of negative type, even with
matroid constraints [10,11].

Dispersion in Exponentially-Sized Space. We make use of the general
framework of the 2-approximation algorithm [8,37] to the max-sum k-dispersion
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problem, a greedy algorithm where the i + 1th solution is chosen to be the most
distant/diverse one from the first i solutions. Notice that in our setting, there
is an important additional challenge to understand the space within which the
approximate solutions stay. In all of the problems we study, the total number of
solutions can be exponential in the input size. Thus we need to have a non-trivial
way of navigating within this large space and carry furthest insertion without
considering all points in the space. This is where our reduction to budget con-
strained problem comes in.

Self Avoiding Dispersion. Furthermore, even after implicitly defining the
i + 1th furthest point insertion via some optimization problem, one needs to
take care that the (farthest, in terms of sum of distances) solution does not turn
out to equal one of the previously found i solutions, as this is a requirement
for the furthest point insertion algorithm. This is an issue one faces because
of the implicit nature of the furthest point procedure in the exponential-sized
space of solutions: in the metric k-dispersion problem, it was easy to guarantee
distinctness as one only considered the n − i points not yet selected.

1.3 Reduction to Budget Constrained Optimization

Combining with dispersion, we reduce the diversity computational problem to a
budget constrained optimization (BCO) problem where the budget is an upper
(resp. lower) bound if the quality of solution is described by a minimization
(resp. maximization) problem. Intuitively the budget guarantees the quality of
the solution, and the objective function maximizes diversity. Recall that the
number of solutions k and the approximation factor c is input by the user; a
larger c allows for more diversity.

We show how using an (a, b) bi-approximation algorithm for the BCO prob-
lem provides a set of O(a)-diverse, bc approximately-optimal solutions to the
diversity computational problem (the hidden constant is at most 4). This main
reduction is described in Theorem 1.

The main challenge in transferring the bi-approximation results because of
a technicality that we describe next. Let S(c) be the space of c approximate
solutions. A (∗, b) bi-approximation algorithm to the BCO relaxes the budget
constraint by a factor b, and hence only promises to return a faraway point in
the larger space S(b · c). Thus bi-approximation of BCO do not simply give a
farthest point insertion in the space of solutions, and instead return a point in a
larger space. Nevertheless, we prove that in most cases, one loses a factor of at
most 4 in the approximation factor for the diversity.

Once the reduction to BCOs is complete, for diverse approximate match-
ings, spanning trees and shortest paths we exploit the special characteristics
of the corresponding BCO to solve it optimally (a = b = 1). For other prob-
lems such as global min-cut, diverse approximate minimum weight spanning
trees, and the more general minimum weight bases of a matroid, we utilize
known bi-approximations to the BCO to obtain bi-approximations for the diver-
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sity problem. For all problems except diverse (unweighted) spanning trees2, our
algorithms are the first polynomial time bi-approximations for these problems.

We also connect to the wide literature on multicriteria optimization and show
that our result applies to the entire class of problems for which the associated
DUALRESTRICT problem (defined by Papadimitriou and Yannakakis [35], and
recently studied by Herzel et al. [26]) has a polynomial time solution. We discuss
this in more detail after presenting our reduction.

Layout: The rest of this paper is organized as follows: we survey related work
in Sect. 2, and formulate the problem in Sect. 3. In Sect. 4 we mention the con-
nection to dispersion and describe the reduction to the budget constrained opti-
mization problem (Theorem 1). Sections 5, 6, 7 and 8 describe four applications
of our technique to various problems such as diverse approximate matchings,
global min-cuts, shortest paths, minimum spanning trees, and minimum weight
bases of a matroid. We remark that this list is by no means exhaustive, and we
leave finding other interesting optimization problems which are amenable to our
approach for future research. Due to space constraints, all proofs can be
found in the publicly available full version of this paper at [19].

2 Related Work

Recently there has been a surge of interest in the tractability of finding diverse
solutions for a number of combinatorial optimization problems, such as span-
ning trees, minimum spanning trees, k-paths, shortest paths, k-matchings,
etc. [16,17,21–23]. Most of the existing work focuses on finding diverse opti-
mal solutions. In cases when finding the optimal solution is NP-complete, sev-
eral works have focused on developing FPT algorithms [5,17]. Nevertheless, as
pointed out in [22], it would be more practical to consider finding a set of diverse
“short” paths rather than one set of diverse shortest paths. They show that
finding a set of approximately shortest paths with the maximum diversity is
NP-hard, but leave the question of developing approximation algorithms open,
a question that we answer in our paper for several problems. Similarly the prob-
lem of finding diverse maximum matchings was proved to be NP-hard in [16].
We remark that the main difference between our result and previous work is that
our algorithms can find a diverse set of c-approximate solutions in polynomial
time. If the attained diversity is not sufficient for the application, the user can
input a larger c, in hopes of increasing it.

Multicriteria Optimization: In this domain, several optimization functions
are given on a space of solutions. Clearly, there may not be a single solution that
is the best for all objective functions, and researchers have focused on obtain-
ing Pareto-optimal solutions, which are solutions that are non-dominated by
other solutions. Put differently, a solution is Pareto-optimal if no other solution
2 While an exact algorithm for diverse unweighted spanning trees is known [23], we

give a faster (by a factor Ω(n1.5k1.5/α(n, m)) where α(·) denotes the inverse of the
Ackermann function), 2-approximation here.
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can have a better cost for all criteria. Since exact solutions are hard to find,
research has focused on finding ε Pareto-optimal solutions, which are a 1+ ε fac-
tor approximations of Pareto-optimal solutions. Papadimitriou and Yannakakis
[35] showed that under pretty mild conditions, any mutlicriteria optimization
problem admits an ε Pareto-optimal set of fully polynomial cardinality. In terms
of being able to find such an ε Pareto-optimal set, they show that a (FPTAS)
PTAS exists for the problem if and only if an associated GAP problem can be
solved in (fully) polynomial time. Very recently, Herzel et al. [26] study the class
of problems for which an FPTAS or PTAS exists for finding ε Pareto-optimal
solutions that are exact in one of the criteria. Such problems are a subset of the
ones characterized by GAP. Herzel et al. [26] characterize the condition simi-
larly: an FPTAS (PTAS) exists if and only if an associated DUALRESTRICT
problem can be solved in (fully) polynomial time. For more details we refer the
reader to the survey by Herzel at al. [27].

3 Diversity Computational Problem (DCP)

First, we define some notations. We use the definition of optimization problems
given in [3] with additional formalism as introduced in [20].

Definition 1 (Optimization Problem). An optimization problem Π is
characterized by the following quadruple of objects (IΠ ,SolΠ ,ΔΠ , goalΠ), where:

– IΠ is the set of instances of Π. In particular for every n ∈ N, IΠ(n) is the
set of instances of Π of input size at most n (bits);

– SolΠ is a function that associates to any input instance x ∈ IΠ the set of
feasible solutions of x;

– ΔΠ is the measure function3, defined for pairs (x, y) such that x ∈ IΠ and
y ∈ SolΠ(x). For every such pair (x, y), ΔΠ(x, y) provides a non-negative
integer which is the value of the feasible solution y;

– goalΠ ∈ {min,max} specifies whether Π is a maximization or minimization
problem.

We would like to identify a subset of our solution space which are (approxi-
mately) optimal with respect to our measure function. To this effect, we define
a notion of approximately optimal feasible solution.

Definition 2 (Approximately Optimal Feasible Solution). Let
Π(IΠ ,SolΠ ,ΔΠ , goalΠ) be an optimization problem and let c ≥ 1. For every
x ∈ IΠ and y ∈ SolΠ(x) we say that y is a c-approximate optimal solution
of x if for every y′ ∈ SolΠ(x) we have ΔΠ(x, y) · c ≥ ΔΠ(x, y′) if goalΠ = max
and ΔΠ(x, y) ≤ ΔΠ(x, y′) · c if goalΠ = min.

3 We define the measure function only for feasible solutions of an instance. Indeed if
an algorithm solving the optimization problem outputs a non-feasible solution, then
the measure just evaluates to -1 in case of maximization problems and ∞ in case of
minimization problems.
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Definition 3 (Computational Problem). Let Π(IΠ ,SolΠ ,ΔΠ , goalΠ) be an
optimization problem and let λ : N → N. The computational problem asso-
ciated with (Π,λ) is given as input an instance x ∈ IΠ(n) (for some n ∈ N)
and real c := λ(n) ≥ 1 find a c-approximate optimal feasible solution of x.

Definition 4 (DCP - Diversity Computational Problem). Let
Π(IΠ ,SolΠ ,ΔΠ , goalΠ) be an optimization problem and let λ : N → N. Let σΠ,t

be a diversity measure that maps every t feasible solutions of an instance of IΠ

to a non-negative real number. The diversity computational problem asso-
ciated with (Π,σΠ,t, k, λ) is given as input an instance x ∈ IΠ(n) (for some
n ∈ N), an integer k := k(n), and real c := λ(n) ≥ 1, find k-many c-approximate
solutions y1, . . . , yk to x which maximize the value of σΠ,k(x, y1, . . . , yk).

Proposition 1. Let Π(IΠ ,SolΠ ,ΔΠ , goalΠ) be an optimization problem and let
λ : N → N. Let σΠ,t be a diversity measure that maps every t feasible solutions of
an instance of IΠ to a non-negative real number. If the computational problem
associated with (Π,λ) is NP-hard, then the diversity computational problem
associated with (Π,σΠ,t, λ) also is NP-hard.

Therefore the interesting questions arise when we compute problems asso-
ciated with (Π,λ) which are in P, or even more when, (Π,1) is in P where 1
is the constant function which maps every element of the domain to 1. For the
remainder of this paper, we will consider λ(n) to be the constant function, and
will simply refer to the constant as c.

Finally, we define bicriteria approximations for the diversity computational
problem:

Definition 5 ((α, β) Bi-approximation for the Diversity Computa-
tional Problem). Consider the diversity computational problem associated with
(Π,σΠ,t, k, c), and a given instance x ∈ IΠ(n) (for some n ∈ N). An algorithm
is called an (α, β) bi-approximation for the diversity computational problem if it
outputs k feasible solutions y1, . . . , yk such that a) yi is a β·c-approximate optimal
feasible solution to x for all 1 ≤ i ≤ k, and b) for any set y

′
1, . . . , y

′
k of k-many

c-approximate optimal feasible solutions, σΠ,k(y1, · · · , yk) ·α ≥ σΠ,k(y
′
1, · · · , y

′
k).

Furthermore, such an algorithm is said to run in polynomial time if the running
time is polynomial in n and k.

4 The Reduction: Enter Dispersion and Biobjective
Optimization

As stated in the introduction, our problems are related to the classical dispersion
problem in a metric space. Here we state the dispersion problem and use disper-
sion to reduce the problem of finding diverse, approximately optimal solutions
to solving an associated budget constrained optimization problem.
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4.1 Dispersion Problem

Definition 6 (k-Dispersion, Total Distance). Given a finite set of points
P whose pairwise distances satisfy the triangle inequality and an integer k ≥ 2,
find a set S ⊆ P of cardinality k so that W (S) is maximized, where W (S) is the
sum of the pairwise distances between points in S.

The main previous work on the k-dispersion problem relevant to us is [37],
where the problem was named as Maximum-Average Facility Dispersion problem
with triangle inequality (MAFD-TI). The problems are equivalent as maximizing
the average distance between the points also maximizes the sum of pairwise
distances between them and vice-versa.

The k-dispersion problem is NP-hard, but one can find a set S whose W (S)
is at least a constant factor of the maximum possible in polynomial time by a
greedy procedure [37]. We call the greedy procedure furthest insertion. It works
as follows. Initially, let S be a singleton set that contains an arbitrary point from
the given set. While |S| < k, add to S a point x /∈ S so that W (S ∪ {x}) ≥
W (S∪{y}) for any y /∈ S. Repeat the greedy addition until S has size k. The final
S is a desired solution, which is shown to be a 4-approximation in [37]. It is worth
noting that the furthest insertion in [37] initializes S as a furthest pair of points
in the given set, and the above change does not worsen the approximation factor.
In a later paper [8], the greedy algorithm of choosing an arbitrary initial point
is shown to be a 2-approximation, which is a tight bound for this algorithm [7].

Lemma 1 (Furthest Insertion in [8,37]). The k-dispersion problem can be
2-approximated by the furthest insertion algorithm.

The running time of the furthest insertion algorithm is polynomial in |S| (the
size of S), as it performs k iterations, each performing at most O(k|S|) distance
computations/lookups. Note that in our case S is the collection of objects of a
certain type (matchings, paths, trees, etc.). Hence the size of our metric space is
typically exponential in |V | and |E|. This adds a new dimension of complexity
to the traditional dispersion problems studied.

4.2 Reduction to Budget Constrained Optimization

Recall the definitions of the Diversity Computational Problem (Definition 4)
and (a, b) bi-approximations (Definition 5). As the input instance x ∈ IΠ will
be clear from context, we drop the dependence on x, and assume a fixed input
instance to a computational problem. Thus SolΠ will denote the set of feasible
solutions, and ΔΠ(y) the measure of the feasible solution y.

Diversity and Similarity Measures from Metrics. Let d : SolΠ × SolΠ →
R

+ be a metric on the space of feasible solutions. When such a metric is available,
we will consider the diversity function σΠ,t : SolΠ ×· · ·×SolΠ → R

+ that assigns
the diversity measure

∑
i,j d(yi, yj) to a t-tuple of feasible solutions (y1, · · · , yt).

Also, given such a metric d, define D to be the diameter of SolΠ under d, i.e.,
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D = maxy,y′∈SolΠ d(y, y′). In many cases, we will be interested in the similarity
measure sΠ,t defined by sΠ,t(y1, · · · , yt) =

∑
i,j(D−d(yi, yj)). The examples the

reader should keep in mind are graph objects such as spanning trees, matchings,
shortest paths, Hamiltonian circuits, etc., such that d(y, y′) denotes the Ham-
ming distance, a.k.a. size of the symmetric difference of the edge sets of y and
y′, and s denotes the size of their intersection.

In the remainder of the paper we consider the above total distance (resp.
similarity) diversity measures σΠ,t arising from the metric d (resp. similarity
measure s), and we will parameterize the problem by d (resp. s) instead.

Definition 7 (Budget Constrained Optimization). Given an instance of
a computational problem Π, a constant c ≥ 1, and a set {y1, . . . , yi} of feasi-
ble solutions in SolΠ , define the metric budget constrained optimization
problem BCO(Π, (y1, . . . , yi), c, d) as follows:

– Ifgoalπ = min, defineΔ∗ := miny∈SolΠ ΔΠ(y).ThenBCO(Π, (y1, . . . , yi), c, d)
is the problem

max fd(y) :=
i∑

j=1

d(y, yj)

s.t. ΔΠ(y) ≤ c · Δ∗

y ∈ SolΠ\{y1, . . . , yi}

(1)

– Ifgoalπ = max,defineΔ∗ := maxy∈SolΠ ΔΠ(y).ThenBCO(Π, (y1, . . . , yi), c, d)
is the problem

max fd(y) :=
i∑

j=1

d(y, yj)

s.t. ΔΠ(y) · c ≥ Δ∗

y ∈ SolΠ\{y1, . . . , yi}

(2)

– Given a similarity measure s, define the similarity budget constrained
optimization problem BCO(Π, (y1, . . . , yi), c, s) with the same constraint
set as above (depending on goalπ), but with the objective function changed to
gs(y) := min

∑i
j=1 s(y, yj) instead of max

∑i
j=1 d(y, yj).

Definition 8 (Bi-approximation to BCO). An algorithm for an associated
BCO is called an (a, b) bi-approximation algorithm if for any 1 ≤ i ≤ k, it
outputs a solution y such that the following holds.

– If goalΠ = min and the associated BCO is BCO(Π, (y1, . . . , yi), c, d), then a)
y ∈ SolΠ\{y1, · · · , yi}, b) ΔΠ(y) ≤ b · c · Δ∗, and c) for all y′ satisfying the
constraints of BCO(Π, (y1, . . . , yi), c, d), fd(y) · a ≥ fd(y′).

– If goalΠ = max and the associated BCO is BCO(Π, (y1, . . . , yi), c, d), then a)
y ∈ SolΠ\{y1, · · · , yi}, b) ΔΠ(y) · b · c ≥ Δ∗, and c) for all y′ satisfying the
constraints of BCO(Π, (y1, . . . , yi), c, d), fd(y) · a ≥ fd(y′).
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– If goalΠ = min and the associated BCO is BCO(Π, (y1, . . . , yi), c, s), then a)
y ∈ SolΠ\{y1, · · · , yi}, b) ΔΠ(y) ≤ b · c · Δ∗, and c) for all y′ satisfying the
constraints of BCO(Π, (y1, . . . , yi), c, s), gs(y) ≤ gs(y′) · a.

– If goalΠ = max and the associated BCO is BCO(Π, (y1, . . . , yi), c, s), then a)
y ∈ SolΠ\{y1, · · · , yi}, b) ΔΠ(y) · b · c ≥ Δ∗, and c) for all y′ satisfying the
constraints of BCO(Π, (y1, . . . , yi), c, s), gs(y) ≤ gs(y′) · a.

Remark: Minimization and maximization are essentially equivalent (by chang-
ing the sign), and so optimally solving one solves the other. The reason why we
continue to treat them separately is because obtaining an approximation to min-
imizing total similarity gs(y) :=

∑i
j=1 s(y, yi) is not equivalent to an approxima-

tion to maximizing total distance fd(y) :=
∑i

j=1 d(y, yi)– in fact, these functions
are the “opposite” of each other, as fd(y) = Di − gs(y).

We are now ready to state our main theorem.

Theorem 1 (Reduction of DCP to BCO). Consider an input (Π, k, d, c)
to the diversity computational problem (DCP).

– For metric BCO,
1. An (a, 1) bi-approximation to BCO(Π, (y1, . . . , yi), c, d) can be used to

give a (2a, 1) bi-approximation to the DCP, and
2. An (a, b) bi-approximation to BCO(Π, (y1, . . . , yi), c, d) can be used to

give a (4a, b) bi-approximation to the DCP.
– For similarity BCO,

3. A (1, 1) bi-approximation to BCO(Π, (y1, . . . , yi), c, s) can be used to give
a (2, 1) bi-approximation to the DCP,

4. A (1, b) bi-approximation to BCO(Π, (y1, . . . , yi), c, s) can be used to give
(4, b) bi-approximation to the DCP,

5. A (1 + ε, 1) bi-approximation to BCO(Π, (y1, . . . , yi), c, s) can be used
to give (4, 1) bi-approximation to the DCP, under the condition that the
average pairwise distance in the optimal solution to the DCP is at least
D 4ε

1+2ε .

In all of the above, the overhead for obtaining a bi-approximation for the
DCP, given a bi-approximation for BCO problem, is O(k).

A few remarks are in order:

– The above theorem provides a recipe for solving the diversity computational
problem for any given optimization problem. As long as either the metric
or the similarity budget constrained optimization problems can be solved or
approximated in polynomial time, one has an analogous result for the DCP.

– In the remainder of this paper we will see several applications that follow from
the above 5 “types” of bi-approximations available. These include DCP for
Maximum Matching and Global Min-Cut (Type 1), DCP for shortest path
(Type 3), DCP for minimum weight bases of a matroid, minimum spanning
trees (Types 4 and 5).



232 J. Gao et al.

– Whenever either a or b (or both) is set to be 1+ ε, we call a bi-approximation
for the BCO problem an FPTAS if the running time is polynomial in 1/ε in
addition to being polynomial in d and k. Otherwise we call it a PTAS.

Relation to Multicriteria Optimization: Observe that for similarity BCOs,
we need either a or b to be 1. This class of biobjective problems that have a PTAS
that is exact in one of the criteria is a special case of the multicriteria problems
that have a PTAS that is exact in one of the criteria. Herzel et al. [26] showed that
this class is exactly the class of problems for which the DUALRESTRICT version
of the problem, posed by Diakonikolas and Yannakakis [14]), can be solved in
polynomial time. These are also the class of problems having a polynomial-
time computable approximate ε-Pareto set that is exact in one objective. This
equivalence means that our theorem is applicable to this entire class of problems.

4.3 Relaxed BCOs and Self-avoidance

Before we delve into our applications, we describe another challenge in directly
applying results from multicriteria optimization literature. For a BCO, the sec-
ond constraint demands that y ∈ SolΠ\{y1, · · · , yi}. Intuitively y is the farthest
point to the set of already discovered solutions {y1, · · · , yi}, and because it is
defined implicitly, without the second constraint y may equal one of the yj

(1 ≤ j ≤ i). Consider an alternate BCO, which we call BCOr where the con-
straint is relaxed to y ∈ SolΠ . For many graph problems, solving BCOr combined
with the approach by Lawler [30] gives a solution to the original BCO. This is
extremely useful because most of the literature on multicriteria optimization con-
cerns optimization of the relaxed type of problems BCOr, and one can borrow
results derived before without worrying about the second constraint. We remark
that for other problems, k-best enumeration algorithms (see [18,24,30,31,33] for
examples) may be useful to switch from the BCO to its relaxed version. Thus
any algorithm for BCOr can be used, modulo the self-avoiding constraint (to be
handled using Lawler’s approach), to give a polynomial time algorithm for the
Diversity Computational Problem with the same guarantees as in Theorem 1.
We provide examples of the approach by Lawler in subsequent sections where
we consider specific problems.

5 Application 1: Diverse Spanning Trees

In this section, we discuss the diverse spanning trees problem, which is the diver-
sity computational problem for spanning trees with Hamming distance function
as the diversity measure. Let G = (V,E) be an n-node m-edge undirected graph.
The problem aims to output a set S of k spanning trees T1, · · · , Tk of G such
that the sum of the pairwise distances

∑
i,j∈S d(Ti, Tj) is maximized, where d is

the Hamming distance between the edge sets of the trees. While this problem
actually has an exact algorithm running in time O((kn)2.5 m) [23], we get a
faster approximation algorithm.
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Theorem 2. Given an n-node m-edge undirected graph G = (V,E), there exists
an O(knm ·α(n,m))-time algorithm, where α(·) is the inverse of the Ackermann
function, that generates k spanning trees T1, · · · , Tk, such that the sum of all
pairwise Hamming distances is at least half of an optimal set of k diverse span-
ning trees.

We prove the above theorem by developing an exact (1, 1) polynomial time
subroutine for the associated BCO problem. The proof can be found in the full
version.

6 Application 2: Diverse Approximate Shortest Paths

Given a graph G = (V,E), non-negative edge weights w(e), two vertices s and t,
and a factor c > 1, the diversity computational problem asks to output k many
st paths, such that the weight of each path is within a factor c of the weight of
the shortest st path, and subject to this constraint, the total pairwise distance
between the paths is maximized. Here the distance between two paths is again
the Hamming distance, or size of symmetric difference of their edge sets.

In [22], it is shown that finding k shortest paths with the maximum diversity
(i.e. the average Hamming distance between solutions) can be solved in polyno-
mial time, but finding k “short” paths with the maximum diversity is NP-hard.
In contrast, in what follows, we will show that finding k “short” paths with
constant approximate diversity is polynomial-time solvable.

We will show that the associated budget constrained optimization problem for
this is of Type 3 in Theorem 1. In other words, we will show that the BCO can
be solved exactly. This will result in a (2, 1) approximation algorithm for the
diversity computational problem.

Hence, we need an algorithm that implements: given a set S of c-approximate
shortest st-paths, find a c-approximate shortest st-path P /∈ S so that W (S ∪
{P}) is maximum among all W (S ∪ {P ′}) for c-approximate shortest st-path
P ′ /∈ S. Here, W (S′) is the sum of all pairwise Hamming distances between two
elements in S′. This is a special case of the bicriteria shortest paths, for which
there is an algorithm in [34]. In our case, one of the two weight functions is
an integral function with range bounded in [0, k]. Hence, it can be solved
more efficiently than the solution in [34], which can be summarized as following.

Lemma 2 (Exact solution to the relaxed BCOr problem). Given a real
c ≥ 1 and a directed simple graph G = (V ∪ {s, t}, E) associated with two weight
functions on edges ω : E → R

+ and f : E → {0, 1, . . . , r}, there is an O(r|V |3)-
time algorithm to output an st-path P ∗ so that

∑
e∈E(P ∗) f(e) is minimized while

retaining
∑

e∈E(P ∗) ω(e) ≤ c
∑

e∈E(P ) ω(e) for all st-paths P .

Self-avoiding Constraint. We now turn to solving the associated (non-
relaxed) BCO problem, by generalizing the above lemma to Corollary 1. Thus
Corollary 1 will help us avoid the situation that a furthest insertion returns a
path that is already picked by some previous furthest insertion.
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Corollary 1 (Exact solution to the BCO problem). Given a real c ≥ 1,
a directed simple graph G = (V ∪ {s, t}, E) associated with two weight functions
on edges ω : E → R

+, f : E → {0, 1, . . . , r}, and two disjoint subsets of edges
Ein, Eex ⊆ E so that all edges in Ein together form a directed simple path Pprefix

starting from node s, there exists an O(r|V |3)-time algorithm to output an c-
approximate shortest st-path P ∗ under ω so that

∑
e∈E(P ∗) f(e) is minimum

among all the c-approximate shortest st-paths P that contain Pprefix as a prefix
and contain no edges from Eex, if such an c-approximate shortest st-path exists.

We are ready to state our main result for the diverse c-approximate shortest
st-paths.

Theorem 3 ((2, 1) Bi-approximation to the Diversity Problem on
Shortest Paths). For any directed simple graph G = (V ∪ {s, t}, E), given
a constant c > 1 and an integer k ∈ N, there exists an O(k3|V |4)-time algorithm
that, if G contains at least k distinct c-approximate shortest st-paths, computes a
set S of k distinct c-approximate shortest st-paths so that the sum of all pairwise
Hamming distances between two paths in S is at least one half of the maximum
possible; otherwise, reports “Non-existent”.

7 Application 3: Diverse Approximate Maximum
Matchings, and Global Min-Cut

Consider the diversity computational problem for computing k many c-
approximate maximum matchings for undirected graphs. In [16], the authors
present an algorithm, among others, to find a pair of maximum matchings for
bipartite graphs whose Hamming distance is maximized. In contrast, our result
can be used to find k ≥ 2 approximate maximum matchings for any graph whose
diversity (i.e. the average Hamming distance) approximates the largest possible
by a factor of 2.

We show that this problem can be restated into the budgeted matching prob-
lem [6]. As noted in [6], though the budgeted matching is in general NP-hard,
if both the weight and cost functions are integral and have a range bounded
by a polynomial in |V |, then it can be solved in polynomial time with a good
probability by a reduction to the exact perfect matching problem [9,32]. The
exact running time for such a case is not stated explicitly in [6]. We combine the
algorithm in [6] and the approach by Lawler [30] to prove:

Theorem 4. There exists a O(k4|V |7 log3 k|V |) time, (2, 1) bi-approximation
to the diversity computational problem for c-approximate maximum matchings,
with failure probability 1/|V |Ω(1).

DCP for Global Min-Cuts: Next, consider the diversity computational prob-
lem for computing k many c-approximate global min-cuts: given a graph G and
a positive weight function w on its edges, a c-approximate min-cut is a cut C
whose cut-edge set E(C) satisfies

∑
e∈E(C) w(e) ≤ c

∑
e∈E(C′) w(e) for any other
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cut C ′. Given i cuts, we define the (integral) cost of an edge as the number of
cuts in which it appears as a cut edge. Consider the BCO with cost minimization
in the objective function (as the cost of a cut is now inversely proportional to
its sum of distances from the found cuts) and constraint with upper bound (the
weight of the cut should be at most c times that of a global min weight cut). In
[2] the authors provide a polynomial-time algorithm for this problem, implying
that the BCO can be solved exactly in polynomial time. This gives us a (2, 1) bi-
approximation to the diversity computational problem for c-approximate global
minimum cuts. We remark that one may be able to exploit integrality of our
cost function to obtain a faster algorithm than that in [2].

8 Application 4: Diverse Minimum Weight Matroid
Bases and Minimum Spanning Trees

One of the original ways to attack the peripatetic salesman problem (Krarup
[28]) was to study the k edge-disjoint spanning trees problem [12]. Note that the
existence of such trees is not guaranteed, and one can use our results in Sect. 5
to maximize diversity of the k trees found.

However, for an application to the TSP problem, cost conditions must be
taken into account. Here we study the diverse computational problem (DCP) on
minimum spanning trees: Given a weighted undirected graph G = (V,E) with
nonnegative weights w(e), c > 1 and a k ∈ N, return k spanning trees of G such
that each spanning tree is a c-approximate minimum spanning tree, and subject
to this, the diversity of the k trees is maximized. Here again the diversity of
a set of trees is the sum of pairwise distances between them, and the distance
between two trees is the size of their symmetric difference.

Our results in this section generalize to the problem of finding k diverse
bases of a matroid such that every basis in the solution set is a c approximate
minimum-weight basis. The DCP on MSTs is a special case of this problem.
However, in order to not introduce extra notation and definitions here, we will
describe our method for minimum spanning trees. We will then briefly sketch
how to extend the algorithm to the general matroid case.

Starting with T1 = MST (G) (a minimum spanning tree on G, computable
in polynomial time), assume we have obtained i trees T1, · · · , Ti, all of which
are c-approximate minimum spanning trees. Assign to each edge a length 
(e)
which equals |{j : 1 ≤ j ≤ i, e ∈ Tj}|.

Lemma 3. Given T1, · · · , Ti, finding Ti+1 that maximizes
∑i

j=1 d(T, Tj) is
equivalent to finding T that minimizes

∑
e∈T 
(e).

Proof. An explicit calculation reveals that
∑

e∈T 
(e) = (n−1)i−∑i
j=1 d(T, Tj).

Consider now the associated similarity budget constrained optimization prob-
lem
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min
∑

e∈T


(e)

s.t. w(T ) ≤ c · w(MST (G))
T ∈ SolΠ\{T1, . . . , Ti}

(3)

Here SolΠ is just the set of spanning trees on G. We will handle the self-
avoiding constraints in a similar fashion as in Sect. 5. For the moment con-
sider the relaxed BCOr where the last constraint is simply T ∈ SolΠ . This is
a budget constrained MST with two weights. This problem has been consid-
ered by Ravi and Goemans [36], who termed it the CMST problem. They pro-
vide a (1, 2) bi-approximation that runs in near-linear time, and a (1, 1 + ε)
bi-approximation that runs in polynomial time4. Also, they show that the
(1, 1 + ε) bi-approximation can be used as a subroutine to compute a (1 + ε, 1)
bi-approximation in pseudopolynomial time.

Applying their results and observing that we are in cases 4 and 5 of Theo-
rem 1, we get

Theorem 5 (DCP for Mininum Spanning Trees). There exists a

– polynomial (in n,m and k) time algorithm that outputs a (4, 2) bi-
approximation to the DCP problem for MSTs.

– polynomial (in n,m and k) and exponential in 1/ε time algorithm that outputs
a (4, 1 + ε) bi-approximation to the DCP problem for MSTs.

– pseudopolynomial time algorithm that outputs a (4, 1) bi-approximation to the
DCP problem for MSTs, as long as the average distance between the trees in
the optimal solution to the k DCP on c-approximate minimum spanning trees
does not exceed 4ε(n−1)

1+2ε .

Extension to Matroids: It is stated in the paper by Ravi and Goemans [36]
that the same result holds if one replaces the set of spanning trees by the bases of
any matroid. It is straightforward to show that the analog of Lemma 3 hold in the
matroid setting too. With a bit of work, one can also generalize the approach
of Lawler [30] to avoid self-intersection (the bases found so far), and thus all
the techniques generalize to the matroid setting. In all of this, we assume an
independence oracle for the matroid, as is standard. In [17], it is shown that,
given integers k, d, finding k perfect matchings so that every pair of the found
matchings have Hamming distance at least d is NP-hard. This hardness result
also applies to finding weighted diverse bases and weighted diverse common
independent sets.
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Abstract. The graphs GF = {(x, F (x));x ∈ F
n
2 } of those (n, n)-func-

tions F : Fn
2 �→ F

n
2 that are almost perfect nonlinear (in brief, APN; an

important notion in symmetric cryptography) are, equivalently to their
original definition by K. Nyberg, those Sidon sets (an important notion
in combinatorics) S in (Fn

2 × F
n
2 ,+) such that, for every x ∈ F

n
2 , there

exists a unique y ∈ F
n
2 such that (x, y) ∈ S. Any subset of a Sidon set

being a Sidon set, an important question is to determine which Sidon sets
are maximal relatively to the order of inclusion. In this paper, we study
whether the graphs of APN functions are maximal (that is, optimal)
Sidon sets. We show that this question is related to the problem of the
existence/non-existence of pairs of APN functions lying at distance 1
from each others, and to the related problem of the existence of APN
functions of algebraic degree n. We revisit the conjectures that have been
made on these latter problems.

Keywords: Almost perfect nonlinear function · Sidon set in an
Abelian group · Symmetric cryptography

1 Introduction

Almost perfect nonlinear (APN) functions, that is, vectorial functions F : Fn
2 �→

F
n
2 whose derivatives DaF (x) = F (x) + F (x + a); a �= 0, are 2-to-1, play an

important role in symmetric cryptography (see for instance the book [9]), since
they allow an optimal resistance against the differential cryptanalysis of the
block ciphers that use them as substitution boxes. Their mathematical study
is an important domain of research, whose results (and in particular those by
K. Nyberg in the early nineties) made possible the invention of the Advanced
Encryption Standard (AES), chosen as a standard by the U.S. National Institute
of Standards and Technology (NIST) in 2001, and today used worldwide as a
cryptosystem dedicated to civilian uses. APN functions also play an important
role in coding theory (see [11]).

Sidon sets, which are subsets S in Abelian groups such that all pairwise
sums x + y (with {x, y} ⊂ S, x �= y), are different, are an important notion
in combinatorics [1], whose name refers to the Hungarian mathematician Simon
Sidon, who introduced the concept in relation to Fourier series.
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These two notions are related: by definition, a vectorial function F : Fn
2 �→ F

n
2

is APN if and only if its graph GF = {(x, F (x));x ∈ F
n
2} is a Sidon set in

(Fn
2 × F

n
2 ,+). Since, given a Sidon set S, every subset of S is also a Sidon set, it

is useful to study optimal Sidon sets (that is, Sidon sets that are maximal with
respect to inclusion). In the present paper, we study the optimality of the graphs
of APN functions as Sidon sets. We characterize such optimality in different ways
(by the set GF + GF + GF and by the Walsh transform of F ) and we relate it
to the two problems of the existence/non-existence of pairs of APN functions at
Hamming distance 1 from each others, and of APN functions of algebraic degree
n. We revisit the conjectures that have been made on these two problems. We
address the case of the so-called plateaued APN functions by exploiting further
a trick that Dillon used for showing that, for every APN function and every
c �= 0, there exist x, y, z such that F (x) + F (y) + F (z) + F (x + y + z) = c.
The situation is more demanding in our case, but thanks to previous results on
plateaued functions, we find a way to reduce the difficulty and this provides a
much simpler proof that a plateaued APN function modified at one point cannot
be APN, implying that its graph is an optimal Sidon set. We leave open the case
of non-plateaued functions and list the known APN functions whose graphs could
possibly be non-optimal Sidon sets (for values of n out of reach by computers).

2 Preliminaries

We call (n,m)-function any function F from F
n
2 to F

m
2 (we shall sometimes write

that F is “in n variables”). It can be represented uniquely by its algebraic nor-
mal form (ANF) F (x) =

∑
I⊆{1,...,n} aI

∏
i∈I xi, where aI ∈ F

m
2 . The algebraic

degree of an (n,m)-function equals the global degree of its ANF. Function F
is affine if and only if its algebraic degree is at most 1; it is called quadratic
if its algebraic degree is at most 2; and it has algebraic degree n if and only
if

∑
x∈F

n
2

F (x) �= 0. In particular, if F is Boolean (that is, valued in F2, with
m = 1) then its algebraic degree is n if and only if it has odd Hamming weight
wH(F ) = |{x ∈ F

n
2 ; F (x) �= 0}.

The vector space F
n
2 can be identified with the field F2n , since this field is

an n-dimensional vector space over F2. If F is an (n, n)-function viewed over
F2n , then it can be represented by its (also unique) univariate representation
F (x) =

∑2n−1
i=0 aix

i, ai ∈ F2n . Its algebraic degree equals then the maximum
Hamming weight of (the binary expansion of) those exponents i in its univariate
representation whose coefficients ai are nonzero.

An (n, n)-function is called almost perfect nonlinear (APN) [2,16,17] if, for
every nonzero a ∈ F

n
2 and every b ∈ F

n
2 , the equation DaF (x) := F (x) + F (x +

a) = b has at most two solutions. Equivalently, the system of equations
{

x + y + z + t = 0
F (x) + F (y) + F (z) + F (t) = 0

has for only solutions quadruples (x, y, z, t) whose elements are not all distinct
(i.e. are pairwise equal). The notion is preserved by extended affine (EA) equiv-
alence (in other words, if F is APN then any function obtained by composing it
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on the left and on the right by affine permutations x → x × M + u, where M is
a nonsingular n × n matrix over F2 and u ∈ F

n
2 , and adding an affine function

to the resulting function is APN). It is also preserved by the more general CCZ-
equivalence (two functions F and G are called CCZ-equivalent if their graphs
GF = {(x, F (x));x ∈ F

n
2} and GG = {(x,G(x));x ∈ F

n
2} are the image of each

other by an affine permutation of ((Fn
2 )2,+), see more in [9]).

APN functions have been characterized by their Walsh transform [14]. Let
us recall that the value at u ∈ F

n
2 of the Fourier-Hadamard transform of a real-

valued function ϕ over F
n
2 is defined as ϕ̂(u) =

∑
x∈F

n
2

ϕ(x)(−1)u·x, (where “·”
denotes an inner product in F

n
2 ). The Fourier-Hadamard transform is bijective.

The value of the Walsh transform of F at (u, v) ∈ F
n
2 × F

n
2 equals the value

at u of the Fourier-Hadamard transform of the function (−1)v·F (x), that is,
WF (u, v) =

∑
x∈F

n
2
(−1)v·F (x)+u·x. In other words, the Walsh transform of F

equals the Fourier-Hadamard transform of the indicator function of its graph
(which takes value 1 at the input (x, y) if and only if y = F (x)). Then F is APN
if and only if

∑
u,v∈F

n
2

W 4
F (u, v) = 3 · 24n − 23n+1. This is a direct consequence

of the easily shown equality:
∑

u,v∈F
n
2

W 4
F (u, v) = 22n|{(x, y, z);F (x) + F (y) +

F (z) + F (x + y + z) = 0}|.
The nonlinearity1 of F equals the minimum Hamming distance between the

component functions v · F , v �= 0, and the affine Boolean functions u · x +
{

0
1 .

It equals nl(F ) = 2n−1 − 1
2 maxu,v∈F

n
2

v �=0
|WF (u, v)|.

A large part of known APN functions is made of functions EA-equivalent to
power functions, that is, to functions of the form F (x) = xd, after identification
of Fn

2 with the field F2n (which is possible since this field is an n-dimensional
vector space over F2). The known APN power functions are all those whose
exponents d are the conjugates 2id (mod 2n − 1) of those d given in Table 1
below, or of their inverses when they are invertible in Z/(2n − 1)Z.

A subset of an elementary 2-group is called a Sidon set if it does not contain
four distinct elements x, y, z, t such that x+y+z+t = 0. The notion is preserved
by affine equivalence: if S is a Sidon set and A is an affine permutation, then
A(S) is a Sidon set.

By definition, an (n, n)-function F is then APN if and only if its graph GF

is a Sidon set in the elementary 2-group ((Fn
2 )2,+).

Any set included in a Sidon set being a Sidon set, the most important for the
study of Sidon sets in a given group is to determine those which are maximal
(that is, which are not contained in larger Sidon sets); the knowledge of all
maximal Sidon sets allows knowing all Sidon sets. A particular case of maximal
set is when the set has maximal size, but the maximal size of Sidon sets is
unknown. As far as we know, only an upper bound is known: the size |S| of any
Sidon set of ((Fn

2 )2,+) satisfies
(|S|

2

)
= |S| (|S|−1)

2 ≤ 22n−1, that is (see e.g. [13]),

1 The relationship between nonlinearity and almost perfect nonlinearity is not clear.
The question whether all APN functions have a rather large nonlinearity is open.
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|S| ≤
⌊
1+

√
22n+3−7
2

⌋
≈ 2n+

1
2 . And an obvious lower bound on the maximal size

of Sidon sets in ((Fn
2 )2,+) is of course |S| ≥ 2n since there exist APN functions

whatever is the parity of n.

Table 1. Known APN exponents on F2n up to equivalence and to inversion.

Functions Exponents d Conditions

Gold 2i + 1 gcd(i, n) = 1

Kasami 22i − 2i + 1 gcd(i, n) = 1

Welch 2t + 3 n = 2t + 1

Niho 2t + 2
t
2 − 1, t even n = 2t + 1

2t + 2
3t+1

2 − 1, t odd

Inverse 22t − 1 or 2n − 2 n = 2t + 1

Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t

We shall see that there are many cases of APN functions whose graphs are
maximal Sidon set. The size 2n of the graph is roughly

√
2 times smaller than

what gives the upper bound on the size of Sidon sets, and there seems to be room
for the existence of APN functions whose graphs are non-maximal Sidon sets.
However, there is no known case where the graph is non-maximal. We relate the
question of such existence to a known conjecture on APN functions, and this may
lead to conjecturing that no APN function exists whose graph is non-maximal
as a Sidon set (however, many conjectures made in the past on APN functions
have subsequently been disproved; it may then be risky to state explicitly such
conjecture).

3 Characterizations

Note that the property that GF is an optimal Sidon set is preserved by CCZ
equivalence.

The graph of an APN function F is a non-optimal Sidon set if and only if
there exists an ordered pair (a, b) such that b �= F (a) and such that GF ∪ {a, b}
is a Sidon set. It is easily seen that GF ∪ {a, b} is a Sidon set if and only if the
system of equations

{
x + y + z + a = 0
F (x) + F (y) + F (z) + b = 0 (1)

has no solution. Indeed, if this system has a solution (x, y, z) then x, y, z are
necessarily distinct, because b �= F (a), and then, GF ∪ {a, b} is not a Sidon
set, since the four points (x, F (x)), (y, F (y)), (z, F (z), and (a, b) are pairwise
distinct (because (a, b) by hypothesis cannot equal one of the other points) and
sum to (0, 0). Conversely, if the system (1) has no solution, then GF ∪ {a, b}
is a Sidon set because, F being APN, four distinct points in GF cannot sum
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to 0 and three points in GF cannot sum to (a, b) either. Hence, the graph of
an APN function is an optimal Sidon set if and only if, for every ordered pair
(a, b) such that b �= F (a), the system (1) has a solution, that is, since (x +
y + z, F (x) + F (y) + F (z)) lives outside GF when x, y, z are distinct because F
is APN2, {(x + y + z, F (x) + F (y) + F (z));x, y, z ∈ F

n
2} covers the whole set

(Fn
2 )2 \GF . And since, for every (n, n)-function F , (x+y+z, F (x)+F (y)+F (z))

covers GF when x, y, z are not distinct in F
n
2 , we have:

Proposition 1. The graph of an APN (n, n)-function F is an optimal Sidon
set in ((Fn

2 )2,+) if and only if the set

GF + GF + GF = {(x + y + z, F (x) + F (y) + F (z));x, y, z ∈ F
n
2}

covers the whole space (Fn
2 )2.

Remark. For a vectorial function, APNness implies a behavior as different as
possible from that of affine functions from the viewpoint of derivatives, since for
F APN, DaF (x) = F (x)+F (x+a) covers a set of (maximal) size 2n−1 for every
nonzero a, while for an affine function, this set has (minimal) size 1. Having a
graph that is an optimal Sidon set also implies a behavior as different as possible
from affine functions, from the viewpoint of GF + GF + GF , since if F is affine,
then (x + y + z, F (x) + F (y) + F (z)) = (x + y + z, F (x + y + z)) covers a set of
size 2n, which is minimal. �
Remark. J. Dillon (private communication) observed that, for every nonzero
c ∈ F2n , the equation F (x) + F (y) + F (z) + F (x + y + z) = c must have a
solution. In other words, there exists a in F

n
2 such that the system in (1) with

b = F (a) + c has a solution.
Dillon’s proof is given in [9] (after Proposition 161). Let us revisit this proof

and say more: let v and c be nonzero elements of Fn
2 and let G(x) = F (x) + (v ·

F (x)) c. Then we have G(x) + G(y) + G(z) + G(x + y + z) = F (x) + F (y) +
F (z) + F (x + y + z) + (v · (F (x) + F (y) + F (z) + F (x + y + z))) c and
G(x) + G(y) + G(z) + G(x + y + z) = 0 if and only if t := F (x) + F (y) +
F (z) + F (x + y + z) satisfies t = (v · t) c. If v · c = 1, then this is equivalent to
t ∈ {0, c}. Hence, we have |{(x, y, z);G(x) + G(y) + G(z) + G(x + y + z) = 0}| =
|{(x, y, z);F (x) + F (y) + F (z) + F (x + y + z) ∈ {0, c}}|. The common size
of these two sets is strictly larger than the number of triples (x, y, z) such that
x, y, z are not distinct (that is, 3 · 24n − 23n+1) since G having zero nonlinearity
because v · G = 0 (still assuming that v · c = 1), it cannot be APN, as proved in
[7]. This proves that |{(x, y, z);F (x) + F (y) + F (z) + F (x + y + z) = c}| > 0,
since F being APN, we have |{(x, y, z);F (x) + F (y) + F (z) + F (x + y + z) = 0}|
if and only if x, y, z are not distinct.

Dillon’s result shows (as we already observed) that for every nonzero c, there
exists a in F

n
2 such that the system in (1) with b = F (a)+c has a solution, while

in Proposition 1, we want that this same system has a solution for every a and
every nonzero c in F

n
2 .

2 This is a necessary and sufficient condition for APNness.
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In the case of a quadratic function F , since the derivative DaF (x) = F (x) +
F (x + a) is affine, its image set Im(DaF ) = {DaF (x);x ∈ F

n
2} when a �=

0 is an affine hyperplane, say equals ua + Ha where ua is an element of F
n
2

and Ha is a linear hyperplane of Fn
2 , say Ha = {0, va}⊥, where va �= 0. Since

F (x) + F (y) + F (z) + F (x + y + z) equals DaF (x) + DaF (z) with a = x + y,
and since Im(DaF ) + Im(DaF ) = Ha + Ha = Ha, Dillon’s result means then
in this particular case that

⋃
a∈F

n
2

a �=0
Ha equals F

n
2 . �

Let us now translate Proposition 1 in terms of the Walsh transform (by a
routine method):

Corollary 1. The graph of an APN (n, n)-function F is an optimal Sidon set
in ((Fn

2 )2,+) if and only if:

∀(a, b) ∈ (Fn
2 )2,

∑

(u,v)∈(Fn
2 )

2

(−1)v·b+u·a W 3
F (u, v) �= 0. (2)

Indeed we have:
∑

(u,v)∈(Fn
2 )

2

(−1)v·b+u·a W 3
F (u, v)

=
∑

x,y,z∈F
n
2

∑

(u,v)∈(Fn
2 )

2

(−1)v·(F (x)+F (y)+F (z)+b)+u·(x+y+z+a)

= 22n|{(x, y, z) ∈ (Fn
2 )3; (x + y + z, F (x) + F (y) + F (z)) = (a, b)}.

Remark. An APN function F has then a graph that is non-maximal as a Sidon
set if and only if, making the product of all the expressions in Corollary 1 for
(a, b) ranging over (Fn

2 )2, we obtain 0:
∑

U=(ua,b,va,b)(a,b)∈(Fn2 )2

∈((Fn2 )2)((F
n
2 )2)

(−1)
∑

(a,b)∈(Fn2 )2 (va,b·b+ua,b·a) ∏

(a,b)∈(Fn
2 )

2

W 3
F (ua,b, va,b) = 0.

�
Remark. Without loss of generality (by changing F (x) into F (x) + F (0)), let
F (0) = 0. Then, since F is APN, we know that

∑
(u,v)∈(Fn

2 )
2 W 3

F (u, v) = 3 ·23n −
22n+1 (this can be easily calculated since

∑
(u,v)∈(Fn

2 )
2 W 3

F (u, v) = 22n|{(x, y, z) ∈
(Fn

2 )3; x + y + z = F (x) + F (y) + F (z) = 0}| = 22n|{(x, y, z) ∈ (Fn
2 )3; x =

0 and y = z or y = 0 and x = z or z = 0 and x = y}|). Hence, Inequality (2) is,
under the condition F (0) = 0, equivalent to:

∀(a, b) ∈ (Fn
2 )2,

∑

(u,v)∈(Fn2 )2

v·b+u·a=0

W 3
F (u, v) �= 3 · 23n−1 − 22n.

Searching for APN (n, n)-functions whose graphs are non-maximal Sidon sets
corresponds then to searching for APN (n, n)-functions F and linear hyperplanes
H of (Fn

2 )2 such that
∑

(u,v)∈H W 3
F (u, v) = 3 · 23n−1 − 22n. �
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4 Relation with the Problem of the (Non)existence
of Pairs of APN Functions at Distance 1 from Each
Others

The question of the existence of pairs of APN functions lying at Hamming dis-
tance 1 from each others, and the related question of the existence of APN func-
tions of algebraic degree n have been studied in [4]. The question of the possible
distance between APN functions has been studied further in [3]. The following
proposition will show the close relationship between these two questions and the
maximality of the graphs of APN functions as Sidon sets.

Proposition 2. Let n be any positive integer and F any APN (n, n)-function.
The graph of F is non-maximal as a Sidon set if and only if there exists an
APN (n, n)-function G which can be obtained from F by changing its value at
one single point (i.e. such that G lies at Hamming distance 1 from F ).

Proof. Assume first that the graph of F is non-maximal as a Sidon set. Then
there exists (a, b) ∈ (Fn

2 )2 such that b �= F (a) and GF ∪ {(a, b)} is a Sidon set.
Then the set (GF ∪ {(a, b)})\{(a, F (a))} being automatically a Sidon set, the

function G such that G(x) =
{

F (x) if x �= a
b if x = a

is also APN.

Conversely, if a pair (F,G) of APN functions at distance 1 from each other
exists, then there exists a unique a ∈ F

n
2 such that F (a) �= G(a) (and F (x) =

G(x) for any x �= a). Let us show that the set equal to the union of the graphs
of F and G is then a Sidon set (and the graphs of F and G are then non-optimal
as Sidon sets): otherwise, let X,Y,Z, T be distinct ordered pairs in this union
and such that X +Y +Z +T = 0. Since F and G are APN, two elements among
X,Y,Z, T have necessarily a for left term. Without loss of generality, we can
assume that Z = (a, F (a)) and T = (a,G(a)). But then we have X = (x, F (x))
and Y = (y, F (y)) for some x, y and since X + Y + Z + T = 0 we must then
have x = y and therefore X = Y , a contradiction. �

Note that if F and G are defined as in Proposition 2 and F has algebraic
degree smaller than n, then G has algebraic degree n, since

∑
x∈F

n
2

G(x) =
∑

x∈F
n
2

F (x) + b + F (a) = b + F (a) �= 0. Hence one function at least among F

and G has algebraic degree n.
The following conjecture was stated in [4] (we number it as in this paper):

Conjecture 2: any function obtained from an APN function F by changing one
value is not APN.

In other words, there do not exist two APN functions at Hamming distance
1 from each other. Another conjecture was even stated as follows (we number it
as in [4] as well):

Conjecture 1: there does not exist any APN function of algebraic degree n for
n ≥ 3.

This conjecture is stronger than Conjecture 2 since if it is true then a pair
(F,G) of APN functions at distance 1 from each other would need to be made
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with functions of degrees less than n, and this is impossible according to Propo-
sition 2 and to the observation below it.

According to Proposition 2, Conjecture 2 is equivalent to:

Conjecture 3: the graphs of all APN functions are maximal Sidon sets.
Conjectures 1 and 2–3 are still completely open. Ref. [3] has studied further

the Hamming distance between APN functions, but no progress was made on
Conjectures 1 and 2.

5 The Case of Plateaued APN Functions

Let C be a class of (n, n)-functions that is globally preserved by any translation
applied to the input of the functions or to their output. For proving that the
graphs of all the APN functions in C are optimal Sidon sets by using Proposition
1, it is enough, thanks to a translation of the input by a and of the output
by F (a), to prove that, for any APN function F in this class, the system (1)
with a = F (0) = 0 (and b = c) has a solution3. Moreover, according to what
we have seen in the remark recalling Dillon’s observation, if we define G(x) =
F (x) + (v · F (x)) c, where v · c = 1, if G also belongs to C for every F in C, it is
enough to show that, for every function G ∈ C such that G(0) = 0 and having
zero nonlinearity, the equation G(x) + G(y) + G(x + y) = 0 has solutions (x, y)
where x and y are linearly independent over F2. Indeed, we have |{(x, y);G(x)+
G(y)+G(x+y) = 0}| = |{(x, y);F (x)+F (y)+F (x+y) ∈ {0, c}}|, and since F is
APN such that F (0) = 0, the equality F (x)+F (y)+F (x+ y) = 0 requires that
x and y are linearly dependent. Hence, the equation F (x)+F (y)+F (x+ y) = c
has solutions if and only if the equation G(x)+G(y)+G(x+y) = 0 has solutions
(x, y) where x and y are linearly independent.

Recall that an (n, n)-function is called plateaued (see e.g. [9]) if, for every
v ∈ F

n
2 , there exists a number λv ≥ 0 (which is necessarily a power of 2) such

that WF (u, v) ∈ {0,±λv} for every u ∈ F
n
2 . All quadratic APN functions (and

more generally all generalized crooked functions, that is, all functions F such
that for every a �= 0, the image set Ha of DaF is an affine hyperplane4 are
plateaued and some other non-quadratic functions are plateaued as well (e.g. all
Kasami APN functions, see [19], and all AB functions).

The class of plateaued functions is preserved by translations of the input
and by translations of the output; moreover, if F is plateaued then G(x) =
F (x) + (v · F (x)) c, where v · c = 1, is plateaued (since the component functions
of G are also component functions of F ) and is non-APN since it has zero
nonlinearity. We know from [8, Proposition 7] that, when G is plateaued, the
condition “the equation G(x) + G(y) + G(x + y) = 0 has linearly independent
solutions x, y” is equivalent to non-APNness. This provides a much simpler proof

3 Note that we could also reduce ourselves to a = b = 0 but we could not reduce
ourselves to a = F (0) = b = 0 without loss of generality. This is why we consider G
in the sequel.

4 See more in [9], where is recalled that no non-quadratic crooked function is known.
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of the next proposition, which has been initially proved in [4, Theorem 3], but
the proof was long, globally, and technical for n even.

Corollary 2. Given any plateaued APN (n, n)-function F , changing F at one
input gives a function which is not APN. Hence, the graphs of plateaued APN
(n, n)-functions are all optimal Sidon sets.

The proof is straightforward thanks to the observations above and to Propo-
sition 2.

According to Proposition 1, we have then that, for every plateaued APN
function, GF +GF +GF covers the whole space (Fn

2 )2, and according to Corollary
1, that ∀(a, b) ∈ (Fn

2 )2,
∑

(u,v)∈(Fn
2 )

2(−1)v·b+u·a W 3
F (u, v) �= 0.

Among plateaued APN functions are almost bent functions. A vectorial
Boolean function F : Fn

2 → F
n
2 is called almost bent (AB) [14] if its nonlinearity

achieves the best possible value 2n−1 − 2
n−1
2 (with n necessarily odd), that is, if

all of the component functions v · F , v �= 0, satisfy WF (u, v) ∈ {0,±2
n+1
2 }. All

AB functions are APN. The converse is not true in general, even when n is odd,
but it is true for n odd in the case of plateaued functions (and more generally
in the case of functions whose Walsh transform values are all divisible by 2

n+1
2 ).

In Table 1, the AB functions are all Gold and Kasami functions for n odd and
Welch and Niho functions.

Remark. The fact that the graphs of AB functions are optimal Sidon sets can
also be directly shown by using the van Dam and Fon-Der-Flaass characteriza-
tion of AB functions [18]: any (n, n)-function is AB if and only if the system{

x + y + z = a
F (x) + F (y) + F (z) = b

admits 3 ·2n−2 solutions if b = F (a) (i.e. F is APN)

and 2n −2 solutions otherwise. It can also be deduced from Corollary 1; F being
AB, we have: ∑

(u,v)∈(Fn
2 )

2

(−1)v·b+u·a W 3
F (u, v)

= 23n + 2n+1

⎛

⎝
∑

(u,v)∈(Fn
2 )

2

(−1)v·b+u·a WF (u, v) − 2n

⎞

⎠

and this equals 23n + 23n+1 − 22n+1 �= 0 if b = F (a) and 23n − 22n+1 �= 0
otherwise. �

For n even there also exist plateaued APN functions: all Gold and all Kasami
functions.

Quadratic functions (i.e. functions of algebraic degree at most 2) are
plateaued, as well as the APN function in 6 variables that is now commonly
called the Brinkmann-Leander-Edel-Pott function [15]:

x3 + α17(x17 + x18 + x20 + x24) + α14[α18x9 + α36x18 + α9x36 + x21 + x42]
+α14 Tr61(α

52x3 + α6x5 + α19x7 + α28x11 + α2x13),

where α is primitive (see [9] for the history of this function).
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5.1 An Interesting Particular Case

Some APN functions have all their component functions v · F unbalanced (i.e.
of Hamming weight different from 2n−1, that is, such that WF (0, v) �= 0); this is
the case for instance of all APN power functions in even number n of variables.
A simpler characterization than by Proposition 1 (and Corollary 1) is possible
in such case, providing an interesting property of such functions:

Corollary 3. For every APN plateaued (n, n)-function whose component func-
tions are all unbalanced, the set ImF + ImF = {F (x) + F (y); (x, y) ∈ (Fn

2 )2}
(where ImF is the image set of F ) covers the whole space F

n
2 .

Proof. Since we have WF (0, v) �= 0 for every v, we have then W 3
F (u, v) =

W 2
F (0, v)WF (u, v), for every u, v and therefore:
∑

(u,v)∈(Fn
2 )

2

(−1)v·b+u·aW 3
F (u, v) =

∑

(u,v)∈(Fn
2 )

2

(−1)v·b+u·aWF (u, v)W 2
F (0, v)

=
∑

v∈F
n
2

(−1)v·bW 2
F (0, v)

( ∑

u∈F
n
2

(−1)u·aWF (u, v)
)

= 2n
∑

v∈F
n
2

(−1)v·bW 2
F (0, v)(−1)v·F (a)

= 2n
∑

v,x,y∈F
n
2

(−1)v·(b+F (x)+F (y)+F (a))

= 22n|{(x, y) ∈ (Fn
2 )2;F (x) + F (y) + F (a) = b}|.

Hence, since the graph of F is an optimal Sidon set, for every (a, b), the set
{(x, y) ∈ (Fn

2 )2;F (x) + F (y) + F (a) = b} is not empty, that is, we have ImF +
ImF = F

n
2 . �.

This can also be deduced from [9, Theorem 19] and Dillon’s result recalled
above.

We have then ImF + ImF = F
n
2 in particular for every APN power function

in even dimension n. Of course, this is also true for n odd, since APN power
functions are in this case bijective.

Note the difference between the condition in Proposition 1, “(x+y+z, F (x)+
F (y) + F (z)) covers the whole space (Fn

2 )2” which lives in (Fn
2 )2 and deals with

three elements x, y, z, and that in Corollary 3, “F (x) + F (y) covers the whole
space F

n
2”, which lives in F

n
2 , involves two elements x, y and is simpler.

Remark. We know from [10,12] that the size of the image set of any APN
(n, n)-function is at least 2n+1

3 when n is odd and 2n+2
3 when n is even. Since

both numbers are considerably larger than 2
n
2 , the size of ImF is plenty suf-

ficient for allowing the condition of Corollary 3 to be satisfied. Of course, the
fact that ImF has size much larger than 2

n
2 is not sufficient and the question

whether some APN functions may have graphs that are not optimal as Sidon
sets remains open. �
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6 Candidate APN Functions for Having Non-optimal
Graphs as Sidon Sets

Plateaued functions are a large part of all known APN functions but they are
most probably a tiny part of all APN functions. The only known APN functions
that are not plateaued are power functions (the inverse and Dobbertin functions
in Table 1) and some APN functions found in [6]. In [4] is proved that if F is an
APN power function, then given u �= 0, ux2n−1 + F is not APN (or equivalently
uδ0 + F is not APN, where δ0 is the indicator of {0}) when either u = 1 or F
is a permutation. But, for covering all cases of change at one point of an APN
power function, we would need to address ux2n−1 + F for n even and F not
plateaued, and u(x + 1)2

n−1 + F for every n and F not plateaued. This was
done with the multiplicative inverse function x2n−2 for n odd (which is APN):
changing it at one point (any one) gives a function that is not APN. According
to Proposition 2, the graph of the APN multiplicative inverse function is then
a maximal Sidon set. But there is some uncertainty about general APN power
functions (however, it was checked with a computer that for n ≤ 15, changing
any APN power function at one point makes it non-APN).

Given the APN functions covered in [4], the only possibility of finding known
APN functions with a graph that is not maximal as a Sidon set is with:

– functions EA equivalent to Dobbertin functions in a number of variables
divisible by 10, at least 20,

– the functions obtained in [6] as CCZ equivalent to Gold functions in even
numbers of variables (because in odd numbers of variables, they are AB,
since ABness is preserved by CCZ equivalence), that is: x2i+1 + (x2i + x +
1)tr(x2i+1), n ≥ 4 even, gcd(i, n) = 1, and [x + Trn3 (x2(2i+1) + x4(2i+1))) +
tr(x)Trn3 (x2i+1 + x22i(2i+1))]2

i+1, where 6|n and gcd(i, n) = 1, and Trn3 (x) =
x + x8 + x82 + · · · + x8

n
3 −1

,
– and the following functions found in [5]: x3 + tr(x9) + (x2 + x + 1)tr((x3),

where n ≥ 4 is even and gcd(i, n) = 1, and
(
x+Trn3 (x6+x12)+tr(x)Trn3 (x3+

x12)
)3

+ tr
(
(x + Trn3 (x6 + x12) + tr(x)Trn3 (x3 + x12))9

)
, where 6|n and

gcd(i, n) = 1.

But the investigation made in [4] did not find any example and it seems difficult
to push it to larger values of n.
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Abstract. A class of optimal three-weight [qk −1, k+1, qk−1(q−1)−1]
cyclic codes over IFq, with k ≥ 2, achieving the Griesmer lower bound,
was presented by Heng and Yue [IEEE Trans. Inf. Theory, 62(8) (2016)
4501–4513]. In this paper we study some of the subfield codes of this
class of optimal cyclic codes when k = 2. The weight distributions of
the subfield codes are settled. It turns out that some of these codes are
optimal and others have the best known parameters. The duals of the
subfield codes are also investigated and found to be almost optimal with
respect to the sphere-packing bound. In addition, the covering structure
for the studied subfield codes is determined. Some of these codes are
found to have the important property that any nonzero codeword is
minimal. This is a desirable property which is useful in the design of
a secret sharing scheme based on a linear code. Moreover, we present a
specific example of a secret sharing scheme based on one of these subfield
codes.

Keywords: Subfield codes · Optimal cyclic codes · Secret sharing
schemes · Covering structure · Sphere-packing bound

1 Introduction

Let IFq be the finite field with q elements. An [n, l, d] linear code, C, over IFq is
a l-dimensional subspace of IFn

q with minimum Hamming distance d. It is called
optimal if there is no [n, l, d′] code with d′ > d, and cyclic if (c0, c1, . . . , cn−1) ∈ C
implies (cn−1, c0, . . . , cn−2) ∈ C.

Recently, a class of optimal three-weight [qk − 1, k +1, qk−1(q − 1)− 1] cyclic
codes over IFq achieving the Griesmer lower bound was presented in [11], which
generalizes a result in [20] from k = 2 to arbitrary positive integer k ≥ 2. Further,
the q0-ary subfield codes of two families of q-ary optimal linear codes were studied
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in [10], with q0 being a power of a prime such that q is in turn a power of q0
(that is, IFq0 is a proper subfield of IFq). Also, some basic results on subfield
codes were derived and the subfield codes of ovoid codes were determined in [5].
In addition, the subfield codes of several families of linear codes were obtained
in [4], and the subfield codes of hyperoval and conic codes were studied in [9].
The basic idea in these last four references is to consider the subfield code of
an optimal, or almost optimal, linear code over IFq and expect the subfield
code over IFq0 to have good parameters. In all cases, subfield codes with very
attractive parameters were found. Thus, the first objective of this paper is to
study the q0-ary subfield codes for a subclass of the optimal three-weight cyclic
codes reported in [11] and determine their weight distributions. It turns out that
the studied subfield codes also have three nonzero weights, which is of interest as
cyclic codes with few weights have a wide range of applications in many research
fields such as authentication codes [6], secret sharing schemes [3,13,16,17,21],
association schemes [2], strongly walk regular graphs [19], and design of frequency
hopping sequences [7]. As we will see, some of the subfield codes are optimal and
others have the best known parameters. The duals of the subfield codes are
also investigated and found to be almost optimal with respect to the sphere-
packing bound. The second objective is to determine the covering structure for
the studied subfield codes. By means of the Ashikhmin-Barg Lemma (see [1]) we
show that some of these codes have the important property that all their nonzero
codewords are minimal. This is a desirable property which is useful in the design
of a secret sharing scheme based on a linear code. Moreover, we present a specific
example of a secret sharing scheme based on one of these subfield codes.

This work is organized as follows: In Sect. 2, we fix some notation and recall
some definitions and some known results to be used in subsequent sections.
Section 3 is devoted to presenting preliminary results. In Sect. 4 we determine
the subfield codes of a subclass of already known optimal three-weight cyclic
codes. In Sect. 5, we investigate the covering structure for the studied subfield
codes and present a specific example of a secret sharing scheme based on one of
these codes. Finally, Sect. 6 is devoted to conclusions.

2 Notation, Definitions and Known Results

Unless otherwise specified, throughout this work we will use the following:

Notation. Let q0 = pt, where t is a positive integer and p is a prime number. For
an integer r > 1 we are going to fix q = qr

0 = ptr. For an integer k > 1, let IFqk

be the finite extension of degree k of the finite field IFq and let γ be a primitive
element of IFqk . Let F be a finite field of characteristic p and E a finite extension
of F . Then we will denote by “TrE/F ” the trace mapping from E to F , while “Tr”
will denote the absolute trace mapping from E to the prime field IFp.

The weight enumerator of a linear code C of length n is defined as 1 + A1z +
· · · + Anzn, while the sequence {1, A1, . . . , An} is called its weight distribution,
where Ai (1 ≤ i ≤ n) denote the number of codewords in C with Hamming
weight i. If �{1 ≤ i ≤ n : Ai �= 0} = M , then C is called an M -weight code.
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C⊥ will denote the dual code of C and we recall that if C is an [n, l] linear code,
then its dual code is an [n, n − l] linear code. The sequence {1, A⊥

1 , . . . , A⊥
n } will

denote the weight distribution of the dual code C⊥. Suppose that the minimum
weight of C⊥ is at least 2 (that is, A⊥

1 = 0) and fix m = n(q − 1). Then, the first
four Pless power moments (see [12, pp. 259–260]) for C are:

n∑

i=1

Ai = ql − 1,

n∑

i=1

iAi = ql−1m,

n∑

i=1

i2Ai = ql−2[m(m + 1) + 2A⊥
2 ],

n∑

i=1

i3Ai = ql−3[m(m(m + 3) − q + 2) + 6(m − q + 2)A⊥
2 − 6A⊥

3 ]. (1)

The canonical additive character of IFq is defined as follows

χ(x) := e2π
√−1Tr(x)/p , for all x ∈ IFq.

Let a ∈ IFq. The orthogonality relation for the canonical additive character χ of
IFq is given by (see for example [14, Chapter 5]):

∑

x∈IFq

χ(ax) =

⎧
⎨

⎩

q if a = 0,

0 otherwise.

This property plays an important role in numerous applications of finite fields.
Among them, this property is useful for determining the Hamming weight of a
given vector over a finite field; for example, if w(·) stands for the usual Hamming
weight function and if V = (a1, a2, . . . , an) ∈ IFn

q , then

w(V ) = n − 1
q

n∑

i=1

∑

x∈IFq

χ(aix) . (2)

We now recall the class of optimal three-weight cyclic codes for which we are
interested in obtaining their subfield codes.

Theorem 1 [11, Theorem 11 ]. Let e1 and e2 be integers and let C(q,k,e1,e2) be
the cyclic code of length qk − 1 over IFq given by

C(q,k,e1,e2) :=

{(
aγ

qk−1
q−1 e1j + TrIF

qk
/IFq

(
bγe2j

))qk−2

j=0

: a ∈ IFq, b ∈ IFqk

}
. (3)
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If gcd( qk−1
q−1 , e2) = 1 and gcd(q − 1, ke1 − e2) = 1, then C(q,k,e1,e2) is an optimal

three-weight [qk − 1, k + 1, qk−1(q − 1) − 1] cyclic code with weight enumerator

1 + (q − 1)(qk − 1)zqk−1(q−1)−1 + (qk − 1)zqk−1(q−1) + (q − 1)zqk−1 .

In addition, if q > 2, its dual code is a [qk − 1, qk − k − 2, 3] cyclic code.

Let C be an [n, l] linear code over IFq. The following describes a way to
construct a new [n, l′] linear code, C(q0), over IFq0 (see [5]). Let G be a generator
matrix of C. Take a basis of IFq = IFqr

0
over IFq0 and represent each entry of G

as an r × 1 column vector of IFr
q0 with respect to this basis. Replace each entry

of G with the corresponding r ×1 column vector of IFr
q0 . With this method, G is

modified into an lr ×n matrix over IFq0 generating a new linear code, C(q0), over
IFq0 of length n, called subfield code. It is known that the subfield code C(q0) is
independent of both the choice of the basis of IFq over IFq0 and the choice of the
generator matrix G of C (see Theorems 2.1 and 2.6 in [5]). Also, it is clear that
the dimension l′ of C(q0) satisfies l′ ≤ lr.

Remark 1. We recall that the subfield subcode of a linear code, C, over IFq is the
subset of codewords in C whose components are all in IFq0 (see for example [12,
p. 116]). In consequence, observe that a subfield code and a subfield subcode
are different codes in general. In addition, note that the subfield codes defined
here are also different from the subfield codes in [18, Subsect. 4.1] defined as
one-weight irreducible cyclic codes (see Proposition 4.1 therein).

For what follows, we are interested in obtaining the weight distributions
for the subfield codes of a subclass of the optimal three-weight cyclic codes in
Theorem 1. To that end, the following is a useful result that will allow us to
represent a q0-ary subfield code, C(q0), in terms of the trace function.

Lemma 1 [5, Theorem 2.5 ]. Let C be an [n, l] linear code over IFq. Let G =
[gij ]1≤i≤l,1≤j≤n be a generator matrix of C. Then, the trace representation of the
subfield code C(q0) is given by the following set

{(
TrIFq/IFq0

(
l∑

i=1

aigi1

)
, . . . ,TrIFq/IFq0

(
l∑

i=1

aigin

))
: a1, . . . , al ∈ IFq

}
.

3 Preliminary Results

Throughout this and the next section, we are interested in obtaining the weight
distributions for the subfield codes of a subclass of the optimal cyclic codes in
Theorem 1 when k = 2. Thus, from now on, we fix k = 2. That is, q2−1

q−1 = q + 1
and 〈γ〉 = IF∗

q2 .
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Note that if C(q,2,e1,e2) is an optimal cyclic code in Theorem 1 then, in accor-
dance with Lemma 1, its subfield code, C(q0)

(q,2,e1,e2)
, is given by (recall that q = qr

0):

C(q0)
(q,2,e1,e2)

=
{
c(a, b)(q0) : a ∈ IFq, b ∈ IFq2

}
, (4)

where

c(a, b)(q0) :=
(
TrIFq/IFq0

(
aγ(q+1)e1j

)
+ TrIFq2/IFq0

(
bγe2j

))q2−2

j=0
. (5)

Remark 2. Like C(q,2,e1,e2), C(q0)
(q,2,e1,e2)

is also a cyclic code of length q2 − 1. Fur-
thermore, if ha(x) ∈ IFq0 [x] is the minimal polynomial of γ−a (see [15, Ch. 4]) and
if d is the smallest positive integer such that aqd

0 ≡ a (mod q2 −1), then observe
that deg(ha(x)) = d. Therefore, h(q+1)e1(x) �= he2(x), h(q+1)e1(x)he2(x) is the
parity-check polynomial of C(q0)

(q,2,e1,e2)
(see [15, Ch. 7]), and if l′ is its dimension,

then l′ = d1 + d2, where d1 and d2 are the smallest positive integers such that
(q + 1)e1qd1

0 ≡ (q + 1)e1 (mod q2 − 1) and e2q
d2
0 ≡ e2 (mod q2 − 1), respectively

(see [14, Part (v) of Theorem 3.33]).

In order to obtain the weight distributions of the subfield codes of the form
C(q0)
(q,2,e1,e2)

, we will need the following preliminary result.

Lemma 2. Let χ and χ′ be the canonical additive characters of IFq and IFq2 ,
respectively. For a ∈ IFq and b ∈ IFq2 , consider the exponential sum

Z(a, b) :=
∑

y∈IF∗
q0

∑

x∈IF∗
q2

χ(yaxq+1)χ′(ybx).

Then

Z(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(q0 − 1)(q2r
0 − 1) if a = b = 0,

−(q0 − 1)(qr
0 + 1) if a �= 0 and b = 0,

−(q0 − 1) if a = 0 and b �= 0,
−(q0 − 1)(qr

0 + 1) if (a, b) �= (0, 0) and TrIFq/IFq0

(
bq+1

a

)
= 0,

q0(qr−1
0 − 1) + 1 if (a, b) �= (0, 0) and TrIFq/IFq0

(
bq+1

a

)
�= 0.

Proof. Clearly, Z(0, 0) = (q0 − 1)(q2r
0 − 1). If a �= 0 and b = 0, then

Z(a, 0) =
∑

y∈IF∗
q0

∑

x∈IF∗
q2

χ(yaxq+1) = (q + 1)
∑

y∈IF∗
q0

∑

x∈IF∗
q

χ(yax),

= (q + 1)
∑

y∈IF∗
q0

(−1) = −(q + 1)(q0 − 1) = −(q0 − 1)(qr
0 + 1).

Further, if a = 0 and b �= 0,
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Z(0, b) =
∑

y∈IF∗
q0

∑

x∈IF∗
q2

χ′(ybx) =
∑

y∈IF∗
q0

(−1) = −(q0 − 1).

Now, let ϕ be the canonical additive character of IFq0 and suppose that (a, b) �=
(0, 0). By the transitivity and linearity of the trace function, we have

Z(a, b) =
∑

y∈IF∗
q0

∑

x∈IF∗
q2

ϕ
(
yTrIFq/IFq0

(
axq+1

))
ϕ

(
yTrIFq2/IFq0

(bx)
)

,

=
∑

y∈IF∗
q0

∑

x∈IF∗
q2

ϕ
(
y

(
TrIFq/IFq0

(
axq+1 + TrIFq2/IFq

(bx)
)))

,

=
∑

y∈IF∗
q0

∑

x∈IF∗
q2

ϕ

(
y

(
TrIFq/IFq0

(
axq

(
x +

bq

a

)
+ bx

)))
,

where the last equality holds because TrIFq2/IFq
(bx) = bx + bqxq. Let B =

IFq2\{ bq

a }. Thus, after applying the variable substitution x 	→ w − bq

a , we obtain

Z(a, b) =
∑

y∈IF∗
q0

∑

w∈B

ϕ

(
y

(
TrIFq/IFq0

(
a

(
wq − bq2

aq

)
w + b

(
w − bq

a

))))
.

However, bq2
= b and aq = a. Thus, since B = IFq2\{ bq

a },

Z(a, b) =
∑

y∈IF∗
q0

∑

w∈B

ϕ

(
y

(
TrIFq/IFq0

(
awq+1 − bq+1

a

)))
,

= −
∑

y∈IF∗
q0

ϕ (0) +
∑

y∈IF∗
q0

ϕ

(
−yTrIFq/IFq0

(
bq+1

a

))

×
∑

w∈IFq2

ϕ
(
y

(
TrIFq/IFq0

(
awq+1

)))
,

= −(q0 − 1) +
∑

y∈IF∗
q0

ϕ

(
−yTrIFq/IFq0

(
bq+1

a

)) ∑

w∈IFq2

χ
(
yawq+1

)
,

where χ is the canonical additive character of IFq (note that wq+1 ∈ IFq). But,
since a, y �= 0, we have

∑

w∈IFq2

χ
(
yawq+1

)
= 1 +

∑

w∈IF∗
q2

χ
(
yawq+1

)
,

= 1 + (q + 1)
∑

w∈IF∗
q

χ (yaw) = −q.
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Therefore, finally, we obtain

Z(a, b) = −(q0 − 1) − q
∑

y∈IF∗
q0

ϕ

(
−yTrIFq/IFq0

(
bq+1

a

))
,

=

{
−(q0 − 1)(qr

0 + 1) if TrIFq/IFq0

(
bq+1

a

)
= 0,

q0(qr−1
0 − 1) + 1 otherwise.

��

4 The Subfield Codes of a Subclass of Optimal Cyclic
Codes

By means of the following result we now determine the subfield codes, along
with their weight distributions, for a subclass of the optimal three-weight cyclic
codes in Theorem 1.

Theorem 2. Let r > 1, e1 and e2 be integers and let C(q0)
(q,2,e1,e2)

be the subfield
code of length q2r

0 − 1, over IFq0 , given by (4). Assume that gcd(q2 − 1, e2) = 1
and gcd(q − 1, 2e1 − e2) = 1. Then the following assertions hold true:

(A) If (q−1)|(q0 −1)e1, then C(q0)
(q,2,e1,e2)

is an optimal three-weight cyclic code of
length q2r

0 − 1 and dimension 2r + 1, over IFq0 , that belongs to the class of
optimal three-weight cyclic codes in Theorem 1 (therein k = 2r and q = q0).

(B) Let I be an integer such that Ie2 ≡ 1 (mod q2 − 1). If (q − 1) � (q0 − 1)e1
and Ie1 ≡ 1 (mod q − 1), then C(q0)

(q,2,e1,e2)
is a three-weight cyclic code of

length q2r
0 − 1 and dimension 3r, over IFq0 , whose weight enumerator is

1 + qr−1
0 (q2r

0 − 1)(q0 − 1)zqr−1
0 (qr+1

0 −qr
0−1) + (q2r

0 − 1)zq2r−1
0 (q0−1)

+ qr−1
0 (qr

0 − 1)(qr
0 − q0 + 1)zqr−1

0 (q0−1)(qr
0+1). (6)

In addition, A⊥
1 = A⊥

2 = 0, and

A⊥
3 =

(qr+2
0 − 3qr+1

0 + q20 + 3qr
0 − 6q0 + 6)(q2r

0 − 1)(q0 − 1)
6

.

That is, the dual code, C(q0)⊥
(q,2,e1,e2)

, of C(q0)
(q,2,e1,e2)

is a [q2r
0 − 1, q2r

0 − 3r − 1, 3]
cyclic code and is almost optimal with respect to the sphere-packing bound.

Proof. First of all, since gcd( q2−1
q−1 , e2) ≤ gcd(q2 − 1, e2) = 1 and gcd(q − 1, 2e1 −

e2) = 1, observe that C(q,2,e1,e2) indeed belongs to the class of optimal three-
weight cyclic codes in Theorem 1 (therein k = 2).

Part (A): Let e′
1 = (q0−1)e1

q−1 . Clearly (q + 1)e1 = q2−1
q0−1e′

1. Let h(q+1)e1(x) =

h q2−1
q0−1 e′

1
(x), he2(x) ∈ IFq0 [x] be the minimal polynomials of γ− q2−1

q0−1 e′
1 and γ−e2 ,
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respectively. Hence, in accordance with Remark 2, note that deg(h(q+1)e1(x)) =

1, because q2−1
q0−1e′

1q0 ≡ q2−1
q0−1e′

1 (mod q2−1). Also, as 〈γ〉 = 〈γ−e2〉 = IF∗
q2 = IF∗

q2r
0

,

deg(he2(x)) = 2r. In consequence, C(q0)
(q,2,e1,e2)

has dimension 2r +1. In fact, since

γ(q+1)e1 = γ
q2r0 −1
q0−1 e′

1 ∈ IF∗
q0 , note that the code C(q0)

(q,2,e1,e2)
is given by the set (see

(4))

{(
γ(q+1)e1jTrIFq/IFq0

(a) + TrIFq2/IFq0

(
bγe2j

))q2−2

j=0
: a ∈ IFq, b ∈ IFq2

}

=

{(
a0γ

q2r0 −1
q0−1 e′

1j + TrIF
q2r0

/IFq0

(
bγe2j

))q2r
0 −2

j=0

: a0 ∈ IFq0 , b ∈ IFq2r
0

}
. (7)

Clearly (q0−1)|(ql
0−1), for every non-negative integer l (that is, ql

0 ≡ 1 (mod q0−
1)). Thus, since qr

0−1
q0−1 = qr−1

0 + qr−2
0 + · · ·+ q0 +1, (q0 −1)|( qr

0−1
q0−1 − r). Therefore,

as e′
1 = (q0−1)e1

qr
0−1 and q − 1 = qr

0−1
q0−1 (q0 − 1), we have

gcd(q0 − 1, 2re′
1 − e2) = gcd(q0 − 1, 2re′

1 − e2 + 2(
qr
0 − 1

q0 − 1
− r)e′

1),

= gcd(q0 − 1, 2
qr
0 − 1

q0 − 1
e′
1 − e2),

= gcd(q0 − 1, 2e1 − e2) ≤ gcd(q − 1, 2e1 − e2) = 1.

That is, gcd(q0 − 1, 2re′
1 − e2) = 1. Moreover, since gcd(q2 − 1, e2) = 1, we

also have gcd( q2r
0 −1
q0−1 , e2) = 1. This means, in consequence and in agreement with

Theorem 1, that C(q0)
(q,2,e1,e2)

is an optimal three-weight cyclic code of length q2r
0 −1

and dimension 2r + 1 that belongs to such a theorem. In fact, from (7) and (3),
note that

C(q0)
(q,2,e1,e2)

= C(q0,2r,e′
1,e2),

where e′
1 = (q0−1)e1

q−1 .

Part (B): Note that, by Remark 2, C(q0)
(q,2,e1,e2)

is cyclic. Now, let h(q+1)e1(x),
he2(x) ∈ IFq0 [x] be as before. Since (q − 1) � (q0 − 1)e1, observe that r is the
smallest positive integer such that (q + 1)e1qr

0 = (qr
0 + 1)e1qr

0 ≡ (q + 1)e1
(mod q2r

0 − 1). Thus, deg(h(q+1)e1(x)) = r, and since deg(he2(x)) = 2r, the
dimension of C(q0)

(q,2,e1,e2)
is 3r.

Let ϕ, χ and χ′ be the canonical additive characters of IFq0 , IFq and IFq2 ,
respectively. Let a ∈ IFq, b ∈ IFq2 , and c(a, b)(q0) ∈ C(q0)

(q,2,e1,e2)
. Hence, from (5)

and by the orthogonality relation for the character ϕ (see (2)), the Hamming
weight of the codeword c(a, b)(q0), w(c(a, b)(q0)), is equal to
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q2 − 1 − 1
q0

∑

y∈IFq0

∑

w∈IF∗
q2

ϕ
(
y

(
TrIFq/IFq0

(aw(q+1)e1) + TrIFq2/IFq0
(bwe2)

))
,

= q2 − 1 − 1
q0

∑

y∈IFq0

∑

w∈IF∗
q2

χ(yaw(q+1)e1)χ′ (ybwe2) ,

=
(q0 − 1)(q2r

0 − 1)
q0

− 1
q0

∑

y∈IF∗
q0

∑

w∈IF∗
q2

χ(yaw(q+1)e1)χ′ (ybwe2) .

But Ie2 ≡ 1 (mod q2 − 1) and Ie1 ≡ 1 (mod q − 1). Thus, after applying the
variable substitution w 	→ xI , we get

∑

y∈IF∗
q0

∑

w∈IF∗
q2

χ(yaw(q+1)e1)χ′(ybwe2) =
∑

y∈IF∗
q0

∑

x∈IF∗
q2

χ(yax(q+1)Ie1)χ′(ybxIe2),

=
∑

y∈IF∗
q0

∑

x∈IF∗
q2

χ(yax(q+1))χ′(ybx),

= Z(a, b),

where Z(a, b) is as in Lemma 2. In fact, due to this lemma, we have that
w(c(a, b)(q0)) is equal to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if a = b = 0,
qr−1
0 (q0 − 1)(qr

0 + 1) if a �= 0 and b = 0,
q2r−1
0 (q0 − 1) if a = 0 and b �= 0,

qr−1
0 (q0 − 1)(qr

0 + 1) if (a, b) �= (0, 0) and TrIFq/IFq0

(
bq+1

a

)
= 0,

qr−1
0 (qr+1

0 − qr
0 − 1) if (a, b) �= (0, 0) and TrIFq/IFq0

(
bq+1

a

)
�= 0,

which is in accordance with (6). Now observe that

Aqr−1
0 (q0−1)(qr

0+1) = �{a ∈ IF∗
q} + �{(a, b) ∈ IF∗

q × IF∗
q2 : TrIFq/IFq0

(
bq+1

a

)
= 0},

= (q − 1) + (q − 1)(q + 1)(
q

q0
− 1),

= qr−1
0 (qr

0 − 1)(qr
0 − q0 + 1).

Similarly, the frequencies of the other weights of C(q0)
(q,2,e1,e2)

can be computed and

we omit the details here. Then the weight enumerator of C(q0)
(q,2,e1,e2)

follows.

Finally, note that A⊥
1 = 0, since otherwise C(q0)

(q,2,e1,e2)
would be the null code

{0}. Thus, a direct application of the last two identities in (1) shows that A⊥
2 = 0

and that the value of A⊥
3 is the announced one. Lastly, by the sphere-packing

bound (see for example [12, Theorem 1.12.1]), it is not difficult to verify that
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for a code of length q2r
0 − 1 and dimension q2r

0 − 3r − 1, its minimum Hamming
distance can be at most 4. Therefore, the code C(q0)⊥

(q,2,e1,e2)
is almost optimal since

its minimum Hamming distance is 3. ��
Example 1. The following are some examples of Theorem 2.

(a) Let (q0, r, e1, e2) = (3, 2, 4, 1). Then q = 9 and clearly (q−1)|(q0−1)e1. Thus,
owing to Part (A) of Theorem 2, the subfield code C(3)

(9,2,4,1) = C(3,4,1,1) is
an optimal three-weight cyclic code of length 80 and dimension 5, over IF3,
whose weight enumerator is

1 + 160z53 + 80z54 + 2z80.

(b) Let (q0, r, e1, e2) = (2, 2, 1, 1). Then q = 4, I = 1, and clearly (q − 1) �

(q0 −1)e1. Thus, owing to Part (B) of Theorem 2, the subfield code C(2)
(4,2,1,1)

is a binary three-weight [15, 6, 6] cyclic code with weight enumerator

1 + 30z6 + 15z8 + 18z10,

while its dual code is an almost optimal [15, 9, 3] cyclic code with respect to
the sphere-packing bound, with A⊥

1 = A⊥
2 = 0 and A⊥

3 = 5.
(c) Let (q0, r, e1, e2) = (3, 2, 1, 1). Then q = 9, I = 1, and clearly (q − 1) �

(q0 −1)e1. Thus, owing to Part (B) of Theorem 2, the subfield code C(3)
(9,2,1,1)

is a three-weight [80, 6, 51] cyclic code over IF3 with weight enumerator

1 + 480z51 + 80z54 + 168z60,

while its dual code is an almost optimal [80, 74, 3] cyclic code with respect
to the sphere-packing bound, with A⊥

1 = A⊥
2 = 0 and A⊥

3 = 640.
(d) Let (q0, r, e1, e2) = (2, 4, 2, 2). Then q = 16 and I = 128. Clearly (q − 1) �

(q0 − 1)e1 and Ie1 ≡ 1 (mod q − 1). Thus, owing to Part (B) of Theorem 2,
the subfield code C(2)

(16,2,2,2) is a binary three-weight [255, 12, 120] cyclic code
with weight enumerator

1 + 2040z120 + 255z128 + 1800z136,

while its dual code is an almost optimal [255, 243, 3] cyclic code with respect
to the sphere-packing bound, with A⊥

1 = A⊥
2 = 0 and A⊥

3 = 595.

Remark 3. According to the code tables at [8], note that the [15, 6, 6] code in (b)
is optimal, while the [80, 6, 51] code in (c) and its dual code are optimal. Finally,
the [255, 12, 120] code in (d) has the best known parameters.

By fixing k = 2, it is important to observe that the condition on the integer
e2 is more restrictive in Theorem 2 (gcd(q2 − 1, e2) = 1) than in Theorem 1
(gcd(q + 1, e2) = 1). This implies, of course, that Theorem 2 can only determine
the subfield codes for a subclass of the three-weight cyclic codes in Theorem
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1. Specifically, this means that there are optimal three-weight cyclic codes in
Theorem 1, whose subfield codes cannot be described through Theorem 2. For
example, with the help of a computer, it is not difficult to verify that the subfield
code C(2)

(4,2,1,3) is a four-weight binary cyclic code with weight enumerator 1 +
25z6 + 30z8 + 3z10 + 5z12 (for this example note that gcd(q + 1, e2) = 1, but
gcd(q2 − 1, e2) �= 1). This subfield code, like the subfield code in (b) Example 1,
is optimal. However, unlike the dual of C(2)

(4,2,1,1), the dual of C(2)
(4,2,1,3) is a binary

optimal cyclic code with parameters [15, 9, 4]. This example let us know that,
beyond Theorem 2, there are still other optimal three-weight cyclic codes whose
subfield codes have good parameters.

5 The Covering Structure of the Subfield Codes

For any c = (c0, c1, . . . , cn−1) ∈ IFn
q0 , the support of c is defined by the set

{i | 0 ≤ i ≤ n−1, ci �= 0}. Furthermore, for any two vectors c, c′ ∈ IFn
q0 , c is said

to cover c′ if the support of c contains that of c′. A nonzero codeword is called
a minimal codeword if it covers only its multiples in a linear code. The set of all
minimal codewords in a linear code is called the covering structure of the code.

Determining the covering structure of a linear code is in general a difficult but
at the same time interesting problem as it is closely related to the construction
of secret sharing schemes (see for example [3,13,16,17,21]). In this section we
determine the covering structure of the subfield codes in Theorem 2. As we will
see, some of these codes have the important property that any nonzero codeword
is minimal. These codes are suitable for constructing secret sharing schemes with
nice access structures. Moreover, we present a specific example of a secret sharing
scheme based on one of these subfield codes.

There are several ways to construct secret sharing schemes by using linear
codes. One of them was proposed by Massey in [16,17] and is presented below
(see [13,21]).

Let C be an [n, l] linear code over IFq0 . In the secret sharing scheme based on
a linear code C, the secret s is an element of IFq0 , which is called the secret space.
There is a dealer P0 and n − 1 parties P1, P2, . . . , Pn−1 involved in the secret
sharing scheme, the dealer being a trusted person. Let G⊥ = (g⊥

0 , g⊥
1 , . . . , g⊥

n−1)
be a generator matrix of the dual code, C⊥, of C such that g⊥

i is the i-th column
vector of G⊥ and g⊥

i �= 0 for 0 ≤ i ≤ n − 1. Then, the secret sharing scheme
based on C is described as follows:

Step 1) In order to compute the shares with respect to a secret s, the dealer P0

chooses randomly a vector u = (u0, u1, . . . , un−l−1) ∈ IFn−l
q0 such that

s = ug⊥
0 . There are altogether qn−l−1

0 such vectors u ∈ IFn−l
q0 .

Step 2) The dealer P0 treats u as an information vector and computes the
corresponding codeword t = uG⊥ = (t0, t1, . . . , tn−1) in C⊥. Then he
sends ti to party Pi as the share for every i (1 ≤ i ≤ n − 1).

Step 3) The secret s is recovered as follows: since t0 = ug⊥
0 = s, a set of

shares {ti1 , ti2 , . . . , tim} can determine the secret s iff g⊥
0 is a linear
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combination of {g⊥
i1

, g⊥
i2

, . . . , g⊥
im

}, where 1 ≤ i1 < i2 < · · · < im ≤
n − 1.

Clearly, if a group of participants D can recover the secret by combining their
shares, then any group of participants containing D can also recover the secret.
The set {i1, i2, . . . , im} is said to be a minimal access set if it can recover the
secret s but none of its proper subsets can do so. The access structure of the
secret sharing scheme refers to the set of all minimal access sets.

For a linear code C, the following lemma from [16] presents a one-to-one
correspondence between the set of minimal access sets of the secret sharing
scheme based on C and the set of minimal codewords in C whose first coordinate
is 1.

Lemma 3. Let C be an [n, l] linear code over IFq0 . Then, the set
{i1, i2, . . . , im} ⊆ {1, 2, . . . , n − 1} with i1 < i2 < · · · < im is a minimal access
set in the secret sharing scheme based on C iff there is a minimal codeword
c = {c0, c1, . . . , cn−1} in C such that the support of c is {0, i1, i2, . . . , im} and
c0 = 1.

If c is a nonzero codeword whose first coordinate is 1 and the support of the
codeword c is {0, i1, i2, . . . , im} such that 1 ≤ i1 < i2 < · · · < im ≤ n − 1, we
call the set {i1, i2, . . . , im} the access support of the codeword c.

From the discussion above, determining the access structure of the secret
sharing scheme based on a linear code C is equivalent to determining the set
of access supports of the minimal codewords in C whose first coordinate is 1.
Thus, in the following we determine the covering structure of the subfield codes
in Theorem 2. To that end, the next results found in [1] will be useful.

Lemma 4. Let C be a linear code over IFq0 with minimum Hamming distance
d. Then, every codeword whose weight is less than or equal to dq0−q0+1

q0−1 must be
a minimal codeword.

The following lemma states that if the weights of a linear code are close
enough to each other, then all nonzero codewords of the code are minimal.

Lemma 5 (Ashikhmin-Barg Lemma). Let C be an [n, l] linear code over IFq0 ,
and let wmin and wmax be the minimum and maximum nonzero weights of C,
respectively. If

wmin

wmax
>

q0 − 1
q0

,

then all nonzero codewords of C are minimal.

We remark that the condition in the previous lemma is only a sufficient
condition. There are codes such that all their nonzero codewords are minimal
without satisfying this condition (see for example [21]).

Now, we are able to give the covering structure of the subfield codes in
Theorem 2:
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Theorem 3. Assume the same notation as in Theorem 2. Then the covering
structure of a subfield code of the form C(q0)

(q,2,e1,e2)
is as follows:

(a) If C(q0)
(q,2,e1,e2)

belongs to Part (A) of Theorem 2, then all its nonzero codewords
with weight q2r

0 − 1 are not minimal, while the other nonzero codewords are
minimal.

(b) If C(q0)
(q,2,e1,e2)

belongs to Part (B) of Theorem 2, then all its nonzero codewords
are minimal.

Proof. Part (a): Clearly, all nonzero codewords with weight q2r
0 − 1 are not

minimal as the length of C(q0)
(q,2,e1,e2)

is q2r
0 −1 (see Theorem 2). Now, since 2r > 2,

it is not difficult to verify that

q2r−1
0 (q0 − 1) ≤ q2r+1

0 − q2r
0 − 2q0 + 1

q0 − 1
.

Thus, since q2r−1
0 (q0 − 1) − 1 < q2r−1

0 (q0 − 1), it follows from Lemma 4 that the
assertion in Part (a) holds.

Part (b): Let wmin and wmax be as in Lemma 5. Thus, by (6), wmin =
qr−1
0 (qr+1

0 − qr
0 − 1) and wmax = qr−1

0 (q0 − 1)(qr
0 + 1). The result now follows

directly from Lemma 5. ��
Linear codes whose nonzero codewords are all minimal have an interesting

access structure as described in the following:

Proposition 1 [21, Proposition 2 ]. Let C be an [n, l] linear code over IFq0 and
let G = (g0, g1, . . . , gn−1) be a generator matrix of C such that gi is the i-th
column vector of G and gi �= 0 for 0 ≤ i ≤ n − 1. If each nonzero codeword of C
is minimal, then the access structure of the secret sharing scheme based on C is
composed of ql−1

0 minimal access sets, which is equal to the set of access supports
of the nonzero codewords in C with first coordinate 1. In addition, we have the
following:

(a) If gi is a scalar multiple of g0, 1 ≤ i ≤ n − 1, then participant Pi must
be in every minimal access set. Such a participant is called a dictatorial
participant.

(b) If gi is not a scalar multiple of g0, 1 ≤ i ≤ n − 1, then participant Pi must
be in (q0 − 1)ql−2

0 out of ql−1
0 minimal access sets.

We end this section by presenting a specific example of the secret sharing
scheme described above. Thus, let (q0, r, e1, e2) = (2, 2, 1, 1). Then q = 4 and
by (b) Example 1 we know that the subfield code C(2)

(4,2,1,1) is a binary three-
weight [15, 6, 6] cyclic code with weight enumerator 1 + 30z6 + 15z8 + 18z10.
We take IF16 = IF2(γ) with γ4 + γ + 1 = 0. With this choice, and by using
the notation in Remark 2, h5(x) = x2 + x + 1 and h1(x) = x4 + x3 + 1 (see
[15, p. 99]). Therefore, (x15 − 1)/h5(x)h1(x) = x9 + x6 + x5 + x4 + x + 1 and
h5(x)h1(x) = x6+x3+x2+x+1 are the generator and parity-check polynomials
of C(2)

(4,2,1,1), respectively. In consequence, the generator matrices, G and G⊥, for

C(2)
(4,2,1,1) and its dual are:
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G =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 1 1 0 0 1 0 0 0 0 0
0 1 1 0 0 1 1 1 0 0 1 0 0 0 0
0 0 1 1 0 0 1 1 1 0 0 1 0 0 0
0 0 0 1 1 0 0 1 1 1 0 0 1 0 0
0 0 0 0 1 1 0 0 1 1 1 0 0 1 0
0 0 0 0 0 1 1 0 0 1 1 1 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
, G⊥ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 1 0 0 1 1 1 1
0 0 0 0 0 0 0 1 0 0 1 1 1 1 0
0 0 0 0 0 0 1 0 0 1 1 1 1 0 0
0 0 0 0 0 1 0 0 1 1 1 1 0 0 0
0 0 0 0 1 0 0 1 1 1 1 0 0 0 0
0 0 0 1 0 0 1 1 1 1 0 0 0 0 0
0 0 1 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 0 1 1 1 1 0 0 0 0 0 0 0
1 0 0 1 1 1 1 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus, in the secret sharing scheme based on C(2)
(4,2,1,1), 14 participants and a

dealer are involved. Owing to Lemma 3, Part (b) of Theorem 3, and Proposition
1, there are altogether ql−1

0 = 25 = 32 minimal access sets:

{4, 5, 6, 7, 8, 9, 11, 12, 13} {1, 2, 3, 4, 6, 7, 8, 10, 14} {1, 4, 10, 11, 14} {2, 5, 7, 8, 13}
{2, 3, 4, 6, 10, 11, 12, 13, 14} {1, 2, 3, 7, 10, 11, 13} {5, 7, 9, 12, 14} {6, 7, 10, 11, 12}
{1, 2, 4, 5, 6, 8, 12, 13, 14} {1, 2, 4, 8, 9, 10, 11, 12, 13} {1, 2, 5, 11, 12} {1, 4, 5, 6, 9}
{1, 3, 4, 5, 7, 11, 12, 13, 14} {1, 3, 4, 6, 7, 9, 10, 12, 13} {2, 4, 7, 9, 10} {1, 6, 8, 10, 13}
{1, 3, 7, 8, 9, 10, 11, 12, 14} {1, 2, 3, 5, 6, 7, 9, 13, 14} {2, 3, 8, 10, 12} {3, 9, 10, 13, 14}
{2, 3, 5, 6, 8, 9, 11, 12, 14} {2, 6, 7, 8, 9, 10, 11, 13, 14} {3, 4, 5, 8, 14} {3, 5, 6, 11, 13}
{1, 2, 3, 4, 5, 7, 8, 9, 11} {1, 3, 5, 6, 7, 8, 12} {3, 4, 6, 8, 9, 10, 11} {2, 4, 5, 6, 7, 11, 14}

{4, 7, 8, 10, 12, 13, 14} {1, 2, 6, 9, 10, 12, 14} {1, 5, 8, 9, 11, 13, 14} {2, 3, 4, 5, 9, 12, 13}.

Moreover, in accordance with Part (b) of Proposition 1, note that any participant
Pi (1 ≤ i ≤ 14) appears in (q0 − 1)ql−2

0 = 16 out of ql−1
0 = 32 minimal access

sets. In order to appreciate the use of the previous minimal access sets, suppose
that we wish to “split” a 4-bit secret, s, into 4-bit shares for fourteen parties
P1, P2, . . . , P14. Following [16], s ∈ GF(24) = IF16 := {0, 1, 2, . . . , 9, a, b, c, d, e, f}
and suppose s = b = [1011]. The dealer randomly chooses four codewords c1, c2,
c3 and c4, in the dual code of C(2)

(4,2,1,1), with the condition that each bit in the
secret s matches the first component of one of these four codewords. Suppose
that the dealer’s choice is:

c1 = [100101110111111],
c2 = [000000000000000],
c3 = [100010111101011],
c4 = [110100100100010].

By means of these codewords the dealer now proceeds to generate the 4-bit
shares for the fourteen parties:

1
0
1
1

0
0
0
1

0
0
0
0

1
0
0
1

0
0
1
0

1
0
0
0

1
0
1
1

1
0
1
0

0
0
1
0

1
0
1
1

1
0
0
0

1
0
1
0

1
0
0
0

1
0
1
1

1
0
1
0

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
b 1 0 9 2 8 b a 2 b 8 a 8 b a
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
s P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
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In this way, the share for party P1 is 1, the share for party P2 is 0, and so on.
Finally, note that any of the above minimal access sets can recover the secret
s = b. For example, by using the shares for the minimal access set {1, 4, 5, 6, 9},
we get 1 + 2 + 8 + b + b = b.

6 Conclusions

In this paper we studied the q0-ary subfield codes of a subclass of optimal three-
weight cyclic codes of length q2 − 1 and dimension 3 that belongs to the class
of codes in Theorem 1. We proved that some of these subfield codes are optimal
three-weight cyclic codes of length q2 − 1 and dimension 2r + 1 (where q = qr

0)
that belong, again, to the class of optimal three-weight cyclic codes in Theorem
1 (Part (A) of Theorem 2). For the other subfield codes studied here we showed
that they are three-weight cyclic codes of length q2 − 1 whose dimension is now
3r (Part (B) of Theorem 2). For the latter subfield codes, we also determined
the minimum Hamming distance for their duals, and with this, we concluded
that these duals are almost optimal with respect to the sphere-packing bound.
Furthermore, it was shown that some subfield codes in Part (B) of Theorem 2
are optimal and others have the best known parameters according to the code
tables at [8] (Example 1 and Remark 3). However, as pointed out at the end
of Sect. 4, there is evidence of the existence of other subfield codes with good
parameters. Therefore, as further work, it would be interesting to study those
other subfield codes.

Finally, as an application of linear codes with few weights, the covering struc-
ture of the subfield codes in Theorem 2 was determined (Theorem 3) and used
to present a specific example of a secret sharing scheme based on one of these
subfield codes at the end of Sect. 5.
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paper.
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Abstract. A preference profile (i.e., a collection of linear preference
orders of the voters over a set of alternatives) with m alternatives and
n voters is d-Manhattan (resp. d-Euclidean) if both the alternatives and
the voters can be placed into a d-dimensional space such that between
each pair of alternatives, every voter prefers the one which has a shorter
Manhattan (resp. Euclidean) distance to the voter.

We initiate the study of how d-Manhattan preference profiles depend on
the values m and n. First, we provide explicit constructions to show that
each preference profile with m alternatives and n voters is d-Manhattan
whenever d ≥ min(n, m− 1). Second, for d = 2, we show that the smallest
non d-Manhattan preference profile has either 3 voters and 6 alternatives,
or 4 voters and 5 alternatives, or 5 voters and 4 alternatives. This is more
complex than the case with d-Euclidean preferences (see [Bogomolnaia and
Laslier, 2007] and [Bulteau and Chen, 2022]).

1 Introduction

Modelling voters’ linear preferences (aka. rankings) over a set of alternatives as
geometric distances is an approach popular in many research fields such as eco-
nomics [11,13,17], political and social sciences [2,15,22,25], and psychology [3,9].
The idea is to consider the alternatives and voters as points in a d-dimensional
space such that

for each two alternatives, each voter prefers the one that is closer to her. (∗)

If the proximity is measured via the Euclidean distance, then preference profiles
(i.e., a collection of distinct linear preference orders specifying voters’ prefer-
ences) obeying (∗) are called d-Euclidean. While the d-Euclidean model seems
to be canonical, in real life the shortest path between two points may be Man-
hattan rather than Euclidean. For instance, in urban geography, the alternatives
(e.g., a shop or a supermarket) and the voters (e.g., individuals) are often located
on grid-like streets. That is, the distance between an alternative and a voter is
more likely to be measured according to the Manhattan distance (aka. Taxicab
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distance or �1-norm-distance), i.e., the sum of the absolute differences of the coor-
dinates of the alternative and the voter. Similarly to the Euclidean preference
notion, we call a preference profile d-Manhattan if there exists an embedding for
the voters and the alternatives which satisfies condition (∗) under the Manhat-
tan distance. Indeed, Manhattan preferences have been studied for a wide range
of applications such as facility location [19,26], group decision making [24], and
voting and committee elections [12]. Many voting advice applications, such as
the German Wahl-O-Mat [28] and Finnish Ylen Vaalikone [27] use Manhattan
distances to measure the distance between a voter and an alternative, indicating
that such distances may be perceived as more natural in human decision making.

Despite their practical relevance, Manhattan preferences have attracted far
less attention than their close relative Euclidean preferences. Bogomolnaia and
Laslier [2] studied how restrictive the assumption of Euclidean preferences is.
They showed that every preference profile with n voters and m alternatives is
d-Euclidean if d ≥ min(n,m − 1). When indifference between alternatives is
allowed, the only-if statement holds as well. For d = 1, their smallest non 1-
Euclidean preference profile consists of either 3 voters and 3 alternatives or 2
voters and 4 alternatives. For d = 2, their smallest non 2-Euclidean profile con-
sists of either 4 voters and 4 alternatives or 3 voters and 8 alternatives, which is
also tight by Bulteau and Chen [5]. To the best of our knowledge, no such kind
of characterization result on the d-Manhattan preferences exists. For maximally
Manhattan preferences, however, Escoffier et al. [16] show that a 2-Manhattan
preference profile for four alternatives can contain up to 19 distinct preference
orders. From the computational point of view, it is known that for d = 1, decid-
ing whether a given preference profile is Euclidean (and hence Manhattan) can
be done in polynomial time [10,14,18]. For any fixed d ≥ 2, however, testing
Euclidean preferences is complete for the complexity class existential theory of
the reals ∃R [23], while it is straightforward to see that the problem for the
Manhattan case is contained in NP [21]; note that NP ⊆∃R. Nothing about the
complexity lower bound is known for Manhattan preferences.

Fig. 1. Boundaries of non 2-Euclidean
(resp. non 2-Manhattan) profiles with a
given number of voters and alternatives.
Each blue bullet (resp. red cross) represents
the existence of such a non Euclidean (resp.
non Manhattan) profile.

Our Contribution. In this paper, we
aim to close the gap and study how
to find a d-Manhattan embedding for
a given preference profile and what
is the smallest dimension for such an
embedding. First, we prove that, sim-
ilarly to the Euclidean case, every
preference profiles with m alterna-
tives and n voters is d-Manhattan
if d ≥ min(m − 1, n) (Theorems 1
and 2). Then, focusing on the two-
dimensional case, we seek to deter-
mine tight bounds on the smallest
number of either alternatives or vot-
ers of a non d-Manhattan profile. We show that an arbitrary preference profile
with n voters and m alternatives is 2-Manhattan if and only if either m ≤ 3
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(Theorems 2 and 5), or n ≤ 2 (Theorem 1), or n ≤ 3 and m ≤ 5 (Theorem 3
and Proposition 2), or n ≤ 4 and m ≤ 4 (Theorem 4 and Proposition 2). Note
that this is considerably different than the Euclidean case: There exists a non
Euclidean preference profile with n = 4 and m = 4, while every preference pro-
file with n ≤ 3 and m ≤ 7 is Euclidean. The proof for the “only if” part is
via presenting forbidden subprofiles (see Definitions 3 to 5), which may be of
independent interests for determining 2-Manhattan preferences. The proof for
the “if” part is computer-aided. See Fig. 1 for a summary for d = 2.

The paper is organized as follows: Sect. 2 introduces necessary definitions
and notations. In Sects. 3 and 4, we present the first positive result and the
negative findings, respectively. In Sect. 5, we show the remaining positive results
by describing a computer program that finds a Manhattan embedding for every
possible preference profile with three voters and five alternatives, or four vot-
ers and four alternatives. We conclude with a few future research directions in
Sect. 6. Due to space constraints, proofs of results marked with (�) are available
in the full version [7].

2 Preliminaries

Given a non-negative integer t, we use [t] to denote the set {1, . . . , t}. Let x
denote a vector of length d or a point in a d-dimensional space, and let i denote
an index i ∈ [d]. We use x[i] to refer to the ith value in x.

Let A := [m] be a set of alternatives. A preference order � of A is a linear
order (a.k.a. permutation or ranking) of A; a linear order is a binary relation
which is total, irreflexive, and transitive. For two distinct alternatives a and b,
the relation a � b means that a is preferred to (or in other words, ranked higher
than) b in �. An alternative c is the most-preferred alternative in � if for any
alternative b ∈ A \ {c} it holds that c � b. Let � be a preference order over A.
For a subset B ⊆ A of alternatives and an alternative c not in B, we use B � c
(resp. c � B) to denote that for each b ∈ B it holds that b � c (resp. c � b).
A preference profile (or profile in short) P specifies the preference orders of a
number of voters over a set of alternatives. Formally, P := (A,V,R), where
A denotes the set of m alternatives, V denotes the set of n voters, and R :=
(�1, . . . ,�n) is a collection of n preference orders such that each voter vi ∈ V
ranks the alternatives according to the preference order �i on A. We will omit
the subscript i from �i if it is clear from the context. Throughout the paper,
if not explicitly stated otherwise, we assume P is a preference profile of the
form (A,V,R). For notational convenience, for each alternative a ∈ A and each
voter vi ∈ V, let rki(a) denote the rank of alternative a in the preference order �i,
which is the number of alternatives which are preferred to a by voter vi, i.e.,
rki(a) = |{b ∈ A | b �i a}|. For instance, if voter vi has preference order 2 �i

3 �i 1 �i 4, then rki(3) = 1.
Given a d-dimensional vector x ∈ Rd and an �p-norm with p ≥ 1, let ‖x‖p

denote the �p-norm of x, i.e., ‖x‖p = (|x[1]|p + · · · + |x[d]|p)1/p, and let ‖x‖∞
denote the �∞-norm of x, i.e., ‖x‖p = max{x[i]}i∈[d]. Given two points u,w
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Fig. 2. The intersection (in red) of two circles under the Manhattan distance in R2 can
be two points, one point and one line segment, one line segment, or two line segments.
(Color figure online)

in Rd and p ∈ {1, 2,∞}, we use the �p-norm of u−w, i.e., ‖u−w‖p, to denote
the �p-distance of u and w. By convention, we use Manhattan, Euclidean, and
Max distances to refer to �1-, �2-, and �∞-distances, respectively.

For d = 2, the Manhattan distance of two points is equal to the length of
a shortest path between them on a rectilinear grid. Hence, under Manhattan
distances, a circle is a square rotated at a 45◦ angle from the coordinate axes.
The intersection of two Manhattan-circles can range from two points to two
segments as depicted in Fig. 2.

Basic Geometric Notation. Throughout this paper, we use lower case letters in
boldface to denote points in a space. Given two points q and r, we introduce the
following notions: Let BB(q, r) denote the set of points which are contained in
the (smallest) rectilinear bounding box of points q and r, i.e., BB(q, r) := {x ∈
Rd | min{q[i], r[i]} ≤ x[i] ≤ max{q[i], r[i]} for all i ∈ [d]}. The perpendicular
bisector (bisector in short) between two points q and r with respect to a norm �p
is a set Hp(q, r) of points which each have the same distance to both q and r.
Formally, Hp(q, r) := {x ∈ Rd | ‖x−q‖p = ‖x−r‖p}. In a d-dimensional space,
a bisector of two points under the Manhattan distance (i.e., �1-norm) can itself
be a d-dimensional object, while a bisector under Euclidean distances is always
(d − 1)-dimensional; see e.g., Fig. 3 (right).

The Two-Dimensional Case. In a two-dimensional space, the vertical line and
the horizontal line crossing any point divide the space into four non-disjoint
quadrants: the north-east, south-east, north-west, and south-west quadrants.
Given a point q, we use NE(q), SE(q), NW(q), and SW(q) to denote these four
quadrants. Formally, NE(q) := {z ∈ R2 | z[1] ≥ q[1] ∧ z[2] ≥ q[2]}, SE(q) :=
{z ∈ R2 | z[1] ≥ q[1] ∧ z[2] ≤ q[2]}, NW(q) := {z ∈ R2 | z[1] ≤ q[1] ∧ z[2] ≥
q[2]}, and SW(q) := {z ∈ R2 | z[1] ≤ q[1] ∧ x[2] ≤ q[2]}.

Embeddings. The Euclidean (resp. Manhattan) representation models the pref-
erences of the voters over the alternatives using the Euclidean (resp. Manhattan)
distance. A shorter distance indicates a stronger preference. For technical reason,
we also introduce the �-max preferences which are based on the �∞-distances.

Definition 1 (d-Manhattan, d-Euclidean, and d-Max embeddings). Let
P := (A,V := {v1, . . . , vn},R := (�1, . . . ,�n)) be a profile. Let E : A ∪ V →
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Fig. 3. The bisector (in green) between points u and v under the Manhattan distance.
The green lines and areas extend to infinity. (Color figure online)

Rd be an embedding of the alternatives and the voters. For each (Λ, p) ∈ {(d-
Manhattan, 1), (d-Euclidean, 2), (d-Max, ∞)}, a voter vi ∈ V is called Λ with
respect to embedding E if for each two alternatives a, b ∈ A it holds that

a �i b if and only if ‖E(a) − E(vi)‖p < ‖E(b) − E(vi)‖p.
Embedding E is called a d-Manhattan (resp. d-Euclidean, d-Max) embedding of
profile P if each voter in V is d-Manhattan (resp. d-Euclidean, d-Max) wrt. E.
A preference profile is d-Manhattan (resp. d-Euclidean, d-Max) if it admits a
d-Manhattan (resp. d-Euclidean, d-Max) embedding.

To characterize necessary conditions for 2-Manhattan profiles, we need to define
several notions which describe the relative orders of the points in each axis.

Definition 2 (BE- and EX-properties). Let P be a profile containing at least
3 voters called u, v, w and let E be an embedding for P. Then, E satisfies

– the (v, u, w)-BE-property if E(v) ∈ BB(E(u), E(w)) (see the illustration in
the first row of Fig. 4) and

– the (v, u, w)-EX-property if there exists (i, j) with {i, j} = {1, 2} such that

min{E(v)[i], E(w)[i]} ≤ E(u)[i] ≤ max{E(v)[i], E(w)[i]} and
min{E(u)[j], E(v)[j]} ≤ E(w)[j] ≤ max{E(u)[j], E(v)[j]}

(see the illustrations in the last two rows of Fig. 4).

If E does not satisfy (v, u, w)-BE-property (-EX-property) we say it violates
(v, u, w)-BE-property (resp. -EX-property). For brevity’s sake, by symmetry, we
omit voters u and w and just speak of the v-BE-property (resp. v-EX-property)
if u, v, w are the only voters contained in P.

Note that any embedding for three voters u, v, w must satisfy u-, v- or w-
EX-property or u-, v- or w-BE-property, although it may satisfy more than
one of these (consider for example three voters at the same point). However,
each of these embeddings satisfying the (v, u, w)-BE-property (resp. (v, u, w)-
EX-property) forbids certain types of preference profiles. The following two con-
figurations describe preferences whose existence precludes an embedding from
satisfying either BE-property or EX-property for some voters, as we will show in
Lemmas 3 and 4.



278 J. Chen et al.

Fig. 4. Two possible embeddings illustrating the properties in Definition 2 (the num-
bering will be used in some proofs). (BE) means “between” while (EX) “external”.

Definition 3 (BE-configurations). A profile P with 3 voters u, v, w and 3
alternatives a, b, x is a (v, u, w)-BE-configuration if the following holds:

u : b �u x �u a, v : a �v x �v b, w : b �w x �w a.

Definition 4 (EX-configurations). A profile P with 3 voters u, v, w and
6 alternatives x, a, b, c, d, e (c, d, e not necessarily distinct) is a (v, u, w)-EX-
configuration if the following holds:

u : a �u x �u b, c �u x, d �u x
v : {a, b} �v x, x �v {d, e},
w : b �w x �w a, c �w x, e �w x.

Example 1. Consider two profiles Q1 and Q2 which satisfy the following:

Q1 : v1 : 1 �1 2 �1 3, v2 : 3 �2 2 �2 1, v3 : 3 �3 2 �3 1
Q2 : v1 : {1, 2} �1 3 �1 4, v2 : {1, 4} �2 3 �2 2, v3 : {2, 4} �3 3 �3 1.

Clearly, Q1 is a (v1, v2, v3)-BE-configuration. Further, one can verify that Q2

contains a (v1, v2, v3)-, (v2, v1, v3)-, and (v3, v1, v2)-EX-configuration, by set-
ting (a, b, x, c, d, e) := (1, 2, 3, 4, 4, 4), (a, b, x, c, d, e) := (1, 4, 3, 2, 2, 2), and
(a, b, x, c, d, e) := (2, 4, 3, 1, 1, 1), respectively.

The next configuration is a restriction of the worst-diverse configuration. The
latter is used to characterize the so-called single-peaked preferences [1].

Definition 5 (All-triples worst-diverse configuration). A profile P is an
all-triples worst-diverse configuration if for every triple of alternatives {x, y, z} ⊆
A there are three voters u, v, w ∈ V which form a worst-diverse configuration,
i.e., their preferences satisfy {x, y} �u z, {x, z} �v y, and {y, z} �w x.
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3 Manhattan Preferences: Positive Results

In this section, we show that for sufficiently high dimension d, i.e., d ≥
min(n,m−1), a profile with n voters and m alternatives is always d-Manhattan.
The same result holds for d-Euclidean profiles [2]. The idea of the proof for n vot-
ers is similar to the proof for d-Euclidean preferences in [2]. The proof for m + 1
voters is more different from d-Euclidean-case. Whilst the proof for d-Euclidean-
case relies on abstract geometric properties, it is relatively straightforward to
give a full concrete construction on the d-Manhattan case.

Theorem 1. Every profile with n voters is n-Manhattan.

Proof. Let P = (A,V, (�i)i∈[n]) be a profile with m alternatives and n voters V
such that A = {1, . . . , m}. The idea is to first embed the voters from V onto n
selected vertices of an n-dimensional hypercube, and then embed the alternatives
such that each coordinate of an alternative reflects the preferences of a specific
voter. More precisely, define an embedding E : A ∪ V → Z such that for each
voter vi ∈ V and each coordinate z ∈ [n], we have E(vi)[z] := −m if z = i, and
E(vi)[z] := 0 otherwise.

It remains to specify the embedding of the alternatives. To ease notation,
for each alternative j ∈ A, let mkj denote the maximum rank of the voters
towards j, i.e., mkj := maxvi∈V rki(j). Further, let n̂j denote the index of the
voter who has maximum rank over j; if there are two or more such voters, then
we fix an arbitrary one. That is, vn̂j

:= arg maxvi∈V rki(j). Then, the embedding
of each alternative j ∈ A is defined as follows:

∀z ∈ [n] : E(j)[z] :=

⎧
⎨

⎩

rkz(j) − mkj , if z �= n̂j ,

M + 2rkz(j) +
∑

k∈[n]

(rkk(j) − mkj), otherwise.

Herein, M is set to a large but fixed value such that the second term in the
above definition is non-negative. For instance, we can set M := n · m. Notice
that by definition, the following holds for each alternative j ∈ A.

−m ≤ rkz(j) − mkj ≤ 0, and (1)

M + 2rkz(j) +
∑

k∈[n]

(rkk(j) − mkj) ≥ M−n·m ≥ 0. (2)

Thus, for each i ∈ [n] and j ∈ [m], it holds that

|E(j)[i] − E(vi)[i]| (1),(2)
= E(j)[i] + m, (3)

‖E(j)‖1 =
∑

z∈[n]\{n̂}
|rkz(j) − mkj | + |M + 2rkn̂(j) +

∑

k∈[n]

(rkk(j) − mkj)|
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(1),(2)
=

∑

z∈[n]\{n̂j}
(−rkz[j] + mkj) + M + 2rkn̂j

(j) +
∑

k∈[n]

(rkk[j] − mkj)

mkj=rkn̂j
(j)

= M + 2rkn̂(j) (4)

Now, in order to prove that this embedding is n-Manhattan we show that the
Manhattan distance between an arbitrary voter vi and an arbitrary alternative j
is linear in the rank value rki(j). By definition, this distance is:

‖E(vi) − E(j)‖1 =
∑

k∈[n]

|E(j)[k] − E(vi)[k]| = |E(j)[i] − E(vi)[i]| +
∑

k∈[n]\{i}
|E(j)[k]|

(3)
= E(j)[i] +m+ ‖E(j)‖1 − |E(j)[i]|. (5)

We distinguish between two cases.

Case 1: i �= n̂j . Then, it follows that ‖E(vi)−E(j)‖1 (5)
= m+E(j)[i]+‖E(j)‖1−|E(j)[i]| (1),(4)

=

m+ 2(rki(j) − mkj) +M + 2rkn̂j
(j)

rkn̂(j)=mkj
= m+M + 2rki(j).

Case 2: i = n̂j . Then, by definition, it follows that

‖E(vi) − E(j)‖1 (5)
= m+ E(j)[i] + ‖E(j)‖1 − |E(j)[i]| (2)

= m+ ‖E(j)‖1 (4)
= m+M + 2rkn̂j

(j).
In both cases, we obtain that ‖E(vi) − E(j)‖1 = m+M + 2rki(j), which is linear in the

ranks, as desired. ��

By Theorem 1, we obtain that any profile with two voters is 2-Manhattan.
The following example provides an illustration.

Example 2. Consider profile P1 with 2 voters and 5 alternatives: v1 : 1 � 2 �
3 � 4 � 5 and v2 : 5 � 4 � 3 � 1 � 2. By the proof of Theorem1, the maximum
ranks and the voters with maximum rank, and the embedding of the voters and
alternatives is as follows, where M := n · m = 10; see Fig. 5a for an illustration.

j 1 2 3 4 5

mkj 3 4 2 3 4
n̂j 2 2 1 1 1

x ∈ V ∪ A v1 v2 1 2 3 4 5

E(x)[1] −5 0 −3 −3 14 14 14
E(x)[2] 0 −5 13 15 0 −2 −4

Theorem 2. Every profile with m + 1 alternatives is m-Manhattan.

Proof. Let P = (A,V, (�i)i∈[n]) be a profile with m + 1 alternatives and n vot-
ers V such that A = {1, . . . , m + 1}. The idea is to first embed the alterna-
tives from A onto m + 1 selected vertices of an m-dimensional hypercube, and
then embed the voters such that the m-Manhattan distances from each voter to
the alternatives increase as the preferences decrease. More precisely, define an
embedding E : A ∪ V → N0 such that alternative m + 1 is embedded in the ori-
gin coordinate, i.e., E(m + 1) = (0)z∈[m]. For each alternative j ∈ [m] and each
coordinate z ∈ [m], we have E(j)[z] := 2m if z = j, and E(j)[z] := 0 otherwise.
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Fig. 5. (a): Illustration for Example 2. (b): Illustration for Example 3; the circles are
with respect to v2 and v6, respectively.

Then, the embedding of each voter vi ∈ V is defined as follows: ∀j ∈ [m] :

E(vi)[j] :=

{
2m − rki(j), if rki(j) < rki(m + 1),
m − rki(j), if rki(j) > rki(m + 1).

Observe that 0 ≤ E(vi)[j] ≤ 2m. Before we show that E is 2-Manhattan for P, let
us establish a simple formula for the distance between a voter and an alternative.

Claim 1 (�). For each voter vi ∈ V and each alternative j ∈ A, we have

‖E(vi) − E(j)‖1 =

{
‖E(vi)‖1 + 2(m − E(vi)[j]), if j �= m + 1,

‖E(vi)‖1, otherwise.

Now, we proceed with the proof. Consider an arbitrary voter vi ∈ V and let
j, k ∈ [m + 1] be two consecutive alternatives in the preference order �i such
that rki(j) = rki(k) − 1. We distinguish between three cases.

Case 1: rki(k) < rki(m + 1) or rki(j) > rki(m + 1). Then, by Claim 1 and by
definition, it follows that ‖E(vi) − E(j)‖1 − ‖E(vi) − E(k)‖1 = 2(E(vi)[k] −
E(vi)[j]) = 2(rki(j) − rki(k)) < 0.

Case 2: rki(k) = rki(m+1), i.e., k = m+1 and E(vi)[j] = 2m−rki(j). Then, by
Claim 1 and by definition, it follows that ‖E(vi) − E(j)‖1 − ‖E(vi) − E(k)‖1 =
2(m − E(vi)[j]) = 2rki(j) − 2m < 0. Note that the last inequality holds since
rki(j) = rki(k) − 1 < m.

Case 3: rki(j) = rki(m+1), i.e., j = m+1 and E(vi)[k] = m− rki(k). Then, by
Claim 1 and by definition, it follows that ‖E(vi) − E(j)‖1 − ‖E(vi) − E(k)‖1 =
−2(m − E(vi)[k]) = −2rki(k) < 0. Note that the last inequality holds since
rki(k) = rki(j) + 1 > 0.

Since in all cases, we show that ‖E(vi) − E(j)‖1 − ‖E(vi) − E(k)‖1 < 0, E
is indeed m-Manhattan for P. ��
Theorem 2 implies that any profile for 3 alternatives is 2-Manhattan. The fol-
lowing example illustrates the corresponding Manhattan embedding.
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Example 3. The following profile P2 with 6 voters and 3 alternatives is 2-
Manhattan.

v1 : 1 � 2 � 3, v2 : 1 � 3 � 2, v3 : 2 � 1 � 3,
v4 : 2 � 3 � 1, v5 : 3 � 1 � 2, v6 : 3 � 2 � 1.

One can check that the embedding E given in Fig. 5b is 2-Manhattan for P3.

4 Manhattan Preferences: Negative Results

In this section, we consider minimally non 2-Manhattan profiles. We show that
for n ∈ {3, 4, 5} voters, the smallest non 2-Manhattan profile has 9 − n alterna-
tives (Theorems 3 to 5). Before we show this, we first go through some technical
but useful statements for 2-Manhattan preference profiles in Sect. 4.1. Then,
we show the proofs of the main results in Sects. 4.2 to 4.4. For brevity’s sake,
given an embedding E and a voter v ∈ V (resp. an alternative a ∈ A), we use
boldface v (resp. a) to denote the embedding E(v) (resp. E(a)).

4.1 Technical Results

Lemma 1. Let P be a 2-Manhattan profile and let E be a 2-Manhattan embed-
ding for P. For any two voters r, s and two alternatives x, y the following holds:
(i) If r, s : y � x, then x /∈ BB(r, s). (ii) If r : x � y and s : y � x, then
s /∈ BB(r,x).

Proof. Let P, E, r, s, and x, y be as defined. Both statements follow from using
simple calculations and the triangle inequality of Manhattan distances.

For Statement (i), suppose, towards a contradiction, that r, s : y � x and
x ∈ BB(r, s). By the definition of Manhattan distances, this implies that ‖r −
x‖1 + ‖x − s‖1 = ‖r − s‖1. By the preferences of voters r and s we infer that
‖s − y‖1 + ‖r − y‖1 < ‖s − x‖1 + ‖r − x‖1 = ‖r − s‖1, a contradiction to the
triangle inequality of ‖ · ‖1.

For Statement (ii), suppose, towards a contradiction, that r : x � y and
s : y � x and s ∈ BB(r,x). By the definition of Manhattan distances, this
implies that ‖r −x‖1 = ‖r − s‖1 + ‖s−x‖1. By the preferences of voters r and
s we infer that ‖r−s‖1 +‖s−y‖1 < ‖r−s‖1 +‖s−x‖1 = ‖r−x‖1 < ‖r−y‖1,
a contradiction to the triangle inequality of ‖ · ‖1. ��
The following is a summary of coordinate differences wrt. the preferences.

Observation 1 (�). Let profile P admit a 2-Manhattan embedding E. For each
voter s and each two alternatives x, y with s : x � y, the following holds:

(i) If y ∈ NE(s), then y[1] + y[2] > x[1] + x[2].
(ii) If y ∈ NW(s), then −y[1] + y[2] > −x[1] + x[2].
(iii) If y ∈ SE(s), then y[1] − y[2] > x[1] − x[2].
(iv) If y ∈ SW(s), then −y[1] − y[2] > −x[1] − x[2].
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The next technical lemma excludes two alternatives to be put in the same
quadrant region of some voters.

Lemma 2. Let profile P admit a 2-Manhattan embedding E. Let r, s, t and x, y
be 3 voters and 2 alternatives in P, respectively. The following holds.

(i) If r : x � y and s : y � x, then for each Π ∈ {NE, NW,SE,SW} it holds that
if x ∈ Π(s), then y /∈ Π(r).

(ii) If r, t : x � y, s : y � x, r ∈ SW(s), and t ∈ NE(s), then for each Π ∈
{NW,SE} it holds that if x ∈ Π(s), then y /∈ Π(s).

Proof. Let P, E, r, s, t, x, y be as defined. The first statement follows directly
from applying Observation 1. Hence, we only consider the case with Π = NW.
For a contradiction, suppose that x ∈ NW(s) and y ∈ NW(r). Since r : x � y
and s : y � x, by Observation 1(ii), we have y[2]−y[1] > x[2]−x[1] > y[2]−y[1],
a contradiction.
Statement (ii): We only show the case with Π = NW as the other case is symmet-
ric. For a contradiction, suppose that x,y ∈ NW(s). Since r, t : x � y, s : y � x,
x ∈ NW(s), by the first statement, we have y /∈ NW(r)∪NW(t). However, since
y ∈ NW(s), it follows that y ∈ BB(r, t), a contradiction to Lemma 1(i). ��

The next two lemmas specify the relation between a BE-configuration and the
BE-property, and between a EX-configuration and the EX-property, respectively.

Lemma 3 (�). If a profile contains a (v, u, w)-BE-configuration, then no 2-
Manhattan embedding satisfies the (v, u, w)-BE-property.

Lemma 4 (�). If a profile contains a (v, u, w)-EX-configuration, then no 2-
Manhattan embedding satisfies the (v, u, w)-EX-property.

4.2 The Case with 3 Voters and 6 Alternatives

Using Lemmas 3 and 4, we prove Theorem 3 with the help of Example 4.

Example 4. The following profile P3 with 3 voters and 6 alternatives is not 2-
Manhattan.
v1 : 1 � 2 � 3 � 4 � 5 � 6, v2 : 1 � 4 � 6 � 3 � 5 � 2, v3 : 6 � 5 � 2 � 3 � 1 � 4.

Theorem 3. There exists a non 2-Manhattan profile with 3 voters and 6 alter-
natives.

Proof. Consider profile P3 given in Example 4. Suppose, towards a contradiction,
that E is a 2-Manhattan embedding for P3. Since each embedding for 3 voters
must satisfy one of the two properties in Definition 2, we distinguish between
two cases: there exists a voter who is embedded inside the bounding box of the
other two, or there is no such voter.

Case 1: There exists a voter vi, i ∈ [3], such that E satisfies the vi-BE-
property. Since P contains a (v1, v2, v3)-BE-configuration wrt. (a, b, x) = (2, 6, 5),
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by Lemma 3 it follows that E violates the v1-BE-property. Analogously, since
P contains a (v2, v1, v3)-BE-configuration regarding a = 4, b = 2, x = 3, and
(v3, v1, v2)-BE-configuration with a = 5, b = 1, x = 3, neither does E satisfy the
v2-BE-property or the v3-BE-property.
Case 2: There exists a voter vi, i ∈ [3], such that E satisfies the vi-EX-property.
Now, consider the subprofile P ′ restricted to the alternatives 1, 2, 3, 6. We claim
that this subprofile contains an EX-configuration, which by Lemma 4 precludes
the existence of such a voter vi with the vi-EX-property: First, since P ′ contains a
(v3, v1, v2)-EX-configuration (setting (u, v, w) := (v1, v3, v2) and (x, a, b, c, d, e) =
(3, 2, 6, 1, 1, 1)), by Lemma 4, it follows that E violates the v3-EX-property. In
fact, P ′ also contains a v2-EX-configuration (setting (u, v, w) := (v1, v2, v3) and
(x, a, b, c, d, e) = (3, 1, 6, 2, 2, 2)) and a v1-EX-configuration (setting (u, v, w) :=
(v2, v1, v3) and (x, a, b, c, d, e) = (3, 1, 2, 6, 6, 6)). By Lemma 4, it follows that E
violates the v2-EX-property and the v1-EX-property.

Summarizing, we obtain a contradiction for E. ��

4.3 The Case with 4 Voters and 5 Alternatives

We prove Theorem 4 for 2-Max instead of for 2-Manhattan preferences since
the reasoning for 2-Max is simpler and more intuitive. It is, however, possible to
follow similar steps for 2-Manhattan preferences and obtain an analogous proof.
The following proposition allows us to extend any result we obtain of the (non-)
existence of 2-Manhattan embeddings to 2-Max embeddings and vice versa. The
same claim has been made by Escoffier et al. [16, Proposition 2].

Proposition 1 [20]. There is a natural isometry between R2 under �1-norm and
R2 under �∞-norm.

We first prove that any profile with at least 5 alternatives which contains an
all-triples worst-diverse configuration is not 2-Max. Then we proceed to show
that the example below with 4 voters and 5 alternatives is such a profile.

Example 5. The following profile P4 with 5 alternatives contains an all-triples
worst-diverse configuration and will be shown to be not 2-Max.

v1 : 1 � 2 � 3 � 4 � 5, v2 : 1 � 2 � 3 � 5 � 4,
v3 : 1 � 4 � 5 � 3 � 2, v4 : 2 � 4 � 5 � 3 � 1.

To do this, we utilize the following two lemmas:

Lemma 5 (�). Let P admit a d-Max embedding E. If z ∈ BB(x,y), then there
is no voter v satisfying {x, y} �v z.

Lemma 6 (�). For any set S of 5 points in R2, there must exist three distinct
points x,y,z ∈ S such that z ∈ BB(x,y).

Now, we are ready to show our second main result.
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Theorem 4. There exists a non 2-Manhattan profile with 4 voters and 5 alter-
natives.

Proof. Suppose, towards a contradiction, that we have a profile P with at least 5
alternatives {a, b, c, d, e} which contains an all-triples worst-diverse configuration
and is 2-Max with a 2-Max embedding E.

As we have 5 alternatives, by Lemma 6 there must be a triple {x, y, z} ⊂
{a, b, c, d, e} such that z ∈ BB(x,y). This together with Lemma 5 implies that no
voter v can satisfy {x, y} �v z. However, this is a contradiction to our assumption
that P contains an all-triples worst-diverse configuration. Therefore we cannot
have a profile P with at least 5 alternatives which contains an all-triples worst-
diverse configuration and has a 2-Max embedding E.

One can verify that profile P4 given in Example 5 with 5 alternatives and 4
voters contains an all-triples worst-diverse configuration, and is not 2-Max: The
alternatives 1, 2, 4, and 5 are ranked last by voters v4, v3, v2, and v1, respectively.
Therefore we can pick the corresponding voters for every triple involving only
the alternatives 1, 2, 4 and 5. It is straightforward to verify that there is a worst-
diverse configuration for every triple of alternatives involving 3 as well. Thus we
have shown that there is a profile with 4 voters and 5 alternatives that is not
2-Max. By Proposition 1 it is also not 2-Manhattan. ��

4.4 The Case with 5 Voters and 4 Alternatives

The proof of Theorem 5 will be based on the following example.

Example 6. Any profile P5 satisfying the following is not 2-Manhattan.

v1 : 1 � 2 � 3 � 4, v2 : 1 � 4 � 3 � 2, v3 : {2, 4} � 3 � 1,
v4 : 3 � 2 � 1 � 4, v5 : 3 � 4 � 1 � 2.

Before we proceed with the proof, we show a technical but useful lemma.

Lemma 7 (�). Let P be a profile with 4 voters u, v, w, r and 4 alternatives a,
b, c, d satisfying the following:

u : {a, b} � c � d, v : {b, d} � c � a,w : {a, d} � c � b, r : c � {a, b} � d.

If E is a 2-Manhattan embedding for P with v ∈ BB(u,w), then v ∈ BB(r,w).

Theorem 5 (�). There exists a non 2-Manhattan profile with 5 voters and 4
alternatives.

Proof sketch. We show that profile P5 given in Example 6 is not 2-Manhattan.
Suppose, towards a contradiction, that P5 admits a 2-Manhattan embedding E.
First, we observe that one of v1, v2, v3 is embedded inside the bounding box
defined by the other two since the subprofile of P5 restricted to voters v1, v2 and
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Fig. 6. Illustrations of possible embeddings for the proof of Theorem 5: Left: v2 ∈
BB(v4, v3). (6a): v2 ∈ BB(v1, v3). (6b): v3 ∈ BB(v1, v2) ∪ BB(v4, v2) ∪ BB(v5, v1).
(6c): v1, v4, c2 ∈ SW(v3), v2, v5, c4 ∈ NE(v3) such that c2 ∈ SE(v1), c2 ∈ NW(v4),
c4 ∈ SE(v2), c4 ∈ NW(v5).

v3 is equivalent to profile Q2 which, by Lemma 4, violates the EX-property (for
each of v1,v2, and v3, respectively). Hence, we distinguish between two cases.

Case 1: v2 ∈ BB(v1,v3) or v1 ∈ BB(v2,v3). Note that these two subcases are
equivalent in the sense that if we exchange the roles of alternatives 2 and 4, i.e.,
1 �→ 1, 3 �→ 3, 2 �→ 4, and 4 �→ 2, we obtain an equivalent (in terms of the
Manhattan property) profile where the roles of voters v1 and v2 (resp. v4 and
v5) are exchanged. Hence, it suffices to consider the case of v2 ∈ BB(v1,v3).
W.l.o.g., assume that v1[1] ≤ v2[1] ≤ v3[1] and v1[2] ≤ v2[2] ≤ v3[2] (see
Fig. 6a). Then, by Lemma 7 (setting (u, v, w, r) := (v1, v2, v3, v4)), we obtain
that v2 ∈ BB(v4,v3). This implies that v4[1] ≤ v2[1] and v4[2] ≤ v2[2].

By the preferences of v4, v2, v3 regarding alternatives 2 and 1, and by
Lemma 1, it follows that c2 ∈ NW(v2) ∪ SE(v2) and c1 /∈ BB(v3,v4) ∪
NE(v3) ∪ SW(v4). Similarly, regarding the preferences over 3 and 1, it follows
that c3 ∈ NW(v2)∪SE(v2). By Lemma 2(ii) (considering the preferences of v1, v2
and v3 regarding alternatives 2 and 3), we further infer that either c2 ∈ NW(v2)
and c3 ∈ SE(v2) or c2 ∈ SE(v2) and c3 ∈ NW(v2). Without loss of generality,
assume that c2 ∈ NW(v2) and c3 ∈ SE(v2).

By the preferences of v3 and v2 (resp. v4 and v2) regarding 1 and 3 and by
Lemma 2(i), it follows that c1 /∈ SE(v3) (resp. c1 /∈ SE(v4)). By prior reasoning,
we have that c1 ∈ NW(v3)∪NW(v4). However, this is a contradiction due to the
preferences of v4 and v2 (resp. v3 and v2) regarding 1 and 2: By Lemma 2(ii), it
follows that c1 /∈ NW(v3) ∪ NW(v4).

Case 2: v3 ∈ BB(v1,v2). Without loss of generality, assume that v1[1] ≤
v3[1] ≤ v2[1] and v1[2] ≤ v3[2] ≤ v2[2]; see Fig. 6b. Then, by Lemma 7 (setting
(u, v, w, r) := (v1, v3, v2, v4) and (u, v, w, r) := (v2, v3, v1, v5), respectively), we
obtain that v3 ∈ BB(v4,v2) and v3 ∈ BB(v5,v1). This implies that

v4[1] ≤ v3[1] and v4[2] ≤ v3[2], and v5[1] ≥ v3[1] and v5[2] ≥ v3[2]. (6)

By applying Lemmas 1 and 2 repeatedly, we will infer that alternatives 1, 2, 3, 4
are embedded to the northwest, southwest, southeast, and northeast of v3,
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respectively. Moreover, the embeddings of voters v1, v2, v3, and v4 are as speci-
fied in Fig. 6c. Now, since v2 and v4 (which are on the opposite “diagonal” of v3)
both have 1 � 4 and 3 � 2, while v3 : 4 �3 1 and 2 �3 3, the bisector between
alternatives 1 and 4 and the one between alternatives 2 and 3 must “cross” twice.
Similarly, due to v1 and v5, and v3, the bisector between alternatives 1 and 2 and
the one between alternatives 3 and 4 “cross” twice. This is, however, impossible.
The details of the remaining proof can be found in the full version [7].

5 2-Manhattan Embeddings

In this section, we identified the following positive result through exhaustive
embedding all the possible preference profiles in the two-dimensional space.

Proposition 2. If (n,m) = (3, 5) or (n,m) = (4, 4), then each profile with at
most n voters and at most m alternatives is 2-Manhattan.

Proof. Since the Manhattan property is monotone, to show the statement, we
only need to look at profiles which have either 3 voters and 5 alternatives, or 4
voters and 4 alternatives. We achieve this by using a computer program employ-
ing the CPLEX solver that exhaustively searches for all possible profiles with
either 3 voters and 5 alternatives, or 4 voters and 4 alternatives, and provide
a 2-Manhattan embedding for each of them. Since the CPLEX solver accepts
constraints on the absolute value of the difference between any two variables,
our computer program is a simple one-to-one translation of the d-Manhattan
constraints given in Definition 1, without any integer variables. Peters [21] has
noted this formulation for d-Manhattan embeddings. The same program can also
be used to show that the preference profiles from the Examples 4, 5 and 6 do
not admit a 2-Manhattan embedding.

Following a similar line as in the work of Chen and Grottke [6], we did some
optimization to significantly shrink the search space on all profiles: We only
consider profiles with distinct preference orders and we assume that one of the
preference orders is 1 � . . . � m. Hence, the number of relevant profiles with n
voters and m alternatives is

(
m!−1
n−1

)
. For (n,m) = (3, 5) and (n,m) = (4, 4), we

need to iterate through 7021 and 1771 profiles, respectively. We implemented a
program which, for each of these produced profiles, uses the IBM ILOG CPLEX
optimization software package to check and find a 2-Manhattan embedding. The
verification is done by going through each voter’s preference order and checking
the condition given in Definition 1. All generated profiles, together with their 2-
Manhattan embeddings and the distances used for the verification, are available
at https://owncloud.tuwien.ac.at/index.php/s/s6t1vymDOx4EfU9. ��

6 Conclusion

Motivated by the questions of how restricted d-Manhattan preferences are, we
initiated the study of the smallest dimension sufficient for a profile to be d-
Manhattan. We provided algorithms for larger dimension d and forbidden sub-
profiles for d = 2.

https://owncloud.tuwien.ac.at/index.php/s/s6t1vymDOx4EfU9
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This work opens up several future research directions. One future research
direction concerns the characterization of d-Manhattan profiles through forbid-
den subprofiles. Such work has been done for other restricted preference domains
such as single-peakedness [1], single-crossingness [4], and 1-Euclideanness [8].
Another research direction is to establish the computational complexity of deter-
mining whether a given profile is d-Manhattan. To this end, let us mention that
1-Euclidean profiles cannot be characterized via finitely many finite forbidden
subprofiles [8], but they can be recognized in polynomial time [10,14,18]. As
for d ≥ 2, recognizing d-Euclidean profiles becomes notoriously hard (beyond
NP) [21]. This stands in stark contrast to recognizing d-Manhattan preferences,
which is in NP. For showing NP-hardness, our forbidden subprofiles may be
useful for constructing suitable gadgets. Finally, it would be interesting to see
whether assuming d-Manhattan preferences can lower the complexity of some
computationally hard social choice problems.
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Abstract. Given a directed graph, G = (V,E), a path query, path(u, v),
returns whether there is a directed path from u to v in G, for u, v ∈ V .
Given only V , exactly learning all the edges in G using path queries is
often impossible, since path queries cannot detect transitive edges. In
this paper, we study the query complexity of exact learning for cases
when learning G is possible using path queries. In particular, we provide
efficient learning algorithms, as well as lower bounds, for multitrees and
almost-trees, including butterfly networks.

Keywords: Graph reconstruction · Exact learning · Directed acyclic
graphs

1 Introduction

The exact learning of a graph, which is also known as graph reconstruction ,
is the process of learning how a graph is connected using a set of queries, each
involving a subset of vertices of the graph, to an all-knowing oracle. In this
paper, we focus on learning a directed acyclic graph (DAG) using path queries.
In particular, for a DAG, G = (V,E), we are given the vertex set, V , but the
edge set, E, is unknown and learning it through a set of path queries is our goal.
A path query, path(u, v), takes two vertices, u and v in V , and returns whether
there is a directed path from u to v in G.

This work is motivated by applications in various disciplines of science,
such as biology [34,37,47,48], computer science [11,13,18–20,22,31,39], eco-
nomics [26,27], psychology [38], and sociology [24]. For instance, it can be useful
for learning phylogenetic networks from path queries. Phylogenetic networks
capture ancestry relationships between a group of objects of the same type.
For example, in a digital phylogenetic network, an object may be a multimedia
file (a video or an image) [13,18–20], a text document [35,44], or a computer
virus [22,39]. In such a network, each node represents an object, and directed
edges show how an object has been manipulated or edited from other objects [5].
In a digital phylogenetic network, objects are usually archived and we can issue
path queries between a pair of objects (see, e.g., [18]).

The full version of this paper is available in [3].
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Learning a phylogenetic network has several applications. For instance, learn-
ing a multimedia phylogeny can be helpful in different areas such as security,
forensics, and copyright enforcement [18]. Afshar et al. [5] studied learning phy-
logenetic trees (rooted trees) using path queries, where each object is the result
of a modification of a single parent. Our work extends this scenario to applica-
tions where objects can be formed by merging two or more objects into one, such
as image components. In addition, our work also has applications in biological
scenarios that involve hybridization processes in phylogenetic networks [10].

Another application of our work is to learn the directed acyclic graph (DAG)
structure of a causal Bayesian network (CBN). It is well-known that observa-
tional data (collected from an undisturbed system) is not sufficient for exact
learning of the structure, and therefore interventional data is often used, by
forcing some independent variables to take some specific values through exper-
iments. An interventional path query requires a small number of experiments,
since, path(i, j), intervenes the only variable correspondent to i. Therefore, apply-
ing our learning methods (similar to the method by Bello and Honorio, see [11])
can avoid an exponential number of experiments [33], and it can improve the
results of Bello and Honorio [11] for the types of DAGs that we study.

We measure the efficiency of our methods in terms of the number of vertices,
n = |V |, using these two complexities:

– Query complexity, Q(n): This is the total number of queries that we perform.
This parameter comes from the learning theory [2,14,21,46] and complexity
theory [12,51].

– Round complexity, R(n): This is the number of rounds that we perform our
queries. The queries performed in a round are in a batch and they may not
depend on the answer of the queries in the same round (but they may depend
on the queries issued in the previous rounds).

Related Work. The problem of exact learning of a graph using a set of queries
has been extensively studied [1,4–7,25,29,30,32,36,41–43,50]. With regard to
previous work on learning directed graphs using path queries, Wang and Hono-
rio [50] present a sequential randomized algorithm that takes Q(n) ∈ O(n log2 n)
path queries in expectation to learn rooted trees of maximum degree, d. Their
divide and conquer approach is based on the notion of an even-separator, an
edge that divides the tree into two subtrees of size at least n/d. Afshar et al. [5]
show that learning a degree-d rooted tree with n nodes requires Ω(nd + n log n)
path queries [5] and they provide a randomized parallel algorithm for the same
problem using Q(n) ∈ O(n log n) queries in R(n) ∈ O(log n) rounds with high
probability (w.h.p.)1, which instead relies on finding a near-separator, an edge
that separates the tree into two subtrees of size at least n/(d + 2), through a
“noisy” process that requires noisy estimation of the number of descendants of
a node by sampling. Their method, however, relies on the fact the ancestor set

1 We say that an event happens with high probability if it occurs with probability at
least 1 − 1

nc , for some constant c ≥ 1.
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of a vertex in a rooted tree forms a total order. In Sect. 4, we extend their work
to learn a rooted spanning tree for a DAG.

Regarding the reconstruction of trees with a specific height, Jagadish and
Anindya [29] present a sequential deterministic algorithm to learn undirected
fixed-degree trees of height h using Q(n) ∈ O(nh log n) separator queries, where
a separator query given three vertices a, b, and c, it returns “true” if and only
if b is on the path from a to c. Janardhanan and Reyzin [30] study the problem
of learning an almost-tree of height h (a directed rooted tree with an additional
cross-edge), and they present a randomized sequential algorithm using Q(n) ∈
O(n log3 n + nh) queries.

Our Contributions. In Sect. 3, we present our learning algorithms for
multitrees—a DAG with at most one directed path for any two vertices. We
begin, however, by first presenting a deterministic result for learning directed
rooted trees using path queries, giving a sequential deterministic approach to
learn fixed-degree trees of height h, with O(nh) queries, which provides an
improvement over results by Jagadish and Anindya [29]. We then show how
to use a tree-learning method to design an efficient learning method for a mul-
titree with a roots using Q(n) ∈ O(an log n) queries and R(n) ∈ O(a log n)
rounds w.h.p. We finally show how to use our tree learning method to design an
algorithm with Q(n) ∈ O(n3/2 · log2 n) queries to learn butterfly networks w.h.p.

