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Abstract. As an emerging technology, device-free localization (DFL) has a wide
range of application scenarios in the field of the internet of things. However,
most of the existing DFL methods take the mode of learning features from raw
data, and then perform to achieve localization using classification, which has
inferior localization performance. To improve the localization accuracy, this study
proposes an accurate and effective localization technique based on deep dictionary
learning with sparse representation (DDL-DFL). Themethod extracts the in-depth
features of the data through multi-layer dictionary learning and stacks the features
of each layer for classification. Furthermore, we propose a data augmentation
method, which can be applied to scenarios with fewer sensor nodes to increase the
data dimension and strengthen the essential features to improve the accuracy of
localization.We evaluate the performance of theDDL-DFL algorithmon collected
laboratory datasets, and the results are superior to existing localization algorithms.
In addition, the DDL-DFL algorithm with data augmentation is conducted on the
laboratory datasets with a low dimension of data, and the localization performance
has been significantly improved.

Keywords: Device-free localization · Deep dictionary learning · Sparse
representation · Classification · Data augmentation

1 Introduction

With the development of the new generation of information technologies, such as the
internet of things and cloud computing, the demand for wireless localization is increas-
ing daily. Smart cities, namely urban informatization and intelligence, have become an
inevitable trend.Wireless localization has produced awide range of applications in smart
cities, promoting the development of smart cities.

There are already many sophisticated localization methods in the real world, such
as GPS [1], ultrasonic localization [2], and radio frequency identification (RFID) local-
ization [3]. The above current localization technology has a good performance in many
application fields. However, the application requires the target be equipped with a wire-
less device, such as a smartphone, which may not be suitable for some scenarios. For
example, it cannot usually be assumed that the target is carrying any traceable device in
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an emergency rescue. Therefore, device-free localization (DFL), as an emerging tech-
nology [4–7], has a broader application in indoor localization by using wireless devices
to detect, track, and locate targets without carrying any additional devices. As shown
in Fig. 1(a), in a DFL system, several sensors are arranged around the monitoring area.
They are responsible for transmitting and receiving signals in turn, sensing the target’s
location by the difference of the received signals caused by the target.

Many DFL methods have been proposed, such as fingerprinting, geometric, and
Radio Tomographic Imaging (RTI) methods. These techniques are widely based on
compressive sensing (CS), and deep learning technology. Youssef et al. [8] first pro-
posed the concept of device-free passive localization. Joey Wilson and Neal Patwari of
the University of Utah [9] proposed using radio tomographic imaging for target localiza-
tion. D. Zhang et al. [10] enhanced the robustness of the localizationmodel by expanding
the localization area and introducing more sensor nodes. K. Wu et al. [11] used radio
maps constructed from channel state information (CSI) to improve the localization accu-
racy of single or multiple targets. X. Wang et al. [12] proposed a deep learning indoor
localization method based on the CSI matrix. H. Huang et al. [6] proposed a subspace
sparse coding-based algorithm for device-free localization. Zhao et al. [13] proposed
to treat the location information as a picture and use a convolutional autoencoder algo-
rithm to achieve localization. These pioneering works provided the basis for further
DFL research. In addition, many device-free localization methods have been proposed
to obtain higher localization accuracy and precision [14–17].

However, most of the above DFL methods are based on learning the original data
features, which cannot achieve high localization accuracy. Some methods use CSI data
for localization, which is not universally applicable and is only applicable to some wire-
less devices. Among them, there is also the use of additional sensor nodes to enrich the
localization information improving the localization accuracy and increasing the con-
struction cost. To overcome the above drawbacks, this paper proposes a wireless precise
device-free localization method based on deep dictionary learning.

The contributions of this paper include the following aspects. First, we propose a
wireless device-free localization precise localization method based on deep dictionary
learning (DDL-DFL). We obtain a multi-level dictionary through deep dictionary learn-
ing, extracting the multi-layer depth features of the data. It is also used as an input to the
sparse coding classification model for precise localization. Second, we propose a data
augmentation approach that enhances essential features by overlaying data. It makes up
for the drawback that the amount of data is not abundant when there are few sensor
nodes. Third, to evaluate our algorithm, we use software-defined radio equipment to
build a wireless location system to collect laboratory datasets, and conduct experiments
on them for localization.

