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Abstract. Video question answering (VideoQA) is a task of answering a
natural language question related to the content of a video. Existing meth-
ods that utilize the fine-grained object information have achieved signif-
icant improvements, however, they rely on costly external object detec-
tors or fail to explore the rich structure of videos. In this work, we pro-
pose to understand video from two dimensions: temporal and semantic.
In semantic space, videos are organized in a hierarchical structure (pix-
els, objects, activities, events). In temporal space, video can be viewed
as a sequence of events, which contain multiple objects and activities.
Based on this insight, we propose a reusable neural unit called recurrent
contextual attention (RCA). RCA receives a 2D grid feature and condi-
tional features as input, and computes multiple high-order compositional
semantic representations. We then stack these units to build our hierar-
chy and utilize recurrent attention to generate diverse representations for
different views of each subsequence. Without the bells and whistles, our
model achieves excellent performance on three VideoQA datasets: TGIF-
QA, MSVD-QA, and MSRVTT-QA using only grid features. Visualiza-
tion results further validate the effectiveness of our method.

Keywords: Video question answering · Video understanding ·
Multi-modal fusion and inference

1 Introduction

Research on video-language tasks has flourished in the past few years. Video
question answering (VideoQA) is one of the most prominent as it can develop
agent to communicate with the dynamic visual world through natural language.
From the vision perspective, fully extracting and utilizing the information con-
tained in the video and filtering clues according to the linguistic context is the
key to video question answering. Recent advancements [1,4,7,14] of VideoQA
can also be mainly attributed to the exploration of finer-grained spatial informa-
tion within the video frames. As a representative example, L-GCN [7] first uses
an additional object detector to detect the spatial bounding boxes of important
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Fig. 1. Hierarchy of video and question. The entire video can be divided into three
events in time: curling, sit-ups, and prone; from the semantic dimension, the low-level
grid forms a series of objects: cats, people; different objects interactions form different
activities; all activities are organized in sequence to construct events.

objects, and then uses a graph neural network to model the relation among all
objects. Objects and their relations are undoubtedly crucial for video question
answering, since interactions between objects can be explicitly captured to better
understand the complex content of videos.

However, it is costly to extract fine-grained object features through object
detectors. Moreover, the annotation of object detection is expensive, and pre-
trained object detectors can not generalize well to datasets with large domain
gap. A recent study [9] compared grid-based features and object-based features
in image question answering, and showed that incorporating object detector can
significantly slow down the model by 4.6 to 23.8 times, but does not bring signifi-
cant performance improvements compared to plain CNN features (grid features).
They also concluded that the semantic content that the feature represent is more
critical than the format of features. Inspired by them, we revisit grid features
for VideoQA and propose a reusable unit called Recurrent Contextual Atten-
tion Network (RCAN) that encapsulates and transforms a 2D sequence into a
new higher-order 1D sequence conditioned on contextual features, where the 2D
sequence can represent both the temporal and semantic dimension. The flexi-
bility of RCAN allows it to be replicated and layered to form deep hierarchical
recurrent contextual attention network (HRCAN), which can temporally divide
and conquer long video clips and semantically form different levels of video con-
cepts from the bottom up.

The hierarchy of the RCANs are as follows - at the lowest level, the RCANs
encode the relations between raw grid features (considered as the input 2D
sequence) in a frame and then aggregates multiple regions conditioned on frame-
level context and linguistic context; at the next level, we combine multiple regions
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of a clip to form a 2D sequence, then use RCANs to perform inter-region message
passing between adjacent frames guided by motion context, and finally generate
high-order events representation conditioned on clip-level context and linguistic
context; in the final stage, the attention mechanism is used to aggregate the
representations of multiple sub-events to form a compact global video represen-
tation for answer inference. As shown in Fig. 1, at the lowest level, we need to
first aggregate the main objects from the original pixels: black cat, people, yoga
mat, etc.; and then form a series of actions based on motion information: low-
ering, raising, sit-ups, push-ups, etc.; and finally arrange the different actions
to form the overall event: exercise. Specifically, the aggregation of video ele-
ments (objects, activities, events) is achieved through the recurrent attention
of RCANs, and the interaction of visual elements is achieved through message
passing in RCANs. Therefore, our method incorporates the advantages of current
grid-based [10] and object-based methods [7].

