)

Check for
updates

1

Monocular visual scene understanding is a fundamental technology for many
automatic applications, especially in the field of autonomous driving. Using only
a single-view driving image, available vehicle parsing studies have covered pop-
ular topics starting from 2D vehicle detection, then 6D vehicle pose recovery,
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Abstract. We introduce VERTEX, an effective solution to recovering
the 3D shape and texture of vehicles from uncalibrated monocular inputs
under real-world street environments. To fully utilize the semantic prior
of vehicles, we propose a novel geometry and texture joint representa-
tion based on implicit semantic template mapping. Compared to exist-
ing representations which infer 3D texture fields, our method explicitly
constrains the texture distribution on the 2D surface of the template
and avoids the limitation of fixed topology. Moreover, we propose a
joint training strategy that leverages the texture distribution to learn
a semantic-preserving mapping from vehicle instances to the canonical
template. We also contribute a new synthetic dataset containing 830
elaborately textured car models labeled with key points and rendered
using Physically Based Rendering (PBRT) system with measured HDRI
skymaps to obtain highly realistic images. Experiments demonstrate the
superior performance of our approach on both testing dataset and in-the-
wild images. Furthermore, the presented technique enables additional
applications such as 3D vehicle texture transfer and material identifica-
tion, and can be generalized to other shape categories.
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and finally vehicle shape reconstruction. However, much less efforts are devoted
to vehicle texture estimation, even though both humans and autonomous cars
heavily rely on the appearance of vehicles to perceive surroundings. Simulta-
neously recovering the geometry and texture of vehicles is also important for
synthetic driving data generation [19], vehicle tracking [20], vehicle parsing [23]
and so on.

Reprojection Visualization 3D Visualization

Fig. 1. We propose a method to recover realistic 3D textured models of vehicles from
a single image (top left) under real street environments. Our approach can reconstruct
the shape and texture with fine details. (We manually adjust the scale and layout of
models for better visualization.)

Challenges for monocular geometry and texture recovery of vehicles mainly
arise from the difficulties in inferring the invisible texture conditioned on only
visible pixels while handling various vehicle shapes. Additionally, in real-world
street environments, reconstruction methods are also expected to offset the
adverse impact of complicated lighting conditions (e.g., strong sunlight and
shadows) and diverse materials (e.g., transparent or reflective non-Lambertian
surfaces). That said, the shape and appearance of vehicles are not completely
arbitrary. Our key insight is that those challenges can be addressed with the
prior knowledge from vehicle models, especially the part semantics. Therefore,
we seek to find a method that is a) aware of the underlying semantics of vehi-
cles, and b) flexible enough to recover various geometric structures and texture
patterns.

Recently, deep implicit functions (DIFs), which model 3D shapes using con-
tinuous functions in 3D space, have been proven powerful in representing com-
plex geometric structures [22,28]. Texture fields (TF) [26] and PIFu [31] took a
step further by representing mesh texture with implicit functions and estimating
point color conditioned on the input image. To do so, both TF and PIFu diffuse
the surface color into the 3D space. However, it remains physically unclear how
to define and interpret the color value off the surface. What’s worse, geometry
and texture are not fully disentangled in either PIFu or TF, as they rely on the
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location of surface to diffuse the color into the 3D space, making it difficult to
incorporate semantic constraints.

In this paper, we explore a novel method, VERTEX, for VEhicle Recon-
struction and TEXture estimation from a single image in real-world street envi-
ronments. At its core is a novel implicit geo-tex representation that extends
DIFs and jointly represents vehicle surface geometry and texture using implicit
semantic template mapping. The key idea is to map each vehicle instance to a
canonical template field [8,39] in a semantic-preserving manner. In our geo-tex
representation, texture inference is constrained on the 2-manifold of the canoni-
cal template; in this way, we can leverage the semantic prior of vehicle template,
encourage the model to learn a consistent latent space for all vehicles and bypass
the unclear physical meaning of a texture field.

