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Abstract. Graphic User Interface (GUI) is facing great demand with
the popularization and prosperity of mobile apps. Automatic UI code
generation from UI design draft dramatically simplifies the development
process. However, the nesting layer structure in the design draft affects
the quality and usability of the generated code. Few existing GUI auto-
mated techniques detect and group the nested layers to improve the
accessibility of generated code. In this paper, we proposed our UI Layers
Group Detector as a vision-based method that automatically detects
images (i.e., basic shapes and visual elements) and text layers that
present the same semantic meanings. We propose two plug-in compo-
nents, text fusion and box attention, that utilize text information from
design drafts as a priori information for group localization. We construct
a large-scale UI dataset for training and testing, and present a data aug-
mentation approach to boost the detection performance. The experiment
shows that the proposed method achieves a decent accuracy regarding
layers grouping.

Keywords: UI to code · UI layers grouping · Object detection ·
Multi-modal embedding

1 Introduction

As the central intermediary of human-computer interaction, Graphic User Inter-
face (GUI) is facing great demand with the popularization and prosperity of
mobile apps. The traditional process of designing GUI is very long-lasting. It
requires investigators to conduct user research, designers to design page mate-
rials, and then front-end engineers to code, and it is time-consuming to reach a
consensus before multi rounds of back and forth [11].

To achieve faster development and relieve engineers from heavy workloads,
some previous researchers applied intelligent methods in automatic GUI gener-
ation. Ling et al. [17] considered it a language generation task, and they utilized
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a language generation method to generate GUI source code from a mixed nat-
ural language. REMAUI [20] is the first work to introduce GUI screenshots as
materials for code generation. They achieved a reverse process from screenshots
to GUI code in seconds. Pix2code [2] then extended the use of images, and they
trained an end-to-end deep learning model that generates a source code from
a single design input image with 77% accuracy. More recent commercialization
cases like Imgcook [12] construct a platform that allows diversified inputs includ-
ing screenshots, PSDs, and Figma1 or Sketch2 files which contain metadata.

(a) An Example of fragmented layer in UI
design.

(b) Example of grouping layers.

Fig. 1. (a) The icon with the red bounding box is formed with three basic shape layers.
(b) The labeled text and image elements need to be included under the same DOM
node using the “group” method by adding #group# to the target containers.

In the practice of automatic code generation, a massive gap between the
design draft (created by digital tools like Sketch) and a quality product (Code
and its visual presentation) is that some layers form a whole element in the design
draft should be included as a single UI component in the code, while the code
generated by automation is hard to reach this. In this case, design drafts should
be further constrained by some specific rules to achieve UI code generation with
high-quality. For instance, the state-of-art solution, Imgcook, highlights “merge”
and “group” as two of the most important rules that reorganize the structure
of design drafts to bridge the gap we described. The “merge” method integrates
multiple fragmented layers representing basic shapes (e.g., rectangle, oval, path)
and visual elements(e.g., text and image) into a single image. As illustrated in
Fig. 1a, the icon with the red bounding box is formed with three basic shape
layers. Without structured merging, these fragmented layers confuse the AI in
understanding the semantic meaning of UI components and affect the readability
and reusability of generated code. In the other case, the “group” method deals
with malposed structures in the design draft. As illustrated in Fig. 1b, to ensure
that generated code does not cause element loss or structural redundancy, the
labeled text and image elements need to be included under the same DOM
node using the “group” method by adding “#group#” to the target containers.
However, Imgcook requires front-end engineers to manually locate the layers to

1 https://www.figma.com/.
2 https://www.sketch.com/.
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proceed operate the “merge” or “group” method. Manual identification is time-
consuming and prone to omissions because of the numerous layers and diverse
nested structures. In this paper, we focus on automatically recognizing “group”
problems. More specifically, we try to locate and group images (we define images
as all basic shapes and visual elements) and text layers that have the same
semantic meaning in the design draft. Therefore, We can optimize the design
layout and obtain high-quality UI code.

(a) An Example of semantic consistency. (b) An Example of various image-text
group patterns

Fig. 2. (a) The clock image in blue box shares a close semantic meaning with the
text “investment schedul”, while the text “view it” in the red box represents another
meaning. (b) The group strategy is different for the banner and small icon. We keep
some background for the banner in order to avoid missing some elements (that maybe
invisible) while bound the small icon group as tight as possible.

