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Abstract. Clinical Phenotyping is a fundamental task in clinical ser-
vices, which assessments whether a patient suffers a medical condition
of interest. Existing works focus on learning better patients’ representa-
tions. Recently, multi-task learning has been proposed to transfer knowl-
edge from different tasks and achieved promising performance. However,
the existing multi-task models still suffer from the serious negative trans-
fer and slow convergence problem when multiple phenotype tasks are
trained together. Meanwhile, phenotype relatedness is ignored, limiting
to boost the performance of the multi-task learning for the phenotype
prediction. To address these issues, we propose a private-shared multi-
task framework with auxiliary task selection and adaptive shared-space
correction for phenotype prediction (MTL AC). To start with, we design
an auxiliary task selection method to find the most compatible pheno-
type task against one task by using phenotype relatedness. And then, a
novel adaptive shared-space correction mechanism is proposed to address
the negative transfer and slow convergence problem when two tasks are
jointly trained under the private-shared multitask framework. The exper-
imental results show that the proposed method performs better on vari-
ous phenotype prediction tasks.

Keywords: Clinical phenotyping · Multi-task learning · Negative
transfer · Auxiliary task

1 Introduction

Clinical Phenotyping is a basic clinical process, which aims to figure out whether
a patient suffers from a medical condition of interest and is commonly used as
the first step to facilitate multiple medical services [19]. For example, medical
experts can group the patients via predefined phenotypes for precision medicine
[20]. Actually, physicians should classify the patient’s phenotype via complex
health records, which requires a high level of clinical experience and knowledge.
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With the rising complexity of patients’ data collected, clinical phenotyping can
be a challenging task for medical experts [24,26].

Recently, the adoption of electronic health records has collected quantities of
health-related data, which offers opportunities for designing data-driven methods
for automatic phenotype prediction [3,14,24].

Many works have utilized various deep learning technologies to model differ-
ent aspects of the patients’ data, including the recurrent neural networks [2,4,29],
attention mechanism [17,22,30], graph-based methods [6,15], et al. These works
are mainly focusing on learning the better representations of patients from mul-
tiple aspects. Inspired by the human learning activities, multi-task learning is
designed to transfer knowledge among the tasks to improve the performance and
has achieved promising performance in the clinical domain compared to train-
ing only for one task [9,21]. In spite of the success of multi-task learning in
the clinical domain, they have certain limitations when performing the clinical
phenotype prediction. Firstly, existing work has shown that multi-task learning
may degrade the performance of some relevant tasks [7,28]. The existing multi-
task models still suffer from the serious negative transfer problem caused by the
multi-times updating of the shared space such that task-specific bias is intro-
duced. Secondly, the relationship among different phenotypes is ignored, limiting
to boost the performance of the multi-task learning for the phenotype predic-
tion. In the clinical setting, one patient may suffer from different phenotypes,
which may provide additional information on the phenotype relatedness.

In this paper, to boost the performance of clinical phenotype prediction,
we formulate the clinical phenotype prediction task as a multi-task learning
problem where each phenotype task is referred to as an independent task and
propose a private-shared multitask framework with auxiliary task selection and
adaptive shared-space correction for phenotype prediction (MTL AC). Firstly,
to distinguish the task-specific and task-independent information, we adopt a
private-shared multi-task framework with two types of representations learned.
Secondly, we propose an auxiliary task selection method to select the most
compatible task with the consideration of phenotype co-occurrence. Thirdly, to
diminish the negative transfer of the shared space, we design a novel adaptive
shared-space correction method to adaptive change the optimization direction of
the shared space. We conduct a comprehensive evaluation of real phenotype pre-
diction tasks. Experimental results show that the proposed method outperforms
the previous methods for most of the phenotype prediction tasks. In summary,
the major contributions are listed as follows:

– We formulate the phenotype prediction task under the multi-task learning
formulation and propose a private-shared multi-task framework with auxiliary
task selection and adaptive shared-space correction.

– We design an auxiliary task section method via the co-occurrence of multiple
phenotypes to select the most compatible phenotype.
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– We design an adaptive shared-space correction method under the private-
shared multi-task learning framework to reduce the bias introduced by the
multi-times updating of the shared space.

