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Abstract. The Click-though Rate (CTR) prediction task is a basic task
in recommendation system. Most of the previous researches of CTR mod-
els built based on Wide & deep structure and gradually evolved into
parallel structures with different modules. However, the simple accumu-
lation of parallel structures can lead to higher structural complexity and
longer training time. Based on the Sigmoid activation function of output
layer, the linear addition activation value of parallel structures in the
training process is easy to make the samples fall into the weak gradient
interval, resulting in the phenomenon of weak gradient, and reducing the
effectiveness of training. To this end, this paper proposes a Parallel Het-
erogeneous Network (PHN) model, which constructs a network with par-
allel structure through three different interaction analysis methods, and
uses Soft Selection Gating (SSG) to feature heterogeneous data with dif-
ferent structure. Finally, residual link with trainable parameters are used
in the network to mitigate the influence of weak gradient phenomenon.
Furthermore, we demonstrate the effectiveness of PHN in a large number
of comparative experiments, and visualize the performance of the model
in training process and structure.

Keywords: Recommendation system · Click-though rate · Feature
interaction

1 Introduction

The Click-through rate (CTR) prediction is one of the important basic tasks in
recommendation system. By predict the click rate of user, the web or application
can sort the candidate item list and push them to target user, so as to provide
personalized recommendation service for users. Early CTR prediction models
output CTR through Logistic Regression, and use automatic feature engineer-
ing methods such as Factorization Machine (FM) [10] and Gradient Boosting
Decision Tree (GBDT) [3] for business implementation. With the development
of deep learning, CTR prediction model based on neural network like PNN [9]
has gradually become the mainstream application model in the real application.

Wide&deep [2] CTR predict model structure have used parallel structures of
different depths to consider both memorization and generalization. In subsequent
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studies, FNN [18], DeepCrossing [11], DeepFM [4], DCN [16], xDeepFM [7],
DCN-V2 [17], EDCN [1], NFM [5] and other models have similar parallel struc-
ture like Wide&deep, and were utilized to analyze public embedding through
different modules. Moreover, the generalization of this structure depended on
the effectiveness of parallel structures.

There is no comprehensive analysis of feature interaction in previous parallel
structure models. Therefore, the generalization of the model is limited. At the
end of CTR model, the click rate prediction output have been achieved by lin-
ear layer with activation function. During training phase, the activation values
between parallel layers tend to fall into the weak gradient interval. This phe-
nomenon will weaken the training effect of each parallel module, and can not
improve the generalization while improving the complexity of the model.

In this paper, we propose a new deep CTR model, named Parallel Heteroge-
neous Network (PHN). For PHN model, three parallel feature interaction struc-
tures were included to analyze CTR features from different perspectives. In order
to enhance the independent analysis ability of each parallel module, Soft Select
Gating module was constructed after public embedding to enhance the original
embedding expression. We also added residual connections with trainable param-
eters to the model to reduce the weak gradient phenomenon by accumulating
gradients during the back propagation process.

This paper mainly contributions are as follow:

– In order to strengthen the expression ability of CTR prediction model, this
paper constructed three different linear feature interaction methods from non-
linear interaction, bite-wise interaction and vector-wise interaction based on
parallel structure.

– Soft Selection Gating is constructed before the parallel structure, and the fea-
tures of original embedding are enhanced by self-attention and soft gate struc-
ture while retaining the high order crossover characteristics, which improves
the ability of the model to express data.

– To solve the weak gradient phenomenon in the parallel model, the residual
link with trainable parameters are used in the parallel structure to reinforce
the model training process.

– The effectiveness of Soft Selection Gating and the weak gradient phenomenon
are visualized, and the effectiveness of PHN is verified by comparison exper-
iments.