2 Model and Algorithm

2.1 Description of the Localization System

We designate an area of 3 × 3 square meters inside the laboratory as monitoring area
and arrange RF sensors around it, which are responsible for transmitting and receiving
signals. Each transmission and reception are simulated as a communication link and
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all received signal strengths form a matrix. To clearly measure each position within the
area, themonitored area is discretized into grids, each grid representing a location.When
a target appears at a particular place, due to the blocking and reflection of the target,
the communication between the transmitting and receiving sensors will be interfered,
and the received signal strength will be attenuated to a certain degree. Therefore, we
can locate by studying the attenuation of the signal. For the absence of any target in
the monitored area and the presence of targets in different locations, the transceiver
correspondence between the sensors is different, and we obtain a different signal matrix.
Therefore, when locating an object, we can treat it as a classification problem [6]. The
real localization scene built by USRP is shown in Fig. 1 (b).

Fig. 1. DFL system built in the laboratory. (a) DFL system model in the laboratory; (b) The real
localization scene made with USRP.

For the form collected data, we use the received signal strength (RSS), whose pro-
cessing is more straightforward and universal compared to the literature [11, 12, 18].
In the scenario of Fig. 1, with a total of 36 locations, we set a sensor traversing 10
locations T1–T10 around the monitoring area for transmitting signals. Six sensors R1–
R6 are uniformly arranged on both sides of the monitoring area for receiving signals.
The received signals are Fourier transformed to select the amplitude information of the
first and second harmonics. In this way, we get 12 signal strength information at each
transmitting position, for a total of 10 positions, constituting a RSS matrix of size 12 ×
10. To adapt to deep dictionary learning and sparse coding problems, we vectorize the
RSS matrix and convert it into a column of size 120 × 1 for operation. Each location is
measured 30 times, and 25 times constitute a matrix of size 120 × 900 as the training
set. Five times the data form a matrix of size 120 × 180 as the test set.

2.2 Proposed Method

Unlike conventional localization methods based on sparse representation which take
the mode of learning features from the original data and then use the classification
method to achieve localization, as shown in Fig. 2 (a). The DDL-DFL method performs
data augmentation on the training set and test set firstly. Then we obtain a multi-level
dictionary through deep dictionary learning, extracting more representative multi-level
features in the data. The superimposed multi-layer features are used as training set
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features and test set features, which are used as localization dictionaries for sparse
representation and a localization matrix separately. Finding the data category in the
dictionary is most similar to the localization signal with the sparse coding, which is
converted to a sparse representation classification problem (SRC) [19]. The localization
model is shown in Fig. 2 (b).

Fig. 2. Graph for localization procedures. (a) Conventional approach. (b) DDL-DFL approach.

Data Augmentation Methods for Localization. For the device-free localization prob-
lem based on radio frequency sensors, it is usually necessary to deploy more sensor
nodes to enrich the location information to improve the localization accuracy, but it will
cost more. This paper proposes a data augmentation method that increases the localiza-
tion information and strengthens the important features by superimposing the received
signal strength in the column direction. We perform the above operations on the training
set and the test set separately, then obtain:

Y train = [Y1; ...;Y1],Y test = [Y2; ...;Y2]. (1)

After superposition, the RSS information at different locations is equivalent to rein-
forcement for strength values with significant disparities (important features), which can
promote finding an approximate representation more accurately for the last step.

The feasibility and advantages of the method are demonstrated in the experimental
part of the next chapter. The method can still achieve a good localization effect even
with slightly fewer sensor nodes.

