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Abstract. Due to the capability of easy animation and editing of faces,
3D Morphable Model (3DMM) is widely used in the task of face recon-
struction. Recent methods recover 3DMM coefficients by fusing the infor-
mation from a set of multi-view images via end-to-end Convolutional
Neural Networks (CNNs), which alleviate the inherent depth ambiguity
in the single-view setting. However, most of these methods fuse global fea-
tures of all views to regress the 3D morphable face, without considering
the dense correspondences of multi-view images. In this paper, we pro-
pose a novel approach to reconstruct high-quality 3D morphable faces.
We first use a canonical feature volume to fuse multiple view features
in 3D space, which establish dense correspondences between different
views. Next, to bridge the gap between CNN regression and pixel-wise
optimization and further leverage the muti-view information, we propose
test-time optimization to improve the regressed results with negligible
additional cost. Our method achieves the state-of-the-art performance
on widely-used benchmarks, demonstrating the effectiveness of our app-
roach. Code will be released.
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1 Introduction

3D face reconstruction from images is a crucial problem in computer vision and
has a wide range of applications such as face tracking [4,5], portrait relight-
ing [41], gaze tracking [42], face reenactment [7,19,36] and so on. In order to
address the difficulties in image-based face reconstruction, 3D Morphable Model
(3DMM) is often adopted to provide a low-dimensional parametric representa-
tion of 3D face. Traditional methods recover the 3DMM coefficients by solving a
costly nonlinear optimization problem and require a good initialization. In con-
trast, recent methods [9,13,15,18,30,34,35,39,43–45] adopt deep Convolutional
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Neural Network (CNN) to directly learn the mapping between 2D images and
3DMM coefficients. Single-view face reconstruction [13,15,18,34,35,39,43,45]
has been extensively studied in recent years, where an inherent difficulty is the
ambiguity of depth estimation, especially in the forehead, nose and chin regions.

Compared with the single-view face reconstruction, multi-view face recon-
struction [10,27,31,44] can effectively resolve the depth ambiguity. However,
most of existing works [27,31,44] simply extend the techniques of single-view
reconstruction to the multi-view setting. After carefully studying the pipeline of
existing methods [10,27,31,44], we find that these methods mostly fuse the 2D
global features extracted from different views to regress the 3D morphable face.
However, the fusion of 2D global features cannot learn sufficient representation
for 3D reconstruction.

In this paper, we propose a novel method for multi-view 3D morphable face
reconstruction based on canonical volume fusion. Our method extracts the 3D
feature volumes from multi-view images. As 3D volumes allow easy alignment of
facial features in 3D space, we transform the volumes of multiple views to align
with the canonical volume by the estimated head pose parameters. To fuse the
transformed 3D feature volumes, our method adopt a confidence estimator to pre-
dict the confidences of the multi-view feature volumes. Therefore, the transformed
feature volumes can be adaptively fused according to the estimated confidence
volumes. This is essential for multi-view feature fusion since faces under different
poses provide partial information of the 3D face. The fused canonical feature vol-
ume is used to regress the shape and texture coefficients. Compared with existing
methods [31,44], our work can establish better dense correspondences between
different views and generate more accurate 3D reconstruction.

CNNs can directly and efficiently estimate the 3DMM coefficients, but it
tends to predict reasonable but not pixel-wise accurate results, as it is trained to
achieve the lowest average error over the entire dataset, not a particular sample.
On the other hand, optimization fits the parametric model to multi-view images
of a particular sample. However, it is sensitive to the initialization, and may fall
into local minimums or take very long time without a good initialization. There-
fore, the multi-view information of a particular sample may not be fully explored
by the inference of the network. Directly involving multi-view constraints also in
the testing rather than just in the training may further improve the results. We
propose to introduce test-time optimization to CNN-based regression. Our test-
time optimization can leverage the benefits of both paradigms. Specifically, we
use the CNN regressed estimation to initialize the iterative optimization process,
making the fitting stable and faster. We find this idea is simple but effective to
bridge the gap between training and testing.

