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Abstract. Unsupervised domain adaptation (UDA) aims to transfer the
knowledge learned from the labeled source domain to the unlabeled tar-
get domain. Among them, the source domain and the target domain have
the same label space, but the representation distributions of their input
space are different. Mainstream approaches resort to domain adversarial
training to align input distributions of two domains in the feature space.
Although these methods have made remarkable progress, they have the
risk of destroying discriminative structural information between different
classes in the target domain. To alleviate this risk, we are inspired by the
problem reduction method in ensemble methods and binarization tech-
niques, and propose a novel approach Maintaining Structural Informa-
tion of the target domain based on Pairwise semantic Similarity (whether
two instances belong to the same class or not) (MSIPS). Specifically, We
introduce Contrastive Learning to obtain feature prototypes for each cat-
egory on the source domain, and then use these prototypes to predict the
similarity of paired target domain samples. Finally, we restrict the target
domain to maintain discriminative structural information through such
weak information (i.e., pairwise similarity). Extensive experiments of var-
ious domain shift scenarios show that our method obtains competitive
performance with SOTA, and qualitative visualization can demonstrate
the effectiveness of our method.

Keywords: Unsupervised domain adaptation · Problem reduction ·
Pairwise similarity

1 Introduction

The breakthrough of convolutional neural network (CNN) [12] in the field of
computer vision is inseparable from the support of massive labeled data [6].
Nevertheless, the collection and annotation of numerous data is an extremely
expensive and time-consuming process. Meanwhile, In many practical scenar-
ios, the models performed well on testing data will have serious performance
degradation when predicting the data with distribution discrepancy (i.e., domain
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shift). To alleviate these problems, unsupervised domain adaptation (UDA) has
attracted a lot of attention, which transfers knowledge from a label-rich source
domain to a fully-unlabeled target domain.

A variety of unsupervised domain adaptation methods have been proposed
and have achieved significant progress [3,9,17,21,29]. The mainstream methods
resort to domain adversarial training to align input distributions of two domains
in the feature space, so that the model has good generalization ability in infer-
encing the data from different domains with domain shift. Although this method
effectively reduces the distribution discrepancy in the feature space of the source
domain and the target domain, it also leads to the mixing of the representation of
different classes in the target domain to a certain extent. Recently, some stud-
ies [27,29,33] have begun to consider compensating or maintaining the struc-
tural information of the target domain damaged by domain adversarial training.
Specifically, some of them propose fine-tuning the model using pseudo-labelled
target domain data to compensate for structural information between different
classes of the target domain. However, the quality of pseudo-labels is hard to con-
trol, especially when the domain shift is serious, the false pseudo-labels will cause
error accumulation, and eventually lead to negative transfer [30] of the model.
Another method is to learn the structural information between the classes of the
source domain in the process of model training, and use it as a regularization
term to guide the representations distribution of the target domain with similar
structural information. However, these works are based on the assumption that
the structural information of different classes of representations of the target
domain and the source domain is consistent, which is difficult to fully guarantee
in complex real scenes.

To effectively address the above problem, we are inspired by the problem
reduction method, and propose a novel approach Maintaining Structural Infor-
mation of the target domain based on Pairwise semantic Similarity (whether
two instances belong to the same class or not) (MSIPS). The problem reduction
method has had a long history in the literature, especially in binarization tech-
niques and ensemble methods [7]. Its core strategy is to transform a complex
task into a different and simpler task. Specifically, in domain adaptation, the
ideal way to maintain structural information between classes within the target
domain is to have labeled target domain data for different classes as Fig. 1(a),
which is naturally not achievable in unsupervised settings. We consider trans-
forming the above multi-classification task that requires all class labels into a
simpler binary classification task. As shown in the Fig. 1(b), given a pair of tar-
get domain instances, we indirectly maintain the structural information between
all classes of the target domain by predicting whether the two instances belong
to the same class. That is, if two instances are predicted to be the same class,
their representation is as close as possible in the feature space, and vice versa.

