
Physical Logic Enhanced Network
for Small-Sample Bi-layer Metallic Tubes

Bending Springback Prediction

Chang Sun1 , Zili Wang1,2(B) , Shuyou Zhang1,2, Le Wang1, and Jianrong Tan1,2

1 State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University,
Hangzhou 310027, China
ziliwang@zju.edu.cn

2 Engineering Research Center for Design Engineering and Digital Twin of Zhejiang Province,
Zhejiang University, Hangzhou 310027, China

Abstract. Bi-layer metallic tube (BMT) plays an extremely crucial role in engi-
neering applications, with rotary draw bending (RDB) the high-precision bending
processing can be achieved, however, the product will further springback. Due to
the complex structure of BMT and the high cost of dataset acquisition, the exist-
ing methods based on mechanism research and machine learning cannot meet
the engineering requirements of springback prediction. Based on the preliminary
mechanism analysis, a physical logic enhanced network (PE-NET) is proposed.
The architecture includes ES-NET which equivalent the BMT to the single-layer
tube, and SP-NET for the final prediction of springbackwith sufficient single-layer
tube samples. Specifically, in the first stage, with the theory-driven pre-exploration
and the data-driven pretraining, the ES-NET and SP-NET are constructed, respec-
tively. In the second stage, under the physical logic, the PE-NET is assembled
by ES-NET and SP-NET and then fine-tuned with the small sample BMT dataset
and composite loss function. The validity and stability of the proposed method
are verified by the FE simulation dataset, the small-sample dataset BMT spring-
back angle prediction is achieved, and the method potential in interpretability and
engineering applications are demonstrated.

Keywords: Physical logic enhanced network · Mechanism analysis ·
Small-sample BMT dataset · Composite loss function

1 Introduction

Bent-tube is an important component for transporting gas, liquid, and even load-bearing,
which plays an extremely crucial role in industrial production and application. Rotary
draw bending (RDB) is the primary method for bent-tube processing, which has the
advantages of high precision andwell flexibility. After the bending processing, the elastic
deformation recoverswith the removal of themold’s constraints,which is normally called
the springback phenomenon. The springback will significantly affect the accuracy of the
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product, making a margin necessarily to be given for compensation in the processing
plan with an accurate springback prediction in advance.

Through themechanism analysis of the bending process, the single-layer tube spring-
back can be predicted from the angles of the bending state [1], prestress field [2], etc.
With the improvement of the industry’s requirements, the bi-layer metallic tube (BMT)
have gradually been widely applied with advantages such as corrosion protection, wear
and impact resistance, thermal and electric insulation. The material properties and inter-
layer coupling of BMT are incredibly complex [3], which greatly increases the diffi-
culty of springback prediction. Therefore, different from the well-established research
of the single-layer metallic tube processing, the existing springback research of the BMT
mainly focuses on the influence of individual factors [4, 5]. Its processing deformation
mechanism still urgently needs to be further explored.

Although it is difficult for BMT to implement the forming theory of classical single-
layer tubes directly, there is a remarkable similarity in bending deformation between
them. In fact, it is feasible to equivalent the bi-layer materials as one of them for simpli-
fying, which has been verified in beams and slabs [6, 7]. Nevertheless, due to the unique
cross-sectional properties, the errors in the BMT equivalence make it difficult to be used
directly.

Through the unique structure and learning method, the neural network can reach
the effect of a nonlinear function, and have the ability to accomplish the springback
prediction based on the batch FE simulation data [8, 9]. However, when it comes to
a problem with the small-sample dataset, the network can be challenging to reach an
acceptable accuracy.

From the perspective of the scientific paradigm, the machine learning algorithms and
the physical models are driven by data and theory, respectively. The theoretical approach
is based on strict logical relationships with strong interpretability and generalization
performance. Meanwhile, machine learning methods can realize the reflection of the
internal relationship from dataset dimensions that are difficult to observe. Therefore, the
combination of them has received more and more attention. In fact, with the guidance
of physical knowledge, machine learning has been shown to benefit from plausible
physically-based relationships in research and applications [10, 11]. Such methods have
been initially applied and demonstrated their effectiveness in disease prediction [10, 12],
geological detection [13], natural language processing [14], mechanical analysis [15],
etc.