2 Related Work

2.1 3D Morphable Model (3DMM)

Since the seminal work [2], 3D morphable models have been widely used in face
reconstruction over the past twenty years. [2] proposes to derive a morphable
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face model by transforming the shape and texture of the captured 3D faces
into a latent space using Principal Component Analysis (PCA). 3D faces can be
modeled by the linear combinations of PCA basis. [6] uses Kinect to capture 150
individuals aged 7–80 from various ethnic backgrounds. For each person, they
capture the neutral expression and 19 other expressions. Bilinear face model is
constructed by N-mode Singular Value Decomposition (SVD). [25] combines the
linear shape space with an articulated jaw, neck, and eyeballs, pose-dependent
corrective blendshapes, and additional global expression blendshapes. They can
fit better to the static 3D scans and 4D sequences using the same optimization
method compared with [2,6]. For a detailed survey of 3DMM over the past
twenty years, we refer the readers to [12].

2.2 3D Face Reconstruction

With the help of 3DMM, the face reconstruction task can be formulated as
a cost minimization problem [2]. Due to the nonlinearity of the optimization
problem, it is time-consuming to optimize the coefficients of 3DMM. Therefore,
numerous regression-based methods are proposed to employ convolutional neu-
ral network for face reconstruction. The biggest obstacle when applying deep
learning to face reconstruction is the lack of training data. [45] proposes a face
profiling technique which can generate synthetic images with the same identity
but different face poses as the original images. They utilized their face profil-
ing technique to create the 300W-LP database and trained a cascaded CNN to
regress 3DMM coefficients. [11] utilizes publicly available 3D scans to render
more realistic images. Recently, the self-supervision approaches are becoming
prevailing. [15,34] enable the self-supervised training by introducing a differen-
tiable rendering layer. This self-supervision scheme has been widely used in the
following works [8,9,20,22,24,29,33,37,38].

Compared with single-view face reconstruction, multi-view face reconstruc-
tion can effectively resolve the depth ambiguity. Multi-view setting ensures
that the faces in different views are geometrically consistent. There are sev-
eral approaches [10,27,31,44] to study the multi-view face reconstruction. [10]
proposes to address the problem using CNNs together with recurrent neural
networks (RNNs). However, it is not reasonable to model the task with RNNs,
and multi-view geometric constraints are not exploited in their approach. [44]
adopts photometric loss and alignment loss to explicitly incorporate multi-view
geometric constraints between different views. [30] further leverages multi-view
geometry consistency to mitigate the ambiguity from monocular face pose esti-
mation and depth reconstruction in the training process. However, the above
methods [10,27,31,44] follow the network design of single view face reconstruc-
tion and fail to learn sufficient representation for 3D reconstruction.
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3 Preliminaries

3.1 Face Model

With a 3DMM, the face shape S and texture T can be represented as a linear
combination of shape and texture bases:

S = S + Bidα + Bexpβ (1)

T = T + Btδ (2)

where S and T are the mean shape and texture respectively. Bid, Bexp and
Bt denote the PCA bases of identity, expression and texture. α, β and δ are
corresponding coefficients to be estimated. All of bases are scaled with their
standard deviations. In our method, S,Bid, T ,Bt are constructed from Basel
Face Model (BFM) [26] and Bexp is constructed from FaceWareHouse [6]. We
adopt the first 80 bases with the largest standard deviation for identity and
texture, the first 64 bases for the expression bases.

3.2 Camera Model

We employ the perspective camera model to define the 3D-2D projection. The
focal length of the perspective camera is selected empirically. The face pose P
is represented by an Euler angle rotation R ∈ SO(3) and translation t ∈ R

3.

3.3 Illumination Model

We model the lighting by Spherical Harmonics(SH) and assume a Lambertian
surface for face. Given the surface normal ni and face texture ti, the color can

be computed as C(ni, ti|γ) = ti ·
B2
∑

b=1

γbΦb(ni). Φb : R3 → R is SH basis function

and we choose the first B2 = 9 functions following [34,35]. γ ∈ R
27 represents

the colored illumination in red, green and blue channels.
Our method can take any number of multi-view images of the same per-

son {Ii}n
i=1 as input and output the corresponding coefficients {xi}n

i=1 of these
images, where xi = {α, β, δ, Pi, γi}. It should be noticed that α, β, δ are shared
by all images and Pi, γi are variant across the input multi-view images.

