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Abstract. With an irresistible trend of intelligent learning, predicting
knowledge concepts for educational videos turns out to be a funda-
mental and essential task, which benefits personalized recommendation,
retrieval, and learning. Prior studies of videos mainly focus on relatively
short human actions and object recognition, while educational videos
are minutes long and have heterogeneous elements such as texts, for-
mulas, and hand-drawn graphics that serve lecturers’ narration. Owing
to the characteristics of education, most of the segmentation strategies
for long-term videos do not apply well to educational videos. In addi-
tion, educational videos consist of progressive or referential sections and
contain multimodal information. Thus, we propose a novel framework
called Spotlight Flow Network (SFNet) to obtain hierarchical knowledge
concepts for educational videos with multi-modality. Specifically, we first
adopt an effective text-to-visual section segmentation strategy. Then, we
model the mechanism that the viewers’ spotlight follows the lecturer
and leverage the associations between sections to enhance multimodal
representation. We also consider explicit inter-level constraints of the
hierarchical knowledge structure and associations between sections and
concepts to get better predicting performance. Extensive experimental
results on real-world data demonstrate the effectiveness of SFNet.

Keywords: Educational videos · Multi-modality · Hierarchical
multi-label classification

1 Introduction

With the rapid development of online video platforms and intelligent educational
systems like Coursera and Khan Academy [12], an enormous amount of students
and knowledge seekers browse educational videos to consolidate their under-
standing of courses and broaden their horizons. Knowledge concepts prediction
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Fig. 1. An example of a math video from Khan academy and its related hierarchical
knowledge concepts.

for educational videos is a fundamental task and very promising for organizing
and managing educational videos with great quantity and diversity.

Figure 1 shows an example of a math video and related knowledge concepts
with part of the knowledge structure. The video consists of multiple frames and a
series of closed captions, and can be split into three different sections, i.e., intro-
duction, problem solving, conclusion. In the last section, the lecturer refers to
the problem and reviews the problem-solving process again, which demonstrates
a common characteristic that educational videos are combined with sections
(such as introduction, concept explanation, analysis, conclusion), and draws the
importance of considering context of sections. As a key element of education,
knowledge concepts are usually in the form of tree or Direct Acyclic Graph
(DAG). As shown in Fig. 1, if we take the root node as level 0, sub-concepts
are separated into two different routes from level 2, which describes Hierarchical
Multi-label Classification (HMC). This type of problem has drawn more atten-
tion in industry and education with the trend of disciplinary crossover.

In the literature, prior works on video classification [3,4,22] have achieved
great success. Most of these works mainly focus on relatively short video clips and
recognize human actions and objects, while long-term video understanding has
not been explored a lot yet. For long videos, prior studies [30] choose to evenly or
randomly sample certain frames, or detect shot-boundaries [31] to break down
whole videos into sections. Philip et al. [12] studied different types of educational
videos and how video production decisions affect student engagement. Typical
styles of educational videos include classroom lectures, slide presentations, “talk-
ing head” shots of an instructor and digital tablet drawings. Long-term content
and more complex composition structure make the above strategy ineffective
in educational videos. In addition, most recent HMC works [14] combine local
and global approaches, and utilize hierarchical dependencies in the form of a
feed-forward network. However, these studies fail to model explicit inter-level
hierarchical constraints, and are currently limited to textual content.
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In summary, there are the following challenges: (1) How to make use of
multi-modal information from frames and subtitles. (2) How to consider finer-
grained characteristics of educational videos that are relatively long, such as the
section-level contexts. (3) How to effectively split educational videos. (4) How
to explicitly model inter-level constraints in hierarchical knowledge structure.