2 Proposed Method

The Parallel Heterogeneous Network (PHN) consists of two main structures.
One of them is Soft Selection Gating (SSG) module based on self-attention to
enhanced embedding features for different structures, and another one is Hetero-
geneous Interaction Layer (HIL), using different interaction method to analyze
the enhanced features, and finally using Logistic Regression to output the con-
fidence of sample. Figure 1(a) illustrates the main structure and the detail of
model.
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Fig. 1. The overview structure of our proposed PHN model, which consists of Soft
Selection Gating (SSG) module and Heterogeneous Interaction Layer (HIL)

2.1 Heterogeneous Interaction Layer

In PHN, the parallel layers use three kinds of interaction layers to improve
model interaction capability: 1) cross layer is the basic part of DCN [16] and
DCNV2 [17], which focuses on the element-aware feature interaction; 2) field
interaction layer is the basic part of FINT [19], which focuses on the vector-
aware field interaction; 3) feed forward layer is used to fitting the non-polynomial
information.

Cross Interaction Layer. Feature interaction is a main key point in study
of mainly CTR prediction model. As a previous study, the DCN [16] and the
DCNV2 [17] proposed two kinds of explicit interaction methods, which achieved
the data mode of high-order interaction by realizing the intersection of multi-
layer hidden features and original features.

ydcnv2 = x0 � (W × xi + b) + xi (1)

ydcn = x0 � xT
i ∗ w + xi + b (2)

where, x0 is the input feature of the first cross layer; xi is the output feature of
the i-th cross layer, W and w represent trainable parameter vectors and matrices;
� is Hadamard product and × is matrix multiplication. In Eqs. 1 & 2 the DCN
and DCNV2 used different parameter forms to interact features, but in general,
it achieves element-aware feature interaction. The PHN combines the formulas of
DCN and DCNV2 to construct the bit-aware interaction module. As mentioned
in Fig. 2, we use the parameter part of the two crossover model and bias to
construct cross layer in PHN.

Field Interaction Layer. Besides element-aware interaction, vector-aware
interaction is also a key part of the model construction. Field Interaction is
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Fig. 2. The calculation diagram of cross layers in PHN

mentioned in FiBiNet [6] and FINT [19], which using the cross method to imple-
ment the vector-aware interaction. PHN use the Field Interaction layer in FRNet
as a parallel part to enhance the generalization effect of the whole network on
the feature crossing pattern.

Fig. 3. The calculation diagram of field interaction layers in PHN

As shown in Fig. 3, field interaction layer uses the residual link with trainable
parameter vector, which product on different fields feature to screen the output
features of the upper layer. In the subsequent experiments, we will discuss and
experiment residual link forms in all parallel layers.

Feed Forward Layer. The third part of parallel network is composed of Feed
Forward Network. By alternating linear and nonlinear analysis of the original
features, FFN complements the analysis of the previous two crossover modes to
improve the overall network generalization function.

xi+1 = σ(ωxi + b) (3)

where, σ is the activation function, which is LeakyReLU in PHN.

2.2 Soft Selection Gating

The ideal of multiple structure parallelism raise up a new question: whether
different structures require different input dense feature. The traditional Multi-
head self-attention(MSA) mechanism [14] used weight based query vector and
key vector to aggregate information in a sequence, which was an ideal method
to process feature information.

QE , KE , VE = WQE, WKE, WV E (4)
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MSA(QE ,KE , VE) = Softmax(
QEKE√

dk
)VE (5)

From the Eqs. 4 & 5, MSA has considered different field weights through the
second-order intersection of query vector QE and key vector KE . However, based
on the feature interaction in the CTR prediction model, the direct using by the
traditional MSA may over-focus on the feature activation value of the second-
order crossover, thus losing the performance of the feature at the higher-order
crossover. Inspired by the FRNet [15], an information selecting method named
Soft Selection Gating (SSG) is used after the sharing embedding E ∈ Rn in
PHN. This soft-gating information selection is designed for choosing activation
between MSA result and sharing raw embedding.