4 Method

Our method aims to regress 3DMM coefficients by leveraging the dense corre-
spondences of the multi-view facial images of one subject. Therefore, we propose
a Canonical Volume Fusion Network whose architectures are designed to inte-
grate the dense information from different views. As shown in Figure 1 (a), our
network first extracts 3D feature volumes from input images. Then, the dense
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Fig. 1. Overview of our approach. (a) The network architecture of our method. (b)
The test-time optimization mechanism.

feature volumes are transformed to a canonical coordinate system through fea-
ture volume alignment. Next, the aligned feature volumes are fused together in
a confidence-aware manner. From the fused feature volumes, a shape/texture
estimator is trained to output 3DMM coefficients. During testing, we apply test-
time optimization to further improve performance, as shown in Figure 1 (b).

4.1 Canonical Volume Fusion Network

Feature Extraction. Previous methods mostly use 2D CNN backbone such as
VGG-Face [32] or ResNet [16] to regress 3DMM coefficients. However, as human
faces are 3D objects, it is more intuitive to model the facial correspondences
in 3D space. We employ a 2D-3D feature extraction network to map a 2D face
image to a 3D feature volume. Several 2D downsampling convolutional blocks
extract a 2D feature map f2D from the input image. Then, we utilize a “reshape”
operation to project 2D feature maps to 3D feature volumes. The following 3D
CNN finally extracts the 3D feature volume f3D.

Volume Feature Alignment. Pose and illumination coefficients are private
for each multi-view image. We regress these coefficients from f2D separately. The
f2D is pooled to a 512-dimensional feature vector and sent through several linear
layers. The 3D feature volumes extracted from multi-view images are semanti-
cally misaligned. It is unreasonable to fuse them directly and this is also the main
drawback of previous work [44]. We align the 3D feature volumes extracted from
multi-view images according to the estimated pose via the following equation:

pd ∼ Tm→NDC(RdR
−1
s (TNDC→m(ps) − ts) + td) (3)

where subscript s and t represent source image and target image respectively,
p is a coordinate in the feature volume, R, t are the face pose rotation and
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translation in the image, TNDC→m(·) is the coordinate transformation from the
normalized device coordinate (NDC) system to model coordinate system. The
f3D extracted from images is assumed to be aligned with the NDC system.
Therefore, we first convert the coordinate system to the model coordinate system.
For any coordinate ps in the feature volume of source image, we can compute the
corresponding coordinate pt in the feature volume of target images by Eq. (3). In
practice, we align other feature volumes to the feature volume of the pre-selected
frontal view image.

Confidence-Aware Feature Fusion. The input images taken from differ-
ent views have different confidence and quality in the different face region. For
example, the left view image has the low confidence and quality in the right face
region. Therefore, we use a confidence estimator to learn the measurement of
confidence and quality of the feature volume. The estimator is similar to the 3D
CNN used for feature extraction but more lightweight. It outputs a 3D volume
c ∈ Rh×w×d with positive elements. ci has the same height, width and depth as
the f3D. The feature can be fused via the following equation:

f3D,fuse =
∑

i

ci � f3D,i/
∑

i

ci (4)

where f3D,i donates the 3D feature extracted from image Ii and ci is the confi-
dence of f3D,i.

Coefficients Estimator. The method of estimating pose and illumination coef-
ficients from f2D has been introduced in the previous section. The shape and
texture coefficients will be estimated from f3D,fuse. Inspired by [40], we imple-
ment a similar keypoints detector, which extracts K 3D keypoints {xi}K

i=1 in
feature volume. These keypoints are unsupervisedly learned and different from
the common facial landmarks. The feature at the keypoint location is consid-
ered to have main contribution to shape and texture estimation. We conduct
bilinear sampling operation at the keypoints locations of f3D,fuse to obtain the
local feature floc and apply a 3D average pooling operation over the f3D,fuse to
obtain the global feature fglo. The floc and the fglo are concatenated to regress
the shape and texture coefficients by several linear layers.

