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Abstract. As an important computer vision task, 3D human pose esti-
mation has received widespread attention and many applications have
been derived from it. Most previous methods address this task by using
a 3D pictorial structure model which is inefficient due to the huge state
space. We propose a novel approach to solve this problem. Our key
idea is to learn confidence weights of each joint from the input image
through a simple neutral network. We also extract the confidence matrix
of heatmaps which reflects its feature quality in order to enhance the
feature quality in occluded views. Our approach is end-to-end differen-
tiable which can improve the efficiency and robustness. We evaluate the
approach on two public datasets including Human3.6M and Occlusion-
Person which achieves significant performance gains compare with the
state-of-the-art.
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1 Introduction

Recovering 3D human pose and motion from multiple views has attracted a great
deal of attention over the last decades in the field of computer vision, which has
a variety of applications such as activity recognition, sports broadcasting [1] and
retail analysis [2]. The ultimate goal is to estimate 3D locations of the body joints
in a world coordinate system from multiple cameras. While remarkable advances
have been made in reconstruction of a human body, there are few works that
address a more challenging setting where the joints are occluded in some views.

The methodology for multi-view 3D pose estimation in many existing studies
includes two steps. In the first step, it tries to estimate the 2D poses in each cam-
era view independently, for example, by Convolutional Neural Networks (CNN)
[3,4]. Then in the second step, it recovers 3D pose by aggregating the 2D poses
from all of the views. One typical method is to use the 3D Pictorial Structures
model (3DPS), which directly estimate the 3D pose by exploring an ample state
space of all possible human keypoints in the 3D space [5,6]. However, this method
has large quantization errors because of the huge state space needed to explore.
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On the other hand, the mainstream two-stage approach does not make full
use of the information in multiple camera views and the relationship between
views. They simply use the traditional triangulation or 3DPSM to restore the
3D human skeleton [7] which makes the pose estimation performance is not well
in some challenging scenarios.

In this paper, we propose to solve the problem in a different way by making
the best of information which extracted from the multi-view images and interme-
diate features. The method is orthogonal to the previous efforts. The motivation
behind our method is that a joint occluded in some views may be visible in
other views. So it is generally helpful to evaluate a weight matrix for each joint
of each view. To that end, we present a novel approach for the 3D human pose
estimation. Figure 1 shows the pipeline.

We first obtain more accurate 2D poses by jointly estimating them from
multiple views using a CNN based approach. At the same time, we calculate the
confidence of each joint under each view through a simple neural network. If a
joint is occluded in one view, its feature is also likely corrupted. In this case, we
hope to give a small confidence to the joint so that the high-quality joint in the
visible views is dominant which will improve the performance in the subsequent
triangulation process.

Second, when we get the initial heatmap from the 2D pose estimation, using
a learning weight network to extract the confidence matrix of heatmaps under
each view. Then the heatmap from each view is weighted and fused by use of the
confidence matrix to obtain the final heatmaps. We apply the SoftMax operator
to get the 2D positions of keypoints. Finally, the 2D positions of keypoints with
the joints’ confidence calculated in the first step are passed to the triangulation
module that outputs the 3D pose.

We evaluate our approach on two public datasets including Human3.6M [8]
and Occlusion-Person Dataset [9]. It has achieved excellent results on the two
datasets. Furthermore, we compare our method to a number of standard mul-
tiview 3D pose estimation methods to give more detailed insights. Our method
is end-to-end differentiable which improves the efficiency and robustness on 3D
pose estimation.

2 Related Work

In this section, we briefly review the related works that utilize the techniques of
this paper.

2.1 Single-view 2D Human Pose Estimation

The goal of 2D human pose estimation is to localize human anatomical keypoints
or parts in one RGB image. With the introduction of “DeepPose” by Toshev
et al. [10], many existing deep learning-based methods have achieved amazing
results [11–13].
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Fig. 1. The framework of our approach. It takes multi-view images as input and outputs
the heatmaps and joints’ confidences through the Pose Estimation Network. Then
the heatmaps are weighted and fused by use of the confidence matrix to obtain the
weighted heatmaps. The 2D positions of keypoints are inferred from the weighted
heatmaps. Finally the 2D positions together with the joints’ confidence are fed into the
triangulation module to get the 3D pose position.

For 2D human pose estimation, current state-of-the-art methods can be typ-
ically categorized into two classes: top-down method and bottom-up method. In
general, top-down methods [14–18] first detects people and then have estimated
the pose of each person independently on each detected region. The bottom-up
[19,20] methods jointly label part detection candidates and associated them to
individual people by a matching algorithm. In our work, we choose the top-down
method because of their higher accuracy. We adopt the SimpleBaseline [17] as
the 2D human pose estimation backbone network.

