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Abstract. Human pose estimation aims to figure out the keypoints of
all people in different scenes. Current approaches still face some chal-
lenges despite promising results. Existing top-down methods deal with
a single person individually, without the interaction between different
people and the scene they are situated in. Consequently, the perfor-
mance of human detection degrades when serious occlusion happens.
On the other hand, existing bottom-up methods consider all people at
the same time and capture the global knowledge of the entire image.
However, they are less accurate than the top-down methods due to the
scale variation. To address these problems, we propose a novel Dual-
Pipeline Integrated Transformer (DPIT) by integrating top-down and
bottom-up pipelines to explore the visual clues of different receptive fields
and achieve their complementarity. Specifically, DPIT consists of two
branches, the bottom-up branch deals with the whole image to capture
the global visual information, while the top-down branch extracts the fea-
ture representation of local vision from the single-human bounding box.
Then, the extracted feature representations from bottom-up and top-
down branches are fed into the transformer encoder to fuse the global and
local knowledge interactively. Moreover, we define the keypoint queries
to explore both full-scene and single-human posture visual clues to real-
ize the mutual complementarity of the two pipelines. To the best of our
knowledge, this is one of the first works to integrate the bottom-up and
top-down pipelines with transformers for human pose estimation. Exten-
sive experiments on COCO and MPII datasets demonstrate that our
DPIT achieves comparable performance to the state-of-the-art methods.
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1 Introduction

Human Pose Estimation (HPE) has been widely investigated as a fundamen-
tal task in computer vision, which aims to localize keypoints of the human,
including eyes, nose, shoulders, wrists, etc., from a single RGB image. Accurate
human pose estimation can provide geometric and motion information about
the human, which can be widely applied in action recognition [16,17], human-
computer interaction, motion analysis, augmented reality (AR), etc.

Early human pose estimation methods do not depend on deep learning and
mainly focus on the keypoints localization of a single person, which can be
roughly divided into two categories. The first category treats the pose estimation
task as a classification or regression problem through a global feature [25,31].
However, this kind of method does not exhibit high precision and is only suitable
for clean scenes. The other category is the methods adopt graphic model to
extract the feature representation for a single keypoint [11,23]. The location of
a single part can be obtained using DPM (Deformable Part-based Model) [9],
and the pair-wise relationships are required to optimize the association between
keypoints at the same time.

Recently, with the rapid development of deep learning, Convolutional Neu-
ral Networks (CNNs) have shown strong dominance in human pose estimation.
We can roughly classify these superior networks into top-down and bottom-up
methods. The top-down methods [2,5,13,21,29,33,35,36] first obtain a set of the
bounding box of people from the input image through an off-the-shelf human
detector , then apply a single-person pose estimator to each person. This type of
method mainly focuses on the investigation and improvement of the latter pose
estimation network. Different from the top-down pipeline, the bottom-up meth-
ods [3,6,8,24,40] directly predict all the joints in an image and then group them
using a certain assignment strategy to achieve multi-person pose estimation.

The top-down methods rely on the result of human detection and achieve
promising performance for single-person pose estimation. However, because they
deal with each person individually, there is no awareness of the interaction with
the other persons and the environment, which is more prevalent in real-life sce-
narios. When there is serious occlusion among different people, the performance
of human detection becomes unreliable. Furthermore, when the target per-
sons are very close to each other, the pose estimator may be misled by nearby
persons, e.g., the predicted keypoints may come from adjacent persons. As a
result, the top-down pipeline exhibits an inherent limitation in how to explore
the interaction clues among different persons. Differently, the bottom-up meth-
ods do not rely on any detection process and take all people of the image into
account simultaneously. They first detect the keypoints of all people, then align
them into each person by a certain grouping strategy. This pipeline leverages
full-scene information to realize locating keypoints, which can observe the inter-
actions of different people from a global perspective. However, it suffers from
scale variation, i.e., different people in the image are at different scales and very
unevenly distributed, which is unfriendly to the training of the network, leading
to relatively poor performance. In summary, both kinds of approaches show dif-
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Fig. 1. Illustration of capturing information from different perspectives when predict-
ing the left shoulder. The dotted lines point to the interest areas of the keypoint, and
the thicker line indicates the more interest to the area. After the integration of different
visual clues, the keypoint location is predicted by the heatmap.

ferent advantages. Consequently, integrating the advantages of the two pipelines
is potential for human pose estimation.

To achieve the complementarity of two pipelines, we propose an effective
network called DPIT to further promote the visual exploration of the image for
human pose estimation. The proposed network integrates the advantages of the
top-down and bottom-up pipelines to learn long-range visual clues with different
receptive fields, which capture the full-scene and posture information of a single
person. Firstly, we design two branches to extract global scene features and
local features of a single person, respectively. Secondly, to fuse these features,
we employ the transformer to capture different visual cues. The final output of
our DPIT is predicted in the heatmap fashion.