4.2 Loss Function

Single-view face reconstruction has been widely studied. Therefore, We transfer
the loss function used in single-view face reconstruction method to the multi-
view setting.

Photometric Loss. The photometric loss aims to minimize the pixel differ-
ence between the input images and the rendered images, defined as Lphoto =
1
N

∑N
i=1

1
|Mi|

∑
Mi

||I ′
i(xi) − Ii||2, where the I ′

i(xi) is the image rendered using
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Fig. 2. Comparison of the results without (top row) and with (bottom row) using
silhouette loss for training. We use the red region to mark the face region of rendered
images on the input images. (Color figure online)

the face model coefficients xi, Mi is the face region of I ′
i(xi) and N is the number

of different view images.

Landmark Loss. The landmark loss mainly contributes to the geometry
of reconstructed face. We use a state-of-the-art landmark detector [3] to
detect the 68 landmarks {qk

i }68k=1 of input image Ii. We also can obtain the
landmarks {q′k

i (xi)}68k=1 by projecting the 3D vertices on the reconstructed
mesh to image plane. The landmark loss can be represented as: Llmk =
1
N

∑N
i=1

1
68

∑68
k=1 ωk||qk

i − q′k
i (xi)||2, where ωk is the landmark weight. We set

the weight to 20 for nose and inner month and others to 1.

Perceptual Loss. We adopt the perceptual loss Lper as in [9] to improve the
fidelity of the reconstructed face texture. The perceptual loss measures the cosine
distance between the deep feature of the input images and rendered images. With
the perceptual loss, the textures are sharper and the shapes are more faithful.

Silhouette Loss. Inspired by the silhouette loss which used in human body
reconstruction [14,17,21], we apply it in multi-view face reconstruction task. We
use a face parsing network [23] to segment the face region from the input image.
Then we detect the side view silhouette (left silhouette for left view image and
right for right) of the face region. The silhouette is represented as a 2D point
set Si in the image plane, where i is the index of input image Ii. We can also
extract silhouette from the rendered image I ′

i(xi) to get another point set S ′
i.

The silhouette loss is defined as the chamfer distance between the two point
sets: Lsil = 1

N

∑N
i=1 chamfer(Si,S ′

i). It should be noticed that the silhouette
loss will not be applied in the frontal view images. In the experiment, the face
parsing network may fail due to the occlusion of the face region. Therefore, we
discard the silhouette loss when its value is greater than a presetting threshold
to make the training process more stable. Figure 2 illustrates the benefit of using
our silhouette loss.
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Regularization Loss. To ensure the face geometry and texture are reasonable,
regularization loss of 3DMM is used as Lreg = ωid||α||2 + ωexp||β||2 + ωtex||δ||2.
ωid, ωexp, ωtex are balancing weights of different 3DMM coefficients and are set
to 1.0, 0.8, 2e-3 respectively.

To sum, the total loss function is:

Ltot = ωphoLpho + ωlmkLlmk + ωperLper + ωsilLsil + ωregLreg (5)

4.3 Test-Time Optimization

The CNN-based approaches predict the face model coefficients x from image I
by learning a mapping function x = fθ(I), where θ is the parameters of CNNs.
Assuming that the CNNs is trained on a dataset Dtrain, the training process
aims to find the optimal parameters θ∗ which satisfies:

θ∗ = arg min
θ

∑

I∈Dtrain

Ltot(I, fθ(I)) (6)

However, when testing a particular sample I, we want to find the face model
coefficients x∗ which satisfies:

x∗ = arg min
x

Ltot(I, x) (7)

There are two main gaps between Eq. (6) and Eq. (7). The first one is the test
image may not be sampled from Dtrain. This is a crucial but difficult problem
caused by domain gap between datasets and is still a hotspot issue in deep learn-
ing. The second gap is neural network minimizes the loss over the whole dataset.
Although we test a sample I ∈ Dtrain, the neural network still can’t produce a
optimal result for this particular sample. Thus, we propose the test-time opti-
mization mechanism to fill the two gaps. We take the output of neural network
x = fθ(I) as the initialization and try to find the optimal x∗ by Eq. (7). Our
test-time mechanism can be easily implemented in the existing reconstruction
methods based on neural network, which only need to calculate derivative of
Ltot(I, x) with respect to x and conduct gradient descent algorithm.