2.2 Multi-view 3D Human Pose Estimation

Different from estimating from a single image, the goal of multi-view 3D human
pose estimation is to get the ground-truth annotations for the monocular 3D
human pose estimation. Most previous efforts can be divided into two cate-
gories. The first class is analytical methods [17,21–23] which explicitly model
the relationship between a 2D and 3D pose according to the camera geome-
try. They first model human body by simple primitives and then optimize the
model parameters through the use of multi-view images until the body model
can be explained by the image features. The advantage of the analytical meth-
ods is that it can deal with the occlusion problem well because of the inherent
structure prior embedded in human body model. However, due to the need to
optimize all model parameters at the same time, the entire state space is huge,
resulting in heavy computation in inference.

The second class is predictive methods which often flow a two-step framework
by use of the powerful neural networks. They first detect the 2D human pose
from all the camera views and then recover the 3D human pose by the use of
triangulation or 3D Pictorial Structures model(3DPS). In [7], a recursive pictorial
structure model was proposed to speed up the inference process. Recent work [25]
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has proposed to use 1 D convolution to jointly address the cross-view fusion and
3D pose reconstruction based on plane sweep stereo. [24] proposed a volumetric
triangulation method to project the feature maps produced by the 2D human
pose backbone into 3D volumes, which were then used to predict 3D poses. The
shortcoming of this method is that not making full use of the information of
images and feature maps which lead to the poor effect in the face of occlusion. On
the contrary, our approach is efficient on multi-view 3D human pose estimation
which benefits from the weight extraction network.

3 Method

In this section, we present our proposed approach for multi-view 3D human pose
estimation. We assume that we have synchronized video streams from multiple
cameras with known parameters which capture performance of a single person
in the scene. The goal is to detect and predict human body poses in 3D given
images captured from all views.

The overview of our approach is shown in Fig. 1. It first estimates 2D pose
heatmaps and produces the joint confidence for each view. Then the heatmaps
from all camera views are fused through the confidence matrix which extracted
by a learning weight network. Finally, input the 2D positions of the keypoints
and joints’ confidence into the algebraic triangulation module to produce the 3D
human pose.

3.1 2D Pose Detector and Joint Confidence

The 2D pose detector backbone hp with learnable weight θp consists of a ResNet-
152 network, followed by a series of transposed convolutions and a 1 * 1 kernel
convolutional neutral network that outputs the heatmaps:

Hc,j = hp(Ic; θp), c = 1, 2, ..., C (1)

where Ic denotes the image in the cth view, Hc,j denotes the heatmap of the jth
keypoint in the cth view.

In addition to output the heatmaps, we propose a simple network to extract
the joint confidence for each view. The network structure as shown in Fig. 2.
Starting from the images with known camera parameters, we apply some con-
volutional layers to extract features. Then the features are down-sampled by
max pooling and feed into three fully connected layers that outputs the joint
confidence:

ωc,j = hω {Ic; θω} (2)

where hω denotes the joint confidence learnable module. θω denotes the confi-
dence learnable weight. ωc,j denotes the confidence of the jth keypoint in the
cth view.

It is worth noting that the joint confidence network is jointly trained end-to-
end with the 2D pose detector backbone.
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Fig. 2. The structure of the joints’ confidence network.

3.2 Confidence Matrix for Heatmap Fusion

Our 2D pose detector takes multi-view images as input, generate initial pose
heatmaps respectively for each, and then using a learning weight network to
extract the confidence matrix of heatmaps which reflect the heatmap quality
in each view. Finally the heatmaps are weighted and fused by use of the confi-
dence matrix to obtain the final heatmaps. The core of this stage is to find the
corresponding keypoints between all views.

Fig. 3. Illustration of the epipolar geometry. For an image point p1 in one view, we
can find its corresponding point p2 in another view and the corresponding point lies
on the epipolar line.

We assume that there is a point P in 3D space as shown in Fig. 3. Note that
we use homogeneous coordinate to represent a point. According to the equal up
to a scale, the corresponding points p1, p2 in the two cameras are:

p1 = KP (3)

p2 = K(RP + t) (4)

where K is camera intrinsics, R and t are the rotation matrix and translation
vector between two camera views.