Since the two pipelines of features contained different information are both
essential for keypoints localization, our core idea is to incorporate the two
pipelines into one network and perform effective information interaction. An
example of how to predict the location of the left shoulder is shown in Fig. 1.
Information from different perspectives can assist the network in better under-
standing the image scenes, and extend the interest region, which is of positive
effects for human pose estimation in complex scenes. More specifically, we first
employ a two-branch structure, in which the bottom-up branch captures full-
scene information of the entire image, the top-down branch extracts the single-
person feature of the detected human bounding box. Motivated by the great suc-
cess of the recent work on Vision Transformers, the encoder of the transformer
is employed as the clue interaction structure to fuse the two-branch features.
In detail, we split the features into patches and take linear patch embeddings
to form input visual tokens. Meanwhile, we define a set of randomly initialized
embeddings as the keypoint queries, which can capture the single-person pose,
full-scene visual clues, and their distributional relations from the different tokens.
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Finally, we only apply the heatmap generator to the keypoint embeddings which
have aggregated local and global information, and reshape them into heatmaps.
To the best of our knowledge, this is one of the first works to integrate the two
pipelines with transformers.

In summary, the contributions of this paper are mainly summarized as below:

– We propose a novel architecture named DPIT for human pose estimation,
which is one of the first works to integrate the bottom-up and top-down
pipelines in an end-to-end training manner.

– We design a Transformer-based module to capture both full-scene visual clues
and posture information of a single person simultaneously, which can allocate
different attention levels to different visual areas.

– We demonstrate an improvement over baselines on the widely used COCO
and MPII datasets, and surpass the state-of-the-art methods.

The rest of this paper is organized as follows. In Sect. 2, we review the related
works. In Sect. 3, we introduce the proposed DPIT for human pose estimation.
Extensive experiments are conducted in Sect. 4 to compare the proposed DPIT
with state-of-the-art methods on two benchmark datasets. The conclusion is
given in Sect. 5.

2 Related Work

Our proposed method is related to the previous research on top-down human
pose estimation, bottom-up human pose estimation, and applications of trans-
former in vision tasks.

2.1 Top-Down Human Pose Estimation

The Top-down pipeline consists of two main components: the human detector
and the pose estimation network. Most of the work [2,5,13,29,33,36] focused
on the design and improvement of the latter pose estimation network. CPN
[5] implemented the coarse-to-fine process through a two-stage network, where
the GlobalNet learns a well-defined feature representation based on a feature
pyramid network to provide sufficient semantic information to locate simple key-
points. Further, the RefineNet is employed to handle the “difficult” keypoints by
fusing the multi-level features of the GlobalNet. MSPN [13] performed stacking
of multiple stages based on CPN’s globalNet to achieve better information com-
munication. Xiao et al. [36] employed ResNet as the backbone and added some
de-convolution layers behind it, which built a simple but effective structure to
produce a high-resolution representation of the keypoint heatmap. HRNet [29]
started to give attention to the importance of spatial resolution. A novel high-
resolution network is proposed to learn the reliable high-resolution features by
connecting multi-resolution sub-networks in parallel, as well as performing repet-
itive multi-scale fusion. Cai et al. [2] proposed a multi-stage network where the
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Residual Step Network (RSN) explores delicate local features through an effec-
tive inter-level feature fusion strategy. In addition, a new attention mechanism
(PRM) was also proposed to learn different contributions for local and global fea-
tures, achieving more accurate keypoint localization. Wang et al. [33] proposed a
graph-based, model-independent two-stage network, Graph-PCNN. This frame-
work added a localization sub-network and a graph structure pose optimization
module to the original heatmap-based regression method. The heatmap regres-
sion network was employed as the first stage to provide rough localization of
each keypoint. The localization sub-network was designed as the second stage to
extract visual features from the candidate keypoints. Although these top-down
methods can achieve satisfactory performance for the single-person bounding
box, they are unreliable in obscured scenes.

2.2 Bottom-Up Human Pose Estimation

The bottom-up pipeline consists of two main stages, including the joints detec-
tion and grouping of all human keypoints in the image [3,6,8,10,20,40]. Open-
Pose [3] predicted the heatmap of keypoints to locate the position of each key-
point in the image. The Part Affinity Field (PAF) was proposed to achieve the
connection of keypoints, which speeds up the bottom-up human pose estimation
to a great extent. Associative Embedding [20] not only predicted the heatmaps
but also output an embedding for each keypoint, aiming to make the embed-
dings of the same person as similar as possible. RMPE [8] proposed a two-step
framework, which mainly solved the positioning error and the redundancy of
the bounding box. HigherHRNet [6] provided a simple extension to HRNet [29]
by deconvoluting the high-resolution heatmap to obtain the higher resolution
representation. SIMPLE [40] employed knowledge distillation by treating the
top-down network as a teacher network to train the bottom-up network. Both
human detection and keypoint estimation were considered as unified point learn-
ing issues that complement each other in a single framework. DEKR [10] pro-
posed a simple but effective method that employs adaptive convolution through
a pixel-wise spatial transformer to activate pixels in the keypoint regions. Sep-
arate regression of different keypoints was also performed using a multi-branch
structure. The separated representations can notice the keypoint regions sepa-
rately so that the keypoint regression is more spatially accurate. However, the
variation of the person scale in the image significantly affects the performance
of these bottom-up methods.

