
An Integrated Navigation Method for UAV
Autonomous Landing Based on Inertial

and Vision Sensors

Kejun Shang(B), Xixi Li, Chongliang Liu, Li Ming, and Guangfeng Hu

Beijing Institute of Automation Equipment, Beijing 100074, China
kjshang@163.com, bridge968@sina.com

Abstract. In the process of autonomous landing of unmanned aerial vehicles
(UAV), the vision sensor is restricted by the field of view and UAV maneuvering
process, which maymake the acquired relative position/attitude parameters unsta-
ble or even odd (not unique), and there is a ‘blind area’ of vision measurement
in the UAV rollout stage, which loses the navigation ability and seriously affects
the safety of landing. In this paper, an autonomous landing navigation method
based on inertial/visual sensor information fusion is proposed. When the UAV is
far away from the airport and the runway imaging is complete, landing navigation
parameters are determined by vision sensor based on the object image conjugate
relationship of the runway sideline, and fuses with the inertial information to
improve the measure performance. When the UAV is close to the airport and the
runway imaging is incomplete, the measurement information of the vision sensor
appears singular. The estimation of the landing navigation parameters is realized
by inertial information in the aid of vision. When the UAV rollouts, the vision
sensor enters the ‘blind area’, judges the UAV’s motion state through the imag-
ing features of two adjacent frames, and suppresses the inertial sensor error by
using the UAV’s motion state constraint, so as to achieve the high-precision main-
tenance of landing navigation parameters. The flight test shows that the lateral
relative position error is less than 10m when the inertial with low accuracy and
visual sensor are used, which can meet the requirement of UAV landing safely.

Keywords: Autonomous landing navigation · Deep learning semantic
segmentation · Inertial/Vision data fusion

1 Introduction

Autonomous landing of UAV refers to the positioning, navigation and control of UAV
relying its own flight control system and various navigation equipment. The aim is to
guide the UAV to land on the runway independently and safely. It is the premise of
safe recovery and reuse of UAV in complex environment. Research data indicate that the
number of faults in landing process accounts formore than 80%of the total faults in UAV
mission profile. For the fixed wing UAV with fast flight speed and no hovering function,
the landing process is more complex and the risk is higher. Accurate measurement
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of relative position/attitude between UAV and runway is the key to safe landing and
navigation. At present, the main methods of radio positioning and satellite difference
real-time positioning are lack of information integrity, anti-interference ability and data
update frequency.

In recent years, based on the visual navigation technology, people take the runway
plane as the cooperative target, determine the relative geometric relationship between the
UAV and the airport runway through the visual sensor during landing, and then obtain
the relative position/attitude between them. This method has a great advantage in the
measurement accuracy, and has been gradually verified by the engineering application,
causing extensive research internationally [1, 2]. Wand and Zhou use AprilTag markers
as tracking targets for the landing navigation of rotor wing UAV [3, 4]. However, fixed
wing UAVs landing on airport runways cannot use additional tracking targets except
runway. Wang and Zhang propose navigation methods based on runway detection and
visual-inertial fusion, when the runway features imaging integrated [5, 6]. However, the
acquired relative position/attitudemay be unstable or even singular due to the constraints
of visual sensor’s field of view, installation position, UAV’s maneuver mode and flight
environment. When the UAV approaches the starting line of the runway and enters the
rollout stage, the runway imaging is incomplete, there is not enough feature lines for
navigation due to the starting line losing and relative narrow field of view (the camera
is about 1.5 m above the ground). Then the UAV enter into the ‘blind area’ of visual
measurement, which brings a huge potential safety hazard to the landing [7–9].