– We conduct experiments on real clinical phenotype prediction tasks and the
experimental results show the advantages of our method.

2 Related Work

2.1 Deep Learning for Clinical Phenotyping

Recently, deep learning methods have been successfully applied to clinical phe-
notyping. Previous works focus on learning better representations by consider-
ing the different aspects of data in electronic health data. As the information
of patients is recorded sequentially in the EHR, Recurrent Neural Networks
(RNN) are widely used as a temporal encoder to model the sequential infor-
mation [23,27]. For example, [12] proposes an explainable deep learning system
for healthcare, using RNN and attention mechanism to help medical staff to
interpret, thus building a newcomer in deep learning systems. [18] propose a
temporal deep learning model that performs bidirectional representation learn-
ing on EHR sequences for phenotype prediction, and can handle heterogeneous
data, achieving excellent results in the prediction of chronic diseases. [1] intro-
duced a semi-supervised learning method into phenotype prediction, using binary
Markov process and Gaussian process for modeling, effectively using unlabeled
EHR data to achieve high-precision prediction. These methods only focus on a
single clinical phenotype task and cannot maintain the original performance in
the face of multiple phenotype task predictions.

2.2 Multi-task Learning

Multi-task learning [5] is an approach that combines multiple tasks for training,
aiming to exploit potential correlations and common features between tasks to
improve performance. [16] proposed an adversarial sharing-private model, which
uses an adversarial generation method to ensure that the information learned in
the shared space and private space does not converge. In the field of clinical phe-
notype prediction, there is also a related study that introduces auxiliary tasks
in the multi-task field into phenotype prediction. [7] proposed a method to ran-
domly select auxiliary tasks between clinical phenotype tasks, which improved
the prediction effect. [13] proposed an auxiliary task extraction method based
on feature similarity, which is significantly better than random sampling.

3 Methodology

As is illustrated in Fig. 1, our proposed method MTL AC is composed of two
major components. The Auxiliary Task Selection, described in Sect. 3.1, is aimed
at constructing the relatedness matrix according to the co-occurrence of multiple
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Fig. 1. MTL AC: Taking tasks A, B, C, and D as an example, all tasks are sent to
the auxiliary task selection module, each task finds the most suitable auxiliary task
and then forms a task group, each group of tasks will be sent to the private-shared
framework and an adaptive shared space correction mechanism is used to prevent
negative transfer between tasks in task groups.

predefined phenotypes and finding the most compatible auxiliary task for each
phenotype. And the Adaptive Shared-Space Correction, described in Sect. 3.2 is
proposed to the re-correct bias of shared space under the private-shared multi-
task framework.

3.1 Auxiliary Task Selection

Auxiliary task selection aims to find the best compatible phenotype for each
phenotype. We argue that the comorbidity of phenotype plays an essential role
when analyzing the patients’ status, indicating the co-occurrence of phenotype
may be of great help to dig out the correct phenotype with the help of the most
similar phenotype task. In this section, we provide an effective way of digging
out the most related phenotype task based on the intrinsic co-occurrence feature
of the patients’ phenotype.

Initially, we define the relationship matrix among the phenotype tasks as
follows:

Cij =
N (i, j)
N (i)

(1)

where N (i, j) is the number of patients which suffer both of the ith and jth

phenotype.
In order to find the best auxiliary tasks, we need to try our best to eliminate

the effects of other phenotypes. Therefore, a penalty factor is defined for each
phenotype as follows:

Pi =

∑
j Cij − 1
N − 1

(2)
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Following Eq. 2, the penalised relationship matrix COp is defined as the fol-
low:

COMatrixi = Ci − Pi (3)

The final symmetrical phenotype relationship matrix reflects the degree to
which tasks are suitable as auxiliary tasks. After the construction of the sym-
metrical phenotype relationship matrix, the auxiliary task can be selected from
the relationship matrix by various distance measurements.

3.2 Private-Shared Framework with Adaptive Shared Space
Correction

In this section, we first illustrate the Private-Shared Framework for phenotype
prediction, and then we describe the detailed procedure of the Adaptive Shared
Space Correction to reduce the bias in the shared space.

