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Abstract. Lung cancer is one of the most widely spread cancers in the
world. So far, the histopathological image remains the “gold standard”
in diagnosing lung cancers, and multiple types of pathological images
features have been associated with lung cancer diagnosis and progres-
sion. However, most of the existing studies only utilized single type of
image features, which did not take advantages of multiple types of image
features. In this paper, we propose a Block based Multi-View Graph Con-
volutional Network (i.e., BMVGCN), which integrates multiple types of
image features from histopathological images for lung cancer diagnosis.
Specifically, our method utilizes the block-based bilinear combination
model to fuse different types of features. By considering the correlation
among different samples, we also introduce the Graph Convolutional Net-
work to exploit the correlations among samples that could lead to bet-
ter diagnosis performance. To evaluate the effectiveness of the proposed
method, we conduct the experiments for the classification of the cancer
tissue and non-cancer tissue in both Lung Adenocarcinoma (i.e., LUAD)
and Lung Squamous Cell Carcinoma (i.e.,LUSC), and the discrimination
between LUAD and LUSC. The results show that our method can achieve
superior classification performance than the comparing methods.

Keywords: Lung cancer diagnosis · Histopathological image · Graph
neural network · Multi-view fusion

1 Introduction

1.1 Related Work

Nowadays, cancer can be diagnosed through multiple imaging biomarkers, includ-
ing Computed Tomography (CT), Positron Emission Tomography/Computed
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Fig. 1. The overall framework of the proposed method.

Tomography (PET/CT), MRI and histopathological images. Among all these
imaging biomarkers, histopathological images are generally considered to be the
gold standard for cancer diagnosis and prognosis since it can provide morphologi-
cal attributes of cells that are highly related to the degree of the aggressiveness of
cancers [1]. With the help of ever-increasing computing resources, many computa-
tional histopathological systems have been proposed to extract different types of
histopathological image features to help diagnose human cancers [2–7]. For exam-
ple, Gurcan et al. [3] utilized Gray-level co-occurrence matrix (GLCM) and Gray-
level run length matrix (GLRLM) to extract texture features (i.e., haralick fea-
tures) from the histopathological images, which are proved to be sensitive to the
diagnosis of brain cancer, Sparks et al. [6] presented a set of explicit shape descrip-
tors (ESDs) to obtain morphology features for classifying gland Gleason grade in
prostate cancers. Other studies include Shukla et al. [7] have extracted morpho-
logical features for accurate and reliable detection of breast cancers.

Recently, besides applying single type of image features for cancer diagno-
sis, several studies combined multiple types of image features for diagnosing
human cancers. For instance, Cheng et al [8] proposed an 150-dimensional fea-
ture including both morphological and color information in histopathological
image for diagnosing kidney cancer. Yu et al. [9] demonstrated that the combi-
nation of morphology and texture features can better predict the prognosis of
lung cancer patients than using single type of features. Although the above meth-
ods indicated that the combination analysis of multiple types of image features
can uncover the hidden difference between normal and cancer or different cancer
subtypes that cannot be found using single type of features. Most of the studies
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directly combined different types of image features for the diagnosis task, which
neglected the weight information for each feature type in the fusion process. As a
matter of fact, different types of features may carry different task-relevant infor-
mation, and fusing them by naive concatenation may limit the model’s ability
to dynamically determine the relevance of each type of features for the cancer
diagnosis task. In addition, most of the integrative models only considered the
correlation within the multiple types of features, and thus neglected to take the
association among different samples into consideration that will deteriorate the
cancer diagnosis performance.

Based on the above considerations, in this paper, we integrate multiple types
of image features (i.e., morphology and texture features) from histopathological
images and propose a Block based Multi-View Graph Convolutional Network
(i.e., BMVGCN) for lung cancer diagnosis. Specifically, our model utilizes the
block-based bilinear combiantion model [10] to fuse different types of features,
which aims at automatically learning the weight for the combination of different
types of image features. In addition, to better exploit the association among
different samples to help lung cancer diagnosis, we introduce the Graph Con-
volutional Network to exploit their correlations through similarity networks. To
evaluate the effectiveness of the proposed method, we conduct the experiments
for the classification of the cancer tissue and non-cancer tissue in both Lung Ade-
nocarcinoma (i.e., LUAD) and Lung Squamous Cell Carcinoma (LUSC), and the
discrimination between LUAD and LUSC. The results show that our method can
achieve superior classification performance than the comparing methods.