As mentioned above, the deformation mechanism of the BMT is exceptionally com-
plicated. At the same time, since the high cost of BMT and the complex processing
requirements, the scale of the dataset is limited, which makes it difficult for the network
to achieve acceptable accuracy with the data-driven approach alone. However, combined
with the preliminary physical analysis, the network can learn start on the basis of physi-
cal logic and existing knowledge, which can improve the training efficiency, reduce the
probability of overfitting, and improve the accuracy of the network.

Therefore, the physical logic enhanced network (PE-NET) is proposed to solve the
problems of the insufficient mechanism analysis and limited datasets of BMT. PE-NET
includes an equivalent section network (ES-NET) and a single-layer prediction network
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(SP-NET). ES-NET is used to map the equivalent shape parameters of BMT to single-
layer tube, while SP-NET carries the knowledge of single-layer bending deformation
for final prediction. The two are pre-trained under the data-driven and theory-driven,
respectively, and then combined as PE-NET under the physical logic. After that, the
parameters of PE-NET will be rationally constrained by the loss function combination
of mechanism equation, and fine-tuned by the small BMT dataset.

Themain contributions of this paper are as follows: (1)The equivalent sectionmethod
is applied to the mechanism analysis of BMT bending. (2) A collaborative architecture
of theory-driven and data-driven together is constructed based on physical logic. (3) The
BMTspringback angle prediction is realized by the proposedPE-NETwith small-sample
dataset and mechanism analysis.

2 Background Knowledge

2.1 RDB Processing of BMT

Springback is caused by residual stress after RDB processing which can be affected by
multiple factors. As shown in Fig. 1, during the processing, the tube blank is deformed
under the constraint and movement of molds. Specifically, under the boosting of the
pressure die and the clamping of the clamp die, the tube blank is bent and rotated around
the bending die, while thewiper die preventswrinkling defect. The radiusRB and rotation
angle αB of the bending die directly determine the product shape. At the same time, the
initial location LP and boost velocity νB of the pressure die, the processing velocity ωB,
the gap Gi and friction fi between the tube blank and the molds also have a significant
influence on the generation and distribution of residual stress.

Clamp die

Bending die

Wiper die

Pressure die

θ R

LpVp

Feed direction

Al outside
Cu innerside
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Gap
Mold

Insert

Tube blank

Fig. 1. RDB processing of BMT

In addition to the above processing parameters, the shape parameters are also major
factor of springback to be considered. The wall thickness T and diameter Do of the tube
blank directly determine the bending properties and springback angle. For BMT, the
thickness ratio Tr is also one of the decisive factors.
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2.2 Equivalent Section Theory

The springback can be regarded as the recovery of the elastic deformation caused by a
reversemomentM from the internal processing stress of the bent-tube before springback.
Therefore, the equivalent characteristics of the material in the elastic deformation stage
will be mainly analyzed.

The mechanism of tube bending is always based on the sheet bending theory. As
shown in Fig. 2, take a micro-element on the section of the laminated beam. In order
to simplify the analysis, the bending process satisfies the assumption of plane section
and unidirectional force, and the neutral layer does not shift. For materials such as
aluminum and alloy steel, the linearly strengthened elastic-plastic material model can
be adopted. Assuming that there is no axial force during the processing, i.e., the pure
bending condition, and normal stress can be regarded as zero. Combine with the stress
distribution in the elastic deformation stage, we have

FN = ∫
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k
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where for the k-th material, SZk is the area moment (static moment), IZk is the moments
of inertia, Ek is the distribution of the elastic modulus, and ρ is the distance from the
neutral axis.

Fig. 2. Bending analysis of laminated beams

Then we have

σi = −EiMy∑n
k=1 EkIZk

= λi
My

IZ0
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k=1
λkSZk = 0 (5)
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where λi = Ei/Em(i = 1, 2, . . . n) is the ratio of the elastic modulus, Em is the reference
elastic modulus, SZ0 is the total area moment of each equivalent section, and Iz0 is the
total moments of inertia of each equivalent section. For an integral region, 1/ρ and Ek
are both constants.

As shown in Eqs. (4) and (5), the thickness of each material region will be scaled
down by λk , the width and the circumferential centroid position will remain unchanged,
and the multi-material section will be transformed into the specified material section.
IZ0 can be obtained by the moment of inertia of the transformed section to the neutral
axis, and the equivalent single-layer tube radius and thickness can be further calculated.

