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Preface

This volume constitutes the proceedings of the 19th European Conference on Multi-
Agent Systems (EUMAS 2022), held in September 2022 in Düsseldorf, Germany. In
the past two decades, we have seen an enormous increase of interest in agent-based
computing and multi-agent systems (MAS). This field is set to become one of the key
intelligent systems technologies in the 21st century. The EUMAS conference series aims
to provide the main forum for academics and practitioners in Europe to discuss current
MAS research and applications.

EUMAS 2022 followed the tradition of previous editions: Oxford 2003, Barcelona
2004, Brussels 2005, Lisbon 2006, Hammamet 2007, Bath 2008, Agia Napa 2009,
Paris 2010, Maastricht 2011, Dublin 2012, Toulouse 2013, Prague 2014, Athens 2015,
Valencia 2016, Evry 2017, Bergen 2018, Thessaloniki 2020 (virtual), and 2021 in Israel
again virtually. Like them, EUMAS 2022 aimed to provide—in academic and industrial
efforts—the prime European forum for presenting, encouraging, supporting, and dis-
cussing activity in the research and development of multi-agent systems as the annual
designated event of the European Association for Multi-Agent Systems (EURAMAS).
We are grateful for the guidance provided by the EURAMAS Board, and especially so
for the great help and ongoing support of Georgios Chalkiadakis and Davide Grossi.

The peer-review process carried out by the 37 Program Committee (PC) members
put great emphasis on ensuring the high quality of accepted contributions. These papers
were presented at EUMAS 2022 and are contained in this volume. Each submission
to EUMAS 2022 was peer reviewed by at least three PC members in a double-blind
fashion. Out of 36 submissions, the PC decided to accept 23 papers for oral presentation.
In addition, EUMAS 2022 was preceded by a Doctoral Consortium (PhD Day) at which
eight talks were given by PhD students who presented their previous results, ongoing
work, and future research plans. Six short papers summarizing such contributions to the
PhD Day are also contained in this volume. We thank our PhD students, Linus Boes
and Christian Laußmann, for organizing the PhD Day, sifting through the submissions,
and selecting them for presentation. We also thank Linus and Christian for designing
and running the EUMAS 2022 website (https://ccc.cs.hhu.de/eumas2022/) as well as
Ariel Rosenfeld and Nimrod Talmon, who organized EUMAS 2021 last year in Israel
(online), for sharing their conference websites with us.

In addition to the papers contained in this volume, the EUMAS 2022 program was
highlighted by two great keynote talks given by Carles Sierra (Artificial Intelligence
Research Institute, IIIA-CSIC, Barcelona) andMarija Slavkovik (University of Bergen),
and Piotr Faliszewski (AGHUniversity of Science andTechnology,Kraków) gave a great
keynote talk at the PhD Day.

Among the accepted papers, we chose the best ones based on their review scores,
and then the reviewers of these papers and the two program chairs held a Borda election
to determine the winners of the Best Paper Award (“Maximin Shares under Cardinal-
ity Constraints” by Halvard Hummel and Magnus Lie Hetland) and of the Best Paper
Runner-Up Award (“Preserving Consistency for Liquid Knapsack Voting” by Pallavi

https://ccc.cs.hhu.de/eumas2022/


vi Preface

Jain, Krzysztof Sornat, and Nimrod Talmon). The award recipients were invited to sub-
mit an extended version of their outstanding papers for fast-track publication in the Jour-
nal of Autonomous Agents and Multi-Agent Systems (JAAMAS). In addition, selected
authors were invited to extend their contribution for a special issue of SN Computer
Science.

We thank the authors for submitting their work to EUMAS 2022; the PC members
of EUMAS 2022 as well as the additional reviewers for reviewing the submissions; the
participants for traveling to Düsseldorf, listening to and giving great talks, and making
this conference awonderful event; the invited speakers for their excellent talks; the editors
of JAAMAS for inviting the award recipients to extend their papers and enjoy a fast-track
publication process; the editors of SN Computer Science for supporting a special issue
of extended selected papers; our sponsors: Gesellschaft von Freunden und Förderern
der HHU Düsseldorf for supporting our invited speakers and Springer for sponsoring
the Best Paper Award; once more Georgios Chalkiadakis and Davide Grossi for their
invaluable help in the background; and Linus Boes, Christian Laußmann, and our entire
team here in Düsseldorf for their great support and efforts in the local organization.

September 2022 Dorothea Baumeister
Jörg Rothe
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Map of Elections: The Story So Far

Piotr Faliszewski

AGH University, Krakow, Poland
faliszew@agh.edu.pl

Overview

The concept of a map of elections was introduced by Szufa et al. [4] and Boehmer et al.
[1] as a way to visually present multiple elections, so that the relations among them
would be clearly visible and one could present experimental results in a nonaggregate
way. To obtain a map of elections, one first collects a dataset where each election has
the same number of candidates and the same number of voters, then one computes some
distance between each two of them, and finally presents them on a 2D plane as points,
so that the Euclidean distances between the points are as close to the distances between
the elections that they represent as possible.

In this talk, Iwill present themain idea of themap, discuss the distances between elec-
tions that we use (with a focus on justifying why the positionwise distance is appealing
but not perfect [3]), show relations between various statistical cultures [2] and real-life
data [1], and argue how the map is useful for presenting the results of experiments in
computational social choice. Finally, I will show some open questions regarding the map
framework.

Acknowledgments. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 101002854).
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Biology Bit My Finger or Why AI Ethics Needs Us to Not
Forget the Agent

Marija Slavkovik

University of Bergen, Norway
marija.slavkovik@uib.no

Abstract. In the narrative of the latest AI success story, there are no
agents. For those who do not conflate AI and data science, the absence of
agents is suspicious. For all of us who are interested in ensuring socially
responsible AI, the absence of agents is dangerous.

Keywords: AI ethics · Computational agency

There are many ways to define what artificial intelligence is [4, p. 19], but all revolve
around computationally recreating some behaviour that we associate with human intel-
ligence. Within the scientific community artificial intelligence is a scientific discipline
studying problems of computationally recreating intelligent behaviour. In engineering
and the tech business, the focus is not on the problems but the entity itself that exhibits
this intelligent behaviour. Here, artificial intelligence is seen as “a ‘special form’ of
ICTs, capable of displaying intelligent behaviour and completing tasks normally said
to require human intelligence” [1]. Going further down in “simplifying the message”
most press has dispelled even with the ‘technology’ and simply makes claims such as
“AI that recommends diets based on the microbiome relieves constipation”, or “New AI
Can Automatically Detect a Serious Heart Condition”. This is akin to saying things like
“biology bit my finger!”, “physics fell on my head” or “astronomy made this crater”.
The computational entity that exhibits some form of intelligent behaviour is well defined
in AI – we call it an artificial agent!

Artificial agents are defined very undemandingly as anything that can perceive an
environment and act upon that environment. They are studied in two fields: multi-agent
systems (MAS) and agent-based modelling (ABM). MAS is concerned with solving
reasoning and other operation problems that involve interaction. ABM is concerned
with capturing the dynamics of a system that is affected by interaction. Dignum [2]
argued that these two main agent approaches, multi-agent systems (MAS) and agent-
based modelling (ABM), have largely developed on two separate tracks omitting to
observe that the agent paradigm has a crucial role to play in artificial intelligence.

Very basically, there can be no intelligent behaviour without an entity that behaves.
Very generally, a large part of intelligent behaviour hinges on adequate management

A longer version of this abstract can be found at https://drops.dagstuhl.de/opus/volltexte/2022/
16004/.
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Biology Bit My Finger or Why AI Ethics Needs Us xiii

of relationships with other agents [3]. Without understanding and computationally han-
dling interactions, how close can we get to intelligent behaviour? The agent should be
unavoidable in AI, but somehow we continue to manage avoiding them. Yet understand-
ing the responsibility of usingAI research and technology and its ethical impact demands
facing, naming and shaming the agent.

Themore we develop the practical applications of artificial intelligence and use them
to automate tasks in our lives and society, the more we are faced with the fact that the
people who did those tasks were not only task performers but also parts of a social
system. When I make a decision I rarely do so without consideration for others. Any
automation that replaces me must do the same. When we say the decision was made by
AI we obfuscate all the complex agent interactions that were involved.

AI ethics is an umbrella of research in algorithmic accountability, privacy, trans-
parency, trust, explainability, fairness [5]. The talk addresses the socio-technical system
nature of the applications of AI that exist today and why that system needs the tools,
insights and new research from the agent communities to be responsibly governed.
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Iterative Goal-Based Approval Voting

Leyla Ade1 and Arianna Novaro2(B)

1 Institut für Philosphie, Universität Bayreuth, Bayreuth, Germany
leyla.ade@uni-bayreuth.de

2 Centre d’Economie de la Sorbonne, Université Paris 1 Panthéon-Sorbonne,
Paris, France

arianna.novaro@univ-paris1.fr

Abstract. In iterative voting, a group of agents who has to take a collec-
tive decision has the possibility to individually and sequentially alter their
vote, to improve the outcome for themselves. In this paper, we extend with
an iterative component the recent framework of goal-based voting, where
agents submit compactly expressed individual goals. For the aggregation,
we focus on an adaptation of the classical Approval rule to this setting,
andwemodel agents having optimistic or pessimistic satisfaction functions
based on the Hamming distance. The results of our analysis are twofold:
first, we provide conditions under which the application of the Approval
rule is guaranteed to converge to a stable outcome; second, we study the
quality of the social welfare yielded by the iteration process.

Keywords: Iterative voting · Preference extensions · Social choice
theory

1 Introduction

Iterative voting [23] has been introduced as a framework to model situations
where groups of agents are asked to report their preferences about a collective
issue, having the option to change their vote based on the current outcome. A
classical example is that of a group of colleagues having to choose a time-slot for
a meeting by using an online platform that automatically highlights the current
most popular options. Compared to classical ‘one-shot’ voting, the agents thus
have the possibility to improve their individual satisfaction about the outcome,
and they can do so multiple times.

The result of such a voting procedure thus highly depends, among other things,
on the choices for the type of ballots the agents submit, onwhich kind of preferences
they hold, and on which aggregation rule is used to compute the outcome.

In this paper, we extend a recently introduced framework for collective
decision-making, where agents can submit complex ballots, by adding an itera-
tive component to it. In goal-based voting [26], the agents can submit individual
goals over a set of binary issues (compactly expressed as formulas of proposi-
tional logic). Although the choice of representation for the agents’ input is of
course crucial from a computational point of view, for the kind of results pre-
sented here we can equivalently think of the input as the agents voting in favour
of a set of options (i.e., the models of their goal).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Baumeister and J. Rothe (Eds.): EUMAS 2022, LNAI 13442, pp. 3–21, 2022.
https://doi.org/10.1007/978-3-031-20614-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20614-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-20614-6_1


4 L. Ade and A. Novaro

The following example illustrates the kind of situations we model in this
paper.

Example 1. Four agents have to decide together which of three items ({a, b, c})
to include in a goodies bag for a conference. They each write down their preferred
compositions of the bag, by marking with a checkmark (�) the items that should
be included, and by a cross (✗) those to be left out. Then, the combinations of
items approved most often are selected. The table below represents the situation
schematically.

Step 1 Step 2 Step 3
a b c a b c a b c

Alex � � � � � � � � �
� � ✗ � � ✗

Billy � ✗ � � ✗ � � ✗ �
� � �

Cora ✗ � ✗ ✗ � ✗ ✗ � ✗

Dani ✗ � ✗ ✗ � ✗ ✗ � ✗

� � ✗ � � ✗ � � ✗

Approval ✗ � ✗ ✗ � ✗ ✗ � ✗

� � ✗ � � ✗

� � �

At the first step, the vote of Alex means that all goodies should be included,
while according to Dani the bag may or may not include item a, should include b,
and should not include c (i.e., Dani equally supports both bag options). By using
the Approval rule, the bag option where only item b is included will be chosen,
since it is approved by two agents (Cora and Dani), while all other options are
approved by only one agent.

Since Alex would like more items to be included in the bag, she realizes
that by supporting the option without item c, the outcome will change in her
favor (by including a preferred option)—she changes her vote accordingly at the
second step. Then, Billy decides to support the option which includes all three
items, since this differs from their truthful preference in just one item, unlike
the current options in the outcome.

We can see how, in Example 1, beyond the choice of the aggregation rule, the
behaviour of the agents is determined by how their preferences over outcomes
are defined. For instance, the four agents there were concerned with adding
preferable options to the outcome, but they could have focused on withdrawing
less desirable options instead. Moreover, since in their vote they can support
multiple options, and the outcome itself may not return a unique option, we
need to consider complex preferences over sets.
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In order to handle these kind of situations, we introduce a framework for
iterated goal-based voting and we study it for (an adaption to this setting of)
the Approval rule. We consider agents having two types of satisfaction functions
based on the Hamming distance—as well as two classes of functions generalizing
these. In addition to the novelty of extending with an iterative component the
existing model of goal-based voting, our contribution is twofold: first, we pro-
vide simple conditions under which we can guarantee that the iterative process
will terminate. Second, we analyze the quality yielded by the iteration process,
according to three classical notions of social welfare (i.e., the utilitarian, Nash,
and egalitarian welfare notions).

Related Work. Iterative voting has been a popular research direction in recent
years within the field of computational social choice—cf. Meir’s work for an
overview [23,24]. The approach is often game-theoretic, focusing for instance on
modeling the strategic behaviour of agents participating in Doodle polls [35], or
agents having to reach a consensus under a deadline [3]. The type of problems
we study in this paper fall in the stream of literature analyzing the conditions
for convergence of an iterative process [21,22,25,28] and of the quality of its
final outcome [7,32], for different rules and settings. Particularly relevant is the
study of iterative judgment aggregation by Terzopoulou and Endriss [34], who
analyzed the iteration of the premise-based and the plurality rules—where the
latter corresponds to a resolute version of our Approval rule.

Judgment (or binary) aggregation [11,14,16] can be seen as a special case
of goal-based voting, where the agents are only allowed to submit one choice
of acceptance or rejection decision for each of the issues at stake (i.e., giving
support for just one bag option in the situation described in Example 1). By
contrast, the recently introduced framework of goal-based voting [26] that we
extend here, allows the agents to submit more complex goals which can be made
true by multiple complete choices of values for the binary issues (as they are
expressed in the language of propositional logic).

A framework which is also closely related is that of belief merging, where
propositional formulas representing beliefs are aggregated. In particular, the
ΔΣ,dH

μ -rule [19] in belief merging coincides with the Approval rule in goal-based
voting. Although the two frameworks are technically similar, their approaches
and studied problems are rather different. For example, Delgrande et al. [9] define
a framework for iterated belief revision which differs from our approach in one
key aspect: while we assume agents to keep a truthful goal during the iteration
process, and to modify their votes according to it, in iterated belief revision the
agents change their beliefs, knowledge or opinions through the iteration. More
recently, Schwind and Konieczny [33] have proposed an incremental belief merg-
ing approach for iterated belief revision. However, to the best of our knowledge,
ours is the first study of iterative voting for this kind of complex input.

While our definitions for the iteration process are general, in this paper
we focus on the Approval rule, which is an adaptation to goal-based voting
of the classical approval rule in voting, that has received undying attention by
researchers due to its simplicity and versatility (see, e.g., the handbook by Laslier
and Sanver [20]). The plurality rule [25] and positional scoring rules [15] have
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been studied as well in the literature on iterative voting, while the majority rule
was studied in the context of a slightly different framework of iterative proposal,
comparison and choice of collective options [2].

Finally, a key component of the iteration dynamics is the choice of the satis-
faction function held by the agents to evaluate the current outcome with respect
to their truthful goal. Previous work in strategic goal-based voting [27] and belief
merging [12] has focused on a simple notion of dichotomous preferences (separat-
ing between the models and the non-models of the agents’ goals). By contrast, we
follow here a preference extension approach [5,13,18,30], and in particular the
classical work by Packard [29], by which we define satisfaction functions based
on the Hamming distance.

Paper Structure. We recall the general setting of goal-based voting and its
Approval rule in Sect. 2.1. Then, we define the agents’ satisfaction functions
in Sect. 2.2 and we introduce the key notion of iterated goal-based voting in
Sect. 2.3. We present the main termination results in Sect. 3. The definition and
the analysis of social welfare for the iterated Approval rule can be found in
Sect. 4. We conclude in Sect. 5.

2 Preliminaries

In this section we recall the main definitions of goal-based voting, and in partic-
ular of the Approval rule. Then, we show how to model the agents’ preferences
with respect to potential outcomes by using a pessimistic and optimistic defini-
tion based on the Hamming distance. Finally, we define the iteration process for
goal-based voting.

2.1 Goal-Based Voting

In goal-based voting, a finite set of agents, or voters, N = {1, . . . , n}, takes a
collective decision on a finite set of binary issues I = {1, . . . , m}. In the domain
{0, 1} of the issues, a 1 denotes acceptance and a 0 denotes rejection.

The goal of agent i is expressed as a consistent propositional formula γi,
whose language L is built from the variables in I and the classical proposi-
tional connectives. The set of models of a goal γi, denoted by Mod(γi), con-
sists of all those interpretations that make the formula γi true. Namely, each
v ∈ Mod(γi) is a function v : I → {0, 1} which assigns truth-value false (0)
or true (1) to each variable in I. We interchangeably represent a model v as a
vector (v(1), . . . , v(m)). A profile is a vector collecting the goals for all agents in
N over the issues in I, and we denote it by Γ = (γ1, . . . , γn).1

1 Observe that, as mentioned in the introduction, while the choice of representation
of the agents’ input—i.e., goals expressed compactly as propositional formulas, or
explicitly as the set of their models—has immediate consequences on the computa-
tional complexity of some related problems [26], since these fall outside of the scope
of this paper we will often represent the corresponding set of models for ease of
illustration.
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The agents take a collective decision by means of a voting rule. For L the
set of all possible goals (i.e., all propositional formulas on the variables in I),
a voting rule F is a function mapping profiles with any number of agents and
issues (n and m) to a non-empty subset of all interpretations, i.e., we have
F : (L)n → P({0, 1}m) \ {∅}. The co-domain of F is the power-set of all vectors
to allow for irresolute rules, i.e., rules that on some profiles may return multiple
interpretations as the outcome.

Given a profile Γ for n agents and m issues, and an interpretation v ∈ {0, 1}m,
the support of v in Γ , denoted by suppΓ (v), is the number of agents in Γ having
v as one model of their goal, i.e., suppΓ (v) := |{i ∈ N | v ∈ Mod(γi)}|.

Many rules have been defined to aggregate the goals submitted by the agents
[26]; we focus here on an adaptation to goal-based voting of the well-known
approval rule, which returns all those interpretations that received the most
support from the agents (i.e., that are models of the most goals in the profile).

Definition 1. For any profile Γ of n agents and m issues, the Approval rule
returns:

Approval(Γ ) = argmaxv∈∪i∈NMod(γi) suppΓ (v).

Although the irresoluteness of this rule can be considered a drawback, the
Approval rule also satisfies many desirable properties. Among them, we can
mention a form of consensus identification: that is, the rule is guaranteed to
return the set of interpretations which models all of the agents’ goals, if such
set is non-empty. This is not a trivial requirement, as independent rules (such
as some issue-wise majority rules that have been proposed for goal-based voting
[26]) may fail to do so.

2.2 Satisfaction Functions

In this section we present functions that can be used to model the agents’ pref-
erences over outcomes. In fact, an agent will want to alter their vote depending
on how much they like the current outcome, and on whether they can make it
better for themselves.

A satisfaction function sat : L×P({0, 1}m) → R is a function which takes as
input an agent’s goal and a possible outcome, and it returns a real number, where
a higher value indicates a greater satisfaction. For simplicity, we will consider
situations where all the agents are assumed to have the same type of satisfaction
function.

We say that an agent i with satisfaction function sat (weakly) prefers an
outcome F (Γ ) to an outcome F (Γ ′), given her goal γi, when her satisfaction for
F (Γ ) is at least as high as her satisfaction for F (Γ ′). Formally, we have:

F (Γ ) �i F (Γ ′) if and only if sat(γi, F (Γ )) ≥ sat(γi, F (Γ ′)).

Hence, the satisfaction function, in combination with an agent’s goal, yields
a preference ordering over the possible outcomes of a rule. The strict part of the
ordering is induced by a strictly higher satisfaction.
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Among the simplest satisfaction functions we find those based on a dichoto-
mous view of agents’ preferences, where an agent is equally satisfied by any model
of their goal, and equally dissatisfied by any non-model. Three such functions
have been studied in the context of strategy-proof belief merging for the ΔΣ,dH

μ -
rule [12], which is equivalent to our Approval rule. For these functions, the rule
has been shown to be strategy-proof, which means that no agent can improve
her satisfaction by altering her vote, and thus it always (trivially) terminates.

While appealing in reason of their simplicity, dichotomous satisfaction func-
tions lack nuance by definition: e.g., an agent whose goal has Mod(γ) = {(000)}
is equally dissatisfied by F (Γ ) = {(111)} and by F (Γ ) = {(001)}, while arguably
the latter is ‘closer’ to the agent’s goal than the former. Therefore, we now move
to consider a more sophisticated view of agents’ preferences based on the Ham-
ming distance.

Given vectors v, w ∈ {0, 1}m, the Hamming distance between v and w cor-
responds to the number of entries on which they differ, i.e., H(v, w) = |{j |
v(j) �= w(j)}|. Since the Approval rule is irresolute, in order to define agents’
preferences we need to compare a set of vectors (i.e., the models of an agent’s
goal) with another set of vectors (i.e., the interpretations in the outcome). We
thus need to extend preferences over vectors to preferences over sets of vectors.

The lowest Hamming distance between a vector w and a set of vectors W is
the minimal Hamming distance that w has to any element of W : given a vec-
tor w ∈ {0, 1}m and a set of vectors W ∈ P({0, 1}m), we let lowH(w,W ) =
minv∈W H(w, v). For ease of notation, we also write lowH(v, γ) instead of
lowH(v,Mod(γ)).

We can now define two satisfaction functions, for H-optimist and H-pessimist
agents:

Definition 2. Given a profile Γ = (γ1, . . . γn) for m issues, and a rule F , let

doptH(γi, F (Γ )) = min
w∈F (Γ )

lowH(w,Mod(γi))

dpessH(γi, F (Γ )) = max
w∈F (Γ )

lowH(w,Mod(γi))

be the H-optimist and H-pessimist distances. Then, the optH and pessH sat-
isfaction functions are defined as sat(γi, F (Γ )) = m − dsat(γi, F (Γ )) for
sat∈{optH, pessH}.

Both functions range between 0 and m, where a higher value expresses a
greater satisfaction. Given a set of interpretations in an outcome, an H-optimist’s
and H-pessimist’s satisfaction is only based on the best or worst interpretation in
this set, respectively, according to the agent’s truthful goal. Observe, in partic-
ular, that the preference ordering over outcomes for an H-pessimist will have as
its top element the set of models of their goal plus any of its subsets (and noth-
ing else), while the H-optimist will also include at the top any of its supersets.
The two function are different, and can thus yield different preference order-
ings over outcomes. For instance, for Mod(γ) = {(0000), (1000)} and outcomes
A = {(0110)} and B = {(0111), (0100)}, we get that A � B for pessH, while
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B � A for optH, since we have lowH((0110), γ) = 2, lowH((0111), γ) = 3 and
lowH((0100), γ) = 1. However, the two functions coincide when |F (Γ )| = 1.

We conclude this section by observing that the optH and pessH satisfac-
tion functions are instances of the maxi-max and maxi-min preference exten-
sions (respectively) that Packard characterized [29]. In addition to connected-
ness and transitivity, the maxi-max extension is the only extension satisfying
what Packard calls the (c.3) and (f.1) properties, while maxi-min is the only
extension satisfying the (d.3) and (e.1) properties. While properties (e.1) and
(f.1) compare preferences over three sets, properties (c.3) and (d.3) only com-
pare two sets A and B. We report here the latter two properties, as some of our
results in Sect. 3 generalize to the class of functions satisfying them (as well as
connectedness and transitivity):

(c.3) A ∪ B � B,
(d.3) A � A ∪ B.

Property (c.3) states that a set (of interpretations over the issues, in our
case) is always considered at least as good as any of its subsets. Conversely,
property (d.3) states that a set is always considered at least as good as any of
its supersets. Since our optimist (respectively, pessimist) agents only judge an
outcome based on the best (respectively, worst) of the included interpretations,
according to their individual goals, it is easy to see why indeed for them a
superset (respectively, a subset) may be preferred.

2.3 The Iteration Process

The iteration process is based on the idea that agents may realize that by voting
differently, they can get a better outcome (with respect to their truthful goal).2

For a profile Γ and an agent i ∈ N , let (Γ −i, γ
′
i) be the profile Γ where only

agent i changes her goal from γi to γ′
i. We say that agent i with satisfaction sat

has an incentive to alter her goal γi to goal γ′
i at profile Γ under rule F if we have

that F (Γ −i, γ
′
i) �i F (Γ ). Given a rule F , a satisfaction function sat and a profile

Γ , we consider iterations over profiles where Γ 0 = Γ is the initial (truthful)
profile and for each stage of the iteration t ≥ 0 we have Γ t+1 = (Γ t

−i, γ
′
i) for

some agent i ∈ N such that sat(γ0
i , F (Γ t)) < sat(γ0

i , F (Γ t+1)), i.e., an agent
who has an incentive to alter at Γ t. Note that outcomes are always compared
to the initial (truthful) goal γ0

i .
The agents act according to a best response dynamics, i.e., if agent i has an

incentive to alter her vote, then a goal γ′ is a best response at step t, if for any
other goal γ it is the case that sat(γ0

i , F (Γ t
−i, γ)) ≤ sat(γ0

i , F (Γ t
−i, γ

′)). This
means that an agent does not choose just any alternative goal which improves the
outcome for her, but the best possible alteration. At any stage t of the iteration,

2 In the case of strategy-proofness this action is called a manipulation; we prefer to
avoid this negative connotation for iterative voting and we simply say that agents
alter their vote.
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there could be multiple agents having an incentive to alter, each having multiple
possible best responses. If this is the case, one agent is chosen randomly, as there
is only one alteration at each step. Thus, in principle, multiple different iteration
dynamics are possible from one initial profile.

We say that an iteration process terminates, or converges, if after a finite
number of steps no agent has an incentive to alter her vote. In case for some
stage t > 0 and s < t it is the case that Γ t = Γ s, the iteration process does not
terminate (i.e., it is circular).

In line with previous work on iterative voting [23], our agents are assumed to
be myopic, i.e., they select their best response by only considering the next step
of the iteration process and do not predict future steps; improvement-driven, i.e.,
an agent always chooses to alter her vote if this increases her satisfaction (hence,
at each step, some agent among those who could alter their vote actually does
it); and fully informed [34], i.e., they know the other agents’ votes and which
voting rule is being used.

3 Termination Results for the Approval Rule

In this section we study the dynamics of iteration for the Approval rule, consid-
ering different satisfaction functions for the agents. As mentioned in Sect. 2.2,
agents with dichotomous satisfaction functions do not have any incentive to alter
their vote under the Approval rule, but they do if their satisfaction functions are
based on the Hamming distance (as hinted in Example 1).

Our first result shows that the iteration of goal-based voting under the
Approval rule for H-pessimist agents always terminates. We start by proving
the following Lemma, which shows that the support of the winning alternatives
at stage t (i.e., for any of the interpretations in the outcome at t, the number
of agents whose current goal has it as a model), defined as kt = |{i ∈ N | v ∈
Mod(γt

i ) for v ∈ Approval(Γ t)}|, always increases in the iteration of Approval
for H-pessimist agents.

Lemma 1. If every agent i ∈ N is a H-pessimist, then every alteration of an
agent’s goal from stage t to t + 1 will result in kt+1 > kt under the Approval rule.

Proof. Let N be the set of H-pessimist voters, I the set of issues, and Γ 0 the
initial (truthful) voting profile. First, observe that no H-pessimist would prefer
an outcome Approval(Γ t+1) that is a superset of the current Approval(Γ t). In
fact, for any sets X ′ ⊆ X we have dpessH(γi,X) ≥ dpessH(γi,X

′) by definition,
and since an alteration which results in a lower support kt+1 < kt would lead to
Approval(Γ t) ⊂ Approval(Γ t+1), no agent i would alter their γt

i in such a way.
Hence, the support from stage t to stage t+1 can either stay the same or increase.

Take t to be the first stage at which, by an alteration of some agent i, we
have kt+1 = kt. By the reasoning above, we get that for any stage r < t:

kr+1 > kr, and (1)

Approval(Γ r+1) ⊆ Approval(Γ r) ⊆ Approval(Γ 0). (2)
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The only way an agent i can improve her satisfaction by keeping the support
constant is by withdrawing her support from the least preferred interpretations in
the current outcome. Take W = {w0, . . . , wl} ⊆ Approval(Γ t) to be these inter-
pretations, i.e., each wj is such that lowH(wj , γi) = dpessH(γi, Approval(Γ t))
and for all v ∈ Approval(Γ t) \ W we have lowH(v, γi) < lowH(wj , γi). Hence,
lowH(wj , γi) �= 0 and thus wj /∈ Mod(γi) for all wj ∈ W .

We now distinguish two cases on how agent i could alter at stage t:

(a) The agent withdraws support from the interpretations in the outcome which
are the most distant to her goal, i.e., Approval(Γ t+1) = Approval(Γ t) \W .
Since these interpretations wj are not models of her goal and yet they are
in Mod(γt

i ), agent i must have altered her vote at some stage rj < t for
every such wj ∈ W . But by (1), we know that agent i added support to all
the interpretations in Approval(Γ rj ) and thus by (2) she supports all those
in Approval(Γ t). Hence, the possibility to improve at t contradicts the fact
that the alteration at stage rj was a best response.

(b) The agents withdraws support from the interpretations in W and also
adds support for some ‘better’ interpretations, i.e., Approval(Γ t+1) =
Approval(Γ t) \ W ∪ V for some set V such that for all v ∈ V we have
lowH(v, γi) < lowH(wj , γi). Observe that for this alteration to be effective,
it must be that all v ∈ V are only lacking the support of 1 agent to be added
in the outcome, i.e. suppΓ t(v) = kt − 1. But by (1) and the fact that each
model can only gain the support of 1 more agent per alteration, we know
that at stage rj—as defined at point (a) of this proof—either:

(b.1) Agent i supported some v ∈ V . Then, the current alteration is not possi-
ble.

(b.2) Agent i did not support the elements in V . But then, every v ∈ V was in
Approval(Γ rj ) and so the alteration at stage rj was not a best response.

In conclusion, there will never be such an alteration at stage t by an H-
pessimist. �

Thanks to Lemma 1 we can now prove our first main theorem, which shows
that the iteration of goal-based voting under the Approval rule is guaranteed
to terminate for H-pessimist agents, assuming no restrictions on the alterations
available to them.3

Theorem 1. If every agent is a H-pessimist, then iterated Approval voting ter-
minates after at most |N | − k0 steps.

3 Note that this does not hold for arbitrary weak preferences over sets of interpreta-
tions wj . Let the best outcomes for agent 1 be P({w1, w3, w5})∪P({w2, w4}); those
of agent 2 be P({w2, w4, w5}) ∪ P({w1, w3}; and that of agent 3 be {w5}. Initially,
agent 1 submits {w2, w4}, agent 2 sends {w1, w3} and agent 3 sends {w5}. Then,
agent 1 alters to {w1, w2, w5}, while agent 2 alters to {w2, w3} next. Not only we
have k1 = k2, but we can construct a circular iteration following a similar structure
to that of the example in Table 2.
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Proof. Let Γ 0 be the initial (truthful) profile. By Lemma 1, any alteration of
an H-pessimist from stage t to t + 1 leads to kt+1 > kt. Thus, an agent can only
add support to interpretations already in the outcome. Since any interpretation
can only receive at most |N | units of support and any v ∈ Approval(Γ 0) has
support k0, there can be at most |N | − k0 many alterations. Thus, the iteration
stops in at most |N | − k0 steps. �

Given the result of Theorem 1 for H-pessimist agents, we may wonder if
the same holds for H-optimist agents. Unfortunately, Table 1 gives us a negative
answer, as it shows an example of an initial profile which leads to a circular
iteration for H-optimist agents for the given alteration choices. In fact, for this
initial profile Γ 0 over five agents and six issues, the iteration leads to profile Γ 6

which is identical to profile Γ 2.

Table 1. A non-terminating iteration under the Approval rule for H-optimist agents.

Γ 0 Γ 1 Γ 2 Γ 3 Γ 4 Γ 5 Γ 6

Mod(γ1) (000000) (000000) (000000) (000000) (000000) (000000) (000000)

(110000) (110000) (100000) (100000) (110000) (110000)

(111110) (111110)

Mod(γ2) (111111) (111111) (111111) (111111) (111111) (111111) (111111)

(111100) (111100) (111110) (111110) (111100)

(100000) (100000) (100000)

Mod(γ3) (111000) (111000) (111000) (111000) (111000) (111000) (111000)

(100000) (100000) (100000) (100000) (100000) (100000) (100000)

(110000) (110000) (110000) (110000) (110000) (110000) (110000)

Mod(γ4) (111000) (111000) (111000) (111000) (111000) (111000) (111000)

(110000) (110000) (110000) (110000) (110000) (110000) (110000)

(111100) (111100) (111100) (111100) (111100) (111100) (111100)

Mod(γ5) (111000) (111000) (111000) (111000) (111000) (111000) (111000)

(111100) (111100) (111100) (111100) (111100) (111100) (111100)

(111110) (111110) (111110) (111110) (111110) (111110) (111110)

Approval (111000) (111000) (111000) (111000) (111000) (111000) (111000)

(110000) (110000) (100000) (111110) (110000) (110000)

(111100) (111100) (111100)

In Theorem 2 we show a result which generalizes the situation in Table 1.
In fact, not only the result of Theorem 1 for H-pessimists does not hold for H-
optimists, but termination cannot be analogously guaranteed for their respective
generalizations to the classes of satisfaction functions defined by the (c.3) and
(d.3) properties (as well as connectedness and transitivity) presented in Sect. 2.2.

Theorem 2. Iterated Approval voting might not terminate for the classes of
agents’ satisfaction functions defined by the (c.3) or (d.3) properties.

Proof. We give two examples of initial profiles and satisfaction functions—
belonging, respectively, to the class of functions defined by the (c.3) or (d.3)
properties—which lead to a circular iteration according to our iteration process.
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For the class of functions defined by the (c.3) property, it suffices to consider
the Example given in Table 1, since the optH function is an instance of this class.

For the class by the (d.3) property, consider the Example given in Table 2:
starting from the initial profile Γ 0, we get by a sequence of alterations
to profile Γ 6 which is identical to Γ 2. For a function satisfying property
(d.3) to lead to the alterations in the Example, we should have {(111)} �1

{(110), (000), (111), (011)}, {(011)} �1 {(110)} and {(111)} �1 {(000)} for agent
1. For agent 2, the satisfaction function should be such that {(110)} �2 {(111)}
and {(000)} �2 {(011)}.

A function which satisfies these constraints, as well as property (d.3), could
be one where the agents prefer singletons over bigger sets, and they prefer to
get an outcome which satisfies the other agent’s goal rather than their own: i.e.,
agents who are decisive (preferring singletons) and altruistic (prioritizing the
satisfaction of the other agents).

Table 2. A non-terminating iteration of Approval for a satisfaction function in the
(d.3)-class.

Γ 0 Γ 1 Γ 2 Γ 3 Γ 4 Γ 5 Γ 6

Mod(γ1) (110) (111) (111) (011) (011) (111) (111)

(000) (110) (110) (000) (000) (110) (110)

Mod(γ2) (111) (111) (110) (110) (000) (000) (110)

(011) (011) (011) (011) (111) (111) (011)

Approval (110) (111) (110) (011) (000) (111) (110)

(000)

(111)

(011)

Therefore, the iteration for the classes of satisfaction functions defined by
the (c.3) and (d.3) properties is not guaranteed to terminate under the Approval
rule. �

Theorem 2 is related to a result by Terzopoulou and Endriss [34], who proved
that the plurality rule with lexicographic tie-breaking (which is a resolute version
of Approval) may not converge for truth-biased agents4 with Hamming-distance
preferences.

In order to guarantee termination for the Approval rule in these general cases,
and thus also for H-optimist agents, we need to introduce a restriction on the
type of alterations that the agents are allowed to make. In particular, we consider
a restriction whereby agents are only allowed to alter their vote by either adding
or subtracting models from their current goal’s set of models, but not mix these
two actions.

4 A truth-biased agent has an incentive to alter to her truthful goal when the corre-
sponding outcome which will be obtained by this alteration is at least as satisfying
as the current outcome.



14 L. Ade and A. Novaro

Definition 3. Given a profile Γ and a set V ⊆ {0, 1}m, an agent i with an
incentive to alter her vote does a minimal alteration from stage t to stage t + 1
if Mod(γt+1

i ) is equal to either:

(i) Mod(γt
i ) ∪ V , or

(ii) Mod(γt
i ) \ V .

Under a minimal alteration, an agent can thus only submit a goal at step
t + 1 whose models are a superset or a subset of their goal at step t, but not
a goal whose models include only some of the old models plus some new ones:
intuitively, we can see this alteration as an agent wanting to appear either more
decisive (i.e., by refining their goal) or more open to compromise (i.e., by making
their goal more easily satisfied).5

The following two results show that minimal alterations are enough to ensure
termination, when considering agents whose satisfaction functions are in the
classes defined by the (c.3) and (d.3) properties, respectively.

Theorem 3. Iterated Approval voting with agents whose satisfaction function
has property (c.3), using minimal alterations only, always terminates. The iter-
ation takes at most |{w ∈ {0, 1}m | suppΓ 0(w) < k0}| steps.
Proof. Let N be a set of voters, I a set of issues and Γ 0 the initial (truthful)
profile. For a stage t, let C and B be two elements of P({0, 1}m) such that
C ∩ A = ∅ and B ⊂ A for A = Approval(Γ t) the current outcome.

From stage t to stage t + 1 of the iteration, the current outcome A can only
change according to one of the following four cases:

(1) Approval(Γ t+1) = A ∪ C,
(2) Approval(Γ t+1) = A \ B,
(3) Approval(Γ t+1) = A \ B ∪ C,
(4) Approval(Γ t+1) = C.

The four cases above describe all possible ways the outcome could change
through an alteration, for some choices of C and B. However, in order to reach
case (3) or (4) an agent would have to alter in a non-minimal way, i.e. using an
alteration that does not fall under Definition 3. In fact, for case (3), the altering
agent would have to lower the support of all models in B (hence, removing them
from the models of her current goal) while raising it for all models in C (hence,
adding them to the models of her goal), resulting in a combination of dilatation
and erosion. Analogously for case (4), where the agent would have to lower the
support for all interpretations in the current outcome.

An alteration resulting in case (2) will never be performed by an agent whose
satisfaction function has property (c.3), since A ∪ B � A directly implies that
A ∪ B � A \ B.

5 Alterations (i) and (ii) from Definition 3 correspond to dilatation and erosion manip-
ulation, respectively, in the literature on strategic goal-based voting [27] and belief
merging [12].
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Hence, such an agent would only alter to reach a new outcome as in case
(1). This implies that the outcome strictly increases in size at each step, since
|A| < |A ∪ C|.

Therefore, the iteration will terminate after at most as many steps as there are
interpretations not in the outcome of Γ 0, i.e., |{w ∈ {0, 1}m | suppΓ 0(w) < k0}|.

�
Theorem 3 yields us two immediate corollaries. First of all, since optH is

a satisfaction function which satisfies the (c.3) property, the result applies to
H-optimist agents.

Corollary 1. Iterated Approval voting with H-optimists, using minimal alter-
ations, always terminates. The iteration takes at most |{w ∈ {0, 1}m |
suppΓ 0(w) < k0}| steps.

Moreover, the proof of Theorem 3 implies that the outcome at step t + 1 is
always a superset of the outcome at step t—and in particular, of the outcome
of Γ 0.

Corollary 2. For H-optimists agents restricted to minimal alterations, we have
that Approval(Γ 0) ⊆ Approval(Γ t) for any stage t.

We can now prove an analogous result of Theorem 3 for the (d.3) property.

Theorem 4. Iterated Approval voting with agents whose satisfaction function
has property (d.3), using minimal alterations only, always terminates and the
iteration takes at most |Approval(Γ 0)| − 1 steps.

Proof. Let N be a set of voters, I a set of issues and Γ 0 the initial profile. For
any stage t, let C and B be two elements of P({0, 1}m) such that C ∩A = ∅ and
B ⊂ A for A = Approval(Γ t). We distinguish the same cases as in the proof of
Theorem 3.

Cases (3) and (4) are still non-minimal alterations and can therefore be dis-
carded. Assume an alteration leads to a change as per case (1); by property
(d.3) we know that no superset is preferred, i.e., A � A ∪ C. Hence, the only
change an agent with a satisfaction function with property (d.3) will consider
is of kind (2). These changes, however, will lead to a strict decrease in the size
of the outcome from each step t to t + 1. Hence, the iteration will terminate at
the latest when there is only one model left in the outcome, i.e., after at most
|Approval(Γ 0)| − 1 many steps. �

We have thus established conditions which ensure termination results for our
choices of optimist and pessimist satisfaction functions based on the Hamming
distance. In the next section we will analyze the impact that the iteration has
on the social welfare.
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4 Social Welfare in Iteration with the Approval Rule

In the previous section we have studied the conditions that yield termination of
iterative goal-based voting for the Approval rule. We now focus on analyzing the
quality of such iterations, from the point of view of a possible increase in social
welfare.

We study three classical notions of social welfare: utilitarian (additive), which
was also studied by Caragiannis and Procaccia for classical voting [8] and by
Barrot et al. for Hamming-based approval voting [4]; Nash (multiplicative), as
studied in voting [10,17]; and lastly, egalitarian (max-min) welfare as introduced
by Rawls [31] and studied by Botan et al. [6] for the judgment aggregation
framework.

Definition 4. For a set of agents N and a set of issues I, the utilitarian (utw),
Nash product (npw) and egalitarian (egw) welfare for a satisfaction function sat,
a truthful profile Γ = (γ1, . . . , γn) and the outcome of rule F under a profile Γ ′

are defined as:

utw(F (Γ ′),Γ ) =
∑

i∈N
sat(γi, F (Γ ′)),

npw(F (Γ ′),Γ ) = Πi∈N sat(γi, F (Γ ′)),
egw(F (Γ ′),Γ ) = min

i∈N
sat(γi, F (Γ ′)).

Intuitively, the utilitarian welfare only considers the sum of individual satis-
factions of the agents, while the Nash welfare penalizes profiles in which some
agents are completely dissatisfied, and the egalitarian welfare focuses on the least
satisfied agent.

We call an alteration from profile Γ t to Γ t+1 a Pareto improvement if for
none of the agents the satisfaction in Γ t+1 decreased from the satisfaction in
Γ t, and for at least one agent their satisfaction strictly increased: namely, for all
agents i ∈ N , we have sat(γi, F (Γ t+1)) ≥ sat(γi, F (Γ t)) and there is at least
one agent k ∈ N such that sat(γk, F (Γ t+1)) > sat(γk, F (Γ t)).

Our first result establishes that iteration under the Approval rule for H-
pessimist agents is never detrimental to the social welfare.

Theorem 5. If the iteration of the Approval rule with H-pessimist agents has
at least one step, the utilitarian and Nash social welfare always increase, while
the egalitarian welfare does not decrease.

Proof. We prove the first part of the theorem by showing that any iteration step
is a Pareto improvement: this suffices since a sum increases if at least one term
increases (and all others stay constant), and analogously for a product and its
factors.

Let N be the voters, I the issues and Γ 0 the initial profile. By Lemma 1, for
any step t with H-pessimists we have kt+1 > kt and hence Approval(Γ t+1) ⊆
Approval(Γ t). Hence, the interpretations with the maximal lowest Ham-
ming distance (lowH) to the goal of any agent i are either still in the



Iterative Goal-Based Approval Voting 17

new outcome, or the distance decreased. Thus dpessH(γi, Approval(Γ t+1)) ≤
dpessH(γi, Approval(Γ t)). In fact, suppose that for some agent i the distance
increased; then, since Appoval(Γ t+1) ⊆ Approval(Γ t) the interpretation with
the lowest distance dpessH(γi, Approval(Γ t+1)) must have been in Approval(Γ t),
and therefore dpessH(γi, Approval(Γ t)) was not the maximal distance, which
contradicts the definition of pessH.

Additionally, the altering agent j changes her goal such that her satisfaction
strictly increases, i.e., dpessH(γj , Approval(Γ t+1)) < dpessH(γj , Approval(Γ t)).
Hence, any step is a Pareto improvement. Since by Theorem 1 the iteration with
H-pessimists always terminates, the final stage will yield an outcome that has
a higher utilitarian and Nash social welfare than the outcome under the initial
profile.

For the egalitarian welfare, the worst-off agent could keep the same satis-
faction throughout, and thus the welfare would not increase (but still never
decrease). �

In order to establish an analogous result to Theorem 5 for H-optimists as
well, we first need to prove the following Lemma, which extends the result of
Corollary 2 to general iteration (i.e., not limited to minimal alterations).

Lemma 2. For iterated Approval voting with H-optimists, it is always the case
that Approval(Γ 0) ⊆ Approval(Γ t) for any stage t.

Proof. Let N be a set of voters, I a set of issues and Γ 0 the initial profile, whose
outcome is Approval(Γ 0). Observe that any agent i who includes a winning
interpretation in her current goal at step t, which also models her truthful goal,
has no incentive to alter. In fact, H-optimists only consider the minimal lowH,
which in this case is 0 and hence cannot be decreased. The support of these
interpretations will thus not decrease, i.e., suppΓ t(v) ≥ suppΓ 0(v) for any stage
t and all interpretations v ∈ Approval(Γ 0).

Further, note that the support of the winning interpretations from one stage t
to the next will not increase, i.e., kt+1 ≤ kt. In fact, if this was not the case, there
would be an iteration step t where kt+1 > kt. Since support of interpretations can
only be raised by 1 per step we have kt+1 = kt+1. Hence, the new outcome must
be a subset of the previous one Approval(Γ t+1) ⊆ Approval(Γ t). We would have
optH(γi, Approval(Γ t+1)) ≤ optH(γi, Approval(Γ t)) and no H-optimist has an
incentive to induce such a change, because one of their closest interpretations is
either still in the outcome, which makes no difference to them, or now a worse
interpretation is their closest, which would make them worse off. Therefore, the
support of the winning interpretations from one stage t to the next will not
increase, i.e., kt+1 ≤ kt.

In conclusion, the initial winning interpretations will have a stable support
of k0 and the support of the winning interpretations does not increase during
the iteration, i.e., kt = k0 for all stages t. Therefore, the interpretations v ∈
Approval(Γ 0) will always hold the maximal support. Hence Approval(Γ 0) ⊆
Approval(Γ t). �
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We can now show that for H-optimists as well the social welfare is guaranteed
to always improve or stay constant after the iteration process has terminated.

Theorem 6. In case the iteration of the Approval rule with H-optimists has
at least one step and terminates, the utilitarian and Nash social welfare always
increase, while the egalitarian welfare does not decrease.

Proof. Let N be a set of voters, I a set of issues and Γ 0 the initial profile. By
Lemma 2 we know that for H-optimists at any stage t we have Approval(Γ 0) ⊆
Approval(Γ t). Hence, at any stage t and for any agent i their satisfaction never
drops below the one for the initial profile optH(γi, Approval(Γ 0)). In fact, their
preferred interpretation in the initial outcome is guaranteed to be included in
any subsequent outcome as well.

Therefore, doptH(γi, Approval(Γ t)) ≤ doptH(γi, Approval(Γ 0)) for any agent
i and any stage t. Additionally, at each step t there is some agent j strictly
improving her satisfaction, i.e., whose distance strictly decreases with respect to
the initial outcome doptH(γj , Approval(Γ t)) < doptH(γj , Approval(Γ 0)). Hence,
any step t is a Pareto improvement compared to the initial profile, and by the
argument in the proof of Theorem 5, the utilitarian welfare and the Nash welfare
always increase, while for the egalitarian welfare the worst-off agent could keep
the same satisfaction throughout the iteration (and thus it could not increase,
though never decrease). �

Given the conditions found in Sect. 3 to guarantee termination of the iterated
Approval rule for H-optimists, we can derive the following corollary of Theorem 6.

Corollary 3. The iterated Approval rule with H-optimists, using minimal alter-
ations, always yields an increase in utilitarian and Nash social welfare.

Table 3. The change in outcome from Γ 2 to Γ 3 in this iteration with H-optimists
under the Approval rule is not a Pareto improvement for the utilitarian and Nash social
welfare; however, Approval(Γ 3) still yields an increase in social welfare compared to
Approval(Γ 0).

Γ 0 Γ 1 Γ 2 Γ 3

Mod(γ1) (010) (010) (001) (001)

(000) (000)

Mod(γ2) (001) (101) (101) (001)

(000) (000)

Mod(γ3) (100) (100) (100) (100)

Mod(γ4) (100) (100) (100) (100)

(101) (101) (101) (101)

Approval (100) (100) (100) (100)

(101) (101) (001)

(000)
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Note that the Pareto improvement in the proof of Theorem 6 is global and
not local: every stage is a Pareto improvement with respect to the initial stage,
but not necessarily to the previous stage. It thus is weaker than the proof for
Theorem 5, which guarantees an improvement across every stage. This is related
to the corresponding termination result, as an iteration consisting of only Pareto
improvements can only have a finite number of steps, since the satisfaction has
an upper bound. Table 3 gives an example of an iteration with H-optimists in
which some steps are not Pareto improvements.

5 Conclusions

In this paper, we have extended the framework of goal-based voting by giving
the agents the possibility to revise their vote based on the current outcome, if
by doing so they can improve their satisfaction. In particular, we have focused
on the well-known Approval rule and two notions of optimist and pessimist
agents, whose satisfaction functions optH and pessH are based on the Hamming
distance.

Our results have focused on analyzing termination and quality for the iter-
ative process. We proved in Theorem 1 that for the H-pessimists, the iteration
is guaranteed to always terminate, while the same does not hold for the H-
optimists, as well as for the general classes of satisfaction functions having the
properties (c.3) and (d.3) by Packard [29], as shown in Theorem 2. Nevertheless,
we were able to establish termination results for these general classes of satisfac-
tion functions in Theorems 3 and 4, which required restrictions on the type of
alterations the agents are allowed to make. We also gave upper bounds on the
number of steps necessary to reach convergence.

Regarding the quality of iteration, we analyzed its variation according to
three classical notions of social welfare brought by the iterative process. For both
H-pessimists and H-optimists we showed that the utilitarian and Nash welfare
always increase, while the egalitarian welfare never decreases, as per Theorems 5
and 6, respectively.

Therefore, we have shown that under none or small restrictions, the iteration
of the Approval rule for H-pessimists and H-optimists is well-behaved from both
points of view of convergence and social welfare.

Natural avenues for future work include the study of convergence for other
goal-based voting rules. For instance, some issue-wise generalizations of majority
have been proven to be susceptible to manipulation for dichotomous satisfaction
functions [27]: it would be interesting to study under which conditions they
can be ensured to converge to a stable outcome under the more sophisticated
Hamming-based preferences.

Moreover, we could consider groups of agents coordinating their alterations to
satisfy a shared goal; we could also add restrictions on the information available
to the agents (cf. the relevant work in judgment aggregation [34]) or on the type
of goals that they are allowed to submit (as it has been done for strategy-proof
majoritarian goal-based voting [27]), or more general classes of preferences over
outcomes.
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Finally, although one example suffices to show circularity of iteration, it
would be interesting to perform a thorough analysis via simulations of how
often such cases are likely to occur in practice. Some preliminary work in these
directions and related results on iterative goal-based voting can be found in the
Master thesis of the first author [1].
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Abstract. In this paper we present the theory behind Probabilistic
Trace Expressions (PTEs), an extension of Trace Expressions where
types of events that can be observed by a monitor are associated with
an observation probability. PTEs can be exploited for monitoring that
agents in a MAS interact in compliance with an Agent Interaction Pro-
tocol (AIP) modeled as a PTE, even when the monitor realizes that an
interaction took place in the MAS, but it was not correctly observed
(“observation gap”). To this aim, we adapt an existing approach for run-
time verification with state estimation, we present a semantics for PTEs
that allows for the estimation of the probability to reach a given state,
given a sequence of observations which may include observation gaps, we
present a centralized implemented algorithm to dynamically verify the
behavior of the MAS under monitoring and we discuss its potential and
limitations.

Keywords: Probabilistic Trace Expressions · Partial observability ·
State estimation · Multiagent systems · Agent interaction protocols

1 Introduction

Runtime verification of complex, distributed systems under ideal conditions (per-
fect observability of all the relevant events, no leaky communication channels,
etc.) is an hard task to perform, and has been addressed by many scientific
works including surveys and introductory papers [14,24,27], books [13], seminars
[18,23], and conferences1. When the conditions are not ideal and some relevant
events cannot be observed by the monitor, generating a gap in the event trace,
the problem becomes even harder [11,15,22,25,31]. A gap represents the absence
of information in the analyzed trace and corresponds to an execution point – or
to a time slot – where the monitor does not know what the system did. Gaps
may be due to the process of sampling observed events to reduce monitoring
overhead, but also to events that are partially observable or not observable at
all by the monitor: the monitor might be aware that an event took place, but
does not know which. We say that the monitor “observes a gap” to describe this
1 http://www.runtime-verification.org/.
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situation. The introduction of gaps raises problems in checking that a tempo-
ral property is verified by the system, given that a trace of events (which may
include gaps) has been observed. If the monitor does not know which event has
been observed, it cannot know whether the temporal property is satisfied or not.

In [32], each time a gap in observed a Hidden Markov Model (HMM) of the
system is queried to know which events could be observed in the current state
of the system, and with which probability. This allows the authors to estimate
the probability to reach some state si after observing obs = O1, O2, ..., Ot events,
and – by generating a monitor that combines the system HMM and the temporal
property φ into a single integrated model – to estimate the probability that φ is
satisfied after observing obs = O1, O2, ..., Ot events.

In this paper, we take [32] as our starting point, and we combine the approach
presented therein with the adoption of an existing expressive formalism to model
systems and properties, Trace Expressions [1,2,5,6,10].

After an overview of the background in Sect. 2, we present Probabilistic Trace
Expressions (PTEs) which extend Trace Expressions with probabilities associ-
ated with event types (Sect. 3). PTEs are more expressive than HMM, determin-
istic finite state machines and linear time temporal logic (LTL [28]), being able to
model more than context free languages. In Sect. 4 (1) we use PTEs to model the
probabilistic behaviour of the system under observation, possibly starting from
an HMM and then refining or extending it; (2) we show how – by applying the
rules defining the operational semantics of PTEs – we obtain the same results of
the forward algorithm presented in [32]; (3) we present the Probabilize algorithm
for transforming Trace Expressions corresponding to LTL properties into PTEs;
(4) by joining the two representations obtained in steps 1 and 3 above using the
∧ conjunction operator natively provided by PTEs, we obtain for free a way to
verify satisfaction of LTL properties in presence of observation gaps. Section 5
discusses the implementation of a centralized algorithm for Runtime Verification
of partially observable MASs and suggests that a decentralized approach may
solve some of its limitations, at the expense of communication overhead among
the monitors. Future directions of our research are addressed in Sect. 6.

2 Background

Hidden Markov Models. A Hidden Markov Model (HMM [16,30]) is a statistical
Markov model where the system being modeled is assumed to be a Markov
process with hidden states. It can be modeled as a quintuple H = 〈S,A, V,B,Π〉
where

– S = {s1, ..., sNs
} is the set of states;

– A is the Ns × Ns transition probability matrix: Ai,j = Pr(state is sj at time
t + 1 | state is si at time t);

– V = {v1, ..., vNv
} is the set of observation symbols;

– B is the Ns×Nv observation probability matrix: Bi,j , also denoted with bi(vj)
for clarity, is Pr(vj is observed at time t | state is si at time t);



24 D. Ancona et al.

– Π = {π1, ..., πNs
} is the initial state distribution: πi is the probability that

the initial state is si.

We use as our running example the one presented in [32], where a model of a
planetary rover mission is modeled. The rover hosts two generic instruments, A
and B, and all the events generated by the rover are recorded on a log file. We
consider four different kinds of events, inspired by Barringer et al. [12]:

– command (cmd in the HMM figure), the command submitted to the rover;
– dispatch (disp), the dispatch of the command from the rover to the instru-

ment;
– success (succ), the success of the command on the instrument;
– fail (fail), the failure of the command on the instrument.

All these events are characterized by three parameters: the instrument id (a or
b), the issued command (start or reset), and a time stamp indicating when the
event occurred. When the rover receives a command, it reports the information
to the logger and sends the command to the relevant instrument. Once received
the command, the instrument issues a dispatch event to the logger and then
executes the command. If the execution is successful (resp. fails), a corresponding
success (resp. failure) event is reported to the logger. It is also possible that the
command is simply lost for some reason and neither a success nor a fail occurs.
Events have some probability to be observed, and the chance to move from one
state to another is also modeled by a probability.

Fig. 1. An example of HMM (from [32]).

Figure 1 represents an HMM inspired to the rover example, where

– S = {s1, s2, s3};
– A1,1 = A1,3 = 0;A1,2 = 1; A2,1 = 0.07;A2,2 = 0;A2,3 = 0.93;

A3,1 = 1;A3,2 = A3,3 = 0;
– V = {C,D, S, F} (C stands for cmd, D for disp, etc.);
– b1(C) = 1; b1(D) = b1(S) = b1(F ) = 0; b2(D) = 1; b2(C) = b2(S) = b2(F ) =

0; b3(C) = b3(D) = 0; b3(S) = 0.97; b3(F ) = 0.03;
– π1 = 1, π2 = π3 = 0 (not shown in the figure).

To compute the probability that an HMM H ends in a specific state given
an observation sequence O = 〈O1, O2, ..., OT 〉, the forward algorithm can be
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used [29]. Let Q = 〈q1, q2, ..., qT 〉 denote the (unknown) state sequence that the
system passed through, i.e., qt denotes the state of the system when observation
Ot is made. Let αt(i) = Pr(O1, O2, ..., Ot, qt = si|H), i.e., the probability that
the first t observations yield O1, O2, ..., Ot and that qt is si, given the model H.
The base case is:

α1(j) = πjbj(O1) for 1 ≤ j ≤ Ns

whereas the recursive case is:

αt+1(j) = (Σi=1..Ns
αt(i)Ai,j)bj(Ot+1) for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ Ns

Trace Expressions. Trace expressions are based on the notions of event and event
type. E denotes the fixed universe of events subject to monitoring. An event trace
over E is a possibly infinite sequence of events in E , and a Trace Expression over
E denotes a set of event traces over E . Trace expressions are built on top of event
types (chosen from a set ET ), each specifying a subset of events in E . A Trace
Expression τ ∈ T represents a set of possibly infinite event traces, and is defined
on top of the following operators:

• ε (empty trace), denoting the singleton set {ε} containing the empty event
trace ε.

• ϑ:τ (prefix ), denoting the set of all traces whose first event e matches the
event type ϑ, and the remaining part is a trace of τ .

• τ1·τ2 (concatenation), denoting the set of all traces obtained by concatenating
the traces of τ1 with those of τ2.

• τ1∧τ2 (intersection), denoting the intersection of the traces of τ1 and τ2.
• τ1∨τ2 (union), denoting the union of the traces of τ1 and τ2.
• τ1|τ2 (shuffle), denoting the set obtained by shuffling the traces of τ1 with

the traces of τ2.

The derived constant Trace Expression 1 is equivalent to the expression τ =
ε∨everyEvent:τ , where everyEvent = E . Trace expressions support recursion
through cyclic terms expressed by finite sets of recursive syntactic equations,
as supported by modern Prolog systems. The semantics of Trace Expressions is
specified by a transition relation δ ⊆ T × E × T , where T and E denote the set
of Trace Expressions and of events, respectively. τ1

e→ τ2 means (τ1, e, τ2) ∈ δ;
the transition τ1

e→ τ2 expresses the property that the system under monitoring
can safely move from the state specified by τ1 into the state specified by τ2 when
event e is observed. A Trace Expression models the current state of a protocol.
Protocol state transitions are ruled by the transition system shown in Fig. 2,
which define δ.

Runtime Verification with State Estimation. Given a trace (possibly with gaps),
in [32] Stoller et al. propose an approach to compute the probability that a
LTL temporal property φ is satisfied by a system modeled by an HMM H,
given that obs = O1, O2, ..., Ot have been observed. More formally, they evaluate
Pr(φ| obs,H) by applying the following steps:
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Fig. 2. Transition system for trace expressions.

1. learn the HMM H from a given set of traces without gaps, using standard
HMM learning algorithm;

2. generate the deterministic finite state machine (DFSM) corresponding to φ;
3. generate a monitor combining H and the DFSM to check the sequence obs.

Step 1 falls outside the boundaries of their investigation, and in the sequel
we will disregard how the HMM has been created as well.

3 Probabilistic Trace Expressions

A probabilistic Trace Expression (PTE) is a Trace Expression where occurrences
of event types in the expression have a probability associated with them. The
probability is written after the occurrence of the event type, in square brack-
ets. From a syntactic point of view, this extension is the only difference w.r.t.
“normal” Trace Expressions introduced in Sect. 2.

Example. We present the PTE corresponding to the rover example. Event type
cmd is { command(Inst, Comm, TS) such that Inst ∈ {a, b}, Comm ∈ {start,
reset}, TS a time stamp in the range 0...3 }; event type disp is { dispatch(Inst,
Comm, TS) }, succ = { success(Inst, Comm, TS) } and fail is { fail(Inst, Comm,
TS) }. The resulting Trace Expression can be written in two equivalent (from
the PTE semantics viewpoint) ways:

τs1 = cmd[1]:τs2

τs2 = disp[0.07]:τs1∨disp[0.93]:τs3

τs3 = succ[0.97]:τs1∨fail[0.03]:τs1

(note the disp occurrence in both branches of τs2 definition, with different prob-
abilities and different Trace Expressions after the “:” operator) and

τ ′
init = cmd[1]:τ ′

s2
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τ ′
s1

= cmd[0.07]:τ ′
s2

τ ′
s2

= disp[1]:(τ ′
s1

∨τ ′
s3

)

τ ′
s3

= succ[0.9021]:τ ′
s1

∨fail[0.0279]:τ ′
s1

The Trace Expression in the first form tells us, for example, that the probability
of the protocol to reach τs1 starting from τs2 and having observed disp is 0.07
while the probability to reach τs3 starting from τs2 and having observed disp is
0.93 (second equation of the first formulation). To make this information explicit,
the transition from state s2 to states s1 and s3 in the HMM has been modeled
by τs2 = disp[0.07]:τs1∨disp[0.93]:τs3 , introducing non-determinism due to the
occurrence of the same event type disp in both branches of the “or” operator.
While in a non probabilistic setting τs2 = disp:τs1∨disp:τs3 would be equivalent
to τs2 = disp:(τs1∨τs3) and the second version would be definitely preferred, as
– besides being more readable and compact – is deterministic, in a probabilistic
setting this simplification would cause us to lose precious information on the
probability to move to some state S, given some observed event O.

The second version overcomes this problem by propagating – via multipli-
cation – the different probabilities associated with disp in s2

′ to the states s1
′

and s3
′ that can be reached from s2

′ (second and fourth equation of the second
formulation). With this second form, we gain determinism at the price of adding
an initial state τinit for each state whose initial probability is not zero, and of
losing the one-to-one clear correspondence with the HMM. As an example, in
the fourth equation, understanding that succ[0.9021] comes from the probabil-
ity 0.97 associated with observing succ in state s3

′ multiplied by the probability
0.93 of having reached s3

′ from s2
′ is far from intuitive.

Given that a structure-driven transformation from the first form to the second
can be implemented in time linear with the Trace Expression length, we adopt
the first form for presentation purposes, since it is closer to the HMM, but we
use the second one in the implementation, since it is more efficient.

Like a “normal” Trace Expression, a PTE τ can be seen as the current state
of a protocol that started in some initial state τinit and reached τ after n events
O1...On took place, that moved τinit to τ through intermediate states τq1, τq2,

... , τqn = τ . If we denote with τ
O→ τ ′ the transition from state τ to state τ ′ due

to the event O taking place and being observed, we may write
τinit

O1→ τq1
O2→ τq2

O3→ τq3...
On→ τqn, where τqn = τ .

In order to properly manage probabilities, it is convenient to associate with
τ – in an explicit and easily computable way – the probability of the protocol
to have reached τ starting from τinit and having observed O1...On.

We define a “PTE state” (simply “state” from now on) the triple consisting
of a Trace Expression τ , a sequence of events O1...On observed before reaching
τ , and the probability πτ that the protocol reached τ . We represent the state
with the notation 〈τ, πτ , O1...On〉.

In this work, we are interested in analyzing the protocol evolution in presence
of observation gaps: in a state τc (for τcurrent), the monitor driven by a PTE
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may either observe an event O, and then its behaviour is the same as in the non-
probabilistic setting – it moves to the next state τ , if τc

O→ τ is an allowed move
–, or “observe a gap”. Observing, or perceiving, a gap means that the monitor
is aware that some event took place and hence the protocol must move one step
forward, but it is also aware that the event has not been correctly observed. The
monitor cannot commit to the τc

O→ τ move in this case, but it must remember
that many moves were possible, one for each of the events that could have taken
place in τ , and that could have filled the perceived gap: τc

gap→ τ (if the event
were O, modeled by gap(O) in the sequence of observed events), τc

gap→ τ ′ (if the
event were O′, modeled by gap(O′)), τc

gap→ τ ′′ (if the event were O′′, modeled
by gap(O′′)), etc.

Fig. 3. Transition system for probabilistic trace expressions states.

The transition rules between states are shown in Fig. 3 and follow the pattern
of the rules defined for Trace Expressions, with modifications for taking care of
the probability propagation and of observed events including gaps. The rules for
ε are the same as for normal Trace Expressions. Appendix A of the longer version
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of this paper available as a DIBRIS technical report provides a deep explanation
of each of them [8].

In Fig. 3 the use of any and any(e) allows us to model the transition in
the case that an event has been observed and in the case an observation gap
took place, using the same rule. In fact, any ∈ {e, gap} and if any == e then
any(e) == e; if any == gap then any(e) == gap(e).

If any == e, then e has been observed, the arrow modeling the state tran-
sition function

any→ is actually labeled with e, and e is concatenated with the
previously observed events, obs; if any == gap, then a gap took place, the arrow
any→ is labeled with gap, and gap(e), meaning that a gap took place, and that it
could be filled with event e, is concatenated with the previously observed events.

Nondeterminism in State Transitions. The state transition function
any→ is non-

deterministic: one state can move into more than one state for many differ-
ent reasons. Let us consider the cmd event type introduced at the beginning
of this section. The transitions below can take place starting from the state
〈cmd[0.3]:τ , 0.2, obs〉 when an observation gap occurs.

– 〈cmd[0.3]:τ , 0.2, obs〉 gap→ 〈τ, 0.06, obs gap(command(a, start, 0))〉
– 〈cmd[0.3]:τ , 0.2, obs〉 gap→ 〈τ, 0.06, obs gap(command(b, start, 0))〉
– ... plus 14 more transitions.

As another example, let us consider again the event type cmd defined above
and the state 〈cmd[0.75]:τ1∨cmd[0.25]:τ2, 0.4, obs〉. If command(a, start, 3)
(abbreviated in c(a, s, 3) for presentation purposes) is observed, both branches of
the choice in cmd[0.75]:τ1∨cmd[0.25]:τ2 are valid, leading to the two transitions
below.

– 〈cmd[0.75]:τ1∨cmd[0.25]:τ2, 0.4, obs〉 c(a,s,3)→ 〈τ1, 0.3, obs c(a, s, 3)〉
– 〈cmd[0.75]:τ1∨cmd[0.25]:τ2, 0.4, obs〉 c(a,s,3)→ 〈τ2, 0.1, obs c(a, s, 3)〉

If, starting from 〈cmd[0.75]:τ1∨cmd[0.25]:τ2, 0.4, obs〉, a gap is observed, the
two sources of nondeterminism (the first due to the gap that can be filled with
many events matching the expected event type, and the second due to the non-
deterministic choice in the Trace Expression) combine together, generating 32
possible transitions. Other sources of nondeterminism in the Trace Expression
are due to the shuffle and the concatenation operators, defined by two transitions
rules each. Figure 4 presents the rules for dealing with nondeterminism and for
introducing the notion of transitive closure of transitions:

(state-to-set) The function represented by →γ takes one PTE state γ, one
observed event or gap any , and returns the set of all the PTE states that γ

can reach via
any→ .

(set-to-set) The function represented by � takes one set of PTE states {γ1, γ2,
..., γn}, one observed event or gap any , and returns the union of the sets of
PTE states that each γi ∈ {γ1, γ2, ..., γn} can reach via

any→γ .
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Fig. 4. Rules for nondeterminism and transitive closure.

(closure) We use � to denote the transitive closure of � by putting the
sequence of observed events on top of the arrow.

(closure-init) Finally, a PTE τ can evolve into any state γ ∈ Γn after observa-
tion of O1...On, if the PTE state 〈τ, 1, σ〉 can, where σ is the empty sequence.

Example. Starting from the PTE τs1 used as running example, we have:

τs1

cmd disp gap
� {〈τs2 , 0.07, cmd disp gap(cmd)〉,

〈τs1 , 0.9021, cmd disp gap(succ)〉, 〈τs1 , 0.0279, cmd disp gap(fail)〉}
because

{〈τs1 , 1, σ〉} cmd� {〈τs2 , 1, cmd〉} disp
� {〈τs1 , 0.07, cmd disp〉, 〈τs3 , 0.93, cmd disp〉} gap

�

{〈τs2 , 0.07, cmd disp gap(cmd)〉, 〈τs1 , 0.9021, cmd disp gap(succ)〉,
〈τs1 , 0.0279, cmd disp gap(fail)〉}

4 From HMMs to PTEs

A PTE where probabilities associated with event types are consistent with their
intended meaning and with the probability properties might be complex when
written from scratch. Besides needing a deep knowledge of the modeled system,
the developer would also need a means to ensure that, for example, a PTE
like cmd[0.9] : τs1 ∨ disp[0.8] : τs2 is recognized as wrong, since there are two
mutually exclusive branches and the sum of their probabilities is greater than
one. While this error is trivial and can be easily catched and corrected, if the
PTE grows in size and complexity a manual development becomes more and
more error-prone.
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A good practice in engineering new software applications is to reuse well
established approaches as much as possible. Even if we want to model proba-
bilistic systems using an extension of Trace Expressions, which is more expressive
than HMM and deterministic finite state machines, this does not prevent us from
starting from a less expressive but widely used formalism like HMM in order to
create a simple, but correct, PTE modeling the system, and extend/refine the
PTE if necessary.

If an HMM representing the behaviour of the modeled system exists, for
example because it has been learned using existing algorithms, we can indeed
use it to generate the corresponding PTE in an automatic way. Once such PTE
has been obtained, we can modify it in order to model those features of the
actual system that could not be directly represented with an HMM. Ensuring
consistency of the modifications is up to the developer.

The HMM2PTE Algorithm. Given an HMM H = 〈S,A, V,B,Π〉, the algorithm
to construct an equivalent PTE is the following:

1. for each observation symbol vk ∈ V , generate the corresponding singleton
event type βk = {vk} (recall that Trace Expressions are defined on top of
event types and not of events);

2. for each i = 1..Ns, for each j = 1..Ns, for each k = 1..Nv, if Ai,j 
= 0 then
τsi

=
∨

j=1..Ns,k=1..Nv
βk[Ai,j ∗ bi(vk)]:τsj

2. If, for some given i, there exists
only one j such that Ai,j is different from 0, then τsi

= βk[Ai,j ∗ bi,k]:τsj
. If,

for some given i, all Ai,j are equal to 0, then τsi
= ε.

As an example, the HMM2PTE algorithm translates the HMM presented in
Sect. 2 into the PTE τ ′

init presented in Sect. 3.

Forward Algorithm for Probabilistic Trace Expressions. Let us consider the set
of PTEs states Γ0 = {〈τs1 , πs1 , σ〉, 〈τs2 , πs2 , σ〉, ..., 〈τsN

, πsN
, σ〉}, where each

τsi
corresponds to a state si in the HMM H and has been obtained applying

the HMM2PTE translation algorithm to H. πsi
is the initial probability of si,

according to H. If πsi
= 0, the corresponding state 〈τsi

, πsi
, σ〉 is not included

in Γ0.

If Γ0

O1...Ot−1� Γt−1, all the states in Γt−1 must have the form
〈τsx

, π,O1...Ot−1〉 for some x: they are the states where τsx
can be reached

from one of the states in Γ0, upon observing O1...Ot−1. Given i1 and i2 two
indexes, we denote with Γi1(τi2) = {〈τsi2

, π,O1...Oi1−1〉 ∈ Γi1}.

Theorem 1. If Γ0

O1...Ot−1� Γt−1 and Γt−1(τst
)

Ot� Γt,
then αt(j) = Σ〈τsj ,πj ,O1...Ot〉∈Γt

πj.

We give the intuition behind the theorem by means of our running example.
Let us suppose that we want to compute the probability that, after observing

2 By
∨

h=1..m τh we mean the conjunction via the ∨ operator of the Trace Expressions
τ1, ..., τm. The notation can only be used if m ≥ 2.
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command(a, start, 0) (C in the sequel), dispatch(a, start, 1) (D in the
sequel), fail(a, start, 2) (F in the sequel), the system is in state s3.

Step 1: computation of Γ0

O1...Ot−1� Γt−1.

In our example, the first step amounts to computing Γ0
CD� Γ2.

Γ0 = {〈τs1 , 1, σ〉} C� Γ1 = {〈τs2 , 1, C〉} D� Γ2 = {〈τs1 , 0.07, CD〉, 〈τs3 , 0.93, CD〉}

Step 2: computation of Γt−1(τst
)

Ot� Γt.

In our example, this step amounts to computing Γ2(τs3)
F� Γ3.

Once reached Γ2 = {〈τs1 , 0.07, CD〉, 〈τs3 , 0.93, CD〉} we have to limit the last
transition, tagged with F , to those states whose Trace Expression corresponds
to s3, namely τs3 . We have

Γ2(τs3) = {〈τs3 , 0.93, CD〉} F� Γ3 = {〈τs1 , 0.0279, CDF 〉}

Step 3: computation of Σ〈τsj ,πj ,O1...Ot〉∈Γt
πj

In the last step, we have to sum all the probabilities of the states in Γt, namely
Γ3 in our example. There is only one state in Γ3, with probability 0.0279. It
turns out that Σ〈τsj ,πj ,O1...Ot〉∈Γ3πj = π3 = 0.0279.

Step 4: computation of αt(j) as defined in the forward algorithm [29] and
summarized in Sect. 2.
In our example, αt(j) is α3(3), namely the probability to observe CDF , with F
observed in state s3. We use the sequence of events as subscript for α instead of
their indexes for sake of clarity.
The base case leads to the following computation:

αC(1) = π1 ∗ b1(C) = 1 ∗ 1 = 1

αC(2) = π2 ∗ b2(C) = 0 ∗ 0 = 0

αC(3) = π3 ∗ b3(C) = 0 ∗ 0 = 0

The first recursive step leads to the following computation (we omit some details
and keep the result)

αCD(1) = (Σi=1..Ns
αC(i)Ai,1)b1(D) = 0

αCD(2) = (Σi=1..Ns
αC(i)Ai,2)b2(D) = 1 ∗ A1,2 ∗ b2(D) = 1 ∗ 1 ∗ 1 = 1

αCD(3) = (Σi=1..Ns
αC(i)Ai,3)b3(D) = 0

and the second recursive step leads to

αCDF (1) = (Σi=1..NsαCD(i)Ai,1)b1(F ) = 0
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αCDF (2) = (Σi=1..NsαCD(i)Ai,2)b2(F ) = 0

αCDF (3) = (Σi=1..NsαCD(i)Ai,3)b3(F ) = αCD(2)∗A2,3∗b3(F ) = 1∗0.97∗0.03 = 0.0279

Step 5: check that αt(j) and Σ〈τsj ,πj ,O1...Ot〉∈Γt
πj are equal.

From Steps 3 and 4 above, we obtain Σ〈τs3 ,π3,CDF 〉∈ΓCDF
π3 = 0.0279 and

αCDF (3) = 0.0279: for this example the theorem is satisfied.

Proof: the proof of Theorem 1 is reported in Appendix B of the extended version
of this paper [8].

Satisfying LTL Properties when Gaps Are Observed. In order to verify whether
a LTL property φ is verified by a PTE τ , also in presence of observation gaps,
we need to specify φ into the same formalism in which τ has been modelled,
namely PTEs.

The pipeline for implementing the translation from φ into an equivalent PTE
τ(φ) is the following:

1. translate φ into a non probabilistic Trace Expression τnp(φ) using the imple-
mented algorithm presented in [5];

2. translate the non probabilistic Trace Expression τnp(φ) into a probabilistic
Trace Expression τ(φ) using the “Probabilize” implemented algorithm pre-
sented below.

The first step above returns by construction a Trace Expression τnp(φ) mod-
eled as a set of equations τnp(φ)1, ..., τnp(φ)K , where τnp(φ) = τnp(φ)1 and each
τnp(φ)i has the following form: τnp(φ)i = ϑi1:Xi1 ∨ ϑi2:Xi2 ∨ ... ∨ ϑiK :XiK .

XiK can in turn be one of the τnp(φ) variables, or the constant Trace Expres-
sion 1 defined in Sect. 2.

Probabilize correctly terminates on Trace Expressions of this form. If run on
Trace Expressions which contain “∧”, “|” and “·” operators, or that just do not
meet the structure above, Probabilize fails.

Given a non probabilistic Trace Expression τnp(φ), we can obtain its corre-
sponding probabilistic version Probabilize(τnp(φ)) by adding probability param-
eters to all the event types that appear in the disjuncts of τnp(φ). To achieve
this result, we have to define an algorithm that operates on τnp following its
structure and that, when there are more than one possible moves from the cur-
rent state to the next ones due to observability of different event types, shares
the probability among these event types following some probability distribution,
the uniform one in the simplest case. For instance, if the algorithm is currently
analyzing the state cmd : τs1∨disp : τs2 and if it is using a uniform distribution
probability,

Probabilize(cmd : τs1 ∨ disp : τs2) = cmd[0.5] : τs1 ∨ disp[0.5] : τs2

If uniform distribution probability is adopted, the structure-driven definition
of Probabilize is the following:

Probabilize(ϑi1:Xi1 ∨ ϑi2:Xi2 ∨ ... ∨ ϑiK :XiK) =
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ϑi1[1/K]:Pr(Xi1) ∨ ϑi2[1/K]:Pr(Xi2) ∨ ... ∨ ϑiK [1/K]:Pr(XiK)

where Pr(Xij) = Xij if Xij 
= 1, and Pr(Xij) = ε∨everyEvent[1]:Xij other-
whise. Because of the special form of τnp(φ), and the absence of operators besides
“:” and “∨” therein, the simple rule above is the only one we need for defining
Probabilize.

Given these ingredients, satisfaction of LTL properties in presence of obser-
vation gaps can be verified in a natural and straightforward way thanks to

– the possibility to represent a LTL property as a standard Trace Expression,
– the possibility to transform such a Trace Expression into a probabilistic one

thanks to the Probabilize algorithm, and
– the “and” operator, ∧, modeling the fact that the (probabilistic) Trace

Expressions in the two branches must perform the same transitions. From
an set-theoretic viewpoint, ∧ models the intersection of the event traces rep-
resented by the two branches it joins.

Let us identify with τHMM the PTE representing an HMM, and with τnp(φ)
the standard Trace Expression representing the temporal property φ to be veri-
fied.

The PTE τHMM∧Probabilize(τnp(φ)) models the intersection of traces of
events consistent with the HMM and traces of events that satisfy φ: by making
the intersection of the states in τHMM with those in Probabilize(τnp(φ)) we
automatically constrain the evaluation process to those traces produced by the
HMM that respect φ.

5 Minding Gaps in a Centralized Setting

All the algorithms presented in the previous sections have been implemented
using SWI-Prolog3. The code and the examples used for our experiments can be
downloaded from https://vivianamascardi.github.io/Software/PTE.pl.

PTEs can be modelled as Prolog terms; by exploiting syntactic equations
where the same variable appears both to the left and to the right of the “=”
syntactic equality symbol, recursive PTEs can be easily defined. This feature is
supported by most Prolog implementations, including SWI-Prolog, and allows
us to define the PTEs shown in the examples provided so far, with almost the
same syntax used in the paper. The adoption of Prolog is a winning choice not
only for representing PTEs, but also for implementing their semantics and for
manipulating them. Thanks to Prolog’s rule-based, declarative interpretation,
the rules defining PTE operational semantics have a one-to-one correspondence
with Prolog clauses: backtracking and “all-solutions” predicates are powerful
tools to deal with the generation of multiple PTE states, when gaps introduce
nondeterminism (set-to-set rule). A SWI-Prolog PTE-driven monitor observing
events taking place in the system under verification, and checking whether they
3 http://swi-prolog.org/.

https://vivianamascardi.github.io/Software/PTE.pl
http://swi-prolog.org/
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comply with the PTE or not, can be automatically generated from the PTE
Prolog representation. Connectors with such SWI-Prolog PTE-driven monitors
exist both for MASs [2,20,21] and for other systems, including Internet of Things
[9,26] and object oriented applications [3]. So far, the algorithms for RV of
partially observable MASs have been tested in a simulated environment, namely,
with no real connection with implemented systems.

Events can be observed as an online stream while they are generated by the
system (online RV ), or can be recorded on a log file and then inspected (offline
RV ). In both scenarios there may be gaps, due to different reasons. In offline RV,
gaps might be caused by event sampling, as usually done to reduce the monitor
workload. In online RV, a gap indicates lack of information (a lost message, event
or perception); in this case, the absence of information may be due to technical
constraints of the system or of the monitor observation capabilities rather than
to optimization purposes.

The set-to-set semantic rule generates a set of states each time it is applied.
The states are maintained by SWI-Prolog in its local knowledge base, to allow
the monitor to retrieve the current set of states, query each of them, and update
the knowledge base with newly generated states. Unfortunately, a rule like set-to-
set suffers from state space explosion, in particular when there are many sources
of nondeterminism. Each time a gap takes place, the monitor must make guesses
on the possible actual events that the gap represents and save all the states gen-
erated by these guesses. A possibly huge logical tree-like structure with states as
nodes, and moves from states to states as edges, represents these open possibili-
ties. If RV takes place online, the exploration of this logical structure must follow
a breadth-first strategy (more space needed but possibly less time required to
recognize that the trace is not compliant with the expected behaviour), as the
final trace of events is unknown and the levels of the structure are generated and
explored at the same time. When, instead, a log file is analyzed offline, the trace
in the log is already complete and the logical tree-like structure can be explored,
looking for violations, following a depth-first search (less space needed, but the
violation could be discovered after exploring all the structure).

Online RV is definitely more challenging: if the log file is analyzed offline,
after the system has completed its execution, discovering a violation with some
(further) delay is not an issue. But if RV takes place online, it must be performed
as efficiently as possible, and in such a way that violations are discovered as
soon as possible, to take actions including repairing the system if possible or
even stopping its execution, to avoid more serious consequences. This paves the
way to two more scenarios: centralized online RV, discusses in this paper, and
decentralized online RV, discussed in the companion paper presented at CILC
2022 [7]. In this section we present the reader with an example to understand how
a centralized PTE-driven monitor works, and what the state explosion problem
means in practice.

Let us consider a MAS involving four agents: {alice, bob, charlie, dave}.
The set of events of our interest in this scenario is the set of messages Msgs
that these agents can use to communicate with each other. Such events can
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be represented as a1
c=⇒ a2, meaning that agent a1 sends a message to a2

with content c. Since messages are composed by (at least) three mandatory
components, sender, receiver and content, besides the totally uninstantiated gap
where nothing is known, there may be many partially instantiated gaps such as:

– gap(a1 =⇒ a2), where the content of the message is unknown;
– gap( m=⇒ a2), where the sender is unknown;
– gap(a1

m=⇒ ), where the receiver is unknown.

In order to make the presentation easier to read we consider event types
containing only one message (singleton): instead of writing for example ϑ:τ where
�ϑ� = {alice

m1=⇒ bob} (event type representing the message from alice to bob

with content m1), we directly write alice
m1=⇒ bob:τ . Given the PTE

τ = τ1∨τ2

τ1 = alice
msg1=⇒ bob[0.7] : (bob

msg2=⇒ charlie[0.6] : τ1 | bob
msg3=⇒ dave[0.4] : ε)

τ2 = alice
msg4=⇒ dave[0.3] : (charlie

msg5=⇒ dave[0.3] : ε | bob
msg3=⇒ dave[0.7] : τ2)

and initial probability of τ equal to 1, a centralized monitor Mc observing all
the interactions among the agents starting from the state τ would behave in
the following way. Let us identify with M0,c where c stands for “centralized”,
the initial state of Mc. M0,c = 〈τ, 1, σ〉. We highlight that τ contains the shuffle
operator | and hence cannot be the output of the HMM2PTE algorithm. It
has been designed “by hand”, to show that PTEs can be also designed and
developed from scratch, besides being automatically generated from a HMM.
Being very simple, we can easily check that it is consistent w.r.t. the properties
that probability of events must ensure. In the general case, a manual consistency
check may be hard to carry out, and its automation is out of the scope of this
paper. Let us suppose that the first observed event is a totally uninstantiated
gap. Starting from τ , the only two possible evolutions of the protocol are those
where either alice sends msg1 to bob (alice

msg1=⇒ bob) or alice sends msg4 to dave

(alice
msg4=⇒ dave). These evolutions may be formalized as (we use ch instead of

charlie for space constraints)

M0,c

gap
� M1,c = {〈bob msg2=⇒ ch[0.6] : τ1 | bob

msg3=⇒ dave[0.4] : ε, 0.7, gap(alice
msg1=⇒ bob)〉,

〈ch msg5=⇒ dave[0.3] : ε | bob
msg3=⇒ dave[0.7] : τ2, 0.3, gap(alice

msg4=⇒ dave)〉}

If another totally uninstantiated gap is observed, each state in M1,c can
evolve in two different ways because of the shuffle, leading to

M1,c

gap
� M2,c = {〈τ1 | bob msg3=⇒ dave[0.4] : ε, 0.42, gap(alice

msg1=⇒ bob) gap(bob
msg2=⇒ ch)〉,

〈bob msg2=⇒ ch[0.6] : τ1, 0.28, gap(alice
msg1=⇒ bob) gap(bob

msg3=⇒ dave)〉,
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〈bob msg3=⇒ dave[0.7] : τ2, 0.09, gap(alice
msg4=⇒ dave) gap(ch

msg5=⇒ dave)〉
〈ch msg5=⇒ dave[0.3] : ε | τ2, 0.21, gap(alice

msg4=⇒ dave) gap(bob
msg3=⇒ dave)〉}

It is easy to see that the number of states can rapidly grow, because one
single monitor is in charge for the RV of all the MAS and takes care of all the
possibilities that open up when gaps are observed, that is the main limitation
and bottleneck of the approach implemented so far. One approach to cope with
state space explosion is to split the centralized monitor into a set of decentralized
ones, each observing a portion of the MAS. Since each decentralized monitor has
to make its guesses about gaps, when a gap is observed there may be different
opinions about its possible values. With respect to a centralized approach, differ-
ent perspectives due to decentralization need to be managed through synchro-
nization between the monitors, which generates some communication overhead.
The algorithm for “minding gaps in a decentralized way” is presented in [7].
The experiments presented in that paper show that, despite the communication
overhead due to synchronization, decentralization reduces the search space, in
particular when the number of components that generate observable events in
the system, be them agents, actors, artefacts, sensors, increases.

6 Conclusions and Future Work

In this paper, we addressed the presence of gaps in observed traces and the
need to estimate the probability that the (incomplete) traces satisfy some LTL
properties, when the system is modelled by a PTE.

Differently from the work by Stoller at al. we took inspiration from [32], to
perform runtime verification using PTEs, we need that each gap represents one
single unobserved event: if we have a sequence of three unobserved events, we
must have three different gaps in the observed trace. If, in the real system, this
one event-one gap correspondence cannot be achieved, we should estimate the
number of unobserved events that took place in a time slot T by computing
the average rate of the event generation G, and inserting T ∗ G gaps in the
event trace. As an example, if the monitor pauses for 3 s and the average events
generation rate is 4 events for second, the trace should have 12 consecutive gaps
corresponding to what happened in the time slot T .

Although PTEs have a higher potential expressive power than HMM and
LTL, being able to express traces like anbncn, in this work we start from an HMM
of the real system and generate an equivalent PTE from it, which of course is as
expressive as the HMM it originates from. This is a safe approach to generate
a PTE consistent with the known probability distribution of events, which can
then be refined in such a way that its expressivennes is fully exploited. Providing
guidelines and automatic tools to support the developer in this refinement step
is part of our future investigations: we plan to extend RIVERtools [4] towards
this direction. More urgent, both the centralized and the decentralized versions
of the algorithm have been experimented in a simulated setting; implementing
them on top of a real MAS framework like JADE [17] or Jason [19] is the first
item in our agenda.
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Abstract. Call centers, in which human operators attend clients using
textual chat, are very common in modern e-commerce. Training enough
skilled operators who are able to provide good service is a challenge. We
propose a methodology for the development of an assisting agent that
provides online advice to operators while they attend clients. The agent
is easy-to-build and can be introduced to new domains without major
effort in design, training and organizing sknowledge of the professional
discipline. We demonstrate the applicability of the system in an experi-
ment that realizes its full life-cycle on a specific domain, and analyze its
capabilities.

Keywords: Human study · Advising agent · Human-agent
interaction · Call center

1 Introduction

In modern e-commerce, many business services are provided via the Internet.
Not only do new web-oriented enterprises use this option, but traditional ones
as well have moved relevant services to the digital medium. For example, banks
are increasingly closing their physical branches and moving services, formerly
provided only face-to-face, to the internet [42]. There are many actions that cus-
tomers can perform by themselves via the Internet, without human intervention,
either by a self-service application or using a conversational chatbot. However,
when customers want to perform actions that do not yet have an online solution,
or when they fail to do it by themselves, they still need to approach the bank’s
customer service and seek human help.

There are several communication channels between the customers and the
call center employees (operators). The first method is a telephone call. This
method gives the customer the full attention of someone capable of helping, but
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at the same time it forces the operator to wait for the customer’s reactions. In
many of these calls, the customers need to perform actions with which they are
not familiar, making the operator wait idly for the customers to finish. Since
the operator can attend only one customer at a time, this approach wastes time
that could be better utilized. With the rise of the Internet, another approach for
call centers emerged, using a text-based chat service. This method obviates the
constraint of giving one customer the full attention of the operator, as it parallels
the service. Instead of talking with one customer at a time, the operator interacts
textually with 2–4 customers in parallel, switching between customers instead
of waiting for the customer’s reactions.

While this approach has its advantages, it also raises some challenges for the
human operator to deal with. As the number of tasks that the operators have
to perform simultaneously grows, so may their stress. Operators also need to
prioritize the tasks, keep track of each individual’s information while assisting
different clients, and provide help without making any client wait too long.

We propose to mitigate these challenges by assisting the human operator in
creating an advising agent. This kind of agent works alongside the operator
during the chat session, and suggests on-line advice to help the operator deal
with a given situation. To the best of our knowledge, we are the first to use
an advising agent to cope with these challenges. However, building an advising
agent and training it to the specific service domain can be a long and expensive
process that requires both domain expertise and system engineering knowledge.

In this work we present a design for an automated agent that assists the
operator during textual chat interactions with customers in real-time, by pro-
viding the operator with advice about possible actions and relevant information.
Our design combines standard ML methods with domain-expert annotations,
and tries to predict the actions and suggestions of the expert. The novelty of our
method is twofold: First, the assistance of the agent is not focused on providing
answers to customers’ questions (as in former works, e.g. [11,20]), but rather
in guiding the operator as to what questions she should ask in order to get the
required information to provide service. Second, the process of training the agent
to a new domain is short and does not require many resources or domain knowl-
edge from outer sources. Finally, we field-test our design on a specific domain
and present our findings.

2 Related Work

2.1 Call Centers

Many research fields look at call centers as a source of interesting problems to
study. Some of them analyze the call center as a business to be run, trying to
improve the total income and customer satisfaction [24], predict customer aban-
donment [23], or predict attrition rates [12]. Other fields examine the effect of
working in call centers on the human employees [29]. However, when looking
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at call centers from the computer science point of view, most of the research is
focused on solving problems like staffing, customer queuing or scheduling pro-
cesses [1,30,31,34,51].

In recent years, many companies have started to develop chatbots for the
task of customer service [45]. There is much work regarding the design and
deployment of such bots in various domains [46]. It is evident that currently
chatbots cannot fully replace human workers, and when a bot detects that it
cannot help the customer, it refers the customer to human help. Li et al. [36]
and Liu et al. [37] explore the challenge of detecting this kind of situation in
various domains.

Lee et al. [33] show that chatbots can reduce the human workload, but the
change is almost imperceptible (less than 5% improvement). The vast majority
of the problems found refer to parts of the call center that have little to no effect
on the human workers. To the best of our knowledge, this is the first research
study that tries to help the human worker directly by providing advice.

2.2 Agents that Support Human Actions

Intelligent agents that support humans in their complex activities need to be able
to predict the user’s behavior and decisions [4,32,48,49]. This is a difficult task
because of an extensive set of factors that influence human decision-making and
behavior [15], such as experience [26], decision complexity [19] and emotions [7].
These factors also include inherent differences between individuals and groups
of individuals [9], which make the prediction of an individual’s decisions and
behavior even more challenging [44].

There are several previous methods for prediction of human behavior and
decisions in agent-human interactions. Azaria et al. [6] developed CARE (auto-
mobile Climate control Advisor for Reducing Energy consumption) – an agent
that uses two models: one for predicting the influence a certain climate has on
the human driver, and one for estimating the energy consumption of a partic-
ular setting. The agent finds a compromise between them and offers it to the
driver, who chooses whether or not to accept it. Rosenfeld et al. [47] developed
automated agents that can assist a single operator to better manage a group of
robots in a search task and a warehouse operation task, showing that an agent
can significantly improve the performance of a team comprised of an operator
and ten low-cost mobile robots. The agent uses the world state to determine
which human actions are urgent and which actions can wait for later. This work
also compared two approaches of advice: one looks for the advice that will have
the best impact on the current situation, and the other searches for advice that
will lead to better results in the near future (2 or 3 actions ahead). In both
domains, the agent gave the operator advice about what should be done next,
depending on the world state at every moment.
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2.3 Method of Advice Provision

When it comes to advising in repeated human interaction environments, several
methods have been used in the literature. Rosenfeld et al. [47] directly estimated
the reward for every possible piece of advice and recommended a piece of advice
that maximizes the reward that the user will get if the provided advice is chosen.
Elmalech et al. [16] suggested that the agent will try to find a compromise
between maximizing rewards and user acceptance, and Azaria et al. [5] used
human models inspired by behavioral economic theories for advice provision.
The common ground of these advising agents is that they all advise in order
to maximize a certain reward function. The drawback of this kind of advising
mechanism is that it tends to recommend non-intuitive advice that the operators
often reject, making it ineffective [10].

2.4 Learning How to Provide Advice

In recent years, companies began keeping records of their workers’ actions and
their interactions with the customers due to low digital storage costs [27]. This
accumulation of information was mostly used for basic performance analysis, but
with the improvement of machine learning capabilities this abundance called for
new uses [17].

Using human actions and decisions as the base of the learning process has
many names in the literature such as learning from observation, learning by
demonstration, or mimic agent, among others. Argall et al. [2] united many of
these names under “learning from demonstration” (LfD), and mentioned that
LfD does not require expert knowledge of the domain dynamics, an essential
notion for our research as we use demonstrations from people with little to no
experience in the field. The LfD approach is used in a large variety of fields (e.g.,
[18,54]). In our context, Levy and Sarne [35] combined LfD and advice provision
as they created an agent that used the way people act in a specific scenario in
order to guess what they would do in similar situations.

Even though there are many examples in the literature of ways to generate
conversational data [13,38,39], we focus on using human-human conversations
for the learning process of the agent because they better reflect the real-life
scenario [53] and hopefully help in generating more intuitive advice.

3 Modus Operandi and Life-Cycle of the Agent

Our research goal is to develop an easy-to-build, data-driven method for an
automated system that will assist in the operators’ training process and daily
activities, will help new and experienced operators, and will advise the operators
about possible actions and relevant information during textual chat interactions
with customers in real-time. Implementing the automated system (i.e., the agent)
in a call center has the potential to reduce the daily workload and improve
interaction with the customers from the human operator’s point of view. It will
improve the system’s service efficiency and reduce the time needed to help each
customer.
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3.1 Agent’s Life-Cycle

The process of building an advising-agent for a new domain is performed in three
phases, as follows:

1. The Apprentice Phase (Phase 1) – experienced human operators serve
human customers regarding the new domain of service. The operators tag the
information they find important in the chat conversation: They may do it in
real-time, as the chat goes on, or afterwards. The collected data is fed to the
learning process (as detailed in Sect. 3.2). This phase exists only for the sake
of collecting information for the next phases, and does not include any agent
assistance. Section 4.2 elaborates about the experimentation of this phase.

2. The Novice-Advisor Phase (Phase 2) – this phase contains both data
collection (for the improvement of the agent’s capabilities) and service to
clients: the agent works alongside a non-experienced human operator who
attends clients, and it simultaneously advises and learns. For advising the
human operator, the agent uses the tagging from the chat conversation to
predict messages that the operator should send or actions it should perform,
and offers them to the operator. The operator may use this advice or not, as
suits her.
In addition, the data collected in this phase may be fed into the agent’s
machine learning model in order to improve its tagging and advising capabil-
ities. This feeding may be performed daily, weekly, monthly or in any batch
form that is suitable to the managers of the service. Additional details regard-
ing this phase are presented in Sect. 4.3.

3. The Expert-Advisor Phase (Phase 3) – The agent works alongside a
non-experienced human operator and provides advice based on former tags
and a learned model. The agent is not engaged in further learning, since its
capabilities have already reached an adequate level. This phase is the final
and steady state of the agent in the current domain.

A rollback from Phase 3 to previous phases may be performed if needed (as
elaborated on in Sect. 4.4). The system can be returned to Phase 1 or to Phase
2 (according to the managers’ preferences), collect additional data (i.e. tagged
chat conversations) and feed them to the machine learning model. Upon reaching
the desired level of advice, the agent may be advanced again to Phase 3, and so
forth.

The 3-Phase life-cycle was chosen because it enables the adjustment of the
phase to the opportunities and the needs of the users: It uses the knowledge
of experienced operators in Phase 1, it combines exploration and exploitation
in Phase 2, and enables steady production in Phase 3. As pointed out in the
previous paragraph, the system may be switched between phases according to
the needs of the users and other circumstances.

This model suggests a method to implement an assisting agent in a new
domain with a relatively small effort: The needed knowledge is derived from
authentic dialogues with clients, that is to say it uses the resources that are
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already invested to build the domain knowledge. The specific agent that is built
is suited to the specific domain, but the method is domain-independent, and it
may be applied to a wide variety of domains.

3.2 The Learning Process

In order to provide advice, the agent relies on a predictive model learned from
observations of the domain: Operators conduct chat sessions with clients and
attend to their needs. During the chat sessions, the operators tag the vital infor-
mation items they used to reach the satisfactory outcomes. An information item
may include a single word or a phrase (a few words), and it depends on the
specific domain in which the service is provided. All the tagging is done during
the chat conversation or after it; there is no tagging in advance.

A tag contains a label, which is the category of the tag, and information,
which cites the specific knowledge of the tag. For example, if an operator asks
clients about their occupation, then the label of the tag will be “occupation”, and
possible information can be “engineer”, “marketing manager”, “driver”, “none”,
etc. Figure 1 presents several examples of tags from various domains.

Fig. 1. Examples of tags. In this structure, the first item is the label of the tag and
the second one is the information.

Each session’s tag-list is turned into an information vector. Each time a
new tag is added, the vector’s current version is saved to be used later in the
learning process as an information vector.

Building the Information Vector. We build the information vector as fol-
lows: First, we take the n most common labels that operators marked in the
data and sort them in alphabetical order (the label list).

Notation remark: We write Xt as the information vector after t pieces of
information (that is, X at time t), and X[t] for the value of X at index t.
Whenever we mention tag i, we refer to the value of the tag list at index i.

We define two vectors of size n. The first one is:

V [i] :=

⎧
⎪⎨

⎪⎩

item, if a known item was tagged as label i
“unknown”, if an unknown item was tagged as label i
“ − ”, if no input was tagged as label i
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A known item is an item that was already tagged (in previous chat conver-
sations or previously in the current conversation). An unknown item is an item
that has not yet been tagged.

The second vector is:

W [i] :=

{
1, if there is an input tagged as label i
0, otherwise

We define X[i] = (V [i],W [i]) (that is, the vector X is made of (V,W ) tuples).
Figure 2 demonstrates the building of the information vector.

Fig. 2. The process of building an information vector as the chat between an operator
and a client proceeds.

Advice Types. There are three types of advice that we wish to provide: (1)
Topic acquisition – questions the operator should ask the client in order to
acquire information she needs in order to help him; (2) Resolution – data the
operator should provide to the client as a response to his query; and (3) Useful
information – data the operator may need in order to provide answers, such as
relevant websites, calculations, etc.

Advice Providing Process. During the chat conversation with the customer,
whenever the operator uses a website operation or finds out new information
about the customer, useful information is marked under a suitable label, and
the customer information vector X is updated accordingly.

For each advice type i of the three mentioned above, advice is provided by
taking the label vector Xt and inserting it into a machine learning module Fi

that tries to find the best set of advice A for the current situation (At). The
module uses k pairs D1 . . . Dk of past experiences Dj = (Xj , Aj), where Xj is
an information vector at time j and Aj is the respective set of advice, in order
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to find a set that maximizes the chance to be the most used set of advice in the
past similar situations: P (At = A|Xt,D1, ...,Dk).

For the learning algorithm, we wanted to find an algorithm with the ability
to work efficiently on several domains and handle messy and conflicting data.
The first model that came to mind was Random Forest [8], a model that works
well but cannot fully utilize the vast amount of data usually available in such
domains. To deal with this problem, we thought of using neural networks. That
idea was relatively successful, but an architecture that works on one domain
might fail to learn on another. With all that in mind, we decided to combine
them as an ensemble method of neural networks [21] where each network takes
the information known about a customer at a certain time and outputs the
recommended set of advice for the situation. Each network in the ensemble was
trained on a subset of the data and had a random number of layers of an arbitrary
length, as shown in Algorithm 1.

Algorithm 1: Training the ensemble:
Result: a list of trained neural networks

1 nets=∅
2 while length(nets) <ensembleSize do
3 num=GetRandomNumber()
4 if num >0.5 then
5 trainSet=getRandomSubSet(trainData)
6 else
7 trainSet=getBalancedSubSet(trainData)
8 end
9 net=GenerateRandomNeuralNetwork()

10 train(net,trainSet)
11 Pnet=accuracy(net,testData)

if Pnet >Pthreshold then

12 nets
add←−− net

13 end

14 end

The final set of advice was chosen using a majority voting variation (as shown
in Algorithm 2). We also tested the ensemble method of neural networks against
other variations of Random Forest (LGBM [28] and regular Random Forest) and
other crowd related algorithms (SVM and KNN). This method outperformed the
others in an 80:20 cross-validation where the target label needed to be in the top
2 recommendations (the ensemble reached 87% accuracy, regular and gradient
boosted Random Forests with 84%, KNN with 83%, neural network with 77%
and SVM with 70%). We chose this metric because there can be a large variation
based on the operator’s preferences, even with a small amount of data.
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Algorithm 2: Using the ensemble:
Result: Final recommendations

1 results=∅
2 X=getData()
3 for net in ensemble do

4 results
add←−− prediction(X)

5 end
6 bestOptions=twoMostCommonOptions(results)
7 finalRecommendations=∅
8 if rankOf(bestOptions[0]) >firstOptionThreshold then

9 finalRecommendations
add←−− bestOptions[0]

10 end
11 if rankOf(bestOptions[1]) >secondaryOptionThreshold then

12 finalRecommendations
add←−− bestOptions[1]

13 end
14 return finalRecommendations

As can be seen in Algorithm 2, the agent can recommend one set, recom-
mend a combination of two sets, or remain silent (when ∅ is chosen or when
finalRecommendations is empty).

4 Experiment

Our experiment was designed to test whether working with the suggested assist-
ing agent improves operators’ performance. For this purpose we chose a domain,
set up a working environment and recruited participants to play the roles of
operators and clients in various configurations. At the end of each session, the
operators filled out questionnaires to quantify their opinions regarding different
aspects of the performance. We analyzed the results, learned some lessons and
made amendments to the model. We will now describe the setup and course of
the experiments. The results will be presented in Sect. 5.

4.1 Experiment Domain - Student Loans

The domain on which we chose to perform our experiment is student loans in
the US. Customers who are interested in understanding their options in get-
ting such loans, either for themselves or for their relatives (usually a son or a
daughter), call the information center and chat with the operator. In some cases,
the customers know what the relevant data is, and they can provide it to the
operator right away. Nevertheless, in many cases the customers are not familiar
with the parameters that define their entitlement to a loan, and they should
be guided. For example, in the US men are required to register in the Selective
Service System in order to be entitled to a federal loan. Many applicants are not
aware of this requirement, and informing them of it, or of other parameters that
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might affect their ability to get a loan of the sum they need, is very beneficial.
Good service by the operator should clarify these issues in order to enable the
customer to exhaust his rights. Hence, there is much room for accurate advice to
the operator in this process. Since Phase 3 in our model is the steady state work-
ing mode, we performed our field experience on phases 1 and 2 which implement
the building of the model.

4.2 Phase 1 – The Apprentice Phase

As mentioned above, the goal of this phase is to provide the agent with labeled
data regarding our domain by listening to sessions in which experienced human
operators chat with clients. This phase was implemented in our experiment by
recruits that played the operators and the customers. The operators were thor-
oughly briefed and trained about the domain and the service they should pro-
vide to customers. At the end of this preparation stage, it was assumed that the
recruits were at the level of a practised operator in the domain of student loans.
The customer received storyboards, each with character information (profession,
university, savings, financial status etc.) and objectives to achieve (loan options,
pre-specified information about the loans etc.).

The chat between the customers and the operators was performed using a
textual chat application. We used “WhatsApp” as a basis for our interface, as this
application is commonly used by businesses for communications with customers
(e.g. [25,41,43]). The operators used a computer where half of the screen is a
“WhatsApp web” interface with a special browser extension that knows when
the operator switches between two conversations (as a single operator attended
2–3 customers simultaneously), and allows the operator to mark words. The
other half of the screen shows a website which presents information and enables
the operator to perform common calculations by clicking on pre-defined buttons.

The subjects played multiple client-operator sessions. In these sessions there
was no participation of an assisting agent, and only the human operators and the
human clients took part. During the sessions, in addition to collecting relevant
information from the clients and answering clients’ questions, the operators also
tagged phrases in the chat. They were asked to tag (by marking words on the
screen) any information that they considered relevant to the loan issue. Each
tag contained a label (e.g. university name) and information for that label (e.g.
UCLA, MIT, Columbia University). Operators were neither told nor limited
regarding what labels of tags they could mark. They saw what labels were tagged
and used before, but did not see their information. They could add additional
tags as needed.

In this phase of experiment, 4 subjects took part as operators and one subject
played the clients. Note that this subject played 2–3 clients simultaneously, but
since the work of the operator is more complicated than the work of the clients,
and since the experimenter who played the clients was practiced and followed
pre-prepared scenarios, he was able to play more than one client simultaneously
without causing a delay to the work of the operator. In total there were 76
sessions, and in each of them a single operator attended 2–3 simulated clients.
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4.3 Phase 2 – The Novice-Advisor Phase

The goal of the Novice-Advisor Phase is twofold: To assist operators in their
work, as well as to collect additional data for the improvement of the agent. In
the experiment, our main goal was to evaluate the helpfulness of the agent we
built in Phase 1.

In our experiment this phase was implemented using recruits from the AI
course for undergraduate students in Bar-Ilan University as clients, and paid
recruits from the general population as operators or clients. Each operator played
two sessions: one with an agent’s assistance and the other without it. Half of the
operators played the assisted session first and the unassisted session second,
and the other half vice versa. Each client played a single session, in which they
received two different storyboards and played them with the operator.

At the end of each session, we asked the participants who played the oper-
ators to fill out a NASA-TLX questionnaire [22], which is an assessment tool
for comparing the workload of different tasks (a summary of the NASA-TLX
questionnaire can be found in Appendix A in [3]). These opinions were ana-
lyzed in order to evaluate the performance of the agent and its contribution to
the performance of the operators. The findings of the analysis are presented in
Sect. 5.

At this point we had 23 operators who played 46 sessions: 15 of the 23 oper-
ators attended 2 clients simultaneously and the remaining 8 operators attended
3 clients simultaneously. The tagging of the text was done manually by the
operators during the sessions.

The Tagging Problem. The tagging of the chat conversations is essential for
the agent in order to follow the line of conversation and provide proper advice.
Our preliminary design was to tag the chat by the human operator, in real-time,
during the session. Unfortunately, we found out that the operators of Phase 2
managed to perform the tagging well while attending 2 clients simultaneously,
but when they needed to attend 3 clients simultaneously the workload was too
heavy, and they could not tag the conversation properly; as the session pro-
ceeded, there was much less tagging or none at all. As a result, the ability of the
agent to provide advice weakened. This situation called for a change.

In order to perform good tagging even in stressed sessions, we introduced
an automated tagging mechanism. We took the raw data in real-time and made
the agent use it directly, a common notion in goal-oriented dialogue systems,
and chatbots in general [50]. We used a machine learning module that follows
the messages in real-time and outputs annotations for the advising agent. The
module that we chose is a combination of two sub-models, as follows: We denote
a network consisting of a BERT [14] embedding layer with a linear layer on top as
a BERTLL. At first, a BERTLL predicts what labels the message may contain.
For each label that the first model predicted, another BERTLL predicted what
information the message may contain (again, see Fig. 1 for the tag structure). We
chose to use this combination after it reached a maximum F1 score of 0.72 and
was seen to generalize well in practice. It also outperformed a gradient boosted
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Random Forest (that reached an F1 score of 0.7), a single BERTLL for all the
labels (that reached a maximum F1 score of 0.5) and a large variety of neural
network-based models that were far from reaching a 0.5 F1 score. Implementing
the automated tagging mechanism relieves the operator from the tagging task,
and enables her to concentrate on the sole task of attending the clients.

Another improvement in the experiment method (relative to the original
design) was the introducing of bots as clients in this phase: Instead of human
subjects playing the role of clients, we deployed bots that were built using a
combination of two strategies: a rule-based approach, and a learning approach.
The first approach followed the spirit of early chatbots, such as Eliza [52]. Based
on the previous interaction with the operator, the bot would randomly generate
answers to operator’s questions, or questions to ask of the operator. The second
approach used BERT to learn how to perform the interaction. We found out
that these two models (knowledge-based and learning-based) complemented each
other quite well in overcoming their respective disadvantages. This change was
made because the use of bots instead of human subjects made the experiment
much easier to perform, since we needed to recruit and to brief only the operators,
and the influence of the agent on the clients was not examined in this study.

A third change was to introduce a level test to the recruits who were to play
the role of operators, after their briefing and training. In order to verify that
the recruits are indeed trained and to an appropriate professional level, each of
them took a short test with questions regarding the domain and the service.
Only after successfully completing the test with high grades were the recruits
allowed to move on to the experiment.

After implementing the aforementioned changes, we performed the experi-
ment of Phase 3, this time with each operator attending 3 clients simultaneously.
In this improved design we did not encounter an excessive load on the operators,
since the tagging was done automatically by the agent. We had 14 operators play-
ing two sessions each (again, half of the operators played the assisted session first
and the unassisted session second, and the other half vice versa). Together with
the 15 operators who attended 2 clients simultaneously, we had 29 operators,
and each of them played 2 sessions.

The experiments were performed according to the institution’s guidelines
regarding experimenting with humans, and permission to perform the exper-
iments was accepted from the institution IRB prior to the experiments. The
demographic data regarding the subjects in the experiments is presented in
Appendix B in [3].

4.4 Phase 3 – The Expert-Advisor Phase

As explained above, the goal of Phase 2 is to help operators while they serve
clients, and at the same time to improve the capabilities of the agent to provide
good advise in the domain. The system works in Phase 2 (i.e., new data is
fed to the machine learning model) as long as managers feel the agent needs
improvement and the performance of it indeed improves with the additional data.
At a certain point there is no further need for improvement, and the system can
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be turned to Phase 3 - the Expert-Advisor Phase. The machine learning model
is stabilized, and the collection of data is stopped. The agent works alongside
the operators and provides advice according to the data that was collected in
the previous phases. Therefore, there was no need to perform experiments on
Phase 3.

Nevertheless, the experiment domain may illustrate the possibility of phase
rollback described above (Sect. 3.1). In our experiment domain of student loans,
if, for example, new terms of loans are available in the market, the steady-state
agent will not know how to advise operators regarding them. In order to teach
the agent about the new terms, the system should be returned to Phase 1 or
to Phase 2, collect data (i.e. tagged chat conversations) and feed them to the
machine learning model. When reaching the desired level of advice again, the
agent may be advanced again to Phase 3, and so forth.

