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Abstract. Phenomena that change over time are abundant in nature.
Dynamical systems, composed of differential equations, are used to model
them. In some cases, analytical solutions exist that provide an exact
description of the system’s behavior. Otherwise we use numerical approx-
imations: we discretize the original problem over time, where each state of
the system at any discrete time moment depends on previous/subsequent
states. This process may yield large systems of equations. Efficient tools
exist to solve dynamical systems, but might not be well suited for certain
types of problems. For example, Runge-Kutta-based solution techniques
do not easily handle parameters’ uncertainty, although inherent to real
world measurements. If the problem has multiple solutions, such methods
usually provide only one. When they cannot find a solution, it is not know
whether none exists or it failed to find one. Interval methods, on the other
hand, provide guaranteed numerical computations. If a solution exists, it
will be found. Interval methods for dynamical systems fall into two main
categories: step-based methods (fast but too conservative with overes-
timation for large systems) and constraint-solving techniques (better at
controlling overestimation but usually much slower). In prior research,
we developed a promising method that speeds up constraint-based tech-
niques. In this article, we test that method with higher order approxima-
tions known as multi-step methods. We compared these approximations
based on their accuracy when attempting to include the real solution.
We share insightful experimental results.

1 Introduction

Phenomena that change over time are abundant. Their behavior can be mod-
eled using dynamical systems that represent chronological change via differential
equations. For some real life problems, we have analytical solutions that describe
the behavior exactly. For many other problems, there is no such exact represen-
tation, so we use numerical approximations: we take the original problem, which
is continuous over time, and we discretize it such that we get a series of dis-
crete moments in time, and in which the system state at each discrete moment
depends on previous and/or subsequent states. This relationship is described
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through a state equation; depending on the desired granularity/precision for the
approximation, discretization may generate a very large set of equations.

There are many tools that solve dynamical systems, but these might not
be well-suited for certain types of problems. For example, a Runge-Kutta-
based technique cannot easily handle a problem with uncertain parameter values
obtained from real world measurements. Solutions are heavily reliant on an ini-
tial set of parameters. If a problem has multiple solutions, such methods can find
a solution, but cannot identify how many solutions exist, or if the found solution
is the best based on given criteria. If the method does not find a solution, it is
unknown whether the problem has no solution, or method simply failed to find
one.

We want to provide guaranteed numerical computations, which identify all
solutions if they exist, and the certainty that our computations return no solu-
tion it means none exist. We use interval-based computations [13,14], as they
provide the desired guarantees. When solving dynamical systems, there are two
main categories of interval-based techniques: step-based methods that generate
an explicit system of equations one discretized state at a atime, and constraint-
solving techniques that solve the entire system of implicitly discretized equations.
Step-based method are fast and have less computational overhead, so they have
been widely studied in the past; however, on complex systems (either because
they are simulating longer times or the differential system is very non-linear),
the solution they find can lead to overestimated ranges. Constraint-solving tech-
niques can better control the overestimation through the entire system at once,
but this reduction comes at a computational time cost and may take considerably
longer to produce a result.

In previous work [7,8], we introduced a heuristic approach that dramati-
cally improves the computation time of constraint-solving interval techniques for
dynamical systems, by solving smaller overlapping sub-problems. In this paper,
we take a look at the algorithm’s accuracy under a given discretization, then
we analyze the performance and accuracy of discretizations with various degrees
of complexity. Our results who that careful selection of the discretized form is
essential in improving accuracy while also maintaining a reasonable computa-
tion time, as discretized forms with higher-complexity do not necessarily provide
better solutions.

2 Background

2.1 Dynamical Systems

Dynamical systems model how a phenomenon changes over time. In particular,
we are interested in continuous dynamical systems.

Definition 1. A continuous dynamical system is a pair (D, f) with D ⊆ R
n

called a domain and f : D ×T → R
n a function from pairs (x, t) ∈ D ×T to R

n.