2.3 Transformers in Vision

The amazing achievements of the transformer in natural language have attracted
the vision community to explore its application to computer vision tasks.
Recently, the transformer has been widely applied in different vision tasks includ-
ing image classification [7], object detection [4,41], segmentation [28,37], and
generation [34], etc.
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Fig. 2. The overall training architecture of our network. The image is input to the
bottom-up branch to get the full-scene feature. The single-person bounding box output
from the human detector is fed into the top-down branch to extract the single-human
pose feature. Then the defined random embeddings are treated as the keypoint queries,
which is sent into the transformer encoder together with the visual tokens in sequential
fashion. The outputs of our network are the heatmaps of keypoints with the shape of
H × W × Num k, where Num k is the number of keypoints. All components of the
network are trained together in an end-to-end manner.

ViT [7] completely abandoned CNN and applied transformer to image classi-
fication, which splits the image into fix-sized patches, each of which is expanded
into sequential form and fed to the encoder of transformer by linear projec-
tion. DeiT [30] incorporated distillation into the training of ViT. It intro-
duced a teacher-student training strategy, in which the convolution network was
employed as the teacher network. DETR [4] applied transformer to the object
detection. The image is processed by CNN for feature extraction, then fed into
the transformer in the manner of feature sequences. The transformer architecture
directly outputs an unordered set. Each element of the set contains object cate-
gories and coordinates. SegFormer [37] proposed a simple and efficient structure
for semantic segmentation, consisting of a positional-encoding-free, hierarchical
transformer encoder and an MLP decoder, which achieves high efficiency and
accuracy.

In human pose estimation, the transformer has also received extensive atten-
tion and application [14,19,27,38,39]. POET [27] proposed an encoder-decoder
structure combining CNN and transformer, which can directly regress the pose
of all individuals using a bipartite matching scheme. Based on the regression
manner, TFPose [19] implemented direct human pose estimation, overcoming
the feature-mismatch problem of previous regression-based methods. TransPose
[39] introduced a transformer-based structure to predict the location of human
keypoints based on heatmaps, which can effectively capture the spatial relation-
ships of images. Following ViT [7], TokenPose [14] divided the image into several
patches to form the visual tokens, which incorporated the visual cue and con-
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straint cue into a unified network. Swin-Pose [38] proposed a transformer-based
structure to capture the long-range dependencies between pixels, using the pre-
trained Swin Transformer [18] as the backbone to extract image features. In
addition, the feature pyramid architecture was adopted to fuse features from
different stages for feature enhancement. Different from these transformer-based
methods, our method employ the transformer to integrate the top-down and
bottom-up pipelines. In this way, our network can capture the global clues and
local clues simultaneously.

3 The Proposed Method

The presented framework is shown in Fig. 2, where all modules are trained in
an end-to-end manner. Given an image as input, a two-branch architecture is
employed for feature extraction, where the bottom-up branch and top-down
branch extract full-scene information and posture of a single person, respectively.
Then, a transformer-based integration network is designed to jointly establish
keypoint-person and keypoint-scene interactions.

3.1 Two-Branch Architecture

As shown in Fig. 2, to integrate the top-down and bottom-up pipelines into a
unified network, we employ a parallel two-branch CNN for feature extraction
in the first stage of our network. The two CNN backbones are pre-trained on
the ImageNet classification task [26]. Specifically, an image x1 ∈ R

H1×W1×3 is
first detected by an existing human detector, from which we obtain the human
bounding box x2 ∈ R

H2×W2×3. The bottom-up encoder EBU extracts the full-
scene feature representation FBU ∈ R

H
′
1×W

′
1×C from the input image x1. Taking

x2 as input, the top-down encoder ETD outputs the posture representation
F TD ∈ R

H
′
2×W

′
2×C of single-person. The process of feature extraction of the two

branches can be represented as:

FBU = EBU (x1),F TD = ETD(x2), (1)

where EBU and ETD denote bottom-up and top-down CNN encoders, respec-
tively.

The featuremap extracted by the bottom-up encoder comes from the whole
image, where we can observe the full-scene information, including the pose of
all people, the interaction of different people, and the scene information of the
image. The top-down branch focuses on the spatial posture information of a
single person with uniform resolution. In real scenes, the environment is usually
undefinable, there are various interactions among different people. As a result,
capturing visual clues from different view fields can assist in locating the key-
points more effectively.
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3.2 Transformer-Based Integration

Inspired by the wide applications of transformer in vision tasks, we employ the
encoder of the transformer to capture and integrate the visual clues of different
view fields. Together with the patch embeddings from the bottom-up and top-
down branches, the keypoint embeddings are defined as input queries. In this
way, our network can capture the knowledge of global fields and local fields that
comes from the whole image and single-human bounding box, respectively.