In Sect. 4, we introduce a separator theorem for DAGs, which is useful in
learning a spanning-tree of a rooted DAG. Next, we present a parallel algorithm
to learn almost-trees of height h, using O(n log n + nh) path queries in O(log n)
parallel rounds w.h.p. We also provide a lower bound of Ω(n log n + nh) for the
worst case query complexity of a deterministic algorithm or an expected query
complexity of a randomized algorithm for learning fixed-degree almost-trees
proving that our algorithm is optimal. Moreover, this asymptotically-optimal
query complexity bound, improves the sequential query complexity for this prob-
lem, since the best known results by Janardhanan and Reyzin [30] achieved a
query complexity of O(n log3 n + nh) in expectation.

2 Preliminaries

For a DAG, G = (V,E), we represent the in-degree and out-degree of vertex
v ∈ V with di(v) and do(v) respectively. Throughout this paper, we assume that
an input graph has maximum degree, d, i.e., for every v ∈ V , di(v) + do(v) ≤ d.
A vertex, v, is a root of the DAG if di(v) = 0. A DAG may have several roots,
but we call a DAG rooted if it has only one root. Note that in a rooted DAG
with root r, there is at least one directed path from r to every v ∈ V .

Definition 1 (arborescence). An arborescence is a rooted DAG with root r
that has exactly one path from r to each vertex v ∈ V . It is also referred to as a
spanning directed tree at root r of a directed graph.

We next introduce multitree, which is a family of DAGs useful in distributed
computing [16,28] that we study in Sect. 3.
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Definition 2 (multitree). A multitree is a DAG in which the subgraph reach-
able from any vertex induces a tree, that is, it is a DAG with at most one directed
path for any pair of vertices.

We next review the definition of a butterfly network, which is a multitree used
in high speed distributed computing [17,23,40] for which we provide efficient
learning method in Sect. 3.

Definition 3 (Butterfly network). A butterfly network, also known as depth-
k Fast Fourier Transform (FFT) graph is a DAG recursively defined as F k =
(V,E) as follows:

– For k = 0: F 0 is a single vertex, i.e. V = {v} and E = {}.
– Otherwise, suppose F k−1

A = (VA, EA) and F k−1
B = (VB , EB) each having

m sources and m targets (t0, ..., tm−1) ∈ VA and (tm, ..., t2m−1) ∈ VB. Let
VC = (v0, v1, ..., v2m−1) be 2m additional vertices. We have F k = (V,E),
where V = VA ∪ VB ∪ VC and E = EA ∪ EB

⋃
0≤i≤m−1(ti, vi) ∪ (ti, vi+m) ∪

(ti+m, vi) ∪ (ti+m, vi+m) (See Fig. 1 for illustration).

Definition 4 (ancestory). Given a directed acyclic graph, G = (V,E), we
say u is a parent of a vertex v (v is a child of u), if there exists a directed
edge (u, v) ∈ E. The ancestor relationship is a transitive closure of the parent
relationship, and descendant relationship is a transitive closure of child rela-
tionship. We denote the descendant (resp. ancestor) set of vertex v, with D(v),
(resp. A(v)). Also, let C(v) denote children of v.

Definition 5. A path query in a directed graph, G = (V,E), is a function that
takes two vertices u and v, and returns 1, if there is a directed path from u to v,
and returns 0 otherwise. We also let count(s,X) = Σx∈Xpath(s, x).

Fig. 1. An example of a butterfly network with height 4 (Depth 4), F 4, as a composition
of two F 3 (A and B) and 24 additional vertices, C, in Height 0.

As Wang and Honorio observed [50], transitive edges in a directed graph are
not learnable by path queries. Thus, it is not possible using path queries to learn
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all the edges for a number of directed graph types, including strongly connected
graphs and DAGs that are not equal to their transitive reductions (i.e., graphs
that have at least one transitive edge). Fortunately, transitive edges are not likely
in phylogenetic networks due to their derivative nature, so, we focus on learning
DAGs without transitive edges.

Definition 6. In a directed graph, G = (V,E), an edge (u, v) ∈ E is called a
transitive edge if there is a directed path from u to v of length greater than 1.

Definition 7 (almost-tree). An almost-tree is a rooted DAG resulting from
the union of an arborescence and an additional cross edge. The height of an
almost-tree is the length of its longest directed path.

Note: some researchers define almost-trees to have a constant number of cross
edges (see, e.g., [8,9]. But allowing more than one cross edge can cause transitive
edges; hence, almost-trees with more than one cross edge are not all learnable
using path queries, which is why we follow Janardhanan and Reyzin [30] to limit
almost-trees to have one cross edge. We next introduce even-separator, which
will be used in Sect. 4.

Definition 8 (even-separator). Let G = (V,E) be a rooted degree-d DAG.
We say that vertex v ∈ V is an even-separator if |V |

d ≤ count(v, V ) ≤ |V |(d−1)
d .

3 Learning Multitrees

In this section, we begin by presenting a deterministic algorithm to learn a rooted
tree (a multitree with a single root) of height h, using O(nh) path queries. This
forms the building blocks for the main results of this section, which are an
efficient algorithm to learn a multitree of arbitrary height with a number of
roots and an efficient algorithm to learn a butterfly network.

Rooted Trees. Let T = (V,E, r) be a directed tree rooted at r with maximum
degree that is a constant, d, with vertices, V , and edges, E. At the beginning of
any exactly learning algorithm, we only know V , and n = |V |, and our goal is
to learn r, and E by issuing path queries.

To begin with, learning the root of the tree can be deterministically done
using O(n) path queries as suggested by Afshar et al. [5, Corollary 10]. Their
approach is to first pick an arbitrary vertex v, (ii) learning its ancestor set and
establishing a total order on them, and (iii) finally applying a maximum-finding
algorithm [15,45,49] by simulating comparisons using path queries.

Next, we show how to learn the edges, E. Jagadish and Anindya [29] pro-
pose an algorithm to reconstruct fixed-degree trees of height h using O(nh log n)
queries. Their approach is to find an edge-separator—an edge that splits the
tree into two subtrees each having at least n/d vertices—and then to recursively
build the two subtrees. In order to find such an edge, (i) they pick an arbitrary
vertex, v, and learn an arbitrary neighbor of it such as, u, (ii) if (u, v) is not
an edge-separator, they move to the neighboring edge that lies on the direction
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of maximum vertex set size. Hence, at each step after performing O(n) queries,
they get one step closer to the edge-separator. Therefore, they learn the edge-
separator using O(nh) queries, and they incur an extra O(log n) factor to build
the tree recursively due to their edge-separator based recursive approach.

We show that finding an edge-separator for a deterministic algorithm is
unnecessary, however. We instead propose a vertex-separator based learning
algorithm. Our learn-short-tree(V, r) method takes as an input, the vertex set,
V , and root vertex, r, and returns edges of the tree, E. Let {r1, . . . , rd} be a
tentative set of children for vertex r initially set to Null , and for 1 ≤ i ≤ d, let
Vi represents the vertex set of the subtree rooted at ri. For 1 ≤ i ≤ d, we can
find child ri, by starting with an arbitrary vertex ri, and looping over v ∈ V
to update ri if for v �= r, path(v, ri) = 1. Since, in a rooted tree, an ancestor
relationship for ancestor set of any vertex is a total order, ri will be a child of
root r. Once we learn ri, its descendants are the set of nodes v ∈ V such that
path(ri, v) = 1. We then remove Vi from the set of vertices of V to learn another
child of r in the next iteration. It finally returns the union of edges (r, ri) and
edges returned by the recursive calls learn-short-tree(Vi, ri), for 1 ≤ i ≤ d. The
full pseudo-code of function learn-short-tree(V, r) is provided in the full version
of the paper [3].

The query complexity, Q(n), for learning the tree is as following:

Q(n) = Σd
i=1Q(|Vi|) + O(n) (1)

Since the height of the tree is reduced by at least 1 for each recursive call,
Q(n) ∈ O(nh). Hence, we have the following theorem.

Theorem 1. One can deterministically learn a fixed-degree height-h directed
rooted tree using O(nh) path queries.

This provides an improvement upon the results of Jagadish and Anindya [29]
(see the full version of this paper [3]).

Multitrees of Arbitrary Height. We next provide a parallel algorithm to
learn a multitree of arbitrary height with a number of roots. Remind that Wang
and Honorio [50, Theorem 8] prove that learning a multitree with Ω(n) roots
requires Ω(n2) queries. Suppose that G = (V,E) is a multitree with a roots. We
show that we can learn G using Q(n) ∈ O(an log n) queries in R(n) ∈ O(a log n)
parallel rounds w.h.p.

Let us first explain how to learn a root. Our learn-root method learns a
root using Q(n) ∈ O(n) queries in R(n) ∈ O(1) rounds w.h.p. Note that in
a multitree with more than one root, the ancestor set of an arbitrary vertex
does not necessarily form a total order, so, we may not directly apply a parallel
maximum finding algorithm on the ancestor set to learn a root.

Our learn-root method takes as input vertex set V , and returns a root of the
DAG. It first learns in parallel, Y , the ancestor set of v (the nodes u ∈ V such
that path(u, v) = 1). While |Y | > m, where m = C1∗√|V | for some constant C1

fixed in the analysis, it takes a sample, S, of expected size of m from Y uniformly
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at random. Then, it performs path queries for every pair (a, b) ∈ S×S in parallel
to learn a partial order of S, that is, we say a < b if and only if path(a, b) = 1.
Hence, a root of the DAG should be an ancestor of a minimal element in S.
Using this fact, we keep narrowing down Y until |Y | ≤ m, when we can afford
to generate a partial order of Y in Line 7, and return a minimal element of Y
(see Algorithm 1).

Algorithm 1: Our algorithm to find a root in V

Function learn-root(V ):

1 m = C1 ∗ √|V | Pick an arbitrary vertex v ∈ V for each u ∈ V do in
parallel

2 Perform query path(u, v) to find ancestor set Y
3 while |Y | > m do
4 S ← a random sample of expected size m from Y for (a, b) ∈ S × S do

in parallel
Perform query path(a, b)

5 Pick a vertex y ∈ S such that for all a ∈ S: path(a, y) == 0 for a ∈ Y
do in parallel

Perform query path(a, y) to find ancestors of y, Y ′

6 Y ← Y ′

7 for (a, b) ∈ Y × Y do in parallel
Perform query path(a, b)

8 y ← a vertex in Y such that for all a ∈ Y : path(a, y) == 0 return y

Before providing the anlaysis of our efficient learn-root method, let us present
Lemma 1, which is an important lemma throughout our analysis, as it extends
Afshar et al. [5, Lemma 14] to directed acyclic graphs.

Lemma 1. Let G = (V,E) be a DAG, and let Y be the set of vertices formed by
the union of at most c directed (not necessarily disjoint) paths, where c ≤ |V | and
|Y | > m = C1

√|V |. If we take a sample, S, of m elements from Y , then with
probability 1 − 1

|V |2 , for each of these c paths such as P , every two consecutive

nodes of S in the sorted order of P are within distance O(|Y | log |V |/√|V |) from
each other in P .

Proof. Since we pick our sample S independently and uniformly at random, some
nodes of Y may be picked more than once, and each vertex will be picked with

probability p = m
|Y | = C1·

√
|V |

|Y | . Let P be the set of vertices of an arbitrary path

among these c paths. Divide P into consecutive sections of size, s = |Y | log |V |√
|V | .

The last section on P can have any length from 1 to |Y | log |V |√
|V | . Let R be the set

of vertices of an arbitrary section of path P (any section except the last one).
We have that expected size of |R ∩ S|, E[|R ∩ S|] = s · p = C1 log |V |. Since we
pick our sample independently, using standard Chernoff bound for any constant
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C1 > 8 ln 2, we have that Pr[|R ∩ S| = 0] < 1/|V |4. Using a union bound,
with probability at least 1 − c/|V |3, our sample S will pick at least one node
from all sections except the last section of all paths. Therefore, if c ≤ |V |, with
probability at least 1− 1

|V |2 , the distance between any two consecutive nodes on
a path in our sample is at most 2 s.

Lemma 2. Let G = (V,E) be a DAG, and suppose that roots have at most
c ∈ O(n1/2−ε) for constant 0 < ε < 1/2 paths (not necessarily disjoint) in total
to vertex v, then, learn-root(V ) outputs a root with probability at least 1 − 1

|V | ,
with Q(n) ∈ O(n) and R(n) ∈ O(1).

Proof. The correctness of the learn-root method relies on the fact that if Y is
a set of ancestors of vertex v, then for vertex r, a root of the network, and for
all y ∈ Y , we have: path(y, r) = 0. Using Lemma 1 and a union bound, after
at most 1/ε iterations of the While loop, with probability at least 1 − 1/ε

|V |2 , the
size of |Y | will be O(m). Hence, we will be able to find a root using the queries
performed in Line 7. Note that this Las Vegas algorithm always returns a root
correctly. We can simply derive a Monte Carlo algorithm by replacing the while
loop with a for loop of two iterations.

Therefore, the query complexity of the algorithm is as follows w.h.p:

– We have O(|V |) queries in 1 round to find ancestors of v.
– Then, we have 1/ε iterations of the while loop, each having O(m2)+O(|Y |) ∈

O(|V |) queries in 1/ε rounds.
– Finally, we have O(m2) in 1 round in Line 7.

Overall, this amounts to Q(n) ∈ O(n), R(n) ∈ O(1) w.h.p.

Since in a multitree with a ∈ O(n1/2−ε) roots (for 0 < ε < 1/2), each root has
at most one path to a given vertex v, we have at most a ∈ O(n1/2−ε) directed
paths in total from roots to an arbitrary vertex v. Therefore, we can apply
Lemma 2 to learn a root w.h.p. Note that if a /∈ O(n1/2−ε), as an alternative,
we can learn a root w.h.p. using O(n log n) queries with R(n) ∈ O(log n) rounds
by (i) picking an arbitrary vertex v ∈ V and learning its ancestors, A(v) ∩ V in
parallel (ii) replacing path queries with inverse-path queries (inverse-path(u, v) =
1 if and only if v has a directed path to u), (ii) and applying the rooted tree
learning method by Afshar et al. [5, Algorithm 2] to learn the tree with inverse
direction to v. Note that any of the leaves of the inverse tree rooted at v is a
root of the multitree.

Our multitree learning algorithm works by repetitively learning a root, r,
from the set of candidate roots, R (R = V at the beginning). Then, it learns a
tree rooted at R by calling the rooted tree learning method by Afshar et al. [5,
Algorithm 2]. Finally, it removes the set of vertices of the tree from R to perform
another iteration of the algorithm so long as |R| > 0. We give the details of the
algorithm below.
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1. Let R be the set of candidate roots for the multitree initialized with V .
2. Let r ← learn-root(R).
3. Issue queries in parallel, path(r, v) for all v ∈ V to learn descendants, D(r).
4. Learn the tree rooted at r by calling learn-rooted-tree(r,D(r)).
5. Let R = R \ D(r), and if |R| > 0 go to step 2..

Theorem 2 analyzes the complexity of our multitree learning algorithm.

Theorem 2. One can learn a multitree with a roots using Q(n) ∈ O(an log n)
path queries in R(n) ∈ O(a log n) parallel rounds w.h.p.

Proof. The query complexity and the round complexity of our multitree learn-
ing method is dominated by the calls to the learn-rooted-tree by Afshar et al. [5,
Algorithm 2] which takes Q(n) ∈ O(n log n) queries in R(n) ∈ O(log n) parallel
rounds w.h.p. Hence, using a union bound and by adjusting the sampling con-
stants for learn-rooted-tree by Afshar et al. [5, Algorithm 2] we can establish the
high probability bounds.

Butterfly Networks. Next, we provide an algorithm to learn a butterfly net-
work. Suppose that Fh = (V,E) is a butterfly network with height h (i.e., a
depth-h FFT graph, see definition 3). We show that we can learn Fh using
Q(n) ∈ O(23h/2h2) path queries with high probability. Note that in a butterfly
networks of height h, the number of nodes will be n = 2h · (h + 1). Also, note
that the graph has a symmetry property, that is, all leaves are reachable from
the root, and all roots are reachable from the leaves if we reverse the direc-
tions of the edges, and that each node but the leaves has exactly two children,
and each node but the roots have exactly two parents, and so on. Due to this
symmetry property, we can apply learn-short-tree but with inverse path query
(inverse-path(u, v) = 1 if and only if v has a directed path to u) to find the tree
with inverse direction to a leaf.

Our algorithm first learns all the roots and all the leaves of the graph. We
first perform a sequential search to find an arbitrary root of the network, r. Note
that we can learn r by picking an arbitrary vertex x and looping over all the
vertices and updating x to y if path(y, x) = 1. After learning its descendants,
D(r), we make a call to our learn-short-tree method to build the tree rooted at
r, which enables us to learn all the leaves, L. Then, we pick an arbitrary leaf,
l ∈ L, and after learning its ancestors, A(l), we call the learn-short-tree method
(with inverse path query) to learn the tree with inverse direction to l, which
enables us to learn all the roots, R. We then take two sample subsets, S, and T ,
of expected size O(2h/2h) from R, and L respectively, and uniformly at random.
We will show that the union of the edges of trees rooted at r for all r ∈ S and
the inverse trees rooted at l for all l ∈ T includes all the edges of the network
w.h.p. We give the details of our algorithm below.

1. Learn a root, r, using a sequential search.
2. Perform path queries to learn descendant set, D(r), of r.
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3. Call learn-short-tree(r,D(r)) method to learn the leaves of the network, L.
4. Let l ∈ L be an arbitrary leaf in the network, then perform path queries to

learn the ancestors of l, A(l).
5. Call learn-short-tree(l, A(l)) with inverse path query definition to learn the

roots of the network, R.
6. Pick a sample S of size c · 2h/2h from R, and a sample T of size c · 2h/2h

from L uniformly at random for a constant c > 0.
7. Perform queries to learn descendant set, D(s), for every s ∈ S, and to learn

ancestor set A(t), for every t ∈ T .
8. Call learn-short-tree(s,D(s)) to learn the tree rooted at s for all s ∈ S.
9. Call learn-short-tree(t, A(t)) using inverse reverse path query to learn the tree

rooted at t for all t ∈ T .
10. Return the union of all the edges learned.

Theorem 3. One can learn a butterfly network of height, h, using Q(n) ∈
O(23h/2h2) path queries with high probability.

Proof. The query complexity of the algorithm is dominated by O(2h/2h) times
the running time of our learn-short-tree method, which takes O(2hh) queries for
each tree. Consider a directed edge from vertex x at height k to vertex y at
height k − 1 in the network. If k ≤ h/2, then x has at least 2�h/2� ancestors
in the root, that is, |A(x) ∩ R| ≥ 2�h/2�. Since our sample, S, has an expected
size of 2h/2 · ch, the expected size of |S ∩ A(x) ∩ R| ≥ ch/2. Using a standard
Chernoff bound, the probability, Pr[|S ∩ A(x) ∩ R| = 0] ≤ e−ch/4. Hence, for
large enough c, this probability is less than 1/22h. Therefore, we will be able
to learn edge (x, y) through a tree rooted at s ∈ S. Similarly, we can show
that if k > h/2, then y has at least 2�h/2� descendants in the leaves, that is,
|D(y) ∩ L| ≥ 2�h/2�. Since, our sample T , has an expected size of 2h/2 · ch, the
expected size of |T ∩ D(y) ∩ L| ≥ ch/2. Using a standard Chernoff bound, the
probability, Pr[|T ∩ D(y) ∩ L| = 0] ≤ e−ch/4. Hence, for large enough c, this
probability is less than 1/22h. Therefore, we will be able to learn edge (x, y)
through a tree inversely rooted at t ∈ T in this case. A union bound establishes
the high probability.

4 Parallel Learning of Almost-Trees

Let G = (V,E) be an almost-tree of height h. We learn G with Q(n) ∈ O(n log n+
nh) path queries in R(n) ∈ O(log n) rounds w.h.p. Note that we can learn the
root of an almost-tree by Algorithm 1, and given that the root has at most 2
paths to any vertex, it will take Q(n) ∈ O(n) queries and R(n) ∈ O(1) w.h.p.
by Lemma 2. We then learn a spanning rooted tree for it, and finally we learn
the cross-edge. We will also prove that our algorithm is optimal by showing that
any randomized algorithm needs an expected number of Ω(n log n + nh).

Learning an Arborescence in a DAG. Our parallel algorithm learns an
arborescence, a spanning directed rooted tree, of the graph with a divide and
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conquer approach based on our separator theorem, which is an extension of
Afshar et al. [5, Lemma 5] for DAGs.

Theorem 4. Every degree-d rooted DAG, G = (V,E), has an even-separator
(see Definition 8).

Proof. We prove through a iterative process that there exists a vertex v such
that |V |

d ≤ |D(v)| ≤ |V |·(d−1)
d . Let r be the root of the DAG. We have that

|D(r)| = |V |. Since r has at most d children and each v ∈ V is a descendent
of at least one of the children of r, r has a child x, such that D(x) ≥ |V |/d.
If D(x) ≤ |V |·(d−1)

d , x is an even-separator. Otherwise, since do(x) ≤ d − 1, x

has a child, y, such that |D(y)| ≥ |V |/d. If |D(y)| ≤ |V |·(d−1)
d , y is an even-

separator. Otherwise, we can repeat this iterative procedure with a child of y
having maximum number of descendants. Since, |D(y)| < |D(x)|, and a directed
path in a DAG ends at vertices of out-degree 0 (with no descendants), this
iterative procedure will return an even-separator at some point.

Next, we introduce Lemma 3 which shows that for fixed-degree rooted DAGs,
if we pick a vertex v uniformly at random, there is an even separator in A(v),
ancestor set of v, with probability depending on d.

Lemma 3. Let G = (V,E) be a degree-d DAG with root r, and let v be a vertex
chosen uniformly at random from v. Let Y be the ancestor set for v in V . Then,
with probability at least 1

d , there is an even-separator in Y .

Proof. By Theorem 4, G has an even-separator, e. Since |D(e)| ≥ |V |
d , with

probability at least 1
d , v will be one of the descendants of e.

Although a degree-d rooted DAG has an even-separator, checking if a vertex
is an even-separator requires a lot of queries for exact calculation of the number
of descendants. Thus, we use a more relaxed version of the separator, which we
call near-separator , for our divide and conquer algorithm.

Definition 9. Let G = (V,E) be a rooted degree-d DAG. We say that vertex
v ∈ V is a near-separator if |V |

d+2 ≤ |D(v)| ≤ |V |(d+1)
d+2 .

Note that every even-separator is also a near-separator. We show if an even-
separator exists among A(v) for an arbitrary vertex v, then we can locate a
near-separator among A(v) w.h.p. Incidentally, Afshar et al. [5] used a similar
divide and conquer approach to learn directed rooted trees, but their approach
relied on the fact that there is exactly one path from root to every vertex of
the tree. We will show how to meet the challenge of having multiple paths to a
vertex from the root in learning an arborescence for a rooted DAG.

Our learn-spanning-tree method takes as input vertex set, V , of a DAG rooted
at r, and returns the edges, E, of an arborescence of it. In particular, it enters
a repeating while loop to learn a near-separator by (i) picking a random vertex
v ∈ V , (ii) learning its ancestors, Y = A(v)∩V , (iii) and checking if Y has a near-
separator, w, by calling learn-separator method, which we describe next. Once
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learn-separator returns a vertex, w, we split V into V1 = D(w)∩V and V2 = V \V1

given that path(w, z) = 1 if and only if z ∈ V1. If |V |
d ≤ |V1| ≤ |V |(d−1)

d , we verify
w is a near-separator. If w is a near separator, then it calls learn-parent method, to
learn a parent, u, for w. Finally, it makes two recursive calls to learn a spanning
tree rooted at w for vertex set V1, and a spanning tree rooted at r with vertex
set V2 (see full version of the paper [3] for a full pseudo-code of the algorithm).
Note that our learn-parent(v, V ) method is similar to our learn-root(V ) method
except that it passes closest nodes to v to the next iteration rather than the
farthest nodes (please refer to the full version of the paper [3] for details).

Next, we show how to adapt an algorithm to learn a near-separator for
DAGs by extending the work of Afshar et al.[5, Algorithm 3]. Our learn-separator
method takes as input vertex v, its ancestors, Y , vertex set V of a DAG rooted
at r, and returns w.h.p. a near-separator among vertices of Y provided that
there is an even-separator in Y . If |Y | is too large (|Y | > |V |/K), then it enters
Phase 1. The goal of this phase is to remove the nodes that are unlikely to be
a separator in order to pass a smaller set of candidate separator to Phase 2.
It chooses a random sample, S, of expected size m = C1

√|V |, where C1 > 0
is a fixed constant. It adds {v, r} to the sample S. It then estimates |D(s) ∩ V |
for each s ∈ S, using a random sample, Xs, of size K = O(log |V |) from V by
issuing path queries. If all of the estimates, count(s,Xs), are smaller than K

d+1 ,
we return Null , as we argue that in this case the nodes in Y do not have enough
descendants to act as a separator. Similarly, If all of the estimates, are greater
than Kd

d+1 , we return Null , as we show that in this case the nodes in Y have too
many descendants to act as a separator. If one of these estimates for a vertex s
lies in the range of [ K

d+1 , Kd
d+1 ], we return it as a near-separator. Otherwise, we

filter the set of Y by removing the nodes that are unlikely to be a separator
through a call to filter-separator method, which we present next. Then, we enter
Phase 2, where for every s ∈ Y , we take a random sample Xs of expected size
of O(log|V |) from V to estimate |D(s)∩V |. If one of these estimates for a vertex
s lies in the range of [ K

d+1 , Kd
d+1 ], we return it as a near-separator. We will show

later that the output is a near-separator w.h.p (please refer to the full version
of the paper [3] for a pseudo-code description of learn-separator method).

Next, let us explain our filter-separator method, whose purpose is to remove
some of the vertices in Y that are unlikely to be a separator to shrink the size of
Y . We first establish a partial order on elements of S by issuing path queries in
parallel. Since there are at most c = 2 directed paths from root to vertex v, for
path 1 ≤ i ≤ c, let li ∈ S be the oldest node on path i having count(li,Xli) < K

d+1

(resp. gi ∈ S be the youngest node on path i having count(gi,Xgi
) > Kd

d+1 ). We
then perform queries to remove ancestors of gi, and descendants of li from Y .
We will prove later that this filter reduces |Y | considerably without filtering an
even-separator. We will give the details of this method in Algorithm 2.

Lemma 4 shows that our filter-separator method efficiently in parallel elimi-
nates the nodes that are unlikely to act as a separator.

Lemma 4. Let G = (V,E) be a DAG rooted at r, with at most c directed (not
necessarily disjoint) paths from r to vertex v, and let Y = A(v) ∩ V , and let
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Algorithm 2: Filter out the vertices unlikely to be a separator
Function filter-separator(S, Y, V ):

1 for each {a, b} ∈ S do in parallel
2 perform query path(a, b)
3 Let P1, P2, . . . , Pc be the c paths from r to v. For 1 ≤ i ≤ c : let li ∈ (S ∩ Pi)

such that count(li, Xli) <
K

d+1
, and there exists no b ∈ (S ∩ A(li)) where

count(b,Xb) <
K

d+1
. For 1 ≤ i ≤ c : let gi ∈ (S ∩ Pi) such that

count(gi, Xgi) >
K·d
d+1

, and there exists no b ∈ (S ∩ D(gi)) where

count(b,Xb) >
K·d
d+1

. for 1 ≤ i ≤ c and v ∈ V do in parallel

4 perform query path(v, gi) to find (A(gi) ∩ V ). Remove (A(gi) ∩ V ) from
Y . perform query path(li, v) to find (D(li) ∩ V ). Remove (D(li) ∩ V )
from Y .

5 return Y

S be a random sample of expected size m that includes v, and r as well. The
call to filter-separator(S, Y, V ) in our learn-separator method returns a set of size
O(c · |Y | log |V |/√|V |), and If Y has an even-separator, the returned set includes
an even-separator with probability at least 1 − |S|+1

|V |2 .

Proof. The proof idea is to first employ Lemma 1 to show that with very high
probability the size of the returned set is at most c · O(|Y | log |V |/√|V |). Then,
it follows by arguing that if e is an even-separator it is unlikely for e to be an
ancestor of gi or a descendant of di in Lines 4, 4 of filter-separator method. Please
refer to the full version of the paper [3] for details.

Lemma 5 establishes the fact that our learn-separator finds w.h.p. a near-
separator among ancestors A(v) ∩ V , if there is an even-separator in A(v) ∩ V .

Lemma 5. Let G = (V,E) be a DAG rooted at r, with at most c directed (not
necessarily disjoint) paths from r to vertex v, and let Y = A(v)∩V . If Y has an
even-separator, then our learn-separator method returns a near-separator w.h.p.

Proof. See full version of the paper [3].

Lemma 6. Let G = (V,E) be a DAG rooted at r, with at most c directed (not
necessarily disjoint) paths from r to vertex v. Then, our learn-separator(v, Y, V, r)
method, takes Q(n) ∈ O(c|V |) queries in R(n) ∈ O(1) rounds.

Proof. – In phase 1, it takes O(mK) ∈ o(|V |) queries in 1 round to estimate
the number of descendants for sample S.

– The call to filter-separator in phase 1 takes m2 queries in one round to derive
a partial order for S, and since there are at most c paths from r to v, it takes
O(c · |V |) in one round to remove nodes from Y .

– In Phase 2, it takes O(|Y |K) ∈ O(|V |) queries in 1 round to estimate the
number of descendants for all nodes of Y .
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Algorithm 3: lean a cross-edge for an almost tree
Function learn-cross-edge(V,E):

1 for v ∈ V do
2 for c ∈ C(v) do
3 for t ∈ (D(V ) \ D(c)) do in parallel
4 Perform query path(c, t)

5 Let c be the only node and let t be the node with maximum height having
path(c, t) = 1 for s ∈ D(c) do in parallel

6 Perform query path(s, t)
7 Let s be the node with minimum height having path(s, t) = 1. return (s, t)

Theorem 5. Suppose G = (V,E) is a rooted DAG with |V | = n, and maximum
constant degree, d, with at most constant, c directed (not necessarily disjoint)
paths from root, r, to each vertex. Our learn-spanning-tree algorithm learns an
arborescence of G using Q(n) ∈ O(n log n) and R(n) ∈ O(log n) w.h.p.

Proof. See full version of the paper [3].

Learning a Cross-Edge. Next, we will show that a cross-edge can be learnt
using O(nh) queries in just 2 parallel rounds for an almost-tree of height h.
Our learn-cross-edge algorithm takes as input vertices V and edges E of an
arborescence of a almost-tree, and returns the cross-edge from the source vertex,
s, to the destination vertex, t. In this algorithm, we refer to D(v) for a vertex
v as the set of descendants of v according to E (the only edges learned by the
arborescence). We will show later that there exists a vertex, c, whose parent is
vertex, v, such that the cross-edge has to be from a source vertex s ∈ D(c) to a
destination vertex t ∈ (D(v) \ D(c)). In particular, this algorithm first learns t
and c with O(nh) queries in 1 parallel round. Note that t ∈ (D(v) \ D(c)) is a
node with maximum height having path(c, t) = 1. Once it learns t and c, then
it learns source s, where s ∈ D(c) is the node with minimum height satisfying
path(s, t) = 1, using O(n) queries in 1 round. We give the details in Algorithm 3.

The following lemma shows that Algorithm 3 correctly learns the cross-edge
using O(nh) queries in just 2 rounds.

Lemma 7. Given an arborescence with vertex set V , and edge set, E, of an
almost-tree, Algorithm 3 learns the cross-edge using O(nh) queries in 2 rounds.

Proof. Suppose that the cross-edge is from a vertex s to to a vertex t. Let v be
the least common ancestor of s and t in the arborescence, and let c be a child of
v on the path from v to s. Since t ∈ (D(v) \ D(c)), we have that path(c, t) = 1
in Line 4. Note that since there is only one cross-edge, there will be exactly one
node such as c satisfying path(c, t) = 1. Note that in Line 4 we can also learn
t, which is the node with maximum height satisfying path(c, t) = 1. Finally, we
just do a parallel search in the descendant set of c to learn s in Line 6.

We charge each path(c, t) query in Line 4 to the vertex v. Since each vertex
has at most d children the number of queries associated with vertex v will be at
most O(|D(v)| · d). Hence, using a double counting argument and the fact that
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each vertex is a descendant of O(h) vertices, the sum of the queries performed
Line 4 will be, Σv∈V O(|D(v)| · d) = O(nh). Finally, we need O(n) queries 1
round to learn s in Line 6.

Theorem 6. Given vertices, V , of an almost-tree, we can learn root, r, and the
edges, E, using Q(n) ∈ O(n log n+nh) path queries, and R(n) ∈ O(log n) w.h.p.

Proof. Note that in almost-trees there are at most c = 2 paths from root r to
each vertex. Therefore, by Lemma 2, we can learn root of the graph using O(n)
queries in O(1) rounds with probability at least 1− 1

|V | . Then, by Theorem 5, we
can learn a spanning tree of the graph using O(n log n) queries in O(log n) rounds
with probability at least 1 − 1

|V | . Finally, by Lemma 7 we can deterministically
learn a cross-edge using O(nh) queries in just 2 rounds.

Lower Bound. The following lower bound improves the one by Janardhanan
and Reyzin [30] and proves that our algorithm to learn almost-trees in optimal.

Theorem 7. Let G be a a degree-d almost-tree of height h with n vertices. Learn-
ing G takes Ω(n log n + nh) queries. This lower bound holds for both worst case
of a deterministic algorithm and for an expected cost of a randomized algorithm.

Proof. We use the same graph as the one used by Janardhanan and Reyzin [30],
but we improve their bound using an information-theoretic argument. Consider
a caterpillar graph with height h, and a complete d-ary tree with Ω(n) leaves
attached to the last level of it. If there is a cross-edge from one of the leaves
of the caterpillar to one of the leaves of the d-ary tree, it takes Ω(nh) queries
involving a leaf of the caterpillar and a leaf of the d-ary tree. Suppose that a
querier, Bob, knows the internal nodes of the d-ary, and he wants to know that
for each leaf l of the d-ary, what is the parent of l in the d-ary tree. If there
are m leaves for the caterpillar, the number of possible d-ary trees will be at
least m!

(d!)m/d . Therofore, using an information-theoretic lower bound, we need

Ω
(
log

(
m!

(d!)m/d

))
bit of information to be able to learn the parent of the leaves

of d-ary tree. Since the queries involving a leaf of the caterpillar and a leaf of
the d-ary tree do not provide any information about how the d-ary tree is built,
it takes Ω(n log n) queries to learn the d-ary tree.
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Abstract. We give the first almost optimal polynomial-time proper
learning algorithm of Boolean sparse multivariate polynomial under
the uniform distribution. For s-sparse polynomial over n variables and
ε = 1/sβ , β > 1, our algorithm makes

qU =
(s

ε

) log β
β

+O( 1
β
)

+ Õ (s)

(
log

1

ε

)
log n

queries. Notice that our query complexity is sublinear in 1/ε and almost
linear in s. All previous algorithms have query complexity at least
quadratic in s and linear in 1/ε.

We then prove the almost tight lower bound

qL =
(s

ε

) log β
β

+Ω( 1
β
)

+ Ω (s)

(
log

1

ε

)
log n,

Applying the reduction in [9] with the above algorithm, we give the
first almost optimal polynomial-time tester for s-sparse polynomial. Our
tester, for β > 3.404, makes

Õ
(s

ε

)

queries.

Keywords: Proper learning · Property testing · Polynomial

1 Introduction

In this paper, we study the learnability and testability of the class of sparse
(multivariate) polynomials over GF (2). A polynomial over GF (2) is the sum
in GF (2) of monomials, where a monomial is a product of variables. It is well
known that every Boolean function has a unique representation as a (multilinear)
polynomial over GF (2). A Boolean function is called s-sparse polynomial if its
unique polynomial expression contains at most s monomials.

Israel—Center for Theoretical Sciences, Guangdong Technion, (GTIIT), China.

c© Springer Nature Switzerland AG 2022
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1.1 Learning

In the learning model [1,27], the learning algorithm has access to a black-box
query oracle to a function f that is s-sparse polynomial. The goal is to run in
poly(n, s, 1/ε) time, make poly(n, s, 1/ε) black-box queries and, with probability
at least 2/3, learn a Boolean function h that is ε-close to f under the uniform
distribution, i.e., Prx[f(x) �= h(x)] ≤ ε. The learning algorithm is called proper
learning if it outputs an s-sparse polynomial. The learning algorithm is called
exact learning algorithm if ε = 0.

Proper and non-proper learning algorithms of s-sparse polynomials that run
in polynomial-time and make a polynomial number of queries have been studied
by many authors [2–4,6,8,9,11,13,16,17,20,23,26].

For learning s-sparse polynomial without black-box queries (PAC-learning
without black-box queries, [27]) and for exact learning (ε = 0), the following
results are known. In [20], Hellerstein and Servedio gave a non-proper learning
algorithm that learns only from random examples under any distribution that
runs in time nO(n log s)1/2

. Roth and Benedek, [23], show that for any s ≥ 2,
polynomial-time proper PAC-learning without black-box queries of s-sparse poly-
nomials implies RP=NP. They gave a proper exact learning (ε = 0) algorithm
that makes (n/ log s)log s black-box queries. They also show that to exactly learn
s-sparse polynomial, we need at least (n/ log s)log s black-box queries. Some gen-
eralizations of the above algorithms for any field and Ring are studied in [13,17].

For polynomial-time non-proper and proper learning s-sparse polynomial
with black-box queries under the uniform distribution, all the algorithms in
the literature [2–4,6,8,9,11,23,26] have query complexities that are at least
quadratic in s and linear in 1/ε. In [2], Beimel et al. give a non-proper algo-
rithm that returns a Multiplicity Automaton equivalent to the target. Their
algorithm asks O(s2 log n + s/ε) queries. See also [3,4]. In [23], it is shown that
there is a deterministic learning algorithm that makes O(sn/ε) queries. The
learning algorithms in [8,9,11] are based on collecting enough small monomials
that their sum approximates the target. The query complexities they achieve
are O((s/ε)c log n), c > 16, O((s/ε)16 log n), and O((s2/ε) log n), respectively.
In [26], Schapire and Sellie gave an exact learning algorithm from O(ns3) mem-
bership queries and O(ns) equivalent queries. Using Angluin’s reduction in [1],
their algorithm can be changed to a learning algorithm (under the uniform dis-
tribution) that makes1 O(ns3 + n(s/ε)) queries.

In this paper, we prove

Theorem 1. Let ε = 1/sβ. There is a proper learning algorithm for s-sparse
polynomial that runs in polynomial-time and makes

qU =
(s

ε

) log β
β +O( 1

β )

+ Õ (s)
(

log
1
ε

)
log n

queries.
1 It is not clear from their algorithm how to use the technique in this paper to improve

the query complexity. But even if there is a way, the query complexity will be at
least the number of membership queries O(ns3).
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To the best of our knowledge, this is the first learning algorithm whose query
complexity is sublinear in 1/ε and almost linear in s. See Theorems 4 for the
exact query complexity.

We then give the following lower bound that shows that our query complexity
is almost optimal.

Theorem 2. Let ε = 1/sβ. Any learning algorithm for s-sparse polynomial must
make at least

qL =
(s

ε

) log β
β +Ω( 1

β )

+ Ω

(
s

(
log

1
ε

)
log n

)

queries.

1.2 Property Testing

A problem closely related to learning polynomial is the problem of property
testing polynomial: Given black-box query access to a Boolean function f . Dis-
tinguish, with high probability, the case that f is s-sparse polynomial versus the
case that f is ε-far from every s-sparse polynomial. Property testing of Boolean
function was first considered in the seminal works of Blum, Luby and Rubin-
feld [7] and Rubinfeld and Sudan [24] and has recently become a very active
research area. See the surveys and books [18,19,21,22].

In the uniform distribution framework, where the distance between two func-
tions is measured with respect to the uniform distribution, the first testing algo-
rithm for s-sparse polynomial runs in exponential time [14] and makes Õ(s4/ε2)
queries. Chakraborty et al. [12], gave another exponential time algorithm that
makes Õ(s/ε2) queries. Diakonikolas et al. gave in [15] the first polynomial-time
testing algorithm that makes poly(s, 1/ε) > s10/ε3 queries. In [9], Bshouty gave a
polynomial-time algorithm that makes Õ(s2/ε) queries. As for the lower bound
for the query complexity, the lower bound Ω(1/ε) follows from Bshouty and
Goldriech lower bound in [10]. Blais et al. [5], and Saglam, [25], gave the lower
bound Ω(s log s).

Applying the reduction in [9] (see the discussion after Theorem 51 in Sect. 6.3
in [9]), with Theorem 1, we get

Theorem 3. For any ε = 1/sβ there is an algorithm for ε-testing s-sparse poly-
nomial that makes

Q =
(s

ε

) log β
β +O( 1

β )

+ Õ
(s

ε

)

queries.
In particular, for β > 3.404,

Q = Õ
(s

ε

)
.

Notice that the query complexity of the tester in Theorem 3 is Õ((1/ε)1+1/β).
This is within a factor of (1/ε)1/β of the lower bound Ω(1/ε). Therefore, the
query complexity in Theorem 3 is almost optimal.
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2 Techniques

In this section, we give a brief overview of the techniques used for the main
results, Theorems 1, 2, and 3.

2.1 Upper Bound

This section gives a brief overview of the proof of Theorem 1.
Our algorithm first reduces the learning of s-sparse polynomial to exact learn-

ing s-sparse polynomials with monomials of size at most d = O(log(s/ε)), i.e.,
degree-d s-sparse polynomials. Given an s-sparse polynomial f , we project each
variable to 0 with probability O(log s/ log(1/ε)). In this projection, monomials
of size greater than Ω(d) vanish, with high probability. Then we learn the pro-
jected function. We take enough random zero projections of f so that, with high
probability, for every monomial M of f of size at most log(s/ε), there is a pro-
jection q such that M does not vanish under q. Collecting all the monomials of
degree at most log(s/ε) in all the projections gives a hypothesis that is ε-close
to the target function f .

Now to exactly learn the degree-d s-sparse polynomials, where d =
O(log(s/ε)), we first give an algorithm that finds a monomial of a degree-d
s-sparse polynomial that makes

Q = 2dH2( log s
d )(1−os(1)) log n = slog(log(s/ε)/ log s)+O(1) log n (1)

queries where H2 is the binary entropy. The best-known algorithm for this prob-
lem has query complexity Q′ = 2d log n ≈ poly(s/ε) log n, [9,11]. For small
enough ε, Q′ � Q. The previous algorithm in [9] chooses uniformly at ran-
dom assignments until it finds a positive assignment a, i.e., f(a) = 1. Then
recursively do the same for f(a ∗ x), where a ∗ x = (a1x1, a2x2, . . . , anxn), until
no more a with smaller Hamming weight can be found. Then f(a∗x) =

∏
ai=1 xi

is a monomial of f . To find a positive assignment in a degree d polynomial from
uniformly at random assignments, we need to make, on average, 2d queries. The
number of nonzero entries in a ∗ x is on average n/2. Therefore, this algorithm
makes O(2d log n) queries. In this paper, we study the probability PrDp

[f(a) = 1]
when a is chosen according to the product distribution Dp, where each ai is equal
to 1 with probability p and is 0 with probability 1 − p. We show that to maxi-
mize this probability, we need to choose p = 1−(log s)/d. Replacing the uniform
distribution with the distribution Dp in the above algorithm gives the query
complexity in (1).

Now, let f be a degree-d s-sparse polynomial, and suppose we have learned
some monomials M1, . . . ,Mt of f . To learn a new monomial of f , we learn a
monomial of f + h where h = M1 + M2 + · · · + Mt. This gives an algorithm that
makes,

q =
(s

ε

) log β
β +O( 1

β )

log n (2)
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queries where ε = 1/sβ . All previous algorithms have query complexity that are
at least quadratic in s and linear in 1/ε.

Now, notice that the query complexity in (2) is not the query complexity
that is stated in Theorem 1. To get the query complexity in the theorem, we
use another reduction. This reduction is from exact learning degree-d s-sparse
polynomials over n variables to exact learning degree-d s-sparse polynomials
over m = O(d2s2) variables. Given a degree-d s-sparse polynomials f over n
variables. We choose uniformly at random a projection φ : [n] → [m] and learn
the polynomial F (x1, . . . , xm) = f(xφ(1), . . . , xφ(n)) over m variables. This is
equivalent to distributing the n variables, uniformly at random, into m boxes,
assigning different variables for different boxes, and then learning the function
with the new variables. We choose m = O(d2s2) so that different variables in f
fall into different boxes. By (2), the query complexity of learning F is

q′ =
(s

ε

) log β
β +O( 1

β )

log m =
(s

ε

) log β
β +O( 1

β )

. (3)

After we learn F , we find the relevant variables of F , i.e., the variables that F
depends on. Then, for each relevant variable of F , we search for the relevant vari-
able of f that corresponds to this variable. Each search makes O(log n) queries.
The number of relevant variables of f is at most ds and here d = O(log(s/ε)),
which adds

Õ(s)
(

log
1
ε

)
(log n)

to the query complexity in (3). This gives the query complexity in Theorem 1.
We also show that all the above can be done in time O(qn) where q is the query
complexity.

See more details in Sect. 4.3.

2.2 Lower Bound

This section gives a brief overview of Theorem 2.
In this paper, we give two lower bounds. One that proves the right summand

of the lower bound

Ω

(
s

(
log

1
ε

)
log n

)
, (4)

and the second proves the left summand

(s

ε

) log β
β +Ω( 1

β )

. (5)

To prove (4), we consider the class of log(1/(2ε))-degree s-sparse polynomials.
We show that any learning algorithm for this class can be modified to an exact
learning algorithm. Then, using Yao’s minimax principle, the query complexity
of exactly learning this class is at least log of the class size. This gives the first
lower bound in (4).
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To prove (5), we consider the class

C =

⎧
⎨
⎩

∏
i∈I

xi

∏
j∈J

(1 + xj)

∣∣∣∣∣∣
I, J ⊆ [n], |J | ≤ log s, |I| ≤ log(1/ε) − log s − 1

⎫
⎬
⎭ .

It is easy to see that every polynomial in C is a s-sparse polynomial.
Again, we show that any learning algorithm for this class can be modified to

an exact learning algorithm. We then use Yao’s minimax principle to show that,
to exactly learn C, we need at least Ω(|C|) queries. This gives the lower bound
in (5).

2.3 Upper Bound for Testing

For the result in testing, we use the reduction in [9]. In [9] it is shown that given
a learning algorithm for s-sparse polynomial that makes q(s, n) queries, one can
construct a testing algorithm for s-sparse polynomial that makes

q(s, Õ(s)) + Õ
(s

ε

)

queries. Using Theorem 1 we get a testing algorithm with query complexity
(recall that ε = 1/sβ) (s

ε

) log β
β +O( 1

β )

+ Õ
(s

ε

)
.

We then show that for β ≥ 6.219, this query complexity is Õ(s/ε). In the full
paper, we give another learning algorithm that has query complexity better than
Theorem 1 for β < 6.219. Using this algorithm, we get a tester that has query
complexity Õ(s/ε) for β ≥ 3.404.

3 Definitions and Preliminary Results

In this section, we give some definitions and preliminary results.
We will denote by Pn,s the class of s-sparse polynomials over GF (2) = {0, 1}

with the Boolean variables (x1, . . . , xn) and Pn,d,s ⊂ Pn,s, the class of degree-d
s-sparse polynomials over GF (2). Formally, let Sn,≤d = ∪i≤dSn,i, where Sn,i =(
[n]
i

)
is the set of all i-subsets of [n] = {1, 2, . . . , n}. The class Pn,d,s is the class

of all the polynomials over GF (2) of the form
∑

I∈S

∏
i∈I xi where S ⊆ Sn,≤d

and |S| ≤ s. The class Pn,s is Pn,n,s.
Let Bn be the uniform distribution over {0, 1}n. The following result is well

known. See for example [4].

Lemma 1. For any f ∈ Pn,d,s we have

Prx∈Bn
[f(x) �= 0] = Prx∈Bn

[f(x) = 1] ≥ 2−d.
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We will now extend Lemma 1 to other distributions.
Let Wn,s be the set of all the assignments in {0, 1}n of Hamming weight at

least n−log s�. We prove the following in the full paper for completeness [13,23].

Lemma 2. [13,23]. For any 0 �= f ∈ Pn,s there is an assignment a ∈ Wn,s

such that f(a) = 1.

The p-product distribution Dn,p is a distribution over {0, 1}n where Dn,p(a) =
pwt(a)(1 − p)n−wt(a) where wt(a) is the Hamming weight of a. Let H2(x) =
−x log2 x − (1 − x) log2(1 − x) be the binary entropy function.

We prove

Lemma 3. Let p ≥ 1/2. For every f ∈ Pn,d,s, f �= 0, we have

Prx∈Dn,p
[f(x) = 1] ≥

{
pd−�log s�(1 − p)�log s� d ≥ log s�
(1 − p)d d < log s� .

In particular, if d ≥ 2log s�, then for p′ = (d − log s�)/d

max
p≥1/2

Prx∈Dn,p
[f(x) = 1] = Prx∈Dn,p′ [f(x) = 1] ≥ 2−H2( �log s�

d )d

and if d < 2log s�, then for p′ = 1/2

max
p≥1/2

Prx∈Dn,p
[f(x) = 1] = Prx∈Dn,p′ [f(x) = 1] ≥ 2−d.

Proof. We first consider the case n = d. Let 0 �= f(x) ∈ Pd,d,s. When d ≥ log s�,
by Lemma 2, there is a ∈ Wd,s such that f(a) = 1. Therefore

Prx∈Dd,p
[f(x) = 1] ≥ Dd,p(a) = pwt(a)(1 − p)d−wt(a)

≥ pd−�log s�(1 − p)�log s�. (6)

When d < log s�, we have Pd,d,s = Pd,d,2d . This is because 2d < s and any
polynomial in d variables of degree d has at most 2d monomials. Therefore, by
(6), we have

Prx∈Dd,p
[f(x) = 1] ≥ pd−�log 2d�(1 − p)�log 2d� = (1 − p)d.

Thus, the result follows for nonzero functions with d variables.
Let 0 �= f(x) ∈ Pn,d,s. Let M be a monomial of f of maximal degree d′ ≤ d.

Assume wlog that M = x1x2 · · · xd′ . First notice that for any (ad+1, . . . , an) ∈
{0, 1}n−d we have g(x1, . . . , xd) := f(x1, . . . , xd, ad+1, . . . , an) �= 0 and g ∈ Pd,d,s.
Consider the indicator random variable X(x) that is equal to 1 if f(x) = 1. Then

Prx∈Dn,p
[f(x) = 1] = E[X]

= E(ad+1,...,an)∈Dn−d,p
[E(x1,x2,...,xd)∈Dd,p

[X(x1, . . . , xd, ad+1, . . . , an)]]
= E(ad+1,...,an)∈Dn−d,p

[Pr(x1,x2,...,xd)∈Dd,p
[f(x1, . . . , xd, ad+1, . . . , an) = 1]]

≥
{

pd−�log s�(1 − p)�log s� d ≥ log s�
(1 − p)d d < log s� .

��



Almost Optimal Proper Learning and Testing Polynomials 319

In particular, since f(x) �= g(x) is equivalent to f(x) + g(x) = 1 and f + g ∈
Pn,2s,d, we have the following result for Prx∈Dn,p

[f(x) �= g(x)].

Lemma 4. Let p ≥ 1/2. For every f, g ∈ Pn,d,s, f �= g, we have

Prx∈Dn,p
[f(x) �= g(x)] ≥

{
pd−�log s�−1(1 − p)�log s�+1 d ≥ log s� + 1
(1 − p)d d < log s� + 1

.

In particular, if d ≥ 2log s� + 2, then for p′ = (d − log s� − 1)/d

max
p≥1/2

Prx∈Dn,p
[f(x) �= g(x)] = Prx∈Dn,p′ [f(x) �= g(x)] ≥ 2−H2( �log s�+1

d )d

and if d < 2log s� + 2, then for p′ = 1/2

max
p≥1/2

Prx∈Dn,p
[f(x) �= g(x)] = Prx∈Dn,p′ [f(x) �= g(x)] ≥ 2−d.

In particular, for p′ = max((d − log s� − 1)/d, 1/2),

max
p≥1/2

Prx∈Dn,p
[f(x) �= g(x)] = Prx∈Dn,p′ [f(x) �= g(x)] ≥ 2−H2(min( 1

2 ,
�log s�+1

d ))d

Consider the algorithm Test in Fig. 1. We now prove

Lemma 5. The algorithm Test(f, g, δ) for f, g ∈ Pn,d,s given as black-boxes,
makes

q = 2H2(min( �log s�+1
d , 12 ))d ln

1
δ

queries, runs in time O(qn), and if f �= g, with probability at least 1− δ, returns
an assignment a such that f(a) �= g(a). If f = g then with probability 1 returns
“f = g”.

Proof. If f �= g then, by Lemma 4 and since 1 − x ≤ e−x, the probability that
f(a) = g(a) for all a is at most

(
1 − 2−H2(min( �log s�+1

d , 12 ))d
)H2(min( �log s�+1

d , 12 ))d ln(1/δ)

≤ δ.

��

4 The Learning Algorithm

In this section, we give the learning algorithm for Pn,s.
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Fig. 1. For f, g ∈ Pm,d,s, if f �= g then, with probability at least 1 − δ, returns an
assignment a such that f(a) �= g(a).

4.1 The Reduction Algorithms

In this subsection, we give the reductions we use for the learning. In the intro-
duction, we gave a brief explanation of the proof. The full proof can be found in
the full paper.

Let f(x1, . . . , xn) be any Boolean function. A p-zero projection of f is a ran-
dom function, f(z) = f(z1, . . . , zn) where each zi is equal to xi with probability
p and is equal to 0 with probability 1 − p.

We now give the first reduction,

Lemma 6. (Pn,s → Pn,d,s). Let 0 < p < 1 and w = (s/ε)log(1/p) ln(16s). Sup-
pose there is a proper learning algorithm that exactly learns Pn,d,s with Q(d, δ)
queries in time T (d, δ) and probability of success at least 1 − δ. Then there is
a proper learning algorithm that learns Pn,s with O(w · Q(D, 1/(16w)) log(1/δ))
queries where

D = log
s

ε
+

log s + log log s + 6
log(1/p)

,

in time w ·T (D, 1/(16w)) log(1/δ), probability of success at least 1− δ and accu-
racy 1 − ε.

We now give the second reduction.

Lemma 7. (Pn,d,s → P(2ds)2,d,s). Suppose there is a proper learning algorithm
that exactly learns P(2ds)2,d,s with Q(d, δ) queries in time T (d, δ) and proba-
bility of success at least 1 − δ. Then there is a proper learning algorithm that
exactly learns Pn,d,s with q = (Q(d, 1/16) + ds log n) log(1/δ) queries in time
(T (d, 1/16) + dsn log n) log(1/δ) and probability of success at least 1 − δ.

4.2 The Algorithm for Pm,d,s

In this section, we give a learning algorithm that exactly learns Pm,d,s.
Consider the algorithm FindMonomial in Fig. 2. For two assignments a and

b in {0, 1}m we define a ∗ b = (a1b1, . . . , ambm). We prove
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Lemma 8. For f ∈ Pm,d,s, f �= 0, FindMonomial(f, d, δ) makes at most

Q = O
(
2dH2(min( �log s�+1

d , 12 ))d log(m/δ)
)

queries, runs in time O(Qn), and with probability at least 1− δ returns a mono-
mial of f .

Proof. Let t = 8d ln(m/δ). Let a(1), . . . , a(t) be the assignments generated in
the “Repeat” loop of FindMonomial(f, d, δ). Define the random variable Xi =
wt(a(i)) − di, i ∈ [t], where di is the degree of the minimal degree monomial
of f(a(i) ∗ x). First notice that every monomial of f(a(i) ∗ x) is a monomial
of f(a(i−1) ∗ x) and of f . Therefore, d ≥ di+1 ≥ di. Also, if Xi = 0 then
f(a(i) ∗ x) =

∏
a
(i)
j =1

xj is a monomial of f .

Given a(i) such that g(x) = f(a(i) ∗ x) �= 0. Notice that g ∈ Pm,d,s and if
f(b ∗ a(i) ∗ x) = 0 then a(i+1) = a(i), di+1 = di and Xi+1 = Xi. Let M be any
monomial of g of degree di and suppose, wlog, M = x1x2 · · · xdi

. For b ∈ Dm,p

where p = 2−1/d, with probability η := (2−1/d)di ≥ 1/2, b1 = b2 = · · · = bdi
= 1.

If b1 = b2 = · · · = bdi
= 1 then f(b ∗ a(i) ∗ x) �= 0. This is because M remains

a monomial of f(b ∗ a(i) ∗ x). Therefore, η′ := Pr[f(b ∗ a(i) ∗ x) �= 0] ≥ η. The
expected weight of (bdi+1a

(i)
di+1, . . . , bma

(i)
m ) is 2−1/dXi. Also, if f(b ∗a(i) ∗x) �= 0

then, with probability at least 1/2, Test succeed to detect that f(b∗a(i)∗x) �= 0.
Therefore,

E[Xi+1|Xi] ≤ 1
2
η′(2−1/dXi) +

(
1 − η′

2

)
Xi

≤ 1
2
η′

(
1 − 1

2d

)
Xi +

(
1 − η′

2

)
Xi

=
(

1 − η′

4d

)
Xi ≤

(
1 − 1

8d

)
Xi.

Now, X0 ≤ m and therefore E[Xt] ≤ m
(
1 − 1

8d

)t ≤ δ. Thus, by Markov’s bound,
the probability that f(a(t) ∗ x) is not a monomial is

Pr[Xt �= 0] = Pr[Xt ≥ 1] ≤ δ.

Now, by Lemma 5, the query complexity in the lemma follows. ��
We now prove

Lemma 9. There is a proper learning algorithm that exactly learns Pm,d,s,
makes

Q(m, d, δ) = O
(
s2H2(min( �log s�+1

d , 12 ))dd log(ms/δ)
)

queries, and runs in time O(Q(m, d, δ)n).

Proof. In the first iteration of the algorithm, we run FindMonomial(f, d, δ/s)
to find one monomial. Suppose at iteration t the algorithm has t monomials
M1, . . . ,Mt of f . In the t + 1 iteration, we run FindMonomial(f +

∑t
i=1 Mi,

d, δ/s) to find a new monomial of f .
The correctness and query complexity follows from Lemma 8. ��
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Fig. 2. For f ∈ Pm,d,s returns a monomial of f .

4.3 The Algorithm

In this section, we give the algorithm for Pn,s. We prove

Theorem 4. Let ε = 1/sβ, β ≥ 1. There is a proper learning algorithm for
s-sparse polynomial with probability of success at least 2/3 that makes

qU =
(s

ε

)γ(β)+os(1)

+ O

(
s

(
log

1
ε

)
log n

)
(7)

queries and runs in time O(qU · n) where

γ(β) = min
0≤η≤1

η + 1
β + 1

+ (1 + 1/η)H2

(
1

(1 + 1/η)(β + 1)

)
.

In particular

1. γ(β) = log β
β + 4.413

β + Θ
(

1
β2

)
.

2. γ(β) < 1 for β > 6.219. That is, the query complexity is sublinear in 1/ε and
almost linear in s when β > 6.219.

3. For β > 4.923 the query complexity is better than the best known query com-
plexity (which is s2/ε = (s/ε)(2+β)/(1+β)).

4. γ(β) ≤ 4 for all β, and γ is a monotone decreasing function in β.

We note here that in the full paper, we give another algorithm that improves
the bounds in items 2–4. In particular, the query complexity of the algorithm
with the above algorithm is better than the best-known query complexity for
β > 1. The above algorithm also works for β < 1, but the one in full paper has
a better query complexity.

We now give the proof of the Theorem
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Proof. Since log(1/ε)/(log s) = β ≥ 1, we have log s < log(1/ε). Let p > 1/2 and

D = log
s

ε
+

log s + log log s + 6
log(1/p)

> 2 log s + 2.

We will choose p later such that log(1/p) = Θ((log s)/(log(1/ε)) and therefore
D = O(log(s/ε)) = O(log(1/ε)).

We start from the algorithm in Lemma 9 that exactly learns P(2Ds)2,D,s with

Q1(D, δ) = O
(
s2D·H2( �log s�+1

D )D log((2Ds)2s/δ)
)

= Õ
(
s2D·H2( �log s�+1

D )
)

log(1/δ)

queries, time O(Q1n) and probability of success at least 1 − δ.
By the second reduction, Lemma 7, there is a proper learning algorithm that

exactly learns Pn,D,s with

Q2(D, δ) = (Q1(D, 1/16) + Ds log n) log(1/δ)

=
(

Õ
(
s2D·H2( �log s�+1

D )
)

+ O

(
s

(
log

1
ε

)
log n

))
log(1/δ).

queries in time O(Q2(D, δ)n) and probability of success at least 1 − δ.
If we now use the first reduction in Lemma 6 as is we get the first summand

in the query complexity in (7), but the second summand, O(s log(1/ε) log(n)),
becomes (s1+log(1/p)/εlog(1/p))(log(1/ε)) log(n), which is not what we stated in
the Theorem. Instead, we use the first reduction with the following changes.

Notice that the log n in the summand ds log(n) in the first reduction resulted
from searching for the relevant variable in the set {xu}φ(u)=t for some t ∈ [m].
See the proof of Lemma 7. Suppose the algorithm knows a priori w relevant
variables of the function f and is required to run the second reduction. Then the
term ds log n can be replaced by (ds − w) log n. This is because the reduction
needs to search only for the other at most ds−w relevant variables of f . Now, if
we use the first reduction in Lemma 6, when we find the relevant variables of f
in the p-zero projections f(z(1)), . . . , f(z(i)), we do not need to search for them
again in the following p-zero projections f(z(i+1)), . . . , f(z(w)). Therefore, the
query complexity of the search of all the variables remains O(s log(1/ε) log(n)).

Therefore, after using the first reduction with the above modification, we get
a proper learning algorithm that learns Pn,s that makes

Q3(d, δ, ε) =
(

Õ

(
s
(s

ε

)log(1/p)

2D·H2( �log s�+1
D )

)
+ O

(
s

(
log

1
ε

)
log n

))
log

1
δ

queries in time O(n ·Q3), probability of success at least 1−δ and accuracy 1− ε.
Now recall that ε = 1/sβ and choose p = 2−η/(β+1) for a constant 0 < η < 1.

Then p > 1/2, log(1/p) = η/(β + 1) = Θ((log s)/ log(1/ε)),

D = (β + 1)
(

1 +
1
η

)
log s + Θ(β log log s) =

(
1 +

1
η

)
log

s

ε
+ Θ(β log log s)



324 N. H. Bshouty

and

s
(s

ε

)log(1/p)

2D·H2( �log s�+1
D )

=
(s

ε

) η+1
β+1

(s

ε

)((1+1/η)+Θ( log log s
log s ))H2( 1

(1+1/η)(β+1) (1−Θ( log log s
β log s )))

=
(s

ε

) η+1
β+1+(1+1/η)H2( 1

(1+1/η)(β+1) )(1−os(1))

.

This completes the proof. ��

5 Lower Bounds

In this section, we prove the following lower bound for learning sparse polyno-
mials.

Theorem 5. Let ε = 1/sβ. Any learning algorithm for s-sparse polynomial with
a confidence probability of at least 2/3 must make at least

Ω̃

((s

ε

) β·H2(min(1/β,1/2))
β+1

)
+ Ω

(
s

(
log

1
ε

)
log n

)

=
(s

ε

) log β
β + 1

(ln 2)β +Ω( log β

β2 )

+ Ω

(
s

(
log

1
ε

)
log n

)

queries.

We first give the following lower bound that proves the second summand in
the lower bound

Lemma 10. Any learning algorithm for Pn,s with a confidence probability of at
least 2/3 must make at least Ω(s(log(1/ε)) log n) queries.

Proof. Consider the class C = Pn,log(1/(2ε)),s. Consider a (randomized) learning
algorithm AR for Pn,s with a confidence probability of at least 2/3 and accuracy
ε. Then AR is also a (randomized) learning algorithm for C. Since by Lemma 1,
any two distinct functions in C have distance 2ε, AR exactly learns C with
a confidence probability of at least 2/3. This is because, after learning an ε-
close formula h, since any two distinct functions in C have distance 2ε, the
closest function in C to h is the target function. By Yao’s minimax principle,
there is a deterministic non-adaptive exact learning algorithm AD with the same
query complexity as AR that learns at least (2/3)|C| functions in C. By the
standard information-theoretic lower bound, the query complexity of AD is at
least log((2/3)|C|). Since

log |C| = log
((

n
log(1/(2ε))

)
s

)
= Ω

((
log

1
ε

)
s log n

)

the result follows. ��
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We now give the following lower bound that proves the second summand in
the lower bound

Lemma 11. Let ε = 1/sβ. Any learning algorithm for Pn,s with a confidence
probability of at least 2/3 must make at least

Ω

((s

ε

) β·H2(min(1/β,1/2))
β+1

)

queries.

Proof. We first prove the lower bound for β > 1. Let t = log(1/ε)− log s−1 and
r = log s. Let W be the set of all pairs (I, J) where I and J are disjoint sets,
I∪J = [t+r], |I| ≥ t and |J | = t+r−|I| ≤ r. For every (I, J) ∈ W define fI,J =∏

i∈I xi

∏
j∈J(1+xj). Obviously, for two distinct (I1, J1), (I2, J2), fI1,J1 ·fI2,J2 =

0. Consider the set C = {fI,J |(I, J) ∈ W}. First notice that C ⊂ Pn,t+r,s ⊆ Pn,s

and, by Lemma 1, Pr[fI,J = 1] ≥ 2−(t+r) = 2− log(1/ε)+1 = 2ε. Furthermore,
since for (I1, J1) �= (I2, J2) the degree of fI1,J1 + fI2,J2 is log(1/ε) − 1, we also
have

Pr[fI1,J1 �= fI2,J2 ] ≥ 2ε. (8)

Therefore, any learning algorithm for Pn,s (with accuracy ε and confidence 2/3)
is a learning algorithm for C and thus is an exact learning algorithm for C. This
is because, after learning an ε-close formula h, by (8), the closest function in C
to h is the target function.

Consider now a (randomized) non-adaptive exact learning algorithm AR for
C with probability of success at least 2/3 and accuracy ε. By Yao’s minimax
principle, there is a deterministic non-adaptive exact learning algorithm AD

such that, for uniformly at random f ∈ C, with a probability at least 2/3, AD

returns f . We will show that AD must make more than q = (1/10)|C| queries.
Now since,

|C| =
log s∑
i=0

(
log 1

ε − 2
i

)
≥ Ω̃

(
2H2(min( log s

log(1/ε) , 12 )) log(1/ε)
)

= Ω̃

((
1
ε

)H2(min(1/β,1/2))
)

= Ω̃

((s

ε

) β·H2(min(1/β,1/2))
β+1

)

the result follows.
To this end, suppose for the contrary, AD makes q queries. Let S = {a(1), . . .

, a(q)} be the queries that AD makes. For every (I, J) ∈ W let SI,J = {a ∈
S|fI,J(a) = 1}. Since for any two distinct (I1, J1), (I2, J2) ∈ W we have fI1,J1 ·
fI2,J2 = 0, the sets {SI,J}(I,J)∈W are disjoint sets.

Let f = fI′,J ′ be uniformly at random function in C. We will show that,
with probability at least 4/5, AD fails to learn f , which gives a contradiction.
Since

E(I,J)∈W [|SI,J |] =

∑
(I,J)∈W |SI,J |

|W | =
q

w
=

1
10

,
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at least (9/10)|W | of the SI,J are empty sets. Therefore, with probability at least
9/10, SI′,J ′ is an empty set. In other words, with probability at least 9/10, the
answers to the all the queries are 0. If the answers to all the queries are zero, then
with probability at most 1/10, the algorithm can guess I ′, J ′, and therefore, the
failure probability of the algorithm is at least 4/5. This proves the case β > 1.

Now we prove the result for 0 < β ≤ 1. By Lemma 10, we get the lower
bound Ω(s). Since s =

(
s
ε

)1/(β+1) and for 0 < β ≤ 1

1
β + 1

≥ β · H2(min(1/β, 1/2))
β + 1

the result follows. ��
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Abstract. In this work we present a sampling algorithm for estimating
the local clustering of each vertex of a graph. Let G be a graph with
n vertices, m edges, and maximum degree Δ. We present an algorithm
that, given G and fixed constants 0 < ε, δ, p < 1, outputs the values for
the local clustering coefficient within ε error with probability 1 − δ, for
every vertex v of G, provided that the (exact) local clustering of v is
not “too small.” We use VC dimension theory to give a bound for the
number of edges required to be sampled by the algorithm. We show that
the algorithm runs in time O(Δ lg Δ+m). We also show that the running
time drops to, possibly, sublinear time if we restrict G to belong to some
well-known graph classes. In particular, for planar graphs the algorithm
runs in time O(Δ). In the case of bounded-degree graphs the running
time is O(1) if a bound for the value of Δ is given as a part of the input,
and O(n) otherwise.

Keywords: Clustering coefficient · Approximation algorithm ·
Sampling · VC dimension

1 Introduction

The occurrence of clusters in networks is a central field of investigation in the
area of network theory [9,31]. The existence of such phenomena motivated the
creation of a variety of measures in order to quantify its prevalence; the clustering
coefficient [2,6,24] is one of the most popular of these measures.

There are global and local versions of the clustering coefficient. Given a graph,
its global clustering coefficient is a value that quantifies the overall clustering of
the graph in terms of the number of existing triangles. If the objective, however,
is to analyze features of complex networks such as modularity, community struc-
ture, assortativity, and hierarchical structure, then the concept of local clustering
coefficient is a better fit. This measure quantifies the degree in which a vertex
is a part of a cluster in a graph. Simply speaking, the measure is related to the
ratio of the number of triangles existing in the neighborhood of the target vertex
to the total number of pair of nodes in the neighborhood. A precise definition
for this measure is provided in Definition 1.
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An exact algorithm for computing the local clustering coefficient of each
vertex of a graph typically runs in cubic time. When dealing with large scale
graphs, however, this is inefficient in practice, and high-quality approximations
obtained with high confidence are usually sufficient. More specifically, given an
error parameter ε, a confidence parameter δ, and an adjustable lower bound
parameter p (treated as constants), the idea is to sample a subset of edges in the
graph such that the values for the local clustering coefficient can be estimated
within ε error from the exact value with probability 1 − δ, for each vertex that
respects a certain function of the parameter p. At the core of our strategy we
use VC-dimension theory to give a bound on the size of the sample in order to
meet the desired quality guarantees.

1.1 Related Work

The local clustering coefficient was originally proposed by Watts and Strogatz
(1998) [31] in order to determine if a graph has the property of being small-world.
Intuitively, this coefficient measures how close the neighborhood of a vertex is
to being a clique. Over the years, many variants of this measure have been
proposed, making it somewhat difficult to provide a unified comparison between
all these approaches under the light of algorithmic complexity.

One of these variations is the study of Soffer and Vázquez (2005) [30] on
the influence of the degree of a vertex on the local clustering computation, a
modification on the original measure where the degree-correlation is filtered out.
The work of Li et al. (2018) [16] provides a measure combining the local clus-
tering coefficient and the local-degree sum of a vertex, but focused on a specific
application of influence spreading. Other extensions of the measure and their
applications in particular scenarios include link prediction [8,33] and community
detection [11,20,23,25,36]. In the theoretical front, working on random graphs,
Kartun–Gilles and Bianconi (2019) [12] gives a statistical analysis of the topol-
ogy of nodes in networks from different application scenarios. There are also
many recent bounds for the average clustering of power-law graphs [3,7,10,14],
a graph model that represents many social and natural phenomena.

The algorithmic complexity of the exact computation of the local clustering
coefficient of each vertex of a graph typically runs in cubic time. In our work,
however, we are interested in faster approximation algorithms for obtaining good
quality estimations. Let n = |V | and m = |E| in a graph G. In the work of
Kutzkov and Pagh (2013) [15], the authors show an ε-approximation streaming
algorithm for the local clustering coefficient of each vertex of degree at least d
in expected time O( m

αε2 log 1
ε log n

δ ), where α is the local clustering coefficient of
such vertex. This holds with probability at least 1 − δ. In the work of Zhang
et al. (2017) [34], the authors propose an ε-approximation MapReduce–based
algorithm for the problem, and empirically compare its performance with other
approximation algorithms designed using this type of approach [13,28].

Results for the computation of the top k vertices with the highest local
clustering coefficient were also proposed [4,17,35]. In particular, Zhang et al.
(2015) [35] use VC dimension and the ε-sample theorem on their algorithm
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analysis, but in a different sample space than the one that we are facing here, and
for a scenario which is not exactly the one that we are tackling. In fact, sample
complexity analysis has been shown to be an effective tool in the design of some
graph algorithms, e.g. the computation of betweenness [26,27] and percolation
centralities [5,19].

1.2 Our Results

In this paper we present an algorithm that samples edges from an input graph
G and, for fixed constants 0 < ε, δ, p < 1, outputs an estimate l̃(v) for the
exact value l(v) of the local clustering coefficient of each vertex v ∈ V , such
that |l(v)− l̃(v)| ≤ εl(v), with probability at least 1−δ whenever l(v) is at least
pm/

(
δv
2

)
, where δv is the degree of v. The main theme in our work is that, by using

Vapnik–Chervonenkis (VC) dimension theory, we can obtain an upper bound for
the sample size that is tighter than the ones given by standard Hoeffding and
union-bound sampling techniques. In particular, we show that the sample size
does not depend of the size of G, but on a specific property of it, more precisely,
its maximum degree Δ.

In Sect. 3.1 we give a definition for the VC dimension of a graph and show
in Theorem 2 that, for any graph, the VC dimension is at most �lg (Δ − 1)�+1.
The sample size used in the algorithm depends, roughly speaking, on this value.
In Corollary 1, we show that our analysis is tight by presenting an explicit
construction of a class of graphs for which the VC dimension reaches this upper
bound. Even so, we also provide a tighter analysis for the case in which the input
graph belongs to certain graph classes. In the class of bounded-degree graphs the
VC dimension is bounded by a constant. In the case of planar graphs, we show,
in Corollary 2, that the VC dimension is at most 2.

In Sect. 3.2, we show that the running time for the general case of our algo-
rithm is O(Δ lg Δ + m). In Corollaries 3 and 4 we present an analysis for planar
graphs and for bounded-degree graphs, cases where the running time drops to,
possibly, sublinear time. In the case of planar graphs, our algorithm has running
time O(Δ). In the case of bounded-degree graphs the running time is O(1) if a
bound for the value of Δ is given as a part of the input, and O(n), otherwise.

2 Preliminaries

In this section, we present the definitions, notation, and results that are the
groundwork of our proposed algorithm. In all results of this paper, we assume
w.l.o.g. that the input graph is connected, since otherwise the algorithm can be
applied separately to each of its connected components.

2.1 Graphs and Local Clustering Coefficient

Let G = (V,E) be a graph where V is the set of vertices and E the set of edges.
We use the convention that n = |V | and m = |E|. For each vertex v ∈ V , let δv
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be the degree of v, and ΔG = maxv∈V {δv} the maximum degree of the graph
G. When the context is clear, we simply use Δ instead of ΔG. We refer to a
triangle as being a complete graph with three vertices. Given v ∈ V , we let Tv

be the number of triangles that contain v.

Definition 1 (Local Clustering Coefficient). Given a graph G = (V,E), the
local clustering coefficient of a vertex v ∈ V is

l(v) =
2Tv

δv(δv − 1)
.

2.2 Sample Complexity and VC Dimension

In sampling algorithms, we typically want to estimate a certain quantity observ-
ing some parameters of quality and confidence. The sample complexity analysis
relates the minimum size of a random sample required to obtain results that
are consistent with the desired parameters. An upper bound to the Vapnik–
Chervonenkis Dimension (VC dimension) of a class of binary functions, a central
concept in sample complexity theory, is especially defined in order to model the
particular problem that we are facing. An upper bound to the VC dimension
is also an upper bound to the sample size that respects the desired quality and
confidence parameters.

Generally speaking, the VC dimension measures the expressiveness of a class
of subsets defined on a set of points [26]. An in-depth exposition of the definitions
and results presented below can be found in the books of Anthony and Bartlett
(2009) [1], Mohri et al.. (2012) [22], Shalev-Shwartz and Ben-David (2014) [29],
and Mitzenmacher and Upfal (2017) [21].

Definition 2 (Range space). A range space is a pair R = (U, I), where U is
a domain (finite or infinite) and I is a collection of subsets of U , called ranges.

For a given S ⊆ U , the projection of I on S is the set IS = {S ∩I : I ∈ I}. If
|IS | = 2|S| then we say S is shattered by I. The VC dimension of a range space
is the size of the largest subset S that can be shattered by I, i.e.,

Definition 3 (VC dimension). Given a range space R = (U, I), the VC
dimension of R, denoted VCDim(R), is

VCDim(R) = max{d : ∃S ⊆ U such that |S| = d and |IS | = 2d}.

The following combinatorial object, called a relative (p, ε)-approximation, is
useful in the context when one wants to find a sample S ⊆ U that estimates the
size of ranges in I, with respect to an adjustable parameter p, within relative
error ε, for 0 < ε, p < 1. This holds with probability at least 1− δ, for 0 < δ < 1,
where π is a distribution on U and Prπ(I) is the probability of a sample from π
belongs to I.
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Definition 4 (Relative (p, ε)-Approximation, see [26], Def. 5). Given the
parameters 0 < p, ε < 1, a set S is called a (p, ε)-approximation w.r.t. a range
space R = (U, I) and a distribution π on U if for all I ∈ I,

(i)
∣
∣
∣Prπ(I) − |S∩I|

|S|
∣
∣
∣ ≤ ε Prπ(I), if Prπ(I) ≥ p,

(ii) |S∩I|
|S| ≤ (1 + ε)p, otherwise.

An upper bound to the VC dimension of a range space allows to build a
sample S that is a (p, ε)-approximation set.

Theorem 1 (see [18], Theorem 5). Given 0 < ε, δ, p < 1, let R = (U, I) be
a range space with VCDim(R) ≤ d, let π be a given distribution on U , and let c′

be an absolute positive constant. A collection of elements S ⊆ U sampled w.r.t.
π with

|S| ≥ c′

ε2p

(
d log

1
p

+ log
1
δ

)

is a relative (p, ε)-approximation with probability at least 1 − δ.

3 Estimation for the Local Clustering Coefficient

We first define the range space associated to the local clustering coefficient of a
graph G and its corresponding VC dimension, and then we describe the proposed
approximation algorithm.

3.1 Range Space and VC Dimension Results

Let G = (V,E) be a graph. The range space R = (U, I) associated with G is
defined as follows. The universe U is defined to be the set of edges E. We define a
range τv, for each v ∈ V , as τv = {e ∈ E : both endpoints of e are neighbors of
v in G}, and the range set corresponds to I = {τv : v ∈ V }. For the sake of
simplicity, we often use VCDim(G) (instead of VCDim(R)) to denote the VC
dimension of the range space R associated with G.

Theorem 2 shows an upper bound forVCDim(G).

Theorem 2. VCDim(G) ≤ �lg (Δ − 1)� + 1.

Proof. By definition, an edge e ∈ E belongs to a range τv if both endpoints of
e, say, a and b, are neighbors of v. That is, the number of ranges that contain e
corresponds to the common neighbors of a and b. Let N be the set of such com-
mon neighbors. The maximum number of common neighbors a pair of vertices
may have is Δ. Therefore, e is contained in at most Δ−1 ranges. Assuming that
VCDim(R) = d, then from Definition 3, the edge e must appear in 2d−1 ranges.
We have

2d−1 ≤ Δ − 1 =⇒ d − 1 ≤ lg (Δ − 1) =⇒ d ≤ �lg(Δ − 1)� + 1.

��
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One may ask when the bound given in Theorem 2 is tight. We now present
an explicit construction of a family of graphs G = (Gd)d≥3 in order to show that
this bound is tight with relation to Δ. A graph Gd, for d ≥ 3, of this family
is constructed as follows. Initially, we create d disjoint edges e1, . . . , ed. The
endpoints of these edges are called non-indexed vertices. For every non-empty
subset of k edges ei1 , . . . , eik , for 1 ≤ i1 < i2 < . . . < ik ≤ d, we create a vertex
v(i1,i2,...,ik) and connect it to both endpoints of each edge in the subset. These
vertices are called indexed vertices. Figure 1 illustrates G3 and G4.

Fig. 1. The first two graphs of the construction of the family G. In the case of G3 (left),
the edges of S are e1 = {a, b}, e2 = {c, d}, and e3 = {e, f}. In the case of G4 (right),
the edges of S are e1 = {a, b}. e2 = {c, d}, e3 = {e, f}, and e4 = {(g, h}. Non-indexed
vertices are labeled and depicted in black. We depict the indexed vertices in different
colors, depending on the size of its neighborhood in S.

Claim. ΔGd
= 2d−1 + 1.

Proof. A vertex v in a graph G can be either indexed or non-indexed. We analyze
each case separately.

Let v be a non-indexed vertex that is an endpoint of an edge ej . W.l.o.g.,
we may assume that j = 1. The vertex v is adjacent to every indexed vertex
with indices of the form (1, i1, . . . , ik). The first index is fixed, so there are 2d−1

indices of this form. So v is adjacent to 2d−1 indexed vertices. Also, v is adjacent
to the other endpoint of e1. Therefore, the degree of any non-indexed vertex is
2d−1 + 1.

The degree of an indexed vertex cannot be larger than 2d, since such vertex is
adjacent to, at most, both endpoints of each edge e1, ..., ed. Since 2d−1 +1 ≥ 2d,
the result follows. ��
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Theorem 3. For every d ≥ 3, VCDim(Gd) ≥ �lg(ΔGd
− 1)� + 1.

Proof. Remember, R = (U, I), where U = E and I = {τv : v ∈ V } where
τv = {e ∈ E : the endpoints of e are neighbors of v in G}. First, we present a
sample S ⊆ U , |S| = d, which is shattered, i.e. |IS | = 2d, concluding that the
VC dimension is at least d. After that, we show that d = �log(ΔGd

− 1)� + 1,
which proves the theorem.

Let S = {e1, . . . , ed}. Consider an indexed vertex v′ = v(i1,i2,...,ik). By the
construction of the graph, we have that S ∩ τv′ = {ei1 , . . . , eik}, for all τv′ , i.e.,
there is a one-to-one mapping of each v′ to each S ∩ τv′ . Since there are 2d − 1
indexed vertices v′ (there is an indexed vertex for every subset except for the
empty set), then there are 2d − 1 different intersections. Finally, the intersection
that generates the empty set can be obtained by S ∩ τv′′ , where v′′ is any non-
indexed vertex. In other words,

|{S ∩ τv | τv ∈ I}| = |IS | = 2d,

i.e., VCDim(Gd) ≥ d. Now, using Claim 3.1, we have that

�log(ΔGd
− 1)� + 1 = �log(2d−1 + 1 − 1)� + 1 = �d − 1� + 1 = d.

��
Combining Theorems 2 and 3, we conclude that the VC dimension of the

range space is tight, as stated by Corollary 1.

Corollary 1. For every d ≥ 3, there is a graph G such that

VCDim(G) = d = �lg (Δ − 1)� + 1.

Next we define a more general property that holds for a graph Gd.

Property P. We say that a graph G = (V,E) has the Property P if exists
S ⊆ E, |S| ≥ 3, such that:
(i) For each e = {u, v} ∈ S, |e ∩ {S \ {e}}| ≤ 1.
(ii) For each subset S′ ⊆ S, there is at least one vertex vS′ that is adjacent

to both endpoints of each edge of S′.

For every d ≥ 3, Theorem 4 gives conditions based on Property P that a
graph must obey in order to have VC dimension at least d.

Theorem 4. Let G be a graph. If VCdim(G) ≥ 3, then G has Property P.

Proof. We prove the contrapositive of the statement, i.e., we show that if G does
not have Property P, then VCdim(G) < 3. Note that if we assume that G does
not have Property P, then for all S ⊆ E, |S| ≥ 3, we have that either condition
(i) or condition (ii) is false.

If it is the case that (ii) is false, then for all S ⊆ E, |S| ≥ 3, there is a set
S′ ⊆ S such that there is no vS′ ∈ V which is adjacent to both endpoints of
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each edge in S′. We have that the number of subsets of S is 2|S|, so G must
have at least 2|S| vertices so that IS = 2|S|. From the definition of shattering, if
IS < 2|S|, then it is not possible that VCdim(G) ≥ |S|. Since |S| ≥ 3, it cannot
be the case that VCdim(G) ≥ 3.

Now consider the case where (i) is false. In this case, for all S ⊆ E, |S| ≥ 3,
there is an edge e = {u, v} ∈ S where both u and v are endpoints of other
edges in S (i.e., |e ∩ {S \ {e}}| = 2). We name such edge e2 = {b, c}. Suppose
w.l.o.g. that e2 shares its endpoints with the edges e1 = {a, b} and e3 = {c, d}.
Then every triangle containing e1 and e3 necessarily contains e2. Denote by z the
vertex which forms triangles with e1 and e2. Then z also forms a triangle with
e2, since it is adjacent to both b and c, which are the endpoints of e2. Hence, the
subset {e1, e3} cannot be generated from the intersection of I with e1, e2, and
e3. Therefore it cannot be the case that VCdim(G) ≥ 3. ��

Although Theorem 2 gives a tight bound for the VC dimension, if we have
more information about the type of graph that we are working, we can prove
better results. In Corollary 2, we show that if G is a graph from the class of
planar graphs, then the VC dimension of G is at most 2. Another very common
class of graphs where we can achieve a constant bound for the VC dimension is
the class of bounded-degree graphs, i.e. graphs where Δ is bounded by a constant.
For this class, the upper bound comes immediately from Theorem 2.

Note that, even though planar graphs and bounded-degree graphs are both
classes of sparse graphs, such improved bounds for the VC dimension for these
classes do not come directly from the sparsity of these graphs, since we can con-
struct a (somewhat arbitrary) class of sparse graphs G′ where the VC dimension
is as high as the one given by Theorem 2. The idea is that G′ = (G′

d)d≥3, where
each graph G′

d is the union of Gd with a sufficiently large sparse graph. In the
other direction, one should note that dense graphs can have small VC dimension
as well, since complete graphs have VC dimension at most 2. This comes from
the fact that complete graphs do not have the Property P. In fact, for a Kq,
q ≥ 4, the VC dimension is exactly 2, since any set of two edges that have one
endpoint in common can be shattered in this graph.

Corollary 2. If G is a planar graph, then VCDim(G) ≤ 2.

Proof. We prove that the VC dimension of the range space of a planar graph is
at most 2 by demonstrating the contrapositive statement. More precisely, from
Theorem 4, we have that if VCDim(G) ≥ 3, then G has Property P. In this case
we show that G must contain a subdivision of a K3,3, concluding that G cannot
be planar, according to the Theorem of Kuratowski [32].

From Theorem 4, G has a subset of edges {e1, e2, e3} respecting conditions
(i) and (ii) of Property P. Let e1 = {a, b}, e2 = {c, d}, and e3 = {e, f}. Note
that these three edges may have endpoints in common. By condition (i), we
may assume w.l.o.g. that a = c = e. By symmetry, w.l.o.g., there are three
possibilities for the vertices b, d, and f : (1) they are all distinct vertices, (2) we
have d = f , but b = f , and (3) they are the same vertex, i.e. b = d = f . In
Fig. 2 we show three graphs, one for each of these three possible configurations
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for the arrangement of edges e1, e2, and e3. By condition (ii) there are at least
four vertices, say, u, v, w, and x respecting the following:

– u is adjacent to all vertices of {a, b, c, d, e, f};
– v is adjacent to all vertices of {a, b, c, d} and not adjacent to both e and f ;
– w is adjacent to all vertices of {a, b, e, f} and not adjacent to both c and d;
– x is adjacent to all vertices of {c, d, e, f} and not adjacent to both a and b.

Note that, even though every edge depicted in Fig. 2 is mandatory in G, there
may be other edges in G that are not shown in the picture.

Since all of {v, c}, {c, x}, and {x, e} are edges in G, then there is a path from
v to e in G. Let E(P ) be the edges of this path. Consider A = {a, b, e} and
B = {u, v, w}, and let X be the set of edges with one endpoint in A and one
endpoint in B. We can obtain a subgraph H of G that contains a subdivision of
a bipartite graph K3,3 with bipartition (A,B) in the following way. The vertex
set of H is A∪B ∪{c, x} and the edge set of H is X ∪E(P ). Therefore G cannot
be a planar graph. ��

Fig. 2. Three possible arrangements for the edges e1 = {a, b}, e2 = {c, d}, and e3 =
{e, f} from the proof of Corollary 2. The case where b, d, and f are distinct vertices is
depicted above. The case where d = f , but b �= f is shown below in the left. Below in
the right, we show the case where b = d = f . In all three cases, these edges are part of
a subgraph H of G that contains a subdivision of a K3,3.
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3.2 Algorithm

The algorithm takes as input a graph G = (V,E), the quality and confidence
parameters 0 < ε, δ < 1, and a parameter 0 < p < 1, all assumed to be constants.
It outputs the estimation l̃(v) for the exact value l(v) of the local clustering
coefficient for each vertex v ∈ V , such that

|l(v) − l̃(v)| ≤ εl(v), with prob. at least 1 − δ whenever l(v) ≥ σv(p),

where σv(p) = pm/
(
δv
2

)
is an adjustable function, depending on p. The idea,

roughly speaking, is that l(v) ≥ σv(p) holds if the neighborhood of v is not too
small.

Next we present Algorithm 1. At the beginning all T̃v are set to zero.

Algorithm 1: localClusteringEstimation(G,ε,δ,p)

input : Graph G = (V, E) with m edges, parameters 0 < ε, δ, p < 1 .
output: Local clustering coefficient estimation l̃(v), ∀v ∈ V s.t. l(v) ≥ σv(p).

1 r ←
⌈

c′
ε2p

(
(�lg Δ − 1� + 1) log 1

p
+ log 1

δ

)⌉

2 for i ← 1 to r do
3 sample an edge e = {a, b} ∈ E uniformly at random
4 forall the v ∈ Na do
5 if v ∈ Nb then

6 T̃v ← T̃v + m
r

7 return l̃(v) ← 2T̃v
δv(δv−1)

, for each v ∈ V .

Theorem 5. Given a graph G = (V,E), let S ⊂ E be a sample of size

r =
⌈

c′

ε2p

(
(�lg Δ − 1� + 1) log

1
p

+ log
1
δ

)⌉
,

for given 0 < p, ε, δ < 1. Algorithm 1 returns with probability at least 1 − δ
an approximation l̃(v) to l(v) within ε relative error, for each v ∈ V such that
l(v) ≥ σv(p).

Proof. For each v ∈ V , let 1v(e) be the function that returns 1 if e ∈ τv (and
0 otherwise). Thus, Tv =

∑
e∈E 1v(e). The estimated value T̃v, computed by

Algorithm 1, is incremented by m/r whenever an edge e ∈ S belongs to τv, i.e.,

T̃v =
∑

e∈S

m

r
1v(e).

Note that

T̃v =
∑

e∈S

m

r
1v(e) =

m

r

∑

e∈S

1v(e) = m · |S ∩ τv|
|S| .
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Thus, assuming that we have a relative (p, ε)-approximation (Definition 4),

|Tv − T̃v|
Tv

=

∣
∣
∣m · Prπ(τv) − m · |S∩τv|

|S|
∣
∣
∣

m · Prπ(τv)
=

∣
∣
∣Prπ(τv) − |S∩τv|

|S|
∣
∣
∣

Prπ(τv)
≤ ε.

Or, simply put, |Tv − T̃v| ≤ εTv. Therefore,

|l(v) − l̃(v)| =
2|Tv − T̃v|
δv(δv − 1)

≤ 2εTv

δv(δv − 1)
= εl(v).

Combining this with Theorems 1 and 2, and using a sample S with size

r =
⌈

c′

ε2p

(
(�lg Δ − 1� + 1) log

1
p

+ log
1
δ

)⌉
,

we have that Algorithm 1 provides an ε-error estimation for l(v) with probability
1 − δ for all v ∈ V s.t. Pr(τv) ≥ p. But Pr(τv) ≥ p if and only if l(v) ≥ σv(p)
since

l(v) =
Tv(
δv
2

) =
m Pr(τv)

(
δv
2

) .

��
We remark that T̃v is an unbiased estimator for Tv, since

E[T̃v] = E

[
∑

e∈S

m

r
1v(e)

]

=
m

r

∑

e∈S

Pr(e ∈ τv) =
m

r

∑

e∈S

|τv|
m

= Tv.

Theorem 6. Given a graph G = (V,E) and a sample of size

r =
⌈

c′

ε2p

(
(�lg Δ − 1� + 1) log

1
p

+ log
1
δ

)⌉
,

Algorithm 1 has running time O(Δ lg Δ + m).

Proof. In line 1, the value of Δ can be computed in time Θ(m). Given an edge
{a, b} we first store the neighbors of b in a directed address table. Then, lines 4,
5, and 6 take time O(Δ) by checking, for each v ∈ Na, if v is in the table. Hence,
the total running time of Algorithm 1 is O(r · Δ + m) = O(Δ lg Δ + m). ��

As mentioned before, for specific graph classes, the running time proved in
Theorem 6 can be reduced. We can achieve this either by proving that graphs
in such classes have a smaller VC dimension, or by looking more carefully at the
algorithm analysis for such classes. In Corollaries 3 and 4 we present results for
two such classes.
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Corollary 3. If G is a planar graph, then Algorithm 1 has running time O(Δ).

Proof. By Corollary 2, VCDim(G) ≤ 2. So, the sample size in the Algorithm 1
changes from a function of Δ to a constant. Note that, in particular, since we
do not need to find the value of Δ, line 1 can be computed in time O(1). As
with the proof of Theorem 6, lines 4, 5, and 6 still take time O(Δ). Since r is
constant, line 2 takes constant time. So, the total running time of Algorithm 1
is O(r · Δ) = O(Δ). ��

Another case where we can provide a better running for the algorithm is the
case for bounded-degree graphs, i.e. the case where the maximum degree of any
graph in the class is bounded by a constant.

Corollary 4. Let G be a bounded-degree graph, where d is such bound. Algo-
rithm 1 has running time O(1) or O(n), respectively, depending on whether d is
part of the input or not.

Proof. If d is part of the input, then the number of samples r in line 1 can be
computed in time O(1). Line 2 is executed O(1) times, and the remaining of the
algorithm, in lines 4, 5, and 6, takes O(1) time, since the size of the neighborhood
of every vertex is bounded by a constant.

On the other hand, if d is not part of the input, then Δ must be computed
for the execution of line 1. In this case we check the degree of every vertex
by traversing its adjacency list. All these adjacency lists have constant size.
Performing this for all vertices takes time O(n). The other steps of the algorithm
take constant time. ��

4 Conclusion

We present a sampling algorithm for local clustering problem. In our analysis
we define a range space associated to the input graph, and show how the sample
size of the algorithm relates to the VC dimension of this range space. This kind
of analysis takes into consideration the combinatorial structure of the graph, so
the size of the sample of edges used by the algorithm depends on the maximum
degree of the input graph.

Our algorithm executes in time O(Δ lg Δ+m) in the general case and guaran-
tees, for given parameters ε, δ, and p, that the approximation value has relative
error ε with probability at least 1−δ, for every node whose clustering coefficient
is greater than a certain function adjusted by the parameter p. For planar graphs
we show that the sample size can be bounded by a constant, an the running time
in this case is O(Δ). In the case of bounded-degree graphs, where there is also
a constant bound on the sample size, the running time drops to O(1) or O(n),
depending on whether the bound on the degree is part of the input or not.
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Abstract. We characterize complete deterministic finite automata with two input
letters in which every non-empty set of states occurs as the image of the whole
state set under the action of a suitable input word. The characterization leads to a
polynomial-time algorithm for recognizing this class of automata.

Keywords: Deterministic finite automaton · Transition monoid · Complete
reachability · Strongly connected digraph · Cayley digraph

1 Introduction

Completely reachable automata are complete deterministic finite automata in which
every non-empty subset of the state set occurs as the image of the whole state set under
the action of a suitable input word. Such automata appeared in the study of descriptional
complexity of formal languages [2,10] and in relation to the Černý conjecture [4]. A
systematic study of completely reachable automata was initiated in [2,3] and continued
in [1]. In [1,3] completely reachable automata were characterized in terms of a certain
finite sequence of directed graphs (digraphs): the automaton is completely reachable if
and only if the final digraph in this sequence is strongly connected. In [1, Theorem 11] it
was shown that given an automatonA with n states andm input letters, the k-th digraph
in the sequence assigned to A can be constructed in O(mn2k logn) time. However, this
does not yet ensure a polynomial-time algorithm for recognizing complete reachability:
a series of examples in [1] demonstrates that the length of the digraph sequence for an
automaton with n states may reach n−1.

Here we study completely reachable automata with two input letters; for brevity,
we call automata with two input letters binary. Our main results provide a new charac-
terization of binary completely reachable automata, and the characterization leads to a
quasilinear time algorithm for recognizing complete reachability for binary automata.

Our prerequisites are minimal: we only assume the reader’s acquaintance with basic
properties of strongly connected digraphs, subgroups, and cosets.
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2 Preliminaries

A complete deterministic finite automaton (DFA) is a tripleA = 〈Q,Σ ,δ 〉 where Q and
Σ are finite sets called the state set and, resp., the input alphabet ofA , and δ : Q×Σ →
Q is a totally defined map called the transition function of A .

The elements of Σ are called input letters and finite sequences of letters are called
words over Σ . The empty sequence is also treated as a word, called the empty word and
denoted ε . The collection of all words over Σ is denoted Σ ∗.

The transition function δ extends to a function Q × Σ ∗ → Q (still denoted by
δ ) via the following recursion: for every q ∈ Q, we set δ (q,ε) = q and δ (q,wa) =
δ (δ (q,w),a) for all w ∈ Σ ∗ and a ∈ Σ . Thus, every word w ∈ Σ ∗ induces the transfor-
mation q �→ δ (q,w) of the set Q. The set T (A ) of all transformations induced this way
is called the transition monoid of A ; this is the submonoid generated by the trans-
formations q �→ δ (q,a), a ∈ Σ , in the monoid of all transformations of Q. A DFA
B = 〈Q,Θ ,ζ 〉 with the same state set as A is said to be syntactically equivalent to
A if T (B) = T (A ).

The function δ can be further extended to non-empty subsets of the set Q. Namely,
for every non-empty subset P ⊆ Q and every word w ∈ Σ ∗, we let δ (P,w) = {δ (q,w) |
q ∈ P}.

Whenever there is no risk of confusion, we tend to simplify our notation by sup-
pressing the sign of the transition function; this means that we write q .w for δ (q,w)
and P .w for δ (P,w) and specify a DFA as a pair 〈Q,Σ〉.

We say that a non-empty subset P ⊆ Q is reachable in A = 〈Q,Σ〉 if P= Q .w for
some word w ∈ Σ ∗. A DFA is called completely reachable if every non-empty subset
of its state set is reachable. Observe that complete reachability is actually a property of
the transition monoid ofA ; hence, if a DFAA is completely reachable, so is any DFA
that is syntactically equivalent to A .

Given a DFA A = 〈Q,Σ〉 and a word w ∈ Σ ∗, the image of w is the set Q .w and
the excluded set excl(w) of w is the complement Q\Q .w of the image. The number
|excl(w)| is called the defect of w. If a word w has defect 1, its excluded set consists of
a unique state called the excluded state for w. Further, for any w ∈ Σ ∗, the set {p ∈ Q |
p= q1 .w= q2 .w for some q1 	= q2} is called the duplicate set of w and is denoted by
dupl(w). If w has defect 1, its duplicate set consists of a unique state called the duplicate
state for w. We identify singleton sets with their elements, and therefore, for a word w
of defect 1, excl(w) and dupl(w) stand for its excluded and, resp., duplicate states.

For any v ∈ Σ ∗, q ∈ Q, let qv−1 = {p ∈ Q | p .v= q}. Then for all u,v ∈ Σ ∗,

excl(uv) = {q ∈ Q | qv−1 ⊆ excl(u)}, (1)

dupl(uv) = {q ∈ Q | qv−1 ∩dupl(u) 	= ∅ or |qv−1\excl(u)| ≥ 2}. (2)

The equalities (1) and (2) become clear as soon as the definitions of excl( ) and dupl( )
are deciphered.

Recall that DFAs with two input letters are called binary. The question of our study
is: under which conditions is a binary DFA completely reachable? The rest of the section
presents a series of reductions showing that to answer this question, it suffices to analyze
DFAs of a specific form.
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Let A = 〈Q,{a,b}〉 be a binary DFA with n > 1 states. If neither a nor b has
defect 1, no subset of size n−1 is reachable in A . Therefore, when looking for binary
completely reachable automata, we must focus on DFAs possessing a letter of defect 1.
We will always assume that a has defect 1.

The image of every non-empty word over {a,b} is contained in either Q .a or Q .b.
If the defect of b is greater than or equal to 1, then at most two subsets of size n− 1
are reachable (namely, Q .a and Q .b), whence A can only be completely reachable
provided that n = 2. The automaton A is then nothing but the classical flip-flop, see
Fig. 1.

0 1

b

a

a b

Fig. 1. The flip-flop. Here and below a DFA 〈Q,Σ〉 is depicted as a digraph with the vertex set Q
and a labeled edge q

a−→ q′ for each triple (q,a,q′) ∈ Q×Σ ×Q such that q .a= q′.

Having isolated this exception, we assume from now on that n ≥ 2 and the letter b
has defect 0, which means that b acts as a permutation of Q. The following fact was
first stated in [2]; for a proof, see, e.g., [1, Sect. 6].

Lemma 1. If A = 〈Q,{a,b}〉 is a completely reachable automaton in which the letter
b acts as a permutation of Q, then b acts as a cyclic permutation.

Taking Lemma 1 into account, we restrict our further considerations to DFAs with
n ≥ 2 states and two input letters a and b such that a has defect 1 and b acts a cyclic
permutation. Without any loss, we will additionally assume that these DFAs have the
set Zn = {0,1, . . . ,n− 1} of all residues modulo n as their state set and the action of
b at any state merely adds 1 modulo n. Let us also agree that whenever we deal with
elements of Zn, the signs + and − mean addition and subtraction modulo n, unless the
contrary is explicitly specified.

Further, we will assume that 0= excl(a) as it does not matter from which origin the
cyclic count of the states start.

Since b is a permutation, for each k ∈ Zn, the transformations q �→ q .bka and q �→
q .b generate the same submonoid in the monoid of all transformations of Zn as do the
transformations q �→ q .a and q �→ q .b. This means that if one treats the word bka as a
new letter ak, say, one gets the DFA Ak = 〈Zn,{ak,b}〉 that is syntactically equivalent
toA . Therefore,A is completely reachable if and only if so isAk for some (and hence
for all) k. Hence we may choose k as we wish and study the DFA Ak for the specified
value of k instead of A .

What can we achieve using this? From (1) we have excl(bka)= excl(a)= 0. Further,
let q1 	= q2 be such that q1 .a = q2 .a = dupl(a). Choosing k = q1 (or k = q2), we get
0 .bka= dupl(a). Thus, we will assume that 0 .a= dupl(a).

Summarizing, we will consider DFAs 〈Zn,{a,b}〉 such that:
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– the letter a has defect 1, excl(a) = 0, and 0 .a= dupl(a);
– q .b= q+1 for each q ∈ Zn.

We call such DFAs standardized. For the purpose of complexity considerations at the
end of Sect. 5, observe that given a binary DFA A in which one letter acts as a cyclic
permutation while the other has defect 1, one can ‘standardize’ the automaton, that is,
construct a standardized DFA syntactically equivalent to A , in linear time with respect
to the size of A .

3 A Necessary Condition

Let 〈Zn,{a,b}〉 be a standardized DFA and w ∈ {a,b}∗. A subset S ⊆ Zn is said to be
w-invariant if S .w ⊆ S.

Proposition 1. If 〈Zn,{a,b}〉 is a completely reachable standardized DFA, then no
proper subgroup of (Zn,+) is a-invariant.

Proof. Arguing by contradiction, assume thatH � Zn is a subgroup such thatH .a⊆H.
Let d stand for the index of the subgroup H in the group (Zn,+). The set Zn is then
partitioned into the d cosets

H0 = H, H1 = H .b= H+1, . . . , Hd−1 = H .bd−1 = H+d−1.

For i = 0,1, . . . ,d − 1, let Ti be the complement of the coset Hi in Zn. Then we have
Ti = ∪ j 	=iHj and Ti .b= Ti+1 (mod d) for each i= 0,1, . . . ,d−1.

SinceA is completely reachable, each subset Ti is reachable. Take a word w of min-
imum length among words with the image equal to one of the subsets T0,T1, . . . ,Td−1.
Write w as w= w′c for some letter c ∈ {a,b}.

If c= b, then for some i ∈ {0,1, . . . ,d−1}, we have

Zn .w′b= Ti = Ti−1 (mod d) .b.

Since bn acts as the identity mapping, applying the word bn−1 to this equality yields
Zn .w′ = Ti−1 (mod d) whence the image of w′ is also equal to one of the subsets
T0,T1, . . . ,Td−1. This contradicts the choice of w.

Thus, c= a, whence the set Zn .w is contained in Zn .a. The only Ti that is contained
in Zn .a is T0 because each Ti with i 	= 0 contains H0, and H0 = H contains 0, the
excluded state of a. Hence, Zn .w= T0, that is, Zn .w′a= T0. For each state q ∈ Zn .w′,
we have q .a∈ T0, and this implies q∈ T0 sinceH0, the complement of T0, is a-invariant.
We see that Zn .w′ ⊆ T0 and the inclusion cannot be strict because T0 cannot be the
image of its proper subset. However, the equality Zn .w′ = T0 again contradicts the
choice of w. ��

We will show that the condition of Proposition 1 is not only necessary but also
sufficient for complete reachability of a standardized DFA. The proof of sufficiency
requires a construction that we present in full in Sect. 5, after studying its simplest case
in Sect. 4.
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4 Rystsov’s Graph of a Binary DFA

Recall a sufficient condition for complete reachability from [2]. Given a (not nec-
essarily binary) DFA A = 〈Q,Σ〉, let W1(A ) stand for the set of all words in Σ ∗
that have defect 1 in A . Consider a digraph with the vertex set Q and the edge set
E = {(excl(w),dupl(w)) | w ∈W1(A )}. We denote this digraph by Γ1(A ). The nota-
tion comes from [2], but much earlier, though in a less explicit form, the construction
was used by Rystsov [11] for some special species of DFAs. Taking this into account,
we refer to Γ1(A ) as the Rystsov graph of A .

Theorem 1 ([2, Theorem 1]). If a DFA A = 〈Q,Σ〉 is such that the graph Γ1(A ) is
strongly connected, then A is completely reachable.

It was shown in [2] that the condition of Theorem 1 is not necessary for complete
reachability, but it was conjectured that the condition might characterize binary com-
pletely reachable automata. However, this conjecture has been refuted in [1, Example 2]
by exhibiting a binary completely reachable automaton with 12 states whose Rystsov
graph is not strongly connected. Here we include a similar example which we will use
to illustrate some of our results.

Consider the standardized DFA E ′
12 = 〈Z12,{a,b}〉 where the action of the letter a

is specified as follows:

q 0 1 2 3 4 5 6 7 8 9 10 11
q .a 10 1 2 8 4 5 10 9 3 7 6 11

.

(The DFA E ′
12 only slightly differs from the DFA E12 used in [1, Example 2], hence

the notation.) The DFA E ′
12 is shown in Fig. 2, in which we have replaced edges that

should have been labeled a and b with solid and, resp., dashed edges.

8 5

6

4

3
2

1

0

11

10

79

Fig. 2. The DFA E ′
12; solid and dashed edges show the action of a and, resp., b
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We postpone the description of the digraph Γ1(E ′
12) and the proof that the DFA E ′

12
is completely reachable until we develop suitable tools that make the description and
the proof easy.

We start with a characterization of Rystsov’s graphs of standardized DFAs. Let
A = 〈Zn,{a,b}〉 be such a DFA. It readily follows from (1) and (2) that excl(w) .b =
excl(wb) and dupl(w) .b = dupl(wb) for every word w ∈W1(A ). Therefore, the edge
set E of the digraph Γ1(A ) is closed under the translation (q, p) �→ (q .b, p .b) =
(q+1, p+1). As a consequence, for any edge (q, p)∈E and any k, the pair (q+k, p+k)
also constitutes an edge in E.

Denote by D1(A ) the set of ends of edges of Γ1(A ) that start at 0, that is, D1(A ) =
{p ∈ Zn | (0, p) ∈ E}. We call D1(A ) the difference set of A . Our first observation
shows how to recover all edges of Γ1(A ), knowing D1(A ).

Lemma 2. LetA = 〈Zn,{a,b}〉 be a standardized DFA. A pair (q, p) ∈ Zn×Zn forms
an edge in the digraph Γ1(A ) if and only if p−q ∈ D1(A ).

Proof. If p−q∈D1(A ), the pair (0, p−q) is an edge in E, and therefore, so is the pair
(0+ q,(p− q)+ q) = (q, p). Conversely, if (q, p) is an edge in E, then so is (q+(n−
q), p+(n−q)) = (0, p−q), whence p−q ∈ D1(A ). ��

By Lemma 2, the presence or absence of an edge in Γ1(A ) depends only on the dif-
ference modulo n of two vertex numbers. This means that Γ1(A ) is a circulant digraph,
that is, the Cayley digraph of the cyclic group (Zn,+) with respect to some subset of
Zn. Recall that if D is a subset in a group G, the Cayley digraph of G with respect to D,
denoted Cay(G,D), has G as its vertex set and {(g,gd) | g ∈ G, d ∈ D} as its edge set.
The following property of Cayley digraphs of finite groups is folklore1.

Lemma 3. Let G be a finite group, D a subset of G, and H the subgroup of G generated
by D. The strongly connected components of the Cayley digraph Cay(G,D) have the
right cosets Hg, g ∈ G, as their vertex sets, and each strongly connected component is
isomorphic to Cay(H,D). In particular, the digraph Cay(G,D) is strongly connected if
and only if G is generated by D.

Let H1(A ) stand for the subgroup of the group (Zn,+) generated by the differ-
ence set D1(A ). Specializing Lemma 3, we get the following description for Rystsov’s
graphs of standardized DFAs.

Proposition 2. LetA = 〈Zn,{a,b}〉 be a standardized DFA. The digraph Γ1(A ) is iso-
morphic to the Cayley digraph Cay(Zn,D1(A )). The strongly connected components
of Γ1(A ) have the cosets of the subgroup H1(A ) as their vertex sets, and each strongly
connected component is isomorphic to the Cayley digraph Cay(H1(A ),D1(A )). In
particular, the digraph Γ1(A ) is strongly connected if and only if the set D1(A ) gen-
erates (Zn,+) or, equivalently, if and only if the greatest common divisor of D1(A ) is
coprime to n.

1 In fact, our definition is the semigroup version of the notion of a Cayley digraph, but this makes
no difference since in a finite group, every subsemigroup is a subgroup.
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Proposition 2 shows that structure of the Rystsov graph of a standardized DFA
A crucially depends on its difference set D1(A ). The definition of the edge set of
Γ1(A ) describes D1(A ) as the set of duplicate states for all words w of defect 1 whose
excluded state is 0, that is, D1(A ) = {dupl(w) | excl(w) = 0}. Thus, understanding of
difference sets amounts to a classification of transformations caused by words of defect
1. It is such a classification that is behind the following handy description of difference
sets.

Proposition 3. Let A = 〈Zn,{a,b}〉 be a standardized DFA. Let r 	= 0 be such that
r .a= dupl(a). Then

D1(A ) = {dupl(a) .v | v ∈ {a,bra}∗}. (3)

Proof. Denote by N the image of the letter a, that is, N = Zn\{0}. If q .a= p for some
q ∈ Zn and p ∈ N, then, clearly, (q− r) .bra = p. Hence the only state in N that has a
preimage of size 2 under the actions of both a and bra is

dupl(a) =

{
0 .a= r .a,

(n− r) .bra= 0 .bra,

and in both cases 0 belongs to the preimage. Thus, the preimage of every p ∈ N under
both a and bra contains a unique state in N, which means that both a and bra act on
the set N as permutations. Hence every word v ∈ {a,bra}∗ acts on N as a permutation.
Then the word av has defect 1 and excl(av) = 0. Applying the equality (2) with a in
the role of u, we derive that dupl(av) = dupl(a) .v. Thus, denoting the right-hand side
of (3) by D, we see that every state in D is the duplicate state of some word whose only
excluded state is 0. This means that D1(A ) ⊇ D.

To verify the converse inclusion, take an arbitrary state p ∈ D1(A ) and let w be a
word of defect 1 such that excl(w) = 0 and dupl(w) = p. Since excl(w) = 0, the word
w ends with the letter a. We prove that p lies in D by induction on the number of
occurrences of a in w. If a occurs in w once, then w = bka for some k ∈ Zn. We have
p= dupl(w) = dupl(bka) = dupl(a) ∈ D.

If a occurs in w at least twice, write w = w′bka where w′ ends with a. Then the
word w′ has defect 1 and excl(w′) = 0. As w′ has fewer occurrences of a, the inductive
assumption applies and yields dupl(w′) ∈ D. Denoting dupl(w′) by p′, we have p =
p′ .bka. If we prove that k ∈ {0,r}, we are done since the set D is both a-invariant
and bra-invariant by its definition. Arguing by contradiction, assume k /∈ {0,r}. Let
� = k .a; then k is the only state in �a−1. Hence �a−1 = excl(w′bk), and the equality (1)
(with u = w′bk and v = a) shows that � ∈ excl(w′bka) = excl(w). Clearly, � 	= 0 as �
lies in the image of a. Therefore the conclusion � ∈ excl(w) contradicts the assumption
excl(w) = 0. ��

For an illustration, we apply (3) to compute the difference set for the DFA E ′
12 shown

in Fig. 2. In E ′
12, we have r = 6 and dupl(a) = 10. Acting by a and b6a gives 10 .a= 6

and 10 .b6a= (10+6) .a= 4 .a= 4. Thus, 4,6∈D1(E ′
12). Acting by a or b

6a at 4 and 6
does not produce anything new: 4 .a= 4 and 4 .b6a=(4+6) .a= 10 .a= 6 while 6 .a=
10 and 6 .b6a= (6+6) .a= 0 .a= 10. We conclude that D1(E ′

12) = {4,6,10}. Since 2,
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the greatest common divisor of {4,6,10}, divides 12, we see that the digraph Γ1(E ′
12) is

not strongly connected. The subgroup H1(E ′
12) consists of even residues modulo 12 and

has index 2. Hence the digraph Γ1(E ′
12) has two strongly connected components whose

vertex sets are {0,2,4,6,8,10} and {1,3,5,7,9,11}, and for each q ∈ Z12, it has the
edges (q,q+4), (q,q+6), and (q,q+10).

In fact, formula (3) leads to a straightforward algorithm that computes the difference
set of any standardized DFA A in time linear in n. This, together with Proposition 2,
gives an efficient way to compute the Rystsov graph of A .

Let D0
1(A ) = D1(A )∪{0}. It turns out that D0

1(A ) is always a union of cosets of
a nontrivial subgroup.

Proposition 4. Let A = 〈Zn,{a,b}〉 be a standardized DFA. Let r 	= 0 be such that
r .a= dupl(a). Then the set D0

1(A ) is a union of cosets of the subgroup generated by r
in the group H1(A ).

Proof. It is easy to see that the claim is equivalent to the following implication: if
d ∈ D0

1(A ), then d+ r ∈ D0
1(A ). This clearly holds if d+ r = 0. Thus, assume that

d ∈ D0
1(A ) is such that d+ r 	= 0. Then (d+ r) .a ∈ D1(A ). Indeed, if d = 0, then

(d+ r) .a = r .a = dupl(a) ∈ D1(A ). If d 	= 0, then d ∈ D1(A ), whence (d+ r) .a =
d .bra ∈ D1(A ) as formula (3) ensures that the set D1(A ) is closed under the action of
the word bra.

We have observed in the first paragraph of the proof of Proposition 3 that a acts
on the set N = Zn\{0} as a permutation. Hence for some k, the word ak acts on N as
the identity map. Then d+ r = (d+ r) .ak = ((d+ r) .a) .ak−1 ∈ D1(A ) since we have
already shown that (d+ r) .a ∈ D1(A ) and formula (3) ensures that the set D1(A ) is
a-invariant. ��

In our running example E ′
12, r= 6 and the set D0

1(E
′
12) = {0,4,6,10} is the union of

the subgroup {0,6} with its coset {4,10} in the group H1(E ′
12).

Let A = 〈Zn,{a,b}〉 be a standardized DFA. Proposition 4 shows that then the set
D0
1(A ) is situated between the subgroup H1(A ) and the subgroup R generated by r 	= 0

such that r .a= dupl(a):
R ⊆ D0

1(A ) ⊆ H1(A ). (4)

Formula (3) implies that the difference setD1(A ) is a-invariant, and so is the setD0
1(A )

since 0 .a = dupl(a) ∈ D1(A ). By Proposition 1, if the automaton A is completely
reachable, then either H1(A ) = Zn or H1(A ) is a proper subgroup and both inclusions
in (4) are strict. Recall that by Proposition 2 H1(A ) = Zn if and only if the digraph
Γ1(A ) is strongly connected. In the other case, n must be a product of at least three
(not necessarily distinct) prime numbers. Indeed, the subgroups of (Zn,+) ordered by
inclusion are in a 1–1 correspondence to the divisors of n ordered by division, and no
product of only two primes can have two different proper divisors d1 and d2 such that
d1 divides d2. We thus arrive at the following conclusion.

Corollary 1. A binary DFAA with n states where n is a product of two prime numbers
is completely reachable if and only if one of its letters acts as a cyclic permutation of
the state set, the other letter has defect 1, and the digraph Γ1(A ) is strongly connected.
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Corollary 1 allows one to show that the number of states in a binary completely
reachable automata whose Rystsov graph is not strongly connected is at least 12. (Thus,
our examples of such automata (E12 from [1, Example 2] and E ′

12 from the present
paper) are of minimum possible size.) Indeed, Corollary 1 excludes all sizes less than
12 except 8. If a standardized DFAA has 8 states and the digraph Γ1(A ) is not strongly
connected, then the group H1(A ) has size at most 4 and its subgroup R generated by
the non-zero state in dupl(a)a−1 has size at least 2. By Proposition 4 the set D0

1(A ) is
a union of cosets of the subgroup R in the group H1(A ), whence either D0(A ) = R
or D0(A ) =H1(A ). In either case, we get a proper a-invariant subgroup, and Proposi-
tion 1 implies that the DFA A is not completely reachable.

5 Subgroup Sequences for Standardized DFAs

In [1,3] Theorem 1 is generalized in the following way. A sequence of digraphs Γ1(A ),
Γ2(A ), . . . , Γk(A ), . . . is assigned to an arbitrary (not necessarily binary) DFA A ,
where Γ1(A ) is the Rystsov graph of A while the ‘higher level’ digraphs Γ2(A ), . . . ,
Γk(A ), . . . are defined via words that have defect 2, . . . , k, . . . in A . (We refer the
interested reader to [1,3] for the precise definitions; here we do not need them.) The
length of the sequence is less than the number of states of A , and A is completely
reachable if and only if the final digraph in the sequence is strongly connected.

For the case when A is a standardized DFA, Proposition 2 shows that the Rystsov
graph Γ1(A ) is completely determined by the difference set D1(A ) and the subgroup
H1(A ) that D1(A ) generates. This suggests that for binary automata, one may substi-
tute the ‘higher level’ digraphs of [1,3] by suitably chosen ‘higher level’ difference sets
and their generated subgroups.

Take a standardized DFA A = 〈Zn,{a,b}〉 and for each k > 1, inductively define
the set Dk(A ) and the subgroup Hk(A ):

Dk(A ) = {p ∈ Zn | p ∈ dupl(w) for some w ∈ {a,b}∗

such that 0 ∈ excl(w) ⊆ Hk−1(A ), |excl(w)| ≤ k}, (5)

Hk(A ) is the subgroup of (Zn,+) generated byDk(A ).

Observe that if we let H0(A ) = {0}, the definition (5) makes sense also for k = 1 and
leads to exactly the same D1(A ) and H1(A ) as defined in Sect. 4.

Using the definition (5), it is easy to prove by induction that Dk(A ) ⊆ Dk+1(A )
and Hk(A ) ⊆ Hk+1(A ) for all k.

Proposition 5. If A = 〈Zn,{a,b}〉 is a standardized DFA and H�(A ) = Zn for some
�, then A is a completely reachable automaton.

Proof. As A is fixed, we write Dk and Hk instead of Dk(A ) and, resp., Hk(A ).
Take any non-empty subset S ⊆ Zn. We prove that S is reachable inA by induction

on n−|S|. If n−|S| = 0, there is nothing to prove as S= Zn is reachable via the empty
word. Now let S be a proper subset of Zn. We aim to find a subset T ⊆ Zn such that
S= T .v for some word v ∈ {a,b}∗ and |T | > |S|. Since n−|T | < n−|S|, the induction
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assumption applies to the subset T whence T = Zn .u for some word u ∈ {a,b}∗. Then
S= Zn .uv is reachable as required.

Thus, fix a non-empty subset S � Zn. Since cosets of the trivial subgroup H0 are
singletons, S is a union of cosets of H0. On the other hand, since H� = Zn, the only
coset of H� strictly contains S, and so S is not a union of cosets of H�. Now choose
k ≥ 1 to be the maximal number for which S is a union of cosets of the subgroup Hk−1.
The subgroupHk already has a coset, say,Hk+t being neither contained in S nor disjoint
with S; in other words, ∅ 	= S∩ (Hk+ t) � Hk+ t.

By Lemma 3, the coset Hk+ t serves as the vertex set of a strongly connected com-
ponent of the Cayley digraph Cay(Zn,Dk). Therefore, some edge of Cay(Zn,Dk) con-
nects (Hk + t) \ S with S∩ (Hk + t) in this strongly connected component, that is, the
head q of this edge lies in (Hk + t) \ S while its tail p belongs to S∩ (Hk + t). Let
p′ = p− q; then p′ ∈ Dk by the definition of the Cayley digraph. By (5) there exists a
wordw∈ {a,b}∗ such that p′ ∈ dupl(w) and excl(w)⊆Hk−1. Then p= p′+q= p′ .bq ∈
dupl(w) .bq = dupl(wbq) and excl(wbq) = excl(w) .bq = excl(w)+q⊆Hk−1+q. From
p∈ dupl(wbq)we conclude that there exist p1, p2 ∈ Zn such that p= p1 .wbq = p2 .wbq.
Since S is a union of cosets of the subgroup Hk−1, the fact that q /∈ S implies that the
whole coset Hk−1+q is disjoint with S, and the inclusion excl(wbq)⊆Hk−1+q ensures
that S is disjoint with excl(wbq). Therefore, for every s ∈ S \ {p}, there exists a state
s′ ∈ Zn such that s′ .wbq = s. Now letting T = {p1, p2}∪{

s′ | s ∈ S\{p}}, we conclude
that S= T .wbq and |T | = |S|+1. ��

For an illustration, return one last time to the DFA E ′
12 shown in Fig. 2. We have seen

that the subgroup H1(E ′
12) consists of even residues modulo 12. Inspecting the word

ab3a gives excl(ab3a) = {0,8} ⊆ H1(E ′
12) and 1 ∈ dupl(ab3a), whence 1 ∈ D2(E ′

12).
Therefore the subgroup H2(E ′

12) generated by D2(E ′
12) is equal to Z12, and E ′

12 is a
completely reachable automaton by Proposition 5.

To illustrate the next level of the construction (5), consider the standardized DFA
E48 = 〈Z48,{a,b}〉 shown in Fig. 3. We have replaced edges that should have been
labeled a and b with solid and, resp., dashed edges and omitted all loops to lighten the
picture. The action of a in E48 is defined by 0 .a= 24 .a= 18, 13 .a= 14, 14 .a= 13,
18 .a= 24, 30 .a= 32, 32 .a= 30, and k .a= k for all other k ∈ Z48.

One can calculate that D1(E48) = {18,24,42} whence the subgroup H1(E48) con-
sists of all residues divisible by 6. Computing D2(E48), one sees that this set consists of
even residues and contains 2 (due to the word ab32a that has excl(ab32a) = {0,30} ⊆
H1(E48) and dupl(ab32a) = {2,18}). Hence the subgroup H2(E48) consists of all even
residues. Finally, the word ab24ab12ab8 has {0,8,20} ⊆ H1(E48) as its excluded set
while its duplicate set contains 13. Hence 13∈D3(E48) and the subgroup H3(E48) coin-
cides with Z48. We conclude that the DFA E48 is completely reachable by Proposition 5.

As mentioned, the subgroups of (Zn,+) ordered by inclusion correspond to the
divisors of n ordered by division whence for any standardized DFA A with n states,
the number of different subgroups of the form Hk(A ) is O(logn). Therefore, if the
subgroup sequence H0(A ) ⊆ H1(A ) ⊆ ·· · ⊆ Hk(A ) ⊆ . . . strictly grows at each step,
then it reaches Zn after at most O(logn) steps, and by Proposition 5 A is a completely
reachable automaton. What happens if the sequence stabilizes earlier? Our next result
answers this question.
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Fig. 3. The DFA E48 = 〈Z48,{a,b}〉 withH2(E48) 	=Z48. Solid and dashed edges show the action
of a and, resp., b; loops are not shown

Proposition 6. If for a standardized DFA A = 〈Zn,{a,b}〉, there exists � such that
H�(A ) = H�+1(A ) � Zn, then A is not completely reachable.

Proof. As in the proof of Proposition 5, we use Dk and Hk instead of Dk(A ) and, resp.,
Hk(A ) in our arguments.

It suffices to prove the following claim:
Claim: the equality H� = H�+1 implies that the subgroup H� is a-invariant.

Indeed, since H� � Zn, we get a proper a-invariant subgroup, and Proposition 1 then
shows that A is not completely reachable.

Technically, it is more convenient to show that if H� = H�+1, then Hk .a ⊆ H� for
every k = 0,1, . . . , �. We induct on k. The base k = 0 is clear since H0 = {0} and 0 .a=
dupl(a) ∈ D1 ⊆ H1 ⊆ H�.
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Let k < � and assume Hk .a ⊆ H�; we aim to verify that p .a ∈ H� for every p ∈
Hk+1. Since the subgroup Hk+1 is generated by Dk+1 and contains Hk, we may choose
a representation of p as the sum

p= q+d1+ · · ·+dm, q ∈ Hk, d1, . . . ,dm ∈ Dk+1 \Hk,

with the least number m of summands from Dk+1 \Hk. We show that p .a ∈ H� by
induction on m. If m= 0, we have p= q ∈ Hk and p .a ∈ H� since Hk .a ⊆ H�.

If m > 0, we write p as p= d1+ s where s= q+d2+ · · ·+dm. By (5), there exists
a word w ∈ {a,b}∗ such that d1 ∈ dupl(w), 0 ∈ excl(w) ⊆ Hk and |excl(w)| ≤ k+ 1.
Consider the word wbsa. We have p .a = (d1 + s) .a = d1 .bsa, and the equality (2)
gives p .a ∈ dupl(wbsa). From the equality (1), we get excl(wbsa) = (excl(w)+ s) .a∪
{0} if dupl(a)a−1 is either contained in or disjoint with excl(w)+ s, and excl(wbsa) =(
(excl(w)+ s)\dupl(a)a−1

)
.a∪{0} if |dupl(a)a−1 ∩ (excl(w)+ s)| = 1. In any case,

we have the inclusion

excl(wbsa) ⊆ (excl(w)+ s) .a∪{0} (6)

and the inequality

|excl(wbsa)| ≤ |(excl(w)+ s)) .a|+1 ≤ |excl(w))|+1 ≤ (k+1)+1 ≤ �+1. (7)

For any t ∈ excl(w) ⊆ Hk, the number of summands from Dk+1 \Hk in the sum t+ s=
t+q+d2+ · · ·+dm is less thanm. By the induction assumption, we have (t+s) .a∈H�.
Hence, (excl(w)+ s) .a ⊆ H�, and since 0 also lies in the subgroup H�, we conclude
from (6) that excl(wbsa) ⊆ H�. From this and the inequality (7), we see that the word
wbsa satisfies the conditions of the definition of D�+1 (cf. (5)) whence every state in
dupl(wbsa) belongs to D�+1. We have observed that p .a ∈ dupl(wbsa). Hence p .a ∈
D�+1 ⊆ H�+1. Since H� = H�+1, we have p .a ∈ H�, as required. ��

Now we deduce a criterion for complete reachability of binary automata.

Theorem 2. A binary DFAA with n states is completely reachable if and only if either
n = 2 and A is the flip-flop or one of the letters of A acts as a cyclic permutation
of the state set, the other letter has defect 1, and in the standardized DFA 〈Zn,{a,b}〉
syntactically equivalent to A , no proper subgroup of (Zn,+) is a-invariant.

Proof. Necessity follows from the reductions in Sect. 2 and Proposition 1.
For sufficiency, we can assume that A = 〈Zn,{a,b}〉 is standardized. If no proper

subgroup of (Zn,+) is a-invariant, then the claim from the proof of Proposition 6
implies that the sequence H0(A )⊆H1(A )⊆ ·· · ⊆Hk(A )⊆ . . . strictly grows as long
as the subgroup Hk(A ) remains proper. Hence, H�(A ) = Zn for some � and A is a
completely reachable automaton by Proposition 5. ��
Remark 1. The proof of Theorem 2 shows that only subgroups that contain H1(A )
matter. Therefore, one can combine Theorem 1, Proposition 2 and Theorem 2 as
follows: a standardized DFA A = 〈Zn,{a,b}〉 is completely reachable if and only
if either H1(A ) = Zn or no proper subgroup of (Zn,+) containing the sub-
group H1(A ) is a-invariant.
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The condition of Theorem 2 can be verified in low polynomial time. We sketch the
corresponding algorithm.

Given a binary DFAA with n states, we first check if n= 2 andA is the flip-flop. If
yes,A is completely reachable. If not, we check whether one of the letters ofA acts as
a cyclic permutation of the state set while the other letter has defect 1. If not, A is not
completely reachable. If yes, we pass to the standardized DFA 〈Zn,{a,b}〉 syntactically
equivalent to A . As a preprocessing, we compute and store the set {(k,k .a) | k ∈ Zn}.

The rest of the algorithm can be stated in purely arithmetical terms. Call a positive
integer d a nontrivial divisor of n if d divides n and d 	= 1,n. We compute all nontrivial
divisors of n by checking through all integers d = 2, . . . ,�√n�: if such d divides n,
we store d and n

d . If for some nontrivial divisor d of n, all numbers (td) .a with t =
0,1, . . . , nd − 1 are divisible by d, then d generates a proper a-invariant subgroup in
(Zn,+) and A is not completely reachable. If for every nontrivial divisor d of n, there
exists t ∈ {0,1, . . . , nd −1} such that (td) .a is not divisible by d, then no proper subgroup
of (Zn,+) is a-invariant and A is completely reachable.

To estimate the time complexity of the described procedure, observe that one has to
check at most n

d numbers for each nontrivial divisor d of n. Clearly,

∑
1<d<n
d|n

n
d
= ∑

1<d<n
d|n

d = σ(n)−n−1,

where σ(n) stands for the sum of all divisors of n, a well-studied function in the theory

of numbers; see, e.g., [8, Chapters XVI–XVIII]. It is known that limsup σ(n)
n log logn =

eγ where γ is the Euler–Mascheroni constant [8, Theorem 323]; this implies that the
number of checks in our procedure is O(n log logn). The total complexity depends on
the time spent for verifying the divisibility condition. If one uses the transdichotomous
model [7] (as suggested by one of the referees), assuming constant time for division,
the whole procedure can be implemented in O(n log logn) time.

One can speed up the above algorithm, using Remark 1, which implies that only the
divisors d > 1 of the g.c.d. of n and 0 .a have to be checked. However, the improvement
only reduces the constant behind the O( ) notation.

6 Conclusion

We have characterized binary completely reachable automata; our characterization
leads to an algorithm that given a binary DFA A , decides whether or not A is com-
pletely reachable in quasilinear time with respect to the size of A . Very recently, after
the present paper was submitted, Ferens and Szykuła [6] have devised a polynomial-
time algorithm for recognizing complete reachability of arbitrary DFAs, but the com-
plexity of their algorithm is higher.

Our results heavily depend on the fact that apart from a single exception, binary
completely reachable automata are circular, that is, have a letter acting as a cyclic per-
mutation of the state set. In the literature, one can find several situations when a problem
that remains open in general, admits quite a nontrivial solution when restricted to cir-
cular automata. Here we mention only Dubuc’s result [5] on the Černý conjecture and
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the recent paper by Yong He et al. [9] on Trahtman’s conjecture. It appears that circu-
lar automata may behave in a similar way with respect to complete reachability, and
our follow-up work aims at extending the results of the present paper to arbitrary (not
necessarily binary) circular automata. We also plan to study an ‘orthogonal’ extension,
aiming to characterize completely reachable automata in which one letter has defect 1
while the other letters act as permutations and generate a group that transitively acts on
the state set.

Acknowledgement. We thank the anonymous reviewers for their careful reading of our paper
and their many useful comments and suggestions.
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Abstract. For every fixed class of regular languages, there is a natural
hierarchy of increasingly more general problems: Firstly, the membership
problem asks whether a given language belongs to the fixed class of lan-
guages. Secondly, the separation problem asks for two given languages
whether they can be separated by a language from the fixed class. And
thirdly, the covering problem is a generalization of separation problem
to more than two given languages. Most instances of such problems were
solved by the connection of regular languages and finite monoids. Both
the membership problem and the separation problem were also extended
to ordered monoids. The computation of pointlikes can be interpreted as
the algebraic counterpart of the separation problem. In this paper, we
consider the extension of computation of pointlikes to ordered monoids.
This leads to the notion of conelikes for the corresponding algebraic
framework.

We apply this framework to the Trotter-Weil hierarchy and both the
full and the half levels of the FO2 quantifier alternation hierarchy. As a
consequence, we solve the covering problem for the resulting subvarieties
of DA. An important combinatorial tool are uniform ranker character-
izations for all subvarieties under consideration; these characterizations
stem from order comparisons of ranker positions.

1 Introduction

For a given variety of regular languages, there is a hierarchy of decision prob-
lems: First, we can ask whether a given regular language is in the variety; this
is known as the membership problem. Very often, the membership problem is
solved by giving an effective characterization. Famous solutions to the mem-
bership problem includes Simon’s characterization of the piecewise testable lan-
guages in terms of J -trivial monoids [22], and Schützenberger’s characterization
of the star-free languages by aperiodic monoids [20]. Inspired by these results,
Eilenberg showed that there exists a one to one correspondence between vari-
eties of regular languages and varieties of finite monoids [6]. This correspondence
leads to an important approach for deciding the membership problem: one ver-
ifies some equivalent algebraic property of the syntactic monoid. The challenge
here, however, is to identify the algebraic property and to prove its equivalence.
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A more general problem is the separation problem. Given two languages, it
asks whether there exists a language in the fixed variety which contains the
first language and is disjoint with the second language. By applying the sepa-
ration problem to a language and its complement, we obtain an answer to the
membership problem. Thus, the separation problem is more general than the
membership problem. Moreover, the separation problem can be used as a tool
to solve the membership problem for varieties where this was not previously
known; see e.g. [17]. A further generalization is given by the covering problem
[18]. This problem considers a finite set of languages and a distinguished lan-
guage, and asks how well the finite set of languages can be separated by a cover
of the distinguished language.

As noted by Almeida, the separation problem for regular languages can also
be solved via algebra by deciding so-called pointlikes [1]. The problem of decid-
ing pointlikes is well studied, and there are effective characterizations for many
varieties, e.g. aperiodics [8], R-trivial monoids [3], J -trivial monoids [4,23] and
finite groups [5].

A well studied fragment of first order logic is two-variable first-order logic
FO2. The languages definable in FO2 form a variety, with the corresponding
monoid variety DA. In the study of FO2 and DA, two natural hierarchies have
emerged: the Trotter-Weil hierarchy defined by a deep connection to the hierar-
chy of bands, and the quantifier alternation hierarchy. In stark contrast to the
full FO quantifier alternation hierarchy, membership of the FO2 quantifier alter-
nation hierarchy is solved for all levels [7,11,14]. In particular, a tight connection
between the Trotter-Weil and the quantifier alternation hierarchy has appeared;
Weil and the second author showed that the join levels of the quantifier alterna-
tion hierarchy (i.e., the FO2

m levels) correspond to the intersection levels of the
Trotter-Weil hierarchy [14], and combining two results from [7,13] shows that
the join levels of the Trotter-Weil hierarchy correspond to the intersection levels
of the quantifier alternation hierarchy.

Rankers have emerged as an important tool in the study of FO2. These
were first introduced by Schwentick, Thérien, and Vollmer by the name of turtle
programs [21]. Using comparisons of restricted sets of rankers, Weis and Immer-
man gave a combinatorial characterization of the full levels of the quantifier
alternation hierarchy [25]. This approach was extended to the half-levels of the
quantifier alternation hierarchy in the PhD-thesis of Lauser [16]. The corners of
the Trotter-Weil hierarchy also admit ranker characterizations using the concept
of condensed rankers [15].

This article solves the covering problem (and thus also the separation prob-
lem) for all levels of the Trotter-Weil hierarchy and quantifier alternation hier-
archy inside FO2. For this, we rely on two main tools, conelikes and ranker com-
parisons. Conelikes are introduced in Sect. 3. They extend pointlikes to ordered
monoids, and are algebraic versions of the imprints used by Place and Zeitoun;
see e.g. [18]. Thus, they have a strong connection to the covering problem; an
algorithm for computing the conelikes with respect to a monoid variety can be
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used to solve the covering problem for the corresponding language variety and
vice versa.

Sections 4 and 5 deals with ranker comparisons. In Sect. 4, we give a frame-
work for ranker comparisons using general sets of ranker pairs. We show that
any set of pairs of rankers which is closed under ranker subwords gives rise to a
stable relation and thus defines a monoid.

In Sect. 5, we use this framework to give uniform characterizations for all
levels of the Trotter-Weil and quantifier alternation hierarchy. In particular, we
give a characterization of the corners of the Trotter-Weil hierarchy in terms of
ranker comparisons. Together, these sets of ranker comparisons form a natural
hierarchy, the ranker comparison hierarchy which encompasses both the quanti-
fier alternation hierarchy and the Trotter-Weil hierarchy.

The rest of the article is devoted to the solution of the covering problem.
In Sect. 6, we present sets of subsets of a monoid which can be computed effec-
tively. Our main theorem states that these sets coincide with the conelikes (or the
pointlikes for the unordered varieties). Our main theorem also provides optimal
separators: relational morphisms such that the conelikes with respect to these
morphisms are the same as the conelikes with respect to the corresponding vari-
ety. The co-domains in these morphisms are defined using ranker comparisons.1

2 Preliminaries

2.1 Words and Monoids

Let A be a collection of symbols, called an alphabet. The set of concatenations
of symbols in A is A∗. In other words, A∗ is the free monoid of A. An element
u ∈ A∗ is a word and a subset L ⊆ A∗ a language. The empty word is ε. A
(scattered) subword of u is a word v = a1 . . . an such that u = u1a1 . . . unanun+1

for some (possibly empty) words ui. Let u = u1u2u3 for some (possibly empty)
words u1, u2, u3. Then u1 is a prefix and u2 is a factor of u.

If u = u1 . . . un where each ui is a word, then u1 . . . un is a factorization of u.
This concept extends to subsets of A∗; if L ⊆ A∗, a factorization of L is U1 . . . Un

where each u ∈ L can be factored as u = u1 . . . un in such a way that ui ∈ Ui.
For an alphabet A, let JA denote the monoid whose elements are subsets

of A and whose operation is the union operation. This monoid has a natural
ordering defined by U ≤ V if U ⊆ V for U, V ⊆ A. Let alphA : A∗ → JA be the
extension of alphA(a) = {a} for each a ∈ A. We drop the subscript when A is
clear from context. Given a surjective homomorphism μ : A∗ → M , a morphism
α : M → JA is called a content morphism if alphA = α ◦ μ.

If M is a monoid and e ∈ M satisfies ee = e, then e is idempotent. Given
a monoid M there exists a (smallest) number ωM such that uωM is idempotent
for each u ∈ M . If M is clear from context, we write ω for this number. For sets
S, T ⊆ M , we have

1 The results in this paper appeared in the first author’s PhD thesis [9].
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ST = {st ∈ M | s ∈ S, t ∈ T} .

Note that 2M is a monoid under this operation. This definition does not
coincide with the factorizations of languages given above.2 To resolve this ambi-
guity, we always consider concatenation to mean factorization when dealing with
L ⊆ A∗ and monoid multiplication otherwise.

An important tool in monoid theory are the Green’s relations, out of which
we introduce the following three. Given a monoid M and s, t ∈ M , we define
s ≤R t if sM ⊆ tM , s ≤L t if Ms ⊆ Mt, s ≤J t if MsM ⊆ MtM . We define
s R t if s ≤R t and t ≤R s and we define s L t and s J t correspondingly. We
say that s <R t if s ≤R t but not s R t and equivalently for L and J . Let u ∈ A∗

and μ : A∗ → M . Then there is a unique factorization u = u1a1 . . . un−1an−1un

such that μ(u1a1 . . . ai) R μ(u1a1 . . . aiui+1) <R μ(u1a1 . . . aiui+1ai+1). This is
the R-factorization of u with respect to μ. The L-factorization of u with respect
to μ is defined symmetrically.

Given a monoid M with a binary relation �, we say that � is stable if for all
s, t, x, y ∈ M , s � t implies xsy � xty. We say that a monoid is ordered if it is
equipped with a stable order. A congruence is a stable equivalence relation. In
particular, any stable preorder � induces the congruence given by s ∼ t if and
only if s � t and t � s. If M is ordered, and s ∈ M , then ↑ s = {t ∈ M | s ≤ t}.
If M is a monoid, and � is a stable preorder, then M/� is the monoid whose
elements are the equivalence classes of the induced congruence, the multiplication
is that induced by the multiplication in M and where, for s, t ∈ M with [s], [t]
the corresponding equivalence classes, we have [s] ≤ [t] if and only if s � t.
Given a language L, the syntactic preorder is the relation u ≤L v if and only if
xuy ∈ L ⇒ xvy ∈ L for all x, y ∈ A∗. Let μ : A∗ → A∗/≤L be the canonical
projection, then π is the syntactic morphism and A∗/≤L the syntactic monoid
of L. A language is regular if and only if the syntactic monoid is finite.

Let M and N be (possibly ordered) monoids. A relational morphism is a
relation τ : M → N (or mapping M → 2N ) which satisfies 1N ∈ τ(1M ), for
all s ∈ M , τ(s) �= ∅, for all s, t ∈ M , τ(s)τ(t) ⊆ τ(st). If there is a relational
morphism τ : M → N such that τ(s) ∩ τ(s′) �= ∅ implies s = s′ we say that M
divides N . A division of ordered monoids is a division where we also assume t ≤ t′

for some t ∈ τ(s), t′ ∈ τ(s′) implies s ≤ s′. A variety of monoids is a collection of
monoids closed under division and finite direct products. A collection of ordered
monoids is a positive variety if it is closed under finite direct products and
division of ordered monoids.

For a relational morphism τ : M → N , a set S ⊆ M such that
⋂

s∈S τ(s) �= ∅
is pointlike with respect to τ . If t ∈ ⋂

s∈S τ(s), then t is a witness of S being
pointlike. If V is a variety and S is pointlike for every relational morphism
τ : M → N where N ∈ V, then S is pointlike with respect to V. The set of all
pointlikes in M with respect to τ is PLτ (M), and the set of all pointlikes with
respect to V is PLV(M).
2 Indeed, {aa, bb} can be factored as {a, b} {a, b}, but ab, ba ∈ {a, b} {a, b} if seen as a

multiplication.
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A useful way to define varieties is through the use of ω-identities and ω-
relations. An ω-term is either x where x is taken from some (usually infinite) set
of variables X, or tt′ or tω where t and t′ are ω-terms. An ω-identity is given by
t = t′ or t ≤ t′ where t and t′ are ω-terms. Given a monoid M , an interpretation
of ω-terms is any extension of a map χ : X → M for which χ(tt′) = χ(t)χ(t′)
and χ(tω) = χ(t)ωM . We say that a monoid M satisfy an ω-identity t = t′ if
χ(t) = χ(t′) for all interpretations χ. It similarly satisfies t ≤ t′ if χ(t) ≤ χ(t′) for
all interpretations. If R1, . . . , Rn are ω-identities or -relations, then �R1, . . . , Rn�
denotes the collection of all monoids which satisfy all Ri. Some varieties that
are of importance in this text are

– DA = �(xzy)ω = (xzy)ωz(xzy)ω�.
– J = �(st)ωs(xy)ω = (st)ωy(xy)ω�, or equivalently all monoids whose J -classes

are trivial.
– J1 = �x2 = x, xy = yx�,
– J+ = �1 ≤ z�.

2.2 Logic

We consider FO[<], first order logic using the following syntax:

ϕ ::= � | ⊥ | a(x) | x = y | x < y | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ.

Here a ∈ A for some fixed alphabet A, and ϕ ∈ FO[<]. We interpret formulae
in FO[<] over words as follows. If i, j ∈ N, then u, i, j � x < y if and only
if i < j, and u, i � a(x) if and only if u[i] = a. The logical connectives and
existential quantifier are interpreted as usual. We use the macro x ≤ y to mean
x < y ∨ x = y and the macro ∀xϕ to mean ¬∃x¬ϕ. If ϕ is a formula without
free variables over the alphabet A, we define L(ϕ) = {u ∈ A∗ | u � ϕ}. If F is
a collection of formulae, we say that L ⊆ A∗ is definable in F if there exists
ϕ ∈ F such that L = L(ϕ).

In particular, we are interested in FO2[<], i.e. the fragment of FO[<] where
we only allow the use (and reuse) of two variable names. Thus

∃x : a(x) ∧ (∃y : y > x ∧ b(y) ∧ (∃x : x > y ∧ c(x)))

is allowed in FO2[<] whereas

∃x : a(x) ∧ (∃y : y > x ∧ b(y) ∧ (∃z : z > x ∧ y > z ∧ c(z)))

is not. It is well known that FO2[<] is a proper fragment of FO[<]. We are
primarily interested in some fragments of FO2[<]. Consider the syntax

ϕ0 ::= � | ⊥ | a(x) | x = y | x < y | ¬ϕ0 | ϕ0 ∨ ϕ0 | ϕ0 ∧ ϕ0

ϕm ::= ϕm−1 | ¬ϕm−1 | ϕm ∨ ϕm | ϕm ∧ ϕm | ∃xϕm

The collection of formulae ϕm[<] is denoted by Σ2
m[<], the collection of negations

of formulae in Σ2
m[<] is Π2

m[<] and the Boolean closure of Σ2
m[<] is FO2

m[<]. In
what follows, we drop the reference to the predicate symbol <, and assume it to
be understood from context.
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2.3 Ramsey Numbers

A graph is a pair G = (V,E) where V is a set of vertices and E ⊆{
S ⊆ 2V | |S| = 2

}
is a set of edges. An edge-coloring is a map c : E → C

where C is some set of colors. A graph is complete if E =
{
S ⊆ 2V | |S| = 2

}
,

i.e. if there is an edge between any two elements. A set F ⊆ E of edges is
monochrome if c(e) = c(e′) for all e ∈ F . A triangle is a set of three distinct
edges e1, e2, e3 ∈ E where ei ∩ ej �= ∅ for 1 ≤ i, j ≤ 3. The following theorem is
a special case of Ramsey’s Theorem [19].

Theorem 1. Let C be a finite set of colours. Then there exists a number R,
called the Ramsey number of C such that any complete graph G = (V,E) with
R ≤ |V | contains a monochrome triangle.

2.4 Hierarchies Inside DA

A variety of special importance for this article is DA. This monoid variety has a
natural correspondence to FO2 since a language is definable in the latter if and
only if its syntactic monoid is in DA [24].

We are interested in hierarchies of subvarieties of DA. One important such
hierarchy is the Trotter-Weil hierarchy. Its original motivation comes from an
intimate relation with the hierarchy of bands, but here we give a more explicit
definition.

Definition 1. Let M be a monoid, and let s, t ∈ M . Then

– s ∼K t if for all idempotents e ∈ M , either es, et <J e or es = et,
– s ∼D t if for all idempotents f ∈ M , either sf, tf <J f or sf = tf .

The join of these relations is ∼KD.

It is straight-forward to check that these relations are congruences (see
e.g. [12]). Let R1 = L1 = J1, and let M ∈ Rm if M/∼K ∈ Lm−1 and M ∈ Lm if
M/∼D ∈ Rm−1. When defining Rm and Lm for m ≥ 2, starting with J1 yields
the same result as starting with J. For our purposes, starting with J1 is more
natural.

The varieties Rm and Lm are all contained in DA. Together with their joins
and intersections they make up the Trotter-Weil hierarchy shown in Fig. 1.

There is an intimate connection between the quantifier alternation hierarchy,
also shown in Fig. 1, and the Trotter-Weil hierarchy. Indeed, it was shown by
Weil and the second author that the languages definable in FO2

m are exactly
those whose syntactic monoid is in Rm+1 ∩ Lm+1 [14]. Furthermore, combining
the results in [13] and [7] gives the following proposition.

Proposition 1. A language is definable in both Σ2
m and Π2

m if and only if its
syntactic monoid is in Rm ∨ Lm.
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The corners of the quantifier alternation hierarchy, Σ2
m and Π2

m, also have
algebraic characterizations, given by Fleischer, Kufleitner and Lauser [7]. We
define these recognizing varieties using the stable relation �KD introduced by
the authors [10].

Definition 2. Let M be a monoid, and let s, t ∈ M . We say that s �KD t if
for all x, y ∈ M , the following holds:

(i) If x R xty, then x R xsy,
(ii) If xty L y, then xsy L y,
(iii) If x R xt and ty L y, then xsy ≤ xty.