Definition 2. By a trajectory of a dynamical system, we mean a function x :
[t0,∞) → D for which dx

dt = f(x, t).
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To obtain the state equations of a dynamical system, we integrate its differ-
ential equations. The type of problems we are interested in often lack an exact
integral, instead we use numerical methods that approximate the actual solution.
These methods can provide good results, but as they are approximations their
solutions always have a margin of error that must be included in the computa-
tion. This error can be minimized by the choice of numerical methods and by
tweaking the method’s approximation parameters.

2.2 Traditional Methods

Numerical methods to solve dynamical systems are usually classified in two gen-
eral categories based on the type of approximation they make for the integral:
explicit and implicit methods. In explicit methods, the state equation for a spe-
cific state involves the values of one or more previous states. This means that
given an initial state, every subsequent state value can be obtained by evaluating
each discretized equation in order, as each state equation already has the values
it needs from previous evaluated equations. Implicit methods involve past and
future states in their discretization. These equations cannot be solved by simple
successive evaluation, but with search algorithms instead. The most common
type of algorithm used is root-finding methods, such as Newton-Rhapson. Both
types of methods are used to solve dynamical system problems, either separately
or synergistically.

2.3 Interval Methods

An interval is defined as: x = [x, x] = {x ∈ R | x ≤ x ≤ x; x, x ∈ R}.
Intervals represent all values between their infimum X and supremum X. In
particular, we can use them to represent uncertain quantities. We manipulate
them in computations through the rules of interval arithmetic, naively posed as
follows: x�y = {x � y, where x ∈ x, y ∈ y}, where � is any arithmetic operator,
and combining intervals always results in another interval. However, since some
operations, like division, could yield a union of intervals (e.g., division by an
interval that contains 0), the combination of intervals involves an extra operation,
called the hull, denoted by �, which returns one interval enclosure of a set of
real values. We obtain: x � y = � {x � y, where x ∈ x, y ∈ y}.

We can extend this property to any function f : Rn → R with one or more
interval parameters:

f (x1, . . . ,xn ) ⊆ � {f (x1, . . . , xn) , where x1 ∈ x1, . . . , xn ∈ xn}

where f (x1, . . . ,xn ) represents the range of f over the interval domain x1 ×
. . . ,×xn , and � {f (x1, . . . , xn) , where x1 ∈ x1, . . . , xn ∈ xn} represents the
narrowest interval enclosing this range. Computing the exact range of f over
intervals is very hard, so instead we use surrogate approximations. We call these



6 A. F. G. Contreras and M. Ceberio

surrogates interval extensions. An interval extension F of function f must satisfy
the following property:

f (x1, . . . ,xn ) ⊆ F (x1, . . . ,xn )

Interval extensions aim to approximate the range of the original real-valued
function. In general, different interval extensions can return a different range for
f while still fulfilling the above property. For more information about intervals
and interval computations in general, see [13,14].

Step-based Interval Methods for Solving Dynamical Systems. These
algorithms use explicit discretization explicit discretization schemes, such as
Taylor polynomials or Runge-Kutta, that must be evaluated to provide a guar-
anteed enclosure that includes the discretization error at every step. The solvers
implement interval evaluation schemes that reduce overestimation. For exam-
ple, VSPODE [11] uses Taylor polynomials for discretization and Taylor mod-
els [1,12] for evaluation; DynIBEX [6] uses Runge-Kutta discretization and eval-
uates its functions using affine arithmetic [9,16].

Interval Constraint-Solving Techniques. The methods used to solve a
dynamical system using explicit discretization do not work for implicit discretiza-
tion. We need to solve the entire system. We can do this if we treat the state
equations as a system of equality constraints and the dynamical system as an
interval Constraint Satisfaction Problem (CSP):

Definition 3. An interval constraint satisfaction problem is a tuple
P = (X,D,C ), X is a set of n variables {x1, . . . , xn}, D is the Cartesian product
of the variables’ associated interval domains D = x1 × . . . × xn , and C is the
set of m constraints C = {c1, . . . , cm}. [5]

The initial interval domain D represents the entire space in which a real-
valued solution to the CSP might be found. With intervals, we want to find an
enclosure of said solution. This enclosure X∗ needs to be narrow: the differences
between the infimum and supremum of all interval domains in X∗ must be less
than a parameter ε, representing the accuracy of the solution’s enclosure. If the
entire domain is inconsistent, it will be wholly discarded, which means that the
problem has no solution.