The contributions are summarized as follows: (1) We propose a Recurrent
Attention (RA) to extract semantic content in grid features to further explore
its potentials in VideoQA; (2) Further, we extend the operating objects of RA
and propose a general neural unit RCAN, which receives a sequence of low-
level video elements and outputs a compositional deep-semantic video element;
(3) Finally, we construct a hierarchical network based on RCAN to divide and
conquer videos in time sequence, and construct different levels of video semantics
from bottom to top in semantic space. State-of-the-art results on three datasets
validate the effectiveness of our method.

2 Related Work

VideoQA on Grid Features. Earlier work [8] used simple spatial and tempo-
ral attention mechanism, but did not bring much improvement. Some subsequent
works [2,3,13] focuses on multimodal fusion and temporal modeling with using
simple pooling in space. QueST [10] is a further attempt at the spatio-temporal
attention of grids features, which decomposed the question semantics in space and
time to guide the attention generation in space and time, respectively. Although
obtaining the performance improvement, it only attend once per frame, resulting
in the lack of richness of the features obtained from each frame and the inability
to model the interactions between the attended regions. Therefore, we propose a
recurrent attention mechanism to alleviate this shortcoming.

VideoQA on Object Features. Most recent methods for video question
answering methods employ pretrained object detectors to extract object features
and model interactions between them. L-GCN [7] proposed a location-aware
graph neural network to model interactions between objects. HOSTR [1] used
object detection and tracking to establish object trajectories, and then applied
object-based spatio-temporal attention mechanisms to model object interactions.
HAIR [14] utilized both object detection features and attribute features for visual
and semantic relational reasoning. These methods generally achieve better per-
formance than grid feature-based methods, the most notable difference being
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that they can extract distinct object regions and explicitly model pairwise inter-
actions between objects without the influence of irrelevant backgrounds. Thus
in this paper, in addition to using the recurrent attention mechanism to extract
diverse regions, we also use the message passing mechanism to model the inter-
actions between them. A key difference is that our region extraction method is
lightweight and does not require additional object detectors.

Hierarchical Architectures. Compared to images, videos contain more com-
plex structures. Thus, HCRN [12] designed and stacked conditional relation
blocks to represent videos as amalgam of complementing factors including
appearance, motion and relations. However, it mainly focused on reasoning about
temporal relations and used simple mean-pooling to model relations. Lack of
fine-grained spatial information makes it not generalizable well to scenes involv-
ing multiple objects. Follow a similar design philosophy, HOSTR [1] introduced
nested graphs for spatio-temporal reasoning over object trajectories to learn
hierarchical video representations, and achieved better performance. However,
the good performance of HOSTR relies on accurate object trajectories, which
is difficult to achieve in practice. In this work, we also follow the hierarchical
design principle, but do not rely on any additional object detectors and object
trackers.

3 Proposed Method

3.1 Visual and Linguistic Representation

Video Representations. Given a video, we uniformly sample T frames and
divide it into K clips with L frames, where T = K × L. For each frame, we
use pre-trained 2D ResNet [6] to extract appearance features F a, then take this
frame as the center frame and combine 8 frames before and after this frame to
form a segment and use pre-trained 3D ResNeXt [5] to extract motion features
Fm. Specifically, we use the output of the last convolutional layer as the grid
feature representation, so F a ∈ R

K×L×7×7×2048, Fm ∈ R
K×L×4×4×2048. Next,

linear feature transformations are used to transform them into the standard d-
dimensional feature space. Following [7], We add spatial position encoding and
frame position encoding on grid features.

Linguistic Representation. We apply GloVe converts each question word into
a 300-dimensional word representations, then feed the word representations into
a bidirectional LSTM to model contextual dependencies. Then We obtain word-
level question representations F q ∈ R

M×d by stacking the hidden states at each
time step, and then use the output of the last hidden unit as the global question
representation qL ∈ R

d, where M is the length of the question.