If u �KD v and v �KD u, we say that u ≡KD v.3

Let Si1 = J+ = �1 ≤ z� and let M ∈ Sim if M/�KD ∈ Sim−1. For every m,
the collection Sim is a positive variety. A language is definable in Σ2

m if and only
if its syntactic monoid is in Sim. We say that an ordered monoid M is in Pim
if and only if M with the order reversed, is in Sim. It is clear that a language is
definable in Π2

m if and only if its syntactic monoid is in Pim.

3 Conelikes and the Covering Problem

In this section, we introduce the main problems of the article, the separation
problem and the covering problem. Given a variety V, the (asymmetric) separa-
tion problem is defined as follows:

Given L,L′ ⊆ A∗, determine if there is a language K ∈ V such that L ⊆ K
and L′ ∩ K = ∅.

If there exists such a K, we say that L is V-separable from L′. The symmetric
separation problem is to determine whether both L is V-separable from L′ and
L′ is V-separable from L. If V is a full variety, i.e. closed under complements,
these two problems are equivalent (just choose A∗ \ K to separate L′ from L).

There is a strong connection between the (symmetric) separation and the
problem of deciding pointlikes [1]. In this section, we introduce the more general
covering problem, together with a generalization of pointlikes which works well
with the asymmetric setting. This generalization, which we call conelikes, is
folklore. However, to the knowledge of the authors they have not been made
precise in the algebraic setting.4

Let K be a set of languages, and L a finite set of languages. Then K is
separating for L if for all K ∈ K, there exists L′ ∈ L such that K ∩ L′ = ∅. We
3 The name �KD was originally inspired by the relation ∼KD since they share some

properties. However, it should be noted that the relation ≡KD is not the same as
∼KD. As a counter example, note the syntactic monoid of a+b+cA∗da+b+ where
the equivalence class of ab is ≡KD-related to all elements in the minimal J -class,
whereas it is not ∼K- or ∼D-related to anything.

4 The imprints used by Place and Zeitoun in [18] yield corresponding objects in the
language setting.
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only consider situations when K is a cover of some language L, i.e. K is finite
and L ⊆ ⋃

K.

Definition 3. Let V be a (positive) variety. The covering problem for V is
defined as follows:

Given L ⊆ A∗ and L ⊆ 2A∗
where L is finite, determine if there is K ⊆ V

which covers L and is separating for L.

If such a K exists, we say that (L,L) is V-coverable. Separation is exactly the
special case when L is a singleton. Whenever V is a full variety, it is equivalent
to answer the covering problem for (L,L) and (A∗, {L}∪L) [18], and for regular
languages this is in turn equivalent to computing the V-pointlikes of a finite
monoid recognizing all languages of L [1].

We want to use algebraic methods to solve the covering problem. However,
the covering problem is relevant for positive varieties, whereas pointlikes do not
take orders into account. This motivates the following generalization of point-
likes.

Definition 4. Let M be a monoid, and let τ : M → N be a relational morphism.
For s ∈ M , S ⊆ M , we say that (s, S) is conelike with respect to τ if there exists
an element x ∈ τ(s) such that S ⊆ τ−1(↑ x). We call x a witness of (s, S) being
conelike. As with pointlikes we say that a pair (s, S) is conelike with respect to
a variety V if it is conelike for any τ : M → N ∈ V. We denote by Coneτ (M)
the conelikes of M with respect to τ , and by ConeV(M) the conelikes of M with
respect to V.

Note that if N is unordered, we can define an order u ≤ v if and only if
u = v. In this case, a pair (s, S) is conelike if and only if S ∪ {s} is pointlike. In
particular, this means that for non-positive varieties, calculating the pointlikes
and the conelikes is the same problem.

The concept of pointlikes is in general not expressive enough to solve the
covering problem. However, it is still possible to define pointlikes for a variety
of ordered monoids, and such pointlikes are used throughout the article. Note
that if S ⊆ M is pointlike with respect to some variety of ordered monoids, then
(s, S) is conelike for any s ∈ S.

Proposition 2. Let L = {Li} be a finite collection of regular languages over
some alphabet A, and for each Li let μi : A∗ → Mi be its syntactic monoid.
Let μ : A∗ → M1 × · · · × Mn be defined by μ(a) = (μ1(a), . . . , μn(a)) and let
M = μ(A∗). Let V be a variety of monoids recognizing a variety V of languages,
and let L ⊆ A∗. Then the following are equivalent

(i) (L,L) is not V-coverable,
(ii) there exists a conelike (s, S) with respect to V such that L∩μ−1(s) �= ∅ and

for all L′ ∈ L there exists s′ ∈ S such that L′ ∩ μ−1(s′) �= ∅.
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Before leaving the topic of conelikes, we introduce a common tool for deter-
mining pointlikes and solving the covering problem (see e.g. [18]). The idea is to
construct sets of subsets of M which have closure properties analogous to those
of pointlikes and conelikes.

Definition 5. Given a monoid M , a subset of 2M is closed if it contains the
singletons and is closed under multiplication and subsets. Similarly, a set C ⊆
M × 2M is closed if it has the following closure properties:

– (s, {s}) ∈ C for all elements s ∈ M ,
– (s, S), (t, T ) ∈ C implies (st, ST ) ∈ C,
– (s, S) ∈ C implies (s, S′) ∈ C for all subsets S′ ⊆ S.

We note that the set of conelikes (or pointlikes) with respect to some variety
V or some relational morphism τ is closed.

4 A Framework for Ranker Comparisons

One of the main techniques in this paper is ranker comparisons. This concept
has close connections to fragments of FO2, a connection we explore in Sect. 5
(see. [16,25]). In this section, we introduce a general framework and give sufficient
conditions for instances of this framework to define a monoid.

Definition 6. Let A be some alphabet. A ranker over A is a nonempty word
over {Xa,Ya}a∈A, which can be interpreted as a partial function from A∗ to N.
The interpretation is defined inductively as follows:

– Xa(u) = inf {n ∈ N | u[n] = a} if it exists and undefined otherwise,
– Ya(u) = sup {n ∈ N | u[n] = a} if it exists and undefined otherwise,
– rXa(u) = inf {n ∈ N | n > r(u), u[n] = a} if r(u) is defined and the infimum

is finite, and undefined otherwise,
– rYa(u) = sup {n ∈ N | n < r(u), u[n] = a} if r(u) is defined and the supre-

mum is finite, and undefined otherwise.

Note that we read rankers from left to right (as opposed to function compo-
sition). Thus XaYb(bab) = 1, whereas YbXa(bab) is undefined. If p = a1 · · · an,
we define Xp = Xa1 · · ·Xan

and Yp = Ya1 · · ·Yan
for compactness.

We define the following collections of rankers:

RX
1 = {Xa}+a∈A , RY

1 = {Ya}+a∈A ,

RX
m+1 = {Xa}∗

a∈A RY
m, RY

m+1 = {Ya}∗
a∈A RX

m,

Here the juxtaposition on the left denotes concatenation. We furthermore define
Rm = RX

m ∪ RY
m, and R =

⋃
m Rm. Note that these sets depend on the alphabet

A although this dependence is not written out explicitly. We always assume that
the alphabet is clear from context. Given a ranker r, the alternation depth of r
is the smallest m such that r ∈ Rm. The depth of r is the length of r as a word.
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Since rankers are N-valued functions, there is a natural way of comparing
them given a speficied word u. In other words, given u ∈ A∗ and rankers r, s,
we are interested in whether r(u) ≤ s(u) and r(u) < s(u) hold. The following
definition introduces a general framework, inspired by the comparisons of Weis
and Immerman [25] and Lauser [16].

Definition 7. Let A be some alphabet, and let C ⊆ R × R be some set of pairs
of rankers over A. We define [C ] =

⋃
(r,s)∈C {r, s}, i.e. the set of rankers that

occurs on some position in some pair of C . For u, v ∈ A∗, we have u ≤C v if:

(i) The same set of rankers in [C ] are defined on u and v,
(ii) For each (r, s) ∈ C such that r and s are defined on u and v, we have

r(u) ≤ s(u) ⇒ r(v) ≤ s(v), and r(u) < s(u) ⇒ r(v) < s(v).

If u ≤C v and v ≤C u, we say that u ≡C v.

For rankers r,s, and words u, v ∈ A∗ we have r(u) ≤ s(u) ⇒ r(v) ≤ s(v) if
and only if s(v) < r(v) ⇒ s(u) < r(u). In particular, this means that if C is
symmetric, i.e. (r, s) ∈ C ⇔ (s, r) ∈ C , then ≤C and ≡C are equal. Note that
for a certain choice of symmetric C we get the relation introduced in [25]. We
say that a language L is definable by C if L is an ideal under the relation ≤C .
Furthermore, we say that a language is an C -set if it is a subset of such an ideal.

For a language A and some sets of rankers C ⊆ R × R, we want to consider
the monoid A∗/≤C , which is a well defined monoid only when ≤C is stable. For
general C , this is not the case. However, Proposition 3 provides a large class of
sets for which it does hold.5

Proposition 3. Let R be some collection of rankers and let C ⊆ R×R be closed
under subwords, i.e. be such that (r, s) ∈ C implies (r′, s′) ∈ C for any subwords
r′ of r and s′ of s. Then the preorder ≤C is stable.

If C furthermore is finite, then A∗/≤C is a finite monoid. This monoid can
be constructed explicitly; given representatives u and v for some elements, one
can check which ranker comparisons uv satisfy.

5 The Ranker Comparison Hierarchy

Rankers and ranker comparisons have a long tradition in the study of fragments
of FO2. Indeed, rankers were first introduced by Schwentick, Thérien and Vollmer
as a characterization of FO2 itself [21]. Ranker comparisons were used by Weis
and Immerman to give a characterization of the languages definable in FO2

m [25];
this was later expanded to the full alternation hierarchy in the PhD thesis of

5 As an example on when it does not hold, consider the singleton {(Xaa,Yaa)}. We
note that neither Xaa nor Yaa are defined on ε nor on a. Thus ε ≤C a. However,
a �≤C aa. The following proposition gives a condition on C which implies that ≤C

is stable.
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Lauser [16]. A ranker characterization of the corners of the Trotter-Weil hierarchy
is also known, using so called condensed rankers [15].

In this section, we place these results into our general framework. In par-
ticular, we rephrase the characterization of the Trotter-Weil corners in terms
of ranker comparisons. This leads to a natural hierarchy containing both the
Trotter-Weil and quantifier alternation hierarchies: the ranker comparison hier-
archy, shown in Fig. 1.

Fig. 1. The Ranker Comparison Hierarchy surrounded by the Trotter-Weil hierarchy
(left) and the Quantifier Alternation Hierarchy (right)

The levels of the ranker comparison hierarchy are built using the following
collections of ranker comparisons. We note that they are finite and closed under
subwords, and thus define finite monoids by Proposition 3. For m ≥ 1:

XXm,n =
{
(r, s) ∈ RX

m × RX
m | |r|, |s| ≤ n

}
,

YYm,n =
{
(r, s) ∈ RY

m × RY
m | |r|, |s| ≤ n

}

and for m ≥ 2:

XYm,n =
{
(r, s) ∈ RX

m × RY
m | |r|, |s| ≤ n

}
,

YXm,n =
{
(r, s) ∈ RY

m × RX
m | |r|, |s| ≤ n

}
.

We also consider unions of these sets. We use the notation ≤XY
m,n instead of

≤XYm,n and similarly for the other sets. Note that we have u ≤XY
m,n v if and only
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if v ≤YX
m,n u and v ≤XY∪YX

m,n u if and only if both v ≤XY
m,n u and v ≤YX

m,n u.6 We
also give the following names for the induced monoids.

Definition 8. We define

NXX
m,n = A∗/≤XX

m,n NYY
m,n = A∗/≤YY

m,n NXX∪YY
m,n = A∗/≤XX∪YY

m,n

NXY
m,n = A∗/≤XY

m,n NYX
m,n = A∗/≤YX

m,n NXY∪YX
m,n = A∗/≤XY∪YX

m,n .

The fragments Σ2
1,n, Π2

1,n and FO2
1,n can be characterized using existence of

subwords. Since our framework require the same subwords up to a certain length
to be present in both words of interest (condition (i) in Definition 7), it can not
properly handle the two former cases. Therefore, we make the following special
definition.

Definition 9. Let A be some alphabet, we say that u ≤XY
1,n v if any ranker r ∈

RX
1 ∪ RY

1 with |r| ≤ 2n which is defined on u is also defined on v. Equivalently,
u ≤XY

1,n v if every subword of length 2n which exists in u also exists in v. We say
that u ≤YX

1,n v if v ≤XY
1,n u and u ≤XY∪YX

1,n v if u ≡XY
1,n v.

With some abuse of notation, we say that a language is definable by XY1,n

(resp. YX1,n or XY1,n ∪YX1,n) if it is an ideal under the relation ≤XY
1,n (resp. ≤YX

1,n

or ≤YX∪YX
1,n ). However, we note that there are no actual sets XY1,n and YX1,n;

trying to interpret such sets in the sense of Definition 7 does not yield the
desired outcome. This abuse of notation ensures that we can define all levels of
the quantifier alternation hierarchy using consistent terminology. We also define
NXY

1,n and NYX
1,n to be the monoids induced by the respective (stable) preorders.

We now restate the known correspondences between rankers and the quan-
tifier alternation hierarchy in our framework. The following characterization of
the FO2

m levels is due to Weis and Immerman ((i) and (ii) [25]) and Kufleitner
and Weil ((i) and (iii) [14]).

Proposition 4. Given a language L, the following are equivalent:

(i) L is definable in FO2
m,

(ii) L is definable by XYm,n ∪ YXm,n for some n,
(iii) the syntactic morphism of L is in Rm+1 ∩ Lm+1.

Similarly, we have the following characterization of the Σ2
m levels, due to

Fleischer et al. ((i) and (iii) [7]) and Lauser ((i) and (ii) [16, Thm. 11.3]). One
easily gets the symmetric characterization of the Π2

m-levels.

Proposition 5. Given a language L, the following are equivalent:
6 Note that although the relation ≤XY∪YX

m,n is similar to the relation introduced by Weis
and Immerman [25], there is a slight difference regarding the variable n. The length
of rankers allowed by Weis and Immerman is made to ensure correspondence with
the depth of formulae in FO2. The results of this contribution does not consider
depths of FO2 formulae, and thus this difference is not important here.
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(i) L is definable in Σ2
m,

(ii) L is definable by XYm,n for odd m and YXm,n for even m for some n,7

(iii) the syntactic monoid of L is in Sim.

The corners of the Trotter-Weil hierarchy have a ranker characterization in
terms of condensed rankers [15]. We reformulate this result in terms of ranker
comparisons. The ranker comparison characterization of the join levels then fol-
lows directly. We also use Proposition 1 to relate the join levels to the intersection
levels of the quantifier alternation hierarchy.

Proposition 6. Let m ≥ 1. Then L is definable by XXm,n (resp. YYm,n) for
some n if and only if its syntactic monoid M is in Rm+1 (resp. Lm+1). Fur-
thermore, the following are equivalent:

(i) L is definable by XXm,n ∪ YYm,n for some n,
(ii) the syntactic monoid of L is in Rm+1 ∨ Lm+1,
(iii) the syntactic monoid of L is in Pim ∩ Sim,
(iv) L is definable in Σ2

m and in Π2
m.

Taken together, these three propositions gives us a new way of considering
the Trotter-Weil hierarchy and the quantifier alternation hierarchy together, as
a ranker comparison hierarchy; see Fig. 1.

6 Saturations for Fragments of FO2

In this section, we present computable closed sets for all levels of the Trotter-
Weil and quantifier alternation hierarchies, in other words for all levels of the
ranker comparison hierarchy. We also state our main results: that these sets
agree with the corresponding sets of pointlikes. The proof thereof is the subject
of the subsequent sections.

The sets presented below relies on the monoids having content morphisms
(intuitively on the monoid elements having a fixed alphabet). This is not true
for all monoids; consider for example M = {1, a} with aa = 1. However, it is
always possible to alphabetize a monoid by explicitly distinguishing elements
with different alphabets. If M is a monoid with a generating set A, then the
submonoid of M × JA generated by (a, {a})a∈A has a content morphism. It also
has a surjective morphism onto M .

We now introduce the relevant closed sets. Note that for our purposes, R1 =
L1 = J1. We first give the sets for the corners of the Trotter-Weil hierarchy.
These are important building blocks for the other sets.

Definition 10. Let M be a monoid with a content morphism α. We define:

– SatJ1(M) = SatR1(M) = SatL1(M) = {S ⊆ M | α(s) = α(t) for all s, t ∈ S},
7 The relation in [16] has only one-sided inclusion of definedness of rankers with the

maximum number of alternations for all m as an explicit assumption. However, for
m ≥ 2, two sided inclusion follow implicitly.
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– for m ≥ 2, SatRm
(M) is the smallest closed set of M such that if Z ∈

SatLm−1(M), U ∈ SatRm
(M), α(Z) ≤ α(U) and U is idempotent in 2M ,

then UZ ∈ SatRm
(M)

– for m ≥ 2, SatLm
(M) is the smallest closed set of M such that if Z ∈

SatRm−1(M), V ∈ SatLm
(M), α(Z) ≤ α(V ) and V is idempotent in 2M ,

then ZV ∈ SatLm
(M)

The definition inductively ensures that for any W in any of the introduced
sets, we have α(w) = α(w′) for all w,w′ ∈ W . Thus, α(W ) is a well defined
element of JA, making the comparisons α(Z) ≤ α(U) and α(Z) ≤ α(V ) mean-
ingful.

The other closed sets build on so-called RLm-factors. If one think of the
elements of a monoid as the languages they represent, one can think of RLm-
factors as collections of languages which can not be distinguished from any side
using rankers of alternation depth at most m, while containing words of arbitrary
length.

Definition 11. Let M be a monoid with a content morphism α. Let S,E ∈
SatRm

(M), T, F ∈ SatLm
(M) with α(S), α(T ) ≤ α(E) = α(F ) and E, F idem-

potent in 2M . Let W be such that α(w) ≤ α(E) for all w ∈ W . Then SEWFT
is an RLm-factor.

Since SatRm
(M) and SatLm

(M) can be constructed for each m, the RLm-
factors can also be effectively constructed. Note that the alphabet of an RLm-
factor is well defined. Using these factors, we construct the following sets.

Definition 12. Let M be a monoid. Then

– ConeSatSi1(M) is the smallest closed set for which (1, S) ∈ M for all S ⊆ M .
– ConeSatPi1(M) is the smallest closed set for which (s, {1, s}) ∈ M for all

s ∈ M .

Suppose further that M has a content morphism α, then for m ≥ 2:

– SatJ(M), is the smallest closed set such that E ∈ SatJ(M) for all idempotent
sets E satisfying α(s) = α(t) for all s, t ∈ E.

– SatRm+1∩Lm+1(M) is the smallest closed set which for all n contain the prod-
uct

U1V1U2 . . . Vn−1Un

where every Ui is an RLm-factor while Vi ∈ SatRm∩Lm
(M) (or Vi ∈ SatJ(M)

for m = 2), and α(v′
i) ≤ α(Ui), α(Ui+1) for all v′

i ∈ Vi,
– SatRm∨Lm

(M) is the smallest closed set which for all n contain the product

U1V1U2 . . . Vn−1Un

where every Ui is an RLm-factor while Vi ∈ SatRm−1∨Lm−1(M) (or Vi ∈ 2M

for m = 2), and α(v′
i) ≤ α(Ui), α(Ui+1) for all v′

i ∈ Vi,
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– ConeSatSim(M) is the smallest closed set which for all n contain the product

(u1, U1)(v1, V1)(u2, U2) . . . (vn−1, Vn−1)(un, Un)

where for all i, we have ui ∈ Ui and Ui is an RLm-factor while (vi, Vi) ∈
ConeSatSim−1(M), and α(v′

i) ≤ α(Ui), α(Ui+1) for all v′
i ∈ Vi,

– ConeSatPim(M) is the smallest closed set which for all n contain the product

(u1, U1)(v1, V1)(u2, U2) . . . (vn−1, Vn−1)(un, Un)

where for all i, we have ui ∈ Ui and Ui is an RLm-factor while (vi, Vi) ∈
ConeSatPim−1(M), and α(v′

i) ≤ α(Ui), α(Ui+1) for all v′
i ∈ Vi,

We now state our main theorem. Apart from giving the pointlikes of the
different levels, it also provides separators. These are monoids with relational
morphisms which are optimal in V for separating the elements of M . In other
words, the relational morphisms τ satisfy PLτ (M) = PLV(M). The theorem
states only the monoids explicitly; the relational morphisms are the natural
relational morphisms, obtained by mapping every element in M to their preimage
in A∗ and projecting onto the relevant monoids.

Theorem 2. Let M be a finite monoid, and let n = �R/2� − 1 where R is the
Ramsey number of M . Then

(i) ConeSi1(M) = ConeSatSi1(M) with separator NXY
1,n ,

(ii) ConePi1(M) = ConeSatPi1(M) with separator NYX
1,n ,

Furthermore, suppose M has a content morphism α : M → JA, and let n =
(m + |A|)(R − 1) and n′ = (m − 1 + 3|A|)(R − 1) + |A| where R is the Ramsey
number of 2M .

(iii) PLJ1(M) = SatJ1(M) with the separator JA,
(iv) PLRm

(M) = SatRm
(M) with the separator NXX

m,n,
(v) PLLm

(M) = SatLm
(M) with the separator NYY

m,n,
(vi) PLJ(M) = SatJ(M) with separator NXY∪YX

1,|A|R+R−1,
8

(vii) PLRm+1∩Lm+1(M) = SatRm+1∩Lm+1(M) with separator NXX∪YY
m,n′ ,

(viii) PLRm∨Lm
(M) = SatRm∨Lm

(M) with separator NXX∪YY
m,n′ ,

(ix) ConeSim(M) = ConeSatSim(M) with separator NXY
m,n′ for odd m and NYX

m,n′

for even m,
(x) ConePim(M) = ConeSatPim(M) with separator NYX

m,n′ for odd m and NXY
m,n′

for even m,

The following is an immediate corollary, given Proposition 2.

Corollary 1. The covering problem has a solution for all language varieties
associated with the levels of the quantifier alternation hierarchy. In particular,
this implies solutions to the separation problems for all of these varieties.
8 See [2]. We reprove it in order to get a separator which is defined using rankers.
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2014. LNCS, vol. 8476, pp. 176–189. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-06686-8 14

8. Henckell, K.: Pointlike sets: the finest aperiodic cover of a finite semigroup. J. Pure
Appl. Algebra 55(1–2), 85–126 (1988)

9. Henriksson, V.: Membership and separation problems inside two-variable first order
logic. Loughborough University, Thesis (2021)

10. Henriksson, V., Kufleitner, M.: Nesting negations in FO2 over infinite words.
CoRR, abs/2012.01309 (2020)

11. Krebs, A., Straubing, H.: An effective characterization of the alternation hierarchy
in two-variable logic. ACM Trans. Comput. Log. 18(4), 30:1–30:22 (2017)

12. Krohn, K., Rhodes, J.L., Tilson, B.: Homomorphisms and semilocal theory. In:
Algebraic Theory of Machines, Languages, and Semigroups, chapter 8, pp. 191–
231. Academic Press (1968)

13. Kufleitner, M., Lauser, A.: The join levels of the Trotter-Weil hierarchy are decid-
able. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol.
7464, pp. 603–614. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32589-2 53

14. Kufleitner, M., Weil, P.: The FO2 alternation hierarchy is decidable. In: Proceed-
ings CSL 2012, LIPIcs, vol. 16, pp. 426–439. Dagstuhl Publishing (2012)

15. Kufleitner, M., Weil, P.: On logical hierarchies within FO2-definable languages.
Log. Methods Comput. Sci. 8(3:11), 30 (2012)

16. Lauser, A.: Formal language theory of logic fragments. Ph.D. thesis, University of
Stuttgart (2014)

17. Place, T., Zeitoun, M.: Going higher in the first-order quantifier alternation hierar-
chy on words. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8573, pp. 342–353. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43951-7 29

18. Place, T., Zeitoun, M.: The covering problem. Log. Methods Comput. Sci. 14(3)
(2018)

19. Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. s(2)-30(4),
264–286 (1929)

20. Schützenberger, M.-P.: Sur le produit de concaténation non ambigu. Semigroup
Forum 13(1), 47–75 (1976)

https://doi.org/10.1007/978-3-319-06686-8_14
https://doi.org/10.1007/978-3-319-06686-8_14
https://doi.org/10.1007/978-3-642-32589-2_53
https://doi.org/10.1007/978-3-642-32589-2_53
https://doi.org/10.1007/978-3-662-43951-7_29
https://doi.org/10.1007/978-3-662-43951-7_29


Conelikes and Ranker Comparisons 375
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Abstract. In this paper, we present a new construction of a finite
automaton associated with a rational (or regular) expression. It is very
similar to the one of the so-called Thompson automaton, but it overcomes
the failure of the extension of that construction to the case of weighted
rational expressions. At the same time, it preserves all (or almost all)
of the properties of the Thompson automaton. This construction has
two supplementary outcomes. The first one is the reinterpretation in
terms of automata of a data structure introduced by Champarnaud,
Laugerotte, Ouardi, and Ziadi for the efficient computation of the posi-
tion (or Glushkov) automaton of a rational expression, and which con-
sists in a duplicated syntactic tree of the expression decorated with some
additional links. The second one supposes that this construction devised
for the case of weighted expressions is brought back to the domain of
Boolean expressions. It allows then to describe, in terms of automata,
the construction of the Star Normal Form of an expression that was
defined by Brüggemann-Klein, and also with the purpose of an efficient
computation of the position automaton.

Keywords: Rational expression · Thompson automaton · Weighted
automaton

1 Introduction

This paper deals, once more, with the question of building a finite automaton
that accepts the language, or — more important for us — the series, denoted
by a rational (or regular) expression. This effective view of one direction of the
fundamental Kleene Theorem has attracted much attention, works and publi-
cations as it corresponds to one of the building bricks of compilation and text
retrieval. In the recently published Handbook of Automata Theory [20], we have
given a survey on the many aspects of the transformation of an expression into
an automaton (and vice-versa), together with a comprehensive bibliography [23].

Surprisingly enough, this long lasting problem — more than 60 years now —
may still reveal new aspects, especially when one considers the case of weighted
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expressions, which is precisely our concern. For instance, we have recently shown
that the derived term automaton (aka partial derivatives automaton) may be
defined without any reference to derivation or quotient — which in particular
makes the construction valid for building transducers [18].

At the opposite of the compact — and rather confidential — derived term
automaton, the Thompson automaton [26], famous and universally used via the
grep command of the Unix system, is the largest (in terms of number of states)
of the automata computed from an expression. It is so close to the expression it
translates that it can be used to derive all other automata computed from the
expression; this is what is explained in [1]. On the other hand, it is not difficult
to extend the original construction of Ken Thompson to the case of weighted
expressions — this is also done in [1].

The problem is that this extension is illegitimate in the sense that via this
construction a valid expression may produce an automaton which is not valid.
This is known for a long time already (see [17] for instance). The purpose of
this paper is the definition of a Thompson-like construction which is consistent
with weights, that is, which yields a valid automaton when applied to a valid
expression. We call this automaton the nailed expression tree automaton, or net
automaton for short.

Let us be more specific and explain the notion of validity which is central to this
work. The classical models of formal languages and automata refer to a ‘Boolean
universe’ where a word belongs, or not, to a language, or is accepted, or not, by an
automaton. The extension, or generalization, of these models to quantitative and
more versatile concepts where every word is given a coefficient, be it called prob-
ability, distance, cost, weight — we use weight — goes back to the very beginning
of automata theory ([21,25]). It is to be acknowledged that in these early times
the coefficients themselves were used mostly to decide whether a word is accepted
or not (being non zero, or above a given threshold). But this part of the theory
has known a renewed interest in the recent years, in works where the value of the
coefficients itself is taken into consideration and enriches the model.

This extension does not come for free and the definition of the star operator
in such a framework raises a real problem. An axiomatic approach has been
developped in many works (e.g. [5,6,15]) in order to address it. It allows to
define different classes of semirings, depending on which axioms are satisfied.
But it does not cover natural weight sets such as integers or rational numbers.
In our previous works on the subject, [16,17,22] for instance, we have chosen
the intuitive extension of the star of an element as the sum of its powers. This
implies that we are able to define infinite sums in the semiring of weights and,
to this end, that the semiring be endowed with a topology. All usual semirings
are in this case. The star of an element is then partially defined.

An expression is valid when in the inductive process of evaluation of the series
it denotes, all stars are defined. The validity of an automaton may be slightly
trickier to define, as we have shown in [17], but in any case it boils down to the
definition of infinite sums of elements in the semiring. It is of course essential
that the validity be preserved in the correspondence between expressions and
automata realised by the constructions that establish Kleene’s Theorem. This is



378 S. Lombardy and J. Sakarovitch

what fails with the ‘classical’ weighted extension of Thompson construction and
that is achieved with the net automaton.

As we shall see, the net automaton of an expression shares all, or almost
all, properties of the Thompson automaton of the expression. Both automata
look very much the same, like chiefly two hammocks of ε-transitions stretched
between their unique initial and final states, their states with in- and out-degrees
at most 2. Both automata give the position automaton of the expression when
the ε-transitions are (adequatly) removed. The main differences between the two
constructions being first that the net automaton of an invalid expression is not
defined whereas the Thompson automaton of any expression is defined even if
the expression is not valid and second that the initial state of the net automaton
may be final, with a weight equal to the constant term of the expression, whereas
the Thompson automaton has only one final state, with weight 1.

The first property of the net automaton, besides the fact it fulfils the purpose
it is meant to, is that it can be given a global and direct description in addition
to the inductive construction used for its definition, a description from which its
name is taken.

Let E be a rational expression. We take two copies of the syntactic tree of E
and transform them into weighted directed graphs: in one copy the edges are
directed downward, upward in the other, and they are labeled with the empty
word ε. The corresponding leaves in the two copies are connected, from the
downward to the upward copies, with transitions labeled by the letter labeling
the leaf. The root of the downward copy is made initial, the root of the upward
copy is made final. Few rules are added that put weights on some of the ε-
transitions and connect some nodes in the upward copy to nodes in the downward
copy. The result is the net automaton of E.

This construction enlights the fact that the net automaton is indeed very close
to a data structure that the ‘Rouen school’ has introduced in order to compute
efficiently first the partial derivative automaton of an expression [10] and second
the coefficient of a word in the series denoted by a weighted expression [9]. If
they had transformed this data structure into an automaton, they would have
probably built something very close to the net automaton.

The second property of the net automaton we report on is more surprising
as it occurs in the Boolean case, a domain where one could think it has nothing
to add to the Thompson automaton. If E is a Boolean regular expression, it
so happens that the net automaton of E contains some ε-transitions that can
be characterized as, and coined, ‘superfluous’. When these superfluous transi-
tions are deleted, not only the remaining automaton of course accepts the same
language (otherwise the deleted transitions would not have been called super-
fluous) but this automaton is ‘almost’ isomorphic to the net automaton of the
Star Normal Form of E.

This means that the construction of the net automaton of a Boolean regu-
lar expression somehow simultaneously carries out the computation of the Star
Normal Form of the expression. An unexpected outcome for a process that has
been devised for solving a problem in the weighted case and which shows that
the net automaton truly translates in the automaton world the deep structure
of the expression.
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The paper is organized as follow. In the preliminary section, we recall the
definition and notation for the weighted version of automata theory and the con-
struction of the position automaton of an expression. The next section recalls the
definition of the Thompson automaton and gives the one of the net automaton
to make clear their likeness and differences. The last two sections present the
two results quoted above. The first one gives the direct construction of the net
automaton from the syntactic tree of the expression. The second one shows how
the net automaton of the Star Normal Form of a (Boolean) expression is built
directly from the net automaton of the expression.

For want of space, not only most of the proofs of the statements but also the
formal definitions of the constructions are not given. We hope that figures will
give enough intuition of the notions we describe. As a result, the body of the
paper is more an extended abstract than a regular one.

2 Definitions and Notation: The Quantitative Perspective

The definition of usual notions, such as words, languages, free monoids, expres-
sions, automata, rational (or regular) sets, recognisable sets, etc. may be found
in numerous textbooks (e.g. [14]). The corresponding notions of multiplicity (or
weight) semirings, (formal power) series, weighted automata, etc. are probably
less common knowledge but are still presented in quite a few books [3,4,11,24] to
which we refer the reader. Let us be more explicit for the two notions we study:
the weighted rational expressions and the weighted finite automata. Before, we
recall the notions of semiring and series; at the end, the construction of the
position (or Glushkov) automaton.

The set of words over an alphabet A is denoted by A∗, the empty word by ε.
A semiring K is a set endowed with an associative and commutative addition
and an associative multiplication with neutral elements respectively denoted
by 0K and 1K; the multiplication is distributive over the addition and 0K is an
annihilator for the multiplication. Every semiring is supposed to be equipped
with a topology. For instance, N, Z, (Z,min,+) are equipped with the discrete
topology, Q, R with the topology defined by the distance.

If k is an element of a semiring K, k∗ is the sum of all powers of k: k∗ =∑
n∈N

kn . This infinite sum may be defined — k is said to be starrable — or not
defined — k is said to be non starrable. In any K, 0K is starrable and 0∗

K
= 1K.

The extension of languages to the weighted case are called series. Formally,
a series over A∗ with coefficients in K is a map from A∗ into K. The value of
a series s at a word w of A∗ is called the coefficient or rather here the weight
of w in s and is denoted by 〈s, w〉. The set of series over A∗ with weights in K,
equipped with the pointwise addition and the Cauchy product is a semiring
denoted by K〈〈A∗〉〉. It is endowed with the topology inherited from the one
on K by the simple convergence topology.

The constant term c(s) of a series s is the weight of ε in s. A series is proper
if its constant term is 0K. The proper part sp of a series s is the series obtained
from s by zeroing the weight of ε and keeping all other weights unchanged.
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A proper series is always starrable. This property is generalised by the fol-
lowing1.

Theorem 1 ([16]). Let K be a strong semiring. A series s in K〈〈A∗〉〉
is starrable if and only if c(s) is starrable in K and in this case s∗ =
(c(s)∗ . sp)∗ . c(s)∗.

2.1 Weighted Automata

A weighted automaton is a labeled weighted directed graph whose vertices (called
states) are endowed with initial and final functions. More formally:

Definition 1. Let K be a semiring and A a finite alphabet. A K-automaton
over A is denoted by a tuple A = 〈Q,E, I, T 〉 where Q is the finite set of states,
I is the initial function from Q into K, T is the final function from Q into K,
and E is the set of transitions, a subset of Q × (A ∪ {ε}) × K × Q.

The semantics of computations of an automaton requires that E be the graph
of a (partial) map from Q×(A∪{ε})×Q into K\{0K} and hence be finite. Likewise,
a state is initial (resp. final) if and only if its initial (resp. final) value is not 0K.
A (classical) finite automaton is a weighted automaton whose weight semiring is
the Boolean semiring B: I and T are then subsets of Q and E is a set of triples.

A transition in E is a 4-tuple t = (r, x, h, s): x is the label, h the weight of t.
If x = ε, t is called an ε-transition. A path in A is defined as in graph theory
and is a sequence of transitions. The label (resp. the weight) of a path is the
concatenation of the labels (resp. the product of the weights) of its transitions.
A computation is a path from an initial state p to a final state q; its label is
the label of the path and its weight is the product I(p) . k . T (q), where k is the
weight of the path.

In an automaton with ε-transitions, a given word may be the label of an
infinite number of computations. Hence the infinite summations implied, and
the topology required, in the next definition.

Definition 2. Let A be a K-automaton over A∗. The evaluation of a word w
in A is the sum, if it is defined, of the weights of all computations with label w.

If the evaluation of every word in A∗ is defined, the automaton A is said
to be valid. And the behaviour of A is the series denoted by |A| where the
coefficient of every word w is the evaluation of w in A.

Lemma 1. Let A be a K-automaton. Every word is the label of a finite number
of computations if and only if there is no circuit of ε-transitions in the trim part
of A.

1 A topological semiring is strong if the product of two summable families is a
summable family. It is a sufficient condition in order to establish Theorem 1. Not
all semirings are strong ([19]) but all usual semirings are. This precision is not of
importance here but on the other hand Theorem 1 is essential for the constructions
that follow and we wanted to have a correct statement.
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Hence, every weighted automaton with no circuit of ε-transitions is valid.

Remark 1. In [17], we have given a more complex definition for the validity of
automata in order to encompass the most general (topological) weight semirings
and thus to ensure that ε-removal procedures are licit for any valid automaton.
For Z-automata — as is the counter-example we give below — this definition of
validity boils down to the more intuitive one given in Definition 2.

2.2 Weighted Rational Expressions

Definition 3. Let K be a semiring and A a finite alphabet. A K-rational expres-
sion over A is an expression defined as follows.

(i) The atoms are 0, 1, and a for every letter a in A;
(ii) there are two binary operators + and ·;
(iii) there is a unary (postfix) operator ∗;
(iv) for every element k of K there are two unary operators (one prefix and one

postfix) denoted by concatenation: if E is a rational expression, so are k E
and E k.

Remark 2. Trivial identities (E+0 = E, E · 1 = E, E · 0 = 0, etc.) can be applied to
rational expressions. In some constructions, like the computation of the derived
term automaton of a rational expression [16], they are necessary. They are useless
in the construction of the Thompson automaton or the net automaton, which
is defined in this paper. Therefore, we consider rational expressions without any
simplification.

For every rational expression E, the size σ(E) is the number of atoms and
operators in E, while the litteral length �(E) is the number of letters in the
expression. These values can be computed inductively.

Definition 4. The constant term c(E) of a K-rational expression E is an ele-
ment of K inductively defined by:

c(0) = 0K, c(1) = 1K, ∀a ∈ A, c(a) = 0K, c(k E) = k . c(E),
c(E k) = c(E) . k, c(F + G) = c(F) + c(G), c(F ·G) = c(F) . c(G),

and c(F∗) = c(F)∗ if c(F) is starrable.

Notice that the constant term is not defined for every expression. Actually,
the star operator is involved in its definition and it may happen that, for an
expression F∗, the star of c(F) is not defined.

Definition 5. A K-rational expression E is valid if c(E) is defined.

Definition 6. The interpretation of a valid K-rational expression over A is the
(rational) series inductively defined by:

|0| = 0K, |1| = 1K, ∀a ∈ A, |a| = a, |k E| = k . |E|, |E k| = |E| . k,

|F + G| = |F| + |G|, |F ·G| = |F| . |G|,
|F∗| = (c(F∗) . |F|p)∗ . c(F∗) if c(F) is starrable.
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By Theorem 1, in strong semirings, |F∗| = |F|∗ if it is defined, and it is
straightforward that c(E) is the constant term of |E|.
Proposition 1. For every valid K-rational expression E, c(E) = 〈|E|, ε〉 .

2.3 The Position Automaton of an Expression

There are several classical constructions of automata without any ε-transitions
from valid rational expressions. Most of them lead actually to the same automa-
ton, sometimes call Glushkov, standard, or position automaton, depending on
the algorithm used for its construction [8,13].

In this paper, we call it position automaton because we use this description
to analyse its connections with the net automaton. The position automaton of a
rational expression E has a unique initial state; every other state corresponds to
the position of a letter in the expression. Every transition arriving in the state
corresponding to the position p is labelled with the letter at position p in E. Let p
and q be two positions. There is a transition from the initial state to the state q
if the letter in position q appears as the first letter of some words in |E|; there is
a transition from the state p to the state q if the letter in position p is followed
by the the letter in position q in some words in |E|; likewise, the state p is final
if the letter in position p is the last letter of some words in |E|. The position
automaton of a rational expression E has no ε-transition, it has �(E) + 1 states,
and one unique initial state on which no transition arrives.

3 The Nailed Expression Tree Automaton

This section recalls the classical construction of the Thompson automaton, points
out the problem when it is generalised to weighted expressions, proposes a new
inductive construction that solves the problem, and shows the similarity between
the two resulting automata.

3.1 The Thompson Automaton

The so-called ‘Thompson automaton’ has been described by Ken Thompson
as the core of the function grep implemented in Unix for regular expression
search [26]. The extension of the construction to weighted expressions is quite
straightforward (see [1] for instance). We denote by T (E) the Thompson automa-
ton of an expression E. The inductive construction of the Boolean Thompson
automaton is presented in every automata textbook; it is shown, together with
the extension to the weighted case, in Fig. 1.
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Fig. 1. The construction of the weighted Thompson automaton.

If E is a Boolean expression, |T (E)| = |E| of course holds. The extension
of that fundamental equation proves to be indeed problematic in the weighted
case, when not all expressions, nor automata, are valid.

First note that the very definition makes it possible to build T (E) for an
expression E which is not valid. It is immediate to check that in this case T (E)
is not valid as well: there exist some pairs of states which are connected by an
infinite number of paths of ε-transitions such that the sum of the weights of
these paths is not defined. The problem with the definition of T (E) is that the
converse of this statement does not hold and that a valid expression E may be
associated with a Thompson automaton T (E) which is not valid, as shown by
Example 1.

Example 1. Consider the Z-rational expression E1 = (a∗ + (−1)b∗)∗ .
Since c(a∗ + (−1)b∗) = c(a∗) − c(b∗) = 0 is starrable, E1 is a valid expression.
On the other hand, T (E1) contains circuits of ε-transitions (with weight 1 or −1)
and is therefore not valid. It is drawn in Fig. 3(a), postponed to allow comparison
with the other new construction.

However, at least the following statement holds.

Proposition 2. Let E be a K-rational expression. If T (E) is valid, then E is
valid and |T (E)| = |E|.

3.2 The Nailed Expression Tree Automata

The construction we are aiming at is inductive, quite similar and parallel to
the original Thompson construction. The resulting automaton shares almost all



384 S. Lombardy and J. Sakarovitch

characteristics and properties of the Thompson automaton. We call it the nailed
expression tree automaton — which we shorten in the handier net automaton
— by reference to another method to constructing it, that consists in duplicat-
ing and ‘decorating’ the syntactic tree of the rational expression, and that is
described in Sect. 4.

We denote by N(E) the net automaton of an expression E. It is defined
inductively by the rules drawn in Fig. 2. Notice that by rule (5) the construction
of the net automaton is possible if and only if the expression is valid.

The fundamental property of the construction is expressed by Proposition 3
which is easy to establish by induction on the expression.

Proposition 3. Let E be a K-rational expression. Then, in N(E), there is no
circuit of ε-transitions nor any path of ε-transitions from the initial state to the
final state.

The soundness of the construction of the net automaton is then expressed by
the following statement.

Theorem 2.
Let E be a valid K-rational expression. Then, N(E) is valid and |N(E)| = |E| .

Example 2. The net automaton N(E1) is drawn in Fig. 3(b).

Example 3. Let E2 be the Q-rational expression E2 = (a∗ · (−1
2 b∗)∗)∗. Then

c((−1
2 b∗)∗) =

(−1
2

)∗ = 2
3 . Hence c(E2) =

(
2
3

)∗ = 3. The net automaton N(E2) is
drawn in Fig. 4 left.

Fig. 2. The inductive construction of the net automaton of an expression
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Fig. 3. Two automata for E1.

3.3 The Common Properties of the Thompson and the Net
Automata

There are of course (and hopefully) differences between the Thompson and the
net automata of a given rational expression. But there are also many similarities
that are listed in the following statement, obvious by induction on the expression
(recall that σ(E) is the size of the expression E, cf. Sect. 2.2).

Proposition 4. Let E be a valid K-rational expression. Then, T (E) and N(E)
have the following properties in common:

(i) they contain exactly 2σ(E) states and less than 4σ(E) transitions;
(ii) there are at most two transitions outgoing from (resp. ingoing to) each

state; if there are two transitions, these are ε-transitions;
(iii) they have a single initial state to which there is no incoming transition and

a single final state from which there is no outgoing transition. In the case
of N(E) however, the initial state is also final, with weight c(E).

A further common property between Thompson and net automata requires
the definition of the ε-closure of an automaton. Let A = 〈Q,E, I, T 〉 be an
automaton over the alphabet A and with ε-transitions. Let R be the subset of Q
of states q with at least one ingoing transition labeled by a letter in A — that is,
states whose ingoing transitions are not all ε-transitions. And let P = I ∪R. For
every p in P and every q in R, an ε/a-path (from p to q) is the concatenation of
an ε-path from p to a state s with a transition with label a from s to q.

The (backwards) ε-closure of A is the automaton 〈P, F, I, U〉, where:

• for every p in P , U(p) is equal to the sum for all t in T of the sum of the
weights of all ε-paths from p to t multiplied by T (t);

• for every p in P , every q in R, and every letter a, there is a transition from p
to q with label a with a weight equal to the sum of weights of all ε/a-paths
from p to q.

In general, this construction requires that the automaton is valid [17]. As the
net automaton has no circuit of ε-transitions, it is always valid.
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Proposition 5. For every valid rational expression E, the ε-closure of N(E) is
the position automaton of E.

In the Boolean case, it is common knowledge that the ε-closure of T (E) is
the position automaton of E. In the weighted case, it is also known that, if T (E)
is valid, its ε-closure is the position automaton of E (see [1], even if the question
of validity is not raised there).

Example 4. The position automaton of E2 is drawn in Fig. 4 right.

Fig. 4. The net automaton and the position automaton of E2.

4 From the Expression Syntactic Tree to the Net
Automaton

We now build the net automaton directly from an expression, or rather from its
syntactic tree, and not by induction on the formation of the expression.

Let E be a valid K-rational expression and tE its syntactic tree. Every node
of tE is labelled by a rational operator or an atom to which it corresponds in the
expression and on top of this labelling there is a 1–1 correspondence between the
subexpressions of E and the nodes of tE. From this tree, we build an automaton in
three steps that we describe now. For further reference, we call this construction
‘the procedure K’.

1. The states and a first set of transitions; initial and final states

1.a We make two copies of tE, D and U . For every node n in tE, nD is the image
of n in D, and nU is the image of n in U .

1.b In D, every edge is labelled with ε and directed downward. The root of D
is an initial state, with initial weight 1K.

1.c In U , every edge is labelled with ε and directed upward. The root of U is a
final state, with final weight 1K.

1.d The initial state is final, with final weight c(E).

Because of rule 1.d, the expression E has to be valid.

2. The connection of atoms yields a new set of transitions.

2.a For every leaf � in tE labelled with a letter a, a transition from �D to �U is
added, with label a.
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3. Weighting the transitions and a last set of bridging transitions.
The transitions are weighted according to the operator that labels the adja-

cent states and new transitions from U to D are set up.

3.a The ‘exterior multiplication’ nodes. For every node n labelled with k. in tE,
let c be its child. The transition from nD to cD is weighted by k. For every
node n labelled with .k in tE, let c be its child. The transition from cU to nU

is weighted by k.

3.b The ‘star’ nodes. Let n be a node in tE labelled with ∗ and c its child; let F
be the subexpression of E rooted in c. The transition from nD to cD and the
transition from cU to nU are both weighted by c(F∗). A new ε-transition with
weight c(F∗) is set up from cU in U to cD in D.

3.c The ‘product’ nodes. Let n be a node in tE labelled with · and l and r
respectively its left and right child. Let F (resp. G) be the subexpression of E
rooted in l (resp. in r). The transition that goes from nD to rD in D is
weighted by c(F). The transition that goes from lU to nU in U is weighted
by c(G). A new ε-transition with weight 1K is set up from lU in U to rD in D.

Example 5. Let E3 be the Q-rational expression E3 =
(
( 12a∗)∗ ·(b + (−1).1)

)
.3 .

In Fig. 5, the downward graph D and the upward graph U are clearly identified.
Transitions connecting leaves (step 2.a) are drawn with double lines. Finally, the
ε-transitions which are added in steps 3.b and 3.c are drawn with dashed and
dotted lines respectively.

The Result

Proposition 6. Let E be a K-rational expression and tE its syntactic tree. The
automaton built from tE by the procedure K is equal to N(E).

The proof is straightforward by induction on the formation of the rational expres-
sion.

Fig. 5. The net automaton of E3.
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Relation with Previous Work
Procedure K gives a new perspective on the so-called ZPC structure defined

in [9] and used in several works of its authors (see [9] for instance). Seen from
that point of view, the net automaton of an expression E and the ZPC structure
associated with E bear a general ressemblance and many similarities. Let us
point out their differences.

• The main difference is that the ZPC structure is not an automaton, but
a directed weighted graph. There is no initial nor final states in the ZPC
structure and, even more important, there is no connection from the leaves
of the top-down graph to those of the bottom-up graph.

• There is another slight difference in the ε-transitions which we add from the
upward graph to the downward graph and which correspond to the ‘follow’
links in the ZPC structure: for every star node n in tE and its child c which
is the root of a subexpression F, in the ZPC structure there is a link from cU
to nD (with weight 1K), while in the net automaton the link is from cU to cD
with weight c(F)∗.

5 An Automaton Interpretation of the Star Normal Form

We focus now on the net automaton of unweighted rational expressions that we
call regular expressions. This automaton gives a new point of view on the star
normal form.

5.1 The Star Normal Form

In [7], Brüggeman-Klein defined the Star Normal Form (SNF) of a regular expres-
sion. The main property of a regular expression E in SNF is that it contains no
subexpression F∗ such that |F| contains the empty word.

Definition 7. The star normal form of a regular expression E is the expres-
sion E� which is computed by a double induction as follows.

0� = 0 , 1� = 1 , a� = a , 0� = 0 , 1� = 0 , a� = a ,

(F+ G)� = F� + G� , (F+ G)� = F� + G� ,

(F ·G)� = F� ·G� , (F ·G)� =

{
F� + G� if c(F) = c(G) = 1
F� ·G� otherwise

,

(F∗)� = (F�)∗ , (F∗)� = F�.

This definition is slightly different from the original one given in [7]. It is
proven in [2] that these formulae give yet the same expression and they are
better fit to induction proofs.

Proposition 7 ([7]). For every regular expression E, E� is equivalent to E.
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Proposition 8 ([7]). For every regular expression E, the position automaton
of E is isomorphic to the position automaton of E�.

The procedure to convert a regular expression into SNF is linear; moreover,
the classical construction of the position automaton from some regular expression
is cubic in the size of the expression, while it is quadratic if the regular expression
is in SNF. Using SNF is therefore a way to efficiently convert a regular expression
into its position automaton.

5.2 The SNF Automaton

Definition 8. Let us call SNF automaton of a regular expression E the automa-
ton N(E�), that is, the net automaton of the SNF of E.

In order to describe the relationship between the net automaton of a reg-
ular expression E and its SNF automaton, we define the notion of superfluous
transitions. In an automaton A with ε-transitions, an ε-transition (p, ε, q) is
superfluous if there exists in A a path of ε-transitions from p to q that does not
contain (p, ε, q). A superfluous transition (p, ε, q) can then be removed from A
without changing the language accepted by A.

Let us denote by S(A) the automaton obtained from A by deleting all super-
fluous transitions.

Lemma 2. Let A be an automaton with ε-transitions. If A has no circuit of
ε-transitions, then S(A) is equivalent to A.

The lemma expresses that when A has no circuit of ε-transitions, all super-
fluous transitions of A are independant: each of them remains superfluous even
if the other ones are removed. Since a net automaton N(E) has no circuit of
ε-transitions, the automaton S(N(E)) is equivalent to N(E).

Since the sizes of an expression and its SNF may be different, and since
deleting the superfluous transitions does not change the number of states of an
automaton, Proposition 4 (i) already implies that it is not true that S(N(E))
is equal to N(E�). However, we shall see that N(E�) is ‘essentially’ equal
to S(N(E)) and that the computation of N(E) contains also the computation
of the SNF of E since removing the superfluous transitions from N(E) yields an
automaton with the same structure as N(E�).

To give evidences of this fact, we take a new look at the definition of the
net automaton as given in Fig. 2 and see it as the definition of operations on
automata, provided they have a unique initial state with no incoming transition
that may be final, and another unique final state with no outgoing transition. If A
and B are two such automata, A⊕B, A	B and A� are the automata obtained
by the application of the rules described respectively in Figs. 2.3, 2.4, and 2.5.
Thus, N(F+G) = N(F)⊕N(G), N(F ·G) = N(F)	N(G), and N(F∗) = N(F)�.

We give two inductive definitions of automata, N�(E) and N�(E), in Fig. 6.
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Fig. 6. The inductive definitions of N�(E) (top) and of N�(E) (bottom)

As the definition of N�(E) exactly follows the definition of the SNF of E, the
following proposition is straightforward.

Proposition 9. For every regular expression E, N�(E) = N(E�).

Notice that the definition of N�(E) differs from the one of N�(E) by the
rule 5’ only. The following result establishes the similarity between S(N(E)) and
N(E�).

Theorem 3. For every regular expression E, S(N(E)) = N�(E) are equal.

The proof requires to study when superfluous transitions appear in the defi-
nition of the net automaton.

Example 6. Let E3 =
(
(a∗)∗)∗. The star normal form of E3 is E�

3 = a∗.
Figure 7 (a) shows the net automaton N(E3); its superfluous transitions are
drawn with dashed lines. Their deletion leads to N�(E3) in Fig. 7(b). The ε-
transitions drawn with double lines can be contracted to obtain N�(E3) in
Fig. 7(c).
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Fig. 7. Three automata for E3.

Then, Proposition 8 appears as a corollary of Theorem 3. Actually, for every
regular expression E, the ε-closure of N(E) and N�(E) are equal since the transi-
tive closure of ε-transitions is the same with or without superfluous transitions.
Moreover, the ε-closure of N�(E) and N�(E) are equal since they only differ by
the contraction of some ε-transitions.

6 Conclusion

We well know it is unlikely that the Thompson construction or automaton be
replaced — whether in textbooks or software — by the net automaton that
we have just described. All the more that the Thompson automaton is totally
correct, and remarkably efficient, in the domain for which it has been designed:
the search of (Boolean) regular expressions.

We think however that it was important and necessary to have a well-founded
construction in the domain of quantitative models, expressions and automata, a
correct and safe one, independently of the nature of weights.

In the domain of Boolean automata and expressions, that is, in the domain
where Thompson construction plays its role and where ours could be considered
as useless and superfluous, the fact that this new automaton appears to con-
tain also the a priori unrelated notion of Star Normal Form is an evidence of
its significance for the expression it translates. This is another instance of the
philosophy expressed by Eilenberg in his treatise [12] that the consideration of
multiplicity helps in understanding the true nature of concepts developped in
the Boolean setting.
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Abstract. Fungal automata are a variation of the two-dimensional
sandpile automaton of Bak, Tang and Wiesenfeld (Phys. Rev. Lett.,
1987). In each step toppling cells emit grains only to some of their
neighbors chosen according to a specific update sequence. We show how
to embed any Boolean circuit into the initial configuration of a fungal
automaton with update sequence HV . In particular we give a construc-
tor that, given the description B of a circuit, computes the states of all
cells in the finite support of the embedding configuration in O(log |B|)
space. As a consequence the prediction problem for fungal automata with
update sequenceHV is P-complete. This solves an open problem of Goles
et al. (Phys. Lett. A, 2021).

1 Introduction

The two-dimensional sandpile automaton by Bak, Tang, and Wiesenfeld [1] has
been investigated from different points of view. Because of the simple local rule,
it is easily generalized to the d-dimensional case for any integer d ≥ 1.

Several prediction problems for these cellular automata (CA) have been con-
sidered in the literature. Their difficulty varies with the dimensionality. The
recent survey by Formenti and Perrot [3] gives a good overview. For one-
dimensional sandpile CA the problems are known to be easy (see, e.g., [7]).
For d-dimensional sandpile CA where d ≥ 3, they are known to be P-complete
[9]. In the two-dimensional case the situation is unclear; analogous results are
not known.

Fungal automata (FA) as introduced by Goles et al. [6] are a variation of
the two-dimensional sandpile automaton where a toppling cell (i.e., a cell with
state ≥ 4) emits 2 excess grains of sand either to its two horizontal (“H”) or to
its two vertical neighbors (“V ”). These two modes of operation may alternate
depending on an update sequence specifying in which steps grains are moved
horizontally and in which steps vertically.

The construction in [6] shows that some natural prediction problem is P-
complete for two-dimensional fungal automata with update sequence H4V 4 (i.e.,
grains are first transferred horizontally for 4 steps and then vertically for 4 steps,
alternatingly). The paper leaves open whether the same holds for shorter update

An extended version may be found at https://arxiv.org/abs/2208.08779 [8].
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sequences. The shortest non-trivial sequence is HV (and its complement V H);
at the same time this appears to be the most difficult to use. By a reduction
from the well-known circuit value problem (CVP), which is P-complete, we will
show:

Theorem 1. The following prediction problem is P-complete for FA with update
sequence HV :

Given as inputs initial states for a finite rectangle R of cells, a cell index y
(encoded in binary), and an upper bound T (encoded in unary) on the number
of steps of the FA,

decide whether cell x is in a state �= 0 or not at some time t ≤ T when the
FA is started with R surounded by cells all in state 0.

We assume readers are familiar with cellular automata (see Sect. 2 for the def-
inition). We also assume knowledge of basic facts about Boolean circuits and
complexity theory, some of which we recall next.

1.1 Boolean Circuits and the CVP

A Boolean circuit is a directed acyclic graph of gates: not gates (with one input),
and and or gates with two inputs, n ≥ 1 input gates and one output gate.
The output of a gate may be used by an arbitrary number of other gates. Since
a circuit is a dag and each gate obtains its inputs from gates in previous layers,
ultimately the output of each gate can be computed from a subset of the input
gates in a straightforward way.

It is straightforward to realize not, and, and or gates in terms of nand
gates with two inputs (with an only constant overhead in the number of gates).
To simplify the construction later on, we assume that circuits consist exclusively
of nand gates.

Each gate of a circuit is described by a 4-tuple (g, t, g1, g2) where g is the
number of the gate, t describes the type of the gate, and g1 and g2 are the
numbers of the gates (called sources of g) which produce the inputs for gate g;
all numbers are represented in binary. If gate g has only one input, then g2 = g1
by convention. Without loss of generality the input gates have numbers 1 to n
and since their predecessors g1 and g2 will never be used, assume they are set
to 0. All other gates have subsequent numbers starting at n + 1 such that the
inputs for gate g are coming from gates with strictly smaller numbers. Following
Ruzzo [10] the description B of a complete circuit is the concatenation of the
descriptions of all of its gates, sorted by increasing gate numbers.

Problem instances of the circuit value problem (CVP) consist of the descrip-
tion B of a Boolean circuit C with n inputs and a list x of n input bits. The
task is to decide whether C(x) = 1 holds or not. It is well known that the CVP
is P-complete.

1.2 Challenges

A standard strategy for showing P-completeness of a problem Π in some com-
putational model M (and also the one employed by Goles et al. in [6]) is by a
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reduction from the CVP to Π, which entails describing how to “embed” circuits
in M.

In our setting of fungal automata with update sequence HV , while realizing
wires and signals as in [6] is possible, there is no obvious implementation for
negation nor for a reliable wire crossing. Hence, it seems one can only directly
construct circuits that are both planar and monotone. Although it is known that
the CVP is P-complete for either planar or monotone circuits [5], it is unlikely
that one can achieve the same under both constraints. This is because the CVP
for circuits that are both monotone and planar lies in NC2 (and is thus certainly
not P-complete unless P ⊆ NC2) [2].

We are able to overcome this barrier by exploiting features that are present
in fungal automata but not in general circuits: time and space. Namely, we
deliberately retard signals in the circuits we implement by extending the length
of the wires that carry them. We show how this allows us to realize a primitive
form of transistor. From this, in turn, we are able to construct a nand gate,
thus allowing both wire crossings and negations to be implemented.

Our construction is not subject to the limitations that apply to the two-
dimensional case that were previously shown by Gajardo and Goles in [4] since
the FA starting configuration is not a fixed point. The resulting construction is
also significantly more complex than that of [6].

1.3 Overview of the Construction

In the rest of the paper we describe how to embed any Boolean circuit with
description B and an assignment of values to the inputs into a configuration c
of a fungal automaton in such a way that the following holds:

– “Running” the FA for a sufficient number of steps results in the “evaluation”
of all simulated gates. In particular, after reaching a stable configuration, a
specific cell of the FA is in state 1 or 0 if and only if the output of the circuit
is 1 or 0, respectively.

– The initial configuration F of the FA is simple in the sense that, given the
description of a circuit and an input to it, we can produce its embedding F
using O(log n + log |B|) space. Thus we have a log-space reduction from the
CVP to the prediction problem for FA.

The construction consists of several layers:

Layer 0: The underlying model of fungal automata.
Layer 1: As a first abstraction we subdivide the space into “blocks” of 2×2 cells

and always think of update “cycles” consisting of 4 steps of the CA, using
the update sequence (HV )2.

Layer 2: On top of that we will implement “polarized circuits” processing “polar-
ized signals” that run along “wires”.

Layer 3: Polarized circuitry is then used to implement “Boolean circuits with
delay”: “bits” are processed by “gates” connected by “cables”.1

1 Here we slightly deviate from the standard terminology of Boolean circuits and
reserve the term “wire” for the more primitive wires defined in layer 2.
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Layer 4: Finally a given Boolean circuit (without delay) can be embedded in a
fungal automaton (as a circuit with delay) in a systematic fashion that needs
only logarithmic space to construct.

The rest of this paper has a simple organization: Each layer i will be described
separately in section i + 2.

2 Layer 0: The Fungal Automaton

Let N+ denote the set of positive integers and Z that of all integers. For d ∈ N+,
a “d-dimensional CA” is a tuple (S,N, δ) where:

– S is a finite set of states
– N is a finite subset of Zd, called the “neighborhood”
– δ : SN → S is the “local transition function”

In the context of CA, the elements of Zd are referred to as cells. The function
δ induces a “global transition function” Δ : SZd → SZd

by applying δ to each
cell simultaneously. In the following, we will be interested in the case d = 2 and
the so-called von Neumann neighborhood N = {(a, b) ∈ Z2 | |a| + |b| ≤ 1} of
radius 1.

Except for the updating of cells the fungal automaton is just a two-
dimensional CA with the von Neumann neighborhood of radius 1 and S =
{0, 1, . . . , 7} as the set of states.2 A “configuration” is thus a mapping c : Z2 → S.

Depending on the their states cells will be depicted as follows in diagrams:
– state 0 as – state 1 as • – state i ∈ S \ {0, 1} as i

We will use colored background for cells in states 2, 3, and 4 since their
presence determines the behavior of the polarized circuit. The state 1 is only
a “side effect” of an empty cell receiving a grain of sand from some neighbors;
hence it is represented as a dot. Cells which are not included in a figure are
always assumed to be in state 0.

For a logical predicate P denote by [P ] the value 1 if P is true and the value
0 if P is false. For i ∈ Z2 denote by h(i) the two horizontal neighbors of cell i
and by v(i) its two vertical neighbors. Cells are updated according to 2 functions
H and V mapping from SZ2

to SZ2
where for each i ∈ Z2 the following holds:

H(c)(i) = c(i) − 2 · [c(i) ≥ 4] +
∑

j∈h(i)

[c(j) ≥ 4];

V (c)(i) = c(i) − 2 · [c(i) ≥ 4] +
∑

j∈v(i)

[c(j) ≥ 4].

The updates are similar to the sandpile model by Bak, Tang, and Wiesenfeld
[1], but toppling cells only emit grains of sand either to their horizontal or
their vertical neighbors. Therefore whenever a cell is non-zero, it stays non-zero
forever.
2 We use states as in [1]; however, the states 6 and 7 never occur in our construction.
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The composition of these functions applying first H and then V is denoted
HV . For the transitions of a fungal automaton with update sequence HV these
functions are applied alternatingly, resulting in a computation c, H(c), V (H(c)),
H(V (H(c))), V (H(V (H(c)))), and so on. In examples we will often skip three
intermediate configurations and only show c, HV HV (c), etc. Figure 1 shows a
simple first example.

Fig. 1. Five transitions according to HVHVH

3 Layer 1: Coarse Graining Space and Time

As a first abstraction from now on one should always think of the space as
subdivided into “blocks” of 2 × 2 cells. Furthermore we will look at update
“cycles” consisting of 4 steps of the CA, thus using the update sequence HV HV
which we will abbreviate to Z. As an example Fig. 2 shows the same cycle as
Fig. 1 and the following cycle in a compact way. Block boundaries are indicated
by thicker lines.

Fig. 2. compact representation of two cycles

Cells outside the depicted area of a figure are assumed to be 0 initially and
they will never become critical and topple during the shown computation.

4 Layer 2: Polarized Components

We turn to the second lowest level of abstraction. Here we work with two types
of signals, which we refer to as positive (denoted �) and negative (denoted �).
Both types will have several representations as a block in the FA.
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– All representations of a � signal have in common that the upper left corner
of the block is a 4 and the other cells are 2 or 3 .

– All representations of a � signal have in common that the lower left corner
of the block is a 4 and the other cells are 2 or 3 .

Not all representations will be appropriate in all situations as will be discussed
in the next subsection.

The rules of fungal automata allow us to perform a few basic operations on
these polarized signals (e.g., duplicating, merging, or crossing them under certain
assumptions). The highlight here is that we can implement a (delay-sensitive)
form of transistor that works with polarized signals, which we refer to as a switch.

As a convention, in the figures in this section, we write x and y for the inputs
of a component and z, z1, and z2 for the outputs.

4.1 Polarized Signals and Wires

Representations of � and � signals are shown in Fig. 3. We will refer to a block
initially containing a � or � signal as a � or � source, respectively. (This will be
used, for instance, to set the inputs to the embedded CVP instance.)

Fig. 3. Representations of � and � signals

A comparison of Fig. 2 and Fig. 3a shows that in the former a � signal is
“moving from left to right”. In general we will use wires to propagate signals.
Wires extending horizontally or vertically can be constructed by juxtaposing
wire blocks consisting of 2 × 2 blocks of cells in state 3 .

While one can use the same wire blocks for both types of signals, each block
is destroyed upon use and thus can only be used once. In particular, this means
a wire will either be used by a � or a � signal. We refer to the respective wires
as � and � wires, accordingly.

4.2 Diodes

Note that � and � signals do not encode any form of direction in them (regarding
their propagation along a wire). In fact, a signal propagates in any direction a
wire is placed in. In order for our components to operate correctly, it will be
necessary to ensure a signal is propagated in a single direction. To realize this,
we use diodes.

A diode is an element on a horizontal wire that only allows a signal to flow
from left to right. A signal coming from right to left is not allowed through.
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Fig. 4. Diode implementations

As the other components, the diode is intended to be used only once. For the
implementation, refer to Fig. 4. (Recall that x denotes the component’s input
and z its output.)

For all the remaining elements described in this section, we implicitly add
diodes to their inputs and outputs. This ensures that the signals can only flow
from left to right (as intended). This is probably not necessary for all elements,
but doing so makes the construction simpler while the overhead is only a constant
factor blowup in the size of the elements.

4.3 Duplicating, Merging, and Crossing Wires

Wires of the same polarity can be duplicated or merged. By duplicating a wire
we mean we create two wires z1 and z2 from a single wire x in such a way that,
if any signal arrives from x, then this signal is duplicated and propagated on
both z1 and z2. (Equivalently, one might imagine that x = z1 and z2 is a wire
copy of x.) In turn, a wire merge realizes in some sense the reverse operation:
We have two wires x and y of the same polarity and create a wire z such that,
if a signal arrives from x or y (or both), then a signal of the same polarity will
emerge at z. (Hence one could say the wire merge realizes a polarized or gate.)
See Fig. 5 for the implementations.

As discussed in the introduction, there is no straightforward realization of a
wire crossing in fungal automata in the traditional sense. Nevertheless, it turns
out we can cross wires under the following constraints:

1. The two wires being crossed are a � and a � wire.
2. The crossing is used only once and by a single input wire; that is, once a

signal from either wire passes through the crossing, it is destroyed. (If two
signals arrive from both wires at the same time, then the crossing is destroyed
without allowing any signal to pass through.)

To elicit these limitations, we refer to such crossings as semicrossings.
We actually need two types of semicrossings, one for each choice of polarities

for the two input wires. The semicrossings are named according to the polarity
of the top input wire: A � semicrossing has a � wire as its top input (and a �
wire as its bottom one) whereas a � semicrossing has a � wire at the top (and
a � wire at the bottom). For the implementations, see Fig. 6.
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Fig. 5. Duplicating and merging wires

Fig. 6. Semicrossing implementations

4.4 Switches

A switch is a rudimentary form of transistor. It has two inputs and one output.
Adopting the terminology of field-effect transistors (FETs), we will refer to the
two inputs as the source and gate and the output as the drain. In its initial
state, the switch is open and does not allow source signals to pass through. If a
signal arrives from the gate, then it turns the switch closed. A subsequent signal
arriving from the source will then be propagated on to the drain. This means
that switches are delay-sensitive: A signal arriving at the source only continues
on to the drain if the gate signal has arrived beforehand (or simultaneously to
the source).

Similar to semicrossings, our switches come in two flavors. In both cases the
top input is a � wire and the bottom one a �. The difference is that, in a �
switch, the source (and thus also the drain) is the � input and the gate is the �
input. Conversely, in a � switch the source and drain are � wires and the gate
is a � wire. Refer to Fig. 7 for the implementation of the two types of switches.
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Fig. 7. Switch implementations

4.5 Delays and Retarders

As mentioned in the introduction, the circuits we construct are sensitive to the
time it takes for a signal to flow from one point to the other. To render this notion
precise, we define for every component a delay which results from the time taken
for a signal to pass through the component. This is defined as follows:

– The delay of a source is zero.
– The delay of a wire (including bends) at some block B is the delay of the wire’s

source S plus the length (in blocks) of the shortest contiguous path along the
wire that leads from S to B according to the von Neumann neighborhood. We
will refer to this length as the wire distance between S and B. For example,
the wire distance between the inputs and outputs in all of Figs. 4, 5, 6 and 7
is 4; similarly, the distance between x and z in Fig. 8 (see below) is 15.

– The delay of a gate (i.e., a diode, wire duplication, wire merge, or semicross-
ing) is the maximum over the delays of its inputs plus the gate width (in
blocks).

Notice our definition of wire distance may grossly estimate the actual number
of steps a signal requires to propagate from S to B. This is fine for our purposes
since we only need to reason about upper bounds later in Sect. 6.3.

Finally we will also need a retarder element, which is responsible for adding
a variable amount of delay to a wire. Refer to Fig. 8 for their realization.

Retarders can have different dimensions. Evidently, one can ensure a delay
of t with a retarder that is O(

√
t) × O(

√
t) large. We are going to use retarders

of delay at most D, where D depends on the CVP instance and is set later in
Sect. 6.3. Hence, it is safe to assume all retarders in the same configuration are of
the same size horizontally and vertically, but realize different delays. This allows
one to use retarders of a single size for any fixed circuit, which simplifies the
layout significantly (see also Sects. 6.3 and 6.4).

5 Layer 3: Working with Bits

We will now use the elements from Sect. 4 (represented as in Fig. 9) to construct
planar delay-sensitive Boolean circuits. Our circuits will use nand gates as their
basis. We discuss how to overcome the planarity restriction in Sect. 5.4.
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Fig. 8. Implementation of a basic retarder (for both � and � signals) that ensures
a delay of ≥ 12 at z (relative to x). Retarders for greater delays can be realized by
increasing (i) the height of the meanders, (ii) the number of up-down meanders, and
(iii) the positions of the input and output.

Fig. 9. Representations of the elements from abstraction layer 2 as used in layer 3. The
polarities indicate whether the � or � version of the component is used.

5.1 Representation of Bits

For the representation of a bit, we use a pair consisting of a polarized � wire and
a polarized � wire. Such a pair of polarized wires is called a cable. As mentioned
earlier, most of the time signals will travel from left to right. It is straightforward
to generalize the notion of wire distance (see Sect. 4.5) to cables simply by setting
it to the maximum of the respective wire distances.

A signal on a cable’s � wire represents a binary 1, and a signal on the � wire
represents a binary 0. By convention we will always draw the � wire “above”
the � wire of the same cable. When referring to a gate’s inputs and outputs, we
indicate the � and � components of a cable with subscripts. For instance, for an
input cable x, we write x+ for its � and x− for its � component.
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5.2 Bit Duplication

To duplicate a cable, we use the Boolean branch depicted in Fig. 10. The circuit
consists of two wire duplications (one of each polarity) and a crossing.
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+
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−
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X

+ y+

− y−

+ z+

− z−

Fig. 10. Boolean branch

5.3 NAND Gates

As a matter of fact the nand gate is inspired by the implementation of such a
gate in cmos technology3. Refer to Fig. 11 for the implementation.
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Fig. 11. nand gate

Notice the usage of switches means these gates are delay-sensitive; that is, the
gate only operates correctly (i.e., computing the nand function) if the retarders
have strictly greater delays than the inputs x and y. In fact, for our construc-
tion we will need to instantiate this same construction using varying values for

3 E.g. https://en.wikipedia.org/wiki/NAND gate#/media/File:CMOS NAND.svg.

https://en.wikipedia.org/wiki/NAND_gate#/media/File:CMOS_NAND.svg
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the retarders’ delays (but not their size as mentioned in Sect. 4.5). This seems
necessary in order to chain nand gates in succession (since each gate in a chain
incurs a certain delay which must be compensated for in the next gate down the
chain).

In addition, notice that in principle nand gates have variable size as their
dimension depends on that of the three retarders. As is the case for retarders, in
the same embedding we insist on having all nand gates be of the same size. We
defer setting their dimensions to Sect. 6.3; for now, it suffices to keep in mind
that nand gates (and retarder elements) in the same embedding only vary in
their delay (and not their size).

Claim. Assuming the retarders have larger delay than the input cables x and y,
the circuit on Fig. 11 realizes a nand gate.

Proof. Consider first the case where both x+ and y+ are set. Since x− is not
set, X1 is consumed by x+, turning S4 on. In addition, since y+ is set, S2 is also
turned on. Hence, using the assumption on the delay of the inputs, the negative
source flows through S2, S4, and X2 on to z−. Since both the switches S1 and
S3 remain open, the z+ output is never set. Notice the crossings X1 and X2 are
each used exactly once.

Let now x− or y− (or both) be set. Then either S2 or S4 is open, which
means z− is never set. As a result, X2 is used at most once (namely in case y− is
set). If x− is set, then S1 is opened, thus allowing the positive source to flow on
to M . The same holds if y− is set, in which case M receives the positive source
arriving from S3. Hence, at least one positive signal will flow to the M gate,
causing z+ to be set eventually. 	


5.4 Cable Crossings

There is a more or less well-known idea to cross to bits using three xor gates
which can for example be found in the paper by Goldschlager [5]. Figure 12 shows
the idea.

Fig. 12. Implementing cable crossings as in [5]
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This construction can be used in FA. Because of the delays, there is not the
crossing gate, but a whole family of them. Depending on the position in the
whole circuit layout, each crossing needs nand gates with specific builtin delays
(which will be set in Sect. 6.3).

6 Layer 4: Layout of a Whole Circuit

Finally we describe one possibility to construct a finite rectangle of cells F of a
FA containing the realization of a complete circuit, given its description B. The
important point here is that, in order to produce F from B, the constructor only
needs logarithmic space. (Therefore the simplicity of the layout has precedence
over any form of “optimization”.)

6.1 Arranging the Circuit in Tiles

Let C be the circuit that is to be embedded as an FA configuration F . Letting
n be the length of inputs to C and m its number of gates, notice we have an
upper bound of m on the circuit depth of C. Without restriction, we may assume
m ≥ n, which also implies an upper bound of m + n = O(m) on the number
of cables of C (since C has bounded fan-in). The logical gates of C are denoted
by G1, . . . , Gm and we assume that Gi has number n + i in description B of C
(recall Sect. 1.1).

In the configuration F we have cables x1, . . . , xn originating from the input
gates as well as cables g1, . . . , gm coming from (the embedding of) the gates
of C. The xi and gi flow in and out of equal-sized tiles T1, . . . , Tm, where in
the i-th tile Ti we implement the i-th gate Gi of C. The inputs to Ti are Ii =
{x1, . . . , xn, g1, . . . , gi−1} and its outputs Oi = Ii ∪ {gi}; hence Ii+1 = Oi.

Recall that, unlike standard circuits, the behavior of our layer 3 circuits is
subject to spatial considerations, that is, to both gate placement and wire length.
For the sake of simplicity, each tile is shaped as a square and all tiles are of the
same size. In addition, the tiles are placed in ascending order from left to right
and with no space in-between. The only objects in F that lie outside the tiles
are the inputs and output of C itself. The inputs are placed immediately next
to corresponding cables that go into T1 whereas the output is placed next to its
corresponding wire gm at the outgoing end of Tm.

6.2 Layout for Tile i

As depicted in Fig. 13, each tile is subdivided into two areas. The upper part
contains the wires that pass through it, while the lower part implements the
gate Gi proper.
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Ti

x1 x1

xn xn

g1 g1

gi−1 gi−1

Gi

gi

Fig. 13. Overview of the tile Ti. The upper part of the tile has green background, the
lower part has blue background. (Color figure online)

We give a broad overview of the process for constructing Ti. First determine
the numbers y1 and y2 of the inputs to Gi. Then duplicate the bits on cables y1
and y2 (as in Sect. 5.2) and cross the copies over to the lower part of the tile.
These crossings require setting adequate delays, which will be adressed in the
next section. (In case y1 = y2, duplicate the cable twice and proceed as otherwise
described.) Next instantiate Gi with a proper amount of delay (again, see the
next section) and plug in y1 and y2 as inputs into Gi. Finally connect all inputs
in Ii as well as the output wire gi of Gi to their respective outputs. Notice the
tile contains O(m) crossings and thus also O(m) nand gates in total.

6.3 Choosing Suitable Delays for All Gates

The two details that remain are setting the dimensions and the delays for the
retarders in all nand gates. This requires certain care since we may otherwise
end up running into a chicken-and-egg problem: The retarders’ dimensions are
determined by the required delays (in order to have enough space to realize
them); in turn, the delays depend on the aforementioned dimensions (since the
input wires in the nand gates must be laid so as to “go around” the retarders).

The solution is to assume we already have an upper bound D on the maxi-
mum delay in F . This allows us to fix the size of the components as follows:

– The retarders and nand gates have side length O(
√

D).
– Each tile has side length O(m

√
D).

– The support of F fits into a square with side length O(m2
√

D).

With this in place, we determine upper bounds on the delays of the upper gates
in a tile (i.e., the gates in the upper part of the tile), then of the lower gates Gi,
then of the tiles themselves, and finally of the entire embedding of C. In the end
we obtain an upper bound for the maximum possible delay in F . Simply setting
D to be at least as large concludes the construction.
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Upper Gates. In order to set the delays of a nand gate G in a tile Ti, we first
need an upper bound dinput on the delays of the two inputs to G. Suppose the
origins O1 and O2 of these inputs (i.e., either a nand gate output or an input to
Ti) have delay at most dorigin. Then certainly we have dinput ≤ dorigin + dcable,
where dcable is the maximum of the cable distances between either one of O1

and O2 and the switches they are connected to inside G. Due to the layout of
a tile and since a nand gate has O(

√
D) side length, we know dcable is at most

O(
√

D). Hence, if G is in the j-th layer of Ti, then we may safely upper-bound
its delay by di + (j + 1)dcable, where di is the maximum over the delays of the
inputs to Ti.

Lower Gates. Since there are O(m) cables inside a tile, there are O(m) cable
crossings and thus O(m) nand gates realizing these crossings. Hence the inputs
to the gate Gi in the lower part of Ti have delay at most di + O(m) · dcable +
O(m

√
D), where the last factor is due to the side length of T (i.e., the maximum

cable length needed to connect the last of the upper gates with Gi).

Tiles. Clearly the greatest delay amongst the output cables of Ti is that of gi
(since every other cable originates from a straight path across Ti). As we have
determined in the last paragraph, at its output gi has delay di+1 ≤ di+O(m

√
D).

Since the side length of a tile is O(m
√

D), we may upper-bound the delays of
the inputs of Ti by i · O(m

√
D).

Support of F . Since there are m tiles in total, it suffices to choose a maximum
delay D that satisfies D ≥ cm2

√
D for some adequate constant c (that results

from the considerations above). In particular, this means we may set D = Θ(m4)
independently of C.

6.4 Constructor

In this final section we describe how to realize a logspace constructor R which,
given a CVP instance consisting of the description of a circuit C and an input x
to it, reduces it to an instance as in Theorem 1. Due to the structure of F , this
is relatively straightforward.

The constructor R outputs the description of F column for column. (Com-
puting the coordinates of an element or wire is clearly feasible in logspace.) In
the first few columns R sets the inputs to the embedded circuit according to x.
Next R constructs F tile for tile. To construct tile Ti, R determines which cables
are the inputs to Gi and constructs crossings accordingly. To estimate the delays
of each wire, R uses the upper bounds we have determined in Sect. 6.3, which
clearly are all computable in logspace (since the maximum delay D is polynomial
in m).

Finally R also needs to produce y and T as in the statement of Theorem 1.
Let ci be the cable of Tm that corresponds to the output of the embedded circuit
C. Then we let y be the index of the cell next to the � wire of ci at the output
of Tm. (Hence y assumes a non-zero state if and only if ci contains a 1, that



408 A. Modanese and T. Worsch

is, C(x) = 1.) As for T , certainly setting it to the number of cells in F suffices
(since a signal needs to visit every cell in F at most once).

7 Summary

We have shown that, for fungal automata with update sequence HV , the pre-
diction problem is P-complete, solving an open problem of Goles et al. [6].
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Abstract. Unary temporal logic (UTL) can express properties on finite
words with the temporal modalities “sometimes in the future/past”. The
languages definable in UTL are well-understood. In particular, they cor-
respond to unambiguous languages, which are built by applying succes-
sively three standard operators to the trivial class of languages (consist-
ing of the empty language and the universal one): polynomial, Boolean,
and finally unambiguous polynomial closures. Moreover, it is known that
one can decide whether a given regular language is expressible in UTL.

We extend these results in two ways. First, we use generalized
temporal modalities “sometimes in the future/past”, which depend on
a class “C” of languages. Second, we investigate a hierarchy inside such
a variant of UTL: its future/past hierarchy. Each level in this hierarchy
consists of all languages definable with a bounded number of alterna-
tions between the “sometimes in the future” and “sometimes in the past”
modalities.

We show that if C is a class of group languages with mild properties,
there is a correspondence between levels of such a C-specified hierarchy
and classes of languages obtained from C by applying standard operators:
the polynomial, the Boolean, and the left/right deterministic closures.

We also show that if C has decidable “separation problem”, then one
can decide membership of a regular language within any level of the
corresponding future/past hierarchy. Finally, these results extend to the
case where we allow “tomorrow” and “yesterday” temporal modalities.

1 Introduction

The goal of this paper is to understand the fine-grained structure of fragments of
a standard temporal logic, and in particular, their expressive power. Temporal
logics are common formalisms in computer science, whose purpose is to specify
properties of finite or infinite structures, such as words or trees. Their success
stems from the good balance between their ease of use and their expressiveness.
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For instance, it is well known [6] that on words, linear time temporal logic is
exactly as powerful as first-order logic. Another standard logic is unary temporal
logic (UTL, or TL for short), which shares ties with navigational logics for trees.
Here, we focus on fragments of TL on finite words over some alphabet A.

The logic TL has two temporal operators: “sometimes in the future” and
“sometimes in the past”. Each TL formula defines a regular language on A∗.
Therefore, TL defines a class of regular languages, which turns out to be one
of the most robust ones [26]: first, Etessami, Vardi and Wilke [3,4] proved that
TL has the same expressiveness as FO2, the restriction of first-order logic to
two variables. Second, Thérien and Wilke [27] designed a decidable characteri-
zation of FO2, i.e., a membership algorithm that decides whether a given reg-
ular language is definable in this logic. Obtaining such an algorithm is impor-
tant, as this requires a solid understanding on the investigated languages. Third,
Schützenberger [24], Pin, Straubing and Thérien [13,15] described this class in
terms of languages built from ∅ and A∗ by applying standard operators: the
Boolean, polynomial and unambiguous polynomial closures. Here, the Boolean
closure Bool(C) of a class of languages C is the smallest Boolean algebra con-
taining C. The polynomial closure Pol(C) of C is the smallest class containing C
closed under union and (marked) language concatenation. Finally, the unambigu-
ous polynomial closure UPol(C) of C is a subclass of Pol(C), defined by semantic
restrictions on the allowed unions and marked products. The results of [15] show
that languages definable in TL are exactly those of UPol(Bool(Pol({∅, A∗}))).

This smoothly generalizes to TL(C), a version of TL parameterized by a “base
class” C of languages [19,23] (TL corresponds to TL({∅, A∗})). On the logical
side, this boils down to enriching TL with temporal operators (or FO2 with
predicates) built from C in a natural way. Moreover, if C is a class of group lan-
guages satisfying mild properties, TL(C) is exactly UPol(Bool(Pol(C))). In this
case, [19,23] provide yet another definition of the languages in TL(C). They are
built from Bool(Pol(C)) by applying two other closure operators in alternation:
the left (resp. right) deterministic closure LPol (resp. RPol). Finally, member-
ship remains decidable for TL(C), provided that C satisfies some properties.
Contributions. These multiple equivalent definitions of TL(C) lead to natural
hierarchies: the quantifier alternation hierarchy of FO2, the LPol/RPol alterna-
tion hierarchy, called the deterministic hierarchy, and the future-past hierarchy,
which counts the number of alternations between future and past operators.
While the first has been already investigated [5,8,11] for a particular base class,
this is not the case for the future-past hierarchy. Our first contribution connects
the future-past hierarchy with the deterministic hierarchy: we show that the
future-past hierarchy inside TL(C) coincides with the deterministic hierarchy of
base class Bool(Pol(C)). This holds when C is a class of group languages satisfy-
ing mild properties, and for extensions of such classes capturing the variants of
TL allowing the “tomorrow” and “yesterday” operators. In practice, this makes
it possible to cope with temporal operators controlling the words that may be
used along future/past jumps (typical properties are modulo tests on the length
of such words, or on the number of occurrences of a specific letter). The second
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result is that membership is decidable for all levels of this hierarchy. For some
of them, we use the language-theoretic characterization together with generic
results of [18,19,23]. For others (the so-called join levels), this requires specific
work. Altogether, these results generalize work by Kufleitner and Lauser [8,9].
Other Hierarchies. Two alternative hierarchies inside TL are known, albeit
specific to TL({∅, A∗}). First, a hierarchy based on the notion of “ranker” is
considered in [10]. Another hierarchy is investigated in [8]. It is based on unam-
biguous interval temporal logic (this is another logic equivalent to TL introduced
in [12]). These hierarchies are independent from our work.
Organization. We present terminology in Sect. 2 and future-past hierarchies in
Sect. 3. Their characterization by deterministic hierarchies is proved in Sect. 4.
Finally, Sect. 5 is devoted to membership for the join levels. Due to space limi-
tations, several proofs are postponed to the full version of the paper.

2 Preliminaries

We fix a finite alphabet A for the whole paper. As usual, A∗ is the set of all
finite words over A, including the empty word ε. We let A+ = A∗ \ {ε}. For
u, v ∈ A∗, we let uv be the word obtained by concatenating u and v. Given
w ∈ A∗, we write |w| ∈ N for the length of w. We also consider positions. A word
w = a1 · · · a|w| ∈ A∗ is viewed as an ordered set Pos(w) = {0, 1, . . . , |w|, |w|+1}
of |w|+2 positions. Each position i such that 1 ≤ i ≤ |w| carries the label ai ∈ A.
Positions 0 and |w|+1 are artificial leftmost and rightmost positions, which carry
no label. For every i ∈ Pos(w), we define an element w[i] ∈ A ∪ {min,max}
(where “min” and “max” do not belong to A). We let w[0] = min, w[i] = ai if
1 ≤ i ≤ |w| and w[|w| + 1] = max. Finally, given i, j ∈ Pos(w) such that i < j,
we write w(i, j) = ai+1 · · · aj−1 ∈ A∗ (i.e., we keep the letters carried by all
positions that are strictly between i and j). Note that w(0, |w| + 1) = w.

A language is a subset of A∗. We look at regular languages, i.e., that can
be equivalently defined by a regular expression, an automaton or a morphism
into a finite monoid. We work with the latter definition. A monoid is a set M
equipped with a multiplication s, t �→ st, which is associative and has an identity
element written “1M”. An element e ∈ M is idempotent if it satisfies ee = e. For
all S ⊆ M , we write E(S) for the set of all idempotents in S. It is standard that
when M is finite, there exists ω(M) ∈ N (written ω when M is understood) such
that sω is idempotent for every s ∈ M . Clearly, A∗ equipped with concatenation
is a monoid (ε is the identity). Hence, we may consider morphisms α : A∗ → M
into a monoid M . We say that L ⊆ A∗ is recognized by such a morphism α when
there exists F ⊆ M such that L = α−1(F ). It is well known that a language is
regular if and only if it can be recognized by a morphism into a finite monoid.

Remark 1. The only infinite monoid that we consider is A∗. From now on, we
implicitly assume that every other monoid M,N, . . . in this paper is finite.

Classes of Languages. A class of languages C is a set of languages. Such
a class forms a lattice if it is closed under both union and intersection, and
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contains the languages ∅ and A∗. It is a Boolean algebra if it is additionally
closed under complement. Finally, a class C is quotient-closed when for all L ∈ C
and u, v ∈ A∗, the language {w ∈ A∗ | uwv ∈ L} belongs to C as well. A class
C is a prevariety when it is a quotient-closed Boolean algebra and contains only
regular languages.

We use a decision problem called membership as a means to investigate
classes. For a class C, the C-membership problem takes as input a regular lan-
guage L and asks if L ∈ C. Intuitively, obtaining a procedure for C-membership
requires a solid understanding of C. We also look at a more involved problem,
called separation. For a class C and two languages L0 and L1, we say that L0 is C
-separable from L1 when there exists K ∈ C such that L0 ⊆ K and L1 ∩ K = ∅.
The C-separation problem takes two regular languages L0 and L1 as input and
asks whether L0 is C-separable from L1. We do not present separation algorithms
in this paper: we only use them as an intermediary to investigate membership.

We turn to a key tool. Let C be a prevariety. A C -morphism is a surjective
morphism η : A∗ → N such that η−1(F ) ∈ C for all F ⊆ N . We use this notion
to handle membership. It is well known that for every regular language L, there
exists a canonical morphism recognizing L. We briefly recall its definition. We
associate with L an equivalence ≡L on A∗: given u, v ∈ A∗, we let u ≡L v when
xuy ∈ L ⇔ xvy ∈ L for all x, y ∈ A∗. One may verify that ≡L is a congruence and
that, since L is regular, it has finite index. Thus, the quotient set ML = A∗/≡L

is a finite monoid. The syntactic morphism of L is the morphism αL : A∗ → ML

which maps a word to its ≡L-class. It can be computed from any representation
of L. We have the following standard property (see, e.g., [17, Proposition 3]).

Proposition 1. Let C be a prevariety. A regular language L belongs to C if and
only if its syntactic morphism αL : A∗ → ML is a C-morphism.

In view of Proposition 1, getting an algorithm for C-membership boils down
to finding a procedure that decides whether an input morphism α : A∗ → M is
a C-morphism. This is how we approach the question in the paper. We shall also
use C-morphisms as mathematical tools in proof arguments. In this context, we
shall need the following simple corollary of Proposition 1.

Proposition 2. Let C be a prevariety, k ≥ 1 and L1, . . . , Lk ∈ C. There exists
a C-morphism η : A∗ → N such that L1, . . . , Lk are recognized by η.

Group Languages. A group is a monoid G such that every element g ∈ G has
an inverse g−1 ∈ G, i.e., such that gg−1 = g−1g = 1G. We call group language a
language recognized by a morphism into a finite group. We shall consider classes
G that are group prevarieties (i.e., containing group languages only).

We let GR be the class of all group languages. Another example is the class
AMT of alphabet modulo testable languages. For all w ∈ A∗ and a ∈ A, we let
#a(w) ∈ N be the number of occurrences of “a” in w. The class AMT consists
of all finite Boolean combinations of languages {w ∈ A∗ | #a(w) ≡ k mod m}
where a ∈ A and k,m ∈ N are such that k < m (these are exactly the languages
recognized by commutative groups). We also look at MOD, which consists of
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all finite Boolean combinations of languages {w ∈ A∗ | |w| ≡ k mod m} with
k,m ∈ N such that k < m. Finally, we write ST for the trivial class ST = {∅, A∗}.
One may verify that GR, AMT, MOD and ST are all group prevarieties.

By definition, {ε} and A+ are not group languages. This motivates the next
definition: the well-suited extension of a class C, written C+, consists of all lan-
guages L∩A+ and L∪{ε} for L ∈ C (hence, C ⊆ C+). The following lemma is easy.

Lemma 1. We have {ε}, A+ ∈ C+. In addition, if C is a prevariety, so is C+.

We conclude with a lemma concerning G-morphisms and G+-morphisms.

Lemma 2. Let G be a group prevariety and η : A∗ → M be a morphism. If η is
a G-morphism, then M is a group. If η is a G+-morphism, then η(A+) is a group.

3 Future/Past Hierarchies of Unary Temporal Logic

We define unary temporal logic and its future/past hierarchies. We work with
a generalized definition of unary temporal logic introduced in [23]: with every
class C, we associate a logic TL(C) and its future/past hierarchy.

3.1 Definition

Syntax. We first recall the definition of the full logic used in [23]. A TL formula is
built from atomic formulas using Boolean connectives and temporal operators.
The atomic formulas are , ⊥, min, max and a for every letter a ∈ A. All
Boolean connectives are allowed: if ψ1 and ψ2 are TL formulas, then so are
(ψ1 ∨ ψ2), (ψ1 ∧ ψ2) and (¬ψ1). We also associate two temporal operators with
every language L ⊆ A∗ which we write FL and PL: if ψ is a TL formula, then
so are (FL ψ) and (PL ψ). We omit parentheses when there is no ambiguity.

We now classify the TL formulas by counting the alternations between future
and past operators in their parse tree. With all n ∈ N, we associate three sets
of TL formulas: FLn, PLn and BLn (where F,P and B stand for future, past
and Boolean combinations respectively). The first two are defined by induction
on n ∈ N. The FL0 and PL0 formulas are the Boolean combinations of atomic
formulas (i.e., they do not contain temporal operators). Assume now that n ≥ 1.

– FLn is the least set containing the PLn−1 formulas and closed under Boolean
connectives and future operators: if ψ ∈ FLn and L ⊆ A∗, then FL ψ ∈ FLn.

– PLn is the least set containing the FLn−1 formulas and closed under Boolean
connectives and past operators: if ψ ∈ PLn and L ⊆ A∗, then PL ψ ∈ PLn.

Finally, for each n ∈ N, we define the BLn formulas as the Boolean combinations
of FLn and PLn formulas.
Semantics. Evaluating a TL formula ϕ requires a word w ∈ A∗ and a position
i ∈ Pos(w). We use structural induction on ϕ to define what it means for (w, i)
to satisfy ϕ. We denote this property by w, i |= ϕ:
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– w, i |=  always holds and w, i |= ⊥ never holds.
– for � ∈ A ∪ {min,max}, w, i |= � holds if w[i] = �.
– w, i |= ψ1 ∨ ψ2 if w, i |= ψ1 or w, i |= ψ2.
– w, i |= ψ1 ∧ ψ2 if w, i |= ψ1 and w, i |= ψ2.
– w, i |= ¬ψ if w, i |= ψ does not hold.
– w, i |= FL ψ if there is j ∈ Pos(w) such that i < j, w(i, j) ∈ L and w, j |= ψ.
– w, i |= PL ψ if there is j ∈ Pos(w) such that j < i, w(j, i) ∈ L and w, j |= ψ.

When no distinguished position is specified, we evaluate formulas at the two
unlabeled positions 0 and |w|+1 simultaneously. Given a TL formula ϕ and w ∈
A∗, we write w |= ϕ and say that w satisfies ϕ when w, 0 |= ϕ and w, |w|+1 |= ϕ.
The language defined by ϕ is L(ϕ) = {w ∈ A∗ | w |= ϕ}.

Each language L is defined by “(min ∧ FL max) ∨ max”. Thus, we restrict
the available formulas using a class C. Let n ∈ N and Z ∈ {TL,FLn,PLn,BLn}.
We write Z[C] for the set of all Z formulas ϕ such that every operator FL or
PL occurring in ϕ satisfies L ∈ C. Finally, we write Z(C) for the class of all
languages that can be defined by a Z[C] formula. We are mainly interested in
the case when C is a group prevariety G or its well-suited extension G+.

Example 1. Let ST = {∅, A∗}. Then, TL(ST) corresponds to a classic variant of
unary temporal logic: FA∗ or PA∗ are the standard operators “sometimes in the
future” (F) and “sometimes in the past” (P). Let A = {a, b, c}. The language
L = a∗bA∗ca∗ is defined by (min ∧ F (c ∧ ¬F b)) ∨ (max ∧ P (b ∧ ¬P c)), which
is a BL1[ST] formula. Note that it is important here that formulas be evaluated
at both unlabeled positions simultaneously: the formula states that F (c ∧ ¬F b)
holds at “0” and P (b ∧ ¬P c)) holds at “|w| + 1”. We get L ∈ BL1(ST).

The logic TL(MOD) is also interesting. Let K = A∗b(aa)∗ which is defined
by the FL1[MOD] formula (min ∧ F (b ∧ (¬F (b ∨ c)) ∧ F(AA)∗ max)) ∨ max

(clearly, A∗, (AA)∗ ∈ MOD). We get K ∈ FL1(MOD). Finally, it is also natural
to consider TL(AMT): when using a temporal operator, one may then count the
number of occurrences of each letter between two positions, modulo some integer.

Remark 2. Well-suited extensions are natural inputs as well. It is shown in [23]
that for all prevarieties C, we have TL(C+) = TLX(C) where TLX is a stronger
variant which allows additional operators “tomorrow” (X) and “yesterday” (Y).
Roughly, the idea is that since {ε} ∈ C+ by Lemma 1, one may use the operators
F{ε} and P{ε} in TL[C+] formulas. They are clearly equivalent to X and Y. Hence,
TL(ST+) = TLX(ST) is the standard variant of unary temporal logic (which
allows F, P, X and Y). While we do not detail this point due to space limitations,
the result of [23] extends to future/past hierarchies (the proof is identical). For
example, BLn(C+) = BLXn(C) for all n ∈ N.

3.2 Tools

We define equivalence relations that we shall use as tools. For each TL formula ϕ,
we define the rank of ϕ as the length of the longest sequence of nested temporal
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operators within its parse tree: the rank of an atomic formula is 0, the rank
of (ψ1 ∨ ψ2) and (ψ1 ∧ ψ2) is the maximum between the ranks of ψ1 and ψ2,
the rank of (¬ψ) is the rank of ψ and the rank of (FL ψ) and (PL ψ) is the
rank of ψ plus one. Moreover, given n ∈ N and a morphism η : A∗ → N , an
FLn[η] (resp. PLn[η]) formula is an FLn (resp. PLn) formula ϕ such that for all
operators FL or PL occurring in ϕ, the language L ⊆ A∗ is recognized by η.

We are ready to define our equivalences. Let η : A∗ → N be a morphism
and let k, n ∈ N. We define two relations on pairs (w, i), where w ∈ A∗ and i ∈
Pos(w). Let w,w′ ∈ A∗, i ∈ Pos(w) and i′ ∈ Pos(w′). We write w, i �n,η,k w′, i′

(resp. w, i �n,η,k w′, i′) to mean that for every FLn[η] (resp. PLn[η]) formula ϕ
of rank at most k, we have w, i |= ϕ ⇔ w′, i′ |= ϕ. Note that despite the notation,
w, i �n,η,k w′, i′ does not entail w′, i′ �n,η,k w, i in general. By definition, �n,η,k

and �n,η,k are equivalences of finite index (one may verify that there are finitely
many non-equivalent FLn[η] (resp. PLn[η]) formulas of rank at most k).

We adapt these relations to words. Let ∼= ∈ {�n,η,k,�n,η,k} and w,w′ ∈ A∗.
We write w ∼= w′ when w, 0 ∼= w′, 0 and w, |w| + 1 ∼= w′, |w′| + 1. This defines
equivalences of finite index on A∗. We use them to characterize the two classes
FLn(C) and PLn(C) for a given prevariety C (the proof is presented in the full
version of the paper).

Lemma 3. Let C be a prevariety, n ≥ 1 and L ⊆ A∗. Then, L ∈ FLn(C) (resp.
L ∈ PLn(C)) if and only if there exists a C-morphism η : A∗ → N and k ∈ N

such that L is a union of �n,η,k-classes (resp. of �n,η,k-classes).

We complete the definition with properties. The proofs rely on arguments
similar to Ehrenfeucht-Fräıssé games (strictly speaking, we use alternative induc-
tive definitions of �n,η,k and �n,η,k rather than a “game”). They are presented
in the full version of the paper. First, these equivalences are congruences.

Lemma 4. Let η : A∗ → N be a morphism, and let n ≥ 1, k ∈ N and ∼= ∈
{�n,η,k,�n,η,k}. For every u, v, u′, v′ ∈ A∗, if u ∼= v and u′ ∼= v′, then uu′ ∼= vv′.

We now consider the special case of morphisms η : A∗ → N such that η(A+)
is a group (this is mandatory in the next two results). In view of Lemma 2,
this corresponds to the case C ∈ {G,G+} for a group prevariety G. We present
two properties for the cases n = 1 and n > 1. We shall use them in Sect. 4 to
establish the language theoretic characterization of future/past hierarchies.

We start with the case n = 1. Let η : A∗ → N be a morphism and k ∈ N.
We define an equivalence ∼η,k on A∗, in two steps. First, given w,w′ ∈ A∗, i ∈
Pos(w) and i′ ∈ Pos(w′), we write w, i ≡η,k w′, i′ if the following conditions hold:

1. We have w[i] = w′[i′].
2. If k ≥ 1, then η(wi) = η(wi′) and η(wi) = η(w′i′).
3. If η−1(1N ) = {ε}, then for every h ∈ Z such that −k ≤ h ≤ k, we have

i + h ∈ Pos(w) ⇔ i′ + h ∈ Pos(w′) and in that case, w[i + h] = w′[i′ + h].

When η−1(1N )∩A+ �= ∅, Condition 3 is trivial: it can be discarded (roughly, this
hypothesis distinguishes the case C = G from C = G+). Finally, given w,w′ ∈ A∗,
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we let w ∼η,k w′ if for all i ∈ Pos(w) (resp. i′ ∈ Pos(w′)) there exists i′ ∈ Pos(w′)
(resp. i ∈ Pos(w)) such that w, i ≡η,k w′, i′. We may now state our first property.

Lemma 5. Let η : A∗ → N be a morphism such that η(A+) is a group and let
k ∈ N. Let p = ω(N). For all u, v ∈ A∗, if u ∼η,k v, then uv2kp �1,η,k v2kp+1

and v2kpu �1,η,k v2kp+1.

We now present a second property, which we shall use in order to handle the
case when n > 1.

Proposition 3. Let η : A∗ → N be a morphism such that η(A+) is a group and
k ∈ N. Let p = ω(N). The following properties hold for all n ≥ 1 and u, v ∈ A∗,

– If n is even and u �n,η,k2 v, then uv2kp �n+1,η,k v2kp+1.
– If n is odd and u �n,η,k2 v, then uv2kp �n+1,η,k v2kp+1.
– If n is odd and u �n,η,k2 v, then v2kpu �n+1,η,k v2kp+1.
– If n is even and u �n,η,k2 v, then v2kpu �n+1,η,k v2kp+1.

Remark 3. It might be surprising that there are four cases in Proposition 3. This
is because the property does not only depend on the outermost kind of temporal
operator in formulas (i.e., future for FLn[η] and past for PLn[η]) but also on the
innermost kind (which depends on whether n is odd or even).

4 Characterization By Deterministic Hierarchies

We present a generic language theoretic characterization of future/past hierar-
chies associated with group prevarieties. It generalizes the characterization of
the full logic presented in [23]. It is based on variants of polynomial closure.

4.1 Polynomial Closure

Given finitely many languages L0, . . . , Ln ⊆ A∗, a marked product of L0, . . . , Ln

is a product of the form L0a1L1 · · · anLn where a1, . . . , an ∈ A. In particular, a
single language L0 is a marked product (this is the case n = 0).

The polynomial closure of a class C, denoted by Pol(C), consists of all finite
unions of marked products L0a1L1 · · · anLn such that L0, . . . , Ln ∈ C. If C is a
prevariety, then Pol(C) is a quotient-closed lattice (this is due to Arfi [2], see
also [14,20] for recent proofs). Yet, Pol(C) need not be closed under complement.
Hence, it is often combined with another operator. The Boolean closure of a
class D, denoted by Bool(D), is the smallest Boolean algebra containing D.
Finally, we write BPol(C) for Bool(Pol(C)). The following result is standard
(see [20], for example).

Proposition 4. If C is a prevariety, then so is BPol(C).
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Remark 4. The classes Pol(C) and BPol(C) are quite prominent. For example,
Pol(ST) contains exactly the finite unions of languages A∗a1A

∗ · · · anA∗ where
n ∈ N and a1, · · · , an ∈ A are letters. Moreover, BPol(ST) consists of all finite
Boolean combinations of such languages: this is the famous class of piecewise
testable languages [25]. In the literature, such classes are more often associated
with classical logic rather than with temporal logic. Indeed, it is well known [20,
28] that BPol corresponds to the quantifier alternation free fragment of first-
order logic (BΣ1). For each prevariety C, there exists a set of first-order predicates
IC such that BPol(C) contains exactly the languages that can be defined by a
BΣ1 sentence using only predicates in IC . On the other hand, no characterization
of BPol based on temporal logic is known. In order to establish a connection
with unary temporal logic, we have to apply additional operators on top of BPol .

4.2 Deterministic Variants

We consider four restrictions of Pol : UPol , LPol , RPol and MPol . The first
three are standard (see for example [13,15,24]). On the other hand, MPol was
introduced recently in [18]. We restrict the marked products to those satisfying
specific semantic conditions and the unions to disjoint ones. Consider a marked
product L0a1L1 · · · anLn. For 1 ≤ i ≤ n, we let L′

i = L0a1L1 · · · ai−1Li−1 and
L′′

i = Liai+1 · · · Ln−1anLn. In particular, L′
1 = L0 and L′′

n = Ln. We say that,

– L0a1L1 · · · anLn is left deterministic when L′
i ∩ L′

iaiA
∗ = ∅ for 1 ≤ i ≤ n.

– L0a1L1 · · · anLn is right deterministic when L′′
i ∩ A∗aiL

′′
i = ∅ for 1 ≤ i ≤ n.

– L0a1L1 · · · anLn is mixed deterministic when either L′
i ∩ L′

iaiA
∗ = ∅, or L′′

i ∩
A∗aiL

′′
i = ∅ for 1 ≤ i ≤ n.

– L0a1L1 · · · anLn is unambiguous when for all w ∈ L0a1L1 · · · anLn, there is a
unique decomposition w = w0a1w1 · · · anwn where wi ∈ Li for 1 ≤ i ≤ n.

By definition, a left or right deterministic marked product is also mixed deter-
ministic. It is also simple to verify that mixed deterministic marked products are
unambiguous. Note that these four notions depend on the product itself and not
only on the resulting language. For example, A∗aA∗ (which is not unambiguous)
and (A \ {a})∗aA∗ (which is left deterministic) evaluate to the same language.

Remark 5. A mixed deterministic product need not be left or right deterministic.
For example, let L1 = (ab)+, L2 = c+ and L3 = (ba)+. The product L1cL2cL3

is mixed deterministic since L1 ∩ L1cA
∗ = ∅ and L3 ∩ A∗cL3 = ∅. However,

it is neither left deterministic nor right deterministic. Similarly, a unambiguous
product need not be mixed deterministic. If L4 = (ca)+, the product L1aL4 is
unambiguous but it neither left nor right deterministic.

The left polynomial closure of a class C, written LPol(C), consists of all finite
disjoint unions of left deterministic marked products L0a1L1 · · · anLn such that
L0, . . . , Ln ∈ C (by “disjoint” we mean that the languages in the union must
be pairwise disjoint). The right polynomial closure of C (RPol(C)), the mixed
polynomial closure of C (MPol(C)) and the unambiguous polynomial closure
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of C (UPol(C)) are defined analogously by replacing the requirement to be “left
deterministic” for marked products by the appropriate one.

We introduce a key property of these operators, which is not apparent on the
definition: when applied to a prevariety, they also yield a prevariety. Moreover,
in that case, the four operators preserve the decidability of membership. This is
proved in [19,23] for UPol and in [18] for LPol , RPol and MPol . From this, we
shall obtain decidability of membership for classes built with FLn,PLn and BLn.

Theorem 1. ([18,23]). Let X ∈ {UPol ,LPol ,RPol ,MPol}. For every preva-
riety C, the class X(C) is a prevariety as well. Moreover, if C has decidable
membership, then so does X(C).

For each operator, Theorem 1 is based on a generic algebraic characteriza-
tion of the classes that it builds. In Theorem 2 below, we recall the symmetric
characterizations of LPol and RPol , as we shall need them in order to establish
the correspondence with future/past hierarchies. This requires two notions.

Let C be a prevariety and let α : A∗ → M be a morphism. We define two
relations on M (both depending on α). Given s, t ∈ M , we say that (s, t) is
a C -pair if α−1(s) is not C-separable from α−1(t). This relation is not very
robust: it is reflexive (if α is surjective) and symmetric (this is tied to C being
closed under complement). The second relation is an equivalence “∼C” on M .
For s, t ∈ M , we write s ∼C t when s ∈ F ⇔ t ∈ F for every F ⊆ M such that
α−1(F ) ∈ C. By definition, ∼C is an equivalence relation. In fact, it is shown
in [20,23] that it is the reflexive transitive closure of the “C-pair” relation (we do
not use this property). We now present the characterizations of LPol and RPol
taken from [18]. They are crucial for proving Theorem 3 below, which expresses
FLn(C),PLn(C),BLn(C) in terms of the operators LPol , RPol and BPol .

Theorem 2. ([18]). Let C be a prevariety and let α : A∗ → M be a surjective
morphism. The three following properties are equivalent:

1. The morphism α is an LPol(C)-morphism (resp. an RPol(C)-morphism).
2. For all C-pairs (s, t) ∈ M2, we have sω+1 = sωt (resp. sω+1 = tsω).
3. For all s, t ∈ M such that s ∼C t, we have sω+1 = sωt (resp. sω+1 = tsω).

This implies the statement on membership in Theorem 1 for LPol and RPol .
Let us explain how on LPol , for instance. By Proposition 1, deciding LPol(C)-
membership boils down to deciding if an input morphism α : A∗ → M is an
LPol(C)-morphism. By the third assertion in Theorem 2, this is possible if one
can compute the equivalence ∼C on M . By definition, this boils down to C-
membership (it suffices to compute all subsets F ⊆ M such that α−1(F ) ∈ C).

4.3 Characterization of Future/Past Hierarchies

It is well known that there is a correspondence between full unary temporal logic
and UPol . This was first proved for the standard variants in [4,16,27], and was
then generalized to our extended definition in [23]. More precisely, for each group



How Many Times Do You Need to Go Back 419

prevariety G, we have TL(G)=UPol(BPol(G)) and TL(G+)=UPol(BPol(G+)).
Here, we generalize these results to future/past hierarchies.

We use LPol and RPol to define hierarchies (the definition is taken from [18]).
It is shown in [19,23] that for all prevarieties C, the class UPol(C) is the least
one containing C and closed under left and right deterministic marked products
as well as disjoint union. Thus, applying LPol and RPol in alternation builds a
classification of UPol(C): the deterministic hierarchy of basis C. For all n ∈ N,
we define two levels LPoln(C) and RPoln(C). We let LPol0(C) = RPol0(C) = C.
For n ≥ 1, LPoln(C) = LPol(RPoln−1(C)) and RPoln(C) = RPol(LPoln−1(C)).
The union of all levels is exactly UPol(C). These are strict hierarchies and the
levels LPoln(C) and RPoln(C) are incomparable for all n ≥ 1, in general. This
motivates additional intermediary levels “combining” LPoln(C) and RPoln(C):
for all n ≥ 1, we let LPoln(C)∨RPoln(C) be the least Boolean algebra containing
both LPoln(C) and RPoln(C).

For every prevariety C, we connect the future/past hierarchy of TL(C) with
the deterministic hierarchy of basis BPol(C). In the general case, we only prove
that the latter is included in the former. This inclusion is strict in general: an
example of prevariety C such that UPol(BPol(C)) is strictly included in TL(C)
is provided in [23] (strictness follows from results of [7]).

Proposition 5. Let C be prevariety. The following properties hold for all n ≥ 1:

1. If n is odd, RPoln(BPol(C)) ⊆ FLn(C) and LPoln(BPol(C)) ⊆ PLn(C).
2. If n is even, LPoln(BPol(C)) ⊆ FLn(C) and RPoln(BPol(C)) ⊆ PLn(C).

Remark 6. There are four cases in Proposition 5. This is because for every level
RPoln(BPol(C)) or LPoln(BPol(C)), the notation highlights the last operator
used in its construction from BPol(C). However, the logic corresponding to this
level is determined by the first operator in the construction. For example, we have
RPol(BPol(C)) ⊆ FL1(C) and all classes which are built from RPol(BPol(C))
by applying LPol and RPol in alternation are included in a level FLn(C).

Proof. (of Proposition 5). We use induction on n. There are four cases. We prove
that if n is odd, then RPoln(BPol(C)) ⊆ FLn(C) (the other cases are symmetric).
Let D = LPoln−1(BPol(C)) and fix L ∈ RPoln(BPol(C)) = RPol(D). We prove
that L ∈ FLn(C). We need the next easy lemma.

Lemma 6. Let K ∈ BPol(C). There exists an FL1[C] formula ξK such that for
all w ∈ A∗ and all i ∈ Pos(w), we have

w, i |= ξK ⇐⇒ i ≤ |w| and wi ∈ K.

Proof. By definition, K ∈ BPol(C) is a Boolean combination of languages of
the form K0a1K1 · · · anKn with a1, . . . , an ∈ A and K0, . . . ,Kn ∈ C. Since we
may use Boolean connectives freely in FL1[C], we may assume without loss of
generality that K itself is of the form K0a1K1 · · · anKn. It now suffices to verify
that the following formula ξK satisfies the desired property:

ξK = FK0 (a1 ∧ FK1 (a2 ∧ FK2 ( · · · an ∧ FKn
max))) .
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��
Since L ∈ RPol(D) with D = LPoln−1(BPol(C)), it is shown in [18, Propo-

sition 5.3] that L is a finite union of products L0a1L1 · · · amLm satisfying the
two following conditions: (1) Lh ∈ D for every h ≤ m, and (2) there exists a
right deterministic marked product K0a1K1 · · · amKm such that Kh ∈ BPol(C)
and Lh ⊆ Kh for every h ≤ m. Hence, by closure under union, it suffices to
prove that every such product L0a1L1 · · · amLm belongs to FLn(C). We use a
subinduction on h to prove that L0a1L1 · · · ahLh ∈ FLn(C) for 0 ≤ h ≤ m.

When h = 0, there are two cases. If n = 1, then D = BPol(C) which means
that L0 ∈ BPol(C) and it is defined by the FL1[C] formula (min ∧ ξL0) ∨ max,
where ξL0 is given by Lemma 6. Otherwise, n > 1 and D = LPoln−1(BPol(C))
with n − 1 ≥ 1. Consequently, since (n − 1) is even, the main induction on n
yields L0 ∈ D ⊆ FLn−1(C) ⊆ FLn(C), which completes this case.

We now assume that h ≥ 1. Let R = L0a1L1 · · · ah−1Lh−1. We prove that
RahLh ∈ FLn(C). Induction on h yields FLn[C] formulas ϕR and ϕLh

defining R
and Lh. We also use the FL1[C] formula ξKh

associated with Kh ∈ BPol(C) by
Lemma 6. We write ψ for the FL1[C] formula ah ∧ ξKh

. Since K0a1K1 · · · amKm

is right deterministic, one may verify that A∗ahKh is unambiguous. Hence, by
definition of ψ, for every w ∈ A∗, there exists at most one position i ∈ Pos(w)
such that w, i |= ψ. Therefore, since Lh ⊆ Kh, it follows that for every w ∈ A∗,
we have w ∈ RahLh if and only if w satisfies the three following conditions:

1. There exists i ∈ Pos(w) (which must be unique) such that w, i |= ψ.
2. The prefix wi belongs to R (i.e., we have wi |= ϕR).
3. The suffix wi belongs to Lh (i.e., we have wi |= ϕLh

).

It remains to prove that these properties can be expressed in FLn[C]. Condition 1
is expressed by the FL1[C] formula (min ∧ F ψ) ∨ max. We turn to Condition 2.
We modify ϕR into a new formula ϕ′

R expressing the desired property. For every
word w ∈ A∗, we restrict the evaluation of ϕR to the positions j ∈ Pos(w) such
that either w, j |= F ψ or j = |w|+1. We build ϕ′

R by applying the two following
modifications to ϕR. First, we recursively replace every subformula PU ζ by
(max ∧ P (ψ ∧ PU ζ))∨(F ψ ∧ PU ζ). Second, we replace every subformula FU ζ
by (FU (ζ ∧ F ψ))∨(FU (ψ ∧ F (max ∧ ζ))). Since ϕR is an FLn[C] formula and
n is odd, one may verify that ϕ′

R is also an FLn[C] formula. The key point is
that since n is odd, the FLn[C] formulas are defined inductively from the FL1[C]
formulas and inserting the FL1[C] formula ψ in an FLn[C] formula yields a new
FLn[C] formula. It can be verified that ϕ′

R expresses Condition 2.
We turn to Condition 3. We modify ϕLh

into another formula ϕ′
Lh

expressing
the desired property. For all w ∈ A∗, we restrict the evaluation of ϕLh

to the
positions j ∈ Pos(w) such that j = 0 or w, j |= P ψ. We build ϕ′

Lh
by applying

the two following modifications to ϕLh
. We recursively replace every subformula

PU ζ by (PU (ψ ∧ P (min ∧ ζ))) ∨ (PU (ζ ∧ P ψ)). Moreover, we replace every
subformula FU ζ by (min ∧ F (ψ ∧ FU ζ)) ∨ (P ψ ∧ FU ζ). As in the previous
case, since n is odd, one may verify that ϕ′

Lh
remains an FLn[C] formula and

that it expresses Condition 3. Finally, the language RahLh is now defined by the
following FLn[C] formula: ((min ∧ F ψ) ∨ max) ∧ ϕ′

R ∧ ϕ′
Lh

. ��
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With Proposition 5 in hand, we may now consider the case when C ∈ {G,G+}
for a group prevariety G. In this case, there is an exact correspondence.

Theorem 3. Let G be a group prevariety and let C ∈ {G,G+}. The three follow-
ing properties hold for every n ≥ 1:

1. If n is odd, FLn(C) = RPoln(BPol(C)) and PLn(C) = LPoln(BPol(C)).
2. If n is even, FLn(C) = LPoln(BPol(C)) and PLn(C) = RPoln(BPol(C)).
3. We have BLn(C) = LPoln(BPol(C)) ∨ RPoln(BPol(C)).

Before we prove Theorem 3, let us discuss its consequences. An important
application is membership for future/past hierarchies. Let G be a group preva-
riety and C ∈ {G,G+}. In view of Theorem 3 and Theorem 1, it is immediate
that membership is decidable for all levels FLn(C) and PLn(C) as soon as this
problem is decidable for BPol(C). Since C ∈ {G,G+}, it follows from results
of [22] that BPol(C)-membership boils down to G-separation (this is based on
independent techniques). Hence, we obtain the following corollary.

Corollary 1. Consider a group prevariety G with decidable separation and let
C ∈ {G,G+}. For every n ≥ 1, membership is decidable for FLn(C) and PLn(C).

Remark 7. We do not mention the levels BLn(C) yet as this requires more work.
This is the topic of Sect. 5: we prove that Corollary 1 also holds for them.

Proof. (of Theorem 3). By definition, the third assertion is an immediate con-
sequence of the others. Hence, we focus on the first two. We use induction
on n. By symmetry, we only treat the case when n is odd and show that
FLn(C) = RPoln(BPol(C)). Proposition 5 yields the right to left inclusion. We fix
L ∈ FLn(C) and prove that L ∈ RPoln(BPol(C)). Let D = LPoln−1(BPol(C)):
we prove that L ∈ RPol(D). Let αL : A∗ → ML be the syntactic morphism
of L. By Proposition 1 and Theorem 2, it suffices to prove that for every D-
pair (s, t) ∈ M2

L, we have sω+1 = tsω. Since L ∈ FLn(C), Lemma 3 yields a
C-morphism η : A∗ → N and k ∈ N such that L is a union of �n,η,k-classes.
Note that since C ∈ {G,G+}, we know that η(A+) is a group by Lemma 2.
Let p = ω(N). We claim that since (s, t) is D-pair, there exist u, v ∈ A∗ such
that αL(u) = t, αL(v) = s and v2kp+1 �n,η,k uv2kp. Let us first explain why
this completes the proof. Since �n,η,k is a congruence by Lemma 4, we get
xv2kp+1y �n,η,k xuv2kpy for every x, y ∈ A∗. Since L is a union of �n,η,k-classes,
this yields xv2kp+1y ∈ L ⇔ xuv2kpy ∈ L for all x, y ∈ A∗, i.e., v2kp+1 ≡L uv2kp.
Hence, αL(v2kp+1) = αL(uv2kp), i.e., s2kp+1 = ts2kp. We now multiply by
enough copies of s on the right to get sω+1 = tsω, as desired.

We now build u, v ∈ A∗. There are two cases depending on n. If n = 1, then
D = BPol(C). We use the equivalence ∼η,k defined in Sect. 3. Observe that the
∼η,k-classes belong to BPol(C). There are two subcases depending on η.

– If η−1(1N ) ∩ A+ �= ∅, then Condition 3 in the definition of ∼η,k is trivial.
Hence, one may verify that the ∼η,k-classes are Boolean combinations of
languages of the form η−1(g) and η−1(g1)aη−1(g2) for a ∈ A and g, g1, g2 ∈ N ,
i.e., languages in BPol(C), since η is a C-morphism.
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– Otherwise, η−1(1N ) = {ε} and one may verify that the ∼η,k-classes are
Boolean combinations of languages wη−1(g), η−1(g)w and η−1(g1)wη−1(g2)
for w ∈ A∗ and g, g1, g2 ∈ N . These are languages in BPol(C) since η is a
C-morphism (which implies that {ε} ∈ C, since it is recognized by η).

Since (s, t) is a BPol(C)-pair, it follows that there exist u, v ∈ A∗ such that
αL(u) = t, αL(v) = s and u ∼η,k v (otherwise, α−1

L (s) can be separated from
α−1

L (t) by a union of ∼η,k-classes, i.e., by a language in BPol(C)). Thus, since
α(A+) is a group, Lemma 5 yields v2kp+1 �1,η,k uv2kp, completing the case
n = 1.

We now assume that n > 1. Lemma 3 implies that the �n−1,η,k2-classes
belong to FLn−1(C). Hence, since n−1 is even (n is odd by hypothesis) induction
yields that the �n−1,η,k2-classes belong to D = LPoln−1(BPol(C)). Since (s, t)
is a D-pair, this yields u, v ∈ A∗ such that α(u) = t, α(v) = s and u �n−1,η,k2 v
(otherwise, α−1(s) can be separated from α−1(t) by a union of �n−1,η,k2-classes,
i.e., by a language in D). Since n−1 is even and α(A+) is a group, it then follows
from Proposition 3 that uv2kp �n,η,k v2kp+1, completing the proof. ��

5 Intermediary Levels

We now consider the levels BLn(C) in future/past hierarchies. We prove that
when C ∈ {G,G+} where G is a group prevariety with decidable separation,
membership is decidable for all levels BLn(C). By Theorem 3, we know that
BLn(C) = LPoln(BPol(C)) ∨ RPoln(BPol(C)) for every n ≥ 1. A key ingredient
in our approach is a result of [18] based on mixed polynomial closure (MPol).

Theorem 4. ([18]). Let D be a prevariety. For every number n ≥ 1, we have
LPoln+1(D) ∨ RPoln+1(D) = MPol(LPoln(D) ∨ RPoln(D)).

Combining Theorem 4 with Theorem 3 yields BLn+1(C) = MPol(BLn(C)).
Now, recall that by Theorem 1, MPol preserves the decidability of membership
(this is shown in [18]). Therefore, an immediate induction reduces membership
for BLn(C) to membership for BL1(C). Thus, we concentrate on this case: we
prove that for every group prevariety G with decidable separation, if C ∈ {G,G+},
then membership is decidable for BL1(C) = LPol(BPol(C)) ∨ RPol(BPol(C)).

We present algebraic characterizations of LPol(BPol(C)) ∨ RPol(BPol(C)).
There are two statements depending on whether C = G or C = G+. We use
the G-pair relation defined in Sect. 4 (this is how the statement depends on G-
separation). We first characterize the classes LPol(BPol(G)) ∨ RPol(BPol(G)).

Theorem 5. Let G be a group prevariety and let α : A∗ → M be a surjective
morphism. Then, α is an LPol(BPol(G))∨RPol(BPol(G))-morphism if and only
if it satisfies the following property:

(sq(tq′)ω)ωs((r′t)ωrs)ω = (sq(tq′)ω)ωt((r′t)ωrs)ω

for all q, q′, r, r′ ∈ M and all G-pairs (s, t) ∈ M2.
(1)
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We complete Theorem 5 with a second statement, which applies to the classes
LPol(BPol(G+)) ∨ RPol(BPol(G+)).

Theorem 6. Let G be a group prevariety and let α : A∗ → M be a surjective
morphism. Then, α is an LPol(BPol(G+)) ∨ RPol(BPol(G+))-morphism if and
only if it satisfies the following property:

(esfq(etfq′)ω)ωesf((r′etf)ωresf)ω = (esfq(etfq′)ω)ωetf((r′etf)ωresf)ω

for all q, q′, r, r′ ∈ M , all e, f ∈ E(α(A+)) and all G-pairs (s, t) ∈ M2.
(2)

Recall that the G-pairs associated with a morphism can be computed pro-
vided that G-separation is decidable (by definition, (s, t) is a G-pair if and only
if α−1(s) is not G-separable from α−1(t)). Hence, Theorem 5 and Theorem 6
imply that if G is a group prevariety with decidable separation and C ∈ {G,G+},
then membership is decidable for the class LPol(BPol(C)) ∨ RPol(BPol(C)).
Using Theorem 1 and Theorem 4, one may then lift decidability to all levels
LPoln(BPol(C)) ∨ RPoln(BPol(C)) for n ≥ 1. Finally, Theorem 3 yields the
following corollary.

Corollary 2. Let G be a group prevariety with decidable separation. For every
n ≥ 1, membership is decidable for BLn(G) and BLn(G+).

Remark 8. Theorem 5 generalizes a known result in the special case when G is
the trivial class ST = {∅, A∗}. In this case, it is known [1,9] that a surjective mor-
phism α : A∗ → M is an LPol(BPol(ST)) ∨ RPol(BPol(ST))-morphism if and
only if M satisfies the equation (sq)ωs(rs)ω = (sq)ω(rs)ω for all q, r, s ∈ M . This
equation is equivalent to (1) in this case. Indeed, since ST is trivial, every pair in
M2 is an ST-pair. In particular, if q, r, s ∈ M , then (s, 1M ) is an ST-pair. Hence,
the above equation is the special case of (1) when t = q′ = r′ = 1M . Conversely,
if the above equation holds, then given elements s, t, q, q′, r, r′ ∈ M , we may
apply the equation twice to get (sq(tq′)ω)ωs((r′t)ωrs)ω = (sq(tq′)ω)ω((r′t)ωrs)ω

and (tq′)ωt(r′t)ω = (tq′)ω(r′t)ω. When combined, the two imply that (1) holds.

The proofs of Theorem 5 and Theorem 6 are presented in the full ver-
sion of the paper. The two arguments are similar (though the one of The-
orem 6 is technically more involved). Let us point out that these proofs are
nontrivial. As for most algebraic characterizations of this kind, the challenging
direction consists in proving that if some morphism α : A∗ → M satisfies (1)
(resp. (2)), then it must be an LPol(BPol(G))∨RPol(BPol(G))-morphism (resp.
an LPol(BPol(G+))∨RPol(BPol(G+))-morphism). In particular, this part of the
proof relies heavily on properties of the operators LPol , RPol and UPol estab-
lished in [18] and [19,23].

6 Conclusion

For all group prevarieties G, we characterized the future/past hierarchies within
the variants TL(G) and TL(G+) of unary temporal logic with the deterministic
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hierarchies of bases BPol(G) and BPol(G+). We used these results to prove that
if G-separation is decidable, then membership is also decidable for all levels
FLn(G), PLn(G), BLn(G), FLn(G+), PLn(G+) and BLn(G+) in such hierarchies.

A natural question is whether decidability can be pushed to more general
problems than membership, e.g., separation. When G is the trivial class ST =
{∅, A∗}, it is known that separation is decidable for all levels FLn(ST) and
PLn(ST) (this is shown for their counterparts in deterministic hierarchies [18]).
Moreover, it is also known that if G is a group prevariety with decidable separa-
tion, then BPol(G)- and BPol(G+)-separation are also decidable [21]. In view of
our characterizations, this suggests that similar results may hold for the whole
future/past hierarchies of TL(G) and TL(G+).
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Abstract. The notion of string attractor has been introduced by Kempa
and Prezza (STOC 2018) in the context of Data Compression and it rep-
resents a set of positions of a finite word in which all of its factors can be
“attracted”. The smallest size γ∗ of a string attractor for a finite word is a
lower bound for several repetitiveness measures associated with the most
common compression schemes, including BWT-based and LZ-based com-
pressors. The combinatorial properties of the measure γ∗ have been stud-
ied in [Mantaci et al., TCS 2021]. Very recently, a complexity measure,
called string attractor profile function, has been introduced for infinite
words, by evaluating γ∗ on each prefix. Such a measure has been studied
for automatic sequences and linearly recurrent infinite words in [Scha-
effer and Shallit, arXiv 2021]. In this paper, we study the relationship
between such a complexity measure and other well-known combinatorial
notions related to repetitiveness in the context of infinite words, such
as the factor complexity and the recurrence. Furthermore, we introduce
new string attractor-based complexity measures, in which the structure
and the distribution of positions in a string attractor of the prefixes of
infinite words are considered. We show that such measures provide a
finer classification of some infinite families of words.

Keywords: String attractor · Sturmian word · Recurrent word ·
Morphism · Repetitiveness measure · Factor complexity

1 Introduction

Compressibility and repetitiveness are two fundamental aspects in processing
huge text collections [24]. In many application domains, massive and highly
repetitive data needs to be stored, analysed and queried. The main purpose
of compressed indexing data structures is to store the texts and the structures
needed to handle them by requiring space close to the size of the compressed data
[22]. In such a context, finding good measures able to capture the repetitiveness
of texts is strictly related to having effective parameters to evaluate the perfor-
mance, both in terms of time and space, of such compressed data structures. For
this reason, some of the most widely used repetitiveness measures are associ-
ated with effective compression schemes. For instance, we recall the number z of
phrases in the LZ77 parsing and the number r of equal-letter runs produced by
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the Burrows-Wheeler Transform [23]. In such a framework, Kempa and Prezza
proposed in [14] a repetitiveness measure that, instead of being associated with
a specific compressor, is related to some combinatorial properties of the text
with the aim of unifying existing compressor-based measures. A string attractor
Γ for a text w is a set of positions in w such each factor of w must have an
occurrence crossing some position in Γ . Intuitively, the more repetitive the text,
the lower the number of positions of its attractor. The measure γ∗(w) is the size
of a string attractor of smallest size for w. On the one hand, it has been proved
that γ∗ is a lower bound to all other compressor-based repetitiveness measure,
on the other it is NP-complete to find the smallest attractor size γ∗ for a given
text w. Combinatorial properties of the measure γ∗ for finite words have been
explored in [21].

In Combinatorics on words, the notion of repetitiveness has been declined in
several ways and under a variety of aspects. For instance, the factor complexity
function px of an infinite word x is a function that counts, for any n > 0, the
number of distinct factors of length n. Intuitively, the lower the factor complexity,
the more repetitive an infinite word is. That is, the most repetitive words one
can think of are those obtained by repeating the same factor infinitely many
times, i.e. periodic words, for which factor complexity takes on a constant value
definitively. Among aperiodic words, Sturmian words are the infinite words with
minimal factor complexity. An infinite word x is recurrent if each factor of x
occurs infinitely often. The recurrence function Rx for an infinite word x, gives
for each n, the size of the smallest window containing each factor of x of length
n, whatever such a window is located in x. Intuitively, it is strictly related to the
maximum gap between successive occurrences of any factor, when all factors of
length n are considered. If such a gap is finite for each n, then the word is called
uniformly recurrent. For the linearly recurrent words such a gap grows at most
linearly with n.

Very recently, a bridge between these two different approaches has been pre-
sented in [26], where the string attractor profile function sx has been introduced.
It measures, for each n, the size of a string attractor of smallest size for the prefix
of length n of an infinite word x. The behaviour of sx has been studied when x is
linearly recurrent word or an automatic sequence, whose symbols can be defined
through a finite automaton [1].

In this paper, we explore the relationship between the string attractor profile
function of an infinite word x and the other combinatorial notions of repetitive-
ness. In particular, we prove that the values that sx takes for infinitely many
n give an upper bound to the factor complexity. On the other hand, we face
the problem of searching for the necessary conditions, in terms of repetitiveness
combinatorial properties, for the string attractor profile function to take values
bounded by a constant. Moreover, we study the behavior of the string attrac-
tor profile function for infinite words that are fixed point of a morphism, which
represent a mathematical mechanism to generate repetitive words.

Another contribution of this paper is to introduce two new complexity mea-
sures based on the notion of string attractor, which allow to obtain a finer clas-
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sification of some infinite families of words. More in detail, we define the string
attractor span complexity (denoted by spanx) and the string attractor leftmost
complexity (denoted by lmx) of an infinite word x, which are related for each
n > 0 to the distribution of the positions within a string attractor of the prefix
of x of length n. These measures make it possible to distinguish infinite words
that are indistinguishable under the action of the string profile function. In addi-
tion to exploring the relations between such measures and the periodicity and
recurrence properties of an infinite word, we consider the class of infinite words
for which the span complexity takes on a constant value infinitely many times.
This allows us to obtain a new characterization of Sturmian words that are the
infinite words with span complexity function equal to 1 for infinitely many n.
More in general, we prove that if the span complexity spanx takes a constant
value for each n > 0, the aperiodic infinite word x is a quasi-Sturmian word.
Quasi-Sturmian words represent the simplest generalization of Sturmian words
in terms of factor complexity.

2 Preliminaries

Let Σ = {a1, a2, . . . , aσ} be a finite alphabet. We denote by Σ∗ the set of finite
words over Σ. An infinite word x = x1x2 . . . is an infinite sequence of characters
in Σ. Given a finite word w = w1w2 · · · wn, we denote with |w| = n the length of
the word. The empty-word is denoted by ε. The reverse of a word w is the word
read from right to left, that is wR = wnwn−1 · · · w1. A finite word v is called
factor of a word x (finite or infinite) if there exist i, j > 0 such that j−i+1 = |v|
and x[i, j] = xixi+1 · · · xj = v. We assume that x[i, j] = ε if j < i. We denote
by F (x) the set of all factors of x. The word u is a prefix (resp. suffix ) of x if
x = uy (resp. x = yu) for some word y. A factor u of x is right special if there
exist a, b ∈ Σ with a �= b such that both ua and ub are factors of x.

String Attractor of a Finite Word. A string attractor for a word w is a set of
positions in w such that all distinct factors of w have an occurrence crossing at
least one of the attractor’s elements. More formally, a string attractor of a finite
word w ∈ Σn is a set of γ positions Γ = {j1, . . . , jγ} such that every factor w[i, j]
of w has an occurrence w[i′, j′] = w[i, j] with jk ∈ {i′, i′ + 1, . . . , j′}, for some
jk ∈ Γ . We denote by γ∗(w) the size of a smallest string attractor for w. We
denote by alph(w) the set of the characters of Σ appearing in w, i.e. F (w) ∩ Σ.
It is easy to see that γ∗(w) ≥ |alph(w)|.
Example 1. Let w = adcbaadcbadc be a word on the alphabet Σ = {a, b, c, d}.
The set Γ = {1, 4, 6, 8, 11} is a string attractor for w. Note that the set Γ ′ =
{4, 6, 8, 11} obtained from Γ by removing the position 1 is still a string attractor
for w, since all the factors that cross position 1 have a different occurrence that
crosses a different position in Γ . The positions of Γ ′ are underlined in

w = adcbaadcbadc.
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Γ ′ is also a smallest string attractor since |Γ ′| = |Σ|. Then γ∗(w) = 4. Remark
that the sets {3, 4, 5, 11} and {3, 4, 6, 7, 11} are also string attractors for w. It
is easy to verify that the set Δ = {1, 2, 3, 4} is not a string attractor since, for
instance, the factor aa does not intersect any position in Δ.

Factor Complexity. Let x be an infinite word. The factor complexity function
px of x counts, for any positive integer n, all the distinct factors of x of length
n, i.e. px(n) = |F (x) ∩ Σn|.

Periodicity. Given a word x, a natural number p > 0 is called period of x if
xi = xj when i ≡ j mod p. An infinite word x is called ultimately periodic if
there exist u ∈ Σ∗ and v ∈ Σ+ such that x = uvω, i.e. x is the concatenation
of u followed by infinite copies of a non-empty word v. If u = ε, then x is called
periodic. An infinite word is aperiodic if it is not ultimately periodic.

Recurrence and Appearance Functions. An infinite word x is said to be recurrent
if every factor that occurs in x occurs infinitely often in x. The recurrence function
Rx(n) gives, for each n, the least integer m (or ∞ if no such m exists) such that
every block of m consecutive symbols in x contains at least an occurrence of each
factor of x of length n. An infinite word x is uniformly recurrent if Rx(n) < ∞ for
each n > 0. If Rx(n) is linear, x is called linearly recurrent. It is easy to see that an
ultimately periodic word x = uvω with u �= ε is not recurrent. On the other hand,
if x is periodic (the case u = ε) then x is linearly recurrent. Therefore, a recurrent
word is either aperiodic or periodic. Given an infinite word x, Ax(n) denotes the
length of the shortest prefix containing all the factors of x of length n. The function
Ax(n) is called appearance function of x.

Remark 1. It is known that Ax(n) ≤ Rx(n) (see [1]). Moreover, for any infinite
word x and for each n > 0, since |Σ| is finite, Ax(n) is always defined and
Ax(n) ≥ px(n) + n − 1 = Ω(n).

Power Freeness. An infinite word x is said k-power free, for some k > 1, if for
every factor w of x, wk is not a factor of x. If for every factor w of x there exists
k such that wk is not a factor of x, then x is called ω-power free.

Morphisms. They represent a very interesting way to generate an infinite family
of words. Let Σ and Σ′ be alphabets. A morphism is a map ϕ from Σ∗ to Σ′∗

that obeys the identity ϕ(uv) = ϕ(u)ϕ(v) for all words u, v ∈ Σ∗. A morphism
ϕ is called prolongable on a letter a ∈ Σ if ϕ(a) = au with u ∈ Σ+. If for all
a ∈ Σ holds that ϕ(a) �= ε, then the morphism ϕ is called non-erasing. Given a
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non-erasing morphism ϕ prolongable on some a ∈ Σ, the infinite family of finite
words {a, ϕ(a), . . . , ϕi(a), . . .} are prefixes of a unique infinite word ϕ∞(a) =
limi→∞ ϕi(a), that is called purely morphic word or fixed point of ϕ. A morphism
ϕ is called primitive if exists t > 0 such that b ∈ F (ϕt(a)), for every pair of
symbols a, b ∈ Σ. If exists k such that |ϕ(a)| = k for every a ∈ Σ, then the
morphism is called k-uniform.

String Attractor Profile Function. Let x be an infinite word. For any n > 0, we
denote by sx(n) the size of a smallest string attractor for the prefix of x of length
n. The function sx is called string attractor profile function of x. This notion
has been introduced in [26].

Example 2. Let us consider the Thue-Morse word

t = 0110100110010110 · · · ,

that is the fixed point of the morphism 0 	→ 01, 1 	→ 10. It has been proved in
[26] (cf. also [17]) that st(n) ≤ 4 for any n > 0. Moreover, it is known that the
functions pt(n), Rt(n) and At(n) are Θ(n). See [1] for details.

3 String Attractor Profile Function, Factor Complexity
and Recurrence

In this section we explore the relationships among different functions that aim
to measure the repetitiveness of factors within infinite sequences of symbols.

The following theorem extends to infinite words a result proved in [8, Lemma
5.6] that states the measure δ, defined using the factor complexity on finite
words, is a lower bound for the measure γ∗. Here, we establish a relationship
among appearance, factor complexity and string attractor profile functions. In
particular, in the following theorem we show that upper bounds on sx can induce
upper bounds on px.

Theorem 1. Let x be an infinite word. For all n > 0, one has

px(n) ≤ n · sx(Ax(n)).

Proof. Let us consider the value Ax(n) representing the length of the smallest
prefix of x containing all the factors of x of length n. Since the alphabet is finite,
the value Ax(n) is finite. By definition sx(Ax(n)) is the size of the smallest string
attractor of the prefix of length Ax(n). Therefore, each factor of x of length n
crosses at least one element of the string attractor. Since each element of the
string attractor is crossed by at most n distinct factors of x of length n, one has
px(n) ≤ n · sx(Ax(n)). ��

From previous theorem, the following corollary can be deduced.
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Corollary 1. Let x be an infinite word. If there exists k > 0 such that sx(n) < k
for each n > 0, then px(n) ≤ n · k.

In other words, Corollary 1 states that if an infinite word has the string
attractor profile function bounded by some constant value, then it has at most
linear factor complexity. We know that, in general, the converse of Corollary 1
is not true. In fact, there are infinite words x such that the factor complexity
is linear and sx(n) is not bounded. For instance, in Example 3 we consider the
characteristic sequence c of the powers of 2.

Example 3. Let us consider the characteristic sequence c of the powers of 2, i.e.
ci = 1 if i = 2j for some j ≥ 0, 0 otherwise.

c = 1101000100000001 · · · .

It is easy to see that c is aperiodic and not recurrent because the factor 11 has
just one occurrence. It is known that pc(n) and Ac(n) are Θ(n) ( [1]). One can
prove that sc(n) = Θ(log n) ( [16,21,26]).

We raise the following:

Question 1. Let x be an uniformly recurrent word such that px is linear. Is sx(n)
bounded by a constant value?

Remark that, by assuming a stronger hypothesis on the recurrence of x, a
positive answer to Question 1 can be given, as stated in the following theorem
proved in [26]. Such a result can be applied to describe the behaviour of the
string profile function st(n) for the Thue-Morse word t, as shown in Example 2.

Theorem 2 ([26]). Let x be an infinite word. If x is linearly recurrent (i.e.
Rx(n) = Θ(n)), then sx(n) = Θ(1).

The following proposition shows that also in case of ultimately periodic
words, the string attractor profile function is bounded by a constant value.

Proposition 1. Let x be an infinite word. If x is ultimately periodic, then
sx(n) = Θ(1).

Proof. Let u ∈ Σ∗ and v ∈ Σ+ such that x = uvω. Since every periodic word is
linearly recurrent, if u = ε by Theorem 2 the thesis holds. If u �= ε, then for every
n > |u| we can use a bound on the size γ∗ with respect to the concatenation
provided in [21], which says that for any u, v ∈ Σ+, it holds that γ∗(uv) ≤
γ∗(u) + γ∗(v) + 1. Therefore, sx(n) ≤ γ∗(u) + svω (n − |u|) + 1 ≤ |u| + k′ + 1. On
the other hand, for all the prefixes of length n ≤ |u| it holds that sx(n) ≤ |u| <
|u|+ k′ +1. Since |u| and k′ are constant, we can choose k = |u|+ k′ +1 and the
thesis follows. ��

An interesting upper bound on the function sx can be obtained by assuming
that the appearance function is linear, as shown in [26] and reported in the
following theorem.
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Theorem 3 ([26]). Let x be an infinite word. If Ax(n) = Θ(n), then sx(n) =
O(log n).

On the other hand, if the function sx is bounded by some constant value, the
property of power freeness can be deduced, as proved in the following proposition.

Proposition 2. Let x be an infinite word. If sx(n) = Θ(1), then x is either
ultimately periodic or ω-power free.

Proof. If x is ultimately periodic, then by Proposition 1 sx(n) = Θ(1). So, let us
assume x is aperiodic. By contraposition, suppose x is not ω-power free. Then
there exists a factor w of x such that, for every q > 0, wq is factor of x. Moreover,
x �= uwω for every u ∈ Σ∗, otherwise x would be ultimately periodic. It follows
that we can write x = v0 · ∏∞

i=1 wqivi, with v0 ∈ Σ∗, and, for every i ≥ 1, qi > 0
and vi ∈ Σ+ such that vi does not have w neither as prefix nor as suffix. Observe
that there exist infinitely many distinct factors of the form vjw

qj vj+1 for some
j ≥ 0 and for each of these distinct factors we have at least one position in the
string attractor. Thus, for every k > 0 exists n > 0 such that sx(n) > k and the
thesis follows. ��

On the other hand, the converse of Proposition 2 is not true for ω-power free
words. Such a result leads to the formulation of the following Question 2. Note
that a positive answer to Question 2 implies a positive answer to Question 1:

Question 2. Let x be ω-power free word such that px is linear. Is sx(n) bounded
by a constant value?

The following examples show that for many infinite words known in literature
the string attractor profile function is not bounded by a constant. So, it could
be interesting to study its behaviour. In particular, Example 4 shows that there
exist recurrent (not uniformly) infinite words x such that the function sx is
unbounded. However, one can find a uniformly recurrent infinite word t such
that st is unbounded, as shown in Example 5 .

Example 4. Let n0, n1, n2, n3, . . . be an increasing sequence of positive integers.
Let us define the following sequence of finite words: v0 = 1, vi+1 = vi0nivi, for
i > 0. Let us consider v = limi→∞ vi. It is possible to verify that v is recurrent,
but not uniformly, and sv is unbounded.

Example 5. Toeplitz words are infinite words constructed by an iterative process,
specified by a Toeplitz pattern, which is a finite word over the alphabet Σ ∪{?},
where ? is a distinguished symbol not belonging to Σ [4]. Let us consider the
alphabet Σ = {1, 2} and the pattern p = 12???. The Toeplitz word z (also called
(5, 3)-Toeplitz word) is generated by the pattern p by starting from the infinite
word pω, obtained by repeating p infinitely. Next, each ? is replaced by a single
symbol from pω, and so forth. So,

z = 121211221112221121121222112121121211222212112 · · · .
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It is known that all Toeplitz words are uniformly recurrent and, as shown in [4],
pz(n) = Θ(nr) with r = (log 5)/(log 5 − log 3) ≈ 3.15066. By applying Corollary
1, we can deduce that sz is unbounded.

On the other hand, in support of the fact that sx(n) can be bounded by a
constant value by using weaker assumptions than those of Theorem 2, we can
show there exist uniformly (and not linearly) recurrent words for which sx(n) is
bounded. A large class of examples is represented by some Sturmian words, as
shown in Sect. 6.

All the infinite words considered in the paper, with information on string
attractor profile function, factor complexity and recurrence properties, are sum-
marized in Fig. 1.

Fig. 1. Factor complexity function px, recurrence, and string attractor profile function
sx for some infinite words.

Finally, we pose the problem of what values the string attractor profile func-
tion can assume, and in particular, whether an upper bound exists for these
values. We therefore prove the following proposition.

Proposition 3. Let x be an infinite word. Then sx(n) = O( n
log n ).

Proof. The proposition can be proved by combining results from [14] and [18].
In fact, in [14] it has been proved that, for a given finite word, there exists a
string attractor of size equal to the number z of phrases of its LZ77 parsing.
In [18] it has been proved that an upper bound on z for a word of length n is

n
(1−εn) logσ n , where εn = 21+logσ(logσ(σn))

logσ n and σ is the size of the finite alphabet.
��

We wonder if the bound of Proposition 3 is tight, i.e. if there exists an infinite
word x such that sx = Θ( n

log n ) for each n ≥ n0, for some positive n0. Certainly,
it is possible to construct an infinite word x for which there exists a sub-sequence
of positive integers ni, for i > 0, such that sx(ni) = Θ( ni

log ni
). For instance, such

a word x can be constructed by using a suitable sequence of de Brujin words.
However, having information about the values of the string attractor profile
function on a sub-sequence ni does not allow us to determine its behavior for
the remaining values of n.
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4 String Attractor Profile Function on Purely Morphic
Words

In this section, we consider the behavior of string attractor profile function for
an infinite word x, when it is a fixed point of a morphism. Note that morphisms
represents an interesting mechanism to generate infinite families of repetitive
sequences, which has many mathematical properties ( [1,2,11]). Some repeti-
tiveness measures have been explored when applied to words x generated by
morphisms. In [12] the number r of BWT equal-letter runs has been studied
for all prefixes obtained by iterating a morphism. In [9] the measure zx(n) that
gives the number z of phrases in the LZ77 parsing of the prefix x[1, n] has been
studied. It has been proved that both z and r are upper bound for the measure
γ∗, when they are applied to finite words. The bounds on the measure z proved
in [9] can be used to prove the following theorem.

Theorem 4. Let x = ϕ∞(a) be the fixed point of a morphism ϕ prolongable on
a ∈ Σ. Then, sx(n) = O(i), where i is such that |ϕi(a)| ≤ n < |ϕi+1(a)|.

In the following, we provide a finer result in the case of binary purely morphic
word.

Theorem 5. Let x = μ∞(a) be the binary fixed-point of a morphism μ :
{a, b}∗ 	→ {a, b}∗ prolongable on a. Then, either sx(n) = Θ(1) or sx(n) =
Θ(log n), and it is decidable when the first or the latter occurs.