An interval constraint solver attempts to find a narrow X∗ through con-
sistency techniques. Consistency is a property of CSPs, in which the domain
does not violate any constraint. For interval CSPs, we want domains that are at
least partially consistent: if they do not entirely satisfy the constraints, they may
contain a solution. Figure 1 shows a visualization of the general concept behind
contraction using consistency. Figure 1a shows the evaluation of a function f(x)
over an interval x, represented by the gray rectangle y = f(x). This function
is part of a constraint f(x) = −4, whose solutions are found in the domain of
x; however, this interval is too wide, so it must be contracted. In this case, the
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range of f(x) ≥ −4.0 can be discarded, which creates a new interval value for
the range of f(x), or y′, which can be propagated to remove portions of x that
are not consistent with y′. This creates the contracted domain x′, which is a
narrower enclosure of the solutions of f(x) = −4, as shown in Fig. 1b.

Fig. 1. Visual example of interval domain contraction

Contraction via consistency is just part of how interval constraint solver
techniques find narrow enclosures of solutions to systems of constraints. For
example, the constraint f(x) = −4 shown in Fig. 1 has two solutions enclosed
inside the domain x′, but we need the individual solutions.

Interval constraint solvers use a branch-and-prune algorithm. The “prune”
part of the algorithm is achieved through contraction via consistency; when
“pruning” is not enough to find the most narrow enclosure that satisfies
the constraints, the algorithm “branches” by dividing the domain X into
two adjacent subdomains by splitting the interval value of one of its vari-
ables through a midpoint m(x) = x+x

2 . These two new sub-boxes, XL ={
x0, . . . ,

[
xi,m(xi)

]
, . . . ,xn

}
and XU = {x0, . . . , [m(xi), xi] , . . . ,xn}, are

then processed using the same algorithm. This means that all sub-boxes are
put in a queue of sub-boxes, as each sub-boxes and be further “branched” into
smaller sub-boxes.

Interval constraint solvers such as RealPaver [10] and IbexSolve [3,4] solve
systems of constraints. To solve a dynamical system, we need to generate all
required state equations, and provide an initial domain containing all possible
state values. While interval solvers can provide good results, when system are
too large, they can be slow to find a reasonable solution. For large systems,
there have been attempts at making them easier to solve, including generating
an alternative reduced-order model [17], and focusing on a subset of constraints
at a time [15].

Step-Based or Constraint-based? The solvers that use step-based interval
methods (VSPODE, DynIBEX) work well, up to a point. As with non-interval
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approaches, there is an approximation error; however, due to the need for guar-
anteed computations, these methods compute an enclosure of each state plus
its range of approximation errors. These bounds on the error can introduce a
small amount of overestimation into the solution, which compounds after com-
puting multiple states, each with their own bounded approximation error. Even
when dynamically computing the step size between states (which helps reduce
the overestimation), this additional range accumulates at every iteration. If the
interval value of a state becomes too large, these solvers cannot compute a new
step size and stop the simulation even before reaching a desired final state.

Our motivation behind using constraint-based interval methods is that they
can explore the entire system. Solving a full system using interval constraint-
solving techniques can explore multiple realizations of the system with a desired
width for the enclosure. To potentially increase the contraction, each state is
evaluated multiple times over one or multiple domains. Even with a static value
of h for all states, implicit approximations used increase the approximation’s
accuracy. The drawback of these methods is tied to this particular strength: con-
tractors need to evaluate each equation multiple times, and branch-and-prune-
based solvers incorporate multiple contractors. Additionally, the “branching”
process creates problems exponentially based on the number of variables; each
sub-problem needs to be processed, including potential further sub-divisions, so
the number of subproblems being generated becomes exponential. Thus, these
techniques provide a strong computational guaranteed, with a trade-off of a con-
siderably higher computation time.

