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Abstract. Multi-view subspace clustering (MVSC), as an extension of
single-view subspace clustering, can exploit more information and has
achieved excellent performance. In particular, the MVSC methods with
sparse and low-rank basing have become a research priority as they can
improve the clustering effect in an effective way. However, the follow-
ing problems still exist: 1) focusing only on the connections between
two views, ignoring the relationship of higher-order views; 2) performing
representation matrix learning and indicator matrix learning separately,
unable to get the clustering result in one step and obtain the global
optimal solution. To tackle these issues, a novel sparsity and low-rank
based MVSC algorithm is designed. It jointly conducts tensor represen-
tation learning and indicator matrix learning. More specifically, the Ten-
sor Nuclear Norm (TNN) is utilized to exploit the relationships among
higher-order views; besides, by incorporating the subsequent spectral
clustering, the indicator matrix learning is conducted during the opti-
mization framework. An iterative algorithm, the alternating direction
method of multipliers (ADMM) is derived for the solving of the pro-
posed algorithm. Experiments over five baseline datasets prove the com-
petitiveness and excellence of the presented method with comparisons to
other eight state-of-the-art algorithms.
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1 Introduction

As a typical data analysis methodology, clustering is already widely used in dif-
ferent fields, like artificial intelligence [1,2], biology [3], marketing [4] and so on.
In general, clustering algorithms are categorized into five classes: partition-based
clustering [5], hierarchical clustering [6], fuzzy clustering [7], density-based clus-
tering [8], and model-based clustering [9,10], in which, Subspace Clustering(SC),
for its validity in processing high-dimensional data, has received much public
interest as a model-based clustering method. Out of different SC methods, SSC
[11] and LRR [12] have made significant contributions to the growth of subspace
clustering. Specifically, SSC exploits the sparse representation of data points,
promoting data points represented by a linear combination of other points from
the same subspace; LRR can effectively recover the subspace representation of
corrupted data. Furthermore, many other variants [13,14] of SSC and LRR have
also achieved superior performance. However, all these methods are intended for
single-feature data and cannot handle multi-feature data.

To address above issuses, Multi-view subspace clustering methods are pre-
sented. The general MVSC methods are crudely classified as three steps. The
first step is specific subspace representation learning, as with single-view sub-
space clustering algorithms, this step produces a coefficient matrix in each view.
Two ways—self-expressiveness property [15-18] and nonnegative matrix decom-
position [19] are generally adopted. The second step is multi-view correlation
exploitation. After acquiring the specific representation matrices, inevitably, the
shared matrix is required by merging them together. And to improve the quality
of the unified representation matrix, some strategies like concatenating [20], cen-
ter [21,22] and pairwise-based [17,23] regularization, and tensor singular value
decomposition (t-svd) [24,25] are proposed. The last step is Spectral clustering.
By inputting the shared representation matrix into the spectral clustering can
obtain the final clustering results.

Although satisfactory progress has been achieved with the aforementioned
methods, still there is space for enhancement. For instance, 1) Low-rank and
sparsity constraints have been proved advantageous, yet few methods consider
them simultaneously, and of those that do, only the relationship between two
views is explored, ignoring higher-order associations. 2) Most MVSC algorithms
treat the shared representation matrix as an optimization objective, which means
the indicator matrix obtained from spectral clustering is not involved in the opti-
mization process, resulting in the inability to obtain a globally optimal solution.
To tackle these two problems, a new MVSC algorithm with joint tensor repre-
sentation and indicator matrix learning (MVSCTI) is proposed. To illustrate our
contributions more clearly, we list them as follows.

— Unlike available MVSC methods based on low-rank sparse representations
that only consider the pair-wise connections of views, t-svd based TNN learn-
ing is conducted to dig the higher-order connections of multiple views.

— MVSCTT jointly pursues tensor representation and indicator matrix, which
can get the indicator matrix in one step and obtain the global optimal solu-
tion.
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— The effectiveness of the proposed algorithm is demonstrated by comparing it
with eight advanced algorithms on five datasets.