3.2 Recurrent Contextual Attention Network Unit

As illustrated in Fig. 3(a), RCAN consists of three operations: cross-modal
attention (CMAT), intra-modal graph attention (GAT), and recurrent context
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Fig. 2. Hierarchical recurrent contextual attention network (HRCAN) for VideoQA.
At the frame-level, the RCAN receives grid features of a single frame as input and
generates multiple frame-wise regional features in the question and frame-wise visual
context. At the clip-level, we concatenate the regional features of multiple frames of
a clip to generate clip-wise action features in the context of motion. Finally, we use a
graph convolutional network to model the relation between video action features and
generate the final video representation.

attention (RCA). The CMAT and the GAT are based on the self-attention mech-
anism SAT (X,Y ) = U [16]:

A = (W1X)((W2Y
T )/

√
d (1)

H = softmax(A)(W3Y )) (2)
U = LN(X + H) (3)

where X ∈ R
N×d and Y ∈ R

M×d are the inputs, U ∈ R
N×d is the output, and

W1 ∼ W3 ∈ R
d×d are the learned weight matrices.

RCANs takes as input a grid feature V ∈ R
Lv×d (Lv = Hv × Hv), which can

be CNN feature map of a frame or region features of a Clip, and linguistic context
Fq ∈ R

M×d, then produce compositional features: R = RCAN(V, Fq) ∈ R
N×d.

Cross-modal Attention. Through the cross-attention of word-level linguistic
representation and visual features, the video elements mentioned in the question
will have a stronger response.

Ṽ = CMAT (V, F q) = SAT (V, F q) (4)
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Fig. 3. Illustration of recurrent context attention unit (RCAN). Cross-modal atten-
tion (CMAT) is first used to model inter-modal interactions, then graph attention
(GAT) further model intra-modal interactions, and finally recurrent contextual atten-
tion (RCA) extracts multiple higher-order representations. Additional motion informa-
tion is introduced at the clip-level.

After obtaining enhanced visual features, we use graph attention (GAT) to
model interactions within modalities:

V̂ = GAT (Ṽ , Ṽ ) = SAT (Ṽ , Ṽ ) (5)

Graph attention enables message passing between related visual elements, such
as different parts of the same object, different objects of an action, which can
facilitate subsequent RCA to extract more semantic-related region features.

The detailed computation of recurrent context attention (RCA) is as follows.
We first compute a guidance vector gt ∈ R

d based on the globally average-pooled
visual feature or the last attended region feature rt−1 ∈ R

d, the l-th grid feature
v̂l and the linguistic context qL ∈ R

d.

gt,l = Wg,t(Wq,tqL + Wr,trt−1 + Wl,tv̂l) + bg,t (6)
αt,l = Watt,tLeakyReLU(gt,l) + batt,t (7)

αt = Softmax([αt,1, ..., αt,Lv
]) (8)

rt =
Lv∑

l=1

αt,lv̂l (9)

where Wg,t, Wq,t, Wr,t, Wl,t, Watt,t ∈ R
d×d are learnable weights, and bg,t and

batt,t are the biases, at,l is a scale which is the weight on the l-th grid feature used
to generate the t-th region. rt is the visual context at step t, r0 = sumpooling(V̂ ).
Finally, we iteratively generate N regions R = {r1, ..., rn} ∈ R

N×d.

3.3 Hierarchical Recurrent Contextual Attention Network

As shown in Fig. 2, at the lowest level, RCAN receives frame-level grid features
F a as input, then captures inter-modal and intra-modal interactions and finally
generates a series of regional features F r ∈ RK×L×Nf×d:

F r
k,l = RCAN(F a

k,l, F
q, qL) (10)
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where, F a
k,l is the grid features of the l-th frame of the k-th clip, F r

k,l is the
regional feature of the corresponding frame.

Frame-level RCAN have extracted diverse regional features from each frame
and modeled intra-frame relation via GAT and RCA. The goal of clip-level
RCAN is combine motion context and regional information to form different
actions, such as “lower the cat, lift up the cat”. As shown in Fig. 3 (b), we
add a CMAT to introduce motion context into region features. Specifically, the
clip-level RCAN receives the output of the frame-level RCAN Rf and the frame-
level motion grid features Fm ∈ RK×L×Lm×d as input, and cyclically generates
a series of action representations F c ∈ R

K×Nc×d:

F c
k = RCAN(F r

k , Fm
k , F q, qL) (11)

where F r
k ∈ RL×Nf×d is the feature of all regions of the k-th clip, Fm

k ∈ RL×Lm×d

is the motion feature of all frames of the k-th clip, and F c
k ∈ R

Nc×d is the
action features generated by the k-th clip. Finally, we use a RCAN without
RCA to model the dependencies between the clip features of the video: F v =
RCAN(F c, F q) ∈ R

(K×Nc)×d and use attention pooling to generate the final
visual feature: z = Attn(F v, qL) ∈ R

d.