Input Queries. Following the process of ViT [7], The featuremap FBU and
F TD are split into two patch sets: p1 = [FBU

1 , ...,FBU
N1

] ∈ R
N1×Ph

1 ×Pw
1 ×C , p2 =

[FTD
1 , ...,FTD

N2
] ∈ R

N2×Ph
2 ×Pw

2 ×C , where (Ph
∗ , Pw

∗ ) (∗ = 1, 2) is the patch size,
N∗ = (H

′
∗ × W

′
∗)/(Ph

∗ × Pw
∗ ) is the number of patches, C is the number of

channels. The standard Transformer [32] receives a 1D sequence of the token
embeddings as input. Every patch is flattened into a 1D vector with the size of
Ph

∗ ·Pw
∗ ·C . Then, the linear projection is performed to each 1D vector, we can get

the visual queries of two branches: q1 = [E1, ..., EN1 ], q2 = [E1, ..., EN2 ],where
E ∈ R

(Ph
∗ ·Pw

∗ ·C )×D and D is the embedding dimension. It is worth mention-
ing that human pose estimation is a location sensitive vision task, so the 2D
position embeddings are added to the sequence of patches to capture positional
information.

Moreover, we introduce a set of learnable keypoint embeddings: kpt =
[k1, ..., kK ] ∈ R

K×D, where K is the number of keypoints. Each keypoint embed-
ding is initialized randomly and assigned to a single keypoint (eyes, wrists, ...),
which is employed to generate the final heatmap. Benefit from the self-attention
mechanism of transformer, each keypoint embedding can capture the correspond-
ing interest visual regions from both global and local features. In addition, it can
give attention to the clues of other keypoints, which simplifies the difficulty of
locating keypoints, especially in complex scenarios. The keypoint embeddings
kpt, bottom-up visual query q1, and top-down visual query q2 are put together
as the input queries, which are processed jointly by the transformer encoder, as
depicted in Fig. 2.

Transformer Encoder. The transformer encoder consists of multi-encoder lay-
ers, which mainly depend on the self-attention mechanism. Each encoder layer
contains a multi-head self-attention (MSA) block followed by a feed-forward net-
work (FFN). Layer Normalization (LN) is also employed before every module
and residual connections after every module. Specifically, for the input sequence
X, linear projections are performed to obtain Query (Q), Key (K), and Value
(V ):

Q = X ∗ WQ,K = X ∗ WK , V = X ∗ WV , (2)

where WQ, WK , WV are the corresponding weight matrices. The MSA process
can formulated:

MSA(Q,K, V ) = softmax(
Q × KT

√
dk

) · V, (3)
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where dk is the dimension of keys. Each query is calculated with all the keys,
each (Q, K) pair is divided by dk. Then, the SoftMax function is employed to
obtain the attention scores, each score determines the attention level to the token
for current query.

Heatmap Generator. The transformer encoder outputs a D-dimensional
sequence. After the transformer’s self-attention mechanism, the correspond-
ing keypoint embeddings have captured the visual clues of the full-scene and
single-person. We only take the keypoint queries for prediction, which are lin-
early mapped into H · W dimensions. Then the mapped 1D representations
are reshaped into 2D heatmaps with the shape of H × W . Finally, on output
heatmaps, we find the maximum response position by channel to locate the cor-
responding human keypoint. In addition, between the output heatmap and the
ground-truth heatmap, we adopt MSE as the loss function to train the network.

4 Experiments

4.1 Datasets

In this paper, we conducted extensive experiments on two human pose datasets,
COCO [15] and MPII [1], to train and validate our network. For a fair compari-
son, we follow the same dataset split ratio as the comparison methods [29]. The
datasets are introduced below.

COCO Dataset. COCO is a large-scale dataset in human pose estimation
task, containing over 200K images and 250K person instances, annotated with
17 keypoints. The dataset is divided into a train set (118k images), a validation
set (5K images), and a test-dev set (20K images). We take the train set to train
our network. The validation set and test-dev set are employed to measure the
performance of our network.

MPII Dataset. MPII is a well-known benchmark for the evaluation of human
pose estimation, which contains around 25K images and over 40K people with
annotated 16 joints.

