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Abstract. Ethereum, as the second generation of blockchain technol-
ogy, it not only brings many advantages, but also spawns various mali-
cious incidents. Ethereum’s anonymity makes it a hotbed of cybercrime,
causing huge losses to users and severely disrupting the Ethereum ecosys-
tem. To this end, this paper proposes a method for detecting malicious
accounts in Ethereum based on ETH tracking tree (ETH-TT). Firstly,
based on the transaction history replay mechanism, an ETH tracking
algorithm for tracking the transaction amount of Ethereum is designed
to obtain the ETH tracking tree, and extract sequence features from it.
Then train the LSTM model to reduce the dimension of the sequence
features to obtain the output features. Finally, detection is done by a
machine learning classifier, fused with manual features from account
transaction history. We uses 5576 malicious accounts and 4968 normal
accounts as dataset for experiments. The results show that the ETH-
TT method can achieve an F1-score of 95.4% with the cooperation of
the XGBoost classifier, which is better than the detection method using
only manual features.

Keywords: Blockchain · Ethereum · Malicious accounts detection ·
ETH tracking tree · LSTM · Machine learning

1 Introduction

As a representative of the blockchain 2.0, Ethereum provides a complete Turing
scripting language, allowing users to deploy decentralized applications (DAPP)
on Ethereum to implement user-defined methods, bringing more possibilities to
the blockchain [9,15]. Based on the account model, Ethereum supports direct
transactions between accounts.

While Ethereum brings more functions to users, it also brings more vulner-
abilities and threats, and due to the design and implementation of Ethereum,
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the vulnerabilities caused are more difficult to deal with than in the traditional
mode [16]. According to the research of Chen [1], Ethereum faces 44 types of
vulnerabilities and 26 types of attacks. The hackers use certain technical means
to complete malicious events through accounts on the Ethereum platform, such
accounts for malicious behavior are defined as Ethereum malicious account. The
following are some of the major events that have occurred in recent years. In June
2016, the famous crowdfunding project The Dao [7] was stolen about US$60 mil-
lion by attackers using the reentrant vulnerability in the smart contract. In July
2017, a security vulnerability occurred in Parity1.51 and above, 150,000 ETH
were stolen, worth US$30 million. Upbit [14], one of the largest cryptocurrency
exchanges in South Korea, was stolen by an unidentified attacker in November
2019. 342,000 ETH were sent to an Ethereum wallet and quickly spread to about
800 accounts. Therefore, there is an urgent need to use computer technologies
such as pattern recognition, machine learning, or neural networks to detect mali-
cious behavior on the Ethereum platform, and further detect malicious accounts
in Ethereum [18]. Thereby reducing risks and bringing more security.

In the field of Ethereum malicious account detection, the current research
is mainly based on the manual features extracted from the transaction history
of the address, and then the machine learning classifier is constructed for train-
ing, such as the study of Kumar [8], Poursafaei [11], Farrugia [3], etc. In some
papers, it also shows good F-score and Recall. However, the information con-
tained in the manual features used in these studies is incomplete. According
to our analysis, malicious accounts often quickly transfer “Black Money” ETH
to multiple accounts after conducting malicious acts. This makes it difficult for
official institutions to recover them to achieve money laundering purposes. Take
Upbit [14] as an example. In a few days, the hacker transferred the stolen 342,000
ETH to more than 800 accounts, which were distributed in more than ten trans-
action levels [14]. In the end, most of the ETH flowed into the exchange to
withdraw money to complete the money laundering work. There are also mali-
cious events such as Cryptopia and Bitpoint [13], which are also similar to the
above-mentioned behavior patterns. Therefore, analyzing the transfer behavior
and further tracking the flow of malicious transaction ETH between accounts is
of great significance for detecting malicious accounts.

Inspired by this, we propose an ETH Tracking Tree (ETH-TT) based method
for detecting malicious accounts in Ethereum, and achieves good results in the
final evaluation, which is better than the method that only using manual fea-
tures.