Deep Dictionary Learning.This paper adopts the deep dictionary model [20], similar
to the neural network’s layer-by-layer learning method combined with traditional dictio-
nary learning to perform multi-layer dictionary learning. The deep dictionary learning
model is as follows:

Y train = D1...Dl ...DLXL. (2)

Here, Y train ∈ Rq×rtrain represents the observation matrix, which is composed of the
training set. rtrain represents the number of signals in Y train, q donates the dimension
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of signals after augmentation, and the dictionary learning has L layers in total. The
dictionary of each layer is represented by Dl ∈ Rml−1×ml , ml donates the number of the
dictionary atom, l donates the l-th layer, and the representation coefficient is represented
by Xl ∈ Rml×rtrain , and Y train is approximately represented by multi-layer dictionaries
and representation coefficients.

The input of the first layer is Y train, the output is the learned dictionary D1 and the
representation coefficientX1.X1 is the input of the next layer, followed by the dictionary
learning of the second layer, and so on, until the L-th layer. Take two-layer dictionary
learning as an example, as shown in Fig. 3.

Fig. 3. Deep dictionary learning model diagram.

To solve (2), we transform the above model into the following optimization problem:

min
D1,...,DL,X1,...,XL

‖Y train − D1...DLXL‖2F + γ

L∑

l=1

‖Xl‖1, (3)

where ‖ · ‖2F denotes the Frobenius-norm. The left term is the approximation error term,
which is used to represent the distance between the observed and estimated signals. The
right term is the regularization term, and the �1-norm is used to promote the sparsity of
the coefficients in every layer of representation, and γ is a small constant that balances
the error and sparsity term.

Since we integrate the layer-by-layer learning method of deep learning, we can
decompose the multivariate problem into L bivariate optimization and solve the problem
(4) by alternately updating. For the l − th layer:

Dl,Xl ← min
Dl ,Xl

‖Xl−1 − DlXl‖2F + γ ‖Xl‖1. (4)

We solve Xl directly by gradient descent:

Xl = (Dl
TDl + γ I)−1Dl

TXl−1, (5)

then update Dl :

Dl = Xl−1Xl
T(XlXl

T)−1. (6)
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Finally, we get the dictionary D1, ...,Dl, ...,DL and representation coefficients
X1, ...,Xl, ...,XL of each layer. To obtain richer features, we superimpose the repre-
sentation coefficients obtained from each layer as the training set features W:

W = [X1; ...;XL]. (7)

Here W ∈ Rm×rtrain ,m = m1 + ... + mL.
The test data directly is decomposed into the representation coefficients through the

above trained multi-layer dictionary:

X
′
1, ...,X

′
L ← min

X
′
1,...,X

′
L

‖Y test − D1...DLX
′
L‖

2
F + γ

L∑

l=1

‖X ′
l‖1, (8)

where Y test ∈ Rq×rtest ,X
′
l ∈ Rml×rtest .

Similarly, stacking multiple layers of features constitutes the test set feature S:

S =
[
X

′
1; ...;X ′

L

]
. (9)

ISTA-Based Localization. With the above two steps, we obtain the training set
features matrixW and the test set features matrix S, and each column represents a signal.
To realize the localization problem, we take W as the localization dictionary and S as
the localization matrix. For each localization signal s in S, since the number of the target
position is much smaller than grids, we can represent it approximately linearly sparsely
by one or more columns at the same position in the training set features matrix W . The
labels of the non-zero positions in the sparse representation coefficients correspond to
the positions of the targets, i.e., the target is localized by the sparse representation. The
classification and localization of the target are achieved using sparse representation, and
the schematic diagram is shown in Fig. 4.

Fig. 4. Schematic diagram of classification and localization based on sparse representation.

Considering that eachmeasured data is in a different scene, then for each localization
signal, the classification model is as follows:

(10)
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where n denotes random noise.
For the device-free localization problem, the more data in the training set, the better,

and the more similar signals to the test set can be found, which is more conducive to
the realization of classification. Therefore, unlike the previous deep dictionary learning
problem, the number of dictionary columns at this stage is greater than the number
of rows. The dictionary is overcomplete, and its solution is not unique, so we need to
consider the sparsity of . According to the literature [21, 22], we take the �1-norm as
the sparsity constraint, so we can convert problem (10) to solve:

(11)

Here the first term is the approximate error term, which is used to represent the dis-
tance between the localization signal and the estimated signal, the second term is the
regularization term, the �1-norm is used to promote the sparsity of the representation
coefficient, and λ is a constant that trades off the error and sparsity terms.