To solve the above problems, this paper proposes an autonomous landing navigation
method based on the information fusion of inertial/visual sensors. When the UAV is
far away from the airport and the runway image is complete, the landing navigation
parameters of UAV are determined based on the object image conjugate relationship of
the runway characteristic line of visual sensors [10, 11]. When the UAV is close to the
airport and the runway imaging is incomplete, themeasurement information of the visual
sensor appears singular, and the UAV landing and navigation parameters are estimated
by the information of the inertial sensor assisted by the visual information. In the stage of
theUAV’s touchdown and rollout, the visual sensor enters the ‘blind area’, and judges the
UAV’s motion state by the imaging features of two adjacent frames in order to improve
the measurement accuracy and reliability of landing navigation information.

2 Landing Process Analysis and Scheme Design

Taking a typical landing flight profile of a fixed wing UAV as an example (as shown in
Fig. 1), the landing process is divided into 4 areas:

Area A: xl < K1. As shown in Fig. 2(a), the runway imaging is represented as a
‘point target’, so the relative position/attitude information cannot be calculated in the
visual sensor coordinate system.

Area B: K1 ≤ xl < K2. As shown in Fig. 2(b), high-precision relative posi-
tion/attitude measurement information can be obtained in the visual sensor coordinate
system and then fuses with inertial navigation information to improve the performance.

Area C: K2 ≤ xl < K3. As shown in Fig. 2(c), it is not sufficient for visual
measurement. The relative position/attitude can be acquired with the aid of inertial
sensor.
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Area D: K3 ≤ xl < K4. As shown in Fig. 2(d), the runway center line is clearly
visible, which can be used to judge the motion state of UAV and assist to realize the
inertial navigation error suppression based on motion constraints.

Fig. 1. The typical landing process of UAV

(a) Area A (b) Area B (c) Area C (d) Area D

Fig. 2. Visual features during UAV’s typical landing process

3 Intelligent Identification of Airport Runway Based on Deep
Learning Semantic Segmentation

3.1 Runway Segmentation Network Design

The runway area is defined as the area between the left line, the right line, the start line
and the end line of the runway, as shown in the quadrilateral area with A, B, E, F as the
vertices in Fig. 3.
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Fig. 3. Definition of runway area

When designing the segmentation network, the segmentation accuracy and multi-
scale feature extraction ability of the network should also be improved while focusing
on the real-time calculation.
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As shown in Fig. 4, the runway segmentation network (named RunwayNet [12])
adopts an encoder-decoder structure, and the encoder consists of a backbone network
and a self-attentionmodule. TheNetworkBackbone is a lightweight ShuffleNetV2mod-
ified by Atrous Convolution or Dilated Convolutions, which gradually extracts abstract
semantic features from the input image, andfinally outputs featuremap; the self-attention
module performs feature transformation on the feature map output by the backbone net-
work through two sub-modules of positional attention and channel attention to capture
the similarity of feature map spatial dimension and channel dimension information to
improve the receptive field and feature extraction ability of the network. The decoder
module realizes the fusion of rich details and spatial location information in the shallow
layer of the network with the rough and abstract semantic segmentation information in
the top layer through skip connections and bilinear interpolation upsampling. Finally,
use convolution to map the output feature map of the decoder into two channels (num-
ber of classification categories), and after upsampling 8 times, take the maximum value
(ArgMax) in the channel dimension to obtain the final segmentation result.
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Fig. 4. RunwayNet network architecture

3.2 Runway Edge Feature Extraction

First, contour detection is performed, and the landing stage is judged according to the
proportion of the runway contour. Then the spatial characteristics of the runway area
are calculated, and the barycentric coordinates of the runway contour and the perimeter
of the contour are calculated according to the space moment. Then the candidate line
segment is fitted and run to the sideline. In order to further eliminate the wrongly clas-
sified line segments entering the runway sideline, outliers are eliminated by comparing
with the reference line segments in each category. Finally, first-order polynomial fitting
is performed on each type of line segment group to obtain the coordinates of the corre-
sponding straight line equation, and minimize the squared error through iteration to get
the optimal solution of the straight line equation.