Private-Shared Framework. Given the selected auxiliary task pairs, we adopt
the Private-Shared Multi-task Framework and design two layers for task-specific
and task-independent feature learning.

Specifically, given the pair-wise phenotype dataset D = {{Di
k, yi

k}k=M
k=1 ,

{Dj
k, yj

k}k=N
k=1 }, where yi

k denotes the ground-truth label of each patient for a
phenotype and Dj

k ∈ R(T×D) is the feature matrix of kth patient for the jth

phenotype with D features and T time-slots collected.
To get the representation of a patient, an encoder (e,g, LSTM, etc.) is utilized

to transformer the patient’s features into the embedding space, which can be
obtained by:

xk
i = Encoder(Dk

i ; θ) (4)

And then, we use two different linear layers parameterized by θs and θp along
with the no-linear activation functions (act) to transformer the embedding of
the patient into the task-shared and task-specific space. Noted that, θs is shared
among the tasks while θp is task-specific parameters. Formally, the task-specific
vector P (xk

i ) and the task-shared vector S(xk
i ) can be computed by:

P (xk
i ) = f(xk

i ; θp, act) (5)

S(xk
i ) = f(xk

i ; θs, act) (6)

where f(a; b, act) = act(a · b) is the transformation function.
After that, the final patient’s embedding E(xk

i ) is computed by the concate-
nation of the two vectors, which is defined as:

E(xk
i ) = Concat(P (xk

i ), S(xk
i )) (7)

For optimization of a specific phenotype task, Binary Cross Entropy loss is
adopted as the loss function.
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Algorithm 1. Adaptive Shared-Space Correction
Require: Tasks: (Ti, Tj), Train data set: xtrain = {xi

train, xj
train}, Validation data set:

xval = {xi
val, x

j
val}, Training Parameters: θ = {θi | θi = (θs, θp

i ), i ∈ T}
Ensure: Network parameters: θ
1: while Not Converge do
2: Random sampling task Ti, the left task is Tj

3: Random sample a batch xi
batch from the training set xi

train of Ti

4: Random sample a batch xj
batch from the training set xj

train of Tj

5: Calculate the losspre of Tj using θj and xj
batch

6: update θi using xi
batch

7: Calculate the lossafter of Tj using θj and xj
batch

8: if losspre + threshold < lossafter then
9: update Shared space parameters θs using lossafter

10: end if
11: if loss on xval stop fall within limited steps then
12: break;
13: end if
14: end while

Adaptive Shared Space Correction. As is illustrated in Sect. 3.2, the learned
features can be divided into two groups, namely shared features and task-private
features. However, due to the implicit separation of private and shared features
when adopting the multi-task framework for phenotype prediction, the informa-
tion learned in the shared space may be biased when training a task, resulting
in the performance degradation of other tasks.

For any task i and j under the shared-private multi-task framework, the
update process of the shared part θs is computed by:

θs = θs − α∂Li(θ
s)

∂θs (8)

θs = θs − α
∂Lj(θ

s)
∂θs (9)

From Eq. 8, 9, the shared parameter θs is updated multi-times according
to the loss of the selected task while ignoring the effectiveness of other tasks,
which may inject the task-specific information into the shared space. In order to
separate the task-specific information during the training, we design a novel cor-
rection mechanism, namely Shared Space Correction Mechanism, to re-optimize
the shared space by utilizing the information of other tasks, which is described
in Algorithm 1. The aim of the Shared Space Mechanism is to ensure the cor-
rection optimization direction of the shared space. Therefore, we calculate the
loss of other tasks except for the training task as an indicator to measure that
the shared space is optimized in the correct direction (Algorithm 1, Line 5).
If the indicator doesn’t perform well on other tasks, the shared space will be
re-optimized (Algorithm 1, Line 8–10).
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4 Experiment

In this section, we introduce the empirical results of our MTL AC framework
on different phenotype classification tasks. And we use the area under the ROC
curve (AUC) and F-score as the evaluation metrics.

4.1 Experiment Setup

Dataset. We evaluate the effectiveness of our framework on the phenotype
classification tasks and report the average performance. The data set comes from
a subset of the MIMIC-III database, which is open for public clinical research and
covers 42276 ICU hospitalization records [11]. Following [9], a total of 17 clinical
variables are selected and 25 phenotype prediction tasks are constructed. We
randomly divided these data sets into training sets, validation sets, and testing
sets with the proportion of 70%, 15%, and 15% respectively. We select the data
within 24 h of admission for prediction.