Prior Work. In previous work [7,8], we showed a Sliding Windows scheme
to improve the computation time to find a solution using interval constraint
methods. The main idea of this type of algorithm is to take advantage of the
structure in a dynamical system (specifically, an initial value problem) to create
and solve subproblems made of subsets of contiguous state variables and their
respective equations. We take the state variables Xsub = {x (j) , . . . x (j + w)}
with domains {x (j) , . . . ,x (j +w)}, along the following set of state equations
as a system of constraints Csub:

gi (x (j) , . . . x (j + w) , ti) = f (x (i) , ti, h) , ∀i ∈ {j, . . . j + w}
where function gi is a discretization of dx

dt at ti. We call this subproblem Psub =
(Xsub, Csub) a window of size w. Our technique aims to speed up the computation
process of interval constraint solvers by sequentially creating and solving a series
of subproblems with size w.

We can solve the first subproblem normally, as it is exactly an initial value
problem. However, subsequent problems cannot be treated the same: if we took
the last values of the previous problems as initial values, we would lose the
trajectory created by the previous states.

The second element involves maintaining this trajectory by transfering mul-
tiple state values between subproblems. Solving the k-th subproblem Pk =
(Xk, Ck) yields a reduced domain X∗

k representing w states, from tj to tj+Nk
. For



Comparison of Higher-Order Approximations to Solve Dynamical Systems 9

the next subproblem, Pk+1 = (Xk+1, Ck+1), we take the last o interval values of
X∗

k and use them as the initial domain for the first o values of Xk+1:

{xk+1 (1) , . . . ,xk+1 (o)} = {xk (w − o) , . . . ,xk (w)}
We then solve subproblem Pk+1 using interval constraint-solving techniques,

yielding a new reduced domain used to repeat the process again. We call o
the overlap between subproblem windows of size w. Figure 2 shows a graphical
representation of how o states are transferred from one subproblem to the next.

Fig. 2. Graphical plot of overlap transfer

With interval constraint solvers, a series of subproblems with a smaller num-
ber of variables is faster to solve than one with more variables: the number of
subproblems generated from domain division is reduced, which speeds up the
overall process.

3 Problem Statement and Experiments

Our first experiments with the Sliding Windows proved we could find solutions
to dynamical systems in reasonable time using interval-based constraint solving
techniques. These experiments were carried out with a simple approximation to
the dynamical system called backwards Euler, which involves just two variables
per state equation, and without bounding the approximation error. Existing step-
based solvers use high order approximations that involve multiple prior variables
while including techniques that bound the approximation error.

Without any changes, the backwards Euler discretization used in previous
experiments with the Sliding Windows algorithm is not a perfectly accurate
enclosure, as it does not bound the real solution. This motivates our next research
question: how can we improve the enclosures of the approximations in the Sliding
Windows algorithm?

To look for an answer, we took a look at the existing, step-based solvers. They
use explicit discretization methods that result in polynomials with a more accu-
rate approximation. VSPODE uses high-order Taylor polynomials, generating
the coefficients using automatic differentiation of the original ODE. DynIBEX
uses an interval-based version of Runge-Kutta, which uses intermediate points
between states in its computation of a specific state. Both of these methods
bound the approximation error by computing upper and lower bounds of the
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local truncation error on each step and add it to the discretized equations to
guarantee an enclosure of the solution.

Without a computation of the bounds (for now), we want to find more accu-
rate implicit approximations that work with the Sliding Windows algorithm.
We focused on experiments in two main areas: higher-order approximations and
artificially-inflated enclosures.

3.1 Higher-Order Approximations

In general, an approximate state equation that involves more states increases
the accuracy of the approximation. Existing solvers apply this concept with
explicit discretizations by creating intermediate sub-states that are computed on
evaluation but not stored outside of finding the state for that equation. This
kind of approach would be inefficient for Sliding Windows: if two main states
share one or more points, they would have to be computed multiple times, unless
we added them to our full set of states.

If adding new sub-states is not an option, the best alternative we have is to
have approximations that involve multiple existing states; these type of approx-
imations are known as linear multistep methods, and each state equation can
involve multiple states from before or after the current state. For these experi-
ments, we selected the Adams-Moulton method.