5 Experiments

In this section, we compare the qualitative and quantitative result with both the
state-of-the-art single-view and multi-view approaches. We also demonstrate the
effectiveness of our approach with extensive ablation studies in the Supplemen-
tary Material. Besides, the implementation details including training strategy,
datasets and hyperparameters setting will also be showed in the Supplementary
Material.
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Table 1. Average and standard deviation of the symmetric point-to-plane L2 errors
on the MICC dataset (in mm).

Method Cooperative Indoor

Mean Std Mean Std

3DDFA [45] 2.65 0.63 2.26 0.50

RingNet [28] 2.35 0.49 2.21 0.46

PRN [13] 2.30 0.54 2.02 0.50

Tran et al. [39] 2.05 0.54 2.07 0.51

MVFNet [44] 1.73 0.49 1.76 0.52

MGCNet [30] 1.71 0.47 1.73 0.48

Deng et al. [9] 1.69 0.53 1.70 0.51

Ours 1.59 0.47 1.61 0.46

5.1 Quantitative Comparisons

We evaluation our approaches on the MICC Florence dataset [1] which is a
benchmark test dataset of the multi-view face reconstruction task. It consists
of 53 identities and the corresponding 3D scans which can be regarded as the
ground-truth. Each identity has two videos of “indoor-cooperative” and “indoor”
respectively. We compare our methods with both multi-view methods and single-
view methods. For multi-view methods, we manually select three images in each
video as a triplet, where the camera viewpoints are largely different and expres-
sions are kept neutral very well. For comparing with the single-view methods
on the image triplets, we follow the method from [30,44]. We follow the data
preprocessing methods and evaluation metrics from [15,44]. Then the symmetric
point-to-plane L2 errors (in millimeters) between the predict 3D models and the
groundtruth scan will be computed as the evaluation metrics.

We compare our method with Zhu et al. [45] (3DDFA), Sanyal et al. [28],
Feng et al. [13] (PRN), Tran et al. [39], Wu et al. [44] (MVFNet), Shanget al. [30]
(MGCNet), Deng et al. [9]. Notice that for each comparison, we use exactly the
same input to test all the comapred methods. As shown in Table 1, our method
outperforms all the state-of-the-art single-view and multi-view methods. Several
examples of the comparison of the error maps are shown in Fig. 3. Since our
method better explore the multi-view 3D information by a 3D volume-based
feature fusion and a test-time optimization, it achieves lower error than the
compared methods especially in the regions of forehead and chin where the z
direction ambiguity is more severe.

5.2 Qualitative Comparisons

We present some visual examples from the MICC dataset. We compared our
methods with RingNet [28], Deng et al. [9], MVFNet [44] and MGCNet [30].
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Fig. 3. The error map comparisons with Deng et al. [9], MVFNet [44], MGCNet [30]
on the MICC dataset.

Fig. 4. Geometry comparisons with RingNet [28], Dent et al. [9], MVFNet [44], MGC-
Net [30] on the MICC dataset.

From the front view images, Fig. 4 shows that the overall face shapes recon-
structed by our method and Deng et al. [9] are more fidelity than the other
methods. For the side views images, although MGCNet [30] and Deng el al.
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[9] have achieved better pose estimation than MVFNet [44] and RingNet [28],
there still exits obvious misalignment at the forehead region. While our method
achieves better face alignment than the other methods by better exploring of
multi-view information. More Visual comparisons in different facial expressions
will be showed in Supplementary Material.

6 Conclusion

We have proposed a novel multi-view 3D morphable face reconstruction method
via canonical volume fusion and demonstrated the advantages of explicitly estab-
lishing dense feature correspondences to solve the depth ambiguity in the multi-
view reconstruction task. Besides, we introduced an easy-implemented and effec-
tive mechanism called test-time optimization, which refines the outputs of CNNs
and obtain more accurate results. Our methods outperforms the state-of-art
methods in both quantitative and qualitative.
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