Proof. If x is ultimately periodic, then by Proposition 1 follows that sx(n) =
Θ(1). Suppose now x is aperiodic. For morphisms defined on a binary alphabet,
it holds that if x = μ∞(a) is aperiodic, then |μi(a)| grows exponentially with
respect to i (see [12]). Moreover, if μ is primitive, then by [10, Theorem 1] and
[1, Theorem 10.9.4] x is linearly recurrent, and by Theorem 2 we have that
sx(n) = Θ(1). If μ is not primitive, as summed up in [12], then only one of the
following cases occurs: (1) there exist a coding τ : Σ 	→ {a, b}+ and a primitive
morphism ϕ : Σ∗ 	→ Σ∗ such that x = μ∞(a) = τ(ϕ∞(a)) [25]; (2) x contains
arbitrarly large factors on {b}∗. For case (1), since τ preserves the recurrence of
a word and that ϕ∞(a) is linearly recurrent, then x is linearly recurrent as well,
and by Theorem 2 sx(n) = Θ(1). For case (2), one can notice that x is not ω-
power free, and by Proposition 2 for every k > 0 exists n′ such that sx(n) > k,
for every n ≥ n′. More in detail, the number of distinct maximal runs of b’s
grows logarithmically with respect to the length of the prefixes of x [12], i.e.
sx(n) = Ω(log n). On the other hand, by Theorem 4 we know that sx(n) = O(i),
where i > 0 is such that |μi(a)| ≤ n < |μi+1(a)|. Since i = Θ(log n), we can
further deduce an upper bound for the string attractor profile function and it
follows that sx(n) = Θ(log n). Finally, from a classification in [12] we can decide,
only from μ, if either sx(n) = Θ(1) or sx(n) = Θ(log n). ��

Note that the result of Theorem 5 does not contradict a possible positive
answer to the Questions 1 and 2, because the infinite words x with linear factor
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complexity and such that sx(n) = Θ(log n) are not ω-power free. Moreover, the
same bounds of Theorem 5 have been obtained for a related class of words,
i.e. the automatic sequences, as reported in the following theorem. In short, an
infinite word x is k-automatic if and only if there exists a coding τ : Σ 	→ Σ and
a k-uniform morphism μk such that x = τ(μ∞

k (a)), for some a ∈ Σ ( [1]).

Theorem 6 ([26]). Let x be a k-automatic infinite word. Then, either sx(n) =
Θ(1) or sx(n) = Θ(log n), and it is decidable when the first or the latter occurs.

5 New String Attractor-Based Complexities

In this section we introduce two new string attractor-based complexity measures,
called span complexity and leftmost complexity, that allow us to obtain a finer
classification for infinite families of words that takes into account the distribution
of positions in a string attractor of each prefix of an infinite word. Examples 7
and 8 show two infinite words, Period-Doubling word and Fibonacci word, which
are not distinguishable if we consider their respective string attractor profile
function. In fact, they are point by point equal to 2, definitively. The situation
is very different if we look at how the positions within a string attractor are
arranged.

Span and Leftmost String Attractor of a Finite Word. Let w be a a finite word
and let G be set of all string attractors Γ = {δ1, δ2, . . . , δγ} for w, with δ1 <
δ2 < . . . < δγ and 1 ≤ γ ≤ |w|. We define span of a finite word the value
span(w) = minΓ∈G{δγ−δ1}. In other words, span(w) gives the minimum distance
between the rightmost and the leftmost positions of any string attractor for w.
Moreover, given two string attractors Γ1 and Γ2, we say that Γ1 is more to the
left of Γ2 if the rightmost position of Γ1 is smaller than the rightmost position of
Γ2. Then, we define lm(w) = minΓ∈G{δγ ∈ Γ}. Any Γ ∈ G such that δγ = lm(w)
is called leftmost string attractor for w.

Example 6. Let us consider the word w = abccabc. One can see that the sets
Γ1 = {4, 5, 6} (underlined positions) and Γ2 = {1, 2, 4} (overlined positions) are
two suitable string attractors for w. Even if both string attractors are of smallest
size (|Γ1| = |Γ2| = |Σ|), only the set Γ1 is of minimum span, since all of its
positions are consecutive, and therefore span(w) = 6−4 = 2. On the other hand,
one can see that max{Γ2} < max{Γ1}. Moreover, one can notice that the set
Δ = {1, 2, 3} is not a string attractor for w, and therefore lm(w) = max{Γ2} = 4.

Example 6 shows that for a finite word w, these two measures can be obtained
by distinct string attractors. In fact, the set {2, 3, 4} is not a string attractor for
w = abccabc, hence it does not exists Γ ′(w) = {δ1, δ2, . . . , δγ′} ∈ G such that
δγ = 4 and δγ′ − δ1 = 2.

The value span(w) can be used to derive an upper-bound on the number of
distinct factors of w, as shown in the following lemma. Such a result will be used
to find upper bounds on the factor complexity of an infinite word.
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Lemma 1. Let w be a finite word. Then, for all 0 < n ≤ |w|, it holds that
|F (w) ∩ Σn| ≤ n + span(w).

Proof. Let Γ = {δ1, δ2, . . . , δγ} be a string attractor for w such that δγ − δ1 =
span(w). Then, the superset X = {i ∈ N | δ1 ≤ i ≤ δγ} of Γ is a string attractor
for w as well. Since every factor has an occurrence crossing a position in X, it is
possible to find all factors in F (w)∩Σn by considering a sliding window of length
n, starting at position max{δ1−n+1, 1} and ending at min{δγ , |w|−n+1}. One
can see that this interval is of size at most δγ − (δ1 − n + 1) + 1 = δγ − δ1 + n =
n + span(w) and the thesis follows. ��

The following proposition shows upper bounds for the measures γ∗, span and
lm, when a morphism is applied to a finite word w.

Proposition 4. Let ϕ : Σ∗ 	→ Σ′∗ be a morphism. Then, there exists K > 0
which depends only from ϕ such that, for every w ∈ Σ+, it holds that:

1. γ∗(ϕ(w)) ≤ 2γ∗(w) + K;
2. span(ϕ(w)) ≤ K · span(w);
3. lm(ϕ(w)) ≤ K · lm(w).

Span Complexity and Leftmost Complexity. The following measures take into
account the distribution of the positions within a string attractor for each prefix
of an infinite word x. More in detail, we define the string attractor span complex-
ity (or simply span complexity) of an infinite word x as spanx(n) = span(x[1, n]).
We also introduce the string attractor leftmost complexity (or simply leftmost
complexity) of an infinite word x, defined as lmx(n) = lm(x[1, n]). Example 7
shows the behaviour of such measures when the period-doubling word is consid-
ered. Proposition 5 shows the relationship between the measures sx, spanx and
lmx.

Example 7. Let us consider the period-doubling sequence

pd = 101110101011 · · · ,

that is the fixed point of the morphism 1 	→ 10, 0 	→ 11. It has been proved in
[26] that spd(n) = 2 for any n > 1, while spanx(n) = 1 when 1 < n ≤ 5, and
spanx(n) = 2i when 3 · 2i ≤ n < 3 · 2i+1 and i ≥ 1.

Proposition 5. Let x be an infinite word. Then,

sx(n) − 1 ≤ spanx(n) ≤ lmx(n).

Proof. Let Γ = {δ1, δ2, . . . , δγ} be a leftmost string attractor, i.e. δγ = lmx(n).
It is possible to check that lmx(n) = δγ ≥ δγ − δ1 ≥ spanx(n). Let G be the
set of all string attractors for x[1..n] and let Γ ′ = {λ1, . . . , λγ′} ∈ G be a string
attractor such that λγ′ − λ1 = spanx(n). Recall that, for every string attractor
Γ ′ ∈ G and a set X such that Γ ′ ⊆ X, it holds that X ∈ G as well. Then,
the set X = {i ∈ N | λ1 ≤ i ≤ λγ′} is a string attractor for x[1..n]. Finally,
spanx(n) = λγ′ − λ1 = |X| − 1 ≥ sx(n) − 1 and the thesis follows. ��
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The following two propositions show that the boundedness of the two new
complexity measures here introduced can be related to some properties of repet-
itiveness for infinite words, such as periodicity and recurrence.

Proposition 6. Let x be an infinite word. x is ultimately periodic if and only
if there exists k > 0 such that lmx(n) ≤ k, for infinitely many n > 0.

Proof. First we prove the first implication. If x is ultimately periodic, then there
exist u ∈ Σ∗ and v ∈ Σ+ such that x = uvω. Observe that, for any n ≥ |uv|,
the set Γ = {i ∈ N | 1 ≤ i ≤ |uv|} is a string attractor for x[1..n], since every
factor that starts in uv is clearly covered, and every factor that lies within two
or more consecutive v’s has another occurrence starting in the first v. It follows
that we can pick k = |uv| such that lmx(n) ≤ k for every n > 0.

We now show the other direction of the implication. By hypothesis, for all
n > 0 there exists n′ ≥ n and a set Γ ′ such that Γ ′ = {δ1, δ2, . . . , δγ′} is a string
attractor for x[1..n′], with δ1 < δ2 < . . . < δγ′ ≤ k. Hence, also the superset
Γ ′′ = {i ∈ N | 1 ≤ i ≤ min{n′, k}} is a string attractor for x[1, n′]. One can
notice that, for each n′ > k, Γ ′′ can capture at most k distinct factors of length
n, i.e. one factor starting at each position of Γ ′′. Therefore, for all n′ > k we have
that px(n′) ≤ k = Θ(1). One can observe that for each n > 0 there exists n′ ≥ n
such that px(n′) = Θ(1), and from the monotonicity of the factor complexity we
have px(n) ≤ px(n′) = Θ(1), and the thesis follows. ��
Proposition 7. Let x be an infinite word. If there exists k > 0 such that
spanx(n) ≤ k for infinitely many n, then x is ultimately periodic or recurrent.

Proof. Let x be an ultimately periodic word. By Propositions 6 and 5, there
exists k > 0 such that k ≥ lmx(n) ≥ spanx(n), for every n > 0. So, let us suppose
that x is aperiodic, and by contraposition assume that x is not recurrent. Then,
for a sufficiently large value n′, there exists a factor u of x[1, n′] that occurs
exactly once in x. It follows that in order to cover the factor u, any suitable
string attractor Γ (x[1, n]) with n > n′ must have its first position δ1 ≤ n′ . Let
us consider then all the prefixes of length n > n′ (ignoring a finite set does not
affect the correctness of the proof). From Proposition 6 one can observe that x
being aperiodic implies that, for each k > 0, we can find only a finite number of
n > 0 such that k > lmx(n). In other terms, any string attractor of a prefix of x
ultimately has the first position bounded above by the constant value n′, while
lmx(n) must grow after the concatenation of a finite number of symbols and the
thesis follows. ��

6 Words with Constant Span Complexity

In this section, we consider infinite words for which the span complexity measure
takes a constant value for infinite points. By using Proposition 7, we know that,
under this assumption, an infinite word is either ultimately periodic or recur-
rent. In this section we focus our attention on aperiodic words by showing that
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different constant values for the span complexity characterize different infinite
families of words.

Sturmian Words. They are very well-known combinatorial objects having a large
number of mathematical properties and characterizations. Sturmian words have
also a geometric description as digitized straight lines [19, Chapt.2]. Among ape-
riodic binary infinite words, they are those with minimal factor complexity, i.e.
an infinite word x is a Sturmian word if px(n) = n + 1, for n ≥ 0. Moreover,
Sturmian words are uniformly recurrent. An important class of Sturmian words
is that of Characteristic Sturmian words. A Sturmian word x is characteristic
if both 0x and 1x are Sturmian words. An important property of characteristic
Sturmian words is that they can be constructed by using finite words, called stan-
dard Sturmian words, defined recursively as follows. Given an infinite sequence
of integers (d0, d1, d2, . . .), with d0 ≥ 0, di > 0 for all i > 0, called a directive
sequence, x0 = b, x1 = a, xi+1 = x

di−1
i xi−1, for i ≥ 1. A characteristic Stur-

mian word is the limit of a infinite sequence of standard Sturmian words, i.e.
x = limi�→∞ xi. Standard Sturmian words are finite words with many interesting
combinatorial properties and appear as extremal case for several algorithms and
data structures [5–7,15,20,27].

The following theorem shows that each prefix of a characteristic Sturmian
word has a smallest string attractor of span 1, i.e. consisting of two consecutive
positions.

Theorem 7. Let x be a characteristic Sturmian word and let x0, x1, . . . , xk, . . .
be the sequence of standard Sturmian words such that x = limk→∞ xk. Let n be
the smallest positive integer such that alph(x[1..n]) = 2. Then, sx(n) = 2 and
spanx(n) = 1 for n ≥ n. In particular, a string attractor for x[1, n] is given by

Γn =

⎧
⎪⎨

⎪⎩

{1}, if n < n;
{|xk′−1| − 1, |xk′−1|}, if |xk′ | ≤ n ≤ |xk′ | + |xk′−1| − 2;
{|xk′ | − 1, |xk′ |}, if |xk′ | + |xk′−1| − 1 ≤ n < |xk′+1|

where k′ is the greatest integer k ≥ 2 such that xk (with |xk| ≥ n) is prefix of
x[1, n]. Moreover, Γn is the leftmost string attractor of x[1, n].

Example 8. Consider the infinite Fibonacci word x = abaababaabaababaababa . . .
that is a characteristic Sturmian word with directive sequence 1, 1, . . . , 1, . . ..

In Fig. 2 are shown the first prefixes of x of length n and their respective
leftmost string attractor Γn, with n ≥ 2.

The following proposition shows that there is a one-to-one correspondence
between each characteristic Sturmian word and the sequence of the leftmost
string attractors of its prefixes.

Proposition 8. Let x be a characteristic Sturmian word and, for each n ≥ 1,
let Γn be the string attractor of the prefix x[1, n] defined in Theorem 7. Let y be
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Fig. 2. Prefixes of the Fibonacci word x of length up to 8 and their leftmost string
attractor Γn. For Fibonacci words we have n = 2. The underlined positions in x[1, n]
correspond to those in Γn, while the prefixes in bold are standard Sturmian words.

a characteristic Sturmian word such that Γn is the leftmost string attractor for
y[1, n] for any n ≥ 1. Then, x = y (up to exchanging a and b).

Remark 2. There are non-characteristic Sturmian words such that some of
their prefixes do not admit any string attractor of span 1. For instance, let
x = aaaaaabaaaaaabaaaaaaab . . . be the characteristic Sturmian word obtained
by the directive sequence (6, 2, . . .). Consider the non-characteristic Sturmian
word x′ such that x = aaaa ·x′, hence x′ = aabaaaaaabaaaaaaab . . .. Let us con-
sider the prefix x′[0, 13] = aabaaaaaabaaaa. Since the b’s occur only at positions
2 and 9 and the factor aaaaaa only in x′[3, 8], the candidates as string attractor
with two consecutive positions are Δ1 = {2, 3} and Δ2 = {8, 9}. However, one
can check that the factors aaab and baaaaa do not cross any position in Δ1 and
Δ2 respectively. Nonetheless, there exists a string attractor of size 2 that does
not contain two consecutive positions, that is Γ = {3, 9}.

The following theorem shows that a new characterization of Sturmian words
can be obtained in terms of span of the prefixes.

Theorem 8. Let x be an infinite aperiodic word. Then, x is Sturmian if and
only if spanx(n) = 1 for infinitely many n > 0.

Proof. Observe that every Sturmian word x has an infinite number of right spe-
cial factors as prefixes, as for every aperiodic and uniformly recurrent word.
Moreover, for every right special factor v of a Sturmian word, there is a char-
acteristic Sturmian word s with vR as prefix [19, Proposition 2.1.23]. Since for
every string v ∈ Σ∗ and every string attractor Γ (v) of v it holds that the set
Γ (vR) = {n − i − 1 | i ∈ Γ (v)} is a suitable string attractor of vR [21], and
from Theorem 7 we know that spans(n) = 1 for every prefix of every charac-
teristic Sturmian word s, it follows that exist infinite prefixes v of x such that
spanx(|v|) = 1, that is our thesis.

For the other direction of the implication, recall that an infinite word x is
aperiodic if and only if px(k) ≥ k + 1 for all k > 0. Moreover, by hypothesis for
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every n > 0 exists n′ > n such that spanx(n′) = 1. It follows that |F (x[1, n]) ∩
Σk| ≤ |F (x[1, n′]) ∩ Σk| ≤ n + spanx(n′) = n + 1 for every n > 0, and therefore
x is Sturmian. ��

Quasi-Sturmian Words. Let us consider now the quasi-Sturmian words, defined
in [3] as follows: a word x is quasi-Sturmian if there exist integers d and n0 such
that px(n) = n+d, for each n ≥ n0. The infinite words having factor complexity
n + d have been also studied in [13] where they are called “words with minimal
block growth”. Quasi-Sturmian words can be considered the simplest general-
izations of Sturmian words in terms of factor complexity. In [3] the following
characterization of quasi-Sturmian words has been given.

Theorem 9 ([3]). An infinite word x over the alphabet Σ is quasi-Sturmian if
and only if it can be written as x = wϕ(y), where w is a finite word and y is a
Sturmian word on the alphabet {a, b}, and ϕ is a morphism from {a, b}∗ to Σ∗

such that ϕ(ab) �= ϕ(ba).

The following proposition shows that constant values for the span complexity
at infinitely many points imply quasi-Sturmian words, i.e., the most repetitive
infinite aperiodic words after the Sturmian words.

Proposition 9. Let x be an aperiodic infinite word. If there exists k > 0 such
that spanx(n) ≤ k for infinitely many n > 0, then x is quasi-Sturmian.

Proof. By hypothesis, for all n > 0 exists n′ ≥ n such that spanx(n′) ≤ k, for
some k > 0. Then, for every finite n-length prefix of x and every m > 0, by
using Lemma 1 it holds that |F (x[1, n]) ∩ Σm| ≤ |F (x[1, n′]) ∩ Σm| ≤ m +
spx(n′) ≤ m + k. Moreover, it is known that for every aperiodic word it holds
that px(n) ≥ n + 1 and px(n + 1) > px(n), for every n ≥ 0. Hence, there exist
k′ ≤ k and n0 ≥ 0 such that px(n) = n + k′, for every n ≥ n0 and the thesis
follows. ��
Remark 3. Note that, in general, the converse of Proposition 9 is not true. In
fact, let w be a finite word, y a Sturmian word and ϕ a non-periodic morphism.
Then, x = wϕ(y) is quasi-Sturmian. We can choose as finite prefix w a symbol
c /∈ alph(ϕ(y)). One can notice that in this case x is not recurrent, and by
Proposition 7 the function spanx is not bounded by constant. Instead, if w = ε,
then the converse of Proposition 9 is true. It can be derived from Proposition 4
and Theorem 8.

7 Conclusions

In this paper, we have shown that the notion of string attractor introduced
in the context of Data Compression can be useful in the study of combinatorial
properties of infinite words. The string attractor- based span complexity measure
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has indeed been used to characterize some infinite word families. The problem
of characterizing words with bounded string attractor profile function remains
open. On the other hand, the two new complexity measures here introduced
could be useful to represent, in a more succinct way, information on infinite
sequences of words. Finally, it might be interesting to explore how the span and
lm measures are related to the compressor-based measures.
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Abstract. Let Γ be a finite abelian group and let G be a graph. The
zero-sum Ramsey number R(G, Γ ) is the least integer N (if it exists)
such that, for every edge-colouring E(KN ) �→ Γ , one can find a copy
G ⊆ KN where the sum of the colours of the edges of G is zero.

A large body of research on this problem has emerged in the past
few decades, paying special attention to the case where Γ is cyclic. In
this work, we start a systematic study of R(G, Γ ) for groups Γ of small
exponent, in particular, Γ = Zd

2. For the Klein group Z2
2, the smallest

non-cyclic abelian group, we compute R(G, Z2
2) for all odd forests G and

show that R(G, Z2
2) ≤ n + 2 for all forests G on at least 6 vertices. We

also show that R(C4, Z
d
2) = 2d+1 for any d ≥ 2, and determine the order

of magnitude of R(Kt,r, Z
d
2) as d → ∞ for all t, r.

We also consider the related setting where the ambient graph KN

is substituted by the complete bipartite graph KN,N . Denote the ana-
logue bipartite zero-sum Ramsey number by B(G, Γ ). We show that
B(C4, Z

d
2) = 2d + 1 for all d ≥ 1 and B({C4, C6}, Zd

2) = 2d/2 + 1 for all
even d ≥ 2. Additionally, we show that B(Kt,r, Z

d
2) and R(Kt,r, Z

d
2) have

the same asymptotic behaviour as d → ∞, for all t, r. Finally, we con-
jecture the value of B({C4, . . . , C2m}, Zd

2) and provide the corresponding
lower bound.

Keywords: Zero-sum Ramsey theory · Finite abelian groups · Klein
group · Forests · Bicliques · Cycle graphs

1 Introduction

The celebrated theorem of Erdős-Ginzburg-Ziv [8] asserts that if a1, . . . , a2m−1

is a sequence of 2m − 1 elements from Zm, then there is S ⊆ {1, . . . , 2m − 1}
with |S| = m such that

∑
i∈S ai = 0 (mod m). This result can be viewed as

a generalisation of the pigeonhole principle, obtained when m = 2. Motivated
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by this observation, Bialostocki and Dierker [2–4] connected this result with
Ramsey theory. Indeed, we consider the colours as elements in an abelian group
and instead of monochromatic substructures, we find zero-sum substructures.

Let Γ be a finite abelian group and G be a graph. The zero-sum Ram-
sey number R(H,G) is the least integer N such that for every edge-colouring
c : E(KN ) → G, one can find a copy of G ⊆ KN such that

∑
e∈E(G) c(e) = 0

in Γ . We say that such copy of G has zero sum. Recall that the order ord(x) of
x ∈ Γ is the minimum integer m > 0 such that mx = 0. The exponent exp(Γ ) of
a finite abelian group is the maximum order of its elements. If exp(Γ ) does not
divide the number of edges e(G) of G, then R(G,Γ ) = ∞. Indeed, the constant
colouring c(e) = a, where ord(a) = exp(Γ ), has no zero-sum copy of G. If exp(Γ )
divides e(G), then R(G,Γ ) is indeed finite. Recall that the r-coloured Ramsey
number Rr(G) is minimum N such that every r-colouring of the edges of KN

has a monochromatic copy of G. So in that case, R(G,Γ ) ≤ R|Γ |(G) < ∞, as a
copy of G for which all edges are assigned the same group element has zero sum.

Like in the classical Ramsey theory, we can define zero-sum bipartite Ram-
sey number B(G,Γ ) as the least integer N such that for every edge-colouring
c : E(KN,N ) → Γ one can find a copy of G ⊆ KN,N with zero sum. As before, if
exp(Γ ) � e(G), B(G,Γ ) = ∞, and if exp(Γ ) | e(G), we have B(G,Γ ) ≤ B|Γ |(G),
the |Γ |-coloured bipartite Ramsey number. Additionally, for a collection of
graphs G1, . . . , Gm, we define R

({G1, . . . , Gm}, Γ
)

to be the least integer N
such that every colouring c : E(KN ) → Γ has a zero-sum copy of Gi, for some
1 ≤ i ≤ m. B

({G1, . . . , Gm}, Γ
)

is defined analogously.
For a comprehensive review of zero-sum Ramsey problems going back to the

early 90’s, we recommend the survey of Caro [6]. The case Γ = Z2 is now very
well understood. Indeed, due to the work of Caro [5], extending on earlier work of
Alon and Caro [1], R(G, Z2) was determined completely. We say that a graph is
odd if all its vertices have odd degree. The result of Caro [5] is then the following.

Theorem 1. For any graph G with n vertices and an even number of edges,

R(G, Z2) =

⎧
⎪⎨

⎪⎩

n + 2 if G = Kn and n = 0, 1 (mod 4),
n + 1 if G = Kp ∪ Kq and

(
p
2

)
+

(
q
2

)
= 0 (mod 4), or G is odd,

n otherwise,

where Kp ∪ Kq is the disjoint union of a copy of Kp and a copy of Kq, with
p + q = n.

In the bipartite setting, Caro and Yuster [7] determined B(G, Z2) for all
bipartite graphs G with an even number of edges.

In this work, we consider Γ = Zd
2 with d ≥ 2. Naturally, we are restricted

to graphs with an even number of edges. Taking d = 2, we obtain the Klein
group Z2

2, the smallest non-cyclic abelian group. In our first result, we determine
precisely the value of R(F, Z2

2) for odd forests F and give some general bounds
for a general one.
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Theorem 2. If F is a forest on n ≥ 6 vertices and an even number of edges,
then R(F, Z2

2) ≤ n + 2, with equality if F is an odd forest. Moreover, if F has
only one vertex of even degree, then R(F, Z2

2) ≥ n + 1.

We remark that the equality R(F, Z2
2) = n+2 cannot hold for all odd forests.

Indeed, we show in Sect. 5 that R(K2 ∪ K2, Z
2
2) = 7.

We turn now to graphs that contain a cycle and any d ≥ 2. Indeed, we start
with cycles themselves, the smallest with an even number of edges being C4. In
this case, we obtain a precise result.

Theorem 3. For d ≥ 2, we have R(C4, Z
d
2) = B(C4, Z

d
2) = 2d + 1.

We note here that the equality between R(C4, Z
d
2) and B(C4, Z

d
2) seems to be

coincidental. The lower bound in each case follows from a similar construction.
However, determining B(C4, Z

d
2) is considerably easier, and employing the same

strategy to the complete graph gives R(C4, Z
d
2) ≤ 2d +3. Reducing this bound to

2d + 1 is the main difficulty in Theorem 3. Moreover, with the characterisations
for Γ = Z2 discussed above, we have R(C4, Z2) = 4 and B(C4, Z2) = 3.

Generalising the construction for the lower bound in Theorem3, we also
provide a family of constructions that are suitable to avoid longer cycles.

Theorem 4. For any m ≥ 2 and d ≥ m − 1, we have

B
({C2k : 2 ≤ k ≤ m}, Zd

2

) ≥ 2�d/(m−1)� + 1. (1)

Furthermore, equality holds if m = 2 or if m = 3 and d is even.

Even though we only showed that this bound is tight when m = 3 and d is
even, we can determine B

({C4, C6}, Zd
2

)
asymptotically for d → ∞. However,

this construction does not adapt well to the complete graph case, and we provide
no analogous result to R

({C2k : 2 ≤ k ≤ m}, Zd
2

)
. We conjecture in Sect. 5 that

Theorem 4 is asymptotically tight for m ≥ 4.
Another class of graphs we consider are the bicliques Kt,r where 1 ≤ t ≤ r

are not both odd. We completely solve this case asymptotically.

Theorem 5. Fix 1 ≤ t ≤ r, not both odd. As d → ∞, we have

R(Kt,r, Z
d
2) =

{
Θ

(
4d/r

)
if r is even,

Θ
(
4d/t

)
if r is odd and t is even,

where the implicit constants depend on r and t. The same holds for B(Kt,r, Z
d
2).

We provide a connection between the zero-sum Ramsey numbers of Kt,r and
the size of the longest sequences in a group Γ without any zero-sum subsequence
of a prescribed length. We rely on a result of Sidorenko [11] for the upper bound
in Theorem 5, and we modify his construction to obtain the lower bound.

A small interesting graph that does not fit any of the above categories is K4.
We only provide the weak bounds that 10 ≤ R(K4, Z

2
2) ≤ 91, and leave the exact

value as a challenge to the reader.
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2 Forests

In this section, we write Z2
2 = {0, α, β, γ}, where x + x = 0 for every x ∈ Z2

2,
and α + β + γ = 0. The following easy lemma gives a useful condition to check
whether a given graph edge-coloured with Z2

2 has zero-sum.

Lemma 6. Let G be a graph with an even number of edges. Then, an edge-
colouring c : E(G) → Z2

2 is such that G is zero-sum if, and only if, |c−1(0)| =
|c−1(α)| = |c−1(β)| = |c−1(γ)| (mod 2).

The goal of this section is to prove Theorem 2. The upper and lower bounds
will be treated separately in the subsections below.

2.1 Lower Bounds

Clearly, R(F, Γ ) ≥ n for every graph F on n vertices and any group Γ . We
will provide some general results that improve on this lower bound for Γ = Z2

2,
depending on the parity of the degrees of the vertices of F .

Proposition 7. Let F be an odd graph on n vertices. Then, R(F, Z2
2) ≥ n + 2.

Proof. Let V (Kn+1) = {v1, . . . , vn+1} and consider an edge-colouring c of Kn+1

as defined below. Let c(v1 vi) = α for every 2 ≤ i ≤ n + 1, c(v2 vj) = β for
every 3 ≤ j ≤ n + 1, c(e) = γ for all other edges e in Kn+1. We claim that this
colouring has no zero-sum copy of F . Indeed, by Lemma 6, a copy of F in Kn+1

is zero-sum if and only if every colour appears in an even number of edges of F ,
as the colour 0 does not appear in c.

But no vertex of F can be mapped to v1, otherwise the colour α is used
an odd number of times. Similarly, the vertex v2 cannot be used, otherwise the
colour β is used an odd number of times. But F has n vertices, so it cannot
avoid both v1 and v2 simultaneously. Thus, no copy of F has zero sum. 	

Proposition 8. Let F be a graph on n vertices wherein the degrees of all but
one vertex are odd. Then, R(F, Z2

2) ≥ n + 1.

Proof. Let V (Kn) = {v1, . . . , vn} and consider an edge-colouring c if Kn as
defined below. Let c(v1 v2) = α, c(v1 vi) = β for every 3 ≤ i ≤ n, c(v2 vj) = γ for
3 ≤ j ≤ n and c(e) = 0 for all other edges e in Kn. We claim that this colouring
has no zero-sum copy of F . By Lemma 6, a copy of F in Kn with zero sum if
and only if every colour appears with the same parity in the edges of F .

As F has n vertices, every vertex in Kn is the image of a vertex of F . If the
edge v1v2 is used in F , every colour must be used an odd number of times. As
F has only one vertex with even degree, v1 or v2 must be the image of an odd
vertex of F . Thus, either β or γ is used an even number of times in F . Now
assume that v1v2 is not used in F , so every colour must be used an even number
of times. But that is again not possible, either v1 or v2 must be the image of an
odd vertex of F . In any case, c has no zero-sum copy of F . 	


Propositions 7 and 8 clearly imply the lower bound of Theorem 2.
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2.2 Upper Bound

To finish the proof of Theorem 2, we deal with the upper bound in the result
below. The case of stars will be missing, but that is covered in Sect. 2.3.

Theorem 9. If F is a forest on n ≥ 6 vertices and even number of edges which
is not a star, then R(F, Z2

2) ≤ n + 2.

Proof. The idea of the proof of the upper bound is the following: suppose that
a given colouring c of the Kn+2 has two vertex disjoint paths on three vertices
(we will call such graphs cherries) x1ux2 and y1vy2 such that c(u x1)+c(u x2) �=
c(v y1) + c(v y2), and these two sums are not zero. If F is not a star (since the
case of stars will be treated separately in Theorem 10), and if we let �1 and �2
be leaves of F such that their neighbours p1 and p2 are distinct, we can map
F \{�1, �2} into Kn+2 \{x1, x2, y1, y2} in a way that p1 is mapped to u and p2 is
mapped to v. In this case, we have four choices to complete the embedding of F
in Kn+2, and it is immediate to check that this four sums are distinct elements
of Z2

2. In particular, one of those four copies of F is zero-sum.
Let F be a forest on n ≥ 6 vertices and an even number of edges, and

suppose first that F has a vertex p with two leaves �1 and �2 as neighbours.
Then, if Kn+2 is coloured so that a vertex u have three neighbours v1, v2, v3
such that the colours of the edges uv1, uv2 and uv3 are distinct, say, x, y and z,
we can take a vertex v4 and mapping F \{�1, �2} to Kn+2\{v1, v2, v3, v4} in a way
that p is mapped to u, we have six choices (all the 2-subsets of {v1, v2, v3, v4})
for embedding {�1, �2} in Kn+2. One can check that, regardless of the colour of
uv4, these six choices cover Z2

2, and hence one of these choices yields a zero-sum
copy of F .

Otherwise, for every vertex u ∈ V (Kn+2), at most two colours appear in the
edges incident to u. For x �= y ∈ Z2

2, let Vxy be the set of vertices u for which the
colours x and y appear in the edges incident to u. Note that if {x, y}∩{z, w} = ∅,
then either Vxy or Vzw is empty. Hence, we have that the set of nonempty Vxy are
contained in either {ab, ac, ad} or in {ab, bc, ac} (where a, b, c and d are distinct
colours).

In the first case, assume without loss of generality that the possibly nonempty
Vxy are V0α, V0β and V0γ . In this case, if at least two of these sets contain edges
of colour distinct from zero, then it is simple to see that they have two vertex-
disjoint cherries that have distinct nonzero sum. By the argument above, we can
find a zero-sum copy of F . Otherwise, the colouring uses at most two colours,
and the result follows from Theorem 1 (by identifying the colours with 0 and 1).

In the second case, without loss of generality let us suppose that the possibly
nonempty Vxy are Vαβ , Vβγ , Vγα. In this case, it is also possible to find two vertex-
disjoint cherries that have distinct nonzero sum, unless at most two colours are
used in the colouring. By the same argument as above, we can find a zero-sum
copy of F .

Finally, we have to deal with the case where F does not have a vertex p
with two leaves �1 and �2 as neighbours. In this case, it is possible to prove
(considering a longest path in F ) that F is not odd or a matching.
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First, note that the result is trivial if every cherry in Kn+2 has sum zero, as
it implies that the whole graph is monochromatic. Otherwise, there is a cherry
uxv with nonzero sum, say, α. Consider the graph Kn+2 \ {u, x, v}. If it has any
cherries of sum β or γ, we can find a zero-sum copy of F as before. Otherwise,
this subgraph contains only cherries of sum 0 and α.

Then, it is clear that, on the edges incident to any given vertex, either only
the colours 0 and α, or β and γ may appear. It follows that this whole subgraph
is coloured with only either colours 0 and α or β and γ. Assume the former
without loss of generality.

First, suppose that all cherries inside Kn+2 \ {u, x, v} have sum zero, i.e.,
Kn+2 \ {u, x, v} is monochromatic with colour c. In this case, note that if any
edge joining the vertices {u, x, v} to Kn+2 \ {u, x, v} has colour c, say, xy, we
may embed F in Kn+2 without using vertices u and v, and in a way that a leaf
of F is mapped into x. In this way, all edges of F get colour c, so F is zero-sum.
Otherwise, suppose every edge joining the vertices {u, x, v} to Kn+2 \ {u, x, v}
has a colour distinct from c. We claim that all these edges have the same colour.
Indeed, if two independent edges joining the vertices {u, x, v} to Kn+2 \{u, x, v}
have distinct colour, together with edges in Kn+2 \ {u, x, v}, they form two
vertex-disjoint cherries of nonzero distinct sums. From this, we can conclude
that every edge joining these two sets have the same colour, say, d. Now, we
embed F in Kn+2 \ {v} in a way that two leaves of F are mapped into x and u.
It follows that this copy of F is zero-sum.

Finally, suppose that there is a cherry in Kn+2 \ {u, x, v} with sum α. If
any edge joining the vertices {u, x, v} to Kn+2 \ {u, x, v} has colour β or γ,
it is immediate that we can find two vertex-disjoint cherries that have distinct
nonzero sum (one using the edge coloured with β or γ with an edge from Kn+2 \
{u, x, v} and the other with sum α inside Kn+2 \ {u, x, v}). Hence, all the edges
joining {u, x, v} to Kn+2 \ {u, x, v} have colour 0 or α. In particular, Kn+2 \ {x}
is a graph on n+1 vertices wherein all edges are coloured with 0 or α. The result
then follows once more from Theorem 1. 	


2.3 Stars

To finish the proof of Theorem2, we need to determine R(F, Z2
2) for stars.

Theorem 10. Let Sn = K1,n−1 be the star on n vertices, where n ≥ 3 is odd.
Then, R(Sn, Z2

2) = n + 2 for all n ≥ 3.

Proof. For the lower bound, let V (Kn+1) = {v1, . . . , vn+1} and consider the
colouring c : E(Kn+1) → Z2

2 = {0, α, β, γ} defined as follows. Fix a cycle
C = v1v2 · · · vn+1, set c(vi vi+1) := α for each i odd, c(vi vi+1) := β for
each i even (where vn+2 = v1), and finally, set c(u w) := γ for every edge
uw ∈ E(Kn+1) \ E(C). We claim that this colouring has no zero-sum copy of
Sn. By contradiction, suppose that one can find a copy S of Sn with zero-sum.
Without loss of generality, we can assume that the star is centred at v1. Since
our colouring does not use colour 0, by Lemma6, we deduce that a, b, c are even,
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where a, b, c is the number of edges of S using colour α, β and γ, respectively. This
means that vertices vn+1 and v2 are not neighbourhoods to v1 in S. Therefore,
the degree of v1 in S has cardinality at most n + 1 − 3 = n − 2, a contradiction.

Now, we show the upper bound. We leave the special case n = 3 to the end
of the proof. Thus, assume that n ≥ 5 is odd and let c : E(Kn+2) → Z2

2 be a
colouring. Our goal is to show that we can find a copy of Sn with zero-sum. We
divide the proof into two cases.

First, suppose that some vertex v has the property that at most two colours
appear in the incident edges of the vertex. If just one colour is used, we have a
monochromatic star Sn centred in v, and we are happy. If we use exactly two
colours, say a and b, then V (Kn+2) \ {v} = A 
 B where A (resp. B) is the set
of vertices u in V (Kn+2) \ {v} such that uv has colour a (resp. b). Since n is
odd, we deduce that either |A| and |B| are even or |A| and |B| are odd. In the
even case, we remove exactly two vertices of either A or B (whichever contains
at least two vertices). In the odd case, we remove exactly one vertex of each set
A and B. In both cases, the remaining graph between v and A
B is a star with
n vertices and zero-sum.

Secondly, suppose that any vertex has the property that at least three colours
appear in its incident edges. Fix any vertex v. Since (n + 1)/4 ≥ 6/4 > 1, by
the pigeonhole principle, some colour x appears in two edges incident with v.
Let y and z be another two colours which appear in the incident edges of x. Let
u1, u2, u3 and u4 be neighbourhoods of x such that c(v u1) = x, c(v u2) = x,
c(v u3) = y and c(v u4) = z. Note that {x + x, x + y, x + z, y + z} = Z2

2. Hence,
if we consider the spanning star in Kn+2 centred in v, say Sv, with colour sum
α, say, we can write α of the form x + x, x + y, x + z or y + z. In any case, we
can remove the two vertices of the set {u1, u2, u3, u4} which corresponds to the
summands of α expressed as in the previous form, i.e., u1 and u2 if α = x + x,
etc. Of course, the star S that arises from removing such two vertices from Sv

has n vertices and colour sum equal to c(S) = c(Sv) − α = 0.
To finish, we consider the special case n = 3. Note that if incident edges

have the same colour, then we are happy (since we are finding a monochromatic
S3). Thus, assume that our colouring c is proper (i.e. two incident edges have
different colours). Since the degree of any vertex is exactly four, the set of colours
of the incident edges of each vertex is precisely Z2

2. Hence, we are shown that
each fixed colour induces a perfect matching, which is a contradiction in K5. 	


3 Cycles

In this section, we aim to find some exact zero-sum Ramsey numbers involving
short cycles, culminating in the proofs of Theorem3 and Theorem 4. We start by
describing a construction that will be useful not only for cycles, but for bicliques
later in Sect. 4.

Proposition 11 (Product colouring). Let F be a finite field with additive
group Γ . If there is a length N sequence A of elements of Γ such that there are
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no zero-sum subsequence of lengths r or t, then

B(Kt,r, Γ ) ≥ N + 1,

R(Kt,r, Γ ) ≥ N + 1.

Proof. We consider the bipartite graph KN,N with vertex set A 
 A. Consider
the colouring c : E(KN,N ) → Γ defined as c(x y) = xy, where the product is
taken on F. Suppose that there is a Kt,r ⊆ KN,N with zero sum. Then there are
subsequences a1, . . . , at and a′

1, . . . , a
′
r in A such that

∑

i∈[t]

∑

j∈[r]

aia
′
j =

(∑

i∈[t]

ai

)(∑

j∈[r]

a′
j

)
= 0.

As this holds in F, one of the sums has to be equal to zero, a contradiction.
For the clique, consider KN with vertex set A and define, as before, the

colouring c : E(KN ) → Γ as c(x y) = xy. The same argument applies, and this
colouring has no Kt,r with zero sum. 	


We now proceed to exact results about C4. We split Theorem 3 into two
results: Theorem 12 and Theorem 13. We start with the easier one.

Theorem 12. For any d ≥ 1, we have B(C4, Z
d
2) = 2d + 1.

Proof. Let N = 2d + 1 and c : E(KN,N ) → Zd
2 be an arbitrary colouring. Let

A 
 B = V (KN,N ) be a bipartition and pick two distinct vertices a1, a2 ∈ A.
Define the sequence {xb}b∈B as

xb := c(a1 b) + c(a2 b) ∈ Zd
2.

Since the length of B is N > |Zd
2|, by pigeonhole principle, one can find two

distinct elements of B, say b1 and b2, such that xb1 = xb2 . We conclude that the
4-cycle induced by a1, a2, b1, b2 has zero-sum. Indeed, we have

c(a1 b1) + c(b1 a2) + c(a2 b2) + c(b2 a1) = xb1 + xb2 = 0.

Hence, B(C4, Z
d
2) ≤ 2d +1. For the lower bound, we use the product colouring of

Proposition 11 with A = Zd
2, N = 2d. It is easy to check that A has no zero-sum

subsequence of length 2, thus

B(C4, Z
d
2) = B(K2,2, Z

d
2) ≥ N + 1 = 2d + 1,

as we wanted. 	

We now turn to the problem of determining R(C4, Z

d
2). As KN,N ⊆ K2N ,

Theorem 12 implies that R(C4, Z
d
2) ≤ 2(2d + 1) = 2d+1 + 2. However, in the

proof of Theorem12, we have never used more than two vertices in one of the
parts. With this observation, we improve the upper bound to 2d+3. Surprisingly,
we are able to show that R(C4, Z

d
2) = 2d + 1, the same value as B(C4, Z

d
2).
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Theorem 13. For any d ≥ 2, we have R(C4, Z
d
2) = 2d + 1.

Proof. For the lower bound, we apply Proposition 11 with A = Zd
2, which as

argued before, has no zero-sum subsequence of length 2. This gives

R(C4, Z
d
2) = R(K2,2, Z

d
2) ≥ |A| + 1 = 2d + 1.

For the upper bound, we divide the proof into two steps. First, we claim that
R(C4, Z

d
2) ∈ {2d + 1, 2d + 2}. We then proceed by contradiction and show that

if there was a colouring of K2d+1 without zero-sum C4, such colouring could
be extended to a colouring of K2d+2 with the same property. This is enough to
conclude that R(C4, Z

d
2) = 2d + 1.

Claim. R(C4, Z
d
2) ∈ {2d + 1, 2d + 2}.

Proof of Claim. We already have the lower bound, so we just need to show that
R(C4, Z

d
2) ≤ 2d + 2. Observe that a zero-sum C4 in KN is equivalent, in a group

of exponent 2, to a pair of triangles sharing a single edge with the same colour
sum. Fortunately, if N = 2d+2, we can find this pair of triangles in the collection
of triangles with the ‘most popular colour’, as we show below.

Indeed, consider any colouring c : E(KN ) → Zd
2. There are at least

(
N
3

)

|Zd
2|

=
N(N − 1)(N − 2)

6(N − 2)
=

N(N − 1)
6

triangles sharing the same colour sum α ∈ Zd
2.

We claim that two of such triangles have a common edge. Let Gα be the graph
which is the union of such triangles (i.e., with colour sum equal to α). Indeed,
if none of these triangles share an edge, then e(Gα) ≥ 3N(N − 1)/6 = e(KN ).
In particular, Gα = KN . However, each triangle contributes with 0 or 2 to the
degree of a vertex. This is a contradiction, as N − 1 is odd. 	


With this claim in hand, we proceed by contradiction. Let N = 2d + 1 and
suppose that there exists a zero-sum-C4-free colouring c : E(KN ) → Zd

2, that is,
a colouring for which each copy of C4 ⊆ KN has a nonzero sum. Our goal is to
extend c to a colouring ĉ : E(KN+1) → Zd

2 that is also zero-sum-C4-free. This
contradicts our claim and finishes the proof.

Our construction is based on the following observation: a 4-cycle has zero-
sum if and only if the pairs of triangles created by adding any of the two non-edge
diagonals have the same colour-sum.

For convenience, assume that V (KN ) = V and V (KN+1) = V 
 {w}. Since
we construct ĉ as an extension of c, it is enough to show that the new copies of
C4, namely those containing w, have non-zero sum.

Given three distinct vertices x, y, z, we denote by ĉ(x y z) := ĉ(x y)+ ĉ(y z)+
ĉ(z x), the colour-sum of the triangle spanned by x, y and z. By the previous
observation, the condition ĉ needs to satisfy is that

ĉ(u v w) /∈
{

ĉ(u v x) : x ∈ V \ {u, v}
}

,
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for every u, v ∈ V . The observation also implies that ĉ(u v x) have to be all
distinct, as x ∈ V \ {u, v}. This gives N − 2 = 2d − 1 obstructions to ĉ(u v w).
Therefore, there is a unique candidate for the value of ĉ(u v w), which we denote
by c∗(u v). Recall that the total sum of all elements of Zd

2 is equal to zero for
d ≥ 2, so we have

c∗(u v) =
∑

z∈V \{u,v}
c(u v z).

Now, note that the condition that ĉ(u v w) = c∗(u v) is equivalent to

ĉ(u w) + ĉ(v w) = c(u v) + c∗(u v). (2)

This can be seen as an over-determined linear system of
(
N
2

)
equations on N

variables, namely ĉ(u w) for u ∈ V . Nonetheless, this system has a solution.
We exhibit a solution by fixing an element x ∈ V and setting ĉ(x w) = 0. This
immediately forces all other values of ĉ(y w) as (2) implies that

ĉ(y w) = c(x y) + c∗(x y) + ĉ(x w) = c(x y) + c∗(x y),

which we take as a definition for ĉ(y w), for all y ∈ V \ {x}.
We check that this is indeed a solution to the system of equations, namely,

that (2) holds for all u, v ∈ V . If u = x or v = x, then this follows directly by
the way we defined ĉ. For distinct u, v ∈ V \ {x}, we have,

ĉ(u w) + ĉ(v w) = c(x u) + c∗(x u) + c(x v) + c∗(x v)

= c(x u) + c(x v) +
∑

z∈V \{x,u}
c(x u z) +

∑

z′∈V \{x,v}
c(x v z′)

= c(x u) + c(x v) +
∑

z∈V \{x,u,v}

(
c(x u z) + c(x v z)

)

= c(x u) + c(x v) +
∑

z∈V \{x,u,v}

(
c(x u) + c(u z) + c(x v) + c(v z)

)

= c(x u) + c(x v) +
∑

z∈V \{x,u,v}

(
c(u z) + c(v z)

)

=
∑

z∈V \{u,v}

(
c(u z) + c(v z)

)
= c(u v) + c∗(u v),

as we wanted. Therefore, c can indeed be extended to a zero-sum-C4-free colour-
ing ĉ on KN+1, a contradiction. 	


Finally, we note that the product colouring of Proposition 11 can be modified
to yield a lower bound for a family of short cycles, leading to Theorem4.
Proof of Theorem 4. Let d = (m − 1)k + h, where 0 ≤ h < m − 1. Since d ≥ m,
we have k ≥ 1. As Zk

2 is the additive group of F2k , we can represent any element
of Zd

2 = Z
(m−1)k+h
2 as a vector (x1, . . . , xm−1, y), where xi ∈ F2k and y ∈ Zh

2 .
Let A and B be two disjoint copies of F2k and consider the complete bipartite
graph KN,N with bipartition A 
 B. Define the colouring c : E(KN,N ) → Zd

2 as

c(a b) := (ab, a2b, . . . , am−1b, 0).
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We claim that this colouring has no zero-sum cycle of length 2k, for 2 ≤ k ≤ m.
Indeed, suppose it has a zero-sum cycle of length 2�, 1 ≤ � ≤ m. Then there are
distinct a1, . . . , a� ∈ A and b1, . . . , b� ∈ B such that

∑�
i=1 c(ai bi)+c(ai bi+1) = 0,

where we index ai and bi with i (mod �). Therefore, we have

�∑

i=1

ak
i (bi + bi+1) = 0, (3)

for every 1 ≤ k ≤ m − 1. We also have (3) with k = 0 as Zd
2 has exponent two.

Therefore, if M = (Mij) is the matrix with Mij = ai−1
j , then Mu = 0, where

u is the vector with uj = bj + bj+1. As u �= 0, M is singular and detM = 0.
However, M is a Vandermonde matrix, so detM =

∏
1≤i<j≤�(ai − aj) = 0, so

ai = aj for some i < j, which is a contradiction. Therefore, (1) holds.
Now, note that Theorem 12 gives the equality for m = 2. We show here

equality for m = 3. Consider a colouring c : E(KN,N ) → Zd
2 with N = 2�d/2� +1.

We prove that if there is no zero-sum C4 in c, then there must be a zero-sum C6

in c. Indeed, consider a bipartition of V (KN,N ) = A 
 B and fix a ∈ A, b ∈ B.
Label A′ = A\{a} = {a1, . . . , aN−1} and B′ = B \{b} = {a1, . . . , bN−1}. Define
an auxiliary colouring of the bipartite graph induced by A′ and B′ as follows,

χ(ai bj) = c(a bj) + c(ai bj) + c(ai b).

Now, note that if χ(ai bj) = c(a b) for some i, j, then {a, b, ai, bj} form a zero-sum
C4. As we assumed there is no such C4, there are only 2d − 1 available colours
for each of χ(ai bj). Since d is even, (N − 1)2 > 2d − 1, so there are two edges
with the same value of χ, say χ(ai bj) = χ(au bv). If ai = au, then bj �= bv and
{a, bj , ai, bv} forms a zero-sum C4. Indeed, c(a bj)+ c(ai bj)+ c(ai bv)+ c(a bv) =
χ(ai bj) + χ(au bv) = 0. Analogously, if bj = bv, then ai �= au and {ai, b, av, bj}
is a zero-sum C4. Therefore, we may assume that ai �= au and bj �= bv. This
implies, that {a, bj , ai, b, au, bv} is a zero-sum C6. In fact, c(a bj) + c(ai bj) +
c(a1 b) + c(b au) + c(au bv) + c(a bv) = χ(ai bj) + χ(au bv) = 0, and we are done.
	

Remark 14. When m = 3, we have not shown equality when d is odd. However,
if we choose N to the smallest integer with (N − 1)2 > 2d − 1, then we would
have found a zero-sum C4 or C6 following the same proof. This translates to the
asymptotic bound B

({C4, C6}, Zd
2

)
= Θ(2d/2).

In Sect. 5, we conjecture that Theorem 4 is asymptotically sharp.

4 Bicliques

In this section, we prove Theorem 5. We do so by connecting the zero-sum Ram-
sey problems R(Kt,r, Γ ) and B(Kt,r, Γ ) into a problem about sequences in Γ
without zero-sum subsequences of prescribed length.
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If Γ is an abelian group and exp(Γ ) | r, then define sr(Γ ) to be the minimum
number k such that any sequence of k elements in Γ has a subsequence of length
r with zero sum. This parameter introduced by Gao [9] generalises the Erdős-
Ginzburg-Ziv constant of a group s(Γ ) := sexp(Γ )(Γ ). See the survey of Gao and
Geroldinger [10] for more on this and related constants.

Proposition 15. Let Γ be an abelian group and r be such that exp(Γ ) | r. Then
for any t ≥ 1, we have

B(Kt,r, Γ ) ≤ max{sr(Γ ), t}, (4)
R(Kt,r, Γ ) ≤ sr(Γ ) + t. (5)

Proof. Let N = max{sr(Γ ), t} and consider a colouring c : E(KN,N ) → Γ . Let
A 
 B = V (KN,N ) be a bipartition and fix distinct elements a1, . . . , at ∈ B. For
each a ∈ A, consider the element xb = c(a1 b) + · · · + c(at b) in Γ . The sequence
{xb}b∈B has length |B| ≥ sr(Γ ), therefore there are r of them with zero-sum,
let’s say xb1 + · · ·+xbr = 0. Expanding the definition of xa, we see that the Kt,r

spanned by {a1, . . . , at} and {b1, . . . , br} has zero-sum.
Finally, the proof of (5) is almost identical to (4). If N = sr(Γ ) + t, firstly

fix t elements a1, . . . , at ∈ V (KN ) and finish as before, taking the sequence xb

with b /∈ {a1, . . . , at}. 	

For the group Γ = Zd

2, Sidorenko [11] showed that, as d → ∞,

s2r(Zd
2) ≤ Θ

(
2d/r

)
. (6)

Together with Proposition 15, this provides an upper bound sufficient for The-
orem 5. In view of Proposition 11, (6) gives us R(K2r,2r, Z

d
2) = Θ(2d/r). As it

is, (6) does not imply a lower bound other blicliques. Nonetheless, Sidorenko’s
construction also avoids zero-sum subsequences of other lengths, as he already
noted. We reproduce his construction below to show that it indeed has this
stronger property, allowing us to deal with all blicliques in Theorem 5.

Proposition 16. For any m, d ≥ 1, there is a subset A ⊆ Zd
2 of size |A| =

2�d/m� with no zero-sum subset of size �, for all 2 ≤ � ≤ 2m.

Proof. Let d = mk +h, where 0 ≤ h < m. Since Zk
2 is the additive group of F2k ,

we can represent the elements in Zd
2 = Zmk+h

2 as vectors (x1, . . . , xm, y) with
xi ∈ F2k and y ∈ Zh

2 . Define the set A as

A :=
{

(x, x3, . . . , x2m−1, 0) ∈ Zd
2 : x ∈ F2k

}
.

Clearly |A| = 2k = 2�d/m�. Suppose that there are distinct a1, . . . , a� ∈ A with
2 ≤ � ≤ 2m and a1+ · · ·+a� = 0. Write ai = (xi, x

3
i , . . . , x

2m−1
i , 0), for 1 ≤ i ≤ �,

where the xi are all distinct. We can assume that xi �= 0, as if xj = 0, then � ≥ 3
and we can remove aj from the sum.
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The zero-sum condition translates to
∑�

i=1 x2j−1
i = 0 for 1 ≤ j ≤ m. For

even exponents, we have
(∑�

i=1 xj
i

)2 =
∑�

i=1 x2j
i = 0. Therefore,

∑�
i=1 xj

i = 0
for each 1 ≤ j ≤ 2�.

Consider the matrix M = (Mij), where Mij = xi
j . We have Mu = 0

where u is all 1’s vector, so M is singular and detM = 0. However det M =
x1 · · · x�

∏
1≤i<j≤�(xi − xj) via the Vandermonde determinant. Since xi �= 0 for

all i, we must have xi = xj for some i < j, a contradiction. 	

Remark 17. When exhibiting his lower bound for (6), Sidorenko [11] constructs
a sequence A′ from A by picking a single element a ∈ A and making it appear
exactly 2r−1 times in A′, other elements unchanged. As no subsequence of A′ of
length 2 ≤ � ≤ 2m has zero sum, he concludes that s2m(Zd

2) ≥ 2�d/m� + 2m − 1.

We are now ready for the main proof of this section.
Proof of Theorem 5. Let 1 ≤ t ≤ r be not both odd numbers. Assume initially
that r = 2m is even. From Proposition 16, we have a set A ⊆ Zd

2 with no zero-
sum subset of any size 2 ≤ � ≤ 2m = r. Hence it has no zero-sum subset of size
t, where we may have to remove 0 from A if t = 1. Using the product colouring,
Proposition 11, we have B(Kt,r, Z

d
2) ≥ 2�d/m� −1 = Ω

(
4d/r

)
. On the other hand,

Proposition 15 gives B(Kt,r, Z
d
2) ≤ max{s2m(Zd

2), t}. Together with Sidorenko’s
bound (6), this yields B(Kt,r, Z

d
2) = O(2d/m) = O(4d/r). Similarly, we obtain

2�d/m� − 1 ≤ R(Kt,r, Z
d
2) ≤ s2m(Zd

2) + t = O(2d/m).
Now suppose that r is odd and t = 2m is even. From Proposition 16, we have

a set A ⊆ Zd−1
2 with no zero-sum subset of any size 2 ≤ � ≤ 2m = t. Consider

now the set A′ =
{
(x, 1) ∈ Zd

2 : x ∈ A
}
. Clearly A′ still has no zero-sum subset

of size t. However, the addition of the coordinate with 1 implies that there is
also no zero-sum subset of odd size, in particular, of size r. By Proposition 11,
we have B(Kt,r, Z

d
2) ≥ 2�d−1/m� = Ω

(
4d/t

)
. As before, Proposition 15 and (6)

gives B(Kt,r, Z
d
2) ≤ max{s2m(Zd

2), t} = O(2d/m) = O(4d/t). Finally, the same
argument also shows that 2�d−1/m� ≤ R(Kt,r, Z

d
2) ≤ s2m(Zd

2) + t = O(2d/m). 	


5 Further Questions

We conjecture that Theorem 4 is asymptotically tight for all m ≥ 2.

Conjecture 18. For every m ≥ 2, the following holds as d → ∞,

B
({C2k : k = 2, . . . , m}, Zd

2

)
= Θ(2d/(m−1)).

In Theorem 4, we show that this holds for m = 2, 3. It would not be a surprise
if the lower bound (1) in Theorem 4 is attained for infinitely many d, given any
fixed m ≥ 4, but that seems too strong to conjecture with the current evidence.

For Z2
2, the smallest open case is K4. We made some progress showing that,

10 ≤ R(K4, Z
2
2) ≤ 91
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Fig. 1. A colouring of the edges of K9 by elements of Z2
2 without zero-sum K4. Different

colours are different elements of Z2
2. Any assignment works. (Color figure online)

The lower bound is in Fig. 1. As any copy of K4 use different colours with different
parities, Lemma 6 implies it has non-zero sum.

The upper bound is a repeated pigeonhole argument. Indeed, consider an
edge colouring c of K91 with colours Z2

2 = {0, α, β, γ}. Fix one edge xy and
partition the vertices z ∈ V (K91) \ {x, y} into four classes V0, Vα, Vβ and Vγ ,
according to the value of c(x z) + c(y z). At least one the classes has 23 vertices,
let’s say Vf , for some f ∈ Z2

2.
Inside Vf , if there is an edge with colour c(x y) we form a zero-sum K4

together with x and y, so we may assume only three colours appear. Let zw be
an edge inside Vf and partition the remaining 21 vertices into four classes U0,
Uα, Uβ and Uγ according to the value of c(z s) + c(w s), where s ∈ Vf \ {z, w}.
Note that even though three colours are possible, the sum can be any of the four
values. Again, one of the classes have at least 6 vertices. But now, the colour
c(z w) is also forbidden, so in this six vertices, only two colours are allowed. In
Z2
2, any two elements are isomorphic to Z2, so we can find a zero-sum copy of

K4 as R(K4, Z2) = 6 by Theorem 1.

Question 19. What is R(K4, Z
2
2)?

For a general graph G with an even number of edges, Theorem1 implies that
R(G, Z2) ≤ n + 2. We believe that there is a reasonably small constant C such
that R(G, Z2

2) ≤ n + C for all G.

Question 20. Is there a constant C such that R(G, Z2
2) ≤ n + C for all graphs

G with an even number of edges? If so, what is the smallest such C?

If such C exists, Theorem 2 implies that C ≥ 2. We can further show that
C ≥ 3. Indeed, the colouring in Fig. 2 shows that R(K2 
 K2, Z

2
2) ≥ 7, just

observe that no two disjoint edges can have the same colour, so their sum is not
zero in Z2

2.
In fact, we have R(K2 ∪K2, Z

2
2) = 7. Indeed, suppose that an edge colouring

of K7 by elements of Z2
2 has no zero-sum K2 ∪ K2. In particular, no parallel

edges have the same colour. As K7 has 21 edges, one colour is used 6 times.
As edges of this colour cannot be parallel, they have to form a spanning star.
Removing this star, we have now a colouring of K6 with precisely three colours.
But K6 has 15 edges, so one colour appear in 5 edges. Again, they have to form
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Fig. 2. A colouring of the edges of K6 by elements of Z2
2 without zero-sum K2 ∪ K2.

Different colours are different elements of Z2
2. Any assignment works. (Color figure

online)

a spanning star and we can reduce to a K5, coloured in two colours. But a two
coloured K5 must have a monochromatic K2 ∪ K2, and we are done.
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Abstract. Let D be a digraph. A proper coloring C and a path P of D
are orthogonal if P contains exactly one vertex of each color class in C.
In 1982, Berge defined the class of χ-diperfect digraphs. A digraph D is
χ-diperfect if for every minimum coloring C of D, there exists a path P
orthogonal to C and this property holds for every induced subdigraph of
D. Berge showed that some super-orientations of an odd cycle of length
at least five and of its complement are not χ-diperfect. In 2022, de Paula
Silva, Nunes da Silva and Lee characterized which super-orientations
of such graphs are χ-diperfect. In this paper, we show that there are
other minimal non-χ-diperfect digraphs with stability number two and
three. In particular, the underlying graph of these digraphs with stability
number two that we have found are subgraphs of the complement of
an odd cycle with at least seven vertices. Motivated by this fact, we
introduce a class of graphs, called nice graphs, which consist of all 2-
connected graphs in which every odd cycle has length exactly five. We
characterize which super-orientations of the complement of a nice graph
are χ-diperfect.

Keywords: χ-diperfect digraphs · Coloring · Rainbow paths

1 Introduction

Let G = (V (G), E(G)) be a graph. We use the concepts of path and cycle as
defined in [2]. We may think of a path or cycle as a subgraph of G. The length of
a path (respectively, cycle) is its number of edges. The order of a path P , denoted
by |P |, defined as its number of vertices, that is, |P | = |V (P )|. Similarly, the
order of a cycle is its number of vertices. Let Ck denote the graph isomorphic
to a cycle of length k ≥ 3 and let G denote the complement of G.

We also use the concepts of stable set and clique as defined in [2]. The stability
number of G is the cardinality of a maximum stable set, denoted by α(G). The
cardinality of a maximum clique is denoted by ω(G).
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A (proper) coloring C = {C1, C2, ..., Cm} of a graph G is a partition of V (G)
into stable sets, also called color classes. A coloring C of G is minimum if C
has the smallest possible number of color classes. The cardinality of a minimum
coloring, denoted by χ(G), is the chromatic number of G.

For every concept for graphs, we may have an analogue for digraphs. Let
D = (V (D), A(D)) be a digraph. The underlying graph of D, denoted by U(D),
is the simple graph with vertex set V (D) such that u and v are adjacent in
U(D) if and only if either (u, v) ∈ A(D) or (v, u) ∈ A(D) or both. We borrow
terminology from undirected graphs when dealing with a digraph D by consid-
ering its underlying graph U(D). In particular, a coloring of a digraph D is
a coloring of its underlying graph U(D). Similarly, we may obtain a directed
graph D from a graph G by replacing each edge uv of G by an arc (u, v), or
an arc (v, u), or both; such directed graph D is called a super-orientation of G.
A super-orientation which does not contain a digon (a directed cycle of length
two) is an orientation. A digraph D is symmetric if D is a super-orientation of
a graph G in which every edge uv of G is replaced by both arcs (u, v) and (v, u).

If (u, v) is an arc of D, then we say that u dominates v and v is dominated by
u. If v is not dominated by any of its neighbors, then we say that v is a source.
Similarly, if v does not dominate any of its neighbors in D, then we say that v
is a sink. A directed path or directed cycle is an orientation of a path or cycle,
respectively, in which each vertex dominates its successor in the sequence.

Henceforth, when we say path of a digraph, we mean directed path but we
will not use the same convention for cycles. When we say a cycle of a digraph,
we mean either a super-orientation of an undirected cycle with length at least
three or a digon. We denote by λ(G) (λ(D)) the cardinality of a maximum path
in a graph (digraph). A path in a graph or digraph is hamiltonian if it contains
all of its vertices. In 1934, Rédei [10] proved the following classical result.

Theorem 1 (Rédei [10]). Every super-orientation of a complete graph has a
hamiltonian path.

A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G.
It is easy to show that if G is perfect, then G cannot contain either an odd
cycle of order at least five or its complement as an induced subgraph. Berge [3]
conjectured that the converse was true as well. In 2006, Chudnovsky, Robert-
son, Seymour and Thomas [3] proved this long standing open conjecture and it
became known as the Strong Perfect Graph Theorem:

Theorem 2 (Chudnovsky et al. [3]). A graph G is perfect if and only if G
does not contain an odd cycle with five or more vertices or its complement as an
induced subgraph.

In 1982, Berge [1] introduced the concept of χ-diperfection of digraphs. Anal-
ogously to Theorem 2, he was interested in obtaining a characterization of such
digraphs in terms of forbidden subdigraphs. Let C be a coloring and let P be
a path of D. We say that C and P are orthogonal if |V (P ) ∩ C| = 1 for every
C ∈ C. We also say that C is orthogonal to P and vice versa. A digraph D is
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χ-diperfect if every induced subdigraph H of D has the following property: for
every minimum coloring C of H, there exists a path P of H such that C and P
are orthogonal. A digraph D is diperfect if U(D) is perfect. Berge [1] showed that
diperfect digraphs and symmetric digraphs are χ-diperfect. For ease of further
references, let us state the following.

Theorem 3 (Berge [1]). Let D be a diperfect digraph. Then, D is χ-diperfect.

Berge also showed that for a cycle of length five and for the complement of
an odd cycle with at least five vertices, there are orientations which are not χ-
diperfect. In [9], de Paula Silva, Nunes da Silva and Lee present a characterization
of super-orientations of odd cycles (Theorem 4) and a characterization of super-
orientations of complements of odd cycles that are χ-diperfect (Theorem 5). Let
D be a super-orientation of an odd cycle C = (x1, x2, . . . , x2�+1, x1) of order at
least five. Let P = (xi, . . . , xj) be a subpath of C. We say that the subdigraph
D[V (P )] is a sector if each of xi and xj is a source or a sink in D; we say that the
sector is odd if P has odd length, otherwise it is even. We also use (xi, . . . , xj) or
xiCxj to denote the corresponding sector in D. We say that D is a conflicting
odd cycle if it contains at least two arc-disjoint odd sectors.

Theorem 4 (de Paula Silva et al. [9]). Let D be a super-orientation of an
odd cycle with order at least five. Then, D is χ-diperfect if and only if D is not
a conflicting odd cycle.

Theorem 5 (de Paula Silva et al. [9]). Let D be a super-orientation of the
complement of an odd cycle with order at least five. Then, D is χ-diperfect if
and only if every vertex of D belongs to a path of order χ(D).

We say that a digraph D is an obstruction if D a minimal non-χ-diperfect
digraph, i.e., D is non-χ-diperfect but every proper induced subdigraph of D is χ-
diperfect. Conflicting odd cycles and non-χ-diperfect super-orientations of com-
plements of odd cycles are examples of obstructions. Given the Strong Perfect
Graph Theorem and Theorems 4 and 5, it may be tempting to conjecture that
the set of obstructions is exactly the set of non-χ-diperfect super-orientations
of odd cycles and their complements. Investigating this question we found new
obstructions with stability number two and three. In this paper, we focus on
those with stability number two. Curiously, we noted that the underlying graph
of such obstructions that we have found so far are spanning (k + 1)-chromatic
subgraphs of a C2k+1 with k ≥ 3. Later we found out that we may build an
obstruction by deleting an arc from some non-χ-diperfect super-orientation of a
C2k+1 with k ≥ 3.

Motivated by these observations, we decided to investigate digraphs with
stability number two whose underlying graph does not contain spanning (k+1)-
chromatic subgraphs of a C2k+1 with k ≥ 3. In other words, we are interested
in a family H of digraphs in which D ∈ H if and only if α(D) = 2 and, for every
induced subdigraph D′ of D, it follows that U(D′) is not a spanning (k + 1)-
chromatic subgraph of a C2k+1 with k ≥ 3. One may note that this is equivalent
to saying that a digraph D ∈ H if and only if every odd cycle of U(D) has length
five.



On χ-Diperfect Digraphs with Stability Number Two 463

2 Related Results

In this section we present some results related to the problem we study in
this paper. The first theorem we present was proved independently by Roy in
1967 [11] and Gallai in 1968 [5].

Theorem 6 (Gallai-Roy [5,11]). Let D be a digraph. For every maximum
path P of D, there is a coloring C of D such that P and C are orthogonal. In
particular, χ(D) ≤ λ(D).

We may compare this with the definition of χ-diperfection. In a χ-diperfect
digraph, we require that for every minimum coloring C, there exists a path P
such that C and P are orthogonal. It is known that this property does not hold
for every digraph [1].

A path partition of D is a collection of vertex-disjoint paths of D that cover
V (D). Let π(D) denote the cardinality of a smallest path partition of D. We use
the terms initial vertex and terminal vertex for paths to indicate the first and the
last vertex in the sequence of a given path. We denote by ter(P ) (respectively,
ini(P )) the terminal (respectively, initial) vertex of a path P . Similarly, if P is a
collection of paths, we denote by ter(P) (ini(P)) the set of terminal (respectively,
initial) vertices of each path in P. A stable set S and a path partition P are
orthogonal if |S ∩ P | = 1 for every P ∈ P.

Theorem 6 has a dual version in which we exchange the roles of stable sets
and paths. This result is the celebrated Gallai-Milgram’s Theorem which follows
from the next lemma.

Lemma 1 (Gallai-Milgram [6]). Let D be a digraph and let P be a path
partition of D. Then,

(i) there is a path partition Q of D such that ini(Q) ⊂ ini(P), ter(Q) ⊂ ter(P)
and |Q| = |P| − 1, or

(ii) there is a stable set S which is orthogonal to P.

Theorem 7 (Gallai and Milgram [6]). Let D be a digraph. For every min-
imum path partition P of D, there is a stable set S such that P and S are
orthogonal. In particular, π(D) ≤ α(D).

For the sake of conciseness, we refer the interested reader to Berge’s paper [1]
and Sambinelli’s PhD thesis [12] for a survey of the known results on this subject.

3 Properties of Obstructions

Let D be a digraph with a fixed minimum coloring S. We say that a subdigraph
H of D is rainbow if no two vertices in H are in the same color class of S.
Similarly, a path P (respectively, cycle) in D is a rainbow path (respectively,
rainbow cycle) if no two vertices in P are in the same color class of S; moreover,
if |P | = k, then we may say that P is a k-rainbow path. Let D1 and D2 be two
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disjoint rainbow subdigraphs of D. We say that D1 and D2 are color-compatible
if D1 ∪ D2 contains exactly one vertex of each color class of S, i.e., D1 ∪ D2 is
a rainbow subdigraph of D with exactly χ(D) vertices. We also say that D1 is
color-compatible with D2 and vice versa. A graph G is (vertex) color-critical if
χ(G − X) < χ(G) for every non-empty X ⊆ V (G). Equivalently, color-critical
graphs may be characterized in the following way.

Theorem 8. A graph G is color-critical if and only if for every v ∈ V (G) there
is a minimum coloring of G in which v belongs to a singleton color class. �

Now we present the relation between color-critical graphs and χ-diperfection.

Lemma 2. If G is the underlying graph of an obstruction, then G is color-
critical.

Proof. Towards a contradiction, suppose that G is not color-critical. Let D be
a minimal non-χ-diperfect super-orientation of G. Let S be a minimum coloring
of D that does not admit a χ(D)-rainbow path. Let D′ be a proper subdigraph
of D such that χ(D) = χ(D′). Clearly, S restricted to D′ is a χ(D′)-coloring of
D′. Since D is a minimal non-χ-diperfect digraph, there is a χ(D′)-rainbow path
in D′. However, a χ(D′)-rainbow path of D′ is also a χ(D)-rainbow path of D,
a contradiction. �

Let D be a digraph and let G = U(D). We now look at G. If such graph
is disconnected, it is easy to see that G can be partitioned into two disjoint
subgraphs, say G1 and G2, such that every vertex of G1 is adjacent to every
vertex of G2. So in any coloring of S of G, no color class of S contains vertices
of both G1 and G2. Based on this fact, we show in Lemma 4 that G must be
2-connected when D is an obstruction. Before we state such result, we need to
present a lemma that is a straightforward application of Lemma 1 but it is also
useful in other places of the text.

Lemma 3. Let D be a digraph and let P1 and P2 be two disjoint paths of D.
If every vertex of P1 is adjacent to every vertex of P2, then D has a path P
such that (i) V (P ) = V (P1) ∪ V (P2), (ii) ini(P ) ∈ {ini(P1), ini(P2)} and (iii)
ter(P ) ∈ {ter(P1), ter(P2)}.
Proof. Let D′ = D[V (P1) ∪ V (P2)] and let P = {P1, P2} be a path partition
of D′. Since every vertex of P1 is adjacent to every vertex of P2, there is no
stable set orthogonal to P. By Lemma 1, D′ has a path partition P ′ such that
|P ′| = |P| − 1 = 1, ini(P ′) ⊂ ini(P) and ter(P ′) ⊂ ter(P). Hence, the path P
of P ′ satisfies properties (i)–(iii). �

Lemma 4. If G is the underlying graph of an obstruction, then G is 2-connected.

Proof. Let D be an obstruction and let S be a minimum coloring of D that does
not admit a χ(D)-rainbow path. Let F = G where G is the underlying graph
of D. Towards a contradiction, suppose that F is not 2-connected. Suppose first
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that F is disconnected. Let X be the vertex set of a component of F and let
Y = V (F ) − X. Note that, in D, every vertex of X is adjacent to every vertex
of Y . Thus, no color class of S has vertices in both X and Y . Moreover, S
restricted to X and S restricted to Y are minimum colorings of D[X] and D[Y ],
respectively. Since D is a minimal non-χ-diperfect digraph, there is a χ(D[X])-
rainbow path P1 in D[X] and a χ(D[Y ])-rainbow path P2 in D[Y ]. Since P1 and
P2 are color-compatible paths and every vertex of P1 is adjacent to every vertex
of P2, we may apply Lemma 3 to P1 and P2 and obtain a χ(D)-rainbow path of
D, a contradiction.

So we may assume that F is connected but has a cut vertex v. Let X be the
vertex set of a component of F − v and let Y = V (F ) \ (X ∪ {v}). Similarly
to the previous case, in D, every vertex of X is adjacent to every vertex of Y .
Without loss of generality, we may assume that, if there are other vertices in
the same color class of v, those vertices belong to X. Hence, no color class of
S has vertices in both X ∪ {v} and Y . Moreover, S restricted to X ∪ {v} and
S restricted to Y are minimum colorings of D[X ∪ {v}] and D[Y ], respectively.
Let k = χ(D[X ∪ {v}]) and � = χ(D[Y ]) (so, χ(D) = k + �). Since D is a
minimal non-χ-diperfect digraph, there is a k-rainbow path in D[X ∪ {v}] and
an �-rainbow path P2 in D[Y ]. First assume that there is a k-rainbow path P1 in
D[X ∪ {v}] such that v /∈ V (P1). Similarly to the previous case, P1 and P2 are
color-compatible paths and every vertex of P1 is adjacent to every vertex of P2.
Thus, we may apply Lemma 3 to P1 and P2 and obtain a χ(D)-rainbow path of
D, a contradiction.

Thus, we may assume that every k-rainbow path P1 of D[X ∪ {v}] contains
v. Let S ′ be S restricted to Y ∪ {v}. Suppose that S ′ is not a minimum color-
ing of D[Y ∪ {v}], i.e., χ(D[Y ∪ {v}]) = �. Note that this implies that v does
not belong to a singleton color class of S. Hence, S restricted to X must be a
minimum k-coloring of D[X]. However there is a k-rainbow path in D[X] that
does not contain v, a contradiction to our assumption. So we may assume that
S ′ is a minimum coloring of D[Y ∪ {v}] and hence χ(D[Y ∪ {v}]) = � + 1. Since,
by our assumption, no vertex in Y belongs to the same color class of v in S,
it follows that v must belong to a singleton color class in S ′. Thus, there is
an (� + 1)-rainbow path P3 in D[Y ∪ {v}] that contains v. Hence, assume that
P1 = (x1, . . . , xi = v, xi+1, . . . , xk) and P3 = (y1, . . . , yj = v, yj+1, . . . , y�+1).
Moreover, every vertex in {x1, . . . , xi−1, xi+1, . . . , xk} is adjacent to every ver-
tex in {y1, . . . , yj−1, yj+1, . . . , y�+1}. By Lemma 3 there is a path R1 such
that V (R1) = {x1, . . . , xi−1, y1, . . . , yj−1} and ter(R1) ∈ {xi−1, yj−1}. Simi-
larly, there is a path R2 such that V (R2) = {xi+1, . . . , xk, yj+1, . . . , y�+1} and
ini(R2) ∈ {xi+1, yj+1}. Since v is dominated by both xi−1 and yj−1 and v dom-
inates both xi+1 and yj+1, it follows that R1vR2 is a χ(D)-rainbow path of D,
a contradiction. �

We may now restrict our attention to color-critical graphs whose complement
is connected. We present below some results that provide us information on the
number of vertices and on the properties of minimum colorings in such graphs
(and so, in minimal non-χ-diperfect digraphs).
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In 1963, Gallai [4] showed a lower bound on the number of vertices of a graph
that is color-critical and whose complement is connected. In 2002, Stehĺık [13]
proved a slightly stronger result that implies Gallai’s lower bound.

Theorem 9 (Gallai [4]). Let G be a color-critical graph. If G is connected,
then G has at least 2χ(G) − 1 vertices.

Theorem 10 (Stehĺık [13]). Let G be a color-critical graph and let v ∈ V (G).
If G is connected, then G−v has a (χ(G)−1)-coloring in which every color class
has at least two vertices.

The following results are specific for digraphs with stability number two.

Lemma 5. Let G be the underlying graph of an obstruction. If G has stability
number two, then G has exactly 2χ(G) − 1 vertices.

Proof. By Lemmas 2 and 4, G is a color-critical and G is connected. Let n =
|V (G)|. By Theorem 9, it follows that n ≥ 2χ(G) − 1. Towards a contradiction,
suppose that n > 2χ(G)−1. Let v ∈ V (G) and let G′ = G−v. Note that G′ has
at least 2χ(G) − 1 vertices and α(G′) ≤ 2. Thus, χ(G′) ≥

⌈
2χ(G)−1

2

⌉
≥ χ(G).

However, this is a contradiction since G is color-critical and, hence, χ(G′) =
χ(G) − 1. �

Corollary 1. Let G be the underlying graph of an obstruction. If G has sta-
bility number two, then in every minimal coloring of G there exists exactly one
singleton color class and every other color class has size two. �

We use the concepts of (perfect) matching as defined in [2]. A graph F is
factor-critical if F − v has a perfect matching, for any v ∈ V (F ).

Corollary 2. Let G be the underlying graph of an obstruction. If G has stability
number two, then G is factor-critical. Moreover, every minimum coloring of G
corresponds to a maximum matching of G and vice versa.

Proof. Let u ∈ V (G) and let S be a minimum coloring in which u is a singleton
color class (such coloring exists by Theorem 8). By Corollary 1, it follows that
{u} must be the only singleton color class of S and every other color class of
S has size two. Let F = G. We may build a perfect matching M of F − u by
converting each color class {v1, v2} of S \ {u} into an edge v1v2 of M . �

4 New Obstructions

We were able to find a few more examples of obstructions that were not yet
known. All these digraphs have stability number two or three and they can be
found in de Paula Silva’s master’s dissertation [8]. At this moment, we do not
know if there are obstructions with stability number greater than three distinct
from the conflicting odd cycles.
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In this paper, we particularly focus on obstructions with stability number
two. Two examples of such digraphs are depicted in Fig. 1. One may verify by
inspection that neither of these digraphs contain conflicting odd cycles or non-
χ-diperfect super-orientations of C2k+1, with k ≥ 2. Note that the underlying
graph of both digraphs are spanning 4-chromatic subgraphs of a C7. We observe
that the underlying graph of all the obstructions with stability number two that
we have found are spanning (k + 1)-chromatic subgraphs of a C2k+1 with k ≥ 3.
In fact, we may show that we can build an obstruction from some non-χ-diperfect
super-orientation of a C2k+1 with k ≥ 3, as we state in Lemma 6. Due to space
limitation, we are not able to present the proof of this result here, but it can
also be found in [8].

Lemma 6 (de Paula Silva, Nunes da Silva and Lee [8]). For every k ≥ 3,
there is an obstruction that is obtained by deleting an arc from some non-χ-
diperfect super-orientation of a C2k+1. �

Fig. 1. Obstructions with stability number two.

In view of such observations, we decided to investigate digraphs with stabil-
ity number two whose underlying graph does not contain a spanning (k + 1)-
chromatic subgraph of a C2k+1 with k ≥ 3. In fact, we were able to characterize
which of these digraphs are χ-diperfect and we present our result in next section.

5 Characterization of a Special Class

Recall that H is the family of digraphs such that D ∈ H if and only if α(D) = 2
and for every induced subdigraph D′ of D it follows that U(D) is not a spanning
(k + 1)-chromatic subgraph of C2k+1 with k ≥ 3. Note that this is equivalent to
saying that every (not necessarily induced) odd cycle of U(D) has length five.

Let G be the underlying graph of an obstruction. By Lemma 4, G is 2-
connected. Moreover, Corollary 2 states that if α(G) = 2, then G is factor-critical
and every maximum matching of G corresponds to a minimum coloring of G and
vice versa. We present now some auxiliary results on 2-connected factor-critical
graphs that are helpful in understanding the structure of these digraphs.
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Lemma 7. Let F be a factor-critical graph and let u∗ ∈ V (F ). Let M be a
perfect matching of F − u∗. Then, there is an odd cycle C in F such that u∗ ∈
V (C) and M restricted to F − V (C) is a perfect matching.

Proof. Let v be a vertex that is adjacent to u∗. Let M ′ be a perfect matching
of F − v. Then, in MΔM ′ there is an even path P from u∗ to v whose edges
alternate between M and M ′. So, C = P + u∗v is an odd cycle. Since the only
vertex not covered by M restricted to C is u∗, M restricted to M −C is a perfect
matching. �

Let G be a graph and let G′ be a subgraph of G. A path P = (v1, v2 . . . , v�)
is an ear of G′ if v1, v� ∈ V (G) and v2, . . . , v�−1 ∈ V (G) \ V (G′). In other
words, the extremes of P belong to G′ but the internal vertices do not. An ear
decomposition of G is a sequence (G1, G2, . . . , G�) of subgraphs of G such that

– G1 is a cycle,
– Gi+1 = Gi ∪ Pi, where Pi is an ear of Gi with 1 ≤ i < �, and
– G� = G.

If every ear in {P1, . . . , P�−1} has odd length, then we say that (G1, G2, . . . , G�)
is an odd-ear decomposition of G. In 1972, Lovász [7] proved the following char-
acterization of 2-connected factor-critical graphs.

Theorem 11 (Lovász [7]). A 2-connected graph F is factor-critical if and
only if F has an odd-ear decomposition starting with an odd cycle.

Let F be a graph with 2k + 1 vertices, for k ≥ 2 and with at least one
induced cycle C of length five. We say that F is nice if the vertices of C
can be labelled as u1, . . . , u5 and the vertices of F − V (C) can be labelled as
x1, . . . , xk−2, y1, . . . , yk−2 so that

– for i ∈ {1, . . . , k − 2}, the neighbors of xi are yi and u1, and
– for i ∈ {1, . . . , k − 2}, the neighbors of yi are xi and u3.

Thus, for every i ∈ {1, . . . , k − 2}, it follows that (u1, xi, yi, u3, u2, u1) is an
induced C5 (see Fig. 2 for an example with k = 4).

We may characterize nice graphs in terms of odd-ear decompositions. We
state such characterization below for ease of further reference.

Proposition 1. A graph F is nice if and only if there is an odd-ear decomposi-
tion (F1, F2, . . . , F�) of F such that:

(a) F1 is an odd cycle of length five,
(b) Fi+1 = Fi ∪ Pi, where Pi is an ear of length three of F1 with 1 ≤ i < �, and
(c) all the ears P1, . . . , P�−1 have as extremes the same pair of non-adjacent

vertices of F1. �
We can easily check that every odd cycle of a nice graph must have length

five. Moreover, by Theorem 11, a nice graph is 2-connected and factor-critical.
In fact, we prove that every 2-connected factor-critical graph in which every odd
cycle has length five must be isomorphic to a nice graph. Before we present such
result, we need an auxiliary lemma.
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Fig. 2. Nice graph with nine vertices.

Lemma 8. Let F be a graph in which every odd cycle has length five and let C
be an odd cycle of F . Let P be an ear of C. If the extremes of P are non-adjacent
in C, then the length of P is two or three. Otherwise, the length of P is four.

Proof. Let C = (u1, . . . , u5) be an odd cycle of F and let P = (v1, . . . , v�) be an
ear of C. Suppose first that the extremes of P are non-adjacent, say v1 = u1 and
v� = u3. Since F has no cycle of length three, the length of P is at least two.
Towards a contradiction, assume that the length of P is greater than three (so
� ≥ 5). Then, either (v1 = u1, v2, . . . , v� = u3, u2, u1) or (v1 = u1, v2, . . . , v� =
u3, u4, u5, u1) is an odd cycle of length greater than five, a contradiction. So
suppose that the extremes of P are adjacent, say v1 = u1 and v� = u2. Towards a
contradiction, suppose that the length of P is distinct from four (so � 	= 5). Then
either (v1 = u1, v2, . . . , v� = u2, u1) or (v1 = u1, v2, . . . , v� = u2, u3, u4, u5, u1) is
an odd cycle of length distinct from five, a contradiction. �

Lemma 9. Let F be a 2-connected factor-critical graph. If every odd cycle of F
has length five, then F is isomorphic to a nice graph.

Proof. By Theorem 11, F has an odd-ear decomposition (F1, . . . , F�) in which
F1 is an odd cycle. Let {P1, . . . , P�−1} be the ears in such ear-decomposition.
We show by induction on � that conditions (a) to (c) from Proposition 1 hold for
(F1, . . . , F�). Since every odd cycle of F has length five, condition (a) immediately
holds. Let C = F1 = (u1, u2, u3, u4, u5, u1). Clearly, if � = 1 then F = C is a
nice graph. Suppose now that � = 2. Since P1 is an ear of C (of odd length), by
Lemma 8, its length is exactly three and its extremes are non-adjacent vertices
of C. So property (b) is satisfied and property (c) trivially holds. So we may
assume that � ≥ 3. By Theorem 11, F�−1 is a 2-connected factor-critical graph
and, clearly, every odd cycle of F�−1 must have length five. Thus, by induction
hypothesis, F�−1 is a nice graph. By properties (b) and (c) from Proposition 1,
we may assume that Pi = (u1, xi, yi, u3) for every i ∈ {1, . . . , � − 2}. Now, it
suffices to show that P�−1 is an ear of C whose extremes are u1 and u3.

First, we show that P�−1 = (z1, . . . , zt) is an ear of C. Towards a contradic-
tion, suppose that at least one extreme of P�−1 does not belong to C. We may
assume without loss of generality that z1 = x1. Suppose first that zt /∈ V (C).
If there is j such that zt = yj then (u1, z1 = x1, . . . , zt = yj , u3) is an ear that



470 C. A. de Paula Silva et al.

contradicts Lemma 8 (see Fig. 3a for the case where j = 1 and see Fig. 3b for the
case where j > 1). So we may assume that there is j such that zt = xj . Then
(u3, y1, x1 = z1, . . . , zt = xj , u1) is an ear of C that contradicts Lemma 8 (see
Fig. 3c). Hence, we may assume that zt ∈ V (C).

Fig. 3. Auxiliary illustration for the proof of Lemma 9.

Since F has no C3, it follows that z1 = x1 is non-adjacent to vertices u2, u3

and u5. So, if the length of P�−1 is one, then P�−1 = (x1, u4) and (u3, y1, x1, u4)
is an ear of C that contradicts Lemma 8 (see Fig. 3d). Thus, we may assume
that the length of P�−1 is at least three (so t ≥ 4). If zt = u3, then (u1, z1 =
x1, . . . , zt = u3) is an ear of C that contradicts Lemma 8 (see Fig. 3e). Otherwise,
(u3, y1, x1 = z1, . . . , zt) is an ear of C of length greater than four, a contradiction
to Lemma 8 (see Fig. 3f for an example with zt = u5). Since all cases lead us
to a contradiction, it follows that P�−1 must be an ear of C. Also, recall that
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P�−1 has odd length by definition. By Lemma 8, it must have length three,
i.e., P�−1 = (z1, z2, z3, z4) and, furthermore, z1 and z4 are non-adjacent. Thus,
property (b) is satisfied.

Now we show that property (c) of Proposition 1 holds for P�−1, i.e., we show
that z1 = u1 and zt = u3. Towards a contradiction, suppose that z1 = u2

and z4 = u4. Then, (u1, x1, y1, u3, z1 = u2, z2, z3, z4 = u4, u5, u1) is a C9, a
contradiction (see Fig. 3g). The argument is analogous to show that the extremes
of P�−1 cannot be u2 and u5. So suppose that z1 = u1 and z4 = u4. Then,
(z1 = u1, x1, y1, u3, u4 = z4, z3, z2, z1 = u1) is a C7, a contradiction (see Fig. 3h).
The argument is analogous to show that the extremes of P�−1 cannot be u3 and
u5. Hence, the extremes of P�−1 must be u1 and u3. �

The next proposition is an immediate consequence of Lemma 7 and it can be
easily verified recalling that, by Corollary 2, the complement of a color-critical
graph G with α(G) = 2 is factor-critical and every maximum matching of G
corresponds to a minimum coloring of G.

Proposition 2. Let G be the complement of a nice graph and let S be a mini-
mum coloring of G. Then, there is an induced cycle C = C5 of G such that the
vertices of C can be labelled as (v1, . . . , v5, v1) and the vertices in V (G) − V (C)
can be labelled as x1, . . . , xk−2, y1, . . . , yk−2 so that:

(a) the vertex u∗ in the singleton color class of S belongs to V (C),
(b) {xi, yi} is a color class of S for i ∈ {1, . . . , k − 2},
(c) for i ∈ {1, . . . , k − 2}, the non-neighbors of xi are yi and v1,
(d) for i ∈ {1, . . . , k − 2}, the non-neighbors of yi are xi and v2, and
(e) (v1, yi, v4, xi, v2, v1) is an induced odd cycle of length five.

�

Henceforth, we may assume that every complement of a nice graph has a
fixed minimum coloring S and its vertices are labelled as described in Proposi-
tion 2. Note that the cycle (v1, . . . , v5, v1) of G is the complement of the cycle
(u1, . . . , u5, u1) mentioned on the definition of a nice graph and on Lemma 9 (see
Fig. 4). We use the notation X 
→ Y to denote that every vertex of X dominates
every vertex of Y in D and no vertex of Y dominates a vertex of X in D. If
X = {u} (respectively, Y = {v}), we may write directly u 
→ Y (respectively,
X 
→ v).

Lemma 10. Let D be a super-orientation of the complement of a nice graph
with 2k + 1 vertices, for k ≥ 2. If D contains no conflicting odd cycle as an
induced subdigraph, then D has a (k + 1)-rainbow path.

Proof. By hypothesis, D contains no conflicting odd cycle. Then, by Theorem 4,
C has a 3-rainbow path P . Let X = {x1, . . . , xk−2} and let Y = {y1, . . . , yk−2}.
Note that D[X] and D[Y ] induce semicomplete digraphs and they are both color-
compatible with P . Suppose first that v1 /∈ V (P ). In this case, every vertex in
X is adjacent to every vertex of P . By Theorem 1, D[X] has a hamiltonian path
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v2=u3

v5=u4

v3=u5

x1

y1

x2

y2

v1=u1

v4=u2

Fig. 4. Example of labelling of a complement of a nice graph with nine vertices.

P ′. We may apply Lemma 3 to P ′ and P , and obtain a (k + 1)-rainbow of D.
The argument is symmetric in the case where v2 /∈ V (P ). Hence, we may assume
that every 3-rainbow path P of C contains both v1 and v2. Note that, since v4
is non-adjacent to both v1 and v2, we know that v4 	= u∗. Also, we may assume
without loss of generality, that u∗ = v1 or u∗ = v5. In both cases, note that v1
and v4 belong to distinct color classes. We consider the following two cases.

Case 1. There is no digon between v1 and v2.

By the Principle of Directional Duality, we may assume that v1 
→ v2. Let i ∈
{1, . . . , k−2}. Suppose that v1 
→ yi and xi 
→ v2. Since C ′ = (v4, yi, v1, v2, xi, v4)
is an induced C5 by definition, it follows that v4 must be dominated by yi. Oth-
erwise, (v1, yi) and (v1, v2) would be two arc-disjoint odd sectors of C ′. Hence,
C ′ is a conflicting odd cycle, a contradiction (see Fig. 5a). Thus, P ′ = (v1, yi, v4)
is a 3-rainbow path of C ′. Let Z = (Y \{yi})∪{v5}. Similarly to what happened
before, D[Z] induces a semicomplete digraph that is color-compatible with P ′.
Moreover, every vertex of Z is adjacent to every vertex of P ′. Since, by Theo-
rem 1, there is a hamiltonian path R in D[Z], we may obtain a (k + 1)-rainbow
path of D by applying Lemma 3 to P ′ and R.

Hence, we may assume that, there is no i ∈ {1, . . . , k − 2} such that v1 
→ yi

and xi 
→ v2. Let Y − be the subset of vertices of Y that dominate v1 and let
X+ be the subset of vertices of X such that xi ∈ X if and only if yi /∈ Y . Note
that, by our assumption, v2 must dominate every vertex in X+.

Recall that every 3-rainbow path P of C contains both v1 and v2 and v1 
→ v2.
Hence, P = (v5, v1, v2) or P = (v1, v2, v3). Thus, {v1, v2, v5} ∪ Y − ∪ X+ or
{v1, v2, v3} ∪ Y − ∪ X+ contains exactly one vertex of each color class of S. If
P = (v5, v1, v2), let T− = Y − ∪ {v5} and let T+ = X+; otherwise let T− = Y −

and let T+ = X+ ∪ {v3}. By Theorem 1, D[T−] has a hamiltonian path P1 and
D[T+] has a hamiltonian path P2. Since every vertex of T− dominates v1 and
v2 dominates every vertex of T+, it follows that P1v1v2P2 is a (k + 1)-rainbow
path of D (see Fig. 5b).
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Fig. 5. Auxiliary illustration for the proof of Lemma 10

Case 2. There is a digon between v1 and v2.

By the Principle of Directional Duality, we may assume that v5 dominates v1.
Let Y − be the subset of vertices of Y that dominate v1. Let X− be the subset
of vertices of X such that xi ∈ X− if and only if yi /∈ Y − and xi dominates v2.
Let W = X− ∪ Y − ∪ {v5}.

So, if there is a color class {xi, yi} such that xi /∈ W and yi /∈ W , then v1
dominates yi and v2 dominates xi. Let X+ be the subset of vertices of X such
that xi /∈ W and yi /∈ W and let Y + be the subset of vertices of Y such that
xi /∈ W and yi /∈ W . Note that xi ∈ X+ if and only if yi ∈ Y + and, hence, |X+| =
|Y +|. Moreover, note that D[W ∪ {v1, v2}] is color-compatible with D[X+] and
D[Y +], and D[W ],D[X+],D[Y +] induce semicomplete digraphs (see Fig. 5c).
Let P ′, P1 and P2 be hamiltonian paths of D[W ],D[X+],D[Y +], respectively
(such paths exist by Theorem 1). If ter(P ′) dominates v1, then P ′v1v2P2 is a
(k + 1)-rainbow path of D. Otherwise, ter(P ′) dominates v2 and P ′v2v1P1 is a
(k + 1)-rainbow path of D. �

Theorem 12. Let D be a digraph in which every odd cycle of U(D) has length
five. Then, D is χ-diperfect if and only if D does not contain a conflicting odd
cycle as an induced subdigraph.
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Proof. (Necessity) The necessity immediately follows by Theorem 4.
(Sufficiency) To show that D is χ-diperfect, it suffices to prove that, for any

minimum coloring of D, there is a χ(D)-rainbow path in D. So towards a contra-
diction, suppose that D is an obstruction i.e. there is a minimum coloring of D
that does not admit a χ(D)-rainbow path but every proper induced subdigraph
is χ-diperfect. Let G = U(D). By Lemmas 2 and 4, we may assume that G is
color-critical and that G is 2-connected. Since, by hypotheses, every odd cycle of
G has length five, it follows that α(G) = 2. By Corollary 2, G is a factor-critical
graph. Hence, by Lemma 9, G is isomorphic to a nice graph. Thus, by Lemma 10,
D has a χ(D)-rainbow path, a contradiction. �

6 Final Remarks

In this paper we showed that there are minimal non-χ-diperfect digraphs whose
underlying graphs are neither an odd cycle of length at least five nor its comple-
ment; all these obstructions we have found have stability number two or three.
In particular, the underlying graph of an obstruction with stability number two
that we have found is a subgraph of some complement of an odd cycle of length
at least seven.

Motivated by this fact we investigated a class of digraphs whose underlying
graphs have stability number two such that every odd cycle of their complement
has length exactly five. We proved that a digraph in this class is χ-diperfect
if and only if it does not contain an induced conflicting odd cycle. The proof
we presented is not straightforward, which suggests that figuring out the set of
obstructions may be difficult. It is still open whether there is some obstruction
with stability number at least four that is not a conflicting odd cycle.
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Abstract. We obtain tight thresholds for bond percolation on one-
dimensional small-world graphs, and apply such results to obtain tight
thresholds for the Independent Cascade process and the Reed-Frost pro-
cess in such graphs.

Although one-dimensional small-world graphs are an idealized and
unrealistic network model, a number of realistic qualitative epidemiolog-
ical phenomena emerge from our analysis, including the epidemic spread
through a sequence of local outbreaks, the danger posed by random con-
nections, and the effect of super-spreader events.
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1 Introduction and Related Works

Given a graph G = (V,E) and a bond percolation probability p, the bond per-
colation process is to subsample a random graph Gp = (V,Ep) by independently
choosing each edge of G to be included in Ep with probability p and to be omit-
ted with probability 1− p. We will call Gp the percolation graph of G. The main
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questions that are studied about this process are whether Gp is likely to contain
a large connected component, and what are the typical distances of reachable
nodes in Gp.

The study of percolation originates in mathematical physics, where it has
often been studied in the setting of infinite graphs, for example infinite lat-
tices and infinite trees [24,32,35]. The study of percolation on finite graphs is
of interest in computer science, because of its relation, or even equivalence, to
a number of fundamental problems in network analysis [1,17,23,27] and in dis-
tributed and parallel computing [14,22]. For example, the percolation process
arises in the study of network reliability in the presence of independent link fail-
ures [22,25]; in this case one is typically interested in inverse problems, such
as designing networks that have a high probability of having a large connected
component for a given edge failure probability 1 − p.

This paper is motivated by the equivalence of the percolation process with
the Independent Cascade process, which models the spread of information in
networks [17,23], and with the Reed-Frost process of Susceptible-Infectious-
Recovered (SIR) epidemic spreading [12,34].

In a SIR epidemiological process, every person, at any given time, is in one of
three possible states: either susceptible (S) to the infection, or actively infectious
and able to spread the infection (I), or recovered (R) from the illness, and immune
to it. In a network SIR model, we represent people as nodes of a graph, and
contacts between people as edges, and we have a probability p that each contact
between an infectious person and a susceptible one transmits the infection. The
Reed-Frost process, which is the simplest SIR network model, proceeds through
synchronous time steps, the infectious state lasts for only one time step, and the
graph does not change with time.

The Information Cascade process is meant to model information spreading in
a social network, but it is essentially equivalent to the Reed-Frost process.1 If we
run the Reed-Frost process on a graph G = (V,E) with an initial set I0 and with
a probability p that each contact between an infectious and a susceptible person
leads to transmission, then the resulting process is equivalent to percolation on
the graph G with parameter p in the following sense: the set of vertices reachable
from I0 in the percolation graph Gp has the same distribution as the set of nodes
that are recovered at the end of the Reed-Frost process in G with I0 as the initial
set of infected nodes. Furthermore, the set of nodes infected in the first t steps
(that is, the union of infectious and recovered nodes at time t) has the same
distribution as the set of nodes reachable in the percolation graph Gp from I0
in at most t steps.

Information Cascade and Reed-Frost processes on networks are able to cap-
ture a number of features of real-world epidemics, such as the fact that people

1 The main difference is that Information Cascade allows the probability of “trans-
mission” along an edge (u, v) to be a quantity p(u,v), but this generalization would
also make sense and be well defined in the Reed-Frost model and in the percolation
process. The case in which all the probabilities are equal is called the homogenous
case.



478 L. Becchetti et al.

typically have a small set of close contacts with whom they interact frequently,
and more rare interactions with people outside this group, that different groups
of people have different social habits that lead to different patterns of transmis-
sions, that outbreaks start in a localized way and then spread out, and so on.
Complex models that capture all these features typically have a large number
of tunable parameters, that have to be carefully estimated, and have a behavior
that defies rigorous analysis and that can be studied only via simulations.

In this work we are interested in finding the simplest model, having few
parameters and defining a simple process, in which we could see the emergence
of complex phenomena.

One-Dimensional Small-World Graphs. We choose to analyze the Reed-
Frost process on one-dimensional small-world graphs, which is a fundamental
generative model of networks in which there is a distinction between local con-
nection (corresponding to close contacts such as family and coworkers) and long-
range connections (corresponding to occasional contacts such as being seated
next to each other in a restaurant or a train). Small-world graphs are a class
of probabilistic generative models for graphs introduced by Watts and Strogatz
[36], which are obtained by overlaying a low-dimensional lattice with additional
random edges. A one-dimensional small-world graph is a cycle overlayed with
additional random edges.

Because of our interest in studying the most basic models, with the fewest
number of parameters, in which we can observe complex emergent behavior, we
consider the following simplified generative model which was introduced in [30]
and often adopted in different network applications [18,31,33]: the distribution
of one-dimensional small-world graphs with parameter q on n vertices is just
the union of a cycle with n vertices with an Erdős-Rényi random graph Gn,q, in
which edges are sampled independently and each pair of nodes has probability
q of being an edge. We will focus on the sparse case in which q = c/n, with c
constant, so that the overall graph has average degree c + 2 and maximum degree
that is, with high probability, O(log n/ log log n). As we will see, we are able to
determine, for every value of c, an exact threshold for the critical probability of
transmission and to establish that, above the threshold, the epidemic spreads
with a realistic pattern of a number of localized outbreaks that progressively
become more numerous.

We are also interested in modeling, again with the simplest possible model
and with the fewest parameters, the phenomenon of superspreading, encoun-
tered both in practice and in simulations of more complex models. This is the
phenomenon by which the spread of an epidemic is disproportionately affected
by rare events in which an infectious person contacts a large number of sus-
ceptible ones. To this end, we also consider a generative model of small-world
one-dimensional graphs obtained as the union of a cycle with a random perfect
matching. This generative model has several statistical properties in common
with the c = 1 instantiation of the above generative model: the marginal distri-
bution of each edge is the same, and edges are independent in the first case and
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have low correlation in the random matching model. The only difference is the
degree distribution, which is somewhat irregular (but with a rapidly decreasing
exponential tail) in the first case and essentially 3-regular in the second case.

Before proceeding with a statement of our results, we highlight for future
reference the definitions of our generative models we consider.

Definition 1 (1-D Small-World Graphs - SWG(n, q)). For every n ≥ 3
and 0 ≤ q ≤ 1, the distribution SWG(n, q) is sampled by generating a one-
dimensional small-world graph G = (V,E), where |V | = n, E = E1 ∪E2, (V,E1)
is a cycle, and E2 is the set of random edges, called bridges, of an Erdős-Rényi
random graph Gn,q.

Definition 2 (3-regular 1-D Small-World Graphs - 3-SWG(n)). For every
even n ≥ 4, the distribution 3-SWG(n) is sampled by generating a one-
dimensional small-world graph G = (V,E), where |V | = n, E = E1 ∪E2, (V,E1)
is a cycle, and E2 is the set of edges, called bridges, of a uniformly chosen perfect
matching on V .

In the definition of 3-SWG(n), we allow edges of the perfect matching to
belong to E1. If this happens, only edges in E2 − E1 are called bridges. The
graphs sampled from 3-SWG(n) have maximum degree 3, and every node has
degree 3 or 2. On average, only O(1) nodes have degree 2. This is why, with a
slight abuse of terminology, we refer to these graphs as being “3-regular”2.

2 Our Contribution

2.1 Tight Thresholds for Bond Percolation

Our main technical results are to establish sharp bounds for the critical perco-
lation probability p in the SWG(n, q) model. In particular, we are interested in
fully rigorous analysis that hold in high concentration (i.e., with high probabil-
ity), avoiding mean-field approximations or approximations that treat certain
correlated events as independent, which are common in the analysis of com-
plex networks in the physics literature. While such approximations are neces-
sary when dealing with otherwise intractable problems, they can fail to capture
subtle differences between models. For example, for q = 1/n, the marginal distri-
butions of bridge edges are the same in the two models above, while correlations
between edges are non-existing in the SWG(n, q) model and very small in the
3-SWG(n) model. Yet, though the two models have similar expected behaviors
and are good approximations of each other, our rigorous analysis shows that the
two models exhibit notably different thresholds.

As for the SWG(n, q) model, we show the following threshold behaviour of
the bond-percolation process.
2 We recall that the 3-SWG(n) model and random 3-regular graphs are contiguous,

i.e. each property that holds with probability 1 − o(1) on one of the two models,
holds with probability 1 − o(1) also in the other one [21].
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Theorem 1 (Percolation on the SWG(n, q) model). Let p > 0 be a bond
percolation probability. For any constant c > 0, sample a graph G = (V,E1 ∪E2)
from the SWG(n, c/n) distribution, and consider the percolation graph Gp. If we
define

pc =
√

c2 + 6c + 1 − c − 1
2c

we have that, for any constant ε > 0:

1. If p > pc + ε, w.h.p.3 a subset of nodes of size Ωε(n) exists that induces a
subgraph of Gp having diameter Oε(log n);

2. If p < pc − ε, w.h.p. all the connected components of Gp have size Oε(log n).

Some remarks are in order. In the theorem above, probabilities are taken both
over the randomness in the generation of the graph G and over the randomness
of the percolation process. We highlight the sharp result on the SWG(n, c/n)
model for the case c = 1: similarly to the regular 3-SWG(n) model, each node
here has one bridge edge in average, and the obtained critical value for the
percolation probability p turns out to be

√
2 − 1.

Sharp bounds on the percolation threshold for the 3-SWG(n) model have
been obtained by Goerdt in [19]. His analysis shows that such bounds hold with
probability 1 − o(1) (converging to 1 when the number of nodes in the graph
tends to infinity), while the analysis approach we introduce to obtain Theorem 1
also provides an alternative proof that achieves better concentration probability.

Theorem 2 (Percolation on the 3-SWG(n) model). Let p > 0 be a bond
percolation probability. Sample a graph G = (V,E1 ∪ E2) from the 3-SWG(n)
distribution, and consider the percolation graph Gp. For any constant ε > 0:

1. If p > 1/2 + ε, w.h.p. a subset of nodes of size Ωε(n) exists that induces a
connected subgraph (i.e. a giant connected component) of Gp;

2. If p < 1/2−ε, w.h.p. all the connected components of Gp have size Oε(log n).

A detailed comparison of the two models is provided in Subsect. 2.2, after
Theorem 2. An overall view of our analysis, leading to all the theorems above,
is provided in Sect. 4, while in the next subsection, we describe the main conse-
quences of our analysis for the Independent-Cascade protocol on the considered
small-world models.

2.2 Applications to Epidemic Processes

As remarked in Sect. 1, bond percolation with percolation probability p is equiv-
alent to the Reed-Frost process (for short, RF process) with transmission prob-
ability p. Informally speaking, the nodes at hop-distance t in the percolation
graph Gp, from any fixed source subset, are distributed exactly as those that
will be informed (and activated) at time t, according to the RF process.
3 As usual, we say that an event E holds with high probability (for short, w.h.p.) if a

constant γ > 0 exists such that Pr (E) > 1 − n−γ .
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In this setting, our analysis and results, we described in Subsect. 2.1, have
the following important consequences.

Theorem 3 (The RF process on the SWG(n, q) model). Let I0 ⊆ V be a
set of source nodes, and p > 0 a constant probability. For any constant c > 0,
sample a graph G = (V,E1 ∪ E2) from the SWG(n, c/n) distribution, and run
the RF process with transmission probability p over G from I0. If we define

pc =
√

c2 + 6c + 1 − c − 1
2c

,

for every ε > 0, we have the following:

1. If p > pc + ε, with probability Ωε(1) a subset of Ωε(n) nodes will be infectious
within time Oε(log n), even if |I0| = 1. Moreover, if |I0| ≥ β log n for a
sufficiently large constant β = β(ε), then the above event occurs w.h.p.;

2. If p < pc − ε, w.h.p. the process will stop within Oε(log n) time steps, and the
number of recovered nodes at the end of the process will be Oε(|I0| log n).

As for the 3-SWG(n) model, we get the following results for the Reed-Frost
process.

Theorem 4 (The RF process on the 3-SWG(n) model). Let V be a set of
n vertices, I0 ⊆ V be a set of source nodes, and p > 0 be a bond percolation
probability. Sample a graph G = (V,E1 ∪ E2) from the 3-SWG(n) distribution,
and run the RF protocol with transmission probability p over G from I0. For
every ε > 0, we have the following:

1. If p > 1/2 + ε, with probability Ωε(1), a subset of Ωε(n) nodes will be infec-
tious within time Oε(n), even if |I0| = 1. Moreover, if |I0| ≥ β log n for a
sufficiently large constant β = β(ε), then the above event occurs w.h.p.;

2. If p < 1/2 − ε, then, w.h.p., the process will stop within Oε(log n) time
steps, and the number of recovered nodes at the end of the process will be
Oε(|I0| log n).

We notice that the first claim of each of the above two theorems, concerning
the multi-source case, i.e. the case |I0| ≥ β log n), are not direct consequences of
(the corresponding first claims of) Theorems 1 and 2: although each element of
I0 has constant probability of belonging to the “giant component” of the graph
Gp, these events are not independent, and so it is not immediate that, when |I0|
is of the order of log n, at least an element of I0 belongs to the giant component
with high probability. Such claims instead are non-trivial consequences of our
technical analysis.

On the other hand, the second claims of the above two theorems are simple
consequences of the corresponding claims of Theorems 1 and 2.

From a topological point of view, because of a mix of local and random edges,
epidemic spreading in the above models proceeds as a sequence of outbreaks,
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a process that is made explicit in our rigorous analysis, where we see the emergence
of two qualitative phenomena that are present in real-world epidemic spreading.

One is that the presence of long-distance random connections has a stronger
effect on epidemic spreading than local connections, that, in epidemic scenarios,
might motivate lockdown measures that shut down long-distance connections.
This can be seen, quantitatively, in the fact that the critical probability in a cycle
is p = 1, corresponding to a critical basic reproduction number4 R0 equal to 2. On
the other hand, the presence of random matching edges or random Gn,c/n edges
in the setting c = 1 defines networks in which the critical R0 is, respectively, 1.5
and 3 · (√2 − 1) ≈ 1.24, meaning that notably fewer local infections can lead to
large-scale contagion on a global scale.

The other phenomenon is that the irregular networks of the SWG(n, c/n)
model in the case c = 1 show a significantly lower critical probability, i.e.

√
2−1 ≈

.41, than the critical value .5 of the nearly regular networks of the 3-SWG(n)
model, though they have the same number of edges (up to lower order terms)
and very similar distributions. As a further evidence of this phenomenon, we
remark the scenario yielded by the random irregular networks sampled from the
SWG(n, c/n) distribution with c even smaller than 1: for instance, the setting
c = .7, though yielding a much sparser topology than the 3-SWG(n) networks,
has a critical probability which is still smaller than .5. Moreover, this significant
difference between the SWG(n, c/n) model and the regular 3-SWG(n) one holds
even for more dense regimes. In detail, the almost-regular version of SWG in
which c independent random matchings are added to the ring of n nodes has
a critical probability 1/(c + 1)5. Then, simple calculus shows that the critical
probability given by Theorem 3 for the SWG(n, c/n) model is smaller than
1/(c + 1), for any choice of the density parameter c.

The most significant difference between the two distributions above is the
presence of a small number of high-degree vertices in SWG(n, c/n), suggest-
ing that even a small number of “super-spreader” nodes can have major global
consequences.

2.3 Extensions of Our Results for Epidemic Models

Non-homogenous Transmission Probability. Our techniques allow exten-
sions of our results to a natural non-homogenous bond-percolation process on
small-world graphs, in which local edges percolate with probability p1, while
bridges percolates with probability p2: our analysis in fact keeps the role of the
two type of connections above well separated from each other. We are inspired,

4 The quantity R0 in a SIR process is the expected number of people that an infectious
person transmits the infection to, if all the contacts of that person are susceptible.
In the percolation view of the process, it is the average degree of the percolation
graph Gp.

5 This result follows from the following two facts: the (c+2)-regular version of the SWG
model is contiguous to the random (c + 2)-regular model [21], and the threshold for
the latter obtained in [19].
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for instance, by epidemic scenarios in which the chances for any node to get
infected/informed by a local tie are significantly higher than those from spo-
radic, long ties.

In this non-homogenous setting, for the SWG(n, q) model with q = c/n for
some absolute constant c > 0, a direct consequence of our results is that, w.h.p.,
the Independent-Cascade protocol reaches Ω(n) nodes within O(log n) time iff
the following condition on the three parameters of the process is satisfied

p1 + c · p1p2 + c · p2 > 1 .

Some comments are in order. In the case c = 1, the formula above shows a
perfect symmetry in the role of the two bond probabilities p1 and p2. In a graph
sampled from SWG(n, 1/n), however, the overall number of local ties (i.e. ring
edges) is n, while the number of bridges is highly concentrated on n/2 (it is
w.h.p. � n/2 +

√
n log n). This means that a public-health intervention aimed

at reducing transmission has to suppress twice as much local transmissions in
order to obtain the same effect of reducing by a certain amount the number of
long-range transmissions. If we consider the case c = 2, in which the number of
bridges is about equal to the number of local edges, we see that the impact of a
change in p2 weighs roughly twice as much as a corresponding change p1.

So, even in the fairly unrealistic one-dimensional small-world model, it is pos-
sible to recover analytical evidences for the effectiveness of public-health mea-
sures that block or limit long-range mobility and super-events (such as football
matches, international concerts, etc.). The generalization to non-homogenous
transmission probabilities is provided in the full version of the paper [4].
Longer Node Activity and Incubation. Natural generalizations of the set-
ting considered in this work include models in which i) the interval of time
during which a node is active (i.e., the activity period) follows some (possi-
bly node-dependent) distribution and/or ii) once infected, a node only becomes
active after an incubation period, whose duration again follows some distribu-
tion. While the introduction of activity periods following general distributions
may considerably complicate the analysis, our approach rather straightforwardly
extends to two interesting cases, in which the incubation period of each node is
a random variable (as long as incubation periods are independent) and/or the
activity period of a node consists of k consecutive units of time, with k a fixed
constant. This generalized model with random, node-dependent incubation peri-
ods corresponds to a discrete, synchronous version of the SEIR model,6 which
was recently considered as a model of the COVID-19 outbreak in Wuhan [28].
These extensions are shown in the full version of the paper [4].
Roadmap. Due to the page limit, the paper is organized as follows. In Sect. 3
further related work is summarized, while the most related, important previous
contributions have been already mentioned in the previous sections. Section 4
gives an overall description of the main ideas and technical results behind our

6 With respect to SIR, for each node we have a fourth, Exposed state, corresponding
to the incubation period of a node.



484 L. Becchetti et al.

analysis of bond-percolation in one-dimensional small-world graphs. The full
proofs and the generalizations can be found in the full version of the paper [4].

3 Further Related Work

The fully-mixed SIR model [34] is the simplest SIR epidemiological model, and
it treats the number of people in each of the three possible states as continuous
quantities that evolve in time in accordance with certain differential equations.
In this setup, the evolution of the process is governed by the expected number
R0 of people that each infectious person would infect, if all the contacts of that
person were susceptible. If R0 < 1, the process quickly ends, reaching a state
with zero infectious people and a small number of recovered ones. If R0 > 1, the
process goes through an initial phase in which the number of infectious people
grows exponentially with time, until the number of recovered people becomes a
1 − 1/R0 fraction of the population (the herd immunity threshold); the number
of infectious people decreases after that, and eventually the process ends with a
constant fraction of the population in the recovered state.

If we consider the Reed-Frost process on a graph G that is a clique on n
vertices, then the percolation graph Gp is an Erdős-Rényi random graph with
edge probability sampled from Gn,p. Classical results from the analysis of ran-
dom graphs give us that if pn < 1 then, with high probability, all the connected
components of the graph have size O(log n), and so the set of vertices that is
reachable from I0 has cardinality at most O(|I0| · log n) and if pn > 1 then
there is a connected component of cardinality Ω(n), and, except with proba-
bility exponentially small in I0, at least one vertex of I0 belongs to the giant
component and is able to reach Ω(n) vertices. The parameter R0 of the fully
mixed continuous model corresponds to the average degree of Gp, which is pn if
Gp is distributed as Gn,p, so we see that the fully mixed continuous model agrees
with the Reed-Frost process on a clique.

A number of techniques have been developed to study percolation in graphs
other than the clique, and there is a vast body of work devoted to the study
of models of bond percolation and epidemic spreading, as surveyed in [34,37].
Below, we review analytical studies of such processes on finite graphs. As far as
we know, our results are the first rigorous ones to establish threshold phenomena
in small-world graphs for the bond-percolation process (and, thus, for the Reed-
Frost process).

There has been some previous work on studying sufficient conditions for the
RF process to reach a sublinear number of vertices.

In [15], for a symmetric, connected graph G = (V,E), Draief et al. prove a
general lower bound on the critical point for the IC process in terms of spectral
properties. Further versions of such bounds for special cases have been sub-
sequently derived in [26,27]. Specifically, if one lets P be the matrix such that
P (u, v) = p(u, v) is the percolation probability of the edge {u, v}, and P (u, v) = 0
if {u, v} �∈ E, and if one call λ the largest eigenvalue of P , then λ < 1− ε implies
that for a random start vertex s we have that the expected number of vertices
to which s spreads the infection is oε(n).



Percolation in One-Dimensional Small-World Networks 485

In the RF process, in which all probabilities are the same, P = p·A, where A is
the adjacency matrix of G, and so the condition is asking for p < (1−ε)/λmax (A).

This condition is typically not tight, and it is never tight in the “small-worlds”
graphs we consider:

– In the 3-SWG(n) model, the largest eigenvalue of the adjacency matrix is
3 − o(1), but the critical probability is 1/2 and not 1/3;

– In the SWG(n, 1/n) model of a cycle plus Erdős-Rényi edges, the largest
eigenvalue of the adjacency matrix is typically Ω(

√
log n/ log log n) because

we expect to see vertices of degree Ω(log n/ log log n) and the largest eigen-
value of the adjacency matrix of a graph is at least the square root of its
maximal degree. The spectral bound would only tell us that the infection
dies out if p = O(

√
log log n/ log n), which goes to zero with n. A better way

to use the spectral approach is to model the randomness of the small-world
graph and the randomness of the percolation together; in this case, we have
matrix P (u, v) such that P (u, v) = p for edges of the cycle and P (u, v) = p/n
for the other edges. This matrix has the largest eigenvalue 3p − o(1), so the
spectral method would give a probability of 1/3, while we can locate the
threshold at

√
2 − 1 ≈ .41.

We are not aware of previous rigorous results that provide sufficient condi-
tions for the IC process to reach Ω(n) nodes (either on average or with high
probability) in general graphs, or for the equivalent question of proving that
the percolation graph of a given graph has a connected component with Ω(n)
vertices.

A fundamental and rigorous study of bond percolation in random graphs has
been proposed by Bollobás et al. in [9]. They establish a coupling between the
bond percolation process and a suitably defined branching process. In the gen-
eral class of inhomogenous Erdős-Rényi random graphs, they derived the critical
point (threshold) of the phase transition and the size of the giant component
above the transition. The class of inhomogeneous random graphs to which their
analysis applies includes generative models that have been studied in the com-
plex network literature. For instance, a version of the Dubin’s model [16] can
be expressed in this way, and so can the mean-field scale-free model [10], which
is, in turn, related to the Barabási-Albert model [3], having the same individ-
ual edge probabilities, but with edges present independently. Finally, we observe
that the popular CHKNS model introduced by Callaway et al. [11] can be ana-
lyzed using an edge-independent version of this model. Indeed, they consider a
random graph-formation process where, after adding each node, a Poisson num-
ber of edges is added to the graph, again choosing the endpoints of these edges
uniformly at random. For all such important classes of random graph models,
they show tight bounds for the critical points and the relative size of the giant
component beyond the phase transition.

In our setting, if we sample a graph from SWG(n, q) and then consider the
percolation graph Gp, the distribution of Gp is that of an inhomogenous Erdős-
Rényi graph in which the cycle edges have probability p and the remaining
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edges have probability pq (the 3-SWG(n) model, however, cannot be expressed
as an inhomogenous Erdős-Rényi graph). Unfortunately, if we try to apply the
results of [9] to the inhomogeneous random graph equivalent to percolation with
parameter p in the SWG(n, q) model, we do not obtain tractable conditions on
the critical value p for which the corresponding graph has a large connected
component of small diameter, which is the kind of result that we are interested
in proving.

Bond percolation and the IC process on the class of one-dimensional small-
world networks have been studied in [30]: using numerical approximations on
the moment generating function, non-rigorous bounds on the critical threshold
have been derived while analytical results are given neither for the expected
size of the number of informed nodes above the transition phase of the process
nor for its completion time. Further non-rigorous results on the critical points
of several classes of complex networks have been derived in [26,27] (for good
surveys see [34,37]).

In [6–8], different versions of the bond percolation process has been studied
in small-world structures formed by a d-dimensional grid augmented by random
edges that follow a power-law distribution: a bridge between points x and y is
selected with probability ∼ 1/dist(x, y)α, where dist(x, y) is the grid distance
between x and y and α is a fixed power-law parameter. Besides other aspects,
each version is characterized by: (1) whether the grid is infinite or finite, and
(2) whether the grid edges (local ties) do percolate with probability p or not.
Research in this setting has focused on the emergence of a large connected com-
ponent and on its diameter as functions of the parameters d and α, while, to
the best of our knowledge, no rigorous threshold bounds are known for the bond
percolation probability p. In [5], the authors study the bond percolation process
when d = 1 as α changes: they identify three different behaviors depending on
α, and for each of these they give an approximation of the percolation threshold.

In the computer science community, to the best of our knowledge, Kempe
et al. [23] were the first to investigate the IC process from an optimization
perspective, in the context of viral marketing and opinion diffusion. In particular,
they introduced the Influence Maximization problem, where the goal is to find
a source subset of k nodes of an underlying graph to inform at time t = 0, so
as to maximize the expected number of informed nodes at the end of the IC
process. They prove this is an NP -hard problem and show a polynomial time
algorithm achieving constant approximation. Further approximation results on
a version of Influence Maximization in which the completion time of the process
is considered can be found in [13,29].

4 Overview of Our Analysis

A standard technique in bond percolation, applied for example to percolation in
infinite trees and in random graphs, is to analyze the process of running a BFS
in the percolation graph, delaying decisions about the percolation of edges from
a node w to unvisited vertices until the time w is taken out of the BFS queue.
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In random graphs and infinite trees, the distribution of unvisited neighbors of w
in the percolation graph remains simple, even conditioned on previous history,
and one can model the size of the BFS queue as a Galton-Watson process, thus
reducing the percolation analysis to standard results about branching processes.
Let us briefly recall the definition of the Galton-Watson branching process.

Definition 3 (Galton-Watson Branching Process). Let W be a non-
negative integer valued random variable, and let {Wt}t≥1 be an infinite sequence
of i.i.d. copies of W . The Galton-Watson Branching Process generated by W is
the process {Bt}t≥0 defined by the recursion

Bt =

⎧
⎪⎨

⎪⎩

1 if t = 0
Bt−1 + Wt − 1 if t > 0 and Bt−1 > 0
0 if t > 0 and Bt−1 = 0.

(1)

We define σ = min{t > 0 : Bt = 0} (if no such t exists we set σ = +∞).

A standard result about branching process is summarized in the following the-
orem.

Theorem 5 ([2]). Let {Bt}t≥0 be a Galton-Watson Branching Process gener-
ated by the integer valued random variable W . Then

1. If E [W ] < 1, the process dies with probability 1, i.e. Pr (σ < +∞) = 1;
2. If E [W ] > 1, there exists a constant c > 0 s.t. Pr (σ = +∞) > c.

Basically, the above theorem implies that, if the number of vertices that we
add at each step to the queue is less than one on average, the visit will reach on
average a constant number of vertices, and if it is more than one and the graph
is infinite the visit will reach on average an infinite number of vertices.

4.1 Analysis of Bond Percolation in the SWG(n, q) Model

In this section, we describe the key ingredients of our analysis of the SWG(n, q)
model proving Theorems 1 and 3.

It would be very difficult to analyze a BFS exploration of the percolation
graph of SWG(n, q), since the distribution of unvisited neighbors of a vertex
w in the percolation graph is highly dependent on the previous history of the
BFS (in particular, it matters whether none, one, or both of the neighbors of
w along the cycle are already visited). Instead, and this is one of the technical
innovations of our work, we define a modified BFS visit whose process is more
tractable to analyze.

The main idea of our modified BFS is that in one step we do the following:
after we pull a node w from the queue, we first look at the neighbors x of w
that are reachable through bridge edges in the percolation graphs; then, for each
“bridge neighbor” x of w, we visit the “local cluster” of x, that is, we explore
the vertices reachable from x along paths that only consist of edges of the cycle
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Fig. 1. The figure shows an example in which the visit first proceeds from a node w
extracted from the queue to a new node x over a bridge of the percolation graph and
then reaches further nodes, starting from x and proceeding along ring edges of the
percolation graph.

that are in the percolation graph (we indicate the local cluster of x with LC(x));
finally, we add to the queue all non-visited vertices in the local clusters of the
bridge neighbors of w. These steps are exemplified in Fig. 1.

In fact, if we delay decisions about the random choice of the bridge edges
and the random choices of the percolation, then we have a good understanding
of the following two key random variables:

1. the number of bridge neighbors x of w along percolated bridge edges, which
are, on average pqn′ if the graph comes from SWG(n, q), p is the percolation
probability, and n′ is the number of unvisited vertices at that point in time;

2. the size of the “local cluster” of each such vertex x, that is of the vertices
reachable from x along percolated cycle edges, which has expectation

E [LC(x)] = (1 + p)/(1 − p) . (2)

Intuitively, we would hope to argue that in our modified visit of a graph
sampled from SWG(n, q) to which we apply percolation with probability p, the
following happens in one step: we remove one node from the queue, and we add
on average

N = pqn′ · (1 + p)/(1 − p) (3)

new nodes. As long as n′ = n−o(n) we can approximate n′ with n, so the number
n − n′ of visited vertices is Ω(n). This way, we would have modeled the size of
the queue with a Galton-Watson process and we would be done. The threshold
behavior would occur at a p such that pqn · (1 + p)/(1 − p) = 1. A smaller value
of p would imply that we remove one node at every step and, on average, add
less than one node to the queue, leading the process to die out quickly. A larger
value of p would imply that we remove one node at every step and, on average,
add more than one node to the queue, leading the process to blow up until we
reach Ω(n) vertices.

We are indeed able to prove this threshold behavior, at least for q = c/n
for constant c. However, we encounter significant difficulty in making this idea
rigorous: if we simply proceeded as described above, we would be double-counting
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vertices, because in general, the “local cluster” of a node added to the queue at a
certain point may collide with the local cluster of another node added at a later
point. This may be fine as long as we are trying to upper bound the number of
reachable vertices, but it is definitely a problem if we are trying to establish a
lower bound.

To remedy this difficulty, we truncate the exploration of each local cluster
at a properly chosen constant size L (we denote as LCL(x) the truncated local
cluster of a node x). In our visit, we consider only unvisited neighbors x of w
that are sufficiently far along the cycle from all previously visited vertices so
that there is always “enough space” to grow a truncated local cluster around x
without hitting already visited vertices. In more detail, we introduce the notion
of “free node” used in the algorithm and its analysis.

Definition 4 (free node). Let GSW = (V,E1∪E2) be a small-world graph and
let L ∈ N. We say that a node x ∈ V is free for a subset of nodes X ⊆ V if x
is at distance at least L + 1 from any node in X in the subgraph (V,E1) induced
by the edges of the ring.

Thanks to the above definition, we can now formalize our modified BFS.

Algorithm 1. Sequential L-visit
Input: A small-world graph GSW = (V, ESW); a subgraph H of GSW; a set of initiators
I0 ⊆ V ;

1: Q = I0
2: R = ∅
3: while Q �= ∅ do
4: w = dequeue(Q)
5: R = R ∪ {w}
6: for each bridge neighbor x of w in H do
7: if x is free for R ∪ Q in GSW then
8: for each node y in the L-truncated local cluster LCL(x) do
9: enqueue(y, Q)

To sum up, the L-truncation negligibly affects the average size of local clus-
ters, the restriction to a subset of unvisited vertices negligibly affects the distri-
bution of unvisited neighbors, and the analysis carries through with the same
parameters and without the “collision of local clusters” problem.

In more detail, thanks to the arguments we described above, from (2) and (3),
we can prove that, if p is above the critical threshold pc =

√
c2+6c+1−c−1

2c , then,
with probability Ω(1), the connected components of Gp containing the initiator
subset have overall size Ω(n). In terms of our BFS visit in Algorithm 1, we in
fact derive the following result7 (its full proof is in the full version of the paper).

7 We state the result for the case |I0| = 1.
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Lemma 1. Assume that we are under the hypothesis of Theorem 1. Let s ∈ V an
initiator node. If p > pc+ε, there are positive parameters L = L(c, ε), k = k(c, ε),
t0 = t0(c, ε), ε′ = ε′(c, ε), and γ = γ(c, ε) such that the following holds. Run
the Sequential L-visit procedure in Algorithm 1 on input (G,Gp, s): if n is
sufficiently large, for every t larger than t0, at the end of the t-th iteration of the
while loop we have

Pr (|R ∪ Q| ≥ n/k OR |Q| ≥ ε′t) ≥ γ .

The truncation is such that our modified BFS does not discover all vertices
reachable from I0 in the percolation graph, but only a subset. However, this is
sufficient to prove lower bounds to the number of reachable vertices when p is
above the threshold. Proving upper bounds, when p is under the threshold (i.e.,
the second claims of Theorems 1 and 3) is easier because, as mentioned, we can
allow double-counting of reachable vertices.

The above line of reasoning is our key idea, when p is above the threshold,
to get Ωε(1) confidence probability for: (i) the existence of a linear-size, induced
connected subgraph in Gp (i.e., a “weaker” version of Claim 1 of Theorem 1), and
(ii) the existence of a large epidemic outbreak, starting from an arbitrary source
subset I0 (i.e., Claim 1 of Theorem 3). In the full description of this analysis, we
also describe the further technical steps to achieve high-probability for event (i)
and, also, for event (ii) when the size of the source subset is |I0| = Ω(log n).

Bounding the Number of Hops: Parallelization of the BFS Visit. To get
bounds on the number of the BFS levels, we study the BFS-visit in Algorithm 1
only up to the point where there are Ω(log n) nodes in the queue (this first phase
is not needed if I0 already has size Ω(log n)), and then we study a “parallel”
visit in which we add at once all nodes reachable through an L-truncated local
cluster and through the bridges from the nodes currently in the queue, skipping
those that would create problems with our invariants: to this aim, we need a
stronger version of the notion of free node.

Here we can argue that, as long as the number of visited vertices is o(n), the
number of nodes in the queue grows by a constant factor in each iteration, and
so we reach Ω(n) nodes in O(log n) number of iterations that corresponds to
O(log n) distance from the source subset in the percolation graph Gp.

A technical issue that we need to address in the analysis of our parallel visit is
that the random variables that count the contribution of each L-truncated local
cluster, added during one iteration of the visit, are not mutually independent.
To prove concentration results for this exponential growth, we thus need to show
that such a mutual correlation satisfies a certain local property and then apply
suitable bounds for partly-dependent random variables [20]
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1 Université Sorbonne Paris Nord – LIPN – CNRS, UMR 7030, Villetaneuse, France
Olivier.Bodini@lipn.univ-paris13.fr
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Abstract. In this paper we study a model of Schröder trees whose
labelling is increasing along the branches. Such tree family is useful in
the context of phylogenetic. The tree nodes are of arbitrary arity (i.e.
out-degree) and the node labels can be repeated throughout different
branches of the tree. Once a formal construction of the trees is formal-
ized, we then turn to the enumeration of the trees inspired by a renormal-
isation due to Stanley on acyclic orientations of graphs. We thus exhibit
links between our tree model and labelled graphs and prove a one-to-
one correspondence between a subclass of our trees and labelled graphs.
As a by-product we obtain a new natural combinatorial interpretation
of Stanley’s renormalising factor. We then study different combinatorial
characteristics of our tree model and finally, we design an efficient uni-
form random sampler for our tree model based on the classical recursive
generation method.

Keywords: Evolution process · Schröder trees · Increasing trees ·
Monotonic trees · Labelled graphs · Combinatorics · Uniform sampling

1 Introduction

Increasing trees are ubiquitous in combinatorics especially because they aim at
modelling various classical phenomena: phylogenetics, the frequencies of family
names or the graph of the Internet [24] for example. Meir and Moon [19] studied
the distance between nodes in their now classical model of recursive trees. Berg-
eron et al. [1] studied several families of increasingly-labelled trees for a wide
range of models embedded in the simple families of trees. We also refer to [7]
where recent results on various families of increasing trees and the methods to
study them, from a quantitative point of view, are surveyed.

Increasing trees can often be described as the result of a dynamical construc-
tion: the nodes are added one by one at successive integer-times in the tree (their
labels being the time when they are added). This dynamical process sometimes
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allows us to apply probabilistic methods to show results about different charac-
teristics on the trees and often gives an efficient way to uniformly sample large
trees using simple, iterative and local rules.

In the recent years, many links were found between evolution processes in
the form of increasing trees and classical combinatorial structures, for instance
permutations are known to be in bijection with increasing binary trees [10, p.
143], increasing even trees and alternating permutations are put in bijection
in [5,16], plane recursive trees are related to Stirling permutations [15] and more
recently increasing Schröder trees have been proved in one-to-one correspondence
with even permutations and with weak orderings on sets of n elements (counted
by ordered Bell numbers) in [2,3]. By adding some constraint in the increasing
labelling of the latter model, Lin et al. [17] exhibited closed relationships between
various families of polynomials (especially Eulerian, Narayana and Savage and
Schuster polynomials).

The theory of analytic combinatorics developed in [10] gives a framework to
study many classes of discrete structures by applying principles based on the now
classical symbolic method. In various situations we get direct answers to questions
concerning the count of the number of objects, the study of typical shapes and
the development of methods for the uniform sampling of objects. Using this
approach we explore links between labelled directed graphs and an evolution
process that generates increasing trees seen as enriched Schröder trees. Schröder
in [23] studied trees with possible multifurcations to model phylogenetic. The
trees he studied were counted by their number of leaves which represent the
number of species. We pursue enriching Schröder trees in the same vein as [2,3]
but with a more general model.

Our evolution process can be reinterpreted as a builder for phylogenetic tree
that represents the evolutionary relationship among species. At each branching
node of the tree, the descendant species from distinct branches have distinguished
themselves in some manner and are no more dependent: the past is shared but
the futures are independent. For more information on the phylogenetic links the
reader may refer to the thesis [20].

The study of this evolution process leads to unexpected links between our
trees and labelled graphs: we then prove a bijection between both families of
structures. The links we find also give a new combinatorial interpretation of the
renormalisation factor that Stanley used in [25] based on ideas of [6] and more
recently for graphic generating functions e.g. in [13,22].

Our Main Contributions: A study of an evolution process that produces
increasing trees with label repetitions. The study of this evolution process using
tools of analytic combinatorics produces functional equations for generating
functions that are divergent. Next, using a renormalisation we provide a quanti-
tative study for the enumeration problem and the asymptotic analysis of several
parameters. After that, we introduce a one-to-one correspondence between a
sub-family of our increasing trees and labelled graphs. Finally, we design a very
efficient unranking method for the sampling for such increasing trees which easily
translates to a uniform random sampler for the trees.
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This work is part of a long term project, in which we aim at relaxing the
classical rules of increasing labelling (described in, e.g., [1]), by allowing label
repetitions in the tree.

In Table 1 we provide the main statistics of our enriched Schröder tree model
that we will call strict monotonic general tree model. Due to its relationship with
Schröder trees the size of a tree is given by its number of leaves, independently
of its number of internal nodes.

Table 1. Main analytic results for the characteristics of a large typical tree. n stands
for the size of the trees and the results are asymptotic when n → +∞.

Number of trees Average number

of distinct labels

Average number

of internal nodes

Average height

Strict monotonic

general trees

c (n − 1)!

· 2(n−1)(n−2)/2
Θ(n) Θ(n2) Θ(n)

Plan of the Paper: The paper is organized as follows. First, in Sect. 2 we
present our evolution process and then extract from it a general recursive formula
to count the number of trees of a given size. We end this section by giving
the statement of Theorem 2 on the asymptotic enumeration of the trees. We
postpone the proof to next section. Next, in Sect. 3 we count the trees according
to their sizes, we also study the distribution of the number of iteration steps to
construct the trees of a given size. As a result, we can simply prove Theorem 2
and give detailed characteristics of the shape of large trees. Based on the previous
results, in Sect. 4 we make quantitative studies of several tree parameters: the
number of internal labels and the height of the trees. We then turn to show the
relationship between our trees and labelled graphs. We exhibit a bijection in
Sect. 5. Finally, in Sect. 6 we design an unranking method for the sampling of
strict monotonic general trees.

2 The Model and Its Enumeration

Definition 1. A strict monotonic general tree is a labelled tree constructed by
the following evolution process:

– Start with a single (unlabelled) leaf.
– At every step � ≥ 1, select a non-empty subset of leaves, replace all of them

by internal nodes labelled by �, attach to at least one of them a sequence of
two leaves or more, and attach to all others a unique leaf.

The two trees in Fig. 1 are sampled uniformly among all strict monotonic gen-
eral trees of respective sizes (i.e. number of leaves) 15 and 500. The left-hand-side
tree has 14 distinct node-labels, i.e. it can be built in 14 steps using Definition 1.
The right-hand-side tree is represented as a circular tree with stretched edges:
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Fig. 1. Two strict monotonic general trees, with respective sizes 15 and 500

the length of an edge is proportional to the label difference of the two nodes
it connects. Here the tree contains 500 leaves built with 499 iterations of the
growth process. Thus the maximal arity is 2. This tree contains 62494 internal
nodes almost all of them (except 499) being unary nodes.

We can specify strict monotonic general trees using the symbolic method [10];
the internal node labelling is transparent and does not appear in the specification
in consequence, we use ordinary generating functions. We denote by F (z) the
generating function of strict monotonic general trees and by Fn the set of all
strict monotonic general trees of size n; from Definition 1, we get

F (z) = z + F

(
z +

z

1 − z

)
− F (2z). (1)

The combinatorial meaning of this specification is the following: A tree is
either a single leaf, or it is obtained by taking an already constructed tree, and
then each leaf is either replaced by a leaf (i.e. there is no change) or by an
internal node attached to a sequence of at least one leaf. Furthermore we omit
the case where no leaf is replaced by an internal node with at least two children
(this is encoded in the subtracting F (2z)).
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From this equation we extract the recurrence for the number fn of strict
monotonic general trees with n leaves. In fact we get

fn = [zn]F (z) = [zn]
(

z + F

(
z +

z

1 − z

)
− F (2z)

)

= δn,1 − 2nfn + [zn]
∑
�≥1

f�

(
2z +

z2

1 − z

)�

= δn,1 − 2nfn +
∑
�≥1

f� [zn−�]
�∑

i=0

(
�

i

)
2�−i

(
z

1 − z

)i

,

which implies that

fn =

⎧⎨
⎩

1 if n = 1,
n−1∑
�=1

min(n−�,�)∑
i=1

(
�
i

) (
n−�−1

i−1

)
2�−i f� for all n ≥ 2.

(2)

The inner sum can be explained combinatorially: starting with a tree of size � we
reach a tree of size n in one iteration by adding n − � leaves. The index i in the
inner sum stands for the number of leaves that are replaced by internal nodes
or arity at least 2, by definition of the model we have 1 ≤ i ≤ min(n − �, �).
There are

(
�
i

)
possible choices for the i leaves that are replaced by nodes of

arity at least 2. Each of the remaining � − i leaves is either kept unchanged or
replaced by a unary node, which gives 2�−i possible choices. And finally, there
are

(
n−�−1

i−1

)
possible ways to distribute the (indistinguishable) n − � additional

leaves among the i new internal nodes so that each of the i nodes is given at least
one additional leaf (it already has one leaf, which is the leaf that was replaced
by an internal node). The first terms of the sequence are the following:

(fn)n≥0 = (0, 1, 1, 5, 66, 2209, 180549, 35024830, 15769748262, . . . ) .

Theorem 2. There exists a constant c such that the number fn of strict mono-
tonic general trees of size n satisfies, asymptotically when n tends to infinity,

fn ∼
n→∞ c (n − 1)! 2

(n−1)(n−2)
2 ,

with 1.4991 < c < 8.9758.

Through several experimentations we note that c is smaller than 3/2 but it is
close to it. For instance when n = 1000, we get c ≈ 1.49913911. We postpone
the proof to the next section to make use of the number of iteration steps.

3 Iteration Steps and Asymptotic Enumeration

In this section, we look at the number of distinct internal-node labels that occur
in a typical strict monotonic general tree, i.e. the number of iterations needed
to build it.
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Proposition 1. Let fn,k denotes the number of strict monotonic general trees
of size n with k distinct node-labels, then, for all n ≥ 1,

fn,n−1 = (n − 1)! 2
(n−1)(n−2)

2 .

Note that the first terms are

(fn,n−1)n≥0 = (0, 1, 1, 4, 48, 1536, 122880, 23592960, 10569646080, . . . ) .

This is a shifted version of the sequence OEIS A011266 used by Stanley in [25]
that is in relation with acyclic orientations of graphs. In particular fn+1,n is the
renormalisation he used in the generating function context.

Proof. We use a new variable u to mark the number of iterations (i.e. the number
of distinct node-labels) in the iterative Eq. (1). We get

F (z, u) = z + u F

(
z +

z

1 − z
, u

)
− u F (2z, u). (3)

Using either Eq. (3) or a direct combinatorial argument, we get that, for all
k ≥ n, fn,k = 0 and

fn,k =

⎧⎨
⎩

1 if n = 1 and k = 0,
n−1∑
�=k

min(n−�,�)∑
i=1

(
�
i

)
2�−i

(
n−�−1

i−1

)
f�,k−1 if 1 ≤ k < n.

In particular, for k = n − 1, we get fn,n−1 = (n − 1) 2n−2 fn−1,n−2. Solving the
recurrence we get

fn,n−1 = f1,0

n−1∏
j=1

j 2j−1 = (n − 1)! 2
∑n−2

j=0 j = (n − 1)! 2
(n−1)(n−2)

2 ,

because f1,0 = 1. This concludes the proof. ��
Note that alternatively the recurrence of fn,n−1 can be obtained by extracting

the coefficient [zn] in the following functional equation T (z) = z + z2 T ′(2z).

Lemma 1. Both sequences (fn) and (fn,n−1) have the same asymptotic
behaviour up to a multiplicative constant.

Proof. Let us start with the definition of a new sequence

gn =
{

1 if n = 1,
fn/fn,n−1 otherwise.

This sequence gn satisfies the following recurrence:

gn =

⎧⎨
⎩

1 if n = 1,
n−1∑
�=1

min(n−�,�)∑
i=1

(
�
i

)
2�−i

(
n−�−1

i−1

)
g�

(�−1)! 2(�−1)(�−2)/2

(n−1)! 2(n−1)(n−2)/2 otherwise.

https://oeis.org/A011266
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When n > 1, extracting the term gn−1 from the sum we get

gn = gn−1 +
n−2∑
�=1

min(n−�,�)∑
i=1

(
�

i

)
2�−i

(
n − � − 1

i − 1

)
g�

(� − 1)! 2(�−1)(�−2)/2

(n − 1)! 2(n−1)(n−2)/2
.

Since all summands are non-negative, this implies that gn ≥ gn−1, and thus that
this sequence is non-decreasing. To prove that this sequence converges, it only
remains to prove that it is (upper-)bounded.

Equation (2) implies that, for n ≥ 2,

fn ≤
n−1∑
�=1

2�−1

min(n−�,�)∑
i=1

(
�

i

) (
n − � − 1

i − 1

)
f�.

Chu-Vandermonde’s identity states that, for all � ≤ n,

min(n−�,�)∑
i=1

(
�

i

) (
n − � − 1

i − 1

)
=

(
n − 1
� − 1

)
.

This implies the following upper-bound for fn:

fn ≤
n−1∑
�=1

2�−1

(
n − 1
� − 1

)
f� =

n−1∑
�=1

2n−�−1

(
n − 1

�

)
fn−�.

Using the same argument for gn we get

gn ≤ gn−1 +
n−1∑
�=2

2(�−1)(�−2n+2)/2

�!
gn−�.

We look at the exponent of 2 in the sum: For all � ≥ 2 (as in the sum), we have
2� ≥ � + 2, and thus 2n − � − 2 ≥ 2(n − �). This implies that for all � ≥ 2,
(� − 1)(� − 2n + 2)/2 ≤ −(n − �), and thus that

gn ≤ gn−1 +
n−1∑
�=2

1
�! 2n−�

gn−�.

Since the sequence (gn)n is non-decreasing, we obtain

gn ≤ gn−1 +
gn−1

2n

n−1∑
�=2

2�

�!
≤ gn−1 + gn−1

e2 − 3
2n

.

We set α = e2 − 3. Iterating the last inequality, we get that

gn ≤ gn−1

(
1 +

α

2n

)
≤ g1

n∏
i=2

(
1 +

α

2i

)
= exp

(
n∑

i=2

ln
(
1 +

α

2i

))
,
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because g1 = 1. Note that, when i → +∞, we have ln(1+α2−i) ≤ α2−i (because
ln(1 + x) ≤ x for all x ≥ 0). This implies that, for all n ≥ 1,

gn ≤ exp

(
α

∞∑
i=2

2−i

)
= exp(α/2) ≈ 8.975763927.

In other words, the sequence (gn)n is bounded. Since it is also non-decreasing,
it converges to a constant c, which is also non-zero since gn ≥ g1 
= 0 for all
n ≥ 1. This is equivalent to fn ∼ cfn,n−1 when n → +∞ as claimed. To get a
lower bound on c, note that, for all n ≥ 1, c ≥ gn ≥ g1000 = f1000/f1000,999 ≈
1.49913911. ��

The proof of Lemma 1 gives also the one of Theorem 2. This result means
that asymptotically a constant fraction of the strict monotonic general trees of
size n are built in (n − 1) steps. For these trees, at each step of construction
only one single leaf expands into a binary node. All other leaves either become
a unary node or stay unchanged, meaning that on average half of the leaves will
expand into unary node with one leaf expanding into a binary node. The number
of internal nodes of these trees then grows like n2

/4.

4 Analysis of Typical Parameters

In this section we are interested in typical parameters describing the structure
of large monotonic general trees. The proofs of next three Theorems have the
same structure: an upper bound derived from strict bounds on all trees and a
lower bound following mean analysis strict monotonic general trees.

4.1 Quantitative Analysis of the Number of Internal Nodes

Theorem 3. Let IF
n be the number of internal nodes in a tree taken uniformly

at random among all strict monotonic general trees of size n. Then for all n ≥ 1,
we have

(n − 1)(n + 2)
2c

≤ E[IF
n ] ≤ (n − 1)n

2
.

To prove this theorem, we use the following proposition.

Proposition 2. Let us denote by sn,k the number of strict monotonic general
trees of size n that have n − 1 distinct node-labels and k internal nodes. For all
n ≥ 1 and k ≥ 0,

sn,k = (n − 1)!
(

(n − 1)(n − 2)/2
k − (n − 1)

)
,

and thus, if IS
n is the number of internal nodes in a tree taken uniformly at

random among all strict monotonic general trees of size n that have n−1 distinct
label nodes, then, for all n ≥ 1,

E[IS
n ] =

(n − 1)(n + 2)
4

.



Labelled Graphs and Increasingly Labelled Schröder Trees 501

We are now ready to prove the main theorem of this section.

Proof (of Theorem 3). Note that the number of internal nodes of a strict mono-
tonic general tree of size n belongs to {1, . . . , n(n − 1)/2}. The upper bound
follows directly from an induction. A tree of size 1 contains 0 internal node.
Suppose for all i < n that the maximal number of internal node for a tree
of size i to be i(i − 1)/2. We take a size-n tree and we are interested in the
maximal number of internal nodes it contains. Let us denote by � the maximal
internal node label. We remove all leaves of internal nodes labelled by � and
this nodes are becoming leaves. The resulting tree has size 1 ≤ i < n and by
induction contains at most i(i − 1)/2 internal nodes. The maximal number of
internal nodes that were labelled by � is i, thus the initial tree contained at most
i(i − 1)/2 + i = i(i + 1)/2 ≤ n(n − 1)/2. internal nodes.

For the lower bound, we denote by Sn the set of strict monotonic general
trees of size n that have n − 1 distinct node-labels. Moreover, we denote by tn a
tree taken uniformly at random in Fn, and by IF

n its number of internal nodes.
We have, for all n ≥ 1,

E[IF
n ] = E[IF

n | tn ∈ Sn] · P(tn ∈ Sn) + E[IF
n | tn /∈ Sn] · P(tn /∈ Sn)

≥ E[IF
n | tn ∈ Sn] · P(tn ∈ Sn) = E[IS

n ] · fn,n−1

fn
,

where we have used conditional expectations and the fact that conditionally on
being in Sn, tn is uniformly distributed in this set, and, in particular, E[IF

n | tn ∈
Sn] = EIS

n . Using Proposition 2 and the upper bound of Lemma 1, we thus get

E[IF
n ] ≥ 1

c

(n − 1)(n + 2)
4

,

which concludes the proof. ��

4.2 Quantitative Analysis of the Number of Distinct Labels

Theorem 4. Let XF
n denote the number of distinct internal-node labels (or con-

struction steps) in a tree taken uniformly at random among all strict monotonic
general trees of size n, then for all n ≥ 1,

n − 1
c

≤ E[XF
n ] ≤ n − 1.

Proof. First note that since at every construction step in Definition 1 we add
at least one leaf in the tree, then after � construction steps, there are exactly �
distinct labels and at least � + 1 leaves in the tree. Therefore, n ≥ XF

n + 1 for
all n ≥ 1, which implies in particular that E[Xn] ≤ n − 1, as claimed.

