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Abstract. Cigarette code is a 32-character string printed on a cigarette
package, which can be used by tobacco administrations to determine the
legality of distribution. Unfortunately, the recognition task for incom-
plete cigarette code often suffers from lowered recognition accuracy and
the destruction of semantic context due to complex backgrounds and
damaged characters. This paper proposes an end-to-end recognition net-
work for incomplete cigarette code to improve recognition accuracy and
estimate character landmarks. The proposed network first extracts multi-
scale features using feature pyramid networks (FPN), then utilizes a
spatial attention (SPA) mechanism to yield unified SPA features and
integrates them into instance segmentation. This strengthens spatial rep-
resentation ability and improves the recognition accuracy. A graph con-
volutional network (GCN) is introduced to construct graph space con-
straints and calculate character spatial correlations and accurately esti-
mates missing character landmarks. Finally, we employ the Hungarian
algorithm to align recognition characters with estimated landmarks and
fill missing characters with ‘*’ to preserve the complete semantic con-
text, and produce the final regularized cigarette code. The experimental
results demonstrate that our proposed network reduces time consump-
tion and improves recognition accuracy, surpassing the state-of-the-art
methods.

Keywords: Cigarette code recognition · Spatial attention
mechanism · Graph convolutional network · Deep learning

1 Introduction

Cigarette code is a 32-character string printed onto cigarette packages, which
contain information including the production date, the manufacturer, and the
cigarette retail store, often used by tobacco administration to determine the
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Fig. 1. Recognition task for cigarette code. (a) example incomplete cigarette code with
complex background and damaged characters; (b) recognized cigarette code result with-
out damaged characters; (c) estimated cigarette code landmarks including damaged
characters; (d) final recognized result with 32 characters, where missing characters are
filled by ‘*’.

legality of distribution [28,29]. Unfortunately, the recognition task for cigarette
code suffers from many difficulties such as complex backgrounds, blurred print-
ing, damaged characters, and even large broken areas, which greatly reduce the
accuracy of character recognition. Missing character landmarks need to be esti-
mated to produce a 32-character code with complete semantic correlation. As
shown in Fig. 1, when given a source image of incomplete cigarette code, the
recognition task first recognizes undamaged characters, then estimates full char-
acter landmarks, including those of damaged characters. Finally, the recognized
characters and estimated landmarks are regularized to yield an 32-character
cigarette code where any missing characters are filled by ‘*’.

The recognition of incomplete cigarette code can be divided into two sub-
tasks: character recognition and landmark estimation. Current character recog-
nition methods [8,15,17] have difficulty dealing with complex backgrounds and
blurred printing to construct the spatial semantic context of full characters
for incomplete cigarette code. Meanwhile, methods [6,22,27–31] were unable
to establish the spatial correlation between characters for incomplete cigarette
code in the process of landmark estimation.

To address the above problems, this paper proposes a recognition network for
incomplete cigarette code based on unified spatial attention (SPA) features and
graph space constraints. The network architecture is divided into four modules,
as shown in Fig. 2: (1) Feature Extraction. We use the residual network (ResNet)
[5] and feature pyramid network (FPN) [11] to extract multi-scale features of
incomplete cigarette code. (2) Instance Segmentation. Inspired by ‘SOLOv2’ [24],
we introduce a spatial attention mechanism to yield unified SPA features, which
enhance the spatial representation for characters and backgrounds. (3) Land-
mark Estimation. We first estimate initial landmarks using integral regression
based on the unified SPA features. We then construct graph space constraints
based on graph convolutional network (GCN) [6] to optimize the spatial correla-
tion between characters, and therefore can accurately estimate the full character
landmarks. (4) Text Regularization. The Hungarian algorithm [7] is introduced
to align the instance segmentation results and estimated landmarks.