However, training such a representation for vehicle reconstruction is not
straight-forward, because we have no access to the ground-truth mapping from
vehicle instances to the canonical template field. [8,39] proposed to train the
mapping network in an unsupervised manner, and the mapping follows the prin-
ciple of shortest distance. As a result, the mapping in these methods is not guar-
anteed to preserve accurate semantic correspondences. To resolve this drawback,
we propose a joint training method for the geometry reconstruction and texture
estimation networks. Our training method is largely different from the train-
ing schedule of “first geometry then texture” adopted by typical reconstruction
works [13,26,31]. This stems from the insight that the surface texture is closely
related to its semantic labels; consider the appearance difference between differ-
ent parts such as car bodies, windows, tires and lights as examples. The texture
information can serve as the additional supervision to force the template map-
ping to be semantic-preserving.

Trained with our joint training method, our implicit geo-tex representation
owns the advantages of both mesh templates and implicit functions: on one hand,
it is expressive to represent various shapes, which is the main advantage of DIF's;
on the other hand, it disentangles texture representation from geometry, thus
supports many downstream tasks including material editing and texture transfer.
Although it is initially designed for vehicles, our method can generalize to other
objects such as bikes, planes and sofas.

To simulate real street environments and evaluate our method, we also con-
tribute a synthetic dataset containing 830 elaborately textured car models ren-
dered using Physically Based Rendering (PBRT) system with measured HDRI
skymaps to obtain highly realistic images. Each instance is labeled with key
points as semantic annotations and can be exploited for evaluation and future
research.

In summary, our contributions include:

— a novel implicit geo-tex representation with semantic dense correspondences
and latent space disentanglement, enabling fine-grained texture estimation,
part-level understanding and vehicle editing;

— a joint training strategy leveraging the consistency between RGB color and
part semantics for semantics-preserving template mapping;
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— a new vehicle dataset, containing diverse detailed car CAD models, PBRT
based rendered images and corresponding real-world HDRI skymaps.

2 Related Work

2.1 Monocular Vehicle Reconstruction

Recently, many works [1,10,13,16] concentrate on vehicle 3D texture recovery
under real environments. Due to the lack of ground truth 3D data of real scenes,
they mainly focus on the reconstruction from collections of 2D images utiliz-
ing unsupervised or self-supervised learning and build on mesh representation.
Though eliminating the need for 3D annotations and generating meaningful vehi-
cle textured models, these works still suffer from coarse reconstruction results
and the limitation of fixed-topology representation. With large-scale synthetic
datasets such as ShapeNet [4], many works [6,26,33] train deep neural networks
to perform vehicle reconstruction from images. Based on volumentrically rep-
resentation like 3D voxel [33] and implicit functions [26], these works generate
plausible textured models in the synthetic dataset, but still struggle with low-
quality texture. In contrast, our approach outperforms state-of-the-art methods
in terms of visual fidelity and 3D consistency while representing topology-varying
objects.

In addition, some works [3,9,25,27,38,40] focus on novel view synthesis, i.e.,
inferring texture in 2D domain. Although they can produce realistic images, they
lack compact 3D representation, which is not in line with our goal.

2.2 Deep Implicit Representation

Traditionally, implicit functions represent shapes by constructing a continuous
volumetric field and embed meshes as its iso-surface [2,32,34]. In recent years,
implicit functions have been implemented with neural networks [5,11,22,28,
31,37] and have shown promising results. For example, DeepSDF [28] proposed
to learn an implicit function where the network output represents the signed
distance of the point to its nearest surface. Other approaches define the implicit
functions as 3D occupancy probability functions and cast shape representation
as a point classification problem [5,22,31,37].

As for texture inference, both TF [26] and PIFu [31] define texture implicitly
as a function of 3D positions. The former uses global latent codes separately
extracted from input the image and geometry whereas the latter leverages local
pixel-aligned features. Compared with the above approaches [26,31] which pre-
dict texture distribution in the whole 3D space, our method explicitly constrains
the texture distribution on the 2D manifold of the template surface with implicit
semantic template mapping.
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Fig. 2. The overview of our approach. Given the single RGB image, vehicle digitization
is achieved by geometry and texture reconstruction. We first convert the original picture
into an albedo map, and then extract multi-scale latent codes in Latent Embedding.
Conditioned on these latent codes, our neural networks can infer SDF to reconstruct
mesh surface and then regress RGB value for the surface.