4.2 Metrics

For the COCO dataset, the Object Keypoint Similarity (OKS) is calculated for
the reported metrics, which measures the similarity between the ground truth
and predicted keypoints. The OKS is defined as follows:

OKS =

∑
i exp( −d2

i

2s2k2
i
)δ(vi > 0)

∑
i δ(vi > 0)

, (4)
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where di is the Euclidean distances between each corresponding ground truth
and detected keypoint. vi is the visibility flag of the ground truth. s denotes the
square root of the person’s proportion to the image area, δi is the normalized
parameter of the ith keypoint. Based on OKS, the standard average precision
and average recall are reported, including AP (the mean value of AP at OKS =
0.5, 0.55, ..., 0.9, 0.95), AP 50 (AP at OKS = 0.5), AP 75 (AP at OKS = 0.75),
APM (AP of medium-scale objects), APL (AP of large-scale objects), and AR
(mean value of AR at OKS = 0.5, 0.55, ..., 0.9, 0.95).

For MPII, the head-normalized Percentage of Correct Keypoints
(PCKh@0.5) [1] is employed as the metric, which calculates the percentage of
the normalized distance between the ground truths and detected keypoints that
are lower than the setting threshold (0.5).

4.3 Implementation Details

Regarding the training scheme, all modules of our network are trained with
adaptive moment estimation optimizer (ADAM) [12], whose parameters are:
α = 0.001, β1 = 0.9, β2 = 0.999. The initial learning rate is 10−3 for our net-
work, which is trained for a total of 240 epochs. The learning rate is reduced
to 10% of the previous number at the 190th and 220th epochs, respectively. For
the backbones of the bottom-up and top-down branches, we adopt the mod-
els trained on the ImageNet classification task as our pre-trained models. To
improve the varieties of training data, following [29], the data augmentations
are conducted, including random rotation ([−45◦, 45◦]), random scale ([0.65,
1.35]) and flipping.

While training, for the bottom-up branch, we resize the image to a fixed size:
512 × 512, then fed it into the encoder of this branch. As introduced before,
we split the featuremap output from the encoder into patches with the size of
8 × 8. On the other hand, the input of the top-down branch is also rescaled into
fixed resolution. There are different settings for COCO and MPII datasets. On
COCO, the patch size is set to 4×3 with input size of 256×192. On MPII, with
a uniform input shape of 256 × 256, the feature is split into 4 × 4 patches. In
addition, our network set up two configuration versions, DPIT-B and DPIT-L.
The detailed settings of them are shown in Table 1.

Table 1. The network configurations. HRNet-W32-s and HRNet-W48-s denote the
first three stages of HRNet-W32 and HRNet-W48, respectively.

Model Backbone Depth Heads Hidden Dim

DPIT-B HRNet-W32-s 12 8 192

DPIT-L HRNet-W48-s 12 8 192
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Table 2. Quantitative results on COCO validation set across various state-of-the-
art methods with the ground-truth bounding boxes. R and H denote the ResNet and
HRNet, respectively. #Params indicates the size of each model, excluding the cost of
the human detection network. In each column, the best result is in bold, the second
best is underlined.

Method Backbone Input size #Params AP AP 50 AP 75 APM APL AR

Simple baseline [36] R-50 256× 192 34.0M 72.4 91.5 80.4 69.7 76.5 75.6

R-50 384× 288 34.0M 74.1 92.6 80.5 70.5 79.6 76.9

R-101 256× 192 53.0M 73.4 92.6 81.4 70.7 77.7 76.5

R-101 384× 288 53.0M 75.5 92.5 82.6 72.4 80.8 78.4

R-152 256× 192 68.6M 74.3 92.6 82.5 71.6 78.7 77.4

R-152 384× 288 68.6M 76.6 92.6 83.6 73.7 81.3 79.3

HRNet [29] H-W32 256× 192 28.5M 76.5 93.5 83.7 73.9 80.8 79.3

H-W48 256× 192 63.6M 77.1 93.6 84.7 74.1 81.9 79.9

DPIT-B – 256× 192 20.8M 76.9 93.5 83.7 73.7 81.5 79.6

DPIT-L – 256× 192 38.0M 77.8 93.6 84.8 74.8 82.2 80.3

4.4 Quantitative Results

To validate the effectiveness and superiority of our method, we conducted quanti-
tative experiments on COCO and MPII datasets. The quantitative results show
that our method achieves better performance on human pose estimation, the
specific results are analyzed as follows:

Results on COCO Dataset. The quantitative results using the ground-truth
bounding box on the COCO validation set are shown in Table 2. For the different
methods, we perform quantitative comparisons based on different backbones
and input resolutions. Following TokenPose [14], we do not employ the whole
HRNet as our backbone, but its first three stages. In this case, the network
parameters are only 25% of the original version, as indicated by HRNet-W32-s
and HRNet-W48-s in Table 1. Compared to SimpleBaseline [36] and HRNet [29],
it can be observed that our method achieves better performance while being more
lightweight. Quantitatively, our DPIT-L achieves improvements of 0.7 AP and
0.4 AR compared to the HRNet-W48, which demonstrates the superiority of our
method.