2 Methods

2.1 Datasets

All the histopathological images were collected from Nanjing Medical Uni-
versity. Patients who received any treatment or neoadjuvant therapy before
surgery/biopsy were excluded. Samples (tumor specimens, adjacent normal tis-
sues, and peripheral blood) were obtained during surgical resection. All tissue
samples were snap-frozen. HE-stained sections from each sample were subjected
to an independent pathology review to confirm that the tumor specimen was
histopathologically consistent with NSCLC (>70% tumor cells). For Lung Ade-
nocarcinoma (LUAD) cohort, it contains 73 cancer and 163 normal samples. As
to LUSC cohort (Lung Squamous Cell Carcinoma), 53 cancer samples and 61
normal samples are involved. We show the demographics information of these
two cohorts in Table 1.

Table 1. The demographic information for different lung cancer cohorts

Male/Female Age Tumor/Nontumor

LUAD 115/121 58.65 ± 10.67 73/163

LUSC 100/14 61.25 ± 8.36 53/61
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2.2 Overview of Our Method

We summarize our framework in Fig. 1, which consists of the following four steps.
Firstly, we extract different types of image features (i.e., morphology and texture
features) from pathological images. Secondly, for each type of features, we apply
graph convolutional network (i.e., GCN) to learn their high-level representation
through sample similarity network. Thirdly, we apply the block-based bilinear
combination model to fuse different types of features. Finally, we feed the fused
feature into fully connected layers for the final classification task.

2.3 Feature Extraction

Before feature extraction procedure, the patches are cropped from wsi images.
For each sample, we randomly crop 10 to 20 patches. Those patches with back-
ground area (brightness more than 78%) less than 30% are retained.

For morphology features, we firstly apply an unsupervised method intro-
duced in [11] to segment the nuclei from the raw histopathological image. The
utilized cell segmentation algorithm is comprised of three steps. Firstly, the color
deconvolution operation is adopted to derive the gray-scale image in hematoxylin
channel of the input H/E stained histopathological images. Then, the resulting
grayscale image is processed with opening by reconstruction to connect close
background regions to each other. Finally, a multi-level thresholding segmenta-
tion method, whose threshold can be automatically adjusted according to each
input image is presented for the segmentation of cells. Then, for each segmented
nucleus with their area ranging from 10 to 200, we extract five cell-level features
characterizing the nuclei area (denoted as area), the major and minor axis length
of cell nucleus (major and minor), the eccentricity of the nucleus (eccentricity),
the ratio of major axis length to minor axis (ratio). After that, for each cell-
level feature, we summarize all cell-level features into sample-level features by
using a 10-bin histogram and five statistical measurements (i.e., mean, standard
deviation, skewness, kurtosis, and entropy). Thus, 75-dimensional morphology
features can be derived for each sample. We use the same naming rule for both
cell-level and sample-level features. For instance, the feature major bin 1 rep-
resents the percentage of cells with small major axis length while major bin 10
referred to the percentage of nuclei with long major axis. As to texture fea-
tures, we extract haralick features from the histopathological images. Then, we
extract 13-dimensional haralick features (i.e., Hara 1, Hara 2, ..., Hara 13) for
each valid patch. Like the aggregation method for morphology features, we sum-
marize all patch-level haralick features into 195-dimensional features for each
sample. For instance, Hara 1 bin 1, Hara 1 bin 2,..., Hara 1 bin 10 represent the
ten histogram features for Hara 1, and Hara 1 skewness indicates the skewness
feature for Hara 1.

2.4 High-Level Feature Learning by Graph Convolutional Network

With the consideration of the correlation among different subjects can promote the
classification performance, we utilize Graph Convolutional Network (i.e., GCN) to
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extract high-level representation from each type of extracted features. The GCN
model is comprised of two main parts, the first part is the node feature matrix and
the second part is an adjacency matrix which can be used to describe the structure
of graph.

Table 2. Results for LUAD v.s. nonLUAD and LUSC v.s. nonLUSC.