The Adams-Moulton Method. The Adams-Moulton method is the implicit
version of the explicit Adams-Bashfort method [2]; in non-interval solvers, these
two methods work together in a predictor-corrector method: the solver finds an
“initial guess” to the complete behavior of the system using Adams-Bashfort as
a slightly inaccurate predictor, then uses this behavior as an “initial point” to
solve an Adams-Moulton approximation to “correct” the results and make them
more accurate.

As we are working with interval constraint-solvers, and we want to test their
accuracy on their own, we can use interval evaluation and constraint-solving on
the Adams-Moulton method only. The general formula for this approximation
is:

xn+s = xn+s−1 + h

s∑

m=0

bsf (xn+m, tn+m)

where ti is a discrete time, xi is a state variable at ti, f(xi, ti) is an ordinary
differential equation s.t. ẋ = f(x, t), and bs is a unique coefficient. These coeffi-
cients are independent from xi and ti, and its value depends on the order of the
approximation s, which represented the number of states involved in each state
equation.

We believe that such a multi-step discretization method is a good fit for solv-
ing dynamical systems using interval constraint-solving techniques. Each state
equation involves multiple state values, maintained naturally by the interval box
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that represents the entire set of states from the full problem – or, in the case of
the Sliding Windows algorithm, an individual window.

A higher order approximation using Adams-Moulton means s > 0 (s = 0 is
backwards Euler), which means each state equation will involve more terms and
coefficients. This can impact the interval evaluation and contraction processes.
Given the conditions of the Sliding Windows algorithm and these tests, we will
also no include bounding the error in any way. This means we know in advance
that our approximations will not bound the real solution, but we can use this lack
of computational rigor to identify in advance potential issues with higher-order
enclosures, such as excessive overestimation or inaccuracy.

We measure said inaccuracy by the error on each state enclosure, which we
define as the distance between an interval state enclosure and the real solution
outside its bounds. For each state enclosure xi =

[
xi, xi

]
and real solution x∗

i ,
the error in xi is:

τ(xi) = 0 if x∗
i ∈ xi

τ(xi) = xi − x∗
i if x∗

i < xi

τ(xi) = x∗
i − xi if x∗

i > xi

The first objective of the experiments is to use these metrics to explore the
accuracy of various orders of Adams-Moulton discretizations. In particular, we
focus on the Adams-Moulton discretizations of order s = {0, . . . , 8}. While we
are not including bounds on the approximation error, we can still attempt to
replicate the impact of including these bounds into the process. We do this by
manipulating the state enclosures using artificial intervals into the models given
by the Adams-Moulton approximations.

The Adams-Moulton Method. To analyze the impact of the calculation
of the approximation error, we created new models based on the systems gener-
ated by the Adams-Moulton method that introduce an “artificial bounding” that
increases and changes the interval state enclosures. With this, we can explore
how much the solution process of higher-order enclosures is changed by these
additional bounds.

We explored two different types of enclosure manipulations:

– Initial value inflation. We change the initial value of the model by making it
a “wider” interval enclosure.

– State equation inflation. We “naively” simulate a per-state bound on the error
by adding a narrow [−Δ,+Δ] interval, to examine the impact of an additional
interval term.

3.2 Experiments and Results

We designed experiments along two axes: the approximation level and type of
enclosure manipulation. We generated models for Adams-Moulton involving s =
{0, . . . , 8}, with s = 0 representing the Backwards Euler method examined in
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previous experiments. For enclosure manipulation, we settled on the following
seven types:

– Case Base: The normal case, with no additional uncertainty added.
– Case All-A: Add to all state equations a constant δ =

[−10−16, 10−16
]

– Case All-B: Add to all state equations a constant δ =
[−10−8, 10−8

]

– Case All-C: Add to all state equations a constant δ =
[−10−4, 10−4

]

– Case Ini-A: Add to all initial states a constant δ =
[−10−16, 10−16

]

– Case Ini-B: Add to all initial states a constant δ =
[−10−8, 10−8

]

– Case Ini-C: Add to all initial states a constant δ =
[−10−4, 10−4

]

We ran each of the models with each of the enclosure manipulation types,
for a total of 63 experiments using a three-species food chain model with Holling
type II predator response function:

dm1

dt
= r1m1

(
1 − m1

K1

)
− a12

(
m1m2

m1 + A1

)
(1a)

dm2

dt
= −d2m2 + a21

(
m1m2

m1 + A1

)
− a23

(
m2m3

m2 + A2

)
(1b)

dm3

dt
= −d3m3 + a32

(
m2m3

m2 + A2

)
(1c)

For the discretization, we used a step size of h = 0.01.