To tackle the above challenges, we propose a novel framework named Spotlight
Flow Network (SFNet). Specifically, we adopt a text-to-visual uniform segmen-
tation strategy by utilizing progressiveness within a section and uniformity pro-
vided by timecodes of closed captions. Then, we model the mechanism of viewers’
spotlight following the lecturers by leveraging different information from the pre-
processing step. We also utilize explicit inter-level constraints of the hierarchical
knowledge structure and associations between sections and concepts to improve
the performance of knowledge concepts prediction. A real-world dataset of 7,521
educational videos is constructed and extensive experimental results address the
effectiveness of our proposed method.

2 Related Work

Long-Term Video Understanding. In the literature, there have been many
efforts to understand video content [2,5,6,13], including 2D and 3D CNN net-
works [9,26,32], two-stream methods [22], and well-known transformer-based
methods [3,4] in recent years. Most of the prior works mainly focus on relatively
short video clips (normally within 30 s) and recognize human actions, objects and
scenes, etc., while long-term video understanding has not been explored a lot yet.
Donahue et al. [8] proposed an end-to-end recurrent convolutional network for
learning long-term dependencies. Wu et al. [31] proposed an object-centric trans-
former framework that recognizes, tracks, and represents objects and actions of
long videos. In summary, most existing studies casually or equally sample certain
frames from videos [17,27] or detect shot-boundaries [31] to breakdown whole
videos into sections, yet they cannot apply well on educational videos due to the
diversity and complexity of the contents.

Multimodal Video Representation. Aside from visual frames, videos also
contain multimodal information such as audio and captions texts, which have
complementary semantics and could enhance representation [15,23]. Shang et al.
[19] utilized timestamps of closed captions to incorporate multimodal signals
with a short-term order-sensitive attention mechanism. Gabeur et al. [11] devel-
oped a transformer-based architecture that jointly encodes different modalities’
appearance by exploiting cross-modal cues. Nagrani et al. [16] added Multimodal
Bottlenecks to input of transformer encoder and limited exchange of multimodal
data in the middle of self-attention layers, and obtained more effective represen-
tation. For educational videos, VENet proposed by Wang et al. [28] exploited
the static and incremental characteristics and modeled the fixed reading order of
human, yet like other studies, is inadequate to fuse intra-section multi-modalities
at a fine-grained level, which is emphatically concerned in our framework.
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Hierarchical Multi-label Classification. There have been efforts for HMC
in the literature [1,10]. Flat-based methods ignore the hierarchical structure and
only leverage the last level. Local approaches adopt classifiers for each hierarchy,
while global methods predict all classes with a single classifier. Recently, many
hybrid methods that combine both the local and global manner have been pro-
posed. Sun et al. [24] transformed the label prediction problem to optimal path
prediction with structured sparsity penalties. Shimura et al. [21] addressed the
data sparsity problem that data from the lower level is much sparser than that
from upper levels and developed HFT-CNN to optimize. Wehrmann et al. [29]
proposed a hybrid method called HMCN while penalizing hierarchical violations.
Huang et al. [14] proposed HARNN, an attention-based recurrent network that
models the correlation between texts and hierarchy. Recently, Shen et al. [20]
presented TaxoClass that utilizes the core classes mechanism of humans. How-
ever, most prior studies are limited to texts and not adequate to capture the
inter-level constraints of hierarchical structure.

3 Preliminaries

3.1 Problem Definition

The input of our task is an educational video V = {F,C} composed of multiple
frames F = {f1, f2, ..., fn} and closed captions C = {c1, c2, ..., cm}, where each
frame fi is an RGB image in width W and height H, and a caption is made up
with texts, start and end timecodes, i.e. cj = {tj , tc

start
j , tcendj }. Texts of cap-

tions can be described as a word sequence t = {w1, w2, ..., wk}. The Hierarchical
Knowledge Structure is denoted as γ = (K1,K2, ...,KH), where H represents the
depth of hierarchy and Ki = {k1, k2, ...} is the set of knowledge concepts of level
i. The Predicted concepts are L = {l1, l2, ..., lH} where ∀i ∈ {1, 2, 3, ...,H}, and
li ⊂ Ki. Given an educational video V and the hierarchical knowledge structure
γ, our goal is to predict the knowledge concepts L for the video.