A direct idea is to predict whether the two samples belong to the same cate-
gory by calculating the similarity of their representations, but we cannot scientif-
ically set a reasonable threshold for the similarity. Moreover, domain adversarial
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training has the risk of destroying the structural information between the orig-
inal classes of the target domain, which will further reduce the accuracy of our
prediction of pairwise similarity. Therefore, we introduce Contrastive Learning
to obtain feature prototypes for each category of the source domain, which will
explicitly model the intra-class discrepancy and the inter-class discrepancy, and
predict the pairwise similarity of the target domain instances by these prototype
features that are far away from each other.

In summary, the main contributions of this paper are as follows:

(1) We are the first to use pairwise similarity of the target domain to maintain
structural information in unsupervised domain adaptation, which is moti-
vated by the problem reduction method.

(2) Contrastive Learning is introduced to obtain the category prototypes of the
source domain. We use them as Category-Prototypes Bank to provide more
accurate pairwise similarity for our method.

(3) We conduct careful ablation studies on benchmark UDA datasets, which
demonstrate the effectiveness of our method and show competitive perfor-
mance with several state-of-the-art methods

Fig. 1. Methods of maintaining structural information.

2 Related Works

2.1 Alignment Based Unsupervised Domain Adaptation

Unsupervised Domain Adaptation (UDA) generally assumes that the two
domains have the same conditional distribution, but different marginal distri-
butions (i.e., domain shift). In order to alleviate the influence of domain shift
and improve the generalization ability of the trained source domain model on the
target domain data, many work [19,27–29,31,33] proposed to align the repre-
sentation distribution of the source domain and the target domain in the model
training process. Some of them measure the degree of domain shift quantita-
tively by various metrics, e.g., maximum mean discrepancy (MMD) [17,18],
and achieve domain-level alignment by minimizing the metrics. Another part of
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Fig. 2. Proposed method of maintaining structural information by pairwise similar-
ity (Best viewed in color). Our method consists of a backbone, a classifier, a domain
discriminator and a category prototype bank. Red and blue refer to data or represen-
tation from source domain and target domain respectively. The modules with same
color have the same parameters, and GRL refers to the gradient reversal layer for
domain-adversarial training. (Color figure online)

them [9,24,31,33] is to learn discriminative domain invariant features by intro-
ducing a domain discriminator for domain adversarial training. Although these
methods effectively align the representation distributions of source domain and
target domain, they all have the risk of damaging the structural information
within the target domain, that is, the discrimination of the feature of the tar-
get domain is reduced [4]. In order to achieve class-level domain alignment, [23]
introduces the class label into the domain discriminator, so that it can be aware
of the classification boundary. [10] uses the pseudo-labeled target domain data
to fine-tune the model to compensate for the damaged structural information
between classes. [3] attempts to obtain the category centroid of different domains,
forcing them to maintain consistency. Our method maintains structural informa-
tion through pairwise similarity between classes inherent in the target domain,
so we do not rely on the assumption that two domains have standard structural
similarity.

2.2 Problem Reduction Method

Problem Reduction Method has had a long history in the literature, especially in
binarization techniques and ensemble methods [1]. The most well-known strate-
gies are “one-vs-all” [25] and “one-vs-one” [11]. The core idea of these work
is to transform a more complex task into one or more simpler tasks. We are
motivated by this method, and propose to maintain structural information by
pairwise similarity for unsupervised domain adaptation.
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3 Our Approach

Consider labeled data Ds = {(xs
i , y

s
i )}Ns

i=1 from the source domain and unlabeled
data Dt = {(xt

i)}Nt
i=1 from the target domain, where ys = {1, 2, . . . , M} is M dif-

ferent classes, Ns and Nt is the number of source and target samples, respectively.
Unsupervised domain adaptation (UDA) assumes that source domain and target
domain have shared label space Y but large distribution gap between P (Ds) and
P (Dt). Our goal is to transfer the knowledge learned from the source domain to
the target domain. In this section, we introduce our MSIPS method, as shown
in Fig. (2).