For the lower bound, we reason as in the proof of Lemma 1, and using the
same notations:

E[XF
n ] ≥ E[XF

n | tn ∈ Sn] · P(tn ∈ Sn) = (n − 1)
fn,n−1

fn
,
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because E[XF
n | tn ∈ Sn] = n − 1 by definition of Sn (being the set of all strict

monotonic general trees of size n that have n − 1 distinct node-labels). Using
the upper bound of Lemma 1 gives that E[XF

n ] ≥ (n−1)/c, which concludes the
proof. ��

4.3 Quantitative Analysis of the Height of the Trees

Theorem 5. Let HF
n denotes the height of a tree taken uniformly at random

in Fn, the set of all strict monotonic general trees of size n. Then we have, for
all n ≥ 0,

n

2c
≤ E[HF

n ] ≤ n − 1.

To prove this theorem, we first prove the following:

Proposition 3. Let us denote by HS
n the height of a tree taken uniformly at

random in Sn, the set of all strict monotonic general trees of size n that have
n − 1 distinct labels. Then we have, for all n ≥ 0,

n

2
≤ E[HS

n ] ≤ n − 1.

Proof. Define the sequence of random trees (tn)n≥0 recursively as: t1 is a single
leaf; and given tn−1, we define tn as the tree obtained by choosing a leaf uniformly
at random among all leaves of tn−1, replacing it by an internal nodes to which
two leaves are attached, and, for each of the other leaves of tn−1, choose with
probability 1/2 (independently from the rest) whether to leave it unchanged or
to replace it by a unary node to which one leaf is attached.

One can prove by induction on n that for all n ≥ 1, tn is uniformly distributed
in Sn. We denote by Hn the height of tn and therefore Hn

d= HS
n . Since the height

of tn is at most the height of tn−1 plus 1 for all n ≥ 2, we get that Hn ≤ n − 1.
For the lower bound, we note that, for the height of tn to be larger than

the height of tn−1, we need to have replaced at least one of the maximal-height
leaves in tn−1. There is at least one leaf of tn−1 which is at height Hn−1 and
this leaf is replaced by an internal node with probability

1
2

(
1 − 1

n − 1

)
+

1
n − 1

≥ 1
2
.

Therefore, for all n ≥ 1, we have

P(Hn = Hn−1 + 1) ≥ 1
2
,

which implies, since Hn ∈ {Hn−1,Hn−1 + 1} almost surely,

E[Hn] = E[Hn−1] + P(Hn = Hn−1 + 1) ≥ E[Hn−1] +
1
2
.

Therefore, for all n ≥ 1, we have E[Hn] ≥ E[H0] + n/2 = n/2, as claimed. ��
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Proof (of Theorem 5). By Definition 1, it is straightforward to see that the height
of a tree built in � steps is at most � since the height increases by at most one
per construction step. Since a tree of size n is built in at most n − 1 steps, we
get that HF

n ≤ n − 1, which implies, in particular, that E[HF
n ] ≤ n − 1.

For the lower bound, note that, if tn is a tree taken uniformly at random
in Fn and HF

n is its height, then

E[HF
n ] ≥ E[HF

n |tn ∈ Sn] · P(X ∈ Sn) ≥ 1
c
E[HS

n ],

where we have used Proposition 1 and the fact that tn conditioned on being in
Sn is uniformly distributed in this set and thus E[HF

n | tn ∈ Sn] = EHS
n . By

Proposition 3, we thus get E[HF
n ] ≥ n/(2c), as claimed. ��

4.4 Quantitative Analysis of the Depth of the Leftmost Leaf

Theorem 6. Let us denote by DF
n the depth of the leftmost leaf of a tree taken

uniformly at random in Fn, the set of all strict monotonic general trees of size n.
Then we have, for all n ≥ 0,

n

2c
≤ E[HF

n ] ≤ n − 1.

Proposition 4. Let us denote by DS
n the depth of the leftmost leaf of a tree

taken uniformly at random in Sn, the set of all strict monotonic general trees of
size n that have n − 1 distinct labels. Then we have, for all n ≥ 0,

n

2
≤ E[DS

n ] ≤ n − 1.

Proof. Given the uniform process of trees tn presented in Proposition 3. The
depth of the leftmost leaf is always smaller than n − 1. Let Xn be a Bernoulli
variable taking value 1 if the leftmost leaf of tn has been expanded at iteration
n and the value 0 otherwise. Then for n ≥ 1,

P (Xn = 1) =
1
n

+
(n − 1)

n

1
2

=
n + 1
2n

≥ 1
2
.

Since at each iteration step either the leftmost leaf expand to make a binary
node which gives 1

n or it has not created a binary and then it has 1
2 probability

to make a unary node. The depth of the leftmost leaf is DS
n =

n∑
k=1

Xk. Therefore

for n ≥ 1,
E[DS

n ] ≥ n

2
.

Which concludes the proof. ��
Proof (of Theorem 6). By the same arguments than in Theorem 5 the result
follows directly since we have the same bounds on the depth of leftmost leaf as
we had in the height of the tree. ��
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5 Correspondence with Labelled Graphs

In Sect. 3 we defined fn,k the number of strict monotonic general trees of size n
with exactly k distinct node-labels. Then we have shown that, for all n ≥ 1,

fn,n−1 = (n − 1)! 2
(n−1)(n−2)

2 .

The factor 2(n−1)(n−2)/2 = 2(n−1
2 ) in the context of graphs with n − 1 vertices

counts the different combinations of undirected edges between vertices. The fac-
tor (n− 1)! accounts for all possible permutations of vertices. We will denote Sn

to be the trees that fn,n−1 counts and exhibit a bijection between strict mono-
tonic general trees of S = ∪n≥1Sn with a class of labelled graphs with n − 1
vertices defined in the following.

For all n ≥ 1, we denote by Gn the set of all labelled graphs (V, �, E) such that
V = {1, . . . , n}, E ⊆ {{i, j} : i 
= j ∈ V } and � = (�1, . . . , �n) is a permutation
of V (see Fig. 2 for an example). We set G = ∪∞

n=0Gn. Choosing a graph in Gn

is equivalent to (1) choosing � (there are n! choices) and (2) for each of the
(
n
2

)
possible edges, choose whether it belongs to E or not (there are 2(n

2) choices in
total). In total, we thus get that |Gn| = n! 2(n

2).

2 1 3

Fig. 2. The graph G3. In this representation, the vertices V = {1, 2, 3}, E =
{{1, 2}, {2, 3}} are drawn from left to right (node 1 is the leftmost one, node 3 is
the rightmost one), and their label is their image by �: in this example � = (2, 1, 3).

A size-n permutation σ is denoted by (σ1, . . . , σn), and σi is its i-th element
(the image of i), while σ−1(k) is the preimage of k (the position of k in the
permutation).

We define M : S → G recursively on the size of the tree it takes as an input:
first, if t is the tree of size 1 (which contains only one leaf) then we set M(t)
to be the empty graph (∅, ε, ∅), where ε is the empty permutation. Now assume
we have defined M on ∪n−1

�=1 S�, and consider a tree t ∈ Sn. By Definition 1 and
since t ∈ Sn, there exists a unique binary node in t labelled by n − 1, and this
node is attached to two leaves. Consider t̂ the tree obtained when removing all
internal nodes labelled by n−1 (and all the leaves attached to them) from t and
replacing them by leaves. Denote by vn the position (in, e.g., depth-first order)
of the leaf of t̂ that previously contained the binary node labelled by n − 1 in t.
Denote by u1, . . . , um the positions of the leaves of t̂ that previously contained
unary nodes labelled by n − 1 in t. We set M(t̂) = ({1, . . . , n − 1}, �̂, Ê) and
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define M(t) = ({1, . . . , n}, �, E) where

�i =

⎧⎪⎨
⎪⎩

vn if i = n

�̂i if �̂i < vn

�̂i + 1 if �̂i ≥ vn,

E = Ê ∪ {{�−1(uj), n} : 1 ≤ j ≤ m}. From vn we know that �−1(vn) = n and
since any ui 
= vn, then �−1(ui) ∈ {1, . . . , n−1}, we never create any loop in the
resulting graph. An example of the bijection is depicted in Fig. 3.

Theorem 7. The mapping M is bijective, and M(Sn) = Gn−1 for n ≥ 1.

Proof. From the definition, it is clear that two different trees have two distinct
images by M, thus implying that M is injective; this is enough to conclude since
|Gn−1| = |Sn| (see Theorem 1 for the cardinality of Sn).

Fig. 3. Bijection between an evolving tree in S from size 3 to 6 and its corresponding
graph in G

6 Uniform Random Sampling

In this section we exhibit a very efficient way for the uniform sampling of strict
monotonic general trees using the described evolution process. We finally explain
how this same uniform sampler can be used to generate Erdős-Rényi graphs.

The global approach for our algorithmic framework deals with the recursive
generation method adapted to the analytic combinatorics point of view in [11].
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But in our context we note that we can obtain for free (from a complexity view)
an unranking algorithm1. This fact is sufficiently rare to mention it: usually
unranking algorithm are less efficient than recursive generation ones. Unranking
algorithmic has been developed in the 70’s by Nijenhuis and Wilf [21] and then
has been introduced to the context of analytic combinatorics by Mart́ınez and
Molinero [18]. We use the same method as the one described in [3].

In our recurrence when r grows, the sequence (fn−r)r decreases extremely
fast. Thus for the uniform random sampling, it will appear more efficient to read
Eq. (2) in the following way:

fn =
(

n − 1
1

)
2n−2 fn−1 +

2∑
i=1

(
n − 2

i

)
2n−2−i fn−2

+
3∑

i=1

(
n − 3

i

)
2n−3−i

(
2

i − 1

)
fn−3 + · · · + f1. (4)

Using the latter decomposition the algorithm can now be described as Algo-
rithm 1.

In Algorithm 1 note that the While loop allows us to determine the values for
�, i and r (see Eq. (2) to identify the variables). Then the recursive call is done
using the adequate rank r mod fn−�. The last lines of the algorithm (for 21 to
27) are necessary to modify the tree T of size n − � that has just been built. In
line 22 we determine which leaves of T will be substituted by internal nodes (of
arity at most 2) with new leaves. It is based on the unranking of combinations,
see [12] for a survey in this context. Then for the other leaves that are either
kept as they are of replaced by unary internal nodes attached to a leaf we use the
integer F seen as a (n−�−i)-bit integer: if the bit #s is 0 then the corresponding
leaf is kept, and if it is 1 then the leaf is substituted. And finally the composition
unranking allows us to determine how many leaves are attached to the nodes
selected with B.

Theorem 8. The function UnrankTree is an unranking algorithm and calling
it with the parameters n and a uniformly-sampled integer s in {0, . . . , fn − 1}
gives as output a uniform strict monotonic general tree of size n .

The correctness of the algorithm follows directly from the total order over the
trees deduced from the decomposition Eq. (4).

Theorem 9. Once the pre-computations have been done, the function Unrank-
Tree needs in average Θ(n) arithmetic operations to construct a tree of size n.

Proof. The proof for this theorem is analogous to the one for Theorem 3.6.5 in
[3] after showing that both UnrankBinomial and UnrankComposition run
in Θ(n) in the number of arithmetic operations.

1 Unranking algorithms are based on a total order on the combinatorial objects under
consideration and aim at building an object directly using its rank in the total order.
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Algorithm 1. Strict Monotonic General Tree Unranking
1: function UnrankTree(n, s)
2: if n = 1 then
3: return the tree reduced to a single leaf

4: � := 1
5: r := s
6: i := 1
7: while r >= 0 do
8: t :=

(
n−�

i

)
2n−�−i

(
�−1
i−1

)

9: r := r − t · fn−�

10: i := i + 1
11: if i > min(�, n − �) then
12: i := 1
13: � := � + 1

14: if i > 1 then
15: i := i − 1
16: else
17: � := � − 1
18: i := min(�, n − �)

19: r := r + t · fn−�

20: T :=UnrankTree(n − �, r mod fn−�)
21: r := r // fn−� � // stands for the integer division
22: B :=UnrankBinomial(n − �, i, r //

(
n−�

i

)
) � see Algorithm 2 in [3]

23: r := r mod
(

n−�
i

)

24: F := r //
(

�−1
i−1

)

25: C :=UnrankComposition(�, i, r mod
(

�−1
i−1

)
) � see Algorithm 2 in [3]

26: Using F , substitute in T , using any traversal, the leaves selected with B with
27: internal nodes and new leaves according to C; the other leaves are changed as
28: unary nodes with a leaf or not
29: return the tree T

The sequences (f�)�≤n and (�!)�∈{1,...,n} have been pre-computed and stored.

Note that the uniform sampling of trees from Sn corresponds through the
bijection to sampling a random graph Gn(1/2) = (V,E) defined as follows: V =
{1, . . . , n} and each edge belong to E with probability 1/2, independently from
the other edges. This model, also called the Erdős-Rényi random graph was
originally introduced by Erdős and Rényi [9], and simultaneously by Gilbert [14],
and has been since then extensively studied in the probability and combinatorics
literature (see, for example, the books [4] and [8] for introductory surveys).
Algorithm 1 samples uniform trees from Sn with constant time rejection and
therefore can be used to sample Erdős-Rényi graphs.

Acknowledgement. The authors thank Cécile Mailler for fruitful discussions to
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Abstract. The CSP dichotomy conjecture has been recently estab-
lished, but a number of other dichotomy questions remain open, including
the dichotomy classification of list homomorphism problems for signed
graphs. Signed graphs arise naturally in many contexts, including for
instance nowhere-zero flows for graphs embedded in non-orientable sur-
faces. For a fixed signed graph ̂H, the list homomorphism problem asks
whether an input signed graph ̂G with lists L(v) ⊆ V ( ̂H), v ∈ V ( ̂G),

admits a homomorphism f to ̂H with all f(v) ∈ L(v), v ∈ V ( ̂G).
Usually, a dichotomy classification is easier to obtain for list homo-

morphisms than for homomorphisms, but in the context of signed graphs
a structural classification of the complexity of list homomorphism prob-
lems has not even been conjectured, even though the classification of the
complexity of homomorphism problems is known.

Kim and Siggers have conjectured a structural classification in the
special case of “weakly balanced” signed graphs. We confirm their conjec-
ture for reflexive and irreflexive signed graphs; this generalizes previous
results on weakly balanced signed trees, and weakly balanced separable
signed graphs [1–3]. In the reflexive case, the result was first presented in
[19], where the proof relies on a result in this paper. The irreflexive result
is new, and its proof depends on first deriving a theorem on extensions
of min orderings of (unsigned) bipartite graphs, which is interesting on
its own.
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1 Introduction

The CSP Dichotomy Theorem [8,24] guarantees that each homomorphism prob-
lem for a fixed template relational structure H (“does a corresponding input
relational structure G admit a homomorphism to H?”) is either polynomial-time
solvable or NP-complete, the distinction being whether or not the structure H
admits a certain symmetry. In the context of graphs H = H, there is a more
natural structural distinction, namely the tractable problems correspond to the
graphs H that have a loop, or are bipartite [16]. For list homomorphisms (when
each vertex v ∈ V (G) has a list L(v) ⊆ V (H)), the distinction turns out to be
whether or not H is a “bi-arc graph”, a notion related to interval graphs [10]. In
the special case of bipartite graphs H, the distinction is whether or not H has
a min ordering. A min ordering of a bipartite graph with parts A,B is a pair
of linear orders <A, <B of A and B respectively, such that if there are edges
ab, a′b′ with a ∈ A, a′ ∈ A, a < a′ and b ∈ B, b′ ∈ B, b′ < b, then there is also the
edge ab′. If a bipartite graph H has a min ordering, then the list homomorphism
problem to H is polynomial-time solvable; otherwise, it is NP-complete [9,15].

An invertible pair in a bipartite graph with parts A,B is a pair of ver-
tices x, x′ ∈ A (or x, x′ ∈ B), with a pair of walks x = v1, v2, . . . , vk = x′

and x′ = v′
1, v

′
2, . . . , v

′
k = x of equal length, and another pair of walks x′ =

w1, w2, . . . , wm = x and x = w′
1, w

′
2, . . . , w

′
m = x′ of equal length, such that each

vi is non-adjacent to v′
i+1 for all i = 1, 2, . . . , k − 1 and each wj is non-adjacent

to w′
j+1, for all j = 1, 2, . . . ,m−1. It is easy to see that if an invertible pair exists,

then there can be no min ordering, and the converse is proved in [15]. Specifically,
it is proved there (by a reduction to the reflexive case proved in [11]) that if a
bipartite graph has no invertible pairs, then it has a min ordering. However, for
reflexive graphs, the direct proof in [11] implies a stronger result—namely, if a set
of ordered pairs of vertices does not violate transitivity, then it can be extended
to a min ordering if and only if there is no invertible pair. (Invertible pairs and
min orderings in reflexive graphs are defined analogously to bipartite graphs, see
[11]. A set of ordered pairs is said to violate transitivity if it contains some pairs
(t0, t1), (t1, t2), (t2, t3), . . . , (tk−1, tk), (tk, t0) with t0 < t1 < · · · < tk < t0). Such
a result was not known for bipartite graphs.

In this paper, we fill the gap and prove an analogous extension version of the
min ordering characterization for bipartite graphs, see Corollary 1. This result
is then used in the following section to prove the bipartite case of the conjecture
of Kim and Siggers.

Since the reflexive case already had an extension result in [11], we can apply
a similar method to prove the conjecture for reflexive graphs1.

A signed graph ̂H is a graph H together with an assignment of signs +,−
to the edges of H. Edges may be assigned both signs, or equivalently, there
may be two parallel edges with opposite signs between the same two vertices.
(There may be edges that are loops, and there may also be two parallel loops of
opposite signs at the same vertex). Edges with a + sign are called positive, or

1 The details of this can be found in our arXiv paper [4].
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blue, edges with a − sign are called negative, or red. Edges with both signs are
called bicoloured, while purely red or purely blue edges are called unicoloured.
Two signed graphs are called switch-equivalent if one can be obtained from the
other by a sequence of vertex switchings, where a switching at a vertex v flips the
signs of all edges incident with v. (A bicoloured edge remains bicoloured). Signed
graphs arise in many contexts in mathematics and in applications. This includes
knot theory, qualitative matrix theory, gain graphs, psychosociology, chemistry,
and statistical physics [23]. In graph theory, they are of particular interest in
nowhere-zero flows for graphs embedded in non-orientable surfaces [18].

A homomorphism of a signed graph ̂G to a signed graph ̂H is a vertex map-
ping f which is a sign-preserving homomorphism of ̂G′ to ̂H for some signed
graph ̂G′ switch-equivalent to ̂G. Equivalently, a homomorphism of a signed
graph ̂G to a signed graph ̂H is a homomorphism f of the underlying graph
G of ̂G to the underlying graph H of ̂H, which maps bicoloured edges of ̂G to
bicoloured edges of ̂H, and for which any unicoloured closed walk W in ̂G with
unicoloured image f(W ) in ̂H has the same product of the signs of its edges.
(In other words, closed walks with only unicoloured edges map to closed walks
that either contain a bicoloured edge or have the same parity of the number
of negative edges). We will use this definition in the last section, as it does
not require switching in the input graph before mapping it. The equivalence of
the two definitions follows from the theorem of Zaslavsky [22], and the actual
switching required for ̂G before the mapping if one exists, as well as the two vio-
lating closed walks if such a mapping does not exist, can be found in polynomial
time [20].

The study of homomorphisms of signed graphs was pioneered by Guenin [14]
and introduced more systematically by Naserasr, Rollová and Sopena, see the
survey [20].

The homomorphism problem for the signed graph ̂H asks whether an input
signed graph ̂G admits a homomorphism to ̂H. The s-core of a signed graph ̂H
is the smallest homomorphic image of ̂H that is a subgraph of ̂H. (The s-core
is unique up to isomorphism [6]). It was conjectured in [6] that the homomor-
phism problem for ̂H is polynomial if the s-core of ̂H has at most two edges
(a bicoloured edge counts as two edges), and is NP-complete otherwise. The
conjecture was verified in [6] for all signed graphs that do not simultaneously
contain a bicoloured edge and a unicoloured loop of each colour. Finally, the full
conjecture was established in [7].

The list homomorphism problem for a signed graph ̂H asks whether an input
signed graph ̂G with lists L(v) ⊆ V ( ̂H), v ∈ V ( ̂G), admits a homomorphism f

to ̂H with all f(v) ∈ L(v), v ∈ V ( ̂G). The complexity classification for these list
homomorphism problems appears to be difficult, and no structral classification
conjecture has arisen. (Even though these are not directly CSP problems, the
fact that dichotomy holds can be derived from the CSP Dichotomy Theorem).
Some special cases have been treated [1,2,5,19], including a full classification for
signed trees [3].
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In [19], H. Kim and M.H. Siggers focus on a special class of signed graphs:
we say that a signed graph ̂H is weakly balanced if any closed walk of uni-
coloured edges has an even number of negative edges. Equivalently, there is a
switch-equivalent signed graph ̂H ′ in which there are no purely red edges [3].
(Our terminology comes from [3], in [19] these signed graphs correspond to the
so-called pr-graphs. We also remark that while balanced signed graphs are some-
times called bipartite [13,21], weakly balanced signed graphs have no relation to
weakly bipartite signed graphs as defined therein).

Kim and Siggers [19] conjectured a classification of the complexity of the list
homomorphism problems for weakly balanced signed graphs ̂H, and announced
it holds in the special case of signed graphs that are reflexive (each vertex has
at least one loop). In the last version of [19] they use a result from this paper
for a proof (see the footnote on page 4 of [19], version v4). Their paper also
highlights the importance of irreflexive signed graphs, by reducing parts of the
problem for general signed graphs to their bipartite translations. Their conjec-
ture is particularly elegant when stated for irreflexive signed graphs. (We note
that non-bipartite irreflexive signed graphs are not relevant because their list
homomorphism problems are NP-complete by [16]; it is also easy to see that
they always contain an invertible pair).

To be specific, we assume that ̂H is a bipartite signed graph without purely
red edges, and define a special min ordering of ̂H to be a min ordering of the
underlying graph H of ̂H, such that at each vertex its bicoloured neighbours
precede its unicoloured neighbours. The conjectured classification for weakly
balanced signed graphs states that the list homomorphism problem for ̂H is
polynomial-time solvable if ̂H has a special min ordering, and is NP-complete
otherwise.

This implies that there are two natural obstructions to ̂H having a
polynomial-time solvable list homomorphism problem – namely invertible pairs,
which obstruct the existence of a min ordering, and chains, which obstruct a min
ordering from being made special. Invertible pairs are defined above for unsigned
bipartite graphs, and for signed bipartite graphs they are just invertible pairs
in the underlying unsigned graph. A chain in a signed graph ̂H consists of two
walks of equal length, a walk U with vertices u = u0, u1, . . . , uk = v and a walk
D, with vertices u = d0, d1, . . . , dk = v such that the edges uu1, dk−1v are uni-
coloured, and the edges ud1, uk−1v are bicoloured, and for each i, 1 ≤ i ≤ k − 2,
we have both uiui+1 and didi+1 edges of H while diui+1 is not an edge of H, or
both uiui+1 and didi+1 bicoloured edges of H while diui+1 is not a bicoloured
edge of H. See Fig. 1 for an example.

Kim and Siggers also conjectured that a weakly balanced signed graph ̂H
has a special min ordering if and only if it has no invertible pairs and no chains.
We prove both conjectures (cf. Theorem 3 below), in the case of irreflexive and
reflexive signed graphs. In both cases, the result for signed graphs is derived
using the extension results for unsigned graphs. While for reflexive graphs the
extension result is obvious from the proof of [11], we provide a new proof in the
irreflexive case in the next section.
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Fig. 1. An example of a signed graph (on the left) with a chain (on the right) and an
invertible pair (1, 10) certified by the pair of walks W1, W2 and the pair consisting of
the reverse of both walks.

2 Min Orderings of Bipartite Graphs

In this section we only deal with unsigned bipartite graphs H, with a fixed
bipartition A,B. The pair digraph H+ has as vertices all ordered pairs of distinct
equicoloured vertices of H, i.e., V (H+) = {(a, a′) : a, a′ ∈ A, a �= a′} ∪ {(b, b′) :
b, b′ ∈ B, b �= b′}. There is in H+ an arc from (a, a′) to (b, b′) if and only if
ab, a′b′ are edges of H while ab′ is not an edge of H. In that case we also say
that (a, a′) dominates (b, b′). We note that (a, a′) dominates (b, b′) if and only if
(b′, b) dominates (a′, a), a property we call skew symmetry of H+. We also note
that (a, a′) is an invertible pair if and only if (a, a′) and (a′, a) are in the same
strong component of H+.

Theorem 1. The following statements are equivalent for a bipartite graph H:

1. H has a min ordering.
2. H has no invertible pairs.
3. The vertices of H+ can be partitioned into sets D,D′ such that

(a) (x, y) ∈ D if and only if (y, x) ∈ D′,
(b) (x, y) ∈ D and (x, y) dominates (x′, y′) in H+ implies (x′, y′) ∈ D,
(c) (x, y), (y, z) ∈ D implies (x, z) ∈ D.

Proof. We may assume that H is connected, in particular it has no isolated
vertices.

It is straightforward to see that 1 implies 2, and 3 implies 1 (by defining
x < y if (x, y) ∈ D). Thus it remains to show that 2 implies 3.

Therefore, we assume that H has no invertible pairs. Note that for each
strong component C of H+, there is a corresponding reversed strong component
C ′ whose pairs are precisely the reversed pairs of the pairs in C; we shall say that
C,C ′ are coupled strong components. Note that a strong component C may be
coupled with itself - it is easy to check that all pairs in a self-coupled component
are invertible.

The partition of V (H+) into D,D′ will correspond to separating each pair
of coupled strong components C,C ′ of H+. The vertices of one strong compo-
nent will be placed in the set D, their reversed pairs will go to D′. We wish
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to make these choices without having a circuit in D, i.e., a sequence of pairs
(x0, x1), (x1, x2), . . . , (xn, x0) ∈ D. Note that the vertices in any circuit are either
all in A or all in B. We will build these sets D,D′ iteratively, making sure they
satisfy the following properties.

(i) There is no circuit in D;
(ii) each strong component of H+ belongs entirely to D, D′, or to V (H+) −

D − D′;
(iii) the pairs in D′ are precisely the reversed pairs of the pairs in D;
(iv) there is no arc of H+ from D to a vertex outside of D.

Initially, we can choose D,D′ to be any sets satisfying these properties, and at
each iterative step we add one strong component to D and its coupled component
to D′. This will terminate when each strong component is in D or D′, i.e., when
each pair (x, y) with x �= y belongs either to D or to D′. Since the final D has
no circuit, it satisfies the transitivity property from statement 3(c), and because
of (iii), it satisfies 3(a). Moreover, (iv) implies it satisfies 3(b).

Let C be a strong component of H+. We say that C is trivial if it consists of
just one pair. We say that C is ripe if it has no arc to another strong component
in H+−D−D′. Note that whether C is ripe or not depends on what is currently
in D, and hence strong components become ripe as D gets larger. We say that a
pair (a, b) is a sink pair if N(a) contains N(b). Note that there are no arcs in H+

from a sink pair (a, b), and so in particular it forms a trivial strong component
which is ripe for all sets D.

In the general step, our algorithm shall choose a strong component C that
is currently ripe, add all of its pairs to D, and add all pairs of C ′ to D′. Note
that this process is guaranteed to maintain the validity of (ii), (iii), (iv), but it
may fail (i), creating a circuit in D. However, we will prove that there always
exists a ripe strong component C that can be added without creating a circuit
in D. In fact, the first failed choice will identify a subsequent choice that will be
guaranteed to succeed.

Thus assume we chose C to be an arbitrary ripe strong component of the
graph on V (H+)−D−D′. If C ∪D has no circuit, we can add the pairs in C to
D and the pairs in C ′ to D′. Otherwise, suppose (x0, x1), (x1, x2), . . . , (xn, x0)
is a shortest circuit in C ∪ D. (Subscripts in the vertices in the circuit will be
treated modulo n + 1).

Since there are no invertible pairs, and since we never place both a pair and
its reverse in D, we must have n ≥ 2. We may assume without loss of generality
that (xn, x0) ∈ C; note that other pairs of the circuit could also be in C.

Observation 1. If a pair (xi, xi+1) in the circuit lies in a non-trivial strong
component and the next pair (xi+1, xi+2) lies in a trivial strong component, then
(xi+1, xi+2) is a sink pair.

Since (xi, xi+1) lies in a non-trivial strong component, it is easy to see that
there are two edges xip, xi+1q in H such that xiq, xi+1p are non-edges. (If
(xi, xi+1) dominates (a, b) and is dominated by (u, v), then set p = u, q = b). We
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say that xip, xi+1q are independent edges in H. If (xi+1, xi+2) is not a sink pair
it dominates some (q, r). (If it dominates some (q′, r), it also dominates (q, r)).
Therefore, pxi+2 is not an edge of H, else (p, q) would dominate (xi+2, xi+1),
putting it in D (since (p, q) is in D), contradicting the minimality of our circuit. It
follows that qxi+2 is also not an edge of H, else (p, q) would dominate (xi, xi+2)
which must then lie in D, again contradicting the minimality of the circuit.
Therefore in this case (xi+1, xi+2) lies in two independent edges qxi+1, rxi+2,
and hence belongs to a non-trivial component as claimed. Note that it follows
from this that if xip, xi+1q are independent edges, then pxi+2, qxi+2 are non-
edges.

Case 1. Assume each pair in the circuit belongs to a trivial component. We
claim that in this case some (xi, xi+2) lies in a trivial ripe component C∗ which
can be added to D without creating a circuit. Note that it suffices to prove that
(xi, xi+2) forms a trivial ripe component, say X. Indeed, X could not be part
of D by the assumed minimality of the circuit (x0, x1), (x1, x2), . . . , (xn, x0) in
C ∪ D. Moreover, adding X to D cannot creat a circuit; if such a circuit was,
say (xi, xi+2), (xi+2, t1), (t1, t2), . . . , (tk, xi), then there was already a circuit
in D, namely (xi, xi+1), (xi+1, xi+2), (xi+2, t1), (t1, t2), . . . , (tk, xi), contrary to
assumption. (Note that since (xi, xi+2) is a trivial component, adding component
X amounts to adding only that pair).

If all (xi, xi+1) are sink pairs, then (x0, x2) is also a sink pair, because
N(x2) ⊆ N(x1) ⊆ N(x0). Otherwise, some (xi, xi+1) is not a sink pair, say
(xi, xi+1) dominates (p, q). Then xiq is not an edge; on the other hand, xi+1p
must be an edge, since (xi, xi+1) lies in a trivial component, and this is true for
any neighbour p of xi. To prove the claim, we shall show that any (p, r) dom-
inated by (xi, xi+2) must lie in D, whence (xi, xi+2) lies in a ripe component.
If xi+1r is an edge, then (xi, xi+1) dominates (p, r) and hence (p, r) ∈ D. If
xi+1r is not an edge, then (xi+1, xi+2) dominates (p, r) and hence (p, r) ∈ D.
Moreover, xi+2p must be an edge (for any p ∈ N(xi)), else (p, r) dominates
(xi, xi+2) which is then also in D, contradicting the minimality of our circuit
(x0, x1), (x1, x2), . . . , (xn, x0).

Case 2. Assume each pair in the circuit belongs to a non-trivial component.
We first claim that there exists a set of mutually independent edges x0y0,

x1y1, . . . , xnyn. We have already seen (see the comment right after Observa-
tion 1) that there exist independent edges x0y0, x1y1, so let x0y0, x1y1, . . . , xkyk
be independent edges and k < n. We note that y0xk+1 cannot be an edge, other-
wise (y0, y1) (which is in D because it is dominated by (x0, x1) ∈ D) dominates
(xk+1, x1), completing a shorter circuit in C∪D. Similarly, y1xk+1 cannot be an
edge, otherwise (y1, y2) (which is in D) dominates (xk+1, x2), also completing
a shorter circuit. Continuing this way, we conclude ykxk+1 cannot be an edge,
else (yk−1, yk) (which is in D) dominates (xk−1, xk+1), also yielding a shorter
circuit. Since xk+1 is not adjacent to any of y0, . . . , yk, and there are no isolated
vertices, there exists a vertex different from y0, . . . , yk that is adjacent to xk+1;
let that vertex be yk+1. Analogously, yk+1 is not adjacent to x0, x1, . . . , xk, so



Min Orderings and List Homomorphism Dichotomies 517

that x0y0, x1y1, . . . , xkyk, xk+1yk+1 is also an independent set of edges, and by
induction on k we obtain an independent set of edges x0y0, x1y1, . . . , xnyn.

Observation 2. Any vertex p adjacent to at least two of the vertices
x0, x1, . . . , xn is adjacent to all of them, and any vertex q adjacent to at least
two of the vertices y0, y1, . . . , yn is adjacent to all of them.

Otherwise, there is an index j such that p is not adjacent to xj but is adjacent
to xj+1, and an index k �= j + 1 such that p is adjacent to xk. Then the pair
(yj , p) is dominated by the pair (xj , xj+1) (which is in D), and dominates the
pair (xj , xk). Note that we have j �= k − 1 and by the definition of D and D′

also j �= k + 1. Thus there are two possible non-trivial cases (n > 2): either
k + 1 < j ≤ n, or 0 ≤ j < k − 1. In both cases we obtain a shorter circuit and
thus a contradiction. (The proof for q is analogous).

For future reference, we note that there are in C ∪ D other circuits similar
to (and of the same length as) (x0, x1), (x1, x2), . . . , (xn, x0): in particular

(1) the circuit (y0, y1), (y1, y2), . . . , (yn, y0),
(2) any circuit (y0, y1), . . . , (yi−1, y

′
i), (y

′
i, yi+1), . . . , (yn, y0) where y′

i is adjacent
to xi but not to xi−1,

(3) and any circuit (x0, x1), . . . , (xi−1, x
′
i), (x

′
i, xi+1), . . . , (xn, x0) where x′

i is
adjacent to yi but not to yi−1.

In each of these cases it can be easily checked that all pairs are in C ∪ D.
Since each of these circuits is also minimal, Observation 2 applies to any of

these alternate circuits. For ease of the explanations, we will assume that the
vertices xi are white in the bipartition of the graph, and the vertices yj are black.

Let K denote the set of (black) vertices of H adjacent to all xi, i = 1, . . . , n
and K ′ the set of (white) vertices adjacent to all yi. Each of the remaining
vertices (of either colour) has at most one neighbour amongst x0, x1, . . . , xn and
at most one neighbour amongst y0, y1, . . . , yn.

Observation 3. The graph H\(K ∪K ′) has components S0, S1, . . . , Sm where,
for i = 1, . . . ,m, the vertices xi and yi are in Si, and if p ∈ K is adjacent to a
(white) vertex of Si, then it is adjacent to all white vertices of Si, and if q ∈ K ′

is adjacent to a (black) vertex of Si, then it is adjacent to all black vertices of
Si.

Moreover, if x′
0, x

′
1, . . . , x

′
n are any white vertices with x′

i ∈ Si, then (x′
0, x

′
1),

(x′
1, x

′
2), . . . , (x

′
n, x

′
0) is also a circuit in C ∪ D; and similarly, if y′

0, y
′
1, . . . , y

′
n

are any black vertices with y′
i ∈ Si, then (y′

0, y
′
1), (y

′
1, y

′
2), . . . , (y

′
n, y

′
0) is also a

circuit in C ∪ D.

First, we show that any path joining two different vertices xi, xj must
contain a vertex of K ∪ K ′. Let xi, b1, a2, . . . , at, bt, xj be such a path. If
xrb1 ∈ E(H) for some r �= i, then by Observation 2, b1 is adjacent to all
x0, x1, . . . , xn, implying that b1 ∈ K. Thus, suppose that b1 is adjacent to only xi.
Now as in (2), we have the circuit (y0, y1), (y1, y2), . . . , (yi−1, b1), (b1, yi+1), . . . ,
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(yn, y0) in C ∪ D. (We say we “replaced” yi by b1). Note that (yi−1, b1)
and (yi−1, yi) are in the same strong component of H+ and similarly for
(yi, yi+1) and (b1, yi+1). As before, if a2yr ∈ E(H), r �= i, then a2 is adja-
cent to all y0, y1, . . . , yn, and hence, a2 ∈ K ′. Thus assume a2 is adja-
cent to only b1. As in (3), we can replace xi by a2, and obtain the circuit
(x0, x1), . . . , (xi−1, a2), (a2, xi+1), . . . , (xn, x0). By continuing this way, we even-
tually obtain the circuit (x0, x1), . . . , (xi−1, at), (at, xi+1), . . . , (xn, x0) in C ∪D.
Noting that atbt and btxj are in E(H), we conclude that bt is adjacent to all
x0, x1, . . . , xn, implying that bt ∈ K.

This means that H\(K ∪ K ′) has components Si with xi, yi ∈ Si for i =
1, 2, . . . , n, as well as possibly other components Sj , j > n. The observations
above now imply that each xi can be replaced in the circuit by any of yi’s
neighbours x′

i ∈ Si, and by repeating the argument, by any x′
i in the component

Si. Thus any x′
i ∈ Si lies in a suitable circuit and p ∈ K is adjacent to each

black vertex of Si, i ≤ n.
We note that K∪K ′ induces a biclique. Otherwise, suppose a ∈ K and b ∈ K ′

where ab �∈ E(H). Now (x0, x1), (a, y1), (x1, b), (y1, y0), (x1, x0) is a directed path
in H+ and (x1, x0), (a, y0), (x0, b), (y0, y1), (x0, x1) is also a directed path in H+,
implying that x0, x1 is an invertible pair, a contradiction.

Observation 4. Let Ci be the component of H+ containing (xi, xi+1), and let
W be any directed path in H+, starting at (u, v) ∈ Ci. Then for every (p, q) ∈ W ,
either (p, q) ∈ Ci with p ∈ Si and q ∈ Si+1, or (p, q) is the last vertex of W , and
(p, q) is a sink pair with p ∈ K ∪ K ′ and q ∈ Si+1.

Let (p, q) be the second vertex of W , following (u, v). Since uq is not an
edge, q �∈ K ∪K ′ and u �∈ K ∪K ′. Since u ∈ Si, v ∈ Si+1, we have q ∈ Si+1 and
p ∈ Si or p ∈ K ∪K ′. In the former case, (p, q) is in Ci; in the latter case, when
p ∈ K ∪ K ′, we have N(q) ⊆ N(p), implying that (p, q) is a sink pair.

From Observations 3 and 4 we conclude that all pairs (xi, xi+1) lie in different
strong components of H+, and in particular that in the circuit (x0, x1), (x1, x2),
. . . , (xn, x0) only the pair (xn, x0) lies in C, i.e., that all the other pairs (xi, xi+1),
i < n, belong to D.

By a similar logic, we can deduce that the strong component C ′ containing
(x0, xn) is also ripe. Indeed, consider the strong component C ′ (coupled with C),
containing (x0, xn), and a pair (p, q) �∈ C ′ dominated by some (u, v) ∈ C ′. This
means that up, vq are edges, and uq is not an edge, of H. Note that (v, u) ∈ C
belongs to the component Cn from Observation 4, thus v ∈ Sn, u ∈ S0. It follows
that p is in S0 or in K ∪ K ′ and q ∈ Sn (because the absence of the edge uq
means it is not in K ∪ K ′). In the former case we would have (p, q) is in C ′,
contrary to assumption. In the latter case, p ∈ K ∪ K ′ and q ∈ Sn. Now (p, q)
is also dominated by any pair (w, v) ∈ Cn−1, with w in Sn−1. Since all pairs of
Cn−1 are in D, we have (p, q) ∈ D and so C ′ is ripe.

In conclusion if adding to D the strong component C containing (xn, x0) cre-
ated a circuit (x0, x1), (x1, x2), . . . , (xn, x0), then adding its coupled component
C ′ containing (x0, xn) cannot create a circuit. Indeed, if such circuit (xn, z1),
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(z1, z2), . . . , (zm, x0), (x0, xn) existed, then the circuit

(x0, x1), (x1, x2), . . . , (xn−1, xn), (xn, z1), (z1, z2), . . . , (zm, x0)

was already present in D, contrary to our assumption.
It remains to consider the following case.

Case 3. Assume some pair (xi, xi+1) in the circuit lies in a non-trivial strong
component and the next pair (xi+1, xi+2) lies in a trivial strong component. By
Observation 1 (xi+1, xi+2) is a sink pair, and there are two independent edges
pxi, qxi+1. Since there are no isolated vertices, we have an edge rxi+2, and by
the discussion following Observation 1 again, pxi+2 and qxi+2 are non-edges
giving r �= p, r �= q. Moreover, rxi+1 is an edge (else rxi+2 and qxi+1 would
be independent edges putting (xi+1, xi+2) into a non-trivial strong component).
Finally, we observe that rxi must be an edge, otherwise (p, r) is dominated
by (xi, xi+1) and dominates (xi, xi+2) which would mean (xi, xi+2) is in D,
contradicting the minimality of our circuit. Since this is true for any r ∈ N(xi+2),
this means that (xi, xi+2) is also a sink pair and hence lies in a trivial ripe strong
component. It cannot be in D (by the circuit minimality), so we can add it to
D instead of the original strong component C. This cannot create a circuit, as
there would have been a circuit in D already. (The proof is similar to the proof
in Case 1).

Thus in each case we have identified a ripe strong component that can be
added to D maintaining the validity of our four conditions (i–iv). �	

From the proof of Theorem 1 we derive the following corollary, that will be
used in the next section.

Corollary 1. Suppose D is a set of pairs of vertices of a bipartite graph H,
such that

1. if (x, y) ∈ D and (x, y) dominates (x′, y′) in H+, then (x′, y′) ∈ D, and
2. D has no circuit.

Then there exists a bipartite min ordering < of H such that x < y for each
(x, y) ∈ D if and only if H has no invertible pair.

3 Min Orderings of Weakly Balanced Bipartite Signed
Graphs

Suppose ̂H is a weakly balanced signed graph, represented by a signed graph
without purely red edges. The underlying graph of ̂H is denoted by H. Define
D0 to consist of all pairs (x, y) in H+ such that for some vertex z there is a
bicoloured edge zx and a blue edge zy. Let D be the reachability closure of D0,
i.e., the set of all vertices reachable from D0 by directed paths in H+. It is easy
to see that a min ordering of H is a special min ordering of ̂H if and only if
it extends D (in the sense that each pair (x, y) ∈ D has x < y). Note that in
bipartite graphs, for any (x, y) ∈ D the vertices x and y are on the same side of
any bipartition.
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Theorem 2. If ̂H has no chain, then the set D can be extended to a special min
ordering.

Clearly, the set D by its definition satisfies condition 1 of Corollary 1. It
remains to verify that it also satisfies condition 2.

Define a petal in ̂H to be two walks x, l1, l2, . . . , lk and x, u1, u2, . . . , uk where
xl1 is bicoloured, xu1 is unicoloured, and liui+1 is not an edge for i = 1, 2, . . . , k−
1. We denote the petal by x, (l1, u1), (l2, u2), . . . , (lk, uk). We say the petal has
length k. The petal has terminals, or terminal pair, (lk, uk). We call lk the
lower terminal, and uk the upper terminal. In a special min ordering li < ui for
i = 1, 2, . . . , k (Fig. 2).

A flower is a collection of petals P1, P2, . . . , Pn with the following structure.
If (lk, uk) is the terminal pair of Pi and (l′k′ , u′

k′) is the terminal pair of Pi+1,
then uk = l′k′ . (The petal indices are treated modulo n so that the lower terminal
of P1 equals the upper terminal of Pn). Suppose P1, P2, . . . , Pn is a flower with
terminal pairs (l(1), u(1)), (l(2), u(2)), . . . , (l(n), u(n)). Then the following circular
implication shows ̂H does not admit a special min ordering:

l(1) < u(1) = l(2) < · · · < l(n) < u(n) = l(1).

It is clear that a flower yields a circuit in the set D (of H+) defined at the
start of this section, and conversely, each such circuit arises from a flower. Thus,
it remains to prove that if ̂H contains a flower, then it also contains a chain.

We present two observations that allow us to extend the length of a petal,
or modify the terminal pair.

Observation 5. Suppose x, (l1, u1), . . . , (lk, uk) is a petal. Let v be a vertex such
that ukv is an edge and lkv is not an edge. Then x, (l1, u1), . . . , (lk, uk), (w, v) is
a petal of length k + 1 for any neighbour w of lk.

Observation 6. Suppose x, (l1, u1), . . . , (lk, uk) is a petal. Then x,(l1, u1), . . . ,
(w, uk) is a petal of length k for any neighbour w of lk−1 (where l0 = x in the
case k = 1 in which case xw must be bicoloured).

Each petal in ̂H enforces an order on the pairs (li, ui). Our aim is to prove
that if (li, ui) belongs to several petals, then all petals in ̂H enforce the same
ordering, or we discover a chain in ̂H.

We are now ready to prove the lemma needed.

Lemma 1. Suppose P1, P2, . . . , Pn is a flower in ̂H. Then ̂H contains a chain.

x

l1

u1

l2

u2

l3

u3
. . .

. . .
lk−1

uk−1

lk

uk

Fig. 2. A petal of length k with terminals (lk, uk). Dotted edges are missing.
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Proof. We proceed by induction on n. The statement is clearly true if n = 2 as
the flower is precisely a chain.

Thus assume n ≥ 3. Without loss of generality suppose the length of P2 is
minimal over all petals. We begin by proving we may reduce the length of P2 to
one. Thus, assume P2 has length at least two. Suppose the terminal pairs and
their predecessors are labelled as in Fig. 3 on the left.

We first observe that if as is an edge, then by Observation 6 we can change the
terminal pair of P2 to be (s, e). Now P2, P3, . . . , Pn is a flower with n−1 petals and
by induction ̂H has a chain. Hence, assume as is not an edge. By Observation 5
we can extend P1 to x, . . . , (t, c), (s, b), (r, a). Using similar reasoning, we see that
eu is not an edge and P3 can be extended so its terminal pair is (d, u). Thus
we remove the terminal pair from P2 so that its terminal pair is (a, d). At this
point, P1, P2, P3 are the first three petals of a flower where the length of P2 has
been reduced by one from its initial length.

If n is even, then we similarly reduce the length of P4, P6, . . . , Pn (recall P2

has minimal length over all petals) and extend the length of all petals with odd
indices by one. We obtain a flower where all petals with even subscripts have
their length reduced by one from their initial length. Continuing in this manner
we can reduce P2 to length one.

On the other hand, if n is odd, then we modify the extension of P1 so its termi-
nal pair is (a, t). Namely at the first step we extend P1 to x, . . . , (t, c), (s, b), (t, a).
As n is odd, the petal Pn will be extended. The extension of Pn will extend its
upper terminal from s to t. Thus, the upper terminal of Pn equals the lower
terminal of P1 and the result is again a flower. As in the previous case, we can
reduce P2 to have length one. (As an aid to the reader, we note that when n = 3,
s = v and t = u. The extensions of P1 and P3 are such that P1 will terminate in
(a, t) and P3 will terminate in (d, t)).

Thus, we may assume we have a flower where P2 has length one as shown in
Fig. 3 on the right. If as is a unicoloured edge, then we modify the terminal pair
of P2 to be (b, s). Hence, P1, P2 is a flower with two petals and thus a chain.
If as is a bicoloured edge, then we modify P2 to have terminal pair (s, e). Now
P2, P3, . . . , Pn is a flower with n−1 petals, and by induction ̂H contains a chain.
Therefore, as is not an edge.

If et is an edge, then we can modify P1 to have terminal pair (e, b) by Obser-
vation 6. Thus, P1, P2 is a flower with two petals, i.e., a chain. Hence, et is not
an edge, and we can now extend P1 by Observation 5 to be x, . . . , (t, c), (s, b),
(t, a), (s, e) incorporating P2 into P1. Now we have a flower P1, P3, . . . , Pn and
by induction ̂H has a chain. �	

Thus if a weakly balanced bipartite signed graph has no invertible pair and
no chain, it has no flowers by Theorem 2, and hence by Corollary 1 it has a
special min ordering.
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Fig. 3. The labellings used in Lemma 1. On the left is the case when P2 has length
greater than 1 and on the right when P2 has length 1. Dotted edges are missing.

Finally, we remark that the proofs are algorithmic, allowing us to construct
the desired min ordering (if there is no invertible pair) or special min ordering
(if there is no invertible pair and no chain).

We have proved our main theorem, which was conjectured by Kim and Sig-
gers.

Theorem 3. A weakly balanced bipartite signed graph ̂H has a special min
ordering if and only if it has no chain and no invertible pair. If ̂H has a spe-
cial min ordering, then the list homomorphism problem for ̂H can be solved in
polynomial time. Otherwise ̂H has a chain or an invertible pair and the list
homomorphism problem for ̂H is NP-complete.

The NP-completeness results are known, and the polynomial time algorithm
is presented in the next section.

4 A Polynomial Time Algorithm for the Bipartite Case

Kim and Siggers have proved that the list homomorphism problem for weakly
balanced bipartite or reflexive signed graphs with a special min ordering is
polynomial time solvable. Their proof however depends on the dichotomy theo-
rem [8,24], and is algebraic in nature. For the bipartite case, we offer a simple
low-degree algorithm that effectively uses the special min ordering.

We begin by a review of the usual polynomial time algorithm to solve the
list homomorphism problem to a bipartite graph H with a min ordering [12],
cf. [17]. Recall that we assume H has a bipartition A,B.

Given an input graph G with lists L(v) ⊆ V (H), v ∈ V (G), we may assume
G is bipartite (else there is no homomorphism at all), with a bipartition U, V ,
where lists of vertices in U are subsets of A, and lists of vertices in V are subsets
of B. We first perform a consistency test, which reduces the lists L(v) to L′(v) by
repeatedly removing from L(v) any vertex x such that for some edge vw ∈ E(G)
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no y ∈ L(w) has xy ∈ E(H). If at the end of the consistency check some list is
empty, there is no list homomorphism. Otherwise, the mapping f(v) = minL(v)
(in the min ordering) ensures f is a homomorphism (because of the min ordering
property [17]).

We will apply the same logic to a weakly balanced bipartite signed graph
̂H; we assume that ̂H has been switched to have no purely red edges. If the
input signed graph ̂G is not bipartite, we may again conclude that no homomor-
phism exists, regardless of lists. Otherwise, we refer to the alternate definition
of a homomorphism of signed graphs, and seek a list homomorphism f of the
underlying graph of ̂G to the underlying graph of ̂H, that:

– maps bicoloured edges of ̂G to bicoloured edges of ̂H, and
– maps unicoloured closed walks in ̂G that have an odd number of red edges to

closed walks in ̂H that include bicoloured edges.

Indeed, as observed in the first section, this is equivalent to having a list homo-
morphism of ̂G to ̂H, since ̂H does not have unicoloured closed walks with any
purely red (i.e., negative) edges.

The above basic algorithm can now be applied to the underlying graphs; if it
finds there is no list homomorphism, we conclude there is no list homomorphism
of the signed graphs either. However, if the algorithm finds a list homomorphism
of the underlying graphs which takes a closed walk R with odd number of red
edges to a closed walk M with only purely blue edges, we need to adjust it. (As
noted in the introduction, Zaslavsky’s algorithm will identify such a closed walk
if one exists). Since the algorithm assigns to each vertex the smallest possible
image (in the min ordering), we will remove all vertices of M from the lists of
all vertices of R, and repeat the algorithm. The following result ensures that
vertices of M are not needed for the images of vertices of R.

Theorem 4. Let ̂H be a weakly balanced bipartite signed graph with a special
min ordering ≤.

Suppose C is a closed walk in ̂G and f, f ′ are two homomorphisms of ̂G to
̂H such that f(v) ≤ f ′(v) for all vertices v of ̂G, and such that f(C) contains
only blue edges but f ′(C) contains a bicoloured edge.

Then the homomorphic images f(C) and f ′(C) are disjoint.

Proof. We begin with three simple observations.

Observation 7. There exists a blue edge ab ∈ f(C) and a bicoloured edge uv ∈
f ′(C) such that a < u, b < v.

Indeed, let u be the smallest vertex in A incident to a bicoloured edge in
f ′(C), and let v be the smallest vertex in B joined to u by a bicoloured edge
in f ′(C). Let xy be an edge of C for which f ′(x) = u, f ′(y) = v, and let a =
f(x), b = f(y). By assumption, a = f(x) ≤ f ′(x) = u and b = f(y) ≤ f ′(y) = v.
Moreover, a �= u and b �= v by the special property of min ordering.

Observation 8. For every r ∈ f ′(C), there exists an s ∈ f(C) with s ≤ r.
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This follows from the fact that some x in ̂G has s = f(x) ≤ f ′(x) = r.

Observation 9. There do not exist edges ab, bc, de with a < d < c and b < e,
such that ab is blue and de is bicoloured.

Since < is a min ordering, the existence of such edges would require db to
be an edge and the special property of < at d would require this edge to be
bicoloured, contradicting the special property at b.

The following observation enhances Observation 9.

Observation 10. There does not exist a walk a0b0, b0a1, a1b1, . . . , bkc of blue
edges, and a bicoloured edge de such that a0 < d < c and b0 < e.

This is proved by induction on the (even) length k. Observation 9 applies if
k = 0. For k > 0, Observation 9 still applies if a0 < d < a1 (using the blue walk
a0b0, b0a1 and the bicoloured edge de). If d > a1, we can apply the induction
hypothesis to a1 < d < c and de as long as b1 < e. The special property of <
ensures that b1 �= e. Finally, if e < b1, then Observation 9 applies to the edges
b0a1, a1b1, ed.

Having these observations, we can now prove the conclusion. Indeed, suppose
that f(C) and f ′(C) have a common vertex g. Let us take the largest vertex
g, and by symmetry assume it is in A, like a, u, where a, b, u, v are the vertices
from Observation 7. Recall that we have chosen u to be the smallest vertex in A
incident with a bicoloured edge of f ′(C), and v is smallest vertex in B adjacent
to u by a bicoloured edge in f ′(C).

Suppose first that g > u. In f(C) there is a path with edges ab, ba1, . . . , hg
which has a < u < g and b < v, contradicting Observation 10.

If g = u then the path with edges ba, ab1, b1a1, . . . , akh, hg in f(C) has all
edges blue, and thus h > v as < is special. Therefore b < v < h and a < g, also
contradicting Observation 10.

Finally, suppose that g < u. Here we use the path in f ′(C) with edges gv1,
v1u1, u1v2, . . . , uk−1vk, vku, uv. A small complication arises if v1 > v, so extend
the path to also include ab by preceding it with the path in f(C) with edges
ab, ba1, a1b1, b1a2, . . . , btg. Of course the result is now a walk W , not necessarily
a path. Note that the first edges of W are blue (being in f(C)), but the last
edge uv is bicoloured.

If uv is the first bicoloured edge, then v < vk by the special property, and we
have b < v < vk and a < u, a contradiction with Observation 10. Otherwise, the
first bicoloured edge on the walk must be some ujvj+1 (where vjuj is unicoloured
and uj �= u), or some vjuj (where uj−1vj is unicoloured).

In the first case, where ujvj+1 is the first bicoloured edge, uj > u by the
definition of u. Then a < u < uj and b < v, implying again a contradiction with
Observation 10. In the second case, where vjuj is the first bicoloured edge, we
have again a < u ≤ uj < uj−1 (using the special property at vj), and therefore
we have a < u < uj−1 and b < v contrary to Observation 10. �	

We observe that each phase removes at least one vertex from at least one
list, and since ̂H is fixed, the algorithm consists of O(n) phases of arc consis-
tency, where n is the number of vertices (and m number of edges) of ̂G. Since
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arc consistency admits an O(m + n) time algorithm, our overall algorithm has
complexity O(n(m + n)).
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Abstract. The game of zombies and survivor on a graph is a pursuit-
evasion game that is a variant of the game of cops and robber. The game
proceeds in rounds where first the zombies move then the survivor moves.
Zombies must move to an adjacent vertex that is on a shortest path to
the survivor’s location. The survivor can move to any vertex in the closed
neighborhood of its current location. The zombie number of a graph G
is the smallest number of zombies required to catch the survivor on G.
The graph G is said to be k-zombie-win if its zombie number is k ≥ 1.

We first examine bounds on the zombie number of the Cartesian and
strong products of various graphs. We also introduce graph classes which
we call capped products and provide some bounds on zombie number of
these as well. Fitzpatrick et al. (Discrete Applied Math., 2016) provided
a sufficient condition for a graph to be 1-zombie-win. Using a capped
product, we show that their condition is not necessary. We also provide
bounds for two variants called lazy zombies and tepid zombies on some
graph products. A lazy zombie is a zombie that does not need to move
from its current location on its turn. A tepid zombie is a lazy zombie that
can move to a vertex whose distance to the survivor does not increase.
Finally, we design an algorithm (polynomial in n for constant k) that
can decide, given a graph G, whether or not it is k-zombie-win for all
the above variants of zombies.

1 Introduction

Zombies and Survivor is a type of pursuit-evasion game played on a graph1. It
is a variant of the game of Cops and Robber (see Bonato and Nowakowski for
an excellent introduction to this topic [3]). The deterministic version of Zombies
and Survivor was introduced by Fitzpatrick et al. [5]. This game is played on a

1 We use standard graph theoretic notation, terminology and definitions (see [4]).
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connected graph G and the game proceeds in rounds. Initially, the k zombies with
k ≥ 1 are either placed strategically on V (G) or an adversary places them on
V (G). Then the survivor selects an initial position s ∈ V (G). During a round,
first each zombie moves from its current position to an adjacent vertex that
belongs to some shortest path to the survivor’s position. Then, the survivor can
move to any vertex in N [s] (the closed neighborhood of s in G). Here is where
one can see the distinction between this game and the game of Cops and Robber.
A cop on vertex v can move to any vertex in N [v] like a survivor, however, a
zombie must always move from its current position and is restricted to only
follow an edge of a shortest path to the survivor. The goal of the zombies is to
have at least one zombie land on the current position of the survivor on its turn.
If it does so, then G is considered k-zombie-win. The goal of the survivor is to
perpetually evade all k zombies. A graph that is not k-zombie-win is considered
survivor-win with respect to k zombies. When k = 1, we simply say zombie-win
or survivor-win.

In contrast to the game of Cops and Robber, the starting configuration of the
zombies plays an important role in determining whether a survivor is caught. For
example, if several zombies are placed on the same vertex in a cycle with more
than 4 vertices, then they will never catch a survivor. However, 2 zombies can
be strategically placed in order to always catch a survivor. As such, we define
two types of zombie number, one where the zombies are strategically placed and
the other where an adversary determines the initial position of the zombies, i.e.
in a worst-case starting position.

The zombie number z(G) of a graph G is defined as the minimum number of
zombies required to catch the survivor on G, and the universal zombie number
u(G) is defined as the minimum number of zombies required to catch the survivor
when the starting configuration of the zombies is determined by an adversary.
The above example shows that z(G) = 2 but u(G) = ∞ when G is a cycle on
more than 4 vertices. We denote the cop number of a graph as c(G). Since a
cop has more power than a zombie, we have c(G) ≤ z(G) ≤ u(G). From this
observation, we get that zombie-win graphs are also cop-win graphs.

In their paper, Fitzpatrick et al. [5] establish the first results on the deter-
ministic version of the game of Zombies and Survivor. They provide an example
showing that if a graph is cop-win, then it is not necessarily zombie-win. They
provide a sufficient condition for a graph to be zombie-win. They also establish
several results about the zombie number of the Cartesian product of graphs.
The main aspect that makes different variants of these pursuit-evasion problems
quite challenging is the fact that the cop number and zombie number is not a
monotonic property with respect to subgraphs. For example, both the cop num-
ber and zombie number of a clique is 1 but the cop number and zombie number
of a cycle on more than 3 vertices is 2.

In this paper, we consider bounds on the zombie number as we progres-
sively give more power to the zombies. In addition to normal zombies, we study
lazy zombies and tepid zombies. A lazy zombie is a zombie that has the abil-
ity to remain on its current location on its turn. A tepid zombie is a lazy
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zombie that can move to a vertex whose distance to the survivor does not
increase. The notation for the corresponding zombie numbers for these zom-
bies are zL(G), uL(G), zT (G), uT (G) for the lazy zombie number, universal lazy
zombie number, tepid zombie number and universal tepid zombie number of a
graph, respectively. Note that universality includes the case of all pursuers start-
ing on the same vertex. This means that many graphs have infinite u(G); for
instance, u(Cn) = ∞ for n ≥ 5.

1.1 Contributions

We first focus on the relationship between the zombie numbers of some graphs
and the zombie numbers of different products of those graphs. We examine
bounds on Cartesian products of graphs and strong products of graphs. We also
introduce a variant which we call a capped product and provide some upper and
lower bounds on these products as well. Using the capped product, we provide
an example showing that the sufficient condition for a graph to be zombie-win
established by Fitzpatrick et al. [5] is not a necessary condition. Our bounds on
Cartesian and strong products are summarized in Table 1. We then design an
algorithm that can decide whether or not a graph G is k-zombie win for all the
above variants of zombies. Unfortunately, due to space constraints, some proofs
are missing.

Table 1. Summary of our bounds for Cartesian product and strong product.

Cartesian product Strong product

Zombies z(G�H) ≤
z(G) + z(H) [1,6]

z(G � H) ≤ z(G) · z(H)

Universal zombies u(G�H) ≤
u(G) + u(H)

u(G � H) ≤ u(G) + u(H) − 1

Lazy zombies zL(G�H) ≤
zL(G) + zL(H)
zL(P2�Cn) =
2, n ≥ 3

zL(G � H) ≤ zL(G) · zL(H)

Universal lazy zombies uL(G�H) ≤
uL(G) + uL(H)
uL(P2�Cn) =
2, n ≥ 3

uL(G � H) ≤ uL(G) + uL(H) − 1

Tepid zombies zT (G�H) ≤
zT (G) + zT (H)

zT (G � H) ≤ zT (G) · zT (H)

Universal tepid zombies uT (G�H) ≤
uT (G) + uT (H)

uT (G � H) ≤ uT (G) + uT (H) − 1
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2 Graph Products

Given connected graphs G1 = (V1, E1) and G2 = (V2, E2), we denote their
Cartesian product as G1�G2 and their strong product as G1 �G2. Given a path
P = (a1, b1), . . . , (ai, bj) in G1�G2 (resp. G1 � G2), we define the shadow of P
onto G1, ΨG1(P ), as the walk a1, . . . , ai. Similarly, ΨG2(P ) is the walk b1, . . . , bj
in G2.

In the following, we number the vertices of a path Pj as 0, 1, . . . , j − 1 (in
order) and the vertices of a cycle Cj similarly. When it is clear from context, we
drop the fixed parts of the Cartesian product pair notation, writing simply ab
rather than (a, b).

2.1 Cartesian Products

In this subsection, we study the zombie number of the Cartesian products of
graph. Fitzpatrick et al. ([5], Question 10) asked whether z(G�H) ≤ z(G) +
z(H), which was answered in the affirmative independently by Bartier et al. [1]
and Keramatipour and Bahrak [6]. Both proofs are similar and hinge on the
following observation that is embedded in their proofs.

Observation 1. [1,6] Let πG1(a1, ai) = a1, . . . , ai and πG2(b1, bj) = b1, . . . , bj
(with i, j ≥ 2) be shortest paths in G1 and G2, respectively. There is a shortest
path from a1b1 to aibj in G1�G2 where either a2b1 or a1b2 is the second vertex
in the path.

Observe that the strategy presented by Bartier et al. [1] and Keramatipour
and Bahrak [6] can be used both by lazy zombies and tepid zombies on G�H,
which allows us to conclude the following:

Corollary 1. For all graphs G and H, zL(G�H) ≤ zL(G) + zL(H) and
zT (G�H) ≤ zT (G) + zT (H).

We show how their bound can also be generalized for universal zombies.

Lemma 1. u(G1�G2) ≤ u(G1) + u(G2).

Proof. The adversary places u(G1) + u(G2) zombies in G1�G2. Partition these
zombies into two sets U1 and U2 where |U1| = u(G1) and |U2| = u(G2). Let the
survivor’s current position be denoted as (s1, s2). Let (a, b) (resp. (c, d)) be the
coordinates of an arbitrary zombie in U2 (resp. U1). If a = s1 (resp. d = s2)
then the U2-zombies (U1-zombies) move in one turn of a winning strategy for G2

(resp. G1) on the second (resp. first) coordinate. This is a valid zombie move by
Observation 1. If a �= s1 (resp. d �= s2) then the U2-zombies (U1-zombies) move
toward s1 (resp. s2) on the first (resp. second) coordinate. Again, this is a valid
move due to Observation 1.

Let SG1(U1) (resp. SG2(U2)) be an upper bound on the number of moves
for u(G1) (resp. u(G2)) zombies to catch a survivor in G1 (resp. G2). Let M =
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SG1(U1)+SG2(U2)+ |V (G1)|+ |V (G2)|. Notice that if the survivor is stationary
on G2 (resp. G1) for |V (G2)| + SG1(U1) (resp. |V (G1)| + SG2(U2)) turns, then
a U1-zombie (resp. U2-zombie) catches the survivor. On its turn, by definition
of the Cartesian product, the survivor must be stationary on one coordinate.
In other words, if it moves in G1, then it is stationary in G2 and vice versa.
Therefore, after M turns, the survivor must have been stationary for at least
|V (G2)| + SG1(U1) turns on G2 or at least |V (G1)| + SG2(U2) turns on G1.
Without loss of generality, assume that the survivor was stationary on the second
coordinate for |V (G2)| + SG1(U1) turns. Then, a U1-zombie must have caught
the survivor. After |V (G2)| turns where the survivor is stationary on G2, the
U1-zombies catch the shadow on the second coordinate. Then, after another
SG1(U1) turns where the survivor is stationary on G2, a U1-zombie catches the
survivor since the U1-zombies are playing the winning strategy on G1. ��

The strategy presented in the proof of Lemma 1 can be used both by lazy
zombies and tepid zombies on G�H, which allows us to conclude the following:

Corollary 2. For all graphs G and H, uL(G�H) ≤ uL(G) + uL(H) and
uT (G�H) ≤ uT (G) + uT (H).

Fitzpatrick et al. [5] showed that z(P2�Cn) > 2 for odd n ≥ 5 which is opti-
mal since z(G�H) ≤ z(G) + z(H). Although the general bounds of Corollaries
1 and 2 imply an upper bound of 3 for lazy and tepid zombies, we prove that
these general upper bounds are not tight by showing optimal bounds.

Theorem 1. For n ≥ 3, zL(P2�Cn) = 2.

Proof. That one zombie cannot catch a survivor on this graph is trivial. Start
with z1 on (0, 0) and z2 on (1, 	n

2 
). Without loss of generality, the survivor
starts on (sx, sy) with 0 ≤ sy ≤ 	n

2 
. On the zombies’ turn, the survivor is at
(s′

x, s
′
y) while z1 is at (0, a) and z2 is at (1, b); a ≤ s′

y ≤ b. If survivor is adjacent
to a zombie, the zombie captures. Otherwise, if s′

x = 0, move z1 to (0, a + 1);
if s′

x = 1, move z2 to (1, b − 1). Only one zombie moves and the other stays
still. This strategy keeps the survivor between the zombies (i.e. a ≤ s′

y ≤ b) but
reduces b − a by one each turn, so the survivor is eventually caught. ��
Fitzpatrick et al. [5] showed that for n ≥ 5 odd, z(P2�Cn) = 3 > 2 = c(P2�Cn).
In the following theorem, we show that uL(P2�Cn) = c(P2�Cn).

Theorem 2. For n ≥ 3, uL(P2�Cn) = 2.

Proof. (Sketch) Two lazy zombies eventually force a situation where the zombies
can play the strategy from the proof of Theorem 1. ��

2.2 Strong Products

We now turn our attention to the relationship between strong products
and zombie numbers. Although the strong product and Cartesian prod-
uct of two graphs are related, the strong product introduces its own set
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of complications. We begin by introducing the concept of lifting. Given
two graphs G1 and G2, let W1 = a1, . . . , ai be a walk in G1 and
W2 = b1, . . . , bj be a walk in G2. We assume that i < j. We define
a walk in G1 � G2 as the lifting of W1 and W2, denoted Λ(W1,W2),
as the path (a1, b1), (a2, b2), . . . , (ai, bi), (ai, bi+1), (ai, bi+2), . . . , (ai, bj). Sim-
ilarly, when i ≥ j, Λ(W1,W2) is the path (a1, b1), (a2, b2), . . . , (aj , bj),
(aj+1, bj), (aj+2, bj), . . . , (ai, bj). We first establish some properties of shortest
paths.

Lemma 2. Let P1 be a shortest path from a1 to ai in G1 and let P2 be a shortest
path from b1 to bj in G2. The path Λ(P1, P2) is a shortest path in G1 � G2 from
(a1, b1) to (ai, bj) of length max{i, j}.

Lemma 3. If a1a2 is an edge on a shortest path P1 from a1 to ai in G1 and
b1b2 is an edge on a shortest path P2 from b1 to bj in G2, then the edge from
(a1, b1) to (a2, b2) is on a shortest path from (a1, b1) to (ai, bj) in G1 � G2.

Lemma 4. Let P be a shortest path between two vertices in G1 � G2. ΨG1(P )
is a shortest path in G1 or ΨG2(P ) is a shortest path in G2.

Using the above lemmas, we are able to give an upper bound on z(G1 �G2).

Lemma 5. z(G1 � G2) ≤ z(G1) · z(G2).

Proof. Without loss of generality, assume that z(G1) ≤ z(G2). Let i = z(G1) and
j = z(G2). Let a winning starting configuration of zombies on G1 be a placement
of the zombies on vertices a1, . . . , ai and a winning starting configuration of
zombies on G2 be a placement of zombies on vertices b1, . . . , bj . On G1 �G2, the
initial placement of the ij zombies is on the vertices (ax, by) for x ∈ {1, . . . , i}
and y ∈ {1, . . . , j}. Since z(G1) = i, there is a winning strategy where one
zombie ultimately catches the survivor on G1 after a finite number of moves.
Similarly, there is a winning strategy where 1 zombie ultimately catches the
survivor on G2 after a finite number of moves. By Lemma 3, this strategy is
played simultaneously on G1 � G2. Suppose that a zombie on vertex x on G1,
on its turn, moves to vertex y. And on the same turn, a zombie on vertex v in
G2 moves to vertex w on its turn. Then the zombie on (x, v) in G1 � G2 moves
to (y, w), which is a valid move by Lemma 2. Now, suppose that the zombie
catches the survivor on G1 at vertex s. Let b′

1, . . . , b
′
j be the current positions

of the zombies in G2 after having started on an initial winning configuration.
By construction, we have a zombie on every vertex of the form (s, b′

y) where
y ∈ {1, . . . , j}. Therefore, when the pursuit continues, the zombie catches the
survivor on G2 which is guaranteed since z(G2) = j. At this point, the zombie
will have caught the survivor on G1 � G2. ��

Notice that the zombie number of z(G�H) is at most z(G) ·z(H) as opposed
to z(G) + z(H) as is the case of the Cartesian product. The main reason is that
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in the Cartesian product, on its turn, the survivor had to remain stationary
on one coordinate whereas in the strong product, the survivor can move on
both coordinates. We are able to overcome this difficulty in the case of universal
zombies. Given k ≥ 1, the k-variant of the game ends when k zombies are at the
survivor’s location.

Lemma 6. With u(G) + k − 1 zombies in G, for k ≥ 1, there exists a strategy
for the k-variant of the game where k zombies catch the survivor after a finite
number of steps.

Lemma 7. u(G1 � G2) ≤ u(G1) + u(G2) − 1.

Proof. Let i = u(G1) and j = u(G2). Place i+ j − 1 zombies anywhere in G. By
Lemma 6, j zombies can catch survivor in G1 when i+j −1 zombies are initially
placed anywhere in G1. Similarly, i zombies can catch the survivor on G2 when
i + j − 1 zombies are initially placed anywhere in G2. By Lemma 3, both the
strategies on G1 and G2 can be played simultaneously on G1 � G2 until there
are j zombies with first coordinate s1 and i zombies with second coordinate s2,
where (s1, s2) is the survivor’s position. By the pigeonhole principle, since there
are only i + j − 1 zombies total in G1 � G2, there must be at least 1 zombie on
(s1, s2), which implies that the survivor has been caught. ��

3 Capped Products and Cop-Win Spanning Trees

Taking inspiration from examples in Fitzpatrick et al., we define the capped
product. Imagine some graph G � Pj or G�Pj . In these products, there are two
special copies G0 and Gj−1 of G, called the end copies of G, corresponding to
each of the ends of the path Pj . To cap this product, we take a graph H with
V (G) ⊆ V (H) and identify the vertices common to G0 and H. We denote such
a graph as G � Pj � H or G�Pj � H. (Generally the identification of vertices in
G and H is understood and not specified.) We call any vertex of H that is not
placed in correspondence with a vertex of G0 an extra vertex.

If G has n vertices, the specific caps H that seem useful are Kn, where
any 1-to-1 correspondence with the vertices of G is the same; Kn+1, where one
vertex of the cap is extra but the rest are in 1-to-1 correspondence; and K1,n,
where the leaves of K1,n are placed in 1-to-1 correspondence with G, and the
internal vertex is extra. However, we write our results in more general terms. For
instance, both Kn+1 and K1,n can be characterized as caps that have an extra
universal vertex. Figure 1 shows (a) C6 �P3, (b) C6 �P3 �K6, (c) C6 �P3 �K7,
and (d) C6 � P3 � K1,6. In general, we label the vertices of Cj from 0 to j − 1
in counterclockwise order. Fitzpatrick et al. [5] use this type of construction for
their Figure 1 (C5 � P3 � K5) and Figure 5 (C5 � P3 � K6).

For rooted trees T , we also extend the notation to G�T �H and G�T �H,
where the copy of G corresponding to the root is used as the “end copy” to
identify vertices of H with. We consider the path Pk on k vertices as a tree
rooted at the vertex 0.
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Fig. 1. Illustrating capped products.

We want to discuss Theorem 6 by Fitzpatrick et al. [5], but we first need to
define what a cop-win spanning tree is. In a graph G, we denote the neighborhood
of a vertex u as N(u). It corresponds to the set of all neighbors of u in G. The
closed neighborhood of u is N [u] = N(u) ∪ {u}. Given two different vertices
u, v ∈ V (G), we say that u is a corner of v (or v is a cover of u) whenever
N [u] ⊆ N [v]. Let u ∈ V (G) be a corner of v ∈ V (G). Let G1 be the graph
obtained from G by removing u and all its incident edges. We call this operation
a (one-point) retraction and we denote it by u → v. Note that this differs from the
standard definition of one-point retraction [3] in that a self-loop is not required or
created on v. The graph G1 is called a retract of G. We know that c(G1) ≤ c(G)
(refer to [2]). A dismantling is a finite sequence of retractions, which produces a
finite sequence of graphs G0 = G,G1, G2, ..., Gk, where Gi+1 is a retract of Gi

(0 ≤ i ≤ k −1). G is cop-win if and only if there exists a dismantling of length n
(where n = |V (G)|) such that Gn is the trivial graph on one vertex [7,8]. Given
a cop-win graph G, a cop-win spanning tree is a tree T with vertex set V (G)
that is associated to a dismantling of G. In T , u is a child of v if and only if
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u → v is a retraction in the associated dismantling. In their paper, Fitzpatrick
et al. [5] prove the following theorem.

Theorem 3. If there exists a breadth-first search of a graph such that the asso-
ciated spanning tree is also a cop-win spanning tree, then G is zombie-win.

They then go on to show that this is a stronger statement (in the sense
that more graphs satisfy the hypothesis) than saying that bridged2 graphs are
zombie-win. However, they do not say whether they believe this theorem is a
characterization; i.e. whether it captures all graphs that are zombie-win. Here
we answer that question in the negative, providing an example of a zombie-win
graph that does not meet the hypothesis of Theorem 3.

Lemma 8. The graph C6 � P3 � K1,6 (Fig. 1d) is zombie-win but does not have
a breadth-first-search spanning tree that is a cop-win spanning tree.

We note that C6 � P3 � K1,6 has the symmetric cop-win spanning tree con-
sisting of all of the radial edges (that is, all edges (h, x0), (x0, x1), and (x1, x2)).
This corresponds to the zombie strategy in the proof of the lemma. However, we
note that this spanning tree, while not a breadth-first-search spanning tree, is
still a shortest-path spanning tree. We therefore investigated whether shortest-
path cop-win spanning trees imply a zombie-win graph. The answer is no; the
subgraph of C6 �P3 �K1,6 shown in Fig. 2a, which we call the katydid, provides
the counterexample.
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Fig. 2. The katydid and katydid plus graphs

Lemma 9. The katydid (Fig. 2a) has a shortest-path cop-win spanning tree but
is survivor-win.

2 A graph is bridged if it contains no isometric cycles of length greater than 3.
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However, we did find that the presence of a shortest-path cop-win spanning
tree implies that a tepid zombie can win.

To prove this, we first need a few technical lemmas. Let level(w) denote the
level of vertex w (distance to root) in some rooted tree. First, note that for any
edge uv of G in a shortest-path tree of G, |level(u) − level(v)| ≤ 1.

Lemma 10. Let T be a cop-win spanning tree of graph G that is also a shortest
path tree from some vertex r, and uv be some edge of G. If u′ and v′ are distinct
ancestors of u and v respectively, with level(u′) = level(v′), then the edge u′v′

exists.

Proof. Let u∗ be the parent of u and v∗ be the parent of v in T . Since u′ �= v′,
then u∗ �= v∗. Assume without loss of generality that level(u) ≤ level(v) in T .
If level(u) < level(v), then level(u) = level(v) − 1 by the previous note. So we
consider two cases: (1) level(u) = level(v), or (2) level(u) = level(v) − 1.

1. Without loss of generality, assume that u gets dismantled before v. Since u
is a corner of u∗ (when we dismantle u), there must be an edge u∗v in G.
Hence, u∗ and v are in Case 2, where level(u∗) < level(u). So we apply Case
2 with u := u∗.

2. Assume level(u) = level(v) − 1. Observe that v must be dismantled before
u. Otherwise, u would be a corner of u∗ (when we dismantle u), and hence,
there would be an edge u∗v in G. This would break the shortest-path tree T
since level(u∗) = level(u) − 1 = level(v) − 2. Consider the dismantling of v.
Since v is a corner of v∗ (when we dismantle v), then there is an edge uv∗

in G. Hence, u and v∗ are in Case 1, where level(v∗) < level(v). So we apply
Case 1 with v := v∗.

Repeating this argument, we eventually get to the situation where u′ and v′ are
in Case 1, from which there is an edge u′v′ in G. ��
Lemma 11. Let T be a cop-win spanning tree of graph G that is also a shortest
path tree from some vertex r, and uv be some edge of G. Furthermore, let u′ and
v′ be distinct ancestors of u and v respectively, with level(u′) = level(v′), and u′′

and v′′ be ancestors of u and v that are children of u′ and v′, if such children
exist. Then, if one or more of u′′ and v′′ exist, there is either an edge u′v′′ or
an edge v′u′′.

Proof. Repeating the argument presented in the proof of Lemma 10, we eventu-
ally get to the situation where u′ and v′′ are in Case 2, or u′′ and v′ are in Case
2, from which there is an edge u′v′′ or u′′v′ in G. ��
Theorem 4. Let G be a graph with a cop-win spanning tree T that is also a
shortest path tree from some vertex r. Then one tepid zombie can capture a
survivor on G.

Proof. (Sketch) The tepid zombie starts at r, the root of T . On its turn, it will
always move to an ancestor of the survivor’s position, possibly maintaining the
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same distance to the survivor. In addition, it will move down the tree if it can.
Within n turns, the survivor must repeat its location, and one can show that in
this loop there is always one zombie position where it can move down the tree.
Capture follows when the zombie reaches the same depth as the survivor. ��

A version of the Katydid graph, which we call the Katydid plus, shows that
the previous theorem is not a characterization of tepid zombie-win graphs.

Lemma 12. The Katydid plus (Fig. 2b) is tepid zombie-win but does not have
a shortest-path spanning tree that is a cop-win spanning tree.

3.1 General Results on Capped Products

In this section, we state some general results on zombie numbers of capped
products, but first, we examine two good strategies–one for a zombie and one
for the survivor.

Stay-On-Top Strategy. This is a zombie strategy for a graph G�T or G � T ,
where T is a tree. Here, if the survivor is at (as, bs), the zombie tries to move to
(as, bz) where bz is above bs—either at bs or an ancestor of bs in T . If it is able
to achieve this, then it moves to the bz, which is closest to bs, that satisfies the
constraints.

In G � T , once a zombie is able to get to (as, bz) where bz is above bs, then
the survivor will eventually be caught: A survivor move from (as, bs) to (a′

s, b
′
s)

is responded to by a zombie move from (as, bz) to (a′
s, b

′
z) where b′

z is one level
lower than bz in T . Eventually b′

z will equal b′
s, catching the survivor.

In G�T , once a zombie is able to get to (as, bz) where bz is above bs, then
the survivor is constrained to making a finite number of moves that change its
second coordinate. A survivor move from (as, bs) to (as, b

′
s) is met with a zombie

move from (as, bz) to (as, b
′
z) where b′

z is one level lower than bz. On the other
hand, a survivor move from (as, bs) to (a′

s, bs) is followed by a zombie move
from (as, bz) to (a′

s, bz), which does not move the zombie down the tree. So the
survivor can move as much as it likes in G and never be caught by this zombie.

Plus-Two Cycle Strategy. This is a survivor strategy for a graph Ck � G,
for k ≥ 4. Suppose the zombie is at a location (ai, bi) and the survivor can
get to a location (a′

i, b
′
i) where |a′

i − ai| (mod k) ≥ 2. If the survivor is not
adjacent to the zombie in a-coordinates, then the survivor waits where it is.
When the zombie gets to an adjacent a-coordinate, the survivor moves away
from it in a-coordinate, attaining a distance of two in a-coordinate after its
move. If the zombie then increases the distance in a-coordinate (while at the
same time decreasing the distance in b-coordinate), the survivor mimics the
zombie’s move, moving towards the zombie in a-coordinate so as to reattain a
distance of two in a.

Theorem 5. Let G be any n-vertex graph, and H be any graph on more than
n vertices with a universal vertex. Then, z(G � Pj � H) = 1.



538 P. Bose et al.

Proof. Let h be the universal vertex of H. The zombie chooses h as its starting
position. If the survivor chooses any vertex of H (including the vertices of G0) as
its starting position, the zombie captures them in the first turn. So the survivor
chooses some vertex (u, v) where u ∈ G and v ≥ 1. The zombie, on its first turn,
can move to (u, 0) as this vertex is on a shortest path from h to (u, v). The survivor
starts their k-th turn at (uk, vk) with the zombie at (uk, zk) where zk < vk. They
move to (uk+1, vk+1) where ukuk+1 ∈ G and |vk − vk+1| ≤ 1. The zombie, on its
next turn, moves along a shortest path to (uk+1, zk+1) where zk+1 is either vk+1, in
which case they capture the survivor, or is zk + 1 < vk+1. Since the zombie moves
one step down in the Pj in each turn, and the survivor cannot get past the zombie,
the survivor will be captured after at most j moves. ��

We can prove the following by a similar method to the previous theorem.

Theorem 6. Let G be any n-vertex graph, T be any tree, and H be any graph
on more than n vertices with an extra universal vertex. Then, z(G�T �H) = 1.

Lemma 13. The graph Cj � Pk � K1,j is

(1) universal zombie win if k = 1 or j = 3, or
(2) zombie-win from h, and survivor-win from other vertices if k ≥ 2 and j ≥ 4.

Proof.

1. Assume k = 1. Cj with the cap K1,j glued on is the wheel on j + 1 vertices;
it is universal zombie-win because it has a universal vertex.
Assume j = 3. Let z = (za, t) and x = (sa, t′). If t < t′, then the zombie plays
the stay-on-top strategy in C3�Pk, eventually cornering the survivor. Other-
wise, the zombie keeps pursuing the survivor. Observe that the survivor can
never be at the same level as the zombie otherwise it gets caught. Therefore,
the zombie catches the survivor in at most k rounds.

2. Assume now k ≥ 2 and j ≥ 4.
Suppose we play the game with the zombie starting at vertex h. The survivor
picks a location (a0, b0) to start. The zombie moves on its first move to (a0, 0),
and thereafter plays the stay-on-top strategy in Cj �Pk, eventually cornering
the survivor.
Suppose now that we play the game with the zombie starting at vertex (a0, b0).
The survivor can then choose ((a0+2) (mod j), k−1) as its starting location,
and follow the plus-two cycle strategy on Cj � Pk. This strategy works, and
the survivor survives, if the zombie cannot move to h.
We now show that the zombie cannot move to h. Suppose the zombie is adja-
cent to h at (an, 0) after its n−th move. The zombie’s distance to the survivor
is now max(2, k − 1). If the zombie moved to h, its distance to the survivor
would become k. However, it has a move to ((a0 + 1) (mod j), 1) which has
distance max(1, k − 2) to the survivor, which is less than k. Therefore h is
not on a shortest path to the survivor, and the survivor’s strategy works.

��
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Lemma 14. The graph Cj � Pk � Kj is universal zombie-win if k = 1 or k = 2
or j = 3. It is survivor-win against 1 zombie, whenever k ≥ 3 and j ≥ 4.

Proof.

1. The zombie always wins on the first turn if the graph is Kj . If the graph is
Cj �P2 �Kj , then the zombie either wins on the first turn or can move along
a shortest to-survivor path to some vertex (a1, 0). The survivor then moves
to (a′

1, b
′
1) and then the zombie moves to (a′

1, 0), either capturing the zombie
(if b′

1 = 0) or capturing it on the next turn (if b′
1 = 1).

Assume j = 3. Let z = (za, t) and s = (sa, t′). If t < t′, then the zombie plays
the stay-on-top strategy in C3�Pk, eventually cornering the survivor. Other-
wise, the zombie keeps pursuing the survivor. Observe that the survivor can
never be at the same level as the zombie otherwise it gets caught. Therefore,
the zombie catches the survivor in at most k − 1 rounds.

2. Assume now k ≥ 3 and j ≥ 4.
Suppose we play the game with the zombie starting at some vertex (a0, b0).
The survivor will start at ((a0 + 2) (mod j), k − 1), and play the plus-two
cycle strategy on Cj � Pk. This strategy works if the zombie can never move
from (ai, 0) to some (ai+1, 0), which effectively limits the play to Cj � Pk.
Suppose therefore that the zombie is at (ai, 0); the survivor will be at ((ai+2)
(mod j), k−1). The distance from the zombie to the survivor in Cj �Pk �Kj

is max(2, k − 1). Since k ≥ 3 this max is equal to k − 1. The distance from
(ai+1, 0) to the survivor in Cj � Pk � Kj is max(x, k − 1), where x is the
distance, in Cj , from ai+1 to (ai + 2) (mod j). Regardless of what x is, the
to-survivor distance is at least k−1, meaning that (ai+1, 0) is no improvement
over (ai, 0) and therefore cannot be moved to by the zombie. ��

Lemma 15. Let G = Cj�P2 � Kj. Then z(G) ≥ j
5 = n

10 .

Proof. The result holds for j ≤ 5 since all graphs have zombie number at least
1. Hence, assume that j ≥ 6. Suppose we have fewer than j

5 zombies, and they
have been placed in the initial round of the game. Consider the shadow of these
zombies on Cj . There are some five consecutive vertices of Cj without a shadow;
without loss of generality we may assume these are the vertices 1, 2, 3, 4, and 5
where vertex 0 has a shadow. We initially place the survivor at (2, 1). If there is
a zombie or zombies at (0, 1) and/or (j − 1, 1), these zombies have distance at
most 3 to the survivor and may move to (1, 1) and/or (0, 1). Other zombies at
(x, 0) have a shortest path to the survivor of length 2 going through (2, 0), so
they move to (2, 0). Other zombies at (x, 1) have a shortest path to the survivor
of length 3, going through (x, 0) and (2, 0); each of these zombies moves to its
corresponding (x, 0).

On the survivor’s first turn, there are potentially zombies at (0, 1), (1, 1),
(2, 0), and various (x, 0)’s. The survivor moves to (3, 1). The zombies near the
survivor follow but stay one behind the survivor, and the zombies at (x, 0) move
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to (3, 0), also one behind the survivor. The survivor can continue through the
whole cycle Cj (repeatedly) by always increasing its first coordinate.

Thus, fewer than j
5 zombies fail to catch a survivor. ��

For fixed rooted trees other than P2, we still require a linear number of
zombies.

Lemma 16. Let T be a tree having depth d ≥ 2. If G = Cj�T � Kj or Cj�T �
Kj+1, then z(G) ≥ j

d+4 . If G = Cj�T � K1,j, then z(G) ≥ j
d+5 .

Proof. (proof for G = Cj�T � Kj ; other cases are similar.) The result holds for
j ≤ d + 4 since all graphs have zombie number at least 1. Hence, assume that
j ≥ d + 5. Again we examine shadows of zombies and place a largest gap in the
shadows at locations 1 . . . d + 4 with a zombie shadow at location 0. We start
with the survivor at (2, a), where a is a vertex of T adjacent to the root.

As in the previous proof, the survivor simply walks forward on Cj , never
changing its coordinate in T . A few zombies may tag along behind the survivor,
but most will approach it by going through the root level of the tree, which is a
clique. ��
Lemma 17. Let G = Cj�P2 � Kj. Then uL(G) ≤ 2.

Proof. (Sketch) We proceed in two phases. In the first, we get one of the zombies
to have second coordinate 0. In the second, this zombie will be stationary, and
prohibits the survivor from any vertex having second coordinate 0, and also one
vertex of second coordinate 1. Effectively, this traps the survivor on a path of size
j − 1; the second zombie pursues them along this path, eventually capturing. ��
Lemma 18. Let T be a tree rooted at r, H and J be connected graphs such that
J ⊆ H, and G = J�T � H. Let z = (zj , zt) and s = (sj , st) be two vertices of G
with zt an ancestor of st in T . Then, there is a shortest path from z to s with
one of the following two forms: either a sequence of edges going down in T to
(zj , st) followed by a sequence of edges in J or a sequence of edges going up in T
to (zj , r) followed by a sequence of edges in H to (sj , r), followed by a sequence
of edges going down in T to (sj , st).

Proof. If there is a shortest path that does not use edges from H, then by Obser-
vation 1, it has the first form. If there is a shortest path that does use edge(s) from
H, then there is one that goes directly to the root. Indeed, if such a shortest path
uses any edge in J , then we can as well use it at the root level. ��
Lemma 19. Suppose we have the same situation as Lemma 18, with a zombie
at z = (zj , zt) and survivor at s, and a shortest path from z to s = (sj , st) which
has the second form. Then, regardless of the survivor moves, the zombie may
make a sequence of moves going up in T until it reaches (zj , r).
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Proof. Let d be the distance along a shortest path from z to s of form 2. After
k turns, the zombie is at z′, k levels above zt, and the survivor is at s′, at most
k steps away from (sj , st). Thus there is a path of form 2 having length d′ ≤ d
from the zombie to the survivor; following the remainder of the original path of
form 2 to s and then the survivor’s moves from s to s′ gives a path of exactly
(d − k) + k = d so the shortest one can be no larger.

Suppose that z′ is not at the root in T and there is a shortest path of length
d′′ < d′ from the zombie z′ to the survivor s′; this path must not reach the root
in T as otherwise d′ would be smaller. This path, followed by the reverse of the
survivor’s path from s to s′, gives a path of length at most d′′ + k from z′ to
s. Since this path does not use any root vertices, there must be an equal-length
path of form 1. The first k edges of this path go directly down from z′ to z;
removing these edges from the path gives us a path from z to s of length at most
(d′′ + k) − k = d′′. This is a contradiction, as d′′ < d and the (shortest) path
from z to s was of length d. So our supposition of a shorter path is false and
there is an upward shortest path from z′ which the zombie can follow. ��
Lemma 20. Let G = Cj�T � Kj, where T is a tree. Then uL(G) ≤ 3.

Proof. (Sketch) Let z1, z2, and z3 be three lazy zombies starting anywhere in G.
We proceed in three phases: the objective of the first and second phase is to get
a zombie in place to play the stay-on-top strategy. The objective of the third
phase is to repeatedly force the survivor to move in the second coordinate; since
this happens repeatedly, the survivor is eventually captured by the stay-on-top
zombie. ��

By computer, we have verified that C13�P3 � K13 is a graph that requires
at least three lazy zombies, so the lemma is tight.

4 Decision Algorithm

We present an algorithm to determine whether a graph G = (V,E) is survivor-
win, zombie-win or universal zombie-win. G is zombie-win provided that there
exists a vertex v ∈ V such that if the zombie’s starting position is v, then it wins
regardless of the survivor’s starting position. G is universal zombie-win if G is
zombie-win from any vertex. If G is neither zombie-win nor universal zombie-
win, it is survivor-win. We then generalize this approach to determine whether a
graph is k-zombie win or universal k-zombie win for k ≥ 1. Our approach easily
generalizes to lazy and tepid zombies. Our approach is similar to the approach
taken by Berarducci and Intrigila [2] to determine whether a graph is k-cop win.

4.1 Algorithm

The setting for the decision algorithm is the following. Given the graph G =
(V,E) as input, first construct an auxiliary graph G′ from G in the following
way. The graph G′ is a directed bipartite graph. The vertex set V (G′) = V ×
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V × {tz, ts}, where tz and ts are flags to represent whether it is the zombie’s
turn to move or the survivor’s turn to move. The edge set E(G′) is defined as
follows. Let a, b, c be vertices of G. There is a directed edge from vertex (a, b, tz)
to (c, b, ts) in G′ if ac is an edge on a shortest path from a to b in G. There is a
directed edge from (a, b, ts) to (a, c, tz) in G′ if b = c or if bc is an edge in G. The
edges model the allowable moves by the zombie and the survivor. An edge from
(a, b, tz) to (c, b, ts) signifies that the zombie is currently on vertex a, the survivor
is on vertex b, the tz means it is the zombie’s turn to move and the zombie can
move to c since ac is on a shortest path from a to b. As such, the auxiliary graph
encodes all the possible moves by the zombie and the survivor. The algorithm
then marks the nodes that represent states from which the zombie wins. As such,
if all the nodes in the auxiliary graph are marked, then G is universal zombie
win. If at the end of the algorithm, ∃a ∈ V , such that ∀b ∈ V , (a, b, tz) is marked,
then G is zombie win provided that the zombie’s initial position is vertex a.

Theorem 7. ZombieDecision(G) correctly determines in nO(1) time whether G
is universal 1-zombie win, G is 1-zombie win provided the initial zombie position
is on a vertex a ∈ G, or G is survivor win.

This theorem follows by induction. We can generalize the above algorithm
to work for lazy or tepid zombies, and also for k zombies rather than 1 in time
nO(k).

5 Conclusion

In this paper, we proved some upper and lower bounds on the zombie number
of the Cartesian, strong and capped product of various graphs in terms of the
zombie number of the individual graphs that make up the product. Using capped
products, we were able to disprove some conjectures about zombie numbers. We
also studied these bounds for lazy and tepid zombies. Finally, we design an
algorithm nO(k) that can decide given a graph G, whether or not it is k-zombie-
win for all the above variants of zombies. Most of the upper and lower bounds
on the products of graphs are not tight. We leave as an open problem to find
tight upper and lower bounds.
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Abstract. An ordered matching is an ordered graph which consists of
vertex-disjoint edges (and have no isolated vertices). In this paper we
focus on unavoidable patterns in such matchings. First, we investigate
the size of canonical substructures in ordered matchings and generalize
the Erdős-Szekeres theorem about monotone sequences. We also estimate
the size of canonical substructures in a random ordered matching. Then
we study twins, that is, pairs of order-isomorphic, disjoint sub-matchings.
Among other results, we show that every ordered matching of size n
contains twins of length Ω(n3/5), but the length of the longest twins in
almost every ordered matching is O(n2/3).

Keywords: Ordered matchings · Unavoidable patterns · Twins

1 Introduction

A graph G is said to be ordered if its vertex set is linearly ordered. Let G and H be
two ordered graphs with V (G) = {v1 < · · · < vm} and V (H) = {w1 < · · · < wm}
for some integer m ≥ 1. We say that G and H are order-isomorphic if for all
1 ≤ i < j ≤ m, vivj ∈ G if and only if wiwj ∈ H. Note that every pair of
order-isomorphic graphs is isomorphic, but not vice-versa. Also, if G and H are
distinct graphs on the same linearly ordered vertex set V , then G and H are
never order-isomorphic, and so all 2(

|V |
2 ) labeled graphs on V are pairwise non-

order-isomorphic. It shows that the notion of order-isomorphism makes sense
only for pairs of graphs on distinct vertex sets.

One context in which order-isomorphism makes quite a difference is that of
subgraph containment. If G is an ordered graph, then any subgraph G′ of G
can be also treated as an ordered graph with the ordering of V (G′) inherited
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from the ordering of V (G). Given two ordered graphs, (a “large” one) G and (a
“small” one) H, we say that a subgraph G′ ⊂ G is an ordered copy of H in G if
G′ and H are order-isomorphic.

All kinds of questions concerning subgraphs in ordinary graphs can be posed
for ordered graphs as well (see, e.g., [11]). For example, in [3], the authors studied
Turán and Ramsey type problems for ordered graphs. In particular, they showed
that there exists an ordered matching on n vertices for which the (ordered) Ram-
sey number is super-polynomial in n, a sharp contrast with the linearity of the
Ramsey number for ordinary (i.e. unordered) matchings. This shows that it
makes sense to study even such seemingly simple structures as ordered match-
ings. In fact, Jeĺınek [7] counted the number of matchings avoiding (i.e. not
containing) a given small ordered matching.

In this paper we focus exclusively on ordered matchings, that is, ordered
graphs which consist of vertex-disjoint edges (and have no isolated vertices). For
example, in Fig. 1, we depict two ordered matchings, M = {{1, 3}, {2, 4}, {5, 6}}
and N = {{1, 5}, {2, 3}, {4, 6}} on vertex set [6] = {1, 2, . . . , 6} with the natural
linear ordering.

Fig. 1. Exemplary matchings, M and N , of size 3.

A convenient representation of ordered matchings can be obtained in terms
of double occurrence words over an n-letter alphabet, in which every letter occurs
exactly twice as the label of the ends of the corresponding edge in the matching.
For instance, our two exemplary matchings can be written as M = ABABCC
and N = ABBCAC (see Fig. 2).

Fig. 2. Exemplary matchings M and N .

Unlike in [7], we study what sub-structures are unavoidable in ordered match-
ings. A frequent theme in both fields, the theory of ordered graphs as well as
enumerative combinatorics, are unavoidable sub-structures, that is, patterns that
appear in every member of a prescribed family of structures. A good example pro-
viding everlasting inspiration is the famous theorem of Erdős and Szekeres [5] on
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monotone subsequences. It states that any sequence x1, x2, . . . , xn of distinct real
numbers contains an increasing or decreasing subsequence of length at least

√
n.

And, indeed, our first goal is to prove its analog for ordered matchings. The
reason why the original Erdős-Szekeres Theorem lists only two types of subse-
quences is, obviously, that for any two elements xi and xj with i < j there are
just two possible relations: xi < xj or xi > xj . For matchings, however, for
every two edges {x, y} and {u,w} with x < y, u < w, and x < u, there are three
possibilities: y < u , w < y, or u < y < w (see Fig. 3). In other words, every two
edges form either an alignment, a nesting, or a crossing (the first term intro-
duced by Kasraoui and Zeng in [8], the last two terms coined in by Stanley [10]).
These three possibilities give rise, respectively, to three “unavoidable” ordered
canonical sub-matchings (lines, stacks, and waves) which play an analogous role
to the monotone subsequences in the classical Erdős-Szekeres Theorem.

Fig. 3. An alignment, a nesting, and a crossing of a pair of edges.

Informally, lines, stacks, and waves are defined by demanding that every pair
of edges in a sub-matching forms, respectively, an alignment, a nesting, or a
crossing (see Fig. 5). Here we generalize the Erdős-Szekeres Theorem as follows.

Theorem 1. Let �, s, w be arbitrary positive integers and let n = �sw+1. Then,
every ordered matching M on 2n vertices contains a line of size �+1, or a stack
of size s + 1, or a wave of size w + 1.

It is not hard to see that the above result is optimal. For example, consider
the case � = 5, s = 3, w = 4. Take 3 copies of the wave of size w = 4:
ABCDABCD, PQRSPQRS, XY ZTXY ZT . Arrange them into a stack-like
structure (see Fig. 4):

ABCDPQRSXY ZTXY ZTPQRSABCD.

Now, concatenate � = 5 copies of this structure. Clearly, we obtain a matching
of size �sw = 5 · 3 · 4 with no line of size 6, no stack of size 4, and no wave of
size 5.

Also observe that the symmetric case of Theorem 1 implies that M always
contains a canonical structure of size at least n1/3.

Finally, notice that forbidding an alignment yields a so called permutational
matching (for definition see the paragraph after Theorem 4). Permutational
matchings are in a one-to-one correspondence with permutations of order n.
Moreover, under this bijection waves and stacks in a permutational matching M
become, respectively, increasing and decreasing subsequences of the permutation
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Fig. 4. A stack of waves.

which is the image of M . Thus, we recover the original Erdős-Szekeres Theorem
as a special case of Theorem 1.

We also examine the question of unavoidable sub-matchings for random
matchings. A random (ordered) matching RMn is selected uniformly at ran-
dom from all (2n)!/(n!2n) matchings on vertex set [2n]. It follows from a result
of Stanley (Theorem 17 in [10]) that a.a.s.1 the size of the largest stack and
wave in RMn is (1 + o(1))

√
2n. In Sect. 2 we complement his result and prove

that the maximum size of lines is also about
√

n.

Theorem 2.

(i) A.a.s. the random matching RMn contains no lines of size at least e
√

n.
(ii) A.a.s. the random matching RMn contains lines of size at least

√
n/8.

Our second goal is to estimate the size of the largest (ordered) twins in
ordered matchings. The problem of twins has been widely studied for other com-
binatorial structures, including words, permutations, and graphs (see, e.g., [1,9]).
We say that two edge-disjoint (ordered) subgraphs G1 and G2 of an (ordered)
graph G form (ordered) twins in G if they are (order-)isomorphic. The size of
the (ordered) twins is defined as |E(G1)| = |E(G2)|. For ordinary matchings,
the notion of twins becomes trivial, as every matching of size n contains twins
of size �n/2� – just split the matching into two as equal as possible parts. But
for ordered matchings the problem becomes interesting. The above mentioned
generalization of Erdős-Szekeres Theorem immediately (again by splitting into
two equal parts) yields ordered twins of length �n1/3/2�. In Sect. 3 we provide
much better estimates on the size of largest twins in ordered matchings which,
not so surprisingly, are of the same order of magnitude as those for twins in
permutations (see [2] and [4]).

2 Unavoidable Sub-matchings

Let us start with formal definitions. Let M be an ordered matching on the vertex
set [2n], with edges denoted as ei = {ai, bi} so that ai < bi, for all i = 1, 2, . . . , n,
1 Asymptotically almost surely.
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and a1 < · · · < an. We say that an edge ei is to the left of ej and write ei < ej

if ai < aj . That is, in ordering the edges of a matching we ignore the positions
of the right endpoints.

We now define the three canonical types of ordered matchings:

• Line: a1 < b1 < a2 < b2 < · · · < an < bn,
• Stack : a1 < a2 < · · · < an < bn < bn−1 < · · · < b1,
• Wave: a1 < a2 < · · · < an < b1 < b2 < · · · < bn.

Assigning letter Ai to edge {ai, bi}, their corresponding double occurrence words
look as follows:

• Line: A1A1A2A2 · · · AnAn,
• Stack: A1A2 · · · AnAnAn−1 · · · A1,
• Wave: A1A2 · · · AnA1A2 · · · An.

Each of these three types of ordered matchings can be equivalently characterized
as follows. Let us consider all possible ordered matchings with just two edges. In
the double occurrence word notation these are AABB (an alignment), ABBA
(a nesting), and ABAB (a crossing). Now a line, a stack, and a wave is an
ordered matching in which every pair of edges forms, respectively, an alignment,
a nesting, and a crossing (see Fig. 5).

Fig. 5. A line, a stack, and a wave of size three.

Consider a sub-matching M ′ of M and an edge e ∈ M \ M ′, whose left
endpoint is to the left of the left-most edge f of M ′. Note that if M ′ is a line
and e and f form an alignment, then M ′ ∪ {e} is a line too. Similarly, if M ′ is
a stack and {e, f} form a nesting, then M ′ ∪ {e} is a stack too. However, an
analogous statement fails to be true for waves, as e, though crossing f , may not
necessarily cross all other edges of the wave M ′. Due to this observation, in the
proof of our first result we will need another type of ordered matchings combining
lines and waves. We call a matching M = {{ai, bi} : i = 1, . . . , n} with ai < bi,
for all i = 1, 2, . . . , n, and a1 < · · · < an, a landscape if b1 < b2 < · · · < bn, that
is, the right-ends of the edges of M are also linearly ordered (a first-come-first-
serve pattern). Notice that there are no nestings in a landscape. In the double
occurrence word notation, a landscape is just a word obtained by a shuffle of
the two copies of the word A1A2 · · · An. Examples of landscapes for n = 4 are,
among others, ABCDABCD, AABCBCDD, ABCABDCD (see Fig. 6). Now
we are ready to prove Theorem 1.
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Fig. 6. A landscape of size four.

Proof of Theorem 1. Let M be any ordered matching with edges {ai, bi}, i =
1, 2, . . . , n. Let si denote the size of a largest stack whose left-most edge is {ai, bi}.
Similarly, let Li be the largest size of a landscape whose left-most edge is {ai, bi}.
Consider the sequence of pairs (si, Li), i = 1, 2, . . . , n. We argue that no two
pairs of this sequence may be equal. Indeed, let i < j and consider the two edges
{ai, bi} and {aj , bj}. These two edges may form a nesting, an alignment, or a
crossing. In the first case we get si > sj , since the edge {ai, bi} enlarges the
largest stack starting at {aj , bj}. In the two other cases, we have Li > Lj by the
same argument. Since the number of pairs (si, Li) is n > s · �w, it follows that
either si > s for some i, or Lj > �w for some j. In the first case we are done, as
there is a stack of size s + 1 in M .

In the second case, assume that L is a landscape in M of size at least p =
�w+1. Let us order the edges of L as e1 < e2 < · · · < ep, accordingly to the linear
order of their left ends. Decompose L into edge-disjoint waves, W1,W2, . . . ,Wk,
in the following way. For the first wave W1, pick e1 and all edges whose left
ends are between the two ends of e1, say, W1 = {e1 < e2 < . . . < ei1}, for some
i1 � 1. Clearly, W1 is a true wave since there are no nesting pairs in L. Notice
also that the edges e1 and ei1+1 are non-crossing since otherwise the latter edge
would be included in W1. Now, we may remove the wave W1 from L and repeat
this step for L − W1 to get the next wave W2 = {ei1+1 < ei1+2 < . . . < ei2}, for
some i2 � i1 + 1. And so on, until exhausting all edges of L, while forming the
last wave Wk = {eik−1+1 < eik−1+2 < . . . < eik}, with ik � ik−1 +1. Clearly, the
sequence e1 < ei1+1 < . . . < eik−1+1 of the leftmost edges of the waves Wi must
form a line. So, if k � �+1, we are done. Otherwise, we have k � �, and because
p = �w + 1, some wave Wi must have at least w + 1 edges. This completes the
proof. 
�

It is not hard to see that the above result is optimal.
Now we change gears a little bit and investigate the size of unavoidable struc-

tures in random ordered matchings. Let RMn be a random (ordered) matching
of size n, that is, a matching picked uniformly at random out of the set of all

αn :=
(2n)!
n!2n

matchings on the set [2n].
Stanley determined very precisely the maximum size of two of our three

canonical patterns, stacks and waves, contained in a random ordered matching.



550 A. Dudek et al.

Theorem 3 (Theorem 17 in [10]). The largest stack and the largest wave
contained in RMn are each a.a.s. of size (1 + o(1))

√
2n.

Our Theorem 2 complements this result by estimating the maximum size
of lines. In the proof of Part (ii) of Theorem 2 we will make use of the follow-
ing lemma that can be easily checked by a standard application of the second
moment method, and, therefore, its proof is omitted here. Define the length of
an edge {i, j} in a matching on [2n] as |j − i|.
Lemma 1. Let a sequence k = k(n) be such that 1 � k � n. Then, a.a.s. the
number of edges of length at most k in RMn is k(1 + o(1)).

Proof of Theorem 2. Part (i) is an easy application of the first moment method.
Let Xk be a random variable counting the number of ordered copies of lines of
size k in RMn. Then,

EXk =
(

2n

2k

)
·1·αn−k

αn
=

2k

(2k)!
· n!
(n − k)!

≤ 2k

(2k)!
·nk ≤ 2k

(2k/e)2k
·nk =

(
e2n

2k2

)k

.

Thus, for k = e
√

n we have

Pr(Xk > 0) ≤ EXk ≤
(

e2n

2k2

)k

= 2−e
√

n = o(1).

It remains to prove Part (ii). Let k =
√

n/2. Due to Lemma 1, a.a.s. the
number of edges of length at most k in RMn is at least

√
n/4. We will show that

among the edges of length at most k, there are a.a.s. at most
√

n/8 crossings or
nestings. After removing one edge from each crossing and nesting we obtain a
line of size at least

√
n/4 − √

n/8 =
√

n/8.
For a 4-element subset S = {u1, u2, v1, v2} ⊂ [2n] with u1 < v1 < u2 < v2,

let XS be an indicator random variable equal to 1 if both {u1, u2} ∈ RMn and
{v1, v2} ∈ RMn, that is, if S spans a crossing in RMn. Clearly,

Pr(XS = 1) =
1

(2n − 1)(2n − 3)
.

Let X =
∑

XS , where the summation is taken over all sets S as above and
such that u2−u1 ≤ k and v2−v1 ≤ k. Note that this implies that v1−u1 ≤ k−1.
Let f(n, k) denote the number of terms in this sum. We have

f(n, k) ≤
(

2n(k − 1) −
(

k

2

))(
k

2

)
≤

(
nk − 1

2

(
k

2

))
k2,

as we have at most 2n(k−1)−(
k
2

)
choices for u1 and v1 and, once u1, v1 have been

selected, at most
(
k
2

)
choices of u2 and v2. It is easy to see that f(n, k) = Ω(nk3).

Hence, EX = Ω(k3/n) → ∞, while

EX =
∑
S

EXS =
f(n, k)

(2n − 1)(2n − 3)
≤ k3/4n =

1
32

√
n.
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To apply Chebyshev’s inequality, we need to estimate E(X(X − 1)), which
can be written as

E(X(X − 1)) =
∑
S,S′

Pr({{u1, u2}, {v1, v2}, {u′
1, u

′
2}, {v′

1, v
′
2}} ⊂ RMn),

where the summation is taken over all (ordered) pairs of sets S =
{u1, u2, v1, v2} ⊂ [2n] with u1 < v1 < u2 < v2 and S′ = {u′

1, u
′
2, v

′
1, v

′
2} ⊂ [2n]

with u′
1 < v′

1 < u′
2 < v′

2 such that u2 − u1 ≤ k, v2 − v1 ≤ k, u′
2 − u′

1 ≤ k, and
v′
2 − v′

1 ≤ k. We split the above sum into two sub-sums Σ1 and Σ2 according to
whether S ∩ S′ = ∅ or |S ∩ S′| = 2 (for all other options the above probability
is zero). In the former case,

Σ1 ≤ f(n, k)2

(2n − 1)(2n − 3)(2n − 5)(2n − 7)
= (EX)2(1 + O(1/n)).

In the latter case, the number of such pairs (S, S′) is at most f(n, k) · 4k2, as
given S, there are four ways to select the common pair and at most k2 ways to
select the remaining two vertices of S′. Thus,

Σ2 ≤ f(n, k) · 4k2

(2n − 1)(2n − 3)(2n − 5)
= O(k5/n2) = O(

√
n)

and, altogether,

E(X(X − 1)) ≤ (EX)2(1 + O(1/n)) + O(
√

n) = (EX)2 + O(
√

n).

By Chebyshev’s inequality,

Pr(|X − EX| ≥ EX) ≤ E(X(X − 1)) + EX − (EX)2

(EX)2

≤ 1 + O(1/
√

n) +
1

EX
− 1 = O

(
1√
n

)
→ 0.

Thus, a.a.s. X ≤ 2EX ≤ √
n/16.

We deal with nestings in a similar way. For a 4-element subset
S = {u1, u2, v1, v2} ⊂ [2n] with u1 < v1 < v2 < u2, let YS be an indicator
random variable equal to 1 if both {u1, u2} ∈ RMn and {v1, v2} ∈ RMn, that is,
if S spans a nesting in RMn. Further, let Y =

∑
YS , where the summation is

taken over all sets S as above and such that u2 − u1 ≤ k and so v2 − v1 ≤ k (in
fact, k − 2). It is crucial to observe that, again, EY ≤ k3/n =

√
n/32. Indeed,

this time there are at most 2nk − (
k+1
2

)
choices for u1 and u2 and, once u1, u2

have been selected, at most
(
k
2

)
choices of v1, and v2, while the probability of

both pairs appearing in RMn remains the same as before. The remainder of the
proof goes mutatis mutandis.

We conclude that a.a.s. the number of crossings and nestings of length at
most k in RMn is at most

√
n/8 as was required. 
�
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3 Twins

Recall that by twins in an ordered matching M we mean any pair of disjoint,
order-isomorphic sub-matchings M1 and M2 and that their size is defined as
the number of edges in just one of them. For instance, the matching M =
AABCDDEBCFGHIHEGFI contains twins M1 = BCDDBC and M2 =
EFHHEF of size three (see Fig. 7).

Fig. 7. Twins of size 3 with pattern XY ZZXY .

Let t(M) denote the maximum size of twins in a matching M and tmatch(n)
– the minimum of t(M) over all matchings on [2n].

We first point to a direct correspondence between twins in permutations and
ordered twins in a certain kind of matchings. By a permutation we mean any
finite sequence of pairwise distinct positive integers. We say that two permuta-
tions (x1, . . . , xk) and (y1, . . . , yk) are similar if their entries preserve the same
relative order, that is, xi < xj if and only if yi < yj for all 1 � i < j � k. Any
two similar and disjoint sub-permutations of a permutation π are called twins.
For example, in permutation

(6, 1 , 4 , 7, 3 , 9, 8 , 2 , 5 ),

the red and blue subsequences form a pair of twins of length 3, both similar to
permutation (1, 3, 2).

For a permutation π, let t(π) denote the maximum integer k such that π
contains twins of length k each. Further, let tperm(n) be the minimum of t(π)
over all permutations of [n], called also n-permutations. By the first moment
method Gawron [6] proved that tperm(n) � cn2/3 for some constant c > 0.

As for a lower bound, notice that by the Erdős-Szekeres Theorem, we have
tperm(n) �

⌊
1
2n1/2

⌋
. This bound was substantially improved by Bukh and

Rudenko [2]

Theorem 4 (Bukh and Rudenko [2]). For all n, tperm(n) � 1
8n3/5.

We call an ordered matching M on the set [2n] permutational if the left end
of each edge of M lies in the set [n]. In the double occurrence word notation
such a matching can be written as M = A1A2 . . . AnAi1Ai2 . . . Ain , where πM =
(i1, i2, . . . , in) is a permutation of [n] (see Fig. 8).
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Fig. 8. The permutational matching that corresponds to the permutation
(2, 6, 1, 4, 3, 5).

Clearly there are only n! permutational matchings, nevertheless the connec-
tion to permutations turned out to be quite fruitful. Indeed, it is not hard to
see that ordered twins in a permutational matching M are in one-to-one corre-
spondence with twins in πM . Thus, we have t(M) = t(πM ) and, consequently,
tmatch(n) ≤ tperm(n). In particular, by the above mentioned result of Gawron, it
follows that tmatch(n) = O(n2/3).

More subtle is the opposite relation.

Proposition 1. For all 1 ≤ m ≤ n, where n − m is even,

tmatch(n) ≥ min
{

tperm(m), 2tmatch

(
n − m + 2

2

)}
.

Proof. Let M be a matching on [2n]. Split the set of vertices of M into two
halves, A = [n] and B = [n + 1, 2n] and let M(A,B) denote the set of edges of
M with one end in A and the other end in B. Note that M ′ := M(A,B) is a
permutational matching. We distinguish two cases. If |M ′| � m, then

t(M) ≥ t(M ′) = t(πM ′) ≥ tperm(|M ′|) ≥ tperm(m).

If, on the other hand, e(A,B) ≤ m − 2, then we have sub-matchings MA and
MB of M of size at least (n − m + 2)/2 in sets, respectively, A and B. Thus, in
this case, by concatenation,

t(M) ≥ t(MA) + t(MB) ≥ 2tmatch

(
n − m + 2

2

)
.


�
Proposition 1 allows, under some mild conditions, to ,,carry over” any lower

bound on tperm(n) to one on tmatch(n).

Lemma 2. If for some 0 < α, β < 1, we have tperm(n) ≥ βnα for all n ≥ 1,
then tmatch(n) ≥ β(γn)α for any 0 < γ ≤ min{1 − 21−1/α, 1/4} and all n ≥ 1.

Proof. Assume that for some 0 < α, β < 1, we have tpermr (n) ≥ βnα for all n ≥ 1
and let 0 < γ ≤ min{1 − 21−1/α, 1/4} be given. We will prove that tmatch(n) ≥
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β(γn)α by induction on n. For n � 1
γ

(
1
β

)1/α

the claimed bound is at most 1,

so it is trivially true. Assume that n ≥ 1
γ

(
1
β

)1/α

and that tmatch(n′) ≥ β(γn)α

for all n′ < n. Let nγ ∈ {�γn�, �γn� + 1} have the same parity as n. Then, by
Proposition 1 with m = nγ ,

tmatch(n) ≥ min
{

tperm(nγ), 2tmatch

(
n − nγ + 2

2

)}
.

By the assumption of the lemma, tperm(nγ) ≥ βnα
γ ≥ β(γn)α. Since γ ≤ 1/4 and

so, n ≥ 4, we have (n − nγ + 2)/2 ≤ n − 1. Hence, by the induction assumption,
also

2tmatch

(
n − nγ + 2

2

)
≥ 2β

(
γ

n − nγ + 2
2

)α

≥ 2β

(
γn

1 − γ

2

)α

≥ β(γn)α

where the last inequality follows by the assumption on γ. 
�
In particular, Theorem 4 and Lemma 2 with β = 1/8, α = 3/5, and γ = 1/4

imply immediately the following result.

Corollary 1. For every n, tmatch(n) ≥ 1
8

(
n
4

)3/5.

Moreover, any future improvement of the bound in Theorem 4 would auto-
matically yield a corresponding improvement of the lower bound on tmatch(n).

As for an upper bound, we already mentioned that tmatch(n) = O
(
n2/3

)
.

This means that for each n there is a matching M of size n with t(M) ≤ cn2/3,
where c > 0 is a fixed constant. In fact, this holds for almost all M .

Proposition 2. A.a.s. t(RMn) = O
(
n2/3

)
.

Proof. Consider a random (ordered) matching RMn. The expected number of
twins of size k in RMn is

1
2

(
2n

2k, 2k, 2n − 4k

)
αk · 1 · αn−2k

αn
=

2kn!
2(2k)!k!(n − 2k)!

<

(
e3n2

2k3

)k

,

which tends to 0 with n → ∞ if k ≥ cn2/3, for any c > e2−1/3. This implies that
a.a.s. there are no twins of size at least cn2/3 in RMn. 
�

4 Final Remarks

Proposition 2 asserts that a.a.s. t(RMn) = O
(
n2/3

)
. In the journal version

of this extended abstract we intend to prove the matching lower bound: a.a.s.
t(RMn) = Ω

(
n2/3

)
. The real challenge, however, would be to prove (or disprove)

that the bound holds for all matchings of size n.
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Conjecture 1. For each n there is a matching M of size n with t(M) ≥ cn2/3,
where c > 0 is a fixed constant. Consequently, tmatch(n) = Θ

(
n2/3

)
.

The same statement is conjectured for twins in permutations (see [4]). By our
results from Sect. 3, we know that both conjectures are actually equivalent.

In a similar way twins may be defined and studied in general ordered graphs.

Problem 1. How large twins must occur in every ordered graph with n edges?

For unordered graphs there is a result of Lee, Loh, and Sudakov [9] giving an
asymptotically exact answer of order Θ(n log n)2/3. It would be nice to have an
analogue of this result for ordered graphs.

Finally, it seems natural to look for Erdős-Szekeres type results like Theo-
rem 1 for more general structures. One possible direction to pursue is to consider,
for some fixed k � 3, ordered k-uniform matchings. In full analogy with graph
ordered matchings (k = 2), these structures correspond to k-occurrence words,
in which every letter appears exactly k times. For instance, for k = 3 there
are exactly 1

2

(
6
3

)
= 10 ways two triples AAA and BBB can intertwine which,

somewhat surprisingly, give rise to 9 canonical structures, analogous to lines,
stacks, and waves in the graph case. In fact, they correspond to different pairs of
the three graph structures. Using this correspondence, in the journal version we
intend to prove that every 3-occurrence word of length 3n contains one of these
9 structures of size Ω

(
n1/9

)
. We suspect that similar phenomena hold for each

k ≥ 4 or even for words in which the occurrences of particular letters may vary.

Acknowledgements. We would like to thank all four anonymous referees for a careful
reading of the manuscript and suggesting a number of editorial improvements.
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7. Jeĺınek, V.: Dyck paths and pattern-avoiding matchings. Eur. J. Combin. 28(1),
202–213 (2007)

8. Kasraoui, A., Zeng, J.: Distribution of crossings, nestings and alignments of two
edges in matchings and partitions. Electron. J. Combin. 13(1), Research Paper 33,
12 (2006)



556 A. Dudek et al.

9. Lee, C., Loh, P.S., Sudakov, B.: Self-similarity of graphs. SIAM J. Discret. Math.
27(2), 959–972 (2013)

10. Stanley, R.P.: Increasing and decreasing subsequences and their variants. In: Inter-
national Congress of Mathematicians, Vol. I, pp. 545–579. European Mathematical
Society, Zürich (2007)
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Abstract. Let t ≥ 1 be a rational constant. A t-spanner of a graph G is a
spanning subgraph of G in which the distance between any pair of vertices
is at most t times their distance in G. This concept was introduced by
Peleg & Ullman in 1989, in the study of optimal synchronizers for the
hypercube. Since then, spanners have been used in multiple applications,
especially in communication networks, motion planning and distributed
systems. The problem of finding a t-spanner with the minimum number of
edges is NP-hard for every t ≥ 2. Cai & Corneil, in 1995, introduced the
Tree t-spanner problem (TreeSt), that asks whether a given graph
admits a tree t-spanner (a t-spanner that is a tree). They showed that
TreeSt can be solved in linear time when t = 2, and is NP-complete
when t ≥ 4. The case t = 3 has not been settled yet, being a challenging
problem. The prism of a graph G is the graph obtained by considering
two copies of G, and by linking its corresponding vertices by an edge
(also defined as the Cartesian product G × K2). Couto & Cunha (2021)
showed that TreeSt is NP-complete even on this class of graphs, when
t ≥ 5. We investigate TreeS3 on prisms of graphs, and characterize
those that admit a tree 3-spanner. As a result, we obtain a linear-time
algorithm for TreeS3 (and the corresponding search problem) on this
class of graphs. We also study a partition of the edges of a graph related
to the distance condition imposed by a t-spanner, and derive a necessary
condition —checkable in polynomial time— for the existence of a tree t-
spanner on an arbitrary graph. As a consequence, we show that TreeS3

can be solved in polynomial time on the class of generalized prisms of
trees.

Keywords: Tree spanner · 3-spanner · Prisms of graphs · Generalized
prisms

1 Introduction

Let G be a connected graph. The distance between a pair of vertices u and v, in
G, is the minimum length of a path between them, and it is denoted by dG(u, v).
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Let t ≥ 1 be a rational constant. We say that a spanning subgraph H of G is a
t-spanner of G if the following condition holds.

dH(u, v) ≤ t · dG(u, v), for all u, v ∈ V (G).

Peleg & Ullman [26] introduced this concept in 1989, and showed how to
use a t-spanner to construct a synchronizer (an algorithm that can be applied
to a synchronous algorithm to produce an asynchronous one). In this context,
the quality of the spanner is measured by the constant t, which is known as the
stretch factor. Since then, spanners have appeared in many practical applications
such as motion planning [30], routing tables in communication networks [1], dis-
tance oracles [3,28], etc. In these cases, besides looking for a spanner of small
stretch factor, it is also desirable that it has few number of edges. Motivated by
the fact that trees are the sparsest connected graphs, Cai & Corneil [6] intro-
duced the Tree t-spanner problem (TreeSt); where one asks whether a given
graph admits a t-spanner that is a tree. They showed a linear-time algorithm for
TreeSt when t ≤ 2, and also showed that the problem becomes NP-complete
when t ≥ 4. The complexity of the case t = 3 is still open since then. In the
search for an answer to this question, TreeS3 has been investigated on several
classes of graphs. It is known that it admits a polynomial-time algorithm on
planar graphs [16], convex graphs [29], split graphs [29], line graphs [11], etc. In
all results mentioned above, we have considered only cases in which the stretch
factor t is an integer. Indeed, results for this case carry over to the case t is a
rational number. (This is valid only when the input graph is unweighted.) We
summarize the complexity status of TreeSt on some classes of graphs in Table 1.

Table 1. Computational complexity of TreeSt on some classes of graphs. When t ≤ 2,
the problem can be solved in linear. The shaded cells indicate the results obtained here.

Graph class t = 3 t = 4 t ≥ 5

chordal open NP-complete [14] NP-complete [14]

strongly chordal open P [4] P [4]

interval P [23] P [23] P [23]

planar P [16] NP-complete [13] NP-complete [13]

bounded-degree P [17] P [17] P [17]

prisms of graphs P open NP-complete [9]

gen. prisms of trees P open open

bipartite open open NP-complete [5]

chordal bipartite open open NP-complete [5]

ATE-free P [5] P [5] P [5]

convex bipartite P [29] P [29] P [29]
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An optimization problem related to TreeSt is the Minimum max-stretch
spanning tree problem (MMST). In this problem, we seek a tree t-spanner of
a graph such that t is minimized. The NP-completeness of TreeSt implies that
MMST is NP-hard. Due to this fact, this problem has been studied from the per-
spective of exact and approximation algorithms. Álvarez-Miranda & Sinnl [24]
proposed a mixed integer linear programming formulation for this problem. Also,
Couto et. al. [10] proposed some heuristics for MMST. In terms of approxi-
mation, Emek & Peleg [15] proposed an O(log n)-approximation algorithm for
MMST on graphs of order n. On the other hand, Galbiati [18] proved that
MMST has no (2 − ε)-approximation algorithm, for any ε > 0, unless P =
NP. More recently, MMST has also been approached from a theoretical point-
of-view. In this case, the aim is to search for upper and lower bounds for its
optimal value in different classes of graphs. Let σT (G) denote the optimal value
of MMST when the input graph is G. Lin & Lin [22] showed a tight bound
for σT (G) when G is the result of the Cartesian product of paths, complete
graphs or cycles. Couto & Cunha [9] studied σT (G) on two classes of graphs
defined as follows. First, the prism of a graph G is the graph obtained by con-
sidering the union of two copies of G, and by linking its corresponding vertices.
In case we consider the union of G and G (the complement of G), and link its
corresponding vertices, the resulting graph is called the complementary prism of
G. Couto & Cunha [9] characterized σT (G) when G is a complementary prism.
Moreover, they showed that TreeSt is NP-complete on prisms of graphs, when
t ≥ 5. Our main result is a characterization of prisms of graphs that admit a tree
3-spanner. As a result, we show a linear-time algorithm that solves TreeS3 on
this class of graphs. Furthermore, we show a necessary condition for the admis-
sibility of a tree t-spanner on arbitrary graphs. As a consequence, we extend our
previous result on a particular case of generalized prisms.

This work is organized as follows. In Sect. 2, we present some definitions
and the terminology that we use in the text. We also state some important
results that will be used in the subsequent sections. In Sect. 3, we study the tree
3-spanner problem on prisms of graphs. We obtain a characterization of such
graphs that admit a tree 3-spanner, showing a linear-time algorithm for TreeS3

on this class. After that, in Sect. 4, we study a partition of the edges of a graph
related to the distance condition imposed by a t-spanner. As a result, we derive a
necessary condition for the existence of a tree t-spanner of a graph, which can be
tested in polynomial time. As a consequence, we generalize the result obtained
in Sect. 3 for a class of graphs that contains the prisms of trees. Owing to space
limitation, most of the proofs are sketched and in some cases they are omitted.

2 Preliminaries

In this section, we present some results, definitions and the terminology that will
be used in this text. We always consider that the input graph (for the problems
under consideration) is connected, even if this is not stated explicitly. The length
of a path P (resp. cycle C) is its number of edges, and it is denoted by |P | (resp.
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|C|). In the study of t-spanners, paths and cycles of length at most t play an
important role. We call a path (resp. cycle) of length k, a k-path (resp. k-cycle).
The girth of a graph G, denoted as g(G), is the minimum length of a cycle in G.
If G is a tree, we consider its girth to be infinite. The following result gives an
equivalent definition for a t-spanner. It states that, to verify whether a subgraph
is a t-spanner of a graph G, we only need to check the distance condition on
pairs of adjacent vertices in G.

Proposition 1 (Peleg & Schäffer, 1989). Let H be a spanning subgraph of
a graph G = (V,E). Then, H is a t-spanner of G if and only if for every edge
uv ∈ E, dH(u, v) ≤ t.

We define now the classes of graphs that are the objects of our study. Let G
be a graph. The prism of G, denoted by P(G), is the graph defined as follows.
First, consider two copies of G, say G1 and G2, such that each vertex vi ∈ V (Gi),
i = 1, 2, corresponds to the vertex v in V (G). Then,

V (P(G)) = V (G1) ∪ V (G2),
E(P(G)) = E(G1) ∪ E(G2) ∪ {v1v2 : v ∈ V (G)}.

That is, P(G) is obtained from the union of G1 and G2, by linking the corre-
sponding vertices. We observe that the prism of G is also known as the Cartesian
product P(G) = G×K2. We refer to the perfect matching that links G1 to G2 as
the linkage of P(G). We show an example of this construction in Fig. 1, where the
linkage of P(G) is depicted by double edges. This class of graphs first appeared
in the study of a conjecture regarding the hamiltonicity of 3-connected planar
graphs [2,25]. It has also been studied on problems regarding domination [19]
and vertex-coloring [8]. Throughout this text, whenever we are dealing with a
prism P(G), we will denote by G1 and G2 the copies of G in P(G). Furthermore,
v1 and v2 will denote the copies of the vertex v in G1 and G2, respectively.

G

v

G1

v1

G2

v2

(a) (b) (c)

Fig. 1. (a) a graph G; (b) P(G); and (c) a generalized prism of G.

Note that the linkage of P(G) can be seen as a function f : V (G) → V (G),
where we interpret an edge a1b2, a1 ∈ V (G1) and b2 ∈ V (G2) as f(a) = b. So, in
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the case of P(G), f is the identity function. On the other hand, if we consider
any bijection, say g : V (G) → V (G), and define the graph G′ as

V (G′) = V (G1) ∪ V (G2),
E(G′) = E(G1) ∪ E(G2) ∪ {u1v2 : u, v ∈ V (G), g(u) = v},

we say that G′ is a generalized prism of G. Moreover, we call g the function
induced by the linkage of G′. We show an example of a generalized prism in
Fig. 1(c).

We conclude this section presenting some results concerning the connectivity
of graphs. Let k be a positive integer. We say that a graph G is k-connected
if (a) it has at least k + 1 vertices; and if (b) the removal of any set of k − 1
vertices from G does not disconnect it. In our results regarding tree t-spanner
admissibility, we frequently analyse the 2-connected subgraphs of a graph. The
following result gives a useful property of 2-connected graphs (see Diestel [12]).

Proposition 2. If G is a 2-connected graph, then for any pair of distinct ver-
tices or edges of G, there exists a cycle in G containing them.

Let G be a graph. A block of G is a maximal connected subgraph of G that
does not contain a cut-vertex. Thus, every block of G is either a 2-connected
graph or an edge (that disconnects G). The latter is called a trivial block. We
denote by B(G) the set of blocks of G. An important structure to be used in what
follows concerns the block graph of G. Let A ⊆ V (G) be the set of cut-vertices
of G, and let B be a set of vertices that represents the blocks of G. Then, the
(A,B)-bipartite graph H such that ab ∈ E(H) if and only if a belongs to the
block represented by b, is the block graph of G. As H is a tree (see Diestel [12]),
it is also referred to as the block tree of G.

3 Tree 3-spanner on Prisms of Graphs

This section is devoted to characterizing prisms of graphs that admit a tree 3-
spanner. In order to understand better the structure of such spanners, we start
by looking at the prisms of some well-known classes of graphs. For example,
if we consider trees, their prisms always admit a tree 3-spanner. To show this,
consider a tree T , and let MT be the linkage of P(T ). Then, the subgraph T ′

induced by T1 ∪ MT is a tree 3-spanner of P(T ). This follows from the fact
that, for each edge u2v2 in T2, the path 〈u2, u1, v1, v2〉 links u2 and v2 in T ′. We
show an example of such construction in Fig. 2(a) (the edges in the spanner are
indicated by double edges).

On the other hand, if we consider cycles, this is not always the case. Lin &
Lin [22] showed that the prism of a cycle C admits a tree 3-spanner if and only
if |C| ≤ 3. When |C| ≥ 4, a minimum 3-spanner of P(C) has |V (P(C))| edges,
see Fig. 2(b) (and see also Gómez et. al [20]).

In what follows, we show that some edges in the linkage of a prism P(G)
always belong to a tree 3-spanner of P(G), if it exists. For instance, let us
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(a) (b) (c)

Fig. 2. Minimum 3-spanners of (a) a prism of a tree; (b) a prism of a 4-cycle; and (c)
a prism of two triangles with a common vertex.

consider a star G = K1,m, m ≥ 2. Let u be the center of G. Since G is acyclic,
for each edge uv ∈ E(G), the unique 4-cycle that contains the edges u1v1 or
u2v2, in P(G), also contains u1u2. This observation implies that, if S is a 3-
spanner of G that does not contain u1u2, then S contains a cycle (otherwise
it violates the 3-spanner condition). Indeed, this reasoning can be extended to
prisms of trees, when we consider the cut-vertices of a tree. Next, we show a
generalization of this observation for every graph G (We omit this proof owing
to space limitation).

Lemma 1. Let P(G) be the prism of a graph G. If P(G) admits a tree 3-
spanner, say T . Then, the edge v1v2 belongs to T , for every cut-vertex v ∈ V (G).

The previous result tells us that the two copies of a cut-vertex of a graph G
are adjacent in any tree 3-spanner of P(G), if it exists. In what follows, we focus
on the blocks of G, specifically on the structure of a tree 3-spanner inside the
copies of a block of G.

We say that a vertex u of a graph G is universal if u is adjacent to each
vertex in V (G) \ {u}. Let G be the graph shown in Fig. 2(c). In this case, P(G)
admits a tree 3-spanner. In particular, each of the blocks of G contains a vertex
that is universal inside the block (the cut-vertex). If we restrict our analysis
to the subgraph induced by a block, we obtain K2 or a 2-connected graph,
say G′. In this case, the existence of a universal vertex is sufficient for P(G′)
to admit a tree 3-spanner. On the other hand, as we stated in the beginning of
this section, a prism of a k-cycle, for k ≥ 4, does not admit a tree 3-spanner.
Since these cycles do not contain a universal vertex, that may suggest that the
existence of a universal vertex is also necessary. This observation is the crux of
our characterization, and we show it in what follows.

Theorem 1. Let G be a 2-connected graph. Then, P(G) admits a tree 3-spanner
if and only if G has a universal vertex.
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Proof (sketch). First, if G has a universal vertex, say u, then the bistar induced
by the set of edges

F = {u1w1 : w ∈ V (G) \ {u}} ∪ {u2w2 : w ∈ V (G) \ {u}} ∪ {u1u2}

is a tree 3-spanner of P(G).
Next, suppose that P(G) admits a tree 3-spanner, say T . By contradiction,

suppose that G does not have a universal vertex. As T is a spanning tree of
P(G), there exists an edge u1u2 ∈ E(T ). Let S = V (G) \ NG[u], where NG[u]
denotes the closed neighborhood of u (i.e. NG(u) ∪ {u}). Observe that

dT (u1, v1) ≥ dG(u, v) ≥ 2,

dT (u1, v2) ≥ dG(u, v) + 1 ≥ 3,

dT (u2, v1) ≥ dG(u, v) + 1 ≥ 3,

dT (u2, v2) ≥ dG(u, v) ≥ 2,
(1)

for each v ∈ S. Let T1 and T2 be the components of T − u1u2 that contain u1

and u2, respectively. By (1), the path between v1 and v2 in T does not contain
u1. That is,

v1, v2 belong to the same component of T − u1u2 for each v ∈ S. (2)

Let C be a shortest cycle in G that contains u and a vertex in S (such a cycle
exists by Proposition 2). Let C := 〈u,w0, . . . , wk〉. Note that, the minimality of
C implies that w1, . . . , wk−1 belongs to S. Thus, by (2), the vertices w1

1 and w1
2

belong either to T1 or T2. Without loss of generality, suppose that w1
1, w

1
2 ∈ V (T1)

(the proof of the other case is symmetric). The following claim shows how the
copies of the vertices in V (C) ∩ S are connected in T . We leave its proof to the
reader.

Claim 1. The vertices wi
1 and wi

2 belong to T1, for i = 1, . . . , k − 1.

u1

w1

u2

w2

T1 T2

(a)

u1

w1

u2

w2

T1

T2

(b)

u1

w1

u2

w2

T1

T2

(c)

Fig. 3. Vertices of type a), b) and c) in T are shown in (a), (b) and (c). The black edges
represent the edges in T (a tree 3-spanner).

Next, we focus on the vertices w0 and wk in C. Given a vertex w ∈ NG(u),
we consider the following three cases in T (depicted in Fig. 3).
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a) the edges w1u1 and w2u2 belong to T ;
b) the edges w1u1 and w1w2 belong to T ;
c) the edges w2u2 and w1w2 belong to T .

In particular, we say that a vertex w ∈ NG(u) is of type a), b) or c) if its copies
w1 and w2 satisfy the corresponding condition above. The following claim shows
that every vertex adjacent to u in G is either of type a), b) or c). Its proof is
omitted owing to space limitation.

Claim 2. Let w ∈ NG(u). Then, w is of type a), b) or c).

To conclude the proof of the theorem, we show that there exists an edge in C
whose copy in G1 or G2 violates the 3-spanner condition in T . Since w0 ∈ NG(u),
we distinguish three cases.
Case 1: w0 is of type a)

By Claim 1, the vertex w1
2 ∈ V (T1). Since w1 ∈ S, by (1) we have that

dT (w1
2, u1) ≥ 3. Then,

dT (w1
2, w

0
2) = dT (w1

2, u1) + dT (u1, u2) + dT (u2, w
0
2) ≥ 3 + 1 + 1 = 5,

which contradicts the fact that T is a 3-spanner of P(G).
Case 2: w0 is of type b)

In this case, the edge w0
1u1 ∈ E(T ). Let T ′ be the subtree of T − w0

1u1 that
contains w0

1. We depict the subtrees T1, T2 and T ′ in Fig. 4. The black edges
represent edges of T . The following claim holds. We leave its proof to the reader.

Claim 3. The vertices wi
1 and wi

2 belong to T ′, for i = 0, 1, . . . , k.

u1

w0
1

u2

w0
2

T1

T2

T ′

Fig. 4. The subtrees of T in Case 2.

The previous claim implies that

dT (wk
2 , u2) = dT (wk

2 , w0
1) + dT (w0

1, u2) ≥ 2 + 2 = 4,

a contradiction.
Case 3: w0 is of type c)
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In this case, dT (w1
1, u1) ≥ 2. Thus, we have that

dT (w1
1, w

0
1) = dT (w1

1, u1) + dT (u1, u2) + dT (u2, w
0
1) ≥ 2 + 1 + 2 = 5,

a contradiction. ��
In the proof of the previous result, we have used the following two facts:

– G is 2-connected (required to obtain the cycle C),
– the edge u1u2 belongs to a tree 3-spanner T of P(G).

Observe that both conditions are satisfied by a nontrivial block and a cut-vertex
inside this block. Indeed, by analogous arguments, we obtain the following result.

Corollary 1. Let P(G) be the prism of a graph G. If P(G) admits a tree 3-
spanner, then every cut-vertex u in G is a universal vertex inside the blocks that
contain u.

To show our characterization, we just need the following last observation.
(Its proof is omitted owing to space limitation.)

Lemma 2. Let P(G) be the prism of a graph G. If P(G) admits a tree 3-
spanner, then every nontrivial block of G has at most one cut-vertex.

Now, let us consider the block tree T (G) of a graph G. Lemma 2 implies
that the nontrivial blocks of G correspond to vertices of degree at most one
in T (G). Thus, either they correspond to leaves or to a vertex of degree zero (G
is 2-connected).

Theorem 2. Let G be a graph. Then P(G) admits a tree 3-spanner if and only
if each nontrivial block B of G satisfies the following two conditions:
c1) B contains a universal vertex in B; and
c2) B contains at most one cut-vertex of G.

Proof (sketch). The previous results imply that if G satisfies c1) and c2),
then P(G) admits a tree 3-spanner. Now, suppose that each nontrivial block
B of G satisfies c1) and c2). Without loss of generality, suppose that G is not
2-connected. The following procedure constructs a tree 3-spanner of P(G).
1: T ← ∅
2: for each block B ∈ B(G) do
3: Let u be a cut-vertex in B
4: T ← T ∪ {u1w1 : w ∈ V (B) \ {u}}
5: if B is nontrivial then
6: T ← T ∪ {u2w2 : w ∈ V (B) \ {u}}
7: end if
8: end for
9: T ← T ∪ {u1u2 : u is a cut-vertex of G}

We show an example of this construction in Fig. 5. ��
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Based on the previous result, we describe below an algorithm, called Algo-
rithm 1, that decides, given a graph G, whether P(G) admits a tree 3-spanner,
and in the affirmative case outputs one such spanner.

Theorem 3. Algorithm 1 solves TreeS3 on prisms of graphs in linear time.

Proof. The correctness of the algorithm follows from Theorem 2. Regarding its
time complexity, Tarjan [27] showed a linear-time algorithm that finds the cut-
vertices and blocks of a graph. Moreover, each of the steps in the loop at lines 3–
20 takes constant (amortized) time. Therefore, Algorithm 1 runs in linear time
on the size of G. We observe that, even if we are given P(G) as input (instead
of G), Algorithm 1 runs in linear time. We refer to Imrich & Petering [21] for
an algorithm to recognize Cartesian products of graphs in linear time. ��

Algorithm 1. Tree3S-prism(G)
Input: A connected graph G
Output: A set of edges that induces a tree 3-spanner of P(G) if it exists
1: Find the blocks and cut-vertices of G
2: T ← ∅ � set of edges that induces a tree 3-spanner of P(G)
3: for B ∈ B(G) do
4: if B is a trivial block then
5: Let B = {uv}
6: T ← T ∪ {u1v1}
7: else
8: if B has no cut-vertex then � G is 2-connected
9: Let u be a vertex of maximum degree in B

10: else if B contains more than one cut-vertex of G then
11: return ∅
12: else
13: Let u be the cut-vertex of B
14: end if
15: if u is not a universal vertex in B then
16: return ∅
17: end if
18: T ← T ∪ {u1w1, u2w2 : w ∈ V (B) \ {u}}
19: end if
20: end for
21: T ← T ∪ {u1u2 : u is a cut-vertex of G}
22: return T

Fekete & Kremer [16] designed an algorithm to decide whether a planar graph
admits a tree 3-spanner (and find one if it exists). Given a planar graph G, their
algorithm transforms G into a planar graph G′ where the boundary of each face
has length at most four. Finally, they solve TreeS3 on G′, and if a solution is
obtained, they show how to obtain a solution for G. We observe that Algorithm 1
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(a) (b)

Fig. 5. (a) A graph G; and (b) a tree 3-spanner of P(G).

can be seen as an alternative solution for TreeS3 on a subclass of planar graphs.
Namely, the prisms of outerplanar graphs (which are also planar).

To conclude, we observe that 2-connected graphs H with g(H) ≥ 4 do not
contain a universal vertex. Moreover, a graph G has g(G) ≥ 4 if and only
if g(B) ≥ 4 for each nontrivial block of G. Thus, by Theorem 2, we have to
exclude graphs G whose nontrivial blocks have girth at least 4. This means that
if G is bipartite, then G has to be a tree. Therefore, we obtain the following
result.

Corollary 2. Let G be a bipartite graph. Then, P(G) admits a tree 3-spanner
if and only if G is a tree.

4 Generalized Prisms

In this section, we study a decomposition of a graph that is related to t-spanners.
This technique was used on the class of bounded-degree graphs by Cai & Keil [7]
and by Gómez et. al. [20] in the study of 2-spanners and 3-spanners, respectively.
We will show that this decomposition gives a necessary condition for the exis-
tence of a tree t-spanner on an arbitrary graph.

Let G = (V,E) be a graph, and let H be a t-spanner of G. Observe that if
an edge e = uv ∈ E does not belong to H, then there exists a path P between
u and v, in H, such that |P | ≤ t. Thus, the edge e belongs to a cycle of size
at most t + 1 in G. This fact motivates the definition of the following auxiliary
graph. Let Lt(G) be the graph defined from G as follows.

V (Lt(G)) = {ve : e ∈ E},
E(Lt(G)) = {vevf : e, f ∈ E belong to a cycle C in G, |C| ≤ t + 1}.

We denote by Ct(G) the partition of E induced by the connected components
of Lt(G). That is, two edges e, f ∈ E belong to the same class in Ct(G) if and
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only if ve and vf belong to the same connected component of Lt(G). In Fig. 6, we
show an example of a graph G, its associated graph L2(G), and its decomposition
in C2(G). The vertices of L2(G) are represented by full squares, and its edges are
depicted by (full) black edges. The classes in C2(G) are represented by different
types of edges.

(a) (b) (c)

Fig. 6. (a) a graph G; (b) the graph L2(G) (its vertices are shaded rectangles, and its
edges are depicted by full black edges); (c) the four classes in C2(G) (represented by
different types of edges).

The importance of Ct(G) comes from the following result. It shows that any
t-spanner of G is composed of t-spanners for each graph in Ct(G).

Proposition 3 (Gómez et. al. [20], 2022). A subgraph S of a graph G is a
t-spanner if and only if S ∩ H is a t-spanner of H, for every H ∈ Ct(G).

In the case of tree t-spanners, Cai & Corneil [6] also noted the following
analogous result (see Observation 1.4. in [6]).

Proposition 4 (Cai & Corneil, 1995). Let T be a spanning tree of a graph G.
Then, T is a tree t-spanner if and only if T ∩ H is a tree t-spanner of H, for
each H ∈ B(G).

The following lemma relates the subgraphs in Ct(G) to the blocks of G.

Lemma 3. Let G be a graph, and let H ∈ Ct(G) such that H � K2. Then, H
is 2-connected.

Proof. For this, we show that if a graph H has a cut-vertex, then Ct(H) �= {H}.
Let u be a cut-vertex of H, and let C be a component of H − {u}. Let H1 be
the graph induced by C ∪{u}, and let H2 := H −C. Since any path between H1

and H2 contains u, there is no cycle that contains an edge in H1 and another
edge in H2. Therefore, Ct(H) �= {H}. ��

Since the decomposition of a graph G into blocks is unique, we have the
following result.
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Corollary 3. Let G be a graph. Then, for each H ∈ Ct(G), there exists a unique
block BH ∈ B(G) such that H is a subgraph of BH .

When using a decomposition technique, it is frequently preferable that the
subproblems we obtain are as small as possible. In this respect, Corollary 3 says
that the decomposition Ct(G) is at least as good as the block decomposition
when dealing with t-spanner problems. Now, we show the main result of this
section. It says that, if G admits a tree t-spanner, then the subgraphs in Ct(G)
are precisely the blocks of G.

Theorem 4. Let G be a graph. If G admits a tree t-spanner, then Ct(G) = B(G).

Proof (sketch). Suppose that Ct(G) �= B(G). We will prove that G does not admit
a tree t-spanner. As Ct(G) �= B(G), there exists H ∈ Ct(G) and BH ∈ B(G) such
that H ⊆ BH and H �= BH . Let H1, . . . ,Hk be the subgraphs in Ct(G) such that

(i) H1 = H,
(ii) Hi ⊆ BH , and
(iii) E(BH) =

⋃k
i=1 E(Hi).

In what follows, we consider each edge set E(Hi) as a color class. We say
that a cycle C, in BH , is colorful if it contains edges of at least two colors. Since
H1 = H ⊆ BH and H1 �= BH , we have that k ≥ 2. Furthermore, if we consider
an edge e ∈ E(H1) and an edge f ∈ E(H2), Proposition 2 (see Sect. 2) implies
that there exists a colorful cycle in BH .

Let C∗ be a colorful cycle in BH , and let S be a minimum t-spanner of G.
Without loss of generality, suppose that E(C∗) ∩ E(Hi) �= ∅, for i = 1, . . . , k;
otherwise we do not consider the subgraph Hi. From C∗, we will construct a
closed trail in S, concluding that S contains a cycle which is a contradiction.
For this, let u and v be the ends of a path in E(C∗) ∩ E(H1). Starting from the
vertex u, we traverse C∗ in the direction of v, and label its vertices as

C∗ := 〈u = w1, w2, . . . , w�〉.

Let Si := S ∩ Hi. We construct a closed trail C ′ in S as follows.
1: i ← 1
2: while i ≤ � do
3: Let c be the color of the edge wiwi+1 (i.e. wiwi+1 ∈ E(Hc))
4: j ← max{j′ : i + 1 ≤ j′ ≤ �, the edge wj′−1wj′ has color c}
5: Replace path 〈wi, . . . , wj〉 in C∗ with a path between wi and wj in Sc

6: i ← j
7: end while

We show an example of this construction in Fig. 7. We show the cycle C∗ in
Fig. 7 (a) (depicted by full edges). In Fig. 7 (b), we show a minimum 2-spanner
of G (depicted by double edges). Finally, the closed trail C ′ is depicted by wavy
edges in Fig. 7 (c). ��
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w2

w1 w6

w3

w4

w5

(a)

w2

w1 w6

w3

w4

w5

(b)

w2

w1 w6

w3

w4

w5

(c)

Fig. 7. (a) The cycle C∗; (b) a minimum 2-spanner of G; and (c) the closed trail C′.