Task Measurements ACC F1-Score AUC Recall Precision

LUAD v.s. nonLUAD RF 0.758 0.713 0.911 0.274 0.833

SVML1 0.860 0.740 0.921 0.644 0.870

SVML2 0.805 0.646 0.851 0.575 0.737

SALMON 0.869 0.783 0.643 0.767 0.800

GCN BlockTucker 0.907 0.905 0.924 0.907 0.906

GCN Mutan 0.919 0.919 0.921 0.919 0.919

GCN MFH 0.919 0.918 0.909 0.919 0.919

BMVGCN 0.928 0.927 0.953 0.928 0.927

LUSC v.s. nonLUSC RF 0.877 0.865 0.934 0.849 0.882

SVML1 0.596 0.681 0.716 0.925 0.538

SVML2 0.868 0.860 0.958 0.868 0.852

SALMON 0.754 0.781 0.720 0.943 0.667

GCN BlockTucker 0.895 0.895 0.948 0.895 0.895

GCN Mutan 0.939 0.938 0.879 0.939 0.940

GCN MFH 0.930 0.930 0.895 0.930 0.930

BMVGCN 0.947 0.947 0.981 0.947 0.947

LUAD v.s. LUSC RF 0.571 0.727 0.849 0.986 0.576

SVML1 0.563 0.715 0.560 0.945 0.575

SVML2 0.722 0.780 0.783 0.849 0.721

SALMON 0.746 0.775 0.715 0.753 0.797

GCN BlockTucker 0.881 0.882 0.921 0.881 0.891

GCN Mutan 0.873 0.874 0.857 0.873 0.876

GCN MFH 0.881 0.881 0.849 0.881 0.883

BMVGCN 0.897 0.897 0.934 0.897 0.904

Node Feature Matrix. The GCN model is comprised of two components, the
first component is the node feature matrix Xt ∈ R

n×dt , t ∈ {m,h}. Specifically,
let Xm ∈ R

n×dm and Xh ∈ R
n×dh be the extracted morphology and haralick

texture features, respectively. Here, n represents the sample size, and dm and
dh correspond to the dimensionality of the morphology and haralick texture
features, respectively. By viewing each sample as a node in sample similarity
network, the goal of applying GCN is to learn the function of each type of
features on a graph to obtain high-level features that can capture the correlation
among different samples.
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Adjacent Matrix. The second component in GCN model is used to describe
the graph structure, which can be represented in the form of an adjacency matrix
At ∈ R

n×d, t ∈ {m,h}. Our proposed method contains two types of features
(i.e., texture features and morphological features), and for each type of features,
we use a graph to depict the correlation among different samples. We denote
them Gm = {V m ,Am } and Gh = {V h ,Am } respectively. In the graph Gt, t ∈
{m,h}, each node represents a sample, the initialized adjacency matrix At for
feature type t in GCN is constructed by calculating the cosine similarity between
pairs of nodes. To control the number of edges in the adjacency matrix At, we
introduce a variable ε as a threshold, and edges with larger cosine similarity
than ε are retained. Then, the adjacency between node i and node j in graph
At can be calculated as:

At
ij =

{
s(xt

i,x
t
j), if i �= j and s(xt

i,x
t
j) ≥ ε

0, otherwise
(1)

where xt
i and xt

j are the representations of node i and node j for feature type
t, respectively. s(xi,xj) = xi·xj

‖xi‖2‖xj‖2
is the cosine similarity between node i and

j. The threshold ε can be determined by a parameter k, which represents the
average number of edges per node that are retained except self loops:

k =
∑

i,j,i �=j

I(s(xi,xj) ≥ ε)/n (2)

where I(·) is the indicator function and n is the number of nodes.

Construction of Graph Convolutional Network. A GCN is built by mul-
tiple convolutional layers, and each layer of specific feature type is defined as:

Ht
(l+1) = f(Ht

(l),A
t
(l))

x′x = σ(At
(l)H

t
(l)W

t
(l)),

(3)

where Ht
(l) is the input of the l-th layer for feature type t, W t

(l) and At
(l) refer

to its corresponding weight and adjacent matrix. σ(·) denotes the non-linear
activation function. In the training procedure of GCN, we follow the method
introduced in [12] and modify the adjacency matrix At as:

Ã
t

(l) = (D̂
t

(l))
− 1

2 (At
(l) + It

(l))(D̂
t

(l))
− 1

2 , (4)

where D̂
t

(l) is the diagonal node degree matrix of Â
t

(l) for feature type t and It
(l)

represents the identity matrix. Then, we denote the output of the GCN with L
layers as:

Y t
(L) = GCNL(Xt, Ã

t
) (5)
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Fig. 2. The classification results by combining different types of features and using
single type of features