3.1 Category-Prototypes Guided Pairwise Similarity

Given the representation of a pair of target domain samples xt
p and xt

q, the tradi-
tional method to predict whether they are similar is to measure the distance, e.g.,
Cosine Similarity, Euclidean Distance, between the two representations through
some metrics, and compare it with the threshold. But it is hard to find such
a suitable threshold, let alone the risk of domain adversarial training mixing
different classes of representations in the target domain. In order to solve this
problem, considering that the source domain and the target domain have the
same label space, we explore to find a reference point for each category in the
feature space of the source domain and the target domain, which can not only be
clearly distinguished from each other, but also alleviate the influence of domain
shift. By comparing pairwise target domain representations with these bench-
mark representations, we can accurately determine whether the two samples
belong to the same class. Specifically, motivated by InfoNCE [22] in Contrastive
Learning, in addition to cross entropy (CE) loss, we impose a contrastive loss to
make different classes of source domain representations more representative:

Lcon = − log
exp (d (xs, xs+) /τ)

exp (d (xs, xs+) /τ) +
∑K−1

j=1 exp
(
d

(
xs, xs−

j

)
/τ

) , (1)

where xs denote any source representation output by Projector, xs+ is the ran-
domly sampled positive representation with the same class label from the same
batch and xs−

j is the negative representation with different class labels. More-
over, d(·, ·) denotes cosine similarity and τ is a temperature factor. That is,
the overall training procedure of MSIPS for labeled source domain data can be
summarized as follows:

Ls
total = Lc

ce + λLcon, (2)

where λ is trade-off parameter to balance losses. For simplicity, we set the λ to
1 based on our preliminary experiment.

Further, we calculate the mean values of the source domain features of each
category as Eq. (3), and store them as the prototype of the category into the
Category Prototype Bank.

pm =
1
n

n∑

i=1

(xs
i |ys

i = m) (3)
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For a pair of target domain representations xt
p and xt

q, we measure the dis-
tance between them and M prototypes, and further predict their pseudo labels
yt

p, yt
q by softmax operation. So far, we can get their pairwise similarity label

Yps ∈ {0, 1}. As shown in Fig. (2), if they belong to the same category, we
represent it as sim-pair (Yps = 1), and vice versa as dissim-pair (Yps = 0).

3.2 Maintaining Structural Information via Pairwise Similarity

For source domain data, class labels can be used as supervised information to
guide the model to learn the classification boundaries of different classes of data.
We call this discriminative information between multiple classes structural infor-
mation. But in unsupervised domain adaptation, there is no labeled data in the
target domain, so it is difficult to learn this structural information directly. Dif-
ferent from the methods [3,29] maintaining structural information consistency
between two domains based on the assumption of domain closeness [2], which
cannot always be fully guaranteed in real scenarios, we propose to maintain
structural information via pairwise similarity. In the previous subsection, for a
given pair of target domain samples xt

p and xt
q, we have predicted their pairwise

similarity, that is, whether they belong to the same class. Note that the correct
probability of such two-class classification task prediction is higher than that of
multi-class classification task prediction. Therefore, we are inspired by the prob-
lem reduction method [14] and use pairwise similarity to maintain the structural
information of the target domain. If xt

p and xt
q are sim-pair, we believe that

the corresponding distributions output by the source domain classifier P and Q
are similar, and KL-divergence is used to measure the distance between the two
distributions. We optimize the loss function as follows:

Lsim pair = DKL (P�‖Q) + DKL (Q�‖P) , (4)

where P� and Q� are alternatively assumed to be constant, because the function
for calculating KL-divergence is asymmetric. If xt

p and xt
q are dissim-pair, we

optimize a hinge-loss as Eq. (5) (where the value of margin σ refers to [13]), and
expect their distributions to be different.