Comparison Methods. We categorise the comparison methods as the follows:

Basic Encoder. As the data collected are sequential and multidimensional, we
adopt four types of commonly-used models to capture the temporal information
for clinical phenotyping.

– LSTM: The approach is proposed by [10], which is the standard Long-
ShortLSTM [10].

– Bi-Attention: The approach learns the forward and backward timing infor-
mation in the patient’s representation vectors and predicts the patient’s dis-
ease by utilizing the attention mechanism [25].

– T-LSTM: The approach is proposed by [2], which handles irregular time
intervals in Healthcare Field by adding time decay. We modify this model
into a supervised learning model.

– SAnD: The approach is first proposed by [22], which employs the masked,
self-attention mechanism.

Phenotype Prediction Framework. We adopt three different training
schemes for the phenotype prediction, which are listed as the following:

– Baseline: The approach formulates the phenotype prediction task as a multi-
label classification problem.

– MTNN: A multi-task framework designed for Electronic phenotyping task
[7].

– cFSGL: A multi-task framework designed based on accelerated gradient
method (AGM) [8].

Ablation Models. In order to figure out the effectiveness of Auxiliary Task
Selection and Adaptive Shared Space Correction modules, we design the ablation
models as the follows:
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– SP-MTL: The basic Shared-Private Model illustrated in Sect. 3.2.
– MTL AC-G: SP-MTL with the Auxiliary Task Selection illustrated in

Sect. 3.1.
– MTL AC-C: SP-MTL with the Adaptive Shared Space Correction illus-

trated in Algorithm 1.

4.2 Experimental Settings

For the parameters in the attention mechanism in the T-LSTM model, we ran-
domly initialize them from a uniform distribution in (−0.1, 0.1). For other
parameters, we adopt the default initialization strategy. And the models are
trained with backpropagation using Adam optimizer. The detailed settings of
hyper-parameters are shown in Table 1.

Table 1. Settings of hyper-parameters

Hyper-parameters 1 Settings

Initial learning rate 3e−4

Batch Size 32

Number of Early Stop 10

Dropout 0.5

Embedding Size of EHR data 128

4.3 Analysis of Results

Table 2. Comparison of framework MTL AC and framework cFSGL and MTNN on
basic encoders

Model Baseline cFSGL MTNN SP-MTL MTL AC

Auc F1 Auc F1 Auc F1 Auc F1 Auc F1

LSTM 0.7054 0.5001 0.7088 0.4988 0.7081 0.4989 0.6963 0.4868 0.7188 0.5166

Bi-Attention 0.7012 0.4888 0.7029 0.4885 0.7105 0.5056 0.6981 0.4984 0.7219 0.5270

T-LSTM 0.7114 0.4978 0.7134 0.4987 0.7156 0.5049 0.7059 0.4924 0.7264 0.5264

SAnD 0.6643 0.5131 0.6796 0.5217 0.6853 0.5349 0.6681 0.5307 0.6971 0.5464

Effectiveness of the Proposed MTL AC. Table 2 shows the prediction
results of MTL AC based on MTNN. Firstly, The predictive effect of treating
phenotype as an independent task is generally better than treating phenotype
as a multi-label task. There is even a situation where MTNNs prediction effect
exceeds that of cFSGL. Our framework MTL AC is based on MTNN, the accu-
racy has increased by 0.011 on average, and the F1 score has increased by 0.018



446 X. Yang et al.

on average. And achieved a comprehensive and stable improvement on all mod-
els. When we use the SP-MTL model, compared with the single-task MTNN, the
accuracy is reduced by 0.0128 on average, and the F1 score is reduced by 0.009
on average. It can be found that compared with the single-task, the multi-task
model SP-MTL has a very serious negative transfer phenomenon.

We used T-LSTM, which achieved the best results among the four models, to
show the improvement in all 25 clinical phenotype tasks, as shown in Fig. 2. The
framework MTL AC has achieved improvements in 22 phenotypes. Compared
with framework cFSGL, which has only achieved improvements in 13 pheno-
types, our framework has achieved very significant improvements, especially for
chronic diseases. This helps to improve the difficulty of chronic disease prediction
in clinical phenotype tasks.