3 Implicit Geo-Tex Representation

Our method for vehicle reconstruction and texture estimation is built upon a
novel geo-tex joint representation, which is presented in this section.

3.1 Basic Formulation

We believe that an ideal geo-tex representation should disentangle texture rep-
resentation from geometry as uv mapping does and should be accord with the
physical fact that texture only attaches to the 2D surface of the object. In par-
ticular, observing that vehicles are a class of objects with a strong template
prior, we extend DIT [39] and propose a joint geo-tex representation using deep
implicit semantic templates. The key idea is to manipulate the implicit field of the
vehicle template to represent vehicle geometry while embedding texture on the
2-manifold of the template surface. Mathematically, we denote the vehicle tem-
plate surface with St as the level set of a signed distance function F : R? i R,
i.e. F(q) =0, where g € R? denotes a 3D point. Then our representation can be
formulated as:

Pip = W(p, zshape)

§= F(ptp) 1

pg) = W(p(S)7 zshape) ( )

Cc= T(pgif)a ztez)

where W : R3 X Xspape — R3 is a spatial warping function mapping the 3D
point p € R3 to the corresponding location py, in the canonical template space
conditioned on the shape latent code zgpape, and F' queries the signed distance
value s at pgp. p®) € S ¢ R? is a 3D point on the vehicle surface S, which is
also mapped onto the template surface Sy using the warping function W, and
T : St X Xy — R3? regresses the color value ¢ of the template surface point

pgf ) conditioned on the texture latent code Zier- Intuitively, we map the vehicle
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surface to the template using warping function W and embed the surface texture
of different vehicles onto one unified template. Therefore, in our representation,
texture is only defined on the template surface (a 2D manifold), avoiding unclear
physical meaning of a three-dimensional texture field.

3.2 Formulation for Image-based Reconstruction

For a specific instance, the shape information is defined by zsnape, While the
texture information is encoded as z;.;, both of which can be extracted from
the input image using CNN-based encoders. To further preserve fine details
presented in the monocular observation, we fuse local texture information rep-
resented as Zjoe_tex(P) at the pixel level. Not only the texture in visible region
can benefit from local features, invisible regions can also be enhanced with the
structure prior of the template. Formally, our formulation can be rewritten as:

Pip = W(P, zshape)
s = F(pyy)

S 2
ng) - Mg(p(s)azshape) ®
c= T(pgp), Ztexs loc_tex (P))

where T : Sp X Xiew X Xipetew — R? is conditioned on the latent codes
ztewandzloc,tea: .

In summary, aiming at vehicle texture recovery, our representation is more
expressive with less complexity. However, implementing and training our rep-
resentation for textured vehicle reconstruction is not straight-forward. We will
introduce how we achieve this goal in Sect. 4.

Template SDF Decoder
<> SDF Loss

(T
I

RGB Decoder

Template Mapping
— - — -
- -

Volume Samples - %
‘ e /-\ -
=2, €
Canoni plate Space Template Surface RGB Field

Surface Points

Fig. 3. To implement implicit semantic template mapping (right), we minimize both
data terms of geometry (blue arrows) and texture (green arrows) reconstruction simul-
taneously. Besides, the regularization terms (orange and pink arrows) for specific net-
work modules are applied to assist training. Note that Z in RGB Decoder is the con-
catenation of the global and local texture latent codes. (Color figure online)

4 Joint Geo-tex Training Method

4.1 Network Architecture

Figure 2 illustrates the overview of our network, consisting of three modules,
i.e., Latent Embedding (yellow), Geometry Reconstruction (blue) and Texture
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Estimation (green). Our network takes as input a single vehicle image and corre-
sponding 2D silhouette, which can be produced by off-the-shelf 2D detectors [15],
and generates a textured mesh.

Albedo Recovery: We empirically found that directly extracting texture latent
codes from the input images leads to unsatisfactory results. Therefore, before
feeding the input image to our network, we first infer the intrinsic color in 2D
domain by means of image-to-image translation [30], and the recovered albedo
image will be used as the input for texture encoders in Latent Embedding. We
find this module effectively contributes to alleviating the noise effects of image
illumination on consistent texture recovery.