To address this issue, We proposed our UI Layers Group Detector that utilizes
object detection techniques to detect the area to be grouped on real screenshot
images. As multi-modal approaches have shown its great power in general UI
component detection task [26], we introduce text embedding and box attention
mechanism that use text-related information as extra modalities to help improve
our Detector. The text layers are used as a local semantic focal, together with the
global image feature to benefit generated proposals. Given an arbitrary design
draft, we follow semantic consistency as the grouping criterion, i.e., not all adja-
cent visual elements will be integrated into a single group. As illustrated in
Fig. 2a, the clock image in blue box shares a close semantic meaning with the
text “investment schedule”, while the text “view it” in the red box represents
another meaning. Under this condition, precisely predicting the group range
is challenging because of the background layer and elements around. Another
challenge is that the diversified UI application scenarios result in various group
patterns with different sizes and element numbers. For example, as illustrated
in Fig. 2b, for the group of banner contains a thumbnail with text information
like product name, price, and description, we have the empty background layer
inside the bounding box to better retrieve all the banner elements in the design
draft. This is because for group like banner which contains abundant elements,
elements sometimes partially invisible so that they will be dropped if we apply
a tight bound. While for small icon like the group only contains “>” and text
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“8 items”, we make the bounding box as tight as possible so that no irrelevant
element will be covered.

In particular, our method solves the two challenges by following approaches.
We adopt a state-of-art object detection model to achieve precise localizing of
group objectives. To deploy our Group Detector as a plug-in for UI code gen-
erator like Imgcook, we choose to adopt from the Faster-RCNN because it is
lightweight, delicate, and easy to modify. We collect our dataset from the Sketch
files of the most frequently used mobile apps. The target groups on each image
are labeled carefully by professional labelers guided by the semantic consistency
we described before. The high-quality dataset allows our data-driven model to
make more accurate predictions. We summarize our contributions as follows:

1. We construct a high-quality dataset containing UI screen images from widely
used mobile apps. An image augmentation algorithm is introduced to boost
the performance of our method.

2. We proposed our UI Layers Group Detector which takes UI screenshots and
metadata from design drafts and solve the image-text grouping task. This
work is designed to fill in the gap in the automatic UI code generation works.

3. We proposed the text fusion to incorporate features from text layers to the
related image region. And the box attention mechanism is introduced as
another plug-in component with creating an extra spatial binary image which
encodes the position of each text layer inside the UI image.

4. We carry out experiments on the constructed dataset to verify that the UI
Layers Group Detector achieves a decent accuracy regarding UI layers group-
ing.

2 Related Works

2.1 Intelligent UI Code Generation

Automation in UI code generation has become an attractive topic after the
machine learning and artificial intelligence boom. Early intelligent automation
research was mainly used to replace template-based UI design, where users spend
time searching for suitable materials to compose their design. We can further
classify these works by the level of the fidelity of the design prototype they use as
input [7]. Batuhan et al. [1] use hand-drawn images to identify and generate basic
buttons, text, images, and other components. Works as sketch2code [23] utilizes
design drafts with more details and achieves the automatic generation of UI
structure. Pix2code [2] follows a similar approach to generating textual descrip-
tions from photographs. It takes actual UI screenshots as input and achieves a
high accuracy generation. More recently, commercial platforms like Imgcook [12]
takes advantage of metadata in professionally designed software and achieve a
generation with high quality and reusability.
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2.2 UI Design Check

With the popularization of automated UI generation technology, in practical
applications, it is necessary to evaluate the generation quality and solve the
problems like missing elements or components overlapping caused by hardware
or software compatibility. OwlEye [19] detects GUIs with display issues and
locates the detailed region of the issue based on the deep learning method.
LabelDroid [4] focuses on image-based buttons and achieves a highly accurate
prediction of labels by learning from large-scale commercial apps in Google Play.
FSMdroid [24] uses the MCMC sampling method to analyze GUI apps dynami-
cally and detect defects that reside on unfrequented trails.

Considering our work as an object detection task, we briefly review the recent
advances in this field. Anchor-based approaches like Faster-RCNN [22] define
a set of anchor boxes of different sizes and use feature maps from different
convolutional layers to classify and regress anchor boxes. The following SSD [18],
Yolov2 [21], and RetinaNet [15] continue this idea and achieve a state-of-art
performance in natural object detection. Some achievement has also been made
in using Object Detection in UI-related areas. Li et al. [13] introduce the CLAY
pipeline for UI screen dataset cleaning. They address the mismatches in visual
elements and metadata. Zang et al. [26] leverage object detection on recognizing
UI icons and achieve good performance.