On the one hand, Theorem 4 tells us that, regarding tree t-spanners, the decom-
position Ct(G) is not better than the block decomposition of the graph. On the
other hand, it gives a simple criterion to test whether a graph does not admit
a tree t-spanner. In what follows, we use the previous result to characterize the
generalized prisms of trees that admit a tree 3-spanner. We omit its proof owing
to space limitation.

Theorem 5. Let T be a tree, and let T ′ be a generalized prism of T . Then, T ′

admits a tree 3-spanner if and only if the linkage of T ′ induces an automorphism
on T .

The previous theorem tells us that a generalized prism of a tree T admits a
tree 3-spanner if and only if it is isomorphic to P(T ). In the previous proof, the
fact that there is no 4-cycle inside the copies of T implies that the linkage induces
an automorphism on T , otherwise we violate the condition given in Theorem 4.
We observe that the same condition is satisfied by a graph with large girth.

Corollary 4. Let G be a graph such that g(G) ≥ 5, and let G′ be a generalized
prism of G. Then, G′ admits a tree 3-spanner if and only if

a) G is a tree, and
b) the linkage of G′ induces an automorphism on G.

Proof. If G′ satisfies a) and b), then Theorem 5 implies that G′ admits a tree
3-spanner. On the other hand, suppose that G′ admits a tree 3-spanner, say T ′.
Let f be the function induced by the linkage of G′. Since g(G) ≥ 5, we have that
f(u)f(v) ∈ E(G′), for each edge uv ∈ E(G), otherwise C3(G′) �= B(G′). Thus,
f is an automorphism on G. Finally, suppose that G is not a tree, and let C
be a cycle in G. Next, consider the copy of the cycle C in G1, say C1. Since
g(G1) ≥ 5, for each edge u1v1 ∈ E(C1) \ E(T ), the path 〈u1, u2, v2, v1〉 exists
in T . Therefore, T contains a closed trail, a contradiction. ��

The previous result implies that, excluding prisms of trees, no generalized
prism of a graph G with g(G) ≥ 5 admits a tree 3-spanner. Let G′ be a gen-
eralized prism of a graph G. The previous result may suggest that a necessary



Tree 3-Spanners on Generalized Prisms of Graphs 571

(a) (b)

Fig. 8. (a) a graph G; and (b) a generalized prism of G that admits a tree 3-spanner.

condition for G′ to admit a tree 3-spanner is to be isomorphic to P(G). However,
this is not true, as shown in Fig. 8.

5 Concluding Remarks and Future Work

In this work, we focused on the problem TreeS3 whose complexity is still
unknown since 1995. We studied this problem on the class of prisms of graphs.
We characterized which of these graphs admit a tree 3-spanner, and designed a
linear-time algorithm that solves TreeS3 on this class. Moreover, we obtained
a necessary condition for the existence of a tree t-spanner on a general graph,
that is checkable in polynomial time. As a byproduct, we characterized the gen-
eralized prisms of trees that admit a tree 3-spanner. Currently, we are working
on the extension of our results to generalized prisms of arbitrary graphs.

Other directions for further research involve extending our characterization
for graphs of the form G×H, where G is a general graph, and H is a path, cycle
or complete graph. Finally, we observe that a prism of a graph is a special case of
a graph that contains a perfect matching whose removal disconnects it. In that
sense, it would be an interesting and challenging problem to derive sufficient
conditions for the nonexistence of a tree 3-spanner in terms of separating cuts.
This kind of result may possibly help understanding better the properties of the
graphs that admit a tree 3-spanner.
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8. Chudá, K., Škoviera, M.: L(2, 1)-labelling of generalized prisms. Discret. Appl.

Math. 160(6), 755–763 (2012)
9. Couto, F., Cunha, L.: Hardness and efficiency on t-admissibility for graph opera-

tions. Discret. Appl. Math. 304, 342–348 (2021)
10. Couto, F., Cunha, L., Juventude, D., Santiago, L.: Strategies for generating tree

spanners: algorithms, heuristics and optimal graph classes. Inform. Process. Lett.
177, Paper No. 106265, 10 (2022)

11. Couto, F., Cunha, L., Posner, D.: Edge tree spanners. In: Gentile, C., Stecca,
G., Ventura, P. (eds.) Graphs and Combinatorial Optimization: from Theory to
Applications. ASS, vol. 5, pp. 195–207. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-63072-0 16

12. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-53622-3

13. Dragan, F., Fomin, F., Golovach, P.: Spanners in sparse graphs. J. Comput. Syst.
Sci. 77(6), 1108–1119 (2011)
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Abstract. Ammann bars are formed by segments (decorations) on the
tiles of a tiling such that forming straight lines with them while tiling
forces non-periodicity. Only a few cases are known, starting with Robert
Ammann’s observations on Penrose tiles, but there is no general explana-
tion or construction. In this article we propose a general method for cut
and project tilings based on the notion of subperiods and we illustrate it
with an aperiodic set of 36 decorated prototiles related to what we called
Cyrenaic tilings.

Keywords: Aperiodic tilings · Ammann bars · Cut and project tilings

1 Introduction

Shortly after the famous Penrose tilings were introduced by Roger Penrose in
1974 [13] and popularized by Martin Gardner in 1977 [9], amateur mathemati-
cian Robert Ammann [17] found particularly interesting decorations of the tiles
(Fig. 1): if one draws segments in the same way on all congruent tiles then on
any valid tiling all those segments compose straight lines, going in five different
directions. Conversely if one follows the assembly rule consisting of prolonging
every segment on the tiles into a straight line then the obtained tiling is indeed
a Penrose tiling. Those lines are called Ammann bars and the corresponding
matching rule is locally equivalent to the ones given by Penrose using arrows on
the sides or alternative decorations [14].

Penrose tilings have many interesting properties and can be generated in
several ways. The cut and project method1 follows their algebraic study by de
Bruijn in 1981 [7]. Beenker soon proposed a whole family of tilings based on it
[5], including the Ammann-Beenker tilings that Ammann found independently.
A cut and project tiling can be seen as a digitization of a two-dimensional plane
in a n-dimensional Euclidean space (n > 2), and we will talk about n → 2 tilings
in that sense. When the slope of the plane does not contain any rational line, the
1 Terms in italic which are not defined in the introduction are defined formally in
further sections. The introduction is meant to give a general idea of the article.
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1
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Fig. 1. Left: Penrose tiles with Ammann segments (in orange). On each rhombus the
dashed line is an axis of symmetry and the sides have length ϕ = (1 +

√
5)/2. Right:

Ammann bars on a valid pattern of Penrose tiles, where each segment is correctly
prolonged on adjacent tiles. The red vectors are “integer versions” of one subperiod.
(Color figure online)

tiling is non-periodic. This is the case for Penrose tilings for instance, so the set
of tiles defining them is aperiodic: one can tile the plane with its tiles but only
non-periodically. The first aperiodic tileset was found by Berger, thus proving
the undecidability of the Domino Problem [6] and relating tilings to logic. Since
then, relatively few others were exhibited: many non-periodic tilings exist (even
infinitely many using the cut and project method), but we usually do not have
a corresponding aperiodic tileset.

Links were made between such tilings and quasicrystals [16,19], that is crys-
tals whose diffraction pattern is not periodic but still ordered, with rotational
symmetries. The study of local rules, i.e. constraints on the way tiles can fit
together in finite patterns, can help modeling the long range aperiodic order of
quasicrystals. For instance, Penrose tilings are defined by their 1-atlas, which is
a small number of small patterns: any and all tilings containing only those pat-
terns (of the given size) are Penrose tilings. Alternately, they can also be defined
by their Ammann local rules, as stated in the first paragraph. On the contrary,
it was proven [8] that Ammann-Beenker tilings, also known as 8-fold tilings, do
not have weak local rules, i.e. no finite set of patterns is enough to characterize
them. Socolar found sort of Ammann bars for them [18], but they extend outside
the boundary of the tiles, thus do not fit the framework considered here.

Grünbaum and Shephard [10] detail the properties of Ammann bars in the
case of Penrose tilings and their close relation to the Fibonacci word. They also
present two tilesets by Ammann with Ammann bars (A2 and A3) but these are
substitutive and not cut and project tilings. Generally speaking, we do not know
much about Ammann bars and for now each family of aperiodic tilings has to
be treated on a case-by-case basis. Yet they can reveal quite useful to study the
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structure of tilings, and were used by Porrier and Blondin Massé [15] to solve a
combinatorial optimization problem on graphs defined by Penrose tilings.

Here, we would like to find necessary and/or sufficient conditions for a family
of tilings to have Ammann bars. When it comes to 4 → 2 tilings (digitizations of
planes in R

4) and a few others like Penrose, which are 5 → 2 tilings, the existence
of weak local rules can be expressed in terms of subperiods, which are particular
vectors of the slope [2,3]. As mentioned above, Ammann-Beenker tilings have
no local rules and their slope cannot be characterized by its subperiods. Careful
observation of Penrose tilings from this angle shows that Ammann bars have the
same directions as subperiods: there are two subperiods in each direction, one
being ϕ times longer than the other. Additionally, the lengths of the “integer
versions” of subperiods are closely related to the distances between two con-
secutive Ammann bars in a given direction, as can be seen in Fig. 1. Though
interesting, this special case is too particular to hope for a generalization from
it alone. Nonetheless, we think that Ammann bars are related to subperiods.

Since subperiods are simpler for 4 → 2 tilings, for which we also have a
stronger result regarding weak local rules, we focus on those. Namely, Bédaride
and Fernique [3] showed that a 4 → 2 tiling has weak local rules if and only if its
slope is characterized by its subperiods. It seems some conditions of alignment
play a part in the existence of Ammann bars. This led us to introduce the notion
of good projection (Definition 1 p. 9) on a slope. We propose a constructive
method to find Ammann bars for 4 → 2 tilings which are characterized by
subperiods and for which we can find a good projection. We prove the following
result:

Proposition 1. The tileset obtained with our method is always finite.

We found several examples of 4 → 2 tilings characterized by their subperiods
and admitting a good projection. For each of them, we have been able to show
that the finite tileset given by our method is aperiodic. We conjecture that this
actually always holds but we have not yet been able to prove that. Here, we
detail one of these examples, namely 4 → 2 tilings with a slope based on the
irrationality of

√
3 that we called Cyrenaic tilings in reference to Theodorus of

Cyrene who proved
√

3 to be irrational. They have “short” subperiods, which
facilitates observations on drawings. In this case, our method yields the set of
decorated tiles depicted in Fig. 2. Those tiles give Ammann bars to Cyrenaic
tilings and we were able to prove the following:

Theorem 1. The tileset C in Fig. 2 is aperiodic.

The case of Penrose indicates that our construction could (and should) be
adapted in order to work for 5 → 2 tilings, or general cut and project (n → d)
tilings. In particular, for Penrose the lines are shifted and the number of lines
is reduced compared with our method, so that only two decorated tiles are
needed. Besides, in each direction the distance between two consecutive lines
can take only two values, and the sequence of intervals is substitutive. In the
case of Cyrenaic tilings, the bi-infinite word defined by each sequence of intervals
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Fig. 2. Set C of 36 decorated prototiles obtained from Cyrenaic tilings. Any tiling by
these tiles where segments extend to lines is non-periodic (Theorem 1).

between Ammann bars seems to be substitutive so maybe we could compose
them after finding the substitution. Lines could also be shifted as it is the case for
Penrose tilings, instead of passing through vertices. An optimal shift (reducing
the number of lines or tiles) would then have to be determined. Our SageMath
code as well as some more technical explanations are given in the following
repository:

https://github.com/cporrier/Cyrenaic

The paper is organized as follows. Section 2 introduces the settings, providing
the necessary formal definitions, in particular local rules and subperiods. In
Sect. 3 we present our method to construct a set of decorated prototiles yielding
Ammann bars. We rely on subperiods characterizing a slope as well as a good
projection, and prove Proposition 1. Finally, in Sect. 4 we show that Ammann
bars of the set C force any tiling with its tiles to have the same subperiods as
Cyrenaic tilings, thus proving Theorem 1.

2 Settings

2.1 Canonical Cut and Project Tilings

A tiling of the plane is a covering by tiles, i.e. compact subsets of the space,
whose interiors are pairwise disjoint. In this article we focus on tilings by
parallelograms: let v0, ..., vn−1 (n ≥ 3) be pairwise non-collinear vectors of
the Euclidean plane, they define

(
n
2

)
parallelogram prototiles which are the sets

https://github.com/cporrier/Cyrenaic
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Tij := {λvi + μvj | 0 ≤ λ, μ ≤ 1}; then the tiles of a tiling by parallelograms
are translated prototiles (tile rotation or reflection is forbidden), satisfying the
edge-to-edge condition: the intersection of two tiles is either empty, a vertex or
an entire edge. When the vi’s all have the same length, such tilings are called
rhombus tilings.

Let e0, ..., en−1 be the canonical basis of R
n. Following Levitov [12] and

Bédaride and Fernique [2], a tiling by parallelograms can be lifted in R
n, to

correspond to a “stepped” surface of dimension 2 in R
n, which is unique up

to the choice of an initial vertex. An arbitrary vertex is first mapped onto the
origin, then each tile of type Tij is mapped onto the 2-dimensional face of a unit
hypercube of Zn generated by ei and ej , such that two tiles adjacent along an
edge vi are mapped onto two faces adjacent along an edge ei. This is particularly
intuitive for 3 → 2 tilings which are naturally seen in 3 dimensions (Fig. 3, left).
The principle is the same for larger n, though difficult to visualize.

Fig. 3. Examples. Left: Rauzy tiling from which you can visualize the lift in R
3. Center:

Ammann-Beenker tiling. Right: Penrose tiling.

If a tiling by parallelograms can be lifted into a tube E+[0, t]n where E ⊂ R
n

is a plane and t ≥ 1, then this tiling is said to be planar. In that case, thickness
of the tiling is the smallest suitable t, and the corresponding (unique up to
translation) E is called the slope of the tiling. A planar tiling by parallelograms
can thus be seen as an approximation of its slope, which is as good as the
thickness is small. Planarity is said strong if t = 1 and weak otherwise.

Strongly planar tilings by parallelograms can also be obtained by the so-called
(canonical) cut and project method. For this, consider a d-dimensional
affine plane E ⊂ R

n such that E ∩ Z
n = ∅, select (“cut”) all the d-dimensional

facets of Zn which lie within the tube E + [0, 1]n, then “project” them onto R
d.

If this projection π yields a tiling of Rd it is called valid (see Fig. 4), and the
tiling is a strongly planar tiling by parallelograms with slope E. Such tilings
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Fig. 4. Golden octagonal tiling with the usual valid projection (left) and a non-valid
projection on the same slope (right). Colors of the tiles are the same with respect to
the π(ei)’s, with an opacity of 50% in both images. (Color figure online)

are called canonical cut and project tilings or simply n → d tilings. Not every
projection is suitable, but the orthogonal projection onto E seen as Rd is known
to be valid [11]. Here we only consider the case of a 2-dimensional slope E which
is totally irrational, that is, which does not contain any rational line. This yields
aperiodic tilings of the plane.

Figure 3 illustrates the above notions with three well-known examples. Rauzy
tilings are 3 → 2 tilings whose slope E is generated by

�u = (α − 1,−1, 0) and �v = (α2 − α − 1, 0,−1),

where α ≈ 1.89 is the only real root of x3 −x2 −x−1. Ammann-Beenker tilings,
composed of tiles of the set A5 in the terminology of Grünbaum and Shephard
[10], are the 4 → 2 tilings with slope E generated by

�u = (
√

2, 1, 0,−1) and �v = (0, 1,
√

2, 1).

Generalized Penrose tilings are the 5 → 2 tilings with slope E generated by

�u = (ϕ, 0,−ϕ,−1, 1) and �v = (−1, 1, ϕ, 0,−ϕ),

where ϕ = (1+
√

5)/2 is the golden ratio. The “strict” Penrose tilings as defined
by Roger Penrose in [14] (set P3 in the terminology of [10]) correspond to the
case when E contains a point whose coordinates sum to an integer.
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2.2 Local Rules

Local rules for tilings can be defined in several ways, which are not equivalent.
Since we focus on cut and project tilings, we also define local rules for a slope.

Firstly, weak local rules for a tiling T can be defined as in [2]. A pattern
is a connected finite subset of tiles of T . Following [12], an r-map of T is a
pattern formed by the tiles of T which intersect a closed disk of radius r ≥ 0.
The r-atlas of T , denoted by T (r), is then the set of all r-maps of T (up to
translation). In the case of a canonical cut and project tiling, it is a finite set. A
canonical cut and project tiling P of slope E is said to admit weak local rules
if there exist r ≥ 0 and t ≥ 1, respectively called radius and thickness, such
that any n → d tiling T whose r-atlas is contained in P(r) is planar with slope
E and thickness at most t. By extension, the slope E is then said to admit local
rules. In that case, we say that the slope of P is characterized by its patterns of
a given size. Local rules are strong if t = 1. Penrose tilings have strong local
rules and the slope is characterized by patterns of the 1-atlas if the sides of the
tiles have length 1 (see [16], Theorem 6.1, p.177).

Another way of defining local rules is with Ammann bars. We call Ammann
segments decorations on tiles which are segments whose endpoints lie on the
borders of tiles, such that when tiling with those tiles, each segment has to
be continued on adjacent tiles to form a straight line. We say that a slope E
admits Ammann local rules if there is a finite set of prototiles decorated with
Ammann segments such that any tiling with those tiles is planar with slope E.
In particular, no periodic tiling of the plane should be possible with those tiles if
E is irrational. For instance, the marking of the Penrose tiles yielding Ammann
bars is shown in Fig. 1, along with a valid pattern where each segment is correctly
prolonged on adjacent tiles.

2.3 Subperiods

Adapted from Bédaride and Fernique [1], the i1, ..., in−3-shadow of an n → 2
tiling T is the orthogonal projection πi1,...,in−3 of its lift on the space generated
by {ej | 0 ≤ j ≤ n − 1, j 
= i1, ..., in−3}. This corresponds to reducing to zero
the lengths of π(ei1), ..., π(ein−3) in the tiling, so that the tiles defined by these
vectors disappear. This is illustrated in Fig. 5. An n → 2 tiling thus has

(
n
3

)

shadows.
An i1, ..., in−3-subperiod of an n → 2 tiling T is a prime period of its

i1, ..., in−3-shadow, hence an integer vector in R
3. By extension, we call subpe-

riod of a slope E any vector of E which projects on a subperiod in a shadow of T .
A subperiod is thus a vector of E with 3 integer coordinates: those in positions
j /∈ {i1, ..., in−3}. We say that a slope is determined or characterized by its sub-
periods if only finitely many slopes have the same subperiods (in the shadows).



A General Approach to Ammann Bars for Aperiodic Tilings 581

(a) Starting from an Ammann-Beenker tiling (on the left), progressively reduce the

shadow thus obtained is periodic in one direction.

(b) Starting from a Penrose tiling (on the left), progressively reduce the lengths of two

obtained is periodic in one direction.

Fig. 5. Shadows of Ammann-Beenker and Penrose tilings.

For instance, the slope of Ammann-Beenker tilings has four subperiods:

p0 = (
√

2, 1, 0,−1),

p1 = (1,
√

2, 1, 0),

p2 = (0, 1,
√

2, 1),

p3 = (−1, 0, 1,
√

2).

while that of Penrose tilings has ten, each with two non-integer coordinates.
This notion was first introduced by Levitov [12] as the second intersection

condition and then developed by Bédaride and Fernique, who showed in [2] and
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[3] that in the case of 4 → 2 tilings, a plane admits weak local rules if and only
if it is determined by its subperiods. It was shown in [1] that this is not the
case for Ammann-Beenker tilings: indeed, their subperiods are also subperiods
of all Beenker tilings (introduced in [5]), that are the planar tilings with a slope
generated, for any s ∈ (0,∞), by

u = (1, 2/s, 1, 0) and v = (0, 1, s, 1).

The Ammann-Beenker tilings correspond to the case s =
√

2 and do not admit
local rules. On the other hand, generalized Penrose tilings have a slope charac-
terized by its subperiods [2] and do admit local rules.

In this article, we focus on 4 → 2 tilings with irrational slope E characterized
by four subperiods. In this case, each subperiod of E has exactly one non-integer
coordinate. Since the vertices of the tiling are projected points of Z4, we define
“integer versions” of subperiods: if pi = (x0, x1, x2, x3) is a subperiod, then
its floor and ceil versions are respectively pi� = (x0�, x1�, x2�, x3�) and
�pi� = (�x0�, �x1�, �x2�, �x3�). Note that only the non-integer coordinate xi is
affected, and that pi�, �pi� /∈ E.

3 Cyrenaic Tilings and Ammann Bars

In this section, we present a construction to get Ammann bars for some 4 → 2
tilings and we give the example of what we named Cyrenaic tilings.

3.1 Good Projections

In Subsect. 2.1, we defined what is a valid projection for a slope E and mentioned
the classical case of the orthogonal projection. There are however other valid
projections, and this will play a key role here. We will indeed define Ammann
bars as lines directed by subperiods and it will be convenient for the projected i-
th subperiod π(pi) to be collinear with π(ei), so that the image of a line directed
by pi is still a line in the i-th shadow (Fig. 6). This leads us to introduce the
following definition:

A DC
B B

C
DA

Fig. 6. Aligned segments in a pattern remain aligned in the shadow corresponding to
the direction of the line.
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Fig. 7. Cyrenaic tiling with π(�pi�) and π(�pi�) for each subperiod pi. On the left, we
used the orthogonal projection which is valid but not good ; on the right we used a good
projection. Colors of the tiles are the same on both images with respect to the π(ei)’s.
Starting from the central pattern, one can see how one tiling is merely a deformation
of the other. (Color figure online)

Definition 1. A good projection for a 2-dimensional slope E ⊂ R
4 is a valid

projection π : R4 → R
2 such that for every i ∈ {0, 1, 2, 3}, π(pi) and π(ei) are

collinear.

Figure 7 illustrates the difference between two valid projections, one being
good but not the other, on the slope of Cyrenaic tilings which we present in the
next subsection. With the good projection, projected subperiods have the same
directions as the sides of the tiles. This is why if segments on the tiles of a tiling
T are directed by π(pi) then continuity of the lines in direction i is preserved in
the i-shadow of T , for any i ∈ {0, 1, 2, 3}, as illustrated in Fig. 6. Indeed, consider
a line L in direction i, then it is parallel to the sides of the tiles which disappear
in the i-shadow of T . Now consider a tile t0 which disappears in this shadow,
containing a segment [BC] ⊂ L, and its neighbors t−1 and t1 containing segments
[AB], [CD] ⊂ L. Taking the i-shadow corresponds to translating remaining tiles
in direction i, hence by such a translation the endpoint of an Ammann segment
is mapped to a point on the same line (namely the image of the other endpoint
of the same segment). As a result, the images of points B and C are on the same
line, so that points A,B,C,D are still aligned.

3.2 Finding Good Projections

Given a slope E with subperiods p0, . . . , p3, we search for a good projection π as
follows. We will define it by its 2 × 4 matrix A, which must satisfy Aei = λiApi
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for i = 0, . . . , 3, where Λ := (λi)i=0,...,3 is to be determined. With M denoting
the 4 × 4 matrix whose i-th column is ei − λipi, this rewrites AM = 0. The 2
rows of A must thus be in the left kernel of M . Since the image of the facets
in E + [0, 1]4 must cover R

2, A must have rank 2. Hence the left kernel of M
must be of dimension at least 2, that is, M must have rank at most 2. This is
equivalent to saying that all the 3 × 3 minors of M must be zero. Each minor
yields a polynomial equation in the λi’s. Any solution of the system formed by
these equations yields a matrix M whose left kernel can be computed. If the
kernel is not empty, then any basis of it yields a suitable matrix A.

Of course with 4 variables and 16 equations there is no guarantee that a
solution exists, and oftentimes when a projection respects the collinear condition
in Definition 1 it is not valid: some tiles are superimposed in what should be a
tiling. Figure 4 shows for instance what happens in the case of golden octagonal
tilings (introduced in [2]) when the obtained matrix A is used. To find a slope
E with a good projection, we proceed as follows:

1. Randomly choose the three integer coordinates of each subperiod pi;
2. Check that only finitely many slopes admit these subperiods;
3. Use the above procedure to find a good projection (if any);
4. Repeat until a good projection is found.

We easily found several examples using this method. In particular, the fol-
lowing caught our attention because it has very short subperiods. Here are the
integer coordinates of these:

p0 = (∗, 0, 1, 1),
p1 = (1, ∗,−1, 1),
p2 = (1,−1, ∗, 0),
p3 = (2, 1,−1, ∗),

where ∗ stands for the non-integer coordinate. We checked that there are only
two ways to choose these non-integer coordinates so that the subperiods indeed
define a plane, namely:

p0 = (a, 0, 1, 1),
p1 = (1, a − 1,−1, 1),
p2 = (1,−1, a + 1, 0),
p3 = (2, 1,−1, a),

with a = ±
√

3. Proceeding as explained at the beginning of this subsection yields

M =
1
6

⎛

⎜
⎜
⎝

3 −a −a −2a
0 a + 3 a −a

−a a −a + 3 a
−a −a 0 3

⎞

⎟
⎟
⎠ ,
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whose left kernel is generated, for example, by the rows of the matrix

A :=
1
2

(
2 0 a + 1 a − 1
0 2 −a − 1 a + 1

)

Only a =
√

3 defines a valid projection, so we choose this value. We denote by
Ec the slope generated by the pi’s and call Cyrenaic tilings the 4 → 2 tilings
with slope Ec. Figure 7 illustrates this.

Fig. 8. A Cyrenaic tiling with all the lines in the directions of the subperiods, through
every vertex of the tiling. Directions are shown separately to ease visualization, and
lines are dashed so that one can see the edges of the tiling.

3.3 Defining the Prototiles

We describe here the method we used to obtain the tileset C depicted in Fig. 2.
Let E be a 2-dimensional irrational plane in R

4 characterized by its subperiods
and which admits a good projection π. Consider a tiling with slope E obtained
using the good projection π. Draw through each vertex of this tiling four lines
directed by each of the projected subperiods π(pi)’s. Figure 8 shows what we
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obtain for a Cyrenaic tiling. These lines decorate the tiles of the tiling with
segments that can take four different directions. All these decorated tiles, con-
sidered up to translation, define the wanted tileset. Note that the tileset does not
depend on the initially considered tiling, because the 4 → 2 tilings with a given
irrational slope share the same finite patterns (this known fact is e.g. proven by
Prop. 1 in [3]). We can now prove:

Proposition 1. The tileset obtained by the above method is always finite.

Proof. We prove that the number of different intervals (distances) between two
consecutive lines in a given direction is finite. This yields finitely many ways to
decorate a tile by parallel segments, hence finitely many different tiles.

Consider a subperiod pi and the set Di of all lines in E directed by π(pi)
and passing through the vertices of the tiling, that is by all points π(x) with
x ∈ Z

4 ∩ (E + [0, 1]4). Since the distance from a vertex to its neighbors is
||π(ek)|| for some k, the interval between two consecutive lines of Di is at most
d1 := maxj �=i{||π(ej)||}.

Fig. 9. Illustration of the proof of Proposition 1. �pi� stands for �pi� or �pi�.

Let Δ ∈ Di, x ∈ R
4 such that π(x) ∈ Δ, and Δ′ ∈ Di which is closest to

Δ (Fig. 9). Then the distance from π(x) to its orthogonal projection π′(x) on
Δ′ is at most d1. Besides, the distance between two vertices lying on Δ′ is at
most d2 := max(||π(pi�)||, ||π(�pi�)||). Indeed, if y ∈ Z

4 ∩ (E + [0, 1]4) then
y + pi ∈ E + [0, 1]4 and has three integer coordinates so that it lies on an edge
of Z4 (seen as a grid in R

4), between y + pi� and y + �pi�; now at least one of
these two points is in Z

4 ∩ (E + [0, 1]4), therefore its projection is also a vertex
of the tiling, which lies on Δ′ (since π(pi), π(pi�) and π(�pi�) are collinear).
Hence the distance between π′(x) and the closest vertex π(y) of the tiling which
lies on Δ′ is at most d2/2. As a result, dist(π(x), π(y)) ≤ d :=

√
d21 + d22/4, i.e.

at least one vertex on Δ′ is in the ball B(π(x), d). Consequently, measuring the
intervals around a line Δ in the d-maps of the tiling is enough to list all possible
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intervals between two consecutive lines in the whole tiling. Since the d-atlas is
finite, so is the number of intervals. �

Although the previous proof does not give an explicit bound on the number
of tiles, it does give a constructive procedure to obtain these tiles. It is indeed
sufficient to compute the constant d (which depends on the subperiods and
the projection), then to enumerate the d-maps (for example by enumerating all
patterns of size d and keeping only those which can be lifted in a tube E +[0, 1]4

– in practice we used a more efficient algorithm based on the notion of region
[4] which we do not detail here – and, for each d-map, to draw the lines and
enumerate the new decorated tiles obtained. In the case of Cyrenaic tilings, it
is sufficient to enumerate the tiles which appear in the 5-atlas in terms of graph
distance2. We obtain 2 or 3 intervals in each direction, and the set C of 36
decorated prototiles in Fig. 2.

4 Tiling with the Tileset C
By construction, the tileset C can be used to form all the Cyrenaic tilings (with
the decorations by lines). However, nothing yet ensures that these tiles cannot
be used to tile in other ways, and obtain for instance tilings which would be
periodic or not planar. We shall here prove that this actually cannot happen.

Say we have a set S of tiles decorated with Ammann segments obtained from
a given slope E ⊂ R

4 characterized by subperiods (pi)i∈{0,1,2,3} with a good
projection π, and we want to show that any tiling with those tiles is planar with
slope E. Let T be the set of all tilings that can be made with (only) tiles of S. By
construction (assembly rules for the tiles in S), four sets of lines appear on any
T ∈ T and the lines of each set are parallel to a projected subperiod π(pi) and to
π(ei) for the same i. We can therefore talk about the i-shadow of T as the tiling
obtained when reducing to zero the length of sides of tiles which are parallel to
π(pi). Then as shown in Subsect. 3.1, for any i ∈ {0, 1, 2, 3}, continuity of the
lines in direction i is preserved in the i-shadow of T .

Note that this is true for any set of tiles obtained with the method described
above. We can then use the lines to show that a shadow is periodic and determine
its prime period: starting from a vertex of the shadow, we follow the line in the
chosen direction until we hit another vertex, for each valid configuration of the
tiles. If the vector from the first vertex to the next is always the same, then it is
a prime period of the shadow.

Proposition 2. Every tiling composed with tiles of C has the same subperiods
as Cyrenaic tilings.

Proof. For the set C, we observe that each i-shadow is periodic with period
qi := πi(pi) where pi is the i-subperiod of Cyrenaic tilings. This is shown in
Fig. 10. In each shadow there are three original (non-decorated) tiles, each of
2 To get the set C we used the 6-atlas as a precaution.
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Fig. 10. Periods of the 4 shadows of tilings that can be realized with the set C: starting
at any vertex and following a line in direction i, depending on the first traversed tile,
there are at most two possibilities until reaching another vertex, and the vector between
both vertices is always the same.

which can appear in different versions when taking the decorations into account.
For each i-shadow here we only look at the decorations in direction i, where we
have the continuity of the lines (other decorations are irrelevant). All possible
tiles are given on the top row, and following the arrows from each tile one can
see all different possibilities3 to place other tiles in order to continue the line
directing the red vector. For each shadow, the vector is the same for all possible
configurations, which means that the shadow is periodic, and we find exactly
the subperiods of Cyrenaic tilings. �

The main result in [2] thus yields the following:

Corollary 1. Every tiling composed of tiles of C is planar with slope Ec.

There is no guarantee that their thickness is always 1. Yet since the slope Ec

is totally irrational, Theorem 1 follows.

3 Remember that a line passes through every vertex, in each direction.
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Abstract. Given two graphs G and H, and a list L(u) ⊆ V (H) asso-
ciated with each u ∈ V (G), a list homomorphism from G to H is a
mapping f : V (G) → V (H) such that (i) for all u ∈ V (G), f(u) ∈ L(u),
and (ii) for all u, v ∈ V (G), if uv ∈ E(G) then f(u)f(v) ∈ E(H). The
List Homomorphism problem asks whether there exists a list homo-
morphism from G to H. Enright, Stewart and Tardos [SIAM J. Dis-
cret. Math., 2014] showed that the List Homomorphism problem can

be solved in O(nk2−3k+4) time on graphs where every connected induced
subgraph of G admits “a multichain ordering” (see the introduction for
the definition of multichain ordering of a graph), that includes permuta-
tion graphs, biconvex graphs, and interval graphs, where n = |V (G)| and
k = |V (H)|. We prove that List Homomorphism parameterized by k
even when G is a bipartite permutation graph is W[1]-hard. In fact, our
reduction implies that it is not solvable in time no(k), unless the Expo-
nential Time Hypothesis (ETH) fails. We complement this result with a
matching upper bound and another positive result.
1. There is a O(n8k+3) time algorithm for List Homomorphism on

bipartite graphs that admit a multichain ordering that includes the
class of bipartite permutation graphs and biconvex graphs.

2. For bipartite graph G that admits a multichain ordering, List
Homomorphism is fixed parameter tractable when parameterized
by k and the number of layers in the multichain ordering of G.

In addition, we study a variant of List Homomorphism called List
Locally Surjective Homomorphism. We prove that List Locally
Surjective Homomorphism parameterized by the number of vertices
in H is W[1]-hard, even when G is a chordal graph and H is a split graph.

Keywords: List homomorphism · FPT · W[1]-hardness · Bipartite
permutation graphs · Chordal graphs
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1 Introduction

Given a graph G, a proper coloring is an assignment of colors to the vertices of
G such that adjacent vertices are assigned different colors. Given a graph G and
an integer k, the k-Coloring problem asks if there exists a proper coloring of G
using k colors. The k-Coloring problem is known to be NP-complete even when
k = 3 [17]. It is a very well-studied problem due to its practical applications.
Many variants of coloring have been studied. In 1970’s Vizing [27] and Erdös et
al. [11] independently, introduced List k-Coloring which is a generalization
of k-Coloring. Given a graph G and a list of admissible colors L(v) ⊆ [k] for
each vertex v in V (G), the List k-Coloring problem asks whether there exists
a proper coloring of G where each vertex is assigned a color from its list. Here,
[k] = {1, 2, . . . , k}. List k-Coloring has found practical applications in wireless
networks, for example in frequency assignment problem [18,28].

Given two graphs G and H, a graph homomorphism from G to H is a map-
ping f : V (G) → V (H) such that if uv ∈ E(G), then f(u)f(v) ∈ E(H). Given
two graphs G and H, and a list L(v) ⊆ V (H) for each v ∈ V (G), a list homo-
morphism from G to H is a graph homomorphism f from G to H such that
f(v) ∈ L(v) for each vertex v in V (G). Given an instance (G,H,L), the List
Homomorphism problem (LHom for short) asks whether there exists a list
homomorphism from G to H. Observe that List k-Coloring is a special case
of List Homomorphism where H is a simple complete graph on k vertices.

List k-Coloring is NP-complete for k ≥ 3 as it is an extension of k-
coloring problem. The problem remains NP-complete even for planar bipar-
tite graphs [22]. On the positive side, for a fixed k, the problem is known to
be polynomial time solvable on co-graphs [20], P5-free graphs [19] and partial
t-trees [20]. Considering the List Homomorphism problem, given a fixed inte-
ger k = |V (H)|, polynomial time algorithms are available for graphs of bounded
tree-width [8], interval graphs, permutation graphs [10] and convex bipartite
graphs [7]. Recently List Homomorphism on graphs with bounded tree-width
has been studied in [23]. The list homomorphism has also been studied as list
H-coloring in the literature and is a well studied problem [4,5,9,24]. Feder et al.
[12–14] gave classifications of the complexity of LHom based on the restrictions
on graph H. Recently, LHom has been studied for signed graphs [1,2,21].

Enright, Stewart and Tardos [10] showed that the List Homomor-

phism problem can be solved in O(nk2−3k+4) time on bipartite permutation
graphs, interval graphs and biconvex graphs, where n = |V (G)| and k = |V (H)|.
It is natural to ask whether the running time can be improved or can we obtain
a FPT algorithm when parameterized by k. Towards that we prove the following
results.

Theorem 1. LHom can be solved in time O(n4k+3) on bipartite permutation
graphs.

Theorem 2. LHom can be solved in O(n8k+3) time on biconvex graphs.
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Theorem 3. List k-Coloring parameterized by k is W[1]-hard on bipartite
permutation graphs. Furthermore, there is no f(k)no(k)-time algorithm for List
k-Coloring, for any computable function f unless ETH fails.

Since List k-Coloring is a particular case of LHom, similar hardness
results hold for LHom. However, we design fixed-parameter tractable (FPT)
algorithms when parameterized by |V (H)| and the diameter of the input graph
G, where diameter of a graph is the maximum distance between any pair of
vertices.

Theorem 4. LHom is FPT on bipartite permutation graphs and biconvex
graphs, when parameterized by |V (H)| and the diameter of the input graph G.

We also a study a variant of LHom called List Locally Surjective
Homomorphism. Given two graphs G and H, and a list L(v) ⊆ V (H) for
each v ∈ V (G), a list locally surjective homomorphism from G to H is a list
homomorphism f : V (G) → V (H) that is surjective in the neighborhood of each
vertex in G. In other words, if f(v) = v′, then for every vertex u′ ∈ NH(v′),
there is a vertex u ∈ NG(v), such that f(u) = u′. That is, for each connected
component C of H if one vertex in C is “used” by the homomorphism, then all
the vertices are used. Given as an input (G,H,L), the List Locally Surjec-
tive Homomorphism problem (LLSHom for short) asks whether there exists
a list locally surjective homomorphism from G to H. We prove the following
result about LLSHom.

Theorem 5 (�1). Given an instance (G,H,L) such that G is a chordal graph,
and H is a split graph, it is W[1]-hard to decide whether there is a list locally
surjective homomorphism from G to H, when parameterized by |H|.

Other Related Works. In 1999, Feder et al. [15] studied List M -Partition
problem. The input to the problem is a graph G = (V,E) and a m × m matrix
M with entries M(i, j) ∈ {0, 1, ∗}. The goal is to check whether there exists
a partition of V (G) into m parts (called M -partition) such that for distinct
vertices x and y of G placed in parts i and j respectively, we have that (i) if
M(i, j) = 0, then xy /∈ E(G), (ii) if M(i, j) = 1, then xy ∈ E(G), and (iii) if
M(i, j) = ∗, then xy may or may not be an edge of G. By considering H as a
graph on m vertices and M as a matrix obtained from the adjacency matrix of
H by replacing each 1 with ∗, each homomorphism corresponds to a M -partition
of G. Thus List M -Partition generalizes List k-Coloring and LHom.

Valadkhan [25,26] gave polynomial time algorithms for List M -Partition
for various graph classes. They gave O(m2n4m+2) time algorithms for interval
and permutation graphs, O(m2n8m+2) time algorithms for interval bigraphs,
interval containment bigraphs, and circular-arc graphs, O(m2n4mt+2) time algo-
rithm for comparability graphs with bounded clique-covering number t. The
algorithm on interval graphs is an improvement over the algorithm by Enright,

1 Due to paucity of space the proofs of results marked with � are omitted here.
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Stewart and Tardos [10]. Feder et al. [16] showed that List M -Partition can
be solved in O(tt+1 · n) time on graphs of treewidth at most t.

Our Methods. In this paper, we study LHom on sub-classes of bipartite graphs
by exploiting their structural properties. In particular, the sub-classes of bipar-
tite graphs studied in this paper admit a “multichain” ordering (see Definition
3 in Preliminaries). Some of the graph classes that admit a multichain order-
ing include interval graphs, permutation graphs, bipartite permutation graphs,
biconvex graphs, etc [10]. Towards proving Theorems 1 and 2, we prove that
there is a list homomorphism such that if we know the labels of O(k) vertices in
a layer, in polynomial time we can extend that to a list homomorphism.

In Sect. 3, we present a O(n8k+3) time algorithm for LHom on bipartite
graphs that admit a multichain ordering (Theorem 6). It is known that biconvex
graphs and bipartite permutation graphs admit a multichain ordering. Hence
Theorem 2 follows from Theorem 6. Since there are additional properties for
bipartite permutation graphs, we provide an improved algorithm to bipartite
permutation graphs that runs in O(n4k+3) time (Theorem 1). These are improve-
ments over the results from [10].

In Sect. 4, we show that List k-Coloring is W[1]-hard on bipartite permuta-
tion graphs (Theorem 3). We prove this result by giving a parameter preserving
reduction from the Multi-colored Independent Set problem.

2 Preliminaries

Let f : D → R be a function from a set D to a set R. For a subset A ⊆ D, we
use f |A : A → R to denote the restriction of f to A. We will also use the words
labelings and mappings for functions. A partial labeling on a set D is a function
on a strict subset of D.

Let G = (V,E) be a graph. We also use V (G) and E(G) to denote the
vertex set and the edge set of the graph G, respectively. For a vertex v ∈ V (G),
the number of vertices adjacent with v is called the degree of v in G and it is
denoted by degG(v) (or simply deg(v) if the graph G is clear from the context).
The set of all the vertices adjacent with v is called as the neighborhood of v
and it is denoted by NG(v) (or simply N(v)). The distance between two vertices
u, v ∈ V (G) is the length of a shortest path between u and v in G. Let X and
Y be two disjoint subsets of V (G), then E(X,Y ) denotes the set of edges with
one endpoint in X and the other is in Y . A graph G is called a split graph if the
vertices of G can be partitioned into two sets C and I such that G[C] is a clique
and G[I] is an independent set. A graph is a permutation graph if there is some
pair P1, P2 of permutations of the vertex set such that there is an edge between
vertices x and y if and only if x precedes y in one of {P1, P2}, while y precedes
x in the other. A graph is a bipartite permutation graph if it is both bipartite
and a permutation graph.

Let (G,H,L) be an instance for List Homomorphism, where V (H) =
{1, 2, . . . , k}. First notice that if G is not connected, then (G,H,L) is a yes-
instance if and only if for all connected components C of G, (C,H,L|V (C)) is



List Homomorphism: Beyond the Known Boundaries 597

a yes-instance. Thus, throughout the paper, we assume that for an instance
(G,H,L) of List Homomorphism, G is connected.

Definition 1 (Chain Graph [10]). A bipartite graph G = (A � B,E) is a
chain graph if and only if for any two vertices u, v ∈ A, either N(u) ⊆ N(v) or
N(v) ⊆ N(u). It follows that, for any two vertices u, v ∈ B, either N(u) ⊆ N(v)
or N(v) ⊆ N(u).

Definition 2. For a graph G and a vertex subset U , we say that an ordering
σ of U is increasing in G, if for any x <σ y, NG(x) ⊆ NG(y). We say that an
ordering σ′ of U is decreasing in G, if for any x <σ′ y, NG(y) ⊆ NG(x).

For a chain graph G = (A � B,E), there is an ordering σ of A which is
increasing in G and there is an ordering σ′ of B which is decreasing in G. For
a vertex u ∈ A, a vertex v ∈ N(u) is called a private neighbor of u if for any
vertex w such that w <σ u, v is not a neighbor of w. In fact, for a chain graph
G = (A�B,E), any ordering of A that is non-decreasing in its degrees increases
in G. Also, any ordering of B that is non-increasing in its degrees decreases in G.

Definition 3 (Multichain ordering). For a connected graph G, the distance
layers of G from a vertex v0 is a sequence L0, L1, . . . , Lr where L0 = {v0}, Li

is the set of vertices that are at distance i from v0 for each i ∈ [r], and r is the
largest integer such that Lr �= ∅. These layers form a multichain ordering of G
if for every two consecutive layers Li and Li+1, the edges connecting these two
layers form a chain graph. That is, the graph (Li ∪Li+1, E(Li, Li+1)) is a chain
graph. We say that G admits a multichain ordering if there is a vertex v0 such
that the distance layers of G from v0 forms a multichain ordering.

It is known that all connected permutation graphs and connected interval
graphs have multichain orderings [10]. Let G be a graph and let L0, L1, . . . , Lr

be a multichain ordering of G. Then, for any i ∈ [r], let Gi be the bipartite graph
with vertex set Li−1 ∪Li and edge set E(Li−1, Li). Then, we know that for each
i ∈ [r], Gi is a chain graph. Thus, for each i ∈ [r−1], there are two orderings σi,1

and σi,2 of Li such that σi,1 is decreasing in Gi and σi,2 is increasing in Gi+1.
The following result implies that for connected bipartite permutation graphs
there is a multichain ordering where for each layer Li, σi,1 is same as σi,2.

Proposition 1 ([3]). A connected graph G = (V,E) is a bipartite permutation
graph if and only if the vertex set V (G) can be partitioned into independent sets
V0, V1, . . . , Vq such that the following holds.

1. Any two vertices in non-consecutive sets are non-adjacent.
2. Any two consecutive sets Vi−1 and Vi, induce a chain graph denoted by Gi.
3. For each j ∈ {0, . . . , q}, there is an ordering σj of Vj with the following

properties. For each i ∈ {1, 2, . . . , q−1}, σi is decreasing in Gi and increasing
in Gi+1. Moreover, σ0 is increasing in G1 and σq is decreasing in Gq.

4. |V0| = 1 and V0, V1, . . . , Vq is the distance layers of G from the vertex in V0.

Observation 1. Let G be a connected bipartite graph that admits a multichain
ordering V0, . . . , Vq. Then for each i ∈ {0, 1, . . . , q}, Vi is an independent set.
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3 XP Algorithms: Proofs of Theorems 1 and 2

In this section, we give an O(n8k+3) time algorithm for List Homomorphism on
bipartite graphs that admit a multichain ordering. We first discuss an algorithm
for LHom on bipartite permutation graphs that runs in O(n4k+3) time (Theo-
rem 1). We then extend this algorithm to bipartite graphs admitting a multichain
ordering that includes biconvex graphs. Thereby, settling Theorem 2.

We first prove the following lemma, which is crucial to our algorithm.

Lemma 1. Let (G,H,L) be an instance of List Homomorphism, where G is
a connected bipartite permutation graph. Let V0, . . . , Vq be a sequence of inde-
pendent sets such that the properties mentioned in Proposition 1 hold. For each
i ∈ {0, . . . , q}, σi is the ordering of Vi and for each j ∈ [q], Gj is the graph
G[Vj−1 ∪ Vj ] mentioned in Proposition 1. If there exists a list homomorphism
from G to H, then there exists a list homomorphism f from G to H such that
for any i ∈ {0, 1, . . . , q}, and any w ∈ Vi, at least one of the following is true.

1. w is the first vertex or the last vertex in σi that is assigned the label f(w).
2. f(w) is the least integer in L(w) such that there exist x, y ∈ Vi with x <σi

w <σi
y and f(x) = f(y) = f(w).

Proof. Let f be a list homomorphism such that maximum number of vertices
satisfy the stated properties (1) or (2). If all the vertices satisfy the stated prop-
erties, then f is our desired list homomorphism. Otherwise, let w be a vertex such
that it does not satisfy (1) and (2). Let w ∈ Vi for some i ∈ {0, 1, . . . , q}. Since w
does not satisfy (1), we know that there exist v, x ∈ Vi such that v <σi

w <σi
x

and f(v) = f(w) = f(x). Since w does not satisfy (2), there exists an integer
c ∈ L(w) and two vertices x′, y′ ∈ Vi such that c < f(w), x′ ≤σi

w ≤σi
y′ and

f(x′) = f(y′) = c. Without loss of generality, let c be the least integer with
the above property. Now consider the following function f ′ : V (G) → V (H). For
each z �= w, f ′(z) = f(z) and f ′(w) = c.

Now we claim that f ′ is a list homomorphism from G to H and the number
of vertices in G that satisfies (1) or (2) with respect to f ′ is strictly more than
the number of vertices in G that satisfies (1) or (2) with respect to f , which
leads to a contradiction.

Claim. f ′ is a list homomorphism from G to H.

Proof. Since f is a list homomorphism and c = f ′(w) ∈ L(w), we have that
for any vertex u ∈ V (G), f ′(u) ∈ L(u). Recall that, N(w) ∩ Vi = ∅ and all the
neighbors of w are in Vi−1 ∪Vi+1. Since x′ ≤σi

w ≤σi
y′, we have N(w) ⊆ N(x′)

in Gi and N(w) ⊆ N(y′) in Gi+1. Thus, any neighbor w′ of w is adjacent to
either x′ or y′. This implies that f(w′)f ′(w) is an edge in H. For any edge
zz′ ∈ E(G) with w /∈ {z, z′}, f ′(z)f ′(z′) = f(z)f(z′) and hence f ′(z)f ′(z′) is an
edge in H. Thus, we have proved that f ′ is a list homomorphism. �
Claim. The number of vertices in G that satisfies (1) or (2) with respect to f ′

is strictly more than the number of vertices in G that satisfies (1) or (2) with
respect to f .
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Proof. Notice that w does not satisfy (1) and (2) with respect to f , but it satisfies
(2) with respect to f ′.

Now we want to prove that for other vertices if they were satisfying (1) or
(2) in f , then they so do in f ′. Let x be the first vertex and y be the last vertex
in σi such that f ′(x) = f ′(y) = f ′(w). Since w satisfies (2) with respect to f ′,
we have that x <σi

w <σi
y. Let x1 be the first vertex and y1 be the last vertex

in σi such that f(x1) = f(y1) = f(w). Since w does not satisfy (1) with respect
to f , we have that x1 <σi

w <σi
y1.

Let u be a vertex in G such that u �= w and u satisfies (1) or (2) with
respect to f . We prove that u satisfies (1) or (2) with respect to f ′ also. If
f ′(u) /∈ {f(w), f ′(w)} or u /∈ Vi, then clearly u satisfies (1) or (2) with respect
to f ′. So we assume that u ∈ Vi and f ′(u) ∈ {f(w), f ′(w)}
Case 1: f ′(u) = f(w), and u satisfies (1) with respect to f . Then u is the
first vertex or the last vertex that is assigned a label f(u) by f . Since w is the
only vertex such that f ′(w) �= f(w) and f ′(u) = f(w), u is the first vertex or
the last vertex that is assigned a label f ′(u) = f(u) by f ′.

Case 2: f ′(u) = f(w), and u satisfies (2) with respect to f . Then, f(u)
(which is equal to f(w) and f ′(u)) is the least integer in L(u) such that there
exist x1, y1 ∈ Vi with x1 <σi

u <σi
y1 and f(x1) = f(y1) = f(u) = f(w).

Thus, by the definition of x1 and y1, we have that x1 <σi
u <σi

y1 and f(x1) =
f(y1) = f(u). This implies that u and w appears between x1 and y1 in the
ordering σi. We consider the case x1 <σi

u <σi
w <σi

y1, and we omit the case
x1 <σi

w <σi
u <σi

y1 as the arguments are symmetric. If f ′(w) /∈ L(u), then u
satisfies (2) with respect to f ′. Now, if f ′(w) ∈ L(u), then there will not be any
vertex z <σi

u such that f(z) = f ′(w). Otherwise, we get f(z) = f ′(w) = f(y),
f ′(w) ∈ L(u), and z <σi

u <σi
y, and it contradicts the assumption that f(u)

is the least integer satisfying property (2) for u with respect to f . This implies
that u satisfies (2) with respect to f ′.

Case 3: f ′(u) = f ′(w) and u satisfies (1) with respect to f . Suppose
u is the first vertex in σi that is assigned a label f(u) by f . We claim that
u <σi

w. For the sake of contradiction, let w <σi
u. We know that x <σi

w and
f(x) = f ′(w) = f ′(u). This contradicts the assumption that u is the first vertex
in σi that is assigned a label f(u) by f . Since u <σi

w, u is the first vertex in σi

that is assigned a label f ′(u) (which is equal to f(u)) by f ′ and hence u satisfies
(1) with respect to f ′. The case when u is the last vertex in σi that is assigned
a label f(u) by f , is symmetric in arguments and hence is omitted.

Case 4: f ′(u) = f ′(w) and u satisfies (2) with respect to f . Since u satisfies
(2) with respect to f , and f ′(u) = f ′(w), we have that x <σi

u <σi
y because

x is the first vertex and y is the last vertex in σi which are assigned the label
f(u) = f ′(u) by f . This implies that u satisfies (2) with respect to f ′.

Thus, all the vertices which satisfy (1) or (2) with respect to f also satisfy (1)
or (2) with respect to f ′. The vertex w does not satisfy (1) or (2) with respect
to f , but satisfies (2) with respect to f ′. This completes the proof of the claim.

�
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This completes the proof of the lemma. �
Proof (Proof of Theorem 1). Let (G,H,L) be an instance of LHom where
G = (V,E) is a bipartite permutation graph and V (H) = {1, 2, . . . , k}. By
Proposition 1, there exists a partition of V into V0, V1, . . . , Vq satisfying prop-
erties (1)-(4). Because of property (4), such a partition can be constructed in
polynomial time.

We now discuss the overall idea of the algorithm. In each set Vi, i ∈
{0, 1, . . . , q}, for each label j ∈ [k], we guess whether the label j is assigned
to 0, 1 or at least 2 vertices in Vi. For the latter case, when at least two ver-
tices are assigned the label j, we guess two vertices with label j and extend the
labeling to other vertices. Depending on the guess for the label j, we guess the
first vertex and the last vertex (the first and the last vertices are the same when
there is exactly one vertex assigned the label j) in σi that are assigned the label
j, in a list homomorphism from G to H. Using the partial labeling obtained
from each guess, we obtain a full labeling of Vi maintaining the property of list
homomorphism using Lemma 1. That is, for each vertex that is not assigned a
label, we choose a label satisfying property (2) of Lemma 1. Then we construct a
directed graph G′ using the labelings obtained at each Vi and solve the directed
s-t path problem on G′ to decide if a list homomorphism exists from G to H.

Now we explain the algorithm in detail. We process the vertices of G in the
order V0, V1, . . . , Vq. From (3) of Definition 1, there exists an ordering σi of Vi

that is decreasing in Gi and increasing in Gi+1. At each Vi, 0 ≤ i ≤ q, for each
label j ∈ [k], we guess the first and the last vertices in σi that are assigned the
label j. That is, we guess a partial labeling ĉ of Vi such that at most 2k vertices
are assigned labels. Then we extend ĉ to a full labeling c : Vi → {1, 2, . . . , k}.
For each vertex u labeled under ĉ, we set c(u) = ĉ(u). For each of the remaining
vertices, we use Lemma 1 to assign a label. We say a labeling c of Vi is feasible if
there exists a partial labeling ĉ of Vi that can be extended to c using Lemma 1.
Let Ci denote the set of all feasible labelings of Vi. Hence |Ci| ≤ n2k.

We now construct an auxiliary directed graph G′ with V (G′) = {s, t} ∪ C0 ∪
C1 ∪· · ·∪Cq, where Ci contains a vertex corresponding to every feasible labeling
of Vi, 0 ≤ i ≤ q. We add edges between vertices of two consecutive sets Ci

and Ci+1, for each 0 ≤ i ≤ q − 1, in the following manner. We add a directed
edge from c ∈ Ci to c′ ∈ Ci+1 if the labeling c ∪ c′ is a list homomorphism
from G[Vi ∪ Vi+1] to H, where c and c′ are feasible labelings of Vi and Vi+1,
respectively. We add directed edges from s to all vertices in C0. Similarly, we
add directed edges from all vertices in Cq to t. If we find a s− t path in G′, then
such a path indicates the existence of list homomorphism from G to H.

Next, we show that there exists a list homomorphism from G to H if and
only if there is a directed path from s to t in G′. If there exists a directed path
from s to t in G′, say P , then the number of vertices in P is q + 3. Moreover,
|P ∩ Ci| = 1, for each 0 ≤ i ≤ q. This is due to the fact that there are edges
only between consecutive sets Ci and Ci+1 and the directed edges are from
vertices in Ci to Ci+1. In addition, the edge from c ∈ Ci to c′ ∈ Ci+1 indicates
the existence of list homomorphism from G[Vi ∪ Vi+1] to H, where c and c′ are
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feasible labelings of Vi and Vi+1 respectively. Let ci be the vertex at distance i+1
from s in P . The vertex ci represents a feasible labeling of Vi. Thus the feasible
labelings c1, . . . , cq assigned to V0, V1, . . . , Vq, respectively, together obtain a list
homomorphism from G to H.

For the forward direction, let f be a list homomorphism from G to H such
that f satisfies the properties mentioned in Lemma 1. Then, there exists a vertex
ci ∈ V (G′) that captures the labeling of Vi with respect to the labeling f , for
each 0 ≤ i ≤ q. Since f is a list homomorphism, there exists an edge from ci to
ci+1, for all 0 ≤ i ≤ q − 1. This leads to a directed path from s to t.

Next, we do the runtime analysis. Because of the property (4) in Proposi-
tion 1, the partition V0, . . . , Vq can be computed in O(n3) time. In our process,
for each Vi, i ∈ {0, . . . , q}, we guess whether a label is assigned to none of the
vertices, one vertex, or more than one vertex in Vi. Since the number of labels
is k, the above guessing takes O(3k) time. Then, we guess at most 2k vertices
from each Vi that are “critical” (the first and the last vertices assigned a label in
Vi) for the labeling resulting in O(3kn2k) partial labelings. We extend a partial
labeling to a full labeling by assigning a label to an unlabelled vertex using (2) of
Lemma 1, which takes O(n2) time. The number of edges between a pair of layers
in G′ is O(32kn4k). Since there are q pairs of layers in G′, the total number of
edges is O(q32kn4k). Since q ≤ n, and checking if an edge corresponds to a valid
list homomorphism takes O(n2) time, we need O(32kn4k+3) time to complete
the construction of G′. The final step of the algorithm is to find a directed s − t
path in G′ which can be done in O(9kn4k+3) time. Thus, the overall running
time is O(9kn4k+3). �

The above algorithm can be extended when the input graph is a bipartite
graph that admits a multichain ordering property. Theorem 2 is a corollary of
Theorem 6.

Theorem 6 (�). List Homomorphism can be solved in O(n8k+3) time on
bipartite graphs that admit a multichain ordering property.

4 Hardness: Proof of Theorem 3

In this section, we prove Theorem 3. To prove that, we use a specific type of
chain graph. Let G = (A,B,E) be a bipartite graph with |A| = r and |B| = s
such that (x1, x2, . . . , xr) and (y1, y2, . . . , ys) be the chain orderings of A and
B, respectively. That is (x1, x2, . . . , xr) is increasing in G and (y1, y2, . . . , ys) is
decreasing in G. We call G, an incremental chain graph if E(G) = {xiyj : 1 ≤
i ≤ r, 1 ≤ j ≤ i, j ≤ s}.

Towards proving the hardness, we give a polynomial-time parameter preserv-
ing reduction from the Multicolored Independent Set (McIS for short)
problem to List k-Coloring. In McIS, the input is a graph G, a positive inte-
ger k, and a partition (X1, . . . , Xk) of V (G). The goal is to check if there exists
a k-sized independent set S ⊆ V (G) such that for all i ∈ [k], |S ∩ Xi| = 1.
The problem is known to be W[1]-hard [6]. In fact it is known that McIS can
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not be solved in time no(k) unless the Exponential Time Hypothesis fails. Let
(G, k, (X1, . . . , Xk)) be an instance of McIS such that m be the number of edges
in G and Xi be an independent set with cardinality n, for each i ∈ [k] (without
loss of generality we can assume this).

For our reduction, we require that m is a multiple of 2 and 3. Suppose m is
not a multiple of 6. In this case, we can modify our instance (G, k) to (G′, k +1)
such that the number of edges in G′ is a multiple of 6. Let m = b mod 6 where
b ∈ {1, 2, . . . 5}. We add one new set of vertices Xk+1 of size n, and add b number
of edges between some vertex of Xk+1 to b vertices in Xk. Additionally, we update
the parameter k to k + 1. Observe that G′ has a multicolored independent set
of size k + 1 if and only if G has a multicolored independent set of size k. Thus
without loss of generality, we can assume that m is a multiple of 6 for the given
instance (G, k, (X1,X2, . . . , Xk)).

First of all, we fix an arbitrary ordering of the vertices in Xi, for each i ∈ [k].
Let σ(V (G)) be a vertex ordering of G such that the vertices of X1 appear in
the above mentioned fixed order in σ(V (G)) and then the vertices of X2 and so
on. Let E(G) = {e1, e2, . . . , em} be the set of edges in G. From this we construct
an instance (G′, k′) of List k-Coloring.

Construction of a Block. First we explain a construction of a block and later
we explain how to construct G′ from the blocks.

1. Let X ′
i = Xi ∪ {xi} where xi is a new element. We take one copy of each

part X ′
i of G and we call the union of these copies, a layer. We mention that

later we add two or three more vertices to each layer. We take 2m copies of
a layer, say Dj = (Xj1 ∪ Xj2 ∪ · · · ∪ Xjk), for j ∈ [2m]. We call this union of
2m layers, a block. For each Dj , we define an order σj on the vertices in Dj

as follows. In the order σ(V (G)) insert xi just before the first vertex of Xi

for all i ∈ [k].
2. For each edge e�, we add three new vertices in D2�−1 and two new ver-

tices in D2�. Towards explaining this, let us fix an edge e� = uv ∈ E(G)
such that u ∈ Xi and v ∈ Xj for some i, j ∈ [k], where i < j. Let
u2�−1 ∈ X(2�−1)i and v2�−1 ∈ X(2�−1)j be the copies of the vertices u and
v in layer D2�−1, respectively. We add two new vertices α(e�) and β(e�)
just before the vertices u2�−1 and v2�−1 in σ2�−1, respectively. Similarly, we
add two new vertices α′(e�) and β′(e�) just before the vertices u2� and v2�

in σ2�, respectively. Also, we add one new vertex γ(e�) at the end of the
ordering σ2�−1 in layer D2�−1 and this vertex we call an edge vertex. Let
Q = {α(e�), α′(e�), β(e�), β′(e�), γ(e�) : � ∈ [m]}. So, notice that now a layer
Dj is a union of Xj1 ∪Xj2 ∪ · · · ∪Xjk and two or three vertices from Q. This
completes the description of the vertex set of a block B.
Moreover, we use σ2�−1 and σ2� to represent the order of vertices in D2�−1

and D2�, respectively, (including the new vertices) that is naturally derived
from the old σ2�−1 and σ2� as per the explanation of the new vertices added.

3. Next we explain the edges of G′. For each i ∈ {1, 3, . . . , 2m − 1}, we add
edges between Di and Di+1 such that the graph induced on Di ∪ Di+1 is an
incremental chain graph. Observe that except the edge vertex, every vertex in
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Di has a private neighbor in Di+1 now and the edge vertex in Di is adjacent
with every vertex in Di+1. In the next step, we will add more edges.

4. For each � ∈ [m], we add the following edges between D2�−1 and D2�. Let e� =
uv. We make α(e�) adjacent to u2� and β(e�) adjacent to v2�. Additionally,
we add an edge between the vertex α′(e�) and the vertex that appears just
before the vertex α(e�) in the ordering σ2�−1 of layer D2�−1. Similarly, we add
an edge between the vertex β′(e�) and the vertex that appears just before the
vertex β(e�) in the ordering σ2�−1 of layer D2�−1. See Fig. 1 for an illustration.

5. Next we explain the edges between Di and Di+1, where i ∈ {2, 4, . . . , 2m}.
Recall that Q = {α(e�), α′(e�), β(e�), β′(e�), γ(e�) : � ∈ [m]}. Let us fix
an i ∈ {2, 4, . . . , 2m}. We add edges between Di and Di+1 such that the
graph induced on (Di ∪ Di+1) \ Q with bipartition Di \ Q and Di+1 \ Q
forms an incremental chain graph with respect to the orderings σi and σi+1

restricted on Di \ Q and Di+1 \ Q, respectively. Let � and �′ be the integers
such that 2� = i and 2�′ − 1 = i + 1. Notice that �′ = � + 1. Also, notice
that α′(e�), β′(e�) ∈ Di and α(e�′), β(e�′) ∈ Di+1. Add the minimum number
of edges on α′(e�), β′(e�), α(e�′) and β(e�′), between Di and Di+1 such that
it forms a chain graph with respect to orders σi and σi+1. For example, let
w be the endpoint of the edge e� in graph G with minimum index in the
ordering σ of graph G′. Let wi and wi+1 be the copies of w in Di and Di+1,
respectively. Note that wi be the vertex that appears just before α′(e�). Then,
add edges between α′(e�) and all the vertices that appear before wi+1 in σi+1.
We also add an edge between α′(e�) and wi+1. Similarly, let z be the vertex
that appears just after the minimum index endpoint of the edge e�′ in the
ordering σ of graph G. Let zi+1 be the copy of vertex z in layer Di+1 and
appears just after α(e�′). Then add edges between α(e�′) and vertices that
appear after zi in σi. We also add an edge between α(e�′) and zi. The cases of
β′(e�) and β(e�′) are symmetric. This completes the description of the edge
set of the block B.

6. We denote the first vertex and the last vertex of any set Xij in layer Di as
first(Xij) and last(Xij), respectively. Notice that first(Xij) is the copy of
xj in Xi,j and it will not corresponds to a vertex in V (G). Next, we define a
list function L : V (B) → [3k] ∪ {c1, c2, c3, c4, ĉ1, ĉ2, ĉ3, ĉ4}. For each i ∈ [2m],
j ∈ [k], and v ∈ Xij

If i = 1 mod 3 , then L(v) =

⎧
⎪⎨

⎪⎩

{3j − 2} if v = first(Xij)

{3j − 1} if v = last(Xij)

{3j − 2, 3j − 1} if first(Xij) < v < last(Xij)

If i = 2 mod 3 , then L(v) =

⎧

⎪

⎨

⎪

⎩

{3j} if v = first(Xij)
{3j − 2} if v = last(Xij)
{3j − 2, 3j} if first(Xij) < v < last(Xij)
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If i = 0 mod 3 , then L(v) =

⎧

⎪

⎨

⎪

⎩

{3j − 1} if v = first(Xij)
{3j} if v = last(Xij)
{3j − 1, 3j} if first(Xij) < v < last(Xij)

7. For each � ∈ [m], we explain the lists of α(e�), α′(e�), β(e�), β′(e�), and γ(e�)
as follows. Towards that let us fix � ∈ [m]. Let e� = uv, where u ∈ Xi and
v ∈ Xj for some 1 ≤ i < j ≤ k. If � is an odd number, then

L(α(e�)) = L(first(X(2�−1)i) ∪ {c1}
L(α′(e�)) = L(first(X(2�−1)i)) ∪ {c1, c3}
L(β(e�)) = L(first(X(2�−1)j) ∪ {c2}
L(β′(e�)) = L(first(X(2�−1)j) ∪ {c2, c4}
L(γ(e�)) = {c3, c4}

If � is a even number, then replace each cr with ĉr in the above equations,
where r ∈ {1, 2, 3, 4}.

Construction of G′. We take (nk + 1) copies of a block with the same list
function, say B1, B2, . . . , Bnk+1. For any two consecutive blocks Bi and Bi+1,
where i ∈ [nk], we add edges between the last layer of Bi and the first layer of
Bi+1 according to item (5) in the construction of a block. Observe that the color
lists of the vertices of the last layer of Bi and the first layer of Bi+1 are compatible
as the number of layers in each block is a multiple of m, which is a multiple of 3
and by the definition of list function. This completes the construction of graph G′

with a list function L : V (G′) → C, where C = [3k] ∪ {c1, c2, c3, c4, ĉ1, ĉ2, ĉ3, ĉ4}.
It is easy to verify that the obtained graph G′ is a bipartite permutation

graph as the layers of each block partition the vertex set of G′ and the edges
connecting any two consecutive layers induce a chain graph. Moreover, every
vertex v in G′ has a list L(v) ⊆ C.

Note that for every layer Di, the first vertex and the last vertex in each part
Xij has exactly one color in its list, say c and c′, respectively such that c �= c′,
where i ∈ [2m], j ∈ [k] and c, c′ ∈ C. All the other vertices in the same part Xij

contain c and c′ in their lists. It follows that in any list coloring, the first vertex
in Xij gets the color c and the last vertex in Xij gets the color c′ and all the
other vertices get the color either c or c′. Note that there exists a vertex w ∈ Xij

such that w is the first vertex in the ordering of Xij which gets the color c′, we
call such a vertex switch. Moreover, a switch corresponds to a vertex in V (G).
Observe that each Xij (i ∈ [2m], j ∈ [k]) contains at least one switch because
of the list assignment of the vertices of Xij . Additionally, each Xij contains at
most one switch by the definition of a switch. Therefore, in each layer Di there
are k switches, exactly one in each part Xij , where i ∈ [2m] and j ∈ [k]. We call
a block B, a consistent block if for any pair of layers Di and Di′ and for any
j ∈ [k], the switches in Xij and Xi′j corresponds to the same vertex in G (i.e.,
these switches are copies of “a vertex” in V (G)).
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Fig. 1. A block on 2m layers in G′ is illustrated on the left side of the figure, where
each Di represents a layer. The vertices and edges (apart from the edges of induced
incremental chain graph) between two consecutive layers D2�−1 and D2� are illustrated
on the right side of the figure (the last two layers), where the green and red colored
vertices are the newly added vertices corresponding to the edge e� = uv in G. (Color
figure online)

Correctness Proof. Next, we show that G has a multicolored independent set
of size k if and only if G′ has a list k′-coloring, where k′ = 3k + 8.

Lemma 2. If G has a multicolored independent set of size k, then G′ has a list
k′-coloring, where k′ = 3k + 8.

Proof. Let I = {y1, y2, . . . , yk} be an independent set in G such that yi ∈ Xi.
Our goal is to construct a list coloring φ : V (G′) → C. First, in each layer, we
color the first and the last vertex of each set Xij with the (only) color present in
their lists. Next, we color all other vertices (except the vertices from Q) in every
layer Di (i ∈ [2m]) of each block such that the block gets consistent; that is, in
every layer Di of each block, switches corresponds to same vertices. Here, they
correspond to the copies of y1, . . . , yk. That is, for any vertex yj ∈ I and layer
Di, we make the vertex corresponding to yj a switch. That means we color any
vertex (except the vertices in Q) that appears before the vertex corresponding
to yj in the set Xij with the color given to the first vertex of Xij (which is a
copy of xj) and color all the other vertices (except the vertices in Q) in Xij with
the color given to the last vertex of the set Xij , for i ∈ [2m] and j ∈ [k].

Observe that all the colored vertices maintain the proper coloring property
by the chain ordering of each layer at this step. Also, every vertex gets color
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from its associated list. Thus, all the colored vertices maintain the list coloring
property. The only uncolored vertices are the vertices in Q and the last vertices
(called edge vertices, γ(e�) for all � ∈ [m]) in each layer. Next, we explain how
to color those vertices.

Let e� = uv be an edge in G such that u ∈ Xi′ and v ∈ Xj′ , where i′, j′ ∈
[k] and i′ < j′. Recall that corresponding to edge e�, we have three vertices
α(e�),∈ X(2�−1)i′ , β(e�) ∈ X(2�−1)j′ , and γ(e�) in layer D2�−1; and two vertices
α′(e�) ∈ X(2�)i′ and β′(e�) ∈ X(2�)j′ of layer D2�. These are the only uncolored
vertices so far in layer D2�−1 and D2� of each block, for all � ∈ [m]. Note that
according to our obtained (partial) list coloring, for any j ∈ [k] and i ∈ [2m],
the switch in Xij is yi

j (i.e., the copy of yj in the layer Di). Now, there are
three cases based on the position of the vertex u2�−1 (or v2�−1) with respect to
the switches y2�−1

i′ , y2�−1
j′ , y2�

i′ , y2�
j′ in layers D2�−1 and D2�. First we explain the

colors of α(e�) and α′(e�). For this, we have three cases based the position of
u2�−1 compared with y2�−1

i′ .

Case 1: u2�−1 <σ2�−1 y2�−1
i′ . In this case, we have α(e�) <σ2�−1 u2�−1 <σ2�−1

y2�−1
i′ and α′(e�) <σ2�

u2� <σ2�
y2�

i′ . Recall that the list of the vertex α(e�)
contains the color given to the first vertex x2�−1

i′ of X(2�−1)i′ . Moreover, in our
partial coloring, we colored u2�−1 with the color of x2�−1

i′ . We color α(e�) with
the color of xi′ . Notice that the neighbours of α(e�) in D2� is a subset of the
neighbours of u2�−1 in D2�. Similarly, the neighbours of α(e�) in D2�−2 is a
subset of the neighbours of x2�−1

i′ in D2�−2. So, as long as the colors on x2�−1
i′

and u2�−1 do not violate the proper coloring property, it holds on the vertex
α(e�). We color α′(e�) with the unique color c′

1 in L(α′(e�)) ∩ {c1, ĉ1}. Notice
that this color is available only in the list of α(e�) in D2�−1 and we colored that
vertex with a different color. Moreover, c′

1 is not present in the list of any vertex
in the layer D2�+1.

Case 2: y2�−1
i′ <σ2�−1 u2�−1. In this case, we have y2�−1

i′ <σ2�−1 α(e�) <σ2�−1

u2�−1 and y2�
i′ <σ2�

α′(e�) <σ2�
u2�. Notice that y2�

i′ and u2� are colored with
the color q of last(X(2�)i′) (which is same as the color of x2�−1

i′ ). We color α′(e�)
with color q. Using arguments similar to that in the Case 1, one can argue that
as long as the colors on y2�

i′ and u2� do not violate the proper coloring property,
it holds on the vertex α′(e�). Now we color α(e�) with the unique color c′

1 in
L(α(e�)) ∩ {c1, ĉ1}. Notice that this color is available only in the list of α′(e�) in
D2� and we colored that vertex with a different color. Moreover, c′

1 is not present
in the list of any vertex in the layer D2�−2.

Case 3: u2�−1 = y2�−1
i′ . In this case, we have u2� = y2�

i′ and e� incident on yi′

in G. Note that in this case, the vertices α(e�) and α′(e�) appear just before
y2�−1

i′ and y2�
i′ , respectively. Recall that the lists of both the vertices α(e�) and

α′(e�) contain the color given to the first vertex xi′ of X(2�−1)i′ . Observe that the
vertex u2� is the switch in X(2�)i′ and α(e�) is adjacent to u2�. Since the vertex
u2� is the switch, u2� is colored with the color φ(last(X(2�)i′)), which is same
as φ(x2�−1

i′ ). Therefore, we cannot color the vertex α(e�) with the same color
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φ(x2�−1
i′ ). In this case, we color the vertex α(e�) with the unique color present in

L(α(e�))∩{c1, ĉ1}. Also, we color the vertex α′(e�) with the unique color present
in L(α(e�)) ∩ {c3, ĉ3}. It is easy to argue that the obtained partial coloring does
not violate any constraint so far.

Similar to the Cases 1–3, we color the vertices β(e�) and β′(e�) based on one
of the cases. Lastly, we color the edge vertex γ(e�) from its list. Recall that if
� is odd, L(γ(e�)) = {c3, c4} and if � is even L(γ(e�)) = {ĉ3, ĉ4}. We consider
the case when � is odd. The other case is symmetric in arguments and hence
omitted. Notice that L(γ(e�)) = {c3, c4}. Observe that we use a color from the
set {c3, c4} to color a vertex α′(e�) or β′(e�), only in the Case 3. In order to
(properly) color the vertex γ(e�) from its list, we need to prove that at most one
of the vertices α′(e�) and β′(e�) belong to Case 3 and use a color from the set
{c3, c4}. Therefore, we prove the following claim.

Claim. For e� = uv ∈ E(G), exactly one of the vertices α′(e�) or β′(e�) use the
color from the set {c3, c4}.

Proof. Suppose that both the vertices α′(e�) and β′(e�) use the color from the
set {c3, c4}. It follows that both the vertices α′(e�) and β′(e�) are colored by the
Case 3. It implies, the vertices u2�−1 = y2�−1

i′ and v2�−1 = y2�−1
j′ . Moreover, the

endpoints of the edge e� are yi′ and yj′ . This is a contradiction to the fact that
yi′ and yj′ belong to the independent set I. �

Thus, when � is odd, we can color the edge vertex γ(e�) with an available
color from its list {c3, c4} that is not used to color the vertices in Q that are
corresponding to the edge e�. Also, notice that γ(e�) does not have any neigh-
bours in the layer D2�−2. To argue that the given coloring does not violate any
edge constraints between two consecutive blocks, one can use the subset of the
arguments used in Cases 1–3 and the fact that the last layer of a block is an
even layer and m is a multiple of 3. Hence, we obtained a list k′-coloring of G′.

�
Lemma 3 (�). If G′ has a list k′-coloring, then G has a multicolored indepen-
dent set of size k, where k′ = 3k + 8.

5 Conclusion

In this paper, we study LHom on bipartite graphs that admit a multichain
ordering and give efficient algorithms. However, we could not extend the algo-
rithm to interval graphs because the graph induced by the vertices in a layer (in
a multichain ordering) need not be an independent set. It is interesting to get
faster algorithms for LHom on interval graphs.

Acknowledgements. We would like to thank anonymous referees for their helpful
comments. The first author acknowledges SERB-DST for supporting this research via
grant PDF/2021/003452.



608 S. Bhyravarapu et al.

References

1. Bok, J., Brewster, R., Feder, T., Hell, P., Jedličková, N.: List homomorphism prob-
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Abstract. In this paper we prove the following two results.
– We show that for any C ∈ {mVF,mVP,mVNP}, C = C. Here,

mVF,mVP, and mVNP are monotone variants of VF,VP, and VNP,
respectively. For an algebraic complexity class C, C denotes the clo-
sure of C. For mVBP a similar result was shown in [4]. Here we
extend their result by adapting their proof.

– We define polynomial families {P(k)n}n≥0, such that {P(0)n}n≥0

equals the Determinant polynomial. We show that {P(k)n}n≥0 is
VBP complete for k = 1 and it becomes VNP complete when k ≥ 2.
In particular, P(k)n is Det�=k

n (X), a polynomial obtained by summing
over all signed cycle covers that avoid length k cycles. We show that
Det�=1

n (X) is complete for VBP and Det �=k
n (X) is complete for VNP for

all k ≥ 2 over any field F.

1 Introduction

Valiant [17] initiated the study of the complexity of the algebraic computation.
Given a polynomial, how efficiently can we compute it? In order to formalise the
notion of efficiency, Valiant defined many natural models of computation. These
include algebraic circuits, algebraic formulas, and algebraic branching programs.

An algebraic circuit is a directed acyclic graph. The nodes with in-degree
zero are leaf nodes, which are labelled with variables X = {x1, x2, . . . , xn} or
field constants. The other nodes are either + or × operators, which compute
polynomials of their inputs. The + node adds its inputs and × node multiplies
its inputs. There is a designated output node which has out-degree 0. The output
of the circuit is the polynomial computed by this node. An algebraic formula is
a circuit in which the underlying DAG is a tree. The size of the circuit/formula
is the number of nodes in it.

An algebraic branching program (ABP) A is a layered DAG with two special
nodes s and t called the source node and the sink node, respectively. The edges
are labelled with linear forms

∑n
i=1 cixi + c0, where ci ∈ F. For every directed

path ρ from s to t, we associate a polynomial Pρ which is formed by multiplying
all the labels along the edges in path ρ. The polynomial computed by the ABP
A is equal to

∑
ρ Pρ where the sum is over all s − t paths in A. The size of the
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algebraic branching program A is the number of nodes in it. We assume that
the length of every path from s to t is the same.

A polynomial family fn is called a p-bounded family if both the number of
variables and the degree of fn are polynomially bounded in n. The class of p-
bounded families computed by polynomial sized circuits is called VP. Similarly,
the class of p-bounded polynomial families computed by formulas of polynomial
size are called VF. Finally, the class of p-bounded polynomial families computed
by ABPs of polynomial size is called VBP.

Closures of Monotone Complexity Classes. Instead of studying the com-
plexity of the exact computation of any polynomial, we could also study the
algebraic approximation of a polynomial. A polynomial Q over F(ε)[X] is said
to be an algebraic approximation of a polynomial P over F[X] if there exist
polynomials Q1, Q2, . . . in F[X] such that Q ≡ P +

∑
i≥1 εiQi. It is possible that

approximating a polynomial is computationally less expensive than computing it
exactly. More formally, let C be any class of polynomials and C, the closure of C,
be the polynomials approximated by the polynomials in C. One can always ask
the strict containment question: Is C � C? One of the important and well-known
questions is the VP vs. VP question. Here VP stands for a class of p-bounded
polynomials that are approximated by polynomial sized circuits1. From the def-
inition, it is clear that VP ⊆ VP, but whether the containment is strict or not is
an open question, which has a rich and long history [2,3,8,13].

In some cases, strict containment holds. Let
∑[k] ∏ ∑

denotes the class
of polynomials which can be representated as the sum of product of affine
forms, where k denotes the fan-in of the top-most addition gate in the circuit.
Kumar [10] showed that the class of polynomials

∑[3] ∏ ∑
is strictly contained

in
∑[3] ∏∑

. Let VPk denotes the class of algebraic branching programs of width
k. Bringmann, Ikenmeyer and Zuiddam [5] looked at the class of polynomials
computed by width-2 algebraic branching programs and showed that for any con-
stant k, VPk ⊆ VP2. This along with a result of Allender and Wang [1] shows
that VP2 � VP2.

In this work, however, we consider monotone algebraic complexity classes
and for each class C that we consider, we show that C = C. That is, we answer
the strict containment question negatively for monotone algebraic complexity
classes. Recently, Bläser, Ikenmeyer, Mahajan, Pandey and Saurabh [4] showed
that mVBP equals its closure, where mVBP is a class of polynomials computable
by monotone algebraic branching program (formal definition in Sect. 2). We
extend their result to other monotone algebraic complexity classes. We show
that mVP = mVP, that is, anything that can be approximated by monotone
circuits of polynomial size (computing polynomials of polynomial degree) can
also be computed by them. We also show that mVF, a class of polynomials com-
puted by monotone algebraic formulas, is equal to its closure and that mVNP,

1 Formally, VP is defined using topological approximations. However, for reasonably
well-behaved fields F, the two notions of approximation are equivalent. We will focus
on algebraic approximation in this note.
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the monotone analogue of VNP2 (formally defined in Sect. 3) equals its closure.
Overall, our results imply that approximation does not add extra power to the
monotone algebraic models of computation. Our proof is elementary and a simple
generalisation of the proof of mVBP = mVBP from [4].

Variants of the Determinant. We recall the combinatorial definition of the
determinant polynomial (See for instance [11]).

Definition 1. Let Gn be a directed complete graph on n vertices, where the edge
label of edge (i, j) is xi,j for i, j ∈ [n]. Let C denotes the set of cycle covers3 of
Gn. We define Detn(X) =

∑
C∈C s(C) · mC , where s(C) = (−1)n+t, where t is

the number of cycles in the cycle cover C and mC is the monomial formed by
multiplying the labels on all the edges in C.

We define a variant Det�=k
n (X) of the determinant, which sums over all signed

cycle covers that avoid length k cycles. Formally,

Definition 2. Let k be a fixed constant. Let Gn be a directed complete graph on
n vertices, where the edge label of edge (i, j) is xi,j for i, j ∈ [n]. Let C �=k denote
all those cycle covers of Gn in which all the cycles have length �= k. We define

Det�=k
n (X) =

∑

C∈C �=k

s(C) · mC

where s(C) = (−1)n+t, where t is the number of cycles in the cycle cover C and
mC is the monomial formed by multiplying the labels on all the edges in C.

We prove the following Lemma.

Lemma 1. Det�=1
n (X) is complete4 for VBP and Det�=k

n (X) is complete for VNP
for all k ≥ 2 over any field F.

Using Valiants criteria [17], it is easy to observe that for k ≥ 0, Det�=k
n (X) is

in VNP. We prove VNP hardness in Sect. 4.
The family Det�=k

n (X) can be viewed as a parametrized family with k as the
parameter such that Det�=1

n (X) is VBP-complete and Det�=k
n (X) for all k ≥ 2 is

VNP-complete over all fields. In previous works by Durand et al. [7] and Chaugule
2 Let fn(x1, x2, . . . , xk(n)) be a p-bounded polynomial family. fn is said to

be in VNP if there exists a family gn ∈ VP such that fn =∑
y1,y2...,yk′(n)∈{0,1} gn(x1, x2, . . . , xk(n), y1, y2, . . . , yk

′
(n)), where k′(n) is polynomi-

ally bounded in n.
3 A cycle cover of a directed graph H is a set of vertex disjoint cycles which are

subgraphs of graph H and contains all the vertices of H.
4 A family fn(X) is said to be a p-projection of gn(Y ) (denoted as fn(X) ≤p gn(Y ))

if there exists a polynomially bounded function t : N −→ N such that fn(X) can be
computed from gt(n)(Y ) by setting its variables to one of the variables of fn(X) or
to field constants. A p-bounded family fn is said to be hard for a complexity class C
if for any gn ∈ C, gn ≤p fn. A p-bounded family fn is complete for a class C if it is
in C and is hard for C.
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et al. [6], many polynomials were proposed which characterised VP. These were
defined using homomorphism polynomials. It would be interesting to come up
with a parametrized polynomial family which characterizes not just VBP and
VNP, but all natural complexity classes, namely VF,VBP,VP, and VNP.

2 Preliminaries

2.1 Border Complexity

Analogous to algebraic complexity classes VP, VF, VBP, we define the border
complexity variants of these classes. We denote the corresponding complexity
classes as VP, VF, and VBP respectively.

Definition 3. A polynomial family hn ∈ F[X] is said to be in class VP (VF,
or VBP respectively) if and only if there exist polynomials hn,i ∈ F[X] and a
function t : N −→ N such that the polynomial gn(x) = hn(x) + εhn,1(x) +
ε2hn,2(x) + . . . + εt(n)hn,t(n)(x) can be computed by an algebraic circuit C ∈
F(ε)[X] (algebraic formula F ∈ F(ε)[X] or an algebraic branching program A ∈
F(ε)[X], respectively) of size polynomial in n, where ε is the new indeterminate.

2.2 Monotone Complexity

Since, we are in the monotone setting, hereafter, we will work only with the field
of real numbers or the field of rational numbers, for the sake of the presentation,
we set, F = R.

An algebraic circuit (algebraic formula and algebraic branching programs,
respectively) is said to be a monotone algebraic circuit (monotone algebraic
formula and monotone algebraic branching programs, respectively) if all the
input constants (from R) are non-negative.

Definition 4. The class of p-bounded families computed by polynomial sized
monotone circuits (monotone formula/ABPs) is called mVP (mVF, mVBP,
respectively).

2.3 Monotone Border Complexity

Analagous to our complexity classes mVP, mVF, mVBP, we now define the border
complexity variants of these classes. We denote the corresponding complexity
classes as mVP, mVF, mVBP respectively.

Let R+[ε, ε−1] denote the ring of Laurent polynomials that are non-negative
for all sufficiently small ε > 0. In other words, the monotonicity condition means
that for each α ∈ R+[ε, ε−1], there is a β > 0 such that for all ε ∈ (0, β], α(ε) ≥ 0.

Definition 5. A polynomial family hn ∈ F[X] is said to be in class mVP
(mVF,mVBP) if and only if there exist polynomials hn,i ∈ F[X] such that the
polynomial gn(x) = hn(x)+εhn,1(x)+ε2hn,2(x)+. . .+εthn,t(x) can be computed
by an algebraic circuit C (algebraic formula, branching program, resp.) of size
polynomial in n where the input are either labelled by variables or polynomials
from R+[ε, ε−1].
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The definition of mVNP is slightly involved. We define it in Sect. 3.3.

3 Closures of Monotone Algebraic Classes

The first result we prove in this section is about algebraic closure of mVP.

Theorem 1. mVP = mVP

In [4], Bläser, Ikenmeyer, Mahajan, Pandey, and Saurabh proved that
“mVBP = mVBP”. Our proof has an analogous proof outline. It consists of the
following three steps.

1. Let Cn be a monotone alebraic circuit of size s = poly (n) computing the
polynomial Q = ε0f0 +

∑k
i=1 εifi. We convert the circuit Cn into another

monotone circuit C′
n of size poly (s), such that the circuit C′

n computes the
polynomial εtQ for some positive integer t, and no input gate in C′

n has a
label with negative exponent of ε as its input (Sect. 3.1).

2. We give a general procedure to convert a monotone circuit computing the
polynomial εtQ to εt−1Q (with edge labels). Moreover, no input gate or edge
in the converted circuit has a negative exponent of ε as its label (Sect. 3.2).

3. We repeatedly apply step 2 and construct a monotone circuit which computes
the polynomial ε0Q. By finally substituting ε to 0, the result follows.

Although, the overall proof idea is very similar to the proof idea from [4], the
details in Step 1 and Step 2 are slightly different. Informally, we use the struc-
tural properties of the universal circuit to get Step 1, whereas we exploit the
monotonicity property of the given circuit to achieve Step 2.

3.1 Step 1 of Theorem1

Before going into the details of the proof this step of Theorem 1, we recall the
following definitions.

Definition 6 ([14,16]). A family of circuits {Un}n∈N is called a universal cir-
cuit family if for every polynomial fn(x1, x2, . . . , xn) of degree d(n) which is
computed by a circuit of size s(n), there exists another circuit Ψ which computes
fn such that the underlying Directed Acyclic Graph (DAG) of Ψ is the same as
that of Um for some m ∈ poly(n, s, d). We assume that both s(n) and d(n) are
polynomially bounded in n.

A universal circuit Cn is said to be in a normal form if it satisfies the fol-
lowing properties.

– The circuit Cn is a semi-bounded circuit, i.e., the indegree of × gate is 2,
whereas the indegree of + gates is unbounded.

– The circuit Cn is a multiplicatively disjoint circuit.
– The circuit Cn is a layered circuit where layeres are alternately labelled with

+ and × gates. We assume that the root node is a × gate. Also, the distance
between the root node to every leaf node of circuit Cn is the same.
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– The degree of the circuit Cn is n. The depth of the circuit Cn = 2c�log n	,
for some constant c.

– The number of variables v(n) and the size s(n) of the circuit Cn are both
polynomially bounded in n.

It is known that a universal circuit can be assumed to be in a normal form.

We recall the definition of a parse tree of an algebraic circuit.

Definition 7 ([12]). The set of parse trees of a circuit C, T (C) is defined induc-
tively on the size of circuit C

– If the size of C is 1, then the circuit C is its own parse tree.
– If the circuit size is greater than 1, then the output gate is either a multipli-

cation gate or an addition gate
1. Let the output gate t be an addition gate. Then the parse trees of circuit

C are formed by taking a parse tree of any one of its children, say t′ along
with the edge (t′, t).

2. Let the output gate t be a multiplication gate. Let t1 and t2 be the children
gates of t. Let Ct1 and Ct2 be the subcircuits rooted at gates t1 and t2 in
circuit C. The parse trees of C are formed by taking a node disjoint copy
of a parse tree of subcircuit Ct1 and a parse tree of subcircuit Ct2 along
with the edges (t1, t) and (t2, t).

Remark 1. Given an algebraic circuit C computing a polynomial f . Let T (C)
denote the set of all parse trees of circuit C. Let mon(T ) be the monomial
associated with T ∈ T (C), where mon(T ) is equal to the product of the labels
of the leaves of T . It is known that f is equal to

∑
T∈T (C)) mon(T ) (see [12]).

Remark 2. Note that the shape of every parse tree T of the universal circuit (in
normal form) Cn is the same. Moreover, the number of leaf nodes in any parse
tree T of Cn is equal to 2c�log n� = nc.

The following Lemma gives the details for the first step.

Lemma 2. Consider a monotone algebraic circuit Cn of size s = poly(n) com-
puting a polynomial Q = ε0f0 +

∑k
i=1 εifi (that is, circuit Cn computes the

polynomial f0 in the border sense), then there exists another monotone circuit
C′

n (in normal form) of size poly(s) such that the circuit C′
n computes the poly-

nomial εtQ, for some positive integer t. Moreover, no input gate in circuit C′
n

has a label with a negative exponent of ε as its input. And the underlying DAG
structure of C′

n is the same as that of Cn.

Proof. Consider a circuit Cn which computes the polynomial Q and say it has
size s. We know that there exists a universal circuit in normal form Um, where
m = poly (s) such that the circuit Um also computes Q. Moreover, it is known
that the monotonicity of circuit Cn can be preserved in circuit Um. Let j be
the largest negative exponent in any of the input gates of Cn. We multiply the
label of every input gate of circuit Um by εj . We call this new circuit C′

n. Since,
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the circuit Cn is in the normal form, the shape of every parse tree of circuit Cn

is the same and the number of leaf nodes in any parse tree is equal to nc (see
Remark 1 and Remark 2). Therefore, the polynomial computed by circuit C′

n

is equal to a scaled version of polynomial computed by circuit Cn, that is, the
polynomial computed by C′

n is equal to εtQ, where t = j×nc. We did not change
the underlying graph structure of Cn to obtain C′

n. �

3.2 Step 2 of Theorem1

We now present the details regarding the second step of our main proof.
Here we will use algebraic circuits with edge labels. A circuit C with edge

labels over a field F and variable set X = {x1, x2, . . . , xn} is exactly similar
to the algebraic circuit we have been considering, except for the edge function
w : E −→ X ∪ F. Here E denotes the edge set of C. The polynomial computed
at any input gate u is equal to the label of u. Let Pu denote the polynomial
computed at the node u in the circuit C. The polynomial computed at any
computation gate u with operation op, with u� and ur as its children nodes is
equal to the (w((u, u�)) × Pu�

)op(w((u, ur)) × Pur
). The polynomial computed

by the circuit C is the polynomial computed by the output gate of circuit C.
The size of the algebraic circuit C is the number of nodes in it.

Definition 8. A node u in any monotone circuit over R+[ε−1, ε] is called a good
node, if the polynomial fu computed at node u is divisible by ε.

Lemma 3. Consider any monotone circuit Dn of size s with edge label function
w : E −→ {εi|i ∈ Z≥0}, where E is the set of edges of Dn. Suppose it computes
a polynomial εbQ for some b ≥ 1 where Q = f0 +

∑b
i=1 εifi and the circuit Dn

satisfies the following properties:

– No input gate or any edge in Dn has a label with a negative exponent of ε.
– The underlying graph structure of Dn is the same as the graph structure of a

universal circuit as in Definition 6.

Then there exists a circuit D′
n of size s such that D′

n computes εb−1Q. More-
over, no input gate (or an edge label) in D′

n is labelled with a negative exponent
of ε. Also, the underlying graph structure of the circuit D′

n is same as that of
Dn, upto the relabelling of the input gates and edge labels of the circuit Dn.

Let G denote the set of all good nodes of circuit Dn. In order to prove Lemma 3,
we need to describe the circuit D′

n. The circuit D′
n is exactly similar to the circuit

Dn, with labels of some input nodes L′ ⊆ G scaled by 1/ε, and an updated edge
function w′. Moreover, the new function w′ also satisfies the property that no
edge has a label with a negative exponent of ε.

Instead of L′, we construct a larger set S such that L′ ⊆ S ⊆ G and the root
node r ∈ S. Let fu denote the polynomial computed at node u in circuit Dn.
Let f̂u denote the polynomial computed at node u in circuit D′

n. It suffices to
prove the following lemma.
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Lemma 4. In the circuit D′
n, for every node u ∈ S, f̂u = 1

εfu.

Since, the root node r ∈ S, the proof of Lemma 3 immediately follows (see
Sect. 3.2 for proof details).

Identifying the Set S and the Edge Label Function ŵ. The main idea is
to mark some of the good nodes of circuit Dn which will form the set S. First
of all, we will mark the root node of circuit Dn. The main goal is to scale the
polynomial computed at the marked root node by 1/ε. We will propagate this
effect from the root node layer to the layer immediately after it and so on till
we reach to the layer of the leaf nodes. In this process, we may also change the
labels of the edges thereby changing the old w function to the new updated w′

function. Upon reaching the last layer, we scale all the marked leaf nodes of Dn

by 1/ε (by relabelling). We now discuss the procedure in detail.
Let us number the layers of Dn from 1 to m such that the layer containing

the root node is numbered as 1 and so on till the layer containing the leaf nodes
is numbered m.

Marking the Root Node: We mark the root node of circuit Dn. Note that by
our assumption of circuit Dn, the root node is always a good node.

Marking the Nodes at Layer i + 1i + 1i + 1: Given the marking of nodes upto layer
numbered i, we give a procedure to mark the nodes in layer numbered i+1. We
break this case into two parts depending on whether i + 1 is even or odd.

Case 1: i + 1i + 1i + 1 is Odd and i + 1 ≤ mi + 1 ≤ mi + 1 ≤ m: We know that the layer numbered i
consists of the + gates.. Let u1, u2, . . . , ut be the marked nodes of layer i.
Inductively, we know that u1, u2, . . . , ut are all good nodes. For each j ∈ [t],
let uj,1, uj,2, . . . , uj,f(j) be children of node uj . Note that, for all j ∈ [t], the
nodes uj,1, uj,2, . . . , uj,f(j) are in layer numbered i + 1. For each k ∈ [f(j)], the
condition of the monotonicity of Dn (along with the property that uj is a good
node and is an addition gate) guarantees that

1a. either uj,k is a good node,
1b. or the edge (uj,k, uj) is labelled by εβ for some β ≥ 1.

We now describe a procedure which essentially scales the polynomials computed
via uj,1, uj,2, . . . , uj,f(j) by 1/ε, which in turn implies that the polynomial
computed at uj is also scaled by 1/ε. This scaling is done either immediately
by reducing the exponent of ε along the edge between the child node and the +
gate or is postponed to the next layer by marking the child node. We now state
it in Algorithm1 below.

Case 2: i + 1i + 1i + 1 is Even and i + 1 ≤ mi + 1 ≤ mi + 1 ≤ m: We know that the layer numbered i
consists of × gates. Let u1, u2, . . . , ut be the marked nodes of layer i. Inductively,
we know that u1, u2, . . . , ut are all good nodes. For each j ∈ [t], let uj,� and uj,r

be the left child and the right child of node uj , respectively. Note that, for all
j ∈ [t], the nodes uj,� and uj,r are in layer numbered i+1. Since the circuit Dn is
multiplicatively disjoint, for each j ∈ [t], nodes uj,� and uj,r are always distinct.
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for j = 1 to t do
for k = 1 upto f(j) do

if the node uj,k is already marked then
we do nothing;

end
else if Case 1a holds then

we mark the node uj,k;
end
else if Case 1b holds then

we relabel the edge (uj,k, uj) initially labelled by εβ to εβ−1;
end

end
end

Algorithm 1: Procedure to mark nodes on layer i + 1 when i + 1 is odd.

The property of monotonicity of Dn (along with the property that uj is a good
node and is a multiplication gate) guarantees that one of the following two cases
holds.

2a. If both uj,� and uj,r are not good nodes then there exist at least one edge
from {(uj,�, uj), (uj,r, uj)} which is labelled by εγ for some γ ≥ 1. Let us
call that edge e′.

2b. Either uj,� or uj,r is a good node. (If both are good we arbitrarily fix one
and call it as z)

The main idea of the following procedure is to scale either the polynomial
fed via uj,� or the polynomial fed via uj,r by 1/ε, which in turn scales the
polynomial computed at uj by 1/ε. This scaling is done either immediately by
reducing/increasing the exponent of ε appropriately along the edge between the
child node and the × gate and/or is postponed to the next layer by marking the
child node. We now state the procedure in Algorithm 2 below.

We know that S consists of all the marked nodes of Dn. Let 	1, 	2, . . . , 	t′ be
the marked leaf nodes of Dn. By the construction, we know that these nodes are
good nodes. Therefore, their labels have the exponent of ε at least 1. We reduce
the exponent of ε in each of these marked leaves by 1. We call the new circuit
D′

n where ŵ denotes the edge label function of D′
n.

Proof of Lemma 4 We prove by using induction on the layer numbers of the
nodes in S in the circuit D′

n.

Base Case: Consider the layer m of D′
n. This layer consists of the leaf nodes of

circuit D′
n. By our construction, it is easy to note that the base case holds.

Inductive Case: We assume that the inductive hypothesis holds for layer num-
bered i+ 1 and show that it holds for layer i. We break this case into two parts
depending on whether i is even or odd.
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Set E = φ
for j = 1 to t do

if exactly one of the nodes from uj,� and uj,r is marked then
we do nothing

end
else if both the nodes uj,� and uj,r are marked then

we arbitrarily pick one of the edges from {(uj,�, uj), (uj,r, uj)}. Let us
call that edge e. we increase the exponent of ε on edge e by 1.

end
else if Case 2a holds then

we reduce the exponent of ε on edge e′ by 1, that is, we relabel the edge
e′ by εγ−1.

end
else if Case 2b holds then

we mark the node z. Let K ⊆ E such that each node a ∈ K is a parent of
z.
for each a ∈ K do

the exponent of the ε on edge (z, a) is increased by 1.
end

end
Update E = E ∪ {uj}.

end

Algorithm 2: Procedure to mark nodes on layer i+ 1 when i+ 1 is even.

iii is Even: We know that the layer numbered i consists of the addition
gates. Let u1, u2, . . . , ut be the marked nodes of layer i. For each j ∈ [t], let
uj,1, uj,2, . . . , uj,f(j) be children of node uj . For each j ∈ [t] we know that
fuj

=
∑f(j)

k=1 w(uj,k, uj) × fuj,k
and therefore, f̂uj

=
∑f(j)

k=1 ŵ(uj,k, uj) × f̂uj,k
.

By our construction, for all k ∈ [f(j)], either uj,k is a marked node or
the edge label function ŵ updates the weight on edge (uj,k, uj) as follows :
ŵ(uj,k, uj) = 1

εw(uj,k, uj). Let M ⊆ [f(j)] is such that for each a ∈ M, uj,a is
a marked node. Inductively, we know that f̂uj,a

= 1
εfuj,a

. Therefore,

f̂uj
=

f(j)∑

k=1

ŵ(uj,k, uj) × f̂uj,k
(1)

=
∑

a∈M
ŵ(uj,a, uj) × f̂uj,a

+
∑

b∈M

ŵ(uj,b, uj) × f̂uj,b
(2)

=
∑

a∈M
w(uj,a, ua) × 1

ε
fuj,a

+
∑

b∈M

1
ε
w(uj,b, uj) × fuj,b

=
1
ε
fuj

(3)

iii is odd : This case is similar to the previous one. We skip the other details of
this case. �

By repeatedly applying the step 2, we obtain a circuit C′
n which computes

the polynomial ε0Q. This finishes the proof of Theorem 1.
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3.3 mVNP and mVF

We state the definition of the monotone variant of VNP.

Definition 9. Let fn(x1, x2, . . . , xk(n)) be a p-bounded polynomial family. We
say that fn is in mVNP if there exists a family gn ∈ mVP such that fn =∑

y1,y2...,yk′(n)∈{0,1} gn(x1, x2, . . . , xk, y1, y2, . . . , yk′ (n)), where k′(n) is polynomi-
ally bounded in n.

We now recall the definition of VNP from [9].

Definition 10 ([9]). Let fn(x1, x2, . . . , xk(n)) be a p-bounded polynomial family.
We say that fn is in VNP if there exists a p-bounded family f̂n ∈ VNP over the
field F(ε) and a function t : N −→ N such that f̂n(x) = fn(x) + εfn,1(x) +
εfn,2(x) + . . . + εt(n)fn,t(n)(x) for some fn,1, fn,2, . . . , fn,t(n) defined over F.

We can now define the class mVNP.

Definition 11. Let fn(x1, x2, . . . , xk(n)) be a p-bounded polynomial family. We
say that fn is in mVNP if there exist a p-bounded family f̂n ∈ mVNP over
R+[ε, ε−1] and a function t : N −→ N such that f̂n(x) = fn(x) + εfn,1(x) +
εfn,2(x) + . . . + εt(n)fn,t(n)(x) for some fn,1, fn,2, . . . , fn,t(n) defined over R.

Lemma 5. mVNP = mVNP

Proof. Let fn(x1, x2, . . . , xk(n)) ∈ mVNP. By the definition of mVNP, we know
that there exists a p-family f̂n ∈ mVNP (over the field F(ε)) such that f̂n(x) =
fn(x) + εfn,1(x) + εfn,2(x) + . . . + εt(n)fn,t(n)(x) for some fn,1, fn,2, . . . , fn,t(n)

∈ R[X]. We know that f̂n =
∑

y1,y2...,yk′(n)∈{0,1} gn(X,Y ), where k′(n) is
polynomially bounded in n and gn(X,Y ) ∈ mVP (over the field F(ε)). Let
gn(X, a1, a2, . . . , ak′(n)) denote the evaluation of the polynomial gn(X,Y ) at
y1 = a1, y2 = a2, . . . , yk = ak′(n). Since the polynomial f̂n is monotone and
that it converges, each of the summand in f̂n =

∑
y1,y2...,yk′(n)∈{0,1} gn(X,Y )

must also necessarily converge. That is, for any boolean setting of variables
y1 = a2, y2 = a2, . . . , yk′(n) = ak′(n), the polynomial gn(X, a1, a2, . . . , ak′(n))
must converge. Therefore, gn(X,Y ) must also converge. By Theorem 1, there
exists a circuit Cgn

which computes gn(X,Y ) such that there are no nega-
tive exponents of ε in any of its labels. Let gn(X,Y )ε=0 denote the polyno-
mial obtained after substituting ε = 0 in gn(X,Y ). We know that fn(x) =∑

y1,y2...,yk′(n)∈{0,1} gn(X,Y )ε=0. By the definition of mVNP, the result follows.
�

We now state the final lemma of this section.

Lemma 6. mVF = mVF

We use the proof of mVBP = mVBP from [4] to prove Lemma 6. We skip the
details of this proof.
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4 Complexity of Det�=k
n (X)

It is not very hard to see that Det�=k
n (X) is VBP complete for k = 1. The proof

idea is similar to the proof which shows that Detn(X) is VBP complete. In the
rest of this section, we prove that Det�=k

n (X) is VNP complete for all k ≥ 2.

Proof Idea. Before going into the details of the complexity of Det�=k
n (X) (k ≥ 2),

we will look at the various ingredients required to show that Det�=k
n (X) (k ≥ 2)

is VNP-complete. In Sect. 4.1, we discuss the gadget construction Hk and its
properties. In Sect. 4.2, we discuss the rosette construction and its properties.
For any fn(X) ∈ VNP, we use the gadgets Hk and rosettes to construct the
graph Tm (m = poly(n)) such that Det�=k

m (X) defined over Tm computes fn(X).

4.1 Gadget Construction Hk and Its Properties

Gadget HkHkHk. For every k > 1, we construct a partial iff gadget Hk.

– Let V (Hk) = {ai|1 ≤ i ≤ 2k − 1}.
– LetE(Hk) = {(at, at+1)|1 ≤ t ≤ 2k−2)}∪{(a1, ak+1), (ak+1, a2), (a2k−1, a1)}

∪ {(am, am)|3 ≤ m ≤ 2k − 1}.WecalltheedgesinE(Hk)asthegadgetedges.
– The weights of (a1, a2) and the self-loop on ak+1 are −1. All the other edge

weights are 1.

Consider a directed graph G with two distinct edges (u, v) and (u′, v′).
We say that the gadget Hk is placed between the edges (u, v) and (u′, v′),
if we delete both the edges (u, v) and (u′, v′) in G and we add the following
directed edges, {(u, a1), (a1, v), (u′, a2), (a2, v

′)}. We set w(u, a1) = w(u, v) and
w(u′, a2) = w(u′, v′). We set w(a1, v) = w(a2, v

′) = 1.
Before getting into the details of the properties of the gadget Hk, we first

define perceived sign and perceived monomial of a cycle cover.
Let G be a directed graph with edge labelling function Φ : E(G) → X ∪ F,

where X = {xi|1 ≤ i ≤ n}. Let C = {C1, . . . , Ck} be a cycle cover of G. Let
{e1, . . . , et} be the edges in C. The sign of the cycle cover, which we denote as
sign(C) is defined as (−1)k. The monomial of C, denoted as mon(C), is defined
as the product of the labels of edges in C, i.e.

∏t
i=1 Φ(ei).

Note that the coefficient of this monomial can be either positive or negative
based on the number of negatively signed edge labels in C. We denote this sign
by s(mC). Based on this, we define perceived sign ŝ(C) and perceived monomial
m̂C as follows.

Let ŝ(C) be (−1)k · s(mC). And let m̂C = mC · s(mC). Note that

s(C) · mC = ŝ(C) · m̂C . (4)

Properties of HkHkHk. We now state some important properties of Hk. Consider
a directed graph G = (V,E) with two distinct edges (u, v) and (u′, v′). Let G′

be the graph obtained by placing the gadget Hk between the edges (u, v) and
(u′, v′) in G. Let C �=k be a cycle cover (without any cycle of length k) with
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perceived sign ŝ which uses either both or none of the edges (u, v) and (u′, v′) in
G, then there exists another cycle cover C′�=k with perceived sign ŝ′ in graph G′

such that the perceived monomial associated with both C �=k and C′�=k are same
and ŝ = ŝ′. We also show that if there exists a cycle cover C �=k in G such that
it uses exactly one of the edges from (u, v) and (u′, v′), then such a cycle cover
does not survive in G′.

1. If C �=k does not use any of the edges (u, v) and (u′, v′) then the C′�=k consists
of all the cycles in C �=k and the gadget vertices are covered within themselves
by a single cycle (a1, a2, . . . , a2k−1, a1). The total number of cycles in cycle
cover C′�=k is one more than the number of cycles in cycle cover C′�=k, but
since the weight of edge (a1, a2) is −1, the perceived sign of cycle cover C′�=k

is same as the perceived sign of cycle cover C �=k.
2. If C �=k uses both the edges (u, v) and (u′, v′) then C′�=k has all the cycles in

C �=k except that the edges (u, v) and (u′, v′) are now replaced by directed
path (u, a1, v) and (u′, a2, v

′) respectively. The vertices a3, a4, . . . , a2k−1 are
covered by self-loops (of weight 1) in C′�=k. Since the total number of cycles
covered by self-loops in the gadget is always odd and the self-loop on the
vertex ak+1 has weight −1, the perceived sign is preserved.

3. If C �=k uses the edge (u, v) but the not the edge (u′, v′) then there is only one
way to cover the vertices a2, a3, . . . , ak+1 with a cycle (a2, a3, . . . , ak+1, a2) of
length k, which is not a valid cycle cover.

4. If C �=k uses the edge (u′, v′) but not the edge (u, v) then there is
only one way to cover the vertices ak+1, ak+2, . . . , a2k−1 with a cycle
(ak+1, ak+2, . . . , a2k−1, ak+1) of length k, which is not a valid cycle cover.

5. Note that after placing the gadget Hk, there could be new cycle covers that
arise in the graph G′ which were not present in graph G. There are only two
possible cases. Out of these two cases, in one of the cases, the contribution
of all such cycle covers in the overall sum is 0 whereas in the other case, the
contribution is not 0. We explain both the cases in detail below.
(a) Let C �=k be a cycle cover consisting of a cycle, say C1 starting with vertex u

followed by the edge (u, a1) and then the edge path P1 = (a1, a2) followed
by an edge (a2, v

′). Since there are two paths from a1 and a2 (within the
gadget vertices), there exists another cycle cover C′ �=k consisting of a cycle
C′

1 starting with vertex u followed by the edge (u, a1) and then the path
P ′

1 = (a1−ak+1−a2) followed by an edge (a2, v
′) such that the perceived

monomials of both C �=k and C′ �=k are same. Moreover, since the number
of cycles in cycle cover C′ �=k is one less than the number of cycles in cycle
cover C �=k, their perceived signs are different. In other words, there exists
a bijection Ψ between the set of cycle covers using P1 in one of its cycles
and the set of cycle covers using P ′

1 in one of its cycles such that for
any C, Ψ(C) and C have same perceived monomials but with opposite
perceived signs. Therefore, the contribution of such cycle covers to the
overall sum is 0.

(b) Let C �=k be a cycle cover consisting of a cycle, say C1 with a path P1 in it
starting with vertex u′ followed by the edge (u′, a2) and then a path from
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vertex a2 to vertex a1 (within the gadget Hk) followed by an edge (a1, v).
There are no cancellations possible in this case and therefore, such cycle
covers survives.

Remark 3. Unlike the Valiant’s iff gadget, in this gadget, we do not guarantee
that the contribution of cycle covers (which may arise due to the placing of this
gadget) is 0 (see Point 5(b) above). Therefore, we call Hk partial iff gadget. For
the proof to work, we exploit the property of the graph on which these gadgets
are placed such that the contribution of such new cycle covers is 0.

4.2 Rosette Construction R(�, I)

In this section, we describe the rosette construction R(	, I) for every 	 > k and
I ⊆ [	]. The construction of R(	, I) is very similar to the construction of R(	)
as stated in [15], except for some modifications to incorporate the restriction
about the length of the cycle in the cycle cover. Formally, we consider a directed
cycle C of length 	 with vertex set |V (C)| = {u1, u2, . . . , u�} and E(C) = {ei =
(ui, ui+1)|1 ≤ i ≤ 	 − 1} ∪ {e� = (u�, u1)}. We call the edges in |E(C)| as
connector edges and the vertices in |V (C)| as connector vertices. Consider a set
S(I) = {ei|i ∈ I}. For every edge (ui, uj) in S(I), we add a new vertex ti,j and
add edges (ui, ti,j) and (ti,j , uj). We call the edges in set S(I) as participating
edges. We add self-loops on all the vertices of our graph. We arbitrarily pick
one of the connector vertices and set the weight of the self-loop on it to 1,
whereas the weights of all the other self-loops are set to −1. The weights of all
the edges in rosette R(	, I) (except the self-loops) are set to 1. This completes
the construction of R(	, I). It is easy to observe that every R(	, I) contains a
unique longest cycle. We denote such a cycle by Z. The rosette R(	, I) satisfies
the following four properties.

1. There is no cycle cover in R(	, I) that contains a cycle of length k.
2. For any subset φ �= X ⊆ S(I), there exists exactly one cycle cover of R(	, I)

which, among the participating edges, contains exactly the edges in X. Such
a cycle cover always contains a single cycle which is not a loop and all other
remaining vertices are covered with self loops.

3. There are only two cycle covers of R(	, I) which contain no participating
edges. The first cycle cover consist of only self-loops on each of the vertices
in R(	, I). The other cycle cover consists of the unique longest cycle Z.

4. There are no other cycle covers in R(	, I).
Note that for any cycle cover C of rosette R(	, I), the perceived sign is −1

and the perceived monomial is 1.

4.3 Construction of Graph Tm from fn(X) ∈ VNP

Let fn(X) ∈ VNP. From the definition of VNP we know that fn(X) =∑
y1,y2,...,yp(n)∈{0,1} g′

n(X,Y ), where p : N −→ N is polynomially bounded func-
tion in n and g′

n(X,Y ) is in VP. Moreover, for any fn(X) ∈ VNP, fn(X) =∑
y1,y2,...,yp(n)∈{0,1} gn(X,Y ), where gn(X,Y ) is in VF [12].
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1. Since, gn(X,Y ) ∈ VF and VF ⊆ VBP, there exists an algebraic branching
program of size s = poly(n) to compute gn(X,Y ), say Bn. Let s0 and t0 be
the source and sink of Bn, respectively. Without loss of generality assume
that the length of the longest path from s0 to t0 in Bn is at least k. We add
a special vertex α and add directed edges from α to s0 and from t to α. We
set the weights of both the edges (α, s0) and (t0, α) to 1. We add self-loops
on all the vertices in our constructed graph except α. We set the weight of
all self-loops to be 1. We call this graph B̂n.

2. We know that Y = {yi|1 ≤ i ≤ p(n)}. Let occ(i) denote the total number of
edges in B̂n which are labelled with variable yi. Let Y1 = {yi|yi ∈ Y, occ(i) >
k} and Y2 = {yi|yi ∈ Y, occ(i) ≤ k}. Cleary, Y = Y1 ∪ Y2. For every yi ∈ Y1,
we consider a rosette R(occ(i), I = [occ(i)]). Similarly, for every yj ∈ Y2, we
consider a rosette R(occ(j) + k, I ⊂ [occ(j)]), where the set |S(I)| = occ(j).
We call the graph constructed so far as the partial graph denoted by T̃m.

3. For any yi ∈ Y1, let cyi,1, cyi,2, . . . , cyi,occ(i) be the connector edges in
R(occ(i), I = [occ(i)]). Let eyi,1, eyi,2, . . . , eyi,occ(i) be the distinct edges in
B̂n which are labelled with variable yi. We place Hk between the edges cyi,t

and eyi,t for all 1 ≤ t ≤ occ(i).
4. For any yj ∈ Y2, let cyj ,1, cyj ,2, . . . , cyj ,occ(j), . . . , cyj ,occ(j)+k be the connector

edges in R(occ(j) + k, I ⊂ [occ(j) + k]). Without loss of generality, let us
assume that S(I) = {cyj ,1, cyj ,2, . . . , cyj ,occ(j)}. Let eyj ,1, eyj ,2, . . . , eyj ,occ(j)

be the distinct edges in B̂n which are labelled with variable yj . We place
“partial iff gadget” Hk between the edges cyj ,t and eyj ,t for all 1 ≤ t ≤ occ(j).

This completes the construction of graph Tm. It is easy to note that m = poly(n).

4.4 Proof of VNP Hardness of Det�=k
n (X) for k ≥ 2

Let fn(X) ∈ VNP. We have fn(X) =
∑

y1,y2,...,yp(n)∈{0,1} gn(X,Y ), where p(·) is
polynomially bounded function in n and gn(X,Y ) is in VF. We know that Bn

computes gn(X,Y ). Let P = {Pi|1 ≤ i ≤ μ} be the set of all s0 − t0 paths in Bn.
Let mi be the monomial associated with Pi formed by multiplying all the edges
of Bn participating in path Pi. Let m′

j := mj(a1, . . . , ap(n)) be an evaluation of
mj for a specific Boolean setting of Y variables.

Recall that Tm is the graph constructed from fn(X) as stated in Sect. 4.3.
We will prove that for every non-zero m′

j there is a unique cycle cover C in Tm

such that the product of the perceived sign of C and the perceived monomial
of C is exactly equal to m′

j . Moreover, there are no other cycle covers in Tm.
This will prove the VNP hardness. We skip the other details of the proof in the
conference version.
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Abstract. We show that every read-once nondeterministic branching
program computing the Minimum Circuit Size Problem on inputs of
length N has size Ω(N log log(N)). This is the first superpolynomial lower
bound on the size of 1-NBP computing MCSP. This lower bound is
tight for the version of MCSP restricted to a linear circuit size parame-
ter.

To show this result we adapt a conditional lower bound of Ilango [10]
on the deterministic Turing Machine time complexity of computing
MCSP∗, the generalization of MCSP to partial functions. In contrast,
our lower bound is unconditional and holds even for the total MCSP
function.

En route, we get two results that may be of independent interest:
– The size of the minimal 1-NBP computing MCSP equals, up to a

constant factor, the size of the minimal 1-NBP computing MCSP∗;
– The size of any 1-NBP computing (2n× 2n)-Bipartite Independent

Set is Ω(n!).

1 Introduction

Branching programs1 are a non-uniform model of computation that cap-
ture time-space trade-offs. Polynomial size deterministic and non-deterministic
branching programs exactly recognize the non-uniform analogues of complex-
ity classes L and NL, respectively [5]. Branching program size is polynomially
related to Boolean formula size [17], and every branching program can be con-
verted to a Boolean circuit of roughly the same size.

Restricted branching programs have been studied extensively. Read-once
branching programs provide a way to analyze the power of linear-time non-
uniform computations with logarithmic memory with an extra restriction that
each variable is read at most once.

The Minimum Circuit Size Problem (MCSP) has been a central problem
of study in computational complexity in recent years. This problem asks: given as
input the truth-table of a Boolean function, and a size parameter s, determine
whether the function can be computed by a Boolean circuit of size s. As the
1 Sometimes are also called decision diagrams.
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input length of MCSP is exponential in the input length of the function defined
by the given truth table, it is clear that MCSP is contained in NP. Although it
is not known whether MCSP is an NP-complete problem, it is widely believed
to be hard to compute. Starting from the work of Kabanets and Cai [12] there
has been mounting evidence that MCSP �∈ P [11,18], for example MCSP ∈ P
implies that widely believed cryptographic assumptions do not hold. On the
other hand, there are complexity-theoretic barriers to proving NP-hardness of
MCSP [15,16].

Recently [10] Ilango showed that, assuming the Exponential Time Hypoth-
esis (ETH), the partial function variant of MCSP, denoted MCSP

∗, requires
superpolynomial time to compute. Hence, ETH implies MCSP

∗ �∈ P. MCSP is
a special case of MCSP

∗, so the former is not harder than the latter. But an
existence of a Turing reduction from MCSP

∗ to MCSP is not known, even if
we allow for a polynomial number of calls to an MCSP oracle.

Stronger lower bounds on MCSP are known for other models of computation.
In recent years lower bounds that match the best lower bounds in corresponding
models of computation were shown for DeMorgan [3], CNF, and DNF formu-
las [3], and for AC0 [3] and AC0[p] [9] circuits computing MCSP. Polynomial
lower bounds were also shown for deterministic and non-deterministic general
branching programs [4]. Using local hitting set generators in [4] the authors
proved exponential lower bounds on read-once co-non-deterministic branching
programs computing MCSP. However, for non-deterministic read-once branch-
ing programs there are no known superpolynomial lower bounds against MCSP.
In Sect. 1.2 we discuss why the technique from [4] is unlikely to work for non-
deterministic read-once branching programs. Intuitively, as MCSP is naturally
solved by nondeterministic guessing and checking, it is harder to find “weak-
nesses” of nondeterministic models of computations in order to obtain strong
lower bounds. In this work we address this question and obtain a tight lower
bound for read-once non-deterministic branching programs in a specific param-
eter regime of MCSP.

1.1 Results and Techniques

We study the complexity of computing Minimum Circuit Size Problem by
read-once non-deterministic branching programs. Our main result is the follow-
ing.

Theorem 1. Every 1-NBP computing MCSP on inputs of length N requires
size NΩ(log log(N)). Moreover, the size of the minimal 1-NBP computing
MCSPs=n−1 : {0, 1}N → {0, 1} (MCSP with the size parameter set to n − 1) is
NΘ(log log(N)), where N = 2n.

Our proof of the lower bound consists of three steps. First, we show a tight
exponential lower bound on the size of read-once nondeterministic branching
programs for a certain graph problem that is known to be ETH-hard. Second,
we use a constructive reduction from the work of Ilango [10] that allows us to
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lift our lower bound for the graph problem to MCSP
∗ with a linear size param-

eter. Finally, we show that the sizes of the minimal read-once nondeterministic
branching programs computing MCSP and MCSP

∗ are polynomially related.
The first step is the most technical one. To prove Theorem 3 we use bottleneck

counting, adapting methods of classical lower bound for Clique by Borodin,
Razborov, and Smolensky [1] to show that (2n × 2n)-Bipartite Permutation

Independent Set ((2n × 2n)-BPIS) problem is not in 1-NBP[2o(n log n)].
The second step is implemented in Theorem 4, where we show that Ilango’s

reduction can be implemented as a transformation of 1-NBPs.
Finally, in Theorem 6, we show that the size of the minimal 1-NBP com-

puting MCSP is insensitive to whether we compute the total or partial MCSP

function:
1-NBP[MCSP] = Θ(1-NBP[MCSP

∗]).

The proof of the upper bound is an application of the simple guess-and-check
strategy that is natural for non-deterministic computations, and is provided for
completeness in Lemma 4.

1.2 Related Work

Strong exponential lower bounds on MCSP are known for various model of com-
putations such as AC0 circuits, and AC0[p] circuits. Note, that AC0 circuits,
and AC0[p] circuits are incomparable with 1-NBP. Tseitin formulas on a d-
regular expander graphs require 1-NBP of exponential size, though they can be
computed by a CNF of a polynomial size [8]. Mod q function is hard for AC0,
and AC0[p] (for p �= q) formulas, but has linear 1-NBP representation [20].

In contrast with other lower bounds against MCSP for weak computational
models, which are based on the intuition that a random function is hard, our
lower bound is based on explicit linear circuit lower bounds inherited from
Ilango’s technique [10]. Instead of relying on ETH, we prove an unconditional
lower bound on (2n × 2n)-BPIS for 1-NBPs.

The complexity of MCSP for branching programs was studied in [4], where
the authors prove N1.5−o(1) lower bounds on MCSP and MKTP and an expo-
nential lower bound on the size of 1-coNBP. The latter is the most relevant to
this work. The proof of this lower bound goes roughly as follows. The authors
construct a local hitting set (LHS) against 1-NBPs. The LHS is a function
H : {0, 1}s → {0, 1}2n such that H({0, 1}s) ⊆ MCSPs (locality), and for every
small enough 1-NBP D such that D−1(1) ≥ ε22

n

we have that there exists
y ∈ {0, 1}s such that D(H(y)) = 1. The existence of this function yields a lower
bound for 1-coNBP computing MCSP.2

The part of this proof in [4] that seems to fail for an 1-NBP lower bound is
a transition from Forbes-Kelley-based [7] LHS against Ordered Binary Decision

2 See Lemma 14 in [4].
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Diagrams3 (OBDDs) to a generator against 1-NBPs. The authors use a result
of [1] which says that if f is computable by a small 1-NBP then it can be
represented as a disjunction of OBDD-computable functions, i.e. f−1(1) is a
union of 1-preimages of OBDDs. Now, if we have a LHS that hits all OBDDs
with relative 1-preimage size at least 1/2t, where t is the number of OBDDs in
the disjunction representation of f , then it must hit at least one of the OBDDs
in the representation of f whenever the relative size of f−1(1) is at least 1/2.

In order to get a lower bound on 1-NBP computing MCSP in this setting
one needs to construct a LHS against 1-coNBPs. The main problem we face
here is that a function computable by a 1-coNBP is a conjunction of OBDD-
computable functions. Thus hitting any of the OBDDs does not guarantee hitting
some 1-coNBP in the intersection.

1.3 Organization

The structure of the paper is as follows:

– In Sect. 2 we give definitions of the branching programs and various versions
of MCSP we are working with, together with an overview of a reduction from
Ilango’s paper [10].

– In Sect. 3 we prove a lower bound on the size of 1-NBP computing the ETH-
hard problem (2n × 2n)-Bipartite Permutation Independent Set.

– In Sect. 4 we show a reduction from the (2n × 2n)-Bipartite Permutation

Independent Set problem to MCSP
∗, together with a proof of equivalence

between the sizes of 1-NBP for MCSP
∗ and MCSP.

– In Sect. 5 we provide a proof of an upper bound on the sizes of 1-NBP
computing MCSP and MCSP

∗, and prove the main theorem of this work,
Theorem 1.

– In Sect. 6 we conclude with open problems related to our work.

2 Preliminaries

Throughout this work we denote by [n] a set of n elements {1, . . . , n}. Let a and
b be partial assignments. If the supports of a and b do not intersect, denote by
a ∪ b a partial assignment that coincides with a on the support of a and with b
on the support of b. For a graph G we denote its set of vertices by V (G) and its
set of edges by E(G). Throughout the work a circuit is a de Morgan circuit (∧,
∨ and ¬ gates) with gates of arity 2.

Definition 1. A Branching Program (BP) is a form of representation of func-
tions. A n-ary function4 f : Dn → {0, 1}, where |D| = d, is represented by
a directed acyclic graph with exactly one source and two sinks. Each non-sink

3 OBDD is a 1-BP in which variables in every path from the source to a sink appear
in the same order.

4 We will instantiate this definition for D = {0, 1} and D = {0, 1, ∗}.
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node is labeled with a variable; every internal node has exactly d outgoing edges:
labeled with elements of D. One of the sinks is labeled with 1 and the other is
labeled with 0. We say that a node queries x if it is labeled with a variable x.

The value of the function for given values of the variables is evaluated as
follows: we start a path from the source such that for every node on this path
we go along the edge that is labeled with the value of the corresponding variable.
This path terminates in a sink. The label of this sink is the value of the function.
We will refer to a path that terminates in a σ-labeled sink as σ-path.

Definition 2. A Nondeterministic Branching Program (NBP) is a branching
program that additionally has nondeterministic ‘guessing’ nodes that are unla-
beled and have two outgoing unlabeled edges.

The result of a function represented by a nondeterministic branching program
for given values of variables equals 1, if there exists at least one path from the
source to the sink labeled with 1 such that for every node labeled with a variable
on its path we go along an edge that is labeled with the value of the corresponding
variable.

A deterministic or nondeterministic branching program is a (syntactic) read-
once (1-BP or 1-NBP respectively) if every path from the source to a sink con-
tains at most a single occurrence of each variable.

Size of a deterministic or nondeterministic branching program is a number
of deterministic (non-guessing) nodes in it. For a function f we define its read-
once nondeterministic branching program complexity, denoted as 1-NBP[f ], as a
size of minimal non-deterministic read-once branching program that computes f .
When we write 1-NBP[MCSP] we denote a read-once nondeterministic branch-
ing program complexity of a characteristic function corresponding to the MCSP

language.

Definition 3. The Minimum Circuit Size Problem (MCSP(f, s)) gets as input
the truth-table of a Boolean function f : {0, 1}n → {0, 1} of length N = 2n and
a size parameter s, and outputs 1 if there exists a Boolean circuit of size at most
s that computes f . We use notation MCSPs′(n)(f) = MCSP(f, s′(n)).

Definition 4. The Partial Minimum Circuit Size Problem (MCSP
∗(f∗, s)) gets

as input the partial truth-table of a function f∗ : {0, 1}n → {0, 1, ∗} of length
N = 2n and a size parameter s, and outputs 1 if there exists a substitution
of each ∗ in the truth-table to a 0/1, transforming f∗ to a Boolean function f ,
such that MCSP(f, s) = 1. We use notation MCSP

∗
s′(n)(f) = MCSP

∗(f, s′(n)).
Sometimes we abuse notation by using a partial assignment as an argument of
MCSP

∗.

2.1 Bipartite Permutation Independent Set Problem

In [10] Ilango showed that Partial MCSP is ETH-hard. The main idea of the
proof is to show reduction from the (2n×2n)-Bipartite Permutation Independent
Set problem that was previously shown to be ETH-hard in [13].
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Definition 5. In (2n × 2n)-Bipartite Permutation Independent Set

problem (BPIS) we are given an adjacency matrix of an undirected graph
G over the vertex set [2n] × [2n] where every edge is between the sets of ver-
tices J1 = {(i, j)|i, j ∈ [n]} and J2 = {(n + i, n + j)|i, j ∈ [n]}. A graph
G is a Yes-instance iff it contains an independent set S ⊆ J1 ∪ J2 of size
2n such that the coordinates of vertices in S define a permutation of [2n], i.e.
∀i ∈ [2n] ∃j, k ∈ [2n] : v = (i, j), w = (k, i), v, w ∈ S.

Note that a permutation of [2n] corresponding to a Yes-instance of (2n ×
2n)-BPIS can be viewed as two permutations on disjoint n-element subsets, one
permutation is defined by n vertices from J1 (corresponds to a permutation of
elements {1, . . . , n}), and another by n vertices from J2 (corresponds to a per-
mutation of elements {n + 1, . . . , 2n}). We use each of these interpretations
interchangeably.

Theorem 2 ([13]). (2n × 2n)-BPIS cannot be solved in deterministic time
2o(n log n) unless ETH fails.

Ilango in [10] shows a 2O(n)-time reduction from (2n×2n)-BPIS to MCSP*,
hence, showing that MCSP* cannot be solved in deterministic time 2o(n log n)

unless ETH fails.

3 1-NBP Lower Bound for Bipartite Permutation
Independent Set Problem

Before proving the lower bound, we state one result that we use in our proof.
We show that it is sufficient to prove a lower bound on the size of a 1-NBP
computing the (2n × 2n)-Bipartite Permutation Clique Problem ((2n ×
2n)-BPC). This problem is very similar to (2n × 2n)-BPIS, but it asks whether
there are two sets of vertices, that both form a permutation on [n], and also form
a bipartite clique. Formally we define (2n × 2n)-BPC as follows:

Definition 6. In (2n × 2n)-BPC : {0, 1}([2n]×[2n])2 → {0, 1} we are given an
adjacency matrix of an undirected graph G over the vertex set [2n] × [2n] where
every edge is between the sets of vertices J1 = {(i, j)|i, j ∈ [n]} and J2 = {(n +
i, n+ j)|i, j ∈ [n]}. A graph G is a Yes-instance iff it contains a subset S of 2n
vertices from J1∪J2 that is a bipartite clique in the bipartite graph (J1, J2, E(G)∩
J1 × J2), and the coordinates of vertices in S define a permutation of [2n], i.e.
for each i there is exactly one vertex with the first coordinate equal to i, and
exactly one vertex with the second coordinate equal to i.

Throughout this section we consider branching programs solving (2n ×
2n)-BPIS and (2n × 2n)-BPC. In both cases the input is an adjacency matrix
of a graph. We slightly abuse the notation by saying that a node of a branching
program queries an edge of a graph. Besides that, we use the following conven-
tion to distinguish graphs in (2n×2n)-BPC and underlying graphs of branching
programs: the former has vertices and the latter has nodes.
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Lemma 1. If there exists a 1-NBP of size f(n) computing (2n × 2n)-
BPIS : {0, 1}([2n]×[2n])2 → {0, 1}, then exists a 1-NBP of size f(n) computing
(2n × 2n)-BPC : {0, 1}([2n]×[2n])2 → {0, 1}.
Proof. Consider a 1-NBP B of size s computing (2n × 2n)-BPIS. For all edges
in B we change labels from 0 to 1, and from 1 to 0 respectively, getting a 1-NBP
B′. Now, B′ accepts only those graphs that are the complements of graphs with
two permutations of a set [n] that form a bipartite independent set. Therefore,
each such graph has two permutations of [n] that make a bipartite cliques on 2n
vertices. Hence, we get that B′ is a 1-NBP of size s computing (2n×2n)-BPC.
��

Now we are ready to show a 1-NBP lower bound for (2n × 2n)-BPIS.

Theorem 3. The size of every 1-NBP computing (2n×2n)-BPIS is 2Ω(n log n).

Proof. First, we show the lower bound on the size of a 1-NBP computing (2n ×
2n)-Bipartite Permutation Clique. Then, the same lower bound applies to the
(2n × 2n)-Bipartite Permutation Independent Set problem by Lemma 1.

Let B be the smallest 1-NBP that decides (2n × 2n)-Bipartite Permutation
Clique. Consider the set G of all graphs on 2n · 2n vertices that are exactly
(2n × 2n)-bipartite permutation cliques and have no other edges. On every such
graph x ∈ G, the function (2n × 2n)-BPC(x) = 1.

For each graph g ∈ G there is at least one path, from the source to the 1-sink
in B that is consistent with g. Pick any of such paths arbitrarily and denote it
by πg. We find the first node v on this path such that:

– v queries the value of the variable xe;
– πg assigns xe to 1;
– v is the first node on the path πg, such that after setting xe to 1, for each of
2n vertices of the exactly bipartite permutation clique g, πg assigns 1 to an
edge incident to that vertex.

Such node should exist for every graph g ∈ G, as otherwise the 1-NBP would
also accept inputs that do not contain a bipartite permutation clique. We call
such node v a red node corresponding to g in B. We define a mapping r : G → N ,
where N is the set of nodes of B and r(g) is the red node corresponding to the
graph g.

The plan of our proof is as follows.

1. Consider the set of graphs G. |G| = n! · n! (Lemma 2). For each graph g ∈ G
consider its red node r(g).

2. Show that at most 2 · n! graphs in G may share the same red node defined
by mapping r (Lemma 3).

3. Since |G| = n! · n! and for each node in N its preimage under r has size at
most 2 · n!, we get that |N | ≥ n!

2 .

Lemma 2. Set G contains exactly n! · n! graphs.
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Proof. For each permutation on n vertices exists a unique set of n vertices in
each part of a bipartite graph. As we need to choose n vertices in both parts,
overall there are n! ·n! choices of such vertices. Therefore, there are n! ·n! graphs
that contain the minimal amount of edges to form a permutation bipartite clique.

Lemma 3. At most 2 · n! graphs in G share the same red node.

Proof. Consider a node r0 querying xe and let e = uv. Cover the set r−1(r0) of
all graphs in G that share the same red node r0 with two (not necessary disjoint)
subsets. The first is the set of graphs where u is the endpoint of e that has no
incident edges that have been queried before. The second set is the set of cliques
where v is the vertex with this property. We prove that each of these subsets has
size at most n!.

Let g1 and g2 be two exact cliques from r−1(r0) such that u is the vertex
with no incident edges queried before e at r0 (for v the proof is analogous). Let
pi := πgi

for i ∈ {1, 2} (see Fig. 1). g1 and g2 are determined by the sets of nodes
spanned by their edges. Let U1, U2 ⊆ [n] × [n] be the sets of nodes in the first
part spanned by g1 and g2 respectively and V1, V2 ⊆ ([2n] \ [n])2 be such sets in
the second part. That is, E(gi) = Ui × Vi for i ∈ {1, 2}. W.l.o.g u ∈ Ui.

Fig. 1. The paths πg1 and πg2 Fig. 2. The graph h1
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Let us color the edges of g1 and g2 in two colors: the edges that have been
queried along the beginning of the path pi until r0 are colored in yellow and the
edges that have been queried after r0 are colored in blue.

Consider the edge e = uv in gi for i ∈ {1, 2}. By the construction of r0 it is
blue and one of the vertices u has exactly n incident blue edges and no incident
yellow edge. Then the blue neighbors of u in gi are exactly the vertices Vi.

Suppose for the contradiction that V1 �= V2.
Consider two graphs h1 and h2 where hi consists of yellow edges of gi and

blue edges of g3−i. By the structure of 1-NBP B, h1 and h2 both contain a
permutation clique. Observe that |E(h1)| + |E(h2)| = |E(g1)| + |E(g2)| = 2n2

thus we can assume w.l.o.g. that |E(h1)| ≤ n2. Since h1 contains a bipartite
permutation clique |E(h1)| = n2, it has exactly n vertices of degree n in each part
and all other vertices have degree zero. However, there are at least n+1 vertices
of non-zero degree among ([2n] \ [n])2. Indeed, since V1 �= V2 and |V1| = |V2|
there exists a vertex w ∈ V1 \ V2. w is not incident to e, so by the construction
of r0 it must have a yellow edge from g1 incident to it, so its degree in h1 is at
least 1 (see Fig. 2). The vertices from V2 are all connected to u in h1 which sums
up to n + 1. Therefore V1 must be equal to V2.

Therefore each graph from the set r−1(r0) is uniquely determined by the
endpoint of e that has no incident yellow edges and by the set of vertices in one
of the parts. Since there are at most n! permutation subsets in each part of the
graph, we have the upper bound on the number of graphs in r−1(r0) where u is
the endpoint of e that has no incident edges that have been queried before. The
same is true for the graphs where v happens to be the last-covered endpoint of
e. As r−1(r0) is covered by these two sets, we have our upper bound 2n!.

Lemma 3 yields that at most 2n! elements of G share the same red node in B.
By Lemma 2 we get that |G| = n! · n!. Hence, the number of different red nodes
in B is at least |G|/(2 · n!) = 1

2n!. Therefore, the size of the smallest 1-NBP
computing (2n × 2n)-BPC is at least 1

2n!. Finally, by Lemma 1 we get

1-NBP[(2n × 2n)-BPIS] ≥ 1-NBP[(2n × 2n)-BPC] ≥ n!/2 = 2Ω(n log n).

Hence, the statement of Theorem 3 holds. ��

4 Tight Bound on the Size of 1-NBP for MCSP
with Linear Size Parameter

In this section we construct a 1-NBP computing (2n×2n)-BPIS out of a 1-NBP
computing MCSP. We do it via two transformations. First, from (2n×2n)-BPIS
to MCSP

∗ using a version of Ilango’s reduction [10] for 1-NBPs, it is realized
in Theorem 4. The second from MCSP

∗ to MCSP, it is realized in Theorem 6

Theorem 4. If MCSP
∗ : {0, 1}2n×[2n] → {0, 1} is in 1-NBP[f(n)], then (2n×

2n)-BPIS is in 1-NBP[f(n)].
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The proof of this theorem amounts to checking that Ilango’s reduction from
[10] can be implemented as a 1-NBP transformation.

Let us start with recalling how Ilango’s reduction R : {0, 1}(2n×2n
2 ) →

{0, 1, ∗}26n × [26n] works5. Let G = ([2n] × [2n], E) be an instance of (2n ×
2n)-BPIS. Then the reduction outputs the pair (t, 6n − 1) where t is the truth
table of a partial function γ : {0, 1}2n × {0, 1}2n × {0, 1}2n → {0, 1, ∗} defined as

γ(x1, . . . , x2n, y1, . . . , y2n, z1, . . . , z2n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∨
i∈[2n](yi ∧ zi), if x = 02n

∨
i∈[2n] zi, if x = 12n

∨
i∈[2n](xi ∨ yi), if z = 12n

0, if z = 02n

∨n
i=1 xi if z = 1n0n and y = 02n

∨2n
i=n+1 xi if z = 0n1n and y = 02n

1 if ∃((j, k), (n + j′, n + k′)) ∈ E such that (x, y, z) = (ekek′ , 02n, ejej′ )
∗ otherwise

where x = x1, . . . , x2n, y = y1, . . . , y2n, z = z1, . . . , zn, ei ∈ {0, 1}n is the vector
with 1 in the ith entry and zeroes in all the others, and ei is such that ei+ei = 1n.

We make use of the following result by Ilango [10]:

Theorem 5 ([10]). The reduction R as defined above is such that G ∈ (2n ×
2n)−BPIS iff R(G) ∈ MCSP

∗.

Proof of Theorem 4. Consider a 1-NBP D solving MCSP
∗ on 6n-bit inputs.

Let fx,y,z be a propositional variable encoding the function value in (x, y, z) ∈
({0, 1}2n)3, i.e. a node of D querying the bit of the truth table corresponding
to (x, y, z) is labeled with fx,y,z. Let S be the set of 6n variables encoding the
size threshold. Let W := {we}e∈([2n]×[2n]

2 ) be a family of propositional variables
encoding an instance of (2n×2n)-BPIS (in the same sense: it is simply the names
of the labels in the nodes of an 1-NBP).

Let F0 = {fx,y,z | ∃j, k, j′, k′ ∈ [n] : (x, y, z) = (ekek′ , 02n, ejej′)} be a set of
variables and F1 := S ∪ ({fx,y,z | x, y, z ∈ {0, 1}2n} \ F0) be its complement.
We argue that a 1-NBP computing (2n× 2n)-BPIS can be obtained from D by
relabeling the nodes and edges, and removing some of the nodes. To construct
a 1-NBP computing the composition of MCSP

∗ with R we need to simulate
querying for a variable from F0 ∪ F1 via queries to the variables from W .

1. Observe that R assigns values to the variables from F1 independently of its
argument, So there exists a partial assignment α : F1 → {0, 1, ∗} that agrees
with R on F1.6 Then for each node labeled with x ∈ F1 we reroute all the
edges incoming to this node to the endpoint of the edge labeled with α(x).

5 We ignore all the edges except for ones between the sets [n]× [n] and {n+1, . . . 2n}×
{n + 1, . . . , 2n}, the second argument is represented in binary form.

6 Notice that here * is a value of a variable and does not indicate that a variable is
unassigned.
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2. For each node u labeled with a variable f(ekek′ ,02n,ejej′ ) from F0 we apply a
syntactic substitution

f(ekek′ ,02n,ejej′ ) :=

{
1 if w(j,k),(n+j′,n+k′) = 1
∗ if w(j,k),(n+j′,n+k′) = 0

in the following sense. First, replace the label of the node with
w(j,k),(n+j′,n+k′), then remove the 0-labeled edge going out of u, and, finally,
replace the labels on 1-labeled and ∗-labeled edges with 1 and 0 respectively.

The resulting 1-NBP returns 1 iff R(w) ∈ MCSP
∗ which by Theorem 5 is

equivalent to (2n × 2n)-BPIS. Observe that the resulting 1-NBP is read-once
since the relabeling function f(ekek′ ,02n,ejej′ ) �→ w(j,k),(n+j′,n+k′) is injective. ��

Now we show that MCSP and MCSP
∗ are have equal 1-NBP complexity.

The same argument works for any non-deterministic model that can guess the
extension of the function.

Theorem 6. The size of the minimal 1-NBP computing MCSP equals the size
of the minimal 1-NBP computing MCSP

∗.

Proof. Consider an 1-NBP D computing MCSP : {0, 1}N × {0, 1}n → {0, 1}.
Recall that the first argument encodes a truth table of a function with n-bit input
and the second argument encodes the size threshold between 0 and 2n−1 = N−1.
D returns 1 iff the given function has a circuit of size not exceeding the given
size parameter.

In contrast, MCSP
∗ : {0, 1, ∗}N × {0, 1}n → {0, 1} equals 1 iff there exists

a function f that extends the given partial function (that is, for all the *’s in
the input the value of f in the corresponding point can be arbitrary) and has a
circuit of size not exceeding the given size threshold. It is clear that

MCSP
∗(p, s) =

∨
f∈{0,1}N

f extends p

MCSP(f, s).

We construct a 1-NBP D′ computing MCSP
∗ in the following way: for each

node u of D with successors v0 and v1, such that u queries a variable describing
the function, add to the diagram a guessing node u′. Then add a new ∗-labeled
edge from u to u′, and then add two unlabeled edges from u′ to v0 and v1. The
size of the diagram after this operation does not change, as we do not count
guessing nodes. We claim that D′ constructed that way computes MCSP

∗.
Consider an arbitrary partial function p : {0, 1}n → {0, 1, ∗} and size thresh-

old s ∈ {0, . . . , N − 1}. Suppose there exists a 1-path ρ in D′ that corresponds
to an input (p, s). Let uu′ be a *-labeled edge in ρ. By the construction of D′

we have that u′ is a guessing node and the successors of u′ are exactly the 0-
successor and the 1-successor of u. Then u′ is followed in ρ by a node vi which
is i-successor of u for i ∈ {0, 1}. Let us then replace the edges uu′ and u′vi in ρ
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with the edge uvi. We repeat this process until there are no *-labeled edges in ρ
and denote the resulting path as ρ′. Observe that ρ′ can be viewed as a 1-path
in D as all nodes it contains are from D. Let (f, s) be the input to D that cor-
responds to ρ′. It is easy to see that by our construction of ρ′, f extends p, so
MCSP

∗(p, s) ≥ MCSP(f, s) = D(f, s) = 1. Therefore D′(p, s) ≤ MCSP
∗(p, s).

To prove the opposite inequality, suppose MCSP
∗(p, s) = 1 i.e. there exists f

extending p such that MCSP(f, s) = 1. Consider a 1-path ρ in D corresponding
to f , let us view it as a path in D′. For each node u in ρ that queries a variable x
such that p(x) = ∗ we replace the edge uvf(x) with edges uu′ and u′vf(x), where
v0 and v1 are the 0-successor and the 1-successor of u respectively, and u′ is *-
successor of u. It follows that after the applications of this operation the resulting
1-path ρ′ corresponds to the input (p, s) which implies MCSP

∗(p, s) ≤ D′(p, s)
as needed. ��
Corollary 1. If MCSP on an n-bit function is in 1-NBP[f(n)], then (2n×2n)-
BPIS is in 1-NBP[O(f(n))].

5 Proof of Theorem 1

First, we show a simple upper bound on the size of 1-NBP computing MCSP
∗.

The same upper bound then follows for MCSP, as it is a partial case of MCSP
∗.

Lemma 4. MCSP
∗
s ∈ 1-NBP

[
sO(s) · 2n

]
.

Proof. First observe that

MCSP
∗
s(p) =

∨
C a circuit of size ≤s

∧
x∈{0,1}n

[(p(x) ∈ {0, 1}) =⇒ C(x) = p(x))]

︸ ︷︷ ︸
=:FC(p)

FC(p) checks whether a circuit C computes an extension of a partial function
p. There are sΘ(s) circuits of size at most s: each gate is determined by the
indices of int input (O(log s) bits) and its type (2 bits). Thus there are at most
sO(s) many elements in the outer disjunction. Observe that FC ∈ 1-NBP[2n].
That is so since C is a constant, we query the values of the partial function
one-by-one, and check that all non-star values coincide with the ones computed
by C. For any functions f and g, f ∈ 1-NBP[a] ∧ g ∈ 1-NBP[b] =⇒ f ∨ g ∈
1-NBP[a + b] (simply unite two diagrams, add a guessing node with edges to
their roots and make it a new root). The last implication applied repeatedly to
the outer disjunction in the representation of MCSP

∗
s yields the statement of

the lemma. ��
Now we have all ingredients to prove the Theorem 1:

Theorem 1. Every 1-NBP computing MCSP on the inputs of length N
requires size NΩ(log log(N)). Moreover, the size of the minimal 1-NBP computing
MCSP( f, n − 1)) is NΘ(log log(N)), where f : {0, 1}n → {0, 1}, N = 2n.
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Proof. By Theorem 3 we get that 1-NBP[(2n × 2n)-BPIS] = 2Ω(n log n). By
Theorem 4 we get that the same lower bound holds for MCSP

∗, even if
we fix size parameter to be linear in the length of the input. Hence we get
1-NBP[MCSP

∗
s(n)=n] = 2Ω(n log n). Finally, by Theorem 6 we get that 1-NBP-

complexities of MCSP
∗ and MCSP are the same with respect to multiplicative

constant factor. Therefore, 1-NBP[MCSPs(n)=n] = 2Ω(n log n).

By Lemma 4 we get that MCSP
∗
s(n)=n can be decided by a 1-NBP[nO(n) ·2n]

that, together with the lower bound for N = 2n gives us a tight bound on
1-NBP-complexity of MCSP

∗
s(n)=n and MCSPs(n)=n:

1-NBP[MCSP
∗
s(n)=n] = 1-NBP[MCSPs(n)=n] = 2Θ(n log n) = NΘ(log log N).

��

6 Future Work

Our lower bound is tight for MCSP with a linear size parameter. One of the main
open problems is to improve the lower bound for 1-NBP from superpolynomial
to exponential for MCSP with an exponentially large size-parameter. To obtain
such lower bounds using similar methods, we would need a better reduction
from an ETH-hard problem and an explicit construction of the truth-table of
a function that has higher than linear circuit complexity. Here we reach an
obstacle: the best circuit complexity lower bound for an explicit function is
linear [6]. And, the recent results on hardness magnification in [2] witness that
proving better than linear circuit lower bound may imply a major breakthrough
in structural complexity. For example, a n1+ε circuit lower bound for a sparse
language imply that NP �⊂ SIZE[nk] for all k. Therefore, to obtain a better
lower bounds on read-once nondeterministic branching programs for MCSP, we
would likely have to use much different techniques.