2 ETH Tracking Tree Method

The whole flow of ETH-TT method proposed is shown in Fig. 1. First, deter-
mine the parameters of the limits, including the tracking time and the number
of tracking tree layers. Then use the key transaction algorithm and the ETH
tracking algorithm to obtain the ETH tracking tree, and further calculate the
1 Multi-signature wallet version 1.5 of Parity Technologies.
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traceability rate information. Next, the sequence features are parsed from the
tracking tree and feed into the LSTM model to get the output vector features.
Finally, the vector features and manual features are connected and input into
the machine learning classifier to get the final result.
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Fig. 1. ETH-TT method flow chart

2.1 ETH Tracking Tree and Traceability Rate

Before describing how to building the ETH tracking tree, we need to find the
key transaction corresponding to the account and let it be the starting transac-
tion to initiate the tracking. Specifically, we need to sort the transaction list of
addresses and find the most representative transaction as the key transaction. In
the research of Wu [16], they proposed that the key characteristics of a transac-
tion are its transaction amount and timestamp. We use his formula to sort the
transactions, as shown in Eq. 1.

P 0.5
t ∗ P 0.5

a (1)

Among them, Pa represents the ratio of the one transaction’s ETH to the
total transactions’ ETH of the address, and Pt represents the position of the
one transaction’s timestamp in the entire transaction history time range of the
address. The index is used to balance the influence of two parameters, and 0.5
is the best value [16].

The key transaction algorithm is shown in Algorithm 1. After entering an
address, find all transactions for the address and sort them in reverse order
according to Eq. 1. It then traverses the sorted transaction list until it finds a
transaction that meets the traceability conditions, and then returns it as a key
transaction. A transaction can be traced, that is, the ETH generated by the
transaction has been transferred later.

The ETH tracking tree is constructed by the ETH tracking algorithm, as
shown in the Algorithm 2. The algorithm is based on the transaction history
replay mechanism, and first takes the ETH of the key transaction as the target
ETH. Under some constraints such as tracking time and number of tracking
tree layers, track the flow of the target ETH between the accounts to form a
corresponding tree structure, called ETH tracking tree. Finally, calculate the
traceability rate of the target ETH in the tree’s nodes. The following describes
the algorithm in detail in two steps.
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Algorithm 1. Key Transaction Algorithm
Input: Target Address A
Output: Key Transaction of Address A
1: Txlist=A.getTxList().sort(key:P 0.5

a *P 0.5
t ,reverse:True)

2: for each tx ∈ Txlist do
3: if canBeTraced(tx) then return tx
4: end if
5: end for

Algorithm 2. ETH Tracking Algorithm
Input: KeyTransaction Tx, Layer Limit Layers, Time Limit Days
Output: ETH Tracking Tree Tree
1: Tree=Init()
2: PathTx=Init()
3: Datelist=getDate(Tx,Days)
4: Tree.root=Tx.toAddr
5: for each date ∈ Datelist do
6: Txlist=getTxList(date).sort(key:timeStamp,blockNumber)
7: for each tx ∈ Txlist do
8: if isEligible(tx, Layers) and tx.fromAddr ∈ Tree then

appendToPathTx(tx, PathTx)
9: if tx.toAddr /∈ Tree then appendToTree(tx, tx.toAddr, Tree)
10: end if
11: end if
12: end for
13: end for
14: for tx ∈ PathTx do calculateTraceabilityRate(tx,Tree)
15: end for