Comparison Metrics. Given that we are not bounding the approximation
error, the enclosures found with the state equations and the Sliding Windows
algorithm will not always enclose the solution at all discrete times. We designed
a group of metrics with the intent of using them to compare the Adams-Moulton
discretizations for s = {0, . . . , 8}:

– Time states until overestimation. Number of states contracted before reaching
a “window” of states whose interval width is beyond a certain threshold. We
consider a state to be overestimating, when the supremum of a state is 10%
above its midpoint. For these experiments, we set a goal of tf = 40.0, or
N = 4000 states, which represents the max value for this metric. We chose
this target based on previous experiments [7,8] that showed existing solvers
could reach this target number without leading to excessive overestimation.

– Solution accuracy. If the approximation was not perfectly accurate, it means
that in our solution there were interval states that did not enclose the actual
solution to the system. There are various ways to analyze the accuracy of the
system:

• Coverage. Defined as the percentage of states that enclose the solution.
For example, if in a system of 100 states, the interval solution encloses
the actual solution in 90 of those states, we say there is a coverage of
90%. A higher coverage is better in this metric; all solvers that bound the
approximation error, such as VSPODE and DynIBEX, have a coverage
of 100%.
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• Total accumulated error. The sum of all errors across all states. States
that provide an enclosure have an error of 0, states that do not enclosure
the solution have an error equal to the linear distance from the closest
bound to the real solution. The smallest this value is, the better is the
result.

• Total average error. The average of the error across all states, including
those that provide an enclosure to the real-based solution. The smallest
this value is, the better is the result.

• Coverage average error. The average of the error across all states that do
not enclose the real-based solution. The smallest this value is, the better
is the result.

While these metrics might seem enough, we want discretizations that produce
better enclosures to longer simulations. Interval methods struggle to produce
tighter enclosures after a longer simulated time, particularly when the equations
are complex (i.e. highly non-linear) or the simulated time is longer/has more
states.

There is no guarantee that we will get narrow state enclosures for all N =
4000 states, and in fact it is more likely that we will not. Instead of using these
metrics as-is, we use the “Time states until overestimation” metric to weight
the accuracy metrics based on how close the model was to the desired goal of
N = 4000 states without overestimation:

<weighted metric> = <base metric> × <states until overest.>
4000

This creates four new metrics: weighted coverage, weighted accumulated error,
weighted average error, and weighted coverage average error. Using these met-
rics we can compare the overall impact of each discretization in improving the
quality of the solution (by increasing coverage/decreasing error). Table 1 shows
the “Time states until overestimation” metric, while Tables 2, 3, 4 and 5 show
the weighted metrics.

Table 1. Comparison of time states until overestimation

Disc Base All-A All-B All-C Ini-A Ini-B Ini-C

s=0 4000 4000 2190 860 4000 4000 2980

s=1 4000 4000 2200 850 4000 4000 2970

s=2 4000 4000 2140 260 4000 4000 2940

s=3 4000 4000 2120 250 4000 4000 2820

s=4 4000 4000 2080 240 4000 4000 2560

s=5 4000 4000 2010 200 4000 4000 2040

s=6 3850 3870 1880 180 3880 2650 1630

s=7 2350 2300 1640 140 2330 1910 230

s=8 1290 1290 470 110 1280 1050 220
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Table 2. Comparison of weighted coverage in the experiments.