In addition, we construct and execute experiments on a dataset contain-
ing 15,000 images of incomplete cigarette code, including missing characters,
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Fig. 2. The network architecture of our recognition network for incomplete cigarette
code consists of four modules: (1) Features Extraction; (2) Instance Segmentation;
(3) Landmark Estimation; (4) Text Regularization.

complex background, and blurred printing. The experimental results demon-
strate that our proposed method can accurately recognize characters, effectively
estimate the landmarks, and produce the recognized result of cigarette code with
32 characters.

2 Related Work

Some popular techniques relevant to the recognition task for incomplete cigarette
code can be classified into three categories: text recognition, landmark estima-
tion, and graph convolutional networks.

Recognition methods based on deep learning are widely used in complex
scenes [1,8,15,17,28,29]. However, the performances of these methods were
weak for incomplete cigarette code because of the complex backgrounds and
blurred printing. Otherwise, attention mechanisms have been used in some stud-
ies [10,14,18] to draw attention to channel and spatial dimensions, which can
strengthen feature representation and improve text recognition performance. To
this end, inspired by SOLOv2 [25], in this paper we introduce a spatial attention
mechanism to yield unified SPA features, and strengthen the spatial representa-
tion for characters and backgrounds.

Incomplete cigarette code recognition requires landmark estimation for both
present and missing characters. State-of-the-art methods for landmark estima-
tion [2,22,23,26] have been applied mainly to face localization and human pose
estimation. They introduced heatmap-supervised [23], multi-stage supervised
training [26], multi-scale features [2] to estimate landmarks. Notably, Sun et
al. [22] reconsidered the task of human pose estimation using an integral regres-
sion perspective that can generate joint coordinates from heatmap. Inspired by
this, in this study we apply integral regression to generate the initial character
landmarks for further GCN-based optimization.

Character correlation can be modelled as a graph-based relationship, which
can be learned using GCN [6,30]. GCN-based landmark estimation works [3,31]
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usually built graph neural networks through a prior graph node relationship
to achieve better detection performance. Therefore, we have employed GCN to
construct graph space constraints for the 32 cigarette code characters to improve
landmark estimation for incomplete cigarette code.

3 Method

In this paper, we propose an end-to-end recognition network for incomplete
cigarette code which can: accurately recognize characters using multi-scale SPA
features; estimate full-character landmarks by constraining the character spatial
correlation; and produce recognition results with semantic context. As shown
in Fig. 2, the network is divided into feature extraction, instance segmentation,
landmark estimation, and text regularization modules.

3.1 Features Extraction Using FPN

The FPN structure can effectively extract the multi-scale features of an incom-
plete cigarette code to obtain the character location and semantic informa-
tion [11]. We use ResNet [5] as the bottom-up part for forwarding features from
the image to the top-down part. The top-down part applies layer-by-layer upsam-
pling and lateral connection operations to the feature maps to obtain multi-scale
features from P2 to P5. P2 features are the stronger of these features for locational
representation and the weaker for semantic representation in the image, while P5

behaves oppositely. The feature extraction module can effectively utilize charac-
ter location and semantic information from input images to provide multi-scale
features for the instance segmentation and landmark estimation modules.

3.2 Instance Segmentation via Unified SPA Features

In instance segmentation module, the multi-scale features Pi, i ∈ [2, 5] are first
distributed to classification, kernel, and feature branches. A dynamic convo-
lutional operation is then introduced to produce masks. Lastly, we employ a
matrix non-maximum suppression (Matrix NMS) [25] to produce instances of
the incomplete cigarette code.

In classification branch, each feature Pi is aligned to the cell si ×si, where si

is the number of x-axis and y-axis for input image, and obtain FC
i ∈ R

si×si×d,
where d is the channel of the input image. After four convolutional operations,
the features Ci are aligned into the category feature shape si × si × n, where n
is the category number. Finally, the features Ci are concatenated from different
scales into feature CF ∈ R

s2×n, where s is the summation of si.
In kernel branch, we introduce the coordinate convolution [13] into feature

Pi to improve the mask spatial representation. After similar operations in the
classification branch, the mask kernel KF ∈ R

s2×e is predicted, where e is the
channel number of the mask kernel.
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Fig. 3. Unified SPA features. Spatial attention mechanism is introduced to yield unified
SPA features and strengthen the spatial representation for characters and backgrounds.