The first part of the ETH tracking algorithm is to create the structure of
the tree. Specifically, the first step is to determine the number of tracking tree
layers and tracking time as the limits of the tracking algorithm. The second
step is to calculate the time range according to the key transaction and time
limit, and find the corresponding Ethereum transaction list based on this, and
finally sort by the timestamp and transaction index (block number), that is, the
actual transaction order. The third step is to add the output address of the key
transaction to the tracking tree as the root node. The fourth step is to traverse
the sorted transaction list after the key transaction, find the output transactions
of the root node, insert the output addresses of these transactions into the tree
according to the transaction order. For example, address A is already in the tree,
and has transactions with address B and address C successively. Then address
B and address C are regarded as the child nodes of A. Loop to find all the tree
nodes’ output transactions and child nodes, until find the exchange addresses,
contract addresses, or reach the limit of the number of tracking tree layers. Thus
ETH tracking tree is established.
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In the tracking algorithm, the concept of traceability rate will be involved.
The traceability rate of an account at a certain timestamp indicates the pro-
portion of the target ETH held in its balance to the total target ETH needs
to be tracked, that is, the distribution of target ETH among accounts. Which
can visually show the information of the flow of ETH. When a transfer transac-
tion occurs in an account with a traceability rate, the traceability rate will be
converted accordingly. The formula for traceability rate conversion is shown in
Eq. 2. Among them, Balancefrom represents the balance of the account before
the transaction. Amount is the ETH amount of the transaction. Ratefrom rep-
resents the traceability rate of the account before the transaction. Finally, the
traceability rate conversion amount can be obtained.

Conversionrate = (Amount/(Balancefrom)) ∗ Ratefrom (2)

After describing the concept of traceability rate and traceability rate con-
version, we can carry out the remaining process of the tracking algorithm. The
second part of the algorithm is to calculate the traceability rate related infor-
mation of the nodes in the ETH tracking tree. Specifically, after getting the
tracking tree, traverse the list of transactions encountered during the tracking
process, where each transaction represents a traceability rate conversion process
as described above, so the traceability rate of the node is constantly changing.
By calculating each traceability rate conversion, some information related to
the traceability rate are calculated, i.e., the final traceability rate of each node
and the maximum traceability rate reached, and the position of the point in
time when the maximum traceability rate is reached. Then we maintain these
parameters on the tracking tree nodes for later calculation of sequence features.

Through the above two steps of the ETH tracking algorithm, a simple exam-
ple of the finally obtained ETH tracking tree is shown in Fig. 2.

2.2 Features Extraction

Generally speaking, features extraction is divided into two parts.

– Firstly we could find the transaction history of target address, and then
extract features from it. In this part, we refer to the research of Kumar
[8] to extract 45 features. The features include the number of Input/Output
transactions, the average handling charge, the Input/Output amount, etc.

– The second part is to use the ETH tracking tree to extract sequence features
to obtain the information of the ETH flow. As shown in Fig. 3, each level of
the sequence corresponds to each level in the tree. After getting the tracking
tree, we first calculate the features of each node in the tree according to the
traceability rate information obtained in the Algorithm 2 and some auxiliary
information. See the Table 1 for details. The evaluation indicators of these fea-
tures (including arithmetic mean, variance, standard deviation, mean square
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Fig. 3. Extracting sequence features from ETH tracking tree

root value, majority, median, geometric average) are then taken by layer, and
the number of nodes in that layer is added as the last feature, with a total of
120 dimensions as the features of each layer. Finally the sequence features of
M * N are obtained, where M represents the number of layers of the tracking
tree, N stands for a fixed 120-dimensional feature.
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Table 1. Tracking tree node features

Features Descriptions

Input tx num The number of transactions received

Output tx num The number of transactions sent

Tx num The total number of transactions

Addr num The number of distinct addresses where transactions
took place

Max rate The maximum of traceability rate ever achieved

Max rate position The position of the time point to reach the maximum
traceability rate in the whole transaction sequence

Tx mean interval The average transaction time interval

Rate mean change The average conversion of traceability rate

Rate max change The maximum conversion of traceability rate

Rate min change The minimum conversion of traceability rate

Max tx num The maximum number of transactions with the same
address

Max value num The maximum ETH traded

Rate The final traceability rate

Is exchange 1 if the address is an exchange address else 0

Exchange rate The final traceability rate if the address is an
exchange address else 0

Is contract 1 if the address is an contract address else 0

Contract rate The final traceability rate if the address is an
contract address else 0

2.3 Model Design

We need to extract sequence features into fixed-dimensional features to train
machine learning classifiers. Considering that there is a dependency relationship
between the levels of the tracking tree, and the obtained features are long-range
sequences, we use Long Short Term Memory (LSTM) as the features extraction
model [4,5,17].