3.4 Answer Decoder

Following the previous work [10,12], for multiple-choice QA, we concatenate each
candidate and question to form a holistic query. The global query feature qL is
fused with the final video feature z and a multilayer perceptron (MLP) is used
to predict scores:

s = MLP ([z; qL]) (12)

For multi-choice QA, we maximize the margin between positive and negative
QA-pairs: max(0, 1 + sn − sp). For opened QA, We treat it as a classification
task on a pre-defined set of answers, then use the decoder to predict a class
probability and train it using cross-entropy.

4 Experiments

4.1 Experiment Setup

Datasets. TGIF-QA [8] contains 165K QA pairs collected from 72K animated
GIFs. We use action repetition (Action), state transition (Trans.), frame-level
question (FrameQA) tasks for evaluation. FrameQA is an opened QA, the oth-
ers are multi-choice QA. MSVD-QA and MSRVTT-QA [18] contain 50K
and 243K Q&A pairs respectively, and consist of five different types of ques-
tions, including what,who,how,when and where. The task is open-ended. For all
datasets, we report accuracy (percentage of correctly answered questions) as an
evaluation metric according to the standard.
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Table 1. Comparison with state-of-the-art methods.

Methods TGIF-QA MSRVTT-QA MSVD-QA

Action Trans. FrameQA

ST-VQA [8] 62.9 69.4 49.5 30.9 31.3

PSAC [13] 70.4 76.9 55.7 – –

QueST [10] 75.9 81.0 59.7 34.6 36.1

Co-mem [3] 68.2 74.3 51.5 31.9 31.7

HME [2] 73.9 77.8 53.8 33.0 33.7

L-GCN [7] 74.3 81.1 56.3 33.7 34.3

HGA [11] 75.4 81.0 55.1 35.5 34.7

GMIN [4] 73.0 81.7 57.5 36.1 35.4

BTA [15] 75.9 82.6 57.5 36.9 37.2

HCRN [12] 75.0 81.4 55.9 35.6 36.1

HOSTR [1] 75.0 83.0 58.0 35.9 39.4

HQGA [17] 76.9 85.6 61.3 38.6 41.2

HRCAN 81.8 83.6 63.7 38.8 41.8

Implementation Details. For each video, we uniformly sample T = 16 frames,
then divide them into K = 4 clips with L = 4 frames per clip. We use pretrained
ResNet152 from [9] to extract appearance features, and use ResNeXt101 pre-
trained on Kinetics to extract motion features. We set the dimension of the
hidden units d to 512, and Nf = Nc = 4. For training details, we train our
model for 50 epochs with a batch size of 32. The learning rate is set to 10−4,
warms up for 5 epochs, and then cosine anneals.

4.2 Comparison with Prior Work

In Table 1, we compare our method with methods involving 4 main categories:
cross-attention, memory-based methods, graph-structed methods and hierarchi-
cal models. The results show that our HRCAN model consistently outperforms
other models on all experimental datasets.

Specifically, both L-GCN and GMIN use graph-based methods to model
object-level interactions for question answering. However, they fail to construct
the hierarchical nature of the video and interactions are constructed without the
guidance of language query. Through the inter-modal and inter-modal interac-
tions in RCAN, and the semantic hierarchy of HRCAN, our model shows clear
superiority on the experimental dataset. HCRN, HOSTR and HQGA are similar
to us in designing hierarchical conditional architectures. However, HCRN is lim-
ited to hierarchical temporal relations between frames, which are only modeled
by simple average pooling. The lack of spatial fine-grained information makes it
insufficient to understand complex object interactions in space-time, which limits
not only its performance in single-frame question answering, but also its tempo-
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ral reasoning ability. HOSTR advances HCRN by building hierarchies on object
trajectories and employing graph operations for relational reasoning. However,
it lacks object-word level fine-grained matching which results in its sub-optimal
results, and relies on costly object detection and trajectory tracking. Finally, the
HQGA, like us, tries to aligns words in the linguistic queries with visual elements
of the hierarchy in the video. However, it relies on multiple visual encoder to
build different visual hierarchies, e.g., 2D & 3D CNN and Faster-RCNN, which
makes it limited in practical applications.