Considering accuracy, speed, and dimensionality, we use the iterative shrinkage
thresholding algorithm [23] to optimize problem (11), which is solved as follows:

(12)

where C is a constant greater than the largest eigenvalue of WTW , θ = λ/C is the
shrinkage threshold, I is a unitmatrix of the same size asWTW , and hθ (.) is the shrinkage
function, which is defined:

(13)

Here max(., .) represents that the larger of the two items is returned, sign(.) denotes a
sign function.

We can also take the OMP algorithm [24] for sparse coding, which performs local-
ization by traversing all columns of localization dictionary and finding the class corre-
sponding to the column with the smallest representation error. In the next chapter, we
add DDL and data augmentation to the OMP algorithm, and the localization effect is
also well improved.

Through the above method, we can solve the problem (11). Assuming that the num-
ber of all categories is P, we let that is, the
coefficients of the p − th class signal are summed, then we can get:

(14)

For the single-objective localization problem, the above solution contains only one
non-zero term, and the corresponding index is the objective’s location. Thedual-objective
and multi-objective localization problems can be considered based on a combination
of the number of non-zero terms and the ordering of the maximum term, and their
corresponding indexes are the target locations [6].

Algorithm. The localization algorithm based on deep dictionary learning (DDL-
DFL) proposed in this paper is described in Algorithm 1.
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3 Experimentation and Evaluation

In this section,we evaluate the localization performance of our algorithmsusing collected
laboratory datasets.All algorithmswere implemented inMATLABR2016a and executed
on a Windows 64-bit computer with 8 GB RAM and an Intel(R) Core (TM) i5 CPU.

3.1 Experimental Datasets Description

The scenario in our laboratory is six wireless sensors arranged on both sides of a 3
× 3 m2 monitoring area for receiving signals and one wireless sensor for transmitting
signals, moving through 10 edge locations [16]. We discrete the monitoring area into 36
grids; each grid is with a size of 50 × 50 cm2. Sensor nodes are placed at 1.3 m from
the ground, targeting 1.75 m of people, and the scene is arranged as shown in Fig. 1.

Each sensor node of the scenario operates in the 2.4 GHz band. Experiments were
conducted to collect 30 times data at each location; 25 times data from each location
were used as a training set, and five times data were used as a test for localization of the
target.

3.2 Evaluation Metrics

To demonstrate the performance of our proposed algorithm, we evaluate it mainly by
localization accuracy and average localization error.

The localization accuracy is calculated by: Accuracy = Ccorret/Ctotal, where
Ccorret,Ctotal donates the number of correct localizations in the test data and the total
number of test data, respectively.

The average localization error is calculated by the following equation:

ALE =
∑C

c=1

√
(xcpredict − xctrue)

2 + (ycpredict − yctrue)
2

C
, (15)

where
(
xcpredict, y

c
predict

)
, (xctrue, y

c
true) denotes the coordinates of the predicted and true

positions of the c-th test data. The C represents the total number of test data.
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3.3 Experimental Results

The device-free localization system will inevitably suffer from various influences in
real-world scenarios. To better evaluate the performance of our proposed algorithm, we
add different levels of Gaussian noise to the localization signal, that is s∗ = s+n, where
n follows a Gaussian distribution. We represent the added noise level by the signal-to-
noise ratio (SNR). In the specific implementation, we add SNR levels of 0 dB to 35 dB
to the localization data at 5 dB signal-to-noise intervals.

To demonstrate the advantages of our proposed DDL-DFL algorithm, we compare
it with original algorithms, including sparse representation classification localization
via the OMP algorithm [24], the ISTA algorithm [6]. In the following, the ISTA and
OMP algorithm with deep dictionary learning step are referred to as DDL-ISTA and
DDL-OMP. In addition, we perform data augmentation for the above four algorithms.