3 Methodology

3.1 Proposed Prediction Architecture

Fig. 3. The architecture of the PE-NET: (a) is the shape parameter of the BMT; (b) is the shape
parameter of the single-layer tube; (c) is the predicted springback.

The parameter update of the traditional neural network relies on the observation
of the prediction value and the label, which the parameters are able to explore in an
unrestricted region. However, the small-sample of the bi-layer dataset cannot guarantee
that the network parameters reach an acceptable result. Realizing domain transfer based
on theory analysis, and using sufficient close domain knowledge can make up for the
inferior of the small-sample dataset. On this basis, the network can be partitioned into
functional modules according to physical logic, which provides very strong theoretical
logic and constraints on top of the observational ones [11].

Pre-exploration of the network parameter domain and applying the guidance to the
network parameters in further training is an effective way to improve training efficiency
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and prevent overfitting [16]. In terms of results, both theory-driven and multi-objective
optimization-based parameter preselection [17] are common methods to improve net-
work accuracy. The results of multi-objective-based methods are random, lack physical
logic, and rely heavily on prior knowledge. However, theory-driven network training
can achieve parameter domain pre-exploration without effective prior knowledge, and
is well applied to small-sample prediction.

The proposed PE-NET architecture is shown in Fig. 3. The traditional neural network
for the mapping of the parameters to the springback often adopts the data-driven method
with path Fig. 3a directly to Fig. 3c.Due to the similar bendingmechanismof bi-layer and
single-layer materials, the close domain knowledge can be used. The PE-NET consists
of twomodules, namely the ES-NETwhich is for the equivalent mapping from the BMT
to the single-layer tube, and the SP-NET which is for the final springback prediction
with the single-layer tube knowledge. Specifically, at the first stage, the parameters of
the ES-NET are pre-explored based on preliminary mechanism analysis, realizing the
Fig. 3a,b, and the parameters of SP-NET are pretrained on the low-cost single-layer
tube dataset, realizing Fig. 3b,c. In the second stage, the PE-NET is constructed by
ES-NET and SP-NET based on the physical logic. Since the discrepancy of different
material datasets and the error of mechanism analysis, the fine-tuning of the PE-NET is
implemented. The loss function of PE-NET in the second stage is based on two parts, i.e.,
the rationality constraints based on the mechanism equation, and backpropagation from
the small-sample dataset. The detail of their cooperation will be introduced in Sect. 3.3.

As shown in Fig. 3, benefiting from the sufficient dataset and the ability of neural
networks for high-dimensional relationship mapping, a fully-connected network (FCN)
can achieve acceptable accuracy for springback prediction [9]. Specifically, SP-NET and
ES-NET each contain a hidden layer with 10 units. In addition, ES-NET also includes
an implicit output layer (FCN2) for single-layer tube shape parameter equivalent, which
is also used as an FCN with 2 units in the second stage.

3.2 Preliminary Analysis of BMT Equivalence Section

Fig. 4. Schematic diagram of equivalent section process: (a) is the BMT section; (b) is one of
the microelements; (c) is the cross-section after the material E2 is equivalent to E1; (d) is the E1
material section of the equivalent moment of inertia with (c); (e) is the equivalent single-layer
tube section.

For the theory-driven pre-exploration of the ES-NET parameter in the first stage,
the preliminary analysis based on equivalent section theory is necessary. As shown in
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Fig. 4, take the elastic modulus E1 of material on the outside as the reference, based
on the calculation of area moments, the distance between the central axis and the upper
edge of the micro-element c can be calculated. It can be seen from Eq. (5) that the area
moments before and after are equal. Therefore, the radius R of the equivalent section is

R = r + e = r + (t1 + √
λ2t2)(t1 − √

λ2t2)

2(t1 + λ2t2)
(6)

where r is the radius of the junction of the BMT section, e is the centroid axis offset of
the equivalent micro-element section compared with the original BMT, ti(i = 1, 2) is
the thickness of the i-th material, λ2 = E2/E1.

With the properties of the tube section and Eq. (6), we have

t30 + 4R2t0 − 1

R

[
(r + t1)

4 − (1 − λ2)r
4 − λ2(r − t2)

4
]

= 0 (7)

Combined with conditions of real numbers and engineering, the equivalent material
thickness t0 in the can be obtained.