4.3 Ablation Studies

Hierarchy. In the top section of Table 2, we layer-wisely replace the RCAN with
average pooling to study the effect of the hierarchy. It can be seen that the lack
of any level will cause performance degradation. And the frame-level has the
greatest impact on the results, we argue that the lack of spatially fine-grained
information extraction will introduce noise to subsequent levels. This show that
just modeling the relation between clips is suboptimal. We also study the effect
of the number of iterations in RCAN and find that increasing both Nf and Nc

can lead to better overall performance.

Linguistic Conditioning. From the middle section of Table 2, the lack of lan-
guage conditions jeopardize the overall performance, indicating the necessity of
injecting query cues when encoding video features. Specially, we replace word-
level representations F q in cross-modal attention with global one qL, and the
performance drop shows the importance of fine-grained cross-modal matching.

Motion Conditioning. Removing the motion context at the clip level or
putting the motion information before the frame level will cause performance

Table 2. Ablation studies on TGIF-QA dataset, for action repetition and frameqa
tasks.

Model Action Frame

Hierarchy

w/o frame-level 77.90 58.60

w/o clip-level 78.40 63.50

w/o video-level 81.70 64.01

Linguistic conditioning

w/o linguistic cond. 78.20 62.80

w/ global linguistic cond. 80.10 63.40

Motion conditioning

w/o motion cond. in clip-level 80.50 63.30

w motion cond. in frame-level 80.20 63.40

Full model 81.80 63.70

Model Action Frame

RCA(Nc and Nf )

Nc = 1, Nf = 1 80.80 63.0

Nc = 1, Nf = 2 80.60 63.7

Nc = 1, Nf = 4 80.60 63.6

Nc = 1, Nf = 1 80.80 63.0

Nc = 2, Nf = 1 81.60 62.7

Nc = 4, Nf = 1 80.70 63.7
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Action Transition FrameQA

What does the man with a 
hat do 6 times ? Pass plates 

What does the man do before 
falling over ? Running

What chases the fake fish thrown by 
a toy that walked toward it ? Cat.

Fig. 4. Visualization of our cross-modal attention and recurrent attention in frame
level. The above is the attended region heat map for recurrent attention, the below is
the attention weights between grid and words in cross-modal attention.

degradation. One is that the introduction of motion context can make up
for the loss of information caused by sparse sampling, and the other is that
adding motion information directly to the appearance grid features may bring
noise without frame-level RCAN enhancement and extraction of question-specific
regions.

Qualitative Analysis. In Fig. 4, we visualize frame-level cross-modal attention
and recurrent attention. It can be seen that in CMA, important objects or actions
in the query are emphasized, such as “hat”,“passing plates”, “running”, “fake
fish”, “cat”. Subsequently, the corresponding visual regions are extracted by
recurrent attention. Moreover, we can observe: 1) CMA is sparse, which may be
the reason that word-level supervision is better than sentence-level one. Namely,
only a few query subjects in sentences need to be emphasized; 2) the attention
of grid features is more flexible than that of object. Obejct features are often
limited to a rectangular instance-related bounded by box, while our grid-based
recurrent attention can attend flexible regions, which may only be part of the
instance, e.g., “plate”, “legs”.

5 Conclusion

In this paper, we propose a new VideoQA model termed as HRCAN, that uses
a reusable attention unit RCAN to perform hierarchical reasoning on visual
elements. Specifically, multimodal interactions are modeled in RCAN through
inter-modal and intra-modal attention, and then low-level visual elements are
aggregated into diverse high-level visual elements through recurrent attention.
Our extensive experimental analysis have validated the effectiveness of the pro-
pose method. Additional visual analysis can also further validate the insights.
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