5 Results

5.1 Operators’ Opinions

The participants who played the role of operators filled out NASA-TLX ques-
tionnaires. The goal of this process is to compare the grades regarding sessions
that were played with the agent’s assistance to the grades regarding sessions
that were played without the agent’s assistance, in order to learn about the
operator’s experience with the advising agent. The results of these question-
naires are presented in Figs. 3 and 4: Fig. 3 presents the data of the experiment
in which a human subject played the role of clients (two clients simultaneously).
Figure 4 presents the data of the experiment in which bots were deployed as
clients (three clients simultaneously). In both cases, human subjects played the
role of the operators. We present the total TLX grade, which sums the six cat-
egories of the questionnaire (as elaborated on in the Appendix A). In addition,
we present the grade of the Temporal Demand category, since this category is
of special concern in our model.

As we described in Sect. 4.3, each operator played two sessions. Therefore,
the data in Figs. 3 and 4 is presented in two views:

1. First Session - counts only the first session of every operator (whether with
the assisting agent or without it).

2. Total Sessions - counts all of the sessions (both the first and the second) of
all of the operators.

It can be seen that both total workload (Total TLX) and temporal demand
decreased in all cases when having the agent working alongside the operator
as compared to not having the agent. All data presented in Figs. 3 and 4 are
statistically significant (p < 0.05).
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Fig. 3. NASA-TLX questionnaires’ data of Phase 2 (lower is better). The experiment
with 2 simultaneous clients was conducted using human subjects as clients.

5.2 Time Performance

We presumed that a good performance of the agent would be manifested in
providing the service in less time, and with less idle time during the session.
Figure 5 presents the time performance data of the operators in three categories:

1. Total session time - the average length of a full session, including clients’ time,
operator’s time and idle time.

2. Maximal waiting time - the maximal time a client had to wait for an operator’s
response.

3. Total waiting time - the average total time a client spent waiting for an
operator’s responses during a session.

In all categories the times are shorter when the agent assisted the operator
than when it did not, and in most of the categories the reduction is greater than
10%. It implies that the use of an agent alongside the operator reduces the time
needed for the session in general as well as the time spent by the client idly
waiting for the operator to respond. Nevertheless, the data was not found to be
statistically significant in most of the categories.

5.3 Learning Effectiveness of Phase 2

The Apprentice Phase (Phase 1) is, naturally, crucial to the building of the pre-
liminary knowledge base of the agent. Nevertheless, we wondered whether Phase
2 actually improves the capabilities of the agent, or if it is superfluous and we
may skip it and go straight to the final stage (Phase 3). In order to answer this
question we compared the performance of the tagging model in two configura-
tions: The first one was based on data collected in Phase 1 only, while the second
one was based on data collected in both Phase 1 and Phase 2. We found that
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Fig. 4. NASA-TLX questionnaires’ data of Phase 2 (lower is better). The experiment
with 3 simultaneous clients deployed bots as clients.

Fig. 5. Time performance data (in minutes, decimal notation).

the performance of the second model (precision – 78%, recall – 75%, F1-score –
72%) was better than the performance of the first model (precision – 65%, recall
– 60%, F1-score – 58%). This result indicates that although the data of Phase 1
alone suffices to provide basic assistance to human operators, expanding it with
the data of Phase 2 significantly improves the tagging capability and, as a result,
the quality of the agent’s performance.
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6 Conclusions, Discussion and Future Work

In this paper we introduced an algorithm and a method to implement an advising
agent that assists operators who attend clients in a call center using chat conver-
sations. The main advantage of this method is its adaptability – the agent can
be fitted to a new domain with relatively little effort and little time. Training the
agent does not require prolonged design, domain analysis or rule-definition. In an
existing human call center, the agent only needs tagged conversations of experi-
enced human operators with clients in order to build all the required knowledge.
Having said that, we still think that additional experimenting is needed in order
to conclude that this method is domain-independent, and specifically it should
be tested in other domains.

Integrating the results of the role-playing experiment, we see that operators
who were assisted by the agent enjoyed a lower cognitive load in attending their
clients, with less effort and less time-pressure. Time is used more efficiently, as
sessions are shorter and less time is spent on idle waiting. This trend is evident
both in the objective measure of time to perform a mission (Sect. 5.2) and in the
subjective views of the participants who played the operators (Sect. 5.1).

There are several issues that still need to be examined. One such issue is
optimization of the process of adjusting the agent to a new domain. We found
that the Novice-Advisor Phase (Phase 2) indeed improves the performance of
the agent, and therefore the 3-stage process that was suggested is justified. How-
ever, the optimal conditions for switching from Phase 2 to Phase 3 still need to
be determined. Another issue is the possibility that an operator attend to a
larger number of clients simultaneously when having the agent’s assistance. We
performed experiments when attending 2 and 3 clients because this was seen to
be a reasonable number (several views on this issue are presented in [40]). How-
ever, an operator might be able to attend more than 3 clients simultaneously by
having an agent working alongside her. The feasibility of this option should be
tested as well.

Note that this research study was designed to examine the effects of the
assisting agent on the assisted operators. A differently designed experiment may
explore the influence of the agent on the service from the clients’ perspective.

Disclaimer. This paper was prepared for informational purposes by the Artifi-
cial Intelligence Research group of JPMorgan Chase & Coȧnd its affiliates (“JP
Morgan”), and is not a product of the Research Department of JP Morgan. JP
Morgan makes no representation and warranty whatsoever and disclaims all lia-
bility, for the completeness, accuracy or reliability of the information contained
herein. This document is not intended as investment research or investment
advice, or a recommendation, offer or solicitation for the purchase or sale of
any security, financial instrument, financial product or service, or to be used
in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would be unlawful.
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Abstract. Agent-based models are powerful tools for understanding
complex systems. Their accuracy and capacity for prediction, however,
are dependent on the initial conditions of the model during simula-
tion. Current agent-based modeling endeavors show a lack of system-
atic analysis of sensitivity to initial conditions, and renewed interest is
given to this issue. In this paper, we hypothesize that we can analyze the
effect of initial conditions in agent-based models through the positive and
negative feedback behaviors of individual agents. For this, we present a
systems theory interpretation of local agent behaviors based on closed
loops. Our approach illustrates how the initial conditions (of the whole
model or of individual agents) determine the presence of positive or neg-
ative feedback agents in the agent-based model, and that their numbers
influence the steady state of the model. We perform a proof-of-concept
analysis on a two-species butterfly-effect agent-based model.

Keywords: Agent-based model · Initial conditions · Sensitivity
analysis

1 Introduction

Agent-based modeling [38] is a valuable tool for understanding complex systems
[4], facilitating the study of nonlinear interactions, stochastic processes and het-
erogeneous spatial structures [11]. Agents of an agent-based model (ABM) are
autonomous representations of entities that interact with the environment and
with other agents based on the rules of the model [12]. ABMs can generate emer-
gent patterns, often in unexpected ways, resulting from the interactions between
agents and overlapping latent feedback effects [9,18].

One of the open issues of agent-based modeling is the systematic analysis of
sensitivity to initial conditions in ABMs [3]. This affects the model reliability
measures regarding predictive power and accuracy [28]. The challenge to find
alternative means of investigating initial conditions sensitivity was raised by [7].
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Complex systems often display behaviors in which small disturbances or
inputs generate wide-scale outcomes, known as the butterfly effect [15]. One
example of such phenomena is the propagating spread of infection or misinfor-
mation from a singular source [22], and while ABMs are useful, their validation
is difficult due to uncertainties caused by unknown parameter correlations [23].
Chaotic systems are common in nature, deterministic, and sensitive to initial
conditions [10]. The butterfly effect was popularized by Lorentz in 1972 [16] and
is “a well-known metaphor for the idea that complex, dynamic, nonlinear systems
produce unpredictable effects due to the profound influence of tiny variations”
[20].

The butterfly effect is a famous instance of positive feedback in systems,
which is characterized by the accumulation of energy in such a way that the
system can no longer reach an equilibrium state described by finite parameters
[24]. When two stable behaviors (i.e., that can reach and maintain finite equilib-
rium or steady states) are connected through positive feedback, the closed loop
becomes unstable [5]. In a network, this instability propagates until observable
at network level, which suggest the presence of the butterfly effect in the system
as a whole. As a complex network, which has irregular topology, clusters and
cycles, etc. [6], an ABM is not easily formalized to uncover positive feedback at
whole system level. We must therefore look at local agent behavior.

Our hypothesis is that we can analyze the effect of initial conditions in ABMs
through the positive and negative feedback behaviors of individual agents. In this
study, we perform the first proof-of-concept analysis of our hypothesis on the
two-species butterfly-effect agent-based model described in Sect. 3.1, for which
we adopt a generative experiment approach [8]. Thus, we aim to study the effect
of initial conditions on ABM states, and not to calibrate the ABM to reach
desired states (the demonstrative experiment).

Two-species models [13,14,33,34] are common in multi-agent systems
research, with the predator-prey model [31,39] as one of the most studied [21].
Disease spread models [32] are another popular topic in multi-agent systems
research. Although there are certain disease spread models available on the Net-
Logo Community Models website [1], few of them are documented. To study
the sensitivity to initial conditions under our hypothesis, we have combined the
two concepts and created a new model where one of the species is the infected
variant of the main agent species that feed on the agents of the main species.

The paper is organized as follows. Section 3.1 describes the two-species Net-
Logo ABM, while Sect. 3 covers the initial conditions analysis concept based on
feedback loops. Section 4 contains the results and discussion. The paper finishes
with conclusions in Sect. 6.

2 Concept

In this study, we use positive and negative feedback loops to model the behavior
of agents. Figure 1 illustrates the two types of systems: D(s) is the operational
domain representation of the direct open loop transfer, while F (s) is the feed-
back transfer. Here, by transfer, we understand a system that processes energy,
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Fig. 1. Positive and negative feedback loops

information or matter from input to output. Systems P (s) and N(s) represent
the positive and negative feedback loops. In what follows, we often omit the
complex variable s for brevity. Thus:

P =
D

1 − DF
and N =

D

1 + DF
. (1)

For D and F rational, linear, and stable, i.e., with all poles pD,F
i ∈ C

− (the
roots of the denominator polynomial) and all zeroes zD,F

i ∈ C
− (the roots of

the numerator), the closed loop with negative feedback transfer N has all poles
pNi ∈ C

− (stable), while the closed loop with positive feedback P has at least
one pole pPi ∈ C

+ (unstable) [5]. The addition of the feedback F influences the
stability and behavior of the system D. Of note here is that we can rewrite a
negative feedback as positive by changing the signs of the poles in (1).

When systems are neither stable, nor unstable, they are at limit, which is a
state with different interpretations depending on the type of stability [5]; most
commonly, limit behavior is cyclic and often encountered in biological systems,
revealing a sort of oscillating response around various equilibrium points. All
systems can be classified based on these three behaviors. Some (e.g., nonlinear,
biosystems) may exhibit all behaviors at different times or operating points,
regardless of how simple or complex their dynamics might be.

Hypothesis. Let a complex system formed of n agents Ai ∈ {A1, ..., An} with
behaviors described by (1), and Iij the interaction between agents i and j. Let
the equilibrium state of agent i be described by yi(∞) = limt→∞ L−1{Ai(s)}
and the equilibrium state of the interaction be ψij(∞) = limt→∞ Iij(t). For x(t)
the state of the complex system formed of all observable agent and interaction
outputs yi(t) and ψij(t), the equation for heterogeneous consensus (i.e., system
equilibrium state formed of nonhomogeneous local equilibria) is:

lim
t→∞ x(t) = Γ ({yi(∞), ψij(∞) | i, j = 1..n}, t) =

n∑

i=1

n∑

j=1

(yi(t) ∗ ψij(t)), (2)

where Γ is the result of the convolution ∗ between agents and interactions. It
follows that the equilibrium state of the system, x(∞), will be determined by
the ratio of positive vs. negative feedback agents and interactions.

This hypothesis investigates the manner in which initial conditions (of the
ABM or of individual agents) determine the number of positive and negative
feedback agents, and how the ratio of positive vs. negative feedback agents in
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Fig. 2. NetLogo model user interface

the ABM influence the steady state of the ABM. In Sects. 3 and 4, we test this
hypothesis on a butterfly-effect ABM and numerical simulation results.

3 Initial Conditions Sensitivity Analysis

3.1 A Two-Species Butterfly-Effect Agent-Based Model

In this paper we illustrate our feedback-based analysis concept on a two-species
butterfly-effect ABM, implemented in NetLogo [37]. This model has been devel-
oped by our team at the Complex Systems Laboratory. Its purpose is to emulate
the spread of misinformation or disease in social networks [35,36], with special
focus on the butterfly effect, which is often present in complex systems [30]. To
disambiguate the two behaviors (infected/misinformed or not), we consider the
infected agents as a separate species.

The ABM adjustable parameters (Table 1) are accessible through the NetL-
ogo user interface (Fig. 2). In this model, a species of rabbits (gray turtles) exists
in a world where they move around and reproduce (by hatching a new rabbit).
In NetLogo, the world is comprised of static agents named patches [2]. The rab-
bit agents’ food source is grass (green patches) that can be consumed and grow
back. Some grass locations are infected (red patches), which when consumed
cause the rabbit to become a zombie (crimson turtles). The food source for zom-
bies are the rabbit agents. An encounter between two agents of different species
results in one of them surviving, based on a probability operator. Zombies do
not reproduce. The infected grass is assigned to 4 patches in the entire world,
one in each quadrant, with an option to enable or disable them. The butterfly
effect models the spread of infection throughout the rabbit population. The two
species achieve co-evolving balance under certain conditions.
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Table 1. NetLogo experiment parameters

Parameter Range Description

grass-regrowth-prob [0,100] The probability (in percentages) that an empty
patch will turn green (grow grass) on the next tick

zombie-win-prob [0,100] The probability (in percentages) that a zombie will
win the fight with a rabbit on the next tick

number-rabbits [0,100] The initial number of rabbits in a simulation

rabbit-gain-feed [0,100] The energy increase after a rabbit consumes the grass
on a green patch

zombie-gain-feed [0,100] The energy increase after a zombie wins the fight
with a rabbit

rabbit-staring-energy [0,100] The initial rabbit energy level

rabbit-loss-move [0,10] The energy decrease after a rabbit moves

zombie-loss-move [0,10] The energy decrease after a zombie moves

rabbit-reprod-prob [0,100] The probability (in percentages) that a rabbit will
hatch a new rabbit on the next tick

The ABM world is defined as a plane of 33 × 33 patches with different types
of grass. Let P be the set of all patches on the plane so that:

P = Pgreen ∪ Pempty ∪ Pcontaminated (3)

where Pgreen is the set of patches with grass (green), Pempty is the set of empty
patches (brown), and Pcontaminated is the set of patches with contaminated grass
(red). The contaminated patches are selected at the beginning of the simulation
and do not change their status during the experiments. The green and empty
patches change their color as described in Algorithms 1 and 3.

Let A be the set of all agents in the environment so that A = R ∪ Z, where
R is the set of rabbit agents and Z is the set of zombie agents. Both rabbits
and zombies require energy to survive. Each of their food sources increases the
energy of the agents, while moving around and reproducing decrease the energy
levels. Each agent has an energy between 0 and 100; at 0, the agent is considered
dead and is removed from the environment. Rabbits gain energy by eating grass
(Algorithm 1, lines 5–7), while zombies gain energy by eating rabbits (Algorithm
2, lines 5–13). Rabbits can only feed on green or red grass. When green grass is
consumed, the respective patch becomes empty, changing color to brown (Algo-
rithm 1, line 7). Red grass is never exhausted by consumption and always exists
on its assigned patch. Green grass regrows over time and empty patches become
green again (Algorithm 3, lines 1–5). When zombies feed on rabbits, the rabbits
become zombies and their current energy level becomes the initial energy in their
life as a zombie (Algorithm 2, lines 7–9). The logic of the algorithms is executed
at every simulation tick and for each agent or patch in the environment. The
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Algorithm 1: Rabbit Behavior
Data: rabbiti ∈ R, N = card(R), grassi ∈ P

1 for i ← 1 to N do
// headingi is the direction where rabbiti is heading

2 headingi ← random direction(360);
3 move forward(rabbiti);

// energyi is the energy of rabbiti
4 energyi ← energyi − rabbit-loss-move;
5 if grassi ∈ Pgreen then
6 energyi ← energyi + rabbit-gain-feed;
7 grassi ← empty; // grassi becomes empty

8 else if grassi ∈ Pcontaminated then
9 breedi ← zombie; // rabbiti becomes zombie

10 end
11 if random(100) < rabbit-reprod-prob then
12 hatch rabbit();
13 end

14 end

ABM allows for a stop condition based on a maximum number of ticks, e.g. 1000
ticks, which can be toggled on and off (Fig. 2).

Algorithm 1 describes the behavior of the rabbit agents. A rabbit agent moves
in a random direction with variable headingi ∈ [0, 360)∩N (in degrees) while los-
ing energy (Algorithm 1 lines 2–4) and consumes grass if available on the current
patch (Algorithm 1 lines 5–7). The random direction(360) function generates
a random headingi and the move forward(rabbiti) function moves the agent
1 patch forward with headingi. If the grass of the current patch is contami-
nated, then the rabbit becomes a zombie agent (Algorithm 1 lines 8–9). The
hatch rabbit() function creates a new rabbit at the current location and halves
the energy of the parent (Algorithm 1 lines 11–12), with a probability given by
rabbit-reprod-prob (Table 1).

The zombie agents behaviour is described by Algorithm 2. A zombie moves
with a random variable headingi ∈ [0, 360) (in degrees) while losing energy
(Algorithm 2 lines 2–4) and tries to fight with and feed on rabbits if there are
any nearby (Algorithm 1 lines 5–9). If the zombie wins the encounter, the rab-
bit becomes a zombie and the zombie gains energy (Algorithm 1 lines 6–9). If
the zombie loses, it dies (Algorithm 1 lines 10–11). The here(zombiei) func-
tion return the patch location of current agent and the count(rabbits, location)
function counts the rabbits at current patch location. The die(zombiei) function
removes the agent from the simulation.

Algorithm 3 describes the other behaviors in the ABM. At every simulation
tick and for each empty patch, there is a probability that the grass will regrow
and become green (Algorithm 3 lines 1–3). Also, at every tick, the simulation
engine checks if there are agents that have reached zero energy (or less) and
removes them from the simulation (Algorithm 3 lines 6–8).
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Algorithm 2: Zombie Behavior
Data: zombiei ∈ Z, N = card(Z), rabbitj ∈ R

1 for i ← 1 to N do
// headingi is the direction where zombiei is heading

2 headingi ← random direction(360);
3 move forward(zombiei);

// energyi is the energy of zombiei
4 energyi ← energyi − zombie-loss-move;

// count the number of rabbits with the same patch as zombiei
5 if count(rabbits, here(zombiei)) > 0 then
6 if random(100) < zombie-win-prob then

// rabbitj is a rabbit with same patch as zombiei
7 rabbitj ← find rabbit(here(zombiei));
8 breedj ← zombie; // rabbitj becomes zombie

9 energyi ← energyi + zombie-gain-feed;

10 else
11 die(zombiei); // zombiei dies

12 end

13 end

14 end

3.2 Feedback Systems Interpretation of Agent Behaviors

We look at the rabbit and zombie agents through their energy. At each tick, the
agents gain energy from their food source and lose energy during movement. For
rabbits, energy is lost to procreation. Let k be the current tick, eR,Z the energy of
a rabbit or a zombie, feedR,Z > 0 the energy gained by feeding, and moveR,Z > 0
and breedR ∈ (0, 1] (1 for no reproduction, probabilistic) the energy lost:

{
eRk+1 = (eRk + feedRk − moveRk ) · breedRk
eZk+1 = eZk + feedZk − moveZk

. (4)

Algorithm 3: Other Behaviors
Data: grassi ∈ Pempty, agenti ∈ R ∪ Z

1 for grassi ∈ Pempty do
2 if random(100) < grass-regrowth-prob then
3 grassi ← green; // grassi becomes green

4 end

5 end
6 for agenti ∈ R ∪ Z do
7 if energyi ≤ 0 then
8 die(agenti); // agenti dies

9 end

10 end
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Fig. 3. Agents represented with positive and negative feedback loops

The components of (4) are outputs of their respective processes. We now
assign dynamic models to each process of gaining and losing energy. Let R(s)
be the rabbit base process of storing energy, MR(s) the movement process, B(s)
reproduction, and ER(s) feeding. Similarly, let Z(s) be the zombie base process
of storing energy, MZ(s) the movement process, and EZ(s) feeding. Figure 3
shows the system representation of the two agents.

Thus, the closed loops of the rabbit (Ro) and zombie (Zo) agents are:

Ro =
RB

1 + R(MR − ER)
, (5)

Zo =
Z

1 + Z(MZ − EZ)
. (6)

In this paper we choose the simplest representation for the two agents: the
base system for energy storage behaves like a capacitor, while the processes of
gaining and losing energy are constant gains. Thus:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

R(s) =
KR

TRs + 1
ER(s) = KRE > 0 and MR(s) = KRM > 0
B(s) = KB ∈ (0, 1) for reproduction and KB = 1 otherwise

Z(s) =
KZ

TZs + 1
EZ(s) = KZE > 0 and MZ(s) = KZM > 0

. (7)

For R(s) and Z(s), we choose KR = KZ = 1 (lossless addition or removal
of energy to and from storage), TR = TZ = 1/4 [ticks] to model that energy is
added to the base system in one tick and does not suffer delays [5]. The poles of
R(s) and Z(s) are pR = pZ = −4 ∈ C

−, which means that the base processes of
acquiring and expending energy are stable. Of note here is that we use the tick
as the time unit of the ABM, but for a proper operational representation (so
that s = jω, where ω is frequency in Hz), ticks must be transformed to seconds.

Replacing (7) into (5) and (6), we obtain:

Ro(s) =
KRKB

TRs + 1 + KR(KRM − KRE)
, (8)
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Zo(s) =
KZ

TZs + 1 + KZ(KZM − KZE)
, (9)

with the poles:

pR = −1 + KR(KRM − KRE)
TR

= −4(1 + KRM − KRE), (10)

pZ = −1 + KZ(KZM − KZE)
TZ

= −4(1 + KZM − KZE), (11)

where KRE = rabbit-gain-feed [enp], KZE = zombie-gain-feed · Zwin/100 [enp],
for Zwin ∈ [0, 100] the probability that a zombie wins in an encounter with
a rabbit ; KRM = rabbit-loss-move [enp], KZM = zombie-loss-move [enp]. For
numerical compatibility, all gains should be defined or mapped over the same
interval, e.g., ∈ [0, 100], and as such scaling gains might be added. Here, the
measuring unit enp represents energy points, an abstract unit for quantifying
energy in the ABM.

3.3 Sensitivity to Initial Conditions

For the ABM, the scalar gains KRE , KRM , KZE , and KZM represent initial
conditions. Their respective combinations determine if the behavior type of the
agent is positive or negative feedback: as we can see from (10) and (11), the signs
of the poles depend on the balance between energy gain and loss. For instance, a
zombie agent that gains more energy from feeding than loses from movement will
be able to continue existing in the ABM, spreading the infected genes through-
out the rabbit population. For a rabbit with greater energy gain than loss, the
species will breed uncontrollably until the ecosystem is overwhelmed and, ulti-
mately, food scarcity will determine the collapse of the species. Individual agent
behaviors determine ABM-level changes.

What happens during the interaction between the rabbit and zombie agents?
As previously described, the meeting between a rabbit and a zombie results in
a probabilistic decision for the rabbit agent to change species. Let Zwin be the
probability that a zombie wins.

The ABM steady states we look at in this paper are:

– rabbit survival, in which the final population is formed of rabbits in equilib-
rium with their food source (grass). In this case, the rabbit agents are stable
(negative feedback), i.e., gain less energy than they lose. Initial rabbit energy
conditions and KB matter, as the agents must survive long enough to start
gaining energy: eRinit > moveR1 − breedR1 for at least the first tick.

– rabbit or zombie collapse, in which only one of either species survives, over-
populates the ecosystem, and then becomes extinct without their food sources
(grass or rabbits). In the former case, the rabbits have positive feedback or
KB too large, while the zombies have negative feedback or Zwin is too low.
Vice-versa for the latter case, with Zwin too large. Interestingly, the time to
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Fig. 4. Zombie infection as systems interaction

collapse is influenced by how large the difference between energy gain and
loss is, i.e., by the parameters of (10) and (11), and thus by the poles of the
closed loops Ro(s) and Zo(s), and the gain of Ro(s).

– species dominant equilibrium, in which the two species coexist, but one
is more numerous than the other. In this case, the rabbits have negative
feedback, the zombies have positive feedback, but the choice of Zwin allows
for survival of zombies without overfeeding on rabbits.

– species perfect equilibrium (co-evolving), in which the two species main-
tain a balanced presence in the ABM. The number of agents in either species is
approximately equal, with small variations around the same mean. This case
is similar to the dominant equilibrium, for specific values of Zwin, dependant
on the other initial conditions.

In this ABM, small changes in the initial conditions parameters (KRE , KRM ,
KB , KZE , KZM , and Zwin) can drive the ABM to different steady states. For
instance, in the case of rabbit win, either zombies do not survive long enough to
propagate the infection or the chances of turning a rabbit are too low.

The infection mechanism replaces a rabbit with a zombie, which in systemic
interpretation is a conditional switch. However, let us see how infection might
look if modeled through feedback. Let the rabbit Ro be a process and let the
zombie Zo be the governor system, as in Fig. 4. We close this loop with either
positive or negative feedback, which is given by:

F =
ZoRo

1 ∓ ZoRo
. (12)

Let KRO = 1/(1 + KR(KRM − KRE)), TRO = TR/(1 + KR(KRM − KRE)),
KZO = 1/(1+KZ(KZM −KZE)), and TZO = TZ/(1+KZ(KZM −KZE)). From
(8) and (9), we obtain:

F (s) =
KROKZOKB

TROTZOs2 + (TRO + TZO)s + (1 ∓ KROKZOKB)
. (13)

According to the Hurwitz criterion [27], the coefficients of the denominator
in (13) must have the same sign for stability and different signs for instability.
Since TRO, TZO > 0, F is stable for α = 1 ∓ KROKZOKB > 0 and unstable
for α < 0. This comes back to the balance between energy loss and gain. When
a zombie wins, i.e., feeds, its behavior has positive feedback, which leads to
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α < 0 for negative feedback rabbits. This suggests that the infection mechanism
F might have negative feedback at zombie win (resulting in an unstable system,
like the unstable positive feedback zombie), and positive feedback for rabbit win
(resulting in a stable system, like a stable negative feedback rabbit). Vice-versa
for positive feedback rabbits (when α > 0). At limit, when α = 0, the infection
mechanism has integrator behavior (one origin pole), shooting off to infinity;
however, this could only happen if KB = 1, i.e. rabbits do not reproduce, in
which case the ABM registers a collapse steady state.

Fortunately, the ABM NetLogo environment allows us to replace a rabbit with
a zombie without jumping through systemic hoops; however, this analysis can
provide hints on requirements in initial conditions (and thus process parameters)
for a rabbit system to transform into a zombie system. This suggests that further
analysis with complete agent dynamics could be worth pursuing.

4 Results

First, we illustrate the steady states described in Subsect. 3.3. Figure 5 shows
examples of each ABM steady state categories, with the numbers of rabbits and
zombies over time. The settings for each instance are in Tables 2 and 3, except
for the rabbit collapse state, which is obtained with grass-regrowth-prob = 0
(always leads to collapse). Video demonstration: youtu.be/ihHBMwd496c.

In what follows, we map KRM and KZM over [0, 100] for numerical compat-
ibility, i.e. KRM = rabbit-loss-move · 10 and KZM = zombie-loss-move · 10, for
rabbit-loss-move and zombie-loss-move ∈ [0, 10].

Table 2 shows the ABM steady states and settling times for negative feedback
rabbits and zombies as systems with either positive or negative feedback. For
this, we ran simulations of 1000 ticks in duration, with 100 repetitions for each
parameter configuration. Initial number of rabbits is 100 with a starting energy
of 50. The grass regrowth probability is 50%, with one infected grass patch in the
upper left quadrant. The fixed initial conditions parameters associated with the
feedback models are: zombie-gain-feed = 85, KRE = 15 rabbit feeding energy
gain, KRM = 50 rabbit movement energy loss, KZM = 50 zombie movement
energy loss. The variable parameter is Zwin ∈ [0, 100] probability for zombie
win, which affects the value of KZE zombie feeding energy gain.

For Zwin = 65, we arrived close to a perfect equilibrium, so this steady state
might be found for a Zwin ∈ [61, 69]. In Table 3, we take a closer look at this
interval. In the state of perfect equilibrium, the numbers of rabbits and zombies
are balanced. For this experiment, this state is found for values of Zwin between
63 and 64. Figure 6 shows the numbers of rabbits vs. zombies in two instances
for Zwin = 63.4 and Zwin = 63.5. Figure 7 shows a simulation with zombies at
limit. The ratio of food vs. total patches is on average between 50 and 60%.

We now take a closer look at the limit behavior. Table 4 shows the ABM
steady states and settling times for simulations of 1000 ticks, over 100 repetitions
for each parameter configuration. We keep most of the settings from the previous
experiments, with the following changes: fixed Zwin = 60 (with KZE = 51), while

http://youtu.be/ihHBMwd496c
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(a) Rabbit survival (Tab. 2 line 3) (b) Equilibrium (Tab. 3 line 5)

(c) Rabbit dominance (Tab. 3 line 2) (d) Zombie dominance (Tab. 2 line 15)

(e) Rabbit collapse (no grass regrowth) (f) Zombie collapse (Tab. 2 line 18)

Fig. 5. ABM steady states examples

the rabbit feeding energy gain is variable KRE ∈ [45, 55]. In this configuration,
the zombies have limit behavior (neither stable nor unstable, Fig. 8). For KRE =
51 we see what happens when the rabbits have limit behavior as well.

5 Discussion

In this paper we provide a proof-of-concept for the hypothesis that initial con-
ditions effects can be analyzed through positive and negative feedback. The
results show that the ABM is driven toward different steady states based on
which behavior dominates the complex system: stable, unstable, or at limit.
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Table 2. ABM steady states and settling times, averaged over 100 runs, for KRE = 15
[enp], KRM = 50 [enp], KZM = 50 [enp], and variable Zwin ∈ [0, 100]; settling time
notation: R rabbits, Z zombies

KZE

[enp]

Zwin pR pZ Rabbit

feedback

Zombie

feedback

Mean

rabbits

Mean

zombies

ABM

steady state

Settling

time [ticks]

0 0 −144 −204 Negative Negative 1846.62 0.97 Rabbit

survival

19

4.25 5 −187 1847.18 0.99 18

8.5 10 −170 1847.50 1.02 18

12.75 15 −153 1844.05 1.16 17

17 20 −136 1844.20 1.44 17

21.25 25 −119 1846.30 1.53 18

25.5 30 −102 1850.27 1.82 19

29.75 35 −85 1847.48 2.13 19

34 40 −68 1845.19 2.61 15

38.25 45 −51 1844.21 3.66 16

42.5 50 −34 1841.66 4.18 19

46.75 55 −17 1718.42 9.45 17

51 60 −144 0 Negative At limit 1718.42 72.08 Rabbit

dominant

equilibrium

Both

oscillating

55.25 65 −144 17 Negative Positive 530.06 613.54 Close to

perfect

equilibrium

140 R, 128 Z

both

oscillating

59.5 70 −144 34 Negative Positive 414.70 563.41 Zombie

dominant

equilibrium

160 R, 115 Z

63.75 75 51 304.06 522.82 104 R, 98 Z

68 80 68 232.38 476.44 83 R, 56 Z

72.5 85 −144 85 Negative Positive 75.24 48.33 Zombie

collapse

85 R, 310 Z

76.5 90 102 82 46.57 82 R, 298 Z

80.75 95 119 84.87 46.31 86 R, 294 Z

85 100 136 71.74 45.78 84 R, 300 Z

Fig. 6. ABM behavior close to equilibrium.

When both agents behave like negative feedback systems, the results are con-
sistent (Table 2). For high zombie win probability and positive feedback zombies,
the results are less consistent (not in table): some runs show zombie dominant
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Table 3. ABM steady states, averaged over 100 runs, for KRE = 15 [enp], KRM = 50
[enp], KZM = 50 [enp], and variable Zwin ∈ [61, 69]

KZE [enp] Zwin pR pZ Rabbit
feedback

Zombie
feedback

Mean
rabbits

Mean
zombies

ABM steady
state

51.85 61 −144 3.4 Negative Positive 1130.78 388.24 Rabbit
dominant
equilibrium

52.7 62 6.8 816.52 525.48

53.55 63 10.2 670.58 575.08

53.89 63.4 −144 11.56 Negative Positive 580.86 594.58 (Almost)
perfect
equilibrium

53.975 63.5 11.9 574.64 598.84

54.4 64 −144 13.6 Negative Positive 571.20 604.74 Zombie
dominant
equilibrium

55.25 65 17 530.06 613.54

56.1 66 20.4 432.06 622.92

56.95 67 23.8 380.54 619.62

57.8 68 27.2 358.52 617.22

58.65 69 30.6 319.88 620.98

Fig. 7. ABM behavior with zombies at limit.

equilibrium instead of zombie collapse, with mean of zombies larger than mean
of rabbits. We can see how the ratio of negative vs. positive feedback agents
affects the outcome of the ABM.

The infection spread mechanism is driven by an initial condition parameter
(win condition) that is not connected with either agent dynamic. Even small
variations in this interaction parameter can cause the ABM to switch to a species
dominant equilibrium state. In nonlinear systems terms, this behavior is one of
metastable equilibrium [19], in which small disturbances can cause significant
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Table 4. ABM behavior in number of agents, averaged over 100 runs, for Zwin = 60
[enp], KRM = 50 [enp], KZM = 50 [enp], and variable KRE ∈ [45, 55]

KRE

[enp]

pR pZ Rabbit
feedback

Zombie
feedback

Mean
rabbits

Mean
zombies

ABM steady state

45 −24 0 Negative At limit 758.73 844.36 Oscillatory (around
the same means)
larger amplitudes for
rabbits sometimes
followed by collapse

46 −20 712.24 830.06

47 −16 858.99 795.34

48 −12 833.86 871.83

49 −8 818.19 801.64

50 −4 670.17 732.54

51 0 0 At limit At limit 735.75 738.32 Oscillatory (same
mean)

52 4 0 Positive At limit 808.25 757.94 Oscillatory (less
consistent)

53 8 680.97 631.77

54 12 731.05 661.73 Some oscillations
often collapse

55 16 846.53 677.94

Fig. 8. ABM behavior around agent limits.

changes in behavior. It raises the question whether the ABM sensitivity to initial
conditions could be measured with nonlinear systems tools, such as state-space
trajectories and limit cycle analysis [25,26] or Lyapunov stability in the vicinity
of equilibrium points [17].

When analyzing the small variations of two values for the interaction param-
eter (win condition), the differences between steady states are visually difficult
to ascertain: both have an oscillatory behavior as the two species co-evolve. Only
when looking at means over many runs can we draw a conclusion. Of course, we
did not remove the probabilistic operators of this model, which naturally will
produce variance in outcomes. However, this only shows the need for alternative
and/or complementary measures of analysing complex system behaviors and
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states. There are still tools from systems theory and information theory that
have yet to be exhausted in the context of complex systems and agent-based
simulation models.

At limit, the numbers of both rabbits and zombies are oscillating with differ-
ent amplitudes and periods, suggesting the existence of at least one limit cycle
[29] in the ABM. This is a particularly interesting find, because although the
behavior of the ABM is not coded into any one zombie agent, this behavior
propagates to influence both species and the rabbit food source.

More interesting, however, is what we see when both rabbits and zombies
are at limit. In dynamic systems, the response (to impulse or step, which for
the ABM as a whole would be the equivalent of running the simulation) of an
origin-pole system K/s is increasing steadily to infinity. Two of these integrator
systems interacting in open loop continue to generate similar responses. However,
when we close two integrators in a negative feedback loop, we obtain oscillations
with consistent amplitudes. We get a hint of this in the ABM behavior for both
species at limit (Fig. 8 center), which suggests that our hypothesis on modeling
the rabbit-zombie encounter as a loop is worth further analysis.

With this case study we illustrated that the ABM steady states are dependent
on the number of positive and negative feedback agents in the model, behaviors
which are in turn determined by the initial conditions. We saw that some value
intervals increase the ABM sensitivity to initial conditions, while for others the
models displays consistent outcomes. This suggests that the sensitivity analysis
of agent-based models might benefit from nonlinear systems tools, such as limit
cycle methods.

An interesting question that arises is how resilient is an ABM, as a network
of agents, to “bad” (i.e. positive feedback) nodes? If, for instance, we aim at
modeling the spread of misinformation throughout a population, can we deter-
mine the limit condition for generating a butterfly effect in the network? In the
ABM we used here, this limit condition was the switch from negative feedback
zombies (or infected, or misinformed nodes) to positive feedback.

For this type of analysis, our feedback-based approach is able to integrate
different agent dynamics, such as variable infection degrees, or spread mechanics,
such as mitigation of infection over time. Moreover, the effect of probabilistic
operators can be managed, via the systemic interpretation of their role in the
ABM, either as part of the local agent dynamics or as part of agent interactions.

The generalization of our hypothesis resides in the very nature of systems:
the steady states of a complex system are dependent on the ratio between sta-
ble, unstable, and at limit behaviors. The advantage is that this type of system
stability can be derived even when there is no mathematical dynamic represen-
tations of behavior available, but merely a timewise measurement of the agent
states that serve as outputs, which ABMs provide.

6 Conclusions

In this paper we propose a system representation based on feedback for agents
in a two-species agent-based model. Results show that there is a dependency
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between ABM steady states on the type of agent feedback behavior. This is the
first step for an alternate way to interpret initial conditions sensitivity in ABMs.
A more extensive analysis without probabilistic operators has merit, to more
accurately ascertain the ABM state trajectories and their dependence on the
numbers of positive or negative feedback agents in the system.

For the particular two-species model we described in this paper, our future
work will explore adding mechanisms such as rabbit agents being able to run from
zombie agents, rabbit-zombie fight winner determined by the agents’ energy lev-
els or another variable (e.g., health status), probabilistic grass regrowth based on
neighboring patches and times consumed, and infected grass spreading through-
out the world.

In long-term, we plan on generalizing our approach to other types of com-
plex systems and networks, and ultimately produce a methodology for initial-
conditions sensitivity analysis in agent-based models.

Acknowledgements. The authors would like to thank our colleague Ioan Marica for
his contribution to the implementation of the agent-based model.
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Abstract. This paper offers a framework for the study of strategic
behavior in proxy voting, where non-active voters delegate their votes
to active voters. It further studies how proxy voting affects the strategic
behavior of non-active voters and proxies (active voters) under complete
and partial information. We focus on the median voting rule for single-
peaked preferences. Our results show strategyproofness with respect to
non-active voters. Furthermore, while strategyproofness does not extend
to proxies, we show that under mild restrictions strategic behavior can
lead to socially optimal outcomes. For partial information settings, our
results show that while convergence is guaranteed, it may be sub-optimal.

Keywords: Computational social choice · Proxy voting · Strategic
voting · Strategyproofness

1 Introduction

In the age of internet, we see an increase of platforms and mechanisms for col-
lective decision-making. However, many of these platforms suffer from low par-
ticipation rates [13,22]. Thus, while there is an increase in the ability of indi-
viduals to influence collective decision-making in many areas, most decisions
are made by a small, non-elected and non-representative groups of active vot-
ers. Partial participation may increase vote distortion [9] (the worst-case ratio
between the social cost of the candidate elected and the optimal candidate, first
defined in [17]); lead to counter-intuitive equilibria [5]; and significantly decrease
the likelihood of selecting the Condorcet winner (when it exists) [8]. Above all,
when the outcome of an election only considers a fraction of all opinions, it is
unreasonable to assume that they accurately reflect the aggregated opinions of
the collective.

Proxy voting, a long standing practice in politics and corporates [19], and an
up-and-coming practice in e-voting and participatory democracies [16], aims at
mitigating the adverse effects of partial participation. Non-active voters (follow-
ers) delegate their vote to another active voter (proxy), thereby at least having
some influence on the outcome. In some cases, the outcome of proxy elections
provide a better estimate of the aggregated social preference of all voters [3].

However, such delegation changes the power dynamic of voters by shifting
some of the voting power to proxies. While much consideration is granted in
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the literature of social choice for the strategic behavior of voters [10,21] and
candidates [7,20], there is little consideration of the strategic behavior of proxies
or followers in proxy-mediated settings. Cohensius et al. [2017] consider strategic
participation (i.e. selecting to participate or abstain) with mostly positive results;
yet they pose the question of strategic behavior of proxies and followers as an
open question, which was part of the inspiration to the current study.

Moreover, it is common to study strategic behavior in adversarial settings
assuming complete information. However, this assumption may be unreasonable
in the context of proxy voting. By delegating their vote, followers may wish to
avoid the cognitive strain, time loss and other costs associated with determin-
ing and communicating their position. Thus, a setting that require followers to
explicitly define their positions negates these benefits of proxy voting for follow-
ers. Reijngoud and Endriss [18] propose a framework for the study of strategic
behavior in partial information settings. We apply it to study strategic behavior
of proxies.

Our model considers a political spectrum over the real line [6,12], using the
median voting rule for single-peaked preferences that was shown to be strat-
egyproof [15]. Our initial study considers strategyproofness and manipulability
with respect to both followers and proxies positions. Then, we consider sequences
where proxies react to other proxies’ actions. Finally, we turn to study strategic
behavior in partial information settings. Our contribution is as follows:

– Strategyproofness of the median voting rule for single-peaked preferences
extends to followers in proxy voting.

– Proxy voting with the median voting rule is manipulable with respect to
proxy positions.

– Under mild restrictions, sequences of manipulations converge to an optimal
equilibrium.

– Manipulations under partial information may converge to a worse equilibrium
than without delegation.

2 Model and Preliminaries

We define the model of Strategic Proxy Games (SPG) as follows. There is a set of
voters N = {1, ..., n}, and a set of proxies (active agents) Φ = {ϕ1, ..., ϕm} ⊆ N .
Non-active voters, i.e. the set N \Φ are called followers. Each voter 1 ≤ i ≤ n has
a position pi ∈ R along the political spectrum. Voters are assumed to have single-
peaked preferences with peak at pi. That is, for every x, y ∈ R, if x < y ≤ pi,
then Voter i prefers y to x, and if pi ≤ x < y, then Voter i prefers x to y.
A profile is a vector s ∈ R

n, such that si is the position Voter i declares. We
denote by (s−i, s

′
i) the profile that is equal to s except for the strategy of Voter

i, that is s′
i. We adopt the model of [3], where followers each delegate their

vote to the nearest proxy (as in [23]). That is, given a profile s, each Follower
i ∈ N \ Φ delegates their vote to Proxy ϕj ∈ Φ, where ϕj = argminϕj∈Φ|sj − si|.
All proxies delegate their vote to themselves. Voters’ preferences are symmetric
single-peaked for followers, that is, for every x, y ∈ R, if |x − pi| < |y − pi|,
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then Follower i prefers x to y. Thus, voters’ preferences are consistent with the
delegation model. We assume that some tie-breaking scheme exists that only
depends on positions of proxies.

Example 1. Consider the SPG appearing in Fig. 1.

−1 0 1.5

Fig. 1. An example SPG. Large dots indicate the positions of proxies, small dots indi-
cate the positions of followers.

There are three voters N = {1, 2, 3} with positions p1 = −1, p2 = 0, and
p3 = 1.5, where ϕ1 = 1, ϕ2 = 3 are proxies. In the truthful profile s = (−1, 0, 1.5),
the follower (voter 2) delegates their vote to the closer proxy ϕ1. Thus, there are
two votes to −1 and a single vote to 1.5.

Given a finite set S ⊆ R such that each element si ∈ S has weight wsi
∈ R

+,
let W =

∑
si∈S wsi

. The weighted median of S is an element si ∈ S such that
∑

{sj∈S\{si}:sj≤si} wsj
≤ W

2 and
∑

{sj∈S\{si}:sj≥si} wsj
≤ W

2 . That is, the sum
of weights of elements that are smaller than si is at most half the total sum of
weights, and the same holds for the sum of weights of elements that are larger
than si.

Next, we define the Weighted Median voting rule. The weight if each proxy is
defined as the number of delegations to them. Then, the weighted median voting
rule (WM) selects the position that is the weighted median of proxy positions.
Note that in this case, W = n. For example, the WM in Example 1 is the position
−1, as there are 2 votes for −1 (the proxy at −1 and the single follower who
delegates to them), and 1 vote for 1.5 (the proxy at 1.5 with no followers).

For a profile s, we denote the unweighted median of s by meds, or med when
clear from context. For a truthful profile p the median voter is a voter i such
that pi = medp.

We say that a voter is truthful if they declare their true location, i.e. pi = si.
Voters may lie about their positions, i.e. pi �= si. We assume that voters are
rational, that is, voters lie only if the outcome changes in their favor. We say
that Voter i has a manipulation in p if there is si �= pi such that Voter i strictly
prefers the outcome by reporting si to the outcome by reporting pi. A voting
rule is strategyproof if for every p, no voter has a manipulation, otherwise, it is
manipulable. The Median voting rule is known to be (group) strategyproof for
single-peaked preferences [2,15].

3 Strategyproofness for Median Proxy Voting

We begin our analysis by showing that strategyproofness extends to Median
Proxy Voting with respect to followers’ positions. In [3] the authors show that
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for an infinite population of non-atomic voters given by some distribution where
proxies are randomly selected, the winner of median proxy voting is the proxy
nearest to the true median. The following Lemma shows that this result extends
to our setting. A similar variant appears in [20].

Lemma 1. Let s be a profile, and let meds be the median of s. Then the reported
position sj of ϕj = arg minϕi∈Φ|si − med| is the winner by WM.

Proof. W.l.o.g, assume sj ≤ med. As there are at most n
2 voters with positions

smaller than meds, the sum of votes to proxies left of sj is at most n
2 . As all

median followers (followers that report position sj) delegate their vote to ϕj , and
there are at most n

2 voters with positions greater than meds, the sum of votes
to proxies with positions greater than sj is at most n

2 . Thus, sj is the weighted
median of s. ��

Next, we prove that for WM, followers do not have manipulations. Note that
for followers manipulation implies delegation to another proxy.

Theorem 1. WM is strategyproof w.r.t followers’ positions.

Proof. Assume towards contradiction that for some truthful profile s, there is a
follower i ∈ N \Φ that has a manipulation. W.l.o.g, assume pi ≥ meds. Let ϕ be
the proxy that is the winner for s, and let s′

i be the manipulation for Follower i.
As s′

i is a manipulation, it must be that the winner for s′ = (s−i, s
′
i) changed.

Let ϕ′ �= ϕ be the winner for s′. By Lemma 1, meds �= meds′ . Therefore, it must
be that s′

i < meds, and therefore meds′ < meds, hence sϕ′ < sϕ. One of the
following must hold:

– pi < sϕ′ < sϕ: Since meds ≤ pi, it follows that sϕ′ is closer to meds than sϕ,
in contradiction to Lemma 1.

– sϕ′ < sϕ < pi by single-peakedness, Follower i prefers sϕ to sϕ′ , in contradic-
tion to s′

i being a manipulation.
– sϕ′ < pi < sϕ: as pi ≥ meds, and since by Lemma 1 |meds−sϕ| < |meds−sϕ′ |,

we get |pi − sϕ| < |pi − sϕ′ |. Thus by symmetric single-peakedness Follower i
prefers sϕ to sϕ′ , in contradiction to s′

i being a manipulation. ��
As Theorem 1 shows that WM is strategyproof with respect to followers’

positions, we can henceforth consider them as non-strategic agents. In what
follows, followers are considered to always be truthful, and we abuse the notation
of a profile restricted to the strategic agents, i.e., the proxies.

We continue to analyze the strategic behavior of proxies. While we obtain a
positive result of strategyproofness when only followers are considered strategic,
the same does not hold for proxies, as demonstrated by the following example.

Example 2. Recall the SPG appearing in Example 1. When proxies are truthful,
s1 = −1 is the winner by the Weighted Median voting rule.

Next, consider the profile s′ = (−1, 1 − ε) for some 0 < ε < 2 (Fig. 2).
Follower 2 delegates their vote to ϕ3. There are two votes to s2 = 1 − ε and

a single vote to s1 = −1, thus, 1 − ε is the winner by WM.
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−1 0 1− ε 1.5

Fig. 2. The SPG with ϕ3 manipulation. Large empty dot is ϕ3’s true position, the
manipulation is re-positioning strategically at 1 − ε. Follower 2 delegates their vote to
Proxy 3.

pϕ∗ med pϕj

sϕj

Fig. 3. A proxy with a manipulation.

As preferences are single-peaked and ϕ3’s peak is at p3 = 1.5, we get that ϕ3

prefer 1 − ε to −1. Hence, s′ is a manipulation for ϕ3.

The counter-example of Theorem 2 can be easily expanded to any number of
followers and proxies. However, rather than formally constructing such example,
The following theorem provides a complete characterization of manipulable sce-
narios. As a consequence, it shows that manipulations exist under very simple
and reasonable conditions.

Theorem 2. There is a proxy that has a manipulation in the profile s iff it
holds that sϕi

�= med for all 1 ≤ i ≤ m, and there are proxies ϕi, ϕj ∈ Φ such
that pϕi

< med < pϕj
.

Proof. First, assume the winner is ϕ∗ with position pϕ∗ , and assume pϕ∗ < med.
For proxy ϕj we have that pϕ∗ < med < pϕj

. As preferences are single-peaked,
ϕj prefers med to pϕ∗ . We proceed by showing that sϕj

= med is a manipulation
for Proxy ϕj , as in Fig. 3.

The median of
(
p−j , sϕj

)
remains med, as there are at most n

2 voters with
position that are smaller than med, hence the sum of votes to all proxies with
positions smaller than med is at most n

2 ; and the same holds for the sum of votes
to proxies with position larger than med. Since ϕj reports position sϕj

= med,
by Lemma 1 their position med is the winner by WM. Since ϕj prefer med
to p∗, that is a manipulation for ϕj . When p∗

ϕ > med, by the same reasoning
sϕi

= med is a manipulation for ϕi. Hence, no proxy has position at med, and
there are ϕi, ϕj such that pϕi

< med < pϕj
, then there is a proxy that has a

manipulation.
Next, if there is some proxy ϕk such that sϕk

= med, then by Lemma 1 med is
the winner and no proxy with position that is not med can change the outcome by
reporting a position that is closer to med. Furthermore, every proxy with position
at med have their peak outcome, so they cannot improve the outcome for them.
Therefore, the only possible manipulations are by proxies with positions other
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pϕ∗ med

Fig. 4. If all proxies have positions on the same side of med, then non of them have a
manipulation.

than med, and they can only manipulate by reporting a position that changes
the location of the median. Assume towards contradiction that there is such a
proxy ϕ, and w.l.o.g assume that pϕ > med. Then, to change the location of the
median ϕ must report a position sϕ < med. Denote the median of (p−ϕ, sϕ) by
med′. We get that med′ < med. Since sϕ is a manipulation, the outcome is at
position p′ ≤ med′ < med < pϕ. By single-peakedness ϕ prefers med to p′, in
contradiction to sϕ being a manipulation.

Finally, assume that for all proxies pϕi
≤ pϕ∗ < med (Fig. 4).

By the same reasoning as for the case where there is a proxy with position
at med, no proxy can change the outcome in their favor by reporting a position
larger than med. Then, by Lemma 1 the only way to change the outcome is to
get closer to the true median, i.e. set a strategy sϕ such that pϕ∗ < sϕ ≤ med.
As proxy preferences are single-peaked, every proxy prefer pϕ∗ to any position
pϕ∗ < sϕ, thus, they do not have a manipulation. ��

4 Manipulations for Better Outcomes

So far, we showed not only that proxy voting using WM is manipulable, but also
that manipulations exist in common voting scenarios. Though strategyproofness
is usually considered as a desirable property for voting rules, in what follows we
argue that in the case of proxy voting, manipulations can actually be proven
useful.

Recall that one of the motivations for proxy voting is to mitigate the caveats
of partial participation. In [3], the authors show that proxy voting can better
aggregate voter preferences as it can only reduce the distance from the true
median over partial participation. The true median is the outcome of the median
voting rule. It is both Condorcet consistent and the minimal sum of distances
from voters’ true preferences. It is common in Hotelling-Downs-like settings [6,
12] to measure the social cost of outcomes using the sum of distances of all
agents positions to the outcome. Thus, the median of all voters reflects the
social optimum. Moreover, reducing the distance of the outcome from the median
may improve the social welfare, and generally can better reflect the collective
preference.

4.1 Dynamics and Convergence

While manipulations are actions that agents may take from their truthful profile
to get a better outcome, proxies may continue to take actions and reposition
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themselves to get better outcomes. In this section, we discuss on-going dynamics
for proxies.

Our model offers an infinite action set. Therefore, the terminology of Iterative
Voting [14], the standard setting for the study of on-going dynamics in voting,
cannot be applied straightforward. We address it when relevant.

In what follows, we assume scenarios where manipulations exist, i.e., that
meet the conditions of Theorem 2.

For every ϕi ∈ Φ and every profile s−ϕi
, we say that the position s′

ϕi
is a

better-response to s if ϕi prefers the outcome of
(
s−ϕi

, s′
ϕi

)
to the outcome of s.

We denote the set of better-responses for a profile s and proxy ϕi by Bϕi
s . We

abuse the terminology of manipulations, such that a better-response from any
profile s is a manipulation. A profile s is a pure Nash equilibrium (PNE) if for
every ϕi ∈ Φ it holds that Bϕi

s = ∅, that is, no proxy have a manipulation for s.
A policy for proxy ϕi ∈ Φ is a function that maps a profile to a manipulation

in the better-response set. Formally, let S be the set of all possible profiles for the
proxies, and let S∗ =

⋃∞
k=1 Sk. Then, a policy for ϕi is a function πϕi

: S → R

such that πϕi
(s) ∈ Bϕi

s . One particular policy is the best-response policy, which
selects a position with an outcome that the proxy prefers to all other positions
in the better-response set, when one exists.

A better-response dynamics is a series of profiles, such that for every two
consecutive profiles si, si+1 in the series s∗, there is a proxy ϕj such that

si+1 =
(
si

−ϕj
, πϕj

(
si

))
. That is, every profile in the series is created by a single

manipulation made by some proxy, according to that proxy’s policy. We say that
a dynamics s∗ converges if the series s∗ has a limit.

4.2 Monotone Policies

For proxies that are on the other side of the median than the outcome, it is
reasonable to assume that their policies select a position that is on the side of
the median as their position. This is due to the fact that every position on the
side of the median is a better-response to every position on the opposite side of
the median. Therefore, in the following discussion, we restrict policies to ones
that preserves the integrity of proxies positions with respect to the median.

Formally, we say that a better-response dynamics s∗ is monotone if for every
ϕi ∈ Φ, we have that pϕ ≤ med iff for every st it holds that πϕi

(st) ≤ med. Note
that for every monotone better-response s∗ starting from the truthful profile, for
every st of s∗ it holds that the median of st is med. We discuss non-monotone
dynamics in Subsect. 4.4.

For a better-response dynamics s∗, and for a profile st of s∗, we say that
ϕ (t) is the moving proxy at t if st+1 =

(
st

−ϕ(t), πϕ(t) (st)
)
. We denote the

manipulation of ϕ (t) at st by s′ (t) = πϕ(t) (st). We say that ϕ∗ (t) is a winning
proxy at st if the outcome of st is sϕ∗(t), and denote s∗ (t) = st

ϕ∗(t). Finally,
denote Δt = |med−s∗ (t)|, i.e. the distance between the median and the outcome
of st.
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pϕ1 med pϕ2Δ Δ

Fig. 5. Consecutive steps that increase the distance to the median. Gray dots indicate
truthful positions of proxies, empty dots indicate positions of manipulation. Arrows
indicate repositions. A small full dot is the position of a (single) follower.

The following Lemma shows that any manipulation in a monotone better-
response dynamics where the winning proxy is not the moving proxy decreases
the distance to the median.

Lemma 2. For every monotone better-response dynamics s∗ starting from the
truthful profile s1 = p, for every t ≥ 1 if ϕ (t) �= ϕ∗ (t), then Δt+1 < Δt.

Proof. By Lemma 1, we have that for st+1 it holds that
ϕ∗ (t + 1) = arg minϕk∈Φ|st+1

ϕk
− med|, therefore, for every ϕk ∈ Φ it holds that

|s∗ (t + 1) − med| ≤ |st+1
ϕk

− med|. In particular, this holds for ϕ∗ (t). We get:

|s∗ (t + 1) − med| ≤ |st+1
ϕ∗(t) − med|

Since ϕ (t) �= ϕ∗ (t), it holds that s′ (t) is a manipulation for ϕ (t), so
|st+1

ϕ∗(t+1) − med| �= |st+1
ϕ∗(t) − med|. Hence:

Δt+1 = |s∗ (t + 1) − med| < |s∗ (t) − med| = Δt.

��
Lemma 2 suggests that manipulations made by proxies that do not have

strategic positions at the current outcome reduce the distance to the true median.
However, it is possible for winning proxies to manipulate in a way that increase
the distance to the median. Figure 5 describe a proxy with 2 consecutive steps.
The first makes them the winning proxy, the next is a better-response as they
remain the winning proxy with a position that is closer to their true position.

We call sequences of consecutive manipulations by the same winning proxy
meta-move. The following shows that while local manipulations within a meta-
move can increase the current distance to the true median (as Fig. 5 demon-
strates), meta-moves globally decrease the distance to the true median.

Lemma 3. Let s∗ be a monotone better-response dynamics starting from the
truthful profile s1 = p. Then, every meta-move strictly decreases the distance
between the winning position and med.

Proof. We start by giving a formal description of meta-moves. Let sk such that
ϕ (k) �= ϕ∗ (k) and ϕ∗ (k + 1) = ϕ (k). That is, in profile sk, a proxy ϕ (k)
manipulates such that the manipulation makes them the winner. Next, let t ≥ 1
such that for every 1 ≤ i ≤ t it holds that ϕ (k + i) = ϕ (k) = ϕ∗ (k + 1).
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pϕ1 med pϕ2Δ Δ

Fig. 6. A dynamics that diverges. The two large black dots indicate oscillation posi-
tions. The arrow indicates the first manipulation.

That is, once ϕ (k) becomes the winning proxy, they keep making consecutive
manipulations for t steps. We show that Δk+t < Δk.

By Lemma 1, monotonicity and since for every 1 ≤ i ≤ t it holds that
ϕ (k + i) = ϕ∗ (k + 1) �= ϕ∗ (k), we get that Δk+i ≤ Δk. Furthermore, since
s′ (k) is a manipulation for ϕ (k), it must be that the outcome of sk+1 is not
equal to the outcome of sk. We get that for every i, sk+i is a manipulation and
therefore sk+i �= sk. Thus Δk+i �= Δk. ��

Lemma 2 and Lemma 3 together provide a complete analysis of the better-
response sets for proxies, and show that the better-response set strictly decreases
after each (meta) move. However, this alone is not sufficient for convergence.

Example 3. Recall the setting appearing in Example 1. Define α1 = 1
4 , and for

every t ∈ N, define αt+1 = 1
2αt. We define the following policy for ϕi ∈ Φ:

πϕi

(
st

)
= med − sign (med − pϕi

) (Δt − αt)

For every t ∈ N we get that

Δt+1 = |st+1
ϕt+1

− med|
= |med − sign

(
med − pϕt+1

)
(Δt − αt) − med|

= |−sign
(
med − pϕt+1

)
(Δt − αt)| = Δt − αt

As αt = 1
2αt−1, we get Δt+1 = Δ1−

∑t−2
i=0

1
2i α1 = Δ1−α1

∑t−2
i=0

1
2i . As t → ∞, we

get that the distance to the median converges to Δ1 −2α1 = Δ1 −2 1
4Δ1 = 1

2Δ1,
and the outcome oscillates between − 1

2 and 1
2 , thus the best-response dynamics

diverges. Figure 6 shows a schematic of this dynamic.

Note that Example 3 not only shows that monotone better-response dynamics
need not converge, it also shows a key difference between our setting and Iterative
Voting. We say that a dynamic is acyclic if there are no recurring states. For
finite action sets, i.e., when the space of available manipulations for each agent
is finite, acyclicity implies convergence. Example 3 shows that for infinite action
spaces this does not hold.

In effect, αt is the amount by which the outcome gets closer to the true
median between steps. As Δt decreases, so does the leeway that proxies have to
improve the outcome for themselves. While it is reasonable that αt decreases as
Δt decreases, Example 3 captures the behavior in which αt decreases at a higher
rate than Δt.
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By restricting policies such that αt and Δt decrease at the same rate, we
can obtain convergence. Moreover, this guarantees that Δt itself converges to 0,
meaning that the outcome converges to the true median.

Theorem 3. Under some restrictions, every monotone better-response dynam-
ics starting from the truthful profile converges, and the limit is a PNE where the
outcome is the true median.

Proof. We first define the necessary restriction on policies to achieve conver-
gence. Let s∗ be a monotone better-response dynamics that starts from the
truthful profile s1 = p with policies πϕi

, and let 0 ≤ α < 1. We restrict policies
such that manipulations must create a noticeable difference in the outcome. In
particular, as Δt defines the interval in which manipulations are possible, such
a restriction bounds the outcome away from Δt. Formally, for every t ≥ 1, if
ϕ∗ (t) �= ϕ (t) then we require |med − πϕi

(st)| ≤ α · Δt. For every t, l such that
for every 0 ≤ i ≤ l it holds that ϕ (t + i) = ϕ (t) = ϕ∗ (t + 1) �= ϕ∗ (t), we require
|med − πϕi

(
st+i

)| ≤ α · Δt.
First, if the series {Δt}∞

t=1 converges to 0, then by definition of Δt, the
distance between the outcome and the true median in s∗ converges to 0. By
Lemma 1, this implies that no proxy can change the outcome, thus, the better
response set of every proxy is empty, and this is a PNE. Moreover, the outcome
is the true median med.

Next, we argue that under the policy restrictions, Δt → 0 as t → ∞. We
construct a series {Γt}∞

t=1 as follows. Γ1 = Δ1. If ϕ∗ (t) �= ϕ (t), then set Γt+1 =
α · Γt. Otherwise, set Γt+1 = Γt. We get that for every t ≥ 1, it holds that
Δt ≤ Γt. For the case where Γt+1 = α ·Γt due to assumption and Lemma 2, and
for the case where Γt+1 = Γt by Lemma 3.

Note that as long as Δt > 0, there is a proxy with position not in s∗ (t), there-
fore, every manipulation for them strictly reduces the distance to the median.
We therefore get that the amount of cases where Γt+1 = Γt is finite, and there-
fore for convergence it is sufficient to consider only the case where Γt+1 = α ·Γt.
We get that Γt+1 = αt ·Γ1 = αtΔ1. As α < 1, we get that t → ∞ implies Γt → 0.

Finally, since {Γt}∞
t=1 bounds {Δt}∞

t=1 from above, and {Γt}∞
t=1 converges to

0, then {Δt}∞
t=1 also converges to 0. ��

As the true median of voters is the socially optimal outcome, Theorem 3
implies that the strategic behavior of proxies can in fact produce a socially
optimal outcome.

4.3 Discretization

In many real-world applications, the assumption that voters can express any
position on the political spectrum R is unreasonable. Voters are unlikely to
distinguish between positions that are too similar, and this is the case both for
selecting their truthful position, and distinguishing between different proxy posi-
tions for delegation. In computerized settings, there is some limited resolution to
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the expression of preferences (e.g. a temperature or a monetary amount). As it
turns out, any such limit eliminates the possibility of oscillation we encountered
in the previous section.

In this section, we assume w.l.o.g that the political spectrum is restricted to
the set of all integers Z.

For discrete spaces, every policy meets the conditions of Theorem 3. This is
due to the fact that every manipulation made by a proxy with position that is
not the current weighted median must decrease the distance to the true median
by at least 1 (as the minimal distance between every distinct possible positions).
Thus, the conditions are met for α = 1 − 1

Δ1
. Therefore, for discrete spaces,

every better-response dynamics converges, and the outcome is the true median,
which is the socially optimal outcome.

Furthermore, for discrete spaces (in contrast to continuous) there is a well-
defined best-response, that is to reposition at a distance that is one step closer
to the true median than the current winner on their opposite side of the median.
In particular, the best-response is monotone. Following the terminology of [14],
a game has the Finite Best Response Property (FBRP) from truth if from any
truthful profile, when restricted to best-responses, the dynamics converges. Thus,
SPGs with WM are FBRP from truth.

4.4 Non-monotone Policies

In the previous sections we restricted the set of policies to those that maintain
the integrity of proxies. That is, proxies always position themselves in the same
side of the median as their truthful positions. However, there may be cases where
it might be beneficial for a proxy to deviate to a position that is on the other side
of the median. Proxies might attempt this in an intention to divert the positions
of proxies on the opposite side of the median, or they might be willing to shift
the median a little in an attempt to cause convergence to this new position. The
following example demonstrate such a scenario.

Example 4. Consider the SPG appearing in Fig. 7

−2.5 −1 0 3 4

Fig. 7. The SPG, large dots indicate proxies, small dots are followers.

The positions are p = (−2.5,−1, 0, 3, 4). There are 3 proxies Φ = {ϕ1, ϕ2, ϕ3}
with positions pϕ1 = −2.5, pϕ2 = 3, pϕ3 = 4. There are 2 followers with positions
p2 = −1, p3 = 0. The median is 0, and the outcome by the Weighted Median
voting rule is the position pϕ1 = −2.5.

Assume that ϕ2 manipulates to s1ϕ2
= −2. Now, the median is p2 = −1,

and the weighted median is s1ϕ2
. Note that ϕ2 prefers this outcome to −2.5 by

single-peakedness. Therefore, this is a manipulation for ϕ2
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Next, assume that ϕ3 manipulates to s2ϕ3
= −1.5. Now, the median in s2ϕ3

=
−1.5, and it is also the position of the closest proxy, thus, this is the weighted
median. This outcome is preferable to ϕ3 than −2.

Finally, ϕ2 manipulates to s3ϕ2
= −1. Now both the median and the weighted

median is −1. Furthermore, both ϕ1 and ϕ3 can change the outcome in their
favor.

Note that this does not imply convergence, as ϕ2 still has a manipulation.

This example shows that a similar potential argument as used in the proof
of Theorem 3, even with the added assumption that proxies make substantial
enough steps to decrease the distance to the median, is unlikely to work. Our
conjecture is that convergence holds for the unrestricted case as well, and that
ultimately proxies would have an incentive to deviate back to their original side
of the median, yet this is a matter of future research.

5 Partial Information

In previous sections we assumed that the proxies have complete information
about the positions of proxies and followers alike. This assumption is common
when analyzing adversarial behavior. However, is it reasonable in a proxy voting
setting?

Recall that one of the applications of proxy voting is to mitigate the adverse
effects of partial participation, where voters choose not to report their posi-
tions, rather only delegate their vote. Moreover, followers may not even know
their exact position, rather they only know how to rank proxies by proximity.
Thus, followers can still delegate their vote without the added cognitive strain
of figuring what is their exact position.

When proxies have no information about positions of followers, then proxy
voting is strategyproof. To see this, consider the profiles appearing in Fig. 8

−50 40−20 10 50

−50 −20 0 10 50

Fig. 8. An example of two profiles that are indistinguishable if followers positions are
not public.

For the bottom profile, the proxy at −20 has a manipulation by deviating to
−5. However, for the top profile, the proxy has no manipulation. When proxies
have no information except proxies positions, the proxies cannot distinguish
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between the two profiles. Thus, proxies do not even know if the have a valid
manipulation, let alone their better-responses.

This example shows that restricting the information available to proxies to
reported proxy positions is too severe of an assumption.

In this section we relax the assumption of complete information. We first
describe formally a less restrictive setting for the study of partial information.
Next, we show that when only partial information is made available to voters,
the strategic behavior of proxies may converge to a worse position than without
delegation.

We employ the framework described in [18]. In this setting, a poll information
function (PIF) σ maps each profile s to an information set σ (s). For example,
σ returns the outcome by WM, the number of delegations for each proxy, and
even s itself. The set σ (s) is then communicated to all voters.

In this setting, proxies cannot distinguish between profiles that yield the
same information by σ. Recall the two profiles from Fig. 8. When only proxy
positions are communicated by σ, the profiles are indistinguishable by the prox-
ies. Therefore, they must assume the profiles are equally likely. However, proxies
can deduce an equivalent set of profiles that are consistent with the information
they have. In particular, both profiles in Fig. 8 would be in the same set.

Formally, Each proxy ϕi, based on their knowledge of their own preferences
and the additional information σ (s), deduce a set W

σ(s)
ϕi of the possible positions

of other followers (and proxies) that are compatible with the information set.
That is, each profile s−i

′ in W
σ(s)
i is a profile of all voters except i such that

(s−i
′, si) is mapped by σ to the same information set they received σ (s), i.e.

σ (s−i
′, si) = σ (s).

Following the terminology of [4], we say that a position s∗
ϕi

is a dominating

manipulation for Proxy ϕi if by reporting s∗
ϕi

, there is some profile in W
σ(s)
i

that will produce a preferable outcome, and for all other profiles in W
σ(s)
i , it

holds that ϕi weakly prefers them over the current outcome. More formally,
let F be a resolute voting rule, and let �ϕi

be a full order over all possible
outcomes that define ϕi’s true preferences. Then, s∗

ϕi
is a dominating strategy

if there is a profile s−i
′ ∈ W

σ(s)
i such that F

(
s−i

′, s∗
ϕi

) �i F (s−i
′, si) and for

all profiles s−i
′ ∈ W

σ(s)
i it holds that F

(
s−i

′, s∗
ϕi

)
�i F (s−i

′, si). Note that if σ
returns the profile s, then the set of dominating strategies coincides with the set
of better-responses. Moreover, dominating manipulations are the only rational
actions that a risk-averse agent may take.

For the rest of this discussion, We also assume that the positions of the proxies
are known as a choice of modeling, as followers need to know their positions to
delegate their vote.

In this section, we assume that followers keep their positions as private infor-
mation, and only delegate their vote to the proxy that is nearest to them. There-
fore, for feasibility of delegation, we assume that proxies reveal their reported
positions to all voters. Finally, we use σwinner, the PIF that maps a profile s to
the outcome of s by WM.



92 G. Bielous and R. Meir

Next, we derive a similar positive result of convergence as in the complete
information setting. First, as the PNE is defined with respect to better-responses,
we consider convergence to a stable state (equilibrium) where none of the proxies
have a dominating manipulation. However, as the position of the median is
unknown to proxies, there is no straighforward interpretation of monotonicity.
Instead, we consider a setting where proxies do not have a vote themselves. That
is, votes are only delegated to them by followers. In this case, the position of the
median is not affected by manipulations as is the case for monotone dynamics.
This setting is closely related to the models of [3,20].

We begin our analysis by characterizing the set of dominating manipulations
for proxies.

Theorem 4. For any profile s and proxy ϕ ∈ Φ, the set of dominating manip-
ulations of ϕ is the interval between the position of the current winner and the
closest proxy to the winner on the same side as pϕ (including their truthful posi-
tion).

Proof. First, every position s′
ϕ in the set is a dominating manipulation. Consider

the profile
(
s−ϕ, s′

ϕ

)
. There are only two possible winners, either sϕ∗(s) (the

position of the current winner) or s′
ϕ. W.l.o.g assume pϕ < sϕ∗(s). By single-

peakedness we get pϕ ≤ s′
ϕ < sϕ∗(s), thus ϕ weakly prefers the outcome. Next,

there is a profile where ϕ wins, thus it is a dominating manipulation.
Next, for every position that is farther than the closest proxy on the same side

as ϕ’s truthful position, the outcome of
(
s−ϕ, s′

ϕ

)
is ϕ∗ (s) no matter the positions

of followers. Thus, it is not a dominating manipulation. For positions that are
on the other side of the current winner than ϕ’s truthful position, consider the
profile where sϕ∗(s) is the median, and there are no followers between sϕ∗(s) and
the position of the closest proxy on the other side of sϕ∗(s) than ϕ. The outcome
must be a position that is further from the truthful position of ϕ than sϕ∗(s),
thus it is not a dominating manipulation. ��

Next, we show that the distance to the true median decreases by dominating
manipulations.

Theorem 5. Let s∗ be a dynamics, then for every t ≥ 1 it holds that Δt+1 ≤ Δt.

Proof. Following Theorem 4, by repositioning to a dominating manipulations,
the outcome either does not change, in which case Δt+1 = Δt, or the moving
proxy becomes the winner, in which case by Lemma 1 we get Δt+1 < Δt. ��

We get that the distances between the winner and the true median is a
decreasing monotone sequence that is bounded from below, thus, it converges.
Therefore, under weak additional assumptions similarly to those made in the pre-
vious section (e.g. discretization) the step size is lower bounded so the dynamics
converges. However, it is not guaranteed to converge to the true median, and in
fact, may converge to a worse position than without delegation.

Consider the SPG appearing in Fig. 9.
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−50 −30 0 10 50

Fig. 9. The SPG, large dots are proxies, small dots are followers.

The true positions are p = (−50,−30, 0, 10, 50). There are two proxies Φ =
{ϕ1, ϕ2} with positions pϕ1 = −30 and pϕ2 = 50, and 3 followers. Note that
proxies and followers are unaware to the positions of other followers. The median
is 0, and the weighted median is −30. The social cost, or sum of distances from
the weighted median to each position is

SC = |−50 − (−30)| + |−30 − (−30)|
+ |−30 − 0| + |−30 − 10| + |−30 − 50|
= 20 + 0 + 30 + 40 + 80 = 170

Next, for ϕ2, consider the position s1ϕ2

′ = 25. From Theorem 4, it is a domi-
nating manipulation.

Next, for ϕ1 in s2 =
(
s1−ϕ2

, s1ϕ2

′), the only information that ϕ1 has is that

their position is −30, and that the position of ϕ2 in s2 is 25, and it is the outcome
of s2. Consider the position s2ϕ1

′ = 20. Again, by Theorem 4 this is a dominating
manipulation for ϕ1.

Moreover, ϕ1 has no dominating manipulation in s3 =
(
s2−ϕ1

, s2ϕ1

′). Addi-

tionally, this holds for every st =
(
s2−ϕ2

, st
ϕ2

′) where st
ϕ2

′ ∈ (
s2ϕ1

, s1ϕ2

]
= (20, 25].

Finally, for every st =
(
s2−ϕ2

, st
ϕ2

′) where st
ϕ2

′ ∈ (
s2ϕ1

, s1ϕ2

]
= (20, 25], the

set of dominating strategies for ϕ2 is
(
20, st

ϕ2

′]. Figure 10 demonstrates the
dynamics.

−50 −30 0 10 50

Fig. 10. An example that converges to a worse position than without delegation. Gray
dots indicate truthful positions of proxies, empty dots indicate positions of dominating
manipulations, full dot indicate convergence positions. Small full dots are followers.

We get that the distance between the position of ϕ1 and ϕ2 converges to 0,
and therefore the dynamics ultimately converges to a PNE where the positions of
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both proxies is s2ϕ1
= 20. The social cost of this outcome is sum5

i=1|20−pi| = 180,
that is greater than the social cost of the outcome of p.

Note that in the case of complete information, this counter-example would
not converge in the same way. This is due to the fact that once ϕ1 repositions
and becomes the winner again, as they know the position of the median, their
better-response set is not empty.

6 Conclusions and Future Work

We introduced Strategic Proxy Games, a framework to study strategic behavior
of proxies in voting mechanisms.

First, we demonstrated that in this model, the extension of the median vot-
ing rule to the weighted median voting rule via proxy voting maintains strate-
gyproofness with respect to followers’ positions. In particular, this suggests that
with respect to follower positions, the delegation scheme is optimal for followers
preferences. Our study uses the Tullock delegation scheme, however other del-
egation models have been studied in the literature. In the one-step delegation
domain, [11] consider delegation that accounts for small errors in assessment of
positions, and [1] consider social connections that influence the weight of proxies.
It would be interesting to see how the delegation model affects the outcome of
proxy voting and the strategic behavior of followers and proxies.

We continued to study the strategic behavior of proxies, and showed that
while strategyproofness does not extend to proxy voting, when proxies maintain
the integrity of their positions with respect to the median, the outcome converges
to the true median of all voters. This result implies that by relaxing truthfulness
to integrity, strategic behavior can improve the outcome with respect to the
truthful profile. In future work we would like to study the outcome without
this restriction, and it is our conjecture that the outcome converges to the true
median as well.

Finally, we study the implications of partial information to the strategic
behavior of proxies. While we get a positive result of convergence, our results
also show that in this case the outcome may increase the social cost.

In this research we focused on the median voting rule. We plan to study
the implication of strategic proxy behavior in higher dimensions, as well as with
other voting rules.
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(ISF; Grant No. 2539/20).

References

1. Alon, N., Feldman, M., Lev, O., Tennenholtz, M.: How robust is the wisdom of
the crowds? In: Twenty-Fourth International Joint Conference on Artificial Intel-
ligence. Citeseer (2015)

2. Black, D.: On the rationale of group decision-making. J. Polit. Econ. 56(1), 23–34
(1948)



Proxy Manipulation for Better Outcomes 95

3. Cohensius, G., Manor, S., Meir, R., Meirom, E., Orda, A.: Proxy voting for better
outcomes. In: AAMAS 2017 (2017)

4. Conitzer, V., Walsh, T., Xia, L.: Dominating manipulations in voting with partial
information. In: Twenty-Fifth AAAI Conference on Artificial Intelligence (2011)

5. Desmedt, Y., Elkind, E.: Equilibria of plurality voting with abstentions. In: Pro-
ceedings of the 11th ACM Conference on Electronic Commerce, pp. 347–356 (2010)

6. Downs, A.: An Economic Theory of Democracy. Harper & Row, New York (1957)
7. Dutta, B., Jackson, M.O., Le Breton, M.: Strategic candidacy and voting proce-

dures. Econometrica 69(4), 1013–1037 (2001)
8. Gehrlein, W.V., Lepelley, D.: Voting Paradoxes and Group Coherence: The Con-

dorcet Efficiency of Voting Rules. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-03107-6

9. Ghodsi, M., Latifian, M., Seddighin, M.: On the distortion value of the elections
with abstention. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 1981–1988 (2019)

10. Gibbard, A.: Manipulation of voting schemes: a general result. Econom.: J.
Econom. Soc. 41, 587–601 (1973)

11. Green-Armytage, J.: Direct voting and proxy voting. Const. Polit. Econ. 26(2),
190–220 (2015)

12. Hotelling, H.: Stability in competition. Econ. J. 39(153), 41–57 (1929)
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Abstract. Opinion diffusion models the spread of information among
agents whose connections are given by a social network. We study opin-
ion diffusion via Boolean networks, in which agents update their (binary)
opinion according to a Boolean function that we assume is compactly
represented as a propositional formula. The classical threshold models,
where opinion updates depend on the proportion of an agent’s influencers
having a differing opinion, are a special case of our model. Boolean net-
works are a well-studied mathematical model for biology, and in this
paper we analyse it through the lens of opinion diffusion. Most notably,
we analyse the computational complexity of deciding if opinions con-
verge from a given initial point, the existence of an asynchronous update
that maximises the global agreement among the agents, and we explore
connections with delegative voting.

Keywords: Multiagent systems · Social networks · Influence
maximisation

1 Introduction

Opinion diffusion models how an opinion on an issue can spread throughout a
social network. In the network, every node represents an agent who has an opin-
ion on a given issue, which we will assume to be binary. The network’s edges
determine who influences each agent. A classical assumption is to use threshold
functions to update an agent’s opinion, changing it when a given proportion of
their influencers have a different opinion (see, e.g., the seminal work of Granovet-
ter [25]). Some typical problems studied in the literature on opinion diffusion are
stable diffusion and opinion control. In the former, we recognise whether the dif-
fusion process will stabilise such that no agent wants to update their opinion. In
the latter, how to control certain opinion characteristics, such as there being a
consensus on the issue, by changing some initial opinions or the structure of the
network (see Sect. 1.2 for an overview).

In this paper we show that Boolean networks, a well-studied mathematical
model from biology, generalise classical models of opinion diffusion and can be
used to model fine-grained influence updates among the agents. Boolean net-
works are graphs where each node has a state, typically on or off, 1 or 0, yes
or no. A discrete-time dynamical process starts from an initial state, and the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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state in following iterations of the network is determined by a set of Boolean
update functions, one per node, that input the states of the node’s neighbours.
Akutsu et al. [3], Cheng et al. [11], Kauffman [28] provide good introductions
to this model. There have been many mathematical advancements in the study
of Boolean networks due to their ability to model gene regulatory networks in
biology (see, e.g., Kauffman et al. [29] and Shmulevich and Zhang [39]).

Boolean networks can model opinion diffusion on binary issues where update
functions are arbitrary Boolean functions. We assume that such functions are
represented as logical formulas built from the standard connectives, ∧,∨,¬, · · · ,
where the atomic propositions are the influencers of the agent. These functions
allow us to study fine-grained relationships between the agents, as showcased in
the following example:

Example 1. A group is deciding whether they should go on holiday together.
Alex organises a holiday to suit themself and their friends Bernie, Charlie and
Dom. Alex believes it is the perfect holiday for the group and wants to go.
However, the opinions of the rest of the group on the holiday may correspond
to the following formulas:

– Bernie’s closest friend is Dom, and Bernie will go if Dom decides to go as
well. However, Bernie would also go on the holiday if both Alex and Charlie
decided to go as well. Therefore, Bernie’s opinion would be updated with
respect to the following propositional formula: (Alex ∧ Charlie) ∨ Dom.

– Charlie has currently fallen out with Alex. Therefore, Charlie will only go on
the holiday if Bernie and Dom are both going and Alex is not. This could be
expressed as Bernie ∧ Dom ∧ ¬Alex.

– Dom is reluctant to go on the holiday, and thus, will only go on the holiday
if all of their friends go as well: Alex ∧ Bernie ∧ Charlie.

Consequently, as Alex will attend, this means that Charlie will not, given that
they will only go if Alex does not. As Alex will attend and Charlie will not,
Bernie will only go if Dom does. However, as Charlie will not go, neither will
Dom. In turn, nor will Bernie.

1.1 Our Contribution

This paper studies Boolean networks as opinion diffusion models. As such, we
focus on classical studies in opinion diffusion and show that:

– The computational complexity of determining if a given boolean network
and set of initial opinions lead to a stable state under synchronous updates
is PSPACE-complete, building on the result of Chistikov et al. [13] from
majoritarian to arbitrary update functions via a non-trivial lemma (Sect. 3).

– There does not necessarily exist a sequence of asynchronous updates that
leads to a stable profile (and maximises agreement), as shown by Bredereck
and Elkind [8] for majority update functions. However, when update functions
are restricted to contain only positive (or only negated) literals, we give a
procedure that finds a stable state of opinions with a maximal number of
agreements (Sect. 4).
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– Synchronous opinion diffusion always terminates if the Boolean network mod-
els a multi-agent delegative voting problem (aka liquid democracy). Moreover,
it does so in polynomial time and gives the same outcomes as the polyno-
mial unravelling procedures defined by Colley et al. [16]. We also show that
manipulating collective opinions in this setting is a NP-complete problem
(Sect. 5).

– Known results from the vast literature on Boolean networks can be applied
to classical problems of opinion diffusion (Sect. 6).

1.2 Related Work

In this section we overview existing work on Boolean networks and opinion
diffusion, notably threshold models, multi-issue opinion diffusion, and delegative
voting.

Algorithmic Approaches to Boolean Networks. A recent stream of papers pro-
vided algorithmic results that are closer to our purposes. Most notably, Akutsu
et al. [1] study the complexity of choosing which nodes to control to gain a spe-
cific outcome, showing that the problem is NP-hard. Inoue [26] gives a logical
language by which Boolean networks can be expressed. Kosub [33] studies fixed
points in social networks, relating to our notion of stability. In Sect. 6 we expand
on this related work by importing and rephrasing some of their results in the
opinion diffusion terminology.

Threshold Models. Much opinion diffusion research has focused on threshold
models, where agents update their opinion when a certain proportion of their
influencers have differing opinions. The problem of convergence for binary opin-
ions has been studied, e.g., by Goles and Olivos [22] who showed that threshold
models either terminate or cycle between two different collections of opinions,
and by Christoff and Grossi [15], who give the conditions by which a social
network stabilises on majority updates. Another popular problem is maximis-
ing influence in the network (see, e.g., [19,37]). In particular, Zhuang et al. [41]
define graph-theoretic notions when using a threshold model which determines
how to reach a consensus among the opinions. Auletta et al. [6] identifies con-
ditions on the graph structure that allows a minority to influence the majority.
Furthermore, they also show that deciding whether the two opinions can coexist
in some stable configuration is an NP-hard problem. Bredereck and Elkind [8]
study an asynchronous model with majority updates to maximise the number
of agreements in the model with polynomial algorithms.

Multi-issue Opinion Diffusion. General models of opinion diffusion have been pro-
posed assuming that agents have opinions on multiple interconnected issues. Here
the problem is how to ensure that influence results in consistent opinions for each
of the agents: Brill et al. [9] need to ensure that individual preference orders remain
transitive and acyclic, Botan et al. [7] use arbitrary integrity constraints. Both
focus on majoritarian update functions. The closest work to ours in this context is
that of Grandi et al. [24], which considers opinion diffusion with arbitrary update
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functions on multiple interconnected issues. When considering a single binary
issue, this model corresponds to Boolean networks, with the only difference that
Grandi et al. [24] give an explicit representation of the update formulas, while we
assume they are compactly represented as propositional formulas.

Opinion Diffusion with Complex Opinion Updates. Rosenkrantz et al. [38] focuses
on opinion diffusion where the updates are also determined by Boolean functions.
This work, however, only considers social networks that are directed acyclic
graphs. Another model of opinion diffusion extending the update functions is
that of Morrison and Naumov [35], where agents can have many thresholds
depending on the labels of the other nodes. For example, allowing different
thresholds for different groups, updating their opinion if 80% of their work col-
leagues have a different opinion or if 30% of their close friends do.

Multiagent Delegations. The connection between models of delegative democracy,
such as liquid democracy, and opinion diffusion was first observed by Christoff
and Grossi [14]. The authors express liquid democracy as a model of opinion dif-
fusion where every agent is influenced by at most one agent. Models of delegative
democracy have recently been improved to account for multi-agent delegations:
Degrave [18] allowed delegations to be fractionally spread among their delegates,
and Colley et al. [16] let voters express a ranking of Boolean functions to model
delegations. In Sect. 5 we expand the work of Christoff and Grossi [14] to the
more general latter model.

2 The Model

A set of agents N = {1, · · · , n} can influence each other’s opinion via a social
network G = (V,E), where the agents are the nodes V = N and the directed
edges represent influence, (i, j) ∈ E if agent i can influence j’s opinion. Further-
more, we let the influence neighbourhood of agent i ∈ N be Ni = {j | (j, i)},
therefore j ∈ Ni means that j can influence i’s opinion on the issue (sometimes
this is referred to as i’s in-neighbours). An agent i can influence themselves, thus
allowing (i, i) ∈ E, as an agent’s current opinion can affect their future opinions.
We study a setting with a single binary issue; therefore, we denote agent i’s
opinion as oi ∈ {0, 1}. As the agents’ opinions are not static, we let ot

i be i’s
opinion at time t ∈ N, and thus o0i is agent i’s initial opinion. The collection
of the agents’ opinions, which we refer to as a profile of opinions at time t is
denoted by Ot = (ot

1, · · · , ot
n).

In this model, each agent has a Boolean function γi that represents when
agent i’s opinion changes, known as their update function. The update function
γi for agent i is represented as a compact propositional formula in DNF built from
the connectives ¬,∧,∨ where the atomic variables are given by Ni, assuming that
Var(γi) = Ni. If for some i ∈ N , Ni = ∅, then their update function is either
γi = � or ⊥, i.e., a constant function. The collection of the agents’ update
functions is denoted by γ = (γ1, · · ·, γn).

Most of this paper is concerned with a synchronous update ◦ on the agents’
opinions. For all agents, ◦ at time t+1 checks if each agent’s neighbours’ opinions
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at t induce that agent’s opinion to change. Thus, ◦ iteratively lets ot+1
i = 1

at time t + 1 if and only if
∧

j∈Ni
ot

j � γi and lets ot+1
i = 0, otherwise. We

denote an instance of opinion diffusion with 〈G,γ, O0〉. We denote t iterations
of the diffusion process as ◦(G,γ, O0, t) = Ot. We say that the synchronous
update is stable if there is some t ∈ N such that for all t′ > t we have that
◦(G,γ, O0, t) = ◦(G,γ, O0, t′), i.e., no more changes to the opinion profile can
happen. At times we refer to the stable profile of opinions as OT . In the literature,
the notion of the diffusion process stabilizing is also referred to as the process
converging [13]. As there are a finite number of opinion profiles of the agents,
namely 2n, this means that if the synchronous update does not lead to a stable
opinion profile, the process is cyclic.

Example 2. Let the set of agents be N = {a, b, c, d, e, f, g} who have the following
initial opinions O0 = (0, 1, 0, 0, 1, 1, 1). On the right-hand side of Fig. 1 we see
the social network G, where V = N are the nodes and E represents by the
directed edges. The neighborhoods of influence for each agent can be seen from
G, for example, a has two incoming edge from d and g, thus Na = {d, g}. On the
left-hand side of Fig. 1, Table (a) lists each agent’s neighbourhood of influence,
update function and initial opinion. Consider the update function γb = a ∧ ¬d,
the intuition behind this function is that b will only update their opinion at time
t + 1 to be ot+1

b = 1 if and only if at time t, a is for the issue ot
a = 1 and d is

against the issue ot
d = 0. Note that in all other scenarios for b (dictated by the

different combinations of opinions of a and d, excluding b’s initial opinion) that
b’s opinion is against the issue.

Fig. 1. This figure describes the social network and initial opinions of the agents in
Example 2. Table (a) on the left-hand side gives every agent: their neighbourhood,
update function, and initial opinion. On the right-hand side, Figure (b) depicts the
social network G where the box under the agent’s name gives their neighbourhood of
influencers and their initial opinion.

We now follow the synchronous diffusion ◦ on 〈G,γ, O0〉. Agent a updates
their opinion from 0 to 1 when either d or g are for the issue in the previous
iteration, as o0g = 1, we see that o1a = 1. Next we address the opinion update of
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b at time t = 1, as at t = 0, o0a = 0, we see that b’s update function evaluates
to false, therefore, o1b = 0. Following this we arrive at ◦(G,γ, O0, 1) = O1 =
(1, 0, 1, 0, 0, 0, 1). The opinions at t = 1 are used at time t = 2, giving O2 =
(1, 1, 0, 1, 0, 1, 0). Following this, we have:

O3 = (1, 0, 1, 0, 0, 1, 1); O4 = (1, 1, 0, 1, 0, 1, 1); O5 = (1, 0, 1, 0, 0, 1, 1).

The instance is not stable using ◦, as O3 = O5 �= O4. Thus, the process would
alternate between O3 and O4. Note that the opinions of a, e, f and g are stable.

2.1 Restricted Languages for Update Functions

We let L denote a language for update functions, such that γ ∈ L if and only if γ
abides by the criteria of L. Generally, we assume that all Boolean formulas are in
DNF. In threshold models, update functions are compactly represented as quota,
i.e., i ∈ N has opinion ot+1

i = 1 if and only if
∑

j∈Ni
ot

j ≥ q, for some quota
q ∈ N. Expressing such a quota as a propositional formula leads to an exponential
blow-up in constraint size. We denote the set of formulas corresponding to quota
rules with Lquota. Another restriction on the update functions that we study is
that of L+, where update functions are Boolean functions that do not contain
negated literals.

3 The Complexity of Convergence

In this section we examine the computational complexity of stability, i.e., the
problem of detecting if a given initial configuration leads to a stable state. To
follow the literature, we refer to the problem as convergence.

Convergence-L
Given: An instance of Boolean opinion diffusion 〈G, γ, O0〉 with every γ ∈ γ

such that γ ∈ L
Question: Does the diffusion process stabilise on 〈G, γ, O0〉?

To prove PSPACE-completeness for Convergence-L, we use the reduction
given by Chistikov et al. [13] for Convergence-Maj, where Maj is the majority
update. In their proof, however, Maj is represented compactly as a quota rule
for each agent. In contrast, it can only be represented as an exponential Boolean
formula (for example, listing all the possible majorities). We refer to an instance
of their model as 〈G,Maj, O0〉. We first prove a lemma that allows us to translate
an instance 〈G,Maj, O0〉 into our model using Boolean formulas in polynomial
time, with the addition of some dummy agents.

Lemma 1. For every majoritarian opinion diffusion instance 〈G,Maj, O0〉 we
can create a Boolean opinion diffusion instance 〈G′,γ, O′0〉 in O(n3) time that
converges exactly when 〈G,Maj, O0〉 does.
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Proof. Our proof relies on the fact that every budget constraint can be translated
into Boolean circuits in decomposable negation normal form (DNNF) in polyno-
mial time [17]. A circuit has leaf nodes which are labelled with either �,⊥, x,¬x
for any variable x. Furthermore, each internal node is labelled with ∧ or ∨ dic-
tating the operation performed on its children’s nodes to determine its value. A
DNNF circuit must be directed, acyclic, and have a single root. Moreover for
every conjunction in the circuit, each of its conjuncts cannot share variables.
Finally, note that any budget constraint over a set of costed issues I and budget
limit B can be represented by a DNNF circuit that can be found in polynomial-
time, in particular, B + |I|-time [17, Theorem 16]. We will not describe how
to build the circuits in detail; however, a clear connection to Boolean opinion
diffusion can be made where parent nodes are influenced with respect to their
label by their children. Furthermore, the circuit’s leaf nodes either represent an
issue being accepted or rejected (negation). Thus the input of a circuit is the
opinions of an agent’s influencers.

We use these DNNF circuits to encode the majoritarian opinion diffusion in our
Boolean setting (moving from 〈G,Maj, O0〉 to 〈G′,γ, O′0〉). We create dummy
agents between each agent i ∈ N from G and their in-neighbours Ni �= ∅ (recall
that if Ni = ∅ then their opinions never update). These dummy agents are either
part a DNNF circuit Ci or are regulatory agents in Ri. The dummy agents in Ci

allow the final agent in the circuit’s opinion to reflect the majority opinion of i’s
in-neighbours. The dummy agents in Ri ensure that every path from agents in
Ni to i are of length k (the maximum path length of any required circuit). This
ensures that the opinions of the original agents will update at the same time.

Fig. 2. This diagram shows how to create a DNNF circuit to mimic the majority update
function of agent z who is influenced by w,x and y. The circuit nodes, Cz represent
a circuit reflecting if at most one of their influencers are for the issue with c9 giving
this outcome. Thus, c10’s opinion reflects the majority opinion of z’s influencers. The
regulatory nodes ensure that each path from the influencers to z is of length k, either
within the circuit (as seen by r1, r2 or r3) or the nodes which can appear between c10
and r∗ (represented by the dotted line).
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We give an example of this translation in Fig. 2. It translates the majority
update function of z who is influenced by w, x and y via a DNNF circuit.
The dummy agents who are part of the budget limit circuit Cz ensure that the
opinion of c9 is 1 if at most one of the agents w, x or y has the opinion 1. Thus,
the opinion of c10, being the negation of c9, reflects the majority opinion of w, x
and y. The regulatory nodes Rz before c10 ensure that the opinions of w, x and
y reach c10 after the same number of steps. The regulatory nodes from c10 to r∗
ensure that this majority opinion reaches the original agents of N at the same
step. Observe that when an agent has an even number of influencers (|Ni| is
even), the strict majority rule on Ni requires a different budget limit depending
on the agent’s current opinion. Thus we would require two circuits for the two
different budget limits.

The translation requires at most 2n circuits, with each circuit being found in
B + |I| =  |Ni|

2 �±1+ |Ni| time. Hence, in total, at most O(2n2) time is required
to build every circuit, including adding the regulatory nodes. The initial opinions
of these agents are the final information needed to create 〈G′,γ, O′0〉. All original
agent retain their initial opinion. If the dummy agents of agent i appear before
the final circuit agent (c10 in Fig. 2), then they have the opposite initial opinion
to agent i, 1 − o0i . All subsequent dummy agents (in Fig. 2 being c10 or after)
have the same initial opinion o0i . This translation can be found in polynomial
time.

Claim: For any step t and any � ∈ [1, k] (where k is the largest depth of any Ci),
it is the case that Ot

i = O
′((t−1)k+�) mod k
i always holds any non-dummy agent

i ∈ N .
We prove this claim by induction. Starting when t = 0, 〈G,Maj, O0〉 has

the initial opinions O0, we need to check that in the first k steps (� ∈ [1, k]) of
〈G′,γ, O′0〉 that for all i ∈ N that o′�

i = o0i . In the first k steps of 〈G′,γ, O′0〉,
an agent’s influencers’ initial opinions have not reached them yet. This is due
to their being k agents between i and the agents in Ni, namely the agents in
Ci and Ri. Secondly, the opinion of i will not change before then due to the
initial opinions of the dummy agents being chosen so that they will not change
i’s opinion. The inductive hypothesis assumes that for all previous steps t and
for any � ∈ [1, k] that ot

i = o
′((t−1)k+�) mod k
i . We now show this for t + 1. At

the step kt of 〈G′,γ, O′0〉, we see that for an arbitrary agent i ∈ N that their
influencers in Ni will influence the leaf nodes of Ci. By the inductive hypothesis,
we know that the opinions of these agents from Ni have been static for the last
k iterations. Thus, the opinions of the agents in Ni update at time kt and these
will affect the opinion of i only after k steps, as this is the number of agents
between i and Ni. Thus, o′kt

i is static for the next k steps.
By the previous claim, when 〈G′,γ, O′0〉 is built from 〈G,Maj, O0〉, then

either both or neither will converge. The isolated nature of the dummy agents
(as (Ci ∪ Ri) ∩ (Cj ∪ Rj) = ∅ for any i �= j ∈ N ) means that their opinions only
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update to update the non-dummy agents. Due to the periodic nature of opinion
updates in 〈G′,γ, O′0〉, when there is no new input to the circuit, the opinions of
the dummy agents Ci ∪Ri also do not change and thus, neither does the opinion
of i.

Finally, this process can be completed in O(n3) time: O(2n2) needed to build
the circuits; O(n3) time is needed to alter all of the circuits to be of the same
length; then at most O(nk) time is needed to add the remaining agents in Ri.

Proposition 1. Convergence-L is PSPACE-complete.

Proof. To show membership of Convergence-L in PSPACE, we need to ensure
that it requires no more than polynomial space. We require two vectors with
n entries, the first storing the current opinions and another for the updated
opinions which use the current opinions. Furthermore, we have a counter that
counts the number of iterations completed in the diffusion process (this counts
maximally to 2n + 1, which can be represented with a polynomial amount of
space, namely n + 1 bits when writing the number in binary). In addition, we
need a polynomial amount of space to compute each agent’s update function.
Since model checking of Boolean functions can be done in polynomial time, it
can be done in polynomial space as well. When the two vectors are equal, the
answer is a “yes” answer. However, the answer is “no” when the counter has
reached 2n +1, as at this point, we are sure there is a cycle among the opinions.
Thus, Convergence-L is in PSPACE.

To prove PSPACE-hardness for Convergence-L, we reduce from the prob-
lem Convergence-Maj, which was shown to be PSPACE-complete by Chis-
tikov et al. [13, Theorem 1]. The reduction is provided by Lemma 1, which shows
that we can translate every instance of majoritarian opinion diffusion to Boolean
opinion diffusion in polynomial time.

As Convergence-L is in PSPACEand PSPACE-hard, we can conclude that
Convergence-L is PSPACE-complete.

Remark 1. A consequence of Proposition 1 is that checking the necessary and
sufficient stability conditions given by Christoff and Grossi [15, Lemma 3] is a
PSPACE-complete problem.

We study another decision problem from Chistikov et al. [13], asking if there
is an initial set of opinions for a social network such that the process does not
stabilise.

Guarantee-Convergence-L
Given: A network G and γ such that for all γ ∈ γ, γ ∈ L
Question: Is there an O0 such that 〈G, γ, O0〉 does not stabilise?

Proposition 2. Guarantee-Convergence-L is PSPACE-complete.

Proof (Sketch). Membership of Guarantee-Convergence-L in PSPACEuses
the basic idea used for proving membership in Proposition 1. The only difference
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is that we need to repeat the process for all initial opinions until one stabilises.
Hence we store an extra vector with the current initial set of opinions in a vector
with n entries. A “yes” answer is found when a diffusion process stabilises,
whereas a “no” answer is found when all possible initial opinions have been
shown not to stabilise. Note that both can be done with polynomial space. Thus,
Guarantee-Convergence-L in PSPACE.

A similar reduction can obtain hardness to the one in Proposition 1, this time
using Theorem 2 from Chistikov et al. [13]. Hence, Guarantee-Convergence-
L is PSPACE-complete.

Remark 2. When restricting the network to be such that for every i ∈ N , |Ni| ≤
1, then Convergence-L and Guarantee-Convergence-L are in P. This
relates to the correspondence between opinion diffusion and liquid democracy
observed by Christoff and Grossi [14].

Remark 3. To the best of our knowledge, this result is not present in the litera-
ture on Boolean networks. The closest being that checking if an agent’s opinion
is stable when updates happen block-sequentially is a PSPACE-complete prob-
lem [21]. Hence, our results are potentially useful for applications of BN, such
as checking if there is a fixed point in a gene regulatory network from a given
initial state.

4 Asynchronous Updates

In this section we extend the results from the asynchronous majoritarian opinion
diffusion model from Bredereck and Elkind [8] to see if they still hold in our
model. In particular, they give an asynchronous procedure to find a sequence of
agents such that the diffusion process stabilises on a profile of opinions which
maximises agreement on the issue. We now extend our model to be able to
account for asynchronous updates.

Following the notation of Bredereck and Elkind [8], we let σ ∈ 2N ×· · ·× 2N

be the sequence in which the updates happen. Note that when σ = (N , · · · ,N ),
we regain the synchronous model (all agents updating at the same time). Gen-
erally, asynchronous updates ensure that every entry in σ is a singleton (one
agent updating at a time). Most cases between these two extremes relate
to the notion of block sequencing when subsets of agents can update their
opinions synchronously [21]. We slightly abuse notation by letting ◦ denote
the asynchronous update function, which takes an instance 〈G,γ, O0〉 and a
sequence σ, then it returns a profile of opinions O|σ| found by following σ, thus
◦[〈G,γ, O0〉, σ] = O|σ|. If we want to look at a certain step t of this sequence, we
let ◦[〈G,γ, O0〉, σ, t] = Ot. One can distinguish an asynchronous update from a
synchronous update by the presence of σ in the input.

Bredereck and Elkind [8] show that when all agents use the majority update
function, there always exists an asynchronous update sequence such that the
process stabilises. However, this is not the case in our general model due to the
possibility of negations in the update functions.
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Proposition 3. For some 〈G,γ, O0〉, there may exist no σ such that
◦[〈G,γ, O0〉, σ] = O|σ| where O|σ| is stable.

Proof. Consider the following counter-example where there are no stable profiles.
Let N = {a, b} with update functions γa = b and γb = ¬a, and say O0

a = 1 and
O0

b = 0. Consider the following profiles of opinions for x ∈ {0, 1}:

(x, x): this is not stable as b wants to update their opinion to 1 − x;
(x, 1 − x): this is not stable as a wants to update their opinion to 1 − x.

As there is no stable profile of opinions for this social network, this entails that
there is no sequence that leads to a stable profile of opinions.

Proposition 3 is a negative result showing that when the update functions
use negated literals there is no longer a guarantee of a stable outcome. How-
ever, we show this is no longer true when restricting update functions to be in
L+. Although we focus on L+, an analogous result can be shown when update
functions only contain negated literals.

Bredereck and Elkind [8] look at sequences that not only stabilise the diffusion
process but also maximise or minimise the number of 1s in the stable profile,
namely, the optimistic or pessimistic updates. An update sequence is optimistic
(respectively, pessimistic) if the sequence leads to a stable profile of opinions
and it maximises (respectively, minimises) the number of 1s in the final state.
We now show that Proposition 1 from Bredereck and Elkind [8] carries over to
positive Boolean functions.

Proposition 4. For every instance of Boolean opinion diffusion 〈G,γ, O0〉 with
every γ ∈ γ such that γ ∈ L+, there exists an optimist (resp. pessimistic) update
sequence σ such that (i) σ is asynchronous, (ii) |σ| ≤ 2n, (iii) every agent i ∈ N
changes its opinion at most twice, (iv) σ can be computed in O(�n2) time (where
� is the maximum time for model checking for any γi ∈ γ), (v) if σ leads to
the stable collective opinion O|σ|, then every other optimistic (resp. pessimistic)
update sequence σ∗ also gives O|σ∗|.

Proof. We emphasise that the following proof follows the same steps and is very
similar to the proof of Proposition 1 from Bredereck and Elkind [8]. We first
give the procedure for the optimistic update, which has two phases, noting that
the pessimistic update takes the two steps in the opposite order. Without loss of
generality, we only give the proof sketch for the optimistic update, as the proof
for the pessimistic update is very similar.

We initial start with an empty sequence σ and proceed with the following
two phases, moving to phase two when there are no more changes available in
phase one:

1. If ot
i = 0 and Ot

�Ni
� γi then append σ with {i} and let ot+1

i = 1;
2. If ot

i = 1 and Ot
�Ni

� ¬γi then append σ with {i} and let ot+1
i = 0.
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This procedure is (i) asynchronous, as only a single agent’s opinion is changed
at any time. (ii) and (iii) are also true, as each agent can only have their opinion
changed once in each phase. Thus each agent can maximally have their opinion
changed twice in the sequence; moreover, the sequence’s length is such that
|σ| ≤ 2n.

We now show (iv): that the procedure terminates in O(�n2) time. We let �
be the maximum time required to check if an opinion should be updated or not.
This is model-checking and can be done in a polynomial time. In each phase,
there are at most n iterations, where at each step t we have to check all agents
who have the opposite opinion, which is at most n−t checks, each taking � steps.
Thus, one phase can take at most O(�n(n+1)

2 ) time. Thus, both phases can be
computed in O(�n2) time.

For (v) we first show that the procedure leads to a stable profile of opinions.
We assume that there is an agent i ∈ N who wants to update their vote after
the sequence given by the procedure to gain a contradiction. We now study two
cases, the first case is if O

|σ|
i = 1 and the second if O

|σ|
i = 0. If O

|σ|
i = 1 yet

Ot
�Ni

� ¬γi, then the procedure is not over as i’s opinion would need to be

updated at this point in phase 2. If O
|σ|
i = 0, yet Ot

�Ni
� γi, then it would have

also been the case at the end of phase 1 (as γi ∈ L+, there is some cube of γi

such that all of these neighbours have the opinion 1, which would have also been
the case at the end of phase 1). Thus, at the end of phase 1, i’s opinion should
have been updated 1. In both cases, we have reached a contradiction and the
procedure always leads to a stable profile of opinions.

Finally, we need to show that any other optimistic sequence σ∗ gives the
same profile of opinions, ◦[〈G,γ, O0〉, σ] = ◦[〈G,γ, O0〉, σ∗]. We show this via
the following two cases: first, that every opinion changed from 0 to 1 in the
sequence σ∗ was also flipped under σ; second, that every vertex flipped from 1
to 0 under σ is also flipped under σ∗. As the two cases are similar, we only give
the proof of the first case. We prove the first case via a contradiction, assuming
that σ and σ∗ do not give the same profile of opinions. Let i∗ ∈ N be the first
agent such that their opinion was changed from 0 to 1 under σ∗ (at step k) yet
not under σ. By assumption, for all steps k′ < k, the agents’ opinions that were
changed from 0 to 1 under σ∗ were also changed in σ as i∗ was the first agent
with a differing opinion. Thus, ◦[〈G,γ, O0〉, σ∗, k − 1] is such that Ok−1

�Ni∗
� γi∗ .

Therefore, if enough neighbours of i∗ have the opinion 1 such that i∗ can change
their opinion to 1, then in phase 1 of σ, i∗’s opinion would be flipped from 0 to
1. Therefore, we have reached a contradiction, concluding that (v) is true.

5 Multi-agent Delegations as Boolean Opinion Diffusion

Following the work of Christoff and Grossi [14], we study the connection between
opinion diffusion and delegative democracy. In liquid democracy an agent can
either vote directly or delegate their vote to another agent, which can, in turn,
be transitively delegated to another agent. Thus, a delegation can be seen as an
agent being influenced by their delegate. There are, however, some differences
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between the two models. For instance, delegating agents in liquid democracy
typically have no initial opinion and agents who have an initial opinion (a direct
voter) are not influenced by other agents.

Table 1. For i ∈ N , the left-hand-side table gives i’s initial opinion and update function
from their ballot; on the right-hand-side, it shows how to compute a delegating agent’s
opinion update.

if Bi = 1 O0
i = 1; γi = �

if Bi = 0 O0
i = 0; γi = ⊥

if Bi = (Si, Fi) O0
i = ∗; γi = Fi

Ot+1
i =

⎧
⎪⎨

⎪⎩

1 if Ot
�Ni

� γi;

0 if Ot
�Ni

� ¬γi;

∗ , otherwise.

Christoff and Grossi [14] were the first to make the connection explicit
between liquid democracy and opinion diffusion for the case of delegations to
a single agent. Given our interest in Boolean networks, we need to consider
multi-agent delegations. Colley et al. [16] propose a model where ballots allow
for multi-agent ranked delegations. This model extends liquid democracy in two
regards: first, an agent’s delegation can use the votes of many other agents;
second, ballots can contain ranked delegations to avoid delegation cycles.

We now introduce a restricted version of the model from Colley et al. [16]
which does not include ranked delegations. The model of multi-agent delegative
voting has a set of N = {1, · · · , n} agents (or voters) who vote on a single binary
issue. Each agent i ∈ N gives a ballot Bi ∈ {(Si, Fi) | Si ⊆ N\{i}, Fi : Si →
{0, 1}}∪{0, 1}, thus, every agent either delegates or votes directly. Note that Si

is a subset of agents acting as i’s delegates whose votes determine i’s according
to the Boolean function Fi. Colley et al. [16] define six unravelling procedures
that take the ballots and return a profile of votes by resolving delegations. When
considering ballots without ranked delegation, all of these procedures are equiv-
alent; thus, we refer to them as Unravel. Unravel iteratively adds votes from
delegations synchronously, stopping when no more votes can be added from one
iteration to the next.

We now translate multi-agent delegative democracy into our synchronous
Boolean opinion diffusion model as described in Sect. 2. The set of agents remains
the same N and the edges of G are determined by the agent’s delegates, thus
E = {(j, i) | j ∈ Si}. To allow the models to align, we introduce a third opinion,
namely ∗, representing abstention. We now introduce a language for the update
functions in this setting to account for the new ternary domain of opinions. This
language, L∗ follows from the language of ballots allowed by Colley et al. [16]. We
say γ ∈ L∗ if γ : {0, 1, ∗} → {0, 1, ∗} and for O ∈ {0, 1, ∗}|Var(γ)| computing γ(O)
can be done in polynomial time. This is equivalent to finding a necessary winner
of a Boolean function on a partial assignment [32] for example, complete DNFs1

1 The necessary winner of an update function γ in complete-DNF is 1 if and only
if there exists at least one cube of the formula where every literal is true, and the
necessary winner is 0 if and only if every cube of the formula is made false by at
least one literal.
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would fall into this category [16, Proposition 2]. On the left-hand side of Table 1,
we see how we translate an agent’s multi-agent delegative democracy ballot into
an initial opinion and update function. Recall that if an agent’s update function
is � or ⊥ then they do not have any influencers.

For a delegating agent i ∈ N , their update function γi = Fi can take as
input {0, 1, ∗} even though γi is represented as a propositional formula. The
right-hand-side of Table 1 shows how to compute their opinion when the input
of γi is can contain ∗s, Ot

�Ni
∈ {0, 1, ∗}|Ni|.

Following the diffusion process described in Sect. 2, we prove a lemma that
shows that the diffusion process always terminates to a stable state.

Lemma 2. Let 〈G,γ, O0〉 be such that γ ∈ L∗, if at some time t Ot
i = v ∈ {0, 1},

then Ot′
i = v for all steps t′ > t.

Proof. We prove this lemma by induction on the step t, showing that if Ot
i ∈

{0, 1} then for no t′ > t does it change.

Base Case: As O0
i ∈ {0, 1}, this means that γi = ⊥ or �, respectively. As their

update functions are constant, their opinion remains static at all steps t ≥ 1,
Ot

i = O0
i .

Inductive Hypothesis: For some step t, every i ∈ N such that Ot
i ∈ {0, 1}, their

opinion does not change in any subsequent step, Ot′
i = Ot

i for all t′ > t.

Inductive Step: We want to show that given the inductive hypothesis is true at
t, it remains true at step t + 1. By assumption, we know that all agents with
an opinion of 0 or 1 in Ot are such that their opinion will not change in future
steps. For the agents in S ⊆ N such that S = {i | Ot

i = ∗ and Ot+1
i ∈ {0, 1}}, we

want to show that for each i ∈ S that their opinion will not change after t + 1.
Taking an arbitrary j ∈ S without loss of generality, we assume that Ot+1

j = 1.
Therefore, Ot

�Nj
� γj . We let Vj ⊆ Nj be the agents of Nj such that they have

a vote in Ot, note that Ot
�Vj

� γj . By our inductive hypothesis, the votes of
the agents in Vj will not change after time t. As j’s vote changes at this step,
a necessary winner of γj was found from the votes in Vj . As no vote from the
agents in Vj will change, neither will the necessary winner of γj , no matter the
votes of the agents in Nj\Vj . As j was chosen arbitrarily, the votes of all agents
in S do not change after t + 1. Our inductive hypothesis has been shown.

