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Abstract. Generating audio-driven talking head videos is a challeng-
ing problem which receives considerable attention recently. However,
the emotional expressions of the speaker are often ignored, although
the emotion information is expressed in the audio signal. In this paper,
we propose Emotional Semantic Neural Radiance Fields (ES-NeRF), an
audio-driven method for generating high-quality and emotional talking
head videos based on neural radiance fields. Our method extracts the
content features and the emotion features of the audio as additional
inputs to construct a dynamic neural radiance field, applies the seman-
tic segmentation map to constrain the speaker’s expression, generates
a dynamic three-dimensional emotional facial semantic representation,
and then synthesizes the final high-quality video through the seman-
tic translation network. Experiments show that our method can achieve
high-quality results with corresponding expressions for audios contain-
ing different emotions that surpass the quality of state-of-the-art talking
head methods.

Keywords: Emotional talking head · Nerual radiance field · Semantic
segmentation

1 Introduction

Synthesizing audio-driven high-quality talking head videos is a challenging prob-
lem and necessary in many practical applications, such as film-making [17], vir-
tual video conferences and digital humans [40]. Recently, many methods have
been proposed to generate high-quality talking heads, and the mouth shape is
kept in synchronizing with the audio. At present, the advanced methods are
divided into two categories: the methods based on generative adversarial net-
works (GAN) [4,14,33,35,37,39] and the methods based on neural radiance fields
(NeRF) [10,13].
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Fig. 1. Given an audio input, our ES-NeRF approach can generate high-quality emo-
tional talking head videos. The example shows the generated talking heads with the
same speech content but different emotions and poses.

Since it is difficult to directly learn the mapping from the original audio sig-
nal to the facial expression and the mouth shape, existing methods often use
intermediate representations such as explicit 3D face shapes [26], 2D landmarks
[31] or expression coefficients [33]. Nonetheless, there are very few works that
consider the influence of the emotional factors contained in the audio signals on
the expressions of the characters. The recently collected MEAD dataset [35] con-
tains high-quality talking head videos with annotations of both emotion category
and intensity.

NeRF-based methods have shown excellent results in recent years. For exam-
ple, both AD-NeRF [13] and 4D facial avatar [10] can generate high-quality talk-
ing head videos with lip synchronization, and can ensure the free view direction
and background switching. Nevertheless, AD-NeRF does not consider the influ-
ence of the speaker’s emotions expressed on the face, and the rendering of some
extreme expressions is heavily blurred, while the 4D facial avatar needs to be
given the expression code of the target person and cannot be directly driven by
audio signals.

To solve the problem current methods neglecting the influence of the
speaker’s emotion, we propose the Emotional Semantic Neural Radiance Fields
(ES-NeRF), which can synthesize the high quality talking head videos with the
correct expressions from emotional audio inputs, as the examples shown in Fig. 1.
Different from existing NeRF-based methods, we consider to use both content
features and emotional features of the input audio. For situations where it is
difficult to directly learn the mapping from audio features to facial expressions
and mouth shapes, we add semantic maps as additional supervisory signals.
To solve the problem that dynamic neural radiance fields is difficult to han-
dle the representation of multiple widely different expressions, we employ the
generated three-dimensional semantic representation as an intermediate repre-
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sentation and produce the final result through a semantic translation network.
The use of neural radiance fields to obtain three-dimensional semantic represen-
tations can naturally and freely adjust different postures and view directions,
which is impossible in traditional 2D landmarks. For generating a single expres-
sion or multiple types of expressions, our model achieves better image quality,
emotion accuracy and audio-visual synchronization than existing GAN-based or
NeRF-based methods.

The main contributions of this work are listed as follow:

– We propose the Emotional Semantic Neural Radiance Fields, which is the
first attempt to achieve emotional talking head generation in audio-driven
NeRF-based methods.

– We add semantic segmentation constraints to the dynamic neural radiance
fields to better learn the mapping from audio features to facial expressions and
mouth shapes and meanwhile predict a 3D dynamic semantic representation.

– We propose the NeRF-to-GAN approach with adopting a semantic translation
network to solve the problem of poor image quality directly rendered by
dynamic neural radiance fields under multiple widely different expressions.