The rest of this paper is structured as follows. The second section shows the
work most relevant to this paper; The third section describes the construction of
MVSCTT; For the fourth section, the superiority of MVSCTI is verified by the
experimental comparison of several comparative algorithms on different datasets;
The fifth section concludes the work of this paper.

2 Related Works

This section lists the related works that is most relevant to this paper.

2.1 Spectral Clustering

Spectral clustering is used extensively for the ability to deal with complex struc-
tural data and does not require any assumptions about the shape of the data.
It suggests using the adjacency matrix’s eigenvectors to determine the classifi-
cation. The general procedure is first to generate an affinity matrix and input it
into the following model to obtain the indicator matrix.

mFinTr(FTLF) st. FTF =1 (1)

where L =D — W, F is the indicator matrix. Each row of F is considered as a
point, and these points are divided into groups to which they belong, employing
existing algorithms such as k-means.

2.2 Multi-view Subspace Clustering

To take best benefit of multiple views information for clustering, many MVSC
methods were proposed, and their general form could be elaborated as Eq. (2).

min 3 fo(z(v>) st X =XWZ®) diag (z@)) =0 (v=1,2,3..V)

z v=1
(2)
where X(*) represents the feature matrix of the v-th view, ¥ (Z(“)) represents the
regularization term to induce the desired performance of the coefficient matrix
yAQH

3 Model Proposal and Optimization

In this section, a MVSC method with joint tensor representation and indicator
matrix learning (MVSCTI) is designed. The flowchart of MVSCTI is shown in
Fig. 1.
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Fig. 1. Input multiple original data matrices X ). Then, specific subspace learning is
performed using self-expressiveness property and /3 norm constraints to obtain multiple
coefficient matrices Z*). Further, stack these matrices as tensor and apply low-rank
constraints from lateral; after that, integrate them to a shared subspace representation
matrix. Next, input it into the spectral clustering algorithm for the indicator matrix
F', which is also the final optimization objective of our model. Eventually, the k-means
algorithm is adopted for achieving the final results.

3.1 The Proposed Model

In consideration of the efficiency of sparse representation, a MVSC framework
based on sparse representation is first proposed, as shown in Eq. (3).

vefa”
F

+ Z corre(A™), At

vEWw,v21,wny,

min 37 L[x - x4
2
1

A) sparsity
v =

intra-views inter-views
s.t. diag (A(”)) =0

3)
where sparsity represents sparsity constraint and corre is abbreviations for cor-
relation, which represents inter-view correlation. The formulation is divided into
two terms, the first term—intra-views performs specific subspace learning within
each view and the other term mines the inter-view connections. For sparsity
constraints, there are many different choices, the most efficient of which is the
schatten-p norm, which represents the number of non-zero elements, but it is
non-convex, so we choose its convex approximate l; norm here, and use the
TNN to dig the higher-order connections of multiple views, and the formula is
shown in Eq. (4).
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where || Al g is t-svd based TNN [24]. The above formula takes A ™) as the final
optimization objective, then, the shared similarity matrix A is obtained using

Z A(U)T+A( 2 , after which it is input into the spectral clustering algorithm for

the 1nd1cator matrix, which is a two-step method, and the final results are not
incorporated into our optimization model, implying that what is obtained in
this way is not a globally optimal solution. So we further integrate the spectral
clustering Tr(FTLF) into our model, and the final model is as shown in Eq. (5).

Specific subspace representation learning Shared subspace representation learning

min Z( Hx(v) x (V) A (V)
AW F S

ol

)+ ( a1 Allg + ATe (FTLF) )
N—— N— ———
Spectral clustering

Self-expressiveness Sparsity constrain Low-rank tensor constrain

s.t.  diag (A(“)) -0, FTF=1
(5)
where L=D - W, A= (A ... A()) W = Z AUEAY FTF = Lis

set to prevent a trivial solution, D = diag | 3>_ [W];;, > [Wly,, -+, 20 [W],
J J J

This formulation is a model end-to-end, with which the global optimal solution
can be obtained. The proposed model can be optimized with an efficient algo-
rithm Alternating Direction Method of Multipliers (ADMM), and the specific
optimization process and the complexity analysis is provided in the Appendix.