As shown in Fig. 3, we employ a spatial attention mechanism in the mask
feature branch to strengthen the representation of cigarette code spatial features,
and unify the multi-scale SPA features to generate the final mask features. The
SPA features can be calculated as follows:

F spa
i = σ(f(AvgPool(FM

i ) � MaxPool(FM
i ))), (1)

where σ denotes the sigmoid function, f(·) is the convolutional operation, and
� denotes concatenatal operation. The input feature FM

i is equal to Pi if i < 5.
Since the feature P5 lacks the location information, the coordinate convolution
is added to the input feature FM

5 . The unified SPA features MF is calculated as

MF = Conv(
5∑

i=2

Mi) = Conv(
5∑

i=2

(f(F spa
i ⊗ FM

i )), (2)

where ⊗ denotes element-wise multiplication; f(·) is series upsample and con-
volutional operation to align the mask features shapes from multi-scales; Mi

denotes mask feature result of ith scale; and Conv is a convolutional operation.
Equation 1 uses spatial attention to obtain SPA features from FM

i . Equation 2
first employs an element-wise multiplication operation between FM

i and F spa
i to

enhance the representation ability of character location features. Then the f(·)
upsamples the SPA features until its shape matches that of P2. Additionally, an
element-wise summation for each feature Mi is performed to obtain the unified
SPA features M+. Finally, a Conv operation is used to ascend dimension for
M+ to obtain the unified SPA mask features MF for the landmark estimation.

When the kernel feature KF and unified SPA mask feature MF are calcu-
lated, a dynamic convolutional operation is introduced to produce the instance
masks M . For each kernel feature KF

z where z ∈ [1, s2], the instance mask Mk

can be calculated as Mk = KF
z � MF , where � denotes dynamic convolution.

For category feature CF in the classification branch, we first filter out low
confidence results using a 0.1 threshold and a 0.5 threshold to obtain C ′ and M
respectively. Finally, Matrix NMS [25] is employed to obtain the final instance
segmentation result from C ′ and M .
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Fig. 4. Cigarette characters correlation. The black edges indicate the node’s closest
edge, whose weights are defined as 0.8; analogously, the weights of the green and blue
edges are set to 0.6 and 0.4 respectively. If the distance between two nodes is d ≤ 3,
the value of correlation between two nodes is set to 0.2 × (5 − d), otherwise is set to
0.(Color figure online)

3.3 Landmark Estimation via Graph Space Constraints

In landmark estimation module we first employ integral regression to estimate
the initial landmarks of characters based on the unified SPA features, then we
introduce GCN to construct graph-based space constraints that indicate the
spatial correlations between individual characters.

In the integral regression process, firstly a convolutional operation is used to
calculate the heatmap features from the unified SPA features M+. Then, integral
regression is performed using a discretization algorithm to generate the initial
landmarks as follows:

Xinit
i =

∫

p∈Ω

(p · F̃H
i (p)) =

h∑

x=1

w∑

y=1

(p · F̃H
i (p)), (3)

where F̃H
i (p) is the normalized heatmap feature; p is the heatmap pixel point;

Ω is the heatmap pixel region of width w and height h; and Xinit
i denotes the

landmark coordinates at channel i after the discretization algorithm. As a result,
the initial landmarks Xinit ∈ R

2×32 have been calculated.
The next step is to optimize the landmarks for the graph space constraints,

by introducing GCN to constrain spatial semantic correlations between the 32
characters. Firstly, we align the shape of the FPN high-level feature P5 as F sem ∈
R

h′w′×32 to 32 dimensions, corresponding to 32 characters. Secondly, the feature
sequence X of characters is calculated as X = Xinit � F sem, where � denotes
a concatenation operation. Finally, GCN is introduced to optimize landmarks,
with a GCN operation shown as follows:

X ′ = f(X,A) = ReLU(AXW ), (4)

where X ′ denotes the optimized landmarks through GCN operation f(·); X
denotes input feature sequences; A is the adjacency matrix; W denotes the GCN
weights; and ReLU is the activation function. The GCN weights W of GCN are
updated after network training is completed. The adjacency matrix A is defined
as shown in Fig. 4.
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3.4 Text Regularization

The text regularization section uses the Hungarian matching algorithm to match
the incomplete cigarette code recognition results with the estimated landmarks,
and use ‘*’ to fill the broken characters.

We define the mask centroids of character instances as a set Xmask and the
estimated landmarks as a set Xgcn. Then our matching task is transformed into
an assignment problem [20] for each i ∈ Xmask, j ∈ Xgcn. The minimization
assignment between Xmask and Xgcn is expressed as:

R = arg min
R

(
n∑

i=1

n∑

j=1

(dij · rij)), i, j ∈ (1, 2, · · · , n), (5)

where R denotes minimization matching matrix; dij is the Euclidean distance
between Xmask

i and Xgcn
j ; rij ∈ 0, 1 indicates the matching relationship between

Xmask
i and Xgcn

j .
We introduce the Hungarian algorithm to calculate the minimization match-

ing matrix R. Then, we use the matrix R to match outcomes from the instance
segmentation and landmark estimation modules to produce the recognition result
for the incomplete cigarette code. Lastly, we fill missing character locations with
‘*’ to regularize the 32-character cigarette code recognition result.

3.5 Loss Function

In the classification branch, we introduce the Focal loss [12] to calculate the
classification loss Lcate. In the mask kernel and mask feature branches, we employ
Dice loss [19] to calculate the loss Lmask for the predicted mask area.

In the landmark initialization and optimization tasks, we introduce the loss
function �1 loss [21] to calculate the initial landmarks loss Linit and optimized
landmarks loss Lopt.

Ultimately, the overall loss function for our end-to-end recognition network
is defined as:

L = Lcate + λ0Lmask + λ1Linit + λ2Lopt, (6)

where λ0, λ1, λ2 denote weights of each loss function. The optimal network
performance is achieved for (λ0, λ1, λ2) equal to (3, 0.1, 1).

4 Experiments

In this section, we extensively evaluate the proposed recognition network for
incomplete cigarette code on a dataset, containing 15,000 images of incomplete
cigarette code, including missing characters, complex background, and blurred
printing. Firstly, we evaluate the instance segmentation module; secondly, we
evaluate the landmark estimation module; we then discuss the performance of the
end-to-end network in recognizing cigarette code; in addition, we demonstrate
the effectiveness of the core components through ablation experiments.
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Table 1. Instance segmentation mask AP (%) on test set of incomplete cigarette code.

Method AP AP50 AP75 APM APL

Mask R-CNN [4] 52.7 84.6 59.6 48.5 54.0

SOLOv2 [25] 53.7 83.9 59.2 48.6 54.6

Ours 54.5 87.1 62.9 49.0 55.7

4.1 Evaluation of Instance Segmentation

For evaluating the instance segmentation performance, we compared the Mask
R-CNN [4], the SOLOv2 [25] and our method. In the instance segmentation
module, we evaluated the performance metrics AP, AP50, AP75, APM , and APL

for mask segmentation of Mask R-CNN, SOLOv2, and ours.
Table 1 shows that our instance segmentation module achieved an AP of

54.5%, which is a 1.8% and 0.8% improvement over Mask R-CNN and SOLOv2,
respectively. These results demonstrate that our instance segmentation module
has better performance for incomplete cigarette code.