Ldissim pair = Lh (DKL (P�||Q) , σ) + Lh (DKL (Q�‖P) , σ) (5)

Lh(e, σ) = max(0, σ − e) (6)

Combining Lsim pair and Ldissim pair, we get our structure loss. In addition,
in order to further suppress the influence of pairwise similarity error caused
by pseudo-label noise, we set a weight η for the structure loss based on the
confidence of pseudo-label prediction as Eq. (7):

η =
M∑

m=1

P (yt
p = m)P (yt

q = m), (7)
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where P (·) is the output of softmax operation. Intuitively, if both yt
p and yt

q are
predicted as the same class with greater confidence, the structure loss between
them will be more involved in model optimization. Therefore, the total loss for
maintaining structural information can be defined as follows: s

Lt
structure = ηYpsLsim pair + (1 − η)(1 − Yps)Ldissim pair. (8)

3.3 Combining with Domain Adversarial Training

Domain adversarial training can achieve domain-level alignment, and make the
category prototype of the source domain we learn tend to be domain-invariant,
thereby improving the accuracy of our prediction of pairwise similarity for the
target samples. Therefore, we combine it with the proposed method. Finally, the
total loss of MSIPS is as follows:

Ltotal = Ls
total + Lt

structure + Ld
ce, (9)

where Ld
ce is the loss of domain discriminator (a classifier that distinguishes

samples from source or target domains) in domain adversarial training as [9],
usually Cross Entropy loss with domain labels.

4 Experiments

4.1 Datasets

We evaluated our method in the following two standard benchmarks for UDA.
Office-31 [26] is the most popular real-world benchmark dataset for visual

domain adaptation, which is made up of three distinct domains, i.e., Amazon
(A), Webcam (W) and DSLR (D). It contains 4,110 images of 31 categories in
three domains. We evaluated our method on six domain adaptation tasks.

Office-Home [32] is a more challenging recent dataset for UDA, which con-
sists of 15500 images from 65 categories. There are 4 different domains in it:
Art (Ar), Clip Art (Cl), Product (Pr), and Real-World (Rw). We evaluate our
method in all the 12 one-source to one-target adaptation cases.

4.2 Implementation Details

Our implementation is based on [15]. Following the standard protocol for UDA,
we use all labeled source data and all unlabeled target data. We use the Ima-
geNet [6] pre-trained ResNet-50 [12] as the base network for fair comparison,
where the last FC layer is replaced with the task-specific FC layer(s) to parame-
terize the classifier. We use mini-batch stochastic gradient descent (SGD) with a
momentum of 0.9, an initial learning rate of 0.001, and a weight decay of 0.005.
All reported results of mean(±std) are obtained from the average of three runs.
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Table 1. Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet-50).
The best accuracy is indicated in bold.

Method A→W D→W W→D A→D D→A W→A Avg

DANN 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2

CCN 78.2 97.4 98.6 73.5 62.8 60.6 78.5

CCN� 88.5±0.4 97.4±0.5 98.6±0.1 84.5±0.7 73.5±0.2 73.4±0.3 86.0

PFAN 83.0±0.3 99.0±0.2 99.9±0.1 76.3±0.3 63.3±0.3 60.8±0.5 80.4

MDD 94.5±0.3 98.4±0.1 100.0±0.0 93.5±0.2 74.6±0.3 72.2±0.1 88.9

SymNets 90.8±0.1 98.8±0.3 100.0±0.0 93.9±0.5 74.6±0.6 72.5±0.5 88.4

CAN 94.5±0.3 99.1±0.2 99.8±0.2 95.0±0.3 78.0±0.3 77.0±0.3 90.6

GVB 92.0±0.3 98.7±0.0 100.0±0.0 91.4±0.5 74.9±0.5 73.4±0.1 88.3

SRDC 95.7±0.2 99.2±0.1 100.0±0.0 95.8±0.2 76.7±0.3 77.1±0.1 90.8

MSIPS 95.9±0.3 98.7±0.2 100.0±0.0 95.8±0.1 76.8±0.2 78.6±0.5 91.0

4.3 Comparison with Baselines

We select a series of popular methods as baselines to compare with MSIPS,
including DANN [8] as a baseline for further analysis of our contributions and
some state-of-the-art methods for performance comparisons. In particular, we
compare with CCN [13] which uses pairwise similarity to perform conditional
clustering on target domain data, PFAN [3] aligns the category prototypes of
the target domain and source domain directly, SRDC [29] uses the structural
information of source domain contained in source domain labels to guide target
domain data clustering. Note that most of them are domain adaptation methods
based on alignment. In addition, bridging theory based MDD [35], alignment
based CAN [16], GVB [5] and SymNets [34] are also selected as baselines.