2 Related Work

2.1 Talking-Head Generation

Generative Adversary Network. As one pillar of the computer vision, GAN
[11] contributes largely to this domain. Many researchers are inspired by this
method and generate more and more realistic images and videos. Progressive
GAN [15] can get high resolution results by applying the progressive training
strategy on generator and discriminator. Style GAN [16] gets break through on
the details and gets the ability to control the detail. Photo-realistic Audio-driven
Video Portraits [37] and Neural voice puppetry [33] utilize a U-Net-based [27]
GAN as a neural renderer to render 3DMM [2] parameters to realistic images
and videos. Make-it-talk [39] disentangles the content feature and style feature
from the audio feature, then choose landmarks as intermediary to generate final
videos. Hierarchical Cross-Modal Talking Face Generation [4] proposes a cas-
cade GAN with dynamic pixel-wise loss to avoid subtle artifacts and temporal
discontinuities. These methods based on GAN all suffer the 3D inconsistency
problem and neglect the emotional expression.

Neural Radiance Field. Since 2020, due to 3D consistency and remarkable
neural rendering, Neural Radiance Field [21] has caught many eyes on it. Many
methods [10,12,13,20,23,28,29] base on NeRF to set up 3D radiance fields and
add additional parameters to control the generation of the results. Graf [29]
combines NeRF and GAN framework to improve the quality of the image gen-
eration. Giraffe [23] extracts the feature map and then feeds it into GAN for
progressive training to render high-resolution image. Style-NeRF [12] solves the
problem in Giraffe that cannot generate high resolution image and produces the
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artifacts. AD-NeRF [13] adopts DeepSpeech [1] features of audios in NeRF to
catch targets’ lip movements and presents torso NeRF to render the torso part
of the target. Similar to AD-NeRF, 4D facial avatars [10] chooses expression
code estimated by 3DMM [2] model to match the lip movements and add the
latent code to improve stability. Both AD-NeRF and 4D avatars maintain the
talking head pose, while GNeRF [20] predicts head poses with the use of GAN
and applies the generated pose in NeRF to render the talking head video. All
aforementioned works cannot reenact the emotion styles of people.

2.2 Emotion Condition Generation

Many methods focus on generating a more high-resolution picture and a clearer
mouth type, which lack consideration of personal style [33,37,39] and emotional
style [8,14,22,25,35]. Previous works [10,33,37] generate videos with expressions
by transferring the expression from source to target. These methods are lim-
ited to the source video and cannot generate emotion videos from unrecognized
audios. Emotional style methods are inspired by voice emotionally recognizing
methods [7,9,19] and disentangle the emotion in the audio by the depth network
to generate emotional talking head. ExprGAN [8] designs one encoder-decoder
architecture to control the expression identity with an expression controller mod-
ule. Wang et al. [35] propose the MEAD dataset which contains high resolution
talking head videos with eight different emotions and propose a network to gen-
erate the audio-driven lower face and emotion-driven upper face. GANimation
[25] proposes one conditional GAN based on Action Units to estimate continu-
ous facial movements of a designated expression. Audio EVP [14] disentangles
content encoding and emotion encoding from the audio signal, then uses land-
marks as intermediary to get the edge map. Finally EVP utilizes conditional
GAN to translate the edge map to high-fidelity emotion video. Our work feeds
content parameters and emotion parameters into NeRF to generate semantic
results with expressions. Taking full advantage of both high-resolution gener-
ated image of GAN and 3D continuity of NeRF, our method can synthesize
realistic high-quality videos with arbitrary head poses and free view directions.
To this end, we employ semantic results as intermediate content.

3 Method

3.1 Overview

The framework of our Emotional Semantic Neural Radiance Fields is shown in
Fig. 2. In order to obtain the meaningful information in expression from acoustic
signals, we extract content features and emotion features separately. Inspired by
4D facial avatars [10], we use conditional implicit function and volume rendering
to model the emotional dynamic talking head (Sec. 3.2). To better learn the
mapping from audio features to facial expressions and mouth shapes, we make
the dynamic neural radiance field understand the semantics of the human head
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Fig. 2. Overview of our emotional semantic neural radiance fields Algorithm. We first
extract content features and emotion features from the audio signal. Then we use the
dynamic neural radiance field to predict 3D semantic representations. Finally, semantic
translation network is applied to generate the high-quality rendering results with the
corresponding emotion based on the semantic representations from the specific view
direction.

and meanwhile predict its 3D semantic representation (Sec. 3.3). The NeRF-to-
GAN module is designed to restore some facial details so that the model has
better performance under the multiple types of emotions (Sec. 3.4). Besides,
we focus on the facial emotional expression to generate natural emotional and
speaking styles of the target person. Since the torso part has little relevance
to the emotional expression of the characters, we process the head and torso
part separately by segmenting the head and torso part and extracting a pure
background, similar to AD-NeRF [13].