Latent Embedding: The global shape and texture latent codes, 2Zshape & Zteq,
are extracted from the input image and recovered albedo map using two separate
ResNet-based [12] encoders respectively. The local texture feature, zjoc_ter (D), is
sampled following the practice of PIFu [31]. Different with other texture inference
works [26,31] which only utilize either global or local features for texture recon-
struction, we fuse multi-scale texture features to recover robust and detailed
texture.

Geometry Reconstruction and Texture Estimation: These two modules
form the core of VERTEX. They consist of three main components: Template
Mapping, Template SDF Decoder and RGB Decoder. Conditioned on zspgpe,
volume samples are sequentially fed to the Template Mapping and Template
SDF Decoder to predict the continuous signed distance field. For texture esti-
mation, surface points on reconstructed mesh are firstly warped to the template
surface conditioned on zgpape, and then passed through the RGB Decoder with
embedding latent codes Zieq, Zioctex(P) a0d Zpose to predict texture.

4.2 Network Training

Based on our implicit geo-tex representation, we train the geometry and texture
reconstruction network jointly. We visualize the training process in Fig.3 and
provide detailed definition of our training losses.

Data Loss: For geometry reconstruction, we mainly train by minimizing the
¢1-loss between the predicted and the ground-truth point SDF values:

Nsaf

qeo = df Z ||T pi7zshape)) - 81”1 (3)

where N4 represents the number of input sample points, Zspape is the shape
latent code corresponding to the volume sample point p;, and s; is the corre-
sponding ground truth SDF value on the p;.

To train the texture estimation network, we minimize the ¢1-loss between
the regressed and the ground-truth intrinsic RGB value:

Ltex = Z HT ( (pz zshape) s Rtexs Rloc_tex (pES))) —C; )
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where N, represents the number of input surface points, ¢; is the corresponding

ground truth color value on the surface point p;, and 2Zgpape; Ztew a0d Zioc_tex
(S)

are the latent codes corresponding to the p;
Regularization Loss: To establish continuous mapping between the instance
space and the canonical template space, we introduce an additional regulariza-

tion term to constrain position offsets of points after warping:

Nsar
1
Lreg = m ; HW (piazshape) - pi”g (5)

Template SDF Supervision: We supervise Template SDF Decoder directly
using the sample points of the template car model. The loss is defined as:

thfsdf

1 Z tp) (tp)
L sdf = HT ( ’ s ! H
tp_sdf th,sdf — (pz ) 57, 1 (6)

(tp)

%

where Ny, sqr represents the number of input sample points, p

(tp)

represents the

volume sample point around template model and s is the corresponding SDF
value.
Overall, the total loss function is formulated as the weighted sum of above

mentioned terms:

L= Ltew + nggeo + wT'egLreg + thtp,sdf (7)

4.3 Inference

As shown in the pipeline in Fig. 2, during inference, we first regress the signed
distance field with the branch of geometry reconstruction, and then 3D points on
the extracted surface are input to the branch of Texture Estimation to recover
surface texture. However, because of the lack of ground truth camera intrinsic
and extrinsic parameters, it is difficult for a 3D point to sample the correct local
feature from feature map, which poses a significant challenge. We address the
problem by setting a virtual camera and further optimizing the 6D pose under
the render-and-compare optimization framework. See supplementary for details.

5 Experiments

In this section, we first introduce the new vehicle dataset in Sect. 5.1. In Sect. 5.2,
we illustrate the reconstruction results under real environments and quantitative
scores on our dataset compared with two state-of-art baselines. The ablation
studies and generalization to other object categories are presented in
the supplementary.
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Fig. 4. Results on in-the-wild images. Monocular input images are shown in the top
row. We compare 3D models reconstructed by ours and contrast works (PIFu and
Onet+TF) retrained with our dataset. Two render views are provided to demonstrate
reconstruction quality. Our results achieve great performance in terms of both robust-
ness and accuracy.