3.2 Text-Visual Uniform Section Segmentation

Unlike previous works [31] that detect shot boundaries of visual frames and
then guide the segmentation of captions, we preprocess sequential frames and
closed captions by exploiting timecodes of captions. We first complement closed
captions for videos using ASR (Automatic Speech Recognition) tools. We observe
that educational visual content within a section is progressive and later frames
tend to contain more information. Thus, inspired by Adaptive Block Matching
(ABM) [28] and Dynamic Frame Skipping [18], we develop an efficient section
segmentation strategy that fits well in educational videos:

1. Select the center frames of timecode gaps as candidates of sections.
2. Merge sections. Replace adjacent candidates within tmin by the latter ones.
3. Calculate the difference matrix diff and score σ of all adjacent candidate

frames by pixel-wise value subtraction.
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4. Merge sections if corresponding difference score σ is less than threshold θmin.
5. Calculate all ABM scores δ for adjacent candidates if difference score σ is

greater than threshold θmax.
6. Select top nsections candidates of δ as the keyframes representing each section

with uniform pairs of caption and difference matrices between sections.

It is worth noting that the ABM score is calculated by dividing two frames
into patches and measuring how the latter patches cover the previous ones. The
difference score σ of the k-th candidate can be expressed as:

σ(k) =
1

W ∗ H

i<W,j<H∑

i=0,j=0

|fk+1
ij − fk

ij |, (1)

where fk
ij denotes the scaled pixel value of the k-th candidate frame. As a result,

each input video is split into fixed number of sections. Each section comprises
a keyframe and several uniform pairs of difference matrix and caption texts,
serving the modeling of fine-grained spotlight flow within section.

4 Spotlight Flow Network

In this section, we introduce the details of SFNet, as shown in Fig. 2. We will
discuss the two main parts, especially present the modeling of the Spotlight Flow
Mechanism and specify the loss function used to train the model.

Fig. 2. The SFNet framework.

4.1 Multimodal Representation Layer

In the first stage of SFNet, we aim to represent each section by encoding mul-
timodal data and modeling Spotlight Flow Mechanism, and obtain video-level
representation. The input of each section is a keyframe and several uniform pairs
of difference matrices and caption texts. We first utilize a variant of ResNet [25]
to extract keyframe feature rf ∈ R

d1 . A base version of BERT is used to get
sequential semantic vectors rcs ∈ R

t×d1 for all captions within the section, where
t denotes the number of diff-caption pairs.
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Fig. 3. Multimodal Representation Layer.

Spotlight Flow Attention (SFA). We observe that lecturers tend to conduct
viewers to focus on certain visual regions. Content that periodically comes out
or is regularly referenced by underlines, circle drawings, etc., strongly indicates
the correlation of different time periods and connects time and moving regions.
Thus, SFA is designed to model the above mechanism. Inspired by I3D [7],
we inflate the feature maps from the middle of the backbone and get rmid ∈
R

t×d2×w×h. We resize difference matrices with interpolation and apply element-
wise multiplication as follows:

rflow(i,j) = rmid
(i,j) · diff(i,j), (2)

and through the latter part of the feature extractor, we get the corresponding
features of moving regions rflow ∈ R

t×d1 . Then SFA can be formulated as:

rcatt = SFA(rflow,Wsf , rcs) = softmax(rflow · Wsf )rcs, (3)

where matrix Wsf ∈ R
t×d1 is the hidden matrix. Considering the association

between the sequential captions, we utilize Bi-LSTM that is capable of learning
dependencies across the sequence forward and backward at the same time. We
input rcatt and rflow with the same size on temporal dimension, and the final
representation of caption rc is calculated by average pooling the hidden state.