From Lemma 2 we see that the process terminates as only a finite number of
opinion updates can be made.

Corollary 1. The diffusion processes terminate on 〈G,γ, O0〉 when γ ∈ L∗.

We remark that although the process terminates, this does not necessarily
mean that all agents have an opinion in {0, 1}. Furthermore, the outcome found
by the diffusion process is the same as Unravel. As Unravel terminates in
polynomial time [16, Proposition 4], we now show that the diffusion process also
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does. We let Terminate-L∗ be the functional problem that given an instance
〈G,γ, O0〉 with γ ∈ L∗, the problem finds the stable profile of opinions found
by the diffusion process.

Proposition 5. Terminate-L∗ is in P.

Proof. First recall that finding a necessary winner of a γ ∈ L∗ can be done in
polynomial time; let � be the maximum amount of time required for any γ ∈ γ.
Lemma 2 tell us that when an opinion is in {0, 1}, it does not change. Thus, we
have at most n diffusion iterations, in which all agents will have their update
function checked for a necessary winner. Therefore, the process terminates in
O(n2�) time.

Proposition 5 shows that our diffusion process can unravel a multi-agent
delegation profile in polynomial time, giving the same computation complexity
bound as Unravel from Colley et al. [16].

5.1 Control in Multi-agent Delegation

One common area of research in opinion diffusion is opinion control, and we
extend this to our model of opinion diffusion when focusing on multi-agent del-
egative democracy [1,34]. Thus, in this section we focus on the computational
complexity of being able to change the outcome of the collective decision by
bribing a given number of agents to change their vote. Here we look at ensuring
that the collective outcome is for the issue, yet the problem of the collective
decision being against the issue is equivalent. Here we focus on the collective
outcome being determined by a quota rule while the update function remains
expressed as propositional formulas in L∗.

Quota-Control

Given: An instance 〈G, γ, O0〉 reflecting multi-agent delegative democracy
such that for all γ ∈ γ we have that γ ∈ L∗ and constants k ∈ N and
q ∈ [0, n]

Question: Is there a D ⊆ N such that |D| ≤ k and for all i ∈ D changing
γi = � and O0

i = 1 gives a stable profile of opinions OT such that
∑

oi∈OT

oi ≥ q?

Informally, Quota-Control asks if there is a subset of agents D, who by
bribing them to change their ballot to be for the issue will mean that there are
at least q agents in the stable profile of opinions in favour of the issue.

Proposition 6. Quota-Control is an NP-complete problem.

Proof. Quota-Control can be shown to be in NPby checking a certificate in
polynomial time. The certificate lists the agents in D whose update function and
initial opinion will be changed to represent a direct vote for the issue. We make
these changes to the instance, giving 〈G′,γ′, O′0〉. As shown in Proposition 5,
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the diffusion process on such an instance terminates in polynomial time. Then
it is required to check if the stable profile of opinions on termination exceeds
the quota. Therefore, a certificate can be checked in polynomial time; thus,
Quota-Control is in NP.

We show NP-hardness of Quota-Control by giving a reduction from the
NP-complete problem Feedback Vertex Set, FVS [27]. FVS takes as input a
directed graph G = (V,E) and k ∈ N and then asks if there is a subset X ⊆ V
such that |X| ≤ k and the remaining graph, when only considering the vertices
V \X, is cycle free.

The translation of FVS is as such: the nodes remain the same N = V and
for each i ∈ N , Ni is determined by E. Each agent’s update function depends on
their neighbourhood as such: for each i ∈ N if Ni = ∅ then O0

i = 1 and γi = �;
else O0

i = ∗ and γi =
∧

j∈Ni
j. Note that the update functions of each delegating

agent will update to 1 only when every one of their neighbours has the opinion
1, and against if one neighbour has the opinion 0, and ∗, otherwise. The quota
represents unanimity q = n, i.e., the collective decision is 1 only when there is a
consensus for the issue.

First, assume that we have a solution to FVS, and we want to show that there
is also a solution to Quota-Control. Given X, we change the update functions
and the initial opinions of the agents in X. As X is a solution to FVS, we see
that the remaining network is cycle free, and therefore, all votes can be assigned.
As all direct voters vote for the issue, every opinion on termination will be 1,
and our quota q = n has been met. Next, we assume that there is no solution to
FVS. Therefore, more than k nodes need to be removed to make the network
cycle-free. Thus no matter which agents’ initial opinions and update functions
are changed, there will still be at least one cycle. For each i in this cycle, there
will be no necessary winner found for γi =

∧
j∈Ni

j. Their opinion remains as ∗
(recall that there are no opinions of 0 at any stage of the diffusion, this means
a necessary winner can only be found when all of i’s neighbourhood is for the
issue). Therefore, for every agent still in a cycle, their opinion at termination
is ∗. Thus, the quota cannot be met and the final collective opinion is not 1.
Therefore, there is no solution either for Quota-Control. We have shown NP-
hardness and membership for Quota-Control, and thus, it is NP-complete.

This result is unsurprising given that an equivalent in majoritarian opinion
diffusion is known to be an NP-hard problem [30] and manipulation via bribery
remains an intractable problem in this voting scenario.

6 Results from the Boolean Network Literature

In this work we aim to make the connection between the well-established research
area of Boolean networks (BN) and opinion diffusion. BN have impacted many
different disciplines, most notably regulatory gene networks. The model used in
this paper aligns with standard BN; thus many results can be translated into our
model with only a few details to be checked. The following remarks give an idea
of some results from the BN literature, rephrased in terms of Boolean opinion
diffusion.
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Remark 4. Akutsu et al. [5] showed that a unique Boolean network can be found
in polynomial time from a sequence of profiles of opinions when the number of
agents in any in-neighbourhood is bounded by some constant, |Ni| ≤ k for all
i ∈ N and k ∈ N.

Remark 5. Farrow et al. [20] showed that finding a stable profile of opinions
for a Boolean opinion diffusion instance where the network is monotonic2 is
NP-complete. Furthermore, Zhao [40] showed it to be strongly NP-complete.

One BN topic that is not widely studied in opinion diffusion is negative
influence. However, negative influence can be a key reason why a network does
not stabilise (see Richard [36] for an overview of positive and negative cycles).

Remark 6. Goles and Salinas [23] showed that finding a stable profile of opinions
can be done in polynomial time when every cycle in the network G has an even
number of decreasingly monotonic arcs with respect to the update functions.

It may be sufficient for the opinion diffusion process not to stabilise in some
cases if it only cycles through a small number of profiles.

Remark 7. Akutsu et al. [4] showed that in polynomial time a profile of opinions
can be found that leads to a cycle among two profiles of opinions when all γ ∈ γ
are such that γ ∈ L∨ ∩ L+, thus, only contain positive literals and disjunction.

Fixed points are well studied in the BN literature; in our terminology, this
equates to if there exists a stable collection of opinions for a network.

Remark 8. Kobayashi [31] showed that it is an NP-complete problem to check
if a stable collection of opinions exists for a Boolean opinion diffusion instance.

This remark follows from the fact that this problem is equivalent to checking
if there is a solution to an ILP where the set of constraints is for all i ∈ N ,
γi(O�Ni

) = oi. In Sect. 3 we studied a similar problem, the difference being that
in Proposition 1 we ask if there is a stable state coming from an initial profile
of opinions. The increase in complexity from NPto PSPACEcomes from the fact
that it is hard to verify if a stable profile of opinions can come from a particular
initial profile of opinions.

Boolean network control, as defined by Akutsu et al. [1], asks, from a given
set of agents whose opinions can be controlled, if it is possible to gain a particular
profile of opinions OM in M steps by controlling only the given subset of agents.

Remark 9. Akutsu et al. [1] showed that Boolean network control is an NP-
complete problem, yet is polynomial when the underlying graph is a tree.

2 Take any Boolean function F and any X ∈ {0, 1}|F | such that F (X) = 1, F is
monotonic if and only if F (X ′) = 1 still holds for any X ′ found by changing a single
0 entry in X to a 1. A BN is monotonic if every Boolean function within it is also
monotonic.
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7 Conclusion

In this paper we have studied algorithmic problems from opinion diffusion on the
model given by Boolean networks. We have shown that it is PSPACE-complete to
recognise whether a given initial state leads to stability in synchronous diffusion,
generalising a known result on majoritarian opinion diffusion. When moving to
asynchronous diffusion, in contrast, we showed that the existence of a diffusion
sequence leading to stability and maximising consensus cannot be guaranteed
for arbitrary Boolean networks. However, we showed its existence when nega-
tive influence is not allowed. Finally, we showed that when a delegative voting
problem induces the influence structure, stability is guaranteed, and influence
maximisation is, perhaps unsurprisingly, NP-hard. We also rephrased known
results from the Boolean network literature in terms of diffusion to showcase the
synergy of the two research subjects.

This paper opens several directions for future work. Perhaps the most inter-
esting is to explore the use of semi-tensor products in opinion diffusion, as they
constitute the main technique used by recent research on Boolean networks (see,
e.g., Cheng et al. [12] and Cheng [10]). We conjecture that this will draw a par-
allel between the use of DeGroot processes by Christoff and Grossi [14] to model
delegative voting. Another area for future work is looking at probabilistic BNs
for opinion diffusion, in particular, with respect to existing work on control [2].

Acknowledgements. The authors acknowledge the support of the ANR JCJC
project SCONE (ANR 18-CE23-0009-01).
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Abstract. We study the robustness of GreedyCC, GreedyPAV, and
Phragmén’s sequential rule, using the framework introduced by Bred-
ereck et al. [6] for the case of (multiwinner) ordinal elections and adopted
to the approval setting by Gawron and Faliszewski [15]. First, we show
that for each of our rules and every committee size k, there are elec-
tions in which adding or removing a certain approval causes the winning
committee to completely change (i.e., the winning committee after the
operation is disjoint from the one before the operation). Second, we show
that the problem of deciding how many approvals need to be added (or
removed) from an election to change its outcome is NP-complete for each
of our rules. Finally, we experimentally evaluate the robustness of our
rules in the presence of random noise.

1 Introduction

We study the extent to which perturbing the input of several approval-based
multiwinnner voting rules affects their outcome. We focus on GreedyCC, Greedy-
PAV, and Phragmén rules, whose common feature is that they choose members
of the winning committee in a sequential, greedy way.

In a multiwinner approval election, each voter indicates which candidates he
or she finds appealing—i.e., which ones he or she approves—and a voting rule
provides the winning committee (i.e., a fixed-size group of candidates). For exam-
ple, the approval voting rule (AV) chooses committees of individually excellent
candidates (i.e., the most approved ones), the proportional approval voting rule
(PAV) ensures proportional representation of the voters, and the Chamberlin-
Courant rule (CC) seeks a diverse committee. Unfortunately, while AV can be
computed in polynomial time, finding the winning committees under the other
two rules is intractable. Luckily, there are many workarounds for this issue. For
example, instead of CC we can use its approximate variant GreedyCC, and
instead of PAV we can either use GreedyPAV or the Phragmén rule (see the
overview of Lackner and Skowron [17] for a discussion of these rules and their
properties). While there is robustness analysis of AV, CC, and PAV [15], analo-
gous results are missing for these greedy rules and our goal is to fill this hole.

*See https://github.com/Project-PRAGMA/Greedy-Robust-EUMAS-2022 for the
source code of the experiments performed in this paper.
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We use the robustness framework of Bredereck et al. [6], as adopted to the
case of approval elections by Gawron and Faliszewski [15]. This framework con-
sists of the following elements:

1. Evaluating the extent to which introducing a single small change may affect
the outcome of a rule. For example, we say that a rule has Add-robustness
level equal to � if adding a single approval results in, at most, replacing �
committee members. Remove-robustness level is defined analogously, but for
the case of removing a single approval. Robustness levels of a rule describe
its worst-case behavior under minimal perturbations of the input.1

2. Establishing the complexity of the Robustness-Radius problem, which asks
if a given number of basic operations (such as adding or removing approvals)
suffices to change the election outcome. Solving this problem for various elec-
tions would measure a rule’s robustness to targeted attacks on a per-instance
basis. However, since Robustness-Radius is NP-complete for many rules,
neither Bredereck et al. [6] nor Gawron and Faliszewski [15] carried out such
experiments and we follow them in this respect.

3. Computing for various elections how many randomly selected basic operations
are needed, on average, to change their outcomes. This measures the rules’
robustness to random noise.

Gawron and Faliszewski [15] considered AV, SAV (a rule similar in spirit to
AV), CC, and PAV. They have shown that AV has {Add, Remove}-robustness
levels equal to 1, while the other rules have them equal to the committee size
(although there are some intricacies for the case of SAV). Further, they have
shown that Robustness-Radius is in P for AV and SAV, but is NP-hard for
CC and PAV. Given hardness of computing CC and PAV, this last result is not
very surprising, but Gawron and Faliszewski have also shown fixed-parameter
tractable algorithms for the respective problems. Unfortunately, Gawron and
Faliszewski [15] did not pursue experimental studies (as some of their rules are
NP-hard, even computing robustness to random noise would require nontrivial
computing resources).

Our Contribution. We complement the work of Gawron and Faliszewski [15] by
considering GreedyCC, GreedyPAV, and Phragmén. We show that their {Add,
Remove}-robustness levels are equal to the committee size and we show that
the Robustness-Radius problem is NP-complete for each of them. Since our
rules are polynomial-time to compute, this result is not as immediate as in the
case of CC or PAV. Finally, we experimentally evaluate the robustness of our
rules, and of AV, to random noise.

Related Work. In addition to the works of Bredereck et al. [6] and Gawron and
Faliszewski [15], our results are closely related to the line of work on the com-
plexity of bribery in elections. In a bribery problem, we are given an election

1 Whenever we speak of “robustness levels” without indicating whether we mean the
Add or Remove variant, we collectively refer to both.
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and we ask if a certain outcome—such as including a certain candidate among
the winners (in the constructive setting) or precluding a certain candidate from
winning (in the destructive setting)—can be achieved by modifying the prefer-
ences of the voters with operations of a certain cost. The study of bribery was
initiated by Faliszewski, Hemaspaandra, and Hemaspaandra [11] and was con-
tinued by many others (see the overview of Faliszewski and Rothe [12]). The
Robustness-Radius problem can be seen as a variant of destructive bribery.
Swap-Bribery, introduced by Elkind, Faliszewski, and Slinko [10], was used
to study the robustness of single-winner voting rules by Shiryaev et al. [21],
Baumeister and Hogrebe [3], and Boehmer et al. [5]. Magrino et al. [18], Cary [8],
and Xia [25] used variants of destructive bribery to study margin of victory under
various single-winner voting rules. The main difference between the studies of
robustness and margin of victory is that in the former, the authors typically use
fine-grained bribery variants that allow for making small modifications in the
votes (in our case, these mean adding or removing single approvals), whereas in
the latter the authors typically use coarse-grained bribery variants that allow
operations that change the whole votes arbitrarily.

Our work is closely related to that of Faliszewski et al. [14], who study
bribery of approval-based multiwinner rules under adding, removing, and swap-
ping approvals. The main difference between our work and theirs is that they
focus on the constructive setting and we study the destructive one.

2 Preliminaries

We write N+ to denote the set {1, 2, . . .} and for each integer t, by [t] we mean the
set {1, . . . , t}. We use the Iverson bracket notation, i.e., given a logical expres-
sion P , we write [P ] to mean 1 if P is true and to mean 0 otherwise.

2.1 Approval Elections and Multiwinner Rules

An election is a pair E = (C, V ), where C = {c1, . . . , cm} is a set of candidates
and V = (v1, . . . , vn) is a collection of voters. Each voter vi has a set A(vi) ⊆ C
of candidates that he or she approves. The approval score of a candidate is the
number of voters that approve him or her.

A multiwinner voting rule R is a function that given an election E and
committee size k outputs a family of size-k winning committees (i.e., a family
of size-k subsets of C). If a rule always outputs a unique committee, then we
say that it is resolute (in practice, non-resolute rules require tie-breaking rules,
but we disregard this issue). For example, the approval voting rule (the AV rule)
selects committees of k candidates with the highest approval scores. AV belongs
to the class of Thiele rules, which are defined as follows: Consider an election
E = (C, V ) and a nonincreasing function λ : N+ → [0, 1], such that λ(1) = 1 (we
will refer to functions satisfying these conditions as OWA functions2). We define
2 The name refers to the class of order-weighted operators (OWA operators), intro-

duced by Yager [26] and used by Skowron et al. [22] to define a class of rules closely
related to the Thiele ones.
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the λ-score of a set S ⊆ C of candidates as:

λ-scoreE(S) =
∑

v∈V

(∑|S∩A(v)|
t=1 λ(t)

)
.

Given an election E and committee size k, the λ-Thiele rule outputs those size-k
committees W that have the highest λ-score. For example, the AV rule uses the
constant function λAV (i) = 1. This rule is meant to choose committees of indi-
vidually excellent candidates, hence it considers the candidates with the highest
individual approval scores. We are also interested in the Chamberlin–Courant
rule (the CC rule) and the proportional approval voting rule (the PAV rule),
which use functions λCC(i) = [i = 1] and λPAV(i) = 1/i, respectively. Under
CC, a voter assigns score 1 to a committee exactly if he or she approves at least
one of its members, and assigns score 0 otherwise. This rule was introduced by
Chamberlin and Courant [9] in the context of ordinal elections and was adapted
to the approval setting by Procaccia et al. [19] and Betzler et al. [4]. Its purpose
is to find diverse committees, so that as many voters as possible feel represented
by at least one of the committee members. The PAV rule was introduced by
Thiele [24] and its more elaborate scoring system is designed to ensure propor-
tional representation of the voters [1,7].

Both CC and PAV are NP-hard to compute [2,19,22] and we are mostly
interested in the rules defined by their greedy approximation algorithms. These
algorithms run as follows (let E = (C, V ) be the input election, k be the com-
mittee size, and λ be the OWA function used):

We start with an empty committee W = ∅ and perform k iterations, where
in each iteration we extend W with a single candidate c that maximizes the
value λ-scoreE(W ∪ {c}) − λ-scoreE(W ). If several candidates satisfy this
condition then we break the tie according to a given tie-breaking order. We
output W as the unique winning committee.

We refer to the incarnations of this algorithm for λCC and λPAV as GreedyCC and
GreedyPAV, respectively. When analyzing an i-th iteration of these algorithms,
for each candidate c we refer to the value λ-scoreE(W ∪ {c}) − λ-scoreE(W ) as
the score of c. For GreedyCC, we imagine that as soon as a candidate is included
in the committee, all the voters that approve him or her are removed (indeed,
these voters would not contribute positive score to any further candidates).

We are also interested in the Phragmén rule (or, more specifically, in the
Phragmén’s sequential rule, but we use the shorter name in this paper). The
Phragmén rule proceeds according to the following scheme (E = (C, V ) is the
input election and k is the committee size):

Initially, we have committee W = ∅. The voters start with no money, but they
receive it at a constant rate (so, at each time point t ∈ R, t ≥ 0, each voter
has in total received money of value t). At every time point for which there
is a candidate c not included in W who is approved by voters that jointly
have one unit of money, this candidate is “purchased.” That is, candidate c is
added to W and the voters that approve him or her have all their money reset
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to 0 (i.e., they pay for c). If several candidates can be purchased at the same
time, we consider them in a given tie-breaking order. The process continues
until W reaches size k or all the remaining candidates have approval score
zero (in which case we extend W according to the tie-breaking order). We
output W as the unique winning committee.

Similarly to PAV, Phragmén provides committees that ensure proportional
representation of the voters [20]. For a detailed discussion of these rules we point
the reader to the survey of Lackner and Skowron [17]. Faliszewski et al. [13] offer
a general overview of multiwinner voting. Note that GreedyCC, GreedyPAV,
and Phragmén are resolute.

2.2 Robustness of Multiwinner Voting Rules

We use the robustness framework introduced by Bredereck et al. [6] for the
ordinal setting and adapted to the approval one by Gawron and Faliszewski [15].
In particular, we consider the Add and Remove operations, where the former
means adding a single approval to some vote and the latter means removing a
single approval from a vote. Let us fix committee size k. For an operation Op
∈ {Add,Remove}, we say that a multiwinner voting rule R is �-Op-robust (or,
that its Op-robustness level is �) if � is the smallest integer such that for every
election E = (C, V ), where |C| ≥ 2k,3 and every election E′ obtained from E
with a single operation of type Op, the following holds:

For each committee W ∈ R(E, k) there is a committee W ′ ∈ R(E′, k) such
that |W ∩ W ′| ≥ k − � (i.e., for every winning committee of E there is a
winning committee of E′ that differs in at most � candidates).

Intuitively, if a rule is 1-Add-robust then adding a single approval in an election
held according to this rule may, at most, lead to replacing a single member
of the winning committee. On the other hand, if a rule is k-Add-robust, then
adding a single approval sometimes leads to replacing the whole committee.
Gawron and Faliszewski [15] have shown that AV is 1-{Add,Remove}-robust,
whereas both CC and PAV are k-{Add,Remove}-robust (they also considered
the Swap operation, which means moving an approval from one candidate to
another within a vote, and obtained analogous results for it).

Following Bredereck et al. [6] and Gawron and Faliszewski [15], we also study
the Robustness-Radius problem. Intuitively, in this problem we are interested
in the smallest number of operations required to change the election result. The
more are necessary, the more robust is the result on the given election.

Definition 1. Let R be a multiwinner voting rule and let Op be either Add
or Remove. In the R-Op-Robustness-Radius problem we are given an elec-
tion E, a committee size k, and a nonnegative integer B (referred to as the
budget). We ask if it is possible to perform up to B operations of type Op so
that for the resulting election E′ it holds that R(E, k) 	= R(E′, k).
3 This is mostly a technical assumption, to ensure that there are enough candidates

so that all members of a committee can be replaced with non-members.
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3 Robustness Level

The results of Bredereck et al. [6] and Gawron and Faliszewski [15] give some
intuitions regarding robustness levels that we may expect from multiwinner rules.
On the one hand, simple, polynomial-time computable rules that focus on indi-
vidual excellence tend to have robustness levels equal to 1 (this includes, e.g.,
AV in the approval setting, and a number of rules in the ordinal one). Indeed,
Bredereck et al. [6, Theorem 6] have shown that if a rule selects a committee
with the highest score, this score is easily computable, and the rule’s robustness
level is bounded by a constant, then some winning committee can be computed
in polynomial time. On the other hand, more involved rules that focus on pro-
portionality or diversity—in particular those NP-hard to compute—tend to have
robustness levels equal to the committee size. However, regarding rules that form
the committee sequentially, so far there was only one data point: Bredereck et
al. [6] have shown that single transferable vote (STV; a well-known rule for
the ordinal setting) has robustness levels equal to the committee size. We pro-
vide three more such examples by showing that GreedyCC, GreedyPAV, and
Phragmén also have robustness levels equal to the committee size.

First, we consider the relationship between Add-Robustness and Remove-
Robustness for resolute rules and then we show that GreedyCC, GreedyPAV,
and Phragmén are k-{Add, Remove}-robust.

Proposition 1. Let R be a resolute multiwinner voting rule, and let � be a
positive integer. R is �-Add-robust if and only if it is �-Remove-robust.

Theorem 1. Let k be the committee size. For each multiwinner rule R in
{GreedyCC,GreedyPAV, Phragmén}, R is both k-Add-robust and k-Remove-
robust.

Proof. Let us fix committee size k. Since our rules are resolute, by Proposition 1
it suffices to show their k-Add-robustness. To this end, we will form two elec-
tions, E = (C, V ) and E′ = (C, V ′), where E′ can be obtained from E by adding
a single approval, such that for each of our rules the unique winning committee
for E is disjoint from the one for E′.

We let the candidate set be C = A ∪ B, where A = {a1, . . . , ak} and B =
{b1, . . . , bk}, and we set the tie-breaking order to be:

a1 
 · · · 
 ak 
 b1 
 · · · 
 bk.

The voter collection of election E is as follows:

1. We have k − 1 voters approving {a1, b1}.
2. For each i ∈ {2, . . . , k} we have a single voter approving {a1, bi}.
3. For each i ∈ {2, . . . , k} we have a single voter approving {ai, b1}.
4. For each i ∈ {2, . . . , k} we have 2k − 3 voters approving {ai, bi}.
5. We have voter v0 with empty approval set.
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As the reader can verify, every candidate from C is approved by exactly 2(k −1)
voters. Election E′ is defined in the same way, except that voter v0 approves b1.
For each of our rules we will show that committee A wins in election E and
committee B wins in election E′.

We first consider GreedyCC and election E. At the beginning of the first
iteration, each candidate has score 2(k − 1) and, due to the tie-breaking order,
GreedyCC chooses a1. As a consequence, in the second iteration the score
of b1 decreases by k − 1 points and the scores of candidates b2, . . . , bk decrease
by 1 point each. As there is no voter who approves two different candidates
from A, each of the candidates in {a2, . . . , ak} still has 2(k −1) points. Hence a2

is selected. The same reasoning applies to the following k − 2 iterations, during
which the remaining members of A are chosen.

On the other hand, for election E′ GreedyCC outputs committee B. To see
this, note that in the first iteration b1 has score higher by one point than every
other candidate and, so, is selected irrespective of the tie-breaking order. Then
the scores of candidates in A decrease below 2(k−1), but the scores of candidates
in {b2, . . . , bk} remain equal to 2(k − 1). Hence these candidates are selected in
the following iterations. Since GreedyCC outputs committee A for election E
and committee B for election E′, we see that GreedyCC is k-Add-robust.

The case of GreedyPAV is analogous to that of GreedyCC. Indeed, the only
difference between the operation of GreedyPAV and GreedyCC on elections E
and E′ is that when under GreedyCC the score of some candidate drops by
x, the score of the same candidate drops by x/2 under GreedyPAV (naturally,
this is not a general feature of these rules, but one that is specific to our two
elections). As a consequence, both rules choose the same committees for E and
E′ and, so, GreedyPAV is k-Add-robust.

Finally, we consider the Phragmén rule. Since in election E each candidate
is approved by 2(k − 1) voters, the first moment when a group of voters can
purchase a candidate is 1/2(k − 1). Due to the tie-breaking order, they first buy
a1, followed by a2 and all the other members of A (as no two members of A are
approved by the same voter, for each member of A there is a group of voters with
sufficient funding). Thus the rule outputs committee A. In election E′, candidate
b1 has 2k −1 approvals and is purchased at time 1/2k − 1. As a consequence, all
voters who approve b1 have their budgets reset to 0. The next time when there
is a group of voters that can purchase a candidate is 1/2(k − 1). One can verify
that at this point for each candidate in {b2, . . . , bk} there is a disjoint group of
voters that has a unit of money, whereas there is no such group for any member
of A. Hence, Phragmén outputs committee B. As in the previous two cases, this
means that Phragmén is k-Add-robust. ��

The reader may worry that the above results hold due to the fact that our
rules are resolute, but this is not the case. For example, if one used parallel-
universes tie-breaking (where a rule outputs all the committees that could win
for some way of resolving the internal ties) then the result would still hold.
For example, for GreedyCC it would suffice to add one more voter approving
both a1 and b1 to elections E and E′. Then, GreedyCC with parallel-universes
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tie-breaking would output both A and B as the winning committees for E, but
for E′ it would output only B. This would show its k-Add-robustness (from the
point of view of committee A).

4 Robustness Radius: Complexity Results

In this section we show that the Robustness-Radius problem is NP-complete
for each of our rules, for both adding and removing approvals. We observe that
for each of our rules and operation type, the respective Robustness-Radius
problem is clearly in NP. Indeed, it suffices to nondeterministically guess which
approvals to add/remove, compute the winning committees before and after
the change (since our rules are resolute, in each case there is exactly one), and
verify that they are different. Hence, in our proofs we will focus on showing
NP-hardness. To this end, we give reductions from the following variant of the
X3C problem (it is well known that this variant of the problem remains NP-
complete [16]; note that in the standard variant of X3C one does not assume
that each member of U belongs to exactly three sets).

Definition 2. An instance of RX3C consists of a universe set U = {u1,
. . . , u3n} and a family S = {S1, . . . , S3n} of three-element subsets of U , such
that each member of U belongs to exactly three sets from S. We ask if there is
a collection of n sets from S whose union is U (i.e., we ask if there is an exact
cover of U).

All our reductions follow the same general scheme: Given an instance of
RX3C we form an election where the sets are the candidates and the voters
encode their content. Additionally, we also have candidates p and d. Irrespective
which operations we perform (within a given budget), all the set candidates are
always selected, but by performing appropriate actions we control the order in
which this happens. If the order corresponds to finding an exact cover, then
additionally candidate p is selected. Otherwise, our rules select d.

We first focus on adding approvals and then argue why our proofs adapt to
the case of removing approvals.

Theorem 2. GreedyCC-Add-Robustness-Radius is NP-complete.

Proof. We give a reduction form the RX3C problem. Our input consists of the
universe set U = {u1, . . . , u3n} and family S = {S1, . . . , S3n} of three-element
subsets of U . We know that each member of U belongs to three sets from S.
We introduce two integers, T = 10n5 and t = 10n3 and we interpret both
as large numbers, with T being significantly larger than t. We form an election
E = (C, V ) with candidate set C = {S1, . . . , S3n}∪{p, d}, and with the following
voters:

1. For each Si ∈ S, there are T voters that approve candidate Si.
2. For each two sets Si and Sj , there are T voters that approve candidates Si

and Sj .
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3. There are 2nT + 4nt voters that approve p and d.
4. For each u� ∈ U , there are t voters that approve d and those candidates Si

that correspond to the sets containing u�.
5. There are n voters who do not approve any candidates.

The committee size is k = 3n + 1 and the budget is B = n. We assume that the
tie-breaking order among the candidates is:

S1 
 S2 
 · · · 
 S3n 
 p 
 d.

Prior to any bribery, each candidate Si is approved by 3nT + 3t voters, p is
approved by 2nT + 4nt voters, and d is approved by 2nT + 7nt voters.

Let us now consider how GreedyCC operates on this election. Prior to the
first iteration, all the set candidates have the same score, much higher than
that of p and d. Due to the tie-breaking order, GreedyCC chooses S1. As a
consequence, all the voters that approve S1 are removed from consideration and
the scores of all other set candidates decrease by T (or by T + t or T + 2t, for
the sets that included the same one or two elements of U as S1). GreedyCC acts
analogously for the first n iterations, during which it chooses a family T of n set
elements (we will occasionally refer to T as if it really contained the sets from S,
and not the corresponding candidates).

After the first n iterations, each of the remaining 2n set candidates either
has 2nT , 2nT + t, 2nT + 2t, or 2nT + 3t approvals (depending how many sets
in T have nonempty intersection with them). Let x be the number of elements
from U that do not belong to any set in T . Candidate p is still approved by
2nT + 4nt voters, whereas d is approved by 2nT + 4nt + xt voters. Thus at
this point there are two possibilities. Either x = 0 and, due to the priority
order, GreedyCC selects p, or x > 0 and GreedyCC selects d. In either case, in
the following 2n iterations it chooses the remaining 2n set candidates (because
after the n + 1-st iteration the score of that among p and d who remains drops
to zero or nearly zero). If candidate p is selected without any bribery, then
it means that we can find a solution for the RX3C instance using a simple
greedy algorithm. In this case, instead of outputting the just-described instance
of GreedyCC-Add-Robustness-Radius, we output a fixed one, for which the
answer is yes. Otherwise, we know that without any bribery the winning com-
mittee is {S1, . . . , S3n, d}. We focus on this latter case.

We claim that it is possible to ensure that the winning committee changes by
adding at most n approvals if and only if there is an exact cover of U with n sets
from S. Indeed, if such a cover exists, then it suffices to add a single approval for
each of the corresponding sets in the last group of voters (those that originally do
not approve anyone). Then, by the same analysis as in the preceding paragraph,
we can verify that the sets forming the cover are selected in the first n iterations,
followed by p, followed by all the other set candidates.

For the other direction, let us assume that after adding some t approvals
the winning committee has changed. One can verify that irrespective of which
(up-to) n approvals we add, in the first n iterations GreedyCC still chooses n
set candidates. Thus, at this point, the score of p is at most 2nT + 4nt + n and
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the score of d is at least 2nT + 4nt + xt − n (where x is the number of elements
from U not covered by the chosen sets; we subtract n to account for the fact
that n voters that originally approved d got approvals for the candidates selected
in the first n iterations). If at this point d is selected, then in the following 2n
iterations the remaining set candidates are chosen and the winning committee
does not change. This means that p is selected. However, this is only possible if
x = 0, i.e., if the set candidates chosen in the first n iterations correspond to an
exact cover of U . ��

A very similar proof also works for the case of GreedyPAV. The main differ-
ence is that now including a candidate in a committee does not allow us to forget
about all the voters that approve him or her (the proof is in the appendix).

Theorem 3. GreedyPAV-Add-Robustness-Radius is NP-complete.

The proof for the case of Phragmén-Add-Robustness-Radius is similar in
spirit to the preceding two, but requires careful calculation of the times when
particular groups of voters can purchase respective candidates.

Theorem 4. Phragmén-Add-Robustness-Radius is NP-complete.

Proof. We give a reduction from RX3C. As input, we get a universe set U =
{u1, . . . , u3n} and a family S = {S1, . . . , S3n} of size-3 subsets of U . Each element
of U appears in exactly three sets from S. We ask if there is a collection of n
sets that form an exact cover of U .

Our reduction proceeds as follows. First, we define two numbers, T = 900n12

and t = 30n5. The intuition is that both numbers are very large, T is significantly
larger than t2, and t is divisible by 6n (the exact values of T and t are not
crucial; we did not minimize them but, rather, used values that clearly work
and simplify the reduction). We form an election E = (C, V ) with candidate set
C = {S1, . . . , S3n} ∪ {p, d} and the following voters:

1. For each Si ∈ S, there are T voters that approve candidate Si. We refer to
them as the S-voters.

2. For each u� ∈ U , there are t2 voters that approve those candidates Si that
correspond to the sets containing u�. We refer to them as the universe voters.
For each u� ∈ U , t

3n of u�’s universe voters additionally approve candidate d.
We refer to them as the d-universe voters.

3. There are T + 3t2 − 2t voters that approve both p and d. We refer to them
as the p/d-voters.

4. There are t
6n voters that approve p. We refer to them as the p voters.

5. There are n voters who do not approve any candidate, and to whom we refer
as the empty voters.

The committee size is k = 3n + 1 and the budget is B = n. The tie-breaking
order is:

S1 
 S2 
 · · · 
 S3n 
 d 
 p.
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Fig. 1. Timeline for the Phragmén rule acting on the election from Theorem 4.

In this election, each candidate Si is approved by exactly T + 3t2 voters, d is
approved by (T + 3t2 − 2t) + t voters, and p is approved by (T + 3t2 − 2t) + t

6n
voters.

Let us consider how Phragmén operates on this election (we encourage the
reader to consult Fig. 1 while reading the following text). First, we observe that
when we reach time point D = 1

T then all the not-yet-selected set candidates
(for whom there still is room in the committee) are selected. Indeed, at time D
the S-voters collect enough funds to buy them. On the other hand, the earliest
point of time when some voters can afford to buy a candidate is A = 1

T+3t2 .
Specifically, at time A set voters and universe voters jointly purchase up to n set
candidates (selected sequentially, using the tie-breaking order and taking into
account that when some candidate is purchased then all his or her voters spend
all their so-far collected money). Let us consider some candidate Si that was not
selected at time point A. Since Si was not chosen at A, at least t2 of the 3t2

universe voters that approve Si paid for another candidate at time A. Thus the
earliest time when voters approving Si might have enough money to purchase
him or her is C, such that:

C(T + 2t2)
︸ ︷︷ ︸

money earned by those voters
who did not spend it at time A

+ (C − A)t2
︸ ︷︷ ︸

money earned between times C and A by uni-
verse voters who paid for candidates at time A

= 1.

Simple calculations show that C = 1+At2

T+3t2 . Noting that A = 1
T+3t2 , we have that

C = A + A2t2. However, prior to reaching time point C, either candidate p or
candidate d is selected. Indeed, at time point Bpd = 1

T+3t2−2t the p/d voters
alone would have enough money to buy one of their candidates: We show that
Bpd < C, or, equivalently, that 1

Bpd
> 1

C . It holds that 1
Bpd

= T + 3t2 − 2t and:

1
C

=
1

A + A2t2
=

1
A

· 1
1 + At2

=
T + 3t2

1 + t2

T+3t2

=
(T + 3t2)2

T + 4t2
.

By simple transformations, 1
Bpd

> 1
C is equivalent to:

(T + 3t2 − 2t)(T + 4t2) > (T + 3t2)2.
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The left-hand side of this inequality can be expressed as:

((T + 3t2) − 2t)((T + 3t2) + t2) = (T + 3t2)2 + (t2 − 2t)(T + 3t2) − 2t3
︸ ︷︷ ︸
positive because t2 − 2t > 2t

due to our assumptions

,

and, hence, our inequality holds. All in all, we have A < Bpd < C < D.
It remains to consider which among p and d is selected. If p were to be

selected, then it would happen at time point Bp = 1
T 2+3t2−2t+ t

6n
. This is when

the p/d- and p voters would collect enough money to purchase p (assuming
the former would not spend it on d earlier). Now, if at time A fewer than n
set candidates were selected, then at least t

3n of the d-universe voters would
retain their money and, hence, d would be selected no later than at time point
Bd = 1

T 2+3t2−2t+ t
3n

< Bp. On the other hand, if at time point A exactly n

set candidates were selected (who, thus, would have to correspond to an exact
cover of U) then all the d-universe voters would lose their money and voters
who approve d would not have enough money to buy him or her before time Bp.
Indeed, in this case the money accumulated by voters approving d would at time
Bp be:

X =
T + 3t2 − 2t

T + 3t2 − 2t + t
6n︸ ︷︷ ︸

money of the p/d voters

+ t

(
1

T + 3t2 − 2t + t
6n

− 1
T + 3t2

)

︸ ︷︷ ︸
money collected by the d−universe

voters between time points A and Bp

We claim that X < 1, which is equivalent to the following inequality (where we
replace T + 3t2 with M ; note that M = 1

A ):

M − t

M − 2t + t
6n

< 1 +
t

M
=

M + t

M

By simple transformations, this inequality is equivalent to 0 < Mt+t2

6n − 2t2,
which holds as t > 6n and M > 2t2. To conclude, if at time point A there are n
set candidates selected for the committee, then p is selected for the committee
as well.

Finally, we observe that irrespective of which among p and d is selected for the
committee, the voters that approve the other one do not collect enough money
to buy him or her until time D. Thus the winning committee either consists of
all the set candidates and d, or of all the set candidates and p, where the latter
happens exactly if at time A candidates corresponding to an exact cover of U
are selected.

If at point A Phragmén would choose candidates corresponding to an exact
cover of U then our reduction outputs a fixed yes-instance of Phragmén-Add-
Robustness-Radius (as we have just found that an exact cover exists). Other-
wise we output the formed election with committee size k = 3n + 1 and budget
B = n. To see why this reduction is correct, we make the following three obser-
vations:
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1. By adding n approvals, we cannot significantly modify any of the time points
A, Bd, Bp, Bpd, C, and D from the preceding analysis, except that we can
ensure which (up to) n sets are first considered for inclusion in the committee
just before time point A.

2. If there is a collection of n sets in S that form an exact cover of U , then—by
the above observation—we can ensure that these sets are selected just before
time point A (by adding one approval for each of them among n distinct empty
voters). Hence, if there is an exact cover then—by the preceding discussions—
we can ensure that the winning committee changes (to consist of all the set
candidates and p).

3. If there is no exact cover of U , then no matter where we add (up to) n
approvals, candidate d gets selected and, so, the winning committee does not
change (in particular, even if we add n approvals for p).

Since the reduction clearly runs in polynomial time, the proof is complete. ��

It remains to argue that Remove-Robustness-Radius also is NP-complete
for each of our rules. This, however, is easy to see. In each of the three proofs
above, we had budget B = n and n voters with empty approval sets. We were
using these n voters to add a single approval for each of the n sets forming an
exact cover, leading to the selection of p instead of d. For the case of removing
approvals, it suffices to replace the n empty voters with 3n ones, such that each
set candidate is approved by exactly one of them, and to set the budget to
B = 2n. Now we can achieve the same result as before by deleting approvals for
those set candidates that do not form an exact cover. Hence the following holds.

Corollary 1. Let R be one of GreedyCC, GreedyPAV and Phragmén. R-
Remove-Robustness-Radius is NP-complete.

5 Robustness to Random Noise: Experimental Results

Let us now move on to an experimental analysis of our rules’ robustness to
random noise. The main idea of the experiment is as follows: First, we generate
a number of elections from a given distribution and, for each of them, we compute
its winning committee. Then, we perform a given number of random operations,
such as adding or removing approvals (specified via a perturbation level, described
below), and we compute the proportion of elections that change their outcome
and the average number of committee members that get replaced. We do so for
each of our rules (including AV), for several distributions, and for a range of
perturbation levels. Our main observation is that the results for AV, PAV, and
Phragmén are quite similar to each other, but those for CC stand out. Further,
the results may quite strongly depend on the distribution of votes. Below we
describe our setup and present the results in more detail.
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Generating Elections. To generate synthetic elections, we use the resampling
model recently introduced by Szufa et al. [23]. This model is parameterized
by two numbers, p, φ ∈ [0, 1], and to generate an election with candidate set
C = {c1, . . . , cm} and voter collection V = (v1, . . . , vn) it proceeds as follows:
First, we choose a central approval set A of p ·m� candidates from C (uniformly
at random from all subset of C of this cardinality). Then, for each voter vi we set
their initial approval set A(vi) to be equal to A. Finally, for each voter vi and each
candidate cj , with probability φ, we perform resampling of vi’s approval for cj ,
i.e. we make it approve the candidate with probability p. In other words, initially
all voters have the central approval set, but for each candidate we resample its
approval with probability φ. For example, for φ = 0 each voter has identical
approval set, which includes p · m� candidates, whereas for φ = 1 each voter
approves each candidate independently, with probability p. The closer φ is to 0,
the more similar are the votes, and the closer it is to 1, the more diverse they
are.

Perturbation Levels. Given an election E = (C, V ), a perturbation level � ∈ [0, 1]
specifies how many operations of adding or removing approvals we are supposed
to perform. For the Add operation, perturbation level � means that we add an �
fraction of all the approvals not appearing in the election, chosen uniformly at
random. (In our election E, there are X =

∑
v∈V |A(v)| approvals in total, but

if each voter approved each candidate then there would be |C| · |V | approvals.
Thus the number of not appearing approvals is |C| · |V | − X.) For the Remove
operation, perturbation level � means removing an � fraction of the approvals in
the election, chosen uniformly at random.

Performing the Experiment. To perform our experiment for a given multiwinner
rule R, we consider values of p ∈ {0.1, 0.3}, values of φ ∈ {0.25, 0.5, 0.75, 1},
perturbation levels � between 0 and 0.95, with a step of 0.05 (but also including
perturbation level 0.01), and operations Op ∈ {Add, Remove}. For each com-
bination of these parameters we generate 200 elections with 100 candidates and
100 voters from the resampling model with parameters p and φ. For each of these
elections we compute its R winning committee of size k = 10, apply operations
Op as specified by the perturbation level, and compute the winning committee
of the resulting election (of the same size). We report the fraction of elections
for which the two committees differ and the average number of candidates by
which they differ. We show the results in Figs. 2 and 3.

Analysis. The results in Figs. 2 and 3 show several interesting patterns. Most
strikingly, the results for AV, PAV, and Phragmén are very similar to each
other (to the point that it is often quite difficult to distinguish respective plots),
whereas those for CC stand out sharply. This suggests that the nature of choosing
diverse committees, as done by CC, is quite different from that of choosing
individually excellent ones (as done by AV) or proportional ones (as done by
PAV and Phragmén).



130 P. Faliszewski et al.

Fig. 2. Probabilities of changing elections results for the resampling model with p = 0.1
(blue lines) and p = 0.3 (orange lines) for different rules (columns of the plot) and
different values of φ (rows of the plot) and different perturbation levels (x axis). Each
data point corresponds to 200 elections with 100 candidates, 100 voters, and committee
size 10. Wide light blue and light orange lines represent standard deviation. (Color
figure online)

Second observation is that it is much easier to affect the results of elections
where the votes approve, on average, p = 0.3 fraction of the candidates (orange
lines in Figs. 2 and 3) than those where they approve, on average, p = 0.1 fraction
of them (blue lines in Figs. 2 and 3). This is somewhat counterintuitive. For
example, in AV one would expect that with fewer approvals in total it would be
easier to push some non-winning candidate into the committee by, say, adding
approvals, because the bar for entering the committee should be low. On the
other hand, the added approvals come from a wider set of possibilities.

The next observation is that the higher the value of φ, the easier it is to
affect the output committees. This is intuitive as for small values of φ the votes
are highly correlated, whereas for larger φ the votes are more random and more
fragile to adding noise.
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Fig. 3. Average number of replaced committee members (the setup of the plot is anal-
ogous to the one in Fig. 2. (Color figure online)

6 Summary

We have complemented the results of Bredereck et al. [6] and Gawron and
Faliszewski [15] by considering the robustness of GreedyCC, GreedyPAV, and
Phragmén. We have found that their robustness levels are equal to the com-
mittee size (which means that even a minimal change to the votes can lead to
completely replacing the winning committee), that the problems of deciding if
modifying their input to a certain extent may change their outcomes are NP-
complete, and we have observed how these rules react to random noise.
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Abstract. We show a prototype of a system that uses multiwinner vot-
ing to suggest resources (e.g., movies) related to a given query. For exam-
ple, a user provides a movie and the system answers with a list of movies
that, depending on the voting rule used, are either very closely or more
loosely related to the input one. This gives a way of controlling the diver-
sity of the results (and an ability to escape one’s filter bubble). We test
our system both on synthetic data and on the MovieLens dataset.

1 Introduction

The idea of multiwinner voting is to provide a committee (i.e., a subset) of
candidates based on the preferences of the voters. In principle, such mechanisms
have many applications, ranging from choosing parliaments, through selecting
finalists of competitions, to suggesting items in Internet stores or services. While
the first two types of applications indeed are quite common in practice, the last
one, so far, was viewed mostly as a theoretical possibility. Our goal is to change
this view. To this end, we design a prototype of a voting-based search system
that given a movie (or, a set of movies), finds related ones. The crucial element of
our system—enabled by the use of multiwinner voting—is that one may specify
to what extent he or she wants to focus on movies very tightly related to the
input one(s), and to what extent he or she wants to explore a broader spectrum
of movies that are related in some less obvious ways. If someone is looking for
movies exactly like the specified one(s), then using focused search is natural, but
if someone is not really sure what he or she really seeks, or wants to escape his
or her filter bubble, then looking at a broader spectrum is more desirable.

Viewed more formally, our system belongs to the class of non-personalized
recommendation systems based on collaborative filtering. That is, the users pos-
ing queries are anonymous and we do not target the results toward particular
individuals, but we try to find movies related to the ones they ask about. In this
sense, our system is more of a search tool than a recommendation one.

To find the relationships between the movies, we use a dataset of movie
ratings (in our case, the MovieLens dataset of Harper and Konstan [18]), which

*See https://github.com/Project-PRAGMA/Movies-EUMAS-2022 for the code used
in the experiments from this paper.
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consists of a set of agents who each rated some movies. We represent this dataset
as a global election, where the agents are the voters, the movies are the candi-
dates, and each agent indicates which movies he or she likes. Then, given a query,
i.e., either a single movie or a set of movies, we restrict the set of agents to those
who liked the movies from the query and output a winning committee for the
resulting local election (we also take special measures to avoid globally popular
movies such as, e.g., The Pirates of the Caribbean, which are not necessarily
relevant to the query). We use a family of voting rules parameterized by a value
p ≥ 0, such that for p = 0 we get the most focused results, and for larger p’s the
results become broader.

Our Contribution. Our main contribution is designing a voting-based search
system and testing it in the context of selecting movies. We evaluate its perfor-
mance as follows: (1) Using both synthetic and MovieLens data, we show that
the voting rules that are meant to pick either more closely or more loosely related
movies indeed do so. (2) Using our system, we analyze and visualize similarities
between movies. For example, the system can distinguish between the movies
from the original Star Trek timeline and the reboot of the series. (3) We compare
the performance of the two heuristics that we use to compute the winning com-
mittees (we resort to heuristic algorithms because our voting rules are NP-hard
to compute).

Related Work. Regarding multiwinner voting, we point the readers to the sur-
veys of Faliszewski et al. [13] and Lackner and Skowron [22]; the former is more
general and the latter focuses on approval voting. It is also interesting to consider
the work of Elkind et al. [10], where the idea of using multiwinner voting for
selecting movies was suggested (albeit, in a somewhat different setting). While
multiwinner voting is not yet a mainstream tool in applications, some researchers
have used it successfully. For example, Chakraborty et al. [6] have used it to select
trending topics on Twitter or popular news on the Internet. For the latter task,
Mondal et al. [25] also designed a voting-based solution. Pourghanbar et al. [29]
and Faliszewski et al. [11] used diversity-oriented multiwinner voting rules to
design genetic algorithms that would avoid getting stuck in a plateau regions of
the search space.

For a broad discussion of modern recommendation systems, see the handbook
edited by Ricci et al. [31], and, for an early account of collaborative filtering
methods, see the work of Sarwar et al. [33]. As examples of works on movie rec-
ommendations, we mention the paper of Ghosh et al. [15], who describe a movie
recommendation system using Black’s voting rule with weighted user prefer-
ences, the paper of Azaria et al. [1], who focus on maximizing the revenue of
the recommender, the paper of Choi et al. [8], who discuss recommendations
based on movie genres, and the paper of Phonexay et al. [28], who adapt some
techniques from social networks to recommendation systems. While most of this
literature aims at finding the most tightly related movies—and as such is less
relevant to our study. There are works on recommendation systems that focus
on diversifying the results, such as, e.g., the work of Kim et al. [21], but in this
paper the authors use neural networks and rely on a number of features, whereas
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we use multiwinner voting and simple collaborative filtering. Further, they do
not focus on movies so it is difficult to compare the results.

2 Preliminaries

Let R+ denote the set of nonnegative real numbers, and for a positive integer i,
let [i] denote the set {1, . . . , i}.

Utility and Approval Elections. Let R = {r1, . . . , rm} be a set of resources and
let N = {1, . . . , n} be a set of agents (in voting literature these are candidates
and voters, respectively). Each agent i has a utility function ui : R → R+, which
specifies how much he or she appreciates each resource. The utilities are compa-
rable among the agents, but not normalized (this means that some agents may
feel more strongly about the resources than the others). Utility of zero means
that an agent is completely uninterested in a given resource. Committees are sets
of resources, typically of a given size k. For a committee S = {s1, . . . , sk} and
an agent i, by ui(S) we mean the vector (ui(s1), . . . , ui(sk)), where the utilities
appear in some fixed order over the resources (this order will never be relevant).
We write U = (u1, . . . , un) to denote a collection of utility functions, referred to
as a utility profile. A utility election E = (R,U) consists of a set of resources and
a utility profile over these resources. An approval election is a utility election
where each utility is either 1, meaning that an agent approves a resource, or 0,
meaning that he or she does not approve it. For approval elections we typically
denote the utility profile as A = (a1, . . . , an) and call it an approval profile. For
a resource rt, we write A(rt) to denote the set of agents that approve it.

OWA Operators. An ordered weighted average (OWA) operator is given by a
vector of numbers λ = (λ1, . . . , λk) and operates as follows. For vectors x =
(x1, . . . , xk) ∈ R

k and x′ = (x′
1, . . . , x

′
k), where x′ is obtained by sorting x in

nonincreasing order, we have λ(x) = λ1x
′
1 + λ2x

′
2 + · · · + λkx′

k. E.g., operator
(1, . . . , 1) means summing the elements of the input vector, and (1, 0, . . . , 0)
means taking the maximum. OWA operators are due to Yager [36].

(OWA-Based) Multiwinner Voting Rules. A multiwinner voting rule is a func-
tion f that given an election E and an integer k returns a family of size-k winning
committees. Consider a utility election E = (R,U), where R = {r1, . . . , rm} and
U = (u1, . . . , un), and an OWA operator λ = (λ1, . . . , λk). Let S be a size-
k committee. The λ-score of committee S in election E is λ − scoreE(S) =∑n

i=1 λ(ui(S)). We say that a multiwinner rule f is OWA-based if there is a
family Λ = (λ(k))k≥1 of OWA operators, one for each committee size k, such
that for each election E and each committee size k, f(E, k) consists exactly of
those size-k committees S for which λ(k) − scoreE(S) is highest.
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HUV Rules. We use rules based on OWA operators of the form λp =
(1, 1/2p, 1/3p, . . .), where p ≥ 0, and we refer to them as p-Harmonic Utility Voting
rules (p-HUV rules). The name stems from the fact that for p = 1 their OWA
operators sum up to harmonic numbers:

1. For a committee size k, the 0-HUV rule chooses k resources whose sum
of utilities over all the agents is highest; its OWA operator is (1, . . . , 1).
Under approval elections, 0-HUV is the classic Multiwinner Approval Vot-
ing rule (AV).

2. The 1-HUV rule uses OWA operators (1, 1/2, 1/3, . . .); for approval elections
this is the Proportional Approval Voting rule (PAV) of Thiele [35].

3. ∞-HUV uses OWA operators (1, 0, . . . , 0) and is known as the Chamberlin–
Courant rule (CC). It was first introduced for the ordinal setting by Cham-
berlin and Courant [7] and then adapted to the approval one by Procaccia et
al. [30] and Betzler et al. [4].

AV, PAV, and CC correspond to the three main principles of choosing com-
mittees: AV chooses individually excellent resources that are appreciated by the
largest number of agents, PAV chooses committees that proportionally represent
the preferences of the agents [2,5], and CC focuses on diversity, i.e., it seeks a
committee so that as many agents as possible appreciate at least one resource
in the committee. For more details, see the overviews of Faliszewski et al. [13]
and Lackner and Skowron [22], and the work on the opposition between AV and
CC [23]. For p > 0, p-HUV provides a compromise between individually excellent
0-HUV and diverse ∞-HUV (as shown by the results of Faliszewski et al. [12],
as well as those of Elkind et al. [9] and Godziszewski et al. [16]).

Computing HUV Committees. For each p > 0, it is NP-hard to tell if there is
a committee with at least a given score under the p-HUV rule ([3,34]). Thus,
to compute a winning p-HUV committee of size-k (for some p ≥ 0), we use the
standard greedy heuristic, which starts with an empty committee and performs k
iterations, where in each it extends the committee with a single resource whose
inclusion maximizes the committee’s p-HUV score. A classic result on submodu-
lar optimization shows that the committees computed this way achieve at least
1 − 1/e ≈ 0.63 fraction of the highest possible score ([24,26]) (for p = 0 this
algorithm gives exact results). We also use the simulated annealing heuristic, as
implemented in the simanneal library, version 0.5.0. We set the number of steps
to 50 000 and the temperature to vary between 9900 and 0.6.

3 System Design

The main idea of our system is that for a query set of resources we form an
election whose winning committee is our result. The system consists of three
main components, the data model (responsible for representing the raw data as
a global election), the search model (responsible for forming local elections based
on queries), and winner determination (responsible for computing the results).
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3.1 Data Model

The data model converts domain-specific data into a global (approval) election.
The interpretation is that the agents in this election are users who interacted
with some resources, and approve those that they enjoyed. Lack of an approval
means that the interaction was negative or that there was no interaction.

Example 1. The MovieLens 25M dataset [18] contains 25’000’095 ratings of
62’423 movies, provided by 162’541 users (on average, each user rated almost
154 movies). Each rating is between one and five stars and was provided between
1995 and 2019 on the MovieLens website. We form a global election where each
user is an agent, each movie is a resource, and a user approves a movie if he or
she gave it at least four stars. We disregard those movies that were approved by
fewer than 20 agents.

3.2 Search Model

The search model deals with forming a local election, specific to a particular
query. The idea is that this election’s winning committees would be our result
sets. We first form a local approval election and then derive more fine-grained
utilities for the agents, leading to a local utility election.

Let E = (R,A) be the global approval election and let Q ⊆ R be the query
set (typically a singleton). Let N = {1, . . . , n} be the agents from E and let Nloc

be the subset of N containing those agents who approve at least one member
of Q. Then, let Rloc consist of those resources that are approved by at least
one agent from Nloc , except for the resources from the query. Finally, let Aloc

be the approval profile of the agents from Nloc , restricted to the resources from
Rloc ; Eloc = (Rloc , Aloc) is our local approval election. Intuitively, it contains
the knowledge about Q. Unfortunately, as shown below, it may be insufficient
to provide relevant search results.

Example 2. Consider the MovieLens global election from Example 1 and let
the query set Q consist of a single movie, Hot Shots! (a quirky/absurd comedy).
The three most-approved movies in the local approval election for Q are: (1) The
Matrix (1999), (2) Back to the Future (1985), and (3) Fight Club (1999). This
is also the winning committee under the AV rule with k = 3. Neither of these
movies has much to do with Hot Shots!, but they are popular both globally and
among people who enjoyed Hot Shots!.

To address such issues, we derive a local utility election Eutil = (Rutil , Uutil).
We let the set of resources be the same, i.e., Rutil = Rloc , but we modify the
utilities to promote the relevant resources. We do so by employing the term
frequency-inverse document frequency mechanism.

The goal of TF-IDF is to evaluate how specific a given term t is for a doc-
ument d from a document corpus D (it was introduced by Jones [19,20]; see
also the works of Robertson and Walker [32] and Ounis [27]). The main idea
is that the specificity value of t in d is proportional to the frequency of t in d
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Table 1. Results of our system for the movie Hot Shots! with the winning committee
size set to 10 (see Examples 1, and 4).

Exact algorithm Simulated annealing

# 0-HUV 1-HUV 2-HUV

1. The Naked Gun 2 1/2 (1991) Hot Shots! Part Deux (1993) Hot Shots! Part Deux (1993)

2. Hot Shots! Part Deux (1993) The Loaded Weapon 1 (1993) The Loaded Weapon 1 (1993)

3. The Naked Gun (1988) The Naked Gun (1988) The Naked Gun 2 1/2 (1991)

4. Top Secret! (1984) The Naked Gun 2 1/2 (1991) Men at Work (1990)

5. The Loaded Weapon 1 (1993) Blind Fury (1989) Top Secret! (1984)

6. Police Academy (1984) Top Secret! (1984) Hudson Hawk (1991)

7. Spaceballs (1987) Commando (1985) Silent Movie (1976)

8. Last Boy Scout, The (1991) Hudson Hawk (1991) Freaked (1993)

9. Commando (1985) Major League II (1994) Major League II (1994)

10. The Naked Gun 33 1/3 (1994) Yamakasi (2001) Yamakasi (2001)

Greedy algorithm

# 1-HUV 2-HUV

1. The Naked Gun 2 1/2 (1991) The Naked Gun 2 1/2 (1991)

2. Hot Shots! Part Deux (1993) Hot Shots! Part Deux (1993)

3. Top Secret! (1984) The Loaded Weapon 1 (1993)

4. The Loaded Weapon 1 (1993) Major League II (1994)

5. Major League II (1994) Top Secret! (1984)

6. Last Boy Scout, The (1991) Yamakasi (2001)

7. Yamakasi (2001) Hudson Hawk (1991)

8. The Naked Gun (1988) Silent Movie (1976)

9. Hudson Hawk (1991) Freaked (1993)

10. Silent Movie (1976) Last Boy Scout, The (1991)

(term frequency; TF ) and is inversely proportional to the frequency of t in all
the documents D (inverse document frequency; IDF ). Given our global election
E = (R,A) and the local approval election Eloc = (Rloc , Aloc), we implement
the TF-IDF idea as follows. We interpret the resources as the terms, and we take
the document corpus to consist of two “documents,” election Eloc and election
E′ = (Rloc , A

′), where A′ is the approval profile for those agents from the global
election that do not appear in Eloc . Let n be the total number of agents. For a
resource r ∈ Rloc , we let its term frequency be the number of agents that approve
it in the local election, i.e., tf(r) = |Aloc(r)|. We let r’s inverse document fre-
quency be idf(r) = ln (n/|A(r)|) . We also assume some constant γ to balance TF
and IDF values, and we define tf-idfγ(r) = tf(r)γidf(r) = |Aloc(r)|

|A(r)|ln γ · (
nln γ

)
.

Example 3. Consider resources r1, r2, and r3 where: |Aloc(r1)| = 1, |A(r1)| = 2,
|Aloc(r2)| = 10, |A(r2)| = 20, and |Aloc(r3)| = 100, |A(r3)| = 2000. If we focused
on the number of approvals in the local election (by taking ln γ = 0), then we
would view r3 as the most relevant resource. This would be unintuitive as only
a small fraction of r3’s approvals come from the agents who enjoy the items
in the query set. For γ ≈ 2.71 (i.e., ln γ = 1), we would focus on the ratios
|Aloc(ri)|/|A(ri)|, so r1 and r2 would be equally relevant, and r3 would come third.
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This is better, but still unsatisfying as r2 is more popular than r1. By taking,
e.g., γ = 2 (i.e., ln γ ≈ 0.69) we would focus on ratios |Aloc(ri)|/|A(ri)|0.69 and r2
would come first.

We have found that γ = 1.85 works best for our scenario (see Sect. 4.1). Let
i be some agent and let r be a resource from the local utility election. If agent i
approves r in the local approval election, then in the local utility election we
set ui(r) = tf-idf(r)/|Aloc(r)|. Otherwise, we set ui(r) = 0. The utilities of a given
resource sum up to its TF-IDF value.

3.3 Winner Determination

If we are looking for resources that are closely connected to the query set, then
we compute the results of the local utility election using 0-HUV. For a broader
search, we use p-HUV rules with p ∈ {1, 2, 3, . . .}. To compute a (close to)
winning committee, we either use the greedy algorithm or simulated annealing.
The former orders the committee by the iteration number in which a given
resource was added, and the latter uses arbitrary ordering.

Example 4. Consider the local utility election for the Hot Shots! movie. In
Table 1 we show the p-HUV committees for p ∈ {0, 1, 2}. Let us discuss the
contents of these committees (for p ∈ {1, 2}, we focus on simulated annealing):
The first seven movies selected by 0-HUV are quirky, absurd comedies, quite
in spirit of Hot Shots!. Among the next three movies, two are comedies (one of
which is very much in spirit to the first seven) and one is an action movie. Except
for Yamakasi, all movies selected by 1-HUV are either comedies of different styles
(7 movies) or action movies (2 movies). 2-HUV selects a somewhat more varied
set of comedies than 1-HUV. Yamakasi is an outlier (it has very few approvals,
only 53, of which 27 come from people who enjoyed Hot Shots! ).

3.4 Final Search Process

To summarize, the search process is divided into the following steps: (1) convert
the domain specific user preferences (e.g., movie rankings) into global approval
election, (2) define a query (e.g., a movie or a set of movies), (3) generate a local
approval election to contain only the voters approving of the movies from the
query and the candidates (e.g., movies) approved by these voters, (4) transform
the local approval election to utility election by evenly spreading the candidate’s
TF-IDF score among its approvals, (5) choose the search focus parameter p, (the
lower, the more focused is the search) and finally (6) use a p-HUV multiwinner
rule to find the required winning committee (e.g., a set of movies).

4 Experiments

In this section we present four experiments. All but the second one are conducted
on the MovieLens dataset.
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Fig. 1. Each dot (cross) represents a movie (a Star Trek movie) in the local election
generated for Star Trek III: The Search for Spock (1984) and shows the relation between
its popularity (its TF value) on the y axis and its final TF-IDF score on the x axis for
various values of γ. The hue of the dot (cross) represents the number of its approvals
in the global election.

4.1 Calibrating the TF-IDF Metric

Intuitively, γ is used to give more weight to the IDF component relative to the
TF one. In other words, replacing γ with a larger value more strongly diminishes
the TF-IDF values of the globally more popular movies than of the less popular
ones. This balance is visualized in Fig. 1, where we consider the movie Star Trek
III: The Search for Spock (1984) as a singleton query, and for each movie in
the local approval election we draw a dot whose y coordinate is its number of
approvals in the local election (i.e., its TF value) and whose x coordinate is its
TF-IDF value, for several values of γ. The hue of the dot represents the number
of approvals of the movie in the global election. The top movies according to
TF-IDF (for a given γ) are the rightmost dots in the respective diagram. Note
that the higher the γ is, the more dots with low TF value appear to the right.
For γ = 1.2, quite a few generally popular items (with darker hue) make it to
the top, simply because they are popular overall and not only in the context of
the query. For γ = 2.0, there seems to be a good balance between the popular
and not so popular movies, while for γ = 2.8 there are only unpopular movies
in the top.

The above argument for using γ = 2 is based on intuition and, indeed, it
turns out that a slightly different value gives somewhat better result. To find
this value we have performed the following experiment. Our basic premise is
that the γ value should be such that when searching for a singleton query, its
most similar movies should appear among the top ten with respect to the TF-
IDF metric. While deciding what is “the most similar movie” is subjective, we
assumed that we can identify certain clusters of movies, which are similar to one
another within the same cluster. Taking as an example the movies from the Star
Trek series, other Star Trek movies are the most similar ones. The MovieLens
dataset contains fourteen Star Trek movies (that are approved by at least 20
users). We used each Star Trek movie as a singleton query set, computed its
local approval election, ranked the movies from this election with respect to
their TF-IDF values for γ between 1.1 and 2.80 (with a step of 0.05) and for
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Fig. 2. A joint calibration graph, averaging the results from the clusters of Star Trek,
Indiana Jones, James Bond, and Marvel movies. The x axis shows the γ value and the
y axis shows how many movies from a given cluster appear, on average, among top 10
ones according to the 0-HUV rule when we search for a movie from that cluster.

each of these values calculated how many other Star Trek movies are among the
top ten ones. Then, we averaged these values over all the fourteen movies for
each γ. We found that for γ ∈ {1.9, 1.95, 2.0} we get the highest value (7.21; see
the appendix).

However, we found that for other such clusters we obtain different γ values.
We checked four movies from the Indiana Jones series (and found γ = 1.6), 25
movies from the James Bond series (and found γ = 1.85) and 31 movies from
the Marvel universe (and found γ = 1.6). Since there is not a single optimal γ
value for all clusters, we decide to use the average of the top 10 movie counts
across all the movies from the mentioned clusters. The results are presented in
Fig. 2. We fix the γ = 1.85, for which we obtained the highest average.

4.2 Testing the Rules: Synthetic Data

In the second experiment we generate the global election synthetically. The point
is to observe the differences between committees computed according to p-HUV
rules for different values of p in a controlled environment.

Generating Global Elections. We assume that we have nine main categories of
movies (such as, e.g., a comedy or a thriller) and each category has nine sub-
categories (such as, e.g., a romantic comedy, or a psychological thriller). For
each pair of a category u ∈ {1, . . . , 9} and its subcategory v ∈ {1, . . . , 9}, we
generate 25 movies, denoted u.v(1), . . . , u.v(25). Given a movie u.v(i), we set its
quality factor to be q(i) = − arctan i−13

10 + 2. That is, for each subcategory the
first movie has the highest quality, about 2.87, and the qualities of the following
movies decrease fairly linearly, down to about 1.12 (naturally, this choice is quite
arbitrary). We have n = 2000 voters. Each voter i has a probability distribu-
tion Pi over the main categories and for each category u, he or she has probability
distribution Pu

i over its subcategories. For each voter, we choose each of these
distributions as permutations of (0.5, 0.1, 0.1, 0.1, 0.1, 0.025, 0.025, 0.025, 0.025),
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Fig. 3. Visual arrangement of the movie categories and subcategories for the synthetic
experiment.

chosen uniformly at random: Each voter has the most preferred category, four
categories that he or she also quite enjoys, and four categories that he or she
rarely enjoys (the same applies to subcategories). To generate an approval of
a voter i we do as follows: (1) We choose a category u according to distribu-
tion Pi and, then, a subcategory v according to distribution Pu

i . (2) We choose
a movie among u.v(1), . . . , u.v(25) with probability proportional to its quality
factor. The voter approves the selected movie. We repeat this process 162 times
for each voter, leading to a bit fewer approvals due to repetitions in sampling
(recall that in MovieLens the average number of approvals is 154). While this
process is certainly quite ad-hoc, we believe that it captures the main features
of preferences regarding movies. Further, in this model two movies are very sim-
ilar if they come from the same subcategory, are somewhat similar if they come
from the same category but different subcategories, and are very loosely related
otherwise.

Running the Experiment. For each number p ∈ {0, 1, 2} and both algorithms for
computing approximate p-HUV committee we repeat the following experiment.
We generate 100 global elections as described above and for each of them we
compute a committee of size k = 10 for the query set consisting of movie 1.1(13),
i.e., the middle-quality movie from subcategory 1.1 (since the (sub)categories
are symmetric, their choice is irrelevant; results for other movies are similar).
Considering all runs of the experiment, altogether 1000 movies are selected (some
are selected more than once and we count each occurrence separately). Then,
for each subcategory u.v, we sum up how many movies from this subcategory
are among the 1000 selected movies, obtaining a histogram.

To present these histograms visually, we arrange the categories into a 3 × 3
square, where each category is further represented as a 3×3 subsquare of subcate-
gories, as shown in Fig. 3. We show thus-arranged histograms for the greedy algo-
rithm in Fig. 4 and for simulated annealing in Fig. 5. Each subcategory/square is
labeled with the number of movies selected from this subcategory and its back-
ground reflects this number (darker backgrounds correspond to higher numbers).
Further, next to the name of each p-HUV rule we report a vector (x, y, z), where
x means the number of movies selected from subcategory 1.1, y means the num-
ber of movies selected from category 1 except for those in subcategory 1.1, and z
refers to the number of all the other selected movies. Thus we always have that
x + y + z = 1000.
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Fig. 4. Histograms for the synthetic experiment and the greedy algorithm.

Fig. 5. Histograms for the synthetic experiment and simulated annealing.

Analysis. Our main conclusion is that, indeed, 0-HUV focuses on very simi-
lar movies (almost all the selected movies come from category 1.1) and as p
increases, approximate p-HUV committees include more and more movies from
other subcategories of category 1, and, eventually, even more movies outside of
it. It would be desirable to have a value of p for which we would get a vector
(x, y, z) close to, say, (450, 450, 100), so that about half of the movies would be
very related to the query, about half would be quite related, and few would be
rather loosely related. Our algorithms do not seem to provide committees with
such vectors and finding rules that would provide them would be interesting.

4.3 Testing the Rules: Movies Data

In this section we observe how varying the value of p affects the results of p-
HUV rules on the MovieLens dataset, and how our system can find relations
between movies. Our strategy is as follows: First, we derive a (dis)similarity
measure between movies. We select some movies that we would like to compare,
e.g. movies from the Star Trek series. Then, we gather a set of movies (including
some that we want to focus on and some that appear as search results when
we query for the former ones) and present them on a 2D plane, so that the
more similar two movies are, the closer they are to each other. We annotate this
visualization with the movies that we query for and the search results. This way
we see how 0-HUV selects movies very similar to the query, while other rules
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choose more spread-around sets. Next, as a bit of an anecdotal example, we
apply our dissimilarity measure to the Star Trek movies and find that it clusters
them in a meaningful way. This reinforces our belief that the measure is truly
useful. In this section we focus on the greedy algorithm.

Similarity Among Movies. Let us consider two movies, x and y. We take the
following approach to obtain a number that, in some way, is related to their
similarity. First, we form a local utility election using x as the singleton query
set. If y does not appear in this election, then we consider it as completely
dissimilar from x. Otherwise, we sort the movies from the local election in the
ascending order of their TF-IDF values and we define the rank of y with respect
to x, denoted rankx(y), to be the position on which y appears. (So if y has the
highest TF-IDF value then rankx(y) = 1, if it has the second highest TF-IDF
then ranky(x) = 2, and so on; recall that the idea of TF-IDF is that the higher it
is, the more relevant a movie is for the search query and, so, we equate relevance
with similarity). We define the dissimilarity between x and y as diss(x, y) =
1/2

(
rankx(y) + ranky(x)

)
. This ensures that diss(x, y) = diss(y, x) and that the

larger diss(x, y) is, the less related—and, hence, less similar—are the two movies.

Gathering Movies for Comparison. We would like to compare the outcomes of
various p-HUV rules on each of the movies from some set A. To do so, we form
an extension of A as follows (we consider p values in {0, 1, 2, 3} and committee
size k = 10, unless we say otherwise): (1) For each movie x ∈ A and each
p ∈ {0, 1, 2, 3}, we compute the p-HUV winning committee for the local utility
election based on the singleton query x. We take the union of these committees
and call it B. (2) For each movie y ∈ B, we compute 0-HUV winning committee
of size two for the local utility election based on y. We refer to the union of
these committees as C. (3) We let ext(A) = A ∪ B ∪ C be the extension of A.
We use set B because we are interested in relations between the contents of the
committees provided by all our rules for all the movies in A, and we add set C
because we also want to ensure that each movie from A ∪ B has a similar one in
the extension.

Visualizing Relations Between the Movies. Given a set A of movies and its
extension ext(A), we first compute the value diss(x, y) for all distinct movies x
and y in ext(A). Then, we form a complete graph where members of ext(A) are
the nodes and for each two movies x and y, the edge connecting them has weight
diss(x, y). Then we compute an embedding that maps each movie in ext(A) to a
point on a two-dimensional plane, so that the Euclidean distances between these
points correspond (approximately) to the weights of the edges. To this end, we
use the force-directed algorithm of Fruchterman and Reingold [14]. We use the
implementation provided in the networkx library (version 2.6.3), ran for 10’000
iterations. For a description of the library we refer the reader to [17].

The Fruchterman-Reingold algorithm does not take the weights of the edges
in the graph whose embedding it is to compute as input, but the forces that act
to bring the nodes of a given edge closer. Since this value should be inverse to
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Fig. 6. Embedding of the movies.

our dissimilarity, for each two movies x and y we use force (diss(x, y))−2 (by
experimenting with different force functions we found this value to work well).

Comparing p-HUV Rules. Next we use the visualization methodology to analyze
the outcomes of different p-HUV rules. Set A consists of movies Hot Shots!
(1991), Star Trek V: The Final Frontier (1989), Star Trek: Generations (1994),
Alien (1979), Ring, The, and Dirty Dozen, The. Hot Shots! is a quirky comedy,
Star Trek movies are examples of science-fiction, and so is Alien, which also
has strong elements of a horror movie. Ring, The is a horror movie and Dirty
Dozen, The is a classic war movie. We show an embedding of these movies (and
the movies from their extension) in Fig. 6. In particular, we see that the two Star
Trek movies are correctly presented as very similar, whereas the other movies
are farther away from each other.

In Fig. 7 we visualize the committees provided by p-HUV rules for p ∈ {0, 1, 2}
and singleton query sets from A. Specifically, each column corresponds to a value
of p and each row to a different query. The query is marked with a black diamond
and the members of selected committees have surrounding black circles (they are
guaranteed to be present in the extension of A).

We see that the 0-HUV rule always chooses movies very close (very similar)
to the one from the query. Indeed, we have defined our dissimilarity function to
encode this effect. It is more interesting to consider p-HUV rules for p ≥ 1. In
this case, we see that the selected movies are always farther away from the query
than for 0-HUV, but the extent to which this happens varies. For example, for
Hot Shots! the committees get more and more spread as p increases, whereas
for Star Trek: Generations the outcomes are very similar for all p ≥ 1. Yet,
altogether, our system achieves its main goals: The 0-HUV rule gives tightly
focused results, closely connected to the query, and p-HUV rules for p ≥ 1 give
more diverse results.

Star Trek Movies. Our dissimilarity measure can identify interesting features of
the movies. Let A consist of the fourteen Star Trek movies from MovieLens. We
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Fig. 7. Search results for different queries and different p-HUV rules. Each row corre-
sponds to a movie used for the singleton query and each column corresponds to the
voting rule used. The query movie is marked with a black diamond and the members
of the winning committee are marked with black circles.

show the visualization of the extension of this set of movies in Fig. 8. The first
ten movies, released between 1979 and 2002 and marked with blue symbols, are
clustered closely together. These movies come from the original series and The
Next Generation series (the transition between the two series was quite gentle,
hence it is not surprising that the two groups are merged). The next cluster
consists of the three movies from 2009, 2013, and 2016, and is marked in green.
These movies form a new, reboot series (so-called Kelvin Timeline). Finally, the
2015 movie is a fan film and does not belong to the official set. Altogether, we
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Fig. 8. Star Trek movies.

Fig. 9. Effectiveness of the greedy algorithm versus simulated annealing on the Movie-
Lens 25M dataset. Each dot represents a single movie (from a set of 1000 randomly
selected ones), and is used as a singleton query set. Its position on the y axis is the ratio
of the scores of the committees computed for this movie using the greedy algorithm
and simulated annealing. The position on the x-axis is perturbed to show all the dots.
The shade of the dot represents the number of approvals of the movie in the global
election (the darker it is, the more approvals).

see that similar movies are grouped together even if they were released over a
long period of time, whereas significant changes, such as making a reboot or
shooting a fan film, are clearly separated. In the appendix we show such figures
for the Indiana Jones, Star Wars, James Bond, and Marvel movie series. The
fact that our dissimilarity measure identifies such details as described above is
an indication of its usefulness and quality.

4.4 Effectiveness of the Heuristics

In the final experiment we compare the quality of the committees computed by
the greedy algorithm and by simulated annealing, for the MovieLens dataset.
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Table 2. Average ratios of committee scores computed using the greedy algorithm and
using the simulated annealing algorithm on the MovieLens 25M dataset. We provide
both the mean values of the scores and their standard deviations.

Rule Mean Std. Dev.

1-HUV 1.033 0.026

2-HUV 1.036 0.029

3-HUV 1.040 0.034

We sampled 1000 movies and used them as singleton query sets. For each, we
computed the local utility election and computed approximate winning commit-
tees for 1-HUV, 2-HUV, and 3-HUV, using both our algorithms. For each movie
we calculated the ratio of the score obtained using the greedy algorithm and
simulated annealing (if the ratio is above 1 then the greedy algorithm performs
better, and if it is below 1 then simulated annealing is better). The results are
in Fig. 9 and, in a more aggregate form, in Table 2. On average, the greedy algo-
rithm finds committees with about 3% higher scores, which is not a substantial
advantage.

5 Conclusions

Our system is a prototype and can be improved in many ways. For example, in
addition to using the TF-IDF heuristic, we could use the features of the movies
to identify which ones are the most relevant to a query. We could also allow the
user to specify which features of the movies they would like to explore. Yet, it
already shows that multiwinner voting can be useful for designing search systems,
allowing the users to specify how strongly related items they are looking for.
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Abstract. Many practical applications often need to form a team of
agents to solve a task since no agent alone has the full set of required
competencies to complete the task on time. Here we address the prob-
lem of distributing individuals in non-overlapping teams, each team in
charge of a specific task. We provide the formalisation of the problem,
we encode it as a linear program and show how hard it is to solve it.
Given this, we propose an anytime heuristic algorithm that yields feasi-
ble team allocations that are good enough solutions. Finally, we report
the results of an experimental evaluation over the concrete problem of
matching teams of students to internship programs in companies.

Keywords: Team formation · Task allocation · Optimisation ·
Heuristics

1 Introduction

Many real-world problems require allocating teams of individuals to tasks. For
instance, forming teams of robots for search and rescue missions [6], forming
teams of Unmanned Aerial Vehicles (UAVs) for surveillance [28], building teams
of people to perform projects in a company [31], or grouping students to under-
take school projects [4]. In this paper, we study the allocation of many teams to
many tasks with size constraints, permitting no overlaps. That is, each agent can
be part of at most one team, each team can be allocated to at most one task,
and each task must be solved by at most one team. We illustrate our results
in the domain of education, where it is very common that students shall form
teams and collaborate with their teammates towards some common goal. For
example, in primary and secondary schools teachers usually need to divide their
students into study groups (teams) to carry out some school projects. Similarly,
in universities, students are usually requested to work in teams in order to carry
out semester projects. Moreover, educational authorities often need to form stu-
dent teams and match them with internship programs, as it is more and more
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common that students spend time with companies to gain experience in the
industry. Currently, teachers and education authorities obtain such allocations
mainly by hand, but given the combinatorial nature of the problem, manual allo-
cation requires a large amount of work. Beyond the activities within classrooms,
the problem of allocating non-overlapping teams to tasks can also be found in
events and competitions where participants need to work in teams and compete
with each other, such as hackathons; or in situations where different teams need
to work in parallel towards a common goal, and individuals cannot be in more
than one team at a time, such as in search and rescue missions.

The multi-agent systems (MAS) literature has tackled the problem of allo-
cating teams to tasks in several ways. The existing literature includes research
on how to form a single team and allocate it to a single task [1,2,23]; how to form
a single team and match it with multiple tasks [11]; and how to form multiple
teams to solve the very same task [4]. Moreover, there is a handful of research
works on forming multiple teams to match with multiple tasks, either by allowing
agent overlaps (agents participate in multiple teams [6]), and/or task overlaps
(different teams jointly solve a task [5]). However, the problem of distributing
agents in non-overlapping teams, each to solve a different task, has deserved little
attention, with the exception of [12,29,30]. This non-overlapping many teams to
many tasks (NOMTMT) allocation problem is the one we address in this paper.

In most works, regardless of the type of team allocation problem, the allo-
cation is decided based on due to agents’ competences. As noted in [4], the
literature on team composition and formation considers either a Boolean model
of competences (an agent has or has not a competence) [1,2,12,23], or a graded
model (an agent has a competence up to some degree) [3,4,7]. In many cases,
competences are not explicitly considered, but they are ‘concealed’ behind some
utility function [5,6,29]. Common to all these models is the assumption that a
team assigned to a task must possess the competences exactly as required by the
task. This is rather limiting to cope with real-world problems. For instance, even
if a student does not posses a specific competence, they might still be qualified
for a task if any of their already-acquired competences is similar enough. How-
ever, the semantic relationship between competences has been disregarded when
matching teams to tasks. This prevents, for instance, that a team is allocated
to a task requiring competences similar to those offered by the team. Against
this background, here we make headway in the non-overlapping “many teams to
many tasks” matching problem through the following novel contributions:1

1. A method for computing the semantic matching between a task and a team
based on an ontology of competences.
2. A formalisation of the NOMTMT allocation problem as an optimisation prob-
lem together with a complexity analysis.
3. An integer linear programming (ILP) encoding for solving optimally the
NOMTMT allocation problem.
4. An anytime heuristic algorithm to solve the NOMTMT allocation problem.
5. A threefold empirical evaluation: (a) we compare our heuristic algorithm
against CPLEX [20] using synthetic data, and show that it outperforms CPLEX
1 This work is an extended version of our earlier work presented in [16,17].
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in terms of solving time; (b) we use real-world data from students that must
be allocated to internships, and show that our heuristic algorithm solves large
problem instances that CPLEX cannot handle; and (c) a group of experts in
education confirm that the allocations produced by our heuristic algorithm are
better than those manually produced by experienced teachers.

2 The NOMTMT Allocation Problem

This section formally casts our problem as an optimisation one. To do so, we
first refer to the basic concepts of the problem, then we discuss the competence
model to be used, and finally we define the problem as an optimisation problem.

2.1 Basic Concepts

A competence corresponds to a specified capability, skill, or knowledge. We
assume there is a known, predefined and fixed set of competences, denoted by
C. A task is characterised by a set of requirements on agents’ competences and
team size constraints. For instance, an internship program in a computer tech
company might require three competences (ML principles, coding in Python,
and web development), and a team of size four. Thus, the company needs four
employees that together possess the three required competences. In general, there
might be further constraints, such as temporal or spatial constraints (i.e., when
and where the task can be realised). However, within the scope of this paper,
we only focus on team size constraints. The competences’ relative importance
is often part of the task description. Formally, a task τ is a tuple 〈t id, C, w, s〉,
where t id is a unique task identifier, C ⊆ C is the set of required competences,
w : C → (0, 1] is a function that weighs the importance of competences, and
s ∈ N+ is the required team size. The set of all tasks to perform is denoted by
T , with |T | = m. We describe each agent via its acquired competences. Thus,
an agent a is given by a tuple 〈a id, C ′〉, where a id is a unique agent identifier,
and C ′ ⊆ C is a set of acquired competences. The set of agents is denoted by A,
with |A| = n. Given τ ∈ T , we denote the set of all size-compliant teams for τ
as Kτ = {K ⊆ A : |K| = sτ}2, where sτ is the team size required by task τ .

2.2 Competence Coverage and Affinity

To match a team with a task, it is essential that the team is capable of solving
the task. That is, before allocating a team of agents K to some task τ , we
need to verify whether the agents, as a team, are equipped with the necessary
competences, as determined by Cτ . Given a task τ and a team of agents K, we
say that K is suitable for τ if K can cover the required competences of τ . That
is, for each required competence c ∈ Cτ , there is at least one agent a ∈ K with

2 Note: we use subscript a to refer to the set of competences and the identifier of an
agent a ∈ A, and subscript τ to refer to the elements of task τ ∈ T .
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competence c. As mentioned above, the existing literature considers competences
as Boolean or graded features and determines the ‘matching quality’ of a team
when assigned to a task through some function, usually expressed as a utility
function. As already mentioned, the existing models are limiting. To overcome
such limits we consider the matching quality in terms of the semantic similarity
between competences required by tasks and offered by teams. Here we present
an intuitive way of determining this ‘matching quality’ as competence coverage.

Given some domains, competences are usually structured by an ontology
which determines similarities between different competences. For example, com-
petences c1 (coding in Python) and c2 (coding in Java), are different, but share
essential principles (e.g. both are object-oriented languages). We can therefore
assume that an agent with competence c1 can somewhat be adequate for a task
requiring competence c2.

We assume that there is a known competence ontology which structures the
competences in C according to their semantics, and for every pair of competences
c, c′ provides a similarity degree sim(c, c′) ∈ [0, 1]. Let assume that the ontology is
structured as an acyclic directed graph, where each node is a specialised, refined
version of its parent node. In Sect. 5, we exploit well-established ontologies with
such properties. We compute the semantic similarity between two competences
c, c′ as: sim(c, c′) = e−λl eκh−e−κh

eκh+e−κh if l �= 0 and 1 otherwise, where: l is the
shortest path in the graph between c and c′; h is the depth of the deepest
competence subsuming both c and c′; and κ, λ ∈ [1, 2] are parameters regulating
the influence of l and h on the similarity metric. Our semantic similarity function
is a variation of the metric introduced in [24], which guarantees the reflexive
property of similarity: a node is maximally similar to itself, independently of its
depth. In other words, nodes at zero distance (l = 0) have maximum similarity.
Similarly to [27], the values of semantic similarities lie in [0, 1].

Given this, we assume that an agent a can cover competence c with
degree cvg(c, a) = maxc′∈Ca

sim(c, c′). Then, given a task τ with required
competences Cτ and an agent a with acquired competences Ca, the com-
petence coverage of task τ by agent a is: cvg(a,Cτ ) =

∏
c∈Cτ

cvg(c, a) =∏
c∈Cτ

maxc′∈Ca
{sim(c, c′)}. The product captures a’s competence coverage over

all competences.
Moving now from a single agent to a team of agents, allocating a team to a

task requires to solve a competence assignment problem.3 That is, given a task
τ , we need to assign to each agent a in a team K a subset of competences
of Cτ for which it will be responsible. As such, for each pair 〈τ,K〉 we need a
competence assignment function ητ→K : K → 2C

τ that maps each agent in K with
a subset of the required competencies. According to [4], a competence assignment
function (CAF) for a size-compliant team of agents K ∈ Kτ and a task τ is
such that

⋃
a∈K ητ→K(a) = Cτ . Moreover, we consider the reverse competence

assignment function (r-CAF), denoted by θτ→K : Cτ → 2K , where θτ→K(c)
indicates the agents that are assigned to cover competence c. Note that Θτ→K

3 As noted by [22], recent definitions on the term team refer to the specific subtask/
competences that will be performed by each agent.
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contains |Cτ | · (2|K|−1) different CAFs. However, not all CAFs are equivalent or
equally desired. Hence, here we adopt the concept of fair competence assignment
function (FCAF) following the notion of inclusive assignments in [3] by adding
an upper bound on the number of competences that can be assigned to an
agent. An FCAF ensures that each competence required by the task τ is covered
by at least one agent, and each agent covers at least one and at most

⌈
|Cτ |
|K|

⌉

competences. This bound avoids overloading a few very competent agents with
excessive responsibilities.

Therefore, given an FCAF ητ→K , we want to evaluate the suitability of a
given team K for task τ . To do so, we first define a team’s competence affinity
with respect to a task taking into consideration the importance of each com-
petence and the agents’ assigned competences while satisfying the following
requirements: (i) the higher the coverage of an assigned competence, the higher
the competence affinity; (ii) the lower the importance of an assigned competence,
the higher the competence affinity; and (iii) the competence affinity is at most
equal to the coverage of any assigned competence with maximal importance.
Formally, we define an agent’s competence affinity as:

Definition 1 (Agents’ Competence Affinity). Given an agent a ∈ A, a task
τ ∈ T , and a competence assignment function ητ→K , the competence affinity of
a to τ is:

aff(a, τ, ητ→K) =
∏

c∈ητ→K(a)

max
{(

1 − wτ (c)
)
, cvg(c, a)

}
. (1)

Since we are targeting FCAFs, i.e., we want balanced assignments of respon-
sibilities, the competence affinity of a team of agents K ⊆ A to task τ is defined
a-la-Nash, as the product4 of the competence affinity of the individuals in K to
τ with respect to some fair competence assignment function ητ→K The product
assigns a larger value to teams where all agents equally contribute to a task,
rather than to teams with unbalanced contributions.

Definition 2 (Team’s Competence Affinity). Given a team of agents K ⊆
A, a task τ ∈ T , and a fair competence assignment ητ→K , the competence affinity
of K to τ is:

aff(K, τ, ητ→K) =
∏

a∈K

aff(a, τ, ητ→K). (2)

Observe that the competence affinity of a team to a task depends on the com-
petence assignment function. In other words, for a given team K and a given
task τ , different competence assignment functions result in different competence
affinities. Finding the competence assignment function that yields the highest
competence affinity is in fact an optimisation problem in itself:

η∗
τ→K = argmax

η∈Θτ→K

aff(K, τ, η) (3)

4 As noted in [9], the product favours both increases in overall team utility and
inequality-reducing distributions of individuals’ contributing values.
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where Θτ→K denotes the family of all CAFs for task τ and team K.
However, considering that, in practice, for a task τ both team size sτ and

the number of required competences |Cτ | are relatively small (2–5 members,
and ≤10, respectively), solving this sub-problem optimally, e.g. by means of a
linear program, is rather inexpensive. With this in mind, the optimum team for
task τ is the one that: (i) maximises competence affinity; and (ii) satisfies the
team size requirement. Note that the size of Kτ , which is the set of all size-
compliant teams, is

(
n
sτ

)
. The optimum team K∗ is the one that maximises the

competence affinity, under an optimal competence assignment function: K∗ =
arg maxK∈Kτ

aff(K, τ, η∗
τ→K).

2.3 The Optimisation Problem

Finding a good allocation of agents for a collection of tasks is yet another
optimisation problem that tries to maximise the overall competence affin-
ity of all teams for their assigned tasks. For a single task τ , the best can-
didate would be the team that maximises the competence affinity, that is,
K∗ = arg maxK∈Kτ

aff(K, τ, η∗
τ→K). For a collection of tasks T , with |T | > 1,

we must maximise the competence affinity of all candidate teams with the tasks
each one is matched to, given that each agent can participate in at most one
team, each team can be allocated to at most one task, and each task can be
assigned to at most one team. First we need to formally define what is a Feasi-
ble Team Allocation Function (FTAF), and then proceed on finding the optimum
one, i.e., the one that maximises the competence affinity.

Definition 3 (Feasible Team Allocation Function (FTAF)). Given a set
of tasks T , and a set of agents A, a feasible team allocation function g is a
function g : T → 2A such that: (1) every task τ ∈ T is allocated its requested
number of agents, so that |g(τ)| = sτ ; and (2) an agent can only be assigned
to one team: for every pair of tasks τ, τ ′ ∈ T , such that τ �= τ ′, it holds that
g(τ) ∩ g(τ ′) = ∅.

The family of all feasible team allocation functions is denoted by G. To achieve
balanced allocations, the optimum team allocation function g∗ maximises the
product of competence affinities of the teams to their assigned tasks.

Definition 4 (Non-Overlapping Many Teams to Many
Tasks (NOMTMT) Allocation Problem). Given a set of tasks T , and a
set of agents A, the Non-Overlapping Many Teams to Many Tasks Allocation
Problem is to find a team allocation function g∗ ∈ G that maximises the overall
team affinity:

g∗ = argmax
g∈G

∏

τ∈T

aff(g(τ), τ, η∗
τ→g(τ)) (4)

Note that in a NOMTMT allocation problem, for each team allocation g ∈ G
and each task τ we need to find the competence assignment function with the
highest competence affinity for team g(τ), namely η∗

τ→g(τ). Thus, for each team
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allocation we need to solve |T | optimisation problems (one per task) in order to
determine η∗

τ→g(τ).
5 Here we want to highlight that the problem we address here

is a non-trivial generalisation of the problem tackled in [4], which unlike us only
copes with forming teams for a single task. Next, we show that the NOMTMT
allocation problem is NP-complete by reduction to a well-known problem.

Theorem 1. The NOMTMT allocation problem for more than one task is NP-
complete.

Proof. Due to space limitations, the proof can be found in: https://bit.ly/
3A2uoSK.

Notably, the problem we solve here can be cast as a cooperative game [8] where
the agents and the tasks correspond to the players—with the constraint that
exactly one task-player must exist in each coalition—and the competence affinity
comprise the game’s utility function. Therefore, we would seek for the a coalition
structure that maximizes the Nash Social Welfare [26].

3 Solving the NOMTMT Allocation Problem Optimally

Here we encode the NOMTMT allocation problem (Definition 4) as a linear
program. First, for each task τ ∈ T and each size-compliant team K ∈ Kτ , we
use a binary decision variable xτ

K to indicate whether team K is assigned to
task τ in the solution. Then, solving a NOMTMT allocation problem amounts
to solving the following non-linear program:

max
∏

τ∈T

∏

K∈Kτ

(
aff(K, τ, η∗

τ→K)
)xτ

K

(5)

subject to:
∑

K⊆Kτ

xτ
K ≤ 1 ∀τ ∈ T (5a)

∑

τ∈T

∑

K⊆Kτ
a∈A

xτ
K ≤ 1 ∀a ∈ A (5b)

xτ
K ∈ {0, 1} ∀K ⊆ A, τ ∈ T (5c)

Constraints (5b) ensure that each agent will be assigned to at most one task;
while constraints (5a) guarantee that each task is assigned to at most one team.
Notice that the objective function (Eq. (5)) is non-linear. Nevertheless, we lin-

earise it by maximising the logarithm of
∏

τ∈T

∏
K∈Kτ

(
aff(K, τ, η∗

τ→K)
)xτ

K

.
Thus, solving the non-linear program above is equivalent to solving the following
binary linear program:
5 Note that the NOMTMT allocation problem is interrelated with the |T | optimisation

problems. However, for a fixed team allocation, the inner optimisation problems are
independent from one another.

https://bit.ly/3A2uoSK
https://bit.ly/3A2uoSK
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max
∑

τ∈T

∑

K∈Kτ

xτ
K · log

(
1 + aff(K, τ, η∗

τ→K)
)

(6)

subject to: Eqs. (5a), (5b), and (5c). Note that the above is an equivalent opti-
misation problem: without affecting the monotonicity of the function (i) we use
the log(·) to convert the double product to double sum, and the powered fac-
tor into a product; and (ii) we change the function’s domain to avoid log(0).
We can solve this LP with the aid of an off-the-shelf solver (e.g. CPLEX [20],
Gurobi [19]), GLPK [18], or SCIP [15]). Given sufficient time, an LP solver will
return an optimal solution to the NOMTMT allocation problem.

Note that building such an LP requires to pre-compute the values of
aff(K, τ, η∗

τ→K), which amounts to solving an optimisation problem for each
pair of team and task. This leads to large LPs as the number of agents and tasks
grow.

4 An Algorithm for the NOMTMT Allocation Problem

Our proposed algorithm consists of two stages in a similar manner as in [4]—as
we already said, our problem is a generalisation. The first stage finds an initial
feasible allocation of teams to tasks. The second one iteratively improves the
allocation by swapping agents between pairs of teams using different strategies.

4.1 Building an Initial Team Allocation

The algorithm finds an initial, feasible, and promising team allocation. It sequen-
tially picks up a team for each task, starting from the ‘hardest’ task to the ‘light-
est’ one. We consider that a task is ‘hard’ if there are just a few agents that can
cover its competences. Picking teams for the harder tasks first is a heuristic to
avoid that the few agents that can cover it are picked by other ’simpler’ tasks.

Computing the Allocation Hardness of Tasks. We measure the allocation
hardness of each task (referred as ’hardness’ hereafter) by considering the com-
petences required by the task with respect to the capabilities of all available
agents. Intuitively, the more agents offering high coverage of competence c, the
less hard a task requiring c is. Specifically, to characterise the hardness of com-
petences, and therefore the hardness of tasks, we exploit the notion of moment of
inertia based on [25]. We measure the hardness of a task as the hardness to cover
its competences based on the agent’s competences. That is, each agent can cover
each competence with an affinity in range [0, 1]. Thus, we capture the effort to
cover a competence as best as possible similar to the effort to rotate a rigid body
around some axis. In other words, we see the distribution of all agents’ coverage
of a competence as the mass distribution of a rigid body. In our case, the cho-
sen axis to rotate around represents the ideal competence coverage, i.e., where
all agents cover the competence with utmost affinity. We compute the moment
of inertia for c as: I(c) =

∑
J∈I nc

J · (
1 − mid(J)

)2, where: (i) I = {[0, 0.1),
[0.1, 0.2), [0.2, 0.3), [0.3, 0.4), [0.4, 0.5), [0.5, 0.6), [0.6, 0.7), [0.7, 0.8), [0.8, 0.9),
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[0.9, 1]} is an interval partition of the domain of competence coverage [0, 1]; (ii)
nc

J = |{a ∈ A|cvg(c, a) ∈ J}| is the number of agents in A whose coverage of
competence c lies within interval J , and hence represents the mass of c in the
interval; and (iii) mid(J) corresponds to the midpoint of interval J .

Now, we compute the hardness of each task from the hardness of each one of
the competences that it requires (inversely proportional to the moment of inertia
of its competences) as well as their relative importance weights. Thus, given task
τ , we define its hardness as h(τ) = ω ·∑c∈Cτ

wτ (c) ·I(c), where ω = 1∑
c∈Cτ

wτ (c)
,

is a normalising factor over the weights.

Building an Initial Team Allocation. Our algorithm sorts tasks according
to their hardness and proceeds by sequentially allocating a team for each task
starting from the hardest one. Let Aτ ⊆ A be the set of available agents to
allocate to τ . First, the algorithm sorts the task’s competences, Cτ , based on
their relative importance, into a sequence C̄τ . We note as C̄i

τ the i-th competence
in C̄τ . To allocate an agent to the top competence in the sequence, C̄1

τ , we select
the agent that best covers the competence. Formally, we compute the agent
to allocate to C̄1

τ as σ(C̄1
τ ) = arg maxa∈Aτ

{cvg(C̄1
τ , a)}. After allocating that

agent to C̄1
τ , the set of agents available to allocate to the rest of competences

is Aτ − {σ(C̄1
τ )}. In general, given the i-th competence C̄i

τ , we obtain the agent
to allocate to the comptence as: σ(C̄i

τ ) = arg maxa∈Aτ −Σi−1{cvg(C̄i
τ , a)}, where

Σi−1 =
⋃i−1

k=1{σ(C̄k
τ )} stands for the agents allocated so far up to competence

C̄i−1
τ . The selected team for task τ is K =

⋃sτ

i=1 σ(C̄i
τ ). The agents in K are no

longer available for being chosen to participate in another team.

4.2 Improving Team Allocation

The second stage of our algorithm applies several heuristics implemented as
agent swaps. This stage is similar to the approach proposed in [4], with the
addition of an exploring step. The heuristics are applied until either: (1) the
global maximum competence affinity is reached; (2) no solution improvement
occurs for a number of iterations; or (3) the algorithm is stopped by the user. In
all cases, the most recently found solution is returned. This stage performs two
types of iterations:

1. Single pairing. We randomly select two tasks, and we apply over them the
following swaps:
(a) Exploiting swap. Find the optimal team allocation just considering the

agents in the teams currently allocated to both tasks.
(b) Exploring swap. Try a maximum of k times the following: (i) randomly

select one of the two tasks, one agent within that task and an unassigned
agent (if any); (ii) swap them; (iii) if the competence affinity is improved,
keep the change and stop the exploring swaps.

2. Exhaustive pairing. For every pair of tasks, swap every possible pair of
agents within them. If the competence affinity is improved, keep the change
and stop the exhaustive pairing.
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5 Empirical Analysis

We evaluated our algorithm regarding: (1) the quality of solutions; (2) the time
required to produce optimal solutions; (3) its performance when solving a real-
world problem. Importantly, our algorithm was validated by experts on team
formation by comparing the allocations computed by our algorithm with respect
to the allocations provided by teachers with expertise in team formation.

Table 1. Time savings to reach optimality wrt. CPLEX.

Scenario Time Savings wrt. CPLEX(%)

Small (10 Tasks) 60%

Medium (15 Tasks) 55%

Large (20 Tasks) 71%

We ran all the experiments on a PC with Intel Core i7 CPU, 8 cores, and 8GB
RAM. The implementation of our algorithm, along with all the necessary sup-
porting code, was made in Python3.7. In all experiments, we set our algorithm’s
parameters as follows: to compute similarities we used κ = 0.35, λ = 0.75; we
performed one exhaustive-pairing every 50 single-pairings; we stopped the algo-
rithm after completing two rounds of 50 single-pairings and after two rounds of
exhaustive pairings elapsed with no improvements. In what follows, in Sect. 5.1,
we pitch our algorithm against CPLEX to study its quality, as well as its run-
time and anytime performance. In Sect. 5.2, we solve a real-world problem and
study our algorithm’s behaviour as the team-size parameter changes. Finally, in
Sect. 5.3, we compare the quality of our algorithm’s allocations with the ones
obtained by experts in team formation.

5.1 Quality, Runtime and Anytime Analysis

Generating Problem Instances. In this analysis, we used as competence
ontology the taxonomy developed by the Institute for the Development of Voca-
tional Training for Workers (ISFOL) [21]. For comparison purposes, we built
3 families of problem instances of different sizes (small, medium, large) that
could all be solved by CPLEX within acceptable time limits. We synthetically
generated agents, competencies and tasks as follows. First, we generated the
tasks to perform. We started by fixing a number of tasks from {10, 15, 20}. After
that, for each task τ we sampled: its required team size mτ∼U{1, 3}; its number
of required competencies |Cτ |∼U{2, 5}; and its importance weights c ∈ Cτ is
wτ (c)∼N (

μ = U(0, 1), σ∼U(0.01, 0.1)
)
. Second, we generated agents to perform

tasks. For each task τ , we generated mτ agents such that the competencies of
each agent contain competencies that are either identical or a child-node in the
ISFOL taxonomy of some required competence in τ . Our experiments involve 60
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problem instances distributed in three families: (1) 20 instances with 10 tasks
and ∼20.5 agents (average number of agents over 20 problem instances); (2) 20
instances with 15 tasks and ∼30.6 agents (average over 20); and (3) 20 instances
with 20 tasks and ∼41.35 agents (average over 20).

Quality Analysis. Figure 1a shows the evolution of the quality of our heuris-
tic algorithm calculated as the ratio between the competence affinity of the
solutions computed by our algorithm and the optimal competence affinity com-
puted by CPLEX. The figure plots the average of the quality ratio achieved by
our algorithm along time over 20 problem instances per scenario: low-size (10
tasks), medium-size (15 tasks), large-size (20 tasks). Variances for all cases are
insignificant, ≤ 5 · 10−4, and hence we do not plot them. The timestamps are
also averages over the 20 problem instances. Notice that our heuritic algorithm
reaches optimality (quality 1), likewise CPLEX, in the three scenarios.

Runtime Analysis. The greatest advantage of our heuristic algorithm is that
it is much faster than CPLEX. Table 1 shows the time we can save with respect
to CPLEX to reach optimality. Overall, using our heuristic can save from ∼55%
to ∼71% time with respect to CPLEX. Specifically, for problem instances with
10 tasks (small scenario), we save 60% time wrt. CPLEX; for problem instances
with 15 tasks (medium scenario), we save 55% time; and, for problem instances
with 20 tasks (large scenario) we save 71% time wrt. CPLEX. Note that the main
time consuming task for CPLEX is building of the LP encoding the problem.

Anytime Analysis. Let topt be the seconds required by CPLEX to reach opti-
mality. Our algorithm finds the first solution: (1) after 10−3 ·topt (= 0.06) seconds
with a quality at 80% of the quality of the optimal in the small scenario, (2)
after 25 · 10−3 · topt (= 0.12) seconds and 70% in the medium scenario, and (3)
after 2 · 10−4 · topt (= 0.29) seconds and 65% in the large scenario (see Table 2).

5.2 Solving a Real-World Problem

As mentioned earlier, in the domain of education there is a need to allocate teams
of students to internship programs. Each student is equipped with competen-
cies, determined through the student’s educational background (type of school,
enrolment year, completed courses, past educational activities, etc.), while each
internship specifies a set of required competencies for the team. In this part
of the experimental analysis, we used real-world data. Specifically, we count on

Table 2. Quality of the initial solution, the time needed in seconds, and the proportion
of time compared to the time required by CPLEX (topt).

Scenario Quality Time in sec Proportion of topt

Small (10 Tasks) 80% 0.06 s 10−3

Medium (15 Tasks) 70% 0.12 s 25 · 10−3

Large (20 Tasks) 65% 0.29 s 2 · 10−4
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Fig. 1. Quality analysis and scalability.

a collection of 100 students whose competencies are described in the European
Skills/Competences qualifications and Occupations (ESCO) [13] ontology. ESCO
consists of a dictionary that describes, identifies and classifies professional occu-
pations, skills, and qualifications relevant for the EU labour market and educa-
tion and training. The ESCO ontology is a directed acyclic graph structure of
6547 different competencies, with 7 levels, and an average branching factor of
1.26 (maximum branching factor 15). The collection of students in our dataset is
equipped with 118 different competencies, on average with 11.98 each. We also
used a collection of 50 real internship programs, whose competencies are also
described in ESCO. All 50 internships required 34 different competencies, while
each internship required on average 4 competencies.

Our following analysis shows the problem’s scalability as required team sizes
grow, and investigates the ability of our algorithm to handle the problem. Due
to the fact that the actual data regarding tasks (internship programs) did not
specify a required team size, we synthetically created problem instances of certain
team sizes. Specifically, we used datasets where all tasks required the same team
size, i.e., where all tasks required equal team sizes (either 2, 3, 4, or 5). These
team sizes are based on the following observation in [3]: “teams that are formed
within an educational environment shall not exceed 5 members.” Moreover, we
also created problem instances where tasks required varying team sizes (team
sizes in [2, 3], in [2, 4], in [2, 5], in [3, 4], in [3, 5], and in [4, 5]), where the team sizes
are equally distributed across the tasks within each problem instance. Consider
the scenario requiring teams of equal size 5 and 100 agents. The search space
has ∼7.5 · 107 different teams of size 5. To solve such a hard scenario instance
optimally (e.g., by using CPLEX), we would need to produce ∼75 millions of
decision variables just for a single internship with team size 5. Thus, generating
the LP encodings for the problem instances considered here is totally infeasible.

Analysis. Figure 1b shows the time required to converge to a solution as the
average over 20 different problem instances with 100 agents and 20 tasks. The
bars illustrate the average time (in minutes:seconds) needed by our algorithm
to output an allocation per team size. As expected, settings with smaller team
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sizes require much less time until they converge to a solution. In general, the
time needed by a problem instance requiring team sizes in [a, b] falls between
the times needed (a) by the problems requiring team sizes a and b, and (b) by
the problems requiring team sizes in [a, b−1] and [a+1, b]. Notably, we need less
than 50 minutes to yield a solution in settings where each task requires a team
of size 5, which is the hardest scenario. We deem this is acceptable considering
that this process is not required to run in real time with very demanding time
constraints. Note that the current practice is to match students to internships by
hand, which is much more time consuming, while LP solvers cannot even generate
the program in time. Hence, our results show the feasibility of employing our
algorithm to perform team allocation in the education scenario that we address.

5.3 Validation

Our last analysis focuses on having our algorithm validated by teachers experi-
enced in team formation. For that, we pitched our algorithm against some experts
(teachers) with experience in allocating students to internships. Specifically, we
synthesised an instance of a task allocation problem involving 50 internships
(m = 50) and 100 students (n = 100) with team sizes within {1, 2, 3}. Notice
that such settings are similar to those employed in our actual-world evaluation
in Sect. 5.2. The problem instance used here is the largest one regarding the
number of tasks that we can generate with the 100 student profiles at hand.
Notably, to solve this problem optimally (e.g. by using CPLEX) would require
more than 1.8 million decision variables.

Fig. 2. Heuristic vs expert vs random.

Thereafter, we proceed as follows. For the very same problem instance: (1)
we task an expert with matching by hand teams of students with tasks; (2) we
employ our algorithm to compute an allocation; and (3) we compute a random
allocation of teams of students to tasks. Henceforth, we note those three alloca-
tion methods as gexpert, gheuristic, and grandom respectively. Then, eight evalua-
tors (teachers as well), who are regularly engaged with the process of allocating
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student to internships, were tasked to compare the quality of the three alloca-
tions, without knowing the method that produced each allocation. Notably, our
algorithm yielded an allocation in less than 1 h and 45 min, while the experts
reported that they approximately needed a whole working week in order to study
and analyse the students and internship data, and manually build an allocation.

Evaluation Process. Each evaluator was asked to mark the internship assign-
ments produced by each one of the three allocation methods. Thus, each evalu-
ator marked each internship assignment with one of the following marks: 1 for
first option, 2 for second option, and 3 for third option. Notice that we allowed
the evaluators to mark two assignments produced by two different allocation
methods with the same value if they considered them to be equivalent.

Handling Missing Data. Here we want to point out that during this final
analysis, we faced the problem of missing data. That is, the expert did not man-
age to find a team for every internship. Specifically, the expert did not provide
a team assignment to 13 internships (out of 50), leaving 23 students (out of
100) without internship. This led the evaluators work with incomplete data (two
complete allocations, and a partial one), and, in their turn, provide incomplete
evaluations. In particular, since for some tasks gexpert was missing, the evalu-
ators were unable to mark the three allocation methods (gexpert, gheuristic, and
grandom). For this reason we used the auxiliary mark 4 indicating absence, which
is considered worse than third option (mark 3). Therefore, any missing alloca-
tion was marked with a 4 by all evaluators. Moreover, eventually the evaluators
missed marking some internships (different interships for each evaluator). In that
case, we generated a third-option mark (3) for missing evaluations.

Analysis. Our analysis is founded on finding the best allocation method for
each internship assignment based on the evaluators’ assessments. We consider
the evaluation of each internship assignment as a tournament consisting of three
competing rounds between pairs of allocation methods: (1) Heuristic vs Expert;
(2) Heuristic vs Random; (3) Expert vs Random.

The marks set by evaluators allow to pick the winning allocation method
of each round and of the tournament as a whole.6 The winning allocation
method of each round results from the aggregated marks of evaluators: the
internship assignment with greater aggregated mark wins one point for its allo-
cation method. In case there is a tie between two internship assignments in a
round, their corresponding allocation methods earn half a point each. Using the
points accumulated from each round of a tournament, we apply a Copelandα

voting rule [10] (with α = 0.5) to declare the winner of the tournament. As
shown in [14] this voting rule is “resistant to all the standard types of (construc-
tive) electoral control”. In short, the allocation method that accumulates more
points throughout the three rounds wins the tournament. Again, in case of a tie
between two allocation methods, each one earns half a point. As an illustratory
example, say that for a given tournament: the 8 evaluators considered that our
6 Notably, the marks applied by the evaluators indicate rankings and therefore these

numbers are meaningless; thus we turn to tournaments.
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heuristic algorithm provided the best assignment, 5 evaluators considered that
the human expert provided a better assignment than random, and 2 evaluators
equally preferred the assignments produced by the human expert and random.
That would lead to the following scores: our heuristic algorithm would get 8 · 1
points, the expert’s allocation would get 5 · 1 + 2 · 0.5 = 6 points, and random
would get 2 · 0.5 + 1 · 1 = 2 points. Therefore, the winner of this tournament
would be our algorithm.

Each tournament may have a single winner, a tie with two winners, or no
winner. In our evaluation, we encounter 58% over 50 tournaments (i.e., intern-
ship assignments) that announced a single winner, and 34% that announced
two winners in a tie. Considering only the tournaments that announce a single
winner, in Fig. 2a we observe that 55.17% of these tournaments announced as
winner the allocation yielded by our heuristic algorithm, while 34.48% of the
tournaments announced as winner the allocation provided by the human expert.
The random allocation method only won 10.34% of the tournaments. Therefore,
the evaluators preferred the assignments produced by our algorithm to those
produced by a human expert. Consider now the tournaments declaring 2 win-
ners (tie). Figure 2b shows that, as expected, our heuristic algorithm and the
human expert jointly won more than half of the tournaments (52.94%). Over-
all, regarding the tournaments declaring a tie with two winners, our heuristic
algorithm was part of the winning tie 88.23% of the times. To summarise, our
analysis indicates that expert evaluators deem our proposed heuristic algorithm
as the method of choice to assign teams of students to internships.