From Fig. 3, we can find that the 3D point P, the image points p1, p2, and the
camera centers O1 and O2 on the same plane which calls the epipolar plane. The
l1, l2 which epipolar plane intersects with the two image planes calls epipolar
line. In particular, we have

l2 = Fp1 (5)

l1 = FT p2 (6)

where F is fundamental matrix which can be derived from K, R and t.
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For each point p1 in the first view, the epipolar geometry helps us to ensure
the corresponding point p2 in another view lie on the epipolar line l2. However,
since we do not know the depth of the point P, it is difficult to determine the
exact location of point p2. We decided to use the sparsity of heatmap to solve
this problem. The heatmap has a small number of large responses near the joint
location and a large number of zeros at other locations. So we select the largest
response on the epipolar line as the corresponding point. Then we have:

Ĥc,j = λcHc,j +
N∑

u=1

λumaxHu,j′ (7)

where Ĥ denotes the weighted heatmap. λ is the weight of heatmap extracted
from a learning weight network and N is the number of camera views.

To keep the gradients to flow back to heatmaps, we use soft-argmax to cal-
culate the 2D positions of the joints:

xc,j = eĤc,j/(
∫

q∈Ω

eĤc,j(q)) (8)

where Ĥc,j denotes the weighted heatmap of the jth keypoint in the cth view
and Ω is the domain of the heatmap.

3.3 3D Pose Reconstruction

Given the estimated 2D poses and heatmaps from all views, we can reconstruct
the 3D pose in several ways. The 3DPS model is one of them, but the large quan-
tization errors result from exploring the huge state space may largely degrade
the reconstruction. In order to fully integrate the information extracted from the
multiview images and heatmaps, we make use of the point triangulation method
with the joint confidence learned form neutral network for efficient inference.

The point triangulation is an efficient 3D pose estimation method with strong
theoretical supports which reduces the finding of the 3D coordinates of a joint
yj to solving the overdetermined system of equations on homogeneous 3D coor-
dinate vector of the joint ỹj :

Aj ỹj = 0 (9)

where Aj is a matrix concatenating the homogeneous 3D vectors of all views for
the jth keypoint.

However, traditional triangulation method can not solve the occlusion prob-
lem in views because it treats the joint in different views evenly without consider-
ing the joint may be occluded in some views, leading to unnecessary degradation
of the final triangulation result. To deal with the problem, we add joint confi-
dence which generated by a learnable module when triangulating and we have:

(ωj ◦ Aj)ỹj = 0 (10)

where ωj is the joint confidence matrix which is in the same size of and ◦ denotes
the Hadamard product.
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We use Singular Value Decomposition of the matrix E = U
∑

V T to solve
the equation above. We set ỹ as the last column of V . Then we can get the final
3D coordinates of a joint yi by dividing the homogeneous 3D coordinate vector
ỹ by its fourth coordinate:

y =
ỹ

(ỹ)4
(11)

3.4 Loss Function

For our method, the gradients pass from the output prediction to the input
images which makes the method trainable end to end. The loss function for
training the network contains two parts, the 3D mean square error (MSE) loss
and the 2D joint smooth loss.

The 3D MSE loss between the estimated heatmaps and ground truth
heatmaps is defined as:

Lmse =
C∑

c=1

‖Hk − Hgt,k‖2 (12)

The 2D joint smooth loss between the estimated 2D keypoints coordinates
and the ground truth 2D keypoints coordinates:

L2d =
C∑

c=1

‖yc − ygt,c‖1 (13)

The total loss of our method is defined as:

L = Lmse + L2d (14)

4 Experiments

4.1 Datasets and Metrics

We conduct experiments on two standard datasets for multi-view 3D human
pose estimation.

Human3.6M: Human3.6M is currently the largest multi-view 3D human pose
estimation dataset. It provides synchronized images captured by four cameras
which includes around 3.6 million images. Following the standard evaluation
protocol used in the literature, subjects S1, S5, S6, S7, S8 are used for training
and S9, S11 for testing [26–28]. To avoid over-fitting to the background, We also
use the MPII dataset [29] to augment the training data.

Occlusion-Person: The Occlusion-Person dataset adopt UnrealCV to render
multi-view images from 3D models. In particular, thirteen human models of
different clothes are put into nine different scenes such as bedrooms, offices and
living room. The scenes is captured by eight cameras. The dataset consists of
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thirty-six thousand frames and propose use objects such as sofas and desks to
occlude some human body joints.

Metrics: The 2D pose estimation is measured by Percentage of Correct Key-
points (PCK) which measures the percentage of the estimated joints whose dis-
tance from the ground-truth joints is smaller than t times of the head length.
Following the previous work, we set t to be 0.5 and head length to be 2.5% of
the human bounding box width for all benchmarks.