Results on Office-31 are reported in Table 1, where results of existing methods
are quoted from their respective papers or the works. CCN uses imageNet as an
auxiliary dataset to learn a model for predicting pairwise similarity. On this basis,
we fine-tune the model using all data outside the target data to further improve its
accuracy in predicting pairwise similarity. The results are recorded as CCN�. We
can see that MSIPS outperforms all compared methods on most of the transfer
tasks, and the average performance reaches SOTA. We utilize t-SNE [20] to visu-
alize embedded features on the source domain and the target domain by Source
Model from DANN, CCN�, SRDC (only target domain representations) and our
method. As shown in Fig. (3), we can find that the source domain features and tar-
get domain features learned by MSIPS have the characteristics of close distance
within the class and long distance between classes. At the same time, the same
classes of features from different domains are clustered, which fully proves that
our method effectively maintains the structural information of the target domain.
The results of Office-Home are reported in Table 2. Although the average per-
formance of our method is slightly lower than SRDC (−0.1%), it reaches SOTA
in multiple domain adaptation tasks. Especially in Ar→Cl, our method exceeds
SRDC by 7.7 %, which indicates that our method is promising.
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Table 2. Accuracy (%) on office-home for unsupervised domain adaptation (ResNet-
50). The best accuracy is indicated in bold.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

SymNets 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6

MDD 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1

GVB 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4

SRDC 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3

MSIPS 60.0 75.4 81.1 65.7 76.4 75.1 65.1 57.7 81.7 72.4 61.1 82.7 71.2

Fig. 3. The t-SNE visualization of embedded features on the task W→A (Best viewed
in color). Note that for SRDC we refer to the visualization results in the original paper,
in which different classes are denoted by different colors.

4.4 Ablation Studies and Discussions

For a more detailed analysis of our proposed method, we conducted ablation
studies on the Office-31 dataset, and all experiments are aimed at adaptation
task W→A.

Comparison of Accuracy of Predicting Pairwise Similarity. Using pair-
wise similarity to constrain the structure between classes has a certain history in
Conditional Clustering. CCN [13] tried to use this constraint to cluster the tar-
get domain samples under cross-domain settings, but showed poor performance.
The reason we analyze the failure is that although pairwise similarity has a good
effect on maintaining structural information, the accuracy of predicting pairwise
similarity will be severely reduced by domain shift. Instead of using the auxiliary
data set to train the pairwise similarity prediction network directly, we use the
data of the non-target domain from the current dataset to fine-tune the net-
work, and further improve its accuracy in predicting the pairwise similarity (i.e.,
CCN�). Even so, we can observe from Fig. (4) that our method is more accurate
in predicting pairwise similarity, which fully demonstrates the effectiveness of
our method for predicting pairwise similarity based on category prototypes.

Effect and Error Analysis of Maintaining Structural Information. As
shown in Fig. (5), our method effectively maintains the structural information
of the source domain and the target domain, different classes of features are
distributed in different clusters, and features with the same classes are closer
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Fig. 4. F1 Score of pairwise similarity
prediction (Best viewed in color).

Fig. 5. The visualization of features of
misclassification (Best viewed in color).

in the feature space. However, we find that although our method has higher
accuracy in predicting pairwise similarity and has adopted some strategies to
suppress the impact of similarity prediction errors, there will still be some sample
classification errors. We claim that further improving the accuracy of pairwise
similarity prediction helps to improve the effect of domain adaptation.

5 Conclusion

In this paper, we propose a method based on pairwise similarity to maintain the
structural information of the target domain for unsupervised domain adaptation.
Different from the existing method of directly aligning the category structure of
source domain and target domain based on domain closeness assumption, our
method aims to make full use of the inherent information of whether different
samples in the target domain belong to the same category, and effectively main-
tain the structural information of the target domain through the idea of problem
reduction. The experimental results show that our method has achieved compa-
rable performance with SOTA, and a large number of visualization results fully
demonstrate the effectiveness of our method. Finally, we analyze the errors in
the ablation studies and propose further research directions for improvement.
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