6 Related Work

Team formation has received much attention by the AI and MAS community.
Anagnostopoulos et al. in [1] thoroughly study the problem of forming a single
team to resolve a single task, and show the employability of several algorithms in
large scale communities. Lappas et al. in [23] tackle the problem of finding a single
team of experts for a given task in an attempt to minimize the communication
cost among the team. [2] study an online version of the team formation problem
and propose algorithms in order to form teams as a stream of tasks sequentially
arrives (one task at a time). Notably, [2] form a single team for a single task
at a time; while agents can be ‘reused’ in teams of different tasks, permitting
overlapping teams. Kurtan et al. [22] study the dependencies between subtasks
of a given task, and propose algorithms for building a single team for a single
task considering some desired qualities, such as preserving privacy.

Chad et al. [11] add a new dimension to the problem by considering robust-
ness, and focus on finding a single robust team to perform several tasks.
Andrejczuck et al. [4] tackle the many teams to single task problem and present
algorithms for partitioning a set of agents into equal-size teams in order to per-
form resolve the very same task. Capezzuto et al. in [6] tackle the many teams
to many tasks team formation problem considering temporal and spacial con-
straints, and propose an anytime, efficient algorithm. However, compared to the
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problem we tackle here, the proposed algorithm in [6] provides solutions with
overlapping teams, and aims to maximise the number of tasks solved per team.

Regarding the many teams to many tasks team formation problem with no
overlaps—i.e., problems for which different teams share no common agents, each
team can be allocated to only one task, and each task can be assigned to only
one team—we can find a handful of works in the literature. Specifically, we have
singled out two works, namely [12,29], which can be considered as the most
directly related to ours. Although these papers tackle the general many teams
to many tasks problem, their version of the problem is essentially different to
ours, hence preventing us from conducting meaningful comparisons. In more
detail, [29] propose a branch-and-bound technique to determine the optimal
team size structure and then they proceed with a brute-force search. Given that
the problem we tackle in this work assumes that team sizes are known a priori
(team size is part of each task’s requirements), comparing against [29] would
be equivalent to compare against brute-force search. Notably, brute-force search
becomes prohibitive as the number of agents and tasks rise; and considering the
problem instances in our analysis such a comparison would be infeasible.

On the other hand, Czatnecki and Dutta [12] propose an algorithm for match-
ing non-overlapping teams of robots with tasks. Similarly to [29], [12] sets no
constraints on the team sizes. However, even if we could ‘bypass’ the team size
misalignment (by allowing [12] to yield a result, and use these team sizes in our
version), there is yet another essential difference between [12] and our approach.
Our algorithm pursues to optimise the competence affinity between all teams
with their assigned tasks while targeting at balanced allocations (i.e., all teams
are more or less equally competent for their task). Instead, [12] targets at find-
ing Nash stable teams, i.e., teams whose agents have not incentive to unilaterally
abandon their current team and task without harming the others. As such, [12]
and our approach differ notably in their objectives.

Regardless of the type of team allocation problem, all the works above use
a rather simplistic competence model. That is, following the observation in [3],
all these works assume either that an agent may have or have not a competence
(Boolean) [1,2,12,22,23]; or that an agent may have a competence up to a degree
(Graded) [3,4,7]. Nonetheless, all works consider that a team must collectively
possess all the required competences, exactly as requested. However, in this work
we identify that an agent, and therefore a team, can perform a task when they
count on competences that are similar to the ones required, even if they are
not exactly the same. This is natural, especially when the agents correspond
to humans. Given that ontologies such as ESCO [13] describe semantic relations
among competences, not having a specific competence for a tasks is not an obsta-
cle provided that agents have similar enough competences. For example, when
students move from school to industry, they count on competences, acquired at
the school, which are not exactly the same as those required by industry. And
yet, these student can be considered adequate for jobs in industry. As such, in
this work we put forward a methodology to resolve such issues.
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7 Conclusions and Future Work

In this work, we studied a particular type of team formation problem, and hence
we focused on the Non-Overlapping Many Teams to Many Tasks (NOMTMT)
allocation problem. First, we provided the formulation of the problem. At this
point, we identified and tackled an existing issue regarding the competence mod-
els that we find essential when solving real-world cases. As such, we introduced
a new ontology-based competence model, and proposed a methodology to com-
pute semantic similarities between the competencies required by a task and those
offered by a team. Then, we cast the NOMTMT allocation problem as an opti-
misation one, and show how to solve optimally it by the means of LP. Thereafter,
motivated by the practical limitations of solving the problem optimally, we intro-
duced a novel anytime, heuristic algorithm. Finally, we conducted a three-fold
evaluation of our proposed algorithm. Our results: (i) showed that our heuristic
algorithm can reach optimality in notably less time than an LP solver, saving up
to 71% of time; (ii) showed that our algorithm can handle large, real-world prob-
lems with 100 agents and 20 tasks in less than an hour, while solving the problem
optimally is infeasible; and (iii) our algorithm outperformed experts while requir-
ing much less time (one hour and half vs a whole working week). Notably, besides
the problem’s size, another time consuming factor for the human experts is the
need of manually discerning the similarities between the competences required
by a task and those offered by a team. As future work, we plan to relax our
team size constraints, and use instead allowable intervals—e.g., at least 2 and at
most 5 members—since, these assumptions are not fundamental to our model.
Moreover, we will address the notion of “robustness”, and work towards not only
forming good allocations, but also forming robust allocations.
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Abstract. The recently introduced lane-free traffic paradigm removes
the restrictions of the traffic lanes, so that autonomous vehicles can move
anywhere laterally across the road’s width. Previous research in this
domain has employed the celebrated max-plus message-passing algorithm
in order to allow the coordination of all (connected and autonomous)
vehicles in the environment. However, when allowing for the realistic
perspective that there exist vehicles that are unable or unwilling to com-
municate with others, the uncertainty introduced renders the aforemen-
tioned coordination approach ineffective. To combat this, in this paper we
adjust the Max-plus algorithm accordingly so that agents using max-plus
for coordination can also observe and take into consideration indepen-
dent agents via emulated messages. We put forward different methods
to form these messages—namely the Maximax, Maximin, Hurwicz, Min-
imax Regret and Laplace decision-making criteria. Finally, we provide a
thorough evaluation of our approach, including a detailed comparison of
all criteria used for message-forming.

Keywords: Max-plus algorithm · Uncertainty · Lane-free traffic

1 Introduction

In recent years, there have been significant advancements in the field of automo-
biles and the automation of vehicular traffic. While research in this field mainly
focuses on lane-based traffic, a recent development is the investigation of the
novel lane-free traffic paradigm [10,11].

In our work, we also consider agents operating in a lane-free environment,
specifically on a lane-free one-way highway. As such, vehicles are not restricted
by the lanes as in traditional highways, but can instead move freely across the
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entire highway width. Connected and Autonomous Vehicles (CAVs) enter the
highway at random positions, with randomly assigned desired speeds. In their
attempt to reach their desired speed and exit the highway with minimum delay,
they may accelerate and move past other agents, and this kind of maneuvers
may result into collisions among them.

Now, in existing work, the max-plus algorithm [7,14] is used to coordinate
the movement of the CAV agents, and assist them in reaching their desired
speeds while avoiding collisions. Note that this line of work has only focused
on homogeneous environments, where every agent in the highway decides upon
its actions using the max-plus algorithm. By contrast, we introduce additional
agents whose movement is independent of the max-plus algorithm, and modify
max-plus in order to incorporate them within the algorithm. However, due to
the lack of communication, this imposes uncertainty for max-plus agents. To
this end, we adopt a range of different decision-making criteria to be embedded
in our adjusted version of max-plus, so as to incorporate uncertainty within
the algorithm. The incorporated criteria include: Maximax, Maximin, Hurwicz,
Minimax Regret, Laplace; and also a simple opponent modelling technique we
devised for our domain. Our experimental evaluation shows that the embedding
of decision-making criteria in the face of uncertainty within max-plus, does in
fact reduce collision occurrences; and that the more elaborate criteria provide
incremental improvements.

In what follows, in Sect. 2 we provide the relevant background work, that will
be used as our foundation to address the issues of uncertainty in the lane-free
environment, while in Sect. 3 we present our approach involving the adjustment
of max-plus algorithm and the incorporation of multiple criteria that address the
uncertainty imposed by individual agents. In Sect. 4 we present our experimen-
tal evaluation and discuss the effectiveness of our approach by comparing each
criterion in terms of reducing collisions among max-plus-coordinated and inde-
pendent agents. Finally, in Sect. 5 we conclude our work and address potential
future endeavors.

2 Background and Related Work

In this section, we present the technical background of this work, namely the
framework of Coordination Graphs and the max-plus Algorithm, along with
related work, with more focus towards the existing work that we build upon.

2.1 Coordination Graphs

Coordination Graphs (CGs) [4] are used in multi-agent systems to model coor-
dination among agents. In a multi-agent environment, there is not always a need
for explicit coordination among all agents. Local coordination between agents
that interact with each other is often enough to achieve the global coordination
task. CGs take advantage of this, allowing for scalability in the number of par-
ticipating agents, and making the joint action of a set of agents that maximizes
the global utility more easily obtainable.
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In CGs, the agents are represented by a node in the graph, and the cross-agent
interactions take the form of edges denoting a need for coordination between the
connected agents. Each agent i ∈ N , where N is the set of nodes (agents),
performing an action ai ∈ A, where A is the action domain of ai, has a local
utility fi(ai), while fij(ai, aj) corresponds to a shared utility related to the edge
i, j ∈ E, where N is the set of edges. As such, the global utility u(a) is defined
as :

u(a) =
∑

i∈N

fi(ai) +
∑

(i,j)∈E

fij(ai, aj) (1)

2.2 The Max-Plus Algorithm

The Max-plus algorithm [7] is a message-passing algorithm that provides a solu-
tion to a CG representation of a coordination problem, i.e., provides an action
for each participating agent i.

In every iteration, each agent i sends locally maximized messages μij(aj)
according to their current maximizing action ai, to each one of their neighboring
agents j connected with an edge in the graph i((i, j) ∈ E∀j ∈ Ni. Each message
can be calculated by:

μij(aj) = maxai
{fi(ai) + fij(ai, aj) +

∑

k∈Ni\{j}
μki(ai)} + cij (2)

Convergence is only guaranteed when the CG does not contain cycles. A nor-
malizing value of cij = − 1

|Nk|
∑

k μik(ak) can be added to normalize the
values of messages, so that they do not constantly accumulate when cycles
exist in the graph. Finally, each agent i selects the action ai that maxi-
mizes the received local messages μji(ai) along with i’s local payoff fi(ai):
ai = argmaxai

{fi(ai)+
∑

j∈Ni
μji(ai)}. Max-plus is an iterative algorithm, and

is executed until convergence of the passing messages μij , or until a stopping
criterion is met.

2.3 Max-Plus in the Lane-Free Environment

The adoption of the max-plus algorithm in the lane-free environment involves
the construction of a CG as defined by the local interaction among agents [13].
Each lane-free vehicle is an agent i depicted by a node i ∈ N in the graph.
Its interaction with nearby agents depends primarily on the distance between
them. An agent i considers nearby vehicles on the front and back within a certain
longitudinal distance dx, which is set at 50 m. Now, each agent does not form
connections with all observed agents, but only with those that there is an actual
need for coordination, so as to avoid a potential collision. As such, the authors
in [13] adopt Artificial Potential Fields to quantify the danger of collision between
two agents i and j, and incorporate this function into the local utilities. For that,
the authors select the ellipsoid function to capture the potential collision in this
domain. The form of the ellipsoid used is:
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E(dx, dy) =
m

(
( |dx|

α )px + ( |dy|
b )py + 1

)pt
(3)

where dx, dy are the longitudinal and lateral distance of the respective center
points of the vehicles i, j. The parameters a, b are used to adjust the range of the
field for the x, y axis, while the px.py, pt affect the overall shape, and m defines
the magnitude when the distances are close to 0.

The local utility function contains two components, namely the “critical
region” and “broader regions”, as:

Uij(sij) = Ec(dxij , dyij) + Eb(dxij , dyij , dvx,ij , dvy,ij) (4)

Authors use a tuple of information relevant to the local state among the two
agents with sij . The critical region Ec is based solely on the distance of the
agents, providing a positive value when agents are too close, while the broader
region Eb also accounts for the relative speed of the vehicles in both axes, captur-
ing a broader view of the vehicles, informing when a collision is about to happen
when vehicles approach one another with high speed. For more information on
the Artificial Potential Fields used for the local utilities, we refer the interested
reader to [13]. The maximum number of edges for forwards and backwards agents
is also restricted, in order to control the graph’s density. This selection process
is performed based on the euclidean distance between agent i and each neighbor
agent j.

The agents’ goal is to avoid collisions with their neighboring agents while
trying to reach and/or maintain their assigned desired speed vd,i. The local
payoff fij(ai, aj) incorporates that as a local edge utility function. The transition
function is used for all combinations of joint action pairs, to provide the value
of the potential field for the resulting state at the next time-step (depicted with
s′

ij) to the local payoff fij(ai, aj), that “informs” the agents on the outcome of
their interaction.

Thus, the local payoff function fij(ai, aj) shared by i, j at local state sij is:

fij(ai, aj) =

{
−Uij(s′

ij), Uij(s′
ij) �= 0

cs · rv,ij , else
(5)

rv,ij = rv,i · 1
|Ni| + rv,j · 1

|Nj | (6)

where |Ni| is the number of edges that contain agent i. The form of rv,ij is a linear
function based on current speed vx,i, normalized according to the desired speed
vd,i. This speed utility component is defined as: rv,i = (vd,i − |vd,i − vx,i|)/vd,i.
When the agents are close enough and in danger of a collision, the local payoff
fij(ai, aj) is negative. Otherwise, it is positive and reflects the goal of reaching
the desired speed.

Finally, the action domain A is discretized in order to comply with the max-
plus algorithm, and each agent considers a set of 5 possible actions:

– a0: zero acceleration in both axes.
– a1: longitudinal acceleration of 2m/s2.
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– a2: longitudinal deceleration of 2m/s2.
– a3: lateral acceleration 1m/s2 towards left.
– a4: lateral acceleration 1m/s2 towards right.

2.4 Related Work

Regarding the lane-free traffic application domain, many works already exist that
propose relevant vehicle movement strategies, which tackle the problem from
different research fields. First, the authors in [11] propose a rule-based vehicle
movement strategy by adopting the notion of forces being applied to nearby
vehicles, and this strategy is employed by the independent vehicles we introduce
in the lane-free environment. Moreover, the work of [16] introduces an optimal
control approach for the problem of lane-free driving, with vehicles optimizing
their behavior by considering a future horizon and updating their trajectories
online based on model-predictive control. Finally, the authors in [6] design a two-
dimensional lane-free cruise controller with more emphasis on control theory.

Within the framework of CGs, there are works that tackle uncertainty in
the environment already, but to the best of our knowledge, there is no work
that extends max-plus based on our formulation, addressing the uncertainty of
independent agents with decision-making criteria. In more detail, authors in [1]
tackle coordination problems under uncertainty by devising Fuzzy Coordination
Graphs, as they view the problem from the perspective of fuzzy games [8] and
propose a variant of the variable elimination algorithm [4] to obtain the joint
action. Moreover, in [9], agents’ interactions are depicted in a graph structure, as
in CGs, and the authors address the uncertainty for decentralized planning under
uncertainty regarding the agents’ observations. To do so, they incorporate the
notion of beliefs into the Monte Carlo Tree search algorithm used for planning
and use heuristic-based policies to predict other agents’ actions.

3 Max-Plus Under Uncertainty

The main goal of this work is to extend the use of the max-plus algorithm to
non-homogeneous lane-free environments. A non-homogeneous lane-free environ-
ment consists of additional agents that do not operate following the max-plus
algorithm. We introduce new independent agents, with different behavior, that
have no form of communication with other agents. This restriction imposes the
challenge of predicting and modeling these agents in a way that is compatible
with the max-plus algorithm, i.e., the message-passing operation of locally max-
imized messages sent among communicating agents. As such, to incorporate this
new type of agent into the max-plus algorithm we emulate the messages that
would be sent from independent agents to max-plus agents.

3.1 Emulated Messages

To apply the max-plus algorithm in a non-homogeneous lane-free environment,
we first incorporate the independent agents in the CG accordingly. We consider



176 P. Geronymakis et al.

a CG modeled as in [13], where each agent is represented by a node in the graph.
Now, as in [13], we assume that each agent possesses observational capabilities,
therefore agents can observe their surrounding vehicles’ current status (position,
speed, dimensions). As such, max-plus agents also observe independent agents
nearby. Therefore, the observed independent agents are again represented by
nodes, and edges that indicate a need for coordination can be formed (only)
from the perspective of max-plus agents. However, the coordination between
max-plus and independent agents cannot be achieved since there is no actual
communication with independent agents.

The inability of non-cooperative agents to receive and read messages sent
from max-plus agents means that sending any messages to them is ineffective.
Thus, we establish a one-way communication between non-cooperative and max-
plus in the form of emulated messages sent only from (observed) independent to
max-plus agents. These messages are only emulated when the respective max-
plus agents do observe independent agents and an edge that connects them
exists within the CG. As mentioned, max-plus agents’ can detect their neighbors’
position and speed. This means that during the calculation of these messages,
the longitudinal and lateral position of non-cooperative agents can be considered
known, as well as the speed of the vehicles in both axes.

In Fig. 1 we present an example of our non-homogeneous environment and
visualize the messages exchanged or emulated. Agents 2 and 3 follow the max-
plus algorithm, while the agents 1 and 4 are independent, and they receive no
messages. Agents 2 and 3 exchange messages for their actions, and also emulate
messages from the observed agents 1 and 4.

3.2 Prediction Under Uncertainty

We reformulate the max-plus algorithm in order to incorporate emulated mes-
sages from other agents and take them into account for the decision-making
process regarding the actions of the max-plus agents. For each neighbor, the
agent checks if it is a max-plus agent, a fact ascertained by the receipt of the
corresponding μij message from that agent. Otherwise, they emulate the mes-
sage from that agent. The pseudocode of our max-plus extension is provided

Fig. 1. The messages that each agent will receive.
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Algorithm 1. Max-plus algorithm with independent agents
1: procedure Max Plus(N, E, A, class)
2: for i ∈ N do � N is the set of agents
3: neighbors ← ∪∀(i,j)∈E{j} � ∀(i, j) ∈ E, only i may be independent
4: for j ∈ neighbors do
5: for a j ∈ A do
6: if class(i) ∈ maxplus then
7: μij(aj) ← maxai [fi(ai)+fij(ai, aj)+

∑
k∈neighbors\i μki(ai)]+cij

8: action[i] ← max g action(A, i, μ, neighbors)
9: else

10: μij(aj) ← μ toEmulate(aj , i, j, A)
11: end if
12: end for
13: end for
14: end for
15: return action
16: end procedure

in Algorithm 1. Messages emulated from observed agents that are not operat-
ing according to max-plus, are calculated based on the “μ toEmulate”. Finally,
the “max g action” simply returns the action for agent i that maximizes its
received messages μji(ai) (see [7] for more details). We should note that we also
employ the anytime implementation of max-plus [7], but do not include it in this
pseudocode in order to maintain simplicity. In what follows, we provide multi-
ple criteria for the calculation of emulated messages, i.e., the implementation of
“μ toEmulate”.

We now must specify the content of those emulated messages. Max-plus
agents shall choose the best action for them and their neighbors, while still
abiding by the max-plus algorithm, by choosing the action that maximizes the
summation of the received messages. Considering there is no way of knowing for
certain the intentions of non-communicative agents, our best option is to make
assumptions regarding their action and the emulated messages should reflect this.
These conditions of uncertainty, render the use of decision rules (or decision-
making criteria) under uncertainty necessary. The ones examined in this paper
are: the Maximax criterion; the Wald’s Maximin criterion; the Hurwicz crite-
rion; the Savage’s Minimax Regret ; and the Laplace’s criterion.

Maximax, Maximin and Hurwicz’s Criterion. First, we examine three
standard approaches for problems under uncertainty, the Maximax, Wald’s Max-
imin [15] and Hurwicz [5] criteria. The Maximax criterion is an optimistic app-
roach, since it makes the assumption that the best case scenario will always
occur, and suggests an action that fits those conditions. On the contrary, Max-
imin considers the worst-case scenario due to the uncertainty that is associated
with the complete lack of information about the possibilities, leading to a more
pessimistic decision-making process. The Hurwicz criterion [5], introduced by
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Leonid Hurwicz in 1951, offers a “middle ground” option between the Maxi-
max and Maximin criteria. The Hurwicz criterion attempts to find a balance
between the extremes of the pessimism of Maximin and the optimism of Maxi-
max. Hurwicz makes use of a β temperature parameter, which acts as a measure
of confidence in the decision maker regarding the probability of the best case
scenario occurring, i.e., the β value reflects the decision maker’s willingness to
take risks. The variable β can take any value between 0 and 1.

When β is set to 1, the Hurwicz criterion is reduced to the Maximin criterion,
while β = 0 reduces Hurwicz to the Maximax criterion.

When the Maximax criterion is adopted, for an independent agent i and
a max-plus agent j, the message associated with an action aj of agent j in
accordance to the actions of agent i is calculated as:

μmax,ij(aj) = maxai
{fij(ai, aj)} (7)

Likewise, for the Maximin criterion:

μmin,ij(aj) = minai
{fij(ai, aj)} (8)

For the Hurwicz criterion, the message associated with each aj results from
the weighted average of maximum payoff (multiplied by β) and minimum payoff
(multiplied by 1 − β). For any value assigned to β, the message value that will
be sent is formed by:

μji(aj) = β · μmax,ji(ai) + (1 − β) · μmin,ji(ai) (9)

Dynamic Calculation of β in Hurwicz Criterion. Typical uses of the
Hurwicz criterion make use of β as a constant, with a value between 0 and 1.
However, our lane-free environment contains dynamic interactions among agents,
and they encounter situations of interactions where a predetermined degree of
optimism/pessimism may not be appropriate. As such, we consider that the
distance between agents i and j can affect the optimism for the outcome of i’s
action. A simple way of modelling a dynamic β based on the distance between
two agents is calculating the longitudinal distance between them and normalizing
that value accordingly so that β ∈ [0, 1]. Therefore, β is calculated as:

β =
|dxij |
dxmax

(10)

where |dxij | is the longitudinal distance between i and j, and dxmax is the
maximum distance that two vehicles can be apart in the x axis, and still be
considered neighbors in the CG.

Savage’s Minimax Regret. Savage’s Minimax Regret criterion [12] is an
extension of Wald’s Maximin criterion. Minimax Regret provides an alterna-
tive approach that tackles the unpredictability of the environment, by incorpo-
rating the notion of regret. To handle the uncertainty of the choices of other
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agents, instead of just maximizing the minimum possible payoff, we calculate
the regret of each action. An action’s regret in a specific state refers to the dif-
ference between the best payoff in that state, and the actual payoff produced
when a particular action is performed. The Minimax Regret criterion minimizes
the maximum regret an action of agent j may have across all actions of agent i.

In systems with two agents i and j, the regret of an action of j is defined
based on the possible outcomes when i performs any of its available actions (of
the set of actions A). Consequently, there are |A| possible states. In the lane-free
environment, a max-plus agent may have multiple neighbors, whose combination
of actions result into different states. If |Nj | is the number of agents neighboring
a max-plus agent j in the CG, the number of possible states occuring are |A||Nj |.
First, considering only one independent agent i observed by a max-plus agent j,
for any state that is generated by the selected action ai, the maximum regret of
an action aj is defined as:

R(aj) = maxai∈A{maxak∈A{fij(ai, ak)} − fij(ai, aj)} (11)

where the calculation within the max operator for the actions of i depicts the
element ai, aj of the regret table.

The criteria we examined so far only form messages based on the actions of
individual neighbors. However, for Minimax Regret, viewing each neighbor indi-
vidually is inappropriate, as the resulting messages, consisting of regret values
are not properly combined through a simple summation process. As such, Mini-
max Regret takes into account all independent neighbors from the perspective of
each max-plus agent. Consequently, we must calculate the payoffs for each state
created by the combination of action of the neighbors. Thus, given a max-plus
agent j, and a set of p independent agents {i1, · · · , ip} connected with j within
the CG, the maximum regret of each action aj is calculated as:

R(aj) = max{ai1 ,··· ,aip}∈Ap

{
maxak∈A

{ ip∑

i=i1

fij(ai, ak)
}

−
ip∑

i=i1

fij(ai, aj)
}

(12)

where we are interested in minimizing R(aj) instead of maximizing. As such,
the associated message is: μij(aj) = −R(aj), where the index i now reflects the
whole set of independent agents that j observes and is connected to, meaning
that in contrast to all other criteria, we emulate a single set of messages for all
independent agents connected to j.

To calculate R(aj),∀j ∈ A, we use a tree to construct the joint action space,
and obtain the sum of the local functions associated with each independent agent.
Starting at the root, we create |A| children and attach to them the associated
local message payoff, resulting from the joint action of j with the neighbor i1.
We then iteratively expand each child node according to the actions of the ik
neighbor and attach to each node the associated local message payoff plus the
value of parent node. This is repeated for all neighbors p. As such, each leaf
node will contain the sum of local payoffs associated with the corresponding
joint action of all neighbors.
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Laplace’s Equal Likelihood Criterion. The Laplace criterion [3] is based
on the principle of insufficient reason. Essentially, it states that if there is no
sufficient reason to assume the probabilities of any scenario occurring, we can
only infer that all possible outcomes occur with the same probability. For each
action agent i may take, we assign the same probability. Since we consider all
agents in our environment have the same set of available actions as our agents,
the probability assigned to each action is 1

5 = 0.2. The message attached to
the action aj of max-plus agent j from non-cooperative agent i, is formed by
calculating the average payoff for all actions of i:

μij(aj) =
∑

ai∈A

1
|A| · (fij(ai, aj)) (13)

Thus, the Laplacian criterion considers each action to be occurring with the
same frequency. This of course cannot possibly hold true for autonomous agents
in a lane-free environment, which are expected to be adopting different driv-
ing behaviours and strategies. As such, we expect that classifying independent
agents into different behavioural types, and tracking their actions in an oppo-
nent modelling fashion, could be beneficial in terms of computing more accurate
average payoff estimates and thus coordination messages.

As a first step towards that direction, we devise a simple opponent model by
classifying each independent agent according to its surroundings. We detail that
model immediately below.

Opponent Modelling. The behavior of drivers in real-life scenarios is heavily
dependent on the vehicles in close proximity. For instance, a driver will not
accelerate when another is directly in front of her and will be reluctant to slow
down to avoid hitting cars that are in her rear.

We use a simple heuristic in order to classify each independent agent by the
number of their respective neighbors. For an independent agent i, we distinguish
each neighbor k (within distance of do = 50m from the perspective of i) based
on the relative position from i, i.e., we recognize that k is in front of i when
its relative longitudinal position is greater than 0 (dx = xk − xi). Similarly, k
is considered to be on the left or right w.r.t. i based on their respective lateral
placement. Based on these values we consider each neighbor of the independent
agent to be either at its front-left, front-right, rear-left or rear-right.

An illustrative example is provided in Fig. 2, where vehicle 0 is an indepen-
dent agent with five other agents 1, 2, 3, 4 and 5 in its surroundings. Each
neighboring agent of 0 must be in one of the 4 regions to be characterised as a
front-left, front-right, rear-left or rear-right neighbor. Based on these areas, we
consider be 1 on the rear-left, 2 and 3 on the rear-right, 4 on the front-right, and
5 on the front-left of independent agent 0.

Then, for independent agent i we count the number of neighbors on each
region and classify i by this information. To bound the number of classes, we con-
sider at most five agents within each aforementioned region, prioritizing accord-
ing to the agents’ distance from i. That means each agent i belongs to a category
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Fig. 2. Showcasing the assignment of an independent agent’s neighbors to each region.

described by a tuple: 〈n0, n1, n2, n3〉, where elements are the number of front-
left, front-right, rear-left, and rear-right neighbors respectively. This results in
64 = 1296 different classes of agents (each element has six possible states, from
0 to 5 agents). To determine the probability of an action that an independent
agent may take, we first observe their actions and update the frequencies of their
actions accordingly.

Notice that the acceleration of independent agents can be observed implic-
itly by the max-plus agents at each time-step, through the speed update. Thus,
the acceleration of an independent vehicle is calculated by ac = vt−vt−1

time step ,
where vt−1, vt is the longitudinal speed of an independent agent at two consecu-
tive time-steps. Any independent agent may operate directly in the continuous
domain, i.e., have continuous values for acceleration. We convert these to the
available set of discrete actions in order to be compatible with max-plus. We
remind the reader that we have a set of 5 discrete actions, with action a0 being
equivalent to zero acceleration across all axes. We set a threshold value of ct.
If the acceleration of an independent agent does not exceed these threshold in
both axes, we assume they perform the action a0. The actions a1, a2 that cor-
respond to movement in the x axis (acceleration and deceleration respectively),
are assumed when the agent’s longitudinal acceleration exceeds ct in the corre-
sponding direction. Similarly for the lateral acceleration.

Finally, after collecting information from independent agents, the emulated
message attached to the action aj of a max-plus agent from an independent
agent i, is formed by calculating the weighted average payoff for all actions of i,
and Eq. 13 now becomes:

μij(aj) =
∑

ai∈A

wclass(i, ai) · (fij(ai, aj)) (14)

where wclass(i, ai) returns the measured weight (i.e., frequency of occurrence)
of action ai for the associated class of i, by accessing information regarding i’s
neighbors for the classification.
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4 Experimental Evaluation

In this section we present our experimental evaluation where we first introduce
independent lane-free agents. In order to investigate more “extreme” conditions,
we also examine independent agents with added noise, which naturally adds
to the uncertainty. Then, we provide our experimental results for 2 different
distributions of lane-free agents and independent agents, and for all levels of
noise considered.

4.1 Lane-Free Independent Agents (with Noise)

We introduce independent agents based on a rule-based approach in lane-free
traffic environments [11]. These agents behave rationally, in the sense that they
try to maximize speed while actively trying to avoid collisions with other agents
by observing nearby vehicles. We refer the interested reader to [11] for more
information on these agents’ movement strategy. In order to properly evaluate
our proposed approach, and increase the uncertainty induced, we add noise to
the control of these independent agents. The two acceleration values ax, ay of
each independent agent in a particular time step, resulting from its policy, is
filtered with additional noise. The actions a′

x and a′
y that the agent will actually

perform are: a′
x = ax + npx · ax & a′

y = ay + npy · ay, where np ∼ U(−cp, cp)
and U is a uniform distribution. Note that for small values of ax, ay, i.e., when
the agents maintain the same speed, the added noise will have a negligible effect
since it depends on the values of the initially chosen accelerations ax, ay. As
such, we also examine a second type of noise, n, which is independent of the
accelerations of the new vehicles, a′

x = ax + nx & a′
y = ay + ny, n ∼ U(−c′, c′),

and has an increased effect as we observe from the experimental evaluation.
Summarizing, the three types of independent agents we introduce to our

environment are:

– Type A: Lane-free agents with no noise
– Type B: Lane-free agents with noise np ∼ U(−0.5, 0.5)
– Type C: Lane-free agents with noise n ∼ U(−1.0, 1.0)

As mentioned, the independent agents incorporate a different policy, that
does not rely on communication/coordination among agents. Also, their accel-
eration values are continuous, while max-plus agents operate on a discretized
action domain, thus making the prediction of what the next action for each
agent will be even more difficult.

4.2 Simulation Environment

To examine the effectiveness of each criterion we use an extension of SUMO,
designed for lane-free traffic [13]. We extend the SUMO environment setup in [7],
to include both max-plus agents and agents based on [11], and can adjust the
distribution of the different varieties of agents (e.g., max-plus and independent in
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Table 1. Simulation parameters.

Parameter Value

Highway length 5 km

Highway width 10.2 m

Vehicle length 3.2 m

Vehicle width 1.6 m

Simulation time 1 h

Time-interval 0.25 s

vd (desired speed) [25, 35]m
s

vx,init (initial speed) 25m
s

Inflow rate 7200 veh
hr

our case) entering the simulation environment. This gives us the opportunity to
control the penetration rate of max-plus and independent agents in the highway,
and observe the interaction between them. In this environment, we examine
and compare the number of collisions between max-plus agents and independent
ones. In every time-step, we consider that a collision occurs when two vehicles’
positions overlap.

4.3 Experiments and Results

For our evaluation, we introduce a baseline criterion with a simplistic assump-
tion, to provide more incentives for the use of decision-making criteria. Specifi-
cally, as a baseline criterion, we assume that independent agents always perform
action a0, i.e., 0 acceleration in both axes, meaning that the emulated messages
have the form: μij(aj) = fij(a0, aj).

The parameters relevant to the lane-free scenario we examined are shown in
Table 1. We examined two different configurations regarding the distribution of
vehicles. Specifically, in our first scenario, 40% of our CAVs population consists
of independent agents; while in the second scenario, the independent agents
are 60% of all CAVs. Both distributions contain results for the three types of
independent agents (i.e., types A, B, and C), as discussed in Sect. 4.1.

Results. Experimental results are provided in Figs. 3 and 4, for our first and
second scenario respectively. The results shown are averages across 10 runs with
different seed values each (the seed value for each run are the same across all
experimental configurations). Code was written in Python 3, and simulations
were executed on a PC with an Intel i7-7700k CPU and 16 GB of RAM. Each
run of 1 h of simulation required approximately 45 min, with the Minimax Regret
criterion adding a small overhead of around 5 min. We report that we observed
an average speed within the range [28.6, 29.3] m/s for all different seed values.
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Fig. 3. Collisions per hour for experiments with a distribution of 60% max-plus agents
and 40% non-max-plus agents.

The speed deviation between each criterion was not significant, and variations
were observed due to the different seed values.

Regarding collisions, a first observation is that the baseline criterion exhibits
more collisions than any of the criteria we used: as shown in both figures, for each
independent agent type, the performance of the baseline approach is consistently
worse than any decision-making criterion used. This motivates the use of more
elaborate ways to address the uncertainty regarding other agents, as it clearly
affects performance. It is important to note that while the baseline performs
worse when compared to the agents following the more elaborate decision-making
criteria, agents using the baseline criterion still use our extension of the max-plus
algorithm and do observe the other vehicles in the highway.

Hurwicz allows us to balance both the best- and worst-case scenarios. How-
ever, standard uses of Hurwicz under-perform, resulting into more collisions when
compared even to the more naive Maximax criterion. Only the use of a dynamic
β provides a noticeable improvement, which allows us to adjust our optimism
depending on how close the vehicles are. This leads to fewer collisions compared
to the use of the Hurwicz criterion with fixed β. Intuitively, one could assume
that the pessimism of Maximin may be excessive, especially when there is no
noise added. This intuition proved false, as Maximin performs better than both
Maximax and Hurwicz with constant β, presumably due to the fact that indepen-
dent agents have a distinct methodology of choosing their actions that does not
match with the local functions of max-plus agents. That means the conservative
approach of Maximin fairs better with them than initially expected.
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Fig. 4. Collisions per hour for experiments with a distribution of 40% max-plus agents
and 60% non-max-plus agents.

The performance of the Minimax Regret approach lies between that of Max-
imin and Hurwicz with dynamic β, but Minimax Regret provides somewhat
better results for the high noise levels (Type C agents), as can be observed in
both figures. Apparently, the notion of regret along with the joint view of all inde-
pendent agents, helps in environments with higher unpredictability (increased
noise levels).

The Laplacian approach provides similar results with all aforementioned cri-
teria, and has a slight advantage when the levels of noise are high.

However, for lower noise levels (i.e., for independent agents of Type A & B),
the Hurwicz with dynamic β provides slightly better results, indicating that our
heuristic function for β performs better in low noise environments.

For the opponent model, we set the associated threshold to ct = 0.5, and
collect data from 10 1-h simulations (with different seed values) using the Lapla-
cian approach. Opponent modeling provides only a marginal improvement w.r.t.
the Laplacian when the vehicles do not have noise for the first configuration (cf
Fig. 3), since the observations used for estimating the frequencies of actions for
each class do coincide with the policy of the independent agents (not filtered with
noise). Of course, this is not the case when noise is added, due to the observed
behavior being partially inconsistent. We believe that a more refined opponent
model would enhance the results, and therefore it constitutes an imminent future
research endeavor.

In general, replacing max-plus agents with more independent agents leads to
more uncertainty in our decision making (cf Fig. 4), resulting in more collisions
and smaller margins between both the different criteria, and the different types.
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5 Conclusions and Future Work

In this paper we extended the application of the max-plus algorithm to the lane-
free environment [13] in order to render it compatible with agents not obeying
the same algorithm. We did so by estimating the actions of the other agents using
different criteria that tackle uncertainty, and our experimental evaluation exhib-
ited improvement when those criteria are in effect. Notably, max-plus agents now
encounter vehicles whose available range of actions is significantly larger than
their own set of actions.

In future work, we plan to expand our work and establish ways to incorpo-
rate continuous actions of observed agents on the emulated messages. Moreover,
it would be interesting to combine the proposed approach with the work of [14]
which introduces a dynamic discretization variant of the algorithm, that enables
its use in continuous action domain by lifting the task of predetermining a con-
stant number of appropriate discrete actions. Furthermore, as mentioned already,
the opponent model is quite simplistic, and can be re-examined so as to incorpo-
rate more features that are important (such as the speed of the vehicles)—and to
also address the quantification of uncertainty, potentially by using probabilistic
opponent modelling techniques [2] along with incorporation of domain knowl-
edge (i.e., the expected behavior of vehicles). Finally, we intend to investigate
the application of the distributed max-plus variant [7], and compare with our
work in this paper.
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Abstract. We study the problem of fair allocation of a set of indivisi-
ble items among agents with additive valuations, under cardinality con-
straints. In this setting, the items are partitioned into categories, each
with its own limit on the number of items it may contribute to any
bundle. We consider the fairness measure known as the maximin share
(MMS) guarantee, and propose a novel polynomial-time algorithm for
finding 1/2-approximate MMS allocations for goods—an improvement
from the previously best available guarantee of 11/30. For single-category
instances, we show that a modified variant of our algorithm is guaran-
teed to produce 2/3-approximate MMS allocations. Among various other
existence and non-existence results, we show that a (

√
n/(2

√
n − 1))-

approximate MMS allocation always exists for goods. For chores, we show
similar results as for goods, with a 2-approximate algorithm in the gen-
eral case and a 3/2-approximate algorithm for single-category instances.
We extend the notions and algorithms related to ordered and reduced
instances to work with cardinality constraints, and combine these with
bag filling style procedures to construct our algorithms.

Keywords: Constrained fair allocation · Indivisible goods · Indivisible
chores · Maximin share · Matroid constraints · Cardinality constraints

1 Introduction

The problem of fair allocation is one that naturally occurs in many real-world
settings, for instance when an inheritance is to be divided or limited resources
are to be distributed. For a long time, the research in this area primarily focused
on the allocation of divisible items, but lately the interest in the more compu-
tationally challenging case of indivisible items has seen a surge. (Bouveret et al.
provide a somewhat recent overview [8]). For this variant of the problem, many
of the central fairness measures in the literature on divisible items, such as envy-
freeness and proportionality, are less useful. Instead, relaxed fairness measures,
such as the maximin share (MMS) guarantee [10], have been introduced, where
all agents receive at least as much as if they partitioned the items but were
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the last to select a bundle. It is not always possible to find an MMS allocation
[12,22,26], but good approximations exist [15,16].

Fairly allocating items in the real world often involves placing constraints on
the bundles allowed in an allocation. For example, consider the problem where
a popular physical conference or convention offers a variety of talks and panels
organized across several synchronized parallel tracks. Due to space constraints,
each talk is limited to some maximum number of participants, fewer than the
total number of participants at the conference. Consequently, there may be more
people interested in attending some talks than there are available seats. To mit-
igate this, the conference wants to fairly allocate the available seats, based on
participants’ preferences, so that no participant receives seats they cannot use,
i.e., multiple seats at the same talk or seats at multiple talks in the same time
slot. In order to solve this problem, we need to be able to express that some
items belong to the same category (seats at talks in the same time slot) and
that there is a limit on the number of items each category can contribute to any
bundle (in this case 1). This kind of constraints is called cardinality constraints
and was introduced by Biswas and Barman [6].

The conference example highlights a general type of problems for which car-
dinality constraints are useful, where each agent should not receive more items
of a certain type than she could possibly have use for. Another such problem is
the motivating example of Biswas and Barman [6]: A museum is to fairly allo-
cate exhibits of different types to newly opened branches. To make sure that each
branch can handle its allocated exhibits, so that no exhibits go to waste, an upper
limit is placed on the number of exhibits each branch can be allocated of each
exhibit type. The constraints may also provide each agent with some diversity
in the type of items she receives. For example, with sufficiently small limits in
the museum example, each branch must receive a somewhat diverse collection of
exhibits.

Another application is making sure that items of certain types are guaranteed
to be roughly evenly distributed among the agents. This can be achieved by setting
the number of items each agent can receive from a given category close to the
number of items in this category divided by the number of agents. For example,
consider a situation where a set of donated items, including a limited number of
internet-capable devices, are to be fairly allocated to low-income families. A single
family can make use of many internet-capable devices. However, the organization
behind the allocation process may want to make sure that as many families as
possible have access to the internet. By placing all the internet-capable devices in
the same category and giving each family at most one item from this category, the
internet-capable devices will be distributed to as many families as possible.

Biswas and Barman [6] showed that under cardinality constraints, with addi-
tive valuations, it is always possible to find an allocation of goods where each
agent gets at least 1/3 of her MMS. This is achieved by a reduction to an uncon-
strained setting with submodular valuations, where the approximate allocation
is found using an algorithm described by Ghodsi et al. [16]. More recently, Li
and Vetta showed that 11/30-approximate MMS allocations are guaranteed to
exist under hereditary set system constraints [24]. This approximation guarantee
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is achievable in polynomial time for certain classes of set systems, including set
systems representing cardinality constraints.

1.1 Contributions

We develop a polynomial-time algorithm for finding 1/2-approximate MMS allo-
cations for goods under cardinality constraints, improving on the 1/3 and 11/30
guarantees of Biswas and Barman [6] and Li and Vetta [24], which are, to our
knowledge, the best guarantees previously available. To construct the algorithm,
we extend the notions and algorithms related to ordered and reduced instances
to work with cardinality constraints, and combine these with a bag-filling style
algorithm. Combining this algorithm with a lone-divider style [1] preprocessing
step, we show that (

√
n/(2

√
n − 1))-approximate MMS allocations always exist

for goods—a large improvement for few agents. The preprocessing step unfortu-
nately relies on finding MMS-partitions, an NP-hard problem [29]. However, the
1/2-approximate MMS algorithm is able to find both (n/(2n − 1))-approximate
MMS allocations and 1-out-of-(2n−1) MMS allocations by changing a constant.

For chores, we show that a similar approach finds 2-approximate (or, more
precisely, ((2n − 1)/n)-approximate) MMS allocations in polynomial time. This
is, to our knowledge, the first MMS result for chore allocation under cardinality
constraints.

We also examine a special case of cardinality constraints, in which all the
items belong to the same category. This case is equivalent to placing a restric-
tion on the number of items in each bundle, or equivalently restricting bundles
to independent sets of a uniform matroid. This is a setting of interest in itself,
especially for chores, where it can be useful to make sure that no agent is stuck
with a much larger number of chores than anyone else. By modifying our general
algorithms, we show that in this special case, (2/3)-approximate MMS alloca-
tions for goods and (3/2)-approximate MMS allocations for chores can be found
in polynomial time.

1.2 Related Work

Several other constraint types have been examined in the recent literature. (See
Suksompong’s recent survey for a detailed overview [28].) One such constraint
is that all agents must receive exactly the same number of items [13], a more
restrictive version of our single-category instances. Another, studied by Bouveret
et al., uses an underlying graph to represent connectivity between the items and
requires each bundle to form a connected component [7]. Such connectivity con-
straints have since been explored in many papers [e.g., 5,19,25]. A variation is
the allocation of conflicting items, where each bundle must be an independent
set in the graph [11,20]. There is some overlap between this scenario and cardi-
nality constraints with threshold 1 [cf. 20], but neither is a generalization of the
other. Cardinality constraints have recently been studied by Shoshan et al., who
considered the problem of finding allocations that are both Pareto optimal and
EF1 for instances with two agents [27].
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Matroids have been used to constrain allocations in several different ways
[18]. The cardinality constraints placed on a single bundle may in fact be repre-
sented by a partition matroid or for single-category instances a uniform matroid.
The 1/2-approximate MMS algorithm of [17] applies to the superficially similar
problem where a single matroid constraint is placed on the union of all bun-
dles. As pointed out by [6], this algorithm cannot be applied to the cardinality
constraint scenario.

2 Preliminaries

For a given instance, I = 〈N,M, V 〉, of the fair allocation problem, let N =
{1, 2, . . . , n} denote a set of agents, M = {1, 2, . . . ,m}, a set of items, and V =
〈v1, v2, . . . , vn〉, the valuation profile, i.e., the collection of the agents’ valuation
functions vi : 2m → R over the subsets S ⊆ M . For simplicity, the valuation
of a single item vi({j}) will be denoted by both vi(j) and vij . We assume that
the valuations are additive, i.e., vi(S) =

∑
j∈S vij . We wish to find an allocation

A = 〈A1, A2, . . . , An〉 that forms a partition of M into n possibly empty subsets,
or bundles, one for each agent. We say that an instance I consists of goods if
vij ≥ 0 for all i ∈ N, j ∈ M , and chores if vij ≤ 0 for all i ∈ N, j ∈ M .
We consider both instances consisting of goods and ones consisting of chores.
However, we do not consider instances consisting of a mix of goods and chores.
For simplicity, we will throughout the paper assume that all instances consist of
goods, except for in Sect. 7, which covers our results on chores.

For the fair allocation problem under cardinality constraints, an instance is
given by I = 〈N,M, V,C〉, where C is a set of � pairs 〈Ch, kh〉 of categories Ch

and corresponding thresholds kh. The categories constitute a partition of the
items, M . An allocation A is feasible for the instance if no agent receives more
than kh items from any category Ch, i.e., if |Ai ∩ Ch| ≤ kh for all i ∈ N,h ∈
{1, . . . , �}. We let FI denote the set of all feasible allocations for I, with the
subscript omitted if it is clear from context. To guarantee that there is at least
one feasible allocation, i.e., F �= ∅, no category may contain more items than we
can possibly distribute, i.e., we require that |Ch| ≤ nkh for all h ∈ {1, . . . , �}1.

We are concerned with the fairness criterion known as the maximin share
guarantee [10]. The maximin share (MMS) of an agent is the value of the most
preferred bundle the agent can guarantee herself if she were to divide the items
into feasible bundles and then choose her own bundle last. More formally:2

Definition 1. Let I = 〈N,M, V,C〉 be an instance of the fair allocation problem
under cardinality constraint. The maximin share of an agent i for the instance
I is given by

μI
i = max

A∈FI

min
Aj∈A

vi(Aj) ,

1 Instances with more than nkh items in category Ch can be handled by ordering the
instance (see Sect. 3) and ignoring the worst items in the category.

2 The definition is equivalent for chores.
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where FI is the set of feasible allocations for I. If I is obvious from context, we
write simply μi.

An allocation is said to satisfy the MMS guarantee, or to be an MMS alloca-
tion, if each agent gets a bundle valued at least as much as the agent’s MMS, i.e.,
vi(Ai) ≥ μi for all agents i. We concern ourselves with allocations that satisfy
this guarantee approximately, where an allocation is said to be an α-approximate
MMS allocation for some α > 0 if vi(Ai) ≥ αμi for all agents i. An allocation A
is said to be an MMS partition of an agent i, if vi(Aj) ≥ μi for all Aj ∈ A. By
definition, at least one MMS partition exists for any agent in any instance. As
MMS allocations are not guaranteed to exist [12,22,26], there exists a general-
ized and relaxed version of MMS, called the l-out-of-d MMS [3].3 This fairness
criterion works like MMS, except that the agent is to partition the goods into
d feasible bundles maximizing the combined value of the l least valuable bun-
dles in the partition. Our algorithms require some knowledge about the value
of μi in order to determine when a bundle is worth at least αμi to an agent i.
Finding the MMS of an agent is known to be NP-hard for the unconstrained
fair allocation problem [29]. Since unconstrained fair allocation is simply the
special case of � = 1 and k1 = m, finding an agent’s MMS is at least as hard
under cardinality constraints.4 In order to provide polynomial-time algorithms,
we exploit the fact that μi cannot be larger than the average bundle value, i.e.,
μi ≤ vi(M)/n, and we can scale all values so that vi(M) = n, so that μi ≤ 1,
as shown in the following theorems. Due to space constraints, their proofs have
been omitted, but can be found in the extended version on arXiv, along with
all other omitted proofs.5 The proofs from ordinary fair for the two succeeding
theorems do in fact extend to cardinality constraints without any modification
[see, e.g., 2,14]. We assume, without loss of generality, that vi(M) > 0 for each
agent i.6

Theorem 1. (Scale invariance). If A is an MMS allocation for the instance
I = 〈N,M, V,C〉, then A is also an MMS allocation for I ′ = 〈N,M, V ′, C〉,
where v′

i(S) = aivi(S), ai > 0, for some agent i.

Theorem 2. (Normalization). Let I = 〈N,M, V,C〉 be an instance of the fair
allocation problem of under cardinality constraints and vi(M) = |N | for some
agent i. Then μi ≤ 1.

Once valuations have been normalized, constructing an α-approximate MMS
allocation reduces to providing each agent with a bundle worth at least α.
3 We use l instead of the usual � to avoid conflicting use of symbols.
4 In the unconstrained setting, a PTAS exists for finding the MMS of each individ-

ual agent [29], but this PTAS does not extend to fair allocation under cardinality
constraints and there does not, to our knowledge, exist a PTAS for this problem.

5 Available at https://arxiv.org/abs/2106.07300, together with an earlier preprint ver-
sion (v1) containing some preliminary experiments and corresponding source code.

6 If vi(M) = 0, normalization does not work. However, since this implies μi = 0,
Corollary 1 can be used to eliminate agent i from the instance.

https://arxiv.org/abs/2106.07300
https://arxiv.org/abs/2106.07300v1
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3 Ordered Instances

In the unconstrained setting, Bouveret and Lemâıtre showed that each instance
can be reduced to an instance where all agents have the same preference order
over all goods [9]. That is, in such an instance there exists an ordering of the
goods such that when j < k, we have vij ≥ vik for all agents i. While Bouveret
and Lemâıtre introduced these as instances that satisfy same-order preferences,
we will refer to them as ordered instances, as is the norm for MMS-approximation
algorithms [4,14].

The reduction works as follows. For each agent, sort the good values and reas-
sign these to the goods, which are listed in some predetermined order, common
to all agents. Allocations for the reduced instance are converted into allocations
for the original instance, without diminishing their value, by going through the
goods in the predetermined order; the agent who originally received a given good
instead chooses her highest-valued remaining good.

Since only the permutation of value assignments to goods changes, the reduc-
tion does not change the MMS of each agent. Thus, any α-approximate MMS
allocation in the ordered instance will also be α-approximate in the original
instance. Ordered instances are therefore at least as hard as any other instances,
and it suffices to show that an algorithm produces an α-approximate MMS allo-
cation for ordered instances.

The standard definition of an ordered instance does not work under cardinal-
ity constraints, due to an inherent loss of information about which goods belong
to which category. Without this information, one is not guaranteed to be able
to produce a feasible α-approximate MMS allocation when converting back to
the original instance. We generalize the definition to fair allocation under cardi-
nality constraints. In the special case where � = 1, this definition and the later
conversion algorithms are equivalent to those of Bouveret and Lemâıtre.

Definition 2. An instance I = 〈N,M, V,C〉 of the fair allocation problem
under cardinality constraints is called an ordered instance if each category
Ch = {c1, c2, · · · , c|Ch|} is ordered such that for all agents i, vi(c1) ≥ vi(c2) ≥
· · · ≥ vi(c|Ch|).

With the generalized definition, the reduction of MMS-approximation to
ordered instances can be extended to cardinality constraints by applying the
algorithms of Bouveret and Lemâıtre to each category Ch individually, as shown
in algorithms 1 and 2.

Lemma 1. Let I = 〈N,M, V,C〉 be an instance of the fair allocation problem
under cardinality constraints, and A′ a feasible α-approximate MMS allocation
for the ordered instance I ′ produced by Algorithm 1. Then the allocation produced
by conversion of A′ with Algorithm 2 is a feasible α-approximate MMS allocation
for I.

Repeating the ordering and deordering procedure for each category does not
affect the polynomial nature of the procedures. As a result, the reduction to
ordered instances holds.
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Theorem 3. For fair allocation under cardinality constraints, MMS-approx-
imation reduces to MMS-approximation of ordered instances in polynomial time.

Proof. By Lemma 1 it is sufficient to find an α-approximate MMS allocation for
the reduced instance produced by Algorithm 1. Since both algorithms 1 and 2 are
polynomial in the number of agents and goods for each category, the reduction
is polynomial in the number of agents, goods and categories.

4 Reduced Instances

High-valued goods are generally harder to handle than low-valued goods in
MMS-approximation. Low-valued goods can easily be distributed across bun-
dles in an approximately even manner and to a certain extent in a way that
makes up for an uneven value distribution due to the high-valued goods. High-
valued goods, on the other hand, allow only for a rough and usually uneven
distribution. In order to simplify the problem instances, we wish to minimize
both the number of high-valued goods and the maximum value of a good.

If we remove an agent i and a bundle B ⊆ M from an instance, the result is
called a reduced instance. If the bundle’s value is sufficiently high (vi(B) ≥ αμi)
and the MMS of the remaining agents are at least as high after the removal,
this is called a valid reduction [15], a concept used in many MMS approximation
algorithms for the unconstrained fair allocation problem [e.g., 14,16,23].7 With
a valid reduction we can both guarantee agent i a bundle with a value of at least
αμi and reduce the original instance to a smaller problem instance.

Given the above definition, a valid reduction could leave an instance without
any feasible (complete) allocations, as there may be more goods left in a category
than can be allocated to the remaining agents. We require that a valid reduction
leaves the reduced instance with at least one feasible allocation.

7 The term reduction here refers to data reduction, as the term is used in parameterized
algorithm design, rather than to the problem transformations of complexity theory.
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Definition 3. Let I = 〈N,M, V,C〉 be an instance of the fair allocation problem
under cardinality constraints, B a feasible bundle, i an agent, and I ′ = 〈N \
{i},M \ B, V ′, C ′〉, where V ′ and C ′ are equivalent to V and C, with agent i
and the items in B removed. If vi(B) ≥ αμI

i , FI′ �= ∅ and μI′
i′ ≥ μI

i′ for all
i′ ∈ N \ {i}, then allocating B to i is called a valid reduction.

Most of the valid reductions used in unconstrained fair allocation are based
on the pigeonhole principle. If you can find a set of goods that are worth at least
αμi to some agent i and show that all agents must have an MMS partition with
a bundle containing an equivalent number of equally or higher valued goods,
then you have a valid reduction. The latter part is exactly what the pigeonhole
principle promises if we, e.g., look at the bundle {n, n + 1} in unconstrained
fair allocation. Under cardinality constraints, we can also utilize the pigeonhole
principle to find valid reductions. The usefulness is, somewhat reduced, due to
both a lack of a common preference ordering across categories and the restric-
tiveness of the category thresholds. We can, however, show a general result for
valid reductions based on the pigeonhole principle.

Theorem 4. Let I = 〈N,M, V,C〉 be an ordered instance of the fair allocation
problem under cardinality constraints, and let B = {j1, . . . , jk} be a feasible
bundle of k ≥ 1 goods such that vi(B) ≥ αμi for an agent i ∈ N and α > 0. Let
each agent i′ ∈ N \{i} have a bundle Bi′ in one of her MMS partitions such that
there is an injective map f : B → Bi′ where, for each j ∈ B, j and f(j) belong to
the same category, and vi′(f(j)) ≥ vi′(j). Let B′ be the bundle consisting of the
goods in B and for each Ch ∈ C the max(0, |Ch \B|− (|N |−1)kh) lowest-valued
goods in Ch \ B. Then, B′ and i form a valid reduction for I and α.

Proof sketch. (full proof in the extended version). For any agent i′ �= i, the
injective map and the construction of B′ guarantees that there is a way to
modify the MMS partition of i′ through trades and transfers of goods, such that
one bundle is turned into B′ and the value of any other bundle is at least as
high as in the MMS partition originally. The construction of B′ also guarantees
a valid instance after the reduction. Since vi(B′) ≥ vi(B) ≥ αμi, B′ and i form
a valid reduction for I and α. �

We can easily use the general result of Theorem 4 to construct similar valid
reductions to those in the unconstrained setting. Any good i valued at more
than αμi for some agent i can be used for a reduction, as the identity function
f : {j} → {j} satisfies the criteria of Theorem 4. Similarly, by the pigeonhole
principle, we can create valid reductions with the n-th and (n + 1)-th most
valuable goods in a single category.

Corollary 1. Let I = 〈N,M, V,C〉 be an ordered instance of the fair allocation
problem under cardinality constraints, where there is an agent i ∈ N and a good
j ∈ M such that vij ≥ αμi for α > 0. Then, a valid reduction can be constructed
from the bundle B = {j}.
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Corollary 2. Let I = 〈N,M, V,C〉 be an ordered instance of the fair allocation
problem under cardinality constraints, with a category Ch = 〈c1, c2, . . . , c|Ch|〉,
|Ch| ≥ |N | + 1, where vi({c|N |, c|N |+1) ≥ αμi for some i ∈ N and α > 0. Then,
a valid reduction can be constructed from the bundle B = {c|N |, c|N |+1}.

It can be tempting to think that we can employ the same valid reductions
within a single category as is possible in the unconstrained setting. This is not
the case, even when the instance only has a single category and three agents
with identical valuations. For example, in the unconstrained setting, any bundle
B consisting of two goods, with vi(B) ≥ αμi for an agent i ∈ N and vi′(B) ≤ μi′

for all other agents i′ ∈ N \ {i}, can be used for a valid reduction. This, is not
the case under cardinality constraints, even when removing B and i produces a
feasible instance without removing any other goods.8

5 MMS Results Under Cardinality Constraints

The reductions of Theorems 2 and 3 and Corollary 1, which can be performed
in polynomial-time, let us restrict finding α-approximate MMS allocations to
normalized ordered instances where each good is worth less than α, without loss
of generality. For such instances, Algorithm 3 can be used to find (|N |/(2N |−1))-
approximate MMS allocations, which for any number of agents is at least a
1/2-approximate MMS allocation.

The algorithm works in a somewhat similar manner to bag filling algorithms
for unconstrained fair allocation [see, e.g., 14,16], i.e., by incrementally adding
goods to (and, in our case, removing goods from) a “bag,” or partial bundle, B,
until vi(B) ≥ α for some agent i. The major difference is the initial content of
the bundle. To make sure that a complete feasible allocation is found, the bundle
initially contains the �|Ch|/n� least-valuable remaining goods in each category
Ch (denoted by CL

h ). This guarantees that the required number of goods is given
away from each category. The value of the bundle is then incrementally increased,
so as to not increase the value by more than α in each step, by exchanging
one of the goods in B from some CL

h , for one of the �|Ch|/n� most valuable
remaining goods in the same category (denoted CH

h ). To mitigate possible effects
of rounding |Ch|/n, one additional good may be added from any category where
|Ch|/n > �|Ch|/n�.

Before proving that the algorithm does indeed find a 1/2-approximate MMS
allocation, we first need a lower bound on the value of the remaining goods at
any point during the execution of the algorithm.

Lemma 2. Let I = 〈N,M, V,C〉 be a normalized ordered instance of the fair
allocation problem under cardinality constraints where all goods are worth less
than α for some α ≥ 1/2. Let n denote the number of remaining agents at any
given point during the execution of Algorithm 3. Then each remaining agent
assigns a value of at least |N | − 2(|N | − n)α to the set of unallocated goods.

8 See Example 1 in the extended version for a simple instance where this fails.
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Proof. Because the instance is normalized, the lemma holds at the start of the
algorithm. Assume that there are n remaining agents at the start of an iteration,
and for each remaining agent i, vi(M) ≥ |N | − 2(|N | − n)α. Let i′ be the agent
receiving B in the iteration. For any remaining agent i �= i′, we wish to show that
vi(M \B) ≥ |N |−2(|N |−n+1)α. Because the valuations are additive, the only
way this cannot hold is if vi(B) > 2α. Since any change to B after the initial
creation adds a good to B or exchanges a good in B for another, any individual
change cannot increase the value of B by more than α. Thus, because the loop
at line 3 terminates as soon as vi(B) ≥ α, the only way we may have vi(B) > 2α
is if it holds initially, i.e., B =

⋃�
h=1C

L
h and vi(

⋃�
h=1C

L
h ) > 2α. However, by

definition vi(CL
h ) ≤ vi(Ch)/n which implies vi(B) ≤ vi(M)/n. Consequently,

vi(M \ B) ≥ (n − 1)vi(B) ≥ (n − 1)2α ≥ (n − 1) ≥ |N | − 2(|N | − n + 1)α. �
With Lemma 2 we have a sufficient lower guarantee for the remaining value.

We are now ready to show the guarantees of the algorithm.

Lemma 3. Given a normalized ordered instance I = 〈N,M, V,C〉 of the fair
allocation problem under cardinality constraints where all goods are worth less
than α = |N |/(2|N | − 1), Algorithm 3 finds a feasible (|N |/(2|N | − 1))-
approximate MMS allocation in polynomial time in the number of agents and
goods.

Proof. When allocating the remaining goods to the last agent, Lemma 2 guar-
antees that the goods are worth at least α, if |N |−2(|N |−1)α ≥ α, which holds
for α ≤ |N |/(2N | − 1). Additionally, as long as B reaches a value of α before
running out of improvement operations, any other agent is also guaranteed to
receive a bundle they value at no less than α. Since B contains the �Ch/n� most
valuable goods in each category Ch when the algorithm runs out of operations,
B reaches a value of at least 1/n of the remaining value. We thus only need to
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show that the remaining value is always at least nα for any remaining agent.
Lemma 2 guarantees that the remaining value is at least |N |−2(|N |−n)α. Since,
this value is at least α for n = |N | − 1, the value is at least 2(n − 1)α + α ≥ nα
for any other n, and we are guaranteed that the value of B reaches at least α in
any iteration. Since μi ≤ 1 for i ∈ N , each agent i receives at least αμi value.

It remains to show that any bundle allocated is feasible. As long as |Ch| ≤
nkh, it holds that �|Ch|/n� ≤ kh and any bundle allocated is feasible. Obviously,
|Ch| ≤ nkh holds when n = |N |, as all instances are assumed to have at least
one feasible complete allocation. Assume that |Ch| ≤ nkh holds at the start
of an iteration. The bundle B starts with �|Ch|/n� ≥ |Ch| − (n − 1)kh of the
goods in Ch and no good is removed without adding another from the same Ch.
Thus, |Ch \ B| ≤ (n − 1)kh and the condition holds for n − 1 after allocating B.
Consequently, each allocated bundle, including the bundle allocated to the last
agent, is feasible.

In each iteration of the algorithm, goods are added to and exchanged through
a set of operations. As no good is added back into B after being removed, the
number of operations in each iteration is polynomial in the number of agents
and goods. Since there are |N | − 1 iterations, the running time of the algorithm
is also polynomial in the number of agents and goods. �
We have now showed everything needed to show that 1/2-approximate MMS
allocations exist and can be found in polynomial time.

Theorem 5. For an instance I = 〈N,M, V,C〉 of the fair allocation problem
under cardinality constraints, a (|N |/(2|N | − 1))-approximate MMS allocation
always exists and can be found in polynomial time.

Proof. By Theorems 2 and 3 and Corollary 1, any instance I can in polynomial
time be converted to one, I ′, that Algorithm 3 accepts. Since I ′ has no more
agents than I, Lemma 3 guarantees that for I ′ an at least (|N |/(2|N | − 1))-
approximate MMS allocation is found in polynomial time by Algorithm 3. The
allocation for I ′ can then be turned back to one for I in polynomial time. �

Algorithm 3 is guaranteed to find α-approximate MMS allocations for all
possible problem instances when α ≤ |N |/(2N | − 1). However, there exist
many types of problem instances for which the algorithm will find a feasible
α-approximate MMS allocation when a larger α is used. For example, for an
instance where vij ≤ μi/4 for all i ∈ N , j ∈ M , the algorithm will always find a
feasible α-approximate MMS allocation when α = 3/4, because then each bun-
dle allocated in the bag filling step is worth no more than 1, unless the bundle
is the starting bag. Generally, increasing α might in the worst case result in the
remaining value decreasing to the point where vi(B) < α for any remaining agent
i after all improvements have been performed on B. However, for many problem
instances, the average value of each allocated bundle is quite a bit smaller than
2α for any remaining agent i. Thus, even for larger values of α, the algorithm
can often find a α-approximate MMS allocation. While it is hard to determine
the largest α that works for a certain problem instance through calculation, it
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is possible to simply check if the algorithm finishes for various values of α. Pre-
liminary experiments suggest that trying the algorithm for a limited number of
different values of α often provides much better approximations.

Since Theorem 5 in fact guarantees each agent a bundle of value at least
(|N |/(2|N | − 1))vi(M), it directly allows us to show that a 1-out-of-(2|N | − 1)
MMS allocation always exists and can be found in polynomial time.

Corollary 3. For an instance I = 〈N,M, V,C〉 of the fair allocation problem
under cardinality constrains, a 1-out-of-(2|N |− 1) MMS allocation always exists
and can be found in polynomial time.

Proof. In a similar fashion to Theorem 2, the 1-out-of-(2|N | − 1) MMS of any
agent can at most be vi(M)/(2|N | − 1). The proof of Lemma 3 shows that
Algorithm 3 gives each agent a bundle valued at least |N |/(2|N | − 1) when
vi(M) = |N |, which is at least the 1-out-of-(2|N | − 1) MMS of any agent. �

It is possible to improve the existence guarantee for MMS approximation by
using bag filling in combination with the lone-divider technique of Aigner-Horev
and Segal-Halevi [1]. In the lone-divider technique, agent i, one of the remaining
agents, is chosen to partition the remaining goods into bundles that all have a
value of at least αμi to i. Then, a non-empty subset of the bundles is allocated
to some subset of the remaining agents, through an envy-free matching which is
guaranteed to exist. An envy-free matching is here a matching where each agent
matched to a bundle values it at no less than αμi and all non-matched remaining
agents value the matched bundles at less than αμi. Aigner-Horev and Segal-
Halevi showed that an envy-free matching always exists [1]. The process is then
repeated until no agent remains. In order to improve the existence guarantee, we
first use the lone-divider technique with a partition scheme that only works when
a large number of agents remain. When the partition scheme no longer works,
the ratio of remaining value to remaining agents has increased, since α < 1 and
any bundle already allocated is worth less than αμi to any remaining agent. The
increased ratio allows Algorithm 3 to be able to provide each remaining agent
with a greater value than before the allocations. Unfortunately, the existence
result is only of an existential nature, as the partition scheme depends on finding
arbitrary MMS-partitions, which is known to be NP-hard [29].

Theorem 6. For an instance I = 〈N,M, V,C〉 of the fair allocation problem
under cardinality constraints, a (

√|N |/(2
√|N | − 1))-approximate MMS alloca-

tion always exists.

Proof sketch. (full proof in the extended version). When only a few bundles have
been given away, any MMS-partition of I for any remaining agent contains at
least as many bundles with a remaining value of αμi or higher, as there are
remaining agents. The goods in the other bundles in the MMS-partition can
then arbitrarily be moved to one of these bundles with remaining value αμi.
On the other hand, since α < 1, as the number of allocated bundles increases,
each remaining agent’s proportional share of the value of the remaining goods
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increases. Thus, Algorithm 3 will be able to guarantee a partition with higher
and higher minimum bundle value. The value of α must then be set so that in any
situation, one of the two methods works. It can be shown that

√|N |/(2
√|N |−1)

is the largest value of α that works. �

6 Uniform Matroid Constraints

In this section we deal with the special case of cardinality constraints in which
there is only a single category, i.e., � = 1. In this case, the cardinality constraints
are equivalent to simply limiting the maximum number of goods in a bundle, or,
equivalently, restricting bundles to be independent sets of a uniform matroid.
Throughout the section we will assume that for any ordered instance, which
provides a total ordering of goods, the goods are numbered in a way such that
vi(j) ≥ vi(j′) for all i ∈ N and j, j′ ∈ M with j < j′. In other words, the goods
are numbered from most preferred (1) to least preferred (|M |). Our main result
(Theorem 7) for single-category instances is the existence of (2/3)-approximate
MMS allocations and the ability to find these in polynomial time.

Theorem 7. For an instance I = 〈N,M, V, 〈(C1, k1)〉〉 of the fair allocation
problem under cardinality constraints, a (2/3)-approximate MMS allocation
always exists and can be found in polynomial time.

In order to prove Theorem 7 we need the following observation about the value
of certain subsets of goods.

Lemma 4. Let I = 〈N,M, V, 〈(C1, k1)〉〉 be an ordered instance of the fair allo-
cation problem under cardinality constraints. For any r ∈ {1, 2, . . . , |N |}, let
Br = {r, r + 1, . . . ,min(|M |, r + k1(|N | − r + 1) − 1)}. Then, for any i ∈ N ,
vi(Br) ≥ (|N | − r + 1)μi.

Lemma 4 provides two useful properties. Most importantly, it can be used to
show that the bundles created during a bag-filling style algorithm (Algorithm 4)
will be worth at least μi before running out of improvements. At the same time,
it provides a direct, polynomial way to improve our estimate of μi (in addition to
Theorem 2) to the required accuracy for the algorithm. Lemma 4 can be used to
show that 2/3-MMS allocations can be found in polynomial time for a restricted
class of instances using Algorithm 4.

Lemma 5. For an instance I of the fair allocation problem under cardinality
constraints satisfying the requirements of Algorithm 4, the algorithm finds a 2/3-
approximate MMS allocation in polynomial time.
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Proof sketch. (full proof in the extended version). The correctness of Algorithm
4 follows from two observations about the construction of B′

j . First, the construc-
tion guarantees that B′

j is feasible and contains at least the required number of
goods so that after allocating B′

j , there are at most k1(j −1) goods left. Second,
Lemma 4, the incremental improvements of B′

j and the distribution of the |N |
most valuable goods into distinct bundles, together guarantee that when j = r,
the value of the min(k1, |Br ∩ M |) most valuable remaining goods in Br is at
least 1 for each remaining agent. Thus, B′

j will always be able to reach a value
of at least 2/3. �
Proof sketch. for Theorem 7 (full proof in the extended version). The proof boils
down to showing that for any instance I, we can either trivially, if |M | ≤ |N |,
find a (2/3)-approximate MMS allocation through valid reduction, or we can
turn I into an instance accepted by Algorithm 4. The latter is achieved through
repeated rescaling based on Theorem 2 and Lemma 4, together with applying
all possible valid reductions based on Corollaries 1 and 2. �

In addition to existence of (2/3)-approximate MMS allocations, certain
restricted classes of single-category instances allow for better approximation or
existence guarantees. Specifically, when the number of goods is not much larger
than the category threshold, approximation results for unconstrained fair allo-
cation apply under cardinality constraints.

Lemma 6. For an instance I = 〈N,M, V, 〈(C1, k1)〉〉 of the fair allocation prob-
lem under cardinality constraints, with |M | < |N | + k1, MMS-approximation
reduces to MMS-approximation for unconstrained fair allocation.



202 H. Hummel and M. L. Hetland

As a result of Lemma 6, the following follows directly from the results of Garg
and Taki on MMS approximation in unconstrained fair allocation [15].

Corollary 4. For an instance I = 〈N,M, V, 〈(C1, k1)〉〉 of the fair allocation
problem under cardinality constraints, with |M | < |N | + k1, a (3/4 + 1/(12n))-
approximate MMS allocation always exists and a (3/4)-approximate MMS allo-
cation can be found in polynomial time.

When the threshold is small enough, it is possible to show that MMS allo-
cations always exist. For larger thresholds, on the other hand, it is possible to
create instances for which there is no MMS allocation.

Lemma 7. Let I = 〈N,M, V, 〈(C1, k1)〉〉 be an instance of the fair allocation
problem under cardinality constraints. If k1 ≤ 2, an MMS allocation always
exists. If k1 ≥ 4, an MMS allocation is not guaranteed to exist.

7 Fair Allocation of Chores

So far we have only considered instances where the items are goods. In this
section we instead consider instances where the items are chores. As our results
on chores are similar in scope and technique to our results on goods, the results
will only be covered briefly with all proofs given in the extended version. We
assume, without loss of generality, that vi(M) < 0.9 Then concepts of scale
invariance and normalization transfer directly to chores.

Theorem 8. (Scale invariance) If A is an MMS allocation for the instance
I = 〈N,M, V,C〉 of the fair allocation of chores problem under cardinality
constraints, then A is also an MMS allocation of I ′ = 〈N,M, V ′, C〉, where
v′

i(S) = aivi(S), ai > 0, for some agent i.

Theorem 9. (Normalization) Let I = 〈N,M, V,C〉 be an instance of the fair
allocation of chores problem under cardinality constraints and vi(M) = −|N | for
some agent i. Then μi ≤ −1.

Further, the reduction to ordered instances works for chores as well. As with
goods, reassigning the valuations of the chores does not change the MMS of any
agent. The earlier conversion algorithm for an allocation of the ordered instance
provides each agent with a bundle of equal or higher value (less disutility), which
provides an equal or better approximation.

Theorem 10. For fair allocation of chores under cardinality constraints, MMS-
approximation reduces to MMS-approximation of ordered instances in polynomial
time.

9 As with goods, normalization does not work if vi(M) = 0. In this case, i can be
removed from the (ordered) instance by allocating i the kh worst chores in each Ch.
This would constitute a valid reduction.
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For chores, the use of valid reductions does not make sense in the same way
as for goods. While valid reductions could still exist and be used, there is a lack
of simple rules for finding useful valid reductions. However, we can still bound
the number of chores that have a large disutility by exploiting the pigeonhole
principle on MMS partitions. Note that Theorem 11 provides a stronger upper
bound on the number of high-valued chores than the bounds for goods when
� ≥ 2.

Theorem 11. Let I = 〈N,M, V,C〉 be an instance of the fair allocation of
chores problem under cardinality constraints, with |M | ≥ |N |r + 1 for an r ∈
{0, 1, . . . }. For agent i ∈ N , let gij ∈ M denote the j-th most valuable chore in
M for i. Then,

vi({gi|N|r+1−r
, gi|N|r+2−r

, . . . , gi|N|r+1}) ≥ μi

Theorems 8, 9 and 11 allow for an easy adjustment of the valuation functions
such that for each agent i ∈ N , μi ≤ −1, vi(M) ≥ −|N | and there are at most
r|N | chores that i values at less than −1/(r +1). Crucially, this guarantees that
no chore is valued at less than −1, allowing a variant of the bag-filling algorithm
used for goods to find 2-approximate MMS allocations.

Theorem 12. For an instance I = 〈N,M, V,C〉 of the fair allocation of chores
problem under cardinality constraints, a ((2N |−1)/|N |)-approximate MMS allo-
cation always exists and can be found in polynomial time.

For single-category instances we can also for chores find much better MMS
approximate allocations using an algorithm similar to Algorithm 4.

Theorem 13. For an instance I = 〈N,M, V, 〈(C1, k1)〉〉 of the fair allocation of
chores problem under cardinality constraints, a (3/2)-approximate MMS alloca-
tion always exists and can be found in polynomial time.

8 Discussion

We improved the currently best known MMS approximation guarantees for car-
dinality constraints by extending the concepts of ordered instances and valid
reductions to this setting. Cardinality constraints do, however, impose additional
challenges that do not exist in the unconstrained setting, limiting the achievable
approximation guarantees. The apparent lack of a common preference order-
ing between distinct categories limits the degree to which the number of and
maximum value of high-valued goods can be restricted—an important factor in
improving the approximation guarantee of bag-filling style algorithms. Cardinal-
ity constraints also restrict the usability of other types of MMS-approximation
algorithms. For example, the lone-divider method may easily allocate bundles
that contain many items from a single category and few from others, which in
turn can make all further feasible divisions very unbalanced.
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reviewers.
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Abstract. Strategic voting, or manipulation, is the process by which a
voter misrepresents his preferences in an attempt to elect an outcome
that he considers preferable to the outcome under sincere voting. It is
generally agreed that manipulation is a negative feature of elections, and
much effort has been spent on gauging the vulnerability of voting rules to
manipulation. However, the question of why manipulation is actually bad
is less commonly asked. One way to measure the effect of manipulation
on an outcome is by comparing a numeric measure of social welfare under
sincere behaviour to that in the presence of a manipulator. In this paper
we conduct numeric experiments to assess the effects of manipulation on
social welfare under scoring rules. We find that manipulation is usually
negative, and in most cases the optimum rule with a manipulator is
different to the one with sincere voters.

Keywords: Strategic voting · Scoring rules · Social choice · Social
welfare

1 Introduction

In the parlance of social choice, voting is the mechanism by which a group of
agents aggregate their preferences over a set of outcomes to select a single out-
come for the whole of society. The language naturally brings to mind a political
election – and indeed, modern voting theory traces back to the proposals of elec-
toral reform by Borda and Condorcet in 18th century France – but the model can
equally well describe the process by which a panel of judges determines the win-
ner of a contest, a firm makes its hiring decisions, or an ensemble of algorithms
comes to a joint decision.

Strategic voting is the process by which an agent casts a vote not in agree-
ment with his true preferences, but in an attempt to attain the most preferable
outcome – the standard example is a supporter of a minor third party voting for
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a major party closest to his ideological position. Strategic voting is also known
as manipulation, a much more coloured term that is more readily associated
with fraud, bribery, and other malfeasance, rather than the innocent act of not
wasting one’s vote. In a political context, one could even go so far as to claim
it is the democratic duty of every citizen to “manipulate” in this fashion to
make his voice heard. To understand why manipulation is perceived negatively,
one needs to consider the other applications of voting, those involving a small
panel of experts choosing among outcomes, particularly when some outcomes
are objectively “better” or “more correct” than others. In the case of a sport-
ing event, we would certainly hope the judges rank the athletes based on their
objective performance rather than personal preference (though we understand
well enough that this is not always the case [28]).

The Gibbard-Satterthwaite theorem [10,23] established that all non-trivial
voting rules are vulnerable to manipulation, but that does not mean that all
rules are equally vulnerable, and much attention has been focused determining
that degree of vulnerability by measuring the likelihood of manipulation taking
place [3,7,25], the complexity of finding such a manipulation [1,11,22], or the
amount of information necessary to manipulate [6,8,26].

While these approaches greatly improved out understanding of how hard or
how likely it is to affect the outcome of a voting rule, they said nothing about
whether or not this manipulation is actually bad. In a sense, they did not have the
vocabulary to do so – the twentieth century was dominated by the axiomatic
approach to voting, studying which properties a voting rule does or does not
satisfy, and the question of why we vote (presumably, to elect good outcomes)
was rarely asked.

This was not always the case. Condorcet motivated his method as electing
the objectively “correct” candidate [27], while Borda’s contemporaries observed
that his method can be seen to maximise voter satisfaction [13]. This welfare
approach to voting has resurfaced in recent years, and suggests a clear means
to measure the effect of manipulation on voting rules – the degree to which the
final social welfare of society is affected.

In this paper we numerically explore the welfare effects of strategic voting
under scoring rules, focusing on the case of a small number of voters making a
choice between candidates, and the final outcome being evaluated in terms of
Borda, Rawls, or Nash welfare.

1.1 Related Work

To our knowledge, the first authors to study the welfare effects of strategic voting
were Chen and Yang [5]. In their work they consider voting in open primaries,
where members of party B are allowed to vote for the candidate party A will
nominate for the general election. Such primaries invite strategic behaviour in
the form of “mischief voting” – voters of party B will strive to nominate the
most extreme candidate of party A, to guarantee that party B’s candidate will
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win the final election.1 The authors model the situation in a one-dimensional
Hotelling framework, and consider three scenarios: all voters are sincere, only
voters of party B are strategic, or all voters are strategic. They find that the worst
outcome in terms of social welfare is when only voters of party B are strategic,
but the best outcome is when all voters strategise – the effect is explained by
the fact that the voters of party A are motivated to vote for a more moderate
candidate to counter the behaviour of the voters of party B.

In a series of papers, Lehtinen uses numeric experiments to assess the welfare
effects of strategic voting under sequential majority [15], Borda [14], approval
voting, and plurality [16]. In his framework voters have cardinal utility over three
candidates, and receive a noisy signal about the support the other candidates
have. Each voter assumes the other voters are acting sincerely, and then votes
in accordance with expected utility maximisation. The result is that strategic
voting allows voters to express intensity of preference – a voter for whom can-
didate a is only slightly better than b is less likely to manipulate in favour of a
than a voter for whom a is much better. He finds that under sequential majority,
Borda, and plurality utilitarian efficiency (the probability of electing the candi-
date maximising social welfare) increases under strategic behaviour, particularly
if the correlation between the utilities of the different candidates is high. Under
plurality the effect is particularly marked, the utilitarian efficiency increasing
from ≈ 35% to as much as 95%. The lower the correlation, the less pronounced
the effect, and under approval voting there is very little difference between the
sincere and strategic scenarios. In a second series of experiments the Condorcet
efficiency of the rules is compared; here strategic behaviour is harmful.

Lu et al. [18] consider a setting where a group of manipulators want to
elect a target candidate, but possess only partial, probabilistic knowledge of
the preferences of the sincere voters. The main focus of their work is on how
to compute the optimum strategy of the manipulators, but they also assess the
damage the manipulators can do to social welfare, i.e. the difference in the utility
derived by the sincere voters before and after manipulation. The authors train
a Mallows model on Dublin West electoral data and simulate voter behaviour
under the Borda rule. They find that while the probability of the manipulators
being able to influence the election can be very high, the damage to social welfare
is low – never more than 5%. This is explained by the fact that a manipulation
is more likely to be successful in favour of a candidate that already enjoys broad
support among the sincere voters, rather than a candidate who is reviled by
everyone.

Bassi [4] studied the strategic behaviour of human voters in laboratory experi-
ments. Every game in the experiment consisted of five voters and four candidates,
using one of plurality, Borda, or approval voting. The main focus of the paper
was on whether humans vote as predicted by the iterated elimination of domi-
nated strategies, thus every profile used had a dominance solution. The welfare

1 “Do it. I will personally write you a campaign cheque now, on behalf of this country,
which does not want you to be president, but which badly wants you to run.”
–John Oliver, on the prospect of Trump running in 2016.
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of the outcomes was measured in terms of Condorcet efficiency and social welfare
(the sum of the participants’ monetary payoffs), and compared to the theoreti-
cal prediction for sincere agents and for strategic agents playing the equilibrium
solution. Plurality voting was found to outperform Borda and approval voting
in terms of social welfare, but lost in terms of Condorcet efficiency.

1.2 Our Contribution

We perform numeric experiments to evaluate the welfare effects of strategic
voting by a small panel of voters. Our experiments cover 15 scoring rules, 3
measures of welfare, and 9 statistical cultures. Among our findings, we find that
concave rules suffer the most welfare loss under manipulation, to the point that
if our goal is to maximise Rawls or Nash welfare, it is rarely a good idea to
use a rule that näıvely maximises said Rawls or Nash welfare; that convex rules
are resistant to manipulation, which makes them more likely to elect the best
outcome under a Mallows model; and that (m/2)-approval performs exceedingly
well under Euclidean preferences, for all the welfare measures studied.

2 Preliminaries

2.1 Voting Concepts

Let V, |V| = n, be a set of voters, C, |C| = m, a set of candidates, and L(C) the
set of linear orders over C. Every voter is associated with some �i∈ L(C), which
denotes the voter’s preferences. A profile P ∈ L(C)n is an n-tuple of preferences,
Pi is the ith component of P (the preferences of voter i), and P−i the preferences
of all the other voters.

A voting rule is a mapping:

f : L(C)n → C,

I.e., it is a rule which associates each profile with a candidate, who is the election
outcome.

We are interested in a class of voting rules known as scoring rules.

Definition 1. A scoring rule is a voting rule defined by a sequence of scores,
s1, . . . , sm satisfying si ≥ si+1 and s1 > sm. Using pos(i, c) to denote the position
of candidate c in voter i’s ballot, the score of c is:

score(c) =
∑

i≤n

spos(i,c).

The candidate with the highest score is the election outcome, ties are broken
lexicographically.

In this paper we are interested in the following scoring rules:
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– k-approval is the scoring rule with si = 1 for i ≤ k, and sj = 0 for j > k.
I.e., the best k candidates get one point, the rest 0. 1-approval is also known
as plurality.

– k-Borda is the scoring rule with si = max(k − i+1, 0). I.e., the top candidate
gets k points, then k − 1, k − 2, and so on. (m − 1)-Borda is also known as
Borda.

– A geometric scoring rule with parameter p [12], or geometric p for short, is
the scoring rule with si = pm−i if p > 1 (the convex rules) and si = 1− pm−i

if p < 0 (the concave rules). For example, with 5 candidates and p = 2 the
scoring vector is 16, 8, 4, 2, 1.

– The Nash rule is the scoring rule with si = log(m − i) for i < m, and
sm = −n log(m − 1).

We will evaluate the election outcomes with three ordinal welfare functions,
normalised to give an outcome between 0 and 100.

Definition 2. Suppose c is the election outcome. The Borda welfare of the out-
come is the sum of the Borda scores of c, normalised by the hypothetical Borda
score of a candidate ranked first by all:

Borda(c) = 100

∑
i≤n(m − pos(i, c))

(m − 1)n
.

The Rawls welfare of the outcome is the Borda score given to c by the voter that
ranks c the lowest, normalised by (m − 1):

Rawls(c) = 100
mini≤n(m − pos(i, c))

(m − 1)
.

The Nash welfare of the outcome is the product of the Borda scores of c, nor-
malised by taking the nth root:

Nash(c) = 100
n

√∏
i≤n(m − pos(i, c))

(m − 1)
.

Borda welfare is based on the utilitarian principle of choosing a candidate
with the best average rank. Rawls welfare is based on the egalitarian notion
of choosing a candidate that will minimise the misery of the unhappiest voter.
Nash welfare, while originally proposed as a solution to a bargaining problem, is
often proposed as a means to achieve a balance of the utilitarian and egalitarian
principles [19,21]. It should be noted that, unlike Borda and Rawls welfare, the
Nash-maximising outcome depends on the choice of the zero point. In this paper,
we value the last position at 0, but the performance of the voting rules with
respect to Nash welfare would have differed somewhat with a different choice.

Under sincere behaviour, the Borda rule, by definition, maximises Borda
welfare.

Rawls welfare is maximised by generalised antiplurality, which is not a scoring
rule per se, but a generalised scoring rule [24] – candidates are first ranked
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by their (m − 1)-approval score, first-order ties are broken by the (m − 2)-
approval score, second-order ties by the (m − 3)-approval score, and so on. We
do not investigate generalised antiplurality directly, but the rule is equivalent to
a geometric scoring rule with a sufficiently small p [12]; thus the geometric rule
with p = 0.5 is a close proxy to the Rawlsian optimum.

Given that log(xy) = log(x) + log(y), a candidate maximises Nash welfare if
and only if it maximises the sum of the logarithms of its Borda points; this is the
motivation behind the Nash rule. Unfortunately this does not give us a scoring
rule because log(0) is undefined, which is why we set sm = −n log(m − 1); thus,
no amount of first places will compensate for a single last place.

The main interest of this paper is measuring the effect of strategic voting on
these measures of welfare.

Definition 3. Consider a voting rule f and a profile P . A strategic vote for
voter i is a P ′

i such that:

f(P ′
i , P−i) �i f(Pi, P−i).

In other words, if voter i casts P ′
i instead of Pi, then the election outcome is

preferable for voter i.
A voter may have many strategic votes available to him. We thus define his

optimal strategy to be a P ∗
i such that:

P ∗
i ∈ arg max

P ′
i

f(P ′
i , P−i),

the arg max operator is understood with respect to voter i’s preferences over the
election outcomes.

Against this standard definition of manipulation two criticisms are often
levied: 1) the probability of a single voter affecting the outcome of an election
is negligibly small, and 2) it is unreasonable to suppose this voter has access
to information about the other voters’ preferences, which he needs to compute
his strategic vote. In the political interpretation of voting, both arguments are
undoubtedly valid, and a reasonable model should account for strategic voting by
groups and incomplete information, such as the model of [18] or [14]. However,
if we consider the interpretation of a small group of experts making a choice
between candidates with the aim of identifying the one which is “best”, then the
standard definition is reasonable enough – it would not take a great deal of social
engineering to find out how one’s colleagues plan to rank interview candidates
(say, ask them during a coffee break), and a single unethical judge can be enough
to skew the outcome of a sporting context. Since our simulations will focus on
the case where the number of voters is small and we are measuring the outcome
in terms of numerical measures of welfare, we believe the standard definition of
manipulation is sufficient.

2.2 Statistical Cultures

We will generate voter profiles from four theoretical families. In each case, the
voters are sampled i.i.d.
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– Impartial culture: given n voters and m candidates, each voter’s preferences
are drawn uniformly at random from all m! possible preference orders.

– k-Euclidean: every voter and candidate is generated, uniformly at random,
in [0, 1]k, the k-dimensional unit cube. A voter’s preferences are determined
by Euclidean distance to the candidates – the closer the candidate, the more
preferred.

– Mallows model: given a dispersion parameter φ, 0 < φ < 1, and a reference
order σ, a voter is assigned a preference order r with probably 1

Z φd(σ,r).
d(σ, r) is the Kendall-tau distance between σ and r, and Z is a normalisation
constant to make sure the probabilities add to one.

– Mixed Mallows model: given dispersion parameters φ1, . . . , φk, reference
orders σ1, . . . , σk, and probabilities p1, . . . , pk, a voter is assigned a prefer-
ence order r with probably

∑
i≤k pi

1
Zi

φ
d(σi,r)
i . That is, each (φi, σi) defines

a Mallows model, and we choose which Mallows model to sample from with
the probabilities p1, . . . , pk.

It should be noted that a mixed Mallows model will behave very differently
depending on what reference orders are used, e.g. drawing profiles from a mixture
of a � b � c � d and b � a � c � d will result in much more correlated
preferences than a mixture of a � b � c � d and d � c � b � a. In this
paper, when we sample from the mixed Mallows model, it is understood that
the reference orders are chosen randomly for each profile sampled.

In addition to these theoretical cultures we use two cultures based on empir-
ical data from Preflib [20]. The first, Mallows sushi, is a mixed Mallows model
trained by Lu and Boutilier [17] on a dataset of 5,000 preferences over 10 sushi
types (https://www.preflib.org/data/ED/00014).

The second is based on skating data, consisting of judges’ rankings of athletes
in various events. The preferences in this data are highly correlated, and in most
events the winner is unanimous. To deal with this we hand-picked an event
with the most disagreement among the judges (https://www.preflib.org/data/
ED/00006/00000046), and used a simple bag-of-preferences model (sampling the
judges’ rankings with replacement).

2.3 Experimental Setup

The simulations are based on varying the following parameters.
Voting rules:

– Borda family (m − 1, m/2, m/4, 5).
– Approval family (m/2, m/4, 5, 1).
– Geometric family (2, 1.5, 1.2, 0.8, 0.65, 0.5).
– Nash rule.

Theoretical cultures:

– Impartial culture.
– Euclidean family (1, 2, 5 dimensions).

https://www.preflib.org/data/ED/00014
https://www.preflib.org/data/ED/00006/00000046
https://www.preflib.org/data/ED/00006/00000046
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– Mallows family (dispersion parameters 0.8, 0.5).
– Mixed Mallows (two equiprobable components, dispersion parameter 0.5).

Welfare measure:

– Borda welfare.
– Rawls welfare.
– Nash welfare.

Voter behaviour:

– All voters sincere.
– Voter 1 acts optimally.

The procedure for generating welfare results is as follows:

1. Fix n = 10. For each choice of m ∈ { 3, . . . , 100 }, voting rule, theoretical
culture, behaviour, and welfare measure generate 10,000 profiles, measure
the welfare of the election outcome, and return the average.

2. Fix m = 10. For each choice of n ∈ { 3, . . . , 100 }, voting rule, behaviour,
and welfare measure generate 10,000 profiles from the Mallows sushi culture,
measure the welfare of the election outcome, and return the average.

3. Fix m = 30. For each choice of n ∈ { 3, . . . , 100 }, voting rule, behaviour,
and welfare measure generate 10,000 profiles from the skating bag culture,
measure the welfare of the election outcome, and return the average.

3 Results

In this section we discuss the most interesting or representative results. The
results for all the studied scenarios, along with the data, code, and instructions
for replication, can be found on the Github.2

3.1 Impartial Culture

Impartial culture is often seen as a worst-case for manipulation, since it increases
the odds of a close election where strategic voting can make a difference. In terms
of consequences on welfare, however, this turns out to be rather benign; though
most scoring rules lose welfare after manipulation, Borda (and its truncated ver-
sion) remains the best choice for maximising Borda welfare (Fig. 1a), Geometric
0.5 for Rawls welfare, and Nash for Nash (at least for m < 40, after which it is
overtaken by Borda. See Fig. 1b).

Nevertheless, the results with impartial culture allow us to make some gen-
eral observations about the behaviour of scoring rules, which remain true in
subsequent experiments.

Under sincere behaviour, concave rules expectedly do well in terms of Rawls
and Nash welfare, while the Nash rule performs well in all three. However, these
2 https://github.com/EIanovski/WelfareManipulation.

https://github.com/EIanovski/WelfareManipulation
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Fig. 1. Selected plots of welfare vs number of voters/candidates.
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rules are very susceptible to manipulation, and experience the largest welfare
drops. In the case of impartial culture, these drops are insufficient to dethrone
the geometric rule with p = 0.5 as the best choice for maximising Rawls welfare,
but when we move on to other cultures we shall see the concave rules perform
very poorly.

Convex geometric rules prove to be resistant to manipulation, and experi-
ence very minor welfare drops under strategic behaviour. However, their overall
welfare properties are poor, so their stability does little to recommend them.
Plurality is the most convex rule imaginable, and it is one of the few rules to
consistently yield higher welfare in the presence of manipulation. However, even
with the gain from manipulation, it consistently ranks as the worst rule in terms
of welfare.

Borda lies on the border of convex and concave rules [12], and its properties
lie between the two: loss of welfare after manipulation is tangible, but nowhere
near the extent of concave rules. Though rarely the best rule in terms of welfare
under manipulation, it routinely does pretty well.

5-approval and 5-Borda fare poorly, tending towards the plurality outcome
as the number of candidates grows. This is unfortunate since the appeal of these
rules is in their low cognitive burden on the voter, requiring the voter to rank
5 candidates rather than m; but it seems that if we value welfare, we rarely
can get by without asking the voters for their full rankings. (m/2)-approval
and (m/2)-Borda fare much better; (m/2)-Borda often outperforms full Borda,
while (m/2)-approval is the clear winner under Euclidean preferences, to which
we turn next.

3.2 Euclidean Cultures

The key feature of the Euclidean cultures is the existence of a centre – candidates
close to the centre of the unit cube are reasonably close to all voters, and thus
tend to have high Borda, Rawls, and Nash welfare. This goes a long way to
explain the outstanding performance of (m/2)-approval in this setting (Fig. 1c,
Fig. 1d) – the centre candidates are likely to be in the top half of most voters’
ballots, and thus accumulate too many points for the manipulator to do much
beyond choosing which centre candidate in particular should win.

As with impartial culture, the welfare of concave rules drops sharply under
manipulation, but this time the effect is that these rules never maximise their
respective welfare. Under 2- and 5-Euclidean, indeed, the Borda rule is the best
choice for Rawls and Nash welfare after (m/2)-approval.

The dimension of the space seems to make a difference. Under 5-Euclidean the
Borda rule performs a lot better, with (m/2)-Borda yielding the highest Borda
welfare and Nash welfare for m > 40 (Table 1). Interestingly, (m/4)-approval
also outperforms (m/2)-approval in terms of Borda welfare.
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3.3 Mallows Models

The Mallows model models the situation where there is an underlying objec-
tive truth, and voter preferences are noisy signals of this true order. This noise
is modelled as swaps of neighbouring candidates in the order (Kendall-tau dis-
tance), so the less swaps separate an order from the objective truth, the more
likely it is to be generated. The result of this is that voter preferences are highly
correlated, and as the number of candidates increases, so does the probability of
the outcome being unanimous – with 100 candidates, the probability of a swap
occurring at the very top of a voter’s preferences is very low. The dispersion
parameter affects how soon we reach the point where all voters are likely to
agree on the top candidates (Fig. 1e vs Fig. 1f).

This is where convex rules come to the fore. The extra weight they give to
the top candidates allows the candidates ranked high in the objective order to
accumulate an overwhelming lead, reducing the manipulator’s ability to harm
social welfare. The result is that these rules are optimal at once with respect to
Borda, Rawls, and Nash welfare. Concave rules, including Nash and Borda, give
the manipulator enough power to bury a candidate ranked highly by the others,
which harms their welfare for small values of m. However as we have observed,
as m increases we head towards consensus, where the manipulator will have no
incentive to manipulate.

The situation is different in our mixed Mallows model, which we remind the
reader consists of two equiprobable components with dispersion parameters 0.5;
the reference orders are sampled randomly for each profile. Convex rules again
display poor welfare properties overall, while Nash and the concave geomet-
ric rules lose a lot from manipulation. The winners are members of the Borda
and approval families, with (m/2)-Borda and (m/4)-approval performing well in
terms of all welfare measures.

3.4 Mallows Sushi

As another Mallows mixture, one might expect the Mallows sushi model to
perform similar to our mixed Mallows model, but this is not the case. It appears
that there is such a thing as the objectively best sushi (fatty tuna, for the
curious), and as the number of voters increases, all voting rules converge to
this result (Fig. 1g). Borda, the convex rules, and the truncated rules converge
rapidly; plurality and the highly concave rules slowly; Nash the slowest of all.
Manipulation is only really tangible for the highly concave rules and Nash, as it
gives voters the ability to effectively veto a choice of sushi.

3.5 Skating Bag

The skating bag culture is an example of a situation where there is a clear
“best” candidate, who maximises at once Borda, Rawls, and Nash welfare, and
all reasonable voting rules, plurality included, elect this best candidate. The
damage of manipulation, therefore, measures the ability of a single voter to
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force through his preferred outcome in spite of overwhelming social consensus.
A scoring rule needs to be top-heavy to resist this behaviour, so the high positions
of the best candidate in the sincere voters’ ballots will outweigh any shenanigans
by the manipulator. As plurality is the top-heavy rule par excellence, this is one
of the rare situations where this rule shines (Fig. 1h). Convex geometric rules
are vulnerable when the number of voters is small, but from about 10 voters
onwards the sincere votes begin to outweigh the manipulator’s endeavours. The
Borda rule is well-known for the scope it gives a manipulator to cause mischief,
and it is only after we have 50 voters that the threat under Borda is liquidated.

As for concave rules, the threat never goes away. Even in an electorate of 100
voters, a single manipulator can force through a socially suboptimal outcome.
A single last position does too much damage to the best candidate, giving the
manipulator effective veto power over the outcome.

Table 1. Best scoring rules post manipulation with n = 10, m > 10. Boldface denotes
rules that maximise welfare under sincere behaviour. Italics denote rules that are almost
as good as the best, but much simpler.

Culture Borda welfare Rawls welfare Nash welfare

Impartial culture Borda (m < 25),
(m/2)-Borda
(m > 25)

Geometric 0.5,
(m/2)-approval
(m = 100)

Borda (m > 40),
Nash (m < 40),
(m/2)-approval
(m > 40)

1-Euclidean Borda (m < 12),
(m/2)-approval
(m > 12)

(m/2)-approval (m/2)-approval

2-Euclidean Borda (m < 12),
(m/2)-approval
(m > 12)

(m/2)-approval (m/2)-approval

5-Euclidean (m/2)-Borda,
(m/4)-approval
(m > 95)

(m/2)-approval (m/2)-approval
(m < 40),
(m/2)-Borda
(m > 40)

Mallows 0.8 Geometric 1.2 Geometric 1.2
(m > 65),
(m/4)-approval
(25 < m < 65),
Borda (m < 25)

Geometric 1.2
(m > 15),
Nash (m < 15)

Mallows 0.5 Geometric p > 1,
Plurality

5-approval Geometric 2,
Plurality

Mixed Mallows (m/2)-Borda,
(m/4)-approval
(m > 30)

(m/4)-approval (m/4)-approval
(m > 20),
(m/2)-Borda
(m > 80),
5-approval (m < 20)
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4 Conclusions

We summarise the three main takeaways of this study:

– Manipulation makes a difference. With the exception of impartial culture, or
profiles with a small number of candidates, the welfare-maximising rule with
a manipulator is never the same as under sincere behaviour (Table 1). The
effect of manipulation in our framework is almost always negative.

– Top-heavy rules such as convex geometric rules and plurality are resistant
to manipulation, losing little, or even gaining welfare in the presence of a
manipulator. However, their welfare properties are so poor that this property
does little to recommend them. The exception is in the case of highly cor-
related cultures such as Mallows models, where the additional weight these
rules gives to the top candidate stymies attempts at manipulation.

– Concave geometric rules and the Nash rule are very susceptible to manip-
ulation, to the point that Borda or even a convex rule is often better at
maximising Rawls/Nash welfare than the rules designed for that purpose.
This is an issue because empirical evidence suggests that humans value a
mixture of the egalitarian and utilitarian principles, and given a choice will
choose a voting rule that strikes a balance between the two [2,9,19]. If these
rules fail to deliver in the face of strategic behaviour, the question must be
posed: what voting rule should a society choose, if it seeks to strike a balance
between utilitarian and egalitarian principles?
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Abstract. Liquid Democracy (LD) uses transitive delegations to facilitate joint
decision making. In its simplest form, it is used for binary decisions, however its
promise holds also for more advanced voting settings. Here we consider LD in the
context of Participatory Budgeting (PB), which is a direct democracy approach
to budgeting, most usually done in municipal budgeting processes. In particular,
we study Knapsack Voting, in which PB voters can approve projects, however
the sum of costs of voter-approved projects must respect the global budget limit.
We observe inconsistency issues when allowing delegations, as the cost of voter-
approved projects may go over the budget limit; we offer ways to overcome such
inconsistencies by studying the computational complexity of a related combina-
torial problem in which the task is to update as few delegations as possible to
arrive—after following all project delegations—to a consistent profile.

Keywords: Participatory budgeting · Liquid democracy · Knapsack voting ·
Computational complexity · Parameterized complexity · Approximation
algorithms

1 Introduction

Liquid Democracy (LD) provides voters with greater flexibility as each voter is free to
decide whether to vote on her own or delegate her vote to another voter of her choice [6].
Importantly, these delegations are transitive, so, e.g., if voter u delegates her vote to
voter v who in turn delegates her vote to voter w, then effectively the vote of u is
delegated to w. As such, LD is usually framed as solving the scalability issue of direct
democracy while avoiding the pitfalls of representative democracy [3,19]. Practically,
however, LD is usually used only when voting on two proposals (i.e., a yes/no vote; we
do mention, in Subsect. 1.1, some works considering other settings). Our motivation for
this work is to investigate the possibility of using LD for the more involved setting of
Participatory Budgeting (PB) [9].

In PB (specifically in Combinatorial PB [2]), voters express their preferences over
a set of projects, where each project has its own cost. Then, the aggregation task is to
choose a subset of these projects whose total cost does not exceed some given budget
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limit. While there are many ballot types that can be used by voters in PB, usually voters
express their preferences by providing approval ballots. In this paper we concentrate on
one variant of approval ballots, referred to as Knapsack Voting [17]: in it, each voter can
approve as many projects as she wishes, however the total cost of the projects approved
by a voter must not exceed the given budget limit.

Note that, effectively, this means that each voter shall solve an instance of the Knap-
sack problem herself; this indeed makes the task of each voter much more involved than
when voters are simply required to submit an arbitrary approval ballot (without solving
a Knapsack instance). We argue that the main reason of requiring voters to satisfy such
Knapsack constraints is that, by solving Knapsack constraints, voters appreciate that
the global aggregation task of PB (which is, in essence, solving a Knapsack constraint
while taking into consideration the preferences of the voters) is not trivial; as such, vot-
ers may be more accepting to the output bundle selected by the aggregation method in
use. Goel et al. [17] discuss further advantages of this ballot type.

So, how can LD be used for elections in which voters are using Knapsack Voting? A
simple way would be to allow each voter to choose between the following two options:
(1) vote directly, by submitting a subset of projects she approves, while making sure that
their total cost respects the budget limit; or (2) delegate her vote completely to another
voter of her choice. While this way might be plausible, here we wish to explore the pos-
sibility of granting voters even greater flexibility, thus we propose “project-wise delega-
tions”: each voter v, for each project p, can choose between the following two options:
(1) vote directly, deciding whether to approve p or disapprove p (i.e., whether to select p
or not); or (2) delegate the decision on whether to approve p or disapprove p to another
voter of her choice.

In other words, we wish to apply fine-grained Liquid Democracy (in contrast to
standard coarse-grained Liquid Democracy) to Knapsack ballots for PB. That is, while
coarse-grained Liquid Democracy in our context would mean that a voter can either
vote directly or delegate her complete ballot to a voter of her choice, fine-grained Liq-
uid Democracy in our context means that a voter can delegate parts of her ballot (i.e.,
subsets of projects) to voters of her choice. Our point of view is that the basic merit of
Liquid Democracy is the greater flexibility it gives to voters participating in it. Thus, we
strive to push this flexibility even further. Concretely, a voter that does not feel compe-
tent to decide (e.g. between several environmental projects) may delegate these projects
to a voter of her choice, while directly deciding on other project that she feels more
competent about. Thus, our results can be seen as showing that, at least in some cases,
it is indeed possible to allow for more expressive power to the voters; generally speak-
ing, this is useful as, in principle, greater voter flexibility has the potential of allowing
to reach better joint decisions. Consider the following example.

Example 1. Consider 3 voters u, v, w, and 4 projects a, b, c, d, where voter u is positive
towards approving project a but does not like project b. Then, u approves project a and
disapproves project b. It is possible, that voter u is not sure about the project c due to
the lack of information, knowledge, or some other reason. But, she trusts voter v on
the decision for project c. So, she delegates her vote for c to v; and will take the same
decision as of v. It is possible that u does not find v competent enough to take a decision
for project d and trusts w more than v. So, she delegates her vote for d to w.
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Indeed, our motivation for investigating LD for PB is to grant voters greater flexibil-
ity and expressive power. There are not, however, such thing as a free lunch—the price
of this greater flexibility is the possibility, due to delegations, of ballot inconsistency:
consider the example above and say that each project costs 1 and the budget limit is 2. If
v decides to approve project c and also w decides to approve project d then effectively
voter u would approve projects a, c, and d, thus in total she approves projects of cost
3, which is strictly above the budget limit. Thus, due to following the direct decisions
and the delegations as expressed by voter u, we have that the vote of u violates the
constraints of Knapsack Voting.

Our main aim, thus, in this paper is to explore possibilities of mitigating such pos-
sible inconsistencies. To this end, our approach is to look for the most delicate changes
we can apply to the given votes to arrive to an instance in which such inconsistencies
are avoided. We formulate our approach as the combinatorial problem of updating as
few delegations as possible so that, after following all delegations, all votes satisfy the
Knapsack constraint of Knapsack Voting.

Indeed, the reader may wonder why we take for us the freedom of changing the
ballots submitted by the voters. Our point of view is that preserving consistency of
the profiles after delegations (i.e., respecting the Knapsack constraints after following
all the delegations) is crucial, as voters in a Liquid Democracy context expect to be
able to see the ballots that were submitted on their behalf after taking into account
their delegations. Thus, the system shall be able to provide such ballots; however, this
conflicts with the desire to respect the Knapsack constraints. In particular, voters may
feel that the system is unfair if some voters would effectively not respect the Knapsack
constraint after following delegations. Thus, we take the natural approach of modifying
the input we get as minimally as possible.

1.1 Related Work

Perhaps the closest work to ours is the work of Brill and Talmon on Pairwise Liquid
Democracy [8] that deals with introducing LD to single winner ordinal elections in
which each voter can delegate the decision on whether she prefers one alternative over
the other, for each pair of alternatives, to another voter of her choice. Brill and Talmon
show that, allowing this “pairwise” delegation might result in inconsistent ballots (e.g.,
voter u prefers a to b, delegates the decision on the pair {b, c} to voter v who ends
up preferring b to c, and delegates the decision on the pair {c, a} to voter w who ends
up preferring c to a, resulting in intransitive preference for voter u). Another closely
related work is that of Christoff et al. [10], dealing with introducing LD to a more
general, logic-based social choice setting, while dealing with logical inconsistencies
resulting from per-formula delegations.

Some works on LD from a computational social choice perspective consider allow-
ing a voter to delegate a single decision to several voters [11,18]; we, similar to Brill and
Talmon [8] and Bloembergen et al. [5], consider delegating each decision to only one
other voter, however voters can use delegations for several decisions at once (note that
in our setting voters can delegate different decisions to different voters). Other papers
propose different aggregation methods for PB [1,4,14,26] (see also the survey of Aziz
and Shah [2]). For the most part of our paper, however, the specific aggregation method
to be used is not relevant, as our aim is to arrive at a consistent profile of votes while
allowing per-project delegations.
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1.2 Our Contribution

We consider using fine-grained LD for PB by allowing per-project delegations for
Knapsack Voting and consider a specific way of mitigating the possible inconsistencies
resulting from following these delegations. In particular, from a computational com-
plexity point of view, we show that the problem of finding the smallest set of delega-
tions to update to arrive at a consistent profile, after following all remaining delegations,
is computationally intractable (Subsect. 3.2), also for various special cases and for a
number of natural parameters, except for the number of voters, for which it is fixed-
parameter tractable (Theorem 11). We do, however, identify some special cases that
allow for efficient algorithms (Proposition 8 and Observation 13), devise approximation
algorithms for the problem (Sect. 5), and report on related computer-based simulations
based on an Integer Linear Programming (ILP) formulation (Sect. 4).

2 Preliminaries

In this section we describe Knapsack Voting (Subsect. 2.1), our generalized model of
per-project delegations (Subsect. 2.2), and formally define the combinatorial problem
of updating as few delegations to arrive to a consistent profile (Subsect. 2.3).

For n ∈ N, we define [n] = {1, . . . , n}. By O∗(·) we denote O(·) notation when
suppressing polynomial factors. By o(·) we denote little-o notation. By ETH we mean
the Exponential Time Hypothesis [20].

2.1 Knapsack Voting

In Knapsack Voting [17] we are given a set of projects, P = {p1, . . . , pm}, together
with their cost function c : P → N of projects, a budget limit B, and a set of voters,
V = {v1, . . . , vn} such that each v ∈ V is represented by its approval ballot respecting
the budget limit, i.e., it holds that v ⊆ P and

∑
p∈v c(p) ≤ B. E.g., consider a simple

instance of Knapsack Voting with a set of projects P = {p1, p2, p3} with c(p1) =
c(p2) = 3, c(p3) = 5, a budget limit B = 6, and a set of voters V = {v1, v2}
with v1 = {p1, p2} and v2 = {p3}. Indeed, the total cost of projects approved by v1
and v2, are 6 and 5 respectively, thus both voters respect the budget limit. Clearly, v2
cannot approve p2 as well without violating the Knapsack constraint. (Note that we
use the terms “approve” and “disapprove” as they are the standard jargon for approval
elections; in a way, a voter does not really “disapprove” of projects she did not select,
but merely not support them.)

It is useful to view a vote in Knapsack Voting as a binary vector of length m, where
the ith entry is 1 if the voter approves the ith project and 0 if the voter disapproves
the ith project. Indeed, in Knapsack Voting a voter decides for each project, whether to
approve it or not.

2.2 Liquid Knapsack Voting

In our per-project delegation model we allow voters to decide, for each project, whether
to delegate the decision on whether to approve the project or disapprove it, to a voter



Preserving Consistency for Liquid Knapsack Voting 225

of their choice. I.e., a voter can, for each project, either (1) approve the project; (2)
disapprove the project; or (3) delegate the decision of whether to approve or disapprove
the project to some other voter—her delegation for this project. Note that a voter can
choose several delegates, assigning a different set of projects to each delegate, but can-
not assign more than one delegate for a single project. Formally, in Liquid Knapsack
Voting we are given a set of projects, P = {p1, . . . , pm}, together with their cost func-
tion c : P → N of projects, a budget limit B, and a set of voters, V = {v1, . . . , vn}.
Here, voter v is represented by an m-length vector Lv such that each element in Lv is
either 1—denoting that the corresponding project is approved by voter v; 0—denoting
that the corresponding project is disapproved by voter v; or the name of some other
voter—denoting that v delegates her vote for the corresponding project to that voter.
(Note that Liquid Knapsack Voting indeed generalizes Knapsack Voting: in Knapsack
Voting Lv would simply be a binary vector.)

Example 2. Consider a simple instance of Liquid Knapsack Voting with a set of projects
P = {p1, p2, p3} with c(p1) = c(p2) = 3, c(p3) = 5, a budget limit B = 6, and a
set of voters V = {v1, v2}. Say that v1 decides to approve p1, disapprove p3, but is
unsure regarding p2; say also that v1 decides to delegate the decision on p2 to voter v2.
Say further that voter v2 decides to approve p3 but disapprove both p1 and p2. Then,
effectively, following v1’s delegation of the decision regarding p2 to v2, we have that
v1 should be considered as disapproving p2 as well. Viewed as vectors, Lv1 = [1, v2, 0]
while Lv2 = [0, 0, 1].