In addition, as shown in Table 3, we compare our method with the state-of-
the-art methods including G-RMI [22], CPN [5], RMPE [8], SimpleBaseline [36]
and HRNet [29] on COCO test-dev set. Compared with other methods, DPIT
exhibits the best performance on AP and AR, achieves comparable results on
other metrics.
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Table 3. Comparison with various state-of-the-art methods with detected bounding
boxes from the same human detector on COCO test-dev set.

Method Input size #Params AP AP 50 AP 75 APM APL AR

G-RMI [22] 353× 257 42.6M 64.9 85.5 71.3 62.3 70.0 69.7

CPN [5] 384× 288 45.0M 72.1 91.4 80.0 68.7 77.2 78.5

RMPE [8] 320× 256 28.1M 72.3 89.2 79.1 68.0 80.8 78.6

SimpleBaseline-R152 [36] 384× 288 68.6M 73.7 91.9 81.1 70.3 80.0 79.0

HRNet-W48 [29] 256× 192 63.6M 74.2 92.4 82.4 70.9 79.7 79.5

DPIT-B 256× 192 20.8M 73.6 91.4 81.2 70.4 79.5 78.9

DPIT-L 256× 192 38.0M 74.6 91.9 82.1 71.3 80.6 79.9

Results on MPII Dataset. The PCKh@0.5 results on the MPII validation
set are reported in Table 4 with a uniform input size of 256 × 256. DPIT-L/D6
represents the configured DPIT-L with 6 transformer encoder layers. Specifically,
compared with SimpleBaseline [36] and HRNet [29], our DPIT-L/D6 achieves
the best performance on the metrics reported by Elb,Wri,Ank, and Mean.
On most other metrics, it also achieves the second-best level. In summary, the
quantitative results indicate the comparable performance of our DPIT on the
MPII dataset.

Table 4. Quantitative Results on MPII validation set. Experiments for all architectures
are performed at the uniform input size: 256 × 256.

Method Backbone #Params Hea Sho Elb Wri Hip Kne Ank Mean

SimpleBaseline [36] R-50 34.0M 96.4 95.3 89.0 83.2 88.4 84.0 79.6 88.5

R-101 53.0M 96.9 95.9 89.5 84.4 88.4 84.5 80.7 89.1

R-152 68.6M 97.0 95.9 90.0 85.0 89.2 85.3 81.3 89.6

HRNet [29] H-W32 28.5M 96.9 96.0 90.6 85.8 88.7 86.6 82.6 90.1

DPIT-B – 21.6M 97.1 95.7 90.0 84.6 89.4 85.9 80.7 89.6

DPIT-L/D6 – 31.8M 96.7 95.9 90.8 85.9 89.2 86.0 82.6 90.1

4.5 Qualitative Results

Our method incorporates both top-down and bottom-up pipelines, where the
full-scene information of different visual fields can help capture human pose
information, especially in complex scenes with multi-person interactions. Given
an image, our network can accurately localize the location of keypoints for per-
sons in the image. As shown in Fig. 3, the pose estimation results of DPIT in
different scenes are demonstrated. From the first row, we can observe that for
complex pose scenes of a single person, our network can achieve accurate localiza-
tion of keypoints. Benefitting from the fusion of visual information from different
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Fig. 3. Illustration of human pose estimation results of DPIT in different scenes on
COCO validation set. The first row shows the effect of pose estimation in single-person
situations with different postures. The scenes in the second row contain interactions
of different people, including self-shadowing and inter-shadowing between two persons.
Finally, more complex scenes with multiple people are further visualized in the third
row.

receptive fields and interactions of visual clues, the network still performs well
while serious occlusion among different people. In addition, our method is not
affected by the scale variation of the persons in the image. It is observable that
accurate human pose estimation can still be reported for scenes with large-scale

Fig. 4. Illustration of the heatmaps of all persons in the image predicted by the net-
work. Each heatmap of the same row denotes the location response of different key-
points of one person. It can be observed that in the presence of different human dis-
tractions, our method can still accurately estimate the location of key points in the
human body.
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differences. As shown in Fig. 4, we further illustrate the heatmaps of keypoints,
where the maximum response location represents the corresponding location of
keypoints. As we can see, our network can predict precise heatmaps for different
keypoints and different persons in the image. The heatmap manner effectively
preserves the spatial location information.

4.6 Ablation Studies

In this section, to verify the contributions of different components and the influ-
ence of the structure parameter settings, we perform ablation experiments on
the COCO dataset.

Is It Useful to Employ the Bottom-Up Branch to Capture the Full-
Scene Information? The bottom-up branch extracts the full-scene informa-
tion from the whole image with the encoder EBU . To verify the usefulness of
the bottom-up branch in locating human keypoints, we delete this branch in our
DPIT, and obtain a network that does not utilize the feature of the entire image,
called w/o BU . As shown in Table 5, we report quantitative results in the row
with w/o BU . Without the help of the bottom-up branch, we observe degra-
dation in the performance on different metrics. In addition, as shown in Fig. 5,
the qualitative results indicate that the absence of full-scene information leads
to inaccurate human pose estimation in the scenes with multi-person interaction
and occlusion. As a result, both quantitative and qualitative results demonstrate
the usefulness of the bottom-up branch.

