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Abstract. Densely-sampled light field (LF) images are drawing increas-
ing attention for their wide applications, such as 3D reconstruction,
virtual reality, and depth estimation. However, due to the hardware
restriction, it is usually challenging and costly to capture them. In this
paper, we propose a coarse-to-fine convolutional neural network (CNN)
for LF angular super-resolution (SR), which aims at generating densely-
sampled LF images from sparse observations. Our method contains two
stages, i.e., coarse-grained novel views synthesis and fine-grained view
refinement. Specifically, our method first extracts the multi-scale corre-
spondence in the sparse views and generates coarse novel views. Then
we propose a structural consistency enhancement module to regular-
ize them for LF parallax structure preservation. Experimental results
on both real-world and synthetic datasets demonstrate that our method
achieves state-of-the-art performance. Furthermore, we show the promis-
ing application of the reconstructed LF images by our method on the
depth estimation task.
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1 Introduction

Different from 2D imaging, light field (LF) imaging can record light rays on
not only spatial but also angular dimensions, where the geometric information
of the real-world scenes is encoded. Benefited from the rich angular clues, the
densely-sampled LF images are highly desirable for various applications, such as
3D reconstruction [10,24], post-refocusing [4], and virtual reality [28]. However,
it is challenging and costly to acquire densely-sampled LF images. For example,
the conventional LF imaging devices, including camera array [19] and computer-
control gantry [16], are usually bulky and expensive. The recent hand-held com-
mercial LF cameras [1,2] suffer from the intrinsic tradeoff between spatial and
angular resolutions since the sensor is shared for spatial-angular recording. To
tackle the tradeoff, developing computational methods to enhance the angular
resolutions of LF images is an attractive topic in recent years.
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As shown in Fig. 1, the LF image can be represented by an array of sub-
aperture images (SAIs). The horizontally or vertically stacked SAIs build up an
epipolar-plane image (EPI) volume, and the EPIs are the 2D slices of the EPI vol-
ume. In the literature, various approaches have been proposed from different per-
spectives, e.g. reconstructing novel SAIs, or high-resolution EPI volume (EPIs).
And they can be roughly classified into two categories, i.e., non-learning-based
methods [12–15,18,29,31] and learning-based methods [8,9,17,20–23,25,27].

The non-learning-based methods usually either predict the scene depth from
the sparse views as auxiliary information [12,18] or require handcrafted image
priors, such as sparsity in continuous Fourier domain [14] or shearlet transform
domain [15]. Recently, following the board application of deep learning tech-
nology, the learning-based methods have shown remarkable performance in LF
angular SR. Among them, both depth-dependent methods [8,9,20] and depth-
independent methods [11,17,21–23,25,27] are widely studied. Specifically, Yoon
et al. [27] proposed to jointly reconstruct the high-spatial and -angular res-
olution LF images. However, their performance is limited by the under-used
spatial-angular correlations in surrounding SAIs. Kalantari et al. [9] proposed
an end-to-end network, which estimates the scene depth that is utilized to syn-
thesize novel SAIs via a physically-based warping operation. They also proposed
a color network to refine the warped views. Yeung et al. [25] proposed to utilize
spatial-angular alternating convolutions [26] to explore the spatial-angular clues
in the input SAIs, and the final novel SAIs are generated via 4D convolutions.
Wang et al. [17] proposed a pseudo-4D CNN framework to reconstruct high-
resolution EPI volumes. Wu et al. [21,23] introduced a blur-restoration-deblur
scheme that works on 2D EPIs. Later, they proposed to fuse the pre-upsampled
sheared EPIs [20] to generate the final high-resolution EPIs. By taking advan-
tage of the geometry information, Jin et al. [8] proposed a depth-based network
for LF images with large baselines. Recently, Wu et al. [22] incorporated the
non-local attention mechanism to explore the spatial-angular correlations in the
EPI volumes.