4.2 Performance of Landmark Estimation

Our landmark estimation module introduces GCN to constrain characters in
graph space and establish a spatial semantic correlation, which can effectively
estimate the landmarks of incomplete cigarette code.

As shown in Fig. 5, we compared the landmark estimation performance
between Wu et al. [27] and ours for multiple situations including: complex back-
ground on the first row; damaged characters on the second row; and skewed
alignment on all rows. It is shown that our method obtained centered and smooth
character locations.

4.3 End-to-End Performance

To evaluate the performance of our method for incomplete cigarette code, we
evaluate the accuracy based on the test set. The accuracy was determined by the
percentage of predicted results that correctly classified all 32 aligned characters.
Our method achieves an accuracy rate of 90.2%. Ten results of the recognition
process for incomplete cigarette code are shown in Fig. 6. The results show that
our network has good recognition performance for incomplete cigarette code.

As other text detection methods were incapable of recognition task for incom-
plete cigarette code, we used 500 images with complete cigarette code to fairly
compare our method to other text recognition methods. We then evaluated each
text recognition method in terms of time consumption and accuracy. The results
are shown in Table 2, where time consumption is indicated by time taken to rec-
ognize one image in seconds, and accuracy by the percentage of predicted results
that correctly classify 32 aligned characters. In summary, our method yields the
optimal performance in both time consumption and recognition accuracy.
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Fig. 5. Comparison of landmark estimation performance. (a) cigarette code image;
(b) Wu et al. [27]; (c) ours. Locations are shown by yellow boxes for Wu et al. and
green boxes for our method. Compared to Wu et al.’s method in the case of complex
background, damaged characters, and skewed alignment, our method obtains centered
and smooth character locations

Table 2. Comparison of recognition performance for complete cigarette code between
our method and several state-of-the-art methods.

Method Time/s Accuracy/%

Fots [15] 0.564 69.6

Mask textspotter [9] 0.588 73.4

ABCNet [16] 0.216 71.3

Xie et al. [29] 0.636 87.4

Wu et al. [27] 0.324 90.6

Ours 0.192 92.6

4.4 Ablation Experiments

We present ablation experiments on the two key components, spatial attention
mechanism and graph space constraints, to investigate the effectiveness of them.

To investigate the effectiveness of the SPA, we divided the experimental
results into two cases by controlling whether to add SPA to the network, and
calculated the network accuracy separately. The model achieves an accuracy of
90.2% with SPA component, while it only achieves 88.5% without SPA. The SPA
component improved the character recognition accuracy by 1.7%, which proves
that SPA can effectively strengthen the character representation ability.

To investigate the effectiveness of the GCN, we employed mean absolute
error (MAE) and root mean square error (RMSE) to evaluate landmark estima-
tion, and the results are shown in Table 3. The MAE and RMSE from GCN-
based landmark estimation decreased by 3.978% and 2.546% respectively over
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Fig. 6. Recognized results of our network. (a) cigarette code image; (b) character
instances yielded from instance segmentation module; (c) character landmarks pro-
duced from landmark estimation module; (d) recognition result. Results are divided
into 5 categories from top to bottom: similar color, complex background, blurred print-
ing, damaged characters, and large broken area.

Table 3. Effectiveness of GCN.

Component MAE RMSE

Without GCN 0.2212 0.1807

With GCN 0.2124 0.1761

the method without GCN, indicating that GCN contributes to constructing char-
acter correlation.

5 Conclusion

In this work, we propose an end-to-end recognition network for incomplete
cigarette code. The network reduces time consumption and improves recogni-
tion accuracy. Specifically, we utilize a spatial attention mechanism to yield
unified SPA features, which can strengthen character and background represen-
tations, and improve the recognition accuracy; we construct graph space con-
straints through GCN to achieve high-accuracy landmark estimation, which can
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establish spatial semantic correlation between characters and estimate the land-
marks effectively for incomplete cigarette code.
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