It will be useful also to consider the delegation graph implied by an instance of
Liquid Knapsack Voting, with a vertex for each voter and an arc from vertex u to vertex
v if u delegates some decisions (on at least one project) to v. Furthermore, we can
also construct a delegation graph for each project—we call them per-project delegation
graphs. Put differently, the arcs of the delegation graph are the union of the arcs of each
of these per-project delegation graphs.

As every voter may delegate a decision on a specific project only to a single other
voter, all vertices in a per-project delegation graph have an out-degree of at most 1.
Thus, for every voter and every project we can follow its (unique) delegation chain in
the corresponding per-project delegation graph.

Delegation Chains. A delegation chain for some project p is a sequence of voters,
each delegates the decision on p to the next voter in the chain, where the last voter in
the chain delegates the decision on p to some voter that (dis)approves p. (The voter that
(dis)approves p is not contained in this delegation chain.) The root of a delegation chain
for some project p is the last voter in the chain (in particular, the root is not a voter that
(dis)approves p). A delegation component for some project p is a set of voters, each of
which is part of some delegation chain for p that has the same root.

Remark 3. Two voters might be in different delegation chains but in the same delegation
component. Moreover, a voter which (dis)approves a project p can receive a delegation
on p from a few voters (which are the roots of disjoint delegation components for p).
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TANSTAAFL.1 The main merit of using Liquid Knapsack Voting is the additional
expressiveness it offers to the voters. This additional expressiveness, however, comes
with a price; in particular: (1) There could be cycles—e.g., say that u delegates the
decision on p to v and then also v delegates the decision on p to u; then, it is not clear
how to decide whether it should be taken that these voters approve or disapprove p. (2)
Ballots may be inconsistent—say that u delegates the decision on several projects to
some other voters. Then, it could be that, following the delegations, the resulting ballot
of u exceeds the budget limit, thus not satisfying the Knapsack constraint.

Our main approach of dealing with the possibility of inconsistent ballots results
from our per-project delegations is to look for the minimal set of delegations that, if
updated (to approvals or disapprovals) would result in a consistent profile (i.e., a profile
in which all votes, after following all delegations, satisfy the Knapsack constraint).

2.3 Consistent Knapsack Voting

Following the informal discussion above, next is the formal definition of the combina-
torial problem we aim at solving here. By a consistent Knapsack Voting instance we
mean that all voters satisfy the Knapsack constraint, after we follow all delegations.
The CONSISTENT KNAPSACK VOTING (CKV) problem is formally defined as follows
(Fig. 1 shows an example of solving an instance of CKV).

CONSISTENT KNAPSACK VOTING (CKV)
Input: A set of projects P , cost function c : P → N, a set of voters V , a set of votes
{Lv : v ∈ V }, where Lv ∈ {0, 1, V \ {v}}|P |, a budget limit B and an integer k.
Question: Can we update at most k delegations to 0 or 1 so that the resulting
instance is a consistent Knapsack Voting instance?

Two remarks are in place:

1. We only allow to update delegations to an approval or a disapproval; in particular,
we do not allow to change an approval to a disapproval. Our modeling is such as it
seems too invasive to change a direct decision of voter.

2. Technically, the definition of CKV allows to change a delegation to an approval;
however, as the task is to avoid violating Knapsack constraints, we assume w.l.o.g.
that we use the available k delegations updates only to change delegations to disap-
provals.

W.l.o.g. we assume that an instance of CKV can be made consistent by updating all
delegations to disapprovals. Otherwise, it would be a NO instance trivially.

We wish to offer a different angle on the combinatorial problem we set to study here:
the approach we take in the paper is to develop algorithms that take the whole input—
with the delegations, and thus with the possibility of budget-infeasible votes—and find
a minimum set of delegation-modifications so that we would arrive to a voting profile
that respects the Knapsack constraints. In this context, our approach can be viewed as
a preprocessing phase for any aggregation method defined on Knapsack ballots, and,
indeed, our approach is agnostic to the aggregation method used.

1 There ain’t no such thing as a free lunch.
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Fig. 1. An instance of CKV. There is a set of projects P = {p1, p2, p3}, each of unit cost, and
the budget limit is B = 2. There are voters V = {u, v, w, x}, whose votes are represented as
vectors where the left entry corresponds to p1, the middle entry to p2, and the right entry to p3;
e.g., voter u delegates the decision on p1 to w, approves p2, and delegates the decision on p3 to
x. (u,w) is an example of delegation chain for project p1. There is one delegation component for
project p1—it is {u, v, w} with the root w. Regarding Remark 3, note that u and v are not in the
same delegation chain but they are in the same delegation component. Furthermore, there are two
delegation components for project p3, mainly: {u} and {v} with roots u and v respectively. Note
that if we follow the delegations then both u and v would violate the Knapsack constraints. If we
update the delegation of voter w wrt. p1 (i.e., change it so that w would disapprove p1), however,
then we will have a consistent instance, thus with k = 1, this is a yes-instance.

Parameters. We are interested in the parameterized complexity of CKV, wishing to
identify certain instance parameters that allow for efficient algorithms for CKV. Next
we discuss our choice of parameters: (1) general parameters: We consider several
parameters visible in the definition of CKV: the number |V | of voters, the number |P |
of projects, the budget limit B, and the number of updates k (we refer to k also as
the solution size). (2) delegation-specific parameters: We consider further parameters
that relate explicitly to the delegations; informally speaking, these parameters measure
how complicated is the delegation structure of an instance: the number of delegations,
the maximum number of delegations a single voter can use, the maximum length of a
delegation chain. Note that, if any of these parameters is 0, then the problem reduces to
the standard Knapsack Voting problem, in which validating consistency can be done in
polynomial-time (by checking each voter individually).

3 Theoretical Results

In Subsect. 3.1, we describe preprocessing steps that allow us to assume, throughout
the paper, that CKV instances have a certain, simplified structure. Then we discuss
parameterized algorithms (Subsect. 3.2). (Note that, in Sect. 5, we discuss approxima-
tion algorithms.) Due to space limitation, we will defer some proofs to the full version
of the paper.

3.1 Preprocessing Steps and Observations

Given an instance of CKV, throughout the paper we assume that we first apply the
following two preprocessing steps.
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Removing Cycles. Indeed, cycles are possible (e.g., voter u delegates the decision on p
to voter v, which, in turn, delegates the decision on p “back” to voter u; longer cycles
are also possible). Each cycle can be resolved only by changing at least one delega-
tion from the cycle. For CKV, we can, however, simply change exactly one (arbitrary)
delegation to disapproval (at cost 1, so optimally). Then all delegations in the cycle
can be immediately resolved to be disapprovals. Such operation is proper because we
are interested in minimizing the number of changes of delegations to have Knapsack-
consistent ballots, so having only disapprovals on a cycle is always better (precisely, not
worse) than having some approvals. Such operation of removing a cycle also decreases
k by 1. Put differently, throughout the paper we assume w.l.o.g. that there are simply no
delegation cycles in our CKV instances.

Removing Disapproval Chains. A disapproval chain is a delegation chain ending in a
disapproval; e.g., voter u delegates the decision on p to v, v delegates the decision on p
to w, and w disapproves p. Simply following the delegations, we will have disapprovals
for all voters in a disapproval chain, for the corresponding project at hand. So, as having
disapprovals is always better in the context of CKV, we can simply change all delega-
tions in a disapproval chain to be disapprovals (at cost 0, so optimally). Put differently,
throughout the paper we assume w.l.o.g. that there are simply no disapproval chains in
our CKV instances. In particular, we can use this rule also when modifying an instance
by changing a delegation to disapproval (which may create a disapproval chain; then
we resolve it immediately at cost 0).

Remark 4. Assuming an exhaustive application of the above preprocessing steps, we
assume w.l.o.g. throughout the paper that we only have approval chains; i.e., if we
follow each delegation in an instance we end up in an approval (but never a disapproval
and we never get stuck in a cycle). Therefore, we use names delegation chains and
approval chains interchangeably.

3.2 Parameterized Complexity

We study the parameterized complexity of CONSISTENT KNAPSACK VOTING. While
the problem is hard with respect to many parameters, we do identify some parameter-
ized algorithms. In particular, the algorithm from Theorem 11 is efficient for instances
with few voters. Indeed, while participatory budgeting is usually done with many vot-
ers (e.g., residents of a municipality) it can be performed with few voters (e.g., a city
planning committee).

The next hardness result follows by a reduction from the VERTEX COVER problem
(VC) in which, for a given graph G and integer k′, we have to decide if there exists
a subset S, |S| ≤ k′ of vertices of graph G such that each edge of G has at least one
endpoint in S.

Theorem 5. CKV is NP-hard even when |P | = 4 and each voter can delegate to only
one other voter.

Proof. We give a polynomial-time reduction from VC on cubic graphs (i.e. 3-regular),
which is known to be NP-hard [16]. Let (G, k′) be an instance of VC, where G is
a cubic graph. G is 4-colorable (that is, we can color the vertices of the graph using
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at most four colors such that for any edge in G, colors of its endpoints are not the
same) and we can find such coloring in polynomial time through a greedy algorithm.
We color the vertices using colors 1, 2, 3, 4. We construct an instance of CKV as fol-
lows. We create four projects p1, p2, p3, p4 corresponding to vertex colors. The cost
of every project is 1. Corresponding to every vertex x ∈ V (G), we add two voters
vx and v̂x, which we call as VertexVoter and dummyVertexVoter, respectively. The
dummyVertexVoter v̂x approves the project corresponding to the color of the vertex x,
and disapprove remaining 3 projects. The VertexVoter vx delegates the project cor-
responding to the color of the vertex x to the dummyVertexVoter v̂x, and disapprove
remaining 3 projects. Further, corresponding to every edge e ∈ E(G) of G, we add a
voter ve, which we call as EdgeVoter. Let e = xy be an edge and let i and j be the
colors of x and y respectively (we have i, j ∈ [4], i �= j). Then, the voter ve delegates:
1) project pi to the VertexVoter vx; 2) project pj to the VertexVoter vy; and disap-
prove the remaining two projects. Finally, in the created instance of CKV we set B = 1
and k = k′. Next, we prove the correctness of the reduction.

In the forward direction, let S be a solution to (G, k′). For every vertex x ∈ S, we
update the delegation of voter vx to 0. Since S is a vertex cover, for every EdgeVoter
ve, where e = xy in an edge in G, either we update delegation for the voter vx or vy.
Thus, every EdgeVoter approves only one project, which is within the budget. Since
|S| ≤ k′ = k, we only update at most k delegations. This completes the proof in the
forward direction.

In the backward direction, we first note that for a yes-instance of the problem,
there exists a solution in which we only update the delegations for VertexVoters
as they are the only roots of delegation components. Indeed, suppose a delegation of
the EdgeVoter voter ve to the VertexVoter vx is updated, then instead of it, we
can update the delegation of the voter vx to 0, and clearly it is still a solution. So,
we consider a solution of size at most k in which we only update the delegations for
VertexVoters. We create a subset S ⊆ V (G) as follows: if we update the delegation
of voter vx, then add the vertex x to S. Clearly, |S| ≤ k′ as k′ = k. We claim that S is
a vertex cover of G. Suppose it is not the case, then there exists an edge e = xy such
that neither x nor y is in S. This implies that we neither update delegation of vx nor
delegation of vy . Thus, the voter ve approves 2 projects. This results in a contradiction
with the Knapsack constraint with B = 1 and completes the proof. �

In fact, the reduction used in Theorem 5 shows NP-hardness even when some
parameters are constant.

Corollary 6. CKV is NP-hard even if all of the following hold: |P | = 4, B = 1,
the maximum number of delegations in a vote is at most 3, the maximum number of
approvals in a vote is at most 1; the maximum cost of a project is 1, the maximum
length of a delegation chain is 2, the maximum in-degree in the delegation graph is at
most 3.

The next result follows by a reduction from the SET COVER problem, known to be
W[2]-hard wrt. k [12,13].

Theorem 7. CKV isW[2]-hard wrt. k even if each voter can delegate to only one other
voter.
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Next we describe some tractable cases. First, if we restrict each voter to be able
to delegate only one of the projects, we have tractability (as we can check each voter
individually).

Proposition 8. CKV can be solved in polynomial-time when every voter delegates at
most one project.

Proof. A voter that does not delegate is consistent (due to our assumption). For a voter
that delegates one project we check if she is consistent with replacing the delegation
with 1 (recall, we assumed we do not have either cycles or disapproval chains). If so,
we can skip this voter and resolve her delegation in the last phase (by just following its
delegation chain). If not, then we know this delegation has to be resolved to 0 hence
we can update the last delegation in the corresponding delegation component (i.e., in
its root) at cost 1. Such operation resolves the delegation to 0 but also it affects in the
same way the largest set under inclusion of other voters (still at cost 1). In particular,
after update of the delegation of the root to 0 (at cost 1) we propagate this decision to
all delegations in this delegation component (without paying extra cost). Note that such
operation does not create any disapproval chain or delegation cycle. �

Deciding separately on each delegation component, we have the following.

Observation 9. We can solve CKV in time O∗(
(|C|

k

)
) ≤ O∗(2|C|), where C is the set

of delegation components.

Proof. A solution to a yes-instance of CKV can be characterized by updating at most
k delegations to disapprovals. W.l.o.g. the updates are made in the roots of delegation
components. The result comes from a brute-force enumeration of all possible choices
of updating some k delegations (delegation components) to disapprovals. Overall, we
consider at most 2|C| cases, each in polynomial-time, hence the total running time is
O∗(2|C|). �

The number of delegation components |C| is upper-bounded by the number of dele-
gations D. Furthermore, D ≤ |V |·|P |, hence CKV is FPT wrt. |C|, D, or |V |+|P |. We
have the following corollary that gives us an algorithm that is almost tight, following
the ETH-based lowerbound of Theorem 12.

Corollary 10. We can solve CKV in time O∗(2|V |·|P |).

We can remove |P | from the exponent in the result above, but then the dependence
on |V | is double-exponential.

Theorem 11. CKV can be solved in O∗(2O(2|V |+log |V |)) time, hence the problem is
FPT wrt. |V |.
Proof. We solve the problem by outputting a subset S of delegation components, whose
update to disapproval makes an instance consistent. For every subset of voters V ′ ⊆ V
we define a type tV ′ of a delegation component. So, we have 2|V | types of delegation
components. A delegation component dc, which is defined by a subset of voters V ′ and
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a project p, is of type tV ′ which we denote by dc ∈ tV ′ . We overload the notation by
writing c(dc) = c(p). By |tV ′ | we denote the number of delegation components of type
tV ′ . Note that each type tV ′ consists of at most |P | delegation components (at most one
for each project); hence, we have at most |P | · 2|V | delegation components.

We define a Mixed Integer Linear Program (MILP) with 2|V | many integer variables
(one for each delegation component type). The main idea is that if dc1, dc2 ∈ tV ′

and c(dc1) > c(dc2) then it is better to update a component of the more expensive
project dc1 than that of the less expensive project dc2. (Observe that the topological
structure of delegations in dc1 and dc2 does not matter, only the subset of voters who
will be affected if we change the root of the delegation component to disapproval.)
Using this fact, we will split an integer variable into a sum of real variables—where
the i-th variable represents updating the i-th most expensive project from a delegation
component type.

Formally, for each V ′ ⊆ V we define an integer variable xV ′ ∈ {0, 1, . . . , |tV ′ |}
and |tV ′ |-many real variables yV ′,i ∈ [0, 1], where i ∈ {1, 2, . . . , |tV ′ |}. We write the
following constraint to connect the integer variable with its corresponding real-valued
variables:

xV ′ =
|tV ′ |∑

i=1

yV ′,i . (1)

We need to add the knapsack constraint for every voter. To this end, we define
p(V ′, i) ∈ P to be the i-th most expensive project in a delegation component type
tV ′ (by definition, there is at most one delegation component of that type that concerns
a particular project). Then, for every v ∈ V we define the knapsack constraint:

∑

p∈P :Lv(p)=1

c(p) +
∑

V ′⊆V :v∈V ′

|tV ′ |∑

i=1

(1 − yV ′,i) · c(p(V ′, i)) ≤ B .

The objective function is min
∑

V ′⊆V xV ′ .
We can transform any optimal solution (x∗, y∗) of the MILP into an optimal solu-

tion (x∗, yint) consisting of integer variables only: in particular, we define yint
V ′,i = 1 for

i ∈ {1, . . . , x∗
V ′} and yint

V ′,i = 0 for i ∈ {x∗
V ′ + 1, . . . , |tV ′ |}.

Optimality. The objective value of such a solution (x∗, yint) is the same as for (x∗, y∗)
(hence optimal), as the objective function depends only on xV ′ and both solutions have
the same value for variables xV ′ .

Feasibility. We can proceed as described above since the monotonicity of c(p(V ′, i))
wrt. i allows to move the value from yV ′,i to yV ′,i−1, keeping consistency with the
knapsack constraint.

Running Time. The MILP has at most 2|V | integer variables, |P |·2|V | real variables, and
|V |+2|V | many constraints. We can solve an MILP using O(p2.5p+o(p) · |I|) arithmetic
operations, where |I| is the input size and p is the number of integer variables [7,22].
In particular, our MILP can be solved in O∗(2O(2|V |+log |V |))-time. �
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Note that 2|V | in the proof above is only an upper-bound for the number of integer
variables in the MILP. Indeed, we can write a more strict upper-bound. Let t be the
number of non-empty types tV ′ , i.e., t = |{tV ′ : V ′ ⊆ V, |tV ′ | > 0}|. Constraint (1)
sets xV ′ to be 0 for empty types tV ′ . It means that we have at most t free integer
variables, hence CKV is FPT wrt. t.

The next result gives a lower bound on the running time of the algorithm assuming
ETH. The reduction follows from (3, 4)-CNF-SAT [27] and the ETH-based lower-
bound for it [24, Corollary 17].

Theorem 12. Unless ETH fails, there is no algorithm for CKV that runs in time
2o(|P |+|V |+k+B).

Consider an additional very restricted case in which the length of a delegation chain
is at most one, i.e., the non-transitive proxy voting setting. For instance, say that there
are several types of projects and there are several voters, each of which is an expert on
some type of projects (e.g., a medical doctor is an example on health-related projects).
Then, perhaps each voter either decides on each project on her own, or delegate projects
of a certain type to an expert. This would result in delegation chains of length at most
one. Such cases can be solved in polynomial-time, by greedily changing delegations
on the most expensive projects each voter delegates until they satisfy the Knapsack
constraint.

Observation 13. CKV can be solved in polynomial-time if all delegation chains are of
length at most one.

4 ILP and Simulation Results

Optimization version of the CKV problem can be formulated as an ILP, thus one can
use existing ILP solvers for it. (Note that this ILP is essentially different than MILP
defined in Theorem 11.)

Theorem 14. We can formulate CKV as an integer program with |C| binary variables,
where C is the set of delegation components.

Proof. For each delegation component we have to decide if we update it to disapproval.
Hence we make an arbitrary order on delegation components and define |C| binary vari-
ables x1, x2, . . . , x|C|, where xi = 1 means we update the i-th delegation component
and we keep it otherwise. For each v ∈ V and p ∈ P such that Lv(p) /∈ {0, 1} we
define l(v, p) ∈ [|C|] as the index of the delegation component to which the delegation
by v on p belongs. Hence, for every v ∈ V we define the following constraint that
decodes the budget limit consistency of v:

∑

p:Lv(p)=1

c(p) +
∑

p:Lv(p)/∈{0,1}
c(p) · (1 − xl(v,p)) ≤ B.

The objective function of CKV is minimizing the number of delegation updates, hence
it is decoded by min

∑
i∈[|C|] xi. This finishes the description of the ILP. �
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Fig. 2. Solution size and ILP running time (in seconds) for instances of CKV. The results for
the artificial instances are on top while the results for the Bitcoin instances are on the bottom.
Each square in each heatmap corresponds to different values of r0 and r1 and is averaged over 25
repetitions. Each instance consists of 200 voters, 20 projects with costs sampled from exponential
distribution with mean 400, and budget limit 3000. See description in Subsect. 4.1.

We performed computer-based simulations to get a better feeling of the hardness of
solving CKV. To this end, we implemented the above ILP and used it to solve differ-
ent instances, recording the solution size and the running time of the ILP. In the next
subsections we describe the experimental setup, provide the results, and discuss them.

4.1 Experimental Setup

We have two sets of instances: instances originating from real-world data and instances
that are completely artificially-generated. The “real-world based data” only allows us
to generate delegation graphs that resemble the real world, but the ballots are generated
randomly as well. Below we describe how we generate our instances.

Artificial Instances. These are generated as follows: we fix a number n of voters, a
number m of projects, a budget limit B, and probability values r0, r1 such that r0 +
r1 ∈ [0, 1]. We set the cost of each project to be a value sampled form an exponential
distribution with mean 400. For each voter we draw at random a set Sv ⊆ V containing
the voters that v is “allowed” to delegate to. Sv is constructed by adding to it each
other voter v′ �= v with probability 0.5, independently and uniformly at random. For
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each voter, we create a ballot as follows: for each project p, with probability r0 the
voter approves p; with probability r1 the voter disapproves p; and with the remaining
1− r0 − r1, the voter delegates the decision on p to some other voter, chosen uniformly
at random from Sv .

Real-World Based Instances. The instances originating from real-world instances are
similar to the artificial instances, except for the definition of Sv . In particular, instead
of having for each voter v, the set Sv of voters she might delegate to being a randomly-
generated set, we proceeded as follows. We took the “Bitcoin Alpha trust weighted
signed network” of Stanford Network Analysis Project (SNAP) [23]. This is a weighted
directed graph in which each vertex corresponds to a user of Bitcoin, and the weight on
a directed arc from some vertex u to some vertex v means the “level of trust” u have on
v. After cleaning the data, we used each vertex of this Bitcoin graph as a voter v, and
set its Sv to be all other voters that v trusts with a positive weight (the weights in the
data might be negative, corresponding to a Bitcoin user that does not trust some other
user). The ways in which the ballots are generated for these instances is similar to what
explained above for the artificial instances.

4.2 Results and Discussion

Our results are given in Fig. 2 and in Fig. 3. In Fig. 2, both for the artificial instances and
for the instances whose delegation graphs are derived from real-world data, we varied
the values of r0 (the probability of a voter approving a project) and r1 (the probability of
a voter disapproving a project) and recorded the average running time and the average
solution size, when performing 25 repetitions for each choice of parameters. In Fig. 3,
both for the artificial instances and for the instances whose delegation graphs are derived
from real-world data, we varied the values of n (number of voters) and m (number of
projects), and recorded again the average running time and the average solution size,
when performing 25 repetitions for each choice of parameters.

Regarding Fig. 2, one can see that, as we increase the probability of approving and
as we decrease the probability of disapproving, the instances become harder, as there
are simply more delegations, thus more delegation components in particular. Regarding
Fig. 3, one can see that even for quite large instances the ILP formulation performs well,
with its running time increasing naturally as the number n of voters or the number m
of projects increases.

5 Approximation Algorithms

There are two natural objectives we can violate, hence we can consider approximations
for them: (1) the number of updates k and (2) the knapsack constraint B. We consider
two separate problems: one, in which we fix the number of updates k and aim at vio-
lating the knapsack constraint B as little as possible; and another, in which we fix the
knapsack constraint B (and do not allow to violate it) and aim at minimizing the number
of updates k. To address these problems, it will be convenient to use the following nota-
tion: we call a solution for CKV an (α, β)-approximate solution, for some α, β ≥ 1,



Preserving Consistency for Liquid Knapsack Voting 235

Fig. 3. Solution size and ILP running time (in seconds) for instances of CKV. The results for
the artificial instances are on top while the results for the Bitcoin instances are on the bottom.
Each square in each heatmap corresponds to different values of n and m and is averaged over
25 repetitions. For each instance, the probability of approving a project is 0.2, of disapproving a
project is 0.6, and thus of delegating the decision on a project is 0.2. The budget limit B equals
0.3 · 400 ·m, where the project costs are sampled exponentially with mean 400. See description
in Subsect. 4.1.

if it is: 1) at most α times larger than an optimal one and 2) the maximal violation of
the knapsack constraint is by at most β factor. Let C be a set of delegation components.
We solve a problem by outputting a subset S ⊆ C of delegation components, whose
update to disapproval makes an instance consistent. Updating all delegation components
from C we achieve a trivial (|C|, 1)-approximation. Considering the whole C and all
1/ε-sized subsets of C as a solution (ε > 0) we achieve (ε · |C|, 1)-approximation in
O∗(|C|1/ε) time, i.e., polynomial-time. On the other hand, we can consider achieving
the minimum number of updates and violate the knapsack constraint only.

Theorem 15. Let I be an instance of CKV and let r ∈ [0, 1) be a fixed constant. There

exists a polynomial-time algorithm that returns (1, 1 + max{ 3 ln(2|V |)
B ,

√
3 ln(2|V |)

B })-
approximate solution for I with probability at least r.



236 P. Jain et al.

Proof (sketch). The idea of the proof is as follows. We define an ILP to CKV (with
reversed meaning of variables comparing to the ILP from Theorem 14). Then, we define
its natural linear relaxation (LP) by replacing each binary variable with a variable in an
interval [0, 1]. Then, we solve the LP in polynomial-time and scale the solution up to
achieve sum of the variables being an integer (but still at most the value of the optimal
integral solution). We can treat the values of variables in the obtained solution as prob-
abilities and round the solution to an integral one using the DEPENDENTROUNDING

procedure [15,25]. DEPENDENTROUNDING is a random process but with probability 1
it keeps the sum of all our variables, hence we get a solution with the number of dele-
gations updates being at most the value of the optimal integral solution. What is more
DEPENDENTROUNDING has the Negative Correlation property that makes the sum of
any subset of variables being more concentrated around its expected value hence we can
apply Chernoff-Hoeffding concentration bounds and argue that, with a constant proba-
bility, the solution does not exceed the knapsack constraint too much. Full formal proof
can be found in the full version of the paper. �

Note that, in the case where 3 ln(2|V |) ≤ B the ratio achieved by Theorem 15 is
at most (1, 2). In Theorem 15 we can replace |V | by the number of voters that delegate
at least 2 projects (which is potentially a smaller number). Indeed, we cannot exceed
the budget limit for the voters that do not have delegations. Also, if a voter has one
delegation we can resolve it in preprocessing. Then we do not need to count such voters
in the union-bound used in the proof.

Further Work. It would be interesting to improve the approximation ratios. It is an
open question whether we can achieve an (α, β)-approximation with constant α and
β. On the other hand, one could provide inapproximability results to understand the
limitations of this approach.

6 Discussion and Outlook

Motivated by the desire to get the benefits of LD for PB, we considered the option of
allowing per-project delegations for Knapsack Voting. Observing that with the addi-
tional flexibility given to voters, there could be inconsistencies by naively following
delegation chains, we considered altering as few delegations as possible to solve such
inconsistencies. We have shown that this is computationally very hard; but it can be
done efficiently (1) if |V | is small and for other restricted cases; (2) if we settle for
approximation algorithms; and (3) if we are using ILP solvers. This opens the way to
solve many instances efficiently. We believe that it is worth-while to allow fine-grained
transitive delegations to PB as we view our results as showing that it is possible to
enable it, at least in certain cases.

The most pressing future research direction would be to develop and analyze other
ways of solving such inconsistencies, such as: (1) having voters rank the projects she
delegates so that we could go greedily over such rankings; (2) updating a set of delega-
tions whose total cost is the minimum (and not its size, as we study here); (3) updating
a set of delegations while not tackling only the roots of delegation chains, e.g., by min-
imizing the number of voters affected.
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Abstract. Tournament solutions provide methods of selecting winners
of a competition based on the results of pairwise comparisons. These
methods have been studied in-depth from the perspective of social choice
theory, where a comparison between two candidates indicates which of
them is preferred to another by the majority of voters. In this paper
we study the party setting, in which groups of candidates select their
representatives. We consider the Uncovered Set tournament solution, in
which a candidate i is selected if no other candidate beats all the options
defeated by i, and contrast it with the Condorcet Winner rule, in which
either Condorcet winner is chosen or no selection is made. We show that
checking if a Nash equilibrium exists is NP-complete for both of these
rules. Moreover, from the perspective of Uncovered Set, it is also NP-
complete to check if a party has a potential winner.

Keywords: Tournaments solutions · Nash equilibria · Coalitional
tournaments

1 Introduction

One of the key problems in representative democracy is how candidates partici-
pating in the elections are selected from a larger number of potential competitors.
In fact, in most of political systems parties are only allowed to nominate a cer-
tain number of their members to run for a given position. Notably, in the US
presidential elections parties nominate only one candidate, which is a strategic
decision of great importance. As such, primaries, i.e., the process of selecting
party candidates, gained substantial attention not only in political science liter-
ature (see, e.g., [8,9,28]), but also in multi-agent systems community ([4,15,16]).

Voting theory provides a vast amount of ways to reason about selection of
candidates based on diverse preferences of individuals. In particular, tournament
solutions are well-established methods of representing voters’ preferences and of
subsequent selection of a set of winners based on them (see, e.g., [14,20,21,25]).
There, candidates are represented as vertices in a directed graph in which an
edge between a pair of them determines the winner in a pairwise contest. This
information can subsequently be used to select the best options among the entire
set of candidates. As such, tournaments have been extensively researched in the
context of social choice (see, e.g., [5] for an overview).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Baumeister and J. Rothe (Eds.): EUMAS 2022, LNAI 13442, pp. 239–256, 2022.
https://doi.org/10.1007/978-3-031-20614-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20614-6_14&domain=pdf
https://doi.org/10.1007/978-3-031-20614-6_14


240 G. Lisowski

The choice of a winner of a tournament is clear when there is an option which
beats all other contestants, which is called a Condorcet winner. However, it is pos-
sible for voters to submit preferences over candidates which result in a cyclic tour-
nament, which implies that such an option might not exist. Hence, a number of
methods of selecting sets of winners even in such a situation have been proposed.
Among others, the well-studied Uncovered Set has been proposed independently
by [13] and [24]. There, a candidate i is said to be a winner if there is no other can-
didate which beats all of the opponents that i does. This method has been shown
to display important properties with respect to fairness. If the tournament relation
is interpreted as which of the candidates is preferred by the majority of voters, a
candidate i is said to be Pareto dominated if all voters prefer some candidate j over
i. Importantly, Uncovered Set has been shown to select the largest set of winners
which does not contain a Pareto dominated option [6].

It is natural from the perspective of the problem of primaries to consider the
question of how parties striving to win the elections select their nominee in a
system based on a tournament, assuming that pairwise comparisons between all
potential candidates are known.

Example 1. The left subfigure of Fig. 1 depicts a tournament between six can-
didates, divided into three parties. Based on the information on which option
is preferred between each pair of candidates, parties need to select exactly one
representative. The right subfigure shows the tournament in which every group
chooses the upper candidate. Observe that as the representative of the leftmost
party dominates all other participants, they clearly win the tournament.

Fig. 1. The left figure depicts a tournament relation defined over all potential candi-
dates, while the right figure presents a tournament including only those nominated to
participate in the elections. For clarity, we omit edges between candidates belonging
to the same parties in all figures.

In this paper we propose to study the described problem from the algorithmic
game theory perspective. We define classical solution concepts in the proposed
framework, focusing on pure Nash equilibrium (NE). The main focus of the paper
is the study of computational complexity if a NE exists given a set of parties
and relations between individual contestants.

It is worth noting that recently Lisowski, Ramanujan and Turrini [22] stud-
ied the coalitional tournaments setting from the perspective of knockout tourna-
ments. In this setting, players are competing in rounds. So, at the start they are
seeded at the leaves of a binary tree. Subsequently, the winner in each pairwise
contests advances to a next round, until the winner is selected. It has been shown
that checking if a NE exists in this setting is solvable in quasi-polynomial time.
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However, the methods used to demonstrate the tractability of this problem in
knockout tournaments strongly rely on the tree structure of the competition. It is
therefore natural to investigate whether this result holds when other tournament
solutions are considered. In this paper we address this problem.

Our Contribution. In this paper we establish algorithmic properties of the
Uncovered Set rule. We contrast them with the Condorcet Winner rule, in which
only the Condorcet winner is selected, if it exists. We consider three main com-
putational questions. First, for a given method of selecting the winners from a
tournament, we address the problem of checking whether a party can win in
some strategy profile. We show that this problem is tractable for the Condorcet
Winner rule, but NP-complete for Uncovered Set. Further, we analyse the prob-
lem of whether there exists a pure Nash equilibrium in the competition, for a
given rule, and finally, we are interested in checking if a given party has a candi-
date which can win in some Nash equilibrium. We show that these two problems
are NP-complete for both of the rules we consider.

Related Literature. Recently, Kondratev and Mazalov [19] studied coalitional
tournaments from the perspective of cooperative game theory. As such, they anal-
ysed the behaviour of players who can form coalitions in order to get the best out-
come for themselves. In our proposed approach instead, parties are already fixed.
This approach is similar to the one proposed by Faliszewski, Gourvès, Lang, Lesca
and Monnot [12] in which political parties select their representatives to compete
in the elections which are based on the plurality rule. In their study, the investiga-
tion was limited to checking if a party has a necessary, or a possible winner. The
problem of checking if a party has a possible winner from the perspective of the
plurality rule has been shown to be NP-complete, which is analogous to our corre-
sponding result in the context of the Uncovered Set rule. However, they leave the
study of game theoretic solution concepts open in this scenario.

Our work is closely connected to strategic voting. In this key areas of com-
putational social choice theory it is studied how agents striving to ensure that
the best possible outcome of the elections from their perspective is obtained
behave (see, e.g., [23]). Another research area related to primaries is strategic
candidacy. There, it is studied how participants of the elections might want to
drop out from the competition to prevent some opponents from winning (see,
e.g., [7,10,11,26]).

Furthermore, our study is related to the analysis of possible and necessary
winner problems in the context of partial tournaments [2]. There, the problem we
consider involves tournaments with partial information about the results of pair-
wise contests, and whether an option is a winner in some, or in all completions
of the partial tournament.

Finally, a related line of research involves manipulation in tournaments. One
of the studied types of manipulation is the possibility of a pair of players to
change the result the match between them in order to get a beneficial result (see,
e.g., [1]). Another method of manipulation is situated in well-studied knockout
tournaments. A natural way of manipulation in this setting is fixing a seeding
ensuring that a given player is the winner (see, e.g., [3,17,18,27]).
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Paper Structure. In Sect. 2 we define the key notions used later in the paper.
Then, in Sect. 3 we present initial facts about all rules we consider. In Sect. 4
we investigate the properties of the Condorcet Winner rule, and in Sect. 5 we
analyse the Uncovered Set rule. Finally, Sect. 6 concludes and provides directions
for further research.

2 Preliminaries

Let us provide the definitions of needed concepts and of computational problems
which we study in this paper.

Tournaments. Let N be the set of candidates. Then, a tournament is a directed
graph (N,E), where E is an irreflexive, binary relation over N , in which, for
every pair of candidates i �= j in N , exactly one of (i, j) and (j, i) belongs to
E. If (i, j) ∈ E, we say that i beats j in E. We will say that i beats j when E
is clear from the context. Given a tournament (N,E) and i ∈ N , we denote as
D(i) the set of candidates beaten by i. Formally, D(i) = {j ∈ N : i beats j}.

Parties. We study the case in which candidates are partitioned into parties. For
a given tournament (N,E), a party is a member of a partition P = {P1, . . . , Pm}
of N . We call such a partition a set of parties and denote a tuple (N,E, P ) as a
party structure. Further, we require each party to select exactly one candidate.
So, a strategy profile is a tuple (c1, . . . , cm) such that for every ci, we have that
ci ∈ Pi. For convenience, for a party structure (N,E, P ) and i ∈ N , we denote
as P(i) the party Pj ∈ P such that i ∈ Pj .

To account for the competition between the selected candidates, given a party
structure T = (N,E, P ) and a strategy profile c=(c1, . . . , cm), a subtournament
induced by c, which we denote as Tc, is a tournament (c, E′) such that for every
pair of candidates ci, cj ∈ c, ci beats cj in E′ if and only if ci beats cj in E. For
simplicity, we will refer to such a subtournament as a filtration of T .

Tournament Rules. In the scenario we consider parties are interested in win-
ning the competition. To determine the set of winners we consider tournament
solutions. Let TN be the set of all tournaments with the set of candidates N .
Then, a tournament solution is a function F : TN → 2N . Further, given a party
structure T = (N,E, P ), a strategy profile c and a tournament solution F , we
say that a party Pi is a winner under F at Tc, if ci ∈ F (Tc). When clear from
the context, we just say that Pi is a winner of Tc, or that Pi is a winner under
c (when the party structure is not ambiguous). We also say that ci ∈ Pi is a
winner in the initial tournament, if ci ∈ F ((N,E)).

In this paper we will consider two tournament solutions, namely the Con-
dorcet Winner rule and the Uncovered Set rule. Given a tournament (N,E), a
candidate i ∈ N is a Condorcet winner if i beats any other candidate j ∈ N .
Notice that the set of all Condorcet winners in a tournament is either a singleton
or is empty. Then, the Condorcet Winner rule selects the set of all Condorcet
winners. Observe that this rule might not select any candidate.
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Definition 1 (Condorcet Winner Rule). The Condorcet Winner rule (CW)
is the tournament solution such that for every tournament (N,E), CW(N,E) is
the Condorcet winner if it exits, and the empty set otherwise.

Furthermore, we are interested in one of the rules extending the Condorcet
Winner rule, which guarantees that the set of winners is not empty. Given a
tournament (N,E) and a pair i, j ∈ N we say that i covers j (i � j) if D(j) ⊆
D(i). So, i covers j if i beats all of the candidates that j beats. Observe how the
fact that i � j implies that i beats j. Then, the Uncovered Set rule selects all
candidates which are not covered by any other candidate.

Definition 2 (Uncovered Set Rule). The Uncovered Set rule (US) is the
tournament solution such that for every tournament (N,E)

US((N,E)) = {i ∈ N : for every j ∈ N, j �� i}

Nash Equilibrium. We are interested in the game-theoretic study of the scenario
we consider. We will study the properties of the well-studied solution concept
of a pure Nash equilibrium (NE). Given a strategy profile c, a party Pi and
a candidate c′

i ∈ Pi, (c′
i, c−i) denotes the strategy set in which the candidate

selected by Pi is c′
i and all other parties select the same candidate as in c. Then,

for a party structure T = (N,E, P ) and a tournament solution F , we say that
c is a NE under F , if for every party Pi such that Pi is not a winner of Tc and
c′
i ∈ Pi, it holds that Pi is not a winner of T(c′

i,c−i).
Observe how the strategy profile which we consider in Fig. 1 is a NE both

under CW and under US. Indeed the candidate selected by the leftmost party is
a Condorcet winner in (N,E). Therefore, in every strategy profile in which it is
selected, it beats and cover all other options, implying that it is the only winner
in all such profiles from the perspective of both rules we consider.

Computational Problems. Let us define the computational problems studied in
the setting we consider.

F-Possible Winner is the problem of checking whether a given party has a
candidate who is a winner from the perspective of F under some strategy profile.
Given a party structure T = (N,E, P ), we say that a candidate c is a possible
winner of T from the perspective of F if there is a strategy profile c such that
P(c) is a winner of Tc from the perspective of F under c.

F-Possible Winner:
Input: Party structure T = (N,E, P ), party Pi ∈ P .
Question: Is there a candidate ci ∈ Pi such that Pi is a possible winner of T

under F?

Further, F-Winner in NE is the problem of checking if a party is winner
from the perspective of F in some NE.

F-Winner in NE:
Input: Party structure T = (N,E, P ), party Pi ∈ P .
Question: Is there a candidate ci ∈ Ci such that ci is a winner of Tc under

F for some strategy profile c which is a NE under F?
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Finally, F-NE Existence is the problem of checking if there exists a strategy
profile which is a NE from the perspective of F .

F-NE Existence:
Input: Party structure (N,E, P ).
Question: Is there a strategy profile c which is a NE under F?

3 Initial Remarks

Even though we restrict ourselves to two specific tournament solutions, some
properties are shared by larger classes of rules, such as Condorcet consistent
rules. We say that a rule F is Condorcet consistent if for every tournament
(N,E) in which i ∈ N is the Condorcet winner, F ((N,E)) = {i}. Observe that
both CW and US are Condorcet consistent. We first observe that the existence
of a NE is not guaranteed for any Condorcet consistent rule.

Proposition 1. For every Condorcet consistent rule F there is a party structure
(N,E, P ) without a NE from the perspective of F .

Proof. Consider a Condorcet consistent rule F and the party structure with
parties A = {a1, a2} and B = {b1, b2} depicted in Fig. 2.

Let us show that there are no NE in this party structure from the perspective
of F . Consider an arbitrary strategy profile (ai, bj) in this structure and let
w.l.o.g ai beat bj . Note that then A is the unique winner from the perspective
of F since F is Condorcet consistent. But then, by construction of the party
structure, there is a b3−j ∈ B such that b3−j beats ai. Observe that B is the
unique winner of (ai, b3−j) So, (ai, bj) is not a NE.

a1 a2

b1 b2

Fig. 2. Example of a party structure with no NE under any Condorcet consistent rule.

Further, given a party structure (N,E, P ), parties Pi, Pj ∈ P and a candidate
ci ∈ Pi, we say that ci dominates Pj if for every cj ∈ Pj , ci beats cj . Then, a NE
from the perspective of any Condorcet consistent rule exists in a party structures
with two parties exactly when there is a candidate which dominates the opposing
party.

Proposition 2. For every Condorcet consistent rule F and every party struc-
ture (N,E, P ) such that |P | = 2 there exists a NE under F in (N,E, P ) if and
only if there is a candidate c which dominates the party Pi ∈ P s.t c /∈ Pi.
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Proof. Consider a Condorcet consistent rule F and a party structure (N,E,
{P1, P2}). Observe first that since there are only two parties in the party struc-
ture, for every filtration induced by a profile (c1, c2) there is exactly one Condorcet
winner.

For the forward direction, let us reason by contraposition. Suppose that for
every candidate c there is a candidate c′ /∈ P(c) such that c′ beats c. Further,
suppose towards contradiction that there exists a profile (c1, c2) which is a NE.
W.l.o.g let c1 beat c2. Note that given this profile, as F is Condorcet consistent,
P1 is the unique winner from the perspective of F . Observe further that by
assumption there is a c′

2 ∈ P2 such that c′
2 beats c1. But then P2 wins under

(c1, c′
2), so (c1, c2) is not a NE, which violates the assumptions. Suppose now

that there exists a candidate c such that for every candidate c′ /∈ P(c), c beats
c′. W.l.o.g let c ∈ P1. Then, consider any strategy profile (c, c2). Note that as
c beats c2 and F is Condorcet consistent it holds that P1 is the winner under
(c, c2). Also, as c dominates P2, P1 wins under (c, c′

2) for every c′
2 ∈ P2. Hence,

(c, c2) is a NE.

4 Condorcet Winner Rule

Let us provide an analysis of the Condorcet Winner rule. Let us first observe that
if a party contains a Condorcet winner in the initial tournament, then selecting
it guarantees victory for that party.

Proposition 3. For every party structure T = (N,E, P ), Pi ∈ P , strategy
profile c and a candidate ci ∈ Pi selected in c, if ci is a Condorcet winner in
(N,E), then Pi wins in Tc under CW.

Proof. Take a party structure T = (N,E, P ), strategy profile c and a candidate
ci ∈ Pi selected in c, such that ci is a Condorcet winner in (N,E). Observe that
ci is a Condorcet winner in (N,E), and hence it is a Condorcet winner in Tc.
So, Pi is a winner in Tc under CW.

Furthermore, checking if a party contains a candidate which might potentially
win is tractable.

Proposition 4. CW-Possible Winner is solvable in polynomial time.

Proof. Take a party structure T = (N,E, P ) and a party Pi ∈ P . To check if
there exists ci ∈ Pi which is a winner from the perspective of CW in Tc for
some strategy profile c, it is sufficient to check if it is the case for any of Pi’s
members. Note that Pi is a winner under some strategy profile in which ci is
selected if and only if for every party Pj there is a cj ∈ Pj such that ci beats
cj . Observe that this condition is verifiable by an algorithm running in O(|N |)
time. So, CW-Possible Winner is solvable in O(|N |2) time by checking the
condition for all members of Pi.

It is worth noting that the algorithm given in the proof allows us to find all
possible winners. We show, however, that checking if a NE exists is not tractable
by reduction from the 3-SAT problem.
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Theorem 1. CW-NE Existence is NP-complete.

Intuitively, we construct a party corresponding to each variable in a formula
with two candidates each (corresponding to literals), and a party containing a
pair of candidates for each clause. We further construct what we call a base party
with two candidates, such that the beating relation induces the matching pennies
game between the base party and each of the pairs in the clause party. Having
that a candidate in the clause party is beaten exactly by those candidates in
variable gadgets, which correspond to literals in the clause, we obtain that a NE
exists in the constructed game if and only if the formula is satisfiable.

Proof. Let us first notice that the problem we consider is in NP. Indeed, given
a party structure (N,E, P ) and a strategy profile c we can check whether c is
a NE by examining all potential deviations of all parties, which can be done in
polynomial time.

Let us now show the NP-hardness of this problem. Take a formula ϕ in
3-CNF. Let X = {x0, . . . , xn} denote the set of variables in ϕ, and C =
{C0, . . . , Cm} be the set of clauses in ϕ. Let us now construct a party struc-
ture T = (N,E, P ) which we call the encoding of ϕ.

Base, Variable and Clause Parties. First, fix the base party S = {s1, s2}. Then,
for every variable xi ∈ X construct a party {xi,¬xi}, which we call a variable
party. Moreover, we say that the party {xi,¬xi} corresponds to xi and call its
members literal candidates corresponding to xi and ¬xi respectively. Finally,
we construct what we call a clause party as follows. For every clause Ci ∈
C, construct a clause pair C ′

i = {C1
i , C2

i }. We call the members of C ′
i clause

candidates. The clause party is the set {Cj
i : i ∈ [0,m] and j ∈ {1, 2}}, i.e. is

a collection of clause pairs. Note that the construction requires |X| + 2 parties
and 2|C| + 2|X| + 2 candidates.

Tournament Relation. Let us now construct the tournament relation. First, for
every literal candidate L, let s1 and s2 beat L. Furthermore, for every clause pair
C ′

i = {C1
i , C2

i }, let s1 beat C1
i , C1

i beat s2, s2 beat C2
i and C2

i beat s1, creating
a cycle. Finally, for every literal candidate L and a clause candidate Ck

j , let L

beat Ck
j if literal L is in the clause Cj , and Ck

j beat L, otherwise. Construct
all other edges arbitrarily. Observe that, by construction, a variable party is not
a winner under any strategy profile, as its representative is always beaten by a
member of the base party.

An example of the relation in the encoding of ϕ is depicted in Fig. 3.

Correctness of the Construction. Let us show that ϕ is satisfiable if and only
if the encoding of ϕ admits a NE. Suppose that ϕ is satisfiable. Then take a
valuation V over X which makes ϕ true. Further, take a strategy profile c such
that for every variable party {xi,¬xi} we have that candidate xi is selected
whenever xi is true in V , and the candidate ¬xi is selected otherwise. Also, let
s1 as well as C1

0 be selected. Notice that in Tc, s1 is the Condorcet winner, as
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s1 s2

C1
0 C2

0

s1 s2

C1
0 C1

0 C1
1 C1

2

x ¬x

Fig. 3. Encoding of the formula x ∧ ¬x. The nodes in the double rectangle depict the
base pair and the nodes in the single rectangle the variable party corresponding to
x. Moreover, in the right figure, the left pair in the dashed rectangle depicts a clause
pair such that x is in the corresponding clause, and the right the clause clause pair
representing the clause to which ¬x belongs. The left figure shows the relation between
the base pair and a clause pair, while the right one shows the remaining relations. It is
worth noting at this stage that the tournament restricted to the pair of parties in the
left figure has no NE.

it wins against all selected literal candidates and against C1
0 . Furthermore, as

V is a model of ϕ, for every clause candidate Ck
j there is some selected literal

candidate L such that L beats Ck
j . Hence, the clause party has no profitable

deviation. Finally, as we observed before, all variable parties lose in any strategy
profile. Therefore, c is a NE. Suppose now that ϕ is not satisfiable. Then, for
every strategy profile there is a pair of clause candidates C ′

j such that each of its
members beats all selected literal candidates, as otherwise there would exist a
valuation over X satisfying ϕ. Let us now reason by contradiction and suppose
now that there is a NE strategy profile c. Consider a pair of clause candidates
C ′

j that beats every literal candidate selected in c. Let us show that if there is no
Condorcet winner in Tc, then there exists a profitable deviation for the clause
party. Indeed, if s1 is selected, let the clause party select C2

j , and otherwise
C1

j . One can verify that in the modified profile the clause party is the winner.
Suppose now that there is a Condorcet winner in Tc. If s1 is the Condorcet
winner in Tc, let the clause party choose C2

j , and if it is s2, let the clause party
choose C1

j . Note that in both of these cases the clause party becomes the winner.
Finally, consider the case in which a member of the clause party is the Condorcet
winner in Tc. In this case the base pair has a profitable deviation by symmetric
reasoning. Hence, there is no NE in the encoding of ϕ.

Furthermore, let us show that it is computationally hard to check if a party
has a member who wins in some NE by reduction from 3-SAT.

Theorem 2. CW-Winner in NE is NP-complete.

Proof. Let us first observe that as verification of whether a profile is a NE can
be done in polynomial time, the problem we consider is in NP. Let us show the
NP-hardness of this problem. Take a formula ϕ in 3-CNF. Let X = {x0, . . . , xn}
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be the set of variables in ϕ and C = {C0, . . . , Cm} be the set of clauses in ϕ.
Further, consider the encoding of ϕ as constructed in the proof of Theorem 1. Let
us show that the base party a winner in some NE if and only if ϕ is satisfiable.

Suppose that ϕ is not satisfiable. Then, by the reasoning used in the proof
of Theorem 1 there is no NE in the encoding of ϕ. So, the base party is not a
winner in a NE. Suppose further that ϕ is satisfiable. Then, a NE in which s1 is
a winner can be constructed as in the proof of Theorem 1.

5 Uncovered Set

Let us now consider the Uncovered Set rule. We will start with providing a few
observations showcasing differences between competitions between parties in the
context of the Uncovered Set, and Condorcet Winner rules. They in a large part
arise due to the fact that the winner under the Uncovered Set always exists but
is not unique. One can check that they do not hold for the CW rule. Let us first
observe that in the context of US, having a member of a party which wins in
the initial tournament does not guarantee victory in a filtration induced by a
strategy profile in which it is selected.

Proposition 5. There exists a party structure T = (N,E, P ) and a NE profile
c such that a winner i in (N,E) is selected in c, but P(i) loses in Tc.

Example 2. Consider the party structure (N,E, P ) depicted in the Fig. 4.
Observe that in the tournament (N,E), the member of the singleton party is a
winner from the perspective of US as it is the only candidate beating three right-
most candidates in the top tier. Notice, however, that in the filtration induced
by a profile c depicted in the right side of Fig. 4, it is beaten by all other chosen
candidates and thus does not win under US.

Fig. 4. An example of a party structure (N, E, P ) in which a party whose member is
winner in (N, E) does not win under some Nash equilibrium. The edges not shown in
the Figure point downwards.

Further, it can be the case that replacing a strategy with a member who is
a winner in the initial tournament is not profitable.

Proposition 6. There exists a party structure T = (N,E, P ), Pi ∈ P , a winner
c′
i ∈ Pi of (N,E) under US, and a NE profile c such that a Pi wins in Tc, but
not in T(c′

i,c−i).
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Example 3. Consider the party structure (N,E, P ) depicted in the left side of
Fig. 5. Observe that the top-left candidate is a winner from the perspective of US
in the initial tournament, as it is the only player beating the top candidate in
the centre. Observe that the top candidate in the centre covers the bottom-left
candidate, which hence is not a winner in the initial tournament. Then, consider
a strategy profile inducing a filtration in right side of Fig. 5. Observe that then,
since all candidates are winners form the perspective of US, it is a NE. So, the
left party is a winner in a NE. However, replacing its choice with the top-left
candidate would result in losing the tournament.

Fig. 5. An example of a party structure in which choosing a weaker player is profitable.

Moreover, it can be the case that none of the candidates selected by some
party winning in a NE is a winner in the initial tournament.

Proposition 7. There exists a party structure T = (N,E, P ) and a NE profile
c, such that no candidate selected by some party winning in Tc is a winner in
(N,E).

Example 4. Consider a party structure (N,E, P ) in the left side of the Fig. 6.
Notice that the top-left node there is a Condorcet winner and hence is the only
winner from the perspective of Uncovered Set in (N,E). Consider, however, the
only strategy profile in which it is not selected, which is depicted on the right
side of the Fig. 6. Observe that in this tournament all candidates are winners
from the perspective of US. Hence, the profile we consider is a NE.

Fig. 6. The left figure depicts a party structure with a candidate (top-left) which is
a Condorcet winner. The right shows a filtration in which all teams are winners even
though none of their nominees wins in the original tournament.

Let us move to establishing the computational complexity of US -Possible
Winner. We show that this problem is NP-complete by reduction from 3-SAT.

Theorem 3. US -Possible Winner is NP-complete.
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Proof. Observe first that the problem is in NP. Indeed, given a party structure
and a given party, as well as a strategy profile, checking if it has a possible
winner is solvable in polynomial time as winner determination under a given
strategy profile is solvable in polynomial time for the Uncovered Set rule. Let
us show now the NP-hardness of this problem. Take a formula ϕ in 3-CNF. Let
X = {x0, . . . , xn} be the set of variables in ϕ and C = {C0, . . . , Cm} the set of
clauses in ϕ. Let us construct the party structure which we will call the encoding
of ϕ.

Parties. First, let us fix a base party {s}. We call s the base candidate. Further,
for every variable xi ∈ X, we construct a party {xi,¬xi}. We say that such a
party corresponds to xi and call it’s members literal candidates corresponding to
literals xi and ¬xi respectively. Finally, for every clause Ci ∈ C let us construct a
party {Ci}. We call a member of such a party a clause candidate corresponding to
Ci. Observe that the encoding of ϕ includes |X|+|C|+1 parties with 2|X|+|C|+1
candidates.

Tournament Relation. Let us construct the tournament relation in the encoding
of ϕ. First, for every literal candidate L, let s beat L. Further, for every clause
candidate Ci, let Ci beat s. Finally, for every literal candidate L and every clause
candidate Ci, let L beat Ci if the literal L is in the clause Ci, and let Ci beat
L otherwise. Let the remaining edges be constructed arbitrarily. Notice that s
beats all literal candidates and no other candidates under any strategy profile.
It is worth noting that every strategy profile in the encoding of ϕ corresponds to
a valuation V over X such that the party corresponding to a variable xi selects
the candidate xi if xi is true in V and ¬xi otherwise. Then, we say that a clause
Ci is satisfied in the encoding of ϕ under a profile c if the clause candidate Ci

is beaten by some literal candidate selected in c. Figure 7 depicts the encoding
of the formula ¬x1 ∨ ¬x2.

x1

¬x1

x2

¬x2

s

C0

Fig. 7. The encoding of the formula ¬x1 ∨ ¬x2. The node in the double rectangle
represents the base party. Nodes in single rectangles are variable parties, and in the
dashed rectangle the clause party C0. Observe that the base party is a winner exactly
when ¬x1 or ¬x2 is selected.
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Correctness of the Construction. Let us show that {s} has a possible winner
in the encoding of ϕ if and only if ϕ is satisfiable. Suppose first that ϕ is not
satisfiable. Let us show that {s} does not have a possible winner. Consider any
strategy profile c. Notice that as ϕ is not satisfiable, there is a clause Ci which
is not satisfied in the encoding of ϕ under c. This implies that there is a selected
clause candidate Ci which beats all selected literal candidates in c. Observe
further that, as Ci also beats s, s is covered by Ci. So, {s} is not a winner under
any strategy profile and hence does not have a possible winner. Suppose now
that ϕ is satisfiable. Let us show that {s} has a possible winner in the encoding
of ϕ. Consider a valuation V under which ϕ is true. Also, take the strategy profile
c in which every party {xi,¬xi} corresponding to a variable xi selects xi if xi

is true in V , and ¬xi otherwise. Observe that as ϕ is true under V , for every
clause candidate in c there is a literal candidate in c that beats it. Hence, s is
the only selected candidate which beats all chosen literal candidates. Hence, s
is not covered by any selected candidate under some strategy profile. Therefore,
{s} has a possible winner.

Further, we show that US -NE Existence is NP-complete by reduction from
3-SAT.

Theorem 4. US -NE Existence is NP-complete.

Proof. Let us first observe that the problem we consider is in NP. Indeed, for
a given strategy profile we can check in polynomial time whether a given party
can improve their utility by replacing their representative. Let us then show the
NP-hardness of this problem. Take a formula ϕ in 3-CNF. Let X = {x0, . . . , xn}
be the set of variables in ϕ and C = {C0, . . . , Cm} be the set of clauses in ϕ. Let
us assume for simplicity that |X| ≥ 3. This is without loss of generality as every
formula in 3-CNF can be extended to an equivalent formula in 3-CNF with at
least 3 variables. Let us construct the party structure (N,E, P ) which we will
call the encoding of ϕ.

Parties. First, fix a base party S = {s1, s2}. We call the members of this party
base candidates. Further, for every variable xi ∈ X let us construct a variable
party {xi,¬xi}. We say that such a party corresponds to xi and call its mem-
bers literal candidates corresponding to xi and ¬xi respectively. Then, for every
xi ∈ X we construct an auxiliary party {Axi

} and call its member an auxiliary
candidate corresponding to xi. Finally, we construct what we call a clause party
as follows. For every clause Ci ∈ C, construct a clause pair C ′

i = {C1
i , C2

i }.
We call the members of C ′

i clause candidates. Then, the clause party is the set
{Cj

i | i ∈ [0,m − 1] and j ∈ {1, 2}}, i.e. the union of all clause pairs. Observe
that every strategy profile in the encoding of ϕ corresponds to the valuation V
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over X such that for every variable xi ∈ X, xi is true in V if xi is selected by
the corresponding variable party, and false if ¬xi is selected. Note further that
the encoding of ϕ requires 2|X| + 2 parties and 2|C| + 3|X| + 2 candidates.

Tournament Relation. Let us construct the tournament relation in the encoding
of ϕ. First, for a literal candidate L, let s1 and s2 beat L. Further, for every clause
candidate Ck

j and a literal candidate L, let L beat Ck
j if L is in the clause Cj ,

and Ck
j beat L otherwise. For a strategy profile c in which some selected literal

candidate L beats Ck
j , we say that Cj is satisfied in c. Also, for every auxiliary

party {Axi
}, let Axi

beat all variable, base and clause candidates apart from
xi and ¬xi. Instead, let xi and ¬xi beat Axi

. Furthermore, for every clause
pair C ′

i = {C1
i , C2

i }, let s1 beat C1
i , C1

i beat s2, s2 beat C2
i and C2

i beat s1,
constructing a cycle. Let the remaining edges be constructed arbitrarily while
ensuring that each auxiliary candidate Axi

is beaten by some auxiliary candidate
Axj

and for such a pair, members of the party corresponding to xi are beaten by
the members of the party corresponding to xj . Note that such a relation exists
since |X| ≥ 3, e.g., when there exists a cycle containing all auxiliary candidates,
mirrored by variable candidates. The key relation in an encoding of ϕ is partially
depicted in the Fig. 8.

s1 s2

C0 C0

s1 s2

Axi C1
0 C2

0

xi ¬xi

Fig. 8. Key relations in the encoding of ϕ. Candidates in the double rectangle represent
the base party, in the single rectangle a variable party corresponding to xi, and in the
dashed rectangle, a clause pair. In the depicted fragment, xi belongs to the presented
clause, while ¬xi does not. The remaining candidate is the auxiliary candidate Axi .
The left figure shows the relation between the base pair and the clause pair, while the
right one shows the relation between the remaining parties.

Correctness of the Construction. First, we state a few properties of the encoding
of ϕ.

1. Let us show first that no variable party is a winner under any strategy profile.
To see that take any variable party {xi,¬xi} and an auxiliary candidate
Axj

which beats Axi
. We know that such an auxiliary candidate exists by

construction of the tournament relation. Observe that under any strategy
profile, Axj

beats all candidate beaten by xi or ¬xi. Namely, it beats all
literal candidates apart from xj and ¬xj , candidates in the base party, all
clause candidates and Axi

. Also, by construction of the tournament relation,
xi and ¬xi are beaten by xj and ¬xj . So, a nominee of the party corresponding
to xi is covered by Axj

and hence this party is not a winner.
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2. We further show that if in a profile in which the clause party chooses a
candidate Ck

j some chosen literal candidate L beats Ck
j , then the clause party

is not a winner. W.l.o.g let such Ck
j be beaten by a selected candidate xi.

Notice that the candidate Axi
beats all of the candidates that Ck

j does, as it
beats all literal candidates apart the members of the party corresponding xi

and the base candidates. Hence the clause party is not a winner under such
profile as Ck

j is covered by Axi
.

3. Also, a selected clause candidate Ck
j is not covered by any auxiliary candidate

Axi
such that Ck

j beats the candidate selected by {xi,¬xi}, as it beats Axi
.

We are now ready to show that there exists a NE in the encoding of ϕ if and
only if ϕ is satisfiable. Suppose that ϕ is not satisfiable. Let us show that there
exists no NE in the encoding of ϕ. Observe that as ϕ is not satisfiable, for every
strategy profile c there is a clause which is not satisfied in c and hence there is a
pair of clause candidates C ′

j , such that both members of C ′
j beat every selected

literal candidate. Suppose first that the clause party selects a member of such a
pair C ′

j . By 3., it is in the uncovered set exactly when it is not covered by the
selected member of the base party. Similarly, as the chosen member of the base
party beats all literal candidates, it is in the uncovered set exactly when it is not
covered by the selection of the clause party. Note that if C1

j and s1 are selected,
then C1

j is covered by s1. It is not the case, however, if C2
j and s1 are selected, so

the clause party has a profitable deviation. Further, if C1
j and s2 are selected, s2

is covered and the base party has a profitable deviation to s1. So, there is no NE
if C1

j is selected. Symmetrically it can be shown that there is no NE in which C2
j

is chosen. Otherwise, if the clause party selects a candidate which is beaten by
some selected literal candidate L, the clause party is not a winner by 2. One can
verify, however, that deviating to some player in C ′

i is profitable for the clause
party. Hence, there is no NE in the encoding of ϕ if ϕ is not satisfiable. Suppose
now that ϕ is satisfiable. Let us show that there exists a NE in the encoding of
ϕ. Consider a valuation V over X that makes ϕ true. We know that it exists
since ϕ is satisfiable. Take also a strategy profile c such that, for every party
{xi,¬xi} corresponding to xi, we have that xi is selected whenever xi is set
to true by V , and ¬xi is selected otherwise. Also, pick s1 and C1

0 . Notice that
as V satisfies ϕ, for every candidate Ck

j in the clause party there is a selected
literal candidate which beats Ck

j . So, by 2., the clause party is not a winner
regardless of their choice, and thus has no profitable deviation. Further, as we
have observed in 1., variable parties do not win under any strategy profile, and
hence have no profitable deviation. Moreover, s1 is the only selected candidate
beating all chosen literal candidates and thus is in the uncovered set. So, the
base party has no profitable deviation. Finally, all other parties are singletons
and therefore have no profitable deviations. So, c is a NE.

Finally, we show the complexity of US -Winner in NE by reduction from
3-SAT.

Theorem 5. US -Winner in NE is NP-complete.
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Proof. Observe first that the problem is in NP as checking if a profile is a NE
and winner determination is possible in polynomial time for US. We further show
the hardness of this problem. Take a formula ϕ in 3-CNF. Let X = {x0, . . . , xn}
be the set of variables in ϕ and C = {C0, . . . , Cm} be the set of clauses in ϕ.
Let us construct what we call the encoding of ϕ, as in the proof of Theorem 4.
Observe that {Ax0} is a winner under any strategy profile. Indeed, in any strategy
profile Ax0 beats the selections of base party and clause parties and hence is not
covered by them. Also, it is not covered by selected literal candidates as they do
not beat the selected base candidate. Finally, Ax0 is not covered by any auxiliary
candidate Axj

such that j �= 0, as it beats the selection of {xi,¬xi}, which by
construction beats Axj

. So, Ax0 is in the uncovered set in any strategy profile.
Let us show now that the party {Ax0} is a winner in some profile which is a NE
iff ϕ is satisfiable. Suppose that ϕ is not satisfiable. Then, by reasoning in the
proof of Theorem 4 there is no NE in the encoding of ϕ. But then {Ax0} is not
a winner in a NE. Suppose further that ϕ is satisfiable. Then, by reasoning in
the proof of Theorem 4 there exists a NE in the encoding of ϕ. Also, as we have
shown, {Ax0} is a winner in this NE.

6 Conclusion

In this paper we provided an algorithmic analysis of nominee selection in the
context of tournament solutions. We analysed two methods of selecting the set
of winners, namely Condorcet Winner and Uncovered Set rules. As we demon-
strated, checking if a pure Nash equilibrium exists for a party structure is NP-
complete from the perspective of both of these rules. This result shows a strong
difference between the complexity of reasoning about these rules and knockout
tournaments, which allow for finding a Nash equilibrium in quasi-polynomial
time if it exists as shown in [22]. Furthermore, from the perspective of the Uncov-
ered Set, it is not tractable even to check if a party can win in some strategy
profile. Table 1 provides a summary of our contribution.

Table 1. Algorithmic results shown in the paper.

CW UC

Possible Winner P NP-c

Winner in NE NP-c NP-c

NE Existence NP-c NP-c

Our results provide a vast range of directions for future investigations. Let
us discuss a few of them.

– We limited ourselves to two particular tournament rules only. It would be
interesting to conduct a symmetric analysis for other rules, such as the
Copeland rule. In particular, a natural direction would be to establish com-
putational complexity of finding a NE for all Condorcet-consistent rules.
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– We only considered pure Nash equilibrium as a solution concept. It would be
of interest to check algorithmic properties of other concepts, such as dominant
strategy equilibria, in the setting studied in this paper.

– In our setting we assumed that the beating relation is asymmetric, which
in the social choice context corresponds to the assumption that, for a pair of
candidates, one of them is preferred to another by the strict majority of voters
(or that a tie-breaking rule is applied). This assumption is not applicable in
case of many social phenomena, in which accounting for the ties between
candidates is important. It would be therefore natural to study the case in
which the tournament relation is not asymmetric.

– Even though most of the problems studied in this paper are computationally
hard, it can be the case that they are tractable in typical cases. It is therefore
interesting to analyse them from the perspective of parametrised complexity.
In particular, it is natural to consider the number of parties as a parameter.

– Certain party structures always admit a Nash equilibrium for all Condorcet
consistent rules, e.g., when some candidate beats all members of all parties to
which it does not belong. Thus, it would be of high interest to identify non-
trivial classes of games in which the existence of an equilibrium is guaranteed
for meaningful classes of rules.

– In the setting studied in this paper, the tournament relation is deterministic,
i.e. it is certain who is the winner of each pairwise contest. Generalisation
of this framework in which this is not always the case would be a natural
follow-up study.

– A potential avenue for further research involves the strategic behaviour of
voters in the setting studied in this paper. One could consider agents misrep-
resenting their preferences over candidates to have a better candidate selected
by a winning party.

Acknowledgements. I would like to thank Paul Harrenstein and Paolo Turrini, as
well as Jȩdrzej Ko�lodziejski, for their helpful comments.
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Abstract. We address social choice in the presence of sybils (fake or
duplicate votes) and low turnout, two behaviors that may each distort
the will of the society. To do so we assume the status quo as an ever-
present distinguished alternative. We propose a general Reality Enforcing
mechanism, which can be combined with arbitrary voting rules and oper-
ates by adding virtual votes that support the status quo. We measure
the tradeoff between safety and liveness (the ability of non-abstaining
non-sybil voters to maintain or to change the status quo, respectively)
in a variety of voting domains and show a tight inherent limit to the
amount of sybils and abstentions that can be tolerated.

Keywords: Computational social choice · Sybil attacks · Vote
abstention

1 Introduction

Voting procedures are a simple and widely used way to aggregate the preferences
of multiple individuals. Voting, however, can truly reflect the will of the society
only insofar as all eligible people in the society—and only them—vote.

The problem of partial participation in online voting is particularly acute,
as online voting often exhibits very low participation rates [3,12]. Similarly, in
participatory budgeting, voter turnout is typically around 2%–4% of the popu-
lation [11]—extremely low even if taking into account that not all residents can
vote. Even in Cambridge MA, one of the most successful participatory budget-
ing programs, less than 7,500 people (out of a population of more than 100,000)
have voted on the allocation of more than $1 million in 2021.1

The orthogonal problem of sybil votes has received much attention (see
Sect. 1.2). Much of the trouble of dealing with sybils and low participation
stems from the common assumption (at least in the Arrovian framework) that
all alternatives are a-priori identical, and only differ in the support they get from
voters. If these votes are unrepresentative, the outcome cannot be trusted.
1 https://www.cambridgema.gov/news/2021/12/pbvoteresults.
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In almost every voting situation, however, from a Doodle poll on meeting times
to organizational elections and a national census, it is rarely the case that all alter-
natives are completely symmetric. E.g., there is almost always some fallback option
(e.g. no meeting), incumbent candidate, or current state of affairs. Indeed, the role
of the status quo is extensively discussed in the political science literature, going
back to Downs [9] and Grofman [10], although the focus is mainly on how the pres-
ence and the position of the status quo affects voters’ behavior.

Recently, Shapiro and Talmon [26] argued for the importance of incorporating
the status quo (or the ‘Reality’, in their words) into the design and the analysis of
voting schemes, showing how it can resolve several paradoxes and misunderstand-
ings. Shahaf et al. [25] readily applied this agenda as a tool for curbing the power of
sybil voters. More specifically, they suggested to use the status quo as an anchor,
so that only a supermajority can change it. Then, they formalized the properties
of sybil safety—the inability of sybils to change the status quo against the will of
the honest voters, and sybil liveness—the ability of the honest voters to change
the status quo despite the existence of sybils. In particular, Shahaf et al. designed
specialized sybil-resilient voting rules for: (1) two alternatives; (2) multiple alter-
natives; and (3) voting on an interval. Two major limitations of their work are the
assumption of full participation by the honest (non-sybil) voters, and the lack of
a way to quantify partial safety or liveness.

In this paper we suggest a simple and general mechanism that mitigates both
problems (sybils and partial participation), by adding “virtual votes” to the
status quo. This mechanism can be combined with a variety of voting rules in
different domains, as well as will other components such as delegation or identity
verification.

Note that the role of the status quo in our model (following the work described
above) is not just technical, but normative: in a sense, the status quo represents
what we prefer to do if unsure about voters’ true intentions (hence the term
‘safety’); this is different than, say, the status quo of the Nash bargaining game [19],
which serves the roll of the ‘worst-case outcome’ we are trying to avoid.

1.1 Contribution and Structure

In Sect. 2 we develop a formal model of social choice that incorporates both
sybils and partial participation, and provide general definitions for safety and
liveness.

In Sect. 3.1, we define the general Reality-Enforcing (RE) mechanism, which
adds fictitious votes in favor of the status quo, and then uses the desired voting
rule as a black box. Both our model and our mechanism strictly generalize the
domain-specific definitions and results of Shahaf et al. [25].

Then, in Sect. 4, we provide a tight analysis of the safety-liveness tradeoff,
extending the results of Shahaf et al. in three directions:

– We quantify the amount of safety and liveness obtained;
– We generalize the results to take into account the amount of abstaining voters;
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– We extend the analysis via reductions to other domains including multiple
referenda, voting on an interval, and rank aggregation (Sect. 5).

We further show that, when full safety and fairness are required (as in [25]),
then no mechanism can do better than RE. From a design perspective, given
an estimate of the sybil penetration to a community as well as the fraction of
inactive voters, our results allow the community to set the threshold of the RE
mechanism to guarantee that the voting rule is safe (i.e., keep the status quo
intact if this is the wish of the honest voters) and live (i.e., not be stuck in the
status quo more than it is necessary to satisfy safety).

A full version of the paper is available at https://arxiv.org/abs/2001.05271.

1.2 Related Work

Besides the work of Shahaf et al. [25], which we generalize and extend, we men-
tion that, indeed, sybil attacks have been amply studied in the literature of
computational social choice [5,6,27], mainly showing impossibility results on the
design of false-name proof voting rules, i.e., rules where clones cannot affect the
outcome. These results do not consider the status quo, hence are not applicable
in our safety/liveness model. A related, complementary challenge is keeping the
fraction of sybils in online communities low, which may be possible via identifi-
cation and eradication techniques (see, e.g., [1]).

There is extensive work in the social choice literature on the strategic justi-
fication of partial participation/abstention, going back to the “paradox of non-
voting” [8,21,24]. Other works consider ways to elicit the preferences of specific
voters in order to reduce communication complexity [7]. Yet we are unaware of
works that consider resilience to arbitrary partial participation, via the use of
the status quo or otherwise.

2 Preliminaries

We consider voting situations with a set A of alternatives, one of which is the
current reality, or status quo, denoted by r; and a set V of n voters (note that
we overload notation and treat “voters” and “votes” interchangeably). A voting
rule (or mechanism) R is a sequence of functions R(n) : Bn → A, for all n ∈ N,
where B is some set of allowed ballots.

Remark 1. Note that, as our goal is to develop a general formalism that can
be applied to different social choice settings and to analyse the properties of a
broad range of mechanism, under both sybils and partial participation, includ-
ing measures of partial protection. This generality inevitably means that the
mathematical exposition and notation is somewhat heavy. However, a reader
that wants to avoid some of the complexity can focus on the special case of full
safety and liveness.

https://arxiv.org/abs/2001.05271
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Fig. 1. The general voting population.

2.1 Partial Participation and Sybils

The set of voters V is partitioned into a set of honest (i.e., genuine; non-sybil)
voters H and a set of sybil voters S; so, V = H ∪ S with H ∩ S = ∅. We assume
that the partition to honest voters and sybils is implicitly included in V , but of
course not accessible to the voting rule. Ideally, we would like our voting rules
to reflect only the preferences of the honest voters, but without knowing who is
honest and who is sybil, and when not all honest voters vote.

Active and Passive Voters. The set of honest voters, H, is further partitioned
into H = H+ ∪ H− (with H+ ∩ H− = ∅), where H+ is the non-empty set of
honest voters who did cast a vote, and are thus labeled by their vote, and H−

is the set of honest voters who did not cast a vote. We refer to the voters in
H+ as active honest voters and to the voters in H− as passive honest voters, or
passive voters in short. We assume w.l.o.g that all sybils vote. Thus, both the
active honest voters and the sybils are active. Denote V + := H+ ∪S. See Fig. 1.

Further Notation. In many places it will be convenient to refer to the fraction
of some set of voters rather than to their absolute size. For any subset of voters
U ⊆ V , we denote by the small letter u := |U |

|V | the relative size of this set to the
entire population.

For some U ⊆ V , we denote by Ua ⊆ U the subset of U who vote for
alternative a ∈ A, and by ua = |Ua|

|V | their relative fraction (this is relevant when
the set B of admissible ballots corresponds to picking some subset, possibly a
singleton, from a set of alternatives). Lastly, we use a special notation for the
fraction of sybils σ and the fraction of inactive voters μ, which have a special
use as parameters in our results. Formally, σ := s = |S|

|V | ; and μ := h− = |H−|
|V | .

Our analysis assumes that μ, σ are known, but our guarantees apply as long as
they upper-bound the true fractions of inactive and sybil voters.

2.2 Safety and Liveness

Next we discuss the concepts of safety and liveness. Informally speaking, suppose
that we have some preferred voting rule G, for the “standard” setting without
sybils and with full participation (this G will be referred to as a “ground rule”).
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This may be due to favorable axiomatic properties of G, because of its simplicity,
due to legacy, or for any other reason. Ideally, we would like to always get the
outcome G(H), that is, the result of all honest voters voting under G. However,
if we use G in a straight-forward way, then the outcome may be distorted due to
the existence of sybil votes and/or partial participation. This is demonstrated
by the following simple example.

Example 1 (Running example). Let V = H ∪ S, where H = {x1, x2, x3} are
honest voters, S = {x4, x5} are sybils, and there are two alternatives A = {a, b}.
Suppose that Ha = {x1, x2} and Hb = {x3}, then a is the better outcome under
the Majority rule (G(H) = a).

However, if either the two sybils vote for b, or the first two honest voters
decide to abstain, then the inferior alternative b will win.

Following Reality-Aware Social Choice [26], we assume that a distinguished
alternative, the status quo (or reality), r ∈ A, always exists. All ties are settled
towards the alternative closer to r (the metric defining “closer” will be clear
from the context). Recall that r is considered a ‘reasonable’ outcome, so in case
of uncertainty regarding voter intentions, we would prefer to remain as close as
possible to r.

Intuitively, safety of a rule R means that the outcome shall be somewhere
“between” the desired outcome G(H) and the status quo r (so the sybils are
not able to enforce undesired outcomes); and liveness means that a sufficient
fraction of active honest voters have the power to enforce any outcome in R.
(The definition of being in “between” is made concrete for the specific domain
considered in Sect. 5; for the binary domain this notion trivializes.) Our formal
definitions of safety and liveness apply to arbitrary domains, any aggregation
rule, and naturally extend to partial participation and sybils. They may also
apply to other notions of vote distortion that are outside the scope of the current
work. To achieve our desired generality and mathematical expressive power, we
need to formalize two more basic concepts, namely the outcome range and the
between set.

Definition 1 (Outcome Range). Let R be an aggregation rule (and consider
some voting population V = H ∪ S). Then, for a parameter γ ≥ 0:

Rγ(V ) := {R(H ′ ∪ S) :∃H ′, |H ′| ≥ |H|, |H ′ \ H| ≤ γ|H|}.

For γ ∈ [0, 1], this means that Rγ(V ) contains all outcomes that can be
obtained by replacing or adding a fraction of at most γ honest voters by arbitrary
votes. Higher values γ > 1 effectively mean that we may replace all honest voters
and, furthermore, add additional (1 − γ)|H| voters.

We stress that, following the discussion above, we use γ and the outcome
range as a notion of approximation: R0(V ) = R(V ), and the higher γ is, the
larger the outcome range becomes. Yet, this approximation is measured not by
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the similarity of the alternatives, but rather by the amount of voters needed to
switch from one to the other.2

Recall that G represents some desired “ground rule”, in the sense that we
wish to be safe w.r.t G. While in some cases there is an “obvious” ground rule
(e.g., majority in the binary domain), this is not always the case and thus we
require the ground rule to be specified explicitly.

Safety and Liveness. α-Safety informally means that the rule always selects
either r; or alternatives that a slightly modified set of honest voters would elect
under G; or alternatives “in between” those. We denote the set of all alternatives
“between” r and a set S by B(r;S), but to ease the presentation we defer the
general formal definition of this set to Sect. 5. For all of our examples and results
that consider only two candidates A = {r, p}, we use the trivial betweeness notion
B(r;S) = {r}∪S and this will suffice until considering more complicated spaces.

Definition 2 (Safety). An aggregation rule R is α-safe w.r.t the ground rule
G and population V = H ∪ S, if it holds that R(V ) ∈ B(r;Gα(H)).

Importantly, full safety (α = 0) means that an aggregation rule is safe if it
always hits between r and the ideal outcome G(H). For general α > 0, indeed
α-safety relaxes that notion by using both betweenness and the outcome range
as a notion of approximation.

Note that selecting the status quo r is always safe. However a rule that
always returns r is also undesired. Our next requirement is liveness, which does
not depend on a ground rule.

Definition 3 (Liveness). An aggregation rule R is β-live w.r.t. population V ,
if for all a ∈ A \ {r}, it holds that a ∈ Rβ(V ).

I.e., a rule is live w.r.t some population if any outcome can be reached by
modifying not-too-many (in particular, β-fraction of) honest voters.

We say that a rule R is α-safe [β-live], if it is α-safe [resp., β-live] w.r.t. any
population V . Crucially, α and β may depend on parameters of the profile V ,
and in particular on σ and μ.

In particular: full liveness (1-liveness) means that the rule is onto (sometimes
called citizen sovereignty [18]), i.e., the honest voters can enforce any outcome.
In other words, sybils have no veto power, which is the main liveness requirement
we consider.

Remark 2. Our definitions generalize those of Shahaf et al. [25]; under full par-
ticipation (i.e., μ = 0), their definitions of safety and liveness coincide with our
0-safety and 1-liveness, respectively.

Throughout the following examples, we hold |V |, σ, and μ fixed, and all
bounds are conditional on these values.
2 This is sometimes called ‘input approximation’, in contrast to ‘output approxima-

tion’ [15].
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Fig. 2. Red squares are sybils, full/hollow circles are active/passive honest voters,
respectively. (a) The population V used in Examples 2 and 3. (b) A set |H ′| that
demonstrates the 1

3
-safety property in Example 2. (c) The population used in Exam-

ple 4; note that MJ(V +) = p whereas MJ(H) = r. (d) A set H ′ that demonstrates the
2
3
-safety property in Example 4. (e) The rule 2

3
-RE-MJ adds 2

3
|V +| = 2 virtual voters

on r (dark diamonds). (Color figure online)

Example 2 (Majority under full participation). As in Example 1, let H =
{x1, x2, x3} and S = {x4, x5} be the sets of honest and sybil voters. However,
A = {p, r}, meaning a single proposal p is voted against the status quo r. Note
that we have σ = 2

5 (as there are 2 sybils out of 5 voters).
Consider the ground rule G = MJ which returns p if it has a simple majority,

else r. Next, we show that for any α < 1
3 , MJ is not α-safe w.r.t itself even

under full participation. To this end, suppose that x1 and x2 support r whereas
x3, x4, x5 support p (see Fig. 2(a)). As α|H| < 1, α-safety does not allow us to
change the vote of any voter in MJα(H). Now, observe that MJα(H) = {r}.
Then, α-safety requires that the outcome is in B(r;MJα(H)) = {r}; we have,
however, that MJ(V ) = p /∈ {r}.

Note further, however, that MJ is α-safe w.r.t itself for each α ≥ 1
3 : since

one of three honest voters is already voting for p, then, by setting H ′ := {p, p, r}
(see Fig. 2(b)), we get that p ∈ MJα(H). What about liveness? For any 5-voter
profile V as above, we can define an alternative profile H ′ where all 3 = 1 · |H|
honest voters vote for p, and MJ(H ′ ∪ S) = p. Thus p ∈ MJ1(V ), and MJ is
1-live. Also, any lower value β < 1 means we can change the votes of at most
two honest voters in H ′. By our tie-breaking rule this means MJ(H ′ ∪ S) = r
and thus MJ is not β-live for any β < 1.

A voting rule may also take the status quo into account [25]:

Definition 4. Suppose A = {r, p}. Then, the τ -Supermajority rule (τ − SMJ)
selects p if vp > 1

2 + τ voters vote for p (recall that vp is the fraction of voters
voting for p); otherwise, it selects r.

Example 3 (Supermajority under full participation). Consider the same profile
of votes from Example 2, but with the supermajority rule R = 0.4 − SMJ. Note
that for profiles with five voters this requires a unanimous vote for p to win. For
this particular V , R is 0-safe w.r.t G = MJ. We can also see that letting the two
sybils vote r shows a violation of 1-liveness. However R is 6 1

3 -live, since we can
construct a set H ′ of 19 = (61

3 )|H| voters for p.
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2.3 Safety, Liveness, and Partial Participation

Next, we introduce a formal definition that captures the effect of passive voters.
Recall that V = H+ ∪ H− ∪ S and V + = H+ ∪ S. The following definition
captures the idea that the voting rule can only see the active votes and cannot
distinguish between genuine votes H+ and sybil votes S.

Definition 5 (Voting with partial participation). We introduce a notation
R+ for any voting rule R, where R+(V ) returns R(V +) on any input V .

Therefore, when considering a voting rule R under partial participation, we
care about the safety and liveness properties of R+. Formally:

– R+ is α-safe w.r.t. G if R(V +) ∈ B(r;Gα(H)) for all V .
– R+ is β-live if a ∈ Rβ(V +) for all V and a ∈ A.3

Example 4 (Majority under Partial Participation). We extend Example 2 by
partitioning the set of honest voters into one active voter H+ = {x1} and two
passive voters H− = {x2, x3}. As in Example 2, x4 and x5 are sybils, so σ =
2
5 , μ = 2

5 (see Fig. 2(c)). The modified rule MJ+ considers only the active voters.
While Example 2 shows that MJ is 1

3 -safe w.r.t MJ, this is not true under
partial participation, as it is possible that all three honest voters prefer r but
MJ+(V ) = MJ({x1} ∪ S) = p. In this case we can only show that MJ+ is α-safe
w.r.t MJ for α ≥ 2

3 (as we need to change two honest voters to include p in the
range MJα(H), see Fig. 2(d)).

The MJ+ rule is 3-live. To see that β ≤ 3, observe that we can define H ′ as
3 = 3|H+| voters for p, and then MJ(H ′ ∪ S) = p and MJ(H ′ ∪ S) ∈ MJ3(V +).
In contrast, the supermajority rule 0.4 − SMJ+ is 1

3 -safe which is much better.

3 The General Reality-Enforcing Mechanism

We describe the RE mechanism, which we analyse throughout the paper. We
stress that we view its operational simplicity – contrasted with the non-triviality
of its analysis – as an advantage, as a simple mechanism may be better under-
stood by voters and may have higher applicability.

Next, for a ground voting rule G, we define a parameterized reality-enforcing
version that adds votes to the status quo.

Definition 6 (Reality-enforcing mechanism). Let G be a ground rule.
Then, we define τ -RE-G(V ) := G(V ∪Q), where Q is a set of τ |V | voters voting
for r.4

3 Observe that R+
β (V ) does not equal Rβ(V +). In particular, the former is not well-

defined for β > 1, since we would have to specify which of the honest voters we add
to H ′ are active. Our definition avoids this complication altogether.

4 Note that ballots need not be a single candidate. As long as the ground rule G has
some notion of candidate score (like Copeland or Borda), the RE mechanism simply
increases the score of r.
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Intuitively, a higher value of τ increases safety as it makes it harder to
leave the status quo; but it may hurt liveness. In Example 4, the 2

3 -RE-MJ+

mechanism will add 2
3 |V +| = 2 ‘virtual votes’ to r (see Fig. 2(e)). Thus 2

3 -
RE-MJ+(V ) = MJ+(V ∪ Q) = MJ(H+ ∪ S ∪ Q) = MJ({r, p, p, r, r}) = r. Note
that this entails 0-safety (the maximal safety level).

3.1 The General RE Mechanism vs. Shahaf et al.

Shahaf et al. [25] focused on two domains: a binary vote; and voting on the real
line. In each such domain they suggested a designated mechanism to deal with
sybils. In this section we show that our RE mechanism coincides with each of
these two mechanisms in its respective domain, when all voters participate.

Binary Domain. For this domain Shahaf et al. [25] defined the Reality-aware
τ -Supermajority rule (see Definition 4; essentially, it picks the proposal p only
if a specific supermajority, and not a mere majority, vote for it).

By applying the RE mechanism to the Majority ground rule G = MJ, we get
the τ −RE-MJ rule, which returns the majority opinion after adding τ |V | votes
for the status quo r.

Observation 1. For A = {r, p} and any τ ≥ 0, the 2τ − RE-MJ rule and the
τ − SMJ rule of Shahaf et al. [25] coincide.

Proof. Consider the fraction vp of votes for p. The claim follows since vp >
vr + qr = (1 − vp) + 2τ (i.e. τ − RE-MJ selects p) iff vp > 1

2 + τ (i.e. p has
supermajority). ��

The Real Line. In this domain Shahaf et al. [25] defined the τ -Suppress-outer-
votes median (τ−SOM) rule: first, compute the population median m := MD(V );
now, if m > r (m < r), then eliminate the τ -fraction of voters with the highest
(resp., lowest) votes; denote the new set V −; next, compute the new median
m− := MD(V −); finally, if sign(m−−r) = sign(m−r) then return m−, otherwise
return r. That is, the τ −SOM rule first computes the median, then recomputes
the median after removing the extreme voters that push the median away from
r. The mechanism breaks ties in favor of r. Applying Definition 6 to the median
rule MD, we get the reality enforcing median rule τ − RE-MD.

Observation 2. The τ − RE-MD mechanism and the τ − SOM rule of Shahaf
et al. [25] coincide.

Proof. Sort voters in increasing order, and suppose, w.l.o.g (from symmetry),
that MD(V ) > r. The τ − SOM rule returns the location of the n−τ |V |

2 voter
from V . The τ −RE-MD rule returns the location of the n+τ |V |

2 voter from V ∪Q.
If n−τ |V |

2 ≤ r, then both rules return r. Otherwise, note that the n+τ |V |
2 voter

in V ∪ Q is the n+τ |V |
2 − σ|V | = n−τ |V |

2 voter in V . ��
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For both mechanisms, Shahaf et al. [25] prove that setting τ = σ guarantees
both 0-safe and 1-live, as long as σ < 1

3 .
In the next sections, we generalize the results of Shahaf at al. in three direc-

tions: considering relaxed notions of safety and liveness; allowing partial partic-
ipation; and extending to additional domains.

4 Binary vote: Status Quo vs. a Single Contender

Equipped with our definitions of safety and liveness and with our general RE
mechanism, we are ready to tackle different social choice settings; the first social
choice setting we consider is a binary vote: voting on a single proposal p against
the status quo r, as in Examples 2-4. Here, it is natural to use Majority as a
ground rule; in fact, May’s theorem [14] shows that it is the only natural voting
rule to consider. Denote the proposal by p and the status quo by r, so that
A = {p, r}. Using the Majority rule MJ as the ground rule G, we have that
G(H) = p if there are strictly more honest voters for p and r otherwise (recall
that we break ties in favor of the status quo).

We capture the full tradeoff between safety and liveness: In particular, we
analyse, for given values of σ, τ , and μ, what values of α and β allow us to
obtain α-safety and β-liveness. Intuitively, higher values of α and β are easier to
obtain, as in all minimization problems (as α and β are approximation notions).
Theorems 1 and 2 are our main results, and most other results are either derived
from them, show their tightness, or extend them.

Theorem 1 (Safety). The τ − RE-MJ+ voting rule is α-safe w.r.t Majority
iff α > 0.5 or α ≥ 1+σ−(1+τ)(1−μ)

2(1−σ) .

Proof. We show here that the above condition is sufficient for safety. Necessity
is shown in the full version by explicitly constructing a violating instance.

Consider a given profile V . Suppose first that α > 0.5. In this case we can
show that both outcomes {r, p} are α-safe. Suppose we move α(1 − μ) honest
voters to p, then there are h′

p > 0.5(1−μ) voters on p, whereas less than 0.5(1−μ)
honest voters remain on r, meaning MJ(H ′) = p and thus p ∈ MJα(H).

The main part of the proof deals with the case α ≥ 1+σ−(1+τ)(1−μ)
2(1−σ) .

If τ −RE-MJ+(V ) = r or p ∈ MJα(H), then there is no violation of α-safety
and we are done. Thus, assume that τ − RE-MJ+(V ) = p = r. Recall that h+

p

denotes the fraction of active honest voters voting for p. W.l.o.g. we may assume
that all of S vote for p, since if profile V violates α-safety, we can define a new
profile V ′, by making all S agents who vote for r to vote for p, and we would
still have τ − RE-MJ+(V ) = p (and MJα(H) is unaffected) and thus there is
still a violation in V ′ (so, intuitively, profiles in which all sybils vote for p are
the hardest case for keeping safety). Similarly, we assume w.l.o.g that all of H−

vote for r, thus hr = h− + h+
r , hp = h+

p (again, profiles in which all passive
voters vote for r are the hardest case for keeping safety, as safety is defined
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w.r.t all honest voters); so, the fraction of active honest voters voting for r is
h+

r = 1 − σ − μ − h+
p . Since τ − RE-MJ+(V ) = p, we have that

h+
p + σ = v+

p > v+
r + q = h+

r + q = h+ − h+
p + q (1)

= (1 − μ − σ − h+
p ) + τ(1 − μ) (2)

and thus

2h+
p > (1 + τ)(1 − μ) − 2σ . (3)

To show that p ∈ MJα(H), implying α-safety, we shall show that we can
change the votes of α · h honest voters from r to p, to create a new profile H ′

where p has a strict majority of honest votes. Denote

α′ = αh = α(1 − σ) ≥ 1 + σ − (1 + τ)(1 − μ)
2

. (4)

Indeed, after moving α′ votes, r has h′
r = hr −α′ = h−hp −α′ = 1−σ−h+

p −α′

honest votes, whereas p has h′
p = h+

p + α′ honest votes. Therefore, we have that

h′
p − h′

r = (h+
p + α′) − (1 − σ − h+

p − α′) = 2(h+
p + α′) − (1 − σ)

≥ 2h+
p + (1 + σ − (1 + τ)(1 − μ)) − (1 − σ) (By Eq. (4))

> (1 − σ) − (1 − σ) = 0. (By Eq. (3))

So, there are strictly more honest votes for p than for r. ��
Theorem 2 (Liveness). The τ − RE-MJ+ voting rule is β-live if and only if
β > (1−μ)(1+τ)

2(1−σ−μ) .

Proof. Since any vote for r reduces liveness, w.l.o.g all voters vote for r. There are
h+ = 1−μ−σ active honest voters (all vote for r). Suppose we create a new profile
V by moving a fraction of β votes from r to p, then p has v+p = h

+

p = β(1−μ−σ).

In contrast, r has h
+

r = h+ − h
+

p = 1 − μ − σ − h
+

p active honest votes
remaining, plus σ sybils. The τ −RE-MJ+ mechanism adds τ(1−μ) votes so the
total support for r is v+

r = (1−μ−σ −h
+

p )+σ + τ(1−μ) = (1+ τ)(1−μ)−h
+

p .

Since liveness requires v+p > v+
r , we get a tight bound of 2h

+

p > (1 + τ)(1 − μ),

or, equivalently, β = h
+
p

1−μ−σ > (1+τ)(1−μ)
2(1−μ−σ) , as required. ��

The two theorems confirm and quantify the following observation: as there are
more sybils (higher σ) or more abstentions (higher μ), both safety and liveness
are jeopardized. We can also see that the effect of sybils is stronger. In particular,
in the absence of sybils, partial abstention has no effect on liveness.

As important examples, we consider the special cases of 0-safety and 1-
liveness.
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Corollary 1. The following hold:

– τ − RE-MJ+ is 0-safe w.r.t MJ iff τ ≥ 1+σ
1−μ − 1.

– τ − RE-MJ+ is 1-live iff τ < 2(1−σ−μ)
1−μ − 1.

– We can get both iff 3σ + 2μ < 1.

E.g., with 20% sybils and 20% passives, or with 10% sybils and 35% passives,
we can guarantee both 0-safety and 1-liveness by setting τ between the two
bounds in the corollary. We emphasize that we do not need to know σ or μ
exactly in order to set τ : as long as we have have some upper bound on their
real values, τ −RE-MJ will have the safety and liveness specified above. A better
estimation will allow us to obtain a better tradeoff of safety and liveness.

We complement our analysis with the following lower bound, proving that
the last bound in Corollary 1 is tight: no other mechanism can achieve both
safety and liveness with this amount of sybils and abstention.

Theorem 3. There is no mechanism R such that R+ is both 0-safe and 1-live
when 3σ + 2μ ≥ 1.5

The proof is by constructing a parametrized class of instances such that no
mechanism can perform better on all of them.

Finally, by Observation 1 all of the results in this section apply also to the
supermajority mechanism if Shahaf et al. [25], as it coincides with the RE mech-
anism.

5 Extensions to Other Domains

Our general RE mechanism can clearly be applied in any domain, as long as
there is some notion of candidate score (so the mechanism can artificially increase
that score by τ). However, it is not a-priori clear how to extend the definition of
safety when the space of alternatives has an arbitrary structure (the definition
of liveness naturally extends).

It turns out that the our previous definition of safety readily applies without
changes, once we consider a general notion of betweeness.

Betweeness. Our modeling is such that, generally, we view the alternatives as
residing in a metric space (the specific metric space considered in each of our
results will be clear from the context), and we require each voter to specify
one alternative. Any metric space (A, δ) induces a natural trinary relation of
betweenness, where b is between a and c if δ(a, b) + δ(b, c) = δ(a, c) (first defined
by Menger in 1928; see [4,16]).

Definition 7 (Between set). For x, y ∈ A, B(x, y) ⊆ A is the set of all points
that are between x and y, including {x, y}. We define B(x;Y ) :=

⋃
y∈Y B(x, y).

5 We assume that there is at least one honest voter, otherwise safety is meaningless.
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Fig. 3. A demonstration of the α-safety property in some 2-dimensional metric space
(left) and in 1-dimensional space (right). The ideal point G(H) is marked by ∗.

We can now use Definition 2 to measure safety in any domain, with the
appropriate between set B. In particular, the following cases are considered in
the paper:

– in a discrete unordered set A (including Sect. 4), B(x, y) = {x, y};
– in multiple referenda (with d binary issues and the Hamming distance) A =

{0, 1}d, B(x, y) is the smallest box containing both x and y [20];
– on the real line, B(x, y) is the smallest interval containing both x and y.

Figure 3 demonstrates how betweeness extends the safety definition. The α-
safe area B(r;Gα(H)) includes all alternatives enclosed in either dashed or solid
lines. Next, we extend our results from the binary domain to other domains,
using reductions.

5.1 Multiple Referenda

Suppose that A = {0, 1}d (as well as B), where r = 0. For a ground rule, we
use the issue-wise Majority rule IMJ, which simply selects the majority opinion
on each of the d issues (this is a combinatorial domain [13]). Note that IMJ(U)
minimizes the sum of Hamming distances to all voters in U , thus maximizing
the standard definition of the social welfare. It is natural to assume that all the
bounds proved above for majority will effortlessly apply for multiple referenda,
as the issues are independent. The next example shows that unfortunately this
is not the case, and the trivial generalization of Theorem 1 does not hold for
arbitrary α.

Example 5. Suppose that |H| = 60, |S| = 21 (i.e. σ ∼= 1/4), τ = 0, μ = 0. Then
by Theorem 1 we get 1/6-safety of the τ − RE-MJ rule (indeed, if there are 40
honest voters on ‘0‘ and 20 on ‘1‘, then moving 10 = |H|/6 to ‘1’ is sufficient).

Now consider A = {0, 1}3, where honest voters are dispersed as follows: 20 on
(0, 0, 1); 20 on (0, 1, 0); 20 on (1, 0, 0) and all of S are on (1, 1, 1) so the outcome
is IMJ(V ) = (1, 1, 1). However it is not possible to get IMJ(H ′) = (1, 1, 1) by
moving only 10 honest voters, since each voter can only get closer on two of the
three dimensions. The best we can do is moving 5 agents from each location to
(1, 1, 1) (so α = 15/60). This entails that τ −RE-IMJ is only 1/4-safe w.r.t. IMJ.

Yet, a reduction to the single-issue case is possible when considering β-
liveness (for any β) or 0-safety.
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Theorem 4. The following hold:

– τ − IMJ+ has the same liveness guarantees as τ − RE-MJ+.
– τ − IMJ+ has the same 0-safety guarantees w.r.t. IMJ, as τ − RE-MJ+ has

w.r.t. MJ.

Proof (Safety). For an issue j ≤ d and voter set U , we denote by U |j ∈ {0, 1}|U |

the (projected) opinions of all U voters.
Let τ, μ, σ ≥ 0 such that τ − RE-MJ+ is 0-safe. Suppose that τ −

RE-IMJ+(V ) = p = r (otherwise 0-safety is trivial). To show 0-safety, we need
to prove p ∈ B(r; IMJ0(H)) = B(r; IMJ(H)) (note that this is the first nontriv-
ial use of the “betweeness” notion in the paper, see Definition 7). This means
showing pj ∈ {rj , IMJ(H)j} for all j ≤ d.

By 0-safety of τ −RE-MJ+, we know that τ −RE-MJ+(V |j) ∈ {rj ,MJ(H|j)}
for all j. To complete the proof, we observe that pj = τ − RE-IMJ+(V )j =
τ − RE-MJ+(V |j) and that {rj , IMJ(H)j} = {rj ,MJ(H|j)}. ��

5.2 The Real Line

When voting on a location on the real line (i.e., where B is, say, [0, 1]), the
natural ground rule to consider here is the Median rule (MD), which returns
the position of the median voter. The median rule has many desired properties
such as Condorcet consistency, strategyproofness, and social optimality [2,17,23]
(Fig. 4).

Fig. 4. We use red squares/ full circles/ hollow circles for S, H+ H− respectively as in
Fig. 2. On the left, we see that the median mechanism is not 0-safe, since the median
of all active voters is not between MD(H) and r. The middle and right figure show
that the 2

3
−RE-MD+ mechanism, which adds (in this profile) two virtual voters on r,

is still not 0-safe but is α-safe for α ≥ 2
3
. (Color figure online)

Example 6 (Median under partial participation). In this example we use exactly
the same composition of voter as in Example 4, except that now they are posi-
tioned on a line, and thus the betweeness notion is not trivial as in the binary
setting. Note that by adding two virtual voters, we get 2

3 -safety, just as in the
binary case (since there is an alternative profile with 2 = 2

3 |V +| additional honest
voters that move the outcome further to the right).
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Reduction to the Binary Setting. Getting the same safety bound in Examples 4
and 6 was no coincidence.

We consider an arbitrary population V = H+ ∪ H− ∪ S and consider τ −
RE-MD+. We use the following straightforward connection between the median
and majority rules (proof is immediate).

Lemma 1. Let z be the median of V , and let x > y ≥ z. Then y has a majority
against x.

The lemma clearly still holds if we modify the set of voters by adding votes
for r and/or ignoring passive voters (as long as we apply the same modification).
Thus, the lemma still applies if we replace “median” with τ − RE-MD or τ −
RE-MD+, and “majority” with τ − RE-MJ or τ − RE-MJ+, respectively.

Theorem 5. The following hold:

– τ − RE-MD+ has the same liveness guarantees as τ − RE-MJ+.
– τ − RE-MD+ has the same safety guarantees w.r.t. MD, as τ − RE-MJ+ has

w.r.t. MJ.

Proof (safety). For a profile U of locations on R and a pair of locations x, y ∈ R,
we denote by U |xy the projection of U on A = {x, y}. That is, a binary profile
where each voter votes for the closer alternative among x (which is considered
as the status quo) and y. In case of a tie, the voter selects x. We show the proof
for safety (the liveness’s proof is similar, and is in the full version).

Consider any set of parameters μ, σ, τ, α ≥ 0 such that τ −RE-MD+ is α-safe.
Denote a := sup(MDα(H)). If a = +∞ then no violation of safety is possible and
we are done. Otherwise, a = max(MDα(H)) since it is obtained as a = MD(H ′)
by placing αh honest voters on a in H ′. Denote z := τ − RE-MD+(V ). We need
to show that z ∈ B(r, a) = [r, a]. Assume otherwise towards a contradiction, i.e.
that z > a. By Lemma 1, we have τ − RE-MJ+(V |az) = z. On the other hand,
for any H ′ obtained from H by moving α|H| voters, we have MD(H ′) ≤ a < z
and thus by the same lemma, MJ(H ′|az) = a. This entails B(a;MJα(H|az)) =
B(a; {a}) = {a}, and thus τ − RE-MJ+(V |az) = z /∈ B(a;MJα(H|az)), which is
a contradiction to α-safety of τ − RE-MJ+. The other direction is trivial. ��

The above reduction allows us to transfer all previous results (the bounds
in Theorems 1,2 and 3) from the binary domain to the real line domain. By
Observation 2, these bounds also apply to the SOM mechanism from [25].

5.3 Rankings

Many voting rules are guided or justified by selecting the Condorcet winner,
when one exists. These rules typically differ when there is no Condorcet winner,
but Talmon and Shapiro [26] suggest a natural way to resolve conflict in a “safe”
way; in the current context, this would mean selecting the status quo r whenever
there is no Condorcet winner. We call this rule the Condorcet Conservative rule
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(CC). The τ -Super Condorcet Conservative rule (τ −SCC) is similar but pi only
beats pj if it has a supermajority of 1

2 + τ of the votes.6

Theorem 6. The following hold:

– τ -SCC+ has the same liveness guarantees as τ − SMJ+.
– Let G be any Condorcet consistent rule. Then τ -SCC+ has the same 0-safety

guarantees w.r.t. G, as τ − SMJ+ has w.r.t. MJ.

Note that a more general reduction of α-safety fails as in Sect. 5.1, and for
similar reasons.

6 Discussion

Motivated by governance and mutual decision mechanisms for online communi-
ties, we have considered the common situation in which representation is threat-
ened both by the presence of sybils and by partial participation of the honest
voters.

Our takeaway message is simple: adding virtual votes to the status quo is
a good (sometimes optimal) way to balance between safety and liveness and
to mitigate the negative effects of both sybils and partial participation in a
wide range of domains. Moreover, we showed that specific mechanisms suggested
earlier in the literature for specific domains, are essentially equivalent to special
cases of our general “reality enforcing” mechanism.

In addition, our reductions enable the transfer of results between domains,
mainly from the simple binary domain to multi-candidate, multiple referenda,
and voting on an interval. In all domains, optimal safety and liveness tradeoff
can be guaranteed as long as 3σ + 2μ < 1, where σ, μ are the fractions of sybils
and inactive voters, respectively. Other results included in the full version of this
paper show improved safety-liveness tradeoff when absent voters are selected at
random, and even better bounds where they are allowed to delegate their votes
to the nearest active voter (that may be a sybil). We conjecture that our adding-
virtual-voters-to-the-status quo approach when applied to other metric spaces
(with suitable ground rules), would guarantee similar safety/liveness tradeoffs.

Together with mechanisms for identifying and eliminating sybils [1], our
results set the foundation for reliable and practical online governance tools.

Remark 3. To set the parameter τ (the bias towards the status quo) effectively,
after deciding upon the desired tradeoff of safety and liveness, one has to estimate
σ and μ in the population. While μ can be estimated quite accurately (as an
election organizer may define the set of eligible voters), this is not the case for σ.
The fraction of sybils can be approximated by sampling voters [25, Remark 2] or
by techniques that upper bound σ [22]. Note that over-estimating σ or μ always
results in a mechanism that is more safe, and thus our bounds still hold. (If an
estimate or a bound on μ and σ sounds like a strong requirement, consider that
almost all of the results in social choice implicitly assume that μ and σ are zero!)
6 Note that this rule extends the supermajority rule of [25], but this extension no

longer coincides with our RE mechanism with more than two candidates.
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We believe that many fundamental results— such as axiomatic guarantees
and welfare or fairness bounds— should be revisited after relaxing these unreal-
istic assumptions, and allow for sybils and/or inactive voters in the analysis.
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Abstract. Ad hoc teamwork is the research problem of designing agents
that can collaborate with new teammates without prior coordination.
This survey makes a two-fold contribution: First, it provides a struc-
tured description of the different facets of the ad hoc teamwork problem.
Second, it discusses the progress that has been made in the field so far,
and identifies the immediate and long-term open problems that need to
be addressed in ad hoc teamwork.

Keywords: Ad Hoc Teamwork · Collaboration without prior
coordination · Agent modelling · Reinforcement learning · Zero-shot
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1 Introduction

Ad hoc teamwork (AHT) is defined as the problem of developing agents capable
of cooperating on the fly with other agents without prior coordination methods,
such a shared task and communication protocols or joint training. Designing an
AHT agent is a complex problem, but the underlying capabilities are crucial
to enabling agents to take on their designated roles in many practical domains.
From service robots and care systems to team sports and surveillance, agents
need to reason about the best way to collaborate with other agents and peo-
ple without prior coordination. Research in AHT has been around for at least
15 years (Bowling and McCracken 2005; Rovatsos and Wolf 2002), and it was
proposed as a formal challenge by Stone et al. (2010):

“To create an autonomous agent that is able to efficiently and robustly
collaborate with previously unknown teammates on tasks to which they
are all individually capable of contributing as team members.”

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Baumeister and J. Rothe (Eds.): EUMAS 2022, LNAI 13442, pp. 275–293, 2022.
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Since then, hundreds of papers that include the phrase “ad hoc teamwork” have
been published (464 according to Google Scholar at the time of writing this
paper) and many more address closely related problems under names such as
“zero-shot coordination” (Bullard et al. 2020; Hu et al. 2020). Moreover, much
of the work on personalizing agents’ interactions with humans can be viewed as
instances of AHT (Li et al. 2021).

This survey seeks to make a two-fold contribution. First, it defines the
AHT problem by describing the underlying assumptions (Sect. 2.1), key subtasks
(Sect. 2.2), and the scope of the problem as considered in this paper (Sect. 3).
Second, it surveys the existing work in AHT in terms of the solution methods
(Sect. 4) and the evaluation domains that have been developed (Sect. 5), and
discusses the open problems in the field of AHT (Sect. 6).

Related Initiatives. Several initiatives over the last decade have contributed to
research progress in AHT. In particular, between 2014 and 2017, the Multi-
Agent Interaction without Prior Coordination (MIPC) workshop series1 held at
AAAI and AAMAS conferences facilitated discussions and presentations in AHT
and related topics. The MIPC workshop series was followed by a special journal
issue (Albrecht et al. 2017) which featured a collection of new research works
in AHT. Moreover, the RoboCup Drop-in Challenge was introduced to provide
a platform to develop and evaluate AHT capabilities in the context of soccer-
playing robots (Genter et al. 2017). However, to date there is no comprehensive
survey on AHT. We seek to address this gap in the literature and help foster
further research in AHT.

2 Background

This section provides a basic formulation of the AHT problem. It takes the
original challenge proposed in Stone et al. (2010) and describes it in terms of
the inputs and outputs, and the underlying assumptions (Sect. 2.1). It then
describes the subtasks of the problem based on issues addressed in relevant
papers (Sect. 2.2).

2.1 Problem Formulation

The AHT problem focuses on training an agent to coordinate with an unfamiliar
group of teammates without prior coordination. In this work, we refer to the
trained agent as the learner. The learner’s teammates are assumed to be
capable of contributing to the common teamwork task, meaning that they have
a set of skills that are useful for the task at hand. Here we describe the inputs,
outputs, and the underlying assumptions of this problem.

Input. The inputs of the AHT problem are the teamwork task to be executed,
domain knowledge comprising a description of the domain/environment in which
the task is to be executed, a (possibly incomplete) list of attributes characterizing
1 https://mipc.inf.ed.ac.uk.

https://mipc.inf.ed.ac.uk


A Survey of Ad Hoc Teamwork Research 277

each agent (e.g., a set of goals, perception, and action capabilities), a description
of the learner’s abilities, and a list of teammates. The agent attributes’ values
might differ between each teammate—also see first assumption below—and some
teammates might be able to communicate with each other.

Output. The output of the problem is the learner, represented by a policy that
determines the action this agent should execute in any given state of the domain.
Depending on the agent’s sensors, actuators, and the available communication
channels, this policy can be deterministic or stochastic, static or adaptable,
and might include ontic (physical) actions and epistemic (knowledge-producing)
actions, which in turn may contain verbal or non-verbal communication.

Assumptions. Three key assumptions (i.e., claims or postulates) characterize the
AHT problem.

1. No prior coordination. The learner is expected to cooperate with its team-
mates when the task begins without any prior opportunities to establish or
specify mechanisms for coordination. For example, it is not possible to pre-
specify the agents’ roles or to have a joint training phase for all agents. The
learner might know or assume knowledge of a subset of attributes (e.g., cur-
rent policies, individual goals) of some subset of its teammates. This knowl-
edge might be acquired from an expert who has had prior interactions with
the learner’s current teammates, and the assumptions might be the result of
generic models or rules based on past interactions in the target domain. The
learner’s current teammates might or might not be familiar with one another
before the current interaction. For example, in drop-in soccer (a spontaneous
soccer match where some or all of the team are strangers), a teammate might
be perceived to be a good striker because they are fast and the team can
work around this assumption even if they have not played with that specific
player before.

2. No control over teammates. The learner cannot change the properties of
the environment, and the teammates’ policies and communication protocols;
it has to reason and act under the given conditions. We distinguish between
changing the properties of the environment (e.g. modifying observability level)
and acting in the environment to change its state (e.g. picking up a box). Sim-
ilarly, the learner might influence its teammates’ actions, but this influence
will be in accordance with the pre-defined policy of the teammates. Moreover,
teammates’ policies may support learning or adaptation, but the learner can-
not modify these abilities. Continuing with the soccer example, teammates
can learn to work better together with practice, but no teammate can impose
their knowledge on the team before the game starts.

3. Collaborative. All agents are assumed to have a common objective, but
some teammates might have additional, individual objectives, or even com-
pletely different rewards. However, these additional objectives do not conflict
with the common task (Grosz and Kraus 1999). In the drop-in soccer exam-
ple, different teammates may have incentives in their contract that encour-
age them to focus on different skills, e.g., goal-scoring rewards for forwards
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or assist rewards for midfielders. The difference in the individual objectives
may result in situations in which an individual agent may seem to be acting
contrary to the team reward, but each agent in the team is always acting
to achieve the common objective. For example, although passing frequently
is considered very important to a team’s performance in a soccer game, an
individual teammate may choose to dribble forward because of a perceived
opportunity to score a goal.

2.2 Subtasks in Ad Hoc Teamwork

Based on a survey of the existing literature, we identified four main subtasks
that the learner should be able to perform, although much of the existing work
only focuses on addressing a subset of these subtasks.

ST1: Knowledge Representation. The learner requires a representation of the
domain knowledge. This includes knowledge about the environment (e.g., dis-
crete or continuous, static or dynamic, etc.), its capabilities, and knowledge
about potential teammates (e.g., similarity to past teammates, their theory of
mind, etc.). These choices influence the solution methods for the other substasks.
Most of the attributes characterizing the environment are common to all multi-
agent problems. They can be presented in the classical PEAS system (Russell
and Norvig 2021) and are not unique to AHT, so we do not elaborate on these
here.