Stronger lower bounds for 1-NBP are known for many explicit Boolean
functions [1]. Though in this work we also show a strongly exponential lower
bound on the size of 1-NBP for explicit function (2n × 2n)-BPC, the same
approach doesn’t work for MCSP directly. The crux of virtually every 1-NBP
lower bound is some form of analysis of a rectangle cover of the 1-preimage of
the function (it is not explicit in Theorem 3, but manifests itself in the recom-
binations of two intersecting paths). Suppose the input variables of a function
are partitioned into two sets X and Y . Then a rectangle is a Cartesian product
of a set of assignments to X and a set of assignments to Y . To analyze the
size of these rectangles one needs to reason about recombination of inputs: if
(x1, y1) and (x2, y2) belong to a rectangle, then (x1, y2) and (x2, y1) must as
well. In our proof of Theorem 3 we argue about the clique sizes of graphs recom-
bined in this way, deriving that the size of rectangles are small enough. But given
MCSPs(x1∪y1) = MCSPs(x2∪y2) = 1 what can we say about MCSPs(x1∪y2)
and MCSPs(x2 ∪y1)? Clearly, the minimal circuit size of such recombined truth
tables can change drastically in either direction, which prohibits explicit combi-
natorial arguments like ours to work in this situation.
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One possibility is to use a similar reduction as in [9], where the authors
show hardness of MCSP against AC0[p]-circuits by constructing a reduction to
MCSP from the coin problem.

Another possible direction is extending our lower bound for 1-NBP to other
computational models.

Observation 7. If for a computational model C the following holds:

1. (2n × 2n)-BPIS is hard for C;
2. Reduction R is efficiently computable in C,

Then MCSP
∗
n cannot be efficiently computed in C. Moreover, if C-complexity of

MCSP
∗
n and MCSPn are polynomially related, which holds for reasonable non-

deterministic models, then we get that MCSPn cannot be efficiently computed
in C.

We also believe that a similar set of reductions can help us prove hardness
of Minimum 1-NBP Size Problem, that is not known to be NP-hard yet.
In this problem we are given a truthtable of a Boolean function f and a size
parameter s, and we need to check, whether there is a 1-NBP of size at most s
deciding f . The NP-hardness of minimization is already known for DNFs [14]
and AC0 [10]. There are weaker results for ordered binary decision diagrams
(OBDDs) [19], which are restricted versions of 1-BPs. Can we extend this result
to show hardness of minimization 1-BP or 1-NBP?
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Abstract. The main conceptual contribution of this paper is investigat-
ing quantum multiparty communication complexity in the setting where
communication is oblivious. This requirement, which to our knowledge
is satisfied by all quantum multiparty protocols in the literature, means
that the communication pattern, and in particular the amount of com-
munication exchanged between each pair of players at each round is
fixed independently of the input before the execution of the protocol. We
show, for a wide class of functions, how to prove strong lower bounds on
their oblivious quantum k-party communication complexity using lower
bounds on their two-party communication complexity. We apply this
technique to prove tight lower bounds for all symmetric functions with
AND gadget, and in particular obtain an optimal Ω(k

√
n) lower bound

on the oblivious quantum k-party communication complexity of the n-
bit Set-Disjointness function. We also show the tightness of these lower
bounds by giving (nearly) matching upper bounds.

Keywords: Quantum complexity theory · Quantum communication
complexity · Multiparty communication

1 Introduction

1.1 Background

Communication Complexity. Communication complexity, first introduced by
Yao in a seminal paper [30] to investigate circuit complexity, has become a cen-
tral concept in theoretical computer science with a wide range of applications
(see [16,22] for examples). In its most basic version, called two-party (classical)
communication complexity, two players, usually called Alice and Bob, exchange
(classical) messages in order to compute a function of their inputs. More pre-
cisely, Alice and Bob are given inputs x1 ∈ {0, 1}n and x2 ∈ {0, 1}n, respectively,
and their goal is to compute a function f : (x1, x2) �→ {0, 1} by communicating
with each other, with as little communication as possible.

There are two important ways of generalizing the classical two-party com-
munication complexity: one is to consider classical multiparty communication
complexity and the other one is to consider quantum two-party communica-
tion complexity. In (classical) multiparty communication complexity, there are k
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A. Castañeda and F. Rodríguez-Henríquez (Eds.): LATIN 2022, LNCS 13568, pp. 641–657, 2022.
https://doi.org/10.1007/978-3-031-20624-5_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20624-5_39&domain=pdf
http://orcid.org/0000-0003-3721-6553
http://orcid.org/0000-0003-2275-8325
https://doi.org/10.1007/978-3-031-20624-5_39


642 F. Le Gall and D. Suruga

players P1, P2, . . ., Pk, each player Pi is given an input xi ∈ {0, 1}n. The play-
ers seek to compute a given function f : (x1, . . . , xk) �→ {0, 1} using as few
(classical) communication as possible.1 The other way of generalizing the classi-
cal two-party communication complexity is quantum two-party communication
complexity, where Alice and Bob are allowed to use quantum communication,
i.e., they can exchange messages consisting of quantum bits. Since its introduc-
tion by Yao [29], the notion of quantum two-party communication complexity
has been the subject of intensive research in the past thirty years, which lead to
several significant achievements, e.g., [4,5,10,11,28,29].

In this paper, we consider both generalizations simultaneously: we consider
quantum multiparty communication complexity for k > 2 parties. This general-
ization has been the subject of several works [6,17,18,27] but, compared to the
two-party case, is still poorly understood.

Set-Disjointness. One of the most studied functions in communication com-
plexity is Set-Disjointness. For any k ≥ 2 and any n ≥ 1, the k-party n-bit
Set-Disjointness function, written DISJn,k, has for input a k-tuple (x1, . . . , xk),
where xi ∈ {0, 1}n for each i ∈ {1, . . . , k}. The output is 1 if there exists an index
j ∈ {1, . . . , n} such that x1[j] = x2[j] = · · · = xk[j] = 1, where xi[j] denotes the
j-th bit of the string xi, and 0 otherwise. The output can thus be written as

DISJn,k(x1, . . . , xk) =
n∨

j=1

(x1[j] ∧ · · · ∧ xk[j]).

Set-Disjointness plays a central role in communication complexity since a
multitude of problems can be analyzed via a reduction from or to this function
(see [9] for a good survey). In the two party classical setting, the communication
complexity of Set-Disjointness is Θ(n): while the upper bound O(n) is trivial,
the proof of the lower bound Ω(n), which holds even in the randomized setting,
is highly non-trivial [15,23]. The k-party Set-Disjointness function with k > 2
has received much attention as well, especially since it has deep applications to
distributed computing [12]. Proving strong lower bounds on multiparty commu-
nication complexity, however, is significantly more challenging than in the two-
party model. After much effort, a tight lower bound for k-party Set-Disjointness
was nevertheless obtained in the classical setting: recent works [2,25] were able
to show a lower bound Ω(kn) for DISJn,k, which is (trivially) tight.

In the quantum setting, Buhrman et al. [5] showed that the two-party quan-
tum communication complexity of the Set-Disjointness function is O(

√
n log n),

which gives a nearly quadratic improvement over the classical case. The log-
arithmic factor was then removed by Aaronson and Ambainis [1], who thus
obtained an O(

√
n) upper bound. A matching lower bound Ω(

√
n) was then

proved by Razborov [24]. For k-party quantum communication complexity, an

1 This way of distributing inputs is called the number-in-hand model. There exists
another model, called the number-on-the-forehead model, which we do not consider
in this paper.
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O(k
√

n log n) upper bound is easy to obtain from the two-party upper bound
from [5].2 An important open problem, which is fundamental to understand the
power of quantum distributed computing, is showing the tightness of this upper
bound. In view of the difficulty in proving the Ω(kn) lower bound in the classical
setting, proving a Ω(k

√
n) lower bound in the quantum setting is expected to

be challenging.

1.2 Our Contributions

Our Model. The main conceptual contribution of this paper is investigating
quantum multiparty communication complexity in the setting where commu-
nication is oblivious. This requirement means that the communication pattern,
and in particular the amount of communication exchanged between each pair of
players at each round is fixed independently of the input before the execution of
the protocol. (See Sect. 2.1 for the formal definition.) This requirement is widely
used in classical networking systems (e.g., [13,19,21]) and classical distributed
algorithms (e.g., [7]), and to our knowledge is satisfied by all known quantum
communication protocols (for any problem) that have been designed so far. It
has also been considered in the quantum setting by Jain et al. [14, Result 3], who
gave an Ω(n/r2) bound on the quantum communication complexity of r-round
k-party oblivious protocols for a promise version of Set-Disjointness.

Our Results. The main result of this paper holds for a class of functions which
has a property that we call k-party-embedding. We say that a k-player function
fk is a k-party-embedding function of a two-party function f2 if the function f2
can be “embedded” in fk by embedding the inputs of f2 in any position among
the inputs of fk. Many important functions such as any k-party symmetric func-
tion (including as important special cases the Set-Disjointness function DISJn,k

and the k-party Inner-Product function) or the k-party equality function have
this property. For a formal definition of the embedding property, we refer to
Definition 2 in Sect. 3. Our main result is as follows.

Theorem 1 (informal). Let fk be a k-party function that is a k-party-
embedding function of a two-party function f2. Then the oblivious k-party quan-
tum communication complexity of fk is at least k times the two-party quantum
communication complexity of f2.

Theorem 1 enables us to prove strong lower bounds on oblivious quantum k-
party communication complexity using the quantum two-party communication
complexity.3 This is useful since two-party quantum communication complexity
2 We will show later (in Theorem 3 in Sect. 5) how to obtain an improved O(k

√
n)

upper bound based on the protocol from [1].
3 Note that in the two-party setting, the notions of oblivious communication com-

plexity and non-oblivious communication complexity essentially coincide, since any
non-oblivious communication protocol can be converted into an oblivious communi-
cation protocol by increasing the complexity by a factor at most two. To see this,
without loss of generality assume that each player sends only one qubit at each
round.
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is a much more investigated topic than k-party quantum communication com-
plexity, and many tight bounds are known in the two-party setting. For example,
we show how to use Theorem 1 to analyze the oblivious quantum k-party com-
munication complexity of DISJn,k and obtain a tight Ω(k

√
n) bound:

Corollary 1. In the oblivious communication model, the k-party quantum com-
munication complexity of DISJn,k is Ω(k

√
n).

More generally, Theorem 1 enables us to derive tight bounds for the oblivious
quantum k-party communication complexity of arbitrary symmetric functions.
Since symmetric functions play an important role in communication complexity
[8,20,24,26,31], our results might thus have broad applications. Additionally,
we also give lower bounds for non-symmetric functions that have the k-party-
embedding property, such as the equality function. Our results are summarized
in Table 1.

To complement our lower bounds, we show tight (up to possible poly-log
factors) upper bounds for these functions. The upper bounds are summarized in
Table 1 as well. Note that if we apply our generic O(k log n · Gn(f)) bound in
Table 1 to DISJn,k, we only get the upper bound O(k log n · √n). We thus prove
directly an optimal O(k

√
n) upper bound (Theorem 3) by showing how to adapt

the optimal two-party protocol from [1] to the k-party setting.

Table 1. Our results for oblivious quantum k-party communication complexity, along
with known bounds for the two-party setting. For a symmetric function f , the notation
Gn(f) refers to the quantity defined in Eq. (1).

Functions 2-party protocols k-party oblivious protocols
Lower Upper Lower Upper

Symmetric functions Ω(Gn(f)) in
[24]

O(logn · Gn(f))
in [24]

Ω(k · Gn(f))
Proposition 3

O(k log n ·
Gn(f))
Theorem 4

Set-Disjointness Ω(
√

n) in [24] O(
√

n) in [1] Ω(k
√

n)
Corollary 1

O(k
√

n)
Theorem 3

Set-Disjointness in
M -round
(M ≤ O(

√
n))

Ω̃(n/M) in [3] O(n/M)
(folklore)

Ω̃(k · n/M)
Proposition 5

O(k · n/M)
Corollary 2

Equality function Ω(1) (trivial) O(1) e.g., [16] Ω(k)
Proposition 4

O(k)
Proposition 6

2 Models of Quantum Communication

Notations: All logarithms are base 2 in this paper. We denote [k] = {1, . . . , k}.
For any set X and k ≥ 1, X k := X × · · · × X︸ ︷︷ ︸

k

.
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Here we formally define the quantum multiparty communication model. As
mentioned in Sect. 1.2, this communication model satisfies the oblivious rout-
ing condition (or simply the oblivious condition), meaning that the number of
qubits used in communication at each round is predetermined (independent of
inputs, private randomness, public randomness and outcome of quantum mea-
surements). Since details of the model are important especially when proving
lower bounds, we explain the model in detail below.

2.1 Quantum Multiparty Communication Model

In k-party quantum communication model, at each round, players are allowed
to send quantum messages4 to all of the players but the number of qubits used
in communication is predetermined. This condition is called oblivious. Therefore
for any k-player M -round protocol Π, we define the functions CPi→Pj

: [M ] →
N∪{0} (i, j ∈ [k]) which represent the number of qubits CPi→Pj

(m) transmitted
at m-th round from i-th player to j-th player.

Procedure: Before the execution of the protocol, all players P1, . . . , Pk share an
entangled state or public randomness if needed. Each player Pi is then given an
input. At each round m ≤ M , every player Pi performs some operations (such
as unitary operations, measurements, coin flipping) onto Pi’s register and send
CPi→P1(m) qubits to the player P1, CPi→P2(m) qubits to the player P2, · · · ,
and CPi→Pk

(m) qubits to the player Pk. All messages from all players are sent
simultaneously. This continues until M -th round is finished. Finally, each player
Pi output the answer based on the contents of Pi’s register.

We define the communication cost of this protocol as

QCC(Π) :=
∑

m∈[M ]

∑

i,j∈[k]
i�=j

CPi→Pj
(m).

2.2 Coordinator Model

Let us also describe the definition of the following coordinator model so that
discussions on the upper bounds in Sect. 5 become simpler.

In k-party coordinator model, there are k-players, each is given an input, and
another player called a coordinator who is not given any input. Each player can
communicate only with the coordinator. Similar to the ordinary communication
model, the number of qubits used in communication is predetermined. Therefore
for any k-player M -round protocol Π in coordinator model, we define the func-
tions CPi→Co : [M ] → N∪{0} and CCo→Pi

: [M ] → N∪{0} for i ≤ k. The value
CPi→Co(m) (resp. CCo→Pi

(m)) represent the number of qubits transmitted at
m-th round from i-th player to the coordinator (resp. the coordinator to i-th
player).

4 Trivially, players can send classical messages using quantum communication in this
communication model.
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Procedure: Before the execution of the protocol, all players P1, . . . , Pk and
the coordinator share an entangled state or public randomness if needed. Each
player Pi is then given input. At each round m ≤ M , each player Pi performs
some operations onto Pi’s register and send CPi→Co(m) qubits to the coordina-
tor. After that, the coordinator, who received CP1→Co(m) + · · · + CPk→Co(m)
qubits, performs some operations (such as unitary operations, measurements,
coin flipping) onto the coordinator’s register and sends back CCo→Pi

(m) qubits
to each player Pi. This continues until the M -th round is finished. Finally, each
player Pi outputs the answer based on the contents of Pi’s register.

We define the communication cost of this protocol as QCCCo(Π) :=
∑

m∈[M ]∑
i∈[k] CPi→Co(m) + CCo→Pi

(m).

2.3 Protocol for Computing a Function

We define a protocol computing a function as follows.

Definition 1. We say a protocol Π computes f : X1 × · · · × Xk → Y with error
ε ∈ [0, 1/2) if

∀i ∈ [k], ∀x = (x1, . . . , xk) ∈ X1 × · · · × Xk, Pr(Πi
out(x) �= f(x)) ≤ ε

where Πi
out(x) denotes Pi’s output of the protocol on input x.

We denote by Pk(f, ε) the set of k-party protocols computing a function f
with error ε in the quantum multiparty communication model. The quantum
communication complexity of function f with error ε in the model is defined as
QCC(f, ε) := minΠ∈Pk(f,ε) QCC(Π).

We also define the bounded round communication complexity of function f
as QCCM (f, ε) := minΠ∈PM

k (f,ε) QCC(Π) where we use the superscript M to
denote the set of M -round protocols PM

k (f, ε). Regarding the coordinator model,
we define Pk(f, ε)Co,QCCCo(f, ε),PM

k (f, ε)Co, and QCCM
Co(f, ε) in similar man-

ners as above.
As is easily seen5, QCC2M (f, ε) ≤ QCCM

Co(f, ε) ≤ 2QCCM (f, ε) holds. This
means the two models asymptotically have the same power even in bounded
round setting.

2.4 Symmetric Functions

A function f : {0, 1}n × {0, 1}n → {0, 1} is symmetric6 if there exists a function
Df : [n]∪ {0} → {0, 1} such that f(x, y) = Df (|x ∩ y|), where x ∩ y is the inter-
section of the two sets x, y ⊆ [n] corresponding to the strings x, y. This means
5 To show QCC2M (f, ε) ≤ QCCM

Co(f, ε), assign P1 the role of the coordinator. To
show QCCM

Co(f, ε) ≤ 2QCCM (f, ε), consider the coordinator only passes messages
without performing any operation.

6 Although a function f : {0, 1}n → {0, 1} is generally said to be symmetric when any
permutation on the input does not change the value of f , in this paper we focus on
functions of the form f : {0, 1}n × {0, 1}n → {0, 1}, and use the same definition for
symmetric functions (predicates) as in [24].
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that the function f depends only on the Hamming weight of (the intersection
of) the inputs. For any symmetric function f : {0, 1}n × {0, 1}n → {0, 1}, let us
write

Gn(f) =
√

nl0(Df ) + l1(Df ), (1)

where

l0(Df ) = max
{
l | 1 ≤ l ≤ n/2 and Df (l) �= Df (l − 1)

}
,

l1(Df ) = max
{
n − l | n/2 ≤ l < n and Df (l) �= Df (l + 1)

}
.

Razborov [24] showed the lower bound Ω(Gn(f)) on the quantum two-party
communication complexity of any symmetric function f , and also obtained a
nearly matching upper bound O(Gn(f) log n). We also note that for any function
Df , this function is constant on the interval [l0(Df ), n−l1(Df )] by the definitions
of l0(Df ) and l1(Df ). In Sect. 5.2, we use this fact to prove a nearly matching
upper bound on the oblivious quantum multiparty communication model.

Analogously, a k-party function f : {0, 1}n·k → {0, 1} is symmetric when
represented as f(x1, . . . , xk) = Df (|x1 ∩ · · · ∩ xk|) using some function Df :
[n] ∪ {0} → {0, 1}. The k-party n-bit Set-Disjointness function DISJn,k defined
in Sect. 1 is a symmetric function. The k-party n-bit (generalized) Inner-Product
function IPn,k, defined for any x1, . . . , xk ∈ {0, 1}n as

IPn,k(x1, . . . , xk) = (x1[1] ∧ · · · ∧ xk[1]) ⊕ · · · ⊕ (x1[n] ∧ · · · ∧ xk[n])

is also symmetric.
On the other hand, the k-party n-bit equality function Equalityn,k, defined

for any x1, . . . , xk ∈ {0, 1}n as

Equalityn,k(x1, . . . , xk) =

{
1 if x1 = x2 = · · · = xk,

0 otherwise,

is not symmetric.

3 Lower Bounds

Here we show Proposition 1, which relates the oblivious communication complex-
ity of a k-party function fk : X k → Y to the oblivious communication complexity
of a two-party function f̃2 : X ×X → Y when fk is a k-party-embedding function
of f̃2 in the following sense.

Definition 2. A function fk : X k → Y is a k-party-embedding function of
f̃2 : X × X → Y if for any i ∈ [k], there is a map x−i : X → X k−1 such that

∀x1, x2 ∈ X f̃2(x1, x2) = fk([x−i(x2), i, x1])

holds, where [y, i, x] := (y1 . . . , yi−1, x, yi, . . . , yk−1) for y = (yi)i≤k−1 ∈ X k−1

and x ∈ X .
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For example, DISJn,k (k ≥ 2) is a k-party-embedding function of DISJn,2 because
we can take X = {0, 1}n, Y = {0, 1} and x−i(x) = (x, 1n, . . . , 1n).

Using this definition, we show the following proposition.

Proposition 1. Let fk : X k → Y be a function and suppose fk is a k-party-
embedding function of f̃2 : X × X → Y. For any protocol Πk ∈ Pk(fk, ε), there
is a two-party protocol Π̃ ∈ P2(f̃2, ε) such that QCC(Π̃) ≤ 2QCC(Πk)

k holds.

Fig. 1. Example of Πk for fk when
k = 3. (Prior entanglement is omitted.)
Assume QCC1(Πk) ≤ QCC(Πk)/k,
i.e., i0 = 1.

Fig. 2. Protocol Π̃ for f̃2 created from
Πk when i0 = 1. Here, the communica-
tion C3 is internally computed by Bob
and the entire communication cost is
QCC(Π̃) = QCC1(Πk).

Proof. Without loss of generality, we assume that at each round only one player
sends a message in the protocol Πk. Let QCCi(Πk) denote the communication
cost of player i, which we define as the sum of the number of qubits exchanged,
either sent or received, by player i. For example, in Fig. 1 showing an example7
of the k-party protocol Πk,

QCC1(Πk) = C1+C2+C4, QCC2(Πk) = C1+C3, QCC3(Πk) = C2+C3+C4.

where Cm denotes the number of qubits sent at the m-th round. This value
satisfies the equation 2QCC(Πk) =

∑
i≤k QCCi(Πk) where the factor of two

7 In Fig. 1, Ui and Uout
i denote classical or quantum operations and ⊗ denotes the

operation of attaching registers. Uout
i usually includes measurement operations to

output fk(x1, x2, x3).
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comes from the fact that for each communication Cm, there are two players,
one sending Cm and one receiving Cm. This equation implies that there is i0 ∈
[k] such that QCCi0(Πk) ≤ 2QCC(Πk)/k (independent of the inputs). (This
is where the oblivious condition is used. If the protocol is not oblivious, the
coordinate i0 usually varies depending on the player’s inputs.)

For i0, by the definition of the k-party-embedding property, there is a
map x−i0 : X → X k−1 such that f̃2(x1, x2) = fk([x−i0(x2), i0, x1]) holds for
any x1, x2 ∈ X . Using the protocol Πk, we then create a two-party proto-
col Π̃ ∈ P2(f̃2, ε) with communication cost QCCi0(Πk). We name the two
players in the protocol Π̃ Alice and Bob. Each is given x1, x2 respectively.
In the protocol Π̃, Alice plays the role of Pi0 and Bob plays the other k − 1
roles of P1, . . . , Pi0−1, Pi0+1, . . . , Pk. Playing these roles, Alice and Bob sim-
ulate the original Πk with the input [x−i0(x2), i0, x1]. The communication
cost of Π̃ is QCCi0(Πk) because the communication between Alice and Bob
is made only when the player Pi0 needs to communicate with others in the
original protocol Πk. The other communications are internally computed by
Bob. (Figure 2 shows the two-party protocol Π̃ created from Πk.) When the
simulation is finished, Alice and Bob can output the answer with error ≤ ε
because for the original protocol Πk for any i ∈ [k], Pr(Πi

out([x−i0(x2), i0, x1]) �=
fk([x−i0(x2), i0, x1]) ≤ ε holds. By the k-party-embedding property, we have
fk([x−i0(x2), i0, x1]) = f̃2(x1, x2) which indicates Π̃ ∈ P2(f̃2, ε) with communi-
cation cost QCCi0(Πk) ≤ 2QCC(Πk)

k . ��
We also show a proposition which considers the bounded round setting.

Proposition 2. Let fk and f̃2 be the same as in Proposition 1. For any pro-
tocol Πk ∈ PM

k (fk, ε), there is a protocol Π̃ ∈ PM
2 (f̃2, ε) such that QCC(Π̃) ≤

QCC(Πk)
k holds.

Proof. In a similar manner as in Proposition 1, we see that there is i0 ∈ [k] such
that QCCi0(Πk) ≤ 2

kQCC(Πk) holds. (Note that in this case, we do not restrict
the number of players communicating at each round.) We create the desired
two-party protocol Π̃ by Alice simulating Pi0 and Bob simulating all the other
players, except for Pi0 . In the protocol Π̃, Alice and Bob need to communicate
only if the player Pi0 need to communicate with other players in the original
protocol Πk. Therefore, the communication cost of the protocol satisfies

QCC(Π̃) =
∑

m∈[M ]

∑

j∈[k]\{i0}
CPi0→Pj

(m) + CPj→Pi0
(m) ≤ 2QCC(Πk)

k
.

We also observe the protocol Π̃ is M -round protocol, completing the proof.

Using Proposition 1, we next show the following theorem.

Theorem 1 (formal version). Let fn,k : {0, 1}n·k → {0, 1} be a k-party-
embedding function of f̃n. Then

∀n, k, QCC(fn,k, ε) ≥ k

2
· QCC(f̃n, ε).
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Proof. Let Πn,k be an optimal protocol for fn,k, i.e., QCC(Πn,k) = QCC(fn,k, ε)
= minΠ∈Pk(fn,k,ε) QCC(Π). By Proposition 1, there is a two-party protocol Π̃ ∈
P2(f̃n, ε) satisfying QCC(Π̃) ≤ 2QCC(Πn,k)

k . This yields

QCC(f̃n, ε) ≤ 2QCC(Πn,k)
k

=
2QCC(fn,k, ε)

k

which means ∀n, k, k
2QCC(f̃n, ε) ≤ QCC(fn,k, ε). ��

We can also prove a similar proposition in the bounded round scenario using
Proposition 2:

Theorem 2. Let fn,k and f̃n be the same as Theorem 1. Then for any n, k,
QCCM (fn,k, ε) ≥ k

2 · QCCM (f̃n, ε) holds.

Proof. Note that in Proposition 2, the new protocol for f̃n preserves the round
of the original protocol Πk ∈ PM

k (fn,k, ε). Therefore in a similar manner as
Theorem 1, we get

∀n, k,
k

2
QCCM (f̃n, ε) ≤ QCCM (fn,k, ε).

��

4 Applications

Here we investigate the lower bounds of some important functions such as Sym-
metric functions, Set-disjointness and Equality.

We first apply Theorem 1 to symmetric functions. Recall that any k-party
symmetric function f can be represented as f(x1, . . . , xk) = Df (|x1 ∩ · · · ∩ xk|)
(each player is given xi(1 ≤ i ≤ k) as input) using some function Df : [n]∪{0} →
{0, 1}.

Proposition 3. QCC(fn,k, 1/3) ∈ Ω
(
k{√

nl0(Dfn,k
) + l1(Dfn,k

)})
holds for

any k-party n-bit symmetric function fn,k.

Proof. For i ∈ [k], define x−i(x) := (x, 1n, . . . , 1n) ∈ {0, 1}n·(k−1). Then we have
that for any i ∈ [k] and any x1, x2 ∈ {0, 1}n, fn,2(x1, x2) = fn,k([x−i(x2), i, x1]).
This implies fn,k is a k-party-embedding function of fn,2. Therefore, Theorem 1
yields QCC(fn,k, 1/3) ∈ Ω(k · QCC(fn,2, 1/3)). Applying the well known lower
bound Ω(

√
nl0(Dfn,2)+ l1(Dfn,2)) of the two-party function fn,2 [24], we obtain

QCC(fn,k, 1/3) ∈ Ω
(
k{

√
nl0(Dfn,k

) + l1(Dfn,k
)}

)
.

This lower bound is so strong that we get the optimal Ω(n · k) bound for Inner-
Product function (as l0(Dfn,k

) = l1(Dfn,k
) = Θ(n) holds) and Ω(k

√
n) lower

bound for Set-disjointness function (as l0(Dfn,k
) = 1 and l1(Dfn,k

) = 0 holds),
which turns out to be optimal in our setting as described in Sect. 5.

Next, we examine the lower bound of Equality function.
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Proposition 4. QCC(Equalityn,k, 1/3) ∈ Ω(k).

Proof. For i ∈ [k], define x−i : {0, 1}n → {0, 1}n·(k−1) as x−i(x) = (x, x, . . . , x)
(i.e., making k − 1 copies of x). Then we have that for any i ∈ [k], any
x1, x2 ∈ {0, 1}n, Equalityn,2(x1, x2) = Equalityn,k([x−i(x2), i, x1]). Therefore
by Theorem 1, the trivial lower bound Ω(1) of two-party n-bit Equality function
yields QCC(Equalityn,k, 1/3) ∈ Ω(k). ��

We also prove a lower bound in bounded round scenario using Theorem 2.

Proposition 5. QCCM (DISJn,k, 1/3) ∈ Ω
(
n · k/(M log8 M)

)
.

Proof. Since the two-party M -round Set-disjointness requires Ω
(
n/(M log8 M)

)

communication [3], we obtain QCCM (DISJn,k, 1/3) ∈ Ω
(
n · k/(M log8 M)

)
.

This is nearly tight as shown in Sect. 5. ��

5 Matching Upper Bounds

In this section, we show the upper bound O(k
√

n) for DISJn,k, the upper bound
O(k log n(

√
nl0(Df ) + l1(Df ))) for symmetric functions and the upper bound

O(k) for Equalityn,k by creating efficient protocols for each function. Without
being noted explicitly, all of our protocols satisfy the oblivious routing condition.
These are (sometimes nearly) matching upper bounds since we have the same
lower bounds in Sect. 4.

5.1 Optimal Protocol for DISJn,k

Here, we adopt the arguments from [1, Section 7], which gives a two-party pro-
tocol for DISJ with O(

√
n)-communication cost, and present the protocol with

O(k · √
n) cost in coordinator model.

Let us first briefly describe the two-party protocol given in [1]. In the two-
party protocol, inputs are represented as (xijk)(i,j,k)∈[n1/3]3 ∈ {0, 1}n to Alice
and (yijk)(i,j,k)∈[n1/3]3 ∈ {0, 1}n to Bob.8 They cooperate and communicate with
each other to perform the following five operations (and their inverse operations)
onto their registers:

Denoting the register for Alice (for Bob) as |ψ〉A (|ψ〉B) and Alice holding
an additional one qubit register |z〉,
– O : |(i, j, k), z〉A|(i, j, k)〉B �→ |(i, j, k), z ⊕ (xijk ∧ yijk)〉A|(i, j, k)〉B

– W : |(i, j, k), z〉A|(i, j, k)〉B �→ (−1)z|(i, j, k), z〉A|(i, j, k)〉B

– SV : For a subset V ⊂ [n1/3]3,

SV : |(i, j, k), z〉A|(i, j, k)〉B �→
⎧
⎨

⎩

(−1)δ0z |(i, j, k), z〉A|(i, j, k)〉B

if (i, j, k) ∈ V
|(i, j, k), z〉A|(i, j, k)〉B otherwise

.

8 If n1/3 is not an integer, inputs are embedded to a larger cube of size �n1/3�3. In
this case, for any coordinate i ∈ �n1/3�3 \ [n], the i-th inputs xi and yi are set to 0.
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– For d = 1, 2, 3,

Zd
plus : |(i, j, k), z〉A|(i, j, k)〉B �→

⎧
⎪⎨

⎪⎩

|(i + 1, j, k), z〉A|(i + 1, j, k)〉B if d = 1,
|(i, j + 1, k), z〉A|(i, j + 1, k)〉B if d = 2,
|(i, j, k + 1), z〉A|(i, j, k + 1)〉B if d = 3.

– Zd
α,β (d = 1, 2, 3; α, β ∈ C s.t. |α|2 + |β|2 = 1)

For specific subsets V1, V2 and V3 (defined in the original paper [1]),

Z1
α,β : |(i, j, k), z〉A|(i, j, k)〉B �→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(α|i〉⊗2
AB + β|i + 1〉⊗2

AB)|z〉A|j, k〉⊗2
AB

if (i, j, k) ∈ V1,

|(i, j, k), z〉A|(i, j, k)〉B otherwise.

Z2
α,β : |(i, j, k), z〉A|(i, j, k)〉B �→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(α|j〉⊗2
AB + β|j + 1〉⊗2

AB)|z〉A|i, k〉⊗2
AB

if (i, j, k) ∈ V2,

|(i, j, k), z〉A|(i, j, k)〉B otherwise.

Z3
α,β : |(i, j, k), z〉A|(i, j, k)〉B �→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(α|k〉⊗2
AB + β|k + 1〉⊗2

AB)|z〉A|i, j〉⊗2
AB

if (i, j, k) ∈ V3,

|(i, j, k), z〉A|(i, j, k)〉B otherwise.

As shown in [1], each operation is achieved by at most two qubits of commu-
nication: O and Zd

α,β requires two qubits of communication and other opera-
tions W,SV and Zd

plus are achieved without any communication. In the two-
party protocol, Alice and Bob use these operations O(

√
n) times to compute

Set-Disjointness. Therefore in total 2O(
√

n) = O(
√

n) communication is suffi-
cient in two-party case.

In the following theorem, we explain how to extend these operations appro-
priately for the quantum multiparty communication model.

Theorem 3. QCC(DISJn,k, 1/3) ∈ O(k
√

n).

Proof. Without loss of generality, we assume that the communication model
is the coordinator model. In our extension, the coordinator plays the role of
Alice and k-players play the role of Bob. For example, the query operation O is
extended to

Ok : |(i, j, l), z〉Co|(i, j, l)〉⊗k
P1···Pk

�→ |(i, j, l), z ⊕ (x1
ijl ∧ · · ·∧xk

ijl)〉Co|(i, j, l)〉⊗k
P1···Pk

.

Note that in this case each player Pi′ who is given an input (xi′
ijk) holds the reg-

ister |i, j, l〉. We now explain how to extend each operation to that of coordinator
model and how many qubits are needed to perform these operations.



Bounds on Oblivious Multiparty Quantum Communication Complexity 653

– Ok : |(i, j, l), z〉Co|(i, j, l)〉⊗k
P1···Pk

�→ |(i, j, l), z ⊕ (∧i′≤kxi′
ijl)〉Co|(i, j, l)〉⊗k

P1···Pk

First, each player Pi′ performs |(i, j, l)〉|0〉 �→ |(i, j, l)〉|xijl〉 using an auxiliary
qubit |0〉. Then they send the encoded qubits |x1

ijl〉 · · · |xk
ijl〉 to the coordinator

who next performs

|(i, j, l), z〉|x1
ijl, . . . , x

k
ijl〉 �→ |(i, j, l), z ⊕ (∧i′≤kxi′

ijl)〉|x1
ijl, . . . , x

k
ijl〉

and return |xi′
ijl〉 to each player Pi′ . Finally, each player clears the register:

|xi′
ijl〉 �→ |0〉. The total communication cost for this operation is 2k qubits.

– Z1
α,β : |(i, j, l), z〉Co|(i, j, l)〉⊗k

P1···Pk
�→ α|(i, j, l), z〉Co|(i, j, l)〉⊗k

P1···Pk
+ β|(i +

1, j, l), z〉Co|(i + 1, j, l)〉⊗k
P1···Pk

iff (i, j, k) ∈ V1.
First, the coordinator creates |0〉⊗k

C �→ α|0〉⊗k
C + β|1〉⊗k

C from auxiliary qubits
|0〉⊗k

C and performs |(i, j, l)〉Co(α|0〉⊗k
C +β|1〉⊗k

C ) �→ α|(i, j, l)〉Co|0〉⊗k
C +β|(i+

1, j, l)〉Co|1〉⊗k
C . Next, the coordinator sends the auxiliary qubits to play-

ers, each player is given the single qubit. On the received qubit Ci′ and
the register Pi′ , each player performs, for a ∈ {0, 1}, |a〉Ci′ |(i, j, l)〉Pi′ �→
|a〉Ci′ |(i + a, j, l)〉Pi′ . They then return the auxiliary qubits to the coordi-
nator who finally performs |(i + 1, j, l)〉Co|1〉⊗k

C �→ |(i + 1, j, l)〉Co|0〉⊗k
C iff

(i, j, k) ∈ V1. The total communication for this operation is 2k qubits. Other
operations Z2

α,β , Z3
α,β are achieved similarly.

– The operations W,S,Zd
plus are done without any communication.

Suppose in the two-party protocol, Alice and Bob finally create the state∑
(i,j,l) αijl|(i, j, l), zijl〉A|(i, j, l)〉B applying the above operations O(

√
n) times.

Then, with the same amount of steps, the coordinator and players can create
the state

∑
(i,j,l) αijl|(i, j, l), zijl〉Co|(i, j, l)〉⊗k

P1···Pk
whose amplitude {αijl} is the

same as of the state in two party protocol. Therefore, the coordinator can output
the same answer as in the two-party protocol which implies that the success
probability in the coordinator protocol is the same as in the two-party protocol.
After the coordinator obtain the answer, he/she finally send it to all players.

Let us consider the communication cost needed to achieve this protocol. In
the coordinator model, there are O(

√
n) steps and each step needs at most 2k

communication. This shows O(k
√

n) upper bound of DISJn,k in the coordinator
model. ��

Using the protocol described in Theorem 3, we can create O(M)-round pro-
tocol for DISJn,k with O(n · k/M) communication cost when M ≤ O(

√
n). The

important fact here is that in the protocol with O(k
√

n) cost, the coordinator
and players interact only for O(

√
n) rounds. To create the desired protocol, let

us now divide the input x ∈ {0, 1}n into n/M2 sub-inputs, each contains M2 ele-
ments. We next apply the above protocol in parallel with the n/M2 sub-inputs
where each of sub-inputs uses O(M) rounds and O(kM) communication. The
new protocol still uses O(M) rounds although the communication cost grows up
to n

M2 O(kM) = O(n · k/M). The success probability is still the same since the
original protocol is a one-sided error protocol.
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Therefore, this protocol has O(M) rounds and the communication cost O(n ·
k/M) which nearly matches the lower bound Ω

(
n · k/(M log8 M)

)
described

in Sect. 4. By converting this M -round coordinator protocol to the ordinary
protocol, we obtain the following corollary:

Corollary 2. QCCM (DISJn,k, 1/3) ∈ O(n · k/M) when M ≤ O(
√

n).

5.2 Symmetric Functions

Theorem 4. For any k-party n-bit symmetric function fn,k,

QCC(fn,k, 1/3) ∈ O
(
k log n{

√
nl0(Dfn,k

) + l1(Dfn,k
)}

)
.

Proof. This proof is a generalization of [24, Section 4] which investigates only
the two-player setting. Without loss of generality, we assume our model of com-
munication to be the coordinator model.

Let us first describe some important facts based on the arguments in [24,26].
For any symmetric function fn,k, the corresponding function Dfn,k

is constant
on the interval [l0(Dfn,k

), n−l1(Dfn,k
)]. Without loss of generality, assume Dfn,k

takes 0 on the interval. (If Dfn,k
takes 1 on the interval, we take the negation of

Dfn,k
.) Defining D0 and D1 : [n] ∪ {0} → {0, 1} as

D0(m) =

{
Dfn,k

(m) if m ≤ l0

0 else
, D1(m) =

{
Dfn,k

(m) if m > n − l1

0 else

(abbreviating l0 := l0(Dfn,k
) and l1 := l1(Dfn,k

)), Dfn,k
= D0∨D1 holds. There-

fore, by defining f0
n,k(x1, . . . , xk) := D0(|x1 ∩ · · · ∩ xk|) and f1

n,k(x1, . . . , xk) :=
D1(|x1∩· · ·∩xk|), we get fn,k = f0

n,k∨f1
n,k. This means, computing f0

n,k and f1
n,k

separately is sufficient to compute the entire function fn,k. As another impor-
tant fact needed for our explanation, we note that the query complexity of f0

n,k

equals to O(
√

nl0(Dfn,k
)) which is proven in [20].

Let us now explain a nearly optimal protocol for symmetric functions. In this
protocol, a coordinator computes fn,k by computing f0

n,kand f1
n,k separately. By

the query complexity O(
√

nl0(Dfn,k
)) of the function f0

n,k, the coordinator can
compute f0

n,k by performing the query |i〉|y〉 �→ |i〉|(xi
1∧· · ·∧xi

k)⊕y〉 (1 ≤ i ≤ n)
for O(

√
nl0(Dfn,k

)) times. We describe then how this query is implemented with
O(k log n) communication. For an |i〉|y〉, the procedure goes as follows.

(Step 1) Coordinator creates k copies of |i〉: |i〉|y〉 �→ |i〉⊗k+1|y〉 (using addi-
tional ancillary qubits to create |i〉⊗k) and sends each of them to k
players.

(Step 2) Each player j (1 ≤ j ≤ k) of the k players performs |i〉|0〉 �→ |i〉|xi
j〉

and sends the coordinator these qubits. Now the coordinator obtains
|i〉⊗k+1|y〉|(xi

1, . . . , x
i
k)〉
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(Step 3) Coordinator performs |y〉|(xi
1, . . . , x

i
k)〉 �→ |(∧j≤kxi

j) ⊕ y〉|(xi
1, . . . , x

i
k)〉

and return each |i〉|xi
j〉 to player j.

(Step 4) Each player j clears the register |i〉|xi
j〉 �→ |i〉|0〉 and returns |i〉. Now

the coordinator’s register is |i〉⊗k+1|(xi
1 ∧ · · · ∧ xi

k) ⊕ y〉.
This is how the query is implemented.

Let us analyze how many qubits of communication is needed for this query.
Step 1 requires k · log n communication since i ∈ [n] is represented by log n
qubits. Step 2 requires k(log n+1) qubits by log n qubits for i and one qubit for
xi

j ∈ {0, 1}. Step 3 requires the same k(log n+1) qubits and Step 4 requires k log n
qubits. Therefore, in total, this query is implemented by O(k log n) qubits of
communication and this protocol requires O(k log n

√
nl0(Dfn,k

)) communication
to compute f0

n,k.
We next explain a protocol to compute f1

n,k which is simpler comparing to
the protocol for f0

n,k. For the coordinator to compute f1
n,k, each player j tells

the coordinator (1) if there are more than
(
n − l1(Dfn,k

)
)

zeros and (2) where
are zeros in the input (xi

j)i≤n when the first answer is YES (if the answer is
NO, the player send an arbitrary bit string). This takes one qubit for the first
question and log

(
Σn

m=n−l0(Dfn,k
)+1

(
n
m

))
= O(l1(Dfn,k

) log n) qubits9 for the
second question. This needs O(kl1(Dfn,k

) log n) communication in total. With
the information from players, the coordinator compute f1

n,k as follows. First, if
there is NO answered in the first question, the coordinator determines f1

n,k = 0. If
every answer of the first question from players is YES, the coordinator calculates
how many zeros are in x1 ∩ · · · ∩ xk ∈ {0, 1}n which in turn gives the value of
|x1 ∩ · · · ∩ xk|. Therefore, the coordinator can compute the value of the function
f1

n,k(x1, . . . , xk) = D1(|x1 ∩ · · · ∩ xk|) even when there is no NO answer from
players.

Combining these two protocols (one is for f0
n,k and the other is for f1

n,k), the
coordinator computes fn,k with O(k log n

√
nl0(Dfn,k

)) + O(kl1(Dfn,k
) log n) =

O(k log n{√
nl0(Dfn,k

) + l1(Dfn,k
)}) communication. Finally, the coordinator

sends the output to all players with the negligible k bits of communication. ��

5.3 Optimal Protocol for Equalityn,k

Applying a public coin protocol with O(1) communication cost for Equalityn,2

(see, e.g., [16]) to the k-party case, we obtain the following proposition.

Proposition 6. QCC(Equalityn,k, 1/3) ∈ O(k).
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9 Here we use the fact that for any n0 ≤ n
2
, log

(
Σn

m=n−n0+1

(
n
m

))
= O(n0 logn).
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Abstract. The Baumslag group had been a candidate for a group with
an extremely difficult word problem until Myasnikov, Ushakov, and Won
succeeded to show that its word problem can be solved in polynomial
time. Their result used the newly developed data structure of power
circuits allowing for a non-elementary compression of integers. Later this
was extended in two directions: Laun showed that the same applies to
generalized Baumslag groups G1,q for q ≥ 2 and we established that the
word problem of the Baumslag group G1,2 can be solved in TC2.

In this work we further improve upon both previous results by showing
that the word problems of all the generalized Baumslag groups G1,q can
be solved in TC1 – even for negative q. Our result is based on using
refined operations on reduced power circuits.

Moreover, we prove that the conjugacy problem in G1,q is strongly
generically in TC1 (meaning that for “most” inputs it is in TC1). Finally,
for every fixed g ∈ G1,q conjugacy to g can be decided in TC1 for all
inputs.

Keywords: Algorithmic group theory · Power circuit · TC1 · Word
problem · Conjugacy problem · Baumslag group · Parallel complexity

1 Introduction

In the early 20th century, Dehn [6] introduced the word problem as one of the
basic algorithmic problems in group theory: given a word over the generators
of a group G, the questions is whether this word represents the identity of G.
Already in the 1950s, Novikov and Boone constructed finitely presented groups
with an undecidable word problem [4,25]. Still, many natural classes of groups
have an (efficiently) decidable word problem – most prominently, the class of
linear groups (groups embeddable into a matrix group over some field): their
word problem is in LOGSPACE [15,27] – in particular, in NC, i.e., decidable
by Boolean circuits of polynomial size and polylogarithmic depth. There are
several other results on word problems of groups in small complexity classes
defined by circuits, for example for solvable linear groups in TC0 (constant depth
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with threshold gates) [13], for Baumslag-Solitar groups in LOGSPACE [29], and
for hyperbolic groups in SAC1 ⊆ NC1 [16]. Nevertheless, there are also finitely
presented groups with decidable, yet arbitrarily hard, word problems [26].

A one-relator group is a group that can be written as a free group modulo
a normal subgroup generated by a single element (relator). A famous algorithm
called the Magnus breakdown procedure [18] shows that one-relator groups have
decidable word problems (see also [17,19]). Its complexity remains an open prob-
lem: while it is not even clear whether the word problems of one-relator groups
are solvable in elementary time, [2] asks for polynomial-time algorithms.

In 1969 Gilbert Baumslag defined the group G1,2 = 〈a, b | bab−1a = a2bab−1〉
as an example of a one-relator group enjoying certain remarkable properties. It is
infinite and non-abelian, but all its finite quotients are cyclic [3]. Moreover, Ger-
sten showed that the Dehn function of G1,2 is non-elementary [9] making G1,2 a
candidate for a group with a very difficult word problem. Indeed, when applying
the Magnus breakdown procedure to an input word of length n, one obtains
as intermediate results words of the form vx1

1 · · · vxm
m where vi ∈ {a, b, bab−1},

xi ∈ Z, and m ≤ n. The issue is that the xi might grow up to τ2(log n) (with
τ2(0) = 1 and τ2(i + 1) = 2τ2(i) for i ≥ 0 – the tower function). However,
Myasnikov, Ushakov and Won succeeded to show that the word problem of G1,2

is, indeed, decidable in polynomial time [23]. Their crucial contribution were
so-called power circuits in [24] for compressing the xi in the above description.

Roughly speaking, a (base-2) power circuit is a directed acyclic graph with
edges labelled by {−1, 0, 1}. One defines an evaluation of a vertex P as two raised
to the power of the (weighted) sum of the successors of P . Hence, the value τ2(n)
can be represented by an n + 1-vertex power circuit – thus, power circuits allow
for a non-elementary compression. The crucial feature for the application to the
Baumslag group is that they not only efficiently support the operations +, −,
and (x, y) �→ x · 2y, but also the test whether x = y or x < y for two integers
represented by power circuits can be done in polynomial time. The main technical
part of the comparison algorithm is to compute a so-called reduced power circuit.

Based on these striking results, Diekert, Laun and Ushakov [7] improved the
running time for the word problem of the Baumslag group from O(n7) down
to O(n3) and described a polynomial-time algorithm for the word problem of
the Higman group H4 [10]. Subsequently, more applications of power circuits to
similar groups emerged: In [14] Laun gave a polynomial-time solution for the
word problem of generalized Baumslag groups G1,q = 〈a, b | bab−1a = aqbab−1〉
for q ≥ 1 and also for generalized Higman groups. In order to do so, he generalized
power circuits to arbitrary bases q ≥ 2 and adapted the corresponding algorithms
from [7,24]. Of particular interest here is the computation of so-called compact
markings, which allow for a unique representation of integers; for arbitrary bases
it is considerably more involved than for base two.

In [8] the conjugacy problem of the Baumslag group is shown to be strongly
generically in P and in [1] the same is done for the conjugacy problem of the
Higman group. Here “generically” roughly means that the algorithm works for
most inputs – for a precise definition, see Sect. 1.1 below. The idea is that often
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the “generic-case behavior” of an algorithm is more relevant than its average-
case or worst-case behavior. We refer to [11,12] where the foundations of this
theory were developed and to [22] for applications in cryptography.

Finally, in [20], we studied the word problem of the Baumslag group G1,2

from the point of view of parallel complexity. We showed that it can be solved in
the circuit class TC2. The proof consists of two main steps: first, to show that for
a power circuit of logarithmic depth a corresponding reduced power circuit can
be computed in TC1 (in contrast to the general case where computing reduced
power circuits is P-complete [20, Theorem C]) and, second, to show that the
Magnus breakdown procedure can be performed in a tree-shape manner leading
to a logarithmic number of rounds with each individual round doable in TC1.

Contribution. In this work we combine the results of [14] and [20] by considering
the parallel complexity of the word problem of generalized Baumslag groups
G1,q = 〈a, b | bab−1a = aqbab−1〉. As a first step, we show how to compute
compact base-q signed-digit representations in AC0 (see Theorem 7). Moreover,
we not only unify [14] and [20] but also prove improved complexity bounds:

Theorem A. For every q ∈ Z with |q| ≥ 2 the word problem of the generalized
Baumslag group G1,q is in TC1.

Note that for the first time we allow q to be negative. We do not consider the case
q = ±1 since then the word problem can be solved even in TC0 using a different
approach; we refer to future work. The main ingredient to the improvement of
the complexity from TC2 (in [20]) to TC1 (here) is that we succeed to perform
all operations directly on reduced base-|q| power circuits. For this we allow oper-
ations in a SIMD (single instruction multiple data) fashion: many operations of
the same type are performed on the same power circuit in parallel in TC0. Fur-
thermore, we improve the algorithm to get power circuits of quasi-linear size –
thus, close to the optimal size as in the sequential algorithms [7,14].

In the last part of our paper, we consider the conjugacy problem for G1,q. We
use our results for the word problem to improve the complexity of the strongly
generic algorithm from [8] by showing:

Theorem B. For every q ∈ Z with |q| ≥ 2 the conjugacy problem of the gener-
alized Baumslag group G1,q is strongly generically in TC1.

Moreover, for every fixed g ∈ G1,q, the problem to decide whether some input
word w is conjugate to g is in TC1.

Note that for the second part of Theorem B not even a polynomial-time algo-
rithm has been described before. It seems to stand in contrast to the conjecture
that the conjugacy problem of G1,2 cannot be solved in elementary time [8,
Corollary 2]. The crucial point is that here g ∈ G1,q is fixed. Due to space
constraints most proofs are omitted; we refer to the full version on arXiv [21].
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1.1 Notation and Preliminaries

The logarithm log is with respect to base two, while logq denotes the base-q
logarithm. Let q ∈ N. Then the base-q tower function τq : N → N is defined
by τq(0) = 1 and τq(i + 1) = qτq(i) for i ≥ 0. It is primitive recursive, but
already τ2(6) written in binary cannot be stored in the memory of any conceiv-
able real-world computer. We denote the support of a function f : X → R by
σ(f) = {x ∈ X | f(x) 
= 0}. Furthermore, the interval of integers {i, . . . , j} ⊆ Z
is denoted by [i .. j]. For q, x ∈ Z, we write q � x if q does not divide x. Moreover,
sgn(x) denotes the sign of x ∈ Z. We write Z[1/q] =

{
m/qk ∈ Q | m, k ∈ Z

}
for

the set of fractions with powers of q as denominators.
Let Σ be a set. The set of words over Σ is denoted by Σ∗ =

⋃
n∈N

Σn. The
length of w ∈ Σ∗ is denoted by |w|. A dag is a directed acyclic graph. For a dag
Γ we write depth(Γ ) for the length (number of edges) of a longest path in Γ .

Complexity. Throughout, we assume that languages L (resp. inputs to functions
f) are encoded over the binary alphabet {0, 1}. A Boolean circuit is a dag where
the vertices are either input gates x1, . . . , xn, or Not, And, or Or gates. There
are one or more designated output gates and there is an order given on the
output gates. All gates may have unbounded fan-in (i.e., there is no bound on
the number of incoming wires). Let k ∈ N. A language L ⊆ {0, 1}∗ belongs to ACk

if there exists a family (Cn)n∈N of Boolean circuits such that x ∈ L ∩ {0, 1}n

if and only if the (unique) output gate of Cn evaluates to 1 when assigning
x = x1 · · · xn to the input gates. Moreover, Cn may contain at most nO(1) gates
and have depth O(logk n). Likewise ACk-computable functions are defined.

The class TCk is defined analogously also allowing Majority gates (which
output 1 if the input contains more 1s than 0s). For more details on circuits
we refer to [28]. The classes TCk are contained in P if we consider uniform
circuits. Roughly speaking, a circuit family is uniform if the n-input circuit can
be computed efficiently from the string 1n. To not overload the presentation, we
state our results only in the non-uniform case. We use two basic building blocks,
iterated addition and sorting, which can be done in TC0.

Example 1. Base-q iterated addition is as follows: on input of n base-q numbers
A1, . . . , An each having n digits, compute

∑n
i=1 Ai (in base-q representation).

For binary numbers this is well-known to be in TC0 (see e.g. [28, Theorem 1.37]).
The standard proof can be translated for other bases.

Generic Case Complexity. A set I ⊆ Σ∗ is called strongly generic if the prob-
ability to find a random string outside I converges exponentially fast to zero –
more precisely, if |Σn \ I|/|Σn| ∈ 2−O(n). Let C be some complexity class. A
problem L ⊆ Σ∗ is called strongly generically in C if there is a strongly generic
set I ⊆ Σ∗ and a (partial) algorithm (or circuit family) A running within the
bounds of C such that A computes the correct answer for every w ∈ I; outside
of I it provides either the correct answer or none (or outputs “unknown”).
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2 Compact Representations

Based on the concept of compact sums and power circuits with base 2 (as intro-
duced in [24]), Laun [14] described so-called power sums: A power sum to base
q ≥ 2 is a sum

∑
i≥0 aiq

i with ai ∈ [−q + 1 .. q − 1] and only finitely many ai

are non-zero. We are interested in compact representations of such power sums.
In [14, Proposition 2.18] it is shown that each power sum has a unique com-
pact representation, which is obtained using a confluent rewriting system. Using
Boolean formulas for this construction we show that it is in AC0. This will be
an important ingredient for our power circuit operations to be in TC0. Observe
that in [20, Theorem 11] we gave a proof for base q = 2. Here, we fix q ≥ 2.

Definition 2. Let A = (a0, . . . , am−1) be a sequence with ai ∈ [−q + 1 .. q − 1].

– We define valq(A) =
∑m−1

i=0 ai · qi.
– We call A a (base-q) signed-digit representation (short sdr) of valq(A).
– We call A compact if the following conditions hold for all i ∈ [0 ..m − 2]:
(1) if |ai| = q − 1, then |ai+1| < q − 1,
(2) if |ai| 
= 0, then ai+1 = 0 or sgn(ai) = sgn(ai+1).

We set ai = 0 for i ≥ m. Note that, if A = (a0, . . . , am−1) is an sdr with ai ∈
[0 .. q − 1], we have a usual base-q representation of an integer. Allowing negative
digits gives more flexibility when working with power circuits – however, with
the price that representations are no longer unique. This uniqueness property
can be regained by requiring the sdr to be compact. Moreover, compact base-q
signed-digit representations (for short base-q csdr) can be compared easily.

Lemma 3 ([14, Proposition 2.18]). For every x ∈ Z there is a unique com-
pact base-q signed-digit representation A = (a0, . . . , am−1) with valq(A) = x.

Moreover, two base-q csdrs A = (a0, . . . , am−1) and B = (b0, . . . , bm−1) can
be compared using the lexicographical order – more precisely, valq(A) < valq(B)
if and only if ai0 < bi0 for i0 = max {i ∈ [0 ..m − 1] | ai 
= bi}.

Lemma 4. If A = (a0, . . . , am−1) is a base-q csdr, then valq(A) ≤
⌊

qm+1

q2−1

⌋
.

This lemma follows by an easy calculation using that in a base-q csdr of maximal
value always digits q − 1 and q − 2 alternate. Next, we construct the base-q csdr
of a given sdr A = (a0, . . . , am−1). We start by restricting A to only non-negative
digits. In a first step we need the following formula for i ≥ 0:

ei =
∨

j∈[1..i]

(
aj =q − 1 ∧ aj−1=q − 1 ∧

∧

k∈[j+1..i−1]

(
(ak =q − 1 ∨ ak+1=q − 1) ∧ ak ≥q − 2

))

Lemma 5. For every sdr A = (a0, . . . , am−1) with ai ∈ [0 .. q − 1] the sequence
B = (b0, . . . , bm) defined by bi = ai − q · ei+1 + ei satisfies: valq(A) = valq(B),
bi ∈ [−1 .. q − 1], bi = −1 implies bi+1 = 0, and bi = q − 1 implies bi+1 < q − 1.
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For the second step – to make a signed-digit representation B = (b0, . . . , bm)
as in Lemma 5 compact – we need the following formula:

fi =
∨

j∈[i..m]

(
bj = −1 ∧

∧

�∈[i−1..j−1]

b� > 0
)

Lemma 6. If B = (b0, . . . , bm) is a sdr satisfying the conditions of the output
of Lemma 5, then C = (c0, . . . , cm) defined by ci = bi − q · fi+1 + fi satisfies
valq(B) = valq(C), ci ∈ [−q + 1 .. q − 1], and C is compact.

Theorem 7. The following is in AC0:
Input: A base-q signed-digit representation A = (a0, . . . , am−1).
Output: A base-q csdr B = (b0, . . . , bm) such that valq(A) = valq(B).

Proof. Observe that there exist signed-digit representations C = (c0, . . . , cm−1)
and D = (d0, . . . , dm−1) such that ci, di ∈ [0 .. q − 1] and such that valq(A) =
valq(C)−valq(D) (we just collect the negative digits of A into D and the positive
ones into C). Now, we compute |valq(C) − valq(D)| in the usual base q repre-
sentation (which is in AC0 – see e.g. [28, Theorem 1.15] for base 2; the general
case follows the same way) and make it compact by first applying Lemma 5 and
then Lemma 6. If valq(C) − valq(D) < 0, we invert this number digit by digit.

3 Power Circuits

The original definition [24] is for power circuits with base 2. Here, following [14],
we define power circuits with respect to an arbitrary base q – hence, from now
on we fix q ≥ 2.

Consider a pair (Γ, δ) where Γ is a set of n vertices and δ is a mapping
δ : Γ ×Γ → [−q + 1 .. q − 1]. Note that (Γ, σ(δ)) is a directed graph. Throughout
we require that (Γ, σ(δ)) is acyclic – i.e., it is a dag. In particular, δ(P, P ) = 0 for
all vertices P . A marking is a mapping M : Γ → [−q + 1 .. q − 1]. Each node P ∈
Γ is associated in a natural way with a marking ΛP : Γ → [−q + 1 .. q − 1], Q �→
δ(P,Q) called its successor marking. We define the evaluation ε(P ) ∈ R>0 of a
node (ε(M) ∈ R of a marking resp.) bottom-up in the dag by induction: nodes
of out-degree zero evaluate to 1 and, in general,

ε(P ) = qε(ΛP ) for a nodeP, ε(M) =
∑

P

M(P )ε(P ) for a marking M.

Definition 8. A (base-q) power circuit is a pair (Γ, δ) with δ : Γ × Γ →
[−q + 1 .. q − 1] such that (Γ, σ(δ)) is a dag and all nodes evaluate to an integer
in qN.

The size of a power circuit is the number of nodes |Γ |. If M is a marking on
Γ and S ⊆ Γ , we write M |S for the restriction of M to S. Let (Γ ′, δ′) be a
power circuit, Γ ⊆ Γ ′, δ = δ′|Γ×Γ , and δ′|Γ×(Γ ′\Γ ) = 0. Then (Γ, δ) itself is a
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power circuit. We call it a sub-power circuit and denote this by (Γ, δ) ≤ (Γ ′, δ′).
If M is a marking on S ⊆ Γ , we extend M to Γ by setting M(P ) = 0 for
P ∈ Γ \ S. With this convention, every marking on Γ also can be seen as a
marking on Γ ′ if (Γ, δ) ≤ (Γ ′, δ′). For a list of markings 	M = (M1, . . . ,Mn) we
define S( 	M) =

∑n
i=1 |σ(Mi)| (and S(M) = |σ(M)| for a single marking).

Example 9. We can represent every integer in the range [−qn+1, qn−1] by some
marking on a base q power circuit with nodes {P0, . . . , Pn−1} with ε(Pi) = qi

for i ∈ [0 .. n − 1]. Thus, we can convert the q-ary notation of an n-digit integer
into a power circuit with n vertices, O(n logq n) edges (each successor marking
requires at most

⌊
logq n

⌋
+ 1 edges) and depth at most log∗

q n – see e.g. Fig. 1.

−2 +1 +2

1 3 9 27 81

+1

+2

+1+1

+1

Fig. 1. Each integer z ∈ [−242 .. 242] can be represented by a marking on the following
power circuit. The marking given in blue is representing the number 187. (Color figure
online)

Definition 10. We call a marking M compact if for all P,Q ∈ σ(M) with
P 
= Q we have ε(P ) 
= ε(Q) and, if |M(P )| = |M(Q)| = q − 1 or sgn(M(P )) 
=
sgn(M(Q)), then |ε(ΛP ) − ε(ΛQ)| ≥ 2. A reduced power circuit of size n is a
power circuit (Γ, δ) with Γ given as a sorted list Γ = (P0, . . . , Pn−1) such that all
successor markings are compact and ε(Pi) < ε(Pj) whenever i < j. In particular,
all nodes have pairwise distinct evaluations.

Note that by [20, Theorem 37] it is crucial that the nodes in Γ are sorted by
their values. Still, sometimes it is convenient to treat Γ as a set – we write P ∈ Γ
or S ⊆ Γ with the obvious meaning.

Also note some slight differences compared to other literature: In [7,14], the
definition of a reduced power circuit also contains a bit-vector indicating which
nodes have successor markings differing by one. Moreover, in [14] the (successor)
markings of a reduced power circuit do not have to be compact.

Definition 11. Let (Γ, δ) be a reduced power circuit with Γ = (P0, . . . , Pn−1).

(i) A chain C of length 
 = |C| in Γ is a sequence (Pi, . . . , Pi+�−1) such that
ε(Pi+j+1) = q · ε(Pi+j) for all j ∈ [0 .. 
 − 2].

(ii) We call a chain C maximal if it cannot be extended in either direction. We
denote the set of all maximal chains by CΓ .

(iii) There is a unique maximal chain C0 containing the node P0 of value 1. We
call C0 the initial maximal chain of Γ and denote it by C0 = C0(Γ ).
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3.1 Operations on Reduced Power Circuits

We continue with fixed q ≥ 2 and assume that all power circuits are with respect
to base q. Following [20, Proposition 14], we can also compare compact mark-
ings on reduced base-q power circuits in AC0. The proof is a straightforward
application of Lemma 3.

Lemma 12. The following problem is in AC0:
Input: A reduced power circuit (Γ, δ) with compact markings L,M .
Question: Is ε(L) ≤ ε(M)?

The next lemma turns out to be quite versatile and of interest on its own.
In particular, it allows to compare a marking on a reduced power circuit in TC0

with some integer given in binary. Moreover, we use it to get rid of the technical
condition μ ≤ ⌊

2|C0(Γ )|+1/3
⌋

of [20, Lemma 20] leading to Lemma 15 below.

Lemma 13. The following problem is in TC0:
Input: A reduced power circuit (Γ, δ) and μ ∈ N given in unary.
Output: A reduced power circuit (Γ ′, δ′) such that |C0(Γ ′)| ≥ μ and

(Γ, δ) ≤ (Γ ′, δ′) (and |Γ ′| ≤ |Γ | + μ).

Proof (Sketch). For a node P with ε(ΛP ) ≤ μ the marking ΛP uses only the first
ν + 1 nodes for ν = �logq μ. There are at most 2ν+1 possibilities which of the
first ν + 1 nodes are missing in Γ . For each of these possibilities we can check in
parallel whether it is the possibility which actually applies. Now, for each missing
value we define a new node P using the compact signed digit-representation of
ε(ΛP ). ��

In [20] we proved that we can reduce a power circuit (Π, δΠ) using TC cir-
cuits of depth O(depth(Π)) (LinDepParaTC0 parametrized by depth(Π)). In this
paper, the non-reduced power circuits are “almost reduced”: Π = (Γ ∪Ξ, δ) with
Γ ∩Ξ = ∅ and (Γ, δΓ ) is a reduced power circuit. If P ∈ Ξ, then ΛP is a compact
marking on Γ . Reducing such a power circuit is possible in TC0. We borrow the
following two lemmas from [20]. While [20] treats only power circuits with base
2, here we allow an arbitrary base q ≥ 2. The proof of the first lemma is actually
verbatim the same for q ≥ 2, for the second one we indicate the small differences.

Lemma 14 (UpdateNodes, [20, Lemma 19]). The following is in TC0:
Input: A power circuit (Γ ∪ Ξ, δ) as above.
Output: A reduced power circuit (Γ ′, δ′) such that for each Q ∈ Ξ there is a

node P ∈ Γ ′ with ε(P ) = ε(Q). In addition, (Γ, δ|Γ×Γ ) ≤ (Γ ′, δ′)
and |Γ ′| ≤ |Γ | + |Ξ| and |CΓ ′ | ≤ |CΓ | + |Ξ|.
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Lemma 15 (ExtendChains, [20, Lemma 20]). The following is in TC0:
Input: A reduced power circuit (Γ, δ) and μ ∈ N given in unary.
Output: A reduced power circuit (Γ ′, δ′) such that for each P ∈ Γ and

each i ∈ [0 .. μ] there is a node Q ∈ Γ ′ with ε(ΛQ) = ε(ΛP ) + i. In
addition, (Γ, δ) ≤ (Γ ′, δ′) and |Γ ′| ≤ |Γ |+|CΓ |·μ and |CΓ ′ | ≤ |CΓ | .

To prove Lemma 15, we use Lemma 13 to prolongate C0 such that the last μ
nodes are not already present in Γ . This replaces Step 1 in the proof of [20,
Lemma 20]. Now we can continue with step 2 of [20, Lemma 20].

Addition is one of the basic operations on power circuits introduced in [24].
Here is our parallel version for addition of arbitrarily many markings on a
reduced power circuit:

Lemma 16 (Addition). The following is possible in TC0:

Input: A reduced power circuit (Γ, δ) with compact markings L
(i)
j on Γ

for i ∈ [1 .. 
], j ∈ [1 .. k].
Output: A reduced power circuit (Γ ′, δ′) such that (Γ, δ) ≤ (Γ ′, δ′) and

compact markings M (i) on Γ ′ with ε(M (i)) = ε(L(i)
1 )+· · ·+ε(L(i)

k )
for i ∈ [1 .. 
] such that |CΓ ′ | ≤ |CΓ | and |Γ ′| ≤ |Γ |+⌈

logq(k)
⌉·|CΓ |,

and
∣
∣σ(M (i))

∣
∣ ≤ ∑k

j=1

∣
∣
∣σ(L(i)

j )
∣
∣
∣ for each i ∈ [1 .. 
].

To obtain the marking M (i) in Lemma 16, we add the markings on the maximal
chains separately and use Theorem 7 to get a compact signed-digit representa-
tion. After applying ExtendChains(�logq(k)) this is well-defined.

To represent also numbers r ∈ Z[1/q] by markings in power circuits, we use
a floating point representation. Observe that for each such r ∈ Z[1/q] \ {0}
there exist unique u, e ∈ Z with q � u such that r = u · qe. The floating point
representation of an integer valued marking can be obtained as follows:

Lemma 17. The following is possible in TC0:

1. MultByPower:

Input: A reduced power circuit (Γ, δ) with compact markings K(i), L(i) on
Γ for i ∈ [1 .. 
] such that ε(K(i)) · qε(L(i)) ∈ Z.

Output: A reduced power circuit (Γ ′, δ′) with compact markings M (i) such
that ε(M (i)) = ε(K(i)) · qε(L(i)) for i ∈ [1 .. 
].

2. MakeFloatingpoint:

Input: A reduced power circuit (Γ, δ) with compact markings K(i) for i ∈
[1 .. 
].

Output: A reduced power circuit (Γ ′, δ′) with compact markings U (i), E(i)

such that ε(K(i)) = ε(U (i)) · qε(E(i)) with ε(U (i)) = 0 or q � ε(U (i))
for i ∈ [1 .. 
].

In both cases we have (Γ, δ) ≤ (Γ ′, δ′) and
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– |Γ ′| ≤ |Γ | + |CΓ | +
∑�

i=1

∣
∣σ(K(i))

∣
∣

– |CΓ ′ | ≤ |CΓ | +
∑�

i=1

∣
∣σ(K(i))

∣
∣

–
∣
∣σ(M (i))

∣
∣ =

∣
∣σ(K(i))

∣
∣ (resp.

∣
∣σ(U (i))

∣
∣ =

∣
∣σ(K(i))

∣
∣) for all i ∈ [1 .. 
].

Notice that the size of Γ ′ and
∣
∣σ(M (i))

∣
∣ does not depend on L(i).

Proof (Sketch). MultByPower: First, for every i and every P ∈ σ(K(i)) we
define a new node R

(i)
P with ε(Λ

R
(i)
P

) = ε(ΛP ) + ε(L(i)) using Addition(2).
So Λ

R
(i)
P

is a compact marking on a reduced power circuit. Thus we can apply
UpdateNodes to reduce the power circuit containing these newly defined nodes
and define the marking M (i) on the resulting power circuit as follows: M (i)(P ) =
K(i)(P ) if there is a node R

(i)
P with ε(R(i)

P ) = P and M (i)(P ) = 0 otherwise.
MakeFloatingpoint: Let σ(K(i)) = {Q1, . . . , Qk}. If k = 0, then ε(K(i)) =

0, so we set ε(U (i)) = ε(E(i)) = 0. Now let k ≥ 1. Because (Γ, δ) is reduced, we
know that ε(Q1) < ε(Qj) for all j ∈ [2 .. k]. Therefore, u = ε(K(i)) · q−ε(ΛQ1 )

is integral but not divisible by q. We set E(i) = ΛQ1 and use MultByPower
with input K(i) and −E(i) to compute a marking U (i) with ε(U (i)) = u. By the
first part of the lemma, we can do this for all i ∈ [1 .. 
] in parallel. ��
Definition 18. Let (Γ, δ) be a reduced power circuit and r ∈ Z[1/q]. We call
R = (U,E) a reduced power circuit representation (red-PC rep.) for r over (Γ, δ)
if U and E are compact markings on Γ with r = ε(U) · qε(E) and ε(U) is either
zero or q � ε(U). We write ε(R) = ε(U) · qε(E) and define S(R) = S(U) (recall
that S(U) = |σ(U)|, i.e., we only count nodes in the support of the mantissa).

Likewise, for m ∈ Z we call a compact marking M on Γ with ε(M) = m
a reduced power circuit representation (red-PC rep.) of m over (Γ, δ). More-
over, for 	R = ((U1, E1), . . . , (U�, E�)) we write S(	R) = S((U1, . . . , U�)) =∑�

i=1 S((Ui, Ei)).

The operations Addition, MultByPower and MakeFloatingpoint are
our main ingredients for the Britton-reduction algorithm in G1,q. The next result
combines these operations to work with floating point numbers (more precisely,
their red-PC rep.s). The proof consists of several applications of Lemma 16 and
Lemma 17.

For an analogous statement for floating point operations on non-reduced
power circuits, see [20, Lemma 28]. Notice that, while [20, Lemma 28] deals only
with a single operation, here we consider an unbounded number of operations of
the same type on the same reduced power circuit. Moreover, the constructions
are all in TC0, while in [20] the depth of the TC circuit depends on the depth of
the input power circuit.

Corollary 19. The following constructions are in TC0:

a) Input: A red-PC rep. 	R =
(
R(i)

)
i∈[1..�]

over (Γ, δ) for r(i) ∈ Z[1/q] and

compact markings M (i) on Γ for i ∈ [1 .. 
].
Output: A red-PC rep. 	S =

(
S(i)

)
i∈[1..�]

for r(i) · qε(M(i)) over a power circuit

(Γ ′, δ′) such that S(S(i)) = S(R(i)).



668 C. Mattes and A. Weiß

b) Input: Red-PC rep.s 	R =
(
R(i)

)
i∈[1..�]

over (Γ, δ) for r(i) ∈ Z[1/q].
Output: A reduced power circuit (Γ ′, δ′) and for each i ∈ [1 .. 
] the answer

whether r(i) ∈ Z and, if yes, a compact marking M (i) such that
ε(M (i)) = r(i) and S(M (i)) = S(R(i)).

c) Input: Red-PC rep.s 	R =
(
R

(i)
j

)
i∈[1..�],j∈[1..k]

over (Γ, δ) for r
(i)
j ∈ Z[1/q].

Output: Red-PC rep.s 	S =
(
S(i)

)
i∈[1..�]

over a power circuit (Γ ′, δ′) for
∑k

j=1 r
(i)
j such that S(S(i)) ≤ ∑k

j=1 S(R(i)
j ).

In all cases we have (Γ, δ) ≤ (Γ ′, δ′). In addition, there is some constant c such
that |CΓ ′ | ≤ |CΓ | + c · S(	R) and |Γ ′| ≤ |Γ | + c · (|CΓ | + S(	R)) in (in cases a) and
b)), and |Γ ′| ≤ |Γ | + (c + logq k) · (|CΓ | + S(	R)) (in case c)).

Modulo in Power Circuits. As usual for a, b ∈ Z, we write a mod b for the unique
x ∈ Z with x ≡ a mod b and x ∈ [0 .. b − 1]. In [8, Theorem 1] it is shown that
to compute a marking for ε(M) mod ε(L) on input of markings M and L on a
power circuit can lead to a non-elementary blow-up. Thus, in general, calculating
modulo is certainly not in TC0. Nevertheless, this changes for a small modulus.

Proposition 20. For every fixed k ≥ 2 the following problem is in TC0:
Input: A reduced power circuit (Γ, δ) and a compact marking M on Γ .
Output: ε(M) mod k.

For the proof of Proposition 20 we decompose k = 
 · r with gcd(
, q) =
gcd(
, r) = 1. We calculate ε(P ) mod r (using comparison in power circuits) and
ε(P ) mod 
 (using induction and qϕ(�) ≡ 1 mod 
, where ϕ is Euler’s totient
function). The proof of the next lemma uses Proposition 20 and applies a similar
decomposition.

Lemma 21. Let r ∈ Z be a constant. The following problem is in TC0:
Input: A reduced power circuit (Γ, δ) with compact markings K,L.
Output: A reduced power circuit (Γ ′, δ′) with a compact marking M such

that ε(M) = ε(L) mod qε(K) · r.

4 The Word Problem of G1,q

First let us fix our notation from group theory. Let G be a group and η : Σ∗ → G
a surjective monoid homomorphism. We treat words over Σ both as words and
as their images under η. We write v =G w with the meaning that η(v) = η(w).
The word problem of G is as follows: given a word w ∈ Σ∗, is w =G 1? For
further background on group theory, we refer to [17].
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The Baumslag-Solitar Group and the Baumslag Group. Let q ∈ Z with |q| ≥
2. The Baumslag-Solitar group is defined by BS1,q = 〈a, t | tat−1 = aq〉. We
have BS1,q

∼= Z[1/q] � Z via the isomorphism a �→ (1, 0) and t �→ (0, 1). The
multiplication in Z[1/q] � Z is defined by (r,m) · (s, n) = (r + qms,m + n). In
the following we use BS1,q and Z[1/q] � Z as synonyms. The Baumslag group
G1,q can be understood as an HNN extension (for a definition see [17] – this is
how the Magnus breakdown procedure works) of the Baumslag-Solitar group:

G1,q = 〈BS1,q, b | bab−1 = t〉 = 〈a, t, b | tat−1 = aq, bab−1 = t〉.
Note that the letter t can be seen as an abbreviation for bab−1; by removing it, we
obtain exactly the presentation 〈a, b | bab−1a = aqbab−1〉. Moreover, BS1,qis a
subgroup of G1,q via the canonical embedding. We have b(k, 0)b−1 = (0, k), so a
conjugation by b “flips” the two components of the semi-direct product if possible
(i.e. if k ∈ Z). Henceforth, we will use the alphabet Σ =

{
1, a, a−1, t, t−1, b, b−1

}

to represent elements of G1,q (the letter 1 represents the group identity).

Britton Reductions. Britton reductions are a standard way to solve the word
problem in HNN extensions. Let Δq = BS1,q ∪ {

b, b−1
}

be an infinite alphabet
(note that Σ ⊆ Δq). A word w ∈ Δ∗

q is called Britton-reduced if it is of the form
w = (s0, n0)β1(s1, n1) · · · β�(s�, n�) with βi ∈ {

b, b−1
}

and (si, ni) ∈ BS1,q for all
i (i.e., w does not have two successive letters from BS1,q) and there is no factor
of the form b(k, 0)b−1 or b−1(0, k)b with k ∈ Z. If w is not Britton-reduced, one
can apply one of the rules (r,m)(s, n) → (r + qms,m + n), b(k, 0)b−1 → (0, k),
or b−1(0, k)b → (k, 0) in order to obtain a shorter word representing the same
group element. The following lemma is well-known (see also [17, Section IV.2]).

Lemma 22 (Britton’s Lemma for G1,q [5]). Let w ∈ Δ∗
q be Britton-reduced.

Then w ∈ BS1,q as a group element if and only if w does not contain any letter
b or b−1. In particular, w =G1,q

1 if and only if w = (0, 0) or w = 1 as a word.

Example 23. Let q ≥ 2 and define words w0 = t and wn+1 = bwn aw−1
n b−1

for n ≥ 0 with wn ∈ Δ∗
q for all n ≥ 0. Then we have |wn| = 2n+2 − 3 but

wn =G1,q
tτq(n). While the length of the word wn is only exponential in n, the

length of its Britton-reduced form is τq(n).

4.1 Conditions for Britton-Reductions in G1,q

The following lemma was already used in [20] to find a maximal suffix of u which
cancels with a prefix of v on input of two Britton-reduced words u and v. The
proof is exactly the same for arbitrary q with |q| ≥ 2, just replace 2 by q.

Lemma 24 ( [20, Lemma 31]). Let w = β1(r,m)β2 xβ−1
2 (s, n)β−1

1 ∈ Δ∗
q with

β1, β2 ∈ {
b, b−1

}
such that β1(r,m)β2 and β−1

2 (s, n)β−1
1 both are Britton-reduced

and β2xβ−1
2 =G1,q

(g, k) ∈ BS1,q (in particular, k = 0 and g ∈ Z, or g = 0).
Then w ∈ BS1,q if and only if the respective condition in the table below is

satisfied. Moreover, if w ∈ BS1,q, then w =G1,q
ŵ according to the last column.
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β1 β2 Condition ŵ

b b r + qm+ks ∈ Z, m + n + k = 0
(
0, r + q−ns

)

b b−1 r + qm(g + s) ∈ Z, m + n = 0 (0, r + qm(g + s))

b−1 b r + qm+ks = 0 (m + n + k, 0)

b−1 b−1 r + qm(g + s) = 0 (m + n, 0)

Note that in the second and third case, the outcome ŵ depends on (g, k). We
consider these cases in Lemma 25 below. Let us fix the following notation for
elements u, v ∈ G1,q written as words over Δq:

u = (rh,mh)βh · · · (r1,m1)β1(r0,m0), v = (s0, n0)β̃1(s1, n1) · · · β̃�(s�, n�) (1)

with (rj ,mj), (sj , nj) ∈ Z[1/q] � Z and βj , β̃j ∈ {
b, b−1

}
. We write |u|β =

|u|b + |u|b−1 = h. Moreover, we define

uv[i, j] = βi+1(ri,mi) · · · β1(r0,m0) (s0, n0)β̃1 · · · (sj , nj)β̃j+1. (2)

Note that, to simplify some notation, here we start with βi+1 while in [20] we
had a similar notation starting with βi. Further notice that as an immediate
consequence of Britton’s Lemma we obtain that, if u and v as in (1) are Britton-
reduced and uv[i, i] ∈ BS1,q for some i, then also uv[j, j] ∈ BS1,q for all j ≤ i.

On input of red-PC rep.s of Britton-reduced words u and v we want to
construct a red-PC rep. for a Britton-reduced word w =G1,q

uv using Corollary
19. Note that in [20], in the third case of Lemma 24, we used the log-operation to
compute the outcome. As this approach does not allow for good bounds on the
size of the power circuits, we use a different approach based on iterated addition
as shown in the next lemma which is proved by a straightforward induction:

Lemma 25. Let u, v ∈ G1,q be Britton-reduced and denoted as in Eq. (1) and
j ≤ ⌊

i
2

⌋
with i + 1 ≤ min

{|u|β , |v|β
}
. Further assume that

uv[i, i] = b(ri, mi)b
−1 · · · b(ri−2j , mi−2j)b

−1yb(si−2j , ni−2j) · · · b(si, ni)b
−1 ∈ BS1,q

with b−1yb = (g, 0) ∈ BS1,q. Then, for κθ =
∑θ

ζ=0 mi−2ζ and hθ = i − (2θ + 1)
we have

uv[i, i] =
(
0, ri + qκj · (g + shj+1) +

j−1∑

θ=0

qκθ · (mhθ
+ nhθ

+ rhθ−1 + shθ+1)
)
.

4.2 The Algorithm for G1,q

Definition 26. Let (Γ, δ) be a reduced base-|q| power circuit and w =
w1 · · · wn ∈ Δ∗

q . A red-PC rep. of w over (Γ, δ) is a list W =
((Bi, Ui, Ei,Mi))i∈[1..n] with Bi ∈ {

b, b−1, $
}

and Ui, Ei,Mi compact markings
on Γ such that for i ∈ [1 .. n]
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– if wi ∈ {
b, b−1

}
, then Bi = wi and Ui, Ei, Mi are the zero marking,

– if wi = (ri,mi) ∈ BS1,q, then Bi = $ and (Ui, Ei) is a red-PC rep. for ri and
Mi a red-PC rep. for mi (as in Definition 18).

We write |W|β = |w|β and S(W) = S((U1, . . . , Un)) + S((M1, . . . ,Mn)) =∑n
i=1(|σ(Ui)| + |σ(Mi)|) and call n the length of W.

Note that we always use power circuits with a positive base – even when q is
negative! In the following, we do not specify the base of the power circuit – it is
always |q|. Recall that we assume |q| ≥ 2.

Be aware that for S(W) we do not count the markings in 	E. In Addition
or MultByPower, the number of new nodes we insert in the worst case only
depends on the number of maximal chains and the markings Mi and Ui, but not
on the markings Ei. Moreover, S(W) does not increase by any of our operations.

Lemma 27. There is a constant c such that the following problem is in TC0:
Input: Red-PC rep.s U (i),V(i) for Britton-reduced words u(i), v(i) ∈ Δ∗

q

over (Γ, δ) for i ∈ [1 .. ν].
Output: Red-PC rep.s W(i) over (Γ ′, δ′) for Britton-reduced words w(i) ∈

Δ∗
q with w(i) =G1,q

u(i)v(i) for i ∈ [1 .. ν] and

–
∑ν

i=1 S(W(i)) ≤ S,
– |CΓ ′ | ≤ |CΓ | + c · S,
– |Γ ′| ≤ |Γ | + c · log(n) · (|CΓ | + S),

where n = max
i∈[1..ν]

∣
∣U (i)

∣
∣
β

+
∣
∣V(i)

∣
∣
β
and S =

∑ν
i=1 S(U (i)) + S(V(i)).

Proof (Sketch). Let us first describe the idea for ν = 1 writing u = u(1), v = v(1).
The outline is similar to [20], but the way we compute the red-PC rep.s differs.
First for each i < min{|u|β , |v|β} we compute a red-PC rep. for gi, ki ∈ Z such
that uv[i−1, i−1] =G1,q

(gi, ki) if uv[i−1, i−1] ∈ BS1,q. This can be done using a
constant number of applications of Lemma 24 (depending on the βj) and at most
one time Lemma 25 (with the maximal j possible). We use these gi, ki to compute
for each i whether the implication uv[i − 1, i − 1] ∈ BS1,q =⇒ uv[i, i] ∈ BS1,q

hold. We only use operations in Corollary 19, Lemma 16 and 17. If q < 0, we have
to take special care: to obtain qκr we compute z = κ mod 2 using Proposition
20 and then either − |q|κ r or |q|κ r (depending on z) using Corollary 19.

Next, let i0 be maximal such that the implication uv[i−1, i−1] ∈ BS1,q =⇒
uv[i, i] ∈ BS1,q holds for all i ∈ [−1 .. i0]. Since uv[−1, −1] = 1 ∈ BS1,q, it follows
that uv[i, i] ∈ BS1,q for all i ≤ i0. Moreover, uv[j, j] /∈ BS1,q for j ≥ i0 + 1.
The red-PC rep. for uv[i0, i0] is computed as above and allows us to output the
Britton reduction for uv.

By Corollary 19, Lemma 16 and 17 we can apply the above process to the
words u(i)v(i) for i ∈ [1 .. ν] independently in parallel. Thus, all the red-PC
rep.s W(i) of the Britton-reduced words w(i) =G1,q

u(i)v(i) are computed using
constantly many TC0 steps. Moreover, S(W(i)) ≤ S(U (i)) + S(V(i)) since each
application of Lemma 24 or Lemma 25 uses different rθ,mθ, sθ, nθ and in the
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sum in Lemma 25 none of them appears twice – if we ignore the exponents
κθ (we do not consider them for S(W(i))). Finally, in each step we add at most
(c + log|q| n) · (|CΓ | + S) new nodes and c · S new chains. This leads to the size
conditions in Lemma 27. ��
Theorem 28. There exists a constant c such that the following is in TC1:

Input: A red-PC rep. W for a word w ∈ Δ∗
q over (Γ, δ) with n = |w|.

Output: A red-PC rep. W ′ for a Britton-reduced word wred ∈ Δ∗
q over

(Γ ′, δ′) such that wred =G1,q
w and |Γ ′| ≤ |Γ | + c ·n · log(n)3 · |Γ |.

Note that the size of the power circuits in Theorem 28 is close to the optimum
O(n) (for |Γ | = 1) for the sequential algorithm in [7] and much better than the
rough polynomial bound in [20]. To prove Theorem 28, we apply Lemma 27
�log(n) many times: We first Britton-reduce all factors of length two, then all
factors of length four and so on. The size conditions in Lemma 27 imply that for
each intermediate result (Γ (k), δ(k)), we have that

∣
∣Γ (k)

∣
∣ ≤ |Γ |+c′·n·log(n)3·|Γ | –

also proving that the inputs of all subsequent stages are of polynomial size and,
thus, the composition is in TC1. By Britton’s Lemma, we obtain the following
consequences, which also comprise Theorem A from the introduction.

Corollary 29.(a) The word problem in G1,q and the subgroup membership
problem for BS1,q in G1,q (given w ∈ Σ∗, decide whether w presents some
element in BS1,q) are in TC1.

(b) The word problem in G1,q and the subgroup membership problem for BS1,q

in G1,q with the input word given as a red-PC rep. are in TC1.

4.3 Conjugacy

Let u ∈ Δ∗
q . A word v ∈ Δ∗

q is called a cyclic permutation of u if we can write
u = xy and v = yx for some x, y ∈ Δ∗

q . A word u ∈ Δ∗
q is called cyclically Britton-

reduced if all its cyclic permutations are Britton reduced. For g, h ∈ G1,q and
A ⊆ G1,q we write g ∼A h if there exists some z ∈ A with g =G1,q

z−1hz.

Corollary 30. The following is in TC1:
Input: Words u, v ∈ Σ∗.
Output: Is u conjugate to some element in BS1,q? If no, is u ∼G1,q

v?

In particular, the conjugacy problem for G1,q is strongly generically in TC1.

Proof (Sketch). By Theorem 28, we can Britton-reduce u and v in TC1. By
[29, Lemma 25] it suffices to apply one cyclic permutation to each u and v
and Britton-reduce them again using Lemma 27, to arrive at cyclically Britton-
reduced words, which we also call u and v. Now, by Collins’ Lemma (see [17,
Theorem IV.2.5]), can be u conjugated into BS1,q if and only if u is a single
letter from BS1,q. Thus, from now on, we assume that u cannot be conjugated
into BS1,q. Now, we follow [8, Theorem 3]. Its proof shows how to apply Collins’
Lemma and distinguishes three cases (note that it is only for G1,2; however, the
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proof for G1,q is a verbatim repetition with 2 replaced by q). In each of the
three cases it highlights a unique α ∈ G1,q such that u ∼〈t〉∪〈a〉 v if and only if
u =G1,q

α−1v′α. Moreover, this α can be easily computed from the red-PC rep.s
for u and v. Then it remains to solve the word problem (Corollary 29). Finally,
by [8, Theorem 4] the set of words u ∈ Δ∗

q representing elements of G1,q \BS1,q

is strongly generic. Hence, the second part of the corollary and the first part of
Theorem B follows. ��
Proposition 31. For every fixed g ∈ G1,q the problem, given a word w ∈ Σ∗,
decide whether g ∼G1,q

w is in TC1.

Proof (Sketch). By Corollary 30, we only need to consider the case that g =
(r,m) ∈ BS1,q. As before, we can assume that g = (s, n) is already cyclically
Britton-reduced. Now, if m 
= 0 and (r,m) 
∼BS1,q

(0,m), by [8, Proposition 5], it
suffices to test for conjugacy in BS1,q. W. l. o. g. m > 0. By [8, Equation (5)], we
have (r,m) ∼BS1,q

(s, n) if and only if m = n and there is some k ∈ [0 ..m − 1]
with r · qk ≡ s mod (qm − 1). Trying all constantly many possibilities for k,
by Proposition 20, this can be checked in TC0. The other case is straightfor-
ward using [8, Proposition 6] – however, the test whether (s, n) ∼G1,q

(0, n) is
quite involved: It follows from [8, Proposition 6] that (s, n) ∼G1,q

(0, n) and
(s, n) ∼G1,q

g can only be the case if n = qkr. Again we may assume n > 0.
By [8, Equation (5)] we have (s, qkr) ∼G1,q

(0, qkr) if and only if there is some
x ∈ [0 .. qkr − 1] with s · qx ≡ 0 mod qqkr − 1. Next we show that x = 0.
After that the last condition can be evaluated using some calculation based on
Lemma 21. This also shows the second part of Theorem B. ��

Conclusion. We have shown the word problem of generalized Baumslag groups
G1,q to be in TC1. The same complexity applies to the conjugacy problem for
elements outside BS1,q or if one element is fixed. TC1 seems to be the best
possible using the current approach of tree-like Britton reductions. We conclude
with some open questions: What is the “actual” complexity of the word problem
of G1,q? Are there any better lower bounds other than that it contains a non-
abelian free subgroup? Can our methods be generalized to the Higman group
H4? This is closely related to the growth of its Dehn function, which, to the best
of our knowledge, is not known to be in τ(O(log n)) like for the Baumslag group.
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Abstract. Let C be any family of pairwise intersecting convex shapes in
a two dimensional Euclidean space. Let τ(C) denote the piercing number
of C, that is, the minimum number of points required such that every
shape in C contains at least one of these points. Define a shape to be
α-fat when the ratio of the radius of the smallest disk that encloses the
shape over the radius of the largest disk that is enclosed in the shape
is at most α. Define α(C) to be the minimum value where each shape
in C is α(C)-fat. We prove that τ(C) ≤ 43.789α(C) + 4 = O(α(C)) for
any set C consisting of pairwise intersecting convex α-fat shapes. This
improves the previous best known upper-bound of O(α(C)2). This result
has a number of implications on other results concerning fat shapes, such
as designing data structures with less complexity for 3-D vertical ray
shooting and computing depth orders. Additionally, our results reduce
the time complexity of the query time of these data structures. We also
get better bounds for some restricted families of shapes. We show that
(5

√
2 + 2)α(C) + 25 + 5

√
2 ≤ 9.072α(C) + 32.072 = O(α(C)) piercing

points are sufficient to pierce a set of arbitrarily oriented α-fat rectangles.
We also prove that τ(C) = 2 when C is a set of pairwise intersecting
homothets of regular hexagons. We show that the piercing number of a
set of pairwise intersecting homothets of an arbitrary convex shape is at
most 15. This improves the previous best upper-bound of 16. We also
give an algorithm to calculate the exact location of the piercing points.

1 Introduction

Let H be a set of convex shapes in d−dimensions such that every subset of d+1
shapes in H has a non-empty intersection. In 1923, Helly [11] proved that the
intersection of all shapes in H is non-empty. This result is known as the Helly’s
theorem. For example, if H is a set of convex shapes in R

2 such that every three
of them have a common intersection, then by Helly’s theorem all shapes in H
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have a common intersection. In the other words, all shapes in H can be pierced
with one point.

Consider the following fundamental geometric problem: What is the mini-
mum number of points that is sufficient to pierce a given set of pairwise inter-
secting shapes in the plane? In the case of homothetic triangles, three points
are sufficient, as was shown by Chakerian et al. (1967) [5]. In the case of disks,
four points are sufficient. The proof of the existence of four piercing points was
independently shown by Danzer (1956, 1986) [6] and Stacho (1981) [23,24]. To
pierce a set of n pairwise intersecting line segments, Ω(n) points are sometimes
required. This huge gap between the number of points required, from a constant
to linear, to pierce different sets of pairwise intersecting shapes gives rise to
many interesting problems. Notice that the linear lower-bound to pierce a set of
pairwise intersecting line segments comes from the fact that line segments are
essentially “thin”. How round or fat an object is plays a vital role in the num-
ber of points needed to pierce the set. The main problem that we study in this
paper is the following: How many points are sufficient to pierce a set of pairwise
intersecting shapes in terms of their fatness parameter?

In the literature, the main approach used by researchers to pierce a set C of
pairwise intersecting α-fat shapes is by constructing a grid whose resolution is
quadratic in the fatness parameter [2,14,18,19]. In this article, we are able to
reduce the number of points to linear with respect to the fatness parameter by
placing points near the perimeter of a shape that has a non-empty intersection
with every other shape in the set. In essence, we show that it is possible to pierce
the set by focusing on the perimeter of an object as opposed to filling an area
with points. The details of our approach are given in Sect. 2.

1.1 Preliminaries

Informally the fatness of a shape is a parameter that tries to capture how close
a shape is to a disk. There are many different definitions and variations of the
fatness of a shape [1,7,15,17,19,20,25]. Most of them share some similarities.
In this paper we use the following measure of fatness. The fatness of a shape c
is the ratio of the radius of the smallest disk that encloses c over the radius of
the largest disk that is enclosed in c. This measure of fatness will be denoted by
α. We say that a shape c is α-fat if its fatness is at most α. A set C of shapes
is referred to as α(C)-fat if α(C) is the smallest value such that ∀ci ∈ C, the
fatness of ci is lesser than or equal to α(C). We note that a set of disks is 1-fat,
since a disk is perfectly fat according to our fatness definition.

The piercing number of a family of sets F is the smallest integer k for which
it is possible to partition F into subfamilies F1, . . . ,Fk such that the sets in each
Fi have a non-empty intersection for every i such that 1 ≤ i ≤ k [8]. We say
that a set of points P pierces a set of shapes C if every shape in C contains at
least one point of P .

A shape B is a homothet of a shape A if B can be obtained by scaling
and translating the shape A. Two geometric figures are homothetic if one is a
homothet of the other. If every pair of shapes in a set C is homothetic we call
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the set C homothets. In this paper we only consider positive homotheties. A set
of shapes C is unit if all the shapes in C have the same area.

1.2 Our Contributions

In this paper we prove the following results in 2-dimensions:

– Any set C of pairwise intersecting arbitrary convex shapes with fatness α(C)
can be pierced with less than or equal to 43.789α(C) + 4 ∈ O(α(C)) points.

– Any set C of pairwise intersecting rectangles of arbitrary orientation with
fatness α(C), can be pierced by (5

√
2+2)α(C)+25+5

√
2 ∈ O(α(C)) points.

– Any set of pairwise intersecting convex homothets can be pierced by 15 points.
– A set of pairwise intersecting homothets of regular hexagons can be pierced

by 2 points.

Known results for piercing sets of pairwise intersecting convex sets.

Family of convex shapes Known results Our results

Homothetic Triangles 3 Points [5]

Homothetic Rectangles 1 Point [folklore]

Homothetic regular Hexagons Not known 2 Points, Theorem 4

Disks 4 Points [6,21,23,24]

Centrally symmetric 7 Points [9]

Unit Shapes 3 Points [12]

Convex Homothets 16 [16] 15 Points, Theorem 3

α-fat Rectangles O(α2) [2,14,18,19] ≤ 9.072α + 32.072, Theorem 2

α-fat Convex shapes O(α2) [2,14,18,19] ≤ 43.789α + 4, Theorem 1

1.3 Previous Results

Overmars et al. (1994) [19] proved that for a set of disjoint convex α-fat objects
and a restricted range query (with diameter h× p where h is a constant and p is
the radius of the minimal enclosing hyper-sphere among the objects in the set)
in d-dimensions, O((αddh)d) points are enough to pierce all the shapes. They use
a grid of points inside and around the range query to pierce such a set. Agarwal
et al. (1995) [2], Katz (1996) [14] and Nielsen (2000) [18] among other results
proved that O(α2) points can pierce a set of pairwise intersecting α-fat shapes
in 2-dimension. The definitions of fatness that they use are similar. The unifying
theme among these proofs is to cover the area around and inside the smallest
shape with a grid of Θ(α2) piercing points. To find the piercing points Nielsen
(2000) [18] uses Fredman’s sampling technique [14]. Agarwal et al. (1995) [2],
Katz (1996) [14] use a similar gridding technique.
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Let F be a family of pairwise intersecting and centrally symmetric convex
homothets. Grünbaum (1959) [9] showed that τ(F )1 ≤ 7. He transforms all
the shapes from Euclidean space into Minkowski space. The reason behind this
transformation is that any centrally symmetric shape in Euclidean space can be
treated as a disk in Minkowski space. This transformation maintains the pairwise
intersecting property of the set. The fact that 4 points pierces a set of pairwise
intersecting disks applies [6,21,23,24]. Grünbaum (1959) [9] also showed that
τ(F ) = 3 when F is a family of pairwise intersecting and centrally symmetric
convex unit-shapes. He conjectured that τ(F ) = 3 for any family of pairwise
intersecting convex unit-shapes. This conjecture was proved by Karasev (2000)
[12]. Karasev (2001) [13] subsequently showed an upper-bound of d + 1 on the
number of points sufficient to pierce a family of d-wise intersecting homothets of a
simplex in R

d. He also gave an upper-bound for a family F of d-wise intersecting
spheres which is the following: τ(F ) ≤ 3(d + 1) when d ≥ 5 and τ(F ) ≤ 4(d + 1)
when d ≤ 4.

In case of pairwise intersecting disks, Danzer (1956, 1986) [6] and Stacho
(1981) [23,24] were the first to give a proof of the existence of 4 piercing points.
However, both of their proofs are essentially non-constructive. Har-Peled et al.
[10] were the first to present a deterministic and constructive algorithm. They
find 5 piercing points, in O(n) expected time, that pierces a set of n pairwise
intersecting disks. Biniaz, Bose and Wang [3] gave a linear algorithm that finds 5
piercing points given a set of pairwise intersecting disks that does not use an LP-
type framework unlike Har-Peled’s algorithm. Carmi, Katz and Morin [21] gave
a linear time algorithm to compute 4 piercing points which also uses LP-type
machinery.

2 General Convex Shapes

2.1 Piercing a Set of Fat Shapes

In this section we prove the following theorem which is our main result.

Theorem 1. Any set C of pairwise intersecting arbitrary convex shapes on a
plane with fatness α(C) can be pierced with (12 + 6

√
2 + 2

15
4

√
3)α(C) + 4 ≤

43.789α(C) ∈ O(α(C)) points.

Proof (Proof of Theorem 1).
Let S = {S0, S1, . . . , Sn−1} be a set of pairwise intersecting convex shapes

with fatness at most α. For all i, let αi be the fatness of Si. Let o be the smallest
disk that has a non empty intersection with every shape in the set S. Let δ be
the radius of o. Define sq1 to be an axis-parallel square that is concentric with o.
Let the side length of sq1 be 2cδ for a constant c. And let sq2 be an axis-parallel

1 Let τ(C) denote the piercing number of C, that is, the minimum number of points
required such that every shape in C contains at least one of these points.
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a′ a

b
b′

p∗
δ

√
2cδ

cδ

cδ − δ

Fig. 1. outer case

δ
c · δ

c1 · δ
o

sq1
sq2

L1

L2

L3

Fig. 2. Initial setup and information
required for the proof

square concentric with o with side length 2c1δ for a constant c1 (c1 > c). We
specify the exact values of c and c1 at the end of the proof (Fig. 2).

If all the shapes in S have a common intersection we can pierce the whole set
with one point and as a result o will have radius zero. Otherwise, o is tangent
to at least three shapes, say S1, S2, S3. Let L1, L2, L3 be the three tangent
lines to o where S1, S2, S3 intersect o. Notice that no two tangent line can
be parallel, otherwise, either the intersection of every shape in S is non-empty
or it contradicts the fact that two corresponding shapes intersect. Moreover,
L1, L2, L3 form a triangle, otherwise it contradicts with the minimality of o (See
Fig. 2).

We partition the set S into two groups, Sgp1 and Sgp2. A shape Si ∈ S will
be in Sgp1 if the center of the largest enclosed disk in Si or at least one of the
largest enclosed disks in Si (in case Si has multiple largest enclosed disks) is
located completely outside of sq1. Otherwise, Si will be in Sgp2.
Piercing Sgp1: By the definition of o, every shape in Sgp1 intersects o. Every
shape Si in Sgp1 is convex, intersects o and has at least one of the largest disk(s)
enclosed in Si centered outside of sq1. These three facts plus the fact that sq1
encloses o implies that Si intersects a continuous portion of the boundary of sq1.
We now show how to place a set of points on the boundary of sq1 to pierce all
the shapes in Sgp1. Let Si be an arbitrary shape in Sgp1. Let p∗ be an arbitrary
point in the intersection of Si and the boundary of o. Let o′ be the largest disk
enclosed in Si and centered outside of sq1(in the case of multiple disks satisfying
these conditions, pick an arbitrary one). Without loss of generality, assume that
Si intersects the right vertical side of sq1. Let ab be the diameter of o′ parallel to
the y-axis. Since Si is convex, there exists a triangle p∗ab that is contained in Si.
Let the boundary of the triangle p∗ab cross the boundary of sq1 at points a′ and
b′. Now the minimum possible length of the segment a′b′ gives us the required
resolution of points to put on the boundary of sq1 to pierce Sgp1. Recall that αi

is the fatness of Si. The smallest disk that encloses Si has a radius greater than
or equal to |p∗b|

2 since the segment p∗b is in Si and any disk with diameter less
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than |p∗b| cannot have a segment of length |p∗b| in it. Thus, αi ≥
|p∗b|

2
|ab|
2

= |p∗b|
|ab| .

Moreover, since the two triangles p∗ab and p∗a′b′ are similar we get following
equation: |a′b′|

|p∗b′| = |ab|
|p∗b| =⇒ |a′b′| = |ab|·|p∗b′|

|p∗b| =⇒ |a′b′| ≥ |p∗b′|
αi

. Furthermore,

note that (c− 1)δ ≤ |p∗b′| ≤ 2
√

2cδ and α(S) ≥ αi. (“Therefore, |a′b′| is at least
(c−1)δ
α(S) . See Fig. 1”).

Exceptional Case: The only exceptional case in this scenario is when a′ is not
located on the same side of sq1 as b′. Considering the fact that the disk o′ is
centered outside of sq1, the convexity of Si implies that Si contains a corner of
sq1. To pierce such shapes we put points on the 4 corners of sq1.

The perimeter of sq1 is 8cδ, therefore the number of points placed on the
perimeter of sq1 to pierce all the shapes in Sgp1 is 4 + 8cδ

(c−1)δ
α(S)

= 4 + 8c
c−1α(S)

Piercing Sgp2: Let Si be an arbitrary shape in Sgp2. Let L
′
i be a line through

the center of circle o and parallel to Li for i ∈ {1, 2, 3}. We call a point p proper
with respect to Li, i ∈ [1, 3] if it is located inside sq2, and p is located on the
same side of Li and L

′
i but p is closer to L

′
i.

Lemma 1. Any point inside sq2 is proper with respect to some Li, i ∈ [1, 3].

Proof. Let Hi, i ∈ [1, 3] be the halfspace that is tangent to L
′
i and does not

contain Li. Since H1,H2,H3 intersect at a point and the union of the angle
that they cover is 2π (otherwise it contradicts with the fact L1, L2, L3 form a
triangle). Using the result of Bose et al. [4] we have that the ∪Hi, for i ∈ [1, 3]
covers the entire plane. Thus, they cover any point in sq1 as well. 	

The number of points sufficient to pierce the set

Without loss of generality, assume that the center of at least one of the largest
disks enclosed in Si is a proper point with respect to L1. Such a disk exists, since,
at least one of the largest disks enclosed in Si is centered in sq1.

(“We analyze two cases, namely when Si ∩ L1 ∩ sq2 �= ∅ and when Si ∩ L1 ∩
sq2 = ∅. See Fig. 3 and 4”)

Case 1. Si has an intersection with L1 inside sq2.
Let p∗ be an arbitrary point in the intersection of L1 and Si interior to sq2. Let
o′ be a largest disk enclosed in Si centered inside sq1. Let ab be the diameter of
o′ parallel to L1. Since the center of o′ is proper point with respect to L1, the
triangle p∗ab intersects L

′
1 at two points a′ and b′. Recall that αi is the fatness

of Si, the smallest disk that encloses Si has a radius greater than or equal
to |p∗b|

2 , since the segment p∗b is in Si and any disk with diameter less than

|p∗b| cannot have a chord of length |p∗b|. Thus, αi ≥
|p∗b|

2
|ab|
2

= |p∗b|
|ab| . Moreover,

since the triangles p∗ab and p∗a′b′ are similar we get the following equation:
|a′b′|
|p∗b′| = |ab|

|p∗b| =⇒ |a′b′| = |ab|.|p∗b′|
|p∗b| =⇒ |a′b′| ≥ |p∗b′|

αi
. By definition and the

relation between L1 and L
′
1, δ ≤ |p∗b′| ≤ 2

√
2cδ and α(S) ≥ αi. Therefore,

|a′b′| ≥ δ
α(S) .
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The length of L
′
1∩sq2 is at most 2

√
2c1δ, which is the diameter of sq2. Hence,

we place 2
√
2c1δ
δ

α(S)
= 2

√
2c1α(S) points on L

′
1. So, in total 6

√
2c1α(S) points on

L
′
1, L

′
2, L

′
3 are sufficient to pierce shapes in this case.

Case 2. Si only intersects L1 outside of sq2.
As a result Si intersects with the boundary of sq2. Let p∗ be a point in the
intersection of Si and the boundary of sq2. Without loss of generality, assume
that p∗ is located on the right side of sq2. Let o′ be a largest disk enclosed
in Si centered inside sq1. Let ab be the diameter of o′ parallel to the y-axis.
Recall that αi is the fatness of Si. The smallest disk that encloses Si has a
radius greater than or equal to |p∗b|

2 . By an identical argument as in Case 1,
we have |a′b′| = |ab|.|p∗b′|

|p∗b| =⇒ |a′b′| ≥ |p∗b′|
αi

. By definition of sq1, sq2 and

P ∗a′b′; (c1 − c)δ ≤ |p∗b′| ≤ 2
√

2c1δ and α(S) ≥ αi. Therefore, the minimum
length of |a′b′| is (c1−c)δ

α(S) . The perimeter of sq1 is 8cδ, therefore the number
of points required to put on the perimeter of sq1 is 8cδ

(c1−c)δ

α(S)

= 8c
c1−cα(S).

Let m = max( c
c1−c , c

c−1 ). The number of points sufficient to pierce the set S

using the placements described above is 4 + (8m + 6
√

2c1)α(S). The minimum
value is roughly 43.789 when we set c = 1.6866 and c1 = 2.3732. 	


L1

L2

L3

L
′
1

p∗

a b

a′ b′

o′

Fig. 3. A convex shape with the largest
enclosed disk centered in sq1 and inter-
secting L1 inside sq2

L1

L2

L3

p∗

a

b

a′

b′

o′

Fig. 4. A convex shape with the largest
enclosed disk centered in sq1 and inter-
secting L1 only outside of sq2

2.2 Implications

Our result has a number of implications on other research problems concerning
sets of fat objects, such as computing depth orders, 3-D vertical ray shooting,
2-D point enclosure, range searching, and arc shooting for convex fat objects.
The following are some Corollaries where the asymptotic complexity is improved
from O(α2) to O(α) using our results:
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1. Piercing a set of pairwise intersecting c-oriented convex poly-
gons [18]

Corollary 1. The piercing number τ(β) when β is a set of pairwise intersecting
c-oriented α-fat polygons is O(α).

2. Computing depth order for fat objects [2]

Corollary 2. The time complexity of 2-dimensional linear-extension problem is
of O(αnλ

1/2
s (n) log4 n).

3. 3-D vertical ray shooting and 2-D point enclosure, range searching,
and arc shooting amidst convex fat objects [14]

Corollary 3. For a given query point p, the object of C lying immediately below
p (if such an object exists) can be found in O(α log4 n) time.

Corollary 4. For a given query point p, the k objects of C containing p can be
reported in O(α log3 n + k log2 n) time.

2.3 Piercing Fat Rectangles

In this section we demonstrate how to pierce a set C of pairwise intersecting
rectangles of arbitrary orientation with fatness α(C). This theorem is a general-
ization of pairwise intersecting line segments in terms of fatness.

Theorem 2. Any set C of pairwise intersecting rectangles of arbitrary ori-
entation of fatness α(C) can be pierced with (5

√
2 + 2)α(C) + 25 + 5

√
2 ≤

9.072α(C) + 32.072 = O(α(C)) points.

Lemma 2. The maximum area of a square that does not have any lattice point
in it is less than 2. A lattice point is a point with integer coordinates.

Proof (Proof of Theorem 2). Let R = {r0, r1, ..., rn−1} be a set of pairwise inter-
secting rectangles. Denote a rectangle r of width w and height h as (w, h). We
assume that the longer side of an arbitrary oriented rectangle is the height of
the rectangle (h ≥ w). Without loss of generality, Let r1 = (w1, h1) be the rect-
angle with the minimum width among all rectangles in the set R. Without loss
of generality, assume that r1 is axis parallel.

Structure of the grid points: Let ri = (wi, hi) be an arbitrary rectangle in R, let
p∗ be one of the intersection points of the boundary of r1 with ri. By definition
of r1 we have the following two inequalities: wi ≥ w1 and hi ≥ w1. For every
ri ∈ R there exists a square si located inside ri of side length w1 such that, si

contains the point p∗. Suppose that such a square does not exist. It implies that
any square of side length w1 that contains p∗ intersects with the boundary of ri.
Thus, either wi < w1 or hi < w1, both of which contradicts with the minimality
of w1.
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Let G be a grid of points whose resolution is 1. Let G′ be a grid of points
whose resolution is w1√

2
. By Lemma 2 we see that any square of side length at

least w1 must contain at least one point of G′ (To see the argument simply scale
down the squares and G′ by factor of w1√

2
). By definition, every si intersects r1,

and, the distance from any point in any si, i ∈ [0, n − 1] to the boundary of r1
is at most

√
2w1(in the worst case the point can be on the opposite side of the

diameter of a square). Therefore, we cover an axis-parallel rectangle centered
with r1, whose distance to r1 is at most

√
2w1, with a grid of points. See Fig. 5

for illustration. That rectangle has width w1 + 2
√

2w1 and height h1 + 2
√

2w1.
Therefore, The number of the grid points (w1+2

√
2w1

w1√
2

+ 1) × (h1+2
√
2w1

w1√
2

+ 1) =

(
√

2 + 5) × (
√

2 h1
w1

+ 5) ≤ (5
√

2 + 2)α(C) + 25 + 5
√

2. Therefore, the sufficient
number of points on the grid to pierce the set C is (5

√
2 + 2)α(C) + 25 + 5

√
2

that is less than or equal to 9.072α(C) + 32.072. 	


Fig. 5. How an arbitrary rectangle in R gets pierced by a point on the grid.

3 Refined Results for Specific Shapes

In this section we study the number of points sufficient to pierce more specific
sets of shapes. First we study sets of pairwise intersecting homothets and design
an algorithm that computes the exact location of the points that pierce the set.
Next, we show that 2 points are sometimes necessary and always sufficient to
pierce a set of pairwise intersecting homothets of a regular hexagon.

3.1 Homothets of a Convex Shape

In this subsection, we show how one can pierce any set of pairwise intersecting
homothetic shapes with a constant number of points. More precisely, we give an
upper-bound of 15 piercing points. Kim et al. [16] proved that 16 points are suffi-
cient to pierce any set of pairwise intersecting homothetic convex shapes. Kim’s
proof [16][Lemmas 4,13] requires the existence of two homothetic parallelotopes
pA and PA such that pA ⊆ A ⊆ PA where A is a convex shape. In this paper,
our parallelotopes of choice are the pair of rectangles provided by Schwarzkopf
et al.’s [22] Algorithm. This pair of rectangles satisfies the required conditions
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for Kim’s [16] proof. Let S be a set of pairwise intersecting homothetic shapes.
We prove that 15 points are enough by eliminating one of the 16 points. Finally,
given a set S of n k-gons, we give an algorithm of complexity O(n + log2 k) to
find the exact location of 16 piercing points and O(n log k + log2 k) to find 15
piercing points.

Let S = {S0, S1, . . . , Sn−1} be a set of pairwise intersecting homothetic con-
vex shapes in the plane. We transform every shape Si ∈ S into a pair of homoth-
etic orthogonal rectangles (ri, Ri), with each pair satisfying the following three
conditions: First, ri is enclosed in Si, and, Ri encloses Si. Second, the side length
of ri is at least half of the side length of Ri. Third, the vertices of ri are located
on the boundary of Si.

For a shape Si, define Ci to be a cross-shaped polygon with edges parallel
to the edges of ri, with ri ⊆ Si ⊆ Ci ⊆ Ri. Let Vi be the vertices of Ci which
include the vertices of ri (Fig. 6).

ri

Ri
Si

Ciri
Si

Fig. 6. ri and Ci are enclosed in Si and Ri

The existence of such a pair of enclosed and enclosing rectangles for any
convex shape was shown by Schwarzkopf et al. [22]. They designed an algorithm
to compute such a pair for a convex polygon in time O(log2 k) when the k vertices
of the polygon are given in an array and sorted in a lexicographic order.

Let S∗ be the smallest shape homothetic to the shapes in S that intersects
every shape in S. Assume that ∩n−1

i=0 Si = ∅. Minimality of S∗ implies that there
exist at least 3 shapes in S, say S1, S2, S3, that are tangent to S∗ at points
x1, x2, x3. Let L1, L2, L3 be the tangent lines to S∗ at x1, x2, x3. These three
lines form a triangle. For simplicity we assume that S∗ is an element of S.

Theorem 3. Any set of pairwise intersecting convex homothets can be pierced
by 15 points.

Before proving this theorem, we prove a few helper lemmas. According to Kim
et al. [16] the 16 piercing points form a grid (see Fig. 7). We label the points from
1 to 16 starting at the top left point. We show that a corner point can be removed
from this set of piercing points. Let (r∗, R∗) be the corresponding rectangles to S∗.
According to Kim et al. [16] points {6, 7, 10, 11} are vertices of r∗.

Every shape in S contains at least one of these 16 piercing points. If there is no
shape in the set S that contains only one corner piercing point (points 1, 4, 13, 16)
we can simply remove one of the corner points and reduce the piercing number
to 15. Otherwise, without loss of generality, let S4(resp. S5, S6, S7) ∈ S be a
shape that only contains the point 13 (resp. 1, 4, 16).
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Fig. 7. Dividing the space into different regions and the area that the intersection of
S4 and S6 cannot be.

Let Hk,+
i,j (resp. Hk,−

i,j ) be a halfspace defined by the line that goes through
the piercing points i, j and, contains the piercing point k (resp. does not contain
the point k).

Let Region1 (resp. Region2, Region3, Region4) be the area defined as H4,+
5,7 ∪

H4,+
7,15 (resp. H4,+

7,15∪H13,+
10,12, H13,+

2,10 ∪H13,+
10,12, H4,+

5,7 ∪H13,+
2,10 ). Let Region1

1 be H4,−
1,5 ∩

H13,−
1,2 . Let Region2

1 be H4,−
15,16∩H13,−

12,16. Let Region3
1 be Region1∩(H4,+

1,5 ∩H4,+
15,16)

and Region3
2 be Region2 ∩ (H13,+

1,2 ∩ H13,+
12,16).

Lemma 3. S4 ∩ S6 �⊆ Region1
1 ∪ Region2

1.

Proof. Let p ∈ S4 ∩ S6. Suppose, for the sake of a contradiction, p ∈ Region2
1.

Let p′ ∈ S4 ∩ S∗ and let p′′ ∈ S6 ∩ S∗.

– Suppose that p is not located in Region2
1 ∩ H4,+

3,8 .
In this case the triangle formed by 4, p′′ and p will contain point 8, which is
a contradiction to the definition of S6.

– Suppose that p is not located in Region2
1 ∩ H13,+

9,14 .
Similarly, in this case the triangle formed by 13, p′ and p will contain point
14, which is a contradiction to the definition of S4.

Since H4,+
3,8 and H13,+

9,14 have an empty intersection, it implies that the point p

cannot be in Region2
1. The same argument holds for Region1

1. Thus, S4 and S6

cannot intersect in Region1
1 either.

	

Lemma 4. S4 ∩ Region3

1 = ∅.
Proof. Let p be a point on the boundary of Region3

1 ∩ S4. Let S
′
4 be a shape

homothetic to S4 with the following conditions:

1. S
′
4 has the same size as S∗.
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2. S
′
4 has p on its boundary.

3. S
′
4 is contained in S4.

Let C
′
4 be the cross shaped polygon corresponding to S

′
4. Let (r

′
4, R

′
4) be the

pair of enclosed and enclosing rectangle corresponding to S
′
4. Let v be the top

right vertex of r
′
4. By the definition of S

′
4, v cannot be inside of the rectangle

defined by piercing points 9, 10, 13, 14. Otherwise, it contradicts C
′
4 having an

intersection with the boundary of Region3
1.

– (“If v is below point 13 then the triangle defined by point 13, p and v contains
the piercing point 14. See Fig. 8”).

– If v is to the left of point 13 then the triangle defined by point 13, p and v
contains the piercing point 9.

– If v is to the right and above the piercing point 13, then since the resolution
of the piercing points and resolution of the vertices that define r

′
4 (size of

r
′
4) are equal it implies that r

′
4 as well as S4 contains another piercing point

beside point 13. See Fig. 8.

	


Fig. 8. S4 does not have an intersection with Region3
1

A similar argument holds for S6 ∩ Region3
2. Lemmas 3 and 4 imply that

S4 ∩ S6 is located in the rectangle formed by piercing points 6, 7, 10, 11.

Lemma 5. S4 ∩ Region1 has an empty intersection.

Proof. Let p be a point from the intersection of the boundary of Region1 and
S4. Notice that Region1 = Region3

1 ∪ (H4,+
11,15 ∩H4,−

15,16)∪ (H4,−
1,5 ∩H4,+

5,6 ). Suppose
that S4 intersects Region1. We analyze the following three cases:

1. p ∈ Region3
1: According to Lemma 3, p cannot be in Region3

1
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2. p ∈ H4,+
11,15 ∩ H4,−

15,16: Let p′ be a point from the intersection of S4 and S6.
S4 ∩ S6 is located in the rectangle formed by vertices 6, 7, 10, 11. This means
that p′ is to the right of point 14. And it implies that the triangle formed by
points 13, p and p′ contains point 14 which is a contradiction to the definition
of S4.

3. p ∈ H4,−
1,5 ∩H4,+

5,6 : Let p′ be a point from the intersection of S4 and S6. S4 ∩S6

is located in the rectangle formed by vertices 6, 7, 10, 11. This means that p′

is above point 9. And it implies that the triangle formed by points 13, p and
p′ contains point 9 which is a contradiction to the definition of S4.

Thus, S4 has an empty intersection with Region1. 	

For a region Reg, let Reg be the complement of the region Reg. More pre-

cisely, Reg = {x|x /∈ Reg,∀x ∈ R
2}.

Notice that S1, S2, S3 are tangent to S∗. Also, S4 intersects with S1, S2, S3

and S∗. These two facts imply that S4 intersects with L1, L2 and L3. Moreover,
Lemma 5 implies that the intersection of S4 with each L1, L2, L3 should be
located in Region1. By symmetry S5 (resp. S6, S7) intersects with L1, L2, L3.
This intersection is located in Region2 (resp. Region3, Region4).

Lemma 6. Each Regioni, i ∈ [1, 4] has a non-empty intersection with at least
one of L1, L2, L3.

Proof. Notice that the bottom-left vertex of r∗ is in Region1 and the triangle
defined by the intersection of L1, L2, L3 encloses r∗. Suppose that Region1 has
empty intersection with all L1, L2, L3. This implies that the triangle defined
by the intersection of L1, L2, L3 does not enclose r∗, which is a contradiction.
Similarly this argument can be applied for Region2, Region3 and Region4. 	

Lemma 7. At least two of the regions in {Regioni, i ∈ [1, 4]} do not have an
intersection with all three of L1, L2, L3.

Proof. Observe that each Li, i ∈ [1, 3] can intersect with at most three regions
of {Regioni|i ∈ [1, 4]}. Thus, we have at most 9 pairs of (Li, Regionj) when Li

intersects with Regionj for i ∈ [1, 3], j ∈ [1, 4]. According to Lemma 6 and the
Pigeonhole theorem at least two of the regions in {Regioni|i ∈ [1, 4]} do not
intersect with all three of L1, L2, L3. 	

Proof (Proof of Theorem 3). Lemma 7 implies that the regions corresponding
to at least two of the shapes S4, S5, S6, S7 do not intersect with all three of
L1, L2, L3. This contradicts the fact that the shapes in the set S are pairwise
intersecting. Thus, at least one piercing point can be removed from our piercing
point set. 	

Algorithm to find the exact location of the piercing points: First, we find the
smallest shape, S1, of the set in O(n). Next we apply the Schwarzkopf et al.’s [22]
algorithm on S1 to compute the vertices of r1 = (w1, h1) in O(log2 k) time. This
allows us to compute the 16 points outlined in Kim’s [16] proof in a constant
time. Thus the time complexity of finding 16 piercing points is O(n + log2 k).
Next, we can determine in O(n log k) time which of the 4 corner points can be
removed. Thus, we can find 15 piercing points in O(n log k + log2 k) time.
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3.2 Hexagons

In this subsection we determine the piercing number of a set of pairwise inter-
secting homothets of a regular hexagon. We show that two points are always
sufficient and sometimes necessary to pierce such a set. For a hexagon s with
an edge parallel to the x-axis, we refer to its edges by Bottom, BottomRight,
TopRight, Top, TopLeft, BottomLeft edges. We denote the Bottom edge of s by
sB . Respectively we refer to BottomRight, TopRight, Top, TopLeft, BottomLeft
edges of s by sBR, sTR, sT , sTL, sBL.

Theorem 4. Any set of pairwise intersecting homothets of a regular hexagon
can be pierced by two points.

Proof (Proof of Theorem 4). Let C = {C0, C1, . . . Cn−1} be a set of pairwise
intersecting homothets of a regular hexagon. Without loss of generality, assume
that the bottom edge of every hexagon in C is parallel with the x-axis. Let
TL = {CTL

i |∀Ci ∈ C}, and TR = {CTR
i |∀Ci ∈ C}, and BE = {CB

i |∀Ci ∈ C}.
Each element of these sets is a line segment. Segments of each set are associated
with the same side of hexagons in C. ∀CTL

i ∈ TL let TL+
i be the halfspace

defined by CTL
i that does not contain the corresponding hexagon to CTL

i . Let
TL+ = {TL+

0 , TL+
1 . . . , TL+

n−1}. ∀CTR
i ∈ TR let TR+

i be the halfspace defined
by CTR

i that does not contain the corresponding hexagon to CTR
i . Let TR+ =

{TR+
0 , TR+

1 . . . , TR+
n−1}. Let tl∗ be the halfspace in TL+ that contains all other

halfspaces in TL+. Such a halfspace exists since all of the halfspaces in TL+ are
parallel. Let tr∗ be the halfspace in TR+ that contains all other halfspaces in
TR+. Such a halfspace exists since all of the halfspaces in TR+ are parallel.

Let tl be the corresponding segment in TL to tl∗. Let tr be the corresponding
segment in TR to tr∗. Let be be the top most segment in BE.

Define L1 the line that is parallel to and goes through tl. Similarly, define
R1 to be the line that is parallel to and goes through tr, and B1 to be the line
that is parallel to and goes through be.

Assume that L1, R1, B1 do not intersect at a point p. Otherwise, the two
piercing points will be on top of each other at p, thus, p pierces the whole set.
Observe that, the intersection points of L1, R1, B1 form a equilateral triangle
Th = ABD. Let point B be the intersection point of lines L1 and R1. Let point
D be the intersection point of lines L1 and B1 and let point A be the intersection
point of lines B1 and R1. This triangle can have one of the two following possible
shapes.

Case 1. In the first case, the point B is located above the segment AD. There-
fore, the left top side of any hexagon in C is to the left of L1. Similarly, the
right top side of any hexagon in C is to the right of R1 and any bottom side
of any hexagon in the set is below B1.

Case 2. In the second case, the point B is located below the segment AD.
Therefore, the bottom right side of any hexagon in C is to the right of L1

since, each pair of hexagons have to intersect. The top side of any hexagon
in C is above B1 and, the bottom left side of any hexagon is to the left of
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R1, otherwise it contradicts the fact that each pair of hexagons intersects.
Observe that this case is symmetric to the first case. Therefore, giving the
proof for the first case is sufficient.

Proof for the case 1: Let ML, MR and MB be the mid points corresponding to
sides AB,BD and AD of the triangle Th = ABD. We prove that every hexagon
in C contains either MB or B.

Take an arbitrary hexagon s from C. If s contains MB then we are done.
Suppose that s does not contain the point MB . The point MB can be either to
the right of sBR or to the left of sBL and both cases are symmetric. Without loss
of generality, assume that the point MB is to right of the sBR. By the definition
of R1 the top right edge of any hexagon in C is to the right of R1. Similarly, the
bottom edge of any hexagon in C is to the bottom of B1. This implies that the
right bottom side of s should cross the lines B1 and R1. Let i1 be the intersection
point of sBR and B1, and i2 be the intersection point of sBR and R1.

The point i1 is to the left of MB and i2 is to the left of MR. Observe that
the triangle i1i2D is similar to MBMRD and |Di2| > |DMB |. Therefore, the
segment i1i2 is greater than MRMB. Moreover, the side length of s is greater
than or equal to the length of the segment i1i2, and it is greater than MBMR

(|sB | = |sBR| ≥ |i1i2| > |MRMB | = |MRB| = |MBA|). Considering the facts
that the side length of s is greater than |MRMB |, and sTR is parallel to R1 and
to the right of R1. Thus, by convexity of s, sTR crosses L1, and similarly sB

crosses L1. Thus s contains the segment AB and in particular the point B.
	


4 Conclusion

In this paper we showed that pairwise intersecting convex shapes of fatness α
with arbitrary orientation can be pierced by a linear number of points with
respect to the fatness parameter of the shapes in the set. The main idea to
achieve our results is to avoid covering an area with a grid of high resolution but
rather focusing on the perimeter of a specific shape. By using this idea we reduce
the number of points sufficient to pierce any pairwise intersecting convex α-fat
shapes from O(α2) to O(α). Our theorem is an improvement over Fredman’s
sampling algorithm to find piercing points.

Moreover, for a set of pairwise intersecting homothets we showed that the
piercing number is at most 15 points. The piercing number of a set of pairwise
intersecting set of homothets of regular hexagons is 2 which is tight. We leave
as an open problem to improve our upper bounds.
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Abstract. Given a set of n points in the plane, we present two con-
structions of geometric r-spanners with r ≥ 1 based on a hierarchical
decomposition. These graphs have O(n) edges and diameter O(log n).
We then design online routing algorithms on these graphs.

The first construction is based on Θk-graphs (with k > 6 and k ≡ 2
mod 4). The routing algorithm is memoryless and local (i.e. it uses infor-
mation about the closed neighborhood of the current vertex and the des-
tination). It has routing ratio 1/(1 − 2 sin(π/k)) and finds a path with
O(log2 n) edges.

The second construction uses a TD-Delaunay triangulation, which is
a Delaunay triangulation where the empty regions are homothets of an
equilateral triangle. The associated routing algorithm is local and mem-
oryless, has a routing ratio of 5/

√
3, finds a path consisting of O(log2 n)

edges and requires the pre-computation of vertex labels of O(log2 n) bits
(assuming the nodes are placed on a grid of polynomial size).

We have examples that show when using either of our routing algo-
rithms, in the worst case, the paths returned by the algorithm can consist
of Ω(log2 n) edges.

1 Introduction

We focus on two fundamental problems in networking: network design and online
routing in these networks. These two problems go hand in hand; we build our
network and then design efficient online algorithms to route in these networks.
We focus on geometric networks, which are graphs whose vertices are points
in the plane and whose edges are line segments connecting these points. The
edges are weighted by the Euclidean distance between their endpoints. Geomet-
ric spanners have been studied extensively [2,19,26] since their introduction by
Chew [13]. In this paper, we are particularly interested in geometric spanners
with low hop-diameter. The literature is vast and many constructions of such
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spanners exist [1–4,12,17,24,25]. However, most are probabilistic constructions
with no online routing algorithm (such as in [3,4,17]). In some cases, the proof of
the spanning ratio is constructive but does not lend itself to a local routing algo-
rithm since knowledge of the whole graph is required or paths are computed by
working inward from both the source and destination vertices. For the construc-
tions that do have online routing algorithms (such as in [1,12]), the networks
store routing tables at the vertices and the routing algorithms require Θ(log n)
bits of overhead memory, where n is the size of the network. In contrast, both
our constructions are deterministic and our main contribution is the design of
online routing algorithms that only need to know the destination and do not use
any additional memory overhead (i.e. they are memoryless).

We present two constructions of geometric r-spanners with r ≥ 1 that have
low diameter on which we design simple efficient local routing algorithms that
return r-spanning paths consisting of O(log2 n) edges. The key obstacle in design-
ing local routing algorithms is that the routing algorithm does not have the whole
graph at its disposal. When the whole graph is available, then standard shortest
path algorithms, such as Dijkstra’s algorithm [16], can be used to efficiently find
short paths. In the online setting, the routing algorithm must simultaneously
explore the graph while trying to find a short path to the destination, which is
the challenge. Our routing algorithms are deterministic, memoryless and local.
A routing algorithm is considered memoryless and local if the only information
available to the algorithm, prior to deciding which edge to follow out of its cur-
rent vertex, consists only of the information stored at the current vertex (which
is typically the closed neighborhood of the vertex) and the label of the desti-
nation vertex. So, for example, even simple graph exploration algorithms such
as Depth-First Search cannot be executed in a memoryless manner. In fact, a
deterministic, memoryless, local routing algorithm will not know if it has visited
a vertex multiple times which means that these algorithms are prone to cycling.
As such, additional properties of the graph must be used to route successfully.

In order to achieve a low diameter, our spanners are built in a hierarchical
manner where the hierarchy has logarithmic height. It is the hierarchy that
provides a low diameter to these graphs. However, the difficulty for memoryless
routing in such spanners is that locally it is unclear when one should go up
or down the hierarchy to find a short path with few edges. We summarize our
results below.

We first present a hierarchical construction using Θk-graphs at each level
(with k > 6 and k ≡ 2 mod 4) [14,21,22]. The routing algorithm is memo-
ryless, and local (i.e. the local information consists of its current position, the
positions of its neighbors and the position of the destination). It has routing
ratio1 1/(1 − 2 sin(π/k)) and finds a path with O(log2 n) edges. We also show
that their exist configurations such that the path obtained with our routing
algorithm has Ω(log2 n) edges.

1 The routing ratio of a routing algorithm is the spanning ratio of the path returned
by the algorithm.
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The second hierarchical construction uses a TD-Delaunay triangulation at
each level, which is a Delaunay triangulation where the empty regions are homo-
thets of an equilateral triangle. The advantage here is that each level consists of
a planar graph, which is the main graph class used for guaranteed delivery of
packets in wireless networks [11,20]. The associated routing algorithm is memo-
ryless, local, has a routing ratio of 5/

√
3, and finds a path consisting of O(log2 n)

edges. The local information in addition to storing the information about the
closed neighborhood of the current vertex also requires the pre-computation of
vertex labels of O(log2 n) bits (assuming the nodes are placed on a grid of poly-
nomial size). We show when using either of our routing algorithms, in the worst
case, the paths returned by the algorithm can consist of Ω(log2 n) edges.

2 Preliminaries

The graph theoretic terminology we use is standard [15]. The terminology of
spanners we use is from Narasimhan and Smid [26]. We focus on geometric
graphs which are weighted graphs whose vertices are points in the plane and
whose edges are segments weighted by the Euclidean distance between their
endpoints. We use V (G) and E(G) to denote the vertex set and edge set of a
graph G. Given an edge uv ∈ E(G), we use |uv| to denote its length. A geometric
graph G is an r-spanner if for all u, v ∈ V (G), there exists a path Π from u to v
such that the sum of the weights of the edges of Π is at most r|uv|. The path Π
is called an r-spanning path (or simply spanning path when r is understood from
the context) from u to v. The smallest value of r for which G is an r-spanner is
its spanning ratio. A D-independent set in a graph G is an independent set of
vertices whose maximum degree is D.

The class of Θk-graphs play an important role in both our constructions [14,
22]. A Θk-graph is constructed in the following way: the plane around each
vertex u is partitioned into k cones with apex u and cone angle θ = 2π/k.
The k cones around u are labeled in clockwise order as Cu

0 , . . . , Cu
k−1 with all

index manipulation modulo k (see Fig. 1a). Each cone Cu
i is defined by two lines

Lu
i , Lu

i+1 through u. In each cone, u is joined to the point, v, whose projection
on the bisector of the cone is closest to u. The canonical triangle Δuv between
u and v is the triangle defined by the two rays of u’s cone containing v and the
line through v perpendicular to the cone bisector. Without loss of generality, we
assume that no point lies on a cone boundary. Note that Δuv is empty if and
only if there is an edge from u to v. Although a Θk-graph is naturally directed,
we focus on the underlying undirected graph. We assume that our points are
vertices of a polynomial size grid with O(log n) bit coordinates.

When k ≡ 2 mod 4, we define the half-Θk-graph. The construction is vir-
tually identical to the Θk-graph except that for each point u, edges are only
computed in the even cones, which we call positive cones. The cones with odd
index are called negative cones. Bonichon et al. [5] showed that the half-Θ6

graph is identical to the TD-Delaunay graph. For the half-Θ6-graph, we relabel
the cones as in Fig. 1b. Note that if v is in a negative cone of u, then u is in a
positive cone of v.
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Fig. 1. (a): The cones around u for Θ10. u has an edge to v as the triangle Δuv is
empty (b): The relabeled cones in the case of the half-Θ6 graph: each cone Ci has an
”opposite” cone Ci

3 The Hierarchical Construction

In this section, we present our hierarchical construction. Our hierarchy is similar
to the hierarchy defined by Arya et al. [4]. Their hierarchy is also based on
Θk-graphs but they use a randomized Skip-List-like strategy to build the levels
of their hierarchy [29]. To make our hierarchy deterministic, we use an idea
similar to Kirkpatrick’s point location structure [23] by repeatedly removing
large independent sets of bounded degree, which has been used in the context
of geometric spanners before by Hoedemakers [18].

Before describing our hierarchy, we prove a simple property about sparse
graphs. A graph G is κ-sparse if |E(G)| ≤ κn where n = |V (G)|. We assume
throughout that all our graphs are connected.

Lemma 1. There are at least n(d + 1 − 2κ)/d vertices of degree at most d for
d ≥ 2κ in an n-vertex κ-sparse graph G.

Proof. Let Vd be the set of vertices of degree at most d in G. We note that∑
v∈V (G) deg(v) = 2|E(G)| ≤ 2κn. Since

∑
v∈V (G) deg(v) ≥ |Vd|+(n−|Vd|)(d+

1), the result follows. ��
Lemma 2. There is an independent set of size at least n(d+1− 2κ)/(d(d+1))
of vertices of degree at most d for d ≥ 2κ in an n-vertex κ-sparse graph G.

Proof. Follows immediately from Lemma 1. ��

Hierarchy Construction: Let P be a set of n points in the plane. Let A
be a function that computes a κ-sparse geometric graph given P as input. A
hierarchy of graphs built from the graph G = A(P ) is a finite sequence of graphs
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G0 = G,G1 = (V1 ⊂ V (G), E1), ..., Gh = (Vh ⊂ Vh−1, Eh). We call G the
foundation on which the hierarchy is built. Each Gi = A(Vi) is called a layer,
with i being the level of Gi within the hierarchy. Gh is a single vertex and h is
the height of the hierarchy. A Hierarchical graph is the union of this sequence
of κ-sparse graphs into one graph H = (V0,∪h

i=0Ei). For each point p ∈ V0, we
define 	(p), the level of p, to be the largest i such that p ∈ Vi. We call a hierarchy
compact, if |Vi\Vi+1| ≥ c|Vi| for a fixed constant c independent of n. This implies
that compact hierarchies have height O(log n). We now show how to construct
a compact hierarchy H from a κ-sparse graph that has |E(H)| = O(n).

Lemma 3. A κ-sparse graph G admits a compact hierarchical graph H.

Proof. Let c = 1/(2κ + 1)2. By Lemma 2, we have that each Gi contains
a 2κ-independent set of size at least c|V (Gi)|. By repeatedly removing these
independent sets from one level of the hierarchy to the next, we ensure that
|Vi+1| ≤ (1 − c)|Vi|. Since Gh has size 1, the height h is log1/(1−c) n = O(log n).

Moreover,
h∑

i=0

|Ei| ≤
h∑

i=0

κ|V (Gi)| ≤
h∑

i=0

κ(1 − c)in = O(n). ��

Henceforth, in this article, all hierarchies are constructed to be compact.

Lemma 4. Let H be a Hierarchical graph built from G with height h. If every
level of H is connected, then H has diameter O(h).

Proof. Let p be the vertex of H with level h. A vertex u at level i < h always
has a neighbor whose level is greater than i. Therefore, every vertex in H has a
path to p of length O(h) by simply going up the hierarchy. ��
Observation 1. Let H be a Hierarchical graph based on Θk-graphs or half-Θ6-
graphs. Since at each level we remove an independent set, 	(u) �= 	(v) for every
edge uv of H.

4 The Θk-Hierarchical Graph

We begin by defining a class of graphs which we call the augmented Θk-graph.
Throughout this section we assume that k ≡ 2 mod 4, k > 6 and all index
manipulation is done mod k. Note that we are using the directed version of Θk

graphs, although we can forget direction if we want to.
The crucial property of Θk-graphs when k ≡ 2 mod 4 is that the edges of

Δuv are parallel to Li, Li+1 and Li+�k/4�. In other words, each edge of the
canonical triangle is parallel to a cone boundary, which is not the case when
k �≡ 2 mod 4. When computing an edge uv in Cu

i , one can view this process
as sweeping a line parallel to Li+�k/4� starting at u and moving away from u

along the bisector of Ci until reaching the first point, v. We now define a Θj
k-

graph, which has the same vertex set as the Θk-graph. However, to compute an
edge uv in Cu

i , we sweep a line parallel to Li+j starting at u and moving away
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from u along the bisector of Ci, where j ∈ {1, . . . , (k − 4)/2} ((see Fig. 2a). The
augmented Θk-graph is defined as the union of Θj

k-graphs for all values of j. We
will refer to the canonical triangle defined by u and v in Θj

k as Δj
uv. We drop

the superscript j when referring to the canonical triangle in the Θk-graph.

Fig. 2. (a): The different canonical triangles of Θj
k-graphs when k = 10. The blue lines

represent top edges of the (k − 4)/2 = 3 different canonical triangles. (b): The points a
and b inside Δuv must have a canonical triangle that is completely inside Δuv. In this
case, it is the red triangle (Color figure online)

Let G0, G1, . . . , Gh be a compact hierarchy of graphs built on a foundation
that is an augmented Θk-graph on a set P of n points. Since an augmented Θk-
graph has O(k2n) edges, by Lemma 3, we know that such a hierarchy exists. The
only reason that we considered augmented Θk-graphs is to extract the sequence
of points P = P0 = V (G0) ⊃ P1 = V (G1) ⊃ . . . ⊃ Ph = V (Gh). These points
have a special geometric property that we exploit in our routing algorithm.
We construct a compact hierarchy by building a Θk-graph on this sequence of
points. The Θk-Hierarchical graph H is the union of Θk(Pi) for i ∈ {0, . . . , h}. It
is important to note that the hierarchy is built with Θk-graphs in each layer and
not augmented Θk-graphs. The following lemma is the key geometric property
of the Θk-Hierarchical graph that aids in the routing.

Lemma 5. Let 	 ∈ {0, 1, ..., h}. Let u, v be two vertices of H such that Δuv is
empty at level 	. Then Δuv contains at most one point at level 	 − 1.

Proof. Assume there are two points a and b inside Δuv at level 	 − 1. Without
loss of generality, we can assume that a ∈ Δub. Let v ∈ Cu

j and let Ld, Ld+1 be
the two lines defining this cone. Let C be the cone of b that contains a.

If C ∩ Δuv is a triangle then this triangle must be bounded by the cone lines
defining C and one of the lines defining Cu

j . Therefore, one of Δd
ba or Δd+1

ba must
be contained in C ∩Δuv (see Fig. 2b). Otherwise, C ∩Δuv is not a triangle. This
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can only happen if C is defined by both Ld and Ld+1 as k ≡ 2 mod 4. In other
words, b ∈ Ca

j . Thus, Δab ⊆ Δuv.
In both cases, we have some canonical triangle Δ defined by a and b that

is contained in Δuv. Since 	(a) = 	(b), by construction of the Θk-Hierarchical
graph, ab cannot be an edge of the augmented Θk-graph at level 	 − 1. There
must be a point c in Δ at level 	 − 1 such that one of ac or bc is an edge.
However, this implies that 	(c) > 	 − 1 which contradicts the assumption that
Δuv is empty at level 	.

��
Lemma 6. If ab ∈ E(H) and u ∈ Δab, then 	(u) < 	(a).

Proof. Assume otherwise: 	(u) ≥ 	(a). Then u ∈ Δab is present in levels
0, 1, ..., 	(a). By construction of the Θk-graph, ab cannot be an edge in any of
those levels. Therefore, by construction of H, ab cannot be an edge, which is a
contradiction. ��

Routing in the Θk-Hierarchical Graph

In a Θk-graph, for k > 6, the greedy routing algorithm always reaches the des-
tination and the routing ratio is 1/(1 − 2 sin(π/k)) [8,30]. The greedy routing
algorithm is simple: let u be the current vertex and t be the destination. Move
to the vertex v adjacent to u in Δut such that Δuv is empty. We slightly modify
this algorithm when routing on a Θk-Hierarchical graph and refer to this algo-
rithm as the hierarchical greedy (routing) algorithm. The only difference from
the standard greedy algorithm is that we follow the edge uv ∈ Δut such that v
is the vertex of highest level inside Δut among all vertices w adjacent to u.

We first show that this simple algorithm always finds a path to t and the
path has spanning ratio at most 1/(1−2 sin(π/k)). We then show that this path
consists of O(log2 n) edges.

Lemma 7. This algorithm always reaches t and has spanning ratio at most
1/(1 − 2 sin(π/k)).

Proof. Consider the Θk-graph constructed on the points of the path generated
by the hierarchical greedy routing algorithm. By construction, the greedy routing
algorithm on this graph generates the same path. The result follows from the
result in [30]. ��

When the hierarchical greedy algorithm follows an edge uv with 	(u) < 	(v),
we say that it is going up the hierarchy, otherwise (	(u) > 	(v) by Remark 1) we
say it is going down. We fix a source s and a destination t. Let s = u0, u1, ..., um =
t be the points visited while routing from s to t using this algorithm. What
remains to be shown is that m = O(log2 n). Notice that the hierarchical greedy
algorithm may go up and down the hierarchy multiple times. We need to bound
the number of times this can happen. We first examine what happens when we
are going down the hierarchy. We assume that p ∈ {0, 1, ...,m − 1}.
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Lemma 8. If 	(up+1) < 	(up) then Δupt is empty at level 	(up+1) + 1.

Proof. Assume there is some v in the interior of Δupt at level 	(up+1) + 1. Since
Δupt is not empty at this level, and 	(up+1) < 	(up), up must have an edge to
a point inside Δupt by construction of the Θk-graph. Without loss of generality,
we can assume v is this point. This means upv is an edge in the Θk-Hierarchical
graph with 	(up+1) < 	(v) and v is inside Δupt. The hierarchical greedy algo-
rithm would then have followed the edge to v rather than to up+1, which is a
contradiction. ��

Fig. 3. (a): If up ∈ Ct
j and up+1 ∈ Ct

j , then there is an inclusion between their canonical
triangles (b): Illustration of the situation of Lemma 10 with two transitional edges from
Ct

i to Ct
j . We are at up and are going to up+1. Previously, we were at uq and went

down to uq+1.

Lemma 9. Let up ∈ Ct
j . If 	(up+1) < 	(up) and up+1 ∈ Ct

j , then Δup+1t is
empty at level 	(up+1).

Proof. Let v be a point in Δup+1t. Lemma 8 implies that Δupt is empty at the
level 	(up+1) + 1. Since up+1 ∈ Ct

j , we know that Δup+1t ⊆ Δupt (see Fig. 3a).
By Lemma 5 we have that up+1 is the only point inside Δupt at its level. In
particular, Δup+1t must be empty. ��

When routing, the path can ”zigzag” between different cones of t as in Fig. 3b;
that is, the path can go from a cone i of t to a cone j, then back to cone i, then
to cone j, etc. We call an edge uv a transitional edge, if u and v lie in distinct
cones of t. Otherwise, when u and v lie in the same cone, we call it a stable edge.
If the routing algorithm only follows stable edges, then the path can only consist
of at most 2h edges where h is the height of the hierarchy. In this case, the path
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first goes up the hierarchy, then goes down the hierarchy to reach t. Lemmas 8
and 9 guarantee that we cannot go up and down the hierarchy more than once.
Thus, if the path is long, then it must consist of many transitional edges. The
next lemma is the key to bounding the number of transitional edges.

Lemma 10. Let upup+1 be a transitional edge from Ct
i to Ct

j . Suppose there
exists a q ∈ {0, 1, ..., p − 2} such that uquq+1 is also a transitional edge from Ct

i

to Ct
j . If 	(uq+1) < 	(uq), then 	(up+1) < 	(uq+1)

Proof. There are two cases to consider: Δupt ∩ Ct
j ⊆ Δuqt or Δupt ∩ Ct

j � Δuqt.
We consider the former case first. By Lemmas 5 and 8, we know that uq+1

is the only point in Δuqt at level 	(uq+1). Therefore, since up+1 ∈ Δuqt, we
must have 	(up+1) < 	(uq+1), otherwise we contradict that fact that uquq+1 is
a greedy edge.

In the latter case, |upt| > |uq+1t|. However, the greedy routing algorithm
always moves closer to t with each step, so this is impossible. ��

We now have all the tools to bound the length of the path generated by the
hierarchical greedy routing algorithm.

Theorem 1. The hierarchical greedy routing algorithm finds a path using
O(log2 n) edges and has routing ratio at most 1/(1 − 2 sin(π/k)).

Proof. Let Π be the path generated by the hierarchical greedy routing algorithm.
Since there are k cones around t, there are

(
k
2

)
different types of transitional edges

in Π. Lemma 10 implies that each type of transitional edge can only appear h
times, where h is the height of the hierarchy. Lemmas 8 and 9 guarantee that
there are at most 2h consecutive stable edges in Π. Thus, the length of Π is at
most 2

(
k
2

)
h2 which is O(log2 n).

The routing ratio of the algorithm follows from Lemma 7.
��

Theorem 2. The hierarchical greedy routing algorithm may take Ω(log2 n) steps
on a Θk-hierarchical graph.

Proof (sketch). The key idea is to use the pattern highlighted by Lemma 10.
We repeat the following pattern Ω(log n) times. u ∈ Ct

i goes down to v ∈ Ct
i−1.

Then v goes up to w ∈ Ct
i . We have no information about Δwt\Δut so we may

go down Ω(log n) times inside it before reaching u′ ∈ Ct
i .

In total, we would take Ω(log2 n) steps by following this path. The exact
details are ommited due to space constraints.

5 The TD-Delaunay-Hierarchical Graph

In this section, we present the construction of the TD-Delaunay-Hierarchical
graph (TDH for short) on a set of n points in the plane. Then we show how to
compute labels of size O(log2 n) bits for each vertex to aid in routing. Finally,
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given these labels, we provide a local memoryless routing algorithm that finds
a path between two vertices s, t in a TDH that has spanning ratio 5/

√
3 and

O(log2 n) edges. The main draw to the TD-Delaunay-Hierarchical graph over the
Θk-Hierarchical graph is that each level of the hierarchy is a connected planar
graph.

Let P be a set of n points in the plane. A Delaunay triangulation T on point
set P is a triangulation such that every triangle Δ of T satisfies the empty circle
property, that is that the circumcircle of Δ contains no point of P in its interior.
Delaunay triangulations have been studied extensively (see [27] for a survey),
and variations have been introduced by changing the empty circle property for
different shapes [7,13,28]. The TD-Delaunay graph [28] replaces the empty circle
property with an empty triangle property. We fix Δ0 an equilateral triangle. A
triangle Δ is said to satisfy the empty triangle property for point set P if there is
a homothet of Δ0 circumscribing Δ, and this homothet contains no points of P
in its interior. Note that three points in the plane may not have a circumscribing
Δ0, so this graph is not necessarily a triangulation. To remedy that, we assume
hereafter that any point set we consider has three points v∗

0 , v
∗
1 and v∗

2 so that

P\{v∗
0 , v

∗
1 , v

∗
2} ⊂ ∪2

i=0C
v∗
i

i , in essence, a large triangle that contains our point
set. This ensures that the TD-Delaunay graph is a triangulation.