Esg = Gsg � Esa + [I − Gsg] � Ese (6)

where Gsg ∈ Rn is the trainable gating vector, Esa ∈ Rn is the sharing self-
attention embedding, Ese ∈ Rn is the sharing embedding, and I ∈ Rn is a unit
vector. As the Fig. 1(b) shows, the SSG considers both sharing embedding and
self-attention embedding. By using weighting parameters, the model can select
the raw feature or the feature enhanced by MSA for different parallel structures.
Subsequent experiments will discuss whether to share the weight of self-attention
and the gating mechanism, and confirm the effectiveness of SSG.

2.3 Weak Gradient Problem

Basic on the CTR prediction task definition, the key point of improving AUC
value is increasing the confidence of positive label samples and decreasing the
confidence of negative label samples, which makes model more robust. In the
last stage of CTR prediction model, the traditional model usually constructs
confidence coefficient of click by using Sigmoid activation function.

The Fig. 4 shows that, we can think of the entire Sigmoid function as two
interval, the effective gradient interval (blue) with a normal gradient, and the
Weak gradient interval (red) with a gradient approaching zero. When the output
value of the parallel model is accumulated at the last linear layer, it is easy to
make the samples originally in the effective gradient interval to fall into the Weak
gradient interval, thus weakening the learning of each part for valid samples. In
this paper, this phenomenon is referred to weak gradient in parallel structures.

To mitigate this phenomenon and achieve effective training, the PHN using
residual link in each substructure, enhancing the gradient accumulation of each
parallel structure in the process of back propagation. To further accommodate
this phenomenon, we also tried to add gating parameters to residual links and
used batch normalization of different modes in the final linear layer. We will
discuss this further in Sect. 3.

3 Experiments

In this section, we evaluate PHN on two benchmark data sets. We aim to answer
the following research questions:
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Fig. 4. Gradients of different interval in Sigmoid (Color figure online)

– RQ1: Will parallel structure-based PHN perform better than previous CTR
prediction models over different classical data sets?

– RQ2: Under what circumstances can the Soft Selection Gating reasonably
enhance the function of feature representation.

– RQ3: Is the parallel structure actually caused the weak gradient phe-
nomenon, and the problem is effectively alleviated by residual connection
or batch normalization?

3.1 Datasets Description

To evaluate the effectiveness of the model in this paper, two benchmark off-line
datasets are selected for experiment: Criteo1 and Avazu2. The two data sets were
divided into training, validation and testing set according to the ratio of 8:1:1.
Detailed information on the two benchmark datasets is shown in Table 1.

Table 1. Statistics of the benchmark datasets

Dataset Sample size Fields Features Positive ratio

Criteo 45,840,618 39 1,086,810 25.6%

Avazu 40,428,966 23 1,544,257 16.9%

For the CTR prediction task, two classical evaluation metrics such as: Logloss
and AUC, were used to verify the effective generalization and robustness of the
suggested model.
1 https://www.kaggle.com/c/criteo-display-ad-challenge.
2 https://www.kaggle.com/c/avazu-ctr-prediction.

https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/avazu-ctr-prediction
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3.2 Compared Models

To verify the effectiveness of the proposed PHN model, we compare it with
linear model (LR, FM [10], FwFM [8], FmFM [13]), deep model (DNN, W&D
[2], DeepFM [4], xDeepFM [7], AutoInt [12]), and interaction model (DCN [16],
DCNV2 [17], FiBiNet [6], FINT [19]) on CTR task. All models and experiments
are implemented on Huawei FuxiCTR deep learning framework [20].

3.3 Performance Comparison (RQ1)

Effectiveness of PHN. To verify the validity of the model, we followed the
original structure of each comparison model, controlled the interaction layer of
all models in three layers, and recorded the testing results of each model on two
benchmark datasets. The specific experimental results were reported in Table 2.

Table 2. Experiment result of different CTR prediction models on Criteo and Avazu

Model Criteo Avazu

Logloss AUC AUC Impv. Logloss AUC AUC Impv.