3.2 Emotional Neural Radiance Fields

Based on the dynamic neural rendering idea and to solve the problem of the
neglect of emotion in neural radiance fields for talking heads, we employ the emo-
tion feature and the content feature from the audio signal as additional inputs of
the implicit function. In other words, spatial coordinates x = (x, y, z), viewing
direction d = (θ, φ), content feature m, and emotion feature e are meanwhile
inputted to the implicit function which is realized by multi-layer perceptrons
(MLPs) to implicitly represent the continuous 3D scene density σ and color
c = (r, g, b). The density σ is the differential probability of a ray terminating
at an infinitesimal particle at spatial coordinates x, which is only related to 3D
position. The color c is RGB values, which can be predicted as a function of
both spatial coordinates x and viewing direction d. The entire implicit function
can be formulated as follows:

Fθ : (x,d,m, e) −→ (σ, c) (1)
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Like NeRF [21], we apply the volume rendering by numerical quadrature
with hierarchical stratified sampling to compute the color of each pixel. Within
one hierarchy, we mark a camera ray emitted from the center of projection of
camera space through a given pixel as r(t) = o + td, where o is the origin of
the ray, d is the view direction, and the near and far boundaries of t are tn
and tf respectively. Then the color of this ray can be expressed as an integral
(numerically estimated by quadrature):

C(r; p,m, e) =
∫ tf

tn

T (t)σ(r(t))c(r(t),d) dt (2)

where T (t) denotes the accumulated transmittance along the ray from tn to t. p
is the estimated head pose for transforming the sampling points to the canonical
space like 4D facial avatars [10].

T (t) = exp(−
∫ t

tn

σ(r(s))ds) (3)

To extract the content feature and emotion feature, we apply the popu-
lar DeepSpeech [1] model and OpenSmile [9] model respectively to obtain the
DeepSpeech features and OpenSmile features. The 29-dimensional DeepSpeech
features of 16 continuous frames are then sent into a temporal convolutional
network to the temporally filtered content feature where we employ the self-
attention idea [33]. The high-dimensional Opensmile features of each utterance
are then normalized by Min-Max and feature selection based on L2 normalization
to reduce the feature size to 100 dimension [30]. The low-dimensional emotion
feature and the 76-dimensional filtered content feature are used as the inputs of
MLPs.

3.3 3D Semantic Representation for Talking Head

During the implementation of rendering the emotional talking head by neural
radiance fields, we find that the edges of the face and facial features of the gen-
erated results often produce some serious artifacts due to the large or extreme
expressions. Since semantic representation is highly correlated with geometry
and radiance reconstruction [28], we consider that significant high quality seman-
tic labelling information could feasibly improve reconstruction quality.

We assume that one 3D position x has one semantic attribute s, which
denotes a distribution on n semantic categories and has no relation with view
directions. We introduce it into the above-mentioned dynamic neural radiance
field, and map the input spatial coordinates and audio features (content fea-
tures and emotion features) to semantic representation s through an implicit
function. The specific implementation is to pass the 256-dimensional feature
vector obtained after 8 fully-connected layers in MLPs through two additional
fully-connected layers and a softmax normalisation layer that outputs the view-
independent semantic representation. The entire implicit function can be formu-
lated as follows:

Fθ : (x,d,m, e) −→ (σ, c, s) (4)
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The semantic representation of the pixels projected on the image plane
through the ray can be expressed as an integral (numerically estimated by
quadrature):

S(r; p,m, e) =
∫ tf

tn

T (t)σ(r(t))s(r(t),d)dt (5)

where T (t) denotes the accumulated transmittance along the ray from tn to t.