Fig. 3. The overview of proposed method.

3 Methods

In this section, we introduce the proposed approach to our UI Layers Group
Detector described in Sect. 1 as shown in Fig. 3. We first introduce our work on
collecting UI screen dataset based on Sketch file, which is widely used in software
UI design. Image segmentation is applied considering the nature of small and
regional target detection (Sect. 3.1). We then introduce our Group Detector via
the order of basic setting, text fusion, and box attention. We introduce the
strategy of text content and bounding boxes as extra features to help with target
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localization. The embedding text features are fused into the early convolution
layer of our backbone (Sect. 3.2). We then introduce box attention as another
way of utilizing text information. A spatial binary image is created based on
text bounding boxes to guide the target detection process by revealing potential
image-text group areas. We fuse the box attention with the image feature maps
on all FPN output layers and feed them into the RPN for better proposals
(Sect. 3.2).

3.1 Dataset

We create a high-quality UI dataset based on UI layouts developed by pro-
fessional designers using Sketch. Each artboard in a Sketch file represents a
UI design for Android or iOS mobile Apps. We eliminate unusual designs that
placed the components without artboards as containers and convert the rest as
UI screen images. A group of professional labelers was recruited to generate our
target group annotation. We adapt our dataset based on COCO-style [6], includ-
ing images, annotations, categories, and supplementary text consisting of text
semantics and position in the images. Considering the nature of the UI screen
with a large aspect ratio, while our targets are usually small and regional, image
segmentation is applied to all collected UI screens. Given an arbitrary screen-
shot image, we split it along the long side. To avoid distortion, we keep each
piece a square shape, and only bounding boxes that are entirely inside should be
recorded. To avoid some bounding boxes being separated into two samples, we
leverage a sliding stride to make sure every bounding box will at least appear in
one image.

We then split our dataset into training, validation, and test sets for experi-
ments. The split is performed package-wise and image-wise, i.e., artboards in the
same Sketch design file and segmented images from the same UI screen image
are not shared across different splits. This approach avoids information leakage
because UI screen images from the same design might have similar layouts. As a
summary, the number of screen images in our dataset increases by a factor of 3
after applying the segmentation. We have 4946 screen images in the training set
with 16533 labeled groups and 11617 texts. For the validation set, we have 601
screen images, 2093 labeled groups and 2093 labeled groups. And for the test
set, we have 681 screen images, 2410 labeled groups and 1442 labeled groups.

3.2 UI Layers Group Detector

Usually, the placement and size of our target groups vary widely across the
different UI designs. Therefore, the most crucial step in our approach is to infer
the bounding boxes accurately. To achieve this goal, we utilize ResNet-50 [9] and
FPN (Feature Pyramid Networks) [14] as our backbone for extracting feature
maps. At the RPN (region proposal network), we use a softmax to determine
positive or negative anchors and a bounding box regression to modify anchors to
obtain precise proposals. Then we borrow the RoI Align [8] to replace the RoI
Pooling for proposal maps extraction based on input feature maps and proposals.
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Instead of quantized operations, the RoI Align utilizes linear interpolation to
reduce the precision loss. At the classification stage, bounding box regression is
introduced again to obtain each proposal’s position offset for regressing more
accurate target bounding boxes.

Text Fusion. This section introduces the text embedding features as a plug-
in component to the Group Detector. As we discussed in Sect. 1, the grouping
patterns varies in different application scenarios. While we also find that compo-
nents with the same functionality are similar in appearance and should further
apply the same grouping strategy. In this paper, together with the pixel-based
UI screen image data, we further utilize the text layer information in each Sketch
design, which contains the text layer position as bounding boxes and text con-
tents. The supplementary text-level knowledge enables us to identify potential
pattern-text groups and reveals the function of target groups in the UI screen.