2.5 The Block-Based Bilinear Combination Model

After applying GCN for feature learning, we derive high-level representation for
both morphology and haralick features. Here, we denote the morphology and
texture feature for the u-th sample as x(m,u) and x(h,u), respectively. Since dif-
ferent types of features may provide complementary information for the following
diagnosis task, we apply block based bilinear combination model to fuse different
types of features [13–17]. Specifically, let x(m,u) ∈ R

I and x(h,u) ∈ R
J be the

input high-level morphology and haralick features of the block based bilinear
combination model. The block based bilinear combination model can combine
x(m,u) and x(h,u) into a K-dimensional output vector with tensor products:

yu = τ ×1 x(m,u) ×2 x(h,u) (6)

where yu ∈ R
K , and ×1 and ×2 represents tensor products respectively. Each

component of yu (i.e.,yu
k ) is a quadratic form of the inputs: ∀K ∈ [1,K],

yu
k =

I∑
i=1

J∑
j=1

τijk · xm
i · xh

j (7)

where I and J indicate the diemnsionality of x(m,u) and x(h,u) respectively. A
bilinear model is completely defined by its associated tensor τ ∈ R

I×J×K . In
order to reduce the number of parameters and constrain the model’s complexity,
we introduce Block model [10], which applied the block-term decomposition
method to obtain τ . The decomposition of τ is defined as:

τ :=
R∑

r=1

D ×1 Ar ×2 Br ×3 Cr (8)

where Ar ∈ R
I×L, Br ∈ R

J×M and Cr × R
K×N . ×1, ×2 and ×3 represent the

tensor products. The block-term decomposition of τ can be formulated as:

τ = Dbd ×1 A ×2 B ×3 C (9)
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where A = [A1, ...,AR] (same for B and C), and Dbd ∈ R
LR×MR×NR is the

block-superdiagonal tensor of {Dr}1≤r≤R. Let x̂(m,u) = Ax(m,u) ∈ R
LR and

x̂(h,u) = Bx(h,u) ∈ R
MR,we can fuse different types of features by the block-

superdiagonal tensor Dbd. Each block in Dbd merges chunks from x̂(m,u) and
x̂(h,u) to generate zur with size N :

zur = Dr ×1 x̂
(m,u)
rL:(r+1)L ×2 x̂

(h,u)
rM :(r+1)M (10)

where x̂
(q,u)
i:j q ∈ {m,h} is a vector of dimension j − i. After concatenating all the

zr to generate zu ∈ R
NR. The output of the block-based bilinear combination

model can be calculated by yu = Czu ∈ R
K .

After applying the block based bilinear combination model to integrate dif-
ferent types of features, a two-layer fully-connected neural network followed by
the softmax function is applied to predict the label of each sample.

3 Results

3.1 Experimental Results

Our proposed method contains three graph convolutional layers. As can be seen
from Fig. 1b, weakly relu layer and dropout layer are added after the first and
the second graph convolutional layers. The relu ratio and dropout ratio are set
as 0.25 and 0.5 respectively. The number of adjacent edges in GCN is set as 2.
The dimensionality of the hidden layer of the fully connected layer is set as 100.
Total epochs for training different classification models are set as 100. We use
the leave-one-out strategy to evaluate the performance of different methods by
the measurements of recall, precision, auc, and the f1-score. For all the samples
in the training dataset, we randomly split 20% of them as validation set to tune
the model hyperparameters. The experiments are conducted on a computer with
32-GB memory, Intel I9-10900X 3.7 GHz CPU, and NVIDIA GeForce RTX 3090
GPU. Moreover, the proposed method and all neural-network-based baseline
models are implemented based on PyTorch 1.8.1.

3.2 Intergrating Two Types of Features Performs Better Than
Only Using One Type

We first investigate the effect of using single type of features (i.e., GCNM and
GCNH) and integrating different types of features together (i.e., BMVGCN) for
the diagnosis of lung cancer. Here, GCNM and GCNH refer to the methods that
only applying morphological and haralick features followed by the GCN for the
classification task, respectively. We test the performance of different methods on
the following three different tasks.

– LUAD v.s. nonLUAD: Classify LUAD samples (denoted as LUAD) and their
corresponding normal samples (denoted as nonLUAD).
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– LUSC v.s. nonLUSC: Classify LUSC samples (denoted as LUSC) and their
corresponding normal samples (denoted as nonLUSC).

– LUAD v.s. LUSC: Classify LUAD tumor samples (LUAD) and LUSC tumor
samples (LUSC).