4 Modeling of Visual Relative Position/Attitude Measurement
Based on the Characteristics of Runway Boundary

The edge line of the airport runway mainly includes the starting line ls, left line ll and
right line lr . In the imaging of the visual sensor, these three lines can form a triangle
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[13, 14], as shown in Fig. 3. The model based on this inherent feature can uniquely
determine the relative position/attitude between the visual sensor and the runway under
the condition of accurately calibrating the geographic coordinates of four points A, B,
E, F and the focal length of the visual sensor [15–17].

4.1 Coordinate System and Parameters Definition

The coordinate systems involved in this paper include earth coordinate system (e sys-
tem), geographical coordinate system (t system), UAV coordinate system (m system),
world coordinate system (w system), runway coordinate system (l system), visual sensor
coordinate system (c system), image coordinate system (i system) and inertial sensor
coordinate system (b system) [18, 19]. The relationship between w system and c system
is shown in Fig. 5.

co

cy
cx

cz

wx
wy

wz

L

wo

l l

L

B
A

F
E

Fig. 5. The relationship between world and visual sensor coordinate system

Set the half-length and half-width of the runway as L and l, and the resolution of the
visual sensor as m × n (rows × columns, unit: pixel). Define the relative attitude angles
between the coordinate system of the visual sensor and the world coordinate system
as the relative rolling angle γr , relative heading angle ψr and relative pitch angle θr ,
respectively. Then the rotation zc axis ⇒ yc axis ⇒ xc axis with −γr , −ψr , −π

2 − θr
can match the w system. The conversion relationship between them is shown in Eq. (1)
[20]

Cw
c = RX

(
−π

2
− θr

)
RY (−ψr)RZ (−γr) (1)

4.2 Mathematical Modeling of Visual Relative Position/Attitude Measurement

Modeling of Object Image Conjugate Relation. Let a point P in the space in the
image coordinate system be the homogeneous coordinate Pc = [r c 1]T . The homo-
geneous coordinate in the world coordinate system is Pw = [

xw yw zw 1
]T . The

conjugate relationship between the object and the image is shown in Eq. (2) [21, 22]

Pc = sK̃C̃c
wT̃

′Pw (2)
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where s = 1
zc
, and zc is the z axis component of the space point P in the coordinate

system c of the vision sensor. K̃ is the internal parameter array of the vision sensor. C̃c
w

includes the relative attitude to be solved. T̃ ′ includes the relative position to be solved.

The process to get the relative position and attitude can be abstracted as a typical
PNP problem [23, 24]. In this paper, the rectangle contour of runway composed of four
vertices A, B, E and F, and the inherent features of two parallel sidelines and one starting
line are used to calculate the relative position/attitude, which can avoid the problem that
the measurement accuracy in the traditional solution method [5, 6] is seriously affected
by the extraction error of feature point image.

Relative Attitude Solution. In the coordinate system of vision sensor, the left line ll ,
the right line lr And the starting line ls are obtained by the feature extraction of runway.
the equation can be described as

⎡
⎣
1 kl ql
1 kr qr
1 ks qs

⎤
⎦Pc = EPc =

⎡
⎣
0
0
0

⎤
⎦ (3)

where ki and qi(i = l, r, s) are the slope and intercept of three equations respectively.

Relative heading angle ψr will be reflected in the horizontal deviation �c (unit:
pixel) between and point C and the image center.

Relative rolling angle γr will be reflected in the slope of the starting line ls.
Relative pitch angle θr will be reflected on the vertical deviation �r (in pixels)

between the C point and the image center point when imaging, so

ψr = −arc tan

(
d�c

f

)
, γr = arc tan(ks), θr = arc tan

(
d�r

f

)
(4)

Relative Position Solution. The equation can be sorted out as
⎡
⎣1

al3
al1

1
ar3
ar1

⎤
⎦

[
t
′
x

t
′
z

]
=

[
l

−l

]
, t

′
y = −L − as3

as2
t
′
z (5)

so the values of t
′
x and t

′
z and t

′
y can be solved by Eq. (5).