The 3D pose estimation accuracy is measured by Mean Per Joint Position
Error (MPJPE) between the estimated 3D pose and the ground-truth:

MPJPE =
1
M

M∑

i=1

∥∥p3i − p̄3i
∥∥
2

(15)

where y = [p31, ..., p
3
M ] denotes the ground-truth 3D pose, ȳ = [p̄31, ..., p̄

3
M ] denotes

the estimated 3D pose and M is the number of joints in a pose.

4.2 Results on Human3.6M

2D Pose Estimation Results. The 2D pose estimation results are shown in
Table 1. We compare our approach to two baselines. The first is NoFuse which
estimates 2D pose independently for each view without joints’ confidence and
weighted heatmaps. The second is HeuristicFuse which uses a fixed confidence
for each heatmap according to Eq.(7). The patameter λ is set to be 0.5 by cross-
validation. From the table, we can see that the performance of our approach is
better than the two baselines. The average improvement is 10.6%. This demon-
strates that our approach can effectively refine the 2D pose detection.

Table 1. The 2D pose estimation accuracy (PCK) of the baseline methods and our
approach on the Human3.6M dataset

Methods Root Belly Nose Head Hip Knee Wrist Mean

NoFuse 95.8 77.1 86.4 86.2 79.3 81.5 70.1 82.3

HeuristicFuse 96.0 79.3 88.4 86.8 83.1 84.5 75.2 84.7

Ours 96.5 94.9 96.3 96.4 96.0 92.5 85.9 94.1

3D Pose Estimation Results. Table 2 shows the 3D pose estimation errors
of the baselines and our approach. We also compare our approach with the
RANSAC baseline which is the standard method for solving robust estimation
problems. We can see from the table that our approach outperforms the other
three baselines by 3.39, 0.89, 2.21mm respectively in average. Considering these
baselines are already very strong, the improvement is significant. The results
demonstrate that adding the confidence matrix of heatmaps and joints’ confi-
dence can significant improve the performance and model’s robustness.

In addition, we also compare our approach with existing state-of-the-art
methods for multi-view 3D pose estimation. The results are presented in Table 3.
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From the table we can find that our approach surpasses the state-of-the-arts
in average. The performance of our approach is 27.3mm with improvement of
3.6mm comparing with the second best method. The improvement is significant
considering that the error of the state-of-the-art is already very small. We also
show some 2D and 3D pose estimation results in Fig. 4.

Table 2. The 3D pose estimation error (mm) of the baseline methods and our approach
on the Human3.6M dataset.

Methods MPJPE,mm

NoFuse 30.7

HeuristicFuse 28.2

RANSAC 29.5

Ours 27.3

Table 3. The 3D pose estimation error (mm) of the state-of-the-arts and our approach
on the Human3.6M dataset

Methods MPJPE,mm

Pavlakos et al. [30] 56.9

Tome et al. [31] 52.8

Qiu et al. [7] 31.1

Gordon et al. [32] 30.9

Ours 27.3

Fig. 4. Examples of 2D and 3D pose estimation on Human3.6M dataset.

4.3 Results on Occlusion-Person

2D Pose Estimation Results. Table 4 shows the results on the Occlusion-
Person dataset. From the table we can find that our approach is significantly
improved compared with NoFuse. This is reasonable because the features of the
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Table 4. The 2D pose estimation accuracy (PCK) of the baseline methods and our
approach on the Occlusion-Person dataset

Methods Hip Knee Ankle Shlder Elbow Wrist Mean

NoFuse 63.4 21.5 17.0 29.5 14.6 12.4 30.9

HeuristicFuse 76.9 59.0 73.4 63.5 49.0 54.8 65.0

Ours 97.7 94.4 91.0 97.9 91.0 93.1 94.2

occluded joints are severely corrupted and the results demonstrate the advantage
of our approach for dealing with occlusion.

3D Pose Estimation Results. The results of 3D pose estimation error (mm)
are presented in Table 5. The result of NoFuse is 41.64mm which is a large
error. The performance of our model is 9.67mm which means our approach can
better handle occlusions than other baselines. Since there are very few works
have report results on this new dataset, we only compare our approach to the
three baselines. Figure 5 shows some examples of 2D and 3D pose estimation on
Occlusion-Person dataset.

Table 5. The 3D pose estimation error (mm) of the baseline methods and our approach
on the Occlusion-Person dataset.

Methods MPJPE,mm

NoFuse 41.6

HeuristicFuse 13.4

RANSAC 12.4

Ours 9.7

Fig. 5. Examples of 2D and 3D pose estimation on Occlusion-Person dataset.
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5 Conclusion

In this paper, we present a novel approach for multi-view human pose estimation.
Different from previous methods, we propose to extract weights of views and
heatmaps to reflect their quality. The experimental results on the two datasets
validate that the approach is efficient and robust to occlusion.
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