Since the TD-Delaunay graph is sparse, using Lemma 3, we build a com-
pact Hierarchical graph H with height h = O(log n) whose foundation is a
TD-Delaunay graph on a set P of n points in the plane. For ease of analysis, we
set the level of v∗

0 , v
∗
1 and v∗

2 to be above the level of all vertices of P . We call
this graph a TD-Delaunay Hierarchical graph, which we abridge to TDH graph.

In [10], a routing algorithm on the TD-Delaunay graph is presented. We
describe it formally in Algorithm 1. We use this algorithm as a blackbox by
providing the neighborhood of u as input. This routing algorithm is known to
have routing ratio 5/

√
3 [10, Corollary 4.1].

Routing in the TD-Delaunay-Hierarchical Graph

In order to route in a memoryless and local fashion in a TDH, we need to
encode some information into the vertex labels of the TDH. For each node u
and each cone number i, we build a path Pu

i inside each of its positive cones i
(see Algorithm 2). The path Pu

i finds the node v adjacent to u in cone Ci such
that v is the vertex of highest level adjacent to u in Cu

i . Then the path continues
from v until it reaches v∗

i . The label L(u) for each vertex u contains its level and
the coordinates of the vertices of the three paths Pu

i . Since each path has size
O(log n), and the vertices are placed on a grid of polynomial size, the label size
of each node is O(log2 n) bits.

We define some notation used to define our routing algorithm. To simplify
notation, when there is no ambiguity, we write Pj instead of P t

j . Let P t
∗ =

P t
0 ∪P t

1 ∪P t
2 . Let ΔP t

j
:= ∪ab an edge of P t

j
Δab ∪P t

j and ΔP∗ := ΔP1 ∪ΔP2 ∪ΔP3 .
If we remove ΔP∗ from the triangle v∗

0 , v
∗
1 , v

∗
2 , we get three connected regions,
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Data: u the current point, t the destination, N the neighborhood of u
if t ∈ Cu

i for some i then
Follow the edge in Cu

i ;
end

if t ∈ Cu
i for some i then

Xu
0 ← Δtu ∩ Cu

i ; Xu
1 ← Δtu ∩ Cu

i−1; Xu
2 ← Δtu ∩ Cu

i+1;
if Xu

1 is empty then
Follow the clockwise first edge which leads inside Δtu;

else if Xu
2 is empty then

Follow the clockwise last edge which leads inside Δtu;
else if There is an edge uv leading inside Xu

0 then
Follow uv;

else
Follow the edge leading into the smaller of Xu

1 or Xu
2 ;

end

end

Algorithm 1: TD Routing [10]

Data: u the starting point, i a cone number, H the TDH graph
v ← u;
P ← {u};
while v �= v∗

i do
v ← the point a inside Cv

i of highest level such that va is an edge in the
graph;
P ← P ∪ {v};

end
return P ;

Algorithm 2: Computation of the path Pu
i

R0, R1 and R2 that respectively contain the interior of the cones Ct
0, C

t
1 and Ct

2.
See Fig. 4a.

We now show how to route from a vertex s to a vertex t in a given TDH. The
routing algorithm is formally described by Algorithm 3. We consider the neigh-
borhood of the current point to be an implicit argument since this information is
stored at the current point. Essentially, the routing algorithm operates in three
phases:

1. In the first phase, we are at u ∈ Ri. We follow an edge in Cu
i and ensure that

this edge either remains in Ri or moves into ΔP∗ . We reach the second phase
once we leave Ri.

2. In the second phase, we have that u ∈ ΔP∗ . Note that either u ∈ Pj , in which
case we move on to phase three, or there is an ab ∈ Pj such that u ∈ Δab.
We then follow the TD-routing algorithm defined in [10] to route to a.

3. In the third phase, we are at u ∈ Pj for some j. We then follow Pj backwards
to t.
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Fig. 4. (a): The three regions R0, R1 and R2. The blue shaded triangles represent ΔP∗ .
(b): Illustration of Lemma 11. If we go down from u to v and up from v to w, it must
be that there is a ∈ P∗ ∩ Δuw. The point x is the neighbor of u at its level. Note that
x ∈ Δuw and thus prevents the edge uw from existing. (Color figure online)

We now prove the correctness and the efficiency of Algorithm 3. We start with
the following lemma that will help bound the number of steps during Phase 1.

Lemma 11. Let uv and vw be two consecutive steps taken during phase 1. If
	(v) < 	(u) and 	(v) < 	(w), then there exists a ∈ P∗ with a ∈ Δuw.

Proof. Assume 	(v) < 	(u), 	(v) < 	(w) and for all a ∈ P∗, a /∈ Δuw. Since the
algorithm went to v instead of w despite 	(w) > 	(v), there must be some point
x ∈ Δuw with 	(x) > 	(w) such that ux is an edge in the graph that crosses
a triangle Δab of ΔP∗ as x cannot be inside the region Ri ∪ ΔP∗ ∪ P∗. Since
a, b /∈ Δuw ⊇ Δux, x must be inside Δab, and that is a contradiction as x /∈ ΔP∗ .
��

Data: u the current point, L(t) the label of the destination
if u ∈ Ri (Phase 1) then

v ← neighbor of u in Cu
i ∩ (Ri ∪ ΔP∗ ∪ P∗) with maximum level;

Follow the edge uv;

end
if u ∈ Δab, ab is an edge of P t

j for some j (Phase 2) then
Nu ← neighborhood of u at its level;
TDRouting(u, a, Nu);

end
if u ∈ P t

j for some j (Phase 3) then
Go to the predecessor of u in P t

j ;
end

Algorithm 3: Routing in the TD-Delaunay-Hierarchical graph
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Lemma 12. There exists an edge ab ∈ P∗ such that all edges of the second phase
of Algorithm 3 are included in a ∪ Δab and are going up. Moreover the last step
of phase 2 ends at point a.

Proof. Let Π be a path computed by Algorithm 3. First observe that if Π doesn’t
contain any edge of phase 2, then the lemma is true.

Let u = u0, u1, u2, ... be the (possibly infinite) sequence of points such that
uiui+1 is an edge of Π of Phase 2. By the definition of Phase 2, u0 must be in
a triangle of ΔP∗ . Let ab be an edge of P∗ such that u0 ∈ Δab.

By construction of Algorithm 1, for all i, ui+1 ∈ Δaui
∪ a. By Lemma 6, this

implies that for all i, 	(ui) < 	(a). Furthermore, by construction of Algorithm 3,
for all i, ui+1 ∈ Nui

where Nui
is the neighborhood of ui at its level. By Obser-

vation 1, we then know that for all i, 	(ui) < 	(ui+1). The sequence u0, u1, u2, ...
must then be finite so let v be the last point of this sequence. Assume v �= a.
We know 	(v) < 	(a). Furthermore, since the algorithm stopped at v, it must be
because we do not have an edge to a or an edge leading inside Δav at the level of
v. This implies that Δav is empty at the level of v. Therefore, by construction of
the half-Θ6 graph, av should be an edge at this level, which is a contradiction.
Therefore, v = a. ��
Lemma 13. Let Π be a path computed by Algorithm 3. This path is finite and
goes from s to t.

Proof. During phase 1, by construction, the path Π cannot go from a region Ri

to a region Rj with i �= j. Hence during this phase, we only take steps in a cone
Ci, thus never backtracking. Hence this phase is finite and we must reach a point
of ΔP∗ ∪ P∗ and move on to phase 2 or phase 3 at some point. By Lemma 12,
phase 2 reaches a point a ∈ P∗. Phase 3 reaches t by construction of the paths
P0, P1, P2. Hence Π is finite and goes from s to t. ��

We introduce some notation for the next lemmas. Let uv be an edge in a half-
Θ6 graph such that v ∈ Cu

i . We call i the color of the edge uv. Note that since
u ∈ Cv

i , the color of an edge is never ambiguous. Furthermore, we denote the
length of the side of Δuv as |Δuv| . We also denote the maximum (resp. minimum)
distance between v and a corner w �= u of Δuv as |Δuv|+ (resp. |Δuv|−). Note
that |Δuv| = |Δuv|+ + |Δuv|−. If v ∈ Cu

i for some i, for convenience, we define
Δ(u, v) as Δuv and otherwise Δ(u, v) is defined as Δvu.

The next lemmas will be used to show that Algorithm 3 has routing ratio
5/

√
3. We first give some intuition as to why Algorithm 3 has constant routing

ratio. Let s, t be two points in the TDH graph. We execute Algorithm 3 to route
from s to t. Let u be the point reached at the end of phase 1 and a be the point
reached at the end of phase 2. Note that the TD-Delaunay graph of {s, u, a, t} is
exactly the path s, u, a, t. Since the TD-Delaunay graph is a 2-spanner [28], we
know |su| + |ua| + |at| ≤ 2|st|. Since the paths during phases 1 and 3 consist of
only one color, by using projections, we can easily show that these paths have
spanning ratio 2/

√
3. Since phase 2 routes to a using Algorithm 1, we know [9]

that the path built during phase 2 has spanning ratio 5/
√

3. Let Π be the full
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path travelled by Algorithm 3. We then have |Π| ≤ (2|su| + 5|ua| + 2|at|)/√
3 ≤

5(|su| + |ua| + |at|)/√
3 ≤ 10/

√
3|st|.

With a more careful analysis, we prove that |Π| ≤ 5|st|/√
3.

Lemma 14. Let Π be a path built by Algorithm 3 from s to t. Let a the first
point of Π in P∗. If there exists i such that s ∈ Ri then |Π| ≤ |Δ(s, t)|+|Δ(s, t)|+
otherwise |Π| ≤ 2|Δas| + |Δas|− + |Δta|.
Proof. Let Π1 (resp. Π2) be the set of points of Π visited during phase 1 (resp.
phase 2). Note that |Π1 ∩ Π2| = 1. Let NΠ2 = ∪u∈Π2(Nu ∩ Δau) where Nu is
the neighborhood of u at its level. We consider the TD-Delaunay graph T on
Π1 ∪ Π2 ∪ NΠ2 .

Let us first assume s ∈ Ri. This implies a ∈ Cs
i . If Algorithm 1 routes in T

from s to a, the path it follows will have length bounded by |Δsa| + |Δsa|+ by
Theorem 4.1 of [9]. We claim the path it follows this way is exactly the path
followed during phase 1 and phase 2 by the algorithm. At first, it must follow
the edges followed during phase 1 as a lies in a positive cone of the current node.
We then reach u0 the first point seen during phase 2 after having followed all of
the edges of phase 1.

Let u ∈ Π2. Let v ∈ (Nu ∩ Δau). Assume uv is not an edge in T . There
must be w /∈ Nu such that w ∈ Δuv or w ∈ Δvu. However, by Lemma 12, it
must be that 	(w) > 	(u). This implies that w is present at the level of u; thus,
w ∈ Nu and v /∈ Nu, which is a contradiction. Now, let v ∈ Δau\(Nu ∩ Δau) be
a vertex of T . By the same reasoning, uv cannot be an edge in T . Therefore, the
neighborhood of u in T is exactly Nu.

By construction of Algorithm 3, we use Algorithm 1 to route to a during
phase 2. In T , when Algorithm 1 reaches u ∈ Ca

j , it makes its decision based
only on its neighborhood inside Δau. This neighborhood is exactly Nu ∩ Δau.
Since it reaches u0, it must follow every edge followed during phase 2.

Therefore, |Π| is bounded by |Δsa|+ |Δsa|++ |Π3| where Π3 is the part of Π
corresponding to phase 3. Since this part is monocolored, it is bounded by |Δta|
as shown in [10]. Putting it all together, we have |Π| ≤ |Δsa|+ |Δsa|+ + |Δta| ≤
|Δ(s, t)| + |Δ(s, t)|+

Assume now that s ∈ ΔPj
. During phase 2, we use Algorithm 1 to route.

When we are at u, we consider the subset Nu of its neighbors which corresponds
to the neighbors it has at its level. By construction, if v ∈ Nu, then uv is a valid
TD-Delaunay edge. Therefore, at each u reached during phase 2, Algorithm 1
makes decisions as if in a TD-Delaunay graph. By Theorem 4.1 of [10], we have
that δsa ≤ 2|Δas| + |Δas|− where δsa is the distance travelled during phase 2.
During phase 3, the path is mono-colored so we know δat ≤ |Δta| where δat is the
distance travelled during phase 3. Thus, in this case we have, |Π| ≤ δsa + δat ≤
2|Δas| + |Δas|− + |Δta|.
Theorem 3. The TDH routing algorithm always reaches its destination. Its
routing ratio is 5/

√
3. Its hop length is O(log2 n). It uses O(log2 n) bit labels for

the vertices. This overhead is fixed at the start and no additional memory is used
throughout the routing.
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Proof. Let Π be the path followed by Algorithm 3 from s to t. We first show
that the routing ratio of Algorithm 3 is 5/

√
3. Lemma 14 gives us bounds on the

length of the path in all cases.
In the case, s ∈ Ri, |P | ≤ |Δst| + |Δst|+ ≤ 2|st| by Corollary 4.1 of [10].
Otherwise, when s /∈ Ri, we have |P | ≤ 2|Δas|+ |Δas|− + |Δta|. Since |Δas|+

|Δta| = |Δts|. This further implies |Δas| + |Δta|+ ≤ |Δts|. Since Δas ⊂ Δts and
both are equilateral, |Δas|− ≤ |Δts|−. Finally, |P | ≤ 2|Δts| + |Δts|−. Therefore,
by Corollary 4.1 of [10], |P | ≤ 5|st|/√

3.
The routing ratio of Algorithm 3 is at most 5/

√
3.

Finally, we show that the number of edges in the path is O(log2 n). We
consider the three phases of the algorithm: During phase 1, we may go up or
down TDH. By Lemma 11, we can only go down and then up by moving past a
point a on some P∗. Let u,w ∈ Ri be two points reached during phase 1 such
that there is a ∈ P∗ ∩ Δuw. Then a /∈ Cw

i . This implies that any pair of points
u′, v′ reached during phase 1 inside Cw

i is such that a /∈ Δu′v′ . Therefore, each
time we go past a point a ∈ P∗, we cannot move past it again during phase 1.
This implies we can only alternate going down and up at most O(log n) times
(once for each point of each Pj). Each sequence of points going up or down
cannot be longer than O(log n) steps, so phase 1 takes at most O(log2 n) steps
in total.

During phase 2, by Lemma 12 we only go up, so we take at most O(log n)
steps. During phase 3, we take at most O(log n) steps by construction of Pj . In
total, we take at most O(log2 n) steps from s to t. ��
Theorem 4. Algorithm 3 may take Ω(log2 n) steps.

Proof (sketch). The main idea is to use the pattern highlighted by Lemma 11
to build a path of size Ω(log2 n) steps. We describe a pattern to be repeated
Ω(log n) times. We start at u ∈ Ct

0. We add a ∈ Cu
1 and v ∈ Cu

1 ∩ Ca
2 . We put

the next point on the path to follow w ∈ Δuv ∩Ca
2 at a lower level. We then add

u′ ∈ Cw
1 \Δuv the start of the next pattern. We then add Ω(log n) points to be

followed in Δwu′\Δuv. These steps will all be going up. This gives us Ω(log2 n)
steps. The exact details are ommited due to space constraints.

6 Conclusion

We presented two graphs, the Θk-Hierarchical graphs and the TD-Delaunay-
Hierachical graphs. These two graphs have a bounded spanning ratio and a
diameter O(log n). We also give local routing algorithms for these graphs that
find paths of bounded stretch and consisting of O(log2 n) edges. Moreover, we
have examples where Ω(log2 n) can be attained. We leave open the problem of
finding a sparse graph together with a memoryless local routing algorithm that
finds paths of at most O(log n) edges and bounded spanning ratio.

TD-Delaunay triangulations are also the starting point of 6-spanners with
constant maximum degree [6]. These graphs can naturally be used to build a
Hierachical graph of small diameter. Is it possible to route efficiently in these
hierarchies also?
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degree six. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 19–30. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14165-2 3

7. Bose, P., Carmi, P., Collette, S., Smid, M.: On the stretch factor of convex delaunay
graphs. J. Comput. Geo. 1(1), 41–56 (2010)

8. Bose, P., Carufel, J.D., Morin, P., van Renssen, A., Verdonschot, S.: Towards tight
bounds on theta-graphs: More is not always better. Theor. Comput. Sci. 616,
70–93 (2016)

9. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Competitive routing in
the half-Θ6-graph. In: Rabani, Y. (ed.) Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, 17–19
Jan 2012, pp. 1319–1328. SIAM (2012)

10. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Optimal local routing on
delaunay triangulations defined by empty equilateral triangles. SIAM J. Comput.
44(6), 1626–1649 (2015)

11. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery
in ad hoc wireless networks. Wirel. Networks 7(6), 609–616 (2001)

12. Chan, T.H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in doubling
metrics. ACM Trans. Algorithms 12(4), 55:1–55:22 (2016)

13. Chew, P.: There is a planar graph almost as good as the complete graph. In:
Proceedings of the Second Annual Symposium on Computational Geometry, SCG
1986, New York, USA, pp. 169–177. Association for Computing Machinery (1986)

14. Clarkson, K.: Approximation algorithms for shortest path motion planning. In:
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
pp. 56–65 (1987)

15. Diestel, R.: Graph Theory, 4th edn., vol. 173, Graduate texts in mathematics.
Springer (2012). https://doi.org/10.1007/978-1-4612-9967-7

16. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1, 269–271 (1959)

17. Elkin, M., Solomon, S.: Optimal euclidean spanners: Really short, thin, and lanky.
Proceedings of the Annual ACM Symposium on Theory of Computing, vol. 62, Jul
2012

18. Hoedemakers, C.: Geometric spanner networks master thesis (2015)

https://doi.org/10.1007/978-3-642-16926-7_25
https://doi.org/10.1007/978-3-642-16926-7_25
https://doi.org/10.1007/978-3-642-14165-2_3
https://doi.org/10.1007/978-1-4612-9967-7


712 N. Bonichon et al.

19. Kao, M., (ed.) Encyclopedia of Algorithms - 2016 edn. Springer (2016). https://
doi.org/10.1007/978-0-387-30162-4

20. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless net-
works. In: MobiCom, pp. 243–254. ACM (2000)

21. Keil, J.M.: Approximating the complete euclidean graph. In: Karlsson, R., Lingas,
A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988).
https://doi.org/10.1007/3-540-19487-8 23

22. Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete
euclidean graph. Dis. Comput. Geometry 7(1), 13–28 (1992). https://doi.org/10.
1007/BF02187821

23. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12, 28–
35 (1983)

24. Le, H., Solomon, S.: Truly optimal euclidean spanners. In: 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS), Los Alamitos, CA, USA,
pp. 1078–1100. IEEE Computer Society, Nov 2019

25. Le, H., Solomon, S.: Truly optimal euclidean spanners. SIAM J. Comput. FOCS
19-135 (2022)

26. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, New York, NY, USA (2007)

27. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N., Kendall, D.G.: Spatial Tessella-
tions: Concepts and Applications of Voronoi Diagrams, Second edn.. Wiley Series
in Probability and Mathematical Statistics. Wiley (2000)

28. Paul Chew, L.: There are planar graphs almost as good as the complete graph. J.
Comput. Syst. Sci. 39(2), 205–219 (1989)

29. Pugh, W.W.: Skip lists: A probabilistic alternative to balanced trees. Commun.
ACM 33(6), 668–676 (1990)

30. Ruppert, J., Seidel, R.: Approximation algorithms for shortest path motion plan-
ning. In: Proceedings of the 3rd Canadian Conference on Computational Geometry,
pp. 207–210 (1991)

https://doi.org/10.1007/978-0-387-30162-4
https://doi.org/10.1007/978-0-387-30162-4
https://doi.org/10.1007/3-540-19487-8_23
https://doi.org/10.1007/BF02187821
https://doi.org/10.1007/BF02187821


On r-Guarding SCOTs – A New Family
of Orthogonal Polygons

Vasco Cruz(B) and Ana Paula Tomás

CMUP, Departamento de Ciência de Computadores, Faculdade de Ciências,
Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal

vasco.j.r.cruz@gmail.com, aptomas@fc.up.pt

Abstract. We define a new family of orthogonal polygons, the SCOTs,
which are made up of rectangular rooms linked by rectangular corri-
dors, mimicking properties of real-world buildings. We prove that, if a
SCOT P is simple or r-independent, meaning that the extensions of all
pairs of adjacent corridors with the same direction are either coinci-
dent or disjoint, a minimum-cardinality guard set for guarding P under
r -visibility can be computed in polynomial time. To this end, we pro-
pose three methods: a linear-time algorithm for simple SCOTs, for both
vertex- or point-guards; an O(c

√
c)-time algorithm for an r -independent

SCOT with c corridors for vertex-guards; and another one running in
time O (

c3 log c
)
for point-guards in an r -independent SCOT. For SCOTs

with holes and not r -independent, we show that the problem becomes
NP-hard – proving that the decision problem is NP-complete for the case
of point-guards.

Keywords: Art gallery problem · Orthogonal polygons ·
Computational complexity

1 Introduction

The Art Gallery Problem is not only appealing, but also one of the most well-
known and thoroughly studied problems in Computational Geometry. The orig-
inal formulation, posed in 1973 by Klee [16], asks about the minimum number of
points, called guards, that are required to watch over the interior of any simple
polygon P (that is, one without holes or self-intersections), where two points
p, q ∈ P see each other if the closed line segment pq lies completely within P .
Chvátal [6] proved, in 1975, that �n/3� point-guards are always sufficient, and
sometimes necessary, to guard any simple polygon with n vertices. For orthogo-
nal polygons – those whose internal angles all measure 90◦ or 270◦ –, a tighter
bound of �n/4� guards was shown [12,19]. Finding a minimum-cardinality guard
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set for a given polygon has been proved to be NP-hard, even for simple poly-
gons [15] and orthogonal polygons [17,18]. Variations of the problem have been
studied through the years, concerning different visibility models, polygon fam-
ilies, subsets of the polygon that we wish to guard and valid positions for the
guards. If guards may be placed anywhere in P , they are called point-guards; if
we force them to lie at vertices or anywhere on the boundary, they are called
vertex-guards and boundary-guards [13]. In this paper, we focus on the r -visibility
(rectangular visibility) model for orthogonal polygons, according to which two
points p, q ∈ P see each other (or r-see each other, or are visible from each other)
if the minimal axis-aligned rectangle that contains p and q does not intersect the
exterior of P . If the polygon is simple, an optimal r -guard set can be found in
time ˜O (

n17
)

, where ˜O(·) hides a polylogarithmic factor [20], but for polygons
with holes the problem becomes NP-hard [3,11]. A linear-time algorithm has
also been proposed for orthogonal polygons with bounded treewidth [3].

Although the Art Gallery Problem is hard for generic polygon instances,
buildings and art galleries that we find in real life are not random: they show
a very specific structure and a spatial organization that is characteristic of the
human way of architecting. In this paper, we define a new family of orthogonal
polygons, the SCOTs, which prove to be useful models for mimicking properties
that are close to those one can find in real-world rectangular galleries. We study
the algorithmic complexity of guarding SCOTs under the r -visibility model –
which we denominate Minimum SCOT r-Guard –, describe subfamilies that
can be solved in polynomial time by providing algorithms for them, in Sects. 2
and 3, provide hardness results for the general case, in Sect. 4, and leave some
open problems in the conclusions.

1.1 Preliminaries

A SCOT1 is a connected orthogonal polygon that is made up of rectangular
rooms linked by rectangular corridors. A corridor C links two rooms R1 and R2

in a SCOT if a side of C is strictly contained in an edge of R1 and the opposite
side is strictly contained in an edge of R2. By “strictly contained” we mean that
a corridor C is always narrower than the rooms R1 and R2 that are incident
to it and none of the four vertices of C coincide with either of the four corners
of R1 or R2. A SCOT has no “dangling” corridors, so every corridor is incident to
exactly two rooms. Each corridor has an implicit direction, horizontal or vertical,
depending on whether it connects two rooms to its right/left or above/below it,
respectively. There may exist cycles that involve more than two rooms, in which
case the SCOT is called cyclic (Figs. 1b and 1c). The same pair of rooms may be
linked by multiple, non-intersecting corridors (Fig. 1c). If there exist room cycles
or multiple corridors connecting the same pair of rooms, the SCOT has holes; if
it does not have holes, it is said to be simple (Fig. 1a).

1 In Portuguese, “salas e corredores ortogonais”, which means “orthogonal rooms and
corridors”.
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Fig. 1. (a) Simple (R, C)-SCOT, with |R| = 7 and |C| = 6. Rooms are represented
as white rectangles and corridors as shaded rectangles. The corridor connecting rooms
R1 and R2 is horizontal and the corridor connecting rooms R1 and R3 is vertical.
(b) SCOT with a cycle involving rooms R1, R2, R3 and R4. (c) SCOT with multiple
corridors between the same pairs of rooms.

For convenience, we use (R, C)-SCOT to refer to a SCOT with set of rooms R
and set of corridors C. The number of vertices is given by n = 4|R| + 4|C|, since
each room and each corridor contribute with four new vertices to the total count.
An obvious way to guard a SCOT is to place an individual guard in each room
and in each corridor. So, we have a trivial upper bound of |R| + |C| = n/4
for the number of guards needed under r -visibility, both for vertex-guards and
for point-guards. This solution, however, may in general not be optimal. The
algorithm of [20] with time complexity ˜O (

n17
)

establishes that Minimum SCOT
r-Guard can be solved in polynomial time for simple SCOTs with point-guards.
As this is not a very gracious running time, we are interested in exploiting
the structure of SCOTs for developing more efficient algorithms for them, and
understanding whether the problem remains polynomial for SCOTs with holes.
A first observation towards a better algorithm is given by Lemma 1, which states
that reflex vertices are always better choices to place guards at, meaning that,
for finding a minimum-cardinality vertex-guard set for a SCOT, one could opt
to ignore its convex vertices altogether without risking losing optimality.

Lemma 1. Let P be an (R, C)-SCOT with |R| ≥ 2. For any convex vertex u
of P , there is a reflex vertex v of P that r-sees more than u, that is, v r-sees a
superset of what u r-sees.

Proof. Since P has at least two rooms and is connected, every room has at least
two reflex vertices. The only convex vertices in P are the four corners of each
room and these only r -see the room they belong to, given that corridors are
narrower than incident rooms. A reflex vertex is shared between a room and a
corridor and therefore r -sees that room and (at least) that corridor. ��
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2 Guarding Simple SCOTs

In this section, we show that simple SCOTs can indeed be r -guarded in linear
time by means of a greedy algorithm. The algorithm we propose processes the
SCOT as a tree graph induced by its rooms and corridors and detaches its leaves
one by one, until a complete guard set has been determined.

Theorem 1. Let P be a simple (R, C)-SCOT. The minimum number of point-
guards (and, indeed, vertex-guards) for r-guarding P is exactly |R|.
Proof. For necessity, it is mandatory that a guard be placed in the interior or
the boundary of each room for (fully) r -guarding it. Otherwise, the room corners
would not be covered. Therefore, we need at least |R| guards. We now provide a
greedy algorithm as a constructive proof that |R| guards are sufficient. Figure 2
illustrates its idea. Build an undirected graph T = (V,E), with |V | = |R| and
|E| = |C|. Each node in V represents a room of P and there is an edge in E
linking two nodes if the corresponding rooms in P are connected by a corridor.
As P has no holes, T is a tree and has at least one leaf (a node with degree 0
or 1). While T is not empty, select an arbitrary leaf u corresponding to a room R.
If u has degree 0, place a guard anywhere in R (namely, at one of the corners),
remove u from T and terminate. Otherwise (i.e., if u has degree 1), place the
guard at one of the reflex vertices that are shared between R and its incident
corridor C and remove both u and the edge corresponding to C. The tree T
will become empty (i.e., P will become r -guarded) after exactly |R| steps and
in each step we have placed a vertex-guard, so |R| guards are enough. ��

Fig. 2. The first two steps of the algorithm for finding a minimum vertex-guard set for
a simple SCOT by pruning leaves in increasing order of the node identifier.

3 Guarding r-independent SCOTs

In this section, we define a subfamily of SCOTs, the r -independent SCOTs, and
prove that they can also be guarded in polynomial time, although by means of
conceptually different algorithms regarding vertex-guards or point-guards.
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We define the stretch of a corridor C in a SCOT as the infinite extension of C
along its direction (horizontal or vertical), that is, as the unbounded corridor
defined by the two supporting lines of C (Fig. 3). For adjacent corridors C1

and C2, i.e., corridors incident to the same room R, when C1 and C2 are both
horizontal or both vertical, we say that C1 and C2 are disjoint if their stretches do
not intersect and that C1 and C2 are aligned if their stretches coincide (Fig. 3b).
An r-independent SCOT is a SCOT in which every pair of adjacent corridors
with the same direction is either disjoint or aligned.

(a) (b) (c)

Fig. 3. (a) A simple SCOT. (b) Two aligned horizontal corridors. Their stretches
match perfectly. (c) Two vertical corridors that are not aligned nor disjoint, although
their stretches intersect.

3.1 Super-Corridors

Let P be an r -independent (R, C)-SCOT. For every pair (C1, C2) of aligned
adjacent corridors, C1 is r -seen if and only if C2 is r -seen. This induces an
equivalence relation between corridors (r -equivalence), according to which two
adjacent corridors are equivalent if and only if they are aligned. By transitivity,
two nonadjacent corridors that belong to the same succession of aligned adjacent
corridors are also r -equivalent.

We now describe a general strategy that we will employ several times for
dealing with r -independent SCOTs. The idea is to replace each maximal suc-
cession of aligned adjacent corridors C(1), C(2), . . . by a super-corridor C ′ that
may cross multiple rooms. So, C ′ stands for a single long corridor that represents
that equivalence class. By this transformation, the problem is reduced to the case
where all pairs of adjacent (super-)corridors are disjoint. We denote by C′ the
set of all super-corridors in P , so that |C′| is the number of equivalence classes
of corridors. Because the decomposition into super-corridors is so important for
developing algorithms specific to r -independent SCOTs, we will often denote by
(R, C, C′)-SCOT an r -independent SCOT whose set of super-corridors is C′.

Lemma 2. Let P be an r-independent (R, C, C′)-SCOT. There are at most 2|C|
pairs (R,C ′), with R ∈ R and C ′ ∈ C′, such that R and C ′ are incident.
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Proof. Let Q be the set of all incident pairs of rooms and corridors in P . Each
corridor is incident to exactly two rooms and a room R is incident to a super-
corridor C ′ if and only if it is incident to some corridor C that belongs to C ′.
Therefore, |{(R,C ′) : R ∈ R, C ′ ∈ C′, R is incident to C ′}| ≤ |Q| = 2|C|. ��

3.2 Algorithm for Vertex-Guards

We now explain how to find an optimal vertex-guard set for an r -independent
(R, C, C′)-SCOT in polynomial time. Once more, we need one guard per room,
otherwise the corners of some room will not be covered. Since a vertex-guard
can r -see at most one room and one super-corridor of P , it is intuitive that,
when placing a guard g in a room R, we would better try to also cover one of
the incident super-corridors C ′, by placing g at one of the reflex vertices shared
by R and C ′, so as to avoid wasting extra guards for C ′ later.

We thus consider two phases for the positioning of guards in P . First, we
place one guard in every room, also covering exactly one of the (not yet covered)
incident super-corridors in each; then, and only after that, we spend a guard for
separately watching over each of the remaining uncovered rooms and/or super-
corridors. In the first phase, we find a maximum matching between rooms and
incident super-corridors. For that, we build a bipartite graph H = (V,E) with
V = R ∪ C′ and E = {(R,C ′) : R ∈ R is incident to C ′ ∈ C′}. Note that a
separate edge should be added for each room crossed by the super-corridor.

A concrete selection of pairs of rooms and super-corridors that may be chosen
to be r -seen collectively, each with a single guard, can be modeled as a matching
in graph H; in particular, an optimal selection of guards includes a maximum
cardinality matching (Fig. 4). The proof of Lemma 3 explains how we can extract
a vertex-guard set for P from a given maximum matching M� in H.

Lemma 3. The graph H has a matching M of size k ∈ Z
+
0 if and only if the

SCOT P has a vertex-guard set G of size |R| + |C′| − k.

Proof. (⇒) Let M be a matching in H of cardinality k and G be an empty vertex-
guard set. For each edge (R,C ′) in M , add to G a guard at a reflex vertex
that is shared between the room R and a corridor in the super-corridor C ′;
there are either two or four possibilities for choosing that vertex (depending
on whether C ′ contains one or two corridors incident to R, respectively), but
it can in fact be picked arbitrarily, because all these shared vertices r -see the
exact same region in P . Finally, place a guard in each of the rooms and/or
super-corridors that may eventually still be left unguarded. G is feasible and
has size |M | + (|R| − |M |) + (|C′| − |M |) = |R| + |C′| − k.

(⇐) Let G be a vertex-guard set for P , with |G| = |R| + |C′| − k and let G′ be
a subset of G with |G′| = |C′| that covers all the super-corridors. G′ exists
because each super-corridor requires a different vertex-guard. By hypothesis,
G′ leaves at most |R|−k rooms uncovered and, thus, covers at least k different
rooms. As we have placed each guard in a different super-corridor, there is a
matching of size k between room and super-corridor nodes in H. ��
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M� may, for instance, be found using Hopcroft-Karp’s algorithm [10], which
runs in time O(

√|V ||E|) for any bipartite graph H = (A ∪ B,E) – indeed
in O(

√

min{|A|, |B|}|E|). Since, by Lemma 2, |E| ≤ 2|C|, Theorem 2 and the
bound O(|C|√|C|) follow.

Theorem 2. A minimum-cardinality vertex-guard set for an (R, C, C′)-SCOT P
that is r-independent can be determined in time O(|C|√min{|R|, |C′|}).

Fig. 4. (a) An r -independent SCOT P , with four super-corridors: C′
1 = {C1, C2},

C′
2 = {C3}, C′

3 = {C4} and C′
4 = {C5, C6, C7}. The four marked vertices form a

partial guard set that covers P except for rooms R5 and R6. Each guard covers exactly
one room and one super-corridor. (b) The associated bipartite graph H. The four
highlighted edges define the C′-perfect matching M� that yields that partial guard set,
which can be extended with two guards, one in R5 and another in R6, to optimally
cover the entirety of P .

3.3 Algorithm for Point-Guards

A point-guard placed in a room R which is incident to a horizontal and a vertical
super-corridor, respectively C ′

h and C ′
v, can actually r -see both super-corridors if

it is placed in the intersection of the room and the stretches of C ′
h and C ′

v. Hence,
for point-guards, Theorem 2 cannot be applied. Nevertheless, we will show that,
for r -independent SCOTs with point-guards, the problem is still polynomial-time
solvable. We start by presenting some useful notions and lemmas.

Lemma 4. For any r-independent SCOT P , there is a minimum-cardinality
point-guard set for P in which every guard lies inside a room.

Proof. Suppose P admits a minimum point-guard set G with at least one guard g
being placed strictly inside a corridor C and only r -seeing the super-corridor
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corresponding to C. Shift g along the direction of C until it becomes strictly
contained in a room, call g′ its new position and let G′ = (G \ {g}) ∪ {g′} be the
new guard set, with |G′| = |G|. Now g′ still sees the super-corridor corresponding
to C, but it does also see a room. Therefore, the new position for the guard g′ has
not made G′ worse than G in terms of covered area. Repeat the same argument
while there are guards strictly outside rooms in G′. ��

The algorithm we propose starts by transforming the problem into one of net-
work flows, called Minimum Flow with Demands. This problem, sometimes
referred to as circulation problem with lower bounds [14], is a generalization of
Maximum Flow in a network and can be solved in polynomial time. Before
delving into the reduction, we take a short detour so that we can focus on what
the problem of Minimum Flow with Demands is about, recall some relevant
concepts and detail an approach for solving it.

Minimum Flow with Demands. Like in the standard setting, a flow network
is a directed graph G = (V,E) with two distinguished nodes, a source s and a
sink t. We extend the usual definition so that each edge (u, v) ∈ E has a capacity
c(u, v) and also a lower bound d(u, v) called demand, with 0 ≤ d(u, v) ≤ c(u, v).
A feasible flow in G is a function f : V × V → R that satisfies the following
properties:

– Flow conservation: for all u ∈ V \ {s, t},
∑

v∈V f(u, v) =
∑

v∈V f(v, u).
– Edge constraints: for all u, v ∈ V , d(u, v) ≤ f(u, v) ≤ c(u, v).

Minimum Flow with Demands asks for a feasible flow f� of minimum
value for the given network G – or to report that no feasible flow exists. For
solving Minimum Flow with Demands, we reduce it to Maximum Flow,
closely following the method described in [9]. For that, we construct a new net-
work G′ = (V ′, E′), without demands on edges, satisfying |V ′| = |V | + 2 and
|E′| ≤ 2|V | + |E| − 1, that, in addition to the same nodes as G, has a new
source s′ and target t′ and satisfies the following capacity function c′ : E′ → R:

– c′(s′, v) =
∑

u∈V d(u, v) and c′(v, t′) =
∑

w∈V d(v, w) for every vertex v ∈ V .
– c′(u, v) = c(u, v) − d(u, v) for every edge (u, v) ∈ E.
– c′(t, s) = ∞.

From [9], a function f : E → R is a feasible flow from s to t in G if and only if
the function f ′ : E′ → R satisfying f ′(u, v) = f(u, v) − d(u, v) (when restricted
to the original set of edges, E) is a saturating flow from s′ to t′ in G′, meaning
that its value equals the sum of the capacities of the edges leaving s′. Also, the
entire flow of G flows along the edge (t, s) in G′, that is, f ′(t, s) = |f |. Hence,
we may determine a minimum feasible flow f� in G by binary searching the
smallest value one can assign to the capacity c′(t, s) (instead of ∞) such that
the corresponding flow f ′ in the new network G′ is still saturating – which in turn
we can decide by running any maximum flow algorithm on G′. This method runs
in time O (T (G′) log |f�|), where T (G′) is the time complexity of the algorithm
used for computing a maximum flow in G′.
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Network Construction. Having defined the problem Minimum Flow with
Demands, we are ready to describe the reduction from Minimum SCOT r-
Guard for r -independent SCOTs with point-guards, that is, how a network G
can be built from a given r -independent (R, C, C′)-SCOT P . The idea is that,
in our construction, every guard will be placed in a room (which is plausible by
Lemma 4) and will r -see exactly one room, one horizontal super-corridor and one
vertical super-corridor – perhaps these super-corridors being mock (artificial),
as we explain below. First, we define two types of gadgets. A real-gadget is a set
of two nodes u and v that are connected by a directed edge (u, v) with demand 1
and capacity ∞. We call node u the in-node of the gadget and the other one, v,
its out-node. A pseudo-gadget is defined identically to a real-gadget, but the edge
linking the in-node to the out-node has demand 0. A real-gadget and a pseudo-
gadget are illustrated on Fig. 5 (above and below the network, respectively). The
edges in real-gadgets are the only ones in G that have positive demand. Every
edge in G has capacity ∞.

Each room, horizontal super-corridor and vertical super-corridor in P is rep-
resented by a corresponding real-gadget in G. Let us denote the gadgets corre-
sponding to a given room R, to a horizontal super-corridor C ′

h and to a vertical
super-corridor C ′

v as Γ (R), Γ (C ′
h) and Γ (C ′

v), respectively. Also, add to G two
pseudo-gadgets, Γ (C ′

hf ) and Γ (C ′
vf ), representing two mock super-corridors, one

horizontal and one vertical, respectively. Connect the out-node of Γ (C ′
hf ) to the

in-node of the real-gadget Γ (R) of every room R with demand 0 and connect the
out-node of the real-gadget Γ (R) of every room to the in-node of Γ (C ′

vf ). Con-
nect s to Γ (C ′

hf ) and Γ (C ′
vf ) to t with demands 0. For each pair (C ′

h, R) such
that C ′

h and R are incident in P , connect the out-node of Γ (C ′
h) to the in-node

of Γ (R) with an edge of demand 0. For each pair (R,C ′
v) such that R and C ′

v

are incident in P , connect the out-node of Γ (R) to the in-node of Γ (C ′
v), also

with demand 0. Connect the source node s of G to the in-node of the real-gadget
Γ (C ′

h) of each horizontal super-corridor with a demand of 0. Finally, connect the
out-node of every real-gadget Γ (C ′

v) corresponding to a vertical super-corridor
to the sink t, again with demand 0. See Fig. 5 for an illustration of the whole
reduction from a SCOT to a network of flows with demands.

Proposition 1. The size of the network G and the time it takes to construct it
are linear in the SCOT size, |R|+|C|. Specifically, |V | = 2(|R|+|C′|)+2×2+2 ≤
2(|R|+ |C|)+6 and |E| ≤ 2(|C′

h|+1)+2(|C′
v|+1)+3|R|+2|C| ≤ 3|R|+4|C|+4,

where C′
h and C′

v are the sets of horizontal and vertical super-corridors in P .

The meaning that we assign to one unit of flow on G is a point-guard in P ;
for each unit that flows from s to t, one guard is placed at some room in P .
The network G always admits a feasible flow; in particular, one with |f�| = ∞.
In practice, we can replace ∞ by an upper bound for the number of guards
needed for covering P entirely, such as |R| + |C|. Intuitively, the edges in real-
gadgets, which were assigned a positive demand, require any feasible flow on G
to pass through them and, thus, force every room and (real) super-corridor to
have at least one guard covering it. Edges in pseudo-gadgets have demand 0
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Fig. 5. The network G corresponding to the r -independent SCOT P of Fig. 4a. It has
a total of 26 nodes and 41 edges (including those on the gadgets).

because we do not explicitly require any guard to see them; their only impor-
tance is to ensure a correspondence between the network construction and the
polygon. Given that only edges in the real-gadgets of G contribute with posi-
tive capacities to G′, we have |E′| = |E| + 2(|R| + |C′|) + 1 ≤ 5|R| + 6|C| + 5.
This reduction to Minimum Flow with Demands then implies a method for
determining a minimum point-guard set for r -independent SCOTs. Its over-
all time complexity depends on the exact Maximum Flow algorithm that
is used as subroutine. For instance, if Dinic’s algorithm [8] is used, the run-
ning time that one obtains is O(|V ′|2|E′| log |f�|) = O(|C|3 log |C|). We remark
that [5] solves Maximum Flow in a network H = (VH , EH) in almost-linear
time |EH |1+o(1). By Proposition 1, this result speeds up our algorithm to
O

(

(5|R| + 6|C| + 5)1+o(1) log |C|
)

= O (|C|1+o(1) log |C|). Fig. 6 exemplifies the
parallelism between f� in G and the optimal point-guard set in P . Lemma 5
establishes the connection between Minimum SCOT r-Guard and Minimum
Flow with Demands, which allows us to conclude Theorem 3.

Lemma 5. The (R, C, C′)-SCOT P has a point-guard set G of size k ≤ |R|+ |C|
if and only if the network with demands G has a feasible flow f of value |f | = k.

Proof. (⇒) Let G be a point-guard set for P with |G| = k. By Lemma 4, assume
every guard in G is placed inside a room. For each guard g ∈ G, let R ∈ R,
C ′

h ∈ C′ and C ′
v ∈ C′ be the room, horizontal super-corridor and vertical

super-corridor that g r -sees; if it does not see any horizontal and/or vertical
super-corridor, take C ′

h and/or C ′
v as mock super-corridors. Send 1 unit of

flow from s to t through the path s → Γ (C ′
h) → Γ (R) → Γ (C ′

v) → t. This
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can always be done because all the edge capacities are ∞. This yields a flow
of value k. Since the guard set G covers every room, every horizontal super-
corridor and every vertical super-corridor in P , the demand of every edge
in G will be satisfied and therefore the flow is feasible.

(⇐) Let G = ∅. Do what follows while there is some path from s to t in G that
passes only through edges (u, v) with f(u, v) > 0. Let γ = s → Γ (C ′

h) →
Γ (R) → Γ (C ′

v) → t be such a path, which can be found by a breadth-
first search from s. Place a guard anywhere in the intersection of R, the
stretch of C ′

h and the stretch of C ′
v; if C ′

h and/or C ′
v are mock super-corridors,

place the guard in an arbitrary y-coordinate and/or an arbitrary x-coordinate,
respectively, within room R. Insert this guard into G. Decrement in 1 the value
of f(u, v) for every edge (u, v) along γ. Since the flow f satisfied every edge
demand in G, for any room and corridor in P there will be at least one guard
in G watching over it and |G| = k. The number of processed paths γ is |f |,
being |f | ≤ |R|+ |C|, and, since every considered path γ has 4 edges, the cost
per iteration is O(1), leading to an overall linear-time reduction. ��

Theorem 3. A minimum-cardinality point-guard set for an (R, C, C′)-SCOT P
that is r-independent can be determined in time O(|C|1+o(1) log |C|).

Fig. 6. (a) Minimum feasible flow f� in the network G, with |f�| = 6. The flow has
not been annotated on edges (u, v) with f�(u, v) = 0 to avoid clutter. (b) SCOT P ,
with an optimal set of 6 point-guards determined by flow f�.

4 NP-Completeness with Point-Guards

In Sects. 2 and 3, we have presented efficient, polynomial-time algorithms for
solving the cases where the SCOT instance has no holes or is r -independent.
These were majorly based upon the specific structure of the polygon, which
allowed for determining guard placements that we can combinatorially prove
optimal. We now prove the hardness of the general version of the problem – the
one where the SCOT simultaneously has holes and is not r -independent.



724 V. Cruz and A. P. Tomás

Theorem 4. Minimum SCOT r-Guard with point-guards is NP-hard.

For the proof, we present a polynomial reduction from Minimum Polyomino
r-Guard, which is the problem of finding a minimum-cardinality point-guard
set for a polyomino under r -visibility. An m-polyomino Pm is a polyform that
results from the finite union of m unit squares, called cells, edge to edge [1,4].
Deciding whether a polyomino with m cells can be r -guarded with up to k point-
guards, for a positive integer k, is NP-hard [11]. At a high level, the SCOT B
we construct for a given m-polyomino P is composed of a sequence of identical
gadgets replicated side by side, horizontally. Each two consecutive gadgets in the
sequence are connected by one or more horizontal corridors as we will describe
in due course. For an overview of the reduction, see Fig. 7. We define as Δ(P )
the minimal unit grid that contains the polyomino P . Suppose its dimensions
are N rows × M columns and assume that the top-left corner of Δ(P ) has
coordinates (0, 0).

Fig. 7. Reduction from Minimum Polyomino r-Guard to Minimum SCOT r-
Guard, not presented to scale.

Anchor Gadget. We begin by defining the anchor gadget Γ that will be instan-
tiated several times in the construction of our SCOT (Fig. 8). It consists of an
(N + 7) × 5 room (Rc) whose top and bottom walls are contained, respectively,
in the lines y = 0 and y = N + 7 (for convenience, we assume that the y-axis
grows downwards). Two tiny rooms are appended onto the walls of Rc by means
of corridors. On the left there is a 5 × 1 room (Rl), whose top edge also satisfies
y = 0. Rl is connected to the big room Rc by means of two 1 × 1 corridors: one
of the corridors (Cγ) has its top edge contained in y = 1 and the other corridor
(Cδ) has its own contained in y = 3. Similarly, above Rc there is a 1 × 5 room
(Rt) whose top wall is contained in y = −2. Rt is also connected to Rc through
two 1×1 corridors whose left walls obey x = 1 (Cα) and x = 3 (Cβ), respectively.
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Fig. 8. Anchor gadget Γ .

Instance Transformation. SCOT B is formed by M + 1 identical anchor
gadgets Γ0, Γ1, . . . , ΓM arranged horizontally side by side, numbered 0 through
M from left to right. The big rooms of each two consecutive anchor gadgets Γi

and Γi+1 (0 ≤ i < M) are separated by a horizontal space of 3 units and the
line y = 0 passes through the top edges of all the big rooms. All the corridors
connecting two consecutive anchor gadgets in B have fixed length 3 but variable
width. For placing corridors in B, sweep through the grid Δ(P ), column by
column, from left to right. When processing the i-th column (0 ≤ i < M),
consider all the vertical maximal connected components of cells that belong to
that column in P . For each connected component spanning rows a, a+1, . . . , b of
the i-th column, add a corridor with length 3 and width b−a+1 connecting big
rooms i and i+1 of B. That corridor has to be placed so that its top and bottom
edges are contained, respectively, in the lines y = a+6 and y = (b+1)+6 = b+7.

Lemma 6. The reduction is polynomial on m, the number of cells in P .

Proof. N,M ≤ m is a suitable upper bound for the dimensions N × M of the
minimal unit grid Δ(P ) containing P , so building M +1 anchor gadgets is done
in O(m) time. Sweeping through the columns of the grid Δ(P ), determining
maximal vertical connected components and adding the corresponding corridors
to the SCOT B can be done in time linear on the grid size, O(m2). Every anchor
gadget takes 7 horizontal and N +9 vertical units of space, each two consecutive
anchor gadgets are connected by horizontal corridors of length 3 and all the
coordinates of vertices in B are defined by integers bounded by O(m). ��
Lemma 7. Let Γ be an anchor gadget, possibly with extra horizontal corridors
attached to its left and right walls that result from the presented construction.
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Exactly 3 point-guards are required for guarding Γ , ignoring the extra corridors.
Moreover, we can construct such a guard set in which every guard satisfies y ≤ 5.

Proof. We first show that exactly 3 point-guards are required for guarding Γ .
For the necessity, the tiny rooms Rt and Rl of Γ lie in the half-plane defined by
y ≤ 5 and we must place a guard in the interior of the big room and of the two
tiny rooms. We now prove sufficiency. First, we choose one corridor among Cα

and Cβ and also choose one corridor among Cγ and Cδ. Suppose, without loss
of generality, that we picked Cα and Cγ . Place a guard on one of the reflex
vertices shared by Rt and Cα and another guard on one of the reflex vertices
shared by Rl and Cγ . So far we have covered Rt, Rl, Cα and Cγ . The remaining
parts of Γ can be covered with a third guard: simply place it somewhere in the
intersection of the stretches of Cβ and Cδ. The horizontal corridors that remain
can then be guarded independently from the gadget with extra guards.

We now show that there is always an optimal solution for guarding Γ for
which every guard satisfies y ≤ 5. Suppose, by contradiction, that there is a
better strategy, that is, one could instead choose to place the third guard in the
intersection of the big room Rc and the stretch of another horizontal corridor C�

(other than Cγ and Cδ) incident in the big room to try to r -see C�. We would
then still need a fourth guard somewhere in the stretch of Cδ to cover up Cδ:
since all the remaining horizontal corridors incident in Γ are, by construction,
positioned in the half-plane y ≥ 6, they are r -independent from Cδ and therefore
could not possibly be exploited to guard Cδ using less guards. Given that Cα has
already been covered, we have nothing to lose by also placing the fourth guard
in the stretch of Cβ ; so the fourth guard could be placed in the intersection of
the stretch of Cβ and the stretch of Cδ. But then one could swap the third and
fourth guards to obtain precisely the solution described before. ��
Lemma 8. [4] Under the r-visibility model, for any polyomino P there exists
an optimal solution for guarding P whose guards are placed only at cell corners.

Lemma 9. The polyomino P can be r-guarded by k ∈ Z
+ point-guards if and

only if the SCOT B can be r-guarded by 3(M + 1) + k point-guards.

Proof. We show that we can map any solution for P to an analogous one for B
which has 3 extra guards per anchor gadget (and vice-versa).

(⇒) Let GB = ∅ and let GP be a guard set for P with |GP | = k in which every
guard is placed at a cell corner by Lemma 8. For each guard g ∈ GP that is
placed at the intersection of the line y = q, for some 0 ≤ q ≤ N , and the
left (resp. right) cell corner of the i-th column of Δ(P ) (0 ≤ i < M), place a
guard in GB at the intersection of y = q + 6 and the left (resp. right) side of
a corridor connecting gadgets i and i + 1 in B. Note that, if i < M − 1, the
guard g also belongs to the (i+1)-th column of Δ(P ), but we do not place an
extra, redundant guard in GB . Next, insert 3(M + 1) guards satisfying y ≤ 5
into GB to cover every gadget in P , according to Lemma 7. We have that
|GB | = 3(M +1)+ k. By the assumption that GP covers up the entirety of P ,
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and since rooms in B are wider than the incident corridors and distances
do not affect r -visibility, GB covers up all the corridors connecting adjacent
anchor gadgets in B and, thus, B is covered entirely as well.

(⇐) Let GP = ∅ and let GB be a guard set for SCOT B with |GB | = 3(M +1)+k
in which every guard covering an anchor gadget satisfies y ≤ 5 by Lemma 7.
Assume that every guard in GB other than those 3(M + 1) that see anchor
gadgets are placed in corridors connecting consecutive anchor gadgets Γi and
Γi+1 (0 ≤ i < M). We can assume that because, by moving a guard g from
a big room Rc of an anchor gadget to an incident corridor, the only region g
stops seeing completely is Rc, which is still covered by one of the 3(M + 1)
guards we have discriminated for watching over anchor gadgets. For each
guard g ∈ GB that is placed at the intersection of the line y = q +6, for some
0 ≤ q ≤ N , and a corridor connecting gadgets Γi and Γi+1 in B (0 ≤ i < M),
let d be the horizontal distance between g and Γi and place a guard in GP

at the point (i + d, q). Big rooms Rc of anchor gadgets in B do not block
r -visibility from incident corridors. Therefore, guards in GB covering up all
the corridors imply that the corresponding guards in GP will also cover up
all the cells of P and, thus, GP is a valid guard set for P , with |GP | = k. ��
From [2] it follows that we can reduce candidate guard positions in a SCOT

to a finite set with polynomial size by partitioning it into rectangular pieces.
Being any such solution verifiable in time polynomial in the instance size, we are
finally set to state our main result.

Theorem 5. The decision version of Minimum SCOT r-Guard with point-
guards, i.e., deciding whether k ∈ Z

+ point-guards are sufficient, is NP-complete.

5 Conclusion

In this paper, we define a new family of orthogonal polygons, the SCOTs. Their
structure encompasses many properties which enable us to develop efficient
algorithms for r -guarding them. We prove that, if the SCOT is simple or r -
independent, the Minimum SCOT r-Guard problem is in P. A linear-time
algorithm is given for simple SCOTs, for both vertex- and point-guards, based
on a tree decomposition of the polygon. For r -independent SCOTs with vertex-
guards, we develop an algorithm that runs in time O(|C|√min{|R|, |C′|}), based
on bipartite matchings. Finally, a third one is given for r -independent SCOTs
with point-guards, based on a reduction to Minimum Flow with Demands,
which runs in time O (T (G′) log |f�|), where T (G′) is the time it takes to compute
a maximum flow in a network G′ that we define and |f�| is the optimal number of
guards. On the contrary, should the SCOT have holes and not be r -independent,
we show that the problem becomes NP-hard – indeed NP-complete for the case of
point-guards – by reducing from Minimum Polyomino r-Guard. We observe
that Minimum SCOT r-Guard with vertex-guards is also in NP, because any
solution is a subset of the vertices of the SCOT, and it can be approximated with
factor O(log |C|) in polynomial time [7]. However, whether it remains NP-hard
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or even APX-hard is left as an open question. As a final note, we remark that,
for standard visibility, along the lines of [18], we can prove that even finding a
minimum-cardinality guard set for the vertices of a simple SCOT is APX-hard.

Acknowledgments. The authors would like to thank anonymous reviewers for con-
structive comments.
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Abstract. Given a matching between n red points and n blue points
by line segments in the plane, we consider the problem of obtaining a
crossing-free matching through flip operations that replace two crossing
segments by two non-crossing ones. We first show that (i) it is NP-hard
to α-approximate the shortest flip sequence, for any constant α. Second,
we show that when the red points are colinear, (ii) given a matching, a
flip sequence of length at most

(
n
2

)
always exists, and (iii) the number

of flips in any sequence never exceeds
(
n
2

)
n+4
6

. Finally, we present (iv) a
lower bounding flip sequence with roughly 1.5

(
n
2

)
flips, which shows that

the
(
n
2

)
flips attained in the convex case are not the maximum, and (v)

a convex matching from which any flip sequence has roughly 1.5 n flips.
The last four results, based on novel analyses, improve the constants of
state-of-the-art bounds.

Keywords: Reconfiguration · Matching · Planar geometry · NP-hard

1 Introduction

We consider the problem of untangling a perfect red-blue matching drawn in the
plane with straight line segments. We are given a set of 2n points in the plane,
partitioned into a set R of n red points, and a set B of n blue points, in general
position (no three colinear points, unless they have the same color).

In combinatorial reconfiguration, a flip is an operation changing a configura-
tion into another [9,20]. In our case, a configuration is a set of n line segments
where each point of R is matched to exactly one point of B, i.e. a perfect straight-
line red-blue matching (a matching for short), and a flip replaces two crossing
segments by two non-crossing ones (Fig. 1).
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Fig. 1. Matchings before and after a flip. Solid squares are red points and hollow circles
are blue points. (Color figure online)

The reconfiguration graph is the directed simple graph whose vertices V are
the configurations, and such that there is a directed edge from a configuration
M1 to another one M2 whenever a flip transforms M1 into M2. Note that, in our
case, the reconfiguration graph is acyclic [8]. Let S ⊆ V be the set of sinks, which
corresponds to the crossing-free matchings. Given two configurations u, v ∈ V,
let P(u, v) be the set of directed paths from u to v. Given a path P , let the
length of P , denoted |P |, be the number of edges in P . We are interested in two
parameters of this reconfiguration graph:

d(R,B) = max
u∈V

min
v∈S

min
P∈P(u,v)

|P | and D(R,B) = max
u∈V

max
v∈S

max
P∈P(u,v)

|P | .

This leads to the definitions of d(n) and D(n) respectively as the maximum of
d(R,B) and D(R,B) over all sets R,B with |R| = |B| = n. An untangle sequence
is a path in the reconfiguration graph ending in S. Intuitively, d corresponds
to the minimum length of an untangle sequence in the worst case, while D
corresponds to the longest untangle sequence.

We also consider a more specific version of the problem where the red points
are colinear [6], say, on the x-axis. As the flips on each half-plane defined by
the x-axis are independent, we additionally suppose all blue points to lie on the
upper half-plane without loss of generality. The matchings in this case are called
red-on-a-line matchings.

Related Work. The parameters d and D have been studied in several different
contexts with similar definitions of a flip, but considering other configurations.

In 1981, an O(n3) upper bound on D(n) was stated in the context of optimiz-
ing a TSP tour [22] (the configurations are polygons). This upper bound should
be compared to the exponential lower bound on D(n) when the flips are not
restricted to crossing segments, as long as they decrease the Euclidean length
of the tour [12]. The convex case (i.e. the case where the points are in convex
position) has been studied in [25,28].

In the non-bipartite version of the straight-line perfect matching problem,
there are two possible pairs of segments to replace a crossing pair. This additional
choice yields an n2/2 upper bound on d(n) [8].
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Table 1. Lower and upper bounds on d(n) and D(n) for red-blue matchings.

d(n) bounds D(n) bounds

Lower Upper Lower Upper

General 3
2
n − 2, Theorem 5∗ (

n
2

)
(n − 1), [8,22] 3

2

(
n
2

) − n
4
, Theorem 4∗ (

n
2

)
(n − 1), [8,22]

Convex 3
2
n − 2, Theorem 5∗ 2n − 2, [6]

(
n
2

)
, [8]

(
n
2

)
, [6]

Red-on-a-line n − 1, [8]
(
n
2

)
, Theorem 2 3

2

(
n
2

) − n
4
, Theorem 4∗ (

n
2

)
n+4
6

, Theorem 3
∗ For even n.

It is also possible to relax the flip definition to all operations that replace
two segments by two others with the same four endpoints, whether they cross
or not, and generalize the configurations to multigraphs with the same degree
sequence [14,15,20]. In this context, finding the shortest path from a given
configuration to another in the reconfiguration graph is NP-hard, yet 1.5-
approximable [4,5,13,27]. If we additionally require the configurations to be
connected graphs, the same problem is NP-hard and 2.5-approximable [10].

Reconfiguration problems in the context of triangulations are widely stud-
ied [24]. A flip consists of removing one edge and adding another one while
preserving a triangulation. It is know that Θ(n2) flips are sufficient and some-
times necessary to obtain a Delaunay triangulation [18,21]. Determining the
flip distance between two triangulations of a point set [23,26] and between two
triangulations of a simple polygon [1] are both NP-hard.

Considering perfect matchings of an arbitrary graph (instead of the complete
bipartite graph on R,B), a flip amounts to exchanging the edges in an alternat-
ing cycle of length four. It is then PSPACE-complete to decide whether there
exists a path from a configuration to another [7]. There is, actually, a wide vari-
ety of reconfiguration contexts derived from NP-complete problems where this
same accessibility problem is PSPACE-complete [19]. Many other reconfigura-
tion problems are presented in [17].

Getting back to our context of straight-line red-blue matchings, the values of
d and D have been determined almost exactly in the convex case (see Table 1).
Notice that the n − 1 lower bound on d(n) carries to both the general and red-
on-a-line cases [8]. It is notable that the upper bound on D(n) is also the best
known bound on d(n) and has not been improved since 1981 [22].

As a final side note, given a red-blue point set, a crossing-free red-blue match-
ing can be computed in O(n log n) time [16] (improving over an O(n log2 n) algo-
rithm [3]). The algorithm is based on semi-dynamic convex hull data structures
and does not use flips. The problem has also been considered in higher dimen-
sions [2].

Contributions. We show in Sect. 2 that it is NP-hard to α-approximate the
shortest untangle sequence starting at a given matching, for any fixed α ≥ 1.

The following results are summarized in Table 1. An improved lower bound
on d(n) in the convex case is presented in Sect. 5.2. The remainder of the paper
considers the red-on-a-line case. In Sect. 3, we slightly improve the former 2

(
n
2

)
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upper bound on d(n) [6], using a simpler algorithm and a novel analysis. In
Sect. 4, we asymptotically divide by 6 the historical

(
n
2

)
(n − 1) upper bound on

D(n) [8,22], using a different potential argument.
In Sect. 5.1, we present a counter-example to the intuition that the longest

untangle sequence is attained in the convex case (where the number of crossings
is maximal). We take advantage of points that are not in convex position to
increase the lower bound by a factor of 3

2 . This red-on-a-line lower bound on d(n)
carries over to the general case (and even to non-bipartite perfect matchings).
The conjecture that D(n) is quadratic [8] remains open, though.

2 NP-Hardness

In this section, we consider the proof of the NP-hardness of the following prob-
lem. Let d(M) denote the minimum path length from a matching M to S, the set
of crossing-free matchings, in the reconfiguration graph. The proof is presented
in the full version.

Problem 1. Let α ≥ 1 be a constant.
Input: M , a red-blue matching with rational coordinates.
Output: An untangle sequence starting at M of length at most α times d(M).

We have the following theorem.

Theorem 1. Problem 1 is NP-hard for all α ≥ 1.

De Berg and Khosravi [11] showed that the rectilinear planar monotone 3-
SAT problem (RPM 3-SAT ) is NP-hard. The RPM 3-SAT problem is a special
case of the classic 3-SAT problem in which the clauses consist only of either all
positive or all negative literals and the layout is planar (Fig. 2). We reduce RPM
3-SAT to Problem 1. The key elements of the reduction are described next.

Given a planar embedding of an RPM 3-CNF formula Φ (Fig. 2), we construct
a matching MΦ of polynomial size. The property of this matching MΦ is that its
shortest untangle sequence has a length below a certain constant if Φ is satisfiable
and above α times this constant otherwise.

Fig. 2. A planar embedding of an RPM 3-CNF formula.
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The aforesaid matching MΦ is built using two types of gadgets. The vari-
able rectangles are replaced by variable gadgets (Fig. 3). The clause rectangles
together with the corresponding edges are replaced with padded clause gadgets
(Fig. 6).

A variable gadget is a three-segment matching with two crossings. It allows for
two possible flips, either of which produces a crossing-free matching, as shown
in Fig. 3. The flip generating the topmost segment stands for false (x = 0 in
Fig. 3), while the flip generating the bottom segment stands for true (x = 1).

Fig. 3. A variable gadget and its two untangle sequences.

A clause gadget is an OR gate with three inputs (Fig. 4). The RPM 3-CNF
clauses are either positive or negative. We describe the gadget for a positive
clause, but the gadget for a negative clause can be defined analogously (by a
vertical reflection). Three variable gadgets are the inputs of a clause gadget. In
the crossing-free matching obtained for the clause gadget, the presence of the
topmost segment (dashed in Fig. 4, 5, and 6) stands for a false output.

Fig. 4. A clause gadget connected to its variable gadgets x, y, and z.

A padding gadget is a gadget that serves to force an arbitrarily large number
k of flips if a clause is false. It consists of a series of k non-crossing segments
(the plain segments in Fig. 5). A padded clause gadget is a clause gadget coupled
with a padding gadget in such a way that the presence of the output segment
triggers k extra flips (Fig. 6).
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Fig. 5. A padding gadget.

Fig. 6. A padded clause gadget connected to its variable gadgets x, y, and z.

Let c be the number of clauses and v be the number of variables of the formula
Φ. If Φ is satisfiable, then the shortest untangle sequence of MΦ has at most 5
flips per clause plus 1 flip per variable. In this case, we have d(MΦ) ≤ 5c + v.
We choose the size of the padding gadget so that a non-satisfied clause triggers
k = α(5c + v) + 1 flips. If the formula Φ is not satisfiable, then at least one of
the padding gadgets is triggered and d(MΦ) > α(5c + v).

3 Upper Bound on d(n)

In this section, we prove the following upper bound.

Theorem 2. In the red-on-a-line case, d(n) ≤ (
n
2

)
.

The proof consists of the analysis of the number of flips performed by the
recursive algorithm described next. Throughout, we assume general position (no
two blue points with the same y-coordinate). Let the top segment of a red-on-a-
line matching be the segment with the topmost blue endpoint (Fig. 7(a)).

While the top segment s1 of the matching crosses another segment s2, we flip
s1 and s2. If multiple segments cross s1, then we choose s2 as the top segment
among the segments crossing s1.

The previous loop stops when the top segment s1 has no crossings. At this
point, we have that s1 splits the matching into at most two non-empty sub-
matchings, one to each side of s1. We recursively call the algorithm on these
submatchings (Fig. 7(b)).

The correctness of the algorithm follows from the next lemma.

Lemma 1 ([8]). If a matching admits a partition of submatchings whose convex
hulls are all disjoint, then, any sequence of flips in one of the submatchings never
affects the other submatchings (Fig. 8).
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Fig. 7. (a) A red-on-a-line matching with s1 as the top segment. (b) The matching just
before the first recursive calls of the algorithm, where s1 is free. (Color figure online)

Proof. This result can be found in [8]. Its proof amounts to the observation
that the flip operation leaves the convex hull unchanged (in Fig. 8, the dashed
segments are the results of possible flip sequences). ��

Fig. 8. A partition of 4 submatchings whose convex hulls are all disjoint. The segment
s is the only free segment.

We say that a segment s is free if the matching admits a partition of sub-
matchings whose convex hulls are all disjoint, and one of the submatchings con-
sists of the segment s alone. In Fig. 8, the segment s is the only free segment.
It is easy to see that the algorithm always makes the top segment free before
recursive calls. The correctness of the algorithm then follows from Lemma 1.

Flip Complexity. The analysis of the number of flips performed by the algo-
rithm stems from the following observations. We define three possible states for
a pair of segments (Fig. 9).

– State X: the segments are crossing.
– State H: the segments are not crossing and their endpoints are in convex

position.
– State T: the endpoints are not in convex position.

In the convex case, there are no T-states and a flip increases the number of
H-pairs by at least 1 unit, and decreases the number of X-pairs as well. Hence,
counting either X or H-pairs yields the

(
n
2

)
upper bound on D(n). However, when

the points are not in convex position, counting H and X-pairs is fundamentally
different. We will see that counting H-pairs is more useful to prove the desired
bounds.
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Fig. 9. The three different states of pairs of segments.

When the points are not in convex position, a flip may decrease the number of
H-pairs. Fig. 10 shows two such situations where flipping s1, s2 does not increase
the number of H-pairs. There is one H-pair involving segment s before the flip,
and none after the flip. Notice that, if we added multiple segments close to s,
the number of H-pairs would actually decrease. However, the algorithm avoids
these situations by choosing to flip top segments. The full proof involves state
tracking, a novel approach to analyse flip sequences, which is described next.

Fig. 10. Two cases where flipping s1, s2 does not increase the number of H-pairs. The
upper cone of s1, s

′
2 is shaded.

State Tracking. We have
(
n
2

)
pairs of segments before and after a flip. Each pair

has an associated state. However, since two segments change in the matchings,
there is no clear correspondence between the state of each pair before and after
the flip. State tracking establishes this correspondence by making choices of
which pair of segments in the initial matching corresponds to which pair of
segments in the resulting matching. These choices are performed deliberately to
obtain certain state transitions instead of others and prove the desired bounds.

The following notations will be used throughout the rest of this section and
are summarized in Fig. 11. Let r1, r2 be two red points and b1, b2 be two blue
points. Let s1, s2, s

′
1, s

′
2 be the following four segments respectively: r1b1, r2b2,

r1b2, r2b1. We consider a flip that replaces the pair of segments s1, s2 by s′
1, s

′
2.

Let M denote the matching before the flip and M ′ denote the resulting matching
after the flip.
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Fig. 11. Notations for a flip and for a variable segment s.

We order the
(
n
2

)
pairs of segments of M in a column vector. There are

three types of pairs of segments in M with respect to the flip: the unaffected
pairs (involving neither s1 nor s2), the flipping pair s1, s2, and the affected pairs
(involving exactly one of s1 or s2). We choose the new order of the

(
n
2

)
pairs of

segments of M ′ in a way that satisfies the following properties with respect to
the previous vector. The unaffected pairs keeps the same indices. The pair s′

1, s
′
2

gets the index of s1, s2. Next, we describe the remaining indices.
Let s be a segment of M distinct from s1 and s2. Let r and b be the red and

blue endpoints of s. Let i1 and i2 be the indices of s, s1 and s, s2, and let S1 and
S2 be their respective states. Let S′

1 and S′
2 be the respective states of s, s′

1 and
s, s′

2. We restrict our choice to the following two options:

– index s, s′
1 with i1, and s, s′

2 with i2, or
– index s, s′

1 with i2, and s, s′
2 with i1.

We call such a choice a tracking choice. We say that a pair of segments in M
turns into a pair in M ′ when they have the same index. We denote S → S′ to
specify that the pairs of segments with a given index go from the state S to
the state S′. In the following figures, we use S1,S2 → S′

1,S
′
2 as a shorthand

notation to say that we have the two following tracking choices: either S1 → S′
1

and S2 → S′
2 or S1 → S′

2 and S2 → S′
1.

There are 32 possible such transitions S → S′. Yet, the next two lemmas
ensure that some transitions can be ruled out by tracking choices. Lemma 2
actually holds for any (possibly non-bipartite) matching, while Lemma 3 is spe-
cific to the red-on-a-line case. Both lemmas are proved analyzing the tracking
choices of each possible position of a segment s relatively to the flipping pair.

Lemma 2. There always exists a tracking choice avoiding the H → X transi-
tion.

Proof. There clearly exists a tracking choice avoiding the H → X transition
unless we have either a transition (i) H,H → X,S or (ii) H,S → X,X, where
S ∈ {X,H,T}. We show that these two cases are not possible.

(i) H,H → X,S: If both the pairs s, s1 and s, s2 are H while at least one of the
two pairs s, s′

1 and s, s′
2 is X, then the final X state implies that s crosses

s1 or s2, which contradicts the two initial H states.
(ii) H,S → X,X: If one of the two pairs s, s1 and s, s2 is H while both pairs

s, s′
1 and s, s′

2 are X, then the two final X states imply that s crosses s′
1 and

s′
2. It follows that s also crosses s1 and s2, which is again a contradiction. ��
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If there are neither H → X nor H → T transitions (as in the convex case),
then an upper bound of

(
n
2

)
on the number of flips follows immediately. Unfor-

tunately, it is not always possible to avoid the H → T transition. However, the
following lemma shows that, in the red-on-a-line case we can avoid H → T if we
carefully choose which flip to perform. The proof is presented in the full version.
We define the upper cone of two segments r3b3, r4b3 as the locus of the points
that are separated from the horizontal line r3r4 by the two lines r3b3 and r4b3.
In Fig. 10, the upper cone of s1, s

′
2 is shaded.

Lemma 3. In the red-on-a-line case, if the blue point b of s is not in any of the
two upper cones of s1, s

′
2 and s2, s

′
1, then there always exists a tracking choice

that avoids H → T for the pairs s, s1 and s, s2 while still avoiding H → X.

We are now ready to prove Theorem 2.

Proof. Let f(M) be the total number of flips performed by the algorithm on an
n-segment input matching M and let g(M) be the number of flips performed by
the algorithm before the recursive calls. Let Mr denote the matching before the
recursive calls. The recursive calls take two submatchings of Mr that we call M1

and M2, yielding the following recurrence relation.

f(M) = f(M1) + f(M2) + g(M)

Let h̄(M) be the number of X-pairs plus the number of T-pairs in a matching
M , that is, the number of pairs that are not H-pairs. Lemma 3 ensures that

g(M) ≤ h̄(M) − h̄(Mr) ≤ h̄(M) − h̄(M1) − h̄(M2).

Clearly, f(∅) = 0. We suppose that, for all M ′ with less than n segments, we
have f(M ′) ≤ h̄(M ′). Then by induction we get

f(M) ≤ h̄(M1) + h̄(M2) + h̄(M) − h̄(M1) − h̄(M2) = h̄(M).

Theorem 2 follows since h̄(M) ≤ (
n
2

)
. ��

4 Upper Bound on D(n)

In this section we prove the following theorem.

Theorem 3. In the red-on-a-line case, D(n) ≤ (
n
2

)
n+4
6 .

To prove Theorem 3, we define a potential function Φ that maps a red-on-
a-line matching to an integer from 0 to

(
n
2

)
n+4
3 . Since Φ decreases by at least

2 units at each flip, the theorem follows. We first give the definitions needed to
present Φ. Then, we prove four lemmas yielding Theorem 3.

Let M be a red-on-a-line matching. Let r1, . . . , rn be the red points, from left
to right. Let < be a line, parallel to the line of the red points and above them.
For each k in {1, . . . , n}, we project the blue points onto <, using rk as a focal
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Fig. 12. (a) The projection tk for k = 3. (b) The segments t3(·). The three 3-observed
crossing 3-pairs are circled.

point. More precisely, each blue point b maps to a point tk(b), the intersection
between the ray rkb and the line < (Fig. 12(a)). We also define the function tk
of a red-blue segment rb as the segment tk(rb) = rtk(b) (Fig. 12(b)).

We may abbreviate a pair of segments rib, rjb
′ as 〈i, j〉 when the points b

and b′ can be deduced from the underlying matching. Let k be an integer in
{1, . . . , n}. We say that a pair of segments 〈i, j〉 is a k-pair if i ≤ k ≤ j. A k-flip
is then a flip of a k-pair. We say that two segments are k-observed crossing if
the extended projection tk(·) maps them to crossing segments (Fig. 12(b)). We
have the following lemma.

Lemma 4. A crossing k-pair is necessarily k-observed crossing.

Proof. Let rib, rjb
′ be a crossing k-pair. We suppose, without loss of generality,

that i < j (e.g. i = 2, k = 3, and j = 4 in Fig. 12).
The fact that the k-pair rib, rjb

′ is crossing means that the four points are
in convex position, and that they appear as ri, rj , b, b

′ on their convex hull in
counter-clock-wise order. Since i ≤ k ≤ j, the point rk is also on the boundary of
the convex hull of the four points. Therefore, the projection tk(·) will not change
the convex-hull order and the segments ritk(b) and rjtk(b′) will cross. ��

We define Φk(M), the k-th potential of M , as the number of k-observed
crossing k-pairs (Fig. 12(b)). Lemma 5 shows that the k-th potential Φk is at
most (k − 1)(n − k) + n − 1. Lemma 6 shows that Φk never increases, and
decreases by at least 1 unit at each k-flip.

Lemma 5. The k-th potential Φk takes integer values from 0 to k(n+1)−k2−1.

Proof. The k-th potential Φk(M) is at most the number of k-pairs in M , crossing
or not. There are exactly (k − 1)(n− k) k-pairs of the form 〈i, j〉 with i < k < j.
There are exactly k−1 k-pairs of the form 〈i, k〉 with i < k. There are exactly n−k
k-pairs of the form 〈k, j〉 with k < j. In total, there are (k−1)(n−k)+k−1+n−k
k-pairs in M . ��
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Lemma 6. The k-th potential Φk never increases, and decreases by at least 1
unit at each k-flip.

Proof. We order the projected blue points on � from left to right. We then map
each projected blue point tk(b) to an element in {↙, ↓,↘}:

– tk(b) is mapped to ↙ if b is matched to a red point on the left of rk,
– tk(b) is mapped to ↓ if b is matched to rk,
– tk(b) is mapped to ↘ if b is matched to a red point on the right of rk.

Let w = w1 . . . wn be the word on the alphabet {↙, ↓,↘} induced by the order
of the projected blue points and the map. For instance, in Fig. 12 with k = 3,
w =↘↙↙↘↓↘.

Let the total order of the symbols be ↙ ≺ ↓ ≺ ↘. An inversion in w is a
pair wi, wj with i < j and wj ≺ wi. The inversions in w are in bijection with
the k-observed crossing k-pairs in M . Thus, by definition, Φk(M) is the number
of inversions in w. Lemma 6 follows from the following two observations.

(i) Any flip which is not a k-flip swaps two ↙ or two ↘ in w, resulting in word
w′ identical to w.

(ii) Lemma 4 ensures that a crossing k-pair corresponds to an inversion in w.
Thus, a k-flip exchanges the two symbols of an inversion in w, resulting in
word w′ with at least one inversion less than in w. ��
We now define Φ(M), the potential of M , as the sum of Φk(M), for k in

{1, . . . , n}. The following lemma presents the key properties of Φ.

Lemma 7. The potential Φ takes integer values from 0 to
(
n
2

)
n+4
3 , and decreases

by at least 2 units at each flip.

Proof. We know that Φ takes non-negative integer values by definition and, by
Lemma 5, an upper bound on Φ is

∑n
k=1

(
k(n + 1) − k2 − 1

)
=

(
n
2

)
n+4
3 .

Finally, Lemma 6 ensures that Φ decreases by at least 2 units at each flip.
Indeed, a flip of a pair 〈i, j〉 is counted at least twice: once in Φi as an i-flip, and
once in Φj as a j-flip. ��

Theorem 3 follows from Lemma 7.

5 Lower Bounds

In this section, we consider the following two lower bounds. The proofs are
presented in the full version.

Theorem 4. In the red-on-a-line case, for even n, D(n) ≥ 3
2

(
n
2

) − n
4 .

Theorem 5. In the convex case, for even n, d(n) ≥ 3n
2 − 2.

To prove Theorem 4, it suffices to present a long untangle sequence. The
initial matching of the sequence is represented in Fig. 13(a). To prove Theorem 5,
we need to show that every untangle sequence starting at a given configuration
(represented in Fig. 13(b)) is long enough. We do so, by showing that every flip
reduces the number of crossings by exactly one unit.



742 A. K. Das et al.

Fig. 13. (a) A 3-butterfly to lower bound D(6). (b) A 5-fence to lower bound d(10).

5.1 Lower Bound on D(n)

We provide a 2m-segment red-on-a-line matching which we call an m-butterfly.
There exists an untangle sequence starting at an m-butterfly of length 3

2

(
2m
2

)−m
2 .

Next, we give the precise definition of an m-butterfly and some intuition.
For an integer m, we define an m-butterfly as the following matching with

n = 2m segments. For i from 1 to m we have red points ri = (i/(m + 1), 0) and
r′
i = (−i/(m + 1), 0) as well as blue points bi = (i − (m + 1), (m + 1) − i) and

b′
i = ((m + 1) − i, (m + 1) − i). We match ri to bi and r′

i to b′
i. Next, we discuss

important properties of an m-butterfly.
We call a red-on-a-line convex matching an n-star if all the

(
n
2

)
pairs of

segments cross. We say that an n-star looks at a point p if the blue points
are all on a common line, and if p is the intersection of this line with the line
of the red points. We also say that two red-blue point sets R,B and R′, B′

are fully crossing if all the pairs of segments of the form {rb, r′b′} cross, where
(r, b, r′, b′) ∈ R×B×R′×B′. Two matchings are fully crossing if their underlying
red-blue point sets are fully crossing. An m-butterfly is a red-on-a-line matching
consisting of two fully crossing m-stars both looking at the same point p = (0, 0)
(Fig. 13(a) represents these properties but it is not drawn to scale).

In the following, we use the state tracking framework from Sect. 3 to describe
how to come up with an untangle sequence starting at an m-butterfly with more
than

(
2m
2

)
flips. We consider a sequence of tracking choices with no H → X

transition (Lemma 2) for the long untangle sequence we build. We take advantage
of the non-convex position of the blue points to create flip situations such as in
Fig. 10(a), where an H-pair is turned into a T-pair.

For instance, let us consider an X-pair of one of the m-stars composing the
m-butterfly. At some point of the untangle sequence, we flip this X-pair, turning
it into an H-pair. Latter on, we turn this H-pair into a T-pair, as in Fig. 10(a).
Still latter on, we turn this T-pair into an X-pair again, similarly to the pairs
involving the horizontal segment in Fig. 1. This X-pair will be flipped again.

We manage to carry out this whole process to flip twice all the 2
(
m
2

)
pairs of

the two m-stars composing the m-butterfly while still having one flip for every
other pair. In total, we reach 3

2

(
2m
2

) − m
2 flips.
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5.2 Lower Bound on d(n)

We provide a convex red-blue matching which we call an m-fence, with 2m
segments and 3m − 2 crossings (Fig. 13(b)). All untangle sequences starting at
an m-fence have length 3m−2, that is, each flip reduces the number of crossings
by exactly one unit. Next, we give the precise definition of an m-fence and the
idea of the proof.

Let q2m+2, q2m, q2m−1, . . . , q4, q3, q1, p1, p3, p4, . . . , p2m−1, p2m, p2m+2 be 4m
points in convex position, ordered counter-clockwise, and with colors alternating
every two points (Fig. 13(b)). More precisely, points pi, qi are red if i ≡ 1, 2
mod 4 and blue otherwise. We deliberately avoid using the indices 2 and 2m+1
to simplify the description. The segments of an m-fence are the piqi+3 and the
qipi+3 where i is odd and varies between 1 and 2m − 1.

For 1 ≤ k ≤ m + 1, the k-th column consists of the at most 4 points with
indices 2k − 1 and 2k. We say that a convex red-blue matching with the same
point set as an m-fence is a derived m-fence if, for all k ∈ {2, . . . , m}, for all
w ∈ {p, q}, one of the following statements holds:

1. w2k−1 is matched to a point of the (k − 1)-th column, and w2k is matched to
a point of the (k + 1)-th column, or

2. w2k−1 is matched to a point of the (k + 1)-th column, and w2k is matched to
a point of the (k − 1)-th column.

Two examples of derived m-fences are presented in Fig. 14. Note that an m-
fence is in particular a derived m-fence. To prove Theorem 5, we first show that
a flip changes a derived m-fence into another derived m-fence. Finally, we show
that a flip of a derived m-fence reduces its number of crossings by exactly one
unit.

Fig. 14. Two examples of derived 5-fences.

6 Concluding Remarks

Untangle sequences of TSP tours have been investigated since the 80s, when
a cubic upper bound on D(n) has been discovered [22]. This bound also holds
for matchings (even non-bipartite ones) and has not been improved ever since.
Except for the convex case, there are big gaps between the lower and upper
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bounds, as can be seen in Table 1. Experiments on tours and matchings have
shown that, in all cases tested, the cubic upper bound is not tight and the lower
bounds seem to be asymptotically tight.

Untangle sequences have many unexpected properties which make the prob-
lem harder than it seems at first sight. The following questions remain open.

1. If we add a new segment to a crossing-free matching, what is the maximum
length of an untangle sequence? Notice that an o(n2) bound would lead to
an o(n3) bound for d(n).

2. Is it always possible to find an untangle sequence that does not flip the same
pair of segments twice? Using a balancing argument, we can show that the
number of distinct flips in any untangle sequence is O(n8/3).

3. What is the maximum number of flips involving a given point? The cubic
potential provides a quadratic bound which leads again to an O(n3) bound
for D(n).

We proved the NP-hardness of computing the shortest untangle sequence for
a red-blue matching. What is the complexity of computing the shortest untangle
sequence for a TSP tour, for a red-on-a-line matching, or even for a convex
instance? What about the longest untangle sequence?
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Abstract. In this paper, we consider the variant of the art gallery prob-
lem where the input polygon is a staircase polygon. Previous works on
this problem gave a 2-approximation for point guarding a staircase poly-
gon (where guards can be placed anywhere in the interior of the polygon
and we wish to guard the entire polygon). It is still unknown whether
this point guarding variant is NP-hard. In this paper we consider the
vertex guarding problem, where guards are only allowed to be placed
at the vertices of the polygon, and we wish to guard only the vertices
of the polygon. We show that this problem is NP-hard, and we give a
polynomial-time 2-approximation algorithm.

1 Introduction

A polygon that does not have any holes is said to be a simple polygon. The
boundary of a simple polygon is a Jordan curve that separates the plane into
two regions: inside the polygon and outside the polygon. For any two points u, v
inside a simple polygon, we say u sees v if and only if the line segment connecting
u and v does not go outside the polygon.

In the famous art gallery problem, we are given a simple polygon P , and we wish
to compute a minimum number of guards that collectively see P . There are several
variants of the art gallery problem that have been considered. In the point guarding
variant, any point inside P is eligible to be chosen as a guard. In the vertex guarding
variant, guards are only allowed to be the vertices of the polygon. Some variants
require that the guards see the entire polygon, and other variants require that the
guards see some subset of the polygon (e.g., just the vertices of the polygon).

The art gallery problem for simple polygons has proven to be difficult to
obtain tight bounds on polynomial-time approximation algorithms. There have
been several hardness results [1,9], and the problem is known to be APX-hard
[3]. There is an O(log OPT ) approximation algorithm for point guarding [2].

Due to the difficulty with the simple polygon setting, more restricted versions
of polygons have been considered. A simple polygon such that a vertical line
c© Springer Nature Switzerland AG 2022
A. Castañeda and F. Rodŕıguez-Henŕıquez (Eds.): LATIN 2022, LNCS 13568, pp. 746–760, 2022.
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Fig. 1. (a) A simple polygon that is not x-monotone. (b): An x-monotone polygon. (c)
A staircase polygon.

intersects the boundary of the polygon in at most two points is said to be an
x-monotone polygon, or simply, a monotone polygon. See Fig. 1 (b). We call the
leftmost vertex of a monotone polygon L and the rightmost point of a monotone
polygon R. Then the boundary of the monotone polygon can be partitioned
into two x-monotone polygonal chains: the ceiling and the floor. The ceiling
(resp. floor) is defined as the boundary of P when walking clockwise (resp.
counterclockwise) from L to R. Note that a vertical line can intersect the ceiling
at most once and the floor at most once. For monotone polygons, both the vertex
guarding and point guarding variants are known to be NP-hard [7,8], and there is
an O(1)-approximation algorithm for point guarding a monotone polygon [8]. For
vertex guarding a monotone polygon, there is no O(1)-approximation algorithm
currently known.

The art gallery problem has also been considered in the special case where
we wish to guard an x-monotone polygonal chain by itself, commonly referred
to as terrains. In this context, we say two points u and v on the terrain see each
other if the line segment connecting them does not go under the terrain. In this
setting, the problem is known to be NP-hard [6] and there is a PTAS [4], so the
complexity of guarding terrains is settled.

In this paper, we consider the art gallery problem in the context where the poly-
gon we wish to guard is a staircase polygon. Similarly to monotone polygons, we
can partition the boundary of a staircase polygon into a ceiling and a floor, but
instead of the ceiling and floor being x-monotone polygonal chains, they are “stair-
cases”. See Fig. 1 (c). Abusing notation, we let L denote the lower left vertex and
let R denote the upper right vertex. These vertices are on both the ceiling and
the floor, and every other vertex will either be only on the floor or on the ceiling.
Let f1, f2, . . . , fk denote the vertices of the floor (not including L and R). For any
point p, we let p.x denote the x-coordinate of p and let p.y denote the y-coordinate
of p. Then f1, . . . fk are such that f1.y = L.y and f1.x > L.x, fi for even i satisfies
fi.x = fi−1.x and fi.y > fi−1.y, and fi for odd i > 1 satisfies fi.y = fi−1.y and
fi.x > fi−1.x. Additionally fk satisfies fk.x = R.x and fk.y < R.y (note k must
be odd). Intuitively, if we walk along the floor from L to R, we alternate between
walking horizontally to the right and then straight up; each “turn” is a 90 degree
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angle. We call fi such that i is odd convex vertices and we call fi such that i is even
reflex vertices. The ceiling vertices (other than L and R) can be denoted c1 . . . , ck′

and satisfy symmetric properties to the floor except the walk from L to R along
the ceiling starts vertically upward and finishes horizontally to the right. We also
have that ci for odd i are convex vertices and ci for even i are reflex vertices.

There is one previous paper [5] on guarding staircase polygons which pre-
sented a 2-approximation for point guarding a staircase polygon. The point
guarding variant is not known to be NP-hard, and the O(1)-approximation for
point guarding monotone polygons can also be applied to the staircase setting,
so the main contribution here was to reduce the approximation ratio for the
staircase setting.

1.1 Our Results

In this paper, we consider the vertex guarding variant of the art gallery problem
when the polygon to be guarded is a staircase polygon. Unlike for the point
guarding variant, there is no previously-known O(1)-approximation algorithm
for monotone polygons that can be applied here, so previously the best known
solution for this is O(log OPT ) from simple polygons. In this paper, we present a
polynomial-time 2-approximation for this problem as well as a prove the problem
is NP-hard. Our algorithm applies to when we want to guard the entire polygon
as well as when we want to guard only the vertices of the polygon.

Theorem 1. There is a polynomial-time 2-approximation algorithm for vertex
guarding any staircase polygon.

Theorem 2. Given a staircase polygon P and an integer k, it is NP-hard to
determine if there is subset of vertices of P of size at most k that sees all of the
vertices of P .

2 Preliminaries

In this section we state some observations about staircase polygons that will be
used in the paper. The first is about the visibility of a convex vertex. First note
that we do not consider L and R as convex vertices in this analysis. Consider any
convex vertex f on the floor of a staircase polygon P . It is adjacent to a vertical
edge on the boundary of P that extends up from it. This edge will prevent f
from seeing any point p ∈ P such that p.x > f.x. Similarly, f is adjacent to a
horizontal edge that extends to its left. This edge will prevent f from seeing any
p ∈ P such that p.y < f.y. And finally, it is easy to see that for any p ∈ P that
satisfies p.x ≤ f.x and p.y ≥ f.y, then f must see p. A symmetric argument
holds for ceiling convex vertices. So we have the following observations.

Observation 3. A convex vertex f on the floor of a staircase polygon P sees a
point p ∈ P if and only if p.x ≤ f.x and p.y ≥ f.y.
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Observation 4. A convex vertex c on the ceiling of a staircase polygon P sees
a point p ∈ P if and only if p.x ≥ c.x and p.y ≤ c.y.

Another observation that we will use involves points that are blocked from
the ceiling by a floor point or vice versa. Let p be any point in a staircase polygon
P , and let c be any point on the ceiling of P that p does not see. Without loss of
generality, assume that p.x < c.x. If there is a floor vertex f that is over the line
segment p, c, then p will not be able to see any point q such that q.x ≥ c.x or
q.y ≥ c.y. Indeed, if the line segment p, q passes under f , then f blocks p from
q. If p, q passes over q, then c will be under p, q. The symmetric argument for
when a ceiling vertex blocks a point from some floor point holds as well.

3 Approximation Algorithm

In this section, we give a polynomial-time 2-approximation algorithm for vertex
guarding the vertices of any staircase polygon P . In our algorithm, all of the
guards that we pick will be convex vertices of P . We will not consider the lower
left vertex L or the upper right vertex R to be convex vertices here. Let F =
{f1, f3, f5, . . . , fk−2, fk} denote the convex vertices on the floor from left-to-right,
and let C = {c1, c3, . . . , ck′−2, ck′} denote the convex vertices on the ceiling from
left-to-right. Note that there are no reflex vertices in either F or C. Also note
that since all of the indices of vertices in F and C are odd, the “next” vertex
after fi in F (resp. after ci in C) is fi+2 (resp. ci+2). To aid in the analysis, our
algorithm computes two disjoint sets of guards: red guards R and blue guards B.
Our final guard set is then R∪B. The algorithm is formally stated in Algorithm1.

3.1 Algorithm Correctness

Let us index the guards in R as {r1, r2, r3, . . .} where the index corresponds to the
order we added the guard to R. Note that the algorithm alternates adding vertices
in F and C, so each rj such that j is odd is from F , and each rj such that j is even
is from C. We will argue that whenever we add a guard r to R, that R ∪ B sees
every p ∈ P such that p.x ≤ r.x or p.y ≤ r.y. We will argue inductively. In the base
case when we have r1 = f1, we get that this holds true by Observation 3 as there
are no p ∈ P such that p.y < f1.y. So now suppose that the claim holds true for
the last red guard rj we added to R, and we will show that it will hold true after
we add the next red guard rj+1 to R. There are two symmetric cases to consider
depending on if rj is on the floor or is on the ceiling.

Floor to Ceiling. Suppose rj is on the floor and the next red guard, rj+1 is
on the ceiling. We know that all points p in the region with p.x ≤ rj .x and
p.y ≥ rj .y are covered by rj . Likewise, we know that all points q such that
q.x ≥ rj+1.x and q.y ≤ rj+1.y are covered. Now consider the points unseen
by the red guards, u, with u.x > rj .x and u.x < rj+1.x. These points have a
maximum y value of v.y, where v is the ceiling reflex vertex incident to rj+1
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R = ∅;
B = ∅;
r ← f1 ;
R ← R ∪ {r};
while R ∪ B doesn’t guard all of P do

if r ∈ F then
ci ← rightmost vertex c ∈ C s.t. c.x ≤ r.x;
B ← B ∪ {ci};
if i < k′ then

r ← ci+2;
R ← R ∪ {r};

end

else
if r ∈ C then

fi ← highest vertex f ∈ F s.t. f.y ≤ r.y;
B ← B ∪ {fi};
if i < k then

r ← fi+2;
R ← R ∪ {r};

end

end

end

end
return R ∪ B

Algorithm 1: Guarding algorithm

with v.x = rj+1.x. This is because the points to the right of rj+1 are covered
by rj+1. Now consider the blue guard b that was placed along with rj+1. The b
guard is on the rightmost convex ceiling vertex ci such that ci.x ≤ rj .x. As ci+2

is where we placed rj+1, ci is incident to v, so b.y = v.y. Since b is on a convex
ceiling vertex and u.y ≤ v.y = b.y, the u points are covered by b (Fig. 2).

Fig. 2. (a): Illustration of b covering the blue region left unseen by the red guards. (b):
The same as (a), except when rj .x = b.x. (Color figure online)
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Ceiling to Floor. Suppose rj is on the ceiling and the next red guard, rj+1 is
on the floor. There is a region of unseen points between these guards, where any
such point u satisfies u.y > rj .y and u.y < rj+1.y. For such u, u.x ≤ v.x, where
v is the floor reflex vertex incident to rj+1 with v.y = rj+1.y. Since our blue
guard, b, is placed on the highest floor convex vertex fi such that b.y ≤ rj .y,
and fi+2 is where rj+1 sits, b is incident to v. Thus, u.x ≤ v.x = b.x and any
such point u is seen by b.

Fig. 3. (a): Illustration of b covering the blue region left unseen by the red guards, (b):
The same as (a) except when rj .y = b.y. (Color figure online)

Termination. Consider the last red guard r we place. By the inductive argu-
ment, we know we see every point p ∈ P such that p.x ≤ r.x or p.y ≤ r.y. But
there may be p ∈ P such that p.x > r.x and p.y > r.y. We argue that the last
blue guard we add will see all such points.

We can see this by noting the the last blue guard b must be the last blue
convex vertex on its side of P . For example, if b is on the ceiling, then there
cannot be another convex vertex on the ceiling or it would have been another
red guard. This means that b must be adjacent to R whether it is on the ceiling
or the floor. If b is on the ceiling then there are no p ∈ P with p.y > b.y. If b is
on the floor, then there are no p ∈ P with p.x > b.x. It follows that b sees the
rest of the polygon (Fig. 3).

3.2 Approximation Ratio

Let OPT be an optimal solution for guarding P . We will show that our solution
R ∪ B contains at most twice the number of guards of OPT .

The key observation is that every point in P sees at most one red guard from
our solution. Indeed, it follows from the algorithm that if ri and ri+1 are two
consecutive red guards from our algorithm, then it must be that ri.x < ri+1.x
and ri.y < ri+1.y. Then by our observations on the visibilities of convex vertices,
there is no point that can see ri and ri+1 at the same time. It then follows that
no point can see any pair of red guards at the same time, and therefore it must
be that |OPT | ≥ |R|.
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We then complete the argument by showing that |B| is either |R| or |R| − 1.
When we place a blue guard, we can charge this guard to the red guard we just
placed before it. Every red guard will be charged exactly once, perhaps with
the exception of the very last red guard placed. If the last red guard resulted in
the entire P to be guarded, then we do not add a blue guard later. Either way,
our final solution either has size 2|R| or 2|R| − 1. Therefore our algorithm is a
2-approximation. This completes the proof of Theorem 1.

4 NP-hardness

In this section we will show that vertex guarding the vertices of a staircase
polygon is NP-hard. The reduction is from vertex guarding a monotone polygon
that satisfies some additional properties. In particular, let P1 be a monotone
polygon with vertices v1, . . . vn indexed such that v1.x < v2.x < · · · < vn.x. Note
that the indices are based only on x-coordinate and not how they are encountered
when walking around the boundary. Suppose P1 satisfies the following properties:

1. vi such that i is odd are on the ceiling and vi such that i is even are on the
floor.

2. For every i ∈ {2, . . . , n}, we have vi.x − vi−1.x = 1.

It is already known that vertex guarding a monotone polygon (where the
entire polygon must be seen) is NP-hard [8], and we show in the appendix that
we can extend this to vertex guarding the vertices of a monotone polygon that
satisfies the additional properties by adding additional vertices to the boundary
of the construction used in [7] so that the polygon satisfies properties 1 and 2
above.

The first step of our reduction is to apply a linear transformation to the
x-monotone polygon P1 to obtain a polygon P2 that is both x-monotone and
y-monotone in a manner such that the visibilities are preserved. That is, two
vertices u and v of P2 see each other if and only if their corresponding vertices
of P1 see each other.

4.1 Transforming Any X-Monotone Polygon into One that Is
X-Monotone and Y-Monotone

Let P denote any monotone polygon and let G be its visibility graph. That is,
the vertices of G correspond to the vertices of P , and an edge connects two
vertices of G if and only if their corresponding vertices of P see each other. We
will show how to convert P into a polygon T (P ) that is both x-monotone and
y-monotone, and such that G also is the visibility graph of T (P ).

The transformation is as follows. Let M be any scalar such that M >
vi−1.y−vi.y
vi.x−vi−1.x

for every i ∈ {2, . . . , n}. We construct T (P ) by taking each vertex vi
of P and creating a vertex ti such that ti.x := vi.x and ti.y := M · vi.x + vi.y.
The sequence of vertices on the boundary of T (P ) is the same as in P . See Fig. 4
for an illustration.
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(0,0)

(1,3)

(2,1)

(3,0) (0,0)

(1,6) (2,7)

(3,9)

Fig. 4. Left: an x-monotone polygon P . Right: a transformed polygon T (P ) that is
x-monotone and y-monotone. We used M = 3 for T (P ).

Lemma 1. For any monotone polygon P with visibility graph G, T (P ) is x-
monotone and y-monotone and G is also the visibility graph of T (P ).

Proof. Let t1, . . . , tn denote the vertices of T (P ) such that ti−1.x < ti.x for each
i ∈ {2, . . . , n}. Clearly T (P ) is x-monotone as the x-coordinates of the vertices
of T (P ) are exactly the same as those in P . To see that T (P ) is y-monotone, we
will show that ti.y − ti−1.y > 0.

ti.y − ti−1.y = (M · vi.x + vi.y) − (M · vi−1.x + vi−1.y)
= M · (vi.x − vi−1.x) + vi.y − vi−1.y

>
vi−1.y − vi.y

vi.x − vi−1.x
· (vi.x − vi−1.x) + vi.y − vi−1.y

= vi−1.y − vi.y + vi.y − vi−1.y

= 0

Therefore T (P ) is both x-monotone and y-monotone.
We now show that this mapping preserves the visibilities. Consider two ver-

tices vi and vk of P such that i < k. In a monotone polygon, whether vi and vk
see each other or not is only depends upon the vertices vj such that i < j < k.
In particular, vi and vk will see each other if and only if every floor point
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between them is below vi, vk and every ceiling point between them is above
vi, vk. Consider where vi, vk intersects the vertical line x = vj .x for a j satisfying
i < j < k. This intersection point is (vj .x,

(vk.x−vj .x)·vi.y+(vj .x−vi.x)·vk.y
vk.x−vi.x

). We
can then subtract the y-coordinates to determine if vj is above or below vi, vk. If
(vk.x−vj .x)·vi.y+(vj .x−vi.x)·vk.y

vk.x−vi.x
− vj .y > 0, then vj is below vi, vk. If the difference

is negative then vj is above vi, vk. If the difference is 0 then the three points are
colinear. Some work assumes that with three colinear points, the middle point
blocks the outer two and some work assumes that it does not block them; our
transformation and hardness reduction works for either definition. So this verti-
cal distance between vj and vi, vk is critical to determining if vi sees vk. Let us
call this vertical distance d1(i, j, k). Similarly, the vertical distance between tj

and ti, tk in T (p) is (tk.x−tj .x)·ti.y+(tj .x−ti.x)·tk.y
tk.x−ti.x

− tj .y. Let us call this distance
d2(i, j, k). We claim that d1(i, j, k) = d2(i, j, k), implying vj is below vi, vk if and
only if tj is below ti, tk. We have

d2(i, j, k) =
(tk.x − tj .x) · ti.y + (tj .x − ti.x) · tk.y

tk.x − ti.x
− tj .y

=
(vk.x − vj .x)(Mvi.x + vi.y) + (vj .x − vi.x)(Mvk.x + vk.y)

vk.x − vi.x
− (Mvj .x + vj .y)

=
(vk.x − vj .x)vi.y + (vj .x − vi.x)vk.y

vk.x − vi.x
− vj .y

= d1(i, j, k)

Then this implies that vi sees vk if and only if ti sees tk. Indeed, if vi sees
vk then every floor point between them is below vi, vk (and the corresponding
floor point in T (P ) will be below ti, tk) and every ceiling point between them is
above vi, vk (and the corresponding ceiling point in T (P ) will be above ti, tk).
Similarly, if vi does not see vk, then there is some floor point that is above vi, vk
or a ceiling point that is below vi, vk which will block vi from vk. The same
blocking point will block ti and tk in T (P ).

We remark that this transformation applies to terrains as well. Both the NP-
hardness proofs for monotone polygons [7,8] and terrains [6] featured a steep
canyon where gadgets passed information back and forth across the canyon. The
canyon seemed to be a key feature of the reduction, but as this transforma-
tion shows, the hardness constructions could have been drawn in a y-monotone
manner as well.

4.2 Our Reduction

We are given a monotone polygon P1 that satisfies the two properties listed at
the beginning of this section, and we are given an integer k. We want to know
if there is a subset of vertices O of P1 of size at most k such that every vertex
of P1 sees at least one vertex of O. This problem is NP-hard (proof omitted due
to lack of space). We will reduce this problem to the staircase polygon vertex
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guarding problem. By translating the polygon, we can assume without loss of
generality that the largest y-coordinate of P1 is α, the smallest y-coordinate
of P1 is −α, and vi.x = i for each vertex. We apply the transformation to P1

to obtain a polygon P2 that is both x-monotone and y-monotone. Note that
since the difference in x-coordinates of vi and vi−1 is 1, we then have that any
M > 2α will suffice to make P2 be y-monotone. We pick M to be 180α. Since
the visibilities are preserved, we have that P2 can be guarded with at most k
guards if and only if P1 can be guarded with at most k guards. Moreover, P2

satisfies the same two properties that we assumed P1 satisfies.
The next step is to create a staircase polygon S that uses vertices at the exact

same locations as the vertices of P2. We call the vertices of S that correspond
to vertices of P2 the gold vertices. All of the gold vertices will be reflex vertices
of S. We then add additional vertices to the gold vertices so that the boundary
satisfies the conditions of a staircase polygon and the added vertices do not alter
the visibilities of any two gold vertices. In particular, if two vertices in P2 see each
other, then their corresponding gold vertices will not be blocked by any of the
added vertices and therefore will still see each other. To achieve this, let’s make
an observation. The entire polygon P1 is contained between the horizontal lines
y = α and y = −α. Then P2 will be contained between the lines y = (180α)·x+α
and y = (180α) · x − α (seen by applying the transformation to the points on
the lines y = α and y = −α respectively). We call the region between these lines
the strip. Note that the line segment connecting two gold vertices that see each
other stays inside the strip. We ensure that all of the extra vertices we add to
S are outside the strip, and therefore they cannot block two gold vertices who
see each other in P2. Note that it suffices to describe just the reflex vertices of
S, as if we know two consecutive floor reflex vertices of S, then we know exactly
where the convex vertex between them must be.

Consider some vi floor gold vertex. Due to the properties P2 satisfies, it
follows that vi−1 exists and is a ceiling gold vertex. We will now describe a
gadget that we will place on the ceiling between vi−1 and vi that is above the
strip, as well as a symmetric gadget that we will place on the floor between vi−1

and vi that is below the strip. The intuition of the gadgets is that it allows us to
turn this portion of the boundary of S into a staircase, and we will show that we
can “force” a guard placement of S to have to include a specific vertex on the
floor gadget that will see all of the vertices in the ceiling gadget without seeing
any of the gold vertices, and similarly we will force a guard placement of S to
include a specific vertex on the ceiling gadget that will see all of the vertices we
add to the floor gadget without seeing any of the gold vertices. The intuition
then is that after we place guards at all of the forced locations, the only unseen
vertices will be the gold vertices which will essentially require us to find a set of
gold vertices of size k to guard just the gold vertices (the technical details are a
bit more complicated than this as there will have to be some non-gold vertices
that can see some gold vertices, but this is the high level idea).
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High Level Overview of the Gadget. There is one gadget that we use to
convert P2 into a staircase polygon S. Between any two gold vertices vi−1 and vi,
we will have one gadget on the floor, and a symmetric gadget on the ceiling. Each
copy of the gadget contains six key points that are carefully placed to ensure
that they see exactly what we want them to see. The six points can be broken
up into three pairs of points that we color code for ease of description. We have
two green points on the “outside” of the gadget, then nested between the green
points are two purple points, then nested between the purple points are two blue
points. See Fig. 5 for an illustration. All 6 of these points will be reflex vertices
of S. Between the purple and blue vertices are a set of Θ(n) staircase steps that
we call C1

i and C2
i , where n is the number of vertices of P1. Finally there is a

convex vertex f∗
i between the two blue vertices that plays a critical role in the

reduction.

green

green

purple

purple

blue

blue

f∗
i

C1
i

C2
i

Fig. 5. The floor gadget. The coordinates shown here are not exact. (Color figure
online)

Now we describe the interaction between the floor gadget and the ceiling
gadget that are between the same two gold vertices. See Fig. 6 (a). The ceiling
gadget is the same as the floor gadget but “mirrored”. That is, the x-coordinate
of the rightmost green vertex of the floor gadget (relative to vi) is the same as
the leftmost green vertex of the ceiling gadget (relative to vi−1). In Fig. 6 (a),
the thick diagonal lines are the bounding lines of the strip. The vertical dotted
lines show the x-coordinates of vi−1 and vi, and the horizontal dotted lines show
the y-coordinates of vi−1 and vi if they were in the exact middle of the strip



On Vertex Guarding Staircase Polygons 757

(they could be up to α above or below those lines). The dashed lines are the
“midpoint” lines of the dotted lines, breaking the plane up into four quadrants.
Let C3

i and C4
i denote the staircase steps on the ceiling gadget. C1

i and C3
i are

in the bottom left quadrant, and C2
i and C4

i are in the upper right quadrant.
The convex vertices between the blue vertices are the only vertices in the top
left and bottom right quadrants. They are positioned left-to-right so that C3

i is
entirely to the left of C1

i , which is entirely to the left of C4
i , which is entirely

to the left of C2
i . Then from bottom-to-top they are positioned so that C1

i is
entirely below C3

i , which is entirely below C2
i , which is entirely below C4

i . What
this placement does is ensure that a guard placed at any vertex of C1

i will see the
convex vertices of C3

i , but it will not see any convex vertices of C4
i (same vice

versa). Similarly, a guard placed at any vertex of C2
i will see all of the convex

vertices of C4
i , but it will not see any convex vertices of C3

i (same vice versa).
However, the convex vertex f∗

i will see the entire ceiling gadget. The intuition is
that this “forces” a solution to place a guard at f∗

i to guard the ceiling gadget,
and symmetrically we must place a guard at the corresponding ceiling gadget
convex vertex to guard the entire floor gadget. f∗

i will then see every vertex on
the ceiling from the convex vertex above vi−1 through the convex vertex above
the right green vertex of the ceiling gadget.

It becomes important to keep track of which gold vertices can be seen from
gadget vertices. We show that the only gadget vertices that can see gold vertices
are the green vertices as well as the convex vertices “outside” the green vertices
(no vertices between the green vertices can see any gold vertices). However we
show that the gold vertices that can be seen from such a vertex is a subset of
what a nearby gold vertex sees, so it ends up not being a problem (it is here
where we use the fact that P2 satisfies properties 1 and 2).

Now we overview how we connect all the gadgets together with the gold
vertices to obtain our staircase polygon S. Consider a floor gadget between two
gold vertices vi−1 and vi. One of these gold vertices is a floor vertex (they could
be L and/or R which can be viewed as both being ceiling and floor vertices here).
Without loss of generality, assume vi is a floor vertex. Then the rightmost green
vertex of the gadget connects to vi with a single convex vertex in between, and
the leftmost green vertex of the gadget connects to the rightmost green vertex of
another floor gadget between vi−2 and vi−1 (again with a convex vertex between
them). The floor gadgets between vi−2 and vi−1 are mirrored for symmetry. The
ceiling gadgets are connected similarly. See Fig. 6 (b). The black vertices in the
figure represent the f∗

i vertices where we are “forced” to place guards. These
black vertices collectively will see every vertex of S except for the gold vertices,
which essentially forces us to have to find a solution that will guard P2.
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x = i

x = i − 1

x = i − 1
2

y = 180α · i

y = 180α · i − 180α

y = 180α · i − 90α

vi−1

vi

C1
i

C2
i

C3
i

C4
i

)b()a(

Fig. 6. (a) The relative positioning of the floor and ceiling gadgets. Note that the
coordinates are not exact and the visibilities of the gold vertices and the gadget vertices
are not correct here. In the actual construction, given the width of the strip, the picture
would be much steeper. (b) Connecting gadgets to each other and gold vertices. For
simplicity, only green points are shown in the gadget. Coordinates are not exact here.
The actual construction is much steeper. (Color figure online)

Green Vertex Placement. The gold vertex vi−1 is such that vi−1.x = i − 1,
and vi−1.y ∈ [180α · i − 181α, 180α · i − 179α]. The gold vertex vi is such that
vi.x = i, and vi.y ∈ [180α · i − α, 180α · i + α]. We first will describe the floor
gadget (the ceiling gadget is symmetric). The first reflex vertex on the floor to
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the right of vi−1 is the point g1i = (i− 11
20 , 180α · i− 104α). The last reflex vertex

of the floor gadget to the left of vi is the point g2i = (i − 2
5 , 180α · i − 77α). We

call g1i and g2i the green vertices of the floor gadget. These two green vertices
will be the only reflex vertices on the floor gadget that can see a gold vertex,
but as we show, the gold points they can see is restricted to just a few “nearby”
gold vertices. The proof is omitted due to lack of space.

Lemma 2. The green vertices g1i and g2i cannot see any gold vertex vj such that
j ≤ i − 3 or j ≥ i + 3.

A corollary of the lemma is that the green vertices can see at most 5 gold
vertices: vi−2, vi−1, vi, vi+1, and vi+2. Note that vi must also see all 5 of these
gold vertices. vi must see vi−2 and vi+2 because they are adjacent vertices on
the floor of P2. vi must see vi−1 because there are no vertices between vi and
vi−1 to block them (vi+1 is argued similarly). So while the green points can see
some gold vertices, they will see a subset of the gold vertices seen by vi; this fact
will play an important role in the correctness of the reduction.

Purple Vertex Placement. Next we place the purple vertices p1i and p2i ,
which respectively will be the first reflex vertex on the floor to the right of
g1i and the first reflex vertex on the floor to the left of g2i . The coordinates of
p1i = (i− 8

15 , 180α·i−103.5α), and the coordinates of p2i are (i− 201
500 , 180α·i−80α).

We argue that these purple vertices do not see any gold vertices. The proof is
omitted due to lack of space.

Lemma 3. The purple vertices p1i and p2i do not see any gold vertices. More
specifically, g1i blocks p1i and p2i from all gold vertices vj such that j ≤ i− 1, and
g2i blocks p1i and p2i from all gold vertices vj such that j ≥ i.

Blue Vertex Placement. We next place two blue vertices b1i and b2i . The
coordinates of b1i are (i − 31

60 , 180α · i − 103.25α), and the coordinates of b2i are
(i− 202

500 , 180α ·i−82α). We claim that the blue points do not see any gold points.
The line through p1i and b1i is “almost horizontal” which makes it easy to see
that b1i will not see any gold vertices vj for j ≤ i − 1, and to see that it will not
see any gold vertices vj such that j ≥ i, we can use the fact that we already
know g2i blocks p1i from all such points. Indeed, the slope of the line through p1i
and b1i is less than the slope of the line through p1i and g2i . This implies b1i is
under this line segment and therefore g2i will also block b1i from all gold vertices
to the right of b1i . The argument for b2i is symmetric.

The blue vertices both connect to the critical convex vertex f∗
i that will then

have the coordinates (i − 202
500 , 180α · i − 103.25α).

The Ceiling Gadget. We now give the coordinates for the gadget on the ceiling
between vi−1 and vi. The gadget is symmetric to the floor gadget. We give the
coordinates for two green points g3i and g4i where g3i will be to the right of g4i .
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The coordinates of g3i are symmetric to g2i on the floor, and the coordinates of
g4i is symmetric to g1i . The purple and blue points p3i , p4i , b3i and b4i are defined
similarly. So g3i = (i − 3

5 , 180α · i − 103α), g4i = (i − 9
20 , 180α · i − 76α), p3i =

(i− 299
500 , 180α·i−100α), p4i = (i− 7

15 , 180α·i−76.5α), b3i = (i− 298
500 , 180α·i−98α),

and b4i = (i − 29
60 , 180α · i − 76.75α). With respect to seeing gold vertices, the

arguments for the floor also apply to the ceiling gadget, and with the coordinates
precisely defined, one can verify that the ceiling and floor gadgets are arranged in
the layout as described in the high level overview with regards to the left-to-right
and bottom-to-top ordering of the vertices.

4.3 Correctness

We are now ready to prove that our reduction is correct. We set k′ := 2(n−1)+k
where n is the number of vertices of P1, and we argue that there is a cover for
P1 of size k if and only if there is a cover of size k′ of S. The proof is omitted
due to lack of space. This completes the proof of Theorem 2.

Lemma 4. There is a subset of vertices of size at most k that sees every vertex
of P1 if and only if there is a subset of vertices of size at most k′ of S that sees
every vertex of S.
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Abstract. We consider a variant of the art gallery problem where all
guards are limited to seeing to the right inside a monotone polygon. We
call such guards: half-guards. We provide a polynomial-time approxima-
tion for point guarding the entire monotone polygon. We improve the
best known approximation of 40 to 8. We also provide an NP-hardness
reduction for point guarding a monotone polygon with half-guards.

1 Introduction

An instance of the original art gallery problem takes as input a simple polygon P .
A polygon P is defined by a set of points V = {v1, v2, . . . , vn}. There are edges
connecting (vi, vi+1) where i = 1, 2, . . . , n − 1. There is also an edge connecting
(v1, vn). If these edges do not intersect other than at adjacent points in V (or at
v1 and vn), then P is called a simple polygon. The edges of a simple polygon give
us two regions: inside the polygon and outside the polygon. For any two points
p, q ∈ P , we say that p sees q if the line segment pq does not go outside of P .
The art gallery problem seeks to find a guarding set of points G ⊆ P such that
every point p ∈ P is seen by a point in G. In the point guarding problem, guards
can be placed anywhere inside of P . In the vertex guarding problem, guards are
only allowed to be placed at points in V . The optimization problem is defined
as finding the smallest such G.

1.1 Previous Work

There are many results about guarding art galleries. Several results related to
hardness and approximations can be found in [3,9,10,13,20,21]. Whether a poly-
nomial time constant factor approximation algorithm can be obtained for ver-
tex guarding a simple polygon is a longstanding and well-known open problem,
although a claim for one was made in [5].

Additional Polygon Structure. Due to the inherent difficulty in fully under-
standing the art gallery problem for simple polygons, much work has been done
guarding polygons with additional structure, see [4,6,15,19]. In this paper we
consider monotone polygons.

α-Floodlights. Motivated by the fact that many cameras and other sensors
often cannot sense in 360°, previous works have considered the problem when
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guards have a fixed sensing angle α for some 0 < α ≤ 360. This problem is
often referred to as the α-floodlight problem and was first studied in [2]. Some of
the work on this problem has involved proving necessary and sufficient bounds
on the number of α-floodlights required to guard (or illuminate) an n vertex
simple polygon P , where floodlights are anchored at vertices in P and no vertex
is assigned more than one floodlight, see for example [22,23]. Orthogonal poly-
gons can always be guarded with 90◦-floodlights using any of the illumination
rules defined in [12], Lemma 1 there changing NE for NW, or SW. It follows
that there is a rotation of an orthogonal polygon that can be illuminated with
� 3n−4

8 � orthogonal floodlights, and the bound is tight. Computing a minimum
cardinality set of α-floodlights to illuminate a simple polygon P is APX-hard
for both point guarding and vertex guarding [1]. For more problems that have
been studied for floodlights see [8,24]. More specifically, 180°-floodlights, or half-
guards, see only in one direction. Half-guarding may have the ability to help
with full-guarding. A full-guard can see 360°. In [11,17], the authors use half-
guarding to show a 4-approximation for terrain guarding using full-guards. A
constant factor approximation for half-guarding a monotone polygon was shown
in [15] and NP-hardness for vertex half-guarding a monotone polygon was shown
in [14].

1.2 Definitions

A simple polygon P is x-monotone (or simply monotone) if any vertical line
intersects the boundary of P in at most two points. In this paper, we define half-
guards as guards that can see only in one direction. If we assume half-guards can
only see right, then we redefine sees as: a point p sees a point q if the line segment
pq does not go outside of P and p.x ≤ q.x, where p.x denotes the x-coordinate
of a point p. In a monotone polygon P , let l and r denote the leftmost and
rightmost point of P respectively. Consider the “top half” of the boundary of
P by walking along the boundary clockwise from l to r. We call this the ceiling
of P . We obtain the floor of P by walking counterclockwise along the boundary
from l to r. A vertical line that goes through a point p is denoted lp. Given two
points p, q in P such that p.x < q.x, we use (p, q) to denote the points s such that
p.x < s.x < q.x, (resp. [p, q] for p.x ≤ s.x ≤ q.x). If referring to only boundary
points in the range, we use the subscript c (resp. f) to denote the ceiling (resp.
floor), for example, (p, q]c represents ceiling points c where p.x < c.x ≤ q.x.

1.3 Our Contribution

Krohn and Nilsson [19] give a constant factor approximation for point guarding a
monotone polygon using full-guards. There are monotone polygons P that can be
completely guarded with one full-guard that require Ω(n) half-guards considered
in this paper [15]. Due to the restricted nature of half-guards, new observations
are needed to obtain the approximation given in this paper. A 40-approximation
for this problem was presented in [15]. The algorithm in [15] places guards in 5
steps: guard the ceiling vertices, then the floor vertices, then the entire ceiling
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boundary, then the entire floor boundary, and finally any missing portions of
the interior. We propose a new algorithm that requires only 3 steps: guarding
the entire ceiling, then the entire floor, and lastly the interior. By providing
improved analysis of the new algorithm, we obtain an 8-approximation.

In addition, we show that point guarding a monotone polygon with half-
guards is NP-hard. An NP-hardness proof for vertex guarding a monotone poly-
gon with half-guards was presented in [14]. However, if a guard was moved off a
vertex, it would see too much of the polygon and the reduction would fail. Thus,
new insights were needed for point guarding.

The remainder of the paper is organized as follows. Section 2 gives an algo-
rithm for point guarding a monotone polygon using half-guards. Section 3 pro-
vides an NP-hardness proof for point guarding a monotone polygon using half-
guards. Finally, Sect. 4 gives a conclusion and possible future work.

2 8-Approximation for Point Guarding a Monotone
Polygon with Half-Guards

We start with an algorithm for point guarding the boundary of a monotone poly-
gon P with half-guards. We first give a 2-approximation algorithm for guarding
the entire ceiling. A symmetric algorithm works for guarding the entire floor
giving us a 4-approximation for guarding the entire boundary of the polygon.
Finally, even though the entire boundary is seen, portions of the interior may be
unseen. We show that by doubling the number of guards, we can guarantee the
entire polygon is seen giving an 8-approximation.

We first provide a high level overview of the algorithm for guarding the entire
ceiling boundary. Any feasible solution must place a guard at the leftmost vertex
l where the ceiling and floor come together (or this vertex would not be seen).
The algorithm begins by placing a guard here. The algorithm iteratively places
guards from left to right, letting S denote the guards the algorithm has already
placed. When placing the next guard, we let p denote the rightmost point on the
ceiling such that for every ceiling point x ∈ [l, p]c, there exists a guard g′ ∈ S
that sees x. In other words, the point on the ceiling directly to the right of p is
not seen by any guard in S. Note that p may be a ceiling vertex or any point on
the ceiling. The next guard g that is placed will lie somewhere on the vertical
line lp. The algorithm initially places g at the intersection of lp and the floor,
and it slides g upwards vertically along lp. The algorithm locks in a final position
for the guard g by sliding it upwards along lp until moving it any higher would
cause g to no longer see some unseen point on the ceiling (i.e. a point not seen
by some g′ ∈ S); let rg be the leftmost such point, see, for example, Fig. 1. In
this figure, when g is initially placed on the floor, it does not see rg, but as the
algorithm slides g up the lp line, rg becomes a new point that g can see. If g is
slid any higher up than as depicted in the figure, then g would no longer see rg,
and therefore g is locked in that position. The algorithm then adds g to S, and
repeats this procedure until the entire ceiling is guarded. The ceiling guarding
algorithm is formally described in Algorithm 1.
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Algorithm 1. Ceiling Guard
1: procedure Ceiling Guard(monotone polygon P )
2: S ← {g} such that g is placed at the leftmost point l.
3: while there is a point on the ceiling that is not seen by a guard in S do
4: Let p be the rightmost ceiling point such that for each ceiling point x ∈ [l, p]c,

there exists a guard g′ ∈ S where g′ sees x. Place a guard g where lp intersects the
floor and slide g up. Let rg be the first ceiling point not seen by any guard in S
that g would stop seeing if g moved any further up. Place g at the highest location
on lp such that g sees rg.

5: S ← S ∪ {g}.
6: end while
7: return S
8: end procedure

Fig. 1. A guard g slides up lp
and sees a point rg. If g goes
any higher, it will stop seeing
rg.

Fig. 2. Assume g.x < p.x < f.x and that p is
on the ceiling. (Left) If the floor blocks g from
a ceiling point p and the polygon is monotone,
then g will not see any point f . (Right) If g sees
the point f and the floor blocks g from p, then
the polygon is not monotone.

2.1 Sliding Analysis

All steps, except the sliding step, can be trivially done in polynomial time. The
analysis of [15] uses a sliding step but only considers guarding the vertices. When
considering an infinite number of points on the ceiling, it is not immediately clear
that the sliding can be done in polynomial time since each time a guard moves
an ε amount upwards, it will see a different part of the boundary. We prove that
there are at most O(n3) potential locations on lp that must be considered. We
use the following lemma to prove the bound on the number of locations a guard
g must consider on lp.

Lemma 1. Consider points g, f ∈ P such that g.x < f.x. If g sees f , then the
floor (resp. ceiling) cannot block g from seeing any ceiling (resp. floor) point in
(g, f)c (resp. (g, f)f ).

Proof. Consider a point on the ceiling p such that g.x < p.x < f.x. In order for
the floor to block g from p, the floor must pierce the gp line segment. If g is being
blocked from seeing p because of a floor vertex, since the polygon is monotone,
then the floor must pierce the gf line segment, a contradiction that g sees f ,
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see Fig. 2 (left). If the floor pierces the gp line segment and g sees f , then the
polygon is not monotone, see Fig. 2 (right).

Corollary 1. If a point g is blocked by the floor (resp. ceiling) from seeing a
point p on the ceiling (resp. floor), then g does not see any points in (p, r].

Each guard g placed by the algorithm starts on the floor and is slid upwards.
The approximation analysis in Sect. 2.2 relies on the fact that g has the largest
y-coordinate on lp as possible such that if g is moved any further upwards, then
there is a point on the ceiling (rg) that would not be seen. This ceiling point
(rg) could be (A) a vertex, blocked by another vertex, (B) a point on an edge
that marks the endpoint of sight from a previously-placed guard, or (C) a point
seen specifically from where lp intersects the floor or the ceiling. These possible
slide-stopping ceiling points correspond to points on lp that are the potential
guard locations, denoted PGL, that the algorithm must consider.

PGL(A): Vertex-Vertex. To represent vertices that cause other vertices to no
longer be seen as a guard slides upwards, PGL(A) are given by rays shot from a
vertex through another vertex until they hit lp. This includes the rays extending
each edge of the polygon. For example, in Fig. 3, the guard gj+1 is placed where
it would stop seeing rgj+1 . With n vertices, there are O(n2) PGL(A) on lp.

Fig. 3. When placing guard gj+2 on lp, g0 and g2 are given by PGL(A), and g1 is given
by PGL(B). The algorithm places the guard at g1 to ensure the leftmost previously
unseen portion of edge [vi+1, vi+2] from x and to the right is seen. (When previously
placing guards gj and gj+1, gj location was given by PGL(C), and gj+1 by PGL(A).)

PGL(B): Vertex-Unseen Edge Points. It is possible that only part of a
ceiling edge is seen from previously placed guards. For example, in Fig. 3, gj

sees [vi+1, x], but (x, vi+2] is unseen. PGL(B) represent lines of sight to points
marking the start of unseen portions of the ceiling. Let Xg be the set of points
on the ceiling that are hit by rays shot from some guard g ∈ S through all
vertices. For example, in Fig. 3: x, rgj

∈ Xgj
. For all g ∈ S, XS =

⋃
Xg. For any

edge that is only partially covered, these points, along with the vertices of the
polygon, represent all of the potential endpoints of these partially seen edges.
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For all points x ∈ XS , shoot a ray from x through all vertices until they hit lp.
For example in Fig. 3, a ray from x through vertex vi intersects lp at g1. These
locations on lp are denoted as GXS

and are the PGL(B). In Fig. 3, if location
g1 ∈ GXS

was not considered, it would miss the leftmost unseen points (x, x+ε]c
on [vi+1, vi+2].

In order to bound |GXS
|, consider that when a guard is being placed, at most

n guards have been placed already. To illustrate, if a guard g is placed in the
polygon in the range of [vi, vi+1), where vi and vi+1 are ceiling vertices, then the
final location of g must see vertex vi+1. If g does not see vi+1 when g started
on the floor, then a floor vertex must have blocked g from seeing vi+1. However,
visibility of g to the ceiling is not lost if g is pushed up such that it sees over
the floor blocker and sees vi+1. When g is placed, the subsequent guard will be
placed at or beyond lvi+1 . Therefore, when a guard is being placed, at most n
guards have been placed already.

With n vertices and n previously placed guards g ∈ S, a ray shot from every
previously placed g through every vertex gives an upper bound of: |XS | = O(n2).
Finally, a ray shot from each x ∈ XS through every vertex yields a total of
|GXS

| = O(n3) PGL(B) on lp.

Fig. 4. Ceiling visibility is maximal
when g is on the floor. If g is moved
up, then rg would not be seen.

Fig. 5. Ceiling visibility is maximal
when g is on the floor. The guard g
moves up until it stops seeing r′.

PGL(C): lp Floor and Ceiling Intersection Points. Assume g is on the floor
and there exists some vertex vi such that g sees vertex vi, but vi is blocking g from
seeing vi+1, see Fig. 4. If there are multiple vi candidates, choose the leftmost vi

candidate. Shoot a ray from g through vi and let rg be the point on the boundary
that is hit. If rg is on the ceiling, then no guard to the left of g is able to see
rg. If g is slid up, then g would no longer see rg. Thus, g stays where lp hits the
floor.
If rg is on the floor, then moving g upwards will not cause g to see any more
ceiling points to the right of rg because some vi is blocking g from seeing them
(Corollary 1), see Fig. 5. By Lemma 1, the floor cannot be blocking g from seeing
any ceiling points to the left of rg. Therefore, moving g upwards will not result
in seeing any more ceiling points. However, the approximation analysis relies on
g being as high as possible on lp such that g sees rg and rg is a ceiling point.
Consider guards S placed by the algorithm up to this point. Now consider ceiling
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points R that are not seen by any guard g′ ∈ S. We slide g upwards until it would
have stopped seeing some point r′ ∈ R using PGL(A) and PGL(B). We set rg to
be r′. In the case where there are no PGL(A) or PGL(B) on lp, then any point
on lp sees all of the unseen ceiling points of [p, vi], we place g on the ceiling at
point p and we assign rg to be any point in (p, vi] that is also in R.

A trivial analysis of the number of locations on lp that PGL(A), PGL(B)
and PGL(C) could generate gives a polynomial upper bound on the number of
locations the algorithm has to consider at O(n2) + O(n3) + 2 = O(n3).

Necessity of PGL(A), PGL(B) and PGL(C): If PGL(A) are not included,
then the g1 guard location from Fig. 6 (left) would not be considered and g2
would not be able to be placed to see the remainder of the ceiling. If PGL(B)
are not included, then the g2 guard location in Fig. 6 (middle) would not be
considered and g3 would not be able to be placed to see the remainder of the
ceiling. If the ceiling point of PGL(C) is not included, then the g2 guard location
in Fig. 6 (right) would not be considered and g3 would not be able to be placed to
see the remainder of the ceiling. A similar figure can be drawn for the necessity
of the floor point of PGL(C).

Fig. 6. Necessity of PGL(A), PGL(B) and PGL(C).

The following lemma is used to help show sufficiency. The proof is omitted due
to lack of space.

Lemma 2. Consider points x, y on a vertical line such that x is strictly below y
and there is a point q that is strictly to the right of the vertical line. If the floor
(resp. ceiling) blocks y (resp. x) from seeing q, then x (resp. y) does not see q.

Sufficiency of PGL(A), PGL(B) and PGL(C): Assume some set of guards
S has been placed. Consider 2 PGL x and y from PGL(A), PGL(B) and PGL(C)
on lp such that there are no PGL between x and y, and x is below y. Assume
that the algorithm placed a guard at location y. Now consider a ceiling point q
not seen by any guard g ∈ S. Neither x nor y sees q but there is some location
z on lp that sees q where z is above x and below y, see Fig. 7. In other words, z
is a location that the algorithm does not consider as a PGL. By Lemma 2, the
floor must block x from seeing q and the ceiling must block y from seeing q. Let
vi be the rightmost ceiling vertex that blocks y from seeing q. If a ray shot from
vi+1 through vi hits the floor to the right of lp, then the guard would have been
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placed in the lowest guard location on lp to see vi (i.e. from PGL(A)). Such a
guard location is below the y location, see Fig. 7 (left), a contradiction that the
algorithm placed a guard at y.

Fig. 7. A guard is placed at location y by the algorithm. A guard location z that lies
between x and y that sees an unseen ceiling point q ∈ R does not exist.

If a ray shot from vi+1 through vi goes through lp, then one needs to consider
multiple cases. Before considering the cases, note that this ray must intersect lp
below y. If the ray were to have intersected above y, then either y would have
seen vi+1, contradicting the fact that vi is the rightmost vertex that blocks y
from q. Or, if y did not see vi+1, then the floor would have blocked y from vi+1.
By Corollary 1 and Lemma 2, z would not have seen q, a contradiction.

If vi+1 was not seen by a previously placed guard, then the algorithm would
have placed a guard at this intersection point because of the PGL(A), see Fig. 7
(middle). This contradicts the algorithm choosing guard location y. If vi+1 was
seen by a previously placed guard, then consider the rightmost ceiling point r
between [vi+1, q)c that was seen by a guard in S. Such a location must exist since
some guard g′ ∈ S sees vi+1 and no guard in S sees q. PGL(B) would have shot
a ray from r through vi. If this ray hits lp below y, then the algorithm would
have chosen that point as our guard location, contradicting that the algorithm
chose y. If this ray hits lp above y, then vi could not have blocked y from seeing
q. Therefore, it is not possible for guard location z to exist.

2.2 Approximation Analysis

We will now prove why Algorithm 1 will place no more than 2 times the number
of guards in the optimal solution. The argument is similar to the argument
presented in [15]. An optimal solution O is a minimum cardinality guard set
such that for any point p on the ceiling of P , there exists some g ∈ O that
sees p. The argument will be a charging argument; every guard placed will be
charged to a guard in O in a manner such that each guard in O will be charged at
most twice. First, charge the leftmost guard placed to the optimal guard at the
same location, call this guard g1. All optimal guardsets include a guard at the
leftmost vertex in the polygon else the leftmost vertex is unseen. Now consider
two consecutive guards gi, gi+1 ∈ S returned by the algorithm. Assuming the gi
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guard has already been charged to some guard in the optimal solution, we must
find an optimal guard to charge gi+1 to.

Case 1: If at least one optimal guard is in (gi, gi+1], then we charge gi+1 to any
optimal guard, chosen arbitrarily, in that range.

Case 2: If there is no optimal guard in (gi, gi+1], then consider the point on the
ceiling directly above gi+1, call this point p. The gi+1 guard was placed on lp
because no previously placed guard saw the ceiling point to the right of p and
the entire ceiling from [l, p]c is seen by guards in S. Let pε be a point on the
ceiling that is an ε amount to the right of p. By assumption, gi does not see pε.

If the Floor Blocks gi From Seeing pε: By Corollary 1, gi does not see any
ceiling point to the right of pε. The reason that gi stopped moving upwards is
because it saw some point rgi

on the ceiling that no previously placed guard
saw. Since gi cannot see to the right of pε, rgi

.x ≤ p.x. By assumption, the
optimal guard o′ that sees rgi

must be to the left of, or on, lgi
. If gi were to have

moved any higher up, it would have missed rgi
. Any guard that sees rgi

must
be “below” the girgi

line, see the gray shaded region of Fig. 8. Any point on the
ceiling that o′ sees to the right of rgi

, gi will also see (Lemma 1, [15]). We charge
gi+1 to o′ and o′ cannot be charged again. The o′ guard will never be charged in
Case 1 again since any subsequent gk and gk+1 guards are strictly to the right
of o′. The o′ guard will not be charged in Case 2 again since any point on the
ceiling to the right of gi that o′ sees, gi will also see. In other words, no future
gk guard, where k > i + 1, will be charged to o′ in Case 2. The gk guard will
stop moving up because of some previously unseen point rgk

. If o′ saw rgk
, then

gi would have also seen rgk
and thus rgk

is not an unseen point.

If the Ceiling Blocks gi From Seeing pε: Consider the optimal guard o′ that
sees pε. If o′.x ≤ gi.x, then the ray

−−→
pεo

′ must cross the lgi
vertical line. If the

ray crosses below gi’s final location, then at some point, gi saw pε since a ray
shot from p through some vi, where gi.x < vi.x < p.x, would have crossed lgi

below gi. The gi guard would not have continued above this PGL(B) as it saw
pε. The ray

−−→
pεo

′ cannot cross above gi on lgi
since the ceiling blocks gi from pε

and will thus block o′ from pε. Therefore, an optimal guard that sees pε must lie
in (gi, gi+1] and we revert back to Case 1.

Fig. 8. If no optimal guard exists in (gi, gi+1], then o′ must exist to see rgi such that
o′.x ≤ gi.x. Let gp be the lowest point on lgi that sees p. The gi guard must be below
gp otherwise gi would have seen p and also the ceiling point to the right of p.
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Fig. 9. The g1, g2 and g3 guards see all of the boundary to the right of g1. However,
the shaded region is unguarded.

The entire ceiling can be guarded with at most 2 · |O| guards. A similar
algorithm is applied to the floor to give at most 4 · |O| guards to guard the entire
boundary. Finally, even though the entire boundary is guarded, it is possible
that a portion of the interior is unseen, see Fig. 9. Let us assume that a guardset
G = {g1, g2, . . . gk} guards the entire boundary of a monotone polygon such that
for all i, gi < gi+1. In [18], they prove that between any consecutive guards of G,
a (potentially disconnected) region can exist that is unseen by any of the guards
in G. To see this possible disconnect, imagine a g0 guard in Fig. 9 that has a
narrow beam of visibility that splits the shaded region in two. However, they
prove that this (potentially disconnected) region is convex and can be guarded
with 1 additional guard. In our setting, a half-guard placed at the leftmost
point of the unseen convex region covers the entire unseen portion. If |G| = k,
then there are at most k−1 guards that need to be added to guard these unseen
interior regions. This doubles the approximation to give us the following theorem:

Theorem 1. There is a polynomial-time 8-approximation algorithm for point
guarding a monotone polygon with half-guards.

3 NP-Hardness for Point Guarding a Monotone Polygon
with Half-Guards

Fig. 10. A high level overview of the reduction.

In this section, we show that point guarding a monotone polygon with half-
guards is NP-hard. NP-hardness for vertex guarding a monotone polygon with
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half-guards was shown in [14]. However, moving the guards a small amount off of
the vertex causes the entire reduction to fail. Additional insight and additional
gadgets/patterns were needed to show hardness for point guarding a monotone
polygon with half-guards. We show the following theorem:

Theorem 2. Finding the smallest point guard cover for a monotone polygon
using half-guards is NP-hard.

The reduction is from SAT. A SAT instance (X,C) contains a set of
n Boolean variables, X = {x1, x2, . . . , xn} and a set of m clauses, C =
{c1, c2, . . . , cm}. A SAT instance is satisfiable if a satisfying truth assignment
for X exists such that all clauses ci are true. We show that any SAT instance is
polynomially transformable to an instance of point guarding a monotone polygon
using half-guards. We construct a monotone polygon P from the SAT instance
such that P is guardable by K = n · (1 + 2m) + 1 or fewer guards if and only if
the SAT instance is satisfiable.

The high level overview of the reduction is that specific potential guard loca-
tions represent the truth values of the variables in the SAT instance. Starting
patterns are placed on the ceiling on the left side of the polygon, see Fig. 10. In
these starting patterns, one must choose one of two guardset locations in order
to guard distinguished edges for that particular pattern. A distinguished edge is
an edge that is only seen by a small number of specific guard locations. Then,
to the right of the starting patterns, variable patterns are placed on the floor,
then the ceiling, then the floor, and so on for as many clauses as are in the SAT
instance. In each variable pattern, similar to a starting pattern, certain guard
locations will represent a truth assignment of true/false for a variable (xi). This
Boolean information is then “mirrored rightward” such that there is a consis-
tent choice of all true xi locations or all false xi locations for each variable. Most
previous results had Boolean information mirrored from the “left side” of the
polygon/terrain to the “right side” of the polygon/terrain and then back to the
left side [7,16,18], with [14] being an exception. A distinguished clause vertex is
placed to the right of each sequence of variable patterns such that only the guard
locations representing the literals in the specific clause can see the distinguished
clause vertex. A high level example of the entire reduction is shown in Fig. 10.

3.1 Hardness Details

Starting Pattern: The starting pattern, shown in Fig. 11, appears along the ceil-
ing of the left side of the monotone polygon a total of n times, each corresponding
to a variable from the SAT instance, in order from left to right (x1, x2, . . . , xn). In
each pattern, there are 2 distinguished edges with labels: {A = v2v3, B = v5v6}.
These edges are seen by a specific, small range of points in each starting pattern.
It is important to note that no other point in any other starting pattern sees
these distinguished edges.
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Fig. 11. A starting pattern for variable xi, with distinguished edges {A, B}.

In order to see A, a guard must be placed on the vertical line that goes
through v2. We can make the A edge be almost vertical such that any guard
placed to the left of the vertical line through A will miss v3. In order to guard
the entire pattern with 1 guard, that guard must see B as well. We are left with
a small range of potential guard locations as seen in Fig. 11. Any guard placed
above a1 on the lv2 line will see these distinguished edges. Foreshadowing the
variable mirroring, a guard placed at xi will represent a true value for xi. Any
guard placed at xi will represent a false value for xi.

Fig. 12. A variable pattern with distinguished edges {D, E, F, G, H, I}. Critical lines
of sight are shown. Guards must be placed at either {xi, v11} (if F is previously seen)
or {xi, v1} (if D is previously seen).

Variable Pattern: On the floor of the polygon to the right of all the n starting
patterns are the first n variable patterns, one for each variable, that verify and
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propagate the assigned truth value of each variable. The variables are in reverse
order from the initial starting pattern (xn, xn−1, . . . , x1). When the variables are
“mirrored” rightward again to the ceiling, the ordering will again reverse.

A single variable pattern is shown in Fig. 12. There are 6 distinguished edges
located at {D = xiv10, E = v11v12, F = xiv13, G = v7v8,H = v4v5, I = v1v2}.
Of those, E,G,H and I are only visible within the variable pattern. Further, no
guard that sees I can also see H. Therefore, at least 2 guards are required to see
the vertices in a variable pattern. However, with D or F seen by a previously
placed guard, then 2 guards are sufficient for guarding the variable pattern.

If neither D nor F is seen by a previously placed guard, then 3 guards are
required to see all of {D,E, F,G,H, I}. Assume that no guard in a previous
pattern saw either D or F in the variable pattern. If this is the case, then a
guard must be placed on (or to the left of) the lxi

line in order to see D. No
guard that sees D also sees H. If a guard that sees D does not see I, then 3
guards are required since no guard sees both H and I. We assume that the guard
that sees D also sees I. The only guard that sees both D and I is at xi. If the
guard is moved left or right, it will miss part of D. If it is moved up, it will miss
I. Therefore, a guard is placed at xi and we now also see G. This leaves E,F
and H to be guarded. A guard that sees E and H must lie on v11. If the guard
is pushed higher, it will not see H. If it is pushed left or right, it will not see E.
The vertex xi blocks v11 from seeing F . Therefore, the F edge goes unseen and
a third guard is required. In summary, if a previously placed guard does not see
D nor F , 3 guards are required to guard the variable pattern.

Let us assume that F is seen by a previously placed guard. If this happens,
then {D,E,G,H, I} must still be guarded. To see all of D, a guard must be
placed on the vertical line through (or to the left of) xi, see Fig. 12. If the guard
is placed above xi, then I would remain unguarded. If this happens, then 2
guards are still required to see I and H. Therefore, a guard that sees D must
also see I, and the only such location is xi. Placing a guard at xi sees edges D,G
and I, leaving E and H to be seen. The only guard that sees all of E and H is
at vertex v11. Therefore, two guards suffice and they are placed at xi and v11.

Now let us assume that D is seen by a previously placed guard. If this hap-
pens, then {E,F,G,H, I} must still be guarded. In order to see I, a guard must
be on (or to the left of) lv1 . Edge E is angled in such a way that it does not see
any of the vertical line below v1.

If a guard is placed at v1, then edges E and I are guarded and we need to
place a second guard that sees F,G and H. It should be noted that a guard
placed at v1 does not see to the right of xi since v3 is blocking v1 from seeing
too far to the right. A ray shot from v5 through v4 goes just above the xi vertex,
so placing a guard too far above xi will not see edge H. Thus, a guard must be
placed arbitrarily close to xi to see F,G and H. Therefore, two guards suffice in
this instance and guards are placed arbitrarily close to both xi and v1.

It is important to note that a ray shot from v13 through xi is above a ray shot
from v8 through v7 when they cross lv1 . In other words, no guard that sees I can
see both F and G. The following 3 cases assume that the guard that sees I does
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not see E and it will lead to a contradiction in each case. This will show that
when D is seen by a previously placed guard, one must put guards arbitrarily
close to xi and at v1.

If a guard is placed on lv1 that sees neither E, F nor G. In this case, edges
E,F,G and H are unseen. A guard that sees E and H must lie on v11. If the
guard is pushed higher, it will not see H. If it is pushed left or right, it will not
see E. The vertex xi blocks v11 from seeing F and G. Therefore, the F and G
edges go unseen and a third guard is required. If a guard placed on lv1 (resp. lv1)
to see I and also sees F (resp. G), then edges E,G (resp. F ) and H are unseen.
Similar to the previous case, a guard that sees E and H must lie on v11. The
vertex xi blocks v11 from seeing G (resp. F ). Therefore, the G (resp. F ) edge
goes unseen and a third guard is required. To summarize, if D or F is seen, then
in order to guard the entire variable pattern with two guards, there are exactly
two sets of potential guard locations: {xi, v11}, and {v1, xi}.

Connecting Starting/Variable Patterns to subsequent Variable Patterns: To
ensure truth values are mirrored correctly, one must ensure that choosing the
xi location in a starting/variable pattern forces the choice of xi in the sub-
sequent variable pattern. This is done by ensuring that xi (resp. xi) in the
starting/variable pattern sees distinguished edge F (resp. D) in the subse-
quent variable pattern. By doing this, the remaining edges: {E,F,G,H, I} or
{D,E,G,H, I} are seen by locations described in the previous section. Full
details of the mirrorings between starting/variable patterns and between vari-
able/variable patterns have been omitted due to lack of space.

Clauses: For each clause c in the SAT instance, there is a sequence of variable
patterns x1, . . . , xn along either the floor or ceiling of the polygon. Immediately
to the right of one such sequence of variable patterns exists a clause pattern.
A clause pattern consists of one vertex such that the vertex is only seen by the
variable patterns corresponding to the literals in the clause; see Fig. 13. The
distinguished vertex of the clause pattern is the c3 vertex. This vertex is seen
only by specific vertices in its respective sequence of variable patterns.

Fig. 13. High level overview of a clause point c3 being placed for clause ci = x1∨x3∨x5.

To see how a clause distinguished point is placed in the polygon, consider
Fig. 13 that represents the clause x1∨x3∨x5. Let’s assume the clause point is on
the floor. The ceiling has a symmetric argument. The potential guard locations
in the variable patterns of v1 and v11 do not see c3. Referring to Fig. 12, the v1
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vertex is blocked from seeing v13 using the ceiling vertex of v3. By Corollary 1,
v1 cannot see anything to the right of v13, including c3. In a similar manner, v11
is blocked from seeing v8 using xi and therefore, v11 cannot see c3. Initially, all
variable patterns on the floor have their xi and xi vertices see c3. The lines of
sight go just over the v14 vertex. If neither xi nor xi is supposed to see c3, then
v14 is raised a small amount to block them from seeing c3. The v14 vertex is only
blocking these vertices from the floor and does not affect the mirroring of xi to
the subsequent variable pattern on the ceiling. Since the xic3 line must be above
the xic3 line, if xi is supposed to see c3, then v14 is raised just enough to block xi

from seeing c3. Lastly, if only xi is supposed to see c3, then xi must be pushed a
small amount down-and-to-the-right on the D edge. In this instance, xi blocks xi

from seeing c3. The remaining vertices of the variable pattern, namely v1, v3 and
v7 are adjusted locally to account for this new xi location. Since xi was pushed
down-and-to-the-right on the D edge, no tweaks in any previous patterns need to
be made. The polygon will be drawn from left-to-right and therefore, no future
patterns will need to be tweaked either since they have yet to be drawn. The
mirroring of the xi variable is not affected.

Putting it all Together: We choose our truth values for each variable in the
starting variable patterns. The truth values are then mirrored in turn between
variable patterns on the floor and the ceiling. Consider the example of Fig. 13
the SAT clause corresponds to ci = (x1 ∨ x3 ∨ x5). Hence, a guard placement
that corresponds to a truth assignment that makes ci true, will have at least one
guard on or near the x1, x3 or x5 vertex and can therefore see vertex c3 without
additional guards. Neither x2 nor x4 sees the vertex c3. They are simply there
to transfer their truth values in case these variables are needed in later clauses.

The monotone polygon we construct consists of 11n+(16n+3)m+2 vertices
where n is the number of variables and m is the number of clauses. Each starting
variable pattern has 11 vertices, each variable pattern 16 vertices, the clause
pattern has 3 vertices, plus 2 vertices for the leftmost and rightmost points
of the polygon. Exactly K = n · (1 + 2m) + 1 guards are required to guard
the polygon. A guard is required to see the distinguished edges of the starting
patterns and 2 guards are required at every variable pattern, of which there are
(mn) of them. Lastly, since a starting pattern cannot begin at the leftmost point,
a guard is required at the leftmost vertex of the polygon. If the SAT instance is
satisfiable, then K = n ·(1+2m)+1 guards are placed at locations in accordance
with whether the variable is true or false in each of the patterns. Each clause
vertex is seen since one of the literals in the associated clause is true and the
corresponding c3 clause vertex is seen by some guard.

4 Conclusion and Future Work

In this paper, we present an 8-approximation for point guarding a monotone
polygon with half-guards. We also show that point guarding a monotone poly-
gon with half-guards is NP-hard. Future work might include finding a better
approximation for both the point guarding and vertex guarding versions of this
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problem. Insights provided in this paper may help with guarding polygons where
the guard can choose to see either left or right, or in other natural directions.
One may also be able to use these ideas when allowing guards to see 180° but
guards can choose their own direction (180°-floodlights).
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