According to R and t0, the shape parameters of the equivalent single-layer tube can
be obtained. Since the assumptions and simplifications are adopted, the error must exist.
However, the above analysis ensures the equivalent result is under the basic physical
laws, which can guarantee the physical rationality of the ES-NET pre-exploration in the
first stage, and the fine-tuning of the PE-NET in the second stage.

3.3 Composition of the Loss Function

As shown in Fig. 3, in the first stage, the parameter updates for ES-NET and SP-NET
are based on theory-driven and data-driven, respectively, as shown below.

Lp = MSE
(
ES − NET

(
xbs

)
− fES−NET

(
xbs

))
(8)

Ld = MSE
(
PE − NET

(
xb

)
− YSA

)
(9)

where xb is the input of the BMT, xbs is the shape parameter input of the xb,ES−NET
(
xbs

)

reflect the shape parameter of the single-layer tube, which is also the implicit output of
ES-NET and the implicit input of the PE-NET in the second stage, donated as xss .YSA is
the predicted springback which the output of SP-NET in the first stage and the output
of the PE-NET in the second stage. fES−NET represents the theory-driven knowledge for
pre-exploration of the ES-NET in the first stage.

In the second stage, the PS-NET is fine-tuned with a combination of update-driven
approaches. Based on Eqs. (10) and (11), Lp can keep the ES-NET in the reasonable
parameter domain and guarantee the physical plausibility of this process. However,
the reliability of the loss function Ld for parameter update driven by real data will
significantly be higher than Lp driven by physical equivalence theory. In order to keep
their advantages in the second training stage, the integration of the two parameter update-
driven approaches for better cooperation is necessary. Therefore, the dynamic weight
loss function will be adopted, as follows:

LES−NET = zLp + (1 − z)Ld (10)
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z =
{
PN(xss,1)

(2xss − fES−NET
(
xbs

) ≤ X ≤ fES−NET
(
xbs

)
), Lp > 2xss

0, Lp ≤ 2xss
(11)

where z is the dynamic weight coefficient and N is the normal function.
Given the reasonable range of equivalence relationship result, in the second stage,

when the implicit result of ES-NET is far away from the physical reasonable, Lp will
guide the parameters until it is physical reasonable. When the result is within the reason-
able range, Lp will no longer play a dominant role, and instead, the PE-NET parameter
will be updated mainly based on Ld .

4 Case Study

As one of the most commonly used material combinations, copper-aluminum BMT has
received more and more attention due to its advantages in weight and thermal properties.
Their material properties vary greatly, and their elastic modulus are E1 = 80.7 GPa and
E2 = 110 Gpa, respectively. In engineering applications, compared with the widely used
aluminum tube, the data of the copper-aluminum BMT is still rare, and the research
on its deformation still needs to be improved, which makes it selected as the research
object.

4.1 Dataset Construction

FE simulation is an effective method to obtain engineering solutions [4, 18]. It is an
important step to verify technical routes by constructing datasets that meet experimental
requirements and reduce trial costs before actual applications.

With the Latin hypercube sampling, the datasets are determined. TheABAQUS 2016
platform is used for simulation analysis. The S4R shell with the specially 9th-order
Simpson integration points in the thickness direction is used for the tube deformation
unit, and the R3D4 rigid for the molds. The stress-strain trend of the material adopts
the power hardening model. The friction constraint is applied when the tube blank is
pulled. The composite material is assigned to the properties of the BMT, including
the relative sampling thickness ratio. Since the velocity is one of the important factors
affecting springback, the bending processing adopts explicit dynamics analysis, while
static analysis is used for springback simulation. The simulated result is imported into
MATLAB for post-processing to extract the springback result and build the dataset.

In order to meet the engineering practice, there is a significant order of magnitude
difference between the single-layer tube and the BMT. Specifically, the single-layer
tube dataset, namely Dataset1, contains 600 samples, provides sufficient single-layer
tube deformation knowledge. Since the double-layer tube is a small sample, its dataset,
i.e. Dataset2 has only 80 samples.