Given a UI screen image in our dataset, let {bbi}Ni=1 be all text layer bounding
boxes inside the image and {tti}Ni=1 be all text contents. Let I ∈ R

3×H×W as
input image and C ∈ R

D×H′×W ′
be an intermediate feature map extracted from

the first convolution layer Conv1 of ResNet-50. Our first step is to construct a
feature map Ti ∈ R

K×H×W for every text information with the same height H
and width W using the bound box bbi = {xmin, ymin, xmax, ymax}. To achieve
this, we use a text encoder to transform text content tti into corresponding text
embedding ei ∈ R

K×1×1. We let Ti fill with all 0 initially and update the text
embedding ei inside the bounding box range. Specifically, we set Ti[:, p, q] = ei
where p ∈ [ymin × H, ymax × H] and q ∈ [xmin × W,xmax × W ]. In the next
step, we calculate T = avg(Ti)Ni=1 ∈ R

K×H×W and apply the same Conv1 and
an extra 1 × 1 convolution layer to get the text feature map T ′ with the same
size of pixel feature map C. In the final step, we calculate a new feature map
F = T ′ ◦ C, where ◦ denotes the element-wise addition, and this new fused
feature map is fed into the later convolution layer of Resnet-50.

Box Attention. In this section, we introduce box attention as another way of
utilizing text information to improve our Group Detector. We borrow the idea
of box attention from Bunian et al [3]. This mechanism was first introduced by
Kolesnikov et al [10]. to model object interactions in a visual relationship detec-
tion task. Bunian et al. adopted it in their object detection pipeline. The idea
of box attention is to create an extra spatial binary image encoding the position
of each text layer inside the UI screen. The binary image here, is considered as
a position-focal that together with the global image information to understand
compositional relationship among elements.

Specifically, given an image feature map Fi ∈ R
D×Hi×Wi and text bounding

box {bbj}Nj=1 where bbj = {xmin, ymin, xmax, ymax} corresponding to input UI
screen image height H and width W , we first transform the bounding box based
on Hi and Wi and create the bounding box map Bi,j ∈ R

3×Hi×Wi . We set
Bi,j [0, p, q] = 1 where p ∈ [ymin×Hi, ymax×Hi] and q ∈ [xmin×Wi, xmax×Wi],
Bi,j [1, :, :] = 0 and Bi,j [2, :, :] = 1. In the next step, we calculate the overall box
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attention map Bi for the ith image feature map as Bi = avg(Bi,j)Nj=1 and an
extra 1 × 1 convolution layer is applied on it to match the image feature map
dimension D. In the final step, we add the box attention map with each FPN
output image feature map Fi to get the fused feature map Mi = Fi ◦ Bi for
further proposal generating.

4 Experiments

4.1 Implementation Details

We implemente our model using MMDetection [5] codebase. We use ResNet-50
pre-trained on ImageNet together with the FPN as our backbone network. We
set the anchor size [32,64,128,256,512] with anchor ratio [0.5,1.0,2.0,4.0,8.0] for
the potential tiny and nonsquare target. The input UI screen images are resized
into size in [800,1300] before being fed into Resnet-50. The output features of
stage1-4 of ResNet-50 are fed into FPN, together with a further MaxPooling
layer, giving us the five feature maps with different scales. For FPN settings,
we follow the standard settings as in [14]. Proposals are computed from all five
pyramid feature maps, and RoI Align is performed with bilinear interpolation.

For text embedding fusion, we first encode the text contents into vectors
with length K using pre-trained transformers [25]. We set the parameter K to
16, considering the average text length of 11.4. After generating the text feature
map T ∈ R

K×H′×W ′
, we increase the channel size from K to D which is the

channel size of feature map at Conv1 of stage 0 in ResNet-50. For box attention,
we adopt five spatial binary images with the same size as the pyramid feature
maps.

For the training details, we train our model with a mini-batch of 2 for 72
epochs using SGD optimizer with a momentum update of 0.9 and a weight decay
of 0.0005; and set the initial learning rate 0.01 with a decay of factor 0.1 every
10 epochs during training. We train our model on an NVIDIA GeForce RTX
3080Ti GPU and it takes about 9 h for the model to converge.

4.2 Evaluation Metrics

In this paper, we report performance metrics used in the COCO detection eval-
uation criterion [16] and provide mean Average Precision (AP) across various
IoU thresholds i.e. IoU=0.50:0.95,0.50,0.75 and various scales: small, medium
and large. Without further specified, we refer mAP[0.50:0.95]to as AP.

4.3 Results

Detection Performance After Image Segmentation. We first test the ben-
efits of our image segmentation algorithm. As shown in Table 1, the image seg-
mentation contributes to a performance boost of AP by about 20%. In the UI
design draft, a potential group like a banner or an icon only takes up a small
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area of the overall screen. Even if we have modified the anchor’s size and aspect
ratio accordingly, finding all targets is still challenging. With segmentation, the
target becomes more prominent in the background. Furthermore, we also get
an augmentation effect with an overlapping slide window that applies multiple
locations for each target in image slices.