5.1 Dataset

To generate synthetic dataset, we collect 83 industry-grade 3D CAD models
covering common vehicle types, each of which is labeled with 23 semantic key
points. We specifically select a commonly seen car as the vehicle template. To
enrich the texture diversity of our dataset, we assign ten different texture for
each model. We generate images with high visual fidelity using Physically Based
Rendering (PBRT) [29] system and measured HDRI skymaps in the Laval HDR
Sky Database [18]. Finally, we get a training set with 6300 instances and a testing
set with 2000 instances in total. Please refer to supplementary for more details.

5.2 Results and Comparison

We compare our method with two state-of-the-art methods based on implicit
functions. One is PIFu [31] which leverages pixel-aligned features to infer both
occupied probabilities and texture distribution. The other one is Onet + Texture
Field [22,26], of which Onet reconstructs shape from the monocular input image
and TF infers the color for the surface points conditioned on the image and
the geometry. For fair comparison, we retrain botth methods on our dataset by
concatenating the RGB image and the instance mask image into a 4-channel
RGB-M image as the new input. Specifically, for PIFu, instead of the stacked
hourglass network [24] designed for human-related tasks, ResNet34 is set as the
encoder backbone and we extract the features before every pooling layers in
ResNet to obtain feature embeddings. For Onet and TF, we use the original
encoder and decoder networks and adjust the dimensions of the corresponding
latent codes to be equal to those in our method.
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Qualitative Comparison. To prove that our method adapts to real-world
images, we collect several images from Kitti [21], CityScapes [7], Apol-
loScape [35], CCPD!, SCD [17] and Internet. As shown in Fig. 4, our approach
generates more robust results when compared with PIFu, while recovering much
more texture details than the combination of Onet and TextureField.

Table 1. Quantitative Evaluation using the FID and SSIM metrics on our dataset. For
SSIM, larger is better; for FID, smaller is better. Our method achieves best in both
two terms.

Method FID | | SSIM 1
PIFu* 215.8 | 0.6962
Onet+TF* 262.73 1 0.7002
Ours(w/o local feature fusion) | 156.8 |0.7057
Ours 148.2 | 0.7208

Ours(w/o joint training) 193.6 |0.6902
Ours(MPV as the template) |173.2 |0.6895
Ours(coupe as the template) |159.7 |0.6983
Ours(sphere as the template) |187.4 |0.6833

Quantitative Comparison. To quantitatively evaluate the reconstruction
quality of different methods, we use two metrics: Structure similarity image
metric (SSIM) [36] and Frechet inception distance (FID) [14]. These two metrics
can respectively measure local and global quality of images. The SSIM is a local
score that measures the distance between the rendered image and the ground
truth on a per-instance basis (larger is better). FID is widely used in the GAN
evaluation to evaluate perceptual distributions between a predicted image and
ground truth. It is worth noting that both SSIM and FID can not evaluate the
quality of generated texture of 3D objects directly. All textured 3D objects must
be rendered into 2D images from the same viewpoints of ground truth. To get a
more convincing result, for each generated 3D textured model, we render it from
10 different views and evaluate the scores between renderings and corresponding
ground truth albedo images. As shown in Tab. 1, our method gives significantly
better results in FID term and achieves state-of-the art result in SSIM term,
proving that our 3D models preserve stable and fine details under multi-view
observations. The quantitative results agree with the performance illustrated in
qualitative comparison.

We also implement a variant of our method which does not fuse local fea-
tures for the purpose of fair comparison. As shown in Tab. 1, our reconstruction
conditioned on global latent codes still outperforms ‘Onet+TF’, demonstrating
that our representation is more expressive in terms of inferring the texture on
the vehicle surface.

! https://github.com/nicolas-gervais/predicting-car-price-from-scraped-data/tree/
master/picture-scraper.
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6 Conclusion

In this paper, we have introduced VERTEX, a novel method for monocular
vehicle reconstruction in real-world traffic scenarios. Experiments demonstrate
that our method can recover 3D vehicle models with robust and detailed texture
from a monocular image. Based on the proposed implicit semantic template map-
ping, we have presented a new geometry-texture joint representation to constrain
texture distribution on the template surface. We believe the proposed implicit
geo-tex representation can further inspire 3D learning tasks on other classes of
objects sharing a strong template prior.

Acknowledgements. This paper is supported by the National Key Research and
Development Program of China [2018YFB2100500].
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