T (t) = exp(−
∫ t

tn

σ(r(s))ds) (6)

3.4 NeRF-to-GAN

Although our method has been able to achieve the best results for rendering
single-category emotions or similar emotions, when it is applied to reconstruct
multiple categories of extremely different emotions, the overall clarity of the ren-
dering results will decrease, especially the mouth part. Because semantic presen-
tation performing better for above situation, we introduce a semantic transla-
tion network to generate corresponding image results. Following [3], we adopt a
conditional-GAN architecture for the semantic translation network. We perform
ray tracing on semantic occupancy field to obtain a 2D segmentation map from

Fig. 3. Qualitative comparisons with the state-of-the-art methods. From up to down:
Audio Transformation and Visual Generation Network (ATVGnet) [4], Audio-Driven
Emotional Video Portraits (EVP) [14], Audio Driven Neural Radiance Fields (AD-
NeRF) [13], Ours and the ground truth images. We show eight examples with different
speech contents and eight different emotions. From left to right: angry, contempt, dis-
gusted, fear, happy, neutral, sad and surprised.
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a given user-specific viewpoint, then use the GAN generator to texture each
semantic region from the style code sampled from the texture space. Finally
we adopt a Semantic Instance Wise StyleGAN to regionally stylize the gener-
ated segmentation maps. Please refer to [3] for more details about the network
architecture.

4 Experiments

4.1 Implementation Details

Dataset. We evaluate our method on the MEAD [35] dataset, a high-quality
audio-visual dataset for emotional talking head generation with 60 actors and
actresses and eight emotion categories. The dataset is split into the training and
testing sets for models to train and test. Every emotional talking head video is
converted to 25 fps and the sample rate of audio signals is set to be 16kHz.

Data Preprocessing. (1) Pose estimation. We firstly use an off-the-shelf
method [38] to detect facial landmarks and align all the head part. The dynamics
of the head pose are estimated by a state of-the-art face tracking approach [34]
and bundle adjustment [32] approach is applied for optimization. The optimized
head pose parameters are used for transforming the sampling points on the rays
from the head part to the canonical space. (2) Face parsing. We use the popular
face parsing method [5] to label the different semantic regions. Since we need to
use the 2D segmentation result as the ground truth as supervisory signals for
dynamic neural radiance fields, we cannot tolerate any obvious artifacts, such as
the confusion between the left and right eyebrows. We reprocess the segmenta-
tion result by ignoring the distinction between the left and right parts to enhance
the robustness to avoid the instability of the neural network training.

Training Details. We implement our framework in PyTorch [24]. Training
images are resized to 512 × 512 for all the experiments. Neural radiance fields
part are trained with Adam [18] solver with initial learning rate 5e-4. We train
the neural network for 400k iterations and train the semantic translation network
for 500k iterations. In each iteration of the neural network training, we randomly
sample a batch of 2048 rays through the image pixels. For the target person, we
choose 30 videos for each kind of emotions. We train both networks with a Tesla
V100 with 32GB memory and need about 72 h with videos of single person with
eight different emotions in resolution 512 × 512.

4.2 Evaluation Results

Evaluation Metrics. To quantitatively evaluate the expression accuracy, we
extract facial landmarks from the generated videos and the ground truth videos.
The metrics of Landmark Distance (LD) [4] and Landmark Velocity Difference
(LVD) [39] are utilized to evaluate facial movements. LD represents the aver-
age Euclidean distance between ground truth and generated landmarks. LVD
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Table 1. Quantitative comparisons with the state-of-the-art methods. We calculate
the landmark accuracy, audio-visual consistency and video qualities of the results of
different methods by comparing them with the ground truth images. ↑ indicates that
the performance is better with higher results. ↓ indicates that the performance is better
with smaller numbers.

Method/Score LD↓ LVD↓ SyncNet score↑ PSNR↑ SSIM↑ Pose

ATVGnet [4] 3.82 1.71 4.34 28.55 0.60 static

EVP [14] 3.01 1.56 5.17 29.53 0.71 copied

AD-NeRF [13] 3.42 1.71 4.56 28.20 0.82 arbitrarily

Ours 2.89 1.46 5.54 29.80 0.91 arbitrarily

denotes the average velocity differences of landmark movements between two
videos. SyncNet [6] is often used to evaluate the audio-visual consistency for lip
synchronization and facial motions. To evaluate the audio-visual synchronization
quality, we use a pre-trained SyncNet model to compute the audio-sync offset
and confidence of audio-driven talking head videos. The performance is better
with higher score. Besides, we use PSNR and SSIM [36] to evaluate the quality
of the generated images.