4 Experiment and Analysis

This section verifies the validity and superiority of MVSCTI through compara-
tive experiments. Furthermore, the factors of excellence of the model are ana-
lyzed by conducting ablation study, parameter sensitivity and convergence anal-
ysis experiments.

4.1 Experiment Setting

Datasets. Experiments are conducted on five datasets covering different types
and domains of data, such as articles, images, and biology. More details are as
follows.
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— BBCsports [26]: This dataset contains 554 articles owned by the BBC, con-
taining five topics and two views.

— NUS [21]: This dataset is from NUS-WIDE. It includes 12 categories of
images and 6 views, of which we have selected 2400 images.

— Prokaryotic [27]: This dataset contains 551 prokaryotic species with four
classes and three views (textual, the proteome composition, and the gene
repertoire).

— WebKB [22]: This dataset includes 203 web-pages with 4 categories and
three views.

— Reuters [28]: The archive contains 1200 documents over the six labels. It
comprises five views on the same documents.

Table 1 enumerates the general information of the datasets.

Table 1. Details of the five datasets.

Datasets Views | Dimensionality Instances | Classes
BBCsports |2 3183/3203 554 5
NUS 6 64/144/73/128/255/500 2400 12
Prokaryotic | 3 438/3/393 551

WebKB 3 1703/230/230 203

Reuters 5 2000,/2000/2000/2000,/2000 | 1200

Baselines and Metrics. We compare the algorithm in this paper with eight
advanced algorithms, which includes GBS-KO [22], SMVSC [21], LTMSC [29],
Co-reg [30], DIMSC [31], FPMVS-CAG [32], CoMSC [28] and MLRSSC [27].
Three commonly used evaluation metrics are adopted for our experiment, i.e.,
Accuracy (ACC), Normalized Mutual Information (NMI), and Adjusted Rand
Index (ARI). All comparison algorithms codes were downloaded from the URL
provided by the authors. We choose the parameters provided in the original
article that correspond to the optimal performance. To present a stable experi-
mental result, we execute 20 times for every method, take the average result and
its standard deviation is calculated. All experiments were run on the identical
device with an Intel(R) Core(TM) i5-7400 3.00 GHz CPU.

4.2 Experimental Results and Analysis

Based on the results of the comparison experiments displayed in Table 2 as well
as in Fig. 2, where - indicate that the algorithm is not applicable to the corre-
sponding dataset. We present the following observations:

— Compared to all contrast algorithms, our method is optimal all the time, e.g.,
TIMVSC outperforms the second best algorithm MLRSSC by 14.4%, 18.4%,
and 21.8% in ACC, NMI, and ARI, respectively, on the prokaryotic dataset.
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In addition, on the Reuters dataset, TIMVSC outperforms the second best
algorithm MLRSSC exceeds 27.6%, 38.4%, and 40.7% in ACC, NMI, and
ARI, respectively. These show the superiority of TIMVSC.

— Figure 2 shows a two-dimensional visualization of the embedding representa-
tion F using the T-SNE algorithm. It can be observed that MVSCTI exhibits
a clearer structure than most other algorithms.

— Compared with MLRSSC, our algorithm always outperforms it, while the
most significant difference between them is the way of low-rank constraint,
MLRSSC uses matrix svd decomposition, while MVSCTI employs t-svd
decomposition, which illustrates that for multi-view clustering, adopting t-
svd decomposition for low-rank constraint is able to effectively exploit the
higher-order associations between views.

4.3 Model Discussion

We validate our model by performing ablation study, parameter sensitivity, run
time and convergence experiments.