WhyUsing Transformer Encoder? To evaluate the contribution of the trans-
former encoder to our DPIT, we perform another ablation experiment, i.e., remov-
ing the transformer encoder from the network. Alternatively, the featuremap of
the bottom-up branch is integrated with the top-down branch by summation oper-
ation after some convolution layers, then the heatmap of the keypoints is predicted
by the integrated features. It is worth mentioning that the simplified backbone no
longer can capture enough information about the image in this case, which aggra-
vates the network. In comparison, the transformer can capture long-term depen-
dencies of the same visual field, while also integrating visual clues and posture
clues from different perspectives with the help of self-attention mechanism. As
shown in the row with w/o Transformer of Table 5, the poorer performance of
the network proves the effectiveness of the transformer.

What’s the Impact of Depth of Transformer Encoder? For networks
equipped with transformer, the depth of the encoder is a significant setting for
the performance. As shown in Table 6, to explore the impact of the different
number of encoder layers, we conduct quantitative experiments on the COCO
validation set. Specifically, we only change the number of encoder layers of the
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Table 5. Results on COCO validation
set with the input size of 256 × 192.
w/o BU : without bottom-up branch. w/o
Transformer: without transformer.

Model AP AP 50 AR

w/o BU 76.6 92.5 79.4

w/o Transformer 76.5 93.6 79.3

DPIT-B 76.9 93.5 79.6

Table 6. Ablation studies with different
transformer encoder layers are performed
on COCO validation dataset.

Model Depth AP AP 50 AR

DPIT-B-D6 6 76.3 92.9 79.1

DPIT-B-D12 12 76.9 93.5 79.6

DPIT-B-D16 16 76.5 92.6 79.3

Fig. 5. Some qualitative results are illustrated to show the contributions of the bottom-
up branch.

transformer, keeping the other configurations fixed. Three different encoder lay-
ers are validated. It can be observed that different settings have different per-
formances on the quantitative metrics. When the depth is shallow, the network
performance improves as the depth increases. The metrics, however, also exhibit
a decrease with too many encoder layers. Based on the experimental validation,
our final configuration of transformer encoder depth is 12 on COCO.

5 Conclusion

In this paper, we propose a novel Dual-Pipeline Integrated Transformer called
DPIT for human pose estimation. To the best of our knowledge, this is one of
the first works to integrate the bottom-up and top-down pipelines in one net-
work with transformers. The proposed DPIT consists of two parts, a two-branch
structure, and a feature interaction module. In our framework, the bottom-up
branch and top-down branch capture full-scene information and posture visual
clues with different receptive fields and perspectives, respectively. To achieve
the effective integration of the two branches, the encoder of the transformer is
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applied to explore the long-term local-visual clues, global-visual clues, and their
interactions. In addition, the defined keypoint embedding not only focuses on the
different interest regions for a particular keypoint but also be allowed to concern
the structural information between different keypoints. The reported quantita-
tive and qualitative results on two public datasets demonstrate the effectiveness
of our DPIT for human pose estimation.

Acknowledgement. This research was supported by the National Key R&D Program
of China under Grant No. 2020AAA0103800.

References

1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation:
New benchmark and state of the art analysis. In: Proceedings of the IEEE Con-
ference on computer Vision and Pattern Recognition, pp. 3686–3693 (2014)

2. Cai, Y., et al.: Learning delicate local representations for multi-person pose esti-
mation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020.
LNCS, vol. 12348, pp. 455–472. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-58580-8 27

3. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation
using part affinity fields. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7291–7299 (2017)

4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-End object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58452-8 13

5. Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid
network for multi-person pose estimation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 7103–7112 (2018)

6. Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T.S., Zhang, L.: Higherhrnet: scale-
aware representation learning for bottom-up human pose estimation. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5386–5395 (2020)

7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image
recognition at scale. arXiv preprint. arXiv:2010.11929 (2020)

8. Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: Rmpe: regional multi-person pose estimation.
In: Proceedings of the IEEE International Conference on Computer Vision, pp.
2334–2343 (2017)

9. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach.
Intell. 32(9), 1627–1645 (2010)

10. Geng, Z., Sun, K., Xiao, B., Zhang, Z., Wang, J.: Bottom-up human pose estimation
via disentangled keypoint regression. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14676–14686 (2021)

11. Ionescu, C., Li, F., Sminchisescu, C.: Latent structured models for human pose
estimation. In: 2011 International Conference on Computer Vision, pp. 2220–2227.
IEEE (2011)

12. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. Comput. Sci.
(2014)

https://doi.org/10.1007/978-3-030-58580-8_27
https://doi.org/10.1007/978-3-030-58580-8_27
https://doi.org/10.1007/978-3-030-58452-8_13
http://arxiv.org/abs/2010.11929


DPIT 575

13. Li, W., et al.: Rethinking on multi-stage networks for human pose estimation.
arXiv preprint. arXiv:1901.00148 (2019)

14. Li, Y., et al.: Tokenpose: learning keypoint tokens for human pose estimation. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
11313–11322 (2021)

15. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

16. Liu, K., Liu, W., Gan, C., Tan, M., Ma, H.: T-c3d: temporal convolutional 3d
network for real-time action recognition. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32 (2018)

17. Liu, K., Liu, W., Ma, H., Tan, M., Gan, C.: A real-time action representation
with temporal encoding and deep compression. IEEE Trans. Circuits Syst. Video
Technol. 31(2), 647–660 (2020)

18. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted win-
dows. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 10012–10022 (2021)

19. Mao, W., Ge, Y., Shen, C., Tian, Z., Wang, X., Wang, Z.: Tfpose: direct human
pose estimation with transformers. arXiv preprint. arXiv:2103.15320 (2021)

20. Newell, A., Huang, Z., Deng, J.: Associative embedding: end-to-end learning for
joint detection and grouping. In: Advances in Neural Information Processing Sys-
tems, vol. 30 (2017)

21. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose esti-
mation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46484-8 29

22. Papandreou, G., et al.: Towards accurate multi-person pose estimation in the wild.
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2017)

23. Pishchulin, L., Andriluka, M., Gehler, P., Schiele, B.: Strong appearance and
expressive spatial models for human pose estimation. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 3487–3494 (2013)

24. Pishchulin, L., et al.: Deepcut: joint subset partition and labeling for multi person
pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4929–4937 (2016)

25. Rogez, G., Rihan, J., Ramalingam, S., Orrite, C., Torr, P.H.: Randomized trees for
human pose detection. In: 2008 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–8. IEEE (2008)

26. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

27. Stoffl, L., Vidal, M., Mathis, A.: End-to-end trainable multi-instance pose estima-
tion with transformers. arXiv preprint. arXiv:2103.12115 (2021)

28. Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: transformer for seman-
tic segmentation. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 7262–7272 (2021)

29. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learn-
ing for human pose estimation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

30. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: International
Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

http://arxiv.org/abs/1901.00148
https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/2103.15320
https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/2103.12115


576 S. Zhao et al.

31. Urtasun, R., Darrell, T.: Sparse probabilistic regression for activity-independent
human pose inference. In: 2008 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–8. IEEE (2008)

32. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

33. Wang, J., Long, X., Gao, Y., Ding, E., Wen, S.: Graph-PCNN: two stage human
pose estimation with graph pose refinement. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 492–508. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58621-8 29

34. Wang, X., Yeshwanth, C., Nießner, M.: Sceneformer: indoor scene generation with
transformers. In: 2021 International Conference on 3D Vision (3DV), pp. 106–115.
IEEE (2021)

35. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 4724–4732 (2016)

36. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking.
In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS,
vol. 11210, pp. 472–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-01231-1 29

37. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: sim-
ple and efficient design for semantic segmentation with transformers. In: Advances
in Neural Information Processing Systems, vol. 34 (2021)

38. Xiong, Z., Wang, C., Li, Y., Luo, Y., Cao, Y.: Swin-pose: swin transformer based
human pose estimation. arXiv preprint. arXiv:2201.07384 (2022)

39. Yang, S., Quan, Z., Nie, M., Yang, W.: Transpose: keypoint localization via trans-
former. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 11802–11812 (2021)

40. Zhang, J., Zhu, Z., Lu, J., Huang, J., Huang, G., Zhou, J.: Simple: single-network
with mimicking and point learning for bottom-up human pose estimation. arXiv
preprint. arXiv:2104.02486 (2021)

41. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable
transformers for end-to-end object detection. arXiv preprint. arXiv:2010.04159
(2020)

https://doi.org/10.1007/978-3-030-58621-8_29
https://doi.org/10.1007/978-3-030-01231-1_29
https://doi.org/10.1007/978-3-030-01231-1_29
http://arxiv.org/abs/2201.07384
http://arxiv.org/abs/2104.02486
http://arxiv.org/abs/2010.04159

	DPIT: Dual-Pipeline Integrated Transformer for Human Pose Estimation
	1 Introduction
	2 Related Work
	2.1 Top-Down Human Pose Estimation
	2.2 Bottom-Up Human Pose Estimation
	2.3 Transformers in Vision

	3 The Proposed Method
	3.1 Two-Branch Architecture
	3.2 Transformer-Based Integration

	4 Experiments
	4.1 Datasets
	4.2 Metrics
	4.3 Implementation Details
	4.4 Quantitative Results
	4.5 Qualitative Results
	4.6 Ablation Studies

	5 Conclusion
	References