However, when the airport runway image is incomplete or it enters the ‘blind area’
of visual measurement, the slope and intercept under the three characteristic edge image
coordinate system of the runway cannot be obtained. The solution is singular, which
brings security risks to UAV landing. The inertial/visual sensor information fusion
technology presented in this paper aims to solve this problem.

5 Information Fusion Model of Inertial/Visual Sensor

The inertial/visual information fusion model used in relative position/attitude measure-
ment during the whole landing process is shown in Fig. 6.
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Fig. 6. Inertial/visual information fusion process

5.1 System State Equation

Select system status as

X =
[
δvt ϕt δPt ε ∇ δβψ δβθ δβγ δαθ δαψ

]T
(6)

where δvt = [ δvtN δvtU δvtE ], ϕt = [ϕt
N ϕt

U ϕt
E ], δPt = [

δφ δλ δh
]
are velocity,

attitude and position errors calculated by inertial sensor; ε = [
εx εy εz

]
and ∇ =

[∇x ∇y ∇z ] are the bias stability parameters of three gyros and three accelerometers;
δβψ , δβθ , δβγ are installation error angles between inertial and visual sensor in heading,
pitch and roll direction; δαθ and δαψ represent installation error angles between inertial
sensor andUAVbody in pitch and heading direction respectively,which can be calculated
by dead reckoning in area D.

It is considered that all installation error angles are constant, and the specific form
of system error equation can be seen in relevant literature [25–30].

5.2 System Observation Equation

Position Error Equation. After compensating the lever arm error between the iner-
tial sensor and the visual sensor, the position error of the inertial information can be
calculated according to the following formula

⎡
⎣

δL
δλ

δh

⎤
⎦ =

⎡
⎣
LINS

λINS

hINS

⎤
⎦ −

⎛
⎜⎝

⎡
⎢⎣

1
(RMo+ho)

0 0

0 1
((RNo+ho)cos(Lo))

0

0 0 1

⎤
⎥⎦ · Ct

w

⎡
⎢⎣
t
′
x
t
′
y

t
′
z

⎤
⎥⎦ +

⎡
⎣
Lo

λo

ho

⎤
⎦

⎞
⎟⎠ (7)
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where, RMo and RNo are the curvature radii of the earth calculated by the coordinates of

Ow points [20],
[
LINS λINS hINS

]T
are the latitude, longitude and height calculated by

inertial sensors.
[
Lo λo ho

]T
are the latitude, longitude and height of the central point

of AB.

In area B, the relative position
[
t
′
x t

′
y t

′
z

]
and relative attitude (included in Ct

w)

measured by the visual sensor are directly used.
In area C, the attitude measurement information of vision sensor is singular. The

installation error angle matrix Cb
c between inertial sensor and vision sensor, the matrix

Ct
b and matrix Cw

t can be used to calculate the relative attitude matrix Cw
c . Then the

relative position information
[
t
′
x t

′
y t

′
z

]
can be obtained and used in formula (7).

Cw
c = Cw

t C
t
bC

b
c (8)

Error Equation of Dynamic Zero Velocity. In area D, the image features of two adja-
cent frames are used to judge whether the UAV is in a straight-line rollout state. when
the UAV is in this state, the velocity error of the inertial sensor is restrained by the
motion constraint of zero lateral velocity and vertical velocity. The specific methods are
as follows:

The output velocity of the inertial sensor is vt , the attitude conversion matrix is Cb
t ,

and the attitude conversion matrix between the UAV and the inertial sensor is Cm
b . Then,

vm = Cm
b C

b
t v

t, vm
′ = Cm′

b Cb
t′v

t′ (9)

where vt
′ = vt + δvt , vm

′ = vm + δvm, Cm
′

b = Cm
′

m Cm
b = (I − δα×)Cm

b , C
b
t′ = Cb

nC
n
t′ =

Cb
t (I + φt×). Then,

δvm = vm
′ − vm = Cm

b (Cb
t φ

t × vt + Cb
t δv

t) − δα × Cm
b C

b
t v

t (10)

where δα = [
0 δαθ δαψ

]T
.