Table 1. Detection performance after image segmentation.

Method AP AP50 AP75 APS APM APL

No segmentation 0.428 0.585 0.474 0.367 0.408 0.446

Apply segmentation 0.625 0.799 0.699 0.550 0.593 0.648

Detection Models Comparison. We then compare the detection performance
using recent state-of-art object detection models as shown in Table 2. All the
results are tested using the segmented dataset. To deploy our Group Detector as
a plug-in for UI code generator like Imgcook, we expect it to be lightweight while
achieving high accuracy. “UIGD-TF” denotes our UI Layers Group Detector
with the text fusion and “UIGD-BA” denotes our UI Layers Group Detector
with the box attention. Here we could see that “UIGD-TF” achieves the highest
AP performance of 0.658 among all the model we experimented. And “UIGD-
BA” takes the second position with AP performance of 0.650. They are also
lighter than other models. For example, “UIGD-TF” is 66.9% lighter on model
parameters than the Sparse-RCNN while 3.7% higher on accuracy.

Table 2. Detection performance comparison.

Method Parameters ↓ AP AP50 AP75 APS APM APL

Deformable DETR 49.76M 0.603 0.751 0.670 0.439 0.558 0.635

YoloX 54.15M 0.592 0.788 0.654 0.448 0.517 0.634

Sparse-RCNN 125.21M 0.621 0.759 0.683 0.500 0.566 0.657

Faster-RCNN 41.35M 0.625 0.799 0.699 0.550 0.593 0.648

UIGD-TF 41.30M 0.658 0.853 0.729 0.572 0.643 0.708

UIGD-BA 41.29M 0.650 0.825 0.715 0.568 0.651 0.678

Performance with Text Fusion and Box Attention. We then investigate
the contribution of our proposed text fusion component. As shown in Table 2,
compare with the Fatser-RCNN, which got the highest accuracy in the rest of
the model, we get an 3.3% AP improvement brought by the text fusion strat-
egy suggests the necessity of the text semantic and location prior knowledge,
which enriches the feature representation. The box attention also gives a 2.5%
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AP improvement, indicating that concentrating on text location help captures
potential group targets. Comparing the model parameters, it can be ssen that
apply the text fusion and the box attention only increase the model parameters
by 0.48% and 0.24% while the accuracy is significantly increased by 5.28% and
4.00%. All the results show that our proposed text fusion and box attention work
effectively, and achieve our requirement of lightweight.

Detection Cases Analysis. Finally, we present some of our detection results.
Figure 4a shows two cases that our Group Detector successfully localize all the
target groups with highly matched bounding boxes. In these two examples, it
can be seen that our model achieve a high accuracy of predicting diversified
UI components with different patterns and elements number as we discussed in
Sect. 1.

We also present some cases where our model fails. Figure 4b shows two typ-
ical examples that fully embody the existing shortcomings. The picture above
shows that all group predictions are correct but not perfect fits. With an empty
background around, our model fails to determine the boundaries of the target
groups. Although this does not affect the localization of the layers in design
drafts (no extra layers are included by error), the model performance is under-
estimated because of the low IoU. Another challenge is that our model shows
weakness in distinguishing between foreground and background. As the bottom
picture shows, our model mistakenly groups the address “ARK” in the back-
ground layer with the black dots in the foreground. The classic expression of
this problem is that our model produces the wrong groups when faced with
complex multi-level structures.

(a) Example of good cases. (b) Example of failure cases.

Fig. 4. (a) Our Group Detector successfully localize all the target groups with highly
matched bounding boxes. (b) Our Group Detector show weakness on perfectly fit the
ground truth bounding boxes on empty background around, and produces the wrong
groups when faced with complex multi-level structures.
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5 Conclusion

This paper investigates a novel issue about layers grouping in an automatic
design draft to UI view code process, which can decrease the quality of generated
code. To solve this issue, we propose our UI Layers Group Detector to locate
the group accurately. By dataset segmentation, we achieve about a 20% boost
in detection AP. We also propose two plug-in components to help increase the
detection performance. The Text fusion introduces text semantic and location
prior knowledge and achieves about a 3.3% increase in detection AP. For the
box attention, the spatial binary images encoding potential text location give us
a 2.5% increase in detection AP.
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