LR 0.457334 0.792831 – 0.382039 0.777148 –

FM 0.450260 0.801086 1.041% 0.378750 0.782448 0.681%

FwFM 0.442566 0.809314 2.079% 0.373862 0.790315 1.694%

FmFM 0.444253 0.807395 1.833% 0.376521 0.785998 1.139%

DNN 0.442271 0.809547 2.108% 0.372686 0.792553 1.982%

W&D 0.442627 0.809133 2.056% 0.372663 0.792079 1.921%

DCN 0.442382 0.809390 2.089% 0.372884 0.791767 1.881%

DCNV2 0.440825 0.811139 2.309% 0.372511 0.792352 1.956%

DeepFM 0.444391 0.807686 1.911% 0.372202 0.792856 2.021%

xDeepFM 0.444541 0.807728 1.878% 0.373387 0.791503 1.847%

AutoInt 0.442502 0.809237 2.069% 0.372830 0.791918 1.900%

FiBiNET 0.442335 0.809809 2.141% 0.371139 0.794850 2.278%

FINT 0.442471 0.808409 1.965% 0.372808 0.792043 1.917%

PHN (ours) 0.439927 0.812039 2.383% 0.370481 0.795964 2.421%

The experiment shows that, PHN achieved a good performance in both val-
idation and testing experiments with two benchmark large datasets.

Grid Search. Figure 5 shows the grid search experiment result of PHN. With
the increase of the number of cross layers, the robustness of the model also
increases, which may benefit from the improvement of the expression ability of
cross layers for higher-order crosses. However, as the number of layers increases,
the model complexity also increase, which slow down the training process of the
model. The values of AUC and Logloss shown in Fig. 5 tend to be stable when
the number of cross layers is five.
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3.4 Selection Information (RQ2)

Data Skew Visualization. Based on the trained PHN structure, we visual-
ized the tensor amplification ratio after SSG output. As shown in Fig. 6, the
characteristics of the three cross-layers have some similarity, such as the high
proportion of field 13 and the low proportion of field 39. At the same time, the
feature scaling of the three parts is somewhat different, as in field 8 and field 24.

Selection Pattern. The SSG module is designed for enhance the representa-
tion of embedding feature, which select the feature from raw embedding and
self-attention embedding. Depending on the design, the selection pattern of self-
attention layer and gating layer in this module can be classified as public or
private. To further validate the effectiveness of SSG, we also conducted a com-
parison experiment. Different subscripts represent different selection patterns:
embed (public embedding feature), sa (public self-attention), sg (public soft
gating). the subscripts with a prefix “P” means that the PHN contains private
layers for each parallel layer. Table 3 shows the results of comparison experiment.

This experiments show that, single self-attention layer (public of private)
cannot replace the embedding feature represent, but it can help to enhance the
feature by using the soft selection gating, and the AUC value of the algorithm
increases by 0.123% on average. From a theoretical point of view, a feature
without a high activation value in the first-order feature cannot be completely
transferred, because it may show a high activation value in the high-order inter-
action with other features.

3.5 Weak Gradient Phenomenon (RQ3)

Efficiency Analysis. To reduce the impact of weak gradient phenomenon, there
has been an attempt in PHN to enhance the data gradient flow in training
through residual links (RL) or batch normalization (BN) to reduce the train-
ing pressure of each parallel part. In experiments, we tried to introduce gating
parameters for RL and discussed the independence of BN in different parallel
modules in the last linear layer.
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(a) Grid search experiment on Criteo (b) Grid search experiment on Avazu

Fig. 5. The grid search performance of PHN with different interaction layers on two
benchmark datasets.

(a) FFN layer (b) Cross layer (c) Field interaction layer

Fig. 6. The heatmap of different parallel layers input feature scaling ratio

Different model subscripts represent different structures in PHN: base (basic
model), rl (normal RL), Prl (parameter RL), bn (BN), and pbn (private BN).
Table 4 shows the result of comparison experiments.