Observation Equation. Based on the above analysis, the observation equation of the
system is established as follows

Z =
[
KB · δL KB · δλ KB · δh KD · δvmx KD · δvmy

]T
(11)

where

KB =
{
1 located in B or C
0 others

,KD =
{
1 located in D
0 others

(12)
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6 Experiment Verification

6.1 Experiment Conditions

The method proposed in this paper is verified by the actual flight data of a certain UAV,
the flight experiment conditions are as follows:

1. The vision sensor is installed in a forward direction, the resolution of the vision
sensor is 1024 × 768, and the horizontal field angle is 19.2°.

2. The performance of the inertial sensor is: the gyro bias stability is 0.5°/h; the
accelerometer bias stability is 100 µg.

3. During landing, the UAV’s track inclination is 2.5°. K1 = −200 m, K2 = −400 m,
K3 = 750 m, K4 = 1500 m. The width of the runway is 50 m.

4. During the landing process, the satellite difference positioning data are collected
synchronously, which is used as the reference to evaluate the method in this paper.

The lateral position error of runway coordinate system and visual sensor coordinate
system plays a decisive role in landing safety, which is the most concerned relative
position component in landing control. Generally, the lateral error cannot larger than
15 m. In order to evaluate the effectiveness of this method, the lateral errors of each
region in the process of UAV landing are compared, and the performance curve of this
method in the whole process of UAV landing is given.

6.2 Experiment Results

1. Location error analysis of area B. The UAV’s flight duration in area B is about 15 s
and the flight distance is about 800 m. The pure inertial lateral error diverges to
1.50 m and the visual measurement gives a lateral error of 0.30 m, as shown in
Fig. 7(a).

2. Analysis of positioning error in area C. The UAV has a continuous flight time of 30 s
in area C and a flight distance of about 1150 m. The traditional method uses inertial
measurement to obtain the landing navigation parameters, and the lateral position
error increases rapidly to 15.76 m, exceeding the allowable range (15 m). Using the
method of inertial/visual information fusion given in this paper, the error of lateral
position is within 1m in the first half. Because the error of the inertial measurement
is corrected by visual measurement in the first half, it can still be controlled within
3.04 m at the end of the second half, as shown in Fig. 7(b).

3. Error analysis of area D positioning. The UAV has a continuous flight time of 40 s
in area D and a sliding distance of 750 m. Traditional landing visual navigation
methods cannot obtain landing navigation parameters at this stage and the lateral
position error generated by inertial measurement increases rapidly from 3.04 m to
51.02 m.While the maximum lateral position error is 8.24 m using the inertial/visual
information fusion method given in this paper, as shown in Fig. 7(c).

4. Analysis of comprehensive positioning error in the whole landing process of UAV.
Figure 7(d) shows the comparison of lateral position error curves of different landing
navigation strategies during thewhole landingprocess ofUAV.The cumulative lateral
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error of the traditional landing visual navigation method is 68.47 m when the UAV
stops, which does not meet the requirements of safe landing. The lateral error of
proposed method is 8.24 m when the UAV stops, which reduces to 12% of the
traditional method, meeting the requirements of safe landing.

(a) In area B (b) In area C

(c) In area D (d) In whole landing progress

Fig. 7. Comparison of lateral errors

7 Conclusion

The vision sensor is affected bymany factors during the landing process of UAV. Aiming
at the instability of landing navigation parameters such as the relative position/attitude
between UAV and runway, a method of autonomous landing navigation of UAV based
on information fusion of inertial/vision sensor is proposed. The flight experiment shows
that the lateral relative position error can reach 8.24 m under the condition of using low
precision inertial and visual sensors, which can meet the requirement of UAV’s safe
landing. This paper provides a new low-cost strategy, fully autonomous solution for
UAV landing, especially in complex electromagnetic environment.
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