ST2: Modeling Teammates. The learner can leverage information about its team-
mates to improve its decision making. Thus, a key subtask for the learner is to
model the information pertaining to teammates’ behavior (e.g., classifying team-
mates by type in order to adapt to different teammates).

ST3: Action Selection. The third subtask is the design of mechanisms used by
the learner to select actions once it has an estimate of its teammates’ behavior
(observed or based on models of teammates). Example methods for this subtask
include planning methods and expert policies that are learned or based on expert
knowledge.

ST4: Adapting to Changes. During interaction, the learner might receive new
information about its teammates, the environment, or task objectives. Based on
this information, the learner needs to adapt its behavior to improve coordination.
This adaptation also includes merging the models provided by teammates.

3 Boundaries of Ad Hoc Teamwork

Here we further define the scope of the AHT problem by describing factors that
can be considered within the basic problem formulation presented above, and by
discussing related research problems.
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3.1 Variations of the Ad Hoc Teamwork Problem

We first describe additional factors that define the scope of AHT and influence
the subtasks described earlier.

Partial Observability. Under conditions of full observability, each agent is aware
of the state of the environment, including the location of other agents. Partial
observability implies a higher level of complexity in knowledge representation
as it introduces uncertainty in certain parts of the domain state. Changing the
observability level will affect ST1 and thus the other subtasks described above.

Open Environment. Closed environments assume a fixed number of team-
mates (Rahman et al. 2021). Relaxing this assumption increases the problem
complexity, as the learner will also have to adapt to the changing number of
teammates in the environment; this will primarily affect ST2 and ST4.

Communication. Since the exploration of how communication can be leveraged
to improve team performance is an important area of research in AHT, we make
a distinction based on whether there is any communication channel between
agents. When communication exists, it is sometimes presented as predetermined
and known protocols, such as the hints allowed in the game of Hanabi (Bard
et al. 2020), which affects ST1. If these protocols are unknown in the beginning
of the interaction and need to be learned during the task execution, it has an
effect on ST3 and ST4.

Adaptive Teammates. We make a distinction between work where the teammates
learn alongside the learner, or use policies that stay fixed throughout the learning
phase of the learner. Unlike multi-agent reinforcement learning (see Sect. 3.2),
which supports joint training for all agents in the team, AHT does not assume
that the deployed teammates are the same as those the learner might have
trained with. Rather, adaptive teammates learn by reacting to the learner’s
policy using methods that are not known to the learner, thus affecting ST3 and
ST4. An example of such a setup is flocking, where the teammates have a fixed
policy, but their actions are directly influenced by the learner (Genter and Stone
2016).

Mixed Objectives. While teammates are assumed to be collaborative, they can
have mixed objectives. Two types of scenarios arise depending on the objectives
of the learner and its teammates. In the first, the learner and the teammates
have a perfectly aligned objective (e.g., the reward functions of all agents are
identical). In the second, while all team members have a common goal, each
agent might also hold individual goals as long as these are not purely adversarial
to the shared one. This factor extends the original formulation in (Stone et al.
2010), is related to the third assumption in Sect. 2.1, and will primarily affect
ST2 and ST3.
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3.2 Related Problems

In this section, we highlight the main differences between AHT and other related
research problems.

Multi-Agent Reinforcement Learning (MARL). It refers to the use of reinforce-
ment learning methods for jointly training multiple agents to maximize their
respective cumulative rewards while working with each other (Busoniu et al.
2008; Devlin and Kudenko 2016; Papoudakis et al. 2019). AHT, on the other
hand, assumes control over a single agent (the learner) while teammates can have
their own learning mechanisms, e.g., a robot interacting with different human.
Prior work has shown that the good team performance of MARL methods often
comes at the expense of poor performance when interacting with previously
unseen teammates (Hu et al. 2020; Rahman et al. 2021; Vezhnevets et al. 2020).
MARL methods are thus not particularly well-suited to AHT.

Ad hoc Teaming. The objective is to learn coercive measures that may allow self-
interested agents with different skills and preferences to collaborate and solve
a task. For example, existing work has trained a manager to assign subtasks
to agents based on their skills while also incentivizing agents to complete their
tasks (Shu and Tian 2019). In contrast, the learner in AHT might incentivize its
teammates to act in a certain way, but cannot dictate the teammates’ behavior
due to the lack of prior coordination.

Agent Modelling. These methods infer attributes of teammates’ behavior such as
beliefs, goals, and actions (Albrecht and Stone 2018). Since inferring teammates’
behavior is important for decision making in AHT (e.g., ST3 in Sect. 2.2), agent
modeling methods are useful for AHT. However, they can be used for a broader
class of problems and are not limited to (or necessarily indicative of) AHT.

Human-Agent Interaction. The task of creating agents that interact with previ-
ously unseen agents has also been explored in the human-agent/robot interaction
community. In human-agent interaction, agents have to achieve their goals in the
presence of human decision makers. As in AHT, it is often impossible to jointly
train humans and agents to coordinate their behavior; agents must instead find
a way to coordinate with previously unseen humans, e.g., by using implicit com-
munication or acting in a legible manner (Breazeal et al. 2005; Dragan et al.
2013).

Zero-Shot Coordination (ZSC). A special case of AHT where teammates’ behav-
ior are assumed to arise from a reward function that always provides identical
rewards for every agent is known as ZSC (Bullard et al. 2020, 2021; Hu et al.
2021; Lupu et al. 2021). After training different populations of agents under
the same fully cooperative setup, a ZSC agent is evaluated by measuring its
performance when cooperating with agents from a different population. While
ZSC introduced techniques relevant for AHT, there are AHT problems where
the controlled agent must interact with teammates whose reward functions are
different from its own.
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4 Solution Approaches

As stated earlier, while existing methods for AHT often provide a functioning
learner, each method’s key contribution can often be mapped to one or more of
the four subtasks in Sect. 2.2. Here we elaborate on common solution methods
for each subtask and refer to representative literature.

4.1 Knowledge Representation

The representation of domain knowledge strongly influences the solution app-
roach used in the other subtasks. This information can be acquired from human
experts (or expert knowledge), prior knowledge of past teammates, or using
self-play.

To support adaptation based on limited information, it is common to equip
agents with preconceptions of the likely behaviors or intentions of previously
unseen teammates. These preconceptions are based on prior experience with
the task; this can be the agent’s own experience or that of a human familiar
with the task. Agent modeling techniques can be used to represent the team-
mates (Albrecht and Stone 2018).

Type-Based Methods. The use of type-based methods is common in the AHT
literature. These methods represent prior experience with agents (in the target
domain) by a set of hypothesized types, where each type models an action selec-
tion policy. It is assumed that new teammates encountered by the learner have
behaviors specified by one of these types.

A range of type representations have been explored. Early work explored a
nested representation of agents’ beliefs, where agents perform Bayesian updates
to maintain beliefs over physical states of the environment and over models of
other agents (Gmytrasiewicz and Doshi 2005). It was also common to use hand-
coded programs to represent types (Albrecht and Ramamoorthy 2013; Barrett
et al. 2011). For approaches that employ a learned type set, learned decision trees
were a common representation (Barrett et al. 2017). More recently, latent type
methods have been used which learn a neural network-based encoder to map
observations of teammates to an embedding of the agent’s type (Rabinowitz
et al. 2018; Rahman et al. 2021; Xie et al. 2020; Zintgraf et al. 2021).

There are three main approaches to specifying a hypothesized type space:
(1) specification by a human expert; (2) learning from data; and (3) using
reinforcement learning (RL) methods and access to the environment or an envi-
ronment model. Barrett et al. (2017) collect diverse behaviors by drawing their
types from the output of an assignment presented to a large number of student.
Many methods attempt to generate diverse behaviors in a population trained
via RL, requiring only access to the target task. They do so using methods such
as genetic algorithms (Albrecht et al. 2015a,b; Canaan et al. 2020), regularisa-
tion techniques (Lupu et al. 2021), and reward-shaping techniques (Leibo et al.
2021).
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Experience Replay. Rather than encoding experience in explicit behavioural
models, experience replay methods store transition data in a buffer. Transitions
observed during an interaction are compared against the stored transitions to
identify the current teammate (Chen et al. 2020).

Task Recognition. In methods based on task recognition, prior experience or
information provided by an expert is encoded as a library of tasks referred to
as plays, macro actions, or options (Sutton et al. 1999). Tasks then encode
prior experience as applicability conditions, termination conditions, and high-
level specifications of a sequence of low-level actions (Wang et al. 2021).

4.2 Identifying Current Teammates

Once a representation is set, estimating the behavior of current teammates allows
the learner to determine a suitable behavior.

Type Inference. Methods that represent teammates using types infer beliefs over
the hypothesized type space using a history of interactions of the learner with
each teammate up to the current timestep. The dominant approach is to use
a Bayesian belief update (Albrecht et al. 2016; Barrett et al. 2017). In such
methods, prior beliefs about the teammates’ types are updated using the history
of interactions and a likelihood of the types based on the history. It is also
common to assume uniform priors across types and type parameters (Albrecht
et al. 2015a).

Experience Recognition. Rather than inferring types, some approaches attempt
to measure the similarity of the current observations to that from earlier experi-
ence in a more direct manner. PLASTIC-Policy (Barrett et al. 2017) compares
the most recently observed state transition to previously stored data. For each
team they find the stored transition with the closest state to the current state,
and consider the next state observed in that historical transition. They then
measure the distance between that state and the observed next state, and use
this to compute the likelihood of the team. AATEAM (Chen et al. 2020) takes
a more sophisticated approach which uses prior experience buffers to train one
attention-based neural network per type, to identify agents from a trajectory
rather than a single transition.

Task Recognition. For methods which represent prior knowledge as tasks, the
learner attempts to infer the current task being carried out by the teammate
under consideration. Wang et al. (2021) achieved this by assuming that the
teammate was attempting to complete hypothesized tasks and computing the
extent to which the teammate’s observed behavior is sub-optimal for that task.
Melo and Sardinha 2016 consider a setting in which agents both identify the
current task and identify the teammate’s strategy, with the teammate’s behavior
subject to a bounded rationality assumption.
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4.3 Action Selection

Given current knowledge about task and teammates, agents must decide which
action to take to maximize team return.

Planning. Many AHT approaches use planning methods to select actions. Some,
such as Bowling and McCracken (2005) and Ravula et al. (2019), use bespoke
planning methods suited to the specific task, and chosen by a human expert.
Many approaches use the more general Monte Carlo tree search (MCTS) plan-
ning procedure (Albrecht and Stone 2017; Alford et al. 2015; Barrett et al. 2014;
Eck et al. 2020; Malik et al. 2018; Sarratt 2015; Wu et al. 2011; Yourdshahi et al.
2018). The upper confidence tree (UCT) algorithm (Kocsis and Szepesvári 2006)
for MCTS is often used due to its ability to perform well when the branching
factor is large, as is the case when multiple agents are present. These MCTS-
based methods require that types are represented by explicit behavioral models
to sample teammate actions during rollouts.

Expert Policy Methods. Selecting actions by choosing a policy from a set of
expert policies, and then acting according to the chosen policy. There are many
ways in which these expert policies can be obtained prior to the ad hoc interac-
tion: they can be provided by an expert, learned offline, using experience data
(Chen et al. 2020; Santos et al. 2021), or by online RL training given the task
(Albrecht et al. 2015b). One of the advantages of expert policy methods over
type-based planning methods is that they can handle large or continuous state
and action spaces, where MCTS approaches may struggle (Barrett et al. 2017).
However, type-based planning methods are more appropriate when the ad hoc
team is likely to have a previously unseen composition, as type-based methods
can reason at the level of the types of individual agents. Also, creating expert
policies may be impossible when a large variation of situations are encountered.
The E-HBA method attempts to achieve the advantages of both type-based
reasoning methods and expert policy methods by combining the two (Albrecht
et al. 2015b). The GPL method (Rahman et al. 2021), suitable in open AHT
problems, uses an action-selection mechanism based on E-HBA .

Leading. Some works explicitly consider adaptive teammates, where a learner’s
choice of action affects its teammates’ behaviors. Works such as Agmon et al.
(2014) assume teammates employ a known best response strategy, and that the
goal is to lead these teammates to a specific joint coordination strategy. These
approaches were addressed in simple games using dynamic programming.Xie
et al. (2020) consider cases where the learner does not know the teammate’s
current behavior, nor how this behavior changes across interactions. Thus, deep
learning is used to learn an embedding of the teammate’s strategy, and model
the teammate’s behavioral dynamics and teammates’ adaptation process.
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Metalearning. Metalearning approaches use action selection policies which are
trained to facilitate the entire AHT process. The MeLIBA approach (Zintgraf
et al. 2021) trains the policy to carry out interactive Bayesian RL, intentionally
taking actions which seek to reveal information about the teammate’s type. The
action selection policies of metalearning approaches is typically conditioned on
the learner’s prediction of the teammate’s type. In this sense, such methods can
be compared to expert policy methods.

4.4 Adapting to Current Teammates

During interaction, the learner receives new information, which can be used to
adapt its behavior.

Belief Revision. Most methods employ belief revision protocols to maintain their
belief about the identity of other agents across time. For type-based methods, it
is typical to assume each teammate’s type does not change over time, and that
a good representation of the teammate exists in the hypothesized type space
(Albrecht et al. 2016). However, if it is assumed that teammates’ types change
over time, the learner must also adapt. The ConvCPD method (Ravula et al.
2019) considers settings in which the type space is known, but agents can switch
types. For these settings, they employ a convolutional neural network (CNN)-
based changepoint detection approach, which uses image-like representations of
type likelihoods across time to detect changes. An alternative approach is to
modify the Bayesian belief revision process to allow beliefs to decay towards the
priors over time. This approach is useful when a teammate changes to a type
which the learner has assigned low (or zero) probability to. In this case, the
learner might struggle (or be unable) to quickly update its belief to reflect the
new true teammate (Santos et al. 2021). Sum-based posterior definitions were
also proposed to deal with changing types (Albrecht et al. 2016).

Hypothesis Space Revision. Approaches exist for adapting to agents whose
behavior may not be adequately represented in the hypothesized space.
TwoStageTransfer is a transfer learning method employed by PLASTIC-Model
(Barrett et al. 2017) which uses observations of new teammates and prior models
to finetune a model for the new teammate.

Metalearning. During the metalearning process, the action selection policy learns
its own adaptation procedures, avoiding the need to specify particular adaptation
schemes (Xie et al. 2020; Zintgraf et al. 2021).

Zero-Shot Coordination Techniques. The ZSC problem does not allow the learner
any behavioral adaptation during ad hoc interactions. For this reason, the focus
of these methods is on training agents which robustly coordinate with other
agents trained using the same algorithm. One approach is to avoid strategies
which are not invariant under symmetries within the underlying tasks (Hu et al.
2020, 2021). Another approach is based on the hypothesis that there are few
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strategies which perform well with a diverse set of teammates, so ad hoc agents
independently trained against diverse teammates (and themselves) are likely
arrive at similar pre-coordinated policies (Lupu et al. 2021).

Communication. The learner can quickly adapt to changes is by communicating
with its teammates. This communication can either be a query (Macke et al.
2021; Mirsky et al. 2020), transfer knowledge or preferences (Barrett et al. 2014;
Mead and Weinberg 2007), or providing an advice (Canaan et al. 2020; Shvo
and McIlraith 2020).

5 Evaluation Domains

Many different approaches have been used for evaluating AHT methods. In this
section, we categorize them using the identified variations from Subsect. 3.1.
Some domains might fit more than one category, but we place them according
to the first ad hoc teamwork paper they appeared in. In Table 1, we summarize
each of the domains and associated papers.

No Variations. Some evaluation domains do not have any of the variations
outlined in Sect. 3.1. Among these AHT domains, some of the simplest are matrix
games (Albrecht et al. 2015b; Melo and Sardinha 2016). These games consist of a
payoff matrix for two agents who independently choose actions and then receive a
payoff based on the actions each agent chose. The game is then repeated with the
goal to maximize long term return over repeated trials. Another common domain
is predator prey (Barrett et al. 2011; Papoudakis et al. 2021; Ravula et al. 2019).
This domain consists of several agents (the predators) attempting to surround
and capture other agents (the prey). The predator prey domain requires both
recognising a teammate’s goal (namely which prey they are pursuing), and also
collaborating with other agents to surround the prey. In level-based foraging
(Albrecht and Ramamoorthy 2013), the goal of the agent team is to collect food
items which are spatially distributed in a grid world. Agents and items have
different skill levels which represent different capabilities in agents, requiring
that agents decide when and with whom to collaborate in order to collect the
items.

Open Environments. There are several instances of open domains presented in
AHT. First, open variations of the domains mentioned above exist in Rahman
et al. (2021). Another open AHT domain is wildfires, where agents entering and
leaving the environment need to work together to contain the spread of wildfires
(Chandrasekaran et al. 2016). Finally, ad hoc flocking and swarming domains
enable agents to enter and leave the environment freely (Genter and Stone 2016).

Partial or Noisy Observability. Partially observable variants of the domains with
no extensions exist in Ribeiro et al. (2022). One domain that has been prevalent
in AHT literature is robot soccer. Drop-in soccer where a group of players need
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to form a team without playing with each other is common among humans in
real life, so it has been a frequented challenge by AI as well (Barrett et al.
2017; Genter et al. 2017). The problem typically consists of substituting one
member of a team with a learner. The performance is then measured on how
robust the learner’s performance is regardless of which team it is placed in.
This domain presents an additional challenge, as each agent can only observe its
local environment. Another partially observable domains are military simulation,
which simulate various combat and search tasks using unmmaned autonomous
vehicles (Alford et al. 2015), and the collaborative card game Hanabi (Bard et al.
2020). Similar to the RoboCup domain, these domains also present the challenge
that agents only have access to their local observations.

Communication. Multiple domains allow communication in some form. The
RoboCup domain mentioned above allows limited communication between
agents using wireless connections. Others use communication as a more crit-
ical part of the domain. The tool fetching domain provides an AHT domain
that allows one agent to query another about its goals (Macke et al. 2021).
Unlike other domains mentioned so far, the tool fetching domain is specifically
focused on evaluating an agent’s ability to communicate effectively. The Hanabi
domain also presents a structured communication channel. While in the tool
fetching domain the learner can query its teammates, in Hanabi the commu-
nication channel allows the learner to provide its teammates with information
unknown to them (Bard et al. 2020; Canaan et al. 2020). Another domain that
focuses on communication is the cops and robbers domain (Sarratt 2015). In this
domain, teammates (cops) must work together to capture another, adversarial
agent (the robber). Each agent can query the other to gain information about
their current plans (Sarratt 2015).

Adaptive Teammates. So far all domains mentioned are focused on evaluat-
ing whether a learner can successfully adapt their behavior to collaborate with
diverse teammates. Some domains, however, instead try to evaluate how well
learner(s) can influence other agents to achieve better performance. While the
above domains can be adapted to have learning teammates, several domains exist
with this explicit purpose in mind. Some examples of these are domains focused
on incentivising the teammate to take a specific course of action (Wang et al.
2021), or on swarming (Genter and Stone 2014), where the learner attempts to
move in such a way as to influence the overall behavior of the agents around it.

Mixed Objectives. Works that make the assumption of coupled objectives, such
as ZSC (Hu et al. 2020), utilize an environment in which the reward received
by all agents is the same. Such environments include the lever environment (Hu
et al. 2020) and Hanabi (Bard et al. 2020). Works which do not assume coupled
objectives utilize general-sum domains such as level-based foraging (Albrecht and
Ramamoorthy 2013), in which the reward changes depending of the contribution
of the agent; or the tool fetching domain where each agent has a distinct role in
the team (Mirsky et al. 2020).
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Table 1. Different environments used for evaluating ad hoc teamwork.

Domain Paper Method Description

Matrix games Albrecht and Ramamoorthy
(2012)

Empirically evaluates various multi-agent learning
algorithms in ad hoc mixed teams

Chakraborty and Stone
(2013)

Introduces an optimal algorithm to cooperate with a
Markovian teammate

Albrecht et al. (2015b) Combines type-based reasoning for prediction with expert
algorithms for decision making

Albrecht et al. (2015a; 2016) Evaluates impact of prior beliefs in type-based reasoning in
a range of matrix games

Melo and Sardinha (2016) Extends ad hoc teamwork to scenarios where the current
task is unknown in addition to the teammates

Predator
prey

Barrett et al. (2011) MCTS (UCT) with type-based reasoning using
hand-crafted types in the predator prey domain

Ravula et al. (2019) Extends ad hoc teamwork methods to work with
teammates which can switch behaviors

Papoudakis et al. (2021) Assumes only local observations of ad hoc teamwork agent
are available to model other agents

LBF Albrecht et al. (2013) Develops type-based reasoning based on game theory
model to solve ad hoc teamwork problems

Liemhetcharat et al. (2017) Defines the problem of ad hoc team assignment

Yourdshahi et al. (2018) Introduces new history-based MCTS

Rahman et al. (2021) Uses graph-based learning to handle a dynamic number of
agents in the environment

Wildfires Eck et al. (2020) Introduces ad hoc teamwork in open environments with
large numbers of agents

Flocking
swarming

Genter and Stone (2014) Introduces AHT approaches for influencing a flock’s
behavior

Genter et al. (2015) Determines where to place agents in a flock

Genter and Stone (2016) Solves how to force agents to join flock in motion

Robot soccer Bowling et al. (2005) Introduces two new approaches for working with ad hoc
teams in robot soccer

Barrett and Stone (2014) Introduces new method for reusing policies learned from
previous teammates to accomplish AHT

Barrett et al. (2017) Introduces algorithms for AHT based on previously met
teammates, using either policies or models

Military
simulation

Alford et al. (2015) Introduces an algorithm for classifying agent behaviors in
air combat simulator

Hanabi Bard et al. (2020) Proposes the Hanabi game as a new challenge for AI
research, including ad hoc teamwork

Canaan et al. (2020) Creates a meta-strategy for solving ad hoc teamwork in
Hanabi using a diverse set of possible teammates

Hu et al. (2020) An effective algorithm for learning from self-play by
attempting to seek out new behaviors

Hu et al. (2021) Introduces improved method off-belief learning for learning
from self-play in DecPOMDPs

Lupu et al. (2021) Creates a new optimisable metric for determining policy
diversity in Hanabi self-play

Tool fetching
domain

Mirsky et al. (2020) Introduces SOMALI CAT problem and proposes solution
for determining when queries might be useful

Macke et al. (2021) Proposes a solution for what to query when multiple
possible queries are available

Suriadinata et al. (2021) Investigates human behavior in the Tool Fetch Domain
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6 Conclusion and Open Problems

In this survey, we presented a review of the AHT literature that has been pub-
lished over the past decade. This long period of time, along with the abundance
of published work, enabled us to draw a big picture view of this topic: setting
the boundary on what is, and what is not, AHT; identifying the subtasks that
an agent needs to tackle as part of an AHT task; and the various levels of com-
plexity in AHT. Many open problems still need to be addressed to achieve a
robust agent that is able to interact with teammates without prior coordination
and solve real-world problems. Furthermore, AHT research is currently suffer-
ing from a lack of standardised comparison between existing AHT approaches,
which increases the difficulty of identifying state-of-the-art methods for solving
a certain AHT problem.

Future work could address further extensions of the variations of the ad hoc
teamwork problem discussed in Sect. 3.1, or combinations of these variations.
For example, considering the presence of teammates with complex adaptive pro-
cesses, such as teammates which learn via RL while interacting with the learner;
or teammates which themselves apply AHT techniques. Current approaches to
AHT are not designed to work with adaptive teammates (one notable exception
being HBA (Albrecht et al., 2016)), whose presence would mean that the learner
needs not only to adapt to teammates’ behaviors, but also consider how the
teammates adapt to its own behavior. Another extension is the combination of
partial observability and open teams, which provides a difficult challenge for the
learner, due to this complex dual uncertainty.

In terms of potential solution methods, one of the crucial open problems is
improving the generalization to new teammates that have not yet been seen dur-
ing training. Recent continual learning (Khetarpal et al., 2020) advances showed
that training on diverse tasks can result in agents with robust performance in
previously unseen tasks (Open-Ended Learning Team et al. 2021). In the same
way, training with a diverse set of teammates can improve the learner’s ability
to collaborate with new teammates. Lupu et al. (2021) proposed a method to
generate diverse teammates for ZSC, but it was not evaluated with collaborative
teammates with objectives that might not be fully aligned with the learner’s.
Recently, Rahman et al. (2022) proposed a method for generating a diverse set
teammates specifically for ad hoc teamwork applications. However, results were
only obtained in a 5 × 5 grid world environment, more work is needed to evalu-
ate how this method performs in more complex environments. These works are
a good starting point when designing learners that are robust to different teams,
however, they do not specifically address the collaborative aspect of AHT. Addi-
tional work is required to properly define the scope of the diverse set of agents
a learner should be able to work with. And while generating teammates that
display different behaviours and skill levels can improve generalisation during
execution time, this is not an easy task, especially in more complex domains.

AHT research could also benefit from the use of more complex or realistic
domains in evaluation. Previous works tended to use simple domains (Sect. 5),
but these solutions might not perform well in realistic domains. We suggest that
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future AHT research should consider more realistic testbeds, which can rely
on robotics simulators extended to handle multi-agent scenarios (Collins et al.
2021), or on existing scenarios such as the DARPA “Spectrum Collaboration
Challenge”2, which will allow for the evaluation of more complex tasks and
algorithms. Social navigation, the problem of a robot navigating through a crowd
of people and robots, is another relevant robotics challenge (Mirsky et al. 2021).
In this problem, the learner needs to coordinate with previously unmet passerby
humans and robots in order to avoid collisions, while allowing each other to
get to their destinations. Thus, this challenge poses a series of challenging AHT
problems where the learner need to adapt to new incoming teammates based on
a highly limited amount of interaction experience.

Another important issue that can be addressed by future work is benchmark-
ing current AHT approaches by providing systematic comparison between them.
Existing works in AHT often forgo comparison against other approaches designed
to solve the same variation of AHT problems, which makes it hard to identify
state-of-the-art approaches in the field. A systematic benchmark between AHT
approaches across different environments could therefore be a crucial stepping
stone towards further identifying the strengths and weaknesses of different AHT
methods.

To conclude, the AHT problem comprises a unique mixture of subtasks that
the learner is required to perform, which requires solutions ranging from different
fields. In this survey, we identified the existing and open problems in AHT which
we hope will contribute to the development of the field, and in turn will advance
the multi-agent research community as a whole.
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Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–
293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

Leibo, J.Z., et al.: Scalable evaluation of multi-agent reinforcement learning with Melt-
ing Pot. In: International Conference on Machine Learning, pp. 6187–6199 (2021)

Li, H., et al.: Individualized mutual adaptation in human-agent teams. IEEE Trans.
Human Mach. Syst. 51, 706–714 (2021)

Liemhetcharat, S., Veloso, M.: Allocating training instances to learning agents for team
formation. Autonom. Agents Multi-Agent Syst. 31(4), 905–940 (2017). https://doi.
org/10.1007/s10458-016-9355-3

Lupu, A., Cui, B., Hu, H., Foerster, J.: Trajectory diversity for zero-shot coordination.
In: Proceedings of the 38th International Conference on Machine Learning, pp. 7204–
7213 (2021)

Macke, W., Mirsky, R., Stone, P.: Expected value of communication for planning in ad
hoc teamwork. In: The AAAI Conference on Artificial Intelligence, AAAI, vol. 35,
pp. 10 (2021)

https://doi.org/10.1609/aaai.v34i05.6200
https://doi.org/10.1007/978-3-319-09952-1_10
https://doi.org/10.1007/978-3-319-09952-1_10
https://doi.org/10.1007/s10458-016-9353-5
https://doi.org/10.1613/jair.1579
https://doi.org/10.1007/978-94-015-9204-8_10
http://arxiv.org/abs/2012.13490
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/s10458-016-9355-3
https://doi.org/10.1007/s10458-016-9355-3


292 R. Mirsky et al.

Malik, D., Palaniappan, M., Fisac, J.F., Hadfield-Menell, D., Russell, S., Dragan, A.D.:
An efficient, generalized Bellman update for cooperative inverse reinforcement learn-
ing. arXiv:1806.03820 (2018)

Mead, R., Weinberg, J.B.: Impromptu teams of heterogeneous mobile robots. In: The
AAAI Conference on Artificial Intelligence, AAAI (2007)

Melo, F.S., Sardinha, A.: Ad hoc teamwork by learning teammates’ task. Autonom.
Agents Multi-Agent Syst. 30(2), 175–219 (2016). https://doi.org/10.1007/s10458-
015-9280-x

Mirsky, R., Macke, W., Wang, A., Yedidsion, H., Stone, P.: A penny for your thoughts:
The value of communication in ad hoc teamwork. In: The International Joint Con-
ference on Artificial Intelligence, IJCAI (2020)

Mirsky, R., Xiao, X., Hart, J., Stone, P.: Prevention and resolution of conflicts in social
navigation-a survey. arXiv preprint arXiv:2106.12113 (2021)

Open-Ended Learning Team, Stooke, A., et al.: Open-ended learning leads to generally
capable agents. arXiv:2107.12808 (2021)

Papoudakis, G., Christianos, F., Rahman, A., Albrecht, S.V.: Dealing with non-
stationarity in multi-agent deep reinforcement learning. arXiv:abs/1906.04737 (2019)

Papoudakis, G., Christianos, F., Albrecht, S.V.: Local information agent modelling in
partially-observable environments. arXiv:2006.09447 (2021)

Rabinowitz, N., Perbet, F., Song, F., Zhang, C., Eslami, S.M.A., Botvinick, M.:
Machine theory of mind. In: International Conference on Machine Learning, pp.
4218–4227. PMLR (2018)

Rahman, A., Höpner, N., Christianos, F., Albrecht, S.V.: Towards open ad hoc team-
work using graph-based policy learning. In: International Conference on Machine
Learning, vol. 139. PMLR (2021)

Rahman, A., Fosong, E., Carlucho, I., Albrecht, S.V.: Towards robust ad hoc teamwork
agents by creating diverse training teammates. In: IJCAI Workshop on Ad Hoc
Teamwork (2022)

Ravula, M., Alkoby, S., Stone, P.: Ad hoc teamwork with behavior switching agents. In:
International Joint Conference on Artificial Intelligence, pp. 550–556 (2019). https://
doi.org/10.24963/ijcai.2019/78

Ribeiro, J.G., Martinho, C., Sardinha, A., Melo, F.S.: Assisting Unknown Teammates
in Unknown Tasks: Ad Hoc Teamwork under Partial Observability. arXiv:2201.03538
(2022)

Rovatsos, M., Wolf, M.: Towards social complexity reduction in multiagent learning:
the ad hoc approach. Technical report SS-02-02, AAAI Press (2002)

Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Series in
Artificial Intelligence. Pearson, 4th edition edn. (2021)

Santos, P.M., Ribeiro, J.G., Sardinha, A., Melo, F.S.: Ad hoc teamwork in the presence
of non-stationary teammates. In: Progress in Artificial Intelligence (2021)

Sarratt, T.: Tuning belief revision for coordination with inconsistent teammates. In:
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
pp. 177–183 (2015)

Shu, T., Tian, Y.: M3rl: mind-aware multi-agent management reinforcement learning.
In: International Conference on Learning Representations (2019)

Shvo, M., McIlraith, S.A.: Active goal recognition. n: The AAAI Conference on Arti-
ficial Intelligence, AAAI 34, pp. 9957–9966 (2020)

Stone, P., Kaminka, G.A., Kraus, S., Rosenschein, J.S.: Ad hoc autonomous agent
teams: collaboration without pre-coordination. In: AAAI Conference on Artificial
Intelligence, pp. 1504–1509 (2010). https://doi.org/10.5555/2898607.2898847

http://arxiv.org/abs/1806.03820
https://doi.org/10.1007/s10458-015-9280-x
https://doi.org/10.1007/s10458-015-9280-x
http://arxiv.org/abs/2106.12113
http://arxiv.org/abs/2107.12808
http://arxiv.org/1906.04737
http://arxiv.org/abs/2006.09447
https://doi.org/10.24963/ijcai.2019/78
https://doi.org/10.24963/ijcai.2019/78
http://arxiv.org/abs/2201.03538
https://doi.org/10.5555/2898607.2898847


A Survey of Ad Hoc Teamwork Research 293

Suriadinata, J., Macke, W., Mirsky, R., Stone, P.: Reasoning about human behavior in
ad hoc teamwork. In: Adaptive and learning Agents Workshop at AAMAS 2021, p.
6 (2021)

Sutton, R.S., Precup, D., Singh, S.: Between MDPs and semi-MDPs: a framework for
temporal abstraction in reinforcement learning. Artif. Intell. 112(1), 181–211 (1999)

Vezhnevets, A., Wu, Y., Eckstein, M., Leblond, R., Leibo, J.Z.: OPtions as REsponses:
Grounding behavioural hierarchies in multi-agent reinforcement learning. In: Inter-
national Conference on Machine Learning, pp. 9733–9742 (2020)

Wang, R.E., Wu, S.A., Evans, J.A., Tenenbaum, J.B., Parkes, D.C., Kleiman-Weiner,
M.: Too many cooks: Bayesian inference for coordinating multi-agent collaboration.
Top. Cogn. Sci. 13(2), 414–432 (2021). https://doi.org/10.1111/tops.12525

Wu, F., Zilberstein, S., Chen, X.: Online planning for ad hoc autonomous agent teams.
In: International Joint Conference on Artificial Intelligence, pp. 439–445 (2011).
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-081

Xie, A., Losey, D.P., Tolsma, R., Finn, C., Sadigh, D.: Learning latent representations
to influence multi-agent interaction. In: Proceedings of the Conference on Robot
Learning. PMLR (2020)

Yourdshahi, E.S., Pinder, T., Dhawan, G., Marcolino, L.S., Angelov, P.: Towards large
scale ad-hoc teamwork. In: 2018 IEEE International Conference on Agents, pp. 44–
49. IEEE (2018). https://doi.org/10.1109/AGENTS.2018.8460136

Zintgraf, L., Devlin, S., Ciosek, K., Whiteson, S., Hofmann, K.: Deep interactive
Bayesian reinforcement learning via meta-learning. arXiv:2101.03864 (2021)

https://doi.org/10.1111/tops.12525
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-081
https://doi.org/10.1109/AGENTS.2018.8460136
http://arxiv.org/abs/2101.03864


Combining Theory of Mind
and Abduction for Cooperation Under

Imperfect Information

Nieves Montes(B), Nardine Osman, and Carles Sierra

Artificial Intelligence Research Institute (IIIA-CSIC), 08193 Bellaterra, Barcelona,
Spain

{nmontes,nardine,sierra}@iiia.csic.es

Abstract. In this paper, we formalise and implement an agent model
for cooperation under imperfect information. It is based on Theory of
Mind (the cognitive ability to understand the mental state of others)
and abductive reasoning (the inference paradigm that computes expla-
nations from observations). The combination of these two techniques
allows agents to derive the motives behind the actions of their peers,
and incorporate this knowledge into their own decision-making. We have
implemented this model in a totally domain-independent fashion and
successfully tested it for the cooperative card game Hanabi.
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1 Introduction

The emergent field of social AI deals with the theoretical foundations and prac-
tical implementations of autonomous agents that are able to interact with other
agents, possibly including humans [7]. In order for autonomous agents to be
socially competent, they must take into account not only their own goals and
point of view, but also those of their fellow agents. The cognitive ability to put
oneself in the shoes of someone else and reason from their perspective is called
Theory of Mind (ToM). In order to have software agents with ToM capabili-
ties, they must explicitly incorporate some technique for modelling others, the
preferred term within the AI community [1].

Techniques for modelling others are fairly prevalent within AI, particularly
in competitive domains characterised by agents with diverging interests [2,16].
However, endowing agents with ToM faculties has the potential to boost their
performance in cooperative tasks too, where agents must collaborate with one
another in an efficient manner. In particular, in domains dealing with imperfect
information (i.e. where agents do not have access to the complete state of the sys-
tem but can infer the subset of states that are currently possible), autonomous
agents can benefit from observing the actions performed by others, inferring the
knowledge their peers were relying upon when selecting their actions, and incor-
porating this additional information into their own decision-making. This type
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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of reverse inference, from observations to potential premises, is called abduction
and is central to the work presented here.

In this paper, we present preliminary work on the formulation and implemen-
tation of an agent model combining Theory of Mind and abductive reasoning
capabilities in purely cooperative tasks characterised by imperfect information.
To cope with this, we propose a framework for agents that observe the actions
of their teammates, adopt their perspective (thus utilising Theory of Mind)
and generate explanations concerning the knowledge they were relying upon to
decide on that action (hence engaging in abductive reasoning). We also review
how agents update and incorporate these explanations into their knowledge base
for their own decision-making.

Although we provide a tentative decision-making procedure for action selec-
tion that takes into account abductive explanations, this is not the main contri-
bution of this work. The focus of this work is the derivation of knowledge using
ToM and abductive reasoning. The ways in which agents use such knowledge for
strategy selection (the primary concern of the epistemic game theory literature
[18]) is a necessary component of the overall agent software, but a thorough
examination of it is beyond the scope of this work. Furthermore, it should be
noted that our model is completely domain-independent, but works under some
broad assumptions that we specify.

Our work can be compared with previous approaches in the plan recognition
literature [23], where agents infer the goal and sequence of actions (i.e. the plan)
that others are pursuing, in order to anticipate and respond to future actions. In
this paper, we do not work with plans per se that include sequences of actions,
but with atomic actions. Consequently, we are not interested in identifying a full
sequence of actions under execution, but the circumstances that have led to an
action choice. This is analogous to the recognition of the plan context in many
BDI languages [15].

This paper is organised as follows. First, Sect. 2 provides the necessary back-
ground on Theory of Mind and abductive reasoning. Section 2 also presents
the cooperative game Hanabi, which we will be using as our running exam-
ple throughout the exposition of our agent model in Sect. 3. Although the model
we provide is totally domain-independent, illustrating it with a running example
provides a much clearer picture. Finally, Sect. 4 presents results on the perfor-
mance of our agent model, and we conclude in Sect. 5.

2 Background

We start by providing an overview of the two techniques that our agent model
combines: Theory of Mind (ToM) and abductive reasoning. Both terms are rele-
vant in many fields beyond AI, and hence the precise use we make of them here
needs clarification. These introductions are fairly general. The specific way in
which we use ToM and abductive reasoning is covered in Sect. 3.
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2.1 Theory of Mind

Theory of Mind (ToM) refers to the human cognitive ability to perceive and
understand others in terms of their mental attitudes, such as their beliefs, emo-
tions, desires and intentions [14]. Humans routinely interpret the behaviour of
others in terms of their mental states, and this capacity is considered essential
for successful participation in social life.

From the philosophical and psychological perspectives, there are two dis-
parate views on Theory of Mind: Theory ToM (TT) and Simulation ToM (ST)
[20]. Theory ToM argues that the attribution of mental states to others hap-
pens according to internally represented knowledge, analogous to a theory of
folk psychology. This theory is implicit, and is so pervasive and integral to our
lives that it goes unnoticed. In contrast, Simulation ToM takes the view that
one uses one’s own mind as a model to understand the mind of others, with no
theoretical knowledge involved. Instead, one puts oneself in the shoes of others
by pretending to be in their circumstances, and performs a sort of mental sim-
ulation using one’s own mental mechanisms to predict the thoughts and actions
of others. In this work, we adhere closer to the ST account than to the TT one,
since ST presents a much clearer path to being operational.

Within AI, ToM has been applied in a somewhat fragmented way, with many
fields implementing it based on their prevalent techniques. In machine learning,
for example, ToM has been conceived as a meta-learning process [19], where a
Deep Neural Network model takes as input past agent trajectories and outputs
behaviour at the next time-step. ToM approaches have also been investigated
from the perspective of game theory. In [24,25], the authors consistently prove
that the marginal benefits of employing higher-order ToM (I know that my
opponent knows that I know that my opponent knows...) diminish with the
recursion level employed. In particular, while first (I know that my opponent
knows) and second-order ToM (I know that my opponent knows that I know)
present a clear advantage, deeper recursion levels do not.

Finally, purely symbolic approaches to ToM have studied the effect of
announcements on the beliefs of others and their ripple-down effects on their
subsequent desires and actions. These approaches use modal operators such as
Ki, Bi, Di to designate the knowledge, beliefs and desires, respectively, of agent
i. ToM comes into play when such operators are nested within one another, e.g.
KiKjφ indicates that i knows that j knows that φ holds true, a first-order ToM
statement. In [17,21], authors formalise and implement ToM capabilities into
symbolic agents for the purposes of deception and manipulation.

2.2 Abductive Reasoning

In the symbolic AI literature, centre stage has traditionally been taken by deduc-
tive reasoning, based on the application of the modus ponens rule: from knowl-
edge of φ and φ → ψ, infer ψ. In contrast to deduction, abductive reasoning
works in the opposite direction: upon knowledge of φ → ψ and the observation
of ψ, φ is inferred as a potential explanation for ψ [10].
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At a very high level, abduction takes as input (1) a logical theory representing
expert knowledge on the domain of interest; and (2) a query in the form of
a logical formula that stands for an observation made in that domain. Then,
abductive inference computes an explanation formula that, together with the
original logical theory, entails the observation and is logically consistent with it.

Computationally, an Abductive Logic Programming (ALP) theory [9] is a
tuple 〈T,A〉, where T is a logic program and A is a set of ground abducible
atoms.1 Then, an abductive explanation is defined as follows:

Definition 1. (from [12]) Given an ALP theory 〈T,A〉 and a query Q, an
abductive explanation Δ is a subset of abducible atoms such that T ∪ Δ |= Q.

Often, an ALP theory is extended with a set of integrity constraints (ICs).
Then, Definition 1 has to be extended to account for the consistency of Δ with
the ICs. One account for this consistency imposes that T∪Δ∪IC must not lead to
contradiction. In our agent model, although we do not use ICs in the traditional
sense, we adopt a notion analogous to this consistency view. This allows us to
work with incomplete explanations, i.e. Δ does not necessarily complement the
current knowledge to provide a complete representation of the current state, but
nonetheless provides valuable information.

In practice, explanations in ALP are computed by extending Selective Linear
Definite (SLD) resolution or its negation as failure version (SLDNF) [8]. The
basic idea is that before failing a goal if one subgoal does not unify with a
clause, it should be considered as part of a potential explanation, as long as it
unifies with an element in A. Hence, goals only fail if they are not provable either
by the knowledge base or by matching with the set of abducible atoms. Just as
standard SLD(NF) are coupled with backtracking to find all the unifications to
a query, so are their abductive counterparts backtracking to find all the possible
explanations that render an observation true.

In order for an abductive explanation Δ to be useful, it needs to be assimi-
lated into the agent’s knowledge base (KB). Note that this KB does not neces-
sarily correspond to the logic program T in the ALP theory used for comput-
ing the abductive explanations in the first place. Several possibilities may arise
when integrating Δ into a KB [12]: (1) the explanation may be uninformative
(KB |= Δ); (2) the explanation may render a portion of the knowledge base
irrelevant (KB = KB1 ∪KB2, where KB1 ∪Δ |= KB2); (3) Δ violates the con-
sistency of KB, KB ∪ Δ |= ⊥); and (4) Δ is independent of KB. Of these four
possibilities, (4) is clearly the most readily actionable, as it provides additional
knowledge to the agent without compromising previously acquired information.

2.3 The Hanabi Game

We use the award-winning Hanabi game as the test-bed of our agent model,
and we will also use it to exemplify the various components in Sect. 3. Hanabi
is a card game where a team of 2 to 5 players work together with the goal of
1 Under the restriction that no predicate in A appears as the head of a clause in T .
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achieving the maximum possible team score. Every player is handed four or five
cards (depending on the size of the team) such that everyone else can see their
cards except the player holding them. Every card has a rank between 1 and 5
and one of five colours.2

Fig. 1. Hanabi game setting for three players, from the perspective of Alice.

The set-up of a typical Hanabi game from the perspective of player Alice is
presented in Fig. 1. To make progress, players take turns to build ordered stacks
of cards of the same colour. For example, the red stack is built by playing first a
red 1, then a red 2 on top of it, and so on until the red 5. At every turn, players
can: (1) play a card on the stacks; (2) discard a card; or (3) give a hint to another
player by spending one information token (there are 8 tokens initially available).
When playing a card, a participant places it on the stack of the corresponding
colour. If the card is not correctly played (e.g. a blue 4 is played when the top
of the blue stack has a 2), the whole team lose one life. When a player discards
a card, they get rid of it and recover one information token for the team. After
playing or discarding a card, players draw a new one from the deck. Finally,
players can spend one information token, if available, and give a hint to another
player. Players can hint to one another about the rank or the colour of their
cards. For example, if Alice hints “white” to Bob in Fig. 1, she must point to
the cards on Bob’s second, third and fifth slot (starting from the left). Hints
are necessarily truthful, as Hanabi is a collaborative game and everyone would
lose points by conveying or believing false information. If all information tokens
are spent, the player with the turn to move cannot give another hint. The game
finishes when the team lose all three lives and get a score of 0, when they manage
to finish all of the stacks and get the maximum score of 25, or when they run
out of cards to draw from the deck. The final score corresponds to the sum of
the top cards in each stack.
2 A detailed description of the rules of the game can be found at https://github.com/

Hanabi-Live/hanabi-live/blob/main/docs/RULES.md.

https://github.com/Hanabi-Live/hanabi-live/blob/main/docs/RULES.md
https://github.com/Hanabi-Live/hanabi-live/blob/main/docs/RULES.md
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There are three main features of Hanabi that make it an excellent test-bed to
assess techniques for modelling others in cooperative domains, and that have led
some researchers to point to Hanabi as the next grand challenge to be tackled by
the AI community [3]. First, Hanabi is a purely cooperative game. This means
that participants can greatly benefit from understanding the mental states of
others, e.g. their goals and intentions, in order to align their own actions with
those of their teammates.

Second, players in Hanabi must deal with imperfect information, as they
can see the cards of others but not their own. To cope with this, agents must
provide information to one another through hints. There are two facets to this
information: the explicit knowledge carried by the hint (i.e. the colour or rank of
the cards involved) and the implicit information derived from understanding the
player’s reasons to make that hint. For example, in Fig. 1, Alice might hint “red”
to Cathy, hoping that Cathy will understand that Alice would only provide such
a hint if she wanted Cathy to play that card, concluding that, since the card is
red, it must be a 4. In our agent model, this implicit information is identified with
the abductive explanations that agents compute when they take the perspective
of the acting agent and derive additional knowledge from it.

The final interesting feature of Hanabi comes from the fact that information
sharing is handled as a collective limited resource. The number of information
tokens available must be managed by the whole team, by spending or recovering
them, and the total number of tokens is finite.

Previous research on Hanabi-playing agents has, for the most part, adhered
to one of two approaches: reinforcement learning (RL) and rule-based agents.
In the first case, Hanabi-playing bots are trained using state-of-the-art learning
algorithms [3]. In the second case, agents play according to a set of pre-coded
rules that indicate what action to take as a function of the game history and
the current state [4,6,11]. This is the path that we adhere to in this work, since
our agent model relies on the assumption of a pre-coded strategic convention
being followed by all teammates. However, we will not go into the details of the
particular action selection clauses, since our agent model is agnostic with respect
to the specifics of the team strategy.

Interestingly, in a recent survey where software agents were paired with
human teammates, RL agents were perceived as more unreliable, difficult to
understand and overall worse teammates that rule-based agents [22]. The cur-
rent state of the art for Hanabi AI combines both RL and pre-coded rules [13].
There, the authors first perform single-agent learning, where they fix the strat-
egy to be followed by all players except one learning agent. All other members
of the team act according to the same pre-coded rules. Second, they implement
multiagent learning, where all agents perform the same policy update after every
action, if feasible (if not they fall back on a set of pre-coded rules), so the learned
policy is always maintained as common knowledge.
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3 Agent Model

In this section, we present the agent model combining Theory of Mind and
abductive reasoning for cooperation under imperfect information. This model
applies to all members in a team modelled as a multiagent system (MAS), which
we define as follows:

Definition 2. A multiagent system is a tuple 〈G,S,L,A〉 where G is a set of
agents; S is a set of global states; L is a (first-order) logical language used to
describe the domain; A is a set of agent actions.

We denote the current state of the system by s, formally specified by a set
of ground literals composed of the symbols in L. In general, agents do not have
access to all of s, but to a partial representation of it. We denote agent i’s current
view of s by si, also specified by a set of ground literals.

Although Definition 2 is very general, this work is restricted to a particular
subclass of problems, which we refer to as common expertise domains:

Definition 3. A common expertise domain corresponds to a MAS 〈G,S,L,A〉
where the following properties hold:

1. Common ontology assumption: All agents share the same complete ontol-
ogy about the domain at hand. Agents know about all the features and the
possible values that characterise a state. As a consequence, given an arbitrary
representation of a state si, any agent can deduce the subset of states Si ⊆ S
that are compatible with si.

2. Common group strategy: The group strategy is defined as a mapping Str :
S ×G → A|G| of states to the action that should be performed by every agent.
We assume that the group strategy function is known to all members of the
team.

3. Non-faulty perception: The information an agent perceives about the cur-
rent state s is true, i.e. si ⊆ s. Additionally, at every state s, agents reliably
perceive actions performed by all other agents, i.e. the tuples 〈j, aj〉, ∀j ∈ G.

The first feature of common expertise domains reflects the idea that all agents
approach the task at hand according to a consensus mainstream theory. For
instance, the evolution of species and the theory of continental drift are consensus
theories in biology and geology, uncontested in the academic world. Additionally,
because the ontology that all team members share is complete, they know the
features that states are characterised by, even if they cannot observe their values.
Hence, agents have the benefit of complete information, although they still have
to deal with imperfect information. Consequently, agents can infer which states
they could be in given their current view of the system.

The second feature entails that all agents can safely assume that everyone
else is behaving according to the same set of rules. Necessarily, the team of
agents, prior to embarking in the current task, have all agreed on what team
strategy to follow. Since we are dealing with cooperative tasks, it is reasonable
to assume that agents do not expect any gains from free-riding and deviating
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from the team strategy, since they benefit from coordinating with one another.
Agents extract knowledge from the actions performed by teammates by assuming
that they are all following the same strategy. An agent could harm the team if
they were to follow a different strategy, thus leading teammates to an erroneous
interpretation of their actions. In this paper, we do not investigate how such
a strategic convention has come to be selected. We simply assume that such
an agreement exists and that it is willingly adopted by all participants. This
assumption implies that we are not concerned with synthesising the optimal team
strategy. Learning an optimal strategy given the reasoning scheme we present
here is a task to be implemented on top of the current agent model, and it is
outside the scope of this work.

The third point in Definition 3 makes our approach squarely a knowledge-
based one, as opposed to a belief-base one, since beliefs are not guaranteed to
be true. Beyond the perception of the current state, agents also correctly sense
the actions being performed by their teammates. They will need to rely on this
knowledge for the abduction task, presented in Sect. 3.1.

The symbols in L are used to construct the logical program that every agent
operates by. For agent i, we denote their program as Ti. Ti is composed of the
following components:

– A set of atoms corresponding to i’s current view of s, i.e. si. For example, in
the Hanabi game agent Alice can see Bob’s cards, and her view would include
literals such as has card color(bob,4,blue) and has card rank(bob,4,3),
to indicate that Bob has a blue 3 in his 4th slot.

– A set of clauses of the form h :- b1, ..., bn. We classify the clauses in Ti into
the following categories:

• Domain-related clauses provide definitions about the domain. For exam-
ple:

playable(C,R) :- colour(C), rank(R), stack(C,S), S=R-1.

expresses that a card can be correctly played if the stack of the corre-
sponding colour is exactly one level below the rank of the card.

• Impossibility constraints are clauses with atom imp as their head and
whose body contains literals that cannot hold simultaneously true.
Together, the domain-related clauses and these constraints encapsulate
the ontology of the domain at hand, and are shared among all agents in
the team. For example:
imp :- has_card_colour(P,S,C1), has_card_colour(P,S,C2), C1\==C2.

states that a player cannot simultaneously hold cards of different colours
in the same slot S.

• Theory of Mind clauses, with head knows(Agent, Fact), express that
agent i knows that Agent knows that Fact holds true. We impose the
restriction that the Fact argument in the head literal must also appear
in the clause body, i.e. knows(Agent, Fact) :- ..., Fact, .... ToM
clauses are called upon when agent i switches to the perspective of agent
j. However, they play no part when, once i has adopted the perspective
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of j, i reasons from j’s perspective. That is handled by the abductive
reasoning process covered in Sect. 3.1. This restriction guarantees that i
cannot know that j knows something if i does not know about it in the
first place nor has i bothered to reason from j’s perspective. In epistemic
logic notation, this is expressed by the axiom:

∼ Kiφ →∼ KiKjφ (1)

For example:

knows(Agj , has_card_color(Agk ,S,C)) :-

has_card_color(Agk ,S,C), Agj \== Agk.

indicates (from i’s perspective) that agent Agj can see the colour of the
cards that any other agent Agk has.

• Abducible clauses, with head abducible(Fact), express all the informa-
tion that could potentially be added to i’s current perception of the envi-
ronment si to reconstruct the complete state s. These clauses are strongly
related to point 1 in Definition 3. Again, abducible clauses are shared by
all members of the team, since they all must be able to infer Si from an
arbitrary view si. For example:

abducible(has_card_colour(P,S,C1)) :-

player(P), slot(S), colour(C1), colour(C2), C2\==C1,

not has_card_colour(P,S,C2), not ~has_card_colour(P, S, C1).

indicates that a player may have a card of colour C1 only if it is not
known that they have a card of a different colour C2 at that slot, nor is
it explicitly stated that they do not have a card of colour C1.3

• Action selection clauses: a set of clauses with annotated head
action(Agent, Action) [priority(N)], where Agent is an element in
G, Action is an element in A and N is a number. Action selection clauses
indicate what action to perform given the current observation that i makes
of the environment, and hence implement the team strategy function Str.
Action selection clauses have a particular feature: they are sorted accord-
ing to the priority(N) annotation. When deciding on what action to
take, agents consider action selection rules from lowest to highest pri-
ority, as detailed in Sect. 3.3. According to the common team strategy
assumption in Definition 3, the action selection clauses are shared by all
agents. For example:

action(P, play_card(S)) [priority(N)] :-

player_turn(P), has_card_color(P, S, C),

has_card_rank (P, S, R), playable(C, R).

indicates that the agent whose turn it is to move plays a safely playable
card.

3 We distinguish strong negation (∼Fact) and negation as failure (not Fact). In epis-
temic logic notation, they are expressed as Ki[∼ φ] and ∼ Kiφ, respectively.



Combining Theory of Mind and Abductive Reasoning 303

• Abductive impossibility constraints (AICs) are a set of clauses whose head
has the annotated ground atom imp [source(abduction)]. This annota-
tion serves to distinguish it from domain-related constraints, which have
the same structure. AICs are used to integrate abductive explanations
into the agent’s program. Details about the generation and handling of
AICs are provided in Sect. 3.2. AICs are not shared across agents, as they
are the result of an internal cognitive process. For example, in the exam-
ple in Sect. 2.3 (where Alice hints “red” to Cathy), Cathy would derive
the following clause:

imp [source(abduction )] :- ~has_card_rand(cathy ,5,4).

Now that we have presented the peculiarities of the domain and the com-
ponents of the agents’ programs, we explain next how agents make use of them
when interacting. We split the exposition into three parts: (1) the abduction task
that agents are faced with upon perceiving someone’s action; (2) the refinement
and assimilation of abductive explanations into their own knowledge base; and
(3) the action selection process leveraging assimilated abductive explanations.

3.1 The Abduction Task

At the current state s, an acting agent denoted by j, operating with logic pro-
gram Tj , selects and performs action aj . Denote an observer agent by i, operating
with logic program Ti. i, upon perceiving j performing aj , seeks to infer what
knowledge j was relying upon to select it. To do so, i must switch to j’s per-
spective and not work with his own program Ti, but with the program that they
approximate j is working with at s, which we denote by Ti,j and define as:

Ti,j ={φ | Ti |= knows(j, φ)} ∪
{h :- b1, ..., bn ∈ Ti | h �= imp [source(abduction)]} (2)

The first part in Eq. (2) states that the observer i substitutes their view of the
state si by the view that they estimate j has. This view, which we denote by
si,j , is derivable from the ToM clauses. Hence, si,j corresponds to the facts that
i knows that j knows (in epistemic logic notation, KiKjφ). The second part of
Eq. (2) indicates that all the clauses in i’s program, with the exception of AICs,
are carried over when i adopts the perspective of j. This includes abducible
clauses, which are necessary to infer the subset of states that i thinks that j
believes to be possible, which we denote by Si,j .

Note that in this work we are assuming that ToM clauses are preserved when
i switches over to j’s perspective. However, this observation is not consequential
to this work, because we only consider first-order Theory of Mind. The observer
i only invokes ToM clauses when switching from Ti to Ti,j . Nonetheless, the
switching of perspective can be extended to an arbitrary level of recursion:

Ti,j,...,k,l ={φ | Ti,j,...,k |= knows(l, φ)} ∪
{h:-b1, ..., bn ∈ Ti,j,...,k | h �= ic [source(abduction]} (3)
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For example, i could engage in second-order ToM by simulating the view that
they know that j knows that k knows, i.e. Ti,j,k. In particular, it may be the
case that k = i (Ti,j,i), meaning that i tries to see the world as j thinks that i is
perceiving it. To generate Ti,j,k, then, agent i would need to invoke ToM clauses
from Ti,j , and hence possibly assume that j is operating with the same ToM
clauses as they are. Nevertheless, for the scope of this paper, it is not necessary
to make such an assumption, as we do not go any further than first-order ToM.

Back to the main track of this work, the switch from program Ti to Ti,j

corresponds to the observer agent i engaging in first-order Theory of Mind and
adopting the perspective of the acting agent j. In our view, this corresponds more
closely to ST than to TT (see Sect. 2.1), as i is simulating what the perception
of the environment is from the point of view of j. Ti,j is the approximation that
agent i builds of Tj . In general, Ti,j is an incomplete version of Tj , as there are
usually some parts of sj that are inaccessible to i (i.e. the atoms in sj\si) and
hence, according to Eq. (1), not present in Ti,j .

Ti,j , then, is the logic program that i has to work with in order to infer the
knowledge that could have led j to select action aj . In other words, in order
to generate abductive explanations for observation Q = action(j, aj), i has to
adopt logic program Ti,j . However, we are still missing the set of abducible atoms
to build a complete ALP theory. The set of abducibles must include all ground
literals that could complement the facts in si,j to reconstruct s. We denote them
by Ai,j and define them as:

Ai,j = {α | Ti,j |= abducible(α)} (4)

Again, Eq. (4) can be generalised if the observer agent is engaging in higher-order
ToM:

Ai,j,...,k,l = {α | Ti,j,...,k,l |= abducible(α)} (5)

In summary, upon getting notice of action aj , the observer agent i simulates
being in the position of the acting agent j and computes abductive explanations
for observation Q = action(j, aj) with ALP theory 〈Ti,j , Ai,j〉. Abductive expla-
nations, then, can be computed with the abductive extensions of SLD(NF). The
output is a set of explanations {Φ1, ..., Φm}, each corresponding to a subset of
ground literals from Ai,j , Φl = {φl1, ..., φlnl

}. Next, we present how such expla-
nations are integrated back into the observer knowledge base, and how they are
updated.

3.2 Assimilation of Abductive Explanations

The abductive explanations obtained in the previous step, {Φ1, ..., Φm} with
Φl = {φl1, ..., φlnl

}, ∀l ∈ [1,m], are useful if the observer i can utilise them
for their own decision-making. Hence, the abductive explanations have to be
integrated into i’s original program Ti. For this to happen, some post-processing
is necessary. The post-processing of abductive explanations consists of two steps:
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1. For every abductive explanation Φl, uninformative atoms are removed:

Φ′
l = {φli | φli ∈ Φl and Ti �|= φli}

Only the informative facts of an explanation are kept, i.e. those that could
not be derived from the original knowledge base. If after the removal of unin-
formative atoms Φ′

l is empty, the explanation is dropped altogether.
2. For every (informative) abductive explanation, check that it is not impossible

according to i’s current knowledge base:

Ti ∪ Φ′
l �|= imp

Explanations that are found to be impossible are removed. This is the point
where our choice to adopt the consistency view of abductive explanations
comes across. Here, the impossibility constraints against which consistency is
checked include all the clauses in Ti with head imp: both domain-related and
abductive constraints derived from previous abductive reasoning cycles.

Note that step 1 is not strictly necessary, as (im)possible explanations will remain
so even after uninformative facts have been removed. However, it helps to keep
explanations less redundant and more compact.

Once the abductive explanations have been refined into {Φ′
1, ..., Φ

′
m′}, with

Φ′
l = {φ′

l1, ..., φ
′
ln′

l
}, ∀l ∈ [1,m′], they are all integrated into a single logical

formula in disjunctive normal form (DNF):

m′∨

l=1

⎛

⎝
n′
l∧

k=1

φ′
lk

⎞

⎠ (6)

Note that, for this initial proposal of our agent model, all (refined) abductive
explanations are considered, i.e. it is not the case that one is selected as the most
likely, nor are the various explanations weighed according to some numerical
probability. Such extensions are left for future work.

In order to integrate the DNF in Eq. (6) into Ti as a clause, one should
consider that, as the DNF must hold, its negation must be false. Hence, the
negation of the DNF can be used to construct an additional abductive impossi-
bility constraint clause to be appended to Ti:

imp [source(abduction )] :-

(~φ′
11 | ... | ~φ′

1n′
1
) & ... & (~φ′

m1 | ... | ~φ′
mn′

m
).

The [source(abduction)] annotation indicates that this clause is not domain-
related but derived from an internal cognitive process, and hence not shared
by other agents. For the time being, the observer agent i does not keep track of
what AICs are derived from whose actions. However, a possible extension to this
work could, for example, consider the level of trust among agents. The observer
i could be willing to integrate an abductive explanation into Ti depending on
whether the level of trust on the acting agent j is above some given threshold.
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In summary, when i has concluded, through abductive reasoning, that j
knows about some fact about the state of the system, i immediately incorporates
it (as an annotated AIC clause). In epistemic logic notation, this is expressed by
the axiom:

KiKjφ → Kiφ (7)

Note that this is the logical equivalent to Eq. (1).
Abductive explanations and their corresponding AICs need to be updated

as the observer agent gains access to information that was previously hidden.
For example, in the Hanabi game, a player learns about the identity of a card
they were holding the moment they play or discard it. More generally, denote
an incoming piece of information by ψ, and the DNF derived from any previous
abduction process by δ, with the structure of Eq. (6). If the addition of ψ to
the agent’s program Ti makes δ derivable (Ti ∪ ψ |= δ), the whole explanation is
rendered uninformative. Therefore, the associated AIC clause has to be removed
from Ti.

3.3 Action Selection

The whole purpose of the abductive reasoning task outlined in Sects. 3.1 and 3.2
is to provide the observer agent with new information that may be useful during
their decision-making; that is, when the observer agent i becomes the acting
agent. In this section, we propose a default action selection procedure that takes
into account abductive explanations. However, as stated in Sect. 1, this is not
the main focus of this work and this default proposal is susceptible of further
investigation.

Recall that action selection for any member of the team happens accord-
ing to the action selection rules, a set of clauses ordered by priority with head
action(Agent, Action) and whose body states the conditions that must hold in
order for Action to be selected by Agent. Consider the subset of action selection
clauses that apply to i, i.e. action(i, Action). Because of imperfect information,
it may be the case that the actor does not possess the necessary knowledge to prove
the body of an action selection clause true given their current perception of the
state si. Rather, the agent should evaluate whether the action is to be selected in
the set of states Si that are compatible with their current view si.

Depending on the domain at hand, the size of Si may be prohibitively large
to store, update, and loop over when evaluating action selection clauses. Instead
of explicitly storing Si and updating it during the abductive reasoning task, we
need to consider only the features of a state that are relevant for selecting an
action. The pseudocode for this computation appears in Algorithm 1.

Algorithm 1 loops over the action selection clauses that apply to the now
actor i in ascending order of priority. For the clause under examination, all the
Skolemised forms of the rule body are generated (line 2). Skolemised forms are
computed as follows: whenever a subgoal of the rule body cannot be proven by
the current knowledge base, its free variables are substituted by Skolem con-
stants, i.e. constants that have not been previously encountered. This step is
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Algorithm 1: Action selection query
Data: Set of action selection clauses for i, action(i, a) [priority(n)] :- βa

Result: A selected action ai, or None
1 foreach action selection clause in ascending order of priority do

2 {βsk} ← Skolemised forms of the rule body βa;

3 foreach Skolemised form βsk
j ∈ {βsk} do

4 {βtot} ← instances of βsk
j that are compatible with the imp clauses;

5 if Ti ∪ βtot
i |= action(ai) for all βtot

i ∈ {βtot} then return ai

6 end

7 end
8 return None

analogous to the computation of abductive explanations, where even if a sub-
goal cannot be proven, it may be added to the abductive explanation being
constructed, as long as some instance of it is in the set of abducible atoms A.
In general, for every action selection rule, several Skolemised forms of the rule
body are derived.

Then, for every Skolemised form, its possible “total” instances are computed
(line 4). This means that in the Skolemised form, Skolem constants have to
be removed. Every time a literal is encountered that contains a Skolem con-
stant, it is substituted by an abducible atom that matches with it (by treating
Skolem constants as free variables). Abducible ground literals derived from Ai,
see Eq. (5), are precisely the facts that may complement si to build a complete
representation of s. However, note that we need only complement si to the extent
that it contains enough information to query the action selection clause under
examination. Hence, Algorithm 1 does not generate complete descriptions of the
possible states in Si, but only the strictly necessary portions.

Not all potential instances of a Skolemised form are kept for further querying.
Only those that are compatible with the impossibility constraints in Ti, i.e.
Ti ∪ βtot

i �|= imp. This includes both domain-related and, more importantly,
abductive impossibility constraints. It is at this step that the abductive reasoning
that the agent has previously engaged in pays off. The expectation is that the
set of possible instances of a Skolemised form, {βtot}, is smaller if AICs are
considered, compared to the potential instances that would be compatible with
domain-related constraints alone.

Finally, if every possible instance of the same Skolemised form leads to the
same action being selected, that action is returned (line 5). This approach advo-
cates for a totally safe action selection mechanism, as, for the time being, no
quantification of uncertainty nor thresholds over such uncertainty are consid-
ered.

Although we only consider the action selection procedure of Algorithm 1
in this paper, further work could extend the possibilities of an agent’s action
selection procedure based on their personality. For example, an agent may have
a preference for action selection clauses that return an action given only their
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Fig. 2. Results for the score (left) and communication efficiency (right) for our agent
model applied to the Hanabi domain, for teams of 2 to 5 players. Every box contains
data on 500 runs with different random seeds. The dashed line on the efficiency plot
indicates the reference of 2 hints per score point.

current knowledge, before considering additional inaccessible knowledge as in
Algorithm 1.

4 Results and Discussion

We have implemented the agent model presented in Sect. 3 for the Hanabi domain
in Jason [5], an agent-oriented programming language based on the BDI archi-
tecture.4 Jason allows for literal annotation (such as imp [source(abduction)]
for AIC clauses) and custom Knowledge Query and Manipulation Language
(KQML) performatives for agent communication, which we use to implement
a specialised publicAction performative for agents to publicly announce their
selected actions. The abduction task is performed by a meta-interpreter that
does not fail unproven subgoals, but adds them to the abductive explanation
under construction as long as they unify with an abducible atom.

As for the strategy being followed by the team, Hanabi has a vibrant commu-
nity of online players who have gathered a set of “conventions” to follow during
game play.5 We have taken inspiration from these to design our action selection
rules. Yet, for this preliminary work we stick to a fairly simple strategy (leaving
out special moves such as “prompts” and “finesses”).

We present a summary of our results in Fig. 2. We examine the performance of
our team of ToM agents in terms of two metrics. The first is the obvious absolute
team score (Sect. 4), which is used by researchers involved in Hanabi AI as the
standard indicator of performance. Our results do not match to the current state
of the art (with average scores of up to 24.6 [13]). However, it should be noted

4 https://github.com/nmontesg/hanabdi.
5 https://hanabi.github.io/.

https://github.com/nmontesg/hanabdi
https://hanabi.github.io/
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that the work we present here is not concerned with the computation of an
optimal playing policy, instead our concern is to provide a domain-independent
agent model for cooperative domains. Predictably, the strategic conventions we
have encoded can be fine-tuned and, potentially, optimised for the cognitive
machinery our agents are endowed with.

The second performance metric we use is the communication efficiency, which
we define as the ratio between the final score obtained and the number of hints
provided throughout the game. This metric provides an indication of how effec-
tive is the team at converting exchanged information (hints) into utility (score
points). To the best of the authors’ knowledge, this metric has not been reported
in any previous Hanabi AI work. Naively, a lower bound for communication effi-
ciency is 1

2 , as two hints are required to completely learn about a card’s identity
(colour and rank) to safely play it. Nevertheless, this is a soft bound, due to cor-
relations in colour and rank between different cards, or players being reiterated
hints on cards they already have information on to prompt them to play. Still,
our results in Sect. 4 show that, for all team sizes, the communication efficiency
falls above the 1

2 mark for over half of the games. Just as the team strategy
can be potentially optimised for the absolute score, it can also be automatically
fine-tuned for the communication efficiency.

5 Conclusions

In this work, we have presented a innovative agent model combining Theory of
Mind and abductive reasoning for cooperation. In our framework, agents are
able to understand their peers’ motivations and hence enlarge their own imper-
fect information on the state of the environment. This model has been proven
successful for the cooperative game of Hanabi, which offers an excellent test-bed
to assess the performance of techniques for modelling others for teamwork.

Future work around this preliminary agent model should look into its gener-
ality (how far can the assumptions in Definition 3 be relaxed while keeping the
model sound); the optimisation of the team strategy given the proposed reason-
ing scheme; and its extension for ad hoc teamwork, where agents autonomously
tune their strategy to coordinate with previously unknown peers. This would
require to relax the common group strategy assumption of the common expertise
domains we have defined in this work, and adapt the agent model accordingly,
possibly by incorporating other techniques from the goal and intention recogni-
tion literature.
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Abstract. This paper introduces a modular architecture for integrating
norms in autonomous agents and multi-agent systems. As the interac-
tions between norms and agents can be complex, this architecture utilizes
multiple programmable components to model concepts such as adop-
tion of personal and/or collective norms (possibly conflicting), interpre-
tation and qualification as mappings between social and normative con-
texts, intentionally (non-)compliant behaviors, and resolution of conflicts
between norms and desires (or other norms). The architecture revolves
around normative advisors, that act as the bridge between intentional
agents and the institutional reality. As a technical contribution, a run-
ning implementation of the architecture is presented based on the ASC2
(AgentScript) BDI framework and eFLINT normative reasoner.

1 Introduction

Norms are widely used to represent ethical, legal and social aspects of multi-agent
systems, and normative multi-agent systems are deemed to provide a powerful
model for norm-governed complex cyber-infrastructural systems that include
social agents (humans, organizations, or other bodies), infrastructural systems,
norms and their interactions [11]. At least, designing computational agents that
reason with norms—technical instances of normative agents—requires having a
suitable computational model for reasoning with norms. This is a challenging
task because norms are more than a set of formal rules extracted from a legisla-
tive text: they emerge from multiple sources with different degrees of priority,
require interpretation before being encoded, and qualification to be applied to
a social context. Furthermore, they continuously adapt, both in expression and
in application [3]. This entails that there are many challenges in modelling the
interactions between agents and norms. At content level, multiple normative
sources may be concurrently relevant, and/or multiple interpretations of the
same normative sources may be available (e.g. retrieved from previous cases),
and these may be possibly conflicting. Intuitively, enabling to maintain those in a
modular fashion is a suitable, and, even necessary precondition for update/adap-
tation actions, where norms can be changed on the fly, and agents may decide
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at run-time e.g. to change the relative priority between normative components,
requiring some explicit meta-reasoning about those norms. At method level, there
is still an ongoing debate on what is the most adequate representation model
for norms, and on methods for normative reasoning (eg. synthesizing norms [24],
managing conflicts [16]). Allowing the recourse to external tools, and support-
ing programmability of the coordination level, greatly empowers modelers/pro-
grammers/designers to test and compare different choices. Finally, at functional
level, most of the knowledge instilled in norms concerns a whole social system,
but only part of the system is contingently relevant to the agent. Enabling the
system design so that it distributes and localizes the inferential load at best (and
at need) externally from the decision-making seems the most efficient option.

Contribution. Based on these requirements, this work proposes an abstract archi-
tecture that encapsulates norms—encoded in terms of normative relationships
as in Hohfeld’s framework [20]—in a MAS. The architecture centers around nor-
mative advisors that can be utilized by (other) agents in the MAS as a sort of
council about the institutional state of affairs and normative relations between
agents, highlighting and enabling the mapping between the social and institu-
tional views of the environment. Agents may resort to personal or to collective
advisors, depending on the decentralization constraints set up by the designer. As
a technical contribution, we present a practical implementation of this architec-
ture that relies on the AgentScript BDI framework (ASC2) [23] for programming
agents, and norm specification framework eFLINT [2] for encoding norms.

Related Work. The B-DOING framework [16] explores logical relations between
belief, desire, obligation, intention, norms and goals in agents and their interac-
tions like conflicts and possible approaches to balance them in agent’s behavior.
Similarly, the BOID architecture [9,25] proposes a belief, obligation, intention
and desire architecture with a feedback loop to consider the effects of actions
before committing to them. These studies (and many others, e.g., [12,14,32])
propose extensions to the BDI architecture to add (regulative) norms as part
of the agents’ mind and to solve conflicts via pre-defined rules. The main issue
with these works is that putting all relevant normative sources (and logical con-
flict resolution rules) within the agent is typically not feasible in a real system
with complex interactions between norms, actions, and their possible effects on
different stakeholders. Consequently, in our approach we propose delegating the
normative reasoning to external components, here named normative advisors.

In [10], an approach is proposed for ethical reasoning in MAS by program-
ming ethical governors. In this approach, when an agent needs ethical advise
about certain actions, it will ask dedicated agents named evidential reasoners,
providing evidence to an arbiter agent, that in turn picks a suggestion with a
predefined strategy, and send it to the requesting agent. The concept of external
advisor agents is similar to our proposal. However, while their approach focuses
on agents only querying for suggestions when they require advise, in our approach
the normative advisors keep an explicit institutional state of the environment
and are able to notify the agent about different normative events (e.g. new duties
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Fig. 1. A sale transaction as a Petri net workflow.

or violations). The work in [21] introduces Jiminy advisors that reflect the moral
stance of an agent; their approach leans towards using these advisors for coordi-
nation purposes specifically when there are multiple agents (stakeholders) that
follow different norms and moral dilemmas may arise. Formal argumentation
methods are then used to resolve these dilemmas. In the present work, we start
from a more neutral stance towards what specific methods/approach needs to be
taken to represent norms and resolve conflicts; our aim is to discuss the design of
a more general system architecture, whilst presenting a specific implementation
of the architecture based on certain implementation decisions.

Structure of the Document. Section 2 gives background on the core components
that the proposal uses by providing some detail on the AgentScript/ASC2 and
eFLINT frameworks used for the implementation. Section 3 lays out the theoret-
ical framework for the proposed architecture, whereas Sect. 4 describes details of
its implementation. Section 5 reflects on the capabilities of our implementation,
suggests future directions, and draws connections with related work.

2 Core Components

To illustrate our approach, we will consider as a running example a marketplace
environment consisting of buyer and seller agents. This target domain can be seen
as an abstract model of many real-world domains, e.g. data market-places and
more in general data-sharing infrastructures, electronic trading infrastructures,
etc. The process model of a individual sale transaction—prototypical example
of bilateral contract—is represented as a workflow through a Petri-net in Fig. 1.
A seller offers a buyer an item for a certain price. If the buyer accepts the offer,
then the seller is expected to deliver the aforementioned item to the buyer, and
the buyer is expected to pay the seller the price agreed upon (in any order). The
workflow is a simplified representation of the normative mechanisms in place
during an actual sale transaction (cf [29]). Furthermore, it does not consider the
intentional aspects on the agents during the transaction, e.g. based on which
desires or goals the agents may be willing to engage in the transaction, as these
concepts remain external to norms.

2.1 Intentional Agents

Intentional agents are generally approached in the computational realm via the
belief-desire-intention (BDI) model [27], to specify agents acting in dynamic
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needed_item("Book1").
fair_price("Book1", 5).
have_money(10).

!init(#sale_advisor.getClass, "sale.eflint", "BuyerAdvisor").

+!init(AgentType,EFFile,Name) => #spawn_advisor(AgentType, EFFile, Name).

+offer(Item ,P) =>
#achieve("BuyerAdvisor", perform(offer(Source, Self, Item, Price)));
!consider_buying(Source, Item ,Price).

+!consider_buying(Seller, I, P) :
needed_item(I) && fair_price(I, FP) && P =< FP && have_money(M) && M >= P =>

#tell(Seller, accept(I, P));
+pending(accept(I, P)).

+acknowledge(accept(I, P)) : pending(accept(I, P)) =>
-pending(accept(I, P));
#achieve("BuyerAdvisor", perform(accept(Self, Buyer, I, P))).

+duty_to_deliver(Seller,Buyer,I) : Source == "BuyerAdvisor" && Buyer == Self =>
+expected_delivery(Seller,I).

+delivery(Sender, Item) : expected_delivery(Sender, Item) =>
-expected_delivery(Sender, Item);
#achieve("BuyerAdvisor", perform(deliver(Sender, Self, Item)).

+duty_to_pay(Buyer, Seller, P) : Source == "BuyerAdvisor" && Buyer == Self =>
!pay(Seller, P).

+!pay(Seller, P) : have_money(M) && M >= P =>
#pay(Seller, P);
#achieve("BuyerAdvisor", perform(pay(Self, Seller, P)).

+!pay(Seller, P) => ... ALTERNATE APPROACH TO PAYMENT ...

Listing 1: Buyer agent script as an ASC2 program

environments with rational behavior. The BDI model refers to three human
mental attitudes [8]: beliefs are the factual and inferential knowledge of the
agent about itself and its environment; intentions are the courses of action the
agent has committed to; desires, in their simplest form, are objectives the agent
wants to accomplish. In practice, BDI agents also include concepts of goals and
plans. Goals are concrete desires, plans are abstract specifications for achieving
a goal, and intentions then become commitments towards plans. Multiple pro-
gramming languages and frameworks have been introduced to operationalize the
BDI model, such as AgentSpeak(L)/Jason [7,26], 3APL/2APL [13], Astra [15]
and AgentScript/ASC2 [23].

AgentScript/ASC2 Agent Framework. ASC2 is an agent-based program-
ming framework and language with a syntax very close to AgentSpeak(L), con-
sisting of initial beliefs and goals, and plans. Initial beliefs are a set of Prolog-
like facts or rules that define the first beliefs the agent has, and, initial goals
designate the first intentions to which the agent commits. Plans are poten-
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tially non-grounded reactive rules in the form of E : C => A, where E is the
head of the plan which consists of a trigger and a predicate, the trigger can
be one of +!,-!,+,-,+? respectively used for achievement goals, failure (of)
goals, belief-updates (assertion, retraction) and test goals. The expression C is
the context condition that can be any valid Prolog expression, and A is the body
of the plan that consists of a series of steps that can include belief-updates
(+belief,-belief), sub-goal adoption (!goal), primitive actions (#action)
which may be any arbitrary callable entity on the class path, variable assign-
ments, and control flow structures (loops and conditionals). It is said that a plan
is relevant for an event G iff the event-type of G matches with the trigger and
the content of G matches with the predicate of E. Furthermore, a relevant plan
is applicable, iff C is a logical consequence of agent’s belief-base. When an agent
receives an event, as a reaction, after finding the relevant, and then applicable
plans, it will use a selection function to choose a plan to execute as an intention.
This process is typically called planning in BDI agents.

The communications interface of the agents is based on speech act prefor-
matives and implemented with actions like #achieve which relays an achieve-
ment goal event, #tell and #untell which relay belief-update events, and
#ask/#respond which can be used between agents as synchronous communi-
cation with test goal events. As an example of an AgentScript program and
continuing with the example, Listing 1, presents the script of a buyer agent.
The initial beliefs (lines 1–3), initial goals (line 5), and plan rules (line 7 and
onwards) are the components of the script. The script is further explained in
Sect. 4.2.

2.2 Norms and Normative (Multi-agent) Systems

Following Gibbs, norms are “a collective evaluation of behavior in terms of what
it ought to be; a collective expectation as to what behavior will be; and/or par-
ticular reactions to behavior, including attempts to apply sanctions or otherwise
induce a particular kind of conduct” [19]. This definition is relevant to our pur-
poses as it gives primacy to action (rather than to situations). In the context of
multi-agent systems, and even more of in MAS, an action-centered approach is
intuitively more suitable, as actions are the only means agents have to intervene
in the environment, resulting in normative consequences.

Categories of Norms. Norms are traditionally distinguished between regulative
and constitutive norms [5,28,30]. Regulative norms regulate behavior existing
independently of norms, and are generally expressed in terms of permissions,
obligations and, prohibitions (e.g. traffic regulations). Constitutive norms deter-
mine that some entity (e.g. an object, a situation, an agent, a behaviour) “counts
as” something else, creating a new institutional entity that does not exist inde-
pendently of these norms (for example, money as a legal means of payment).
The concept of institutional power is particularly relevant in the context of con-
stitutive norms, as it is used to ascribe institutional meaning to performances
(e.g. raising a hand counts as making a bid during an auction). A conceptual
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framework that contains both deontic and potestative dimensions is the one pro-
posed by Hohfeld [20], whereas deontic logics, although much more studied in
normative multi-agent systems [17,18], by definition focuses on regulative norms.

Normative Systems. The term normative system can be used for a system of
norms, as well as for multi-agent system guided by norms. In our work we focus
on the latter. We apply the so-called normchange definition of normative MAS
system by Boella et al. [6]: “a multi-agent system together with normative sys-
tems in which agents on the one hand can decide whether to follow the explicitly
represented norms, and on the other the normative systems specify how and in
which extent the agents can modify the norms”. This definition does not assume
any particular inner workings of the agents except that they should be able to
somehow decide whether to follow the norms or not and they should be able to
modify them. Furthermore, there is no assumption about the representation of
the norms, except that they should be explicit (i.e. a ‘strong’ interpretation of
the norms [4]) and modifiable.

The eFLINT Norm Language. The eFLINT language is a DSL designed to
support the specification of (interpretations of) norms from a variety of sources
(laws, regulations, contracts, system-level policies such as access control policies,
etc.) [1,2]. The language is based on normative relations proposed by Hohfeld
[20]. The type declarations introduce types of facts, acts, duties and events, that
together define a transition system in which states—sets of facts—transition
according to the effects of the specified actions and events. The transitions may
output violations if triggered by an action with unfulfilled preconditions (e.g.
only sellers can make offers) or if any duties are violated in the resulting state.1

Listing 2 shows an eFLINT specification for our running example. The Actor
and Recipient clauses and Holder and Claimant clauses of act- and duty-type
definitions establish constructs mapping to Hohfeldian power-liability and duty-
claim relationships. The Creates and Terminates clauses describe the effects
of actions when performed, enabling reasoning over dynamically unfolding sce-
narios. An instance of offer can be performed without any pre-conditions and
it holds when there is a seller instance. The act accept is only available after
an offer: accepting a non-existing offer is considered a violation of the power
to accept offers. Acceptance of an offer creates the two act instances pay and
deliver which can be performed in any order. The duties express that the pay
and deliver actions are expected to be performed by their respective holder
after they are created as part of the accept action. As described in Listing 2,
no violation conditions are associated with the duties.

1 In eFLINT, actions capture a permission dimension as well as a power dimension,
following from the design choice that a violation is raised when an action with
unfulfilled preconditions is performed. Other computational frameworks propose a
clear-cut separation between deontic and potestative categories [31].
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// fact definitions
Fact buyer
Fact seller
Fact item
Fact price Identified by Int

// act definitions
Act offer Actor seller Recipient buyer

Related to item, price
Holds when seller
Creates

accept(buyer, seller, item, price)

Act accept Actor buyer Recipient seller
Related to item, price
Creates

pay(buyer, seller, price),
duty_to_pay(buyer, seller, price),
deliver(seller, buyer, item),
duty_to_deliver(seller, buyer, item)

Act pay Actor buyer Recipient seller
Related to price
Terminates

duty_to_pay(buyer, seller, price)

Act deliver Actor seller Recipient buyer
Related to item
Terminates

duty_to_deliver(seller, buyer, item)

// duty definitions
Duty duty_to_pay

Holder buyer
Claimant seller
Related to price

Duty duty_to_deliver
Holder seller
Claimant buyer
Related to item

Listing 2: eFLINT Specification for Sale Transaction norms

3 Normative MAS via Normative Advisors

Our approach is based on the introduction of normative advisors that enable
intentional agents to communicate with external norm reasoners. We assume
the parent agent is a BDI agent, i.e. it has the capabilities to reason with beliefs,
desires and intentions. The tasks of maintaining an institutional perspective
(state) and reasoning about specific sets of norms is delegated to the advisors.
The advisors are initialized with a particular norm specification and maintain
an institutional perspective on the environment, which is continuously updated
at run-time. A normative advisor is therefore viewed as maintaining (inferential
mechanisms necessary to operationalize) a norm instance. Both regulative and
constitutive norms are taken into account. The normative (institutional) state
of the world is stored in a way that can both be queried and updated at any
time. An update can generate normative events that the agent is to be notified
about. Through the normative advisors, a social agent acquires various capabil-
ities to interact with norms. As a consequence, norms interactions become pro-
grammable parts of the agent, realizing our goal of using norms for behavioural
coordination between agents and for specifying qualification processes between
social and normative contexts. With such an infrastructure, an agent becomes:

– able to adopt or drop any number of norm sources as norm instances;
– able to qualify observations about their environment as normatively relevant

updates, and conversely to respond to normative events by acting accordingly
in their environment;

– able to query, update, revert, reset a normative state of any norm instance;
– able to receive and process or ignore normative events (e.g. new claims)
– able to follow or violate normative conclusions (e.g. obligations) or query

responses (e.g. permissions and prohibitions)
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– able to modify any of the above abilities at run-time.

Normative reasoning occurs based on these inputs—triggered by queries or
updates— with all conclusions made available as internal events to the advisor.
Note that an agent can have multiple advisors for different (instances of) sets of
norms. An agent is free to qualify observations about events in the environment,
other agents’ actions, its own beliefs and actions—or any combinations of these—
and report the resulting observations to the relevant normative advisors. In other
words, this infrastructure makes possible a rich, recursive interaction between
behavioral decision-making and normative reasoning. The proposed model sup-
ports a number of programmable concepts applicable to different functions:

1. Perception: which internal/external events are received and processed or oth-
erwise ignored;

2. Reaction and planning : what are the relevant reactions to an event, which
reactions are applicable in the current context and which reaction is the most
preferred one to execute;

3. Norm adoption: when and how to adopt or drop a set of norms;
4. Qualification of social context : how an event or query is qualified, i.e. which

is its normative counterpart for each norm instance;
5. Querying : when and how the normative state of an instance needs to be

queried (e.g. for compliance checking);
6. Reporting : what events/updates are reported to which norm instances;
7. State change: how a normative event changes a norm instance’s state;
8. Event generation: what normative events are created as the result of an

instance’s state update;
9. Qualification of normative concepts: which events should be raised as the

result of what normative conclusions reported by a norm instance.

To concretize the proposed approach, we will discuss at higher-level why
it is feasible to implement a system meeting these requirements by utilizing
an AgentSpeak(L)-like BDI framework (AgentScript/ASC2, in particular) and
a norm reasoner that can store an updatable and queryable normative state,
generating events on updates (eFLINT, in particular). Perception, planning and
execution are basic core functions of reactive BDI agents as those specified via
AgentSpeak(L), i.e. when an event is received, the agent performs a sequence
of actions in reaction. Qualification can be encoded as part of planning: what
reaction is selected for an event (or a series of events) in any context signifies
how that event is qualified. Norm adoption, querying and reporting intuitively
become part of this reaction. Note however that querying can also be part of
planning, as a query response may affect what reactions are applicable. State
changes happen internally to the norm instance as the result of reporting, and
then normative events are generated, which are in turn qualified as events by
the agent, creating a full circle. Finally, if both the BDI framework and norm
framework allow for run-time changes, as is the case with ASC2 and eFLINT,
then all aspects are changeable and dynamic.
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Fig. 2. The architecture of normative advisors.

4 Implementation

This section describes an architecture for advisors and discusses how the ASC2
BDI framework and the eFLINT normative reasoning framework are used to
implement the proposed architecture. The eFLINT framework is used to imple-
ment the norm base. The advisors as well as the intentional agents that employ
them are defined in ASC2. Our implementation benefits from the modularity
provided by ASC2, allowing easy replacement of different parts of the agent [23]
and the Java API provided by eFLINT.

4.1 Normative Advisor Architecture and Decision-Making Cycle

Figure 2 provides an overview of the architecture of a normative advisor, inspired
by the BDI architecture of Jason [7]. A normative advisor can be seen as a BDI
agent in which the (typically Prolog-like) belief-base is replaced by the norm
reasoner, thus, the reasoning of the agent is replaced with normative reasoning.
Apart from the differences between a general-purpose reasoner (e.g. Prolog) and
a norm reasoner (e.g. eFLINT), the main architectural differences of an advisor
with a typical BDI agents are: (1) the belief-base (in this case, the norm-base)
of the agent can generate more than just belief-update (or fact-update) events,
it may now also raise duty events, act (enabled/disabled) events, and violation
events upon which the agent can react according to its plan library; (2) from the
execution context of a plan alongside fact-update actions (+fact and -fact),
there can now be act-perform actions (#perform(act)). These differences arise
from the fact that unlike a general-purpose reasoner like Prolog that typically
uses backward-chaining to infer facts based on queries, the eFLINT framework
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also produces information in a forward-chaining manner, thus generating more
events for the advisor to process. Despite these modifications, the core of the
AgentScript DSL, and the capabilities of the framework, like goal adoption,
communication, and performing arbitrary primitive actions, remain the same as
with ’traditional’ intentional agents.

Decision-Making Cycle. When an advisor receives an external or internal event,
and if it is a fact-update, then it will be sent to the norm base. If the event is an
achievement or test event, it will be sent to the event queue. Events are taken
from the event queue by an event-selection function, at which moment the head
of the event is matched with the plan library to find all the relevant plans. The
context conditions of relevant plans are checked against the normative state of
the norm base in order to select only applicable plans. Then, a plan selection
function selects one applicable plan and turns the (execution of that) plan into an
intention, and, consequently, an intention selection function chooses intentions
for execution. If the body of the plan includes any fact-update actions (+fact
and -fact) or act performance (#perform(act)), then these are sent to the
norm base. Whenever there is any update committed to the norm base, there
could be multiple new events or new facts derived by the normative reasoner
that are sent back to the advisor as internal events.

These new capabilities are also the result of replacing the Prolog reasoning
engine with the eFLINT reasoner. Any Boolean expressions in the DSL can now
refer to pre-defined predicates corresponding to eFLINT keywords for querying
the norm base: holds is used to check if a fact (or act, duty, etc.) holds, enabled
whether the preconditions of an act hold, and violated checks if a duty was
violated. A comprehensive list of possible interactions with the eFLINT norm
reasoner is given in the next subsection.

4.2 eFLINT Norm Base Implementation

The eFLINT language is implemented in the form of a reference interpreter in
Haskell2. As discussed in [2], the interpreter can run in a ‘server mode’ in which
it listens to requests on a certain port and produces responses according to some
API. A layer has been developed on top of the server to maintain multiple server
instances as is need for supporting multiple advisors with a norm base each. An
eFLINT server instance can receive the following requests:

– Fact creation/termination/obfuscation. A created fact (instances of fact-
types, act-types, duty-types and event-types are referred to as facts) is set
to ‘true’ in the knowledge base, a terminated fact to ‘false’ and any existing
truth-assignment is removed when a fact is obfuscated.

– Triggering an action or event. Instances of act-types and event-types can
be triggered, resulting in the effects of the action or event manifesting on
the knowledge base (#perform in Listing 3). These effects create, terminate,

2 Publicly available online https://gitlab.com/eflint/haskell-implementation.

https://gitlab.com/eflint/haskell-implementation
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and/or obfuscate certain facts, as listed in the corresponding (post-condition)
clauses of the type declaration of the triggered action/event. Multiple action-
s/events can be triggered at once because of the synchronization mechanism
discussion in Sect. 5.

– A query in the form of a Boolean expression. The expression is evaluated
in the context of the current knowledge base and can be used to establish
whether a certain fact holds true in the current knowledge base, whether an
action is enabled (holds in Listing 3) or whether a duty is violated, etc.

– The submission of a new type declaration or the extension of an existing type.
Both have the effect of modifying the norms in the sense that the underlying
transition system is modified.

Every request can be associated with additional context information in the form
of truth-assignment to facts that override any conflicting assignments in the cur-
rent knowledge base (e.g. the current UNIX time). This mechanism can also be
used to provide truth-assignment for ‘open types’—types for which the closed
world assumption does not hold. An eFLINT instance generally operates syn-
chronously, i.e. will only send out information in responses to requests3, updat-
ing the sender upon the following:

– Any created, terminated, and/or obfuscated facts. Note that this includes
changes to facts that are (or were previously) derived from other facts and in
this sense were indirectly modified by the incoming request

– Any changes to normative positions regarding duties, i.e. whether a duty is
no longer held by an actor or whether a duty is now held by an actor (e.g.
-duty and +duty in Listing 3). Violated duties are also reported as such.

– Any changes to normative positions regarding powers, i.e. which actions
became (or are no longer) enabled. If the incoming request was triggering
one or more actions that were not enabled, the effects of the actions still
manifest, but the violations are reported.

– In response to a query, the reasoner responds with the result of the query
(state is unchanged).

– If the incoming request requires the evaluation of a fact for which no truth-
assignment is given and which is an instance of an open type, then an excep-
tion is raised and reported to the sender of the request. Evaluation is inter-
rupted and the state remains unchanged.4

All changes to facts’ truth-assignment, normative positions and violations reg-
ister as internal events in the normative advisor (as shown by Listing 3), which
will process and possibly report them according to its script.

4.3 Spawning and Interacting with Advisors

Scripts of normative advisors (written in AgentScript, the ASC2 DSL) run on
top of the advisor architecture and give the programmer access to the norm
3 A clock event can be used to receive synchronous updates periodically.
4 The exception can be used by the parent of the advisor to acquire the missing

information, e.g. from another agent in the MAS.
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+?permitted(A) : enabled(A) => #respond(true).
+?permitted(A) => #respond(false).

+!perform(A) : enabled(A) => #perform(A).
+!perform(A) => #tell(Parent, failed(A)).

+duty(D) => #tell(Parent, D).
-duty(D) => #untell(Parent, D).

Listing 3: AgentScript specification of a normative advisor.

reasoner, both providing its input in the form of queries and updates and react-
ing to the normative events the reasoner generates. In such sense, advisors func-
tionally act as “bridges” or chain of transmission between institutional and social
realms. Listing 3 shows a basic script for an advisor in our running example. The
advisor has four plans related to acts and two related to duties. The synchronous
query +?permitted receives an act and responds with true if the given act is
“permitted” according to the underlying norm reasoner—in the case of eFLINT
“enabled”—and false otherwise. The agent has similar plans to asynchronously
submit (or not) the performance of acts (+!perform) to the norm reasoner. The
last two plans are triggered when the internal norm reasoner creates (+duty) or
terminates (-duty) a duty. The advisor informs their parent of these changes. The
fragment demonstrates that observations about created and terminated duties are
communicated to the intentional actor (Parent, the agent that spawned the advi-
sor) and that an action A can only be performed when it is enabled according to
the norm reasoner (or fails otherwise); however this script does not demonstrate
all the features possibly delivered by the architecture such as internal events for
violations, enabled/disabled acts, and asserted/retracted facts. Absence of power
is mapped here to a prohibitions as, for example, is common in access-control sys-
tems. Other solutions may be more suitable in other contexts.

Running Example. To demonstrate spawning and interacting with a norma-
tive advisor, consider again Listing 1 in which a script for a buyer agent is
given. Together, Listings 1, 2, and 3 show the DSL code for buyer agent in the
market-place as presented on the right side of the Figure 3. The buyer agent
spawns a normative advisor, which in turn spawns an eFLINT server (norm
reasoner). The buyer has its own beliefs and desires: there is a specific item
that it needs (needed_item), it has a belief about the fair price (valuation) for
that item (fair_price) and it has a belief about how much money it possesses

Fig. 3. Market-place model
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(have_money). When this agent receives a +offer message about an item and
its price, first it interprets it as an offer act and sends it to its advisor. Next,
it adopts a goal of consider_buying that item for the price. This goal has one
plan associated to it, which checks if the agent actually needs that item, if the
price is considered a fair price and finally if the agent has enough money to
buy that item. If this is all true, it sends a accept message to the agent that
made the initial offer. Unlike before, this alone does not constitute performing
the normative accept act. Instead, it waits until it receives a +acknowledge
message from the seller before communicating acceptance to the advisor. This
extra-institutional step for the buyer to qualify the act of accept, is an example
of context-based qualifications in intentional agents.

When the accept act is submitted to the norm reasoner, the two previously
mentioned duties of duty_to_pay and duty_to_deliver are generated and sent
by the advisor to the intentional part of the Buyer. For the duty_to_deliver
the agent is the claimant (it holds the expectation of performance); it could be
that the agent asks the seller agent at this point to deliver the item, but instead,
with the implicit assumption that the Seller agent is also compliant to the same
set of norms, this agent simply adds this expectation to its belief-base and only
when it has an observation of delivery, it will remove this expectation and send
the deliver act to the advisor.

For the duty_to_pay the agent is the duty-holder (it has the obligation to
perform) and reacts to this duty by adopting the goal pay (i.e. the agent desires
to be compliant). There are two plans for this goal, the first one is straightfor-
ward and is applicable if the agent has the required amount of money ; it will
simply pay the Seller and submit this act to the advisor. However, the second
plan (not implemented) is applicable if the agent does not have enough money,
which means it needs to find alternative paths to relieve this duty, e.g. by bor-
rowing from another agent or even asking another agent to pay the seller instead.
Specifying these alternatives requires to further encode the models of either the
agents, or the norms, or both. Although relevant in practical applications, this
level of detail can be overlooked in the present context. Instead, in the next
section we will elaborate on various interesting opportunities of extending this
straightforward example and reflect on the design of advisors.

5 Discussion

This paper presents an approach to embed (constitutive and regulative) norms
into a MAS in a modular and versatile manner, enabling autonomous agents to
reason with norms.

Inline with MAS, and distributed computing in general, we consider consis-
tency as a consequence of how a system is set up rather than it being ensured
by the framework through which the system is built. This allows for a kind of
partial consistency that enables freedom for local deviations that are not harmful
to the overall system behavior. In our approach, norm adoption and qualification
is done by each individual agent, such that their view on the normative state
of the world is dependent on both their script and their (bounded) perception.
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Particularly desirable for social simulations, we can define agents that adopt and
follow the same norms but have different conclusions on the normative state of
affairs because they have had different observations. Alternatively, agents do not
have to follow the same norms but might still be able to behave in a coordinated
fashion. An example of the latter in our sales example is a buyer that believes, on
top of the existing norms of our example, that deliveries should be done before
payments. The buyer can behave according to their own norms without violating
the norms adopted by sellers, even though their norms are different.

As presented in the previous sections, our running example shows how coor-
dination between agents is achieved by adopting norms and deciding whether
to comply with norms. The example relies on the agents wanting to comply, and
therefore exhibiting coordinated behavior. In more adversarial environments,
additional enforcer agents can be added to provide (positive and negative) incen-
tives to comply. For example, our marketplace can be extended with an agent
that acts like a market authority. By responding to violations raised by their
advisor(s), the market authority can apply ex-post enforcement of norms
on the market participants. For example, a buyer refusing to pay can receive a
warning or, in the case of continued non-compliance, be banned from the market
altogether. This further demonstrates the versatility of our approach: it does not
impose a priori centralized/decentralized governance or ex-ante/ex-post enforce-
ment. Instead, this approach gives the system designer the flexibility to choose,
design and test what their system requires.

Referring to the requirements in Section 3, the notion of adopting was
illustrated in the simplest form with the buyer agent in Listing 1 with the
#spawn advisor to adopt a norm as an initial goal. The agents also have the
#despawn action to and drop an advisor. However, by adding extra mechanisms
in the agent’s script, more complex archetypes can be modelled, e.g. the agent
may be programmed to keep a score for a certain norm’s (and advisor’s) “utility”
to decide if it is an effective norm to keep adopted.

The notion of qualification—necessary to fill the gap between computa-
tional forms of law and software [3]—can be performed at various stages, thanks
to the multitude of programmable layers in our approach. An example of quali-
fication in the sale transaction is how a seller agent perceives a pay act from a
buyer agent. While represented as an act in the norms, in the social reality many
different actions can be perceived as a payment e.g., cash payment or 3rd-party
bank transaction (bank transaction) can be qualified as the act of paying. This
qualification rule could have been encoded in the script of an agent. For example,
a bank agent can update a seller that they have received new funds as part of a
completed transaction. The seller can then determine whether these funds con-
stitute a payment by a buyer for a particular item, and inform the corresponding
advisor. The same qualification can also be performed purely within norms. In
eFLINT, actions and events are synchronized such that preconditions and effects
of transitions are effectively ‘inherited’. In this way, explicit ‘counts as’ relations
between performed actions (transitions) can be specified. This is useful to a)
connect actions from various normative sources which are simultaneously appli-
cable to a system and b) connect agent-behavior to institutional counterparts
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Fact account
Placeholder sender For account
Placeholder receiver For account
Event transaction-completed Related to sender, receiver, price

Syncs with pay(sender, receiver, price) When buyer(sender) && seller(receiver)

Listing 4: An eFLINT fragment connecting a bank transaction to the pay action.

with possible normative consequences. For example, through (b) it is possible to
connect the concrete actions by (human or software) actors in a system to the
rights and obligations laid out in a contract and through (a) to connect actions
within the contract to relevant (inter)national law. Listing 4 shows for instance
how a transaction event in a banking system is connected with (qualified as) a
payment action in our running example. This means the intentional agent only
needs to indicate to the advisor that the original event transaction_completed
was triggered which will automatically be inferred as performance of a pay act.

The notions of query, update, revert and reset are already afforded by
the norm reasoner where query and update are typically provided by most norm
frameworks. However, eFLINT can be used to reason about the compliance of
historical, hypothetical, and—most relevant here—dynamically developing sce-
narios: it relies upon a declarative component that lays out the norms in the
form of a labelled transition system and an imperative component that describes
traces in this system. Similarly to belief queries and revision, the agent is able to
query and revise (assert/retract) institutional facts. But, unlike physical state,
institutional state is revertible as for example, an agent may notice that its
observation about performance of an act was not correct, or even, it wants to
infer hypothetical effects of performance of an act before reverting them.

Another important legal/normative requirement is adaptability to new
(interpretations of) norms. In our approach, such adaptation can be achieved
in multiple ways. Apart from spawning new (and despawning old) advisors to
start using the new interpretation or encoding of a set of norms, ASC2 agents are
able to modify their script at run-time to change the interactions between insti-
tutional and social reality, and this is true for both intentional agents and advi-
sors. This type of modifications are also present in other BDI frameworks such as
Jason. Secondly, an existing advisor can be instructed to update the norm source
of an instance by adding new type declarations or extending existing types. For
example, a violation condition can be dynamically added to the payment duty
by submitting the fragment Extend Duty duty_to_pay Violated when <EXPR> for
some Boolean expression, like a parameterized timeout event. These types of
modifications are particularly interesting as a future work to explore a princi-
pled approach for studying changes in the norms such as issues about consistency
between variations of norms and impact of norm changes in social simulations.

The notions of receive and process/ignore and follow/violate for nor-
mative conclusions connect directly to the concept of autonomy in the agent.
All of these are already afforded by ASC2 on the language level (or AgentS-
peak(L) in a broader sense) as receive and process/ignore, and, follow/violate
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are simply a matter of implementing the plans in the agent’s script that define
the reactions to such conclusions. Then, as the intentional agents’ language and
execution cycle are not modified in this architecture, intuitively, autonomy of
the agents is also not demoted by integration of norms, particularly in compari-
son with any BDI agent that does not integrate norms. As a future work, these
concepts—especially follow/violate—should be encoded in a more expressive and
transparent manner. This can be done, for example, by utilizing declarative con-
structs such as preferences on the language level (see [22]) to have an explicit,
yet programmable way of ordering between intentional (e.g. desires, goals) and
normative (e.g. obligations) dimensions of the agent.

6 Conclusion

In this paper we present a framework for embedding norms in a MAS. It
is generally acknowledged that agents in a MAS vastly benefit from utilizing
norms for more effective/efficient coordination. Here it was further argued that
norms, embodied as institutional views of the state of the environment, need
normative advisors to facilitate the bridging between institutional and extra-
institutional realms. The proposed architecture included using a BDI framework
and a norm reasoning framework for creating normative advisors and was shown
to address the main requirements of normative (multi-agent) systems as identi-
fied by the community. A practical running implementation of this architecture5

using mostly off-the-shelf tools was presented via a market example to further
illustrate the applicability of the approach.

As autonomous agents, norms, and their interactions deal with notions and
constructs that are hard to concretize and on which it may be hard to reach
an agreement, they may have different definitions and usages in different sci-
entific communities. Alongside the proposal of the architecture and tools in
themselves, this work assumed a high priority for flexibility as a requirement in
frameworks utilized in designing normative (multi-agent) systems by proposing
multiple programmable components varying from pure context-free and abstract
norm specifications to perception/action layer of intentional agents. These com-
ponents aimed at satisfying the higher level requirements of normative agents
and (multi-agent) systems without putting any constraint on the language or
logic used in components. In principle, the proposed infrastructure can offer a
computational ground to comparing agent embeddings of alternative solutions
for normative representation and reasoning.
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Abstract. We put forward a formal model of participatory budgeting
where projects can incur costs with respect to several different resources,
such as money, energy, or emission allowances. We generalise several well-
known mechanisms from the usual single-resource setting to this multi-
resource setting and analyse their algorithmic efficiency, the extent to
which they are immune to strategic manipulation, and the degree of
proportional representation they can guarantee. We also prove a general
impossibility theorem establishing the incompatibility of proportionality
and strategyproofness for this model.

Keywords: Computational social choice · Participatory budgeting

1 Introduction

Participatory budgeting (PB) is an important development in deliberative grass-
roots democracy now used in hundreds of cities across the globe [27]. PB allows
citizens to vote directly on the funding of projects proposed by their peers. Each
project is associated with a cost and the projects selected must not exceed a
given budget limit. Both in the theoretical literature and in current practice,
such costs are expressed in monetary terms only. In this paper, we argue for and
define a richer model of PB that can account for costs with respect to resources
other than money—such as energy, spatial demands, or allowances for the emis-
sion of certain pollutants.

Such a richer model has several advantages. As noted by Goldfrank [10] and
Rose and Omolo [24], governmental officials often need to interfere in the PB
process to determine the technical feasibility of projects and to ensure their
alignment with public policy, thereby reducing transparency. For example, a
proposed water fountain may require significant energy resources or a proposed
cultural event might breach noise regulations in a residential neighbourhood. A
multi-resource model would allow us to make such costs (in terms of energy or
noise) explicit and to take them into account when tallying the votes. As we
shall see, allowing for multiple resources also permits us to encode additional
constraints of practical interest. For instance, to specify that at most $100k (out
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of a total budget of, say, $500k) may be spent on cultural projects, we could
introduce a new resource (“culture-dollars”) with the appropriate budget limit
and assign a nonzero cost in terms of this resource to culture-related projects.

Our model is a natural generalisation of the standard single-resource model
of PB in which you vote by approving any subset of the projects on the ballot
sheet [2]. But now, we require the selected projects not to exceed the budget limit
relative to every single one of the resources (rather than just in terms of money).
Adopting the methodology of computational social choice [4], we analyse several
mechanisms for selecting projects from both an axiomatic and an algorithmic
perspective. Regarding the former, we focus on the axioms of proportionality and
strategyproofness, and show that no PB mechanism can satisfy both of them,
although there are simple mechanisms that perform reasonably well with respect
to either one of these desiderata. Regarding algorithmic concerns, we analyse the
extent to which the computational complexity of standard mechanisms increases
when we move from the single-resource to the multi-resource setting.

Related work. As is well known, PB generalises multiwinner voting [5], a con-
nection we will be using on multiple occasions.

Prior work on PB itself that is of a formal nature has been concerned with
the analysis of strategic incentives [9], axioms encoding various fairness require-
ments [1,21,28], and the computational complexity of PB [6]. Other authors
have proposed different extensions of the basic model, e.g., by considering other
types of ballots [3,17], allowing for additional constraints [12,13,22], integrating
the so-called shortlisting phase—where citizens propose projects—into the basic
model [23], modelling several PB exercises running concurrently in districts of
the same city [11], and modelling several PB exercises running in consecutive
years [16]. Note that Rey et al. [22] also considered multiple resources, although
this aspect is not central to their work. We shall discuss specific contributions
that are directly relevant to our work in the body of this paper.

We note that the design of PB mechanisms that can account for multi-
dimensional constraints, i.e., budget constraints relative to multiple resources
has previously been mentioned as an important challenge by Aziz and Shah [2]
in their survey on formal approaches to PB.

Paper outline. The remainder of this paper is organised as follows. We intro-
duce our model of multi-resource PB in Sect. 2, where we also define three mech-
anisms for this model, formulate suitable axioms of proportionality and strat-
egyproofness, and illustrate the richness of the model by showing how it can
accommodate additional constraints on feasible outcomes. We then present our
axiomatic results in Sect. 3 and our algorithmic results in Sect. 4.

2 The Model

In this section we define our model of multi-resource PB. We also define three
simple mechanisms for selecting projects that are directly inspired by famil-
iar mechanisms for single-resource PB, as well as a number of axioms encod-
ing important normative requirements for such mechanisms. Finally, we briefly
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discuss how the availability of multiple resources allows us to easily encode var-
ious additional constraints directly within our model.

2.1 Scenarios and Profiles

A PB scenario with m projects and d resources is a tuple 〈P, c, b〉, where P =
{p1, . . . , pm} is a set of projects, c = (c1, . . . , cd) is a vector of cost functions
ck : P → N ∪ {0}, and b = (b1, . . . , bd) is a vector of budget limits bk ∈ N. Here,
ck maps each project to its cost in terms of the k-th resource, while bk is the
total number of units of that resource we can spend.1 We extend the definition
of each ck to sets S ⊆ P and write ck(S) for

∑
p∈S ck(p). Such a set S ⊆ P is

feasible if c(S) � b, i.e., if ck(S) � bk for all k ∈ {1, . . . , d}, meaning that S does
not exceed our budget for any resource. Let Feas(P, c, b) = {S ⊆ P | c(S) � b}
be the set of all feasible sets in this scenario.

W.l.o.g., we shall make two assumptions: (i) every project has a nonzero cost
in terms of at least one resource (for all p ∈ P there exists a k with ck(p) > 0);
and (ii) there exists at least one feasible set of projects (i.e., Feas(P, c, b) �= ∅).

During a PB exercise, we ask a group N = {1, . . . , n} of voters to express
their preferences by indicating which of the projects in P they approve of. So a
ballot for a voter i is a set Ai ⊆ P . A profile is a vector A = (A1, . . . , An) of such
ballots, one for each voter. On the basis of such a profile of approval ballots, we
want to select a feasible set of projects to implement.

2.2 Mechanisms

A mechanism is a function F that takes as input a scenario 〈P, c, b〉 and a profile
A, and that returns a nonempty set F (〈P, c, b〉,A) ∈ Feas(P, c, b) of projects
that is feasible. The scenario is sometimes omitted when clear from context.
We now define three mechanisms for multi-resource PB, all of which are simple
generalisations of well-known mechanisms for the single-resource case. Together
they cover the main types of approaches to the design of mechanisms considered
in the PB literature to date.

Two of our mechanisms are defined in terms of so-called approval scores.
Given a profile A = (A1, . . . , An), the approval score of a project p is defined as
sA (p) = |{i ∈ N : p ∈ Ai}|. The approval score of a set S ⊆ P is the sum of the
approval scores of the projects in S, i.e. sA (S) =

∑
p∈S sA (p) =

∑
i∈N |S ∩ Ai|.

Greedy-Approval. The greedy-approval mechanism Fg goes through all
projects in order of their approval scores, with ties being broken by the index
of projects in P . Projects are added to the outcome set S one by one, with any
project that would render S infeasible being skipped.

For d = 1, this is the mechanism most commonly used in practice, though
often with certain restrictions on either the size or the cumulative cost of ballots.
In case ballots are restricted to feasible sets, the greedy-approval mechanism has
been termed knapsack voting by Goel et al. [9].
1 Note that negative costs can be appropriate as well (e.g., planting trees has “negative

environmental cost”). We shall occasionally comment on the effects of doing so.
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Max-Approval. The max-approval mechanism Fm returns a feasible set that
maximises the approval score. In case of a tie, we use lexicographic tie-breaking
based on the projects’ indices to select the final outcome. For d = 1, this mecha-
nism and some of its variants have been studied by Talmon and Faliszewski [28].

Sequential Load-Balancing. The sequential load-balancing mechanism Fl is
parametrised by a set R ⊆ {1, . . . , d} of relevant resources. It builds an outcome
set S by adding projects one at a time (in a greedy fashion), always picking a
project that maintains the feasibility of S and minimises maxk∈R yk, where each
yk is computed by a linear program specific to k and S:

min yk where yk � 1
bk

· ∑
p∈S xi,k,p for all i ∈ N with

∑
i∈N1p∈Ai

· xi,k,p = ck(p) for all p ∈ S (and xi,k,p � 0).