The experiments show that, In the back propagation process, the weak gra-
dient problem can be improved by using gradient accumulation in the RL. In the

Table 3. Experiment result of different schemes of information selection module on
Criteo and Avazu

Model Criteo Avazu

Logloss AUC Logloss AUC

PHNembed 0.440543 0.811647 0.371538 0.794388

PHNsa 0.441301 0.810525 0.373018 0.792504

PHNPsa 0.441445 0.810554 0.372369 0.792640

PHNsa+sg 0.440210 0.811782 0.371608 0.794622

PHNPsa+sg 0.440031 0.811902 0.371351 0.794570

PHNsa+Psg 0.440256 0.811771 0.371398 0.794385

PHNPsa+Psg 0.440692 0.811595 0.371405 0.794458
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Table 4. Experiment result of different solutions to the weak gradient problem on
Criteo and Avazu

Model Criteo Avazu

Logloss AUC Logloss AUC

PHNbase 0.440034 0.811914 0.372209 0.793206

PHNrl 0.439763 0.812111 0.372294 0.793044

PHNprl 0.439540 0.812428 0.372084 0.793392

PHNbase+bn 0.440111 0.811879 0.371117 0.795087

PHNrl+bn 0.441548 0.810359 0.372410 0.793084

PHNprl+bn 0.440307 0.811711 0.371189 0.794911

PHNbase+pbn 0.443966 0.811865 0.373950 0.794839

PHNrl+pbn 0.445333 0.809268 0.379022 0.791024

PHNprl+pbn 0.444590 0.811813 0.377631 0.794621

case of parameters, the overall network can better fit the data flow in the feed
forward and reverse process, and strengthen the fitting effect of different parallel
structures. However, the subsequent addition of BN has not been very effective.
This may be due to the uneven distribution of data flows in different parallel
structures, but forced unification with normalization weakens the representation
of data. This also explains to some extent that BN layer is not separable from
linear layer. The last two groups of experiments also showed that the specificity
of the data stream fitted was enhanced when the RL strengthened different par-
allel structures, while BN had certain side effects. Therefore, in PHN, the RL
and BN had better be realized in an independent parallel structure.

Visualization of Activation Value. A more robust model should output more
closely to the confidence of the label worthiness. Figure 7 shows the confidence
curve of PHN in 200 samples after training one epoch in different configurations,
to show the changes of different structures during training phase.

(a) Independent structure (b) Add results (c) with residual link

Fig. 7. Experiments on the last activation value of PHN. (Color figure online)

The red line in Fig. 7 represents the PHN model without RL and BN as
the benchmark. Figure 7(a) shows that, the single interaction module showed
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higher negative confidence and lower positive confidence than PHN. This means
that PHN is superior to partial cross structure in sample resolution. Figure 7(b)
shows that, the sigmoid calculation after summing up the activation values of the
parallel models can show more robustness than PHN, which means the fitting
effect of a single PHN model on the data set is weakened by weak gradient
phenomenon. Figure 7(c) shows that, RL can enhance the high confidence of
negative samples, but also reduce the confidence of positive samples, and the
RL with parameters can effectively improve the performance of the model on
the PHN infrastructure.

4 Conclusion

In this paper, we described the parallel structure of the current mainstream CTR
model and the weak gradient phenomenon in the parallel structure, and intro-
duce a parallel structure model named Parallel Heterogeneous Network (PHN)
in response to these phenomena. PHN model used Soft Selecting Gating (SSG)
structure to isomerize features, and used Feed Forward network, cross inter-
action layers and field interaction layers to build the subsequent parallel part.
The performance experiment results show that PHN shows the State of the Art
on two large benchmark data sets, and explores the interaction layer num of
the model. The comparative experimental results show that SSG can effectively
improve the representation based on public embedding, and the residual link
with trainable parameters can improve the representation ability of the model
while maintaining the robustness of the results. Based on the overall experimen-
tal results, this work brings us to one step closer to being able to determine the
optimal structure of PHN.
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