DDL-DFL Localization Algorithm. We put the training set as the input into the
two-layer dictionary learning model, the dimensionality of each output layer is [30,20],
and γ is set to 0.5. Similarly, the final output of the two-layer representation coefficients is
superimposed as the training set features, and the learned dictionary decomposes the test
set with two layers of representation coefficients superimposed as the test set features.
The training set features constitute the dictionary used for sparse coding, and the test set
features are input to the sparse representation classification model.

The performance of our proposed algorithm and the comparison algorithm are mea-
sured on the laboratory datasets is shown in Fig. 5. When noise is added to both the
training and test sets, we can see by the observation that the DDL-ISTA algorithm has
an improvement over the ISTA algorithm in terms of accuracy, and a certain improve-
ment in terms of average localization error. Similarly, for the DDL-OMP algorithm, it
performs better than the OMP algorithm in both of metrics. When comparing several
algorithms, the DDL-ISTA algorithm effect is the most robust to noise. When noise is
added to the training sets, we also observe localization performance of the algorithm
after DDLmodel better than original ways. Experiments on the laboratory datasets mea-
sured show that our proposed algorithm DDL-DFL has stronger anti-noise performance
compared to original algorithms.

Add Data-Enhanced DDL-DFL Localization Algorithm. Since we have fewer
sensor nodes in the laboratory, the data dimension of the datasets is small; the best
localization effect may not be achieved. Therefore, we propose a data augmentation
method. Before deep dictionary learning extracts deep features, we perform a repeated
concatenation of the data to increase the row dimension of the data to strengthen the
important features. In the experiment, we superimposed the data five times, and the
performance comparison for several algorithms is shown in Fig. 6.

From the results, we find that the effect of adding data augmentation has improved
the localization performance of all the above four algorithms by comparing with Fig. 5.
Among them, the improvement is even greater for the DDL-DFL algorithm. By exper-
iments on the laboratory datasets, we can conclude that data augmentation is more
suitable to the DDL-DFL, and extraction of deep features after data augmentation is not
only reduces the data dimension and enhances the real-time for localization, but also
improves the localization effect to a certain extent.
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Fig. 5. Localization performance of the proposed DDL-DFL algorithm and the comparison algo-
rithm on the laboratory datasets. (a) Accuracy after adding noise to the training and test data; (b)
ALE after adding noise to the training and test data; (c) Accuracy after adding noise to the training
data; (d) ALE after adding noise to the training data (unit: cm).

Fig. 6. Localization performance of the proposed add data-enhanced DDL-DFL algorithm and
the comparison algorithm on the laboratory datasets. (a) Accuracy after adding noise to the training
and test data; (b) ALE after adding noise to the training and test data; (c) Accuracy after adding
noise to the training data; (d) ALE after adding noise to the training data (unit: cm).

To explore the performance of our approach, we applied our approaches to the
datasets from the University of Utah [9]. In the experiments, we set the process of the
DDL part to two layers, with the output dimension of each layer being [392, 196], and the
parameter γ is set to 0.5. In the process of the SRC part, the parameters were fine-tuned
accordingly, and the data were similarly stacked five times. The experimental results
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show that our proposed DDL-DFL algorithm achieves an accuracy of about 90% when
the training data contains noise at 10 dB SNR level, that is, our proposed method is
effective.

4 Conclusion

This study proposes an accurate localization technique based on deep dictionary learn-
ing (DDL-DFL). The in-depth features are extracted from the original data through deep
dictionary learning, and the representation features of each layer are superimposed as
the input of the sparse coding algorithm to realize classification and localization. Fur-
thermore, we propose a data augmentation method applied to the scene with few sensor
nodes to increase the data dimension. In this way, we can strengthen the essential fea-
tures and further improve the algorithm. Experiments on real-world datasets show that
the proposed method can achieve 100% localization accuracy in case of lower SNR
and has certain anti-noise performance. The results are better than existing localization
algorithms.
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