Ablation Study. One of the innovations of the proposed model is the joint
low-rank tensor representation learning and indicator matrix learning. To fur-
ther verify the advantages of this joint learning strategy, the following two exper-
iments were designed, in which the first one eliminates the spectral clustering
term (indicator matrix learning), and the second one eliminates the low-rank ten-
sor constraint term. The experimental results are shown in Fig. 3, where No SC
is eliminating spectral clustering term and No tensor is eliminating tensor learn-
ing term. Both experiments’ results present a decrease compared to MVSCTI
and the decrease is more significant after eliminating the tensor learning term,
which illustrates the effectiveness of our joint learning strategies, and incorpo-
rating spectral clustering into the model not only reduces the clustering steps,
but also improves the clustering effectiveness.

Parameter Sensitivity. For our proposed model, there are three parameters
to be traded off: ay, ag, and A, corresponding to the tensor term, the sparsity
term, and the spectral clustering term, respectively. Figure 5 shows the param-
eter sensitivity experiments on NUS, where we did a logarithmic treatment of
the parameter coordinate label values. One can see that the experiments can get
a good results when selecting parameters in a certain range. Here we provide a
parameter selection range. For all datasets, as and A can be chosen from a range
of [0.01, 0.1, 1, 10] except the BBCsports dataset, whose ay can be chosen from
a range of [0.01, 1000, 10000] and A can be chosen from a range of [0.1, 100,
1000]; for Prokaryotic, a1 can be chosen from a range of [0.01, 1, 10, 1000}, and
for the rest of datasets, o can be chosen from a range of [1000, 10000, 100000].
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Table 2. The experimental metrics of nine algorithms on five datasets.
Method Metrics | BBCsports NUS Prokaryotic WebKBs Reuters
Co-reg ACC | 0.356(0.003) |0.008(0.008) |0.537(0.005) |0.613(0.016) |0.018(0.018)
ARI 1 0.004(0.001) |0.141(0.003) |0.045(0.005) | 0.295(0.011) |0.866(0.129)
NMI | 0.021(0.004) |0.127(0.002) |0.111(0.004) | 0.258(0.005) | 0.168(0.001)
LT-MSC ACC  |0.460(0.046) | 0.241(0.010) |0.419(0.005) | 0.538(0.003) |0.418(0.031)
ARI 0.166(0.042) | 0.012(0.000) |0.0281(0.000) |0.180(0.003) |0.151(0.018)
NMI | 0.221(0.027) |0.124(0.007) |0.130(0.006) | 0.165(0.001) |0.212(0.011)
DIMSC ACC 1 0.795(0.003) |0.127(0.003) | 0.362(0.002) -
ARI | 0.563(0.005) | 0.006(0.000) |0.027(0.002) |- -
NMI 0.583(0.004) |0.023(0.001) |0.031(0.000) -
MLRSSC ACC 0.840(0.013) |0.294(0.008) |0.654(0.007) | 0.698(0.007) |0.475(0.024)
ARI | 0.770(0.015) |0.091(0.003) |0.339(0.009) | 0.476(0.013) | 0.204(0.015)
NMI | 0.762(0.009) |0.157(0.003) |0.319(0.003) | 0.451(0.116) |0.283(0.010)
S-MVSC ACC 0.789(0.111) |0.295(0.009) | 0.411(0.103) 0.700(0.255) | 0.313(0.036)
ARI  |0.698(0.132) |0.097(0.005) |0.061(0.011) |0.501(0.021) |0.067(0.034)
NMI | 0.712(0.093) |0.164(0.004) |0.155(0.003) | 0.463(0.011) |0.159(0.023)
GBS-KO ACC 1 0.807(0.000) |0.165(0.000) |0.510(0.000) | 0.744(0.000) | 0.199(0.000)
ARI | 0.722(0.000) |0.012(0.000) |0.102(0.000) | 0.368(0.000) | 0.013(0.000)
NMI  |0.760(0.000) | 0.122(0.000) |0.217(0.000) | 0.378(0.000) |0.132(0.000)
FPMVS-CAG | ACC 0.423(0.000) | 0.258(0.001) |0.523(0.000) 0.576(0.000) | 0.443(0.000)
ARI | 0.132(0.000) |0.012(0.000) |0.135(0.000) | 0.326(0.000) | 0.169(0.000)
NMI  |0.151(0.000) | 0.124(0.007) |0.154(0.000) | 0.327(0.000) |0.212(0.000)
CoMSC ACC | 0.850(0.067) | 0.206(0.006) |0.579(0.000) | 0.735(0.030) |0.541(0.026)
ARI | 0.683(0.053) |0.041(0.003) |0.017(0.000) | 0.517(0.040) |0.517(0.040)
NMI | 0.681(0.038) |0.086(0.002) |0.05(0.000) | 0.492(0.022) | 0.353(0.017)
MVSCTI |ACC |0.939(0.047)|0.345(0.013) | 0.798(0.010) | 0.865(0.052) 0.751(0.006)
ARI | 0.890(0.042) | 0.270(0.007) | 0.558(0.009) | 0.730(0.057) | 0.611(0.012)
NMI | 0.890(0.025) | 0.330(0.028) | 0.504(0.008) | 0.695(0.032) | 0.667(0.010)