Fig. 2. Comparison of framework cFSGL and our framework MTL AC

Table 3. Ablation of the proposed MTL AC

Model MTL AC-G MTL AC-C

Auc F1 Auc F1

LSTM 0.7137 0.5131 0.6985 0.4855

Bi-Attention 0.7131 0.5117 0.7016 0.4993

T-LSTM 0.7224 0.5204 0.7129 0.4986

SAnD 0.6910 0.5430 0.6768 0.5275

Ablation Study. Our method is divided into finding one-to-one auxiliary tasks
and a correction mechanism. We separately count the effects of each method.
As shown in Table 3, after selecting auxiliary tasks (MTL AC-G), both AUC
and F1 scores are higher than MTNN. Only using Algorithm 1, Compared with
SP-MTL, the accuracy is increased by 0.0535 on average, and the F1 score is
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increased by 0.00065 on average. The improvement effect is not as good as the
one-to-one auxiliary task, and the effect is still worse than the single-task MTNN.

Fig. 3. Improvement of MTL AC-G and MTL AC-C over SP-MTL

Figure 3 shows the improvement of the two algorithms compared to the basic
SP-MTL model. It can be seen that the improvement of the two algorithms for
the basic multi-task model is very obvious.

5 Conclusion

In this paper, We propose the MTL AC framework for clinical phenotypic task
prediction. It exploits the co-occurrence between tasks to find the best one-to-
one auxiliary phenotype task for each phenotype task, and further designs a
self-correcting mechanism to prevent the negative transfer of tasks in the task-
auxiliary task. Four models were tested on the MIMIC-III dataset and com-
pared with another multi-task framework. The experimental results prove that
our frameworks have produced better results. We further explore other ways
of combining phenotypic tasks with other clinical tasks to gain more potential
information.

Acknowledgement. This work is supported by the Fundamental Research Funds
of Shandong University and partially supported by the NSFC (No. 91846205) the
National Key R&D Program of China (No. 2021YFF0900800), the major Science and
Technology Innovation of Shandong Province grant (No. 2021CXGC010108).



448 X. Yang et al.

References

1. Ahuja, Y., Hong, C., Xia, Z., Cai, T.: Samgep: a novel method for prediction of
phenotype event times using the electronic health record. medRxiv (2021)

2. Baytas, I.M., Xiao, C., Zhang, X., Wang, F., Jain, A.K., Zhou, J.: Patient subtyping
via time-aware lstm networks. In: SIGKDD, pp. 65–74 (2017)

3. Birkhead, G.S., Klompas, M., Shah, N.R.: Uses of electronic health records for
public health surveillance to advance public health. Annu. Rev. Public Health 36,
345–359 (2015)

4. Cao, Y., et al.: Kdtnet: medical image report generation via knowledge-driven
transformer. In: DASFAA, p. 117–132 (2022)

5. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
6. Choi, E., Bahadori, M.T., Song, L., Stewart, W.F., Sun, J.: Gram: graph-based

attention model for healthcare representation learning. In: SIGKDD, pp. 787–795
(2017)

7. Ding, D.Y., Simpson, C., Pfohl, S., Kale, D.C., Jung, K., Shah, N.H.: The effective-
ness of multitask learning for phenotyping with electronic health records data. In:
BIOCOMPUTING 2019: Proceedings of the Pacific Symposium, pp. 18–29 (2018)

8. Emrani, S., McGuirk, A., Xiao, W.: Prognosis and diagnosis of parkinson’s disease
using multi-task learning. In: SIGKDD, pp. 1457–1466 (2017)

9. Harutyunyan, H., Khachatrian, H., Kale, D.C., Ver Steeg, G., Galstyan, A.: Mul-
titask learning and benchmarking with clinical time series data. Sci. Data 6(1), 96
(2019)

10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

11. Johnson, A.E., et al.: Mimic-iii, a freely accessible critical care database. Sci. data
3(1), 1–9 (2016)

12. Khedkar, S., Gandhi, P., Shinde, G., Subramanian, V.: Deep learning and explain-
able ai in healthcare using ehr. In: Deep Learning Techniques for Biomedical and
Health Informatics, pp. 129–148 (2020)