Disc. Base All-A All-B All-C Ini-A Ini-B Ini-C
s=0 0.0000 0.0000 0.4178 0.1880 0.0000 0.0008 0.0608
s=1 0.0000 0.0038 0.4733 0.2060 0.0000 0.0868 0.7100
s=2 0.0327 0.2460 0.5138 0.0635 0.0345 0.4198 0.7298
s=3 0.0330 0.2178 0.4868 0.0600 0.0343 0.2650 0.6895
s=4 0.2380 0.2558 0.4778 0.0578 0.2383 0.2943 0.6260
s=5 0.2855 0.2833 0.4605 0.0475 0.2878 0.4610 0.4963
s=6 0.3518 0.3568 0.4290 0.0425 0.3620 0.5480 0.3958
s=7 0.4590 0.4555 0.3710 0.0325 0.4558 0.4110 0.0478
s=8 0.2530 0.2530 0.0850 0.0250 0.2505 0.2163 0.0475

Table 3. Comparison of weighted total accumulated error in the experiments.

Disc. Base All-A All-B All-C Ini-A Ini-B Ini-C
s=0 26.5617 26.5582 10.6833 22.0304 26.5617 26.5134 14.7647
s=1 0.5927 0.5896 0.2961 0.3136 0.5927 0.5482 0.1982
s=2 0.0159 0.0148 0.0184 0.0898 0.0159 0.0113 0.0117
s=3 0.0910 0.0850 0.0502 0.1432 0.0909 0.0705 0.0301
s=4 0.0691 0.0646 0.0449 0.1365 0.0691 0.0481 0.0287
s=5 0.0571 0.0575 0.0483 0.1677 0.0568 0.0265 0.0369
s=6 0.0401 0.0396 0.0506 0.1844 0.0396 0.0365 0.0443
s=7 0.0416 0.0425 0.0584 0.2386 0.0420 0.0511 0.3057
s=8 0.0750 0.0750 0.1983 0.3022 0.0756 0.0917 0.3039

Table 4. Comparison of weighted total average error in the experiments.

Disc. Base All-A All-B All-C Ini-A Ini-B Ini-C
s=0 6.64e-03 6.64e-03 4.88e-03 2.56e-02 6.64e-03 6.63e-03 4.95e-03
s=1 1.48e-04 1.47e-04 1.35e-04 3.69e-04 1.48e-04 1.37e-04 6.67e-05
s=2 3.97e-06 3.70e-06 8.60e-06 3.45e-04 3.97e-06 2.82e-06 3.98e-06
s=3 2.27e-05 2.12e-05 2.37e-05 5.73e-04 2.27e-05 1.76e-05 1.07e-05
s=4 1.73e-05 1.61e-05 2.16e-05 5.69e-04 1.73e-05 1.20e-05 1.12e-05
s=5 1.43e-05 1.44e-05 2.40e-05 8.39e-04 1.42e-05 6.61e-06 1.81e-05
s=6 1.04e-05 1.02e-05 2.69e-05 1.02e-03 1.02e-05 1.38e-05 2.72e-05
s=7 1.77e-05 1.85e-05 3.56e-05 1.70e-03 1.80e-05 2.68e-05 1.33e-03
s=8 5.81e-05 5.81e-05 4.22e-04 2.75e-03 5.90e-05 8.74e-05 1.38e-03
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Table 5. Comparison of weighted coverage average error in the experiments.

Disc. Base All-A All-B All-C Ini-A Ini-B Ini-C
s=0 6.64e-03 6.64e-03 2.06e-02 2.04e-01 6.64e-03 6.63e-03 5.39e-03
s=1 1.48e-04 1.48e-04 9.64e-04 1.21e-02 1.48e-04 1.50e-04 1.52e-03
s=2 4.11e-06 4.90e-06 2.17e-04 1.50e-02 4.11e-06 4.85e-06 5.57e-04
s=3 2.35e-05 2.72e-05 2.90e-04 1.43e-02 2.35e-05 2.40e-05 4.85e-04
s=4 2.27e-05 2.17e-05 2.66e-04 1.52e-02 2.27e-05 1.70e-05 5.12e-04
s=5 2.00e-05 2.01e-05 2.87e-04 1.68e-02 1.99e-05 1.23e-05 6.71e-04
s=6 1.64e-05 1.62e-05 3.09e-04 1.84e-02 1.63e-05 7.96e-05 9.42e-04
s=7 8.10e-05 8.89e-05 3.74e-04 2.39e-02 8.28e-05 1.92e-04 7.84e-03
s=8 2.70e-04 2.70e-04 1.53e-03 3.02e-02 2.72e-04 4.96e-04 1.01e-02