Table 3. Run time of all MVC comparative algorithms on all datasets (in seconds).

Method Co-reg | LT-MSC | DIMSC | MLRSSC | S-MVSC | GBS-KO | FPMVS-CA | CoMSC | MVSCTI
BBCsports | 8.31 43.76 10.87 | 3.21 41.35 13.01 12.60 1.65 2.24
NUS 155.83 | 1939.20 | 1840.83 | 913.65 2.31 33.76 174.49 11.11 507.68
Prokaryotic | 3.50 26.96 8.86 4.23 0.29 - 5.09 3.75 3.27
WebKBs 1.63 5.67 - 0.80 0.18 0.27 3.05 0.51 0.70
Reuter 25.37 1493.25 |- 96.55 359.40 1 98.23 32.99 7.76 67.47
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Fig. 2. The visualization of the embedding representation F of different MVC methods
on BBCsports.
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Fig. 5. Influence of parameter variation (The 1st column is about aa & A with oy fixed
as 10000; The 2nd column is about a; & A with a2 fixed as 1; The 3rd column is about
a1 & ap with A fixed as 0.01) for ACC and NMI on the NUS dataset.

Run Time and Convergence. We calculated the average run time of all
algorithms, and the experimental results are shown in Table 3. MVSCTTI has the
least run time on the BBCsports dataset in comparison with other algorithms
and is in the middle on the other datasets. Furthermore, for most algorithms, it
can be observed that the larger the size of the dataset, the longer the run time,
except for S-MVSC, whose run time on the BBCsports dataset with a size of
554 is 41.35s, which is the second-longest among all algorithms. Still, its run
time is only 2.31s on the NUS dataset with a size of 2400, which is much smaller
than the other algorithms. This might be because it is more sensitive to data
dimensionality than data size. For example, the size of NUS is twice as large as
Reuter, but its dimensionality is much smaller than Reuter, which leads to its
run time on Reuter (359.40s) to be much higher than that of NUS (2.31s). We
also conduct a convergence experiment on WebKBs. As shown in Fig. 4, it can
reach convergence within 7 times.

5 Conclusions

In this paper, an effective method—MVSCTI is proposed. It exploits the cor-
relations of multiple views by low-rank tensor learning, and the global optimal
solution can be gained by combining spectral clustering within the MVSC frame-
work. In the end, we compare MVSCTI with ten advanced benchmark algorithms
by experimenting on seven public datasets, and the results show the superiority
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of our method. Further, we validate the proposed model by conducting several
general experiments. For future works, We believe the following issues remain
to be explored: 1) Inter-view consistency and complementary must be exploited
more effectively, which is essential for improving clustering effect; 2) Reducing
the computational complexity while improving clustering performance, which is
critical for large-scale data.
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