Intuitively, for any voter i with p ∈ Ai, the quantity xi,k,p is the part of ck(p)
shouldered by that voter. Only voters approving of p contribute to its realisation,
and the loads across projects are balanced so as to minimise the total load carried
by the worst-off voter. Then yk represents the highest proportion of bk shouldered
by any one voter. Ties between projects again are broken by project index.

Fl is inspired by voting rules for committee elections advocated by Phragmén
in the 1890s [14] and closely related to the so-called maximin support method
recently proposed by Sánchez-Férnandez et al. [25]. For PB, a similar mechanism
was also proposed by Aziz et al. [1].

2.3 Axioms

In social choice theory, an axiom is a formal property of mechanisms that encodes
certain normative desiderata. Axioms might relate to the economic efficiency of
a mechanism, various notions of fairness, or strategic incentives.

Exhaustiveness. Recall that mechanisms, by definition, return sets that are
feasible. But they need not exhaust the budget. This failure to make use of
available funds might be considered undesirable. So our first axiom is exhaus-
tiveness. A mechanism F is exhaustive if for every scenario 〈P, c, b〉 and profile A
there exists no feasible set S ∈ Feas(P, c, b) with S � F (〈P, c, b〉,A).

Proportionality. Intuitively speaking, a mechanism provides proportional rep-
resentation (or simply: is proportional) if it ensures that sufficiently large groups
of voters with sufficiently similar preferences receive adequate representation in
the outcome. A range of proportionality axioms has been proposed in the litera-
ture, both for PB itself and for the simpler model of approval-based committee
elections [1,5]. We define both a strong and weak proportionality axiom. Both
are parametrised by a nonempty set R of “relevant” resources (with respect to
which we require proportionality).

We call a mechanism F strongly R-proportional if, for every scenario 〈P, c, b〉,
profile A, and set S ⊆ P , the following two conditions together imply that all
of the projects in S get selected, i.e., that S ⊆ F (〈P, c, b〉,A):
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(i) |{i ∈ N : Ai = S}| � n · ck(S)
bk

for all k ∈ R;
(ii) ck(S ∪ F (〈P, c, b〉,A)) � bk for all k /∈ R.

Condition (i) says that there is a coalition of voters approving of precisely S
that is large enough to “deserve” the proportion of the budget bk needed to
realise S for every relevant resource k.2 Condition (ii) expresses that realising S
(in situations where it is not yet fully realised) would not exceed the budget
for any of the other resources.3 A mechanism F is weakly R-proportional if it
satisfies the above conditions for all singleton sets S = {p}. We stress that
the very narrow conditions for the applicability of the axiom make the axiom
logically particularly weak and thus normatively particularly appealing.

In the single-resource case (with d = 1 and R = {1}), weak R-proportionality
is the natural generalisation of the basic proportionality axiom formulated by
Peters [19] for multiwinner voting (except that Peters also restricts the axiom to
so-called “party-list profiles”). This proportionality axiom is particularly attrac-
tive due to its simplicity and the weak requirements it imposes. We refer the
reader to Peters [19] for a discussion of how it relates to some of the myriad of
other proportionality axioms found in the literature. Note that for the single-
resource case condition (ii) becomes vacuous.

Strategyproofness. We would like voters to vote truthfully. To make this pre-
cise, we need to make assumptions about their incentives. We assume that every
voter i has a preference relation �i, which is a reflexive and transitive binary
relation on feasible sets of projects (i.e. a preorder). We use 
i to refer to its
strict part. We further assume that �i is induced by some set S�

i ⊆ P of projects
voter i truthfully approves of. We consider two types of voters; the manner in
which �i is induced by S�

i depends on the voter’s type:

– For a given nonempty set R of relevant resources, voter i has R-Paretian
preferences in case S �i S′ holds for two sets S, S′ ∈ Feas(P, c, b) if and
only if ck(S�

i ∩ S) � ck(S�
i ∩ S′) for all k ∈ R. That is, such a voter weakly

prefers S to S′ if the cumulative cost of her truthfully approved projects in
S is at least as high as for those in S′ with respect to each relevant resource.
Thus, S 
i S′ holds if and only if ck(S�

i ∩ S) � ck(S�
i ∩ S′) for all k ∈ R and

this inequality is strict in at least one case.
– Voter i has subset preferences in case S �i S′ holds for S, S′ ∈ Feas(P, c, b)

if and only if S�
i ∩ S ⊇ S�

i ∩ S′.

2 Observe that for condition (i) it is important to count the number of voters who
vote for S exactly rather than those who vote for a (not necessarily proper) superset
of S. Indeed, weakening the conditions for the applicability of the axiom in this sense
would immediately render it impossible to satisfy in general. To see this, consider
a single-resource scenario in which we need to divide a budget of b = 2 amongst
three projects of cost 1, and in which there are two voters, with approval ballots
A1 = {p1, p2} and A2 = {p3}. Then each project forms a singleton set S for which

n · c(S)
b

= 1, while |{i ∈ N : Ai ⊇ S}| = 1. But we cannot select all three projects.
3 Note that dropping condition (ii) would render this axiom unsatisfiable in general,

since sets satisfying the first condition can exceed the budget for some k �∈ R.
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Let (A−i, S
�
i ) denote the profile A in which the ballot of voter i has been

replaced by S�
i . We can now define strategyproofness in the familiar man-

ner. A mechanism F is strategyproof against voters with either R-Paretian
or subset preferences if, for every scenario 〈P, c, b〉 and profile A, we get
F (〈P, c, b〉,A) �i F (〈P, c, b〉, (A−i, S

�
i )) for all voters i ∈ N with these pref-

erences.
Following Goel et al. [9], we furthermore define F to be approximately strate-

gyproof against voters with R-Paretian or subset preferences if, for every 〈P, c, b〉
and A, we get F (〈P, c, b〉,A) �i F (〈P, c, b〉, (A−i, S

�
i )) ∪ {p} for all i ∈ N with

these preferences and some p ∈ P . This allows for the possibility that a truthful
vote might result in a worse outcome—provided the difference is, in some sense,
bounded by the value of the most attractive project.

2.4 Modelling Additional Constraints

Recent work on PB has emphasised the importance of enriching the basic model
with the possibility of expressing additional constraints the projects selected for
funding must satisfy [2,12,13,22]. As we are going to see now, an advantage
of working with a multi-resource PB model is that it allows us to encode such
constraints directly within the basic framework.

Distributional Constraints. For many real-world PB exercises there are upper
bounds on the funding that may be spent on projects belonging to a given
category (say, culture or the environment). Suppose X ⊆ P represents a specific
category of projects, and that for a certain resource k, we want to limit the part
of bk going to projects in X to �α · bk for some α ∈ [0, 1]. To achieve this, we
can introduce a new resource k� with bk� = �α · bk and ck�(p) = 1p∈X · ck(p).

Jain et al. [13] develop a PB model centred around such distributional con-
straints, and Rey et al. [22] show how to encode them in judgment aggregation.
Patel et al. [18] study a different variant of this model, where the distributional
constraints relate to the score rather than the costs of the selected projects.

Incompatibility Constraints. Some projects might be incompatible with one
another. Suppose we want to express that we cannot realise all of the projects
in some nonempty set X ⊆ P together. To do so, we can introduce a new
resource k� with budget limit bk� = |X| − 1 and fix ck�(p) = 1p∈X for each
project p. That is, projects in X cost 1 unit and all others do not cost anything.
Then respecting the budget constraint for k� implies never accepting all of the
projects in X.

In the single-resource setting incompatibility constraints are a special case of
distributional constraints. But in general this is not the case, since two incom-
patible projects might not both have a nonzero cost for the same resource.

Dependency Constraints. Realising a given project might be possible only if
certain other projects are implemented as well. If we were to allow for negative
costs, we could easily encode such dependency constraints. Suppose we want to
express that project p� should be selected only if all projects in X ⊆ P are
selected as well. We again create a new resource k�, and set bk� = 1, ck�(p�) =
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|X| + 1, ck�(p) = −1 for all p ∈ X, and ck�(p) = 0 for all other projects. Then
selecting p� and thus spending an amount of |X| + 1 is possible only if we also
select all of the projects in X and thus push the total amount spent down to the
budget limit of 1. Rey et al. [22] also discuss modelling such constraints.

The fact that encoding constraints involves introducing some purely technical
resources lends additional support to the idea of parametrising mechanisms and
axioms by a set of relevant resources R. For example, for Fl we may want to put
all “real” resources in R but leave all “technical” resources aside.

3 Axiomatic Analysis

In this section we first analyse the concrete mechanisms defined earlier in view
of the axiomatic requirements of proportionality and strategyproofness, and we
then show that it is impossible to satisfy both requirements at the same time.

3.1 Proportionality

Unfortunately, neither the greedy-approval mechanism nor the max-approval
mechanism can guarantee weak proportionality, and thus certainly not strong
proportionality. To see this, consider the following example.

Example 1. Take a single-resource scenario 〈P, c, b〉 with P = {p1, p2}, b = 3,
c(p1) = 1, and c(p2) = 3. For profile A = ({p1}, {p2}, {p2}) both Fg and Fm

return the outcome {p2}. However, weak proportionality (with R = {1}) would
require p1 to be part of that outcome.

This kind of counterexample also works for multi-resource scenarios: simply add
any number of dummy resources with budget 1 and cost 0 for both projects
(as long as R ⊇ {1}). On the other hand, the sequential load-balancing mecha-
nism Fl satisfies even our strong proportionality axiom.

Proposition 1. The sequential load-balancing mechanism Fl is strongly R-
proportional for any set R of relevant resources.

Proof. The proof is similar to that of Proposition 3.13 in the work of Aziz et
al. [1]. Suppose Fl is not strongly R-proportional, for some R. Then there must
be a scenario 〈P, c, b〉, a profile A, and a subset of projects S� ⊆ P satisfying
the requirements of strong R-proportionality but for which there exists a project
p� ∈ S� not selected by Fl. Let N� ⊆ N be the set of voters such that for all
i ∈ N�, we have Ai = S�. Recall that Fl works in iterations. Let � be the first
iteration for which selecting p� would violate the budget constraint of at least
one relevant resource which we call k� ∈ R. Thanks to condition (ii) of strong
R-proportionality, we know that {p�}∪Fl(〈P, c, b〉,A) cannot exceed the budget
of a non-relevant resource. This implies that such an � always exists as otherwise
Fl would not have terminated. In the following we will prove a contradiction,
namely that Fl should have selected p� at an iteration before �.
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Let S be the set of projects selected by Fl at iteration �. Use xi,k,p to represent
the part of ck(p) shouldered by voter i at iteration � (see the definition of Fl).
Define xi,k =

∑
i∈N 1p∈Ai

× xi,k,p to be the total load of voter i for resource k
at iteration �. Given that all voters in N� approve only of S�, we see that the
cost ck(S)−ck(S ∩S�) for every relevant resource k ∈ R should be spread across
n − |N�| voters. By averaging, there must then be a voter i ∈ N \ N� for which:

∀k ∈ R : xi,k � ck(S) − ck(S ∩ S�)
n − |N�| × 1

bk
.

From the definition of �, we know that for k� we have ck�(S ∪ {p�}) > bk� . The
equation above thus implies for resource k� that:

xi,k� >
bk� − ck�(p�) − ck(S ∩ S�)

n − |N�| × 1
bk�

.

Now from the definition of strong R-proportionality, we know that |N�|
n × bk� �

ck�(p�) + ck�(S ∩ S�). This implies that:

xi,k� >
bk� − |N�|

n × bk�

n − |N�| × 1
bk�

=
1
n

. (1)

Thus at iteration �, the maximum load of a voter is at least 1/n.
We now assume that at iteration �−1, it is project p� that is selected, instead

of the other project that Fl selected. We distinguish between two cases.
First, if all voters have load no more than 1/n for all resources k ∈ R at the

“new” iteration �, then we are done: to minimise the maximum load, Fl should
have selected p� at iteration � − 1 because of Eq. (1).

Suppose now that there is a voter i ∈ N and a resource k ∈ R such that
i’s load for k at the “new” iteration � exceeds 1/n. Note first that we must have
i /∈ N�. Indeed, the costs of projects in S� can always be distributed across voters
in N�, keeping their load for every k ∈ R at most |S�|×bk�

n×|S�| × 1
bk�

= 1/n. Then,
since i /∈ N�, i’s load did not increase by selecting p�, and so there must then be
a smallest iteration �′ < � after which i’s load for k exceeded 1/n. But then, since
the maximum load after �′ exceeded 1/n, we find that Fl should have selected
p� at iteration �′ − 1. Indeed, by selecting p�, all voters in N \ N� would have a
load of less than 1/n, while the load of voters in N� still would not exceed 1/n.

Overall, by definition of Fl, project p� should have been selected before iter-
ation �. By contradiction, Fl is thus proven to be strongly R-proportional. �
We note that this positive result ceases to hold when we allow for negative costs.
Indeed, as the following example demonstrates, in that case satisfying strong
proportionality is impossible for any mechanism.

Example 2. Consider a single-resource scenario 〈P, c, b〉 with P = {p1, p2, p3},
b = 2, c(p1) = c(p2) = 2, and c(p3) = −1. Then under profile A = (A1, A2) with
A1 = {p1, p3} and A2 = {p2, p3}, both voters approve sets with cumulative cost
c(A1) = c(A2) = 2 − 1 = 1, and so strong proportionality requires us to accept
both sets. But this would exceed the budget: c(A1 ∪ A2) = 2 + 2 − 1 = 3 > b.
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3.2 Strategyproofness

None of our mechanisms are strategyproof against voters with either Paretian
or subset preferences (not even for d = 1). We again provide an example.

Example 3. Take a scenario with budget b = 2 and three projects with c(p1) =
1, c(p2) = 2, and c(p3) = 1. Suppose we receive two ballots, S�

1 = {p3} and
A2 = {p2}. Both Fg and Fm pick p2 (due to lexicographic tie-breaking). If
voter 1 instead (untruthfully) votes A1 = {p1, p3}, both mechanisms return
{p1, p3}. The same applies to Fl if we add a third voter with A3 = {p2}. But
{p1, p3} 
1 {p2}, for both Paretian and subset preferences.

So let us focus on approximate strategyproofness instead. As we shall see, Fg

guarantees approximate strategyproofness for voters with subset preferences,
but not (in general) for voters with Paretian preferences. As we shall also see,
unfortunately, neither Fm nor Fl can guarantee approximate strategyproofness
in either case. For the positive result we first prove a simple lemma.

Lemma 1. If projects cost 1 unit of one resource and 0 units of all others, then
under Fg, voters with R-Paretian preferences weakly prefer the outcome obtained
by voting truthfully over any obtained by voting untruthfully (for any R).

Proof. In this setting, Fg picks, for each k ∈ {1, . . . , d}, the bk most approved
projects costing 1 unit of resource k. Now, since every project in S�

i is approved
at least as often in (A−i, S

�
i ) as in A, we have F (A−i, S

�
i ) �i F (A). �

Proposition 2. Fg is approximately strategyproof against voters with R-
Paretian preferences for R = {1, . . . , d} and against voters with subset pref-
erences.

Proof. Let R = {1, . . . , d} and consider a scenario 〈P, c, b〉. Construct a second
scenario 〈P ′, c′, b〉 where all projects in P have been decomposed into smaller
projects that cost 1 unit of one resource and 0 units of all other resources, such
that the costs of any p ∈ P equals the sum of costs of the corresponding projects
p′ ∈ P ′. By Lemma 1, no voter with R-Paretian preferences has an incentive
to manipulate in the second scenario. Fg accepts, in the first scenario, projects
p ∈ P in the same order as it accepts the corresponding projects p′ ∈ P ′ in
the second scenario, until the first of the d budget limits is reached. For that
resource k for which the limit is reached first and that project p that is not
accepted, the difference in cost between the two outcomes is at most ck(p). If we
give project p to an R-Paretian voter on top of the outcome of the first scenario,
then the amount of resource k spent as she desires is at least as much as in the
second scenario, which in turn is at least as much as in any manipulated version
of the second scenario, which is at least as much as in any manipulated version
of the first scenario. Hence, she will not have any incentive to manipulate in the
first scenario either.

Finally, note that strict subset preferences imply strict {1, . . . , d}-Paretian
preferences. Thus, approximate strategyproofness under {1, . . . , d}-Paretian pref-
erences implies the same under subset preferences, completing the proof. �
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In the single-resource setting, Fg has been shown to guarantee approximate
strategyproofness against (what we call) Paretian voters using a similar approach
[9]. However, as our next example illustrates, for multi-resource PB in which
voters might not care about all resources, this is no longer the case.

Example 4. Take a scenario with P = {p1, p2, p3, p4, p5}, three resources, R =
{1}, and the following costs and budget limits:

Cost p1 p2 p3 p4 p5 Budget limit

c1 0 0 0 1 1 b1 = 2

c2 2 1 1 0 0 b2 = 2

c3 1 3 3 4 4 b3 = 9

Let us consider the two-voter profile (S�
1 , A2) = ({p2, p3, p4, p5}, {p1, p2, p3}).

Then the greedy-approval mechanism Fg selects the set {p2, p3}. If voter 1
instead votes A1 = {p1, p4, p5}, Fg returns {p1, p4, p5}, which is better for her—
in terms of resource 1—than {p2, p3} ∪ {p}, for every p ∈ P . �
The next two examples demonstrate that neither Fm nor Fl can guarantee
approximate strategyproofness against voters with subset preferences (and, thus,
certainly not against Paretian voters).

Example 5. Consider the single-resource scenario 〈P, c, b〉 with projects P =
{p1, p2, p3, p4, p5}. Let the first four projects cost 1, while c(p5) = 4 = b. Now
let (S�

1 , A2, A3, A4) = ({p1, p2}, {p5}, {p5}, {p5}). Then Fm returns {p5}. How-
ever, if voter 1 switches to A1 = {p1, p2, p3, p4}, then Fm returns {p1, p2, p3, p4},
increasing the set of accepted projects she truly likes from ∅ to {p1, p2}.

Example 6. Consider a two-resource scenario with P = {p1, p2, p3, p4, p5} with
these costs and budget limits:

Costs p1 p2 p3 p4 p5 Budget limit

c1 2 2 0 3 0 b1 = 5

c2 2 0 2 0 3 b2 = 5

For the profile (S�
1 , A2, A3) = ({p1, p2, p3}, {p1, p4, p5}, {p1, p4, p5}), the

sequential load-balancing mechanism Fl picks the set {p1, p4, p5}. However, if
voter 1 switches to A1 = {p2, p3}, then Fl still selects p1, but also p2 and p3,
since voter 1 can no longer carry any load for p1. Thus, by manipulating she can
add two projects she cares about to the outcome, without losing any others. �
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3.3 An Impossibility Result

We now show it is impossible to guarantee both weak proportionality and strat-
egyproofness together. Our result mirrors (and is inspired by) an impossibility
result for multiwinner voting due to Peters [19], although there are subtle differ-
ences (meaning that our result is not implied by that of Peters). In particular,
Peters requires a (very weak) efficiency axiom (for a discussion of this point, refer
to Peters [20]).4 We are going to prove the following result (for single-resource
PB) and then generalise to full multi-resource PB.

Theorem 1. Let b � 3, m > b and n = q · b for some integer q � 1. Then no
mechanism can guarantee both weak proportionality and strategyproofness against
voters with Paretian preferences for PB scenarios with a single resource, bud-
get b, m projects, and n voters.

For ease of reading, let us call a single-resource mechanism F good if it satisfies
both weak proportionality and strategyproofness against voters with Paretian
preferences. We first prove Theorem 1 for the special case of (b,m, n) = (3, 4, 3),
and then generalise using induction.

Lemma 2. No mechanism for (b,m, n)=(3, 4, 3) is good.

Proof. For the sake of contradiction, suppose F is such a mechanism. Let
〈P, c, b〉 be a single-resource scenario with P = {a, b, c, d}, c(p) = 1 for all p ∈ P ,
and b = 3. Consider profile A1 = (ab, c, d), where we omitted set brackets to
improve readability. By weak proportionality, we must have cd ⊆ F (A1). Fur-
thermore, by strategyproofness, either a or b must be in the selected project set
as well, since otherwise voter 1 can manipulate by removing a single project from
her ballot. Thus F (A1) is either acd or bcd. W.l.o.g., let us assume the former
is the case. Table 1 shows how to derive a contradiction from F (A1) = acd by
means of a sequence of steps involving 14 different profiles.5 �

Next, we prove three inductive lemmas.

Lemma 3. If there exists a good mechanism for (b,m, n) with n = q ·b for some
integer q � 1, then a good mechanism also exists for (b,m, b).

4 We are able to circumvent the need for this additional efficiency requirement because
we do not impose exhaustiveness (which in multiwinner voting is an implicit part of
the basic model). This gives us more freedom for the inductive lemmas we need to
prove. At the same time, our result is weaker than that of Peters in other respects: his
proportionality axiom is subtly weaker (as it needs to be imposed only for so-called
party-list profiles) and his result applies even under subset preferences.

5 We found these 14 profiles and the derivation of Table 1 by first encoding the require-
ments of F as a set of clauses in propositional logic, and then applying a SAT-solver
to that set to compute a minimally unsatisfiable set exhibiting the impossibility of
finding a mechanism of the required kind. For an introduction to this approach, the
reader may wish to consult the expository article of Geist and Peters [8].
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Table 1. Derivation for Lemma 2. M(i,A,A′) means that voter i can successfully
manipulate by moving from profile A to profile A′, while S �∩S′ signifies that S∩S′ = ∅.

Profile Strategyproofness Proportionality Outcome

A3 = (b, ac, d)
ab ⊆ F (A3) ⇒ M(1,A2,A3)

ac �∩F (A3) ⇒ M(2,A3, (b, a, d))
bd ⊆ F (A3) F (A3) = bcd

A4 = (b, ac, cd) cd � F (A4) ⇒ M(3,A4,A3) b ⊆ F (A4) F (A4) = bcd

A5 = (b, a, cd)
ac ⊆ F (A5) ⇒ M(2,A4,A5)

cd �∩F (A5) ⇒ M(3,A5, (b, a, c))
ab ⊆ F (A5) F (A5) = abd

A6 = (b, ad, cd) ad � F (A6) ⇒ M(2,A6,A5) b ⊆ F (A6) F (A6) = abd

A7 = (b, ad, c)
cd ⊆ F (A7) ⇒ M(3,A6,A7)

ad �∩F (A7) ⇒ M(2,A7, (b, a, c))
bc ⊆ F (A7) F (A7) = abc

A8 = (b, ad, ac) ac � F (A8) ⇒ M(3,A8,A7) b ⊆ F (A8) F (A8) = abc

A9 = (b, d, ac)
ad ⊆ F (A9) ⇒ M(2,A8,A9)

ac �∩F (A9) ⇒ M(3,A9, (b, d, c))
bd ⊆ F (A9) F (A9) = bcd

A10 = (b, cd, ac) cd � F (A10) ⇒ M(2,A10,A9) b ⊆ F (A10) F (A10) = bcd

A11 = (b, cd, a)
ac ⊆ F (A11) ⇒ M(3,A10,A11)

cd �∩F (A11) ⇒ M(2,A11, (b, c, a))
ab ⊆ F (A11) F (A11) = abd

A12 = (b, cd, ad) ad � F (A12) ⇒ M(3,A12,A11) b ⊆ F (A12) F (A12) = abd

A13 = (b, c, ad)
cd ⊆ F (A13) ⇒ M(2,A12,A13)

ad �∩F (A13) ⇒ M(3,A13, (b, c, a))
bc ⊆ F (A13) F (A13) = abc

A14 = (ab, c, ad)
ab � F (A14) ⇒ M(1,A14,A13)

abc = F (A14) ⇒ M(3,A14,A1)
c ⊆ F (A14) Contradiction

Proof. Let F be a good mechanism for (b,m, n). We construct F ′ for (b,m, b)
as follows. Given a profile A with b voters, copy each ballot q times to construct
profile Aq, and let F ′(A) = F (Aq). We show that F ′ satisfies both axioms,
starting with proportionality. Note that, due to d = 1, the second proportion-
ality condition is vacuously satisfied. Suppose that for some project p with cost
c(p), we have |{i ∈ N : Ai = {p}| � b · c(p)

b . Then q times as many (i.e., at least
n · c(p)

b ) voters have ballot {p} in Aq. Since p ∈ F (Aq), also p ∈ F ′(A). For strat-
egyproofness, suppose for the sake of contradiction that F ′(A) 
i F ′(A−i, S

�
i )

for some voter i with Paretian preferences. Then F (Aq) 
i F ((A−i, S
�
i )q). Now,

in (A−i, S
�
i )q, let the q voters corresponding to i switch, one by one, to the

untruthful ballot Ai. This results in a sequence of q profiles, each of which is not
strictly preferred over the former by i, since F is strategyproof. As for d = 1 the
relation �
i is transitive, we get F (Aq) �i F ((A−i, S

�
i )q), a contradiction. �

Lemma 4. If there exists a good mechanism for (b,m+1, n), then a good mech-
anism also exists for (b,m, n).

Proof. Let F be a good mechanism for (b,m + 1, n). We construct F ′ for
(b,m, n). Add a dummy project p� so that F ′(A, P ) = F (A, P ∪{p�})\{p�} for
every profile A.6 To show that F ′ satisfies proportionality, note that any project
6 Observe that F ′ might not be exhaustive, with the implications discussed above.
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in P satisfying the two conditions is selected by F if and only if it is selected by
F ′. The strategyproofness of F ′ follows directly from that of F since no voter
approves of p� in A. �
Lemma 5. If there exists a good mechanism for (b,m, n) = (k +1, k +2, k +1),
then a good mechanism also exists for (k, k + 1, k).

Proof. Let F be a good mechanism for (k + 1, k + 2, k + 1). We construct F ′

for (k, k + 1, k). Given profile Ak with k voters and k + 1 projects in P k+1, add
a dummy project p� with cost c(p�) = 1 to form P k+2 and a singleton ballot
{p�} to form Ak+1. Now let F ′(Ak, P k+1) = F (Ak+1, P k+2) \ {p�}. Note that,
since F is proportional and |{i ∈ N : Ai = {p�}}| = 1 � k+1

k+1 · c(p�), we always
have p� ∈ F (Ak+1, P k+2), and so F ′ does not violate the budget constraint
(i.e., F ′ is well-defined). For the proportionality of F ′, note that if a project
p ∈ P k+1 is approved of k

k · c(p) times in Ak, it is also approved of k+1
k+1 · c(p)

times in Ak+1. Since p is then selected by F , it is also selected by F ′. For
strategyproofness, again note that a strict preference between two outcomes of
F ′ for a voter i ∈ {1, . . . , k} implies the same strict preference for the associated
outcomes of F , since i does not approve of {p�}. Hence, the strategyproofness
of F ′ follows from the strategyproofness of F . �
We are now ready to prove our theorem.

Proof (of Theorem 1). For the sake of contradiction, suppose there exists a good
mechanism for some (b,m, n) with b � 3, m > b, and n = q·b. Then, by Lemma 3,
there exists such a mechanism for (b,m, b). Further, by repeated applications of
Lemma 4 and Lemma 5, we can get a good mechanism for (b, b + 1, b) and then
for (3, 4, 3). But this contradicts Lemma 2. �
Using a straightforward induction over the number of resources, we can generalise
to the multi-resource setting and obtain the following corollary.

Corollary 1. Let d � 1, R ⊆ {1, . . . , d}, m > bk � 3 for some k ∈ R, and
n = q · bk for some q � 1. Then no mechanism can guarantee both weak R-
proportionality and strategyproofness against voters with R-Paretian preferences
for d-resource PB scenarios with relevant resources R, budgets b = (b1, . . . , bd),
m projects, and n voters.

To what extent this impossibility result can be strengthened further as well as
whether relaxing some of our assumptions might allow for the design of attractive
mechanisms are interesting open problems. For example, we do not know whether
the impossibility persists for voters with subset preferences (the counterexample
used for the proof of the base case still works, but some of the arguments used in
the inductive lemmas do not). Similarly, we do not have a full picture regarding
the impact of the constraints on the numerical parameters involved (such as n
being a multiple of one of the budget limits) on the impossibility.7 Finally, we do
7 The question of whether these constraints can be relaxed is of some technical interest,

but arguably less relevant to practice. Indeed, we would want our mechanism to work
for arbitrary numbers of voters (including those that are multiples of a budget limit).
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not know whether there are mechanisms for multi-resource PB that are weakly
proportional and approximately strategyproof.8

4 Algorithms and Complexity

We now analyse each of the three mechanisms defined in Sect. 2.2 from a com-
putational point of view. We also comment on how allowing for negative costs
would affect our results.

4.1 The Greedy-Approval Mechanism

The greedy-approval mechanism Fg clearly can be executed in polynomial time.
This remains true when we allow for negative costs. However, as illustrated by the
following example, it is questionable whether a greedy mechanism is appropriate
in the presence of negative costs.

Example 7. Consider a PB scenario with one resource and three projects,
where b1 = 5, c1(p1) = c1(p2) = 3, and c1(p3) = −1. Suppose p1 has a higher
approval score than p2, which in turn has a higher score than p3. Then Fg would
first accept p1 (reducing the budget to 5 − 3 = 2), then skip p2 (as it costs more
than 2), and finally accept p3. At this point, the remaining budget is 2 + 1 = 3,
so accepting p2 would now be feasible. But that would amount to a form of
backtracking (given that we now accept a project we previously rejected), which
is not allowed under greedy algorithms in general and Fg in particular.

4.2 The Max-Approval Mechanism

For single-resource PB, Talmon and Faliszewski [28] sketch a polynomial-time
algorithm implementing the max-approval mechanism Fm. As we shall see next,
for multi-resource PB there can be no such algorithm, unless P = NP.

First, let us formally define a decision variant of the problem of maximising
the approval score (for a fixed dimension d).9

MaxAppScored

Instance: d-resource scenario 〈P, c, b〉, profile A, target K ∈ N

Question: Is there a set S ∈ Feas(P, c, b) with sA (S) � K?

8 When all resources are relevant (in the single-resource case for instance ), there is
a trivial mechanism of this kind: simply return the union of all singletons satisfying
condition (i) in the definition of proportionality. To see this, recall that condition (ii)
is vacuous if there are only relevant resources.

9 Recall that the approval score of a set S for a given profile A is defined as sA (S) =∑
i∈N |S ∩ Ai|, and that Fm seeks to maximise that score.
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This problem is closely related to the d-dimensional knapsack problem [15]. In
particular, in the setting where d = 2 and there is just a single voter who
approves of all projects, our problem is equivalent to the problem referred to
as Cardinality (2-KP) by Kellerer et al. [15], which is a weakly NP-hard
problem. This insight immediately implies the next result.

Proposition 3. For any number d � 2 of resources, there exists no polynomial-
time algorithm to compute outcomes under the max-approval mechanism Fm,
unless P = NP.

But note that weak NP-hardness still allows for the existence of pseudopoly-
nomial-time algorithms. Indeed, the dynamic programming algorithm of Kellerer
et al. [15] for the multidimensional knapsack problem can be applied directly
(after translating the input profile into a vector of approvals per project). This
yields the following observation.

Proposition 4. For any fixed number d of resources, outcomes under the max-
approval mechanism Fm can be computed in pseudopolynomial time.

Mapping to a d-dimensional knapsack problem works only when d is a constant.
This assumption is often reasonable: we typically have to deal with just a small
number of resources (money, space, pollutants). However, we saw in Sect. 2.4
that encoding distributional or incompatibility constraints results in additional
“technical” resources, the number of which grows with the number of projects.
So it is important to also understand the complexity of Fm relative to d. To this
end, we now introduce a variant of the decision problem defined earlier. Instances
of this new problem are PB scenarios for arbitrary numbers of resources (rather
than for some fixed dimension d).

MaxAppScore

Instance: scenario 〈P, c, b〉, profile A, target K ∈ N

Question: Is there a set S ∈ Feas(P, c, b) with sA (S) � K?

To analyse the complexity of this problem, we employ a similar construction
as the one we used to encode incompatibility constraints in the basic model
(see Sect. 2.4). Observe that the following result rules out the possibility of the
existence of a pseudopolynomial-time algorithm.

Proposition 5. MaxAppScore is strongly NP-hard.

Proof. We proceed by reduction from the Independent Set problem, asking
whether a given graph G = 〈V,E〉 has an independent set of size K. This problem
is known to be strongly NP-complete [7].

Given G = 〈V,E〉 and K, construct a d-resource PB scenario 〈V, c, b〉 with
d = |E|: ck(p) = 1 if the kth edge contains vertex p (and ck(p) = 0 otherwise)
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and b = (1, . . . , 1). So a project set S is feasible if and only if S is an independent
set in the original graph. Now consider a profile in which a single voter approves
of all projects. Then an approval score of K is attainable if and only if the graph
has an independent set of size K. �

Jain et al. [13] use the same kind of reduction to prove hardness for their model
of PB with distributional constraints, which they call “project groups”. As their
model is a special case of ours, this thus entails Proposition 5. We nevertheless
included our proof above as it is much easier to follow.

Finally, let us note that, while Propositions 3 and 5 clearly continue to
hold when we allow for negative costs, the dynamic programming algorithm
of Kellerer et al. [15] does not generalise to this setting.

4.3 The Sequential Load-Balancing Mechanism

Even though the definition of the sequential load-balancing mechanism Fl is
rather involved, it is not difficult to show that it is a tractable mechanism.

Proposition 6. Outcomes under the sequential load-balancing mechanism Fl

can be computed in polynomial time.

Proof. The claim follows immediately from the definition of the mechanism,
given that executing Fl boils down to solving a polynomial number of linear
programs, each of which is solvable in polynomial time [26]. �

Proposition 6 remains valid when we permit negative costs. But given the
“greedy” nature of Fl, it is debatable whether it should be considered appropri-
ate to use Fl in the presence of negative costs (just as it is debatable for Fg).
Indeed, conceptually, a core feature of Fl, which arguably makes it a natural
mechanism, is the fact that the load of each individual voter never decreases as
we accept additional projects. This property is lost once we allow for negative
costs.

5 Conclusion

We initiated the systematic study of PB with multiple resources. Our results
indicate that—despite the significant increase in expressive power when mov-
ing from the single-resource to the multi-resource setting—devising attractive
mechanisms does not become insurmountably harder, in either axiomatic or
algorithmic terms. We hope that this will encourage others to further develop
this approach and to, eventually, field it in real-world PB exercises.
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Abstract. In a world where many activities are carried out digitally, it is
increasingly urgent to be able to formally represent the rules, norms, and
policies that regulate these activities. In multi-agent systems, formalizing
policies written in a natural language into a formal model, making them
machine-readable, is a demanding task. In this paper, we introduce a
methodology to help people to understand the fundamental elements
that they should consider for this transformation. In this paper we will
focus mainly on a methodology for formalizing norms using the T-Norm
norm model, this because it allows us to express a rich set of different
types of norms. In any case, the proposed methodology is general enough
to also be used, in some of its steps, to formalize norms using other
formal languages. This is an important issue because since there is not
yet a set of different types of norms that is sufficiently expressive and
is recognized as valid by the NorMAS community, papers presenting a
given model usually do not explicitly state which types of norms can
be expressed with that model and which cannot. Therefore, the second
goal of this paper is to propose and discuss a rich set of norm types that
could be used to study the expressive power of different formal models
of norms and to compare them.

1 Introduction

In a world where many activities are carried out digitally, it is increasingly urgent
to be able to formally represent the rules, norms, and policies that regulate these
activities. By doing that, it is important to take into account that they are carried
out by autonomous subjects who are able to decide to violate these rules. The
activities regulated by the norms can be of various types and also include the very
important ones related to the use, exchange and manipulation of the enormous
amount of digital data that exist nowadays. Since these norms and policies can
be violated (for example, it is very difficult to regiment obligations [8]) it is also
urgent to propose mechanisms to automatically monitor compliance with these
norms.

In the academic literature, there are an interesting number of general models
of norms and policies. Some of these are close to being able to be used in real
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applications in today’s Web as they are expressed with standard Semantic Web
Technologies, which is a crucial characteristics for realizing interoperable sys-
tems. One of them is the W3C Recommendation ODRL 2.21 (the Open Digital
Rights Language), which is a policy expression language that provides an infor-
mation model and a vocabulary for specifying permissions, prohibitions, and
obligations about the usage of digital assets and services. Two others are the
T-Norm model [10] and the OWL-POLAR model [19]. They are two semantic
web based complementary models having an operational semantics for reasoning
about norms and policies fulfillments and violations.

The papers that describe these models are mainly focused on the presentation
of the model that is exemplified usually with the formalization of some examples
of norms, regardless of their type. What is missing, however, is a methodology
that explains what steps should be followed if one wants to start from a norm
written in a natural language (e.g., English) and be able to choose the model
for its formalization and use it to arrive at the formal specification of the norm,
which can then be used to reason about it and verify its fulfillment or violation.
Since there is not a commonly accepted set of types of norms in the literature,
papers presenting a given model usually do not explicitly state which types of
norms can be expressed with that model and which cannot. Thus in this paper
we have the following two goals.

Our first goal is to explain the methodology that can be used by people
to translate norms written in one natural language into a language specifically
designed for the formal specification of norms. The proposed methodology con-
sists in: first understand if the norm can be expressed with a certain model, that
means to understand which type the norm belongs to and if the type is supported
by the model; secondly come to a proper formalization of the norm using the
chosen model, this by applying the methodology proposed in this paper. We will
focus mainly on formalizing norms using the T-Norm norm model, this because
it allows us to express a rich set of different types of norms. However, it is impor-
tant to emphasize that the proposed methodology is general enough to also be
used, in some of its steps, to formalize norms using other formal languages that
have some similarities with the T-Norm model, such as at least OWL-POLAR
and ODRL.

There are many reasons why it is interesting to specify norms using formal
models. First, because norms become machine-readable, therefore it is possi-
ble to automatically analyse and query them like for example it is discussed
in [15] where the PrivOnto ontology is used for analysing 115 privacy policies.
For example, it will be possible to search the set of resources on which it is
possible to perform certain actions based on the customers’ interests. When a
policy is formalized with a machine-readable formal language that has an oper-
ational semantics, it is also possible to provide services for compliance checking
of policies [9,10,16,19]. This functionality plays an important role especially in
domains in which the customers’ sensitive data is collected and companies need
to monitor the compliance of customers’ privacy. This functionality is important

1 https://www.w3.org/TR/odrl-model/.
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also to create a trustworthy environment for customers by providing monitoring
platform that they can use to see whether their privacy policies (norms) are
violated or not. For instance, a customer can attach to one picture the prohi-
bition to publish it on a public platform for advertisement and would like to
monitor if the actions which are performed on the picture are compliant with
this prohibition.

Another reason why it can be useful to specify norms with formal languages
is that it becomes easier for humans to understand their actual meaning, which
is not always as immediate as it should be. For example, during the Covid-19
pandemic, it was not always easy to immediately understand what norms are in
effect at any given time in a specific location and whether they entail obligations
or prohibitions to perform actions. Another example of norms whose meaning
and implications are not always immediately clear to the reader are the various
privacy policies that regulate the processing of our data when we browse websites
and use social networks. Users often accept such policies in order to use online
services often without fully understanding what they mean, this is because they
are too long or complex.

The second goal of this paper is to propose and discuss a rich set of norm
types that could be used to study the expressive power of different formal models
of norms and to compare them. Knowing that a certain model of norms is or
is not capable of expressing a certain type of norms is fundamental to deciding
which model to adopt in a certain application context. For example, if a norm
generates a specific obligation that has a deadline, it is necessary to choose a
model of norms that allows to express this temporal constraint and to verify its
fulfillment. Secondly, once it is clear that a certain type of norm can be expressed
in both language A and language B, it will also be possible to translate norms
written with the first language into norms written with the second. Thus making
systems that use different norm models interoperable, a fundamental aspect in
today’s world where one software agent must be able to interact with multiple
open interaction systems without having to be reprogrammed every time.

This paper is organized as follows: in Sect. 2 the most relevant and recent
papers presenting a model for norms and policies specification in which semantic
web technologies have been used are discussed. In Sect. 3 the T-Norm model is
briefly presented. In Sect. 4 the methodology proposed in this paper is described
and the set of different types of norms is discussed. Finally in Sect. 5 we draw
some conclusions.

2 Related Works

In the multiagent systems community, over the last twenty years, many models
of norms and policies for regulating the behaviour of autonomous agents have
been proposed [2,6]. In some of these models semantic web technologies have
been used for modeling some components of norms/policies that can be used for
expressing obligations, prohibitions, and permissions. The first proposals were
the KAoS framework [21], the REI [14] policy language, and the PRovisional
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TrUst NEgotiation framework Protune [4]. Those approaches are summarized
and compared in [5] where the requirements for a policy framework are discussed
and the various approaches are categorized discussing whether the policies are
public or not. For example, for the public policies, it is possible to use KAOS
and REI frameworks as we need just one step evaluation to see if two policies
are compatible. On the other hand, if a policy contains sensitive data, they are
required to have stateful and stateless negotiation protocols for further security
concerns.

An important policy language based on semantic web technologies, which is
a W3C Recommendation since 15 February 2018, is the Open Digital Rights
Language (ODRL 2.2). It is a policy expression language that can be used to
represent permitted, prohibited, and obliged actions over a certain asset. ODRL
policies may be limited by constraints (e.g., temporal or spatial constraints).
ODRL was originally (in 2001) an XML language for expressing digital rights,
that is, digital content usage terms and conditions. In version 2.0 and 2.1 ORDL
is a Policy Language formalized in RDF with an abstract model specified by an
ontology. It has no formal semantics, so compliance checking of policies written
with this language cannot be performed automatically. An interesting attempt
to give a formal semantics to ODRL 2.1 policies is presented in [20]. Some exten-
sions of ODRL has been proposed to overcome to some of its limits. In particular,
in [9] an extension of the ODRL Information Model has been proposed together
with a set of state machines used for describing the evolution in time of the
deontic state of obligations, prohibitions, and permissions. Another extension of
ODRL is presented in [7] to model both regulatory policies (in the form of nested
permissions, prohibitions, obligations and dispnesations), and business policies
via discrete permissions. A policy written with that extension of the ODRL lan-
guage is then translated into an Institutional Action Language (InstAL) policy
and thanks to its formal semantics, expressed in Answer Set Programming, it is
possible to automatically check compliance and also provide an explanation of
the aspects of the policy that brings to the non-compliance. In [13] a specific use
case drawn from the social networks field is used to validate the expressiveness
of the ODRL 2.0 model.

Other two interesting proposals of a policy/norm model and framework,
which are based on semantic web technologies, are OWL-POLAR [19] and T-
Norm [10,11] models. Those policies/norms models and their expressivity will be
discussed in Sect. 3. An interesting aspect that differentiates the two models is
the way in which the two models define mechanisms to reason about policies to
test whether agents’ behavior satisfies them or not. In the OWL-POLAR a query
answering mechanism (DL-safe) has been used to check if any action happened
satisfies the policies. In the T-Norm model a rule-based approach is used that
brings the generation of several deontic relations used to represent obligations
and prohibitions generated by the activations of norms. In addition, the T-Norm
model makes it possible to formalize the temporal constraints that exist between
the activation of a norm and the class of actions regulated by the norm.

Other interesting models of norms that, like the T-Norm model, are rule-
based are: the one proposed by Garcia-Camino et al. [12] where rules are
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operationalized using the JESS a rule engine for the Java platform; and the one
proposed in [1] where reasoning on norms is realized with DROOLS a business
rule management system. Another interesting proposal is the OASIS standard
LegalRuleML2, which defines a rule interchange language for the legal domain
and is formalized using RuleML.

Logic and Knowledge Engineering Framework and Methodology (LOGIKEY)
is another interesting framework which was introduced recently in [3]. The main
objective of this framework is to enable and support the practical development of
computational tools for normative reasoning based on formal methods. In their
approach, they use higher-order logic (HOL) as the formal framework. They also
used some GDPR examples to show how their framework supports the ethical
and/or legal (ethico-legal) domains theories.

3 The T-Norm Model

The T-Norm model can be used to formalize a precise and rich set of types of
norms that regulate the interactions between autonomous agents. Namely (as
we will further discuss in the paper): (i) norms with a activation condition rep-
resented by a class of events; (ii) norms without an activation condition; norms
that generate (iii) general or (iv) specific obligations or prohibitions to perform
(or not to perform) actions that can be constrained to happen before something
else happens, (v) exceptions to those norms; (vi) exceptions to obligations and
prohibitions (i.e. exemptions and permissions respectively). Once a set of norms
is formalized, a specific framework has been proposed to automatically check if
the agents’ behavior conforms or does not conform to the given set of norms.
This is done by simulating or monitoring the evolution of the state of those set
of norms as time passes, events occur and autonomous agents perform actions.
The framework for norms monitoring has been proposed by taking into account
the operational semantics of the T-Norm model. The model, its operational
semantics, and the framework were introduced in [10,11].

The T-Norm model captures the following intuitive meaning of norms: when-
ever a particular activation condition is satisfied (i.e. an event that belongs to a
particular class of events occurs) a deontic relation (general or specific) is created
for regulating the performance of a class of actions by certain agents. In turn,
every time an action belonging to the class of the regulated actions is executed
before a certain event happens (for example a certain temporal event represent-
ing a deadline) and the deontic relationship represents an obligation it will be
fulfilled, while if the deontic relation represents a prohibition it will be violated.
On the contrary, when an action belonging to the class of regulated actions
can no longer be performed (for example because the deadline has expired) and
the deontic relationship represents an obligation it will be violated, while if the
deontic relation represents a prohibition it will be fulfilled.

In order to formally describe such a dynamic behaviour, the abstract model
of a norm cannot consists only of a set of facts (like it is in many models of
2 https://www.oasis-open.org/committees/legalruleml/.
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norms and policies, e.g. ODRL3, OWL-POLAR [19], and the model proposed in
[1]). In all these models the intrinsically dynamic nature of norms is described
in their semantics or is left to their intuitive meaning described in the text.
The T-Norm model allows to specify how the performance of certain actions or
the occurrence of certain events will change the state of the interaction among
agents. Therefore the basic building blocks of the T-Norm abstract norm are
rules of the form ON...THEN...ELSE4. The abstract norm has not a pre-defined
deontic type, as discussed in Sect. 4, it is those who formally specify a norm who
will decide whether the norm activation creates obligations or prohibitions. In
the T-Norm model a generic abstract norm has the following form:

-----------------------------------------------------------------

Abstract Norm

-----------------------------------------------------------------

1: NORM Norm_n

2: [ON ?event1 WHERE conditions on ?event1

3: THEN

4: COMPUTE]

5: CREATE DeonticRelation(?dr);

6: ASSERT isGenerated(?dr,Norm_n); [activated(?dr,?event1);]

7: ON ?event2 [BEFORE ?event3 WHERE conditions on ?event3]

8: WHERE actor(?event2,?agent) AND conditions on ?event2

9: THEN ASSERT fulfills(?agent,?dr); fullfilled(?dr,?event2)|

10: violates(?agent,?dr); violated(?dr,?event2)

11: [ELSE ASSERT violates(?agent,?dr); violated(?dr,?event3)|

12: fulfills(?agent,?dr); fulfilled(?dr,?event3]

In the proposed model the first (optional) ON...THEN component (line 2,3)
is used for expressing those norms that have an activation condition. The sec-
ond ON...THEN component (line 7,9) is used for expressing that when a specific
action, which belongs to the class of actions regulated by the norm, is performed
(before something else occurs) there will be a fulfillment or a violation. In alter-
native, the ELSE part of the second rule (line 11) will be followed when an action
that belongs to the class of the regulated actions can no longer be performed.

The formulas used in the abstract norm are conjunctions (in the WHERE part)
or sequences (in the CREATE and ASSERT part) of atomic assertions written using
the classes (unary predicates starting with capital letter) and the properties
(binary predicates starting with a lowercase letter) defined in the T-Norm Ontol-
ogy depicted in Fig. 15. Variables (starting with ’?’) refers to individuals. Vari-
ables used in the WHERE parts of the norm for expressing conditions on events
can be used freely and have to be bound to individuals in the State Knowledge

3 https://www.w3.org/TR/odrl-model/.
4 The ON clause has been chosen instead of the more common IF clause to highlight

that the part after THEN is executed when a particular event or action occurs and
not simply when a condition is satisfied.

5 The T-Norm ontology in OWL is available at https://raw.githubusercontent.com/
fornaran/T-Norm-Model/main/tnorm.owl.

https://www.w3.org/TR/odrl-model/
https://raw.githubusercontent.com/fornaran/T-Norm-Model/main/tnorm.owl
https://raw.githubusercontent.com/fornaran/T-Norm-Model/main/tnorm.owl
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Base (where the interaction among agents is represented) for the conditions to
be met. In the WHERE parts it is also possible to compare the value of a variable
with a constant value using any of the symbols {<,>,=, �=,≤,≥}. A constant is
a numerical value or an individual in the ontology. Variables that appear in the
ASSERT part of a norm must have been introduced previously in one of its ON or
CREATE parts. In the COMPUTE part some values can be calculated (for example
the deadlines) using the value of previously introduced variables6.

Fig. 1. The T-NORM ontology and its connections with other ontologies.

4 Methodology

In this section, we describe the various steps of the procedure to be followed to
transform a norm written in a natural language (for example in English) into a
norm written using a formal machine-readable language like the T-Norm model.
As it will be discussed, some steps of the described procedure can also be used
to formalize norms using the OWL-POLAR or the ORDL normative language.
Starting from a norm expressed in natural language, following each step of the
methodology, the Abstract Norm, introduced in the previous section, is made
more concrete to the point of being the formalization of the norm from which
the process started. In the following, we use two real running examples. We call
6 The choice of using conjunctions or sequences of atomic assertions (analogously to

what is proposed in OWL-POLAR to express the various components of their norm
model) has the advantage of avoiding requiring the user of the model to learn a
specific formal language, once written those expressions can be easily and automat-
ically translated into the conditions or actions of production rules or into SPARQL
queries.
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the first example Norm1, which is inspired from the law regarding the access to
limited traffic area in Milan city such that “when an agent enters in the limited-
traffic area of Milan, between 7:30 and 19:30, they have to pay 5 euros before
24:00 on the day of entry”7. The second example, called Norm2, is the rule that
must be followed by libraries in Italy regarding lending of DVDs, it is “Italian
libraries cannot lend DVDs until 2 years are passed from the distribution of the
DVD”8.

4.1 Using Ontologies for Modeling Norms

In the first step of the procedure, we need to define (or search among the existing
ones) one or more formal ontologies to represent the classes of events or actions
that are relevant for the norm that we want to formalize. As it is discussed in the
previous section, for every norm normally three classes of events/actions should
be specified:

• The class of events that represent the activation condition of the norm
(described using ?event1 in line 2 in the Abstract Norm);

• Te class of actions regulated by the norm (described using ?event2 in line
7,8 in the Abstract Norm);

• The class of events defined for constraining the performance of the actions
regulated by the norm. One action, belonging to the class of the regulated
ones, should or should not occur before an event belonging to this constraining
class (described using ?event3 in line 7 in the Abstract Norm).

Those classes are specified in the WHERE parts of the norm and are represented
using the classes and properties defined in formal ontologies. In the T-Norm
model and in OWL-POLAR model, the W3C Web Ontology Language (OWL
2) is used for specifying ontologies. OWL is a Semantic Web language designed
to represent knowledge about things, groups of things, and relations between
things. An important advantage of using OWL is that it is a well-known stan-
dard language, which can make it easier for those who want to formalize their
norms. Moreover, the formal semantics of OWL makes it possible to perform
automatic reasoning on the state of the world, an operation that has impor-
tant consequences on the computation of the deontic force (it is obliged or it
is prohibited) associated to the actions performed by the agents. In ODRL the
information model of the language is formalized using an OWL ontology, while
the actions, the parties, and the assets involved in one ODRL policy are described
using the ODRL Vocabulary9.

It is possible to use several different ontologies for representing class of actions
and their properties inside one T-Norm norm or one OWL-POLAR policy. For
compatibility reasons, we suggest to use ontologies that are compatible with
OWL ontologies, this because the chosen ontologies (each one referred to as

7 https://www.comune.milano.it/aree-tematiche/mobilita/area-c.
8 According to Art. 69 c.1 of the Copyright Law (22-4-1941, no. 633).
9 https://www.w3.org/TR/odrl-vocab/.

https://www.comune.milano.it/aree-tematiche/mobilita/area-c
https://www.w3.org/TR/odrl-vocab/
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domain-specific Ontology in Fig. 1) should be imported into the Event Ontology
which is written by using the OWL language.

We will now exemplify the formalization of two classes of events necessary
for the formalization of Norm1. Norm1 is activated every time a vehicle enters the
restricted traffic zone of the city of Milan. We assume that RestrictedTraffic
AreaAccess is a class of actions, vehicle and owner are two properties having
as domain the RestrictedTrafficAreaAccess class, which are defined in an
OWL domain-specific Ontology. We can then specify the class of events that
activates Norm1 as (where ?event1 is shortened to ?e1):

ON ?e1 WHERE RestrictedTrafficAreaAccess(?e1) AND vehicle(?e1,?v) AND

owner(?v,?agent) AND atTime(?e1,?inst1) AND inXSDDateTimeStamp(?inst1,?t1)

AND ?t1.time()>07:30:00 AND ?t1.time()<19:30:00

In the previous expression the variable ?agent is introduced because it will be
used in the second part of the norm to recognize who fulfills or violates the norm.
After representing the activation condition of the norm, we need to formalize
the class of actions regulated by the norm. For Norm1, the class of actions is the
payment of 5 euros before 24:00 on the day of entry. For formalizing it we can for
example use the PayAction class defined in the Schema.org vocabulary, which
has an OWL version. Schema.org provides a collection of types and properties
available at the URL schema.org. The major search engine providers use the
Schema.org markup to improve the searching and the display of search results.
This vocabulary has been designed by and is controlled by these organizations
and represents an interesting attempt to realize a lightweight ontology that can
be reused in different applications.

As mentioned earlier, the class of events described with the variable ?event3
has the role of constraining the time interval in which the action belonging to the
class of actions regulated by the norm (?event2) shall or cannot be performed.
In Norm1, the time interval when the payment action should be performed is
constrained by a deadline (referred with the variable ?paymentDeadline), i.e.
the payment action must occur before 24:00 on the day of entry into the lim-
ited traffic zone. The formalization of norms where ?event3 is a time event are
discussed in Sect. 4.4. To be able to express facts about the topological relation-
ships (ordering) between instants and intervals, along with information about
their length, and their value in terms of dates and times, we imported the W3C
Time Ontology10 into our Event Ontology both written in OWL. However, in the
formalization of other norms the time constraint could be expressed with any
class of actions (e.g. the payment must be made before leaving the restricted
area) and in this case we will need to use another ontology to represent that
class. The class of actions regulated by Norm1 can be specified as (where ?e1
and ?agent are variables introduced in the previous ON clause):

ON ?e2 BEFORE ?paymentDeadline

WHERE PayAction(?e2) AND reason(?e2,?e1) AND recipient(?e2,Milan)

AND price(?e2,5) AND priceCurrency(?e2,euro) AND actor(?e2,?agent)

10 https://www.w3.org/TR/owl-time/.

https://www.w3.org/TR/owl-time/
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4.2 Norms with Activation Condition

The goal of this section is to explain how to recognize whether a norm has
an activation condition or not. In every norms or policy models the activation
condition may describe a class of events/actions or as a state of affairs.

In the T-Norm model, the activation condition is the description of a par-
ticular class of events or actions. When an event that belongs to the activation
condition class occurs, a new deontic relation is created and some temporal
parameters may be computed. In order to recognize the activation condition in
the text of a norm, we have to look for the events or actions that induce the
model to activate obligations or prohibitions. The temporal relation between an
event or action that satisfy the activation condition and the action that should
or should not be performed is crucial: the activation condition must be satisfied
before the obligation or the prohibition to perform a certain class of actions
starts to hold. The instant of time at which the activation condition of a norm
is satisfied by an event or action is very important because it can be used to
calculate the deadline of obligations generated by the norm or the instant of
time at which a prohibition ceases to subsist. For example in Norm1, the activa-
tion condition is represented by the class of actions regarding entering the Milan
limited traffic zone and it is used for computing the deadline for the payment.
In Norm2, the activation condition is given by the class of actions with which
a DVD distribution is initiated. It is important to note that in the T-Norm
model the activation condition cannot describe a state of affairs, although often
a state of affairs is the result of an event and therefore the description of the
class of events may substitute the description of the state of affairs as activation
condition.

The reason why, in a norm model, a class of events and a state of affairs are
treated differently is mainly due to their ontological difference: an event when it
has happened it can no longer be retracted, a state of affairs can be satisfied at
a certain instant of time and it can become unsatisfied subsequently. This is a
crucial difference, because in the T-Norm model any satisfaction of the activation
condition leads to the permanent creation of deontic relations. This permanent
creation is important when the deontic relation regulates a class of actions that
should or should not be performed in an interval of time and when the deontic
relation itself can generate many violations and fulfillments as it is discussed
below when Norm2 will be formalized.

The OWL-POLAR model for policies can be used when the activation con-
dition α describes a state of affairs, like for example “a person is obliged to
leave a location when there is a fire risk” or “when a person has a child which
is under 18 they have to pay their tuition” [19]. In the OWL-POLAR model
a policy is activated for a specific agent when the world state is such that the
activation condition holds for that agent and the expiration condition does not
hold. Therefore, at the time of activation it is necessary to know the specific
agent for whom the policy is being activated, and this is not the case when the
activation of a policy leads to the creation of general deontic relations, as will
be discussed below. In the OWL-POLAR model the time constraint that exists



358 S. Roshankish and N. Fornara

between the initial satisfaction of the activation and the subsequent activation
of the policy is not explicitly represented in the norms model, it is expressed in
the description of how it is possible to reason about policies, therefore it is not
in the model but inside the algorithm proposed for reasoning on policies.

There is another important distinction between an activation condition that
describes a class of events and the one that describes a state of affairs. When
it describe a state of affairs, it may make sense to ask whether the condition in
the text should be formalized as an activation condition or as a set of conditions
that restrict the class of actions regulated by the policy. For example in [18]
conditional norms are discussed and the following example of a norm with a
condition is described as: “it is prohibited to litter as long as there is a rubbish
bin within x meters from an agent”. The condition of being within x meters from
a rubbish bin may be modelled as an activation condition in some cases, and it
can be considered as a condition that constrains the class of actions regulated by
the policy in other cases. In this second case the policy can be modelled with the
T-Norm model, and it is a prohibition (without activation condition) to perform
the following class of actions: littering when the actor of the action is within x
metres from the rubbish bin. If one action belonging to that class is performed
then there is a violation of the prohibition.

The choice between the first and the second formalization depends on the
type of reasoning that the norm designer11 wants to be able to perform on the
policy. In the first case (with an activation condition) it is possible to compute if
the policy is active in a given situation and therefore plan the action for fulfilling
or violating it. When computing all the activations may be too costly and the
goal of reasoning is monitoring the fulfillment or violation of the policy, the
second formalization, without activation condition, is the more efficient because
it does not require to compute the activation of many policies.

In the ODRL 2.2 model it is possible to express constraints associated to the
rules contained in one policy and refinements associated to the actions regulated
by one rule (a duty, a prohibition, or a permission). Reading the documentation
that provides the meaning of a prohibition or duty, the constraint can be used to
express the activation condition, but again, like in OWL-POLAR, the temporal
constrains between the satisfaction of the activation condition and the perfor-
mance of the action regulated by the rule is not explicitly expressed in the model.
Therefore, when the activation condition is a state of affairs the policy designer
has to choose weather it is better to put the conditions in the constraint or in the
refinement. Differently, when the activation condition of the norm is represented
by a class of events, by using the ODRL 2.2 and OWL-POLAR models it is
impossible to specify in the norm formalization the need to compute at run-time
the value of the deadline and it is impossible to model those policies that when
are activated generates general deontic relations.

11 The term “norm designer” refers to the person in charge of formalizing norms with
a formal model.
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4.3 Representing Obligations and Prohibitions

In this section, we describe how we can distinguish if a norm generates an obli-
gation or prohibition and how to express them using the T-Norm model. In
contrary with other approaches such as OWL-POLAR and ODRL, in the T-
Norm model there is not a component or a predefined class that may be used
to specify if the norm express an obligation or a prohibition. The advantage of
this approach is that both obligation and prohibitions can be expressed starting
from the same abstract norm and there is not need to formalize the semantics
or a state machine (like in [9]) for obligations, another one for prohibitions, and
others for other deontic concepts like permission, right, privilege, liability and
so on. However, in this Section we focus only on obligation and prohibition.

In the T-Norm model the intuitive meaning of having an obligation or pro-
hibition is that when something happens and certain conditions hold, an agent
is obliged or prohibited to do something in a given interval of time. We can use
few basic constructs and combine them in different ways to express the obliga-
tion to perform an action before a given deadline or the prohibition to perform
an action within an interval of time. The main difference in representing a pro-
hibition or an obligation is in the second THEN part of the norm. If the norm
designer wants to formalize the obligation to perform an action, performing the
regulated action must bring to the specification of the fulfillment of the deontic
relation in the THEN part of the norm. The ELSE part have to be used to specify
that in case on instance of the class of actions regulated by the policy cannot be
performed before than a given event happens the deontic relation, representing
the obligation, becomes violated. On the contrary, if the norm designer wants to
formalize the prohibition to perform an action (described in the second ON part
of the norm) in the specific interval of time, performing the action will bring to
the violation of the deontic relation in the second THEN part. Once the prohibited
action can no longer be performed (for example, the time interval has expired)
the prohibition becomes fulfilled.

As we know from deontic logic literature [22] the expression “it is impermis-
sible (IM) that p” is defined as equivalent to “it is obligatory (OB) that not p”
(IMp = defOB¬p). This implies that some norms may be either formalized as
an obligation or as a prohibition. When a norm is formalized with the T-Norm
model and the activation of the norm brings to the creation of general deon-
tic relations, it is very important to evaluate which of the two formalizations
would be most cost-effective. That is because, as discussed below, every general
deontic relation created by the activation of a norm, may in turn bring to the
costly generation of many fulfillments and violations. For example, the norm
“when the school bell rings, students should go back to the classrooms in five
minutes” can be formalized as a norm that generates obligations or prohibitions.
Suppose that the person in charge of formalizing the norm is only interested in
computing the violations of the norm. In the first scenario, if we formalize the
norm as a generator of obligations, when the activation condition is satisfied
because the school bell rings, the norm generates a general deontic relation that
will generate fulfillments for all those students who respect the school rule and
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go back to their classrooms, and violations for those students who did not fulfill
the rule before the deadline. In the second scenario, it is possible to formalize
such a norm as a generator of prohibitions by reframing it as follows “when five
minutes have elapsed since the bell rang, students cannot remain in the court-
yard”. The formalization of this norm is much easier and cost-effective as we
only need to check the violations that are generated for those students who stay
in the courtyard.

4.4 Temporal Aspect of Norms

The ability to represent time-constrained norms is one important characteristics
of the T-Norm model. Unlike the OWL-POLAR model, in the T-Norm model
can be used by the norm designer to easily represent any obligations containing
deadlines (that are represented as time events) and prohibitions that holds for an
interval of time. A norm governs a class of actions and, as can be seen from the
abstract norm in Sect. 3, that class can be temporally constrained by specifying
the BEFORE part and another class of events (?event3). The latter class can be
specified using the TimeEvent class or the more generic Event class depicted in
Fig. 1.

The TimeEvent class is used for specifying a deadline for obligations or the
instant at when a time interval for prohibitions ends. In this case the value of the
deadline or the end of the time interval can be computed in the COMPUTE part of
the norm as exemplified below. For example, in Norm01, an agent is obliged to
perform the paying action before midnight (the deadline). In Norm02, the time
interval in which Italian libraries cannot lend DVDs begins with the release of
the DVD and ends after 2 years. Norm2 can be represented with the T-Norm
model as follows:

----------------------------------------------------------------------

Norm2

----------------------------------------------------------------------

ON ?e1

WHERE isReleased(?e1) AND object(?e1,?dvd) AND VideoObject(?dvd) AND

place(?e1;Italy) AND atTime(?e1,?inst1) AND inXSDDateTimeStamp(?inst1,?t1)

THEN

COMPUTE ?tend_n=?t1.year+2

CREATE DeonticRelation(?dr);TimeEvent(?tev_end_n);Instant(?inst_end_n);

ASSERT isGenerated(?dr,Norm2); activated(?dr,?e1); end(?dr,?tevend_n);

atTime(?tev_end_n,?inst_end_n);

inXSDDateTimeStamp(?inst_end_n,?tend_n);

ON ?e2 BEFORE ?tev_end_n

WHERE LendAction(?e2) AND object(?e2,?dvd) AND actor(?e2,?agent)

THEN violates(?agent;?dr); violated(?dr,?e2)

The CREATE and ASSERT parts of the norm above, which specify the charac-
teristics of the time event used to constrain the class of actions governed by the
norm, represent a prototype of what these two parts look like in all such type of
norms.
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On the other hand, if the temporal constraint (?event3) belongs to a generic
Event class (or one of its subclasses), it is not necessary to compute anything.
This means that the regulated action is temporally constrained by another
generic class of events. For example, in the norm “You should pay the park-
ing ticket before exiting”, there exists no deadline for the payment action, but
the payment action must be performed before leaving the parking area with
one’s car. This event should be specified in the WHERE part used to describe
?event3.

In literature there exist approaches, such as [17], in which they used temporal
logics such as Linear Temporal Logic (LTL) for representing time-constrained
norms. Nevertheless, using these approaches present some difficulties when it
comes to the automatic reasoning on the evolution of the normative state from
activated to fulfilled or violated.

4.5 Specific and General Deontic Relations

In the T-Norms model, a norm can create several deontic relations when the
activation condition of the norm is satisfied. Such deontic relations may belong
to one of the following two categories: specific deontic relations and general
deontic relations.

A specific deontic relation is generated, when the regulated action should be
performed by a specific agent, e.g. in Norm1, for each vehicle entering into the
limited traffic area an obligation to pay for the owner of the vehicle is generated.
In the specific deontic relations, the debtor, the owner of the vehicle, is known.
Therefore, in case of any violation, the system can recognize who violated the
deontic relation. The specific deontic relations generated by Norm1 have a debtor
property that connects the deontic relation with the agent that is the owner of
the vehicle: ASSERT ... debtor(?dr, ?agent).... This property has to be inserted
in the ASSERT part of the norm for all those norms that generate specific deontic
relations.

The second type of deontic relations is the general deontic relations. The
main difference between general deontic relations and specific deontic relations
is that in the first one we do not have any knowledge about the debtor of the class
of actions regulated by the norm and the action can be performed by a set of
agents, for example in Norm2 by all the people registered in one library. For that
reason, we cannot have any predefined estimation about which agent is going to
violate or fulfill the deontic relation. It is possible to have many violations and
many fulfillments of the same deontic relation. For example Norm2 is activated
for every new distribution of a DVD. The general deontic relation created by
the activation of Norm2 regulates the actions of lending such a DVD by all the
Italian libraries, the debtor is not one specific agent.

Another significant difference between OWL-POLAR and the T-Norm model
is in formalizing norms that generates general deontic relations. In OWL-POLAR
a policy can only be activated for a specific agent therefore the type of norms
that when activated regulate the actions of a set of agents cannot be represented.
This is due to the design choice to propose a model for reasoning on policies that
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does not create deontic relations. In ODRL it not specified the mechanism for
reasoning on policies activations.

5 Conclusions

In this paper, we introduced a methodology that explains how a norm designer
can formalize norms written in a natural language into a machine-readable for-
mat by understanding the types of the norms and choosing the proper model.
As it is discussed in the previous section the norm can be: (i) a norm with or
without an activation condition; (ii) if there is an activation condition it can be
represented by a class of events or by a state of affairs; (iii) a norm can express
obligations or a prohibitions; (iv) a norm can regulate a class of actions that
is time constrained or not; (v) finally a norm can generate specific or general
deontic relations. In our future works we plan to extend the methodology by
discussing the formalization of exceptions to norms and in particular of permis-
sions and exemptions and the definition of institutional powers for manipulating
norms.
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Abstract. Designing and implementing explainable systems is seen as
the next step towards increasing user trust in, acceptance of and reliance
on Artificial Intelligence (AI) systems. While explaining choices made
by black-box algorithms such as machine learning and deep learning has
occupied most of the limelight, systems that attempt to explain decisions
(even simple ones) in the context of social choice are steadily catching
up. In this paper, we provide a comprehensive survey of explainability
in mechanism design, a domain characterized by economically motivated
agents and often having no single choice that maximizes all individual
utility functions. We discuss the main properties and goals of explain-
ability in mechanism design, distinguishing them from those of Explain-
able AI in general. This discussion is followed by a thorough review of
the challenges one may face when working on Explainable Mechanism
Design and propose a few solution concepts to those.

Keywords: Explainability · Mechanism design · Justification

1 Introduction

Intelligent systems and automated decision-making are replacing and enhanc-
ing human decision-making nowadays to the extent that people are increasingly
reliant on them [42]. Despite the increased presence of such systems, people are
not often aware that they are interacting with an AI-based system. Recognizing
the need for transparency in this evolving policy and technology ecosystem, the
ACM U.S. Public Policy Council (USACM) and ACM Europe Council Policy
Committee (EUACM) codified a set of principles such as awareness, explain-
ability, accountability, validation and testing to address this [20]. Among which,
Explainability, which could be understood as a description in some form of the
functioning of the system, has gained immense traction in the recent past.

Due to their opacity, domains with black-box algorithms like machine learn-
ing and deep learning have been extensively researched in the context of explain-
ability. However, the need for explainability goes far beyond black-box algo-
rithms. For example in various multi-agent systems (MAS), where agents are
self-interested, commonly arises a need to aggregate private preferences such as
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Baumeister and J. Rothe (Eds.): EUMAS 2022, LNAI 13442, pp. 364–382, 2022.
https://doi.org/10.1007/978-3-031-20614-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20614-6_21&domain=pdf
https://doi.org/10.1007/978-3-031-20614-6_21


Explainability in Mechanism Design: Recent Advances and the Road Ahead 365

availability, budget constraints and geographical location of several agents into
a collective decision in a socially desirable way. Mechanism design, an impor-
tant tool in economics and computer science, is one such research topic which
is concerned with the development of a mechanism that takes into considera-
tion the preferences of selfish and intelligent agents exhibiting strategic behavior
while adhering to norms such as envy-freeness, budget-balancing and pareto-
optimality [57]. The applications of mechanism design can be found in various
real-world and, in many cases, high-impact applications such as elections, rent
division, resource allocation, and stable matching [28,57].

Regardless of their extensive usage in the real-world, there is a renewed inter-
est in designing and analyzing mechanisms to align with human values. This
includes re-designing existing mechanisms to accommodate human preferences
[18], viewing existing practices for inclusive housing allocation from a game-
theoretic perspective [8], empirical studies on human behavior [66], using the
insights from empirical analyses to re-frame a mechanism [52], and devising
algorithms to justify the decision of a mechanism [9]. Explaining the results to
human participants is a natural and complementary extension to the pursuit of
designing mechanisms that are more “understandable” to humans.

Nevertheless, the road to Explainable Mechanism Design systems is replete
with its own share of hurdles. One key element in providing an explanation in
such domains is the goal of the explanation and the measures of its success—
whereas with a single user the system’s goal is known, hence the explanation aims
to improve her recognition of the optimality of the choice made, in settings of
mechanism design, a user does not always know the system’s goals since they may
depend on other agents’ preferences. This focus on preference aggregation of mul-
tiple agents, often associated with conflicting goals, may lead to a blatant compro-
mise of the preferences of some of them. The explanations should therefore aim to
increase user satisfaction by taking into account the system’s decision, the user’s
and the other agents’ preferences, the environment settings, and properties such
as fairness, envy and privacy [29]. In addition to the above intricacies, the presence
of domains such as voting, scheduling and resource allocation in popular culture,
without the necessity to be theoretically aware, has led to people forming their
own irrational opinions which the explanations have to uproot [16,38,67].

We also note that even cases where social choice is merely a particular step in
a multi-stage decision making process carried out by an agent making decisions
on behalf of humans, call for Explainable Mechanism Design. This can hold even
when the use of mechanism design is not explicit. Examples of such settings
include algorithmic hiring and virtual democracy (an approach to automated
decision making) which is used in autonomous vehicles and kidney exchanges to
automate moral decisions, and recommendation systems to allocate food dona-
tions to recepient organizations [18,36,49,62].

In this survey, we provide a comprehensive summary of the various threads
of explainability in mechanism design. We note that while the broad theme
of explainability translates to the same meaning with respect to both machine
learning and mechanism design, there are a few differences between the premises
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of the two fields in terms of what leads up to generating explanations. In partic-
ular, we first provide a comparison between Explainable Mechanism Design and
Explainable AI (XAI) with respect to the taxonomy, the purpose of explanations
and who the explainees are. We then outline the methods of generating explana-
tions in mechanism design. Finally, we elaborate on the challenges of conducting
laboratory experiments on explainability in mechanism design and shed light on
solution concepts combining insights from XAI and behavioral studies.

2 Mechanism Design

Various definitions for mechanism design have been suggested over the years
[47,53]. Essentially, a mechanism can be seen as a “communication system”
where the participants send messages to each other and/or to a “message center”
and every collection of messages is assigned an outcome based on a pre-specified
rule [25]. These messages are characterized by private information such as utility
from an allocation (in rent division), preference over a set of candidates (in
social choice theory), or willingness to pay for a good (in auctions). Thus, the
mechanism is analogous to a machine that collects, processes and aggregates the
private information of several agents in order to reach a desirable social outcome.
In most cases the agents are self-interested and rational, and care only about
maximizing their private utility with no guarantee that they will tell the truth.
Therefore, a desired property of a mechanism is that the agents have no strategic
incentive to deviate from truth-telling [33]. A mechanism satisfying this property
is considered incentive-compatible, as every participating agent achieves the best
outcome by reporting her true preferences [33].

Since incentive-compatibility is a desired feature, most mechanisms are
designed to be incentive-compatible. Hence, even though truth-telling might
fetch the least utility, say not winning the Vickrey-Clarke-Groves (VCG) auction
[33], it is the best response for an agent in most mechanisms. However, as we
observe in Sect. 7, due to repeated interactions, humans may be prone to their
own biases. Explanations could be a tool to mitigate user biases as well.

The two main branches of designing mechanisms are the axiomatic branch
and the Bayesian branch [14]. In the axiomatic branch, the solution is supposed
to satisfy a set of desired properties called axioms. Axioms are normative ele-
ments designed to conceptualize notions of reason such as fairness, justice and
efficiency. Examples of such axioms include envy-freeness and pareto-optimality.
In the Bayesian branch the solution achieves an optimal value for a given objec-
tive function such as expected revenue or projected loss.

3 Motivations for Explainable Mechanism Design

Consider the example of a rent division problem with 3 housemates, 3 rooms with
a total rent of $3. Housemate i values room i at $3 and the other two rooms
at $0. One possible solution to this problem is to assign room 1 to housemate
1 at $3 and rooms 2 and 3 to housemates 2 and 3 for free. Even though from
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an inter-personal perspective, this solution seems blatantly unfair to housemate
1, it is an envy-free solution, hence theoretically acceptable. Housemate 1 is
indifferent between the three rooms, given their cost, while housemates 2 and 3
are overjoyed [19]. While this is an overblown depiction of the problem with a
rent division setting which has seen an immense improvement in the solutions
proposed over the years [19], it is sufficient to illustrate the complexity with
respect to devising explanations in mechanism design settings.

As explained in the former section, solutions in mechanism design are
obtained by aggregating the preferences of several agents. The nature of the prob-
lem necessitates a “social approach” where the solution is expected to aggregate
said preferences in some acceptable manner. This can be achieved by mandating
the solution to adhere to certain desirable criteria that are egalitarian in nature,
maximizing a criterion of social welfare or using any other method that appre-
ciates the social nature of the problem. The need to balance the preferences of
several agents, which could be conflicting in nature might result in the solution
not being in favor of a few of them. Multi-user Privacy Conflict due to vary-
ing privacy preferences of owners of shared content [43], multi-attribute settings
such as team formation where the solution might not adhere to the preferences
of all of the agents with respect to every attribute [21] and settings such as the
classical “glove game” where the solution is non-intuitive yet theoretically sound
[48] are other real-life examples of mechanism design that necessitate a nuanced
approach to obtain the solution as well as to devise explanations.

In addition to the social nature of the problem, solutions in mechanism design
face two hurdles. First, the issue of what is socially acceptable can vary according
to perception, context and domain which can result in multiple solutions for the
same problem. For example, in social choice theory, there are multiple voting
rules due to the absence of a unique voting rule that satisfies Arrow’s mandatory
principles of fairness [5]. The second problem which is a consequence of the
first, is that it is easy for the user to challenge the solution. This requires the
explanations to not only elaborate on how good the solution is but also how
problematic another solution is.

This is in sharp contrast with other domains such as machine learning, plan-
ning and recommender systems where a solution, good or bad, results from a
definite and often complicated algorithm which needs to be broken down for
user understanding [15,42,69]. While solutions in other settings can also rely
on metrics such as accuracy, the absence of a unique algorithm in mechanism
design settings makes this problem hard as well. Hence, instead of arguing on the
theoretical accuracy of the decision or how it results from a particular algorithm
which is a common trait in the aforementioned domains, the focus of explana-
tions in mechanism design should be on arguing how the decision is “good” in
its social context and how the preferences of the agents have led to the solution.

4 Explainable Mechanism Design Versus XAI

While both Explainable Mechanism Design and XAI aim to explain certain deci-
sions made by the system, in retrospect, there are several factors differentiating
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the two. Owing to the differences in the domains and the solution concepts,
there is an obvious difference in the nature of explanations offered in Explain-
able Mechanism Design and XAI. One way to reason about the differences in the
nature of the explanation to be offered, is by considering the differences in the
taxonomy to be used, the explainee and the goals of the explanations. Hence,
we focus our comparison in these aspects. Since XAI has become a well estab-
lished research area, whereas Explainable Mechanism Design is a newly emerging
field, we use the first to lead the discussion, mapping and contrasting equivalent
notions of Explainability in Mechanism Design accordingly.

4.1 Taxonomy

The common types of Explanations that are found in Explainability Studies
are Explanations, Justifications and Interpretations. With respect to mechanism
design, the most relevant and consequently most researched capability is Jus-
tifiability. Justifications deal with explaining the system’s decision in terms of
acceptable societal norms [32]. These norms (i.e. axioms that formalize desirable
social concepts such as fairness, justice and efficiency) are the foundation of many
mechanisms. Hence they are natural and, in many cases, effective contenders for
explanations [9,48,57].

While there is no consensus on what constitutes an Explanation in mechanism
design, we adopt the idea proposed by Langley [32], who states that an intelligent
system exhibits explainable agency if it can provide, on request, the reasons for
its activities. Still, the extent of research dedicated to this capability is somehow
limited (see Table 1 later on). As for Interpretability, this notion is completely
absent from Explainable Mechanism Design.

For example, in the domain of fair division, explaining the decision by high-
lighting how the decision is envy-free is a Justification [35]. However, comparing
the maximin solution (the solution that maximizes the minimum utility for every
player thus resulting in the least disparity) to an arbitrary envy-free solution to
demonstrate the superiority of the former solution amounts to an Explanation
[19].

However, in XAI, the relationship of Explanations and Justifications to the
algorithm are reversed. Here, Explanations act as an accurate proxy of the model
while still being understandable to the human users [4] and Justifications defend
the decision of the algorithm by explaining why it is a good one without neces-
sarily focusing on how the decision was made [59]. While nearly absent from
Explainable Mechanism Design, Interpretability which aims to enhance user
understanding and comprehension of the model’s decision-making process and
predictions [42] through Interpretations [59] is rigourously researched in XAI. It
is also interesting to note that Justifiability is the most researched capability in
Explainable Mechanism Design since there is a need to show how the decision
abides by desirable social norms while the need to explain the functioning of
black-box nature of the algorithms has led to Explainability and Interpretability
enjoying the most attention from the XAI research community.
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4.2 Explanation Purpose

Explanations may be provided for various purposes and goals, with partial equiv-
alences between Explainable Mechanism Design and XAI.

Appreciating System Decision-Making. In Explainable Mechanism Design, an
appreciation of the system’s decision translates to understanding how the pref-
erences of the different agents are combined to obtain a collective decision [9].
This is akin to understanding how different features contribute to the output
in a machine learning model [31], which is the focus of XAI. Still, as explained
in Sect. 3, the task of increasing user appreciation of the system’s decision mak-
ing is more challenging in mechanism-design settings, as decisions need to be
explained in their wider social context and are often plagued with impossibility
theorems [5,60].

Improving User Trust and Reliability. With the decision depending on the pref-
erences of several agents, dissatisfaction is an inevitable evil in mechanism design
which might affect the user’s trust and reliability. The explanations presented
thus need to argue about the legitimacy of the decision and how, even if the deci-
sion is unfair to a particular agent, the mechanism as a whole has adhered to
mandatory principles of fairness and the dissatisfied agent needs to make peace
with it [29]. In fact, as demonstrated in the work of Suryanarayana et al. [65], it
is often the explanations provided to those participants for whom the winning
candidate is the least preferred that are the most impactful. In XAI, unfavor-
able situations are also present (e.g., rejection of a loan application), however
the prospect of improving the odds of the decision being in her favor through
Counterfactual Explanations exists [44]. This, unfortunately, cannot be achieved
in Explainable Mechanism Design.

Ensuring Accuracy of Decision-Making. In mechanism design, explanations can
serve as a tool for the verification of results in order to ensure that the decision
was made under a set of rules consistently applied in each setting [7]. This some-
how resembles the use of XAI as a tool for bias mitigation and fairness assessment
[42] in cases where datasets are potentially biased and decision-making might be
discriminatory.

4.3 The Explainee

The nature and mode of the explanation to be offered depend on who the
explainee is and the purpose of providing explanations to her [59]. One of the
main recipients of explanations in Explainable Mechanism Design are the end
users or participants as they are the ones affected by the decision made.1 Unlike
end users in XAI who are typically passive (as the system is making the decision
for them, based on their data) users receiving explanations in mechanism design
play an active role in the collective decision process taking place, by report-
ing their preferences. Examples of such explainees include a researcher whose

1 In many cases the need to provide users with proper explanations is dictated by the
regulator, e.g., in the case of GDPR guidelines [29].
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grant proposal was rejected [7], one among many roommates who is assigned a
particular room and rent based on her actively reported (and hopefully true)
preferences [19] or, a user in a hybrid domain like algorithmic hiring where a
social choice function is applied in some part of the overall algorithm [62].

Two classes of explainees in Explainable Mechanism Design enjoy some simi-
larity with those of XAI. The first one is the Decision Maker who does not need
to be an expert in mechanism design but has to have relevant knowledge of the
domain in order to make informed decisions. This could include the employees of
a refugee resettlement agency who need to be able to override the decision pro-
posed by the algorithm [2] or the members of a committee who cannot decide on
a specific voting rule and base the election on a set of desired properties (axioms)
[9]. The Decision Makers are similar to Data Experts in XAI who use explana-
tions to visualize, inspect, tune and select models [42]. The second class is that
of an External Entity, similar to its namesake in XAI [59], who is someone not
directly interacting with the system, say an auditor who needs to ensure that
the decisions made adhere to a set of rules and that there is no violation [7]. In
both classes of explainees, the requirements of the explanations to be produced
in XAI and Explainable Mechanism Design overlap.

5 Explanation Concepts

As with XAI [42], Explainable AI Planning [15] and Explainable Recommen-
dation [69], we provide a brief overview of the theoretical aspects (natural con-
tenders) and behavioral aspects (necessary for human comprehension) of the
explanations available in literature. Table 1 depicts a breakdown of the surveyed
papers with respect to the different concepts and the evaluation methods dis-
cussed in the next section.

5.1 Norms Versus Attributes

As mentioned earlier, mechanism design has two defining characteristics - the
private information (such as preference and cost) of the agents participating in
it and the requirement for the solution to recognize its social nature. Both of
these can be used to devise explanations. Norms that formalize the desirable
social traits are the foundation of solutions in mechanism design and can hence
be used to extol its virtues. Attributes, on the other hand, quantify the stake a
given agent has in the mechanism. Explanations that relate the solution to an
agent’s individual stakes can be effective in helping her appreciate the impact
of the solution from a selfish perspective and thus convince her. For example,
convincing a housemate in a rent division setting that the decision is envy-free
amounts to a normatively characterized explanation [35] while the comparison of
the maximin (the solution that maximizes the minimum utility for every player
thus resulting in the least disparity) solution to an arbitrary envy-free solution to
demonstrate the lower disparity achieved by the former solution is an attributive
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Table 1. Surveyed literature organized by Explanation Concepts – Normative Char-
acterization (NO), Attributive (AT), Contrastive (CO), Argumentative (AR), Visual-
ization (VI) and Evaluation Methods – Theoretical Properties (TP), Computational
Complexity (CC), Empirical Analysis (EA) and User Studies (US).

Explanation Concepts and Evaluation Methods

Work Setting NO AT CO AR VI TP CC EA US

Ahani et al. [2] Refugee Resettle-
ment

� � �

Belahcene et al. [7] Approval Sorting � � � �
Boixel and Endriss [9] Voting � � �
Boixel et al. [10] Voting � �
Boixel and de Haan [12] Voting � �
Cailloux and Endriss [13] Voting � � �
Gal et al. [19] Rent Division � � � � �
Georgara et al. [21] Team Formation � � �
Kirsten and Cailloux [26] Voting � � � �
Knapp [27] Matching Theory � � �
Lee et al. [35] Rent Division � � � � �
Mosca and Such [43] Multi-User Pri-

vacy Conflict
� � � � �

Nardi et al. [46] Voting � � �
Nizri et al. [48] Payoff Allocation � �
Peters et al. [54] Voting � � � �
Peters et al. [55] Voting � � �
Pozanco et al. [56] Scheduling � � �
Suryanarayana et al. [65] Voting � � �
Zahedi et al. [68] Task Allocation � � � � �

explanation [19]. In the following paragraphs, we elaborate on diverse settings
where both norms and attributes have been used to devise explanations.

Normative Characterization. Formally in mechanism design, axioms are used to
capture the social norms that the solution is expected to adhere to. Procaccia [57]
advocates for the use of axioms to not only be used for designing a mechanism
but also to justify its solutions with an example of the not-for-profit website
Spliddit [23]. Justifying an outcome using a set of agreed upon axioms, without
having to depend on a particular rule has found a special appeal in the domain
of social choice theory, where no unique outcome can be obtained while following
fair voting procedures [5].

In social choice theory, given a voting profile, Cailloux and Endriss [13] devel-
oped a logic-based language to construct arguments for and against specific out-
comes. Using the elements of the proposed language, an algorithm to justify the
Borda outcome given a voting profile was developed. Building on said approach,
Boixel and Endriss [9] developed a formal notion of justification based on the
definition of Langley [32] and an algorithm based on constraint programming
to compute the justifications using any set of axioms. To counter the compu-
tational complexity of the aforementioned algorithm [12], Nardi et al. [46] used
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a combination of instance graphs and state-of-the-art SAT solvers to design an
algorithm that can provide viable justifications. To enhance the readability of
the justifications using the axiomatic approach, Boixel et al. [10] developed a
tableau-based calculus. Using a combination of SAT solving and Answer Set
Programming to implement the calculus, the authors provide an insight into
how the justifications look.

The evolution from Boixel and Endriss [9] to Boixel et al. [10] helps visual-
ize the transformation from a non-automated procedure to an automated pro-
cedure, from unstructured justifications to structured justifications and, from
manual post processing to obtain the justifications to tableau-based rendering
of the justifications for enhanced readability. A demonstration summarizing the
application of the aforementioned techniques proposed [9,10,45,46] to find justi-
fications given a normative basis can be found in Boixel et al. [11]. Furthermore,
the approach used by Boixel and Endriss [9] has been extended to matching the-
ory [27] where an algorithm is designed to justify outcomes that are of interest
to a given agent (local outcomes) instead of the whole outcome.

The axiomatic characterization is also used to derive justifications for the
results of approval voting [55] and non-compensatory approval sorting [7]. In the
broader sense, non-compensatory approval sorting and voting are concerned with
aggregating collective information into a single decision. The reviewed literature
on justifying the results of a voting mechanism reveal all of the preference ballots.
However, Belahcene et al. [7] show that the classification based on the binary
judgements of the participants is compliant with the decision making process by
revealing minimal information that is backed by theoretical properties.

One of the key elements used in some of the papers is Automated Reasoning
(AR) using SAT or SMT solvers [7,10,45]. This combination of AR with social
choice theory can be used to identify if a voting rule satisfies a particular axiom
(thus arguing against it) [26] as well as verifying the correctness of the system
output [12].

User studies to test axiom-based explanations were also successful in increas-
ing satisfaction. Suryanarayana et al. [65] tested explanations based on features
constructed from axioms in the domain of ranked-choice voting while Nizri et al.
[48] used the axiomatic characterization of Shapley value [64] to come up with
explanations in the domain of fair division. The research carried out by Nizri
et al. [48] is significant in two ways. First, the solution that is being justified, i.e.
Shapley value, satisfies all of the desired properties of fair division [24]. Second,
the axiomatic characterization is not only used to justify the solution but also
to come up with the algorithm to generate explanations. The authors decom-
pose the coalitional game into sub-games and generate explanations for each of
these games based on the additivity axiom which states that the sum of Shapley
allocations in each sub-game is equal to the Shapley allocation in the original
game. The explanations were successful in convincing the participants that the
allocation was fair.

An exception in terms of the norms used can be found in the work of Mosca
and Such [43] in the domain of Multiuser Privacy who propose an explainable
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agent called ELVIRA that collaborates with other ELVIRA agents to identify the
optimal sharing policy for shared content. Here, instead of axioms, the authors
use a socio-cultural theory of human values by Schwartz [63] known as the the-
ory of basic values. The explanations however, are based on both values and
individual attributes, i.e. the privacy preferences of the participants.

Attributive Explanation. If norms capture societal acceptance, attributes quan-
tify personal interests. Hence, explanations that relate to the individual
attributes of the participants have also been fruitful in increasing participant
satisfaction

Zahedi et al. [68] compare the cost of a proposed allocation to the cost of
the counterfactual allocation proposed by the participant. Ahani et al. [2] depict
the change in employment score if the refugee allocation proposed by the algo-
rithm needs to be changed. A tangential direction termed priceability where
voters spend money on buying candidates which forms an intuitive explanation
for the committee selected in approval-based committee elections was proposed
by Peters et al. [54]. Explaining outcomes based on individual attributes enables
the comparison of solutions that are equally good in terms of theoretical require-
ments. For example, Gal et al. [19] explain their optimal rent division solution
by comparing it to another envy-free rent division.

Several explanation generation methods are procedure-agnostic i.e., do not
focus on the procedure that leads to the outcome. Here, a framework is devel-
oped to encode the different facets of the problems such as explanations, queries
and constraints. Notable examples include encoding the Justification Genera-
tion Problem for collective decisions into a Constraint Network [9], developing
a generic procedure for providing justifications for Team Formation Algorithm
(TFA) while keeping the TFA intact [21] and using Mixed-Integer Linear Pro-
gramming (MILP) to explain why the preferences of a participants were not sat-
isfied [56] while designing a preference-driven schedule. While using such frame-
works simplifies the process of finding an explanation, adequate care needs to be
taken to convert the explanations provided by the system into a readable form.
One solution to this problem is using explanation templates [21,56].

5.2 Catering to the Human Mind

Understanding how human-beings explain and respond to explanations can
reveal important insights into how explanations of a system can be presented.
Two such behavioral modes of explanations that are considered effective and that
have found applications in mechanism design are Contrastive explanations and
Argumentative explanations [41]. Given the fact that mechanism design settings
are social in nature, it is imperative that the behavioral nature of the explana-
tions are attended to. Most of the papers that use a behavioral element in their
explanations incorporate an element of social-interaction [41], which is necessary
for a layman to comprehend the functioning of a complicated AI-based system.

As mentioned earlier, mechanism design settings suffer from the issues of
familiarity, non-uniqueness of the solution and the solution not being in favor
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of the participants. This provides the perfect ground for the participants to
challenge the solution. Identifying this, there is a great deal of interest in devising
contrastive explanations that provide reasons for why a particular event did not
occur as opposed to why a particular event did [41]. From Table 1, we can see
that in nearly all of the cases where the explanations are based on the individual
attributes of the agents, they are contrastive. In these scenarios, contrastive
explanations can help the participant compare the difference in her utility across
different solutions and thus appreciate the decision better.

In Suryanarayana et al. [65], a contrastive explanation comparing the winning
candidate to the participant’s most preferred candidate were found to increase
user satisfaction and acceptance the most when the winning candidate was the
least preferred option of the participant. Similarly, in Mosca and Such [43], con-
trastive explanations were found to be more appealing than general descriptive
explanations when the recommended solution was different from the partici-
pant’s preference. Contrastive explanations are also especially useful in multi-
attribute/multi-preference settings where the outcome may not align with all of
the preferences of any participant. Other notable studies that uses the contrastive
approach are of Georgara et al. [21] that provide explanations for both collabo-
ration queries (questioning team formation) and assignment queries (challenging
the assignment of teams and individuals to tasks) at individual, local and global
levels, and the work of Pozanco et al. [56] which provides contrastive explana-
tions regarding the unsatisfied preferences of the participants while ensuring that
the explanation is relevant to the participant.

As far as argumentation is concerned, the presence of umpteen conflicting
axioms is an encouraging premise to build an argumentation framework. This is
demonstrated by Cailloux and Endriss [13] who developed a formal framework for
presenting arguments favoring a particular outcome. Zahedi et al. [68] present the
case for the a suggested task allocation by demonstrating how a negotiation based
on the counterfactual task allocation proposed by the participant can lead to a
higher cost. Mosca and Such [43] base their explanation on the argumentation
scheme used to obtain the optimal solution. Both in Zahedi et al. [68] and Mosca
and Such [43] argumentation is used for devising the optimal solution which was
then organically extended to generating explanations in favor of the outcome.

Visualization is a tool that is often viewed as a less technical means of convey-
ing complex theoretical concepts [6]. Human-in-the-loop systems are a natural
extension to mechanism design that caters to capturing reality better. Here,
the algorithms have the capacity to process large volumes of data while expert
insights are required to handle the inherent uncertainty of the real world. Hence,
in addition to enabling easier comparisons [19], visual tools can also be used to
support human decision-making.

Notable illustrations of visualization can be found in the case of the resettle-
ment agency HIAS that is involved in resettlement of refugees into communities
in the USA. The matching software AnnieTM MOORE enables the employees
to override the proposed allocation by revealing the updated statistics so that
no change will have a grievous impact [2].
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Explaining the outcome through effective visualizations can aid in enhancing
the appreciation of fairness, a theoretical notion that is the bread and butter of
mechanism design, as was observed by Gal et al. [19]. While Ahani et al. [2] cap-
ture practical elements such as indivisible families of refugees, batching and, an
unknown number of refugee arrivals in the context of refugee resettlement, Gal
et al. [19] provide the fairest division of rent subject to envy-freeness. In both
of these cases, the practical relevance and efficacy of the proposed algorithm is
demonstrated with the help of explanations. Hence, user studies with explana-
tions can be seen as a complementary extension to establishing the superiority of
novel algorithms while comparing them to existing state-of-the-art algorithms.
It is also interesting to note that users of the website Spliddit, the platform from
which data was used by Gal et al. [19], are provided with a detailed explanation
on why the proposed rent division is fair, thus signifying the utility of explana-
tions in everyday usage. Lee et al. [35] used visualizations to both provide an
elaborate breakdown of the process as well as let the participant experiment with
different values in the website Spliddit, to observe the changes. When the partic-
ipants were shown only their outcome, they perceived the results as unfair while
when they were shown the preferences and outcomes for all of the participants
in the group, the participants perceived the result as fair.

From Table 1 it can be observed that Normative Characterization and Con-
trastive Explanations are extensively used in comparison to their other theoret-
ical and behavioral counterparts, respectively.

6 Evaluation Methods

There are several dimensions for evaluating methods of Explainable Mechanism
Design from theoretical as well as practical perspectives. We provide a descrip-
tion on each of them in the following paragraphs.

Theoretical Properties. Building explanations on the foundation of concepts like
Axiomatic Characterization, Logic-based Programming and Automated Reason-
ing necessitates these methods to be supported by rigid theoretical norms. Exam-
ples include proof of an explanation given the problem instance [13,68], unique-
ness of the outcome and justification given a voting profile and normative basis
[9], the correctness of a tableau-based calculus for generating explanations [10]
and an upper bound on the number of steps required to generate justifications
to ensure readability [55].

Computational Complexity. Practical feasibility of any explanation-generation
method is tantamount to its real-life application. Very few authors have
addressed this aspect in their work. Exceptional examples include, Peters et al.
[54] that demonstrate the polynomial-time verifiability of their proposed heuris-
tic algorithm. Boixel and de Haan [12] prove the intractability of finding and
generating justifications given a normative basis.

Empirical Analysis. Empirical insights act as an intermediate between theoret-
ical guarantees and experimental results. Running the explainability studies on
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real or synthetic datasets can help compare the running times of several expla-
nation generation methods and pick the fastest one [45], help understand the
step-by-step breakdown of the explanation generation method [55], disclose inter-
esting insights about different statistical cultures (e.g., probability distribution
of election profiles) that might help in the development of personalized explana-
tions [45], and identify and evaluate metrics for the evaluation of explanation-
generation methods before deploying them in real-time studies [21].

User Studies. User studies are an effective means for examining the consequences
of explanations on aspects such as reliability, satisfaction, trust and conviction.
While it is always desirable to conduct the experiment with the actual partic-
ipants of a mechanism as in the case of Spliddit [19], experiments conducted
with synthetic data using platforms such as Amazon Mechanical Turk (AMT)
or laboratory settings are a great starting point [48,65].

In addition to the obvious purpose of helping determine the impact of expla-
nations, user studies can also be used to provide insights on curating effective
explanations. For example, Suryanarayana et al. [65] hinted at a user bias in
favor of plurality voting rule while Mosca and Such [43] used the experimental
insights to devise a hybrid explanation framework and improve the wording of
the explanations.

From Table 1 we can observe that there is a good mix of all of the evalua-
tion methods in the literature. However, performing Empirical Evaluation and
User Studies to evaluate explanation-generation methods in mechanism design
is challenging and we address this issue in detail in the next section.

7 Challenges and Possible Solutions

Despite the rapid increase in interest in explainable systems for mechanism
design, the progress made in this field is still far behind compared to XAI.
One of the main challenges is that of testing. As far as testing for the efficacy of
explanations is considered, the ideal premise would be testing with real users, as
in Spliddit [19] (where explainees are the actual renters in a rent division setting)
or in the work of Pozanco et al. [56] (where a real restrictive return to office sce-
nario due to the COVID-19 pandemic was tackled). However, the development
of such evaluations is expensive and users of such real-life settings are often
inaccessible to the research community. We therefore outline a few challenges in
designing nearly realistic experiments that can be conducted in laboratories or
platforms like AMT.

User Behavior. Human participants in a mechanism are poles apart from the
perfect agents modeled in theory and exhibit short-sighted and downright irra-
tional behavior. Instances of such behavior include reward divisions that adhere
to weaker axioms than those that characterize Shapley value [16], playing domi-
nated strategies in cooperative settings such as fair division and bargaining [30],
and performing manipulations that can be captured by simple heuristics [40].
Any social explanation [41] thus catering to the expected selfish interests, while
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the participants betray the same, may defeat the purpose of explanations. For
example, in an experiment conducted on human behavior in voting, Tal et al.
[66] report that the participants exhibit herding by disregarding their most pre-
ferred candidate and voting for the candidate with the most first place votes
in a predictive poll, even though it is the least optimal choice for them. In this
case, framing a contrastive explanation comparing the participant’s most pre-
ferred candidate and the winning candidate (which might be the candidate the
participant voted for) would be counter-productive.

A natural solution to the problem of mismatched behavior is building pre-
dictive models using behavioral, game-theoretic and machine learning tools.
Examples include models for predicting human decisions in plurality voting [17],
approval voting [61] and auctions [50]. The benefits of such models are twofold.
First, it might help the explanations to be more selective [41] by shedding light
on what is important to the explainee. For example, in the game-theoretic model
of human behavior in Doodle Polls [52], the concept of Social Bonus is proposed
in order to reason why voters vote for unpopular slots. Consequently, contrastive
explanations comparing the winning candidates to the unpopular ones can be
discarded as the latter are insignificant to the voter.

The second and rather consequential utility from such models is that they
might help identify the sub-optimal manipulations of the participants which can
be contrasted with the optimal choice. In that context, an interesting hypothesis
to investigate is if and what kind of explanations can bring irrational humans
closer to the rational agents modeled in literature. This will open new avenues for
Interpretability in mechanism design which has not received as much attention
as in the XAI literature [59].

User Biases. The prevelance of mechanisms in society has led to humans forming
their own prejudices such as favoritism for plurality voting rule [38,55], altru-
ism towards non-performing participants [16] and a disdain towards algorithmic
decisions as being far from reality [34,39,67].

Long before building explainable systems was considered, researchers invested
efforts into manually explaining technical jargon to non-expert participants.
Notable examples include acquainting participants of a centipede game with
backward induction [39] and measuring the frequency of violation of fairness
criteria in voting [38]. Coupling these ideas with biases such as automation bias,
where a user believes that a computing system is more knowledgeable and “intel-
ligent” than it is, is a direction worth exploring [22]. In addition, comparing dif-
ferent modes of presenting explanations such as textual and visual, both of which
are extensively used in Explainable Recommender Systems [69], can strengthen
the efficacy of explanations. It is also noteworthy that human intelligence can be
leveraged to not only rate explanations but also to provide explanations, thus
providing valuable insights into human factors that might be useful for generat-
ing convincing explanations [56,65] .

Lack of Data. A useful tool in bridging the gap between idealized agent behav-
ior and flawed human behavior is empirical analysis and subsequent model-
ing of human participants in the different mechanism design settings. Also, as
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mentioned earlier, empirical analysis can act as an intermediate stage between
theoretical guarantees and user studies while revealing interesting insights.

However, there are not many datasets in the domains of Computational Social
Choice and Preference Reasoning publicly available [37]. Also, while collecting,
preserving and presenting data on private preferences, adequate care needs to
be taken to ensure that user privacy is preserved [29].

Naturally, the obvious solution to the lack of data is to develop tools for effi-
cient data collection. One such very useful collection of datasets in the domain of
Computational Social Choice is Preflib2 which was used by Nardi [45] to exam-
ine the practical utility of the proposed algorithm. However the process of data
collection is easier said than done. Replicating real-life settings in order to get
people to report their preferences, even manipulated ones, is a mammoth task.
Anonymizing data is an effective way to protect the privacy of the participants.
An alternate technique to preserve privacy was used by Gal et al. [19] where the
original valuations for the rooms were perturbed by an acceptable margin and
presented to the explainees.

Simulating Synthetic Environments. In order to evaluate the efficacy of expla-
nations, it is vital to have the participant interested in the explanations. In
mechanism design, these interests are captured by notions such as preferences,
utility and costs which are easy to conceptualize but difficult to replicate and/or
induce in lab experiments. XAI, even though tasked with explaining complex
algorithms, enjoys relatability with experiments such as image classification [51],
review classification [31] and selection of a competent agent [3]. This enables the
design of interactive experiments where explanations can be sneaked in without
being explicit, hence eliciting an organic response from the participant.

Inspired by the experimental design in XAI, gamification of the problems is a
good starting point. Tailoring games such as the centipede game for bargaining
[39] and share-the-loot game for resource allocation [16] to accommodate expla-
nations and with the reward tied to the performance of the participant is an
idea worth testing. The presence of a monetary reward inadvertently engrosses
the participant, thus eliciting a realistic response. Some other tested methods of
invoking user interest in synthetic lab experiments were done using the concept
of bonus from the winning candidate in ranked choice voting [65] and asking the
participant to imagine themselves in the setting and extracting their preferences
through meticulously designed questionnaires [43].

Another way to stimulate the interest of participants in explanations might be
to leverage the diversity of axioms to build argumentation systems augmented
with human input on how convincing the arguments are [58]. The conversion
from passive listeners of explanations to active debaters of arguments might
trigger a passionate yet honest response from the participants.

In addition to the above ideas, tools used in Social Psychology such as Exper-
imental Vignette Methodology (EVM) [1] and online testing methods like A/B
testing used in Explainable Recommendation [69] offer valid premises for devel-
oping tests for Explainable Mechanism Design.
2 https://www.preflib.org/.

https://www.preflib.org/
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8 Conclusion

In this paper, we survey explainability in mechanism design, provide an overall
picture of the various concepts around it and shed light on the challenges faced
by researchers in the domain.

While we do propose several workarounds to overcome the aforementioned
challenges, we emphasize that implementing each of these is a non-trivial task per
se and calls for collaborations between researchers in mechanism design, human-
agent interaction, software engineering, and psychology. We hope that both expe-
rienced as well as budding researchers find this survey helpful in designing and
improving explainability in mechanism design. We also envision a future where
designing mechanisms aligned with human values and Explainable Mechanism
Design complement each other.
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Abstract. Agents that focus only on achieving their own goals may cause
significant harm to society. As a result, when deciding which actions to per-
form, agents have to consider societal values and how their actions impact
these values—the ‘value alignment problem’. There is therefore a need to
integrate quantitative machine reasoning with an ability to reason about
qualitative human values. In this paper, we present a novel framework
for value-based reasoning that aims to bridge the gap between these two
modes of reasoning. In particular, our framework extends the theory of
grading to model how societal values can trade off with each other or with
the agent’s goals. Furthermore, our framework introduces the use of hyper-
real numbers to represent both quantitative and qualitative aspects of rea-
soning and help address the value alignment problem.

Keywords: Value alignment · Practical reasoning · Value based
reasoning

1 Introduction

Context. The creation of autonomous, intelligent and societally beneficial
agents is one of the chief aims of artificial intelligence research. To achieve this,
we must create agents that can intelligently reason about what they ought to do,
i.e. engage in the process of practical reasoning [23]. However, it is not enough for
such agents to achieve their own goals; agents that ignore their societal impact
may inadvertently cause significant societal harm. This problem – ensuring that
the actions of autonomous agents are beneficial to society – is called the value
alignment problem (VAP) [6].

What is beneficial to society (what is considered good, bad, etc.) is grounded
in the values the society upholds. Agents that take into account these values
in practical reasoning, are said to engage in value-based reasoning [1], wherein
encoding information about the relevant values typically requires human input.
For example, in a state of the art approach to solving the VAP – coopera-
tive inverse reinforcement learning (CIRL) [14] – the AI agent gradually learns

This work was supported by UKRI (EP/S023356/1) and EPSRC (EP/R033188/1).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Baumeister and J. Rothe (Eds.): EUMAS 2022, LNAI 13442, pp. 383–402, 2022.
https://doi.org/10.1007/978-3-031-20614-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20614-6_22&domain=pdf
https://doi.org/10.1007/978-3-031-20614-6_22


384 J. Szabo et al.

human preferences (i.e. human values) encoded in a utility function, and simulta-
neously acts so as to respect the thus-far learnt preferences. The learning process
not only involves passive observation of human behaviours, but interactive com-
munication, whereby the human teaches and instructs the AI agent, and the AI
agent questions the human. The effectiveness of such a strategy requires that
the agent be able to represent the human reasoning communicated to them and
incorporate it with their own more quantitatively orientated reasoning. On the
other hand, in the so-called debate game [15] – also proposed to address the VAP
– two AI agents exchange instrumental arguments for and against performing
certain actions, while evaluative judgment of these arguments is provided by a
human judge, thus accounting for human values. As a result, the most value-
aligned action is chosen as an outcome of human arbitration. For an agent to
be optimal in the debate game, they have to be able to anticipate how the
human judge evaluates their arguments, and thus need to accommodate value
based reasoning in their deliberations. These two approaches to addressing the
VAP thus point to the need to integrate human and machine reasoning; that
is to say, ‘to bridge the gap’ between the more fine-grained quantitative rea-
soning employed by machine learning based AI agents, and the coarser-grained,
qualitative aspects of value based reasoning employed by humans.

Existing formalisms and frameworks are either predominantly quantitative
or qualitative. Regarding the latter, we are interested in qualitative approaches
to value based reasoning; the paradigmatic instance being value-based argumen-
tation [2,4] and other works that build on [2,4]. In such approaches, actions
are judged based on whether they promote or demote a value, from a given
set of values that are related by a total order. The main advantage of these
qualitative approaches is that they are transparent and understandable. More-
over, qualitative representations are better suited for representing human prefer-
ences, especially under uncertainty [22]. However, note that the degree of promo-
tion/demotion, as well as the ordering between the values, is strictly qualitative.
As a result, such approaches are too rough-grained and cannot represent quan-
titative uncertainty or fine-grained trade-offs between various values.

By quantitative approaches, we primarily refer to those assigning each action
a utility (e.g. CIRL). Such a representation covers a wide range of approaches,
including machine learning, statistical approaches etc. Such methods have histor-
ically been very successful and can model fine-grained trade-offs and quantitative
uncertainty. However, they are often black-boxes, being difficult to interpret and
explain [13]. Moreover, quantitative approaches also cannot accurately represent
some ethical values, unlike qualitative approaches [21] (see Sect. 2.2).

Contributions. In this paper, we bridge the gap between qualitative and quan-
titative approaches by proposing a framework for value-based reasoning, based
on the theory of grading [3] and hyperreal numbers [24]. This framework allows
agents to represent and reason both with human values and utility functions.
Moreover, the agent can flexibly trade off human values and its utility function.

More precisely, our novel contributions are:

– applying the theory of grading to the problem of value-based reasoning;
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– applying the use of hyperreal numbers to the problem of value-based reasoning
and to the theory of grading;

– extending the theory of grading with the notion of evaluation facts and show
how this relates to the problem of evaluation aggregation;

– extending the theory of grading with the notion of weights;
– proposing a novel framework for value-based reasoning that incorporates the

above contributions.

1.1 Motivating Example

We now present an example that demonstrates the need for a formalism that
bridges the gap between quantitative and qualitative approaches. Moreover, we
reuse this example in later sections to showcase how an agent uses our formalism.

In a fictional near future a self-driving boat agent has two aims: 1) to learn
to drive at a speed that maximises its task-specific utility 2) to use value-based
reasoning to ensure value alignment. The boat can drive at any speed from 0
km/h to 100 km/h. The agent’s learnt utility function represents various non
explicitly value-based considerations, such as speediness, fuel consumption and
comfort. We assume that the expected utility is at a maximum when the speed
is 75 km/h and gradually reduces the further the agent deviates from this speed.

Moreover, there are other explicitly value-based considerations distinct from
the task utility. At speeds higher than 70 km/h, the ship sends vibrations that
affect sea animal behaviour by confusing their senses and thus possibly causing
their death. Consider that the fish close to the ship belong to a culturally signif-
icant, endangered species. In this case, we expect the agent to first minimise the
chance of these animals dying and only optimise the task utility as a secondary
consideration.

Now, consider a further complication: the passenger of the boat is stung by
a jellyfish. While not in danger, the passenger is in great pain and suffers from a
painful fit exactly every sixty minutes. Therefore, to minimise human suffering,
the boat needs to carry this passenger to land as fast as possible. However the
greater the speed, the more likelihood of causing harm to the fish.

It is not trivial matter to arbitrate as to which is worse: increasing the pain of
a human passenger or increasing the probability of killing endangered fish. More-
over, it is not clear how to factor for the qualitative priorities of the different val-
ues. Also, how can the agent trade-off these different qualitative priorities with the
finer-grained impacts of the actions? And how does the purely quantitative utility
function factor? In the remainder of this paper we seek to answer these questions.

2 Requirements

Next we derive specific requirements for bridging the gap between fine-grained
quantitative reasoning and the more coarse-grained value-based reasoning.
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2.1 Quantitative Reasoning

Utility functions are often the end result of intelligent deliberation by an agent.
In particular, in many problem domains, if some reasonable axioms (i.e. the von
Neumann-Morgenstern axioms) are satisfied, then the preferences of a rational
agent can be represented by a utility function [29]. As a result, machine learning
agents and many other kinds of rational AI agents are typically modelled as
optimising a utility function. Consequently, we require that 1) the agent be able
to use information given in the form of a utility function and 2) the agent use
this information in decision making. That is, we require utility compatibility.

2.2 Qualitative Reasoning

In value-based reasoning, the standard assumption is that there are multiple
values. There are two justifications for this: 1) values are distinct and cannot
be reduced to a single value, 2) values may not be distinct but reducing them
to a single value is not feasible in practice [9]. As a result, we require that
values are modelled separately and that value-based reasoning is formalised as
a multi-criteria decision problem.

Furthermore, in ethical decision making, we humans use a more qualitative
value-based reasoning [5]. Human understanding of what is right and what is
wrong is often abstract and vague [25]. As a result, ethical reasoning cannot
be fully represented by the certainty of a total ordering [12]. Consequently, we
require that the end product of value-based reasoning is a partial order over the
alternatives1.

Another characteristic of value-based reasoning is that it can be
non-Archimedean; we humans often make such evaluative judgments in our deci-
sion making. In this context non-Archimedean means a qualitative relationship
between two alternatives, where in any situation one alternative is preferred to
another, regardless of any quantitative considerations. For example, a commonly
held deontological principle is that the loss of a human life is a qualitative order
of magnitude worse than the loss of money2. In particular, this means that any
situation where a human loses their life is always worse than any other situation
where a human loses any amount money (but not their life). Such qualitative
orders of magnitude can be represented only by non-Archimedean quantities.
Therefore, we require that the formalism represent non-Archimedean quantities
so that we can represent value-based reasoning fully.