Analysis of Results

States Until Overestimation. The behavior in Table 1 is as expected. Wider
initial states, such as the ones in Cases Ini-A, Ini-B and Ini-C, lead to over-
estimation happening earlier in the simulated set of states. This effect is more
noticeable on the All Cases, as each state introduces more overestimation. The
data we find most interesting is on the discretization complexity: as s increases,
these models lead to earlier overestimation, which can be seen in Fig. 3. This
suggests that under the conditions of the experiment it is preferable to use a
lower complexity model to avoid overestimation. It is important to note that
this might not be applicable in all scenarios: it is certainly possible that changes
to the default constraint solver in Ibex, or even the implementation of a differ-
ent constraint solver could lead to improvements with these higher complexity
models.

Weighted Coverage. In general, coverage is a measure of how well a specific
experiment managed to enclose the solution. In general, adding wider intervals
to the models leads to better coverage, as seen in case Ini-C. Among the All

Fig. 3. Visual comparison of simulated results for Case Base.
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cases, it is surprising that All-B gets better weighted coverage than All-C, a
model that fails to get even close to the target of 4000 states.

We note that higher order approximations, such as s=6 and s=7 provide
increasingly better coverage than lesser order ones on cases with low interval
expansion, Base, All-A and Ini-A. This suggests that the bounds on the error in
these higher order approximations needs to be as small as possible.

Weighted Accumulated Error. Weighted accumulated error is a good measure of
how close each experiment was to the actual behavior of the system that we want
our results to enclose as narrowly as possible. The high accumulated error in the
s = 0 experiments is expected, as this is a very simple discretization and thus
prone to high approximation error on each state. The most surprising results
are the ones for s = 2, as they are consistently low across all categories. This
suggests that the s = 2 discretization level might be overall closer to bounding
the expected solution.

Weighted Average Error and Coverage Average. With this metric, we want to
compare how close each state in the system might be to the expected solution.
Similar to weighted accumulated error, the results for the s = 2 are also good:
not only does the overall error is low across the whole set of states, but each
state that fails to enclose the solution does so by a smaller amount than in
other discretizations. This case also does well with weighted coverage average.
Surprisingly, on these two metrics the s = 6 discretization also does well, with
its major drawback being that none of the cases run under this discretization
level reached the desired final narrow state of N = 4000.

4 Conclusions and Future Work

Based on the presented results, we find that, for the sliding windows heuristic,
increasing the complexity of the discretization does not necessarily lead to better
results. The simplest types of discretization such as backwards Euler, represented
by the s = 0 Adams-Moulton discretization, is definitely the worst; once we
increased the complexity, we started getting better results. The best results
we obtained were with an Adams-Moulton discretization involving two prior
state variables (s = 2). While it may seem that increasing it even further could
produce better results, for this experiment we obtained diminishing returns,
as the overestimation starts occurring progressively earlier as the value of s
increases. This suggests that, under these conditions, we must use discretizations
beyond a single prior variable, but also avoid using too many variables.

All of these results come with the caveat that these experiments are not
entirely guaranteed enclosures, due to the lack of an enclosure of the approxima-
tion error. This is a natural future work: to seek and implement a technique to
bound the approximation error that is compatible with constraint-solving tech-
niques. We are also looking into other implicit discretization schemes beyond
Adams-Moulton that could have smaller error, as well as different contractor
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settings and configurations that could either improve the computation time or
provide better contraction with reduced overestimation. We also plan to incor-
porate these techniques with other dynamical systems such as boundary value
problems, as well as comparing against other approaches that reduce computa-
tional complexity, such as reduced order modeling.
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