The overall design of the model is shown in Fig. 4. We construct a bidirec-
tional multi-layer LSTM, and feed the sequence features (which may need to be
filled) into LSTM for training and getting output features. The length of LSTM
sequence is determined by the restrictions on the number of tracking tree lay-
ers set in the experiment. After the output features is obtained, it is connected
with the manual features of the address. Then the fusion features are feed into
machine learning classifiers for training, and the final results can are obtained.
In addition, the manual features will be directly feed into the machine learning
classifier for comparison.
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Fig. 4. Overall design of the model

3 Experiment

3.1 Dataset

First, we built a Geth Ethereum node on the server and started to synchronize
the block information. Then we use the Ethereum ETL project [10] to store
transaction information on the hard disk in the form of a CSV file on a daily
basis.

– We need to collect malicious addresses (positive samples) and normal
addresses (negative samples) of EOA. Firstly, we collected 5585 positive sam-
ples from the tag library of Etherscan [12] and Cryptoscamdb [2], GitHub [6],
third-party certification bodies, etc. Including fraud, phishing, money laun-
dering, currency theft and other types. In order to collect negative samples,
We continuously randomly took addresses from senders and receivers in the
transaction list and put them into the positive sample set (automatic dedu-
plication), and cycled this process until the set size reaches 6000.
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– The second step we need to take is preprocessing. First, all sample addresses
were traversed, if there were no transactions, they were filtered out. Took
advantage of the “create” type transaction feature of smart contract to filtered
it out. Then traversed the negative samples and filtered out the ones that
have direct transaction relationship with the positive samples. Finally, 5576
positive samples and 4968 negative samples were left as the final dataset.

3.2 Experimental Details

The entire control experiment is divided into two modules, one uses the ETH-TT
method, and the other uses only manual features to train the model with the
same kind of features as Kumar [8].

In the ETH-TT experiment, we specified four parameter combinations as
control experiments to limit the tracking time (number of days) and the number
of tracking tree layers, respectively [3 days, 5 layers], [3 days, 15 layers], [5
days, 15 layers], [5 days, 20 layers]. Finally, it is trained in 4 machine learning
classifiers: XGBoost, Random Forest, LightGBM and Decision Tree. It should
be noted that we randomly divide the entire dataset into a training-set and a
test-set, with a ratio of 7:3.

3.3 Experimental Result

The evaluation results of the above experiments are shown in the Fig. 5. Each
sub-graph in the Fig. 5 shows the Manual Feature method and the ETH-TT
method under different parameter combinations. The indicators are Precision,
Recall, F1-score, Accuracy.

F1-score can comprehensively reflect the effect of the model. Under the
parameters of [5 days, 20 layers], the XGBoost model reached the optimal
95.42%. Recall can measure the ability of the model to find positive samples,
XGBoost reached the best 94.69%.

3.4 Result Analysis

The results show that the ETH-TT method is effective for detecting malicious
Ethereum accounts, and is better than Kumar [8], that is, the method that only
uses manual features. After reaching the parameter combination of [5 days, 20
layers], all indicators are better than the method of Kumar [8] under different
machine learning classifiers.

From the perspective of parameter combinations, with tracking time and
the number of tracking tree layers are relaxed, the overall effect of the model
is getting better and better. This shows that with the expansion of the ETH
tracking tree, the contribution of the features extracted from it to the model is
magnifying, which further illustrates the effectiveness of the ETH-TT method.
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(a) Evaluation results under XGBoost model

(b) Evaluation results under LightGBM model
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Fig. 5. Evaluation results
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4 Availability of Data and Material

The dataset and model files mentioned in the article are available here:
https://github.com/yfzjay/ETH-TT.
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