1 Note that this is a generalisation of the standard representation of value-based argu-
mentation, where the total order over values, combined with the strong assumption
that each action promotes exactly one value, yields a total order over the actions
[2]. By requiring only a partial order over the values, we can relax these underlying
strong assumptions.

2 As is characteristic of many non-consequentialist ethical theories [21].



Integrating Quantitative and Qualitative Reasoning for Value Alignment 387

2.3 Combining Quantitative and Qualitative Reasoning

Inspired by arguments from Bostrom [7] and Peterson [21], we
use hyperreal numbers – a non-Archimedean extension of real numbers – in our
proposed framework. In particular: 1) hyperreal numbers can represent any arith-
metic operation possible on real numbers3 and hence are compatible with utility
functions; 2) hyperreal numbers can represent non-Archimedean aspects of value-
based reasoning that real numbers cannot; and 3) hyperreal numbers can represent
the interplay between non-Archimedean quantities and real-valued numbers.

Furthermore, we use a grading-based model in our proposed framework.
Grades are a way to model preferences with a degree of ‘goodness’. This allows
us to model the degree of promotion/demotion of values by different actions.
Furthermore, in grading, the amount of information that we have is flexible: it
may be more qualitative or more quantitative. Finally, grade aggregation – the
process of how alternatives are ranked – takes multiple criteria into account and
returns a partial order.

3 Preliminaries

3.1 Hyperreal Numbers

Hyperreal numbers [16,24] are an extension of real numbers containing infinite
and infinitesimal quantities. The infinite number ω is such that it is greater than
any real number, no matter how large the real number may be, i.e. ω > 1+...+1,
for any finite number of terms. The infinitesimal number ε is defined as 1/ω and
is infinitely close to 0 (but does not equal 0). That is, for any positive real number
c, 0 < ε < c.

We can build the hyperreal numbers via the following rules:

– any real number is a hyperreal number;
– ω and ε are hyperreal numbers;
– the sum of any hyperreal numbers is a hyperreal number;
– the product of any hyperreal numbers is a hyperreal number;
– the dividend of any hyperreal numbers is a hyperreal number (but division

by zero is not allowed).

We denote the set of hyperreal numbers by R
∗.

One of the useful properties of the hyperreal numbers is the transfer principle
that states that any first-order statements about real numbers also apply to
the hyperreal numbers4. For example, because multiplication is commutative
for the real numbers (e.g., for any reals x, y, it is always true that xy = yx),
multiplication is also commutative for hyperreal numbers (for any hyperreals

3 This is because of the transfer principle. See Sect. 3.
4 However, second-order statements may not transfer to the hyperreals in the same

way. For example, the second order statement that there is no number x such that
1 + 1 + 1... < x doesn’t carry over to the hyperreals.
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x, y, it is always true that xy = yx). Because of this, hyperreal numbers behave
similarly to real numbers in many ways.

A hyperreal number may be infinitesimal, infinite or finite. A hyperreal num-
ber is infinitesimal when its absolute value is less than any positive real number.
A hyperreal number is infinite when its absolute value is greater than any pos-
itive real number. Finally, a hyperreal number is finite when it is not infinite,
that is, when its absolute value is between any two positive real numbers. From
this it follows that any infinitesimal number is also finite.

The following properties hold, where c, d are any (non-infinitesimal) finite
hyperreals, γ, δ �= 0 are any infinitesimals and N,O are any infinite hyperreals:

– when adding numbers, finite numbers dominate infinitesimal numbers and
infinite numbers dominate finite numbers: γ +δ is infinitesimal, c+γ is finite,
but not infinitesimal, c + d is finite, possibly infinitesimal, and N + γ, N + c
and N + O are both infinite;

– when multiplying numbers, infinitesimal numbers dominate finite numbers
and infinite numbers dominate finite numbers: γ×δ and γ×c are infinitesimal,
c × d is finite but not infinitesimal and N × c and N × O are infinite.

In the cases we have not given above, the result is not determined: it may be
possibly infinitesimal, finite or infinite.

Finally, denote by a � b to mean that a < b and a/b is infinitesimal, to be
read a is an order of magnitude smaller than b. For example, ε � 1 � ω � ω2.
Symmetrically we read a � b as a is an order of magnitude larger than b.

3.2 Grades

Grades [3,19] allow to rank alternatives based on their perceived degree of ‘good-
ness’. More precisely, in the theory of grading, different judges express their pref-
erences by assigning each alternative a grade, where each grade corresponds to
a certain standard.

Grades carry some degree of cardinal information. Consequently, grade aggre-
gation can avoid the negative impacts of Arrow’s results that affect other prefer-
ence aggregation methods [3,17]. However, unlike utility functions, grades often
do not carry complete cardinal information, i.e. we do not always know how
much better one alternative is than another. How much information is lost by
grading depends on the context.

We will now formally define the process of grade aggregation, the process of how
a set of judges decide out of two alternatives, which one is better, based only on
the grades they have given. First, we have a set of social alternatives X judged by
a set of judges N = {1, ..., n}. These judges assign each alternative a grade from
a set of grades G, where the set of grades G is ordered by the partial order �G.

The opinions of the judges are represented in their appraisals. That is, the
individual appraisal of a judge i is denoted by ji : X → G, a function mapping
to each social alternative a grade. As a result, the appraisal of alternative x
by judge i is denoted by ji(x). Moreover, the opinions of the judges together is
called their appraisal profile. In more technical detail, an appraisal profile J is a
list 〈j1, ..., jn〉 of individual appraisals of the judges.
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Not every combination of grades is possible. The appraisal domain D is the
set of appraisal profiles that the judges might produce for a specific grading
scenario. When aggregating grades, the grading rules only have to specify what
to do for appraisal profiles in the appraisal domain, where a grading rule is a
function f such that f maps any appraisal profile J ∈ D in the grade domain to a
partial binary relation f(J) = � on the set of social alternatives X. Intuitively, a
grading rule takes the grades assigned to each individual by the different judges
and produces a ranking over them.

4 Grade-Based Framework of Value-Based Reasoning

In this section, we introduce a framework that satisfies the previously identified
requirements in order to bridge the gap between quantitative and qualitative
value-based reasoning. To do this, we base our framework on the theory of grad-
ing and extend it with a notion of grade information, judge weights and introduce
the use of hyperreal numbers to this context.

In grading, a set of judges appraise the social alternatives in order to rank
them from best to worst. Similarly, in value-based reasoning, a set of values
evaluate the possible actions of the agent in order to rank them from best to
worst. Therefore, the judges of value-based reasoning are the values and the
social alternatives are the actions.

More precisely, in value-based reasoning, the possible actions A are evaluated
by the agent’s values V . Various values can be promoted and demoted to different
levels; the set of all such levels of evaluation is denoted by L and is ordered by
a partial order �L. The levels of evaluation in value-based reasoning correspond
to the grades of grading. The individual evaluation of an action a with respect
to a value v corresponds to what level of value promotion/demotion performing
action a brings about.

Definition 1 (Individual evaluation). Given an agent, a value v that the
agent holds and a set of actions A that the agent may perform, the individual
evaluation ev : A → L is a function that maps any action a to the corresponding
level of evaluation.

Example. Driving at a speed of 55 km/h means that no animals are harmed.
This is the status quo, which we denote with the neutral evaluation 0 (zero).
Therefore, we denote this individual evaluation as ea(drive(55)) = 0, where
drive(55) is the action of driving the boat with a speed of 55 km/h and a is the
value of animal welfare.

The evaluation profile E of an agent is a list of the individual evaluations of
each of the agent’s values E = 〈ev1 , ..., ev|V |〉. The evaluation domain D is a set
of evaluation profiles that the agent’s values may produce for a specific scenario.
The agent uses an evaluation aggregation rule to order their actions based on
the evaluations of the different values.
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Definition 2 (Evaluation aggregation rule). Given an evaluation domain
D and a set of actions A, the evaluation aggregation rule is a function f : D →
PO(A) that maps any evaluation profile E ∈ D in the evaluation domain to a
partial order over the set of actions f(E) =�A, where PO(A) is the set of all
partial orders over A.

Example. An evaluation aggregation rule tells the agent how to trade off the dif-
ferent levels of promotion/demotion for the various values of the agent. Consider
a simplified version of the example: there are only two values, animal welfare
a and utility u; there are only two actions, drive(55) and drive(75). Further-
more, assume that we know that driving at a speed of 75 km/h is expected
to kill precisely one endangered fish. Moreover, assume u(drive(55)) = 11

15 and
u(drive(75)) = 1. Hence, for the actions drive(55) and drive(75) we have:

– ea(drive(55)) = 0 and
– eu(drive(55)) = 11

15 .
– ea(drive(75)) = d and
– eu(drive(75)) = 1,

where d is the level of demotion (d < 0) that occurs when an endangered fish dies.
Take an evaluation aggregation rule f such that the resulting order �A con-

tains drive(75) ≺A drive(55). This rule f implies that increasing the level of pro-
motion of the value of utility from 11

15 to 1 is strictly worse than demoting the value
of animal welfare with a level d. That is, the evaluation aggregation rule f states
that the increase in the task utility is not worth the decrease in animal welfare.

Finally, note that the evaluation domain can be used to denote that different
values are evaluated differently. For example, by requiring in the evaluation
domain that only those evaluation profiles that map every utility function to a
real number are permitted, we denote that the value of utility is always evaluated
as a real number.

4.1 Evaluation Aggregation Rules

Evaluations by the values correspond to how good the different actions are. That
is, they carry some cardinal information, which can be used when comparing the
different actions. Therefore, the evaluations cannot be aggregated in arbitrary
ways; the evaluations should only be aggregated using evaluation aggregation
rules that are compatible with the information they carry. Therefore, we define
this notion of compatibility and apply it in the context of value-based reasoning.

First, we define the information given by the evaluations of values in the
form of equations and inequalities. Such equations and inequalities are called the
evaluation information. That is, the levels of evaluation correspond to hyperreal
variables where the information that we know about them restrict the possible
range of hyperreal values they may take.

An aggregation fact describes how two different sets of evaluations should be
ordered, regardless of what values the evaluations belong to.
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Definition 3 (Aggregation fact). An aggregation fact is a tuple (L1, L2, op)
where L1 and L2 are multisets of levels of evaluation and op ∈ {<,≤,=,�} is
a comparison operation. Such an aggregation fact is interpreted as the statement
(Σl∈L1 l) op (Σl′∈L2 l

′).

Example. We can formalise with an aggregation fact the requirement that
increasing the level of promotion of any value from 11

15 to 1 is strictly worse than
demoting any other value with a level d. This corresponds to the aggregation
fact ({d, 1}, {0, 11

15}, <), which we interpret as the inequality (d + 1) < (0 + 11
15 ).

The collection of all aggregation facts for a set of values is named aggregation
information. Formally, the aggregation information I is a set of aggregation facts.

We further require for simplicity’s sake, that the partial order �L over the
levels of evaluation be encompassed within the aggregation information. This
is to ensure that the aggregation information contains all relevant information
about how the different levels of information are related to one another. More
precisely, if for some values a and b, a �L b holds, then the aggregation infor-
mation has to contain the corresponding aggregation fact, i.e. ({a}, {b},≤) ∈ I.

4.2 Using the Aggregation Information

We now define how the aggregation information can be used to aggregate the
evaluations. First, note that a collection of aggregation facts forms a system
of equations and inequalities. Here, the variables are the levels of evaluation
of the values. Consequently, the evaluation information defines for each level
of evaluation a range of possible hyperreal values that is compatible with the
information given.

An assignment to each of the level variables is called a satisfying assignment
if the system of equations and inequalities created by the set of aggregation
information is satisfied by the substituted values. Note that for a single variable,
there may be a range of different assignments possible that are consistent with
the information.

Definition 4 (Assignment (unweighted)). Given a set of levels of evalua-
tion L, a function is an assignment function as : L → R

∗ if it maps every level
of evaluation l ∈ L to a hyperreal number as(l).

Note that we sometimes abuse notation and use the same symbols for levels of
evaluation and their assignments interchangeably. For example, utility functions’
levels of evaluation are denoted by numbers and not as variables. Similarly, we
use the number 0 to refer to the level of neutral evaluation and 1 to the level of
unit promotion.

We now define the notion of a satisfying assignment by first defining it for
an aggregation fact and then for aggregation information.

Definition 5 (Satisfying assignment—fact (unweighted)). Given a set of
levels of evaluation L, an aggregation fact af = (L1, L2, op), an assignment func-
tion as : L → R

∗ satisfies the aggregation fact af if the substituted interpretation
(Σl∈L1as(l))op (Σl′∈L2as(l

′)) is true.
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Definition 6 (Satisfying assignment—information (unweighted)).
Given a set of levels of evaluation L, a set of aggregation information I, an
assignment function as : L → R

∗ satisfies the information I, if for every fact
af ∈ I in the information, as satisfies af .

Example. Consider the fact ({d, 1}, {0, 11
15}, <). This fact is satisfied by the

function as, where as(d) = −1. This is because the interpretation (as(d) + 1) <
(0+ 11

15 ) is satisfied, as −1+1 = 0 < 11
15 . In fact, we can see that any assignment

that maps d to a value less than − 4
15 will be a satisfying assignment.

Aggregation information may have multiple satisfying assignments. The set
of all such assignments is called the solution set for the information.

Definition 7 (Solution set (unweighted)). Given aggregation information I, the
solution set SI is the set such that function as is in the solution set as ∈ SI iff the
function as satisfies the information I, i.e. SI = {as : L → R

∗|as satisfies I}.

Example. Consider the information I = {({d, 1}, {0, 11
15}, <)}. Remember that

this is satisfied by any function as such that d is assigned less than − 4
15 , i.e.

as(d) < − 4
15 . Therefore, the solution set is given as SI = {as : L → R

∗|as(d) <
− 4

15}.

4.3 Weighing the Values

Recall that the aggregation facts presented in the previous section do not dis-
tinguish between different values. This is not always appropriate; the agent may
prioritise different values to different degrees. These weighted priorities affect
how different values and their respective levels of evaluations are compared.

We model these priorities through a set of weights W , where the weights are
hyperreal variables. A weight profile maps each value v to a weight w(v) ∈ W .

Definition 8 (Weight profile). Given a set of values V and a set of weights
W , a weight profile is a function w : V → W such that w(v) ∈ W denotes the
weight of value v.

Example. The agent has three values: utility u, animal welfare a and human
welfare h. Consider that the agent prioritises human welfare over animal welfare
and utility in every situation. This can be represented by the weight profile w,
that is, w(u) = 1, w(a) = 1 and w(h) = ω.

Through the use of weights, we can declare how different levels of evaluation
of specific values should trade off. We specify such through weighted aggregation
facts and weighted aggregation information, which generalise aggregation facts
and aggregation information, respectively.
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Definition 9 (Weighted aggregation fact). Given a set of weights W , levels
of evaluation L, a weighted aggregation fact is a tuple (WL1,WL2, op) where WL1

and WL2 are multisets of pairs (w, l), w ∈ W and l ∈ L, and op ∈ {<,≤,=,�
} is a comparison operation. A weighted aggregation fact is interpreted as the
statement (Σ(w,l)∈WL1wl) op (Σ(w′,l′)∈WL2w

′l′).

The collection of all weighted aggregation facts for a set of values is called
the weighted aggregation information.

Example. Let w(u) represent the weight of the utility function and w(a) repre-
sent the weight of animal welfare. We can now formalise with a weighted aggrega-
tion fact a requirement from a previous example; namely, that increasing the level
of promotion of the value of utility from 11

15 to 1 is strictly worse than demoting
the value of animal welfare to d. This corresponds to the weighted aggregation
fact ({(w(a), d), (w(u), 1)}, {(w(a), 0), (w(u), 11

15 )}, <), which we interpret as the
inequality (w(a)d + w(u)1) < (w(a)0 + w(u)1115 ).

Note. Weighted aggregation facts are strictly more expressive than (unweighted)
aggregation facts. This is because unweighted aggregation facts can be under-
stood as uniformly weighted and so can be expressed as weighted aggregation
facts. For example, if 1 ∈ W , then we can express the (unweighted) aggre-
gation fact (L1, L2, op) as weighted aggregation fact (WL1,WL2, op), where
WL1 = {(1, l)|l ∈ L1} and WL2 = {(1, l)|l ∈ L2}.

Note. We can express a partial order �W over the weights by a set of facts. In
particular, if 1 ∈ L we can express w1 �W w2 as the fact ({(w1, 1)}, {(w2, 1)},≤).
By including all such facts, we can express any partial order �W in the weighted
aggregation information.

Example. If we care about animal welfare a and utility u to the same degree,
we can express this as ({(w(a), 1)}, {(w(u), 1)},=), that is, w(a) = w(u).

Furthermore, we can extend the definition of a satisfying assignment to apply
to weighted aggregation facts and information. Note that to be able to interpret
the weighted facts, we have to assign the weights a specific hyperreal value as well.

Definition 10 (Assignment (weighted)). Given a set of levels of evaluation
L and a set of weights, a function is an assignment function as : (L ∪ W ) → R

∗

if it maps every level of evaluation l ∈ L to a hyperreal number as(l) and every
weight w ∈ W to a hyperreal number as(w).

Note that while it is possible to assign a value a non-positive weight5, we
assume that if an agent holds a value v then the agent seeks to achieve that
value, i.e. the agent weights the value positively, i.e. for all v as(wv) > 0 holds.

Definition 11 (Satisfying assignment—fact (weighted)). Given a set of
levels of evaluation L, a weighted aggregation fact waf = (WL1,WL2, op), an

5 This can be used to model values the agent is apathetic towards (zero weight) or is
even hostile to (negative weight).
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assignment function as : (L ∪ W ) → R
∗ satisfies the weighted aggregation fact

waf if the substituted interpretation (Σ(w,l)∈WL1as(w)as(l)) op (Σ(w′,l′)∈WL2

as(w′)as(l′)) is true.

Definition 12 (Satisfying assignment—information (weighted)). Given
a set of levels of evaluation L, a set of weights W , a set of weighted aggrega-
tion information I, an assignment function as : (L ∪ W ) → R

∗ satisfies the
information I, if for every fact waf ∈ I in the information, as satisfies waf .

Example. Consider the previously identified weighted aggregation fact
({(w(a), d), (w(u), 1)}, {(w(a), 0), (w(u), 11

15 )}, <). This fact is interpreted as
(w(a)d + w(u)1) < (w(a)0 + w(u)1115 ) = w(u) 1115 . Therefore, we have w(a)d <
−w(u) 4

15 . Let as be an assignment such that as(w(a)) = 1, as(w(u)) = ω and
as(d) = −ω2. In this case, both the left hand side and the right hand side are
negative infinities. However, the absolute value of the left hand side is an order
of magnitude larger (ω2 compared to ω) and so the left hand side is less than
the right hand side. As a result, as is a satisfying assignment.

Aggregation information may have multiple satisfying assignments. The set
of all such assignments is called the solution set for the information.

Definition 13 (Solution set (weighted)). Given weighted aggregation infor-
mation I, the solution set SI is the set such that function as is in the solution set
as ∈ SI iff the function as satisfies the information I, i.e. SI = {as : (L∪W ) →
R

∗|as satisfies I}.

Example. Consider the previously identified weighted aggregation fact
({(w(a), d), (w(u), 1)}, {(w(a), 0), (w(u), 11

15 )}, <). This fact is interpreted as
(w(a)d + w(u)1) < (w(a)0 + w(u)1115 ) = w(u) 1115 . Therefore, we have w(a)d <
−w(u) 4

15 . Also consider that the agent weights these two values equally, i.e.
the fact ({(w(a), 1)}, {(w(u), 1)},=) holds. As a result, we have w(a) = w(u).
From our assumption that every weight is positive, we can then divide by
w(a) and conclude that d < − 4

15 . Therefore, the solution set can be defined
as SI = {as : (L ∪ W ) → R

∗|as(d) < − 4
15 ∧ as(w(a)) = as(w(u))}.

Note. To simplify matters, we assume that the information that the agent is
given is consistent, i.e. has always at least one possible solution. In practice,
however, if the information is inconsistent, then the solution set will be empty.

4.4 Compatibility

We have thus far defined what assignment of variables are consistent with given
information. We now define how an evaluation aggregation rule can be compat-
ible with the information given, based on the possible assignment of variables.

In particular, we are interested in ranking the actions through the evaluation
aggregation rule based on the information available and nothing else. That is, if
one alternative is better than another under all satisfying assignments, then it
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must be ordered as the better action. On the other hand, if for different satisfying
assignments, we may order the actions differently, then the aggregation rule
should consider the two actions to be incomparable.

Definition 14 (Compatibility). Given weighted evaluation information I, an
evaluation profile E = 〈ev1 , ..., ev|V |〉 in the appraisal domain D, values V , weight
profile w and actions A, an evaluation aggregation rule f is compatible with
weighted evaluation information I, if for any actions a, b ∈ A the statement
a �A b holds iff for all satisfying assignments as ∈ SI in the solution set it holds
that Σv∈V as(w(v))as(ev(a)) ≤ Σv′∈V as(w(v′))as(ev′(b)), where �A= f(E).

Note. Since compatibility uniquely determines whether for any actions a, b,
a �A b holds or not, there is at most one compatible evaluation aggregation rule.
If the information is consistent, then we also know there is at least one compat-
ible evaluation aggregation rule. Therefore, for consistent weighted aggregation
information, we have a unique compatible rule. We denote this rule by fI .

This means that if in our framework we formalise a value-based reasoning
problem fully and appropriately, then there is a unique evaluation aggregation
rule that is compatible with the evaluation information. This means that if the
agent orders their action based on fI then any of the maximal elements of the
resulting partial order is guaranteed to be a value-aligned action.

Example. Consider the facts ({(w(a), 1)}, {(w(u), 1)},=) and ({(w(a), d),
(w(u), 1)}, {(w(a), 0), (w(u), 11

15 )}, <). From these, we derived the solution set
SI = {as : (L ∪ W ) → R

∗|as(d) < − 4
15 ∧ as(w(a)) = as(w(u))}.

Now consider the actions drive(55) and drive(75) and their evaluations E
by the values utility u and animal welfare a:

– ea(drive(55)) = 0 and
– eu(drive(55)) = 11

15 .
– ea(drive(75)) = d and
– eu(drive(75)) = 1,

where d corresponds to the demotion caused by an endangered fish dying.
The weighted sum of evaluations, using any satisfying assignment for

driving at a speed of 55 km/h is (which we denote by sum55) sum55 =
as(w(u))as(eu(drive(55))) + as(w(a))as(ea(drive(55)). Using the above, we
derive that sum55 = as(w(u))1115 .

The weighted sum of evaluations for driving at a speed of 75 km/h is
sum75 = as(w(u))as(eu(drive(75)) + as(w(a))as(ea(drive(75)) = as(w(u)) +
as(w(a))as(d). Since for all as, as(w(u)) = as(w(a)), we have sum75 =
as(w(u))(1 + as(d)).

We also know that as(d) < − 4
15 and so sum75 < as(w(u))(1115 )) = sum55.

Therefore, for all as, sum75 < sum55, so the unique compatible aggrega-
tion evaluation rule fI aggregates the evaluations E such that drive(75) ≺A

drive(55), where �A= fI(E).
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4.5 Applying Formalism to Example

We now showcase how an agent could utilise our proposed formalism, using
our motivating example from Sect. 1.1. We assume that the agent has three
distinct values: the task utility (u), animal welfare (a) and human welfare (h).
We also assume that the agent prioritises human welfare over animal welfare
and utility. That is, the partial order over the weights of the values is given as
w(u), w(a) � w(h).

This agent chooses the action that maximises the total level of evaluation
of the different values. To handle uncertainty, the agent uses expectations to
calculate the sum of the evaluations. For the ‘value’ of utility, it’s simply the
expected utility, which is given by the function u(x). For simplicity’s sake, we
assume that the utility function u is given by the following equation:

u(x) =

{
x/75 x ≤ 75
(100 − x)/25 x > 75

where x is the speed of the boat in km/h. We can see that the expected utility
is maximal when the speed is 75 km/h and gradually reduces the further the
speed deviates from 75.

For animal welfare a, we assume the expectation is:

ea(drive(x)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 70 ≥ x

1d 80 ≥ x > 70
2d 90 ≥ x > 80
3d 100 ≥ x > 90

Here, d is the level of demotion associated with the death of a single endan-
gered fish. Furthermore, assume that d � 0; that is, the death of a single fish
is a level of magnitude worse than the status quo. Consequently, this value is
maximally promoted when the agent maintains the status quo by driving slower
than 70 km/h.

For human welfare, recall that the passenger is in pain after being stung by
a jellyfish. This pain is not distributed evenly: the passenger gets painful fits
after exactly sixty minutes of completed journey. Therefore, the amount of pain
depends on the length of the journey. Assume that the journey is 210 km. Thus,
the expectation is:

eh(drive(x)) = p�210/x�
Here p < 0 corresponds to the level of demotion from the pain of a fit.

Therefore, this value is maximally promoted when the agent minimises human
pain by minimising the number of fits, which happens in the range (70, 100].

We represent the agent’s objective, i.e. the sum of the weighed expectations,
by the function V (x). More precisely, V (x) = w(u)u(x) + w(a)ea(drive(x)) +
w(h)eh(drive(x)).
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We can see that the agent’s different values evaluate the range of possible
velocities differently. We can use the weights of the values to find the optimal
speed, that is, the speed x which maximises V (x).

Let us start with a simpler case, where w(a) = 0 and w(u) = 1; that is,
the agent is indifferent towards animal welfare but values the learnt utility. In
this case, we can see that the agent prioritises maximising human welfare first,
and then the learnt utility. This is because w(u) � w(h). The agent maximises
human welfare by only accepting speeds within the range (70, 100] and then
maximises the utility by picking a value from within this range that maximises
the utility. This local maximum of the utility function is the global maximum,
which is when x = 75. Therefore, in this simpler case, the agent would choose
to drive at a speed of 75 km/h.

Now, consider the more complex case where w(a) = w(u) = 1. First, we
see that for speeds x ∈ (90, 100] we have V (x) = u(x) + 3d + w(h)2p. For
speeds x ∈ (80, 90] we have V (x) = u(x) + 2d + w(h)2p. We can see that this
range is better than the previous one, as d � 0. For speeds x ∈ (70, 80], we
have V (x) = u(x) + d + w(h)2p. This is similarly better than the latter range.
Therefore, in the range (70, 100], the range (70, 80] is optimal; within this range,
the exact speed of 75 km/h maximises the utility. Therefore, x = 75 is optimal
in this range.

For speeds x ∈ (52.5, 70], we have V (x) = u(x) + w(h)3p. For speeds x ∈
(0, 52.5], we have V (x) < u(x) + w(h)4p, which is worse than the latter range,
as w(h)p � 0. Therefore, in the range (0, 70], the optimal range of speed is in
the range (52.5, 70]. In this range, the exact speed of 70 km/h maximimises the
utility. Therefore, x = 70 is optimal in this range.

To derive whether x = 75 or x = 70 is better, we have to compare V (75) =
u(75) + d + w(h)2p and V (70) = u(70) + w(h)3p. We can do this by evaluating
V (70) − V (75) = u(70) − u(75) + w(h)p − d.

Note that u(70) − u(75) = −1/15. Moreover, we know that w(h)p � 0 as
w(h) � 0 and p < 0. Further, we also know that d � 0. From the properties
of hyperreal numbers, we know that the sum of a (positive) infinity −d and a
(negative) infinity w(h)p may be infinitesimal, finite or infinite. Therefore, based
on the information we have, we cannot decide which of the options is better. As
a result, there are two maximal elements of the partial order of the possible
actions, drive(75) and drive(70).

When there is a tie, it may be because the agent does not have enough infor-
mation. In such cases, the agent may ask for information from a human. Imagine
that the agent learns from communication the weighted evaluation information
({1}, {d}, {w(h)}, {p}, <). This is interpreted as d < w(h)p. That is, the death
of an endangered fish is worse than one fit of pain for one person. Note that this
is still not enough to decide between the two alternatives, however, because of
the utility. That is, even though we know that 0 < w(h) − d, we do not know
whether 0 < −1/15 + w(h)p − d.

Now consider instead that the agent learns the information
({1}, {d}, {w(h)}, {p},�), that is, d � w(h)p. Then by the properties of the



398 J. Szabo et al.

hyperreal numbers, we would also know that 0 � −1/15 + w(h) − d and hence
that 70 is an optimal speed. In other words, if the agent prioritised the survival
of animal species over the lessening of human suffering, the agent would prefer
to drive at 70 km/h.

Finally, consider the agent has the information ({w(h)}, {p}, {1}, {d},≤),
which is interpreted as w(h)p ≤ d. That is, one painful fit is not better than the
death of an endangered fish. In this case, this information is enough to decide,
because 0 ≤ d−w(h)p and so it must also be that 0 ≤ w(h)p−d and, moreover,
that 0 > −1/15+w(h)p− d holds. That is, if the agent believes that the painful
fit is at least as bad as the death of an endangered fish, the agent would prefer
to drive at 75 km/h.

5 Related Work

In this section, we divide the related work into two broad categories: whether
the values are represented in a more qualitative or a more quantitative way.

5.1 Related Qualitative Approaches

Argumentation emerged as an alternative approach to classical utility-based
decision theory, where argument and logic-based representations are the basis
for decision making [31]. Which argument is accepted is subjective and depends
on the audience (effectively a total ordering on values). As a result, subjec-
tive human preferences, i.e. values, can model which argument succeeds and so
what decision should be made, based on a specific audience [2]. This is modelled
in value-based argumentation [2,4], where agents propose arguments in favour
of different actions. Note that each argument promotes exactly one value and
there is a total order over the values (i.e. the audience’s preferences). The differ-
ent arguments may attack one another; an attack is successful if the defending
argument’s value does not promote a more important value than the attacking
argument’s value. However, value-based argumentation is limited in expressive-
ness: each argument can promote only one value and no other level of evaluation
is possible, (i.e. no demotion, no magnitude of promotion etc.). Moreover, argu-
ments are decided solely based on the total ordering of values, i.e. no fine-grained
trade-offs between the different arguments are possible.

To remedy this, many subsequent models have used more expressive repre-
sentations of evaluations. For example, Serramia et al. [26] allow values to label
alternatives with a degree of promotion or demotion. Then, the alternatives
are ordered based on which values promote and demote different alternatives
and to what levels. This approach also considers how many values of the same
importance are promoted and this is traded-off against how many values are
demoted. Therefore, some basic quantitative considerations can be represented
in this approach. However, values are only counted against other values from
the same rank (i.e. importance) and are all uniformly weighed within the same
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rank. Furthermore, the rank of a value and the level of evaluation are rigid and
cannot be flexibly traded-off.

Zurek and Mokkas propose a framework [30,31], which allows for a more
flexible trade-off between the various values and their different levels of promo-
tion/demotion. They do this by prescribing only some basic properties of how
individual evaluations should be aggregated. Similarly to our framework, their
approach also permits the input of agent knowledge about how different levels of
evaluation and value importance are related. However, their framework does not
allow for the representation of anti-Archimedean priorities over the importance
of different values or levels of evaluation.

5.2 Related Quantitative Approaches

Similarly to the qualitative methods, many quantitative methods associate
with alternatives a degree of promotion/demotion; such approaches then use
the weighted sum of values and their degrees of promotion and demotion
[11,18,27,28]. The advantage of this is the flexible and fine-grained trade-off
of values and their levels of promotion and demotion. For example Serramia et
al. [27] use the sum of the promoted values’s weights and compare it against the
relative cost. On the other hand, Szabo et al. [28] use the weighted sum of eval-
uations to filter out desires and intentions of a BDI agent that would cause the
agent to violate their own values. However, these approaches cannot represent
qualitative priorities between different values.

Values are also often represented through utility functions [8,14,20,29]. For
example, human preferences may be learned through cooperative inverse rein-
forcement learning [14] or other machine learning methods. An agent that acts
based on an appropriate utility function would behave in a value-aligned way [20].
However, while utility-based frameworks allow for a more fine-grained trade-off
between various values, they do not allow for more qualitative, anti-Archimedean
trade-offs between them.

6 Conclusion and Future Work

Computational agents need to reason as to how to accomplish their goals while
accounting for the values of the society in which they are embedded. As a result,
there is a need to integrate the primarily quantitative based reasoning distinc-
tive of machine learning based AI with qualitative human values. To address
this problem, we have identified various requirements and presented a novel
formalism that can integrate various properties of quantitative and qualitative
reasoning for value alignment. To do so, our framework uses a combination of
hyperreal numbers and a grading-based model.

Moreover, we conjecture that our framework generalises quantitative and
qualitative reasoning in the context of VAP. We further conjecture that
generalising the two requires the use of a non-Archimedean extension of real
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numbers6, such as the hyperreal numbers. This is because of the utility compat-
ibility and non-Archimedean requirements. Finally, we also argue that evalua-
tions carry different amounts of information (sometimes finer-grained, sometimes
rougher-grained) and a grading-based model can capture these features.

We have described how to represent the problem of value-based reasoning
through our formalism. While we have described an informal example of how an
agent may use this formalism, future work should propose an agent framework
that makes use of this formalism, and will require: (i) an algorithm that can
efficiently reason about the aggregation information and derive the value aligned
evaluation aggregation rule; (ii) an algorithm for learning aggregation facts from
observation and communication.
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Abstract. Many scenarios where agents with restrictions compete for
resources can be cast as maximum matching problems on bipartite graphs.
Our focus is on resource allocation problems where agents may have
restrictions that make them incompatible with some resources. We assume
that a Principal chooses a maximum matching randomly so that each
agent is matched to a resource with some probability. Agents would like
to improve their chances of being matched by modifying their restric-
tions within certain limits. The Principal’s goal is to advise an unsat-
isfied agent to relax its restrictions so that the total cost of relaxation is
within a budget (chosen by the agent) and the increase in the probability
of being assigned a resource is maximized. We establish hardness results
for some variants of this budget-constrained maximization problem and
present algorithmic results for other variants. We experimentally evalu-
ate our methods on synthetic datasets as well as on two novel real-world
datasets: a vacation activities dataset and a classrooms dataset.

Keywords: Matching advice · Bipartite matching · Resource
allocation · Submodular function

1 Introduction

There are many practical contexts where a set of agents must be suitably
matched with a set of resources. Examples of such contexts include match-
ing classes with classrooms [24], medical students with hospitals [27], matching
buyers with products [19], matching customers with taxicabs [12], matching agri-
cultural equipment with farms [13,26], etc. We assume that the matching process
assigns at most one resource to each agent and that each resource is assigned
to at most one agent. It is possible that some agents are not assigned resources
and some resources are unused.

Agents have restrictions (or preferences) while resources have constraints.
We assume that agents’ restrictions are soft ; that is, agents are willing to relax
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their restrictions so that they can get a resource. An agent who is unwilling to
compromise may not get any resource. However, the constraints associated with
resources are hard ; they cannot be relaxed.

Example: An instructor who indicates her restriction for the classroom capacity
as “Capacity ≥ 70” may be willing to relax this restriction to “Capacity ≥ 60”
to improve her chances of obtaining a classroom. However, a classroom of size
50 imposes the hard constraint “Capacity ≤ 50”.

An agent is compatible with a resource (i.e., the agent can be matched with
the resource) only when the (hard) constraints of the resource are satisfied by the
agent’s restrictions. The problem of assigning resources to agents can be modeled
as a matching problem on the following bipartite graph, which we refer to as the
compatibility graph: the graph has two disjoint sets of nodes corresponding
to the agents and resources respectively; each edge {u, v} in the graph indicates
that the agent represented by u is compatible with the resource represented by
v. A Principal (who is not one of the agents) chooses a maximum matching
in the graph to maximize the number of agents who are assigned resources.
Usually, there are many such maximum matchings, each one allocating resources
to a (possibly) different set of agents. For fairness, the Principal chooses a
maximum matching randomly out of a given distribution. The Principal may
use, for example, an algorithm for fair matching [10] or a straight-forward process
that randomly orders the agents and uses a deterministic matching algorithm
like the Hopcroft-Karp algorithm [15] to generate a maximum matching.

It is natural for an agent, who is concerned that she will not be matched
in the randomly generated matching, to seek advice from the Principal in
the form of changes to her restrictions in order to increase the likelihood of
getting matched. We assume a nonnegative cost associated with relaxing each
restriction. Agents are desperate to get such advice when there are several rounds
of matching and they failed in previous ones; such a situation arises, for example,
in the case of medical students who were not matched during the first round of
the residency matching process [17]. Developing such recommendations can be
modeled as the following budget-constrained optimization problem: find a set of
modifications to an unmatched agent’s restrictions under a budget constraint so
that the likelihood of the agent being matched to a resource is maximized, given
the resource compatibility information for the other agents.

Several recommendation systems in environments where agents compete for
resources are similar to our notion of a Principal. As an example, many route
planning and satellite navigation apps provide advice to a given agent (driver)
without taking into account possible changes in the behaviors of other agents due
to similar recommendations. These recommendations often lead to undesirable
consequences that are referred to as the price of anarchy [31]. The study of how
to decrease the price of anarchy is beyond the scope of this paper.

Summary of Contributions

1. The matching advice problem. We develop a formal framework for advising
agents in a resource allocation setting viewed as a matching problem on an
agent-resource bipartite graph. We formulate a budget-constrained optimization
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problem to generate suitable relaxations of an unmatched agent’s restrictions
so as to maximally increase the probability that the agent will be matched. We
identify and study different forms of restrictions arising from agent restrictions
and resource properties in real-world applications.

2. Complexity of improving the likelihood of matching. We show that, in gen-
eral, the budget-constrained optimization problem is NP-hard.

3. Algorithms for improving the likelihood of matching. Under uniform costs for
relaxing restrictions and uniform random selection of maximum matchings, we
present algorithmic results for some classes of restrictions (which will be defined
in Sect. 2.3). Specifically, we present an efficient approximation algorithm (with a
performance guarantee of (1−1/e)) for the Multi-Choice Single-Restriction case.
This result relies on the submodularity of the objective function. For another
class called threshold-like restrictions, we develop a fixed parameter tractable
algorithm, assuming that the budget and the cost of removing each restriction
are non-negative integers.

4. Experimental Study. We study the performance of our recommendation algo-
rithms on both synthetic data sets as well as two real-world data sets. The latter
data sets arise in the contexts of assigning classrooms to courses and matching
children with activities. We evaluate our algorithms under different cost schemes.
The insights gained from this study can inform the Principal (e.g., university
administration) on issues such as adding, removing or modifying resources to
cater to the needs of agents.

Related Work. Resource allocation in multi-agent systems has been studied by
a number of researchers (e.g., [3,5,14]). The general focus of this work is on topics
such as how agents express their resource requirements, algorithms for allocating
resources to satisfy those requirements and evaluating the quality of the resulting
allocations. Nguyen et al. [21] discuss some complexity and approximability in
this context [21]. Zahedi et al. [32] study the problem of allocating tasks to
agents in such a way that the task allocator can respond to queries dealing with
counterfactual allocations.

Motivated by e-commerce applications, Zanker et al. [33] discuss the design
and evaluation of constraint-based recommendation systems that allow users to
specify soft constraints regarding products of interest. These constraints are in
the form of rank ordering of desired products. Both algorithms for the problem
and a system which includes implementations of those algorithms are discussed
in [33]. Felfernig et al. [9] provide a discussion on the design of constraint-based
recommendation systems and the technologies that are useful in developing such
systems. Parameswaran et al. [23] discuss the development of a recommendation
system that allows university students to choose courses; the system has the
capability to handle complex constraints specified by students as well as those
imposed by courses. Zhou and Han [34] propose an approach for a graph-based
recommendation system that groups together agents with similar restrictions to
allocate resources. To our knowledge, the problem studied in our paper, namely
advising agents to modify their restrictions to improve their chances of obtaining
resources, has not been addressed in the literature.



406 Y. Trabelsi et al.

Note: For space reasons, most of the proofs do not appear in this version; they
can be found in [28].

2 The Matching Advice Framework

2.1 Graph Representation and Problem Formulation

Agents, Resources, and Compatibility. We consider scenarios consisting of
a set of agents (denoted by X) and a set of resources (denoted by Y). Every agent
would like to be matched to a resource. However, agents may have restrictions
that prevent them from being matched to certain resources. Such agent-resource
pairs are said to be incompatible. We represent this agent-resource relationship
using an XY-bipartite graph called the compatibility graph G(X, Y, E), where the
edge {x, y} ∈ E(G) iff the agent x ∈ X is compatible with y ∈ Y. A Principal
assigns resources to agents. To maximize resource usage, the Principal picks a
maximum matching [4] from the compatibility graph.

The Advice Seeking Agent and Its Restrictions. The special agent who
seeks advice will henceforth be denoted by x∗. Let YI ⊆ Y be the set of resources
that are incompatible with x∗. Let R = {r1, r2, . . . , r�} be the set of restrictions
of x∗. A resource–restrictions pair (y,R′) consists of a resource y and a restriction
set R′ ⊆ R such that (i) y is incompatible with x∗ and (ii) R′ is a minimal set
of restrictions to remove so that y becomes compatible with x∗. A resource-
restriction pair describes precisely why resource y is currently incompatible with
x∗ (i.e., the edge {x∗, y} is not in the compatibility graph), and how it can be
made compatible. Suppose a set A of restrictions is removed. Then, a previously
incompatible resource y becomes compatible iff there exists (y,R′) ∈ Γ such
that R′ ⊆ A. We then add the new edge {x∗, y} to the compatibility graph.
Let Γ = {(y,R′) | y ∈ Y, R′ ⊆ R} be the set of such resource–restrictions pairs.
We refer to Γ as the incompatibility set of x∗. Note that there could be more than
one resource–restrictions pair with the same resource when there are multiple
choices for removing restrictions to make the resource compatible with x∗. For a
restriction r ∈ R, let ρ(r) be a positive real number denoting the cost incurred
by x∗ for relaxing r. For any A ⊆ R, the cost of relaxing all the restrictions in A
is ρ(A) =

∑
r∈A ρ(r).

Resource Allocation Using Bipartite Maximum Matching. To maximize
resource usage and ensure fairness for all agents, we assume that the Princi-
pal picks a maximum matching from the set of all possible maximum matchings.
There are two components to this part of the framework: (i) generating a random
maximum matching of the compatibility graph and (ii) computing the probabil-
ity that x∗ is picked in a random maximum matching. Firstly, we note that a
maximum matching of a bipartite graph can be obtained in polynomial time [15].
Given any deterministic algorithm for maximum matching, one can permute the
set of agents or resources (or both) randomly and obtain a random matching or
one could use approaches such as the fair matching algorithm [10]. In any case,
the first part can be computed in polynomial time. The second part however is
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computationally harder. The distribution from which the matching is sampled
depends on the algorithm used by the Principal. In order to provide advice to
an agent, the Principal must find the probability that a maximum matching
chosen from this distribution includes that agent. This problem is closely related
to a computationally intractable (technically, #P-hard) problem, namely count-
ing the number of maximum matchings in bipartite graphs (or sampling them
uniformly) [18,29].

One way to estimate this probability is as follows: given an algorithm that
generates a random maximum matching, sample a large number of maximum
matchings and compute the ratio of the number of matchings in which x∗ was
matched to the total number of samples.

The Advice Framework. The following are the steps in the maximum match-
ing advice framework, given the set of agents X and the set of resources Y.

1. An agent x∗ approaches the Principal seeking advice. The inputs to the
framework are a compatibility graph G, the restrictions set R of x∗, and its
incompatibility set Γ .

2. The Principal computes (or estimates) the probability that x∗ is matched
to a resource and provides this information to x∗.

3. If x∗ is not satisfied with the probability, then, it specifies the cost ρ(·) of
relaxing its restrictions and a budget β as an upper bound for the cost it is
willing to pay.

4. The Principal suggests a relaxation solution (if one exists) that results in an
augmented compatibility graph G′ for which the improvement in probability
of the agent being matched is maximized under the budget constraint.

The Probability Gain. Let us denote G as the original compatibility graph
and G′ as the new compatibility graph obtained by adding edges after relaxing
the restrictions R∗ chosen by the special agent x∗. Denote by p(G) and p(G′) the
probability that x∗ is matched in a maximum matching of G and G′ respectively.
The probability gain g(R∗) is defined as p(G′)−p(G). Since p(G) does not change
when x∗ relaxes some restrictions, maximizing g(R∗) is equivalent to maximizing
p(G′). Now, we define the MatchingAdvice problem formally.

Problem MatchingAdvice

Given: A bipartite compatibility graph G(X, Y, E), an agent x∗ ∈ X seeking
advice, its set of restrictions R, the cost of removing each restriction, incompat-
ibility set Γ , and a budget β.

Requirement: A set of restrictions R∗ with ρ(R∗) ≤ β such that removal of R∗

maximizes the gain in probability g(R∗).

2.2 An Example

We use the following example of matching courses to classrooms (see Fig. 1).
Each classroom is a resource and each course (or instructor) is an agent. Each
classroom has two attributes: capacity and region where it is located. Each course
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has restrictions such as the required minimum capacity and desired regions.
Agent x∗ prefers a classroom of size at least 40 and regions in the order r1 >
r2 > r3. In the example of Fig. 1, x∗ is incompatible with all resources to begin
with. To model the capacity restrictions, we discretize the relaxation: we will
assume that x∗ relaxes the capacity constraint in steps of 10. Accordingly, we
have labels ci

10, where c denotes the capacity and i denotes the step. For example,
the capacity labels associated with edge {x∗, y1} are c110 and c210 as x∗ must relax
its capacity constraint by 20 for it to be compatible with y1 with respect to
capacity. There is an option to increase the capacity by adding more seats (for a
fee). Again, we assume that the seating capacity can be increased in steps of 10.
This is represented by labels si

10. Relaxing capacity constraint by 10 is same
as increasing seating capacity by 10. Hence, as seen in Fig. 1, there are three
ways for y1 to become compatible with x∗: reduce capacity requirement by 20
(remove labels c110 and c210), increase seating capacity by 20 (remove labels s110
and s210), or reduce capacity requirement by 10 and increase seating capacity
by 10 (remove labels c110 and s110). For the region constraint, we have one label ri

for every region i. For y3 to be compatible with x∗, both r1 and r2 must be
removed. This is equivalent to saying that the restriction that the classroom be
located in regions 1 or 2 is relaxed.

x∗

y1

y2

y3

c = 20, r1

c = 30, r2

c = 50, r3

Resource
properties

{c110, c210}
{c110, s110}
{s110, s210}

{c110, r1}
{s110, r1}

{r1, r2}

Fig. 1. A course-classroom example of matching advice framework. The agent x∗

requires that the classroom capacity be at least 40 and located in region 1.

2.3 Incompatibility Types

In this work, we consider advice frameworks with different forms of incompati-
bility relationships.

Single-Choice-Multi-Restriction Incompatibility. In an incompatibility
set with this property, there is exactly one choice for relaxing restrictions for
each incompatible resource. This means that in the incompatibility set Γ , for
every incompatible resource y ∈ YI , there exists exactly one resource–restrictions
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pair (y,R′). Note however that |R′| may be ≥ 1; i.e., more than one restriction
may need to be removed to make y compatible with the agent.

Multi-Choice-Single-Restriction Incompatibility. In an incompatibility
set with this property, for each resource–restriction pair (y,R′) ∈ Γ , |R′| = 1.
This means that only one restriction needs to be removed in order to make any
resource compatible. However, it is possible that there are multiple choices of
restrictions to remove.

We also consider Single-Choice-Single-Restriction incompatibility where
for a resource, there is exactly one choice of one restriction to be removed to make
it compatible. Similarly, we have Multi-Choice-Multi-Restriction incompati-
bility, a special case of which is the threshold-like incompatibility described below.

Threshold-Like Incompatibility. This type of incompatibility is motivated
by capacity and region restrictions (as in Example 1). In this case, the restrictions
set R can be partitioned into α blocks or attributes R�, � = 1, 2, . . . , α. In
each R� = {r�,1, r�,2, . . . , r�,t(�)}, the restrictions can be ordered r�,1 < r�,2 <
. . . < r�,t(�), where t(�) = |R�|. The incompatibility set Γ satisfies the following
property: ∀(y,R′) ∈ Γ , if r�,s ∈ R′, then, it implies that r�,s+1 ∈ R′ (if r�,s+1

exists). In other words, if a restrictions set R′ includes rl,s, then it also includes all
higher elements rl,s+1, rl,s+2, ... (provided they exist). Let r�,s be the minimum
element in R�∩R′. It can be considered as the threshold corresponding to the �th
attribute induced by the agent’s restrictions. If a resource is incompatible with
regard to the �th attribute, it means that the value of the resource with respect
to that attribute is less than rl,s. In the above example, the threshold for capacity
is 40. Any classroom with capacity less than 30 is below the threshold and hence
is incompatible.

We also use abbreviated forms when necessary. For example, the short form
for Single-Choice-Multi-Restriction is Single-C-Multi-R.

3 Preliminaries

Here, we present some preliminary results regarding maximum matching size
and matching probability computation.

Lemma 1. Let G denote the original compatibility graph and G′ �= G denote
the compatibility graph obtained after some restrictions of agent x∗ are removed.

1. Any maximum matching in G′ that is not a maximum matching in G matches
agent x∗. In addition, the edge from x∗ to the matched resource is not in G.

2. The size of a maximum matching in G′ is at most one more than that of G.

Proof (Idea): We use the simple fact that each new edge added to G′ is incident
on x∗. For details, see [28]. �
Definition 1. Scenarios: Let G and G′ denote respectively the original com-
patibility graph and the one that results after some restrictions of agent x∗ are
removed. There are two possible scenarios depending on the sizes of maximum
matchings of G and G′.
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1. Scenario 1. Maximum matching size in G′ is one more than that of G. In this
case, x∗ is matched in all maximum matchings in G′. Thus, in this scenario,
the probability that x∗ is matched has the maximum possible value of 1.

2. Scenario 2. Maximum matching size in G′ is the same as that of G. In this
case, all maximum matchings of G′ which are not maximum matchings in G
will have x∗ matched to a resource.

4 Hardness Results

In this section, we present computational intractability results for Matchin-
gAdvice. To do this, we first define the decision version of MatchingAdvice,
which we denote by D-MatAdv, as follows.

Decision Version of MatchingAdvice (D-MatAdv) :

Given: A compatibility graph G(X, Y, E), a special agent x∗ ∈ X seeking advice,
its set of restrictions R, the cost of removing each restriction, the incompatibility
set Γ , a budget β, and a required benefit ψ.

Question: Is there a set of restrictions R∗ with ρ(R∗) ≤ β such that the gain in
probability g(R∗) is at least ψ?

The following result establishes the complexity of D-MatAdv for the
Multi-C-Single-R advice framework.

Theorem 1. D-MatAdv is NP-hard for the Multi-C-Single-R advice
framework.

Proof (Idea): Our reduction is from the Max-Coverage problem which is
known to be NP-complete [11]. For details, see [28]. �

Since the Multi-C-Single-R incompatibility is a special case of threshold-like
incompatibility, the following holds.

Corollary 1. D-MatAdv is NP-hard for the threshold-like advice framework.

5 Algorithms for Advice Frameworks

5.1 Notation

Let G denote the compatibility graph before any restriction of the special agent
x∗ is removed. For a subset of restrictions A ⊆ R, let GA denote the compati-
bility graph obtained by removing/relaxing A and let f(A) denote the number
of new maximum matchings in GA. By Part (1) of Lemma 1, x∗ is matched in
all these matchings. We call f(·) the new matchings count function. Using this
notation, G corresponds to G∅ and f(∅) equals to 0, where ∅ is the empty
set. Note that the probability that x∗ is matched in G, p(G) (defined in Sect. 2)
increases with f(·). We will use the standard definitions of monotone, submodu-
lar and supermodular functions [1]. For simplicity, we use “monotone” to mean
“monotone non-decreasing”.
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5.2 Scenario Identification

We recall from Lemma 1 and Definition 1 that two scenarios are possible when
edges incident with x∗ (meeting budget constraint) are added to the compatibil-
ity graph. Further, in the case of Scenario 1, the probability of matching x∗ is 1;
therefore, the probability that x∗ is matched needs to be estimated only for Sce-
nario 2. In this section, we will show an efficient method to (i) determine whether
Scenario 1 exists, and if so, (ii) find the set of restrictions to relax. If the situ-
ation corresponds to Scenario 2, the algorithm returns the new incompatibility
set Γ ′ of x∗.

Our method crucially uses the Dulmage-Mendelsohn (DM) decomposition of
the node set of G [6,25]. Under this decomposition, any maximum matching M
in a bipartite graph G(X, Y, E) defines a partition of X ∪ Y into three sets: odd
(O), even (E) and unreachable (U). A node u ∈ E (respectively, O) if there is
an even (odd) length alternating path1 in G from an unmatched node to u. A
node u ∈ U , that is, it is unreachable, if there is no alternating path in G from
an unmatched node to u. We will use the following well-known results.

Lemma 2 (Irving et al. [16]). Consider a bipartite graph G(X, Y, E) and let
E, O and U be defined as above with respect to a maximum matching M of G.

1. The sets E, O and U form a partition of X ∪ Y, and this partition is
independent of the maximum matching.

2. In any maximum matching M of G the following hold.
(a) M contains only UU and OE edges.
(b) Every vertex in O and every vertex in U is matched by M .
(c) |M | = |O| + |U|/2.

3. There is no EU edge or EE edge in G.

Lemma 3. Let M be a maximum matching and x ∈ X ∩ E. Adding edge {x, y},
where y ∈ Y is an incompatible resource, increases the matching size iff y ∈ E.

A proof of this lemma appears in [28]. The method to identify Scenario 1 is
described in Algorithm 1.

Correctness of Algorithm 1. We will now show that the algorithm detects
Matching Scenario 1, if it exists. We note that this scenario can happen if and
only if the following two conditions are met: (i) there exists a resource y ∈ E and
(ii) there exists a resource-restrictions pair (y,R′) such that ρ(R′) ≤ β. The first
condition is due to Lemma 3, while the second follows from the budget constraint.
The algorithm checks for precisely these conditions. Hence, it detects Scenario 1
if it exists. Also, note that the algorithm filters out resource-restrictions pairs
that do not meet the budget constraint.

Lemma 4. Algorithm 1 runs in time O(m
√

n + |Γ |)), where n and m are the
number of nodes and edges in G and Γ is the incompatibility set of x∗.
1 Given a matching M , an alternating path between two nodes is a path in which

edges in M and edges not in M alternate [25]. The length of such a path is the
number of edges in the path.
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Algorithm 1: Detecting Matching Scenario 1 and updating the incompatibility

set

Input : Agents X, Resources Y, compatibility graph G, special agent x∗, its
incompatibility set Γ and budget β.

Output: Decide if Matching Scenario 1 has occurred or not. If not, output the
new incompatibility set Γ ′ that accounts for the budget.

1 Set Γ ′ = ∅
2 Compute the DM-decomposition of X ∪ Y into O, U , and E
3 for each (y, R′) ∈ Γ do
4 if ρ(R′) ≤ β then
5 if y ∈ E then
6 return “Matching Scenario 1 detected” and R′

7 else
8 Γ ′ ← Γ ′ ∪ {(y, R′)}.

9 return “Matching Scenario 2 detected” and Γ ′

Algorithm 2: Greedy algorithm for Multi-C-Single-R corresponding to Match-

ing Scenario 2 with uniform probability of choosing a maximum matching and

uniform cost for relaxing restrictions

Input : Agents X, Resources Y, compatibility graph G, special agent x∗, its
incompatibility set Γ , budget β and an oracle for the probability p(G)
that x∗ is matched in the compatibility graph G.

Output: Set of restrictions A∗ ⊆ R, |A∗| ≤ β
1 A∗ = ∅.
2 while |A∗| < β do
3 r∗ = arg maxr∈R p(GA∗∪{r}).
4 A∗ ← A∗ ∪ {r∗} and R ← R \ {r∗}.

5 return A∗

Proof: To compute the DM-decomposition, we need to first compute a maximum
matching M . This takes O(m

√
n) time using the Hopcroft-Karp algorithm [4].

Given M , computing the DM-decomposition can be done in O(m) time [16,25].
Using this decomposition, checking whether a node y is in E can be done in O(1)
time. Since for each (y,R′) ∈ Γ , the value ρ(R′) can be precomputed, checking
whether ρ(R′) ≤ β can also be done in O(1) time. Thus, each iteration of the for
loop in Line 3 uses O(1) time. Hence, the total time used by the loop is O(|Γ |).
Therefore, the running time of the algorithm is O(m

√
n + |Γ |)).

5.3 Multi-Choice-Single-Restriction

Here, we consider the Multi-Choice-Single-Restriction incompatibility framework
where any resource can be made compatible with the removal of exactly one
restriction. We will assume throughout that the cost of removing any restriction
is 1 and that the maximum matching algorithm samples matchings uniformly
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from the space of all maximum matchings. We note that for the latter case, the
probability of x∗ being matched is the fraction of the maximum matchings of
the given compatibility graph in which x∗ is matched.

Lemma 5. Consider the Multi-C-Single-R incompatibility. Then, for Matching
Scenario 2, the new matching count function f(·) is monotone submodular.

For a proof of the above lemma, see [28]. Since f is monotone submodular,
we can use the greedy algorithm that iteratively picks a restriction with the
highest benefit-to-cost ratio to relax [20]. Since each addition has the same cost
(namely, 1), the highest benefit-to-cost ratio is achieved by a restriction that has
the highest benefit. The resulting algorithm, which provides an approximation
for the Multi-C-Single-R case, is shown as Algorithm 2. Note again that in the
algorithm, we are using the fact that p(·) increases with f(·). The following result
is again due to the fact that f is a monotone submodular function; see [28] for
a proof of the following result.

Theorem 2. Consider the Multi-C-Single-R incompatibility. Suppose each
restriction has the same removal cost and the maximum matchings of the com-
patibility graph G are chosen from the uniform distribution. Then, given an
oracle for computing the probability p(·), Algorithm 2 provides a solution to the
MatchingAdvice problem with cost at most β and benefit at least (1 − 1/e) of
the optimal solution.

Suppose the incompatibility set satisfies single restriction and single choice prop-
erties. Then, it can be shown that f is monotone and modular, in which case,
the greedy algorithm is optimal [8].

Corollary 2. Consider the MatchingAdvice problem under single restriction
and single choice incompatibility. Suppose each restriction has the same removal
cost and the maximum matchings of the compatibility graph G are chosen from
the uniform distribution. Then, Algorithm 2 is optimal.

Proof (Idea): We show that the function f is modular, that is, it is both sub-
modular and supermodular (see [28]). Hence, the greedy strategy in Algorithm 2
gives an optimal solution [8]. �

5.4 Threshold-Like Incompatibility

We now describe an algorithm for finding an optimal solution to the Matchin-
gAdvice problem for threshold-like incompatibility. We assume that the bud-
get β and cost of removing each restriction are non-negative integers. Let R =⊎

1≤�≤α R� be a partition of variables where each part contains variables corre-
sponding to values of an attribute. We say that an α-tuple (β1, β2, . . . , βα) of
non-negative integers is an α-partition of the budget β if

∑α
�=1 β� = β. Let Πα

β

denote all the α-partitions of β. Algorithm 3 exhaustively explores all possible
budget allocations to the attributes. Once the budget is allocated, the best solu-
tion among the restrictions in each R� can be computed using a binary search.
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We identify the least restriction r∗
� in R� such that the sum of costs of all r ≥ r∗

�

in R� are removed. Unlike the previous cases, this algorithm does not assume
uniform cost or uniform probability of picking a maximum matching.

Algorithm 3: Algorithm for threshold-like incompatibility corresponding to

Matching Scenario 2

Input : Resources Y, agents X, compatibility graph G, special agent x∗, its
incompatibility set Γ , budget β and a probability oracle p(·).

Output: Set of restrictions A ⊆ R with ρ(A) ≤ β
1 p∗ = p(G) and A∗ = ∅

2 for each (β1, β2, . . . , βα) ∈ Πα
β do

3 for � = 1, 2, . . . , α do
4 r∗

� = arg minr∈R�

∑
r′≥r ρ(r′) ≤ β�.

5 Let A� = {r | r ∈ R�, r ≥ r∗
� }.

6 Let A =
⋃

� A�.
7 if p(GA) > p∗ then A∗ = A, p∗ = p(GA)

8 return A∗

Theorem 3. For MatchingAdvice with threshold-like incompatibility where
the budget β and the cost of removing each restriction are non-negative integers,
given an oracle for probability p(·), Algorithm 3 provides an optimal solution
in O(βα log |R|) calls to the probability p(·) computing oracle, where R is the
restrictions set of special agent x∗, and α is the number of blocks in Y.

Our proof of the above result appears in [28].

6 Computing Matching Probability

A crucial component of the advice framework is to estimate the probability
that a maximum matching chosen uniformly randomly from the set of all max-
imum matchings includes x∗. This problem is closely related to a computation-
ally intractable (technically, #P-hard) problem, namely counting the number
of maximum matchings in bipartite graphs [18,29]. In our case, this probability
computation must be repeatedly performed each time a possible solution is to
be evaluated. Our goal here is to reduce the number of such computations. We
will show that under certain independent sampling of matchings, one can pre-
compute a relatively small number of probabilities that can be used to find the
probability of x∗ being matched after relaxing any set of restrictions.

Suppose the set Y of resources can be partitioned into η blocks Y = Y1�Y2�
· · ·�Yη such that for any set of restrictions A ⊆ R and any block Y�, relaxing A
either makes all resources in Y� compatible or none of its resources compatible
with x∗. Let GA denote the compatibility graph after the restrictions in A are
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Fig. 2. The results for Multi-C-Single-R and Single-C-Multi-R on random bipartite
graphs for varying number of restrictions and budget. The range of values on the y-
axis of all plots are the same.

removed. Under the assumption that the matchings are sampled independently
of one another from GA, to compute the probability after relaxing A, it is enough
to know the probability value p� that x∗ is matched to a resource in Y�, 1 ≤
� ≤ η when sampled from all possible maximum matchings. Let p0 denote the
probability that x∗ is not matched. Let R(A) denote the set of blocks whose
resources become compatible with x∗ after relaxing A. Then, probability that x∗

appears in a maximum matching after relaxing A is given by
∑

Y�∈R(A)p�

p0+
∑

Y�∈R(A)p�
.

The justification for the summation used here is that every maximum matching
containing x∗ has exactly one resource matched to it. Therefore, the events
that x∗ is matched to a resource in Y�, 1 ≤ � ≤ η are disjoint.

We note that the number of resources m is a trivial upper bound for η, the
number of blocks. In the case of threshold-like incompatibility, another upper
bound can be specified. For budget β and number of attributes α, the number
of optimal solutions is bounded by βα (Algorithm 3). This serves as an upper
bound for η.

7 Experimental Results

We experimented extensively on real-world and synthetic datasets to evaluate
our algorithms for the advice frameworks considered.

Datasets. We considered a family of synthetic graphs and real-world datasets.
We used Erdös-Renyi random bipartite graphs [7] G(n, p) for experiments to
evaluate the greedy algorithms for the Multi-C-Single-R and Single-C-Multi-R
incompatibility frameworks. For the threshold-like incompatibility, we consid-
ered two real-world datasets. The first dataset is the Course-Classroom (CoCl)
dataset. This comes from a university2 for the year 2018–20193. In the experi-
ments we focused on a two-hour slot on a specific day of the week (Tuesday), and
used all the courses that are scheduled in this time slot and all available rooms.
There are 144 classrooms and 154 courses. Each classroom has four attributes:
its capacity, the region to which it belongs, whether it allows students with phys-
ical disability and whether it allows students with hearing disability. Following

2 Bar-Ilan University, Ramat Gan, Israel.
3 Dataset is available at https://github.com/yohayt/RAR EUMAS2022.

https://github.com/yohayt/RAR_EUMAS2022
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the COVID-19 epidemic, additional features were added to the classes such as
whether the class has facility for remote learning (https://zoom.us/ in this case).
If the classroom has no feature for remote learning, then the teacher must bring
the required equipment. Another feature was flexibility to add chairs to a class
to increase its capacity. So, we have the attribute-augmented dataset CoCl-
zc with the following extra features compared to CoCl: (i) adding chairs
as an alternative to reducing capacity, (ii) remote learning in the classroom,
and (iii) portable Zoom equipment as an alternative to (ii). Note that CoCl
corresponds to Single-C-Multi-R threshold-like incompatibility, while CoCl-
zc corresponds to Multi-C-Multi-R threshold-like incompatibility. Even though
assigning classrooms to courses is well-studied [24] we did not find any pub-
licly available dataset. The Children Summer Vacation Activities or Passeport
Vacances (PassVac) [30] corresponds to online registration for assigning holi-
day activities to children. There are three attributes – minimum and maximum
permissible age for participation with ranges. In addition, each child has restric-
tions as to which activity they would like to participate in. The minimum and
maximum age restrictions each correspond to a threshold function. Note that the
activity might be either too trivial for the child if the minimum age is relaxed, or
the child may not fully understand the activity if the maximum age is relaxed.
The numbers of children and activities are 634 and 533, respectively. We focused
on one of the vacations in the dataset. In this vacation, there were 249 activities.

Fig. 3. The benefit obtained by removing restrictions for the threshold-like incompati-
bility on (i) PassVac, (ii) CoCl, and (iii) CoCl-zc. For analysis, we have partitioned
the agents based on their original estimated probability of matching p∅.

Probability Computation. In all the experiments, the probability that the
special agent x∗ is matched was estimated in the following manner. A random
maximum matching was generated by first randomly permuting the set of agents
and using the resulting compatibility graph as input to the Hopcroft-Karp algo-
rithm [15]. Each time, 1000 such maximum matchings were generated. The prob-
ability of x∗ being matched is simply the ratio of total number of matchings in
which x∗ is matched to 1000.

https://zoom.us/
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Multi-C-Single-R with Synthetic Graphs. We generated 100 random bipar-
tite graphs, each with 40 agents and 20 resources. Each edge has the probability
of 0.2 to be matched. Then an additional agent was generated as x∗. A sub-
set of restrictions was generated randomly for each resource. If the generated
set is empty, then that resource would be made compatible with the agent. We
experimented extensively on synthetic graphs to evaluate the greedy approach of
Algorithm 2 by varying the size of the restrictions set and budget size. We used
exhaustive search to obtain a pseudo-optimal solution (since the probabilities are
only estimates) and compared it with the greedy solution. For each instance, we
ran 100 experiments of finding sets of restrictions to be removed. The results are
in the first two parts of Fig. 2. We varied the maximum number of restrictions
allotted per resource from 2 to 4. In the top left plot, we fixed the budget β to
2 and varied the number of restrictions from 5 to 11. In the bottom left plot, we
fixed the number of restrictions to 19 and varied the budget β from 1 to 5. We
observe that in each case, the greedy algorithm closely matched the performance
of the pseudo-optimal solution. We note the gain is high for small budgets as
only one restriction per resource needs to be removed to make it compatible.
Therefore, increasing the budget only increases the gain marginally. Increasing
the number of restrictions does not have much effect on the benefit.

Single-C-Multi-R Incompatibility with Synthetic Graphs. Here, we
apply the greedy algorithm (Algorithm 2). It is known to have performance guar-
antee of γ times the best solution given the budget, where γ is the submodularity
ratio [2]. Again, we used exhaustive search to obtain a pseudo-optimal solution
and compared it with the greedy solution. The experiment design is similar to
that of the Multi-C-Single-R case. In the third and fourth parts of Fig. 2, the
results are presented for varying sizes of restrictions and budget. The number of
restrictions per resource is at most 4. We note that unlike the Multi-C-Single-R
case, the probability of being matched decreases with increase in the number of
restrictions; this is because all the restrictions corresponding to a resource must
be removed for it to become compatible. Also, increasing the budget provides
significant benefit in this case as many more restrictions must be removed for
resources to become compatible compared to the Multi-C-Single-R case.

Threshold-Like Incompatibility with Real Data Sets. For CoCl dataset,
we used 140 courses out of the 154 available and for each agent, each cost func-
tion, and each budget value, we have 100 replicates. For PassVac, we used 603
children out of the 634 children. For each agent, each cost function, and each
budget value, we have 30 replicates. For both PassVac and CoCl datasets, we
used two cost schemes: Cost-I is the uniform cost function where all attribute val-
ues have cost 1 and Cost-II is a linear cost function, where, for a given attribute,
the cost of removing the first restriction is 1, the second is 2, and so on. There-
fore, if t labels corresponding to an attribute are removed, the cost incurred
is t (t + 1)/2 (the more the Principal deviates from the threshold set by the
agent, the higher the regret or penalty). Here, we considered multiple agents, one
at a time in our analysis. These agents were categorized based on their initial
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probability of being matched, p∅: (i) [0, 1/3), (ii) [1/3, 2/3), and (iii) [2/3, 1).
The results shown in Fig. 3 are discussed below.

Application specific observations. For CoCl, hearing disability feature is typi-
cally the first to be relaxed. This seems to suggest that for the number of students
with hearing disability, the number of classrooms which can accommodate their
needs is not adequate. In the PassVac case, the abrupt increase in probability
was due to a large number of activities being ranked as low preference by multi-
ple agents (children). These are a few observations that can help the Principal
to better cater to the needs of the agents.

Single-C-Multi-R vs. Multi-C-Multi-R in the CoCl dataset. We recall that the
CoCl dataset has two scenarios: with Zoom and chairs and without these facil-
ities. We note that there is not much difference in the benefits. In particular, we
can see that there is no significant decrease in the improvement compared to the
case when not having these facilities. This seems to indicate that the university
is well prepared to the COVID-19 special needs.

Increase in benefit with budget. We observe that as the budget increases, in the
case of CoCl, the probability of being matched increases gradually under both
cost schemes. Also, the benefits for both cost schemes are comparable. However,
in the case of PassVac, we observe an interesting threshold effect in the case of
Cost-I. For example, when p∅ < 0.33, until a budget of 4, there is no appreciable
increase in the probability. However, for β = 4, the probability is almost 1. We
observed a similar phenomenon in the case of Cost-II for budget 6, which is not
presented in the plot. This knowledge of the required budget can help us to give
agents an indication of the budget needed to achieve a reasonable improvement
in probability.

8 Limitations and Future Work

A natural direction for future work is to extend the framework to allow changes to
the restrictions of multiple agents. In such cases, an optimal allocation solution
(e.g., Nash equilibrium [22]) can be considered. Our work assumes that each
agent is matched to a single resource. So, another direction is to extend the
advice framework by allowing agents to specify the number of resources needed.
In such a case, when an agent does not receive the requested number of resources,
the agent may be advised to either change her restrictions or reduce the number
of requested resources. We note that our framework can be extended to many
scenarios where resources can be shared. In such cases, for a shared resource,
one can simply create copies of resources with identical properties.
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Abstract. Intelligent personal assistants (IPAs) are playing an increas-
ingly significant role in our everyday lives. However, their reactive
behaviour limits their assistance to a user’s explicit requests. Integrat-
ing proactivity in these assistants would allow them to perform tasks
on behalf of users without an explicit request and, in turn, improve the
user experience. To explore this goal, this work presents MAIS (Multi
Agent Interactions Simulator) which is capable of generating simulations
of proactive agents. MAIS allows us to study the behaviour of agents,
their interactions with each other in a multi-agent environment, and the
importance of different agent features to accomplish a particular task.
This paper presents the results from my experiments for a use case based
on meeting scheduling in an organisational setting and the potential
opportunities and challenges related to the adoption of IPAs. Human-
in-the-loop control is introduced as a key component and the challenges
arising with varying levels of autonomy in agents are also studied.

Keywords: Intelligent personal assistants · Proactivity · Multi-agent
systems · Simulation · Personalisation

1 Introduction

Intelligent personal assistants, digital personal assistants, and virtual assistants
are the synonyms for the representation of personalised systems that are fueled
by artificial intelligence [2]. When requested to perform a task, these assistants
collect the required information from their user, evaluate it, and generate a rel-
evant response [3]. Aiming to assist users from different walks of life, the IPAs
of today are becoming an integral part of our lives, helping us in day-to-day
tasks ranging from information search to making restaurant reservations, setting
alarms and reminders, and controlling home automation devices etc. [7,12]. These
assistants, however, have certain limitations because of their reactive behaviour
achieved by a request-response approach through conversational input [10]. While
this behaviour is still helpful for the users to some extent, it increases both the
number of actions necessary to perform a particular task and the cognitive load in
managing them, potentially leading to the users exerting a great amount of effort
to achieve those tasks. Furthermore, the user’s goals are not sufficiently modeled
in these systems and, as a result, a reference model of IPAs proactively acting on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Baumeister and J. Rothe (Eds.): EUMAS 2022, LNAI 13442, pp. 423–426, 2022.
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user’s behalf can be foundmissing.Ahigh degree of proactivity andpersonalisation
should be the essence of the next generation of IPAs [1,5,6]. Detecting and consid-
ering user’s goals or intentions will help these IPAs in goal-based decision making
and delivering intervention or providing the support proactively [6,10]. My work
aims to take IPAs research to the next level by integrating proactive behaviour to
accomplish users’ goals. To achieve this, I propose a simulation-based approach to
study agent-to-agent interaction in a multi-agent environment. I design and imple-
ment a use case of meeting scheduling on my simulation system (MAIS) to under-
stand some of the challenges that may arise with the adoption of proactive agents
in an organisational setting. My motivation for a simulation-based study is that
it provides significant control over key variables that can yield initial insights for
the design of a more expansive user-based study [13]. Furthermore, a multi-agent
simulation makes it possible to model the interactions between agents with dif-
ferent behaviours to achieve a common goal which would otherwise be beyond an
individual agent’s capabilities.

2 Related Work

A significant amount of research has been conducted on IPAs in the last two
decades, however, integrating proactivity in these systems is rarely researched
[2,7]. In addition to commercial IPAs, e.g. Amazon Alexa and Apple Siri, several
other IPAs have also been developed by the researchers, but most of them follow
a reactive approach to assist the users [2,7,16]. For example, the CALO agent
[9,11] was developed to assist the workers with routine office tasks such as online
form filling, meeting scheduling, office supply purchasing, and conference travel
arrangements, but did not include any proactive support. Another example of
reactive IPAs is Electric Elves project [15] in which a dozen IPAs were deployed
in an office environment for a period of 7 days to undertake the routine office
tasks, for example, tracking the status of activities, gathering information, and
communicating the information with other agents in the organisation. There are
two pieces of research that incorporate proactivity. Meurisch et al. [10] present
a model of IPAs that integrates users’ goals and proactive behaviour. To act
on users’ behalf, the model relies on different processing stages from sensing
of information to goal and context modelling and goal based decision making.
This model has not been implemented yet by the authors and the model itself
is very minimalist with a lack of details which hinders the researchers from
reusing or complementing it. Similarly, Neil et al. [16] proposed a framework
to operationalise proactive behaviour within IPAs by extending the BDI model
of agency [4] with a meta-level layer that identifies potentially helpful actions
and determines when to perform them. This work focuses only on assisting a
busy worker in an office desktop setting, which limits it to a single application.
My research, on the other hand, potentially has a wider scope and focuses on
proactive behaviour in a multi-user context where different users may exert dif-
ferent levels of control over their agents. Both the related works on proactive
IPAs [10,16] have a different focus compared to my work and do not involve any
simulations to study multi-agent interactions.
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3 Methodology and Results

To run the simulation experiments, I develop a Python based tool that uses
mediator pattern of object oriented programming to allow the agents to interact
with each other. The configuration for the controlled experiments includes differ-
ent parameters such as the number of users, number of meetings, users’ schedule
(n days × m slots), users’ busyness level on a scale of 0–10, and human-in-the
loop control. The baseline configuration contains 20 users, each having their own
agent and 25 slots which can be mapped to a week schedule (5 days × 5 slots).
Initially, all the users have blank schedules, which are then randomly filled based
on the assigned busyness level. A busyness level of 6 would mean that the users’
schedule is 60% busy which would lead to 15 out of 25 slots getting filled. When
human-in-the loop (HITL) control is set (parameter value is set to 1), it induces
a delay of 0–15 s as this time would be required by the user to respond to a
notification. Each experiment is run 3 times to avoid any statistically imbal-
anced data. In Experiment 1A, a uniform low busyness level of 2 is set with
no HITL control. The experiment is run with three configurations each with a
varying number of meetings (20, 40, and 60). For n meetings, n pairs of agents
are randomly selected and the meetings are scheduled between them. Experi-
ment 1B has the same experiment design as 1A except the busyness level is
increased to 7, 8, and 9 for any of three users. Experiment 1C follows the
same setup as that of 1B. However, the random selection of agents is skewed
towards the busy people. Experiment 2 has the same three variants as that
of experiment 1, but with HITL control being introduced for 20% of the users.
Experiment 3 uses the same configuration as that of experiment 2, but the
20% HITL control is assigned only to the busy people. Overall, results from the
above experiments show that when one of the two users is busy, the number of
interactions required to schedule the meeting increases significantly ranging from
7 to 20. Consequently, the time duration required for meeting scheduling also
increases. On the other hand, a low busyness level leads to a reduced number of
interactions (1–2) and a low time duration. Introducing the HITL control results
in a lag, which further increases when a user is more busy.

4 Conclusion and Future Work

I have briefly introduced a multi-agent simulation approach, implemented in
my MAIS tool, to study the efficiency of proactive IPAs with varying degrees
of HITL control. The meeting scheduling use case is chosen and realised for a
range of different experiments, thereby, providing us with the statistical signifi-
cant data. The future work aims to design a set of diverse use cases which would
then be implemented and tested on MAIS. Furthermore, as IPAs require negoti-
ations in many cases be it meeting scheduling, restaurant reservations, buying or
selling products etc., I would be interested in investigating whether the theory
of negotiation [8] could empower IPAs to negotiate more effectively in complex
situations. I further want to investigate how an extended version of the BDI
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model [16] can be used to support proactivity in IPAs. Lastly, I would be also
be interested in modelling different contextual signals and tracking user’s intent
to measure their impact on proactive goal generation [14].
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Abstract. In coalition formation games, agents form partitions based
on their preferences. Common questions concerning these games are how
to represent the agents’ preferences efficiently, what are desirable prop-
erties of the partitions, and how to find or verify such partitions. This
article answers some such questions for special cases of coalition for-
mation games, summarizing the three main topics of my PhD thesis:
FEN-hedonic games, local fairness in hedonic games, and altruism in
coalition formation games.

Keywords: Coalition formation · Hedonic games · Cooperative game
theory · Stability · Fairness · Altruism

1 Introduction

Coalition formation is a vibrant topic of cooperative game theory. These games
model situations where players form partitions based on their preferences. The
research on hedonic games, a class of coalition formation games where players
only care about those coalitions that they are part of, has been initiated by
Drèze and Greenberg [5] and popularized by Banerjee et al. [2] and Bogomol-
naia and Jackson [3]. Since general hedonic preferences can have exponential
size (in the number of agents), the literature has proposed several succinct, yet
reasonably expressive preference representation formats. Among those are car-
dinal representations where the agents assign individual utility values to each
other. These single-agent utilities can be lifted to preferences over coalitions in
different ways. In additively separable hedonic games, agents value coalitions by
the sum of the valuations that they assign to its members [3]. In fractional and
modified fractional hedonic games, the average is used instead of the sum [1,12].
The friends-and-enemies encoding by Dimitrov et al. [4] constitutes a subclass
of additively separable hedonic games where the agents only distinguish between
friends and enemies, assigning only one of two values to each other.

Given some hedonic game, it is natural to ask which partitions might form
and whether a given partition will be accepted by the agents. There are several
notions of stability, optimality, and fairness that measure the quality of a given
partition. For example, a partition is core stable if there is no set of agents that
would prefer to leave their current coalitions and form a new one.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Baumeister and J. Rothe (Eds.): EUMAS 2022, LNAI 13442, pp. 427–430, 2022.
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In the scope of my dissertation, I introduced further preference representation
formats, studied stability, optimality, and fairness in the resulting games, and
enhanced a branch of research that deals with the consideration of altruism
in coalition formation. After providing some foundations in Sect. 2, I will give
an overview of my dissertation topics. Specifically, Sect. 3 gives an insight in
FEN-hedonic games and the underlying preference representation. In Sect. 4,
I elaborate on notions of local fairness and their relations to other solution
concepts. Afterwards, several models of altruism in coalition formation games
are summarized in Sect. 5.

2 Background

In coalition formation, we consider a set of agents N = {1, . . . , n} where each
subset of N is called coalition. The set of all coalitions containing an agent i
is denoted by N i = {C ⊆ N | i ∈ C}. A partition of the agents is also called
coalition structure and the set of all partitions of N is denoted by CN . For
a given partition π ∈ CN , the unique coalition containing agent i is denoted
by π(i). A coalition formation game (N,�) consists of a set of agents and a
preference profile � with �i ⊆ CN × CN for each i ∈ N . A coalition formation
game is hedonic if the preferences of the agents only depend on those coalitions
that they are part of. We can also represent a hedonic game by a tuple (N,�)
where, for each agent i ∈ N , �i ⊆ N i × N i is a weak ranking over all coalitions
containing i.

The preferences in a hedonic game can be represented efficiently by using
cardinal single-agent utilities. A hedonic game (N,�) is additively separable [3]
if there exists a value function vi : N → Q for each agent i ∈ N such that for
any two coalitions A,B ∈ N i we have A �i B ⇐⇒ ∑

j∈A vi(j) ≥ ∑
j∈B vi(j).

In the friends-and-enemies encoding [4], each agent i specifies a set of
friends Fi (and a set of enemies Ei = N \ Fi). Under the friend-oriented exten-
sion, i then prefers a coalition with more friends to a coalition with less friends
and prefers the smaller coalition whenever the numbers of friends are the same.
This extension can be represented via additively separable preferences where
each agent assigns value n to each of her friends and value −1 to each of her
enemies. This leads to the a utility of vi(C) = n|C ∩ Fi| − |C ∩ Ei| for any agent
i ∈ N and coalition C ∈ N i.

3 FEN-Hedonic Games

In this section, I summarize a work about FEN-hedonic games [6]. The idea
of these games is that the preferences of the agents are represented via weak
rankings with double thresholds. To provide such a ranking, each agent partitions
the other agents into friends, neutral agents, and enemies; and specifies a weak
ranking over the friends and enemies, respectively.

For example, consider a FEN-hedonic game with six agents N = {1, . . . , 6}
where agent 1 has agents 2 and 3 as friends, preferring 2 over 3, is neutral towards
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agent 4, and has agents 5 and 6 as enemies while being indifferent between them.
Then agent 1’s preferences could be represented as �+0−

1 = (2�13 | {4} | 5 ∼1 6).
We then used the responsive extension to lift these rankings to preferences

over coalitions. Intuitively speaking, this extension leads to preferences where an
agent prefers friends being added to her coalition, enemies being removed from
her coalition, friends being replaced by better friends, and enemies being replaced
by better enemies, while she does not care about neutral agents being added to
her coalition. Note that the resulting preferences are not complete, e.g., the
coalitions {1} and {1, 2, 5} are incomparable concerning agent 1’s ranking given
above. Therefore, when studying stability in FEN-hedonic games, we considered
possible and necessary stability and provided several complexity bounds for the
verification and existence problems of several common stability notions.

4 Local Fairness in Hedonic Games

In another paper [7], we introduced three notions of local fairness for hedonic
games that are based on individual threshold coalitions. Based on these thresh-
olds, it can be decided whether a given coalition is fair for an agent by comparing
this coalition to the agent’s threshold coalition. In particular, we define min-max,
grand-coalition, and max-min fairness. For example, the grand coalition thresh-
old of agent i is defined by GCi = N if i prefers N to {i}, and GCi = {i}
otherwise. Hence, a coalition structure π is grand coalition fair for agent i if her
coalition in π is at least as good as N and {i}.

After introducing the three local fairness notions, we study their relations
to other commonly studied stability notions: While all three notions lie between
perfectness and individual rationality, min-max fairness (the weakest of the three
fairness notions) is also implied by Nash stability. Moreover, we determine the
computational complexity of computing threshold coalitions and of deciding the
existence of fair partitions in additively separable hedonic games. Finally, we
also study the price of local fairness.

5 Altruism in Coalition Formation Games

Another line of research investigates aspects of altruism in coalition formation
[8–11]. The idea of these games is that agents not only care about their own
well-being but also about the well-being of their friends. The relations among
the agents are given by a network of (mutual) friendship which is a simple graph
where two agents are connected exactly if they are friends of each other. To
obtain an agent’s altruistic preference, we consider her own and her friends’
friend-oriented valuations and distinguish three degrees of altruism: selfish first,
equal treatment, and altruistic treatment. These degrees differ in how the friends’
valuations are integrated into an agent’s utility function. Also, the altruistic
models differ in whether only the friends in an agent’s current coalition or all
her friends are considered. The works cited above study the various altruistic
models with respect to axiomatic properties and present results concerning the
complexity of the associated stability problems.
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Abstract. This doctoral thesis is concerned with the engineering of val-
ues with an explicit pro-social (as opposed to a personal) focus. To do
so, two approaches are explored, each dealing with a different level at
which interactions are studied and engineered in a multi-agent system.
The first, referred to as the collective approach, leverages prescriptive
norms as the promoting mechanisms of pro-social values. The second,
referred to as the individual approach, deals with the internal reasoning
scheme of agents and endows them with the ability to reason about oth-
ers. This results in empathetic autonomous agents, who are able to take
the perspective of a peer and understand the motivations behind their
behaviour.

Keywords: Values in AI · Normative MAS · Social AI

1 Introduction

The focus of this thesis is the development of complementary approaches to
engineer moral values with an explicit pro-social focus in autonomous agents
and multi-agent systems (MAS). This includes values that seek to promote the
greater good of the community, such as universalism, benevolence, and tradition.
To achieve this goal, two components are explored as potential avenues to embed
such pro-social values: the prescriptive norms that apply to a MAS as a whole,
and the individual cognitive machinery that is triggered in direct agent-to-agent
interactions. I refer to the former as the collective approach, and to the latter as
the individual approach.

2 The Collective Approach

The collective approach leverages societal level constructs, in particular prescrip-
tive norms, to engineer pro-social values into societies of autonomous agents. In
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this line of research, we have first proposed a general methodology for the auto-
mated synthesis of prescriptive norms based on their degree of alignment with
respect to some value [7,8]. There, norms are tied to optimisable parameters.
This enables us to use off-the-shelf meta-heuristic techniques to find the set of
norms that most successfully promote some value. Moreover, we also provide an
analytic toolkit to examine the resulting optimal normative systems: the Shap-
ley values of individual norms (which quantify the contribution of a single norm
towards the alignment), and the compatibility among values (which quantifies
to what degree the aggressive promotion of value vi may hinder the achievement
of a different value vj).

Despite the progress made in [7], it has one major limitation: its rigid repre-
sentation of norms requires to define the space of normative systems from scratch
every time the methodology is to be used in a new scenario. To tackle this limi-
tation, we have defined the Action Situation Language (ASL) [5,6], inspired by
Elinor Ostrom’s Institutional Analysis and Development framework [10].

The ASL is a logical language, implemented in Prolog, that allows commu-
nities of agents to represent a wide variety of norms in a machine-readable and
syntactically-friendly way (as if-then-where statements). The ASL is comple-
mented by a game engine, which takes as input a rule configuration description
and automatically builds its formal semantics as an extensive-form game. This
model, then, can be analysed using standard game-theoretical tools.

Overall, ASL and its complementary game engine provide a complete con-
nection from the set of norms and regulations in place to the outcomes most
incentivised by them and, consequently, the values that are being promoted by
these outcomes. After this computation has been performed, the community of
agents can decide whether the most likely outcomes are aligned with respect to
the values most important for them. Using ASL, we have been able to model
several benchmark social scenarios from the policy analysis literature. For exam-
ple, we have been able to demonstrate the eradication of violent outcomes once
announcement rules are introduced in a fisher community.

The ASL follows in the footsteps of previous languages for the systematic
definition of extensive-form games [4,11]. However, the main feature that sets
ASL apart is the fact that ASL descriptions are meant to be extensible. Its
full power is leveraged when the effects of adding, retracting, or changing the
priorities of rules (which indicate the precedence of rule statements when conflicts
arise) are assessed in an automated fashion.

3 The Individual Approach

In contrast to the collective approach, the individual approach focuses on the
cognitive machinery that individual agents must possess in order to abide by
socially-focused values. In particular, we are interested with the values of coop-
eration and empathy.

To embed empathetic attitudes into autonomous agents, we are developing
an agent model that combines two techniques (or families of techniques): Theory
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of Mind and abductive reasoning. Theory of Mind (ToM) refers to the human
cognitive ability to put oneself in the shoes of someone else and reason from their
perspective. Within AI, ToM approaches are often referred to as modelling others
and they are most prevalent in competitive domains [9]. Meanwhile, abduction
refers to the logic reasoning scheme that derives, given an input observation, the
best explanation for it.

The basic model consists of an observer agent i, operating with logic program
Ti, and an acting agent j, operating with logic program Tj . The interaction
begins when i is notified that j has selected some action aj to perform. Then,
the observer i engages in ToM by simulating the perspective that the actor j
has of the state of the system at the point where they concluded that aj was the
action to perform. This means that i substitutes their program Ti by the program
they estimate that j is working with, which we denote by Ti,j . In general, Ti,j is
incomplete, as i can, in general, only construct an approximation of the view that
j has of the state of the system. Next, the observer i computes, using abductive
reasoning, the explanations that would justify j selecting aj . These explanations
contain additional knowledge that the observer i incorporates back into their
own knowledge base, to make use of them for later decision-making.

We have developed this model in Jason [2], an agent-oriented programming
language. We provide a complete domain-independent implementation. Further-
more, we have tested it successfully for the cooperative card game of Hanabi.
Hanabi is an award-winning card game where agents must collaborate to build
stacks of cards with identical colour, however they can only see the cards of oth-
ers and not their own. Players can share information with one another through
hints, however doing so will spend one information token, which can later be
recovered.

There are several features of Hanabi that make it an excellent benchmark
to test techniques for modelling others in collaborative settings. First, Hanabi
is a purely cooperative game where agents all share a common goal and need to
coordinate as a team to achieve it. Second, agents have to deal with imperfect
information, as they do not have access to their own cards. Therefore, there is
additional information to be gained by deriving and incorporating the knowledge
that peers were relying upon to select their actions. Third, information itself is
collectively managed by the team as a collective resource. All of these features
have led some researches to propose Hanabi as the next major challenge to
be undertaken by the AI community [1], especially as interest on social and
cooperative AI grows [3].

4 Conclusion

In summary, my research deals with approaches to embed socially-oriented values
(i.e. those related to the greater good of the community) into autonomous agents.
Two avenues are being explored to this end, which correspond to the two levels
at which interactions in a multi-agent system take place: the collective level
(through prescriptive norms that make up the institutional environment where
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are group of agents are embedded), and the individual level (that engineers the
cognitive machinery of individual agents).

Work in cooperative aspects of AI is gathering increasingly more attention,
as researchers realize that AI systems are deployed in communities including
other software agents and humans, and should be designed with this realization
in mind [3]. The multi-agent systems community is uniquely well-positioned as
this shift in focus takes place. Therefore, I believe that work seeking to embed
pro-social values and mutually beneficial behaviour is highly relevant, important,
and timely.
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Abstract. Our research investigates axiomatic and algorithmic proper-
ties in various areas of collective decision making. Studied areas include
participatory budgeting, multiwinner voting and opinion diffusion. The
goals of our research are to define or adapt appropriate frameworks in
order to represent reality in the best possible way. Further, we want to
adapt axioms or define new desirable properties and study, which proce-
dures, rules or methods satisfy them in a given framework. In particular,
we study budgeting methods from an irresolute point of view, strategic
campaigns in apportionment elections and the impacts of social networks
underlying collective decision processes.
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1 Research Areas

Our research focuses on collective decision making specifically in the area of com-
putational social choice. Such areas include participatory budgeting, voting and
opinion diffusion. Additionally, frameworks, axioms and other means from dif-
ferent research areas such as judgment aggregation may be used to make models
more general, express relationships, represent reality more accurately and possi-
bly achieve better results. In the following, the concepts are presented segregated
from each other by giving an introduction, a way of formalization, impact, pos-
sibly already obtained results and future work to each of these research areas.

1.1 Participatory Budgeting

Participatory budgeting (short: PB) deals with the distribution of public funds in
local communities or cities. It is a relatively new and emerging democratic model,
that allows members of a community to participate directly in the allocation of
a certain public budget. The agents can give their preferences on a set of items
each of which has fixed costs. The items describe the possible projects for the
municipality and can be a wide variety of options, e.g. renovating a school.

Specifically, in our work [2] we consider approval-based preferences, i.e. agents
express their preferences by identifying the set of projects which they approve of.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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The remaining projects are considered rejected. Given a budget limit, the task is
to select a set of items that will meet this bound while aiming to achieve the high-
est possible satisfaction of the agents. Building on Talmon and Faliszewski [11]
we study axiomatic properties of introduced methods from an irresolute point
of view, i.e. allowing more than one winning bundle. For a mathematical anal-
ysis, we formalize PB by adopting the framework introduced by Talmon and Fal-
iszewski [11]. A budgeting scenario is defined as E = (A, V, c, �) with a set of items
A = {a1, .., am}, a set of voters V = {v1, ..., vn}, a cost function c : A → N, that
assigns an integer cost to every item, and a budget limit � ∈ N. The ballots are
defined as sets of approved items Av ⊆ A for every voter v ∈ V . Bv denotes the set
of items in a budget B ⊆ A approved by voter v (Bv = Av ∩ B). We interpret the
budgeting methods introduced in [11] as irresolute, i.e. given a budgeting scenario
E, a method Rr

f returns a set of winning budgets Rr
f (E) ⊆ 2A \ {∅} by using a

budgeting rule r with respect to a satisfaction function f : 2A × 2A → N. Next
to the satisfaction functions and rules defined in [11], we introduce an additional
type of rules, specifically hybrid greedy rules. We define irresoluteness in greedy, i.e.
iteratively designed, rules by making every bundle, that can result from breaking
ties in each iteration, a winning one. In our work [2] we show that irrespective of
the used tie-breaking two of the considered methods are equivalent. Thus, also in
the framework of Talmon and Faliszewski [11] those budgeting methods coincide.
When analysing the axiomatic properties of the irresolute variants, we found that
our results are consistent with the results in [11] for resolute budgeting methods.
Unfortunately, axiomatic results for the additional budgeting methods, composed
of the newly introduced rules, are poor. Nevertheless, some negative results stem
from the fact that tie-breaking is undetermined, hence, they could be addressed
by introducing reasonable mechanisms for tie-breaking.

For future work, we want to consider other satisfaction functions, rules and
axioms to identify procedures with the best possible properties. Additionally, we
want to find methods to allow an easy application of those theoretical results to
real-world problems.

1.2 Voting

Voting is a field of research whose applications we encounter everywhere. We find
voting in social contexts, such as political elections or even in groups of friends,
but also in multiagent systems in the field of artificial intelligence. An election
is defined as a pair (C, V ) with a set of candidates C = {c1, ..., cm} and a list of
voters V = {v1, ..., vn} giving preferences over C. An election system E takes an
election (C, V ) as input and returns a single candidate (single-winner rules) or a
set of candidates (multiwinner rules) as winners. [3] Since voting is enormously
widespread, running strategic campaigns on elections, i.e. attempting to influence
the outcome, is a problem, that has to be addressed in research.

One type of multiwinner elections are apportionment elections, which are
used for parliamentary elections in many countries such as Spain, Germany,
Austria, Switzerland and Israel. In apportionment elections, there is a fixed
number of seats in the parliament, which is to be distributed among the parties
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according to the vote distribution. Bredereck et al. [4] study constructive bribery
in apportionment elections in a single-district and multi-district case. Formally,
there is a set of parties P = {P1, ..., Pm} and a vote allocation p̂ = (p1, ..., pm) ∈
N

m. A seat allocation â = (a1, ..., am) is determined by an apportionment method
R : Nm → N

m, which distributes how many seats each party Pi is assigned given
a vote allocation p̂. Since Bredereck et al. [4] focus on constructive bribery,
the study of additional forms of strategic campaigns in apportionment elections
remains open and is part of our future research.

1.3 Opinion Diffusion

Decisions, preferences and judgments of agents are not always static. Especially,
if the decision-making entities are connected via a (social) network, voters may
be influenced by other voters’ opinions and in turn influence other voters them-
selves. This results in a dynamic process of expressions of opinions and decision
making. The research area of opinion diffusion deals with the study of such
models and related issues, formalizing the evolution of opinion distribution and
conditions, under which opinions converge in a social network. [8] Opinion diffu-
sion is mainly driven by social influence, i.e. opinion formation based on opinion
expressions of other members of society (see e.g. [1,6]). A major motivation
for studying opinion diffusion is the impact that social networks have on social
processes such as collective decision making, since in a society, decisions are usu-
ally not made without observing and considering other agents’ opinions. Hence,
social networks have an enormous influence on individual opinions and decisions.
Known examples include phenomena such as polarization, majority illusion and
the echo chamber effect (see [5,7,9]) for more information on these phenomena).
Depending on what neighbouring and thus influential agents do within the social
network, agents are exposed to different impressions that contribute to opinion
formation and expression. However, social networks and related processes not
only affect individual opinions but also influence the next step, i.e. when a col-
lective decision is to be made on a global level based on individual opinions.

Formally, such an influence network can be defined as a directed graph
G = (N , E), where N = {1, ..., n} is a set of agents and there is an edge (i, j) ∈ E
if and only if agent i influences agent j. Loops are allowed, showing that agent
i also takes her own opinion into account. [8] The iterative process of opinion
diffusion forms by agents observing the opinions of their neighbours and using
an aggregation procedure to update their individual opinions.

The field of opinion diffusion is of great relevance due to its enormously
broad applicability. Among other things, the combination of opinion diffusion
with other research areas such as voting and judgment aggregation is of great
interest to investigate the effects of social networks on known problems.

2 Further Future Work

A big area of interest for future work is the combination of different fields of com-
putational social choice and graph theory. Similar research has for example been
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done by Rey et al. [10] and Grandi et al. [8]. Rey et al. [10] designed PB meth-
ods grounded in judgment aggregation, while Grandi et al. [8] defined a model
for opinion diffusion by combining social network analysis with judgment aggre-
gation in order to create the possibility of expressing correlations and dependen-
cies between individual opinions on multiple connected topics. Firstly, naturally
combining different research areas, e.g. through interdisciplinary work, can create
new perspectives and insights on complex topics and problems. More specifically, a
combination can be used to model scenarios, processes, and situations more accu-
rately and realistically. Furthermore, using different, expressive frameworks like
judgment aggregation or even designing new ones can contribute to a better analy-
sis of the underlying characteristics of processes modelled in computational social
choice. For example, desirable properties can be defined and studied. Also, exist-
ing methods, rules and procedures can be adapted, used in another context or new
ones can be designed, possibly improving axiomatic and algorithmic properties. In
the best case, this leads to higher satisfaction and a more accurate representation
among the agents as well as better transparency.
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Abstract. Participatory Budgeting (PB) is a democratic paradigm used
to allocate a divisible resource (budget) to multiple alternatives (projects).
PB is broadly classified into indivisible PB and divisible PB. In indivisi-
ble PB, each project is atomic and has a cost. A project must receive an
amount equal to its cost or none at all. In divisible PB, projects are frac-
tionally implementable and any amount can be allocated to a project. Our
work looks at both these models and studies PB rules that guarantee fair-
ness or maximize the welfare of the voters in different frameworks.

Keywords: Participatory Budgeting · Fairness · Welfare
Maximization

1 Introduction

Participatory Budgeting (PB) is the process of dividing a budget among a set
of alternatives, also referred to as projects. The problem is to aggregate the
preferences of agents (or voters) and propose a desirable budget allocation.

Divisible and Indivisible PB. In divisible PB, projects are fractionally imple-
mentable and any amount can be allocated to each project. Hence, it is analogous
to random single-winner voting where each entry in the outcome probability dis-
tribution is interpreted as the fraction of budget allocated to that project. In
indivisible PB, each project is atomic and has an associated cost. If selected, a
project must be allocated its entire cost. This model can be viewed as a general-
ization of a multi-winner voting where the cardinality constraint is replaced by
the knapsack constraint. If all the projects are of unit cost and the budget is k,
indivisible PB reduces to multi-winner voting.

Approval Votes and Rankings. As in any social choice setting, approval
votes and rankings are natural methods of preference elicitation for PB due to
their real-world applicability. In approval votes, every voter reports a subset of
projects she likes. Rankings are of mainly two kinds: strict and weak. Weak
rankings allow voters to have ties between projects, while strict rankings do not.

Our results are primarily in three directions: (i) indivisible PB with approval
votes [15] (ii) indivisible PB with weak rankings [14] and (iii) divisible PB with
single-peaked rankings (a special case of strict rankings) [16]. Our work on indi-
visible PB with approval votes looks at egalitarian welfare (maximizing the util-
ity of worse-off voter), the work on divisible PB with strict rankings looks at
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fairness, while the work on indivisible PB with weak rankings looks at fairness
as well as utilitarian welfare (maximizing the sum of utilities of all the voters).

2 Divisible PB

In the divisible PB literature, several individual fairness notions have been stud-
ied for approval votes [2,7], strict rankings [1] and weak rankings [5,6]. Also,
group-fairness has been looked at [2,5,8]. However, all the group fairness notions,
when applied to strict rankings, reduce to trivial random dictatorship rule, which
could lead to less desirable outcomes in many situations [16]. Thus, imposing a
fairness constraint on every subset of voters is a strong and avoidable require-
ment. Often, in the real-world, we can find a natural partition of voters into
groups based on factors such as gender, race, economic status, and location. It
will be sensible and adequate to guarantee fairness, both within and across these
existing groups. Hence, in our work [16], we assume a natural partition of voters
into groups. Each group q has an associated function ψq that selects some (κq)
alternatives to represent the preferences of voters in the group. Every group also
has a quota, ηq, which is a lower bound on the budget that its representatives
together deserve. The social planner gets to choose three parameters: (1) the
number of representatives to be selected for each group; (2) a method of select-
ing them; and (3) the quota of each group. We propose weak and strong fairness
notions to ensure that representatives of each group receive at least the budget
the group is entitled to. We completely characterize divisible PB rules that are
group-fair in this sense under the single-peaked domain.

3 Indivisible PB

3.1 Approval Votes

For divisible PB with approval votes, several goals including the optimization
of utilitarian welfare and egalitarian welfare have been studied in the literature.
In addition to them, several fairness notions have been proposed and studied in
depth. On the other hand, most work in indivisible PB with approval votes is
focused on utilitarian welfare [10,11,17] or the fairness notion of proportionality
[3,4,9,13] which ensures that every cohesive group of voters are given a right on
the fraction of budget proportional to the group size. However, surprisingly, the
egalitarian welfare remained to be studied in indivisible PB with approval votes,
barring a case-study by Laruelle [12] that experimentally evaluates a sub-optimal
greedy algorithm. Egalitarian objective is important for PB, especially in the
situations where the designer wants to cater to all the voters. For example, if the
government wants to construct schools, it would want to cover as many counties
as possible to promote universal literacy instead of building multiple schools in
populous counties. This motivates us to introduce and study an egalitarian PB
rule, maxmin participatory budgeting (MPB) [15].
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Throughout this section, we use function c to output the cost of a set
of projects and b to denote the budget. We define the utility of a voter i
from a set S, ui(S), as the cost of projects included in S that are approved
by i. MPB rule outputs all the feasible subsets of projects that maximizes
the utility of the voter with least utility. That is, it outputs all S such that
S ∈ arg maxS:c(S)≤bmini ui(S). We prove that MPB is strongly NP-Hard. We
then look at its parameterized tractability considering parameters like the num-
ber of projects and the number of distinct approval votes. We also study a new
parameter scalable limit that refers to cost of the most expensive project after
we scale down the budget and all the costs to as low values as possible. We
propose a greedy approximation algorithm for MPB and empirically show its
optimal performance. Finally, we axiomatically analyse MPB rule and in the
process, introduce two new axioms respectively to capture exhaustiveness of the
outcome and the fairness notion of diversity.

3.2 Rankings

The study of indivisible PB with rankings, unlike divisible PB, is very sparse.
An example in this direction is the paper by Aziz and Lee [3] which introduced
proportionality axioms for this setting. Rather surprisingly, there is, as yet, no
known class of indivisible PB rules with rankings that has been studied. We fill
this gap by proposing three major classes of PB rules: (1) Greedy-truncation
rules; (2) Cost-worthy rules; and (3) Need-based rules [14]. We study the com-
putational and axiomatic aspects of each of these classes of rules in depth.

Utilitarian Welfare. Unlike indivisible PB with approval votes, the utility notion
for PB with rankings is not straight-forward, because of the additional attribute
‘rank’ for each project w.r.t. each voter. Our first two classes of rules, greedy-
truncation rules and cost-worthy rules, come under a family of rules, which we
call layered approval votes. They use a layer which carefully exploits the weak
rankings of the voters to deduce critical information and uses this information to
further translate the weak rankings into approval votes. After this translation,
we apply the well studied utility notions in the approval-based PB literature
[17] to the resultant instance with approval votes and determine an outcome
that maximizes the utilitarian welfare.

To give an intuition into the functioning of a layer, we explain the information
captured and used by the layers in both our classes of rules. The layer in greedy-
truncation rules captures, for each voter, all the projects present in her most
desired feasible outcomes. This can be viewed as an extension of knapsack voting
[11] for weak rankings and is motivated by the fact that knapsack voting does
not fare well in the presence of ties between the projects [14]. The idea of the
layer in the cost-worthy rules is to capture whether or not a project is worth
its cost based on the degree of preference voters have for it. That is, these rules
help to express the desire for less expensive projects in many PB contexts.

Fairness. Our third class of rules, need-based rules, enable the key issue of fair-
ness to be captured in PB. While the existing fairness notions in indivisible PB
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literature mostly deal with proportionality [3,4,9,13], fairness in divisible PB is
based on guarantees for each voter at individual level (or in other words, need-
based). In many real-world scenarios, a voter will be happy if a certain minimum
fraction of the budget is spent on projects favorable to her. This is captured in
divisible PB by fair share [1,2,5–7]. Need-based rules capture such a require-
ment for indivisible PB using a parameter η ∈ (0, b], called need, that denotes
the amount needed to make a voter happy.

4 Summary

The broad spectrum of the PB literature can be classified on two axes: (i) divisi-
ble PB and indivisible PB; (ii) preference elicitation method (e.g., approval votes
and rankings). While divisible PB with approval votes is well studied both in
terms of welfare and fairness, indivisible PB with approval votes lacks the study
of egalitarian welfare and fairness. If we look at the PB with rankings, the study
of group-fairness for divisible PB is in a primitive stage, whereas a systematic
framework for indivisible PB is almost non-existent. We close all these gaps
with our works. Notably, the study of fairness in PB at large is still in its incep-
tion. There is a lot more to achieve, especially taking the relations between the
projects and voters into account. We preserve such problems for future work.
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Abstract. Mechanism Design, a domain characterized by economically
motivated agents, is an important tool in computer science and eco-
nomics. Despite being extremely pervasive and applied across diverse set-
tings, there is a renewed interest in incorporating human factors within
the design and implementation of classic mechanisms. In this thesis, we
cater to the aforementioned interest wherein we align the development
and analysis of mechanisms with human consideration. We focus on two
problems, Information Design in Affiliate Marketing and Explainability
in Mechanism Design, both of which are inspired by human interactions
with algorithmic systems. The research is based on a thorough literature
review, theoretical analysis, and experimental validation of the solutions
proposed. The methods proposed are also proven to be economically ben-
eficial, in terms of increased profits and reduced costs, thus abiding by
another key aspect of mechanism design.

Keywords: Mechanism design · Human factors · Information design ·
Explainability

1 Introduction

Mechanism Design is a classic yet increasingly relevant domain with a significant
impact on areas such as school choice programs and kidney exchange [4]. Charac-
terized by economically-motivated and selfish agents that are privy to some pri-
vate information such as preferences, costs, and utility, mechanism design in its
general approach is tasked with collecting, processing, and aggregating the private
information of said agents in order to reach a desirable social outcome [2].

Due to its applications in presumably mundane yet highly consequential day-
to-day applications such as elections, auctions, scheduling, and resource alloca-
tion, there is an omnipresent need for mechanism design to be able to adapt to
the evolving dynamics to remain practical. Notable examples of such improved
models can be found in the context of medical residency matching mechanism
[5] and refugee resettlement algorithms [1].

In this thesis, we focus on the challenges induced by human interaction with
algorithmic systems and address them accordingly. We consider the following
two domains which bring with them unique complexities due to the sophisticated
nature of the present world.
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1. Information Design in Affiliate Marketing : Modern-day marketing mecha-
nisms carried out over social networks bring with them complexities in the
form of the interconnectedness of the networks and the costs involved. This
calls for developing new models to represent the agents and their strategies
and leveraging the role of information to devise better reward mechanisms.

2. Explainability in Mechanism Design: With the increase in the usage of AI-
based decision-making, there is an increased focus on explaining the decision
to the end user. In this thesis, we focus exclusively on Explainability in Mech-
anism Design.

The research carried out uses varied domains such as game theory, social
choice theory, human factors for the development of the solutions and, both
theoretical as well as experimental methods to establish the superiority of
the solutions. The study on Affiliate Marketing models the mechanism game-
theoretically with two types of agents, the affiliate marketing platform and
the affiliates. The issues revealed as the analysis progressed were subsequently
addressed. For the Explainability Studies, a thorough survey, and the develop-
ment of two explanation-generation methods were carried out. The explanation-
generation methods were tested using an interactive experiment with human
participants. The investigation of both domains has resulted in cost-efficient
solutions with the solutions for Affiliate Marketing leading to higher profits while
the algorithm for generating explanations leads to lower costs.

2 Information Design in Affiliate Marketing

Affiliate Marketing is a highly lucrative yet under-researched marketing strategy
used by content creators in order to monetize their content and generate revenue.
Here, said content creators, called partners henceforth, promote a product or
service to their audience (followers) and are remunerated for their efforts in
the form of a set commission. The fact that the followers can be connected to
multiple partners, a common feature in present-day social media, calls for a
nuanced approach both in terms of the partner’s decision to promote a product
and the commission structure are offered. This was modeled as a mechanism
with two distinct types of agents, the platform that advertises the deal to the
partners and the partners. The key decision for the platform is to decide on
the commission to be offered while the partners need to decide on whether or
not to promote the product given the expenses they incur, the social network
of followers, and their earnings from commissions. The profit of the platform
depends on the specific equilibrium reached by the partners.

The game-theoretical analysis revealed that affiliate marketing, as it is done
today, suffers from a multi-equilibrium problem. Hence, there is no way for the
platform to determine the profit-maximizing commission to be offered to the
partners. To overcome this, a revised mechanism called Sequential Mechanism
was proposed. Here, to every partner that considers promoting the product, the
number of partners that have already been acquainted with the opportunity
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is revealed. Even though the Sequential Mechanism helps overcome the multi-
equilibrium problem, it does not offer any significant advantage in terms of profit
as it is weakly dominated by the legacy mechanism. The Sequential mechanism
was then augmented with a dynamic commission structure which not only solved
the multi-equilibrium problem but also resulted in the highest possible profit for
the platform. Our full results are reported in Suryanarayana et al. [6,7].

3 Explainability in Mechanism Design

Solutions in mechanism design settings are obtained by aggregating the prefer-
ences, often conflicting, of several agents in a socially acceptable manner which
might end up in the solution being undesired by a few of them. For example, in
an election the candidate that is the first preference of a voter might not win, in
a rent division setting a housemate may not get her most preferred room and in
task allocation, a participant might not be allotted the tasks she is very skilled
in. Thus explanations in mechanism design need to focus on subtly reducing the
dissatisfaction of the agents by highlighting the social merits of the decision.
The research on Explainability in Mechanism Design is split into two parts as
explained below.

3.1 Recent Advances and the Road Ahead

In the first part, we carried out a survey on said topic. The survey is split
into three parts. In the first part, a comparative analysis between XAI and
Explainable Mechanism Design was carried out with respect to the taxonomy,
the goal of explanations and the recipient of explanations. In the second part,
the existing literature was reviewed in terms of the concepts used for generating
explanations as well as evaluating explanations. Both of these reviews had a
theoretical and behavioral component to them.

In the third section, we also shed light on the unique challenges one may
face while testing the explanation-generation methods. The motivation for this
primarily comes from the fact that the receiver of explanations is an imperfect
and in some cases, irrational human being. Hence, adequate care needs to be
taken to devise explanations that consider these human factors [3]. In order
to overcome the challenges, we have also proposed several workarounds with
inspiration from XAI, behavioral studies, and Human-Computer Interaction.
Our full results are reported in Suryanarayana et al. [8].

3.2 Justifying Social-Choice Mechanism Outcome for Improving
Participant Satisfaction

In the next part, we designed two explanation-generation methods, crowdsourced
and feature-based. A two-step approach was proposed to obtain crowdsourced
explanations of the highest quality. For the feature-based explanations, theo-
retical properties in mechanism design literature were converted into possible
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explanations by quantifying them into features, and an algorithm to pick the
best among them was developed.

These explanation-generation methods were tested on the popular domain,
ranked-choice voting, which was implemented as an election to determine the best
cereal in a distant country. A web-based application was developed to mimic the
setting of ranked-choice voting in a synthetic experiment. This experiment incor-
porated human factors such as reciprocity bias and motivation to read explana-
tions that would elicit organic responses from human participants. The results of
the experiment, carried out on Amazon Mechanical Turk, revealed that explana-
tions were indeed effective in improving user satisfaction and acceptance. Also,
the feature-based explanations were on par with and in some cases even better
than the crowdsourced explanations, thus eliminating the need to keep humans
in the loop. Our full results are reported in Suryanarayana et al. [9].
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