Comparison with GAN-Based Methods. We mainly choose the EVP [14]
which has the best performance for emotional talking head generations in GAN-
based methods to compare with our method. From the quantitative comparison
in Table 1, we can see that our method performs better. In addition, the EVP
method requires simultaneous input of audio signals and the source video to
generate the talking head with poses, and its head postures are copied from
the source video. In contrast, the posture and view direction of the talking
head generated by our method can be adjusted arbitrarily, which is due to the
ability of the neural radiance field to generate semantic representation with a
free perspective. Analyzing and comparing the rendering results, we can find
that the rendering results of EVP cannot well reflect the expression in some
emotions (such as angry and disgusted).

Comparison with NeRF-Based Methods. AD-NeRF [13] is currently one
of the few audio-driven NeRF-based talking head methods, and the input con-
ditions are the same as our method: only audio input is required. It can be
seen from the quantitative comparison in Table 1 that our method catches much
higher score than AD-NeRF. It can be seen from the examples in Fig. 3 that
although AD-NeRF can also express the speaker’s emotion to a certain extent,
its robustness is very poor and the rendering results are quite blurry, especially
in the mouth area.

4.3 Ablation Study

To synthesizing high quality results, we add the emotional-related part, semantic-
related part and semantic translation network into the dynamic NeRF. We select
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LD, SyncNet score and PSNR as metrics for the ablation study to demonstrate
the necessity of these parts in our method.

Table 2. Quantitative ablation study. Emo. denotes the emotion-related part of
dynamic neural radiance fields. Sem. denotes the semantic-related part of dynamic
neural radiance fields. Trans. denotes the semantic translation network

Emo. Sem. Trans. LD↓ SyncNet score ↑ PSNR ↑
� 3.36 4.75 28.5

� 3.17 5.02 29.4

� � 3.05 5.23 30.2

� � � 2.89 5.54 29.8

Fig. 4. Ablation study for emotional
neural radiance fields. We show cases
with (left) and without (right) emotion
related part in neural radiance field.
The red boxes show the artifacts in the
generated frame. (Color figure online)

Fig. 5. Ablation study for 3D seman-
tic representation. We show cases with
(left) and without (right) semantic
related part in neural radiance field.
The red boxes show the artifacts in the
generated frame. (Color figure online)

Emotional Neural Radiance Fields. The emotion feature as an additional
input of dynamic NeRF is helpful for rendering the talking head with real emo-
tion. In Table 2, without emotion related part in neural radiance field, all evalu-
ation metrics perform worse. Figure 4 shows that lack of the constraints of emo-
tional features, synthesized results are less robust in emotional representation,
and often present incorrect expressions.

3D Semantic Representation for Talking Head. The semantic-related part
can not only be used to correctly predict the semantic representation of the head,
but also facilitate the image rendering of the NeRF. In Table 2, the result of
adding the semantic part improves on all evaluation metrics. It can be seen from
the Fig. 5 that the semantic part well constrains the image rendering results on
the edge of each organ, making it smoother and clearer.
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Fig. 6. Ablation study for seman-
tic translation network. We show
the cases with (left) and without
(right) semantic translation network
and predicted semantic representation
(medium). The red box shows the arti-
facts in the generated frame. (Color
figure online)

Semantic Translation Network. It is
worthy to mention that it is difficult to
generate high-quality 3D semantic rep-
resentations without the emotional part
or semantic part in the dynamic NeRF.
Under these situations, the result with
the semantic translation network is worse
than directly rendered by the dynamic
NeRF. Therefore, the semantic transla-
tion network is removed in the subse-
quent comparisons where the emotional
part or semantic part in the dynamic
NeRF is removed. In Table 2, both LD and
SyncNet score perform worse, but PSNR
improves without the semantic transla-
tion network. However, we can see from
the rendered sample image in Fig. 6 that
the overall clarity of the result is actually
lower, and the image quality is not as good as the result of the complete method.
Especially in the mouth area, it is difficult to recognize the mouth shape of the
speaker. Therefore, the final solution adds the semantic translation network.

5 Conclusion

In this paper, we propose an audio-driven talking head method for generat-
ing high-quality and emotional portraits videos based on neural radiance fields.
Our proposed emotional neural radiance field uses the content features and the
emotion features extracted from the audio as inputs to reconstruct the emo-
tional talking head. Then, we employ semantic segmentation to constrain the
speaker’s expression and generate the three-dimensional dynamic facial seman-
tic representation. To improve the quality of synthesized results, we propose a
NeRF-to-GAN approach and generate the final high-quality video containing dif-
ferent emotions through the semantic translation network. The photo-realistic
generated results surpass the quality of state-of-the-art talking head methods
both quantitatively and qualitatively.
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