13. Kung, P.N., Yin, S.S., Chen, Y.C., Yang, T.H., Chen, Y.N.: Efficient multi-task
auxiliary learning: selecting auxiliary data by feature similarity. In: EMNLP, pp.
416–428 (2021)

14. Liu, N., Lu, P., Zhang, W., Wang, J.: Knowledge-aware deep dual networks for
text-based mortality prediction. In: ICDE, pp. 1406–1417 (2019)

15. Liu, N., Zhang, W., Li, X., Yuan, H., Wang, J.: Coupled graph convolutional neural
networks for text-oriented clinical diagnosis inference. In: DASFAA, pp. 369–385
(2020)

16. Liu, P., Qiu, X., Huang, X.: Adversarial multi-task learning for text classification.
arXiv preprint arXiv:1704.05742 (2017)

17. Ma, F., Chitta, R., Zhou, J., You, Q., Sun, T., Gao, J.: Dipole: diagnosis predic-
tion in healthcare via attention-based bidirectional recurrent neural networks. In:
SIGKDD, pp. 1903–1911 (2017)

18. Meng, Y., Speier, W.F., Ong, M.K., Arnold, C.: Bidirectional representation learn-
ing from transformers using multimodal electronic health record data to predict
depression. IEEE J. Biomed. Health Inform. (2021)

19. Oellrich, A., et al.: The digital revolution in phenotyping. Brief. Bioinform. 17(5),
819–830 (2016)

20. Robinson, P.N.: Deep phenotyping for precision medicine. Hum. Mutat. 33(5),
777–780 (2012)

http://arxiv.org/abs/1704.05742


Clinical Phenotyping Prediction via Auxiliary Task Selection 449

21. Sadek, R.M., et al.: Parkinson’s disease prediction using artificial neural network
(2019)

22. Song, H., Rajan, D., Thiagarajan, J.J., Spanias, A.: Attend and diagnose: clinical
time series analysis using attention models. In: AAAI (2018)

23. Wang, L., Zhang, W., He, X.: Continuous patient-centric sequence generation via
sequentially coupled adversarial learning. In: DASFAA, pp. 36–52 (2019)

24. Wei, W.Q., Teixeira, P.L., Mo, H., Cronin, R.M., Warner, J.L., Denny, J.C.: Com-
bining billing codes, clinical notes, and medications from electronic health records
provides superior phenotyping performance. J. Am. Med. Inform. Assoc. 23(e1),
e20–e27 (2016)

25. Yang, Y., Zheng, X., Ji, C.: Disease prediction model based on bilstm and attention
mechanism. In: BIBM, pp. 1141–1148 (2019)

26. Yu, F., Cui, L., Cao, Y., Liu, N., Huang, W., Xu, Y.: Similarity-aware collaborative
learning for patient outcome prediction. In: DASFAA, pp. 407–422 (2022)

27. Yu, X., Li, G., Chai, C., Tang, N.: Reinforcement learning with tree-lstm for join
order selection. In: ICDE (2020)

28. Yuan, H., Li, G.: Distributed in-memory trajectory similarity search and join on
road network. In: ICDE, pp. 1262–1273 (2019)

29. Yuan, H., Li, G., Bao, Z., Feng, L.: Effective travel time estimation: when historical
trajectories over road networks matter. In: SIGMOD, pp. 2135–2149 (2020)

30. Yuan, H., Li, G., Bao, Z., Feng, L.: An effective joint prediction model for travel
demands and traffic flows. In: ICDE (2021)


	Clinical Phenotyping Prediction via Auxiliary Task Selection and Adaptive Shared-Space Correction
	1 Introduction
	2 Related Work
	2.1 Deep Learning for Clinical Phenotyping
	2.2 Multi-task Learning

	3 Methodology
	3.1 Auxiliary Task Selection
	3.2 Private-Shared Framework with Adaptive Shared Space Correction

	4 Experiment
	4.1 Experiment Setup
	4.2 Experimental Settings
	4.3 Analysis of Results

	5 Conclusion
	References