As can be seen from Fig. 2, the combination of different types of features
(BMVGCN ) can better diagnose lung cancer than its competitors that only
applying single type of features on all the classification tasks. These results
strongly validate the effectiveness of integrating different types of features in
distinguishing tumor and non-tumor tissues and the classification of different
lung cancer subtypes. In addition, we note that GCN H is generally superior to
GCN M across all tasks, which demonstrates that the texture features play a
more important role in the classification tasks.

3.3 Comparison of BMVGCN and Other Methods for Lung Cancer
Classification

In Sect. 3.2, We have shown the effectiveness of combining different types of
features for lung cancer diagnosis. To further verify the superiority of our pro-
posed method, we compare BMVGCN with the following 7 multi-view learning
algorithms for the lung cancer diagnosis.

– RF: Concatenate haralick and morphology features at first, and then feeds
the concatenated features into random forest classifier to obtain the predicted
label,

– SVML1: Feed the concatenated features into support vector machine with l1
loss function,

– SVML2: Feed the concatenated features into support vector machine with l2
loss function,

– SALMON: A deep learning based multi-view learning algorithm proposed in
[18],

– GCN BlockTucker: This module correponds to Block without the low-rank
constraint on third-mode slices of D c tensors [10],

– GCN Mutan: A GCN based multi-view learning algorithm proposed in [19],
– GCN MFH : A GCN based multi-view learning algorithm proposed in [20].

Similar to Sect. 3.2, we conduct experiments on LUAD v.s. nonLUAD, LUSC
v.s. nonLUSC and LUAD v.s. LUSC these three tasks. Table 2 shows the classifi-
cation results including accuracy (ACC), F1-Score (f1-score), AUC (Area under
the ROC curve), Recall and Precision. From Table 2, we can derive the fol-
lowing three observations: 1) The performance of deep learning based methods
(i.e., SALMON, GCN BlockTucker, GCN Mutan, GCN MFH, BMVGCN) are
superior to traditional machine learning algorithms (i.e.,RF, SVML1, SVML2)
across all tasks, which reveals the advantages of applying deep learning algo-
rithms for the classification of lung cancers. 2) The GCN based algorithms can
better classify lung cancer patients since they consider the correlations among
different patients for better representation of the input features. 3) The proposed
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Table 3. Ablation study results of LUAD v.s. nonLUAD and LUSC v.s. nonLUSC
and LUAD v.s. LUSC

Method ACC F1-Score AUC Recall Precision

LUAD v.s. nonLUAD (A) AFF + FC 0.831 0.835 0.888 0.831 0.852

(B) GCN + FC 0.860 0.852 0.911 0.860 0.865

(C) BMVGCN 0.928 0.927 0.953 0.928 0.927

LUSC v.s. nonLUSC (A) AFF + FC 0.833 0.830 0.819 0.833 0.849

(B) GCN + FC 0.886 0.886 0.957 0.886 0.886

(C) BMVGCN 0.947 0.947 0.981 0.947 0.947

LUAD v.s. LUSC (A) AFF + FC 0.762 0.763 0.778 0.762 0.771

(B) GCN + FC 0.786 0.785 0.880 0.786 0.785

(C) BMVGCN 0.897 0.897 0.934 0.897 0.904

fusion algorithm can consistently obtain superior classification results than the
comparing methods, which reveals the fact that the block model embedded in
our method is effective since using block model can not only automatically fuse
different types of features, but also reduce the complexity of the whole model.

3.4 Ablation Study

To evaluate the effectiveness of different components in the proposed method,
we conduct ablation studies. Here, we conduct experiments on the following
three configurations: (A) AFF + FC: Directly integrates haralick texture features
and morphology features by block based bilinear combination model without
applying GCN to learn high-level representations. (B) GCN + FC: Applying fully
connected layers to integrate high-level haralick texture and morphology features
without block based bilinear combination model after GCN. (C) BMVGCN : our
proposed method. The results of all these three methods are shown in Table 3.

As can be seen from Table 3, our proposed method consistently achieves
better classification performance than its competitors. These results show the
necessity of applying GCN and block based bilinear combination model for the
diagnosis of lung cancer from histopathological images. In addition, comparing
(B) to (A) in all three tasks, it is worth noting that GCN + FC outperforms
AFF + FC on all measurements. This demonstrates that GCN plays a more
important role for the classification of lung cancer in comparison with block
based bilinear combination model.
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