Though the previous methods have achieved remarkable performance, the
depth-dependent methods rely heavily on the photo-consistency assumption and
fail to handle the non-Lambertian effect. The multi-scale correlations in the input
SAIs are under-exploited in the depth-independent methods. In addition, there
is still room to improve the reconstruction quality of parallax structure in recon-
structed LF images. Based on the above observation, in this paper, we develop
a depth-independent coarse-to-fine method for LF angular SR. Specifically, our
method first models the multi-scale correlations in the sparse views and syn-
thesizes coarse novel views. Then, we propose a structural consistency enhance-
ment module to regularize the intermediate results. We conduct experiments on
both real-world and synthetic LF datasets, and the results demonstrate that our
method achieves state-of-the-art performance in quantitative results and visual
quality.
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Fig. 1. Illustrations of LF images. The x, y are spatial coordinates and u, v are the
angular coordinates. The LF image can be represented as an array of sub-aperture
images (SAIs). The epipolar-plane image (EPI) volume is constructed by stacking one-
direction SAIs. The EPIs are the 2D slices of the EPI volume.

2 Proposed Method

The two-plane model [5] is widely utilized to parameterize the 4D LF as
L(x, y, u, v) ∈ R

U×V ×H×W . Given a sparsely-sampled 4D LF image LLR ∈
R

U×V ×H×W with angular resolution of U × V and spatial resolution of H × W .
This paper aims to reconstruct the corresponding densely-sampled LF image
LHR ∈ R

αU×αV ×H×W . We follow previous work [11,17,21–23,25] to perform
the proposed method on the Y channel of the input LF images, and the Cb
and Cr channels are up-sampled using bicubic algorithm on the angular domain.
The overall architecture of our method is depicted in Fig. 2 (a), which consists of
a coarse-grained view synthesis sub-network (CVSNet) and a fine-grained view
refinement sub-network (FVRNet). Specifically, the CVSNet takes the sparsely-
sampled LF image as inputs and generates novel views. Then the input views
and the synthesized views are concatenated to generate the intermediate results.
Finally, the intermediate results are fed into FVRNet to generate the final
densely-sampled LF image. In the following, we give the details of CVSNet and
FVRNet.

2.1 Coarse-grained View Synthesis Sub-network

Previous methods [11,25] utilize spatial-angular alternating convolution or 3D
convolution to extract the correlations in the sparsely-sampled LF image. How-
ever, the multi-scale correlations are under-exploited. To this end, we introduce
CVSNet which is a modified UNet architecture to model the multi-scale cor-
relations in the sparse views. The architecture of CVSNet is depicted in Fig. 2
(b).

As shown in Fig. 2 (b), the backbone of the proposed CVSNet follows the
encoder-decoder structure with skip connections of the UNet. The filter num-
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Fig. 2. The Framework of the proposed method. It contains two sub-networks, i.e.,
coarse-grained views synthesis network (CSVNet), and fine-grained view refinement
network (FVRNet). The CSVNet is utilized to synthesize novel views and FVRNet is
utilized to refine them.

ber of each convolutional layer is shown at the bottom of each block. The filter
number of the last convolutional layer N is the number of novel views to be
synthesized (e.g., N = 60 for 2×2 → 8×8 angular SR). The CVSNet consists of
two down-sampling and up-sampling operations. The down-sampling operation
is achieved by applying a convolutional layer with stride 2, and the up-sampling
operation is achieved by the PixelShuffle layer. Specifically, the input SAIs are
stacked along the channel dimension before being fed into CVSNet. Then CVS-
Net generates a set of novel SAIs by incorporating the multi-scale correlations
in the SAIs of the input sparsely-sampled LF image, which can be represented
as

LCoarse = HCVSNet(LLR), (1)

where the HCVSNet denotes the CVSNet and LCoarse denotes the synthesized
views. The generated novel views and the input views are concatenated, which
are fed into the FVRNet.

2.2 Fine-grained View Refinement Sub-network

An important property of the LF image is the valuable 4D structure, which is also
known as the parallax structure. To produce high-quality high-angular-resolution
LF images, the parallax structure should be well preserved. In our coarse views
synthesis, the novel views are synthesized without considering the structural
consistency among the intermediate views. Therefore, further refinement on the
intermediate LF image to enhance the structural consistency is required.

To preserve the LF parallax structure