4.2 Precision Analysis of Proposed Method

As mentioned in Sect. 3.1, the training consists of two stages. The first stage is for
the parameter pre-exploration of the ES-NET and the pretrain of the SP-NET, and the
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second stage is for the parameter fine-tuning of PE-NET. Accuracy is the median error of
multiple training results. The accuracy of the two stages is themedian error of 30 training
sets, as shown in Table 1. Particularly, in the second stage, PE-NET is constructed based
on specific SP-NET and ES-NET with the median of error.

All training is performed on MATLAB 2022a on the same GPU. All datasets will be
split before training, 80% of which will be used for training, and the remaining be used
for tests. The test set does not participate in the training process. The Adam optimizer
is employed, and the dataset is shuffled every epoch. For the first stage, the training
minibatch size is set to 5, and the initial and decay factor of the gradient are 0.005 and
0.9, respectively. For the second stage, the training minibatch size is set to 2, and the
initial and decay factor of the gradient are 0.0001 and 0.8, respectively.

Table 1. The median RMSE of the two training stages

SP-NET ES-NET

Stage 1 Springback angle Do T

0.7672 0.7133 0.4916

PE-NET

Stage 2 Springback angle

0.3922

As shown in Table 1, the median error of PE-NET is 0.3922, which meets the
requirements of engineering applications. It should be noted that although the second
stage is fine-tuning based on the small-sample Dataset2, the accuracy is higher than that
of SP-NET only based on data-driven. On the one hand, this reflects the rationality and
effectiveness of the architecture proposed. On the other hand, based on the learning of
multiple driving logic and datasets, the network can learn a variety of features and noise,
which greatly improves the ability of generalization and overfit prevention. This can also
be proved in Sect. 4.3.

4.3 Effectiveness of PE-NET

Controlled experiments are conducted to verify the effectiveness of the proposed phys-
ical logic architecture. PE-NET without ES-NET pre-exploration based on mechanism
analysis, and without SP-NET pre-training are analyzed, denoted as PE-NET-WMA
and PE-NET-WSP, respectively. Without any pre-operation, the PE-NET architecture
and simple BPNN with 10 units hidden layer are trained based on Dataset2, denoted as
BL-NET and BP-NET, respectively. All training parameters are the same. The results
of multiple sets of training and corresponding average RMSE are recorded, as shown in
Fig. 5 and Table 2, respectively.
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Fig. 5. Box-plot of springback prediction methods comparison

Table 2. The median RMSE of the controlled experiments

Method RMSE

PE-NET 0.3922

PE-NET-WMA 0.6019

PE-NET-WSP 23.7527

BL-NET 6.9424

BP-NET 6.3572

Results show that PE-NET performs the best no matter of accuracy or stability.
Despite the possibility of available prediction accuracy, the lack of theoretical guidance
and constraints reduces the stability of PE-NET-WMA, making it less efficient than
PE-NET in engineering applications. Similarly, without pre-training with close domain
knowledge, the performance of PE-NET-WSP is extremely poor, making it difficult to
be applied to BMT springback prediction of small samples. The above two results also
prove the validation of the deformation knowledge of single-layer tube and mechanism
analysis, and the effectiveness of the proposed physical logic-based PE-NET architecture
has also been demonstrated. For BL-NET and BP-NET, its poor accuracy and stability
make it impossible to be used in engineering applications either.

In addition, the accuracy of the mechanism analysis is also revealed. The RMSE of
equivalent Dataset2 springback is 1.6164. This also proves the necessity of fine-tuning
based on BMT data. On this basis, it is feasible to further improve the equivalent theory
with the help of the fine-tuned ES-NET, which also demonstrates the potential of the
PE-NET architecture in interpretability.
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5 Conclusion

In thiswork, we proposed a physical logic-based architecture network PE-NET to predict
the springback of BMT with small samples. The BMT was logically equivalent to the
single-layer tube, and then predicted with the single-layer springback knowledge. At
first, the bending deformationmechanical analysis for section equivalent was conducted.
Then, with the data-driven and theory-driven methods, the ES-NET and SP-NET were
built with the theory-driven parameter pre-exploration and the data-driven pretraining,
respectively. Finally, the PE-NET was constructed with the combination of ES-NET
and SP-NET under the physical logic and the composition of the loss function. The
validation and stability of the proposed method were verified with the FE simulation
platform. This work is a primary attempt to solve the engineering problems with the only
small-sample and limited theory, and will be integrated into more complex prediction
and interpretability research in the future.
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