Caption Frame Attention (CFA). We propose CFA by taking the correlation
between captions and related parts of the visual content across time. We exploit
CFA by using the hidden states of Bi-LSTM h as the query of attention input:

rfatt = avg(CFA(h, rf , rf )) = avg(
softmax(h · rf )√

dk
rf ), (4)

where avg() denotes the average pooling operation, and dk represents the scaled
factor. Therefore, the representation of the section is as follows:

rsec = rc ⊕ avg(rdiffs) ⊕ rfatt, (5)
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and the final output of MRL is calculated by inputting all the section-level
features to a video level Bi-LSTM to model the correlation among sections.

4.2 Hierarchical Multi-label Inter-level Constrained Classifier

Fig. 4. Inter-level constrained unit.

Since we have obtained the multimodal representation of the video V ∈ R
n×d,

where n is the number of sections, a Hierarchical Multi-label Inter-level Con-
strained Classifier (HMICC) is proposed to predict knowledge concepts for edu-
cational videos based on the feed-forward manner of current hybrid methods.
The network consists of several Inter-level Constrained Units (ICU) shown in
Fig. 4. Each one utilizes Section-Concept Attention (SCA) and Inter-level Con-
strained Matrix (ICM) to model each level’s dependencies and feed the hidden
information to the next unit. Specifically, Si ∈ R

Ci×d denotes the hidden repre-
sentation of the i-th level and is input to SCA together with V . We apply the
dot-product scores to measure the similarity of categories and video sections:

Vatt = softmax(Si · V ) · V,

rvatt = avg(Vatt),
(6)

where we operate average pooling on temporal dimension to get rvatt. Then we
concatenate rvatt and the previous hidden state hi−1 to obtain hi by:

hi = ϕ(Wh(rvatt ⊕ hi−1) + bh), (7)

where ⊕ denotes concatenation. Here we adopt the Inter-level Constrained
Matrix ICMi ∈ R

Ci×Ci+1
with each icmjk representing the influence of the

j-th category on the k-th one to the next level. We initialize all ICMs by calcu-
lating the conditional probabilities from the training set. The result of product
between ICMs and previous prediction is added up to get the local prediction
through a hidden layer, and the global output is obtained by inputting the last
hidden state through a fully-connected layer:

P i
L = σ(WL((P i−1

L ICMi) ⊕ hi) + bL),
PG = (WG · hH + bG),

(8)
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where Wh, WL and bH , bL are weight matrices and bias vectors. Therefore, we
can calculate the final predictions P with a parameter β ∈ [0, 1] for balancing
the local and global outputs:

P = β · PG + (1 − β) · (P 1
L ⊕ P 2

L⊕, . . . ,⊕PH
L ), (9)

4.3 Training SFNet

In this section, we specify a hybrid loss function for training SFNet to learn
both global and local information. We calculate the global loss(LG) and the
local loss(LL) for each hierarchical level, which can be formulated as:

LG = ε(PG, YG),LL =
H∑

h=1

ε(Ph
L , Y h

L ), (10)

where YG denotes the binary label vector for all categories of the knowledge
structure and Y h

L contains only the categories of the h-th level. We utilize the
binary cross-entropy loss as ε(Ŷ , Y ) and formulate the final loss function as:

L(Ω) = LL + LG + λ||Ω||2, (11)

where Ω denotes the parameters of SFNet and λ is the hyper-parameter for L2
regularization. Thus, we can train SFNet by minimizing the loss function L(Ω).

5 Experiments

5.1 Data Description

To evaluate the performance of our framework, we construct the dataset by col-
lecting 7,521 educational videos, corresponding closed captions and hierarchical
knowledge concepts from Khan Academy1 The dataset involves a three-level
hierarchical knowledge structure with 6, 42, 351 concepts in each level, and 399
in total. Averagely, a video is 436.4s long and has 1151 words of captions.

5.2 Baseline Approaches and Experimental Setup

We compare our proposed model with state-of-the-art works including unimodal
and multimodal approaches. It is worth noting that all baseline models are pre-
trained on ImageNet, Kinetics dataset, etc., according to the categories, and
tuned to obtain the best results.

– R3D [26] is a deep 3D convolution network with residual connection across
layers and enables a very deep network structure while retaining performance
improvement.

1 All Khan Academy content is available for free at www.khanacademy.org.

www.khanacademy.org
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– SlowFast [9] is a two-stream 3D CNN network that consists of two different
paths that separately focus more on temporal and spatial information.

– TimeSformer [4] is a video transformer network that uses frame patches
with positional encoding as input and exploits divided spatial and temporal
self-attention.

– R3D+BERT is the combination of R3D and BERT. We leverage BERT to
obtain the feature of captions and fuse the visual feature from frames.

– HMCN-F [29] is a feed-forward network that models the top-down hier-
archical relationship and optimizes both local and global performance with
penalties of hierarchical violations.

We implement all the methods using Pytorch. To train SFNet, we first set
nsections as 8 and the maximum length of words for each caption as 64. We
use ResNet34 and BERT-base as the feature extractor backbones and set the
output dimension to 256. Hidden sizes of Bi-LSTM and HMICC are 128. We use
the Adam optimizer and set up the initial learning rate to 0.0005 with cosine
annealing scheduler that periodically adjust the value to 0.00005 for every 60
epochs. We also set β = 0.5, λ = 0.00005 and dropout rate as 0.5 to mitigate
over-fitting. We used Precision, Recall, F1 − score, and mAP (mean Average
Precision) as criteria for performance comparison. Whether a model considers the
knowledge hierarchy or not, we calculated the performance at each hierarchical
level and globally as well to further compare the differences.

Table 1. Performance Comparison on khan academy dataset. V and T denote the
visual and textual modalities of the input data.

Model Input mAP Precision Micro-F1 Recall

R3D V 0.6089 0.6745 0.5897 0.4591

SlowFast V 0.6433 0.6936 0.6124 0.5431

TimeSformer V 0.6799 0.7126 0.6295 0.5982

HMCN-F T 0.7321 0.7640 0.6724 0.6213

R3D+Bert V+T 0.8125 0.8391 0.7204 0.6428

SFNet V+T 0.8351 0.8712 0.7628 0.6787

5.3 Experimental Results

Performance Comparison. From the results shown in Table 1 and Fig. 5, we
can get several observations. First, models with textual input tend to outperform
those visual-only models. In educational videos, visual content serves the lectur-
ers’ explanation. Due to the complexity and variance of visual elements such
as hand-drawn graphics, it is harder to understand the semantics than textual
content. It also indicates the significance of spotlight flow attention. Second, it
is obvious that the performance decreases as the level gets lower. Hierarchical
structure has a natural identity that higher levels have fewer categories and more
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Fig. 5. Performance of SFNet and baseline models on different hierarchical levels.

data, which might explain the step down of performance. The results show that
SFNet is more efficient by considering the inter-level association.

Ablation Study. To further assess how each part of our model donates to
the performance, we remove each key module once at a time and construct
several variants of SFNet. In Table 2, all the key modules do have contribution
to better-predicting performance. The greater difference indicates more impact
of the removed module. In addition, the variant without textual input has the
greatest performance drop, which once again showing the above characteristics.

Table 2. The results of ablation study. V and T represent visual and textual input.

Model mAP Precision Micro-F1 Recall

SFNet 0.8351 0.8712 0.7628 0.6787

V-only 0.5897 0.6528 0.5734 0.4345

T-only 0.7654 0.8133 0.7282 0.6571

6 Conclusion

In this paper, we presented Spotlight Flow Network to predict knowledge con-
cepts for educational videos. We first adopted an effective text-to-visual section
segmentation strategy for educational videos. Then, with different information
paired with captions, we modeled the Spotlight Flow mechanism in which lectur-
ers tend to conduct viewers’ attention and moving regions help build up space-
time connection. We also designed the HMICC to predict hierarchical knowledge
concepts with implicit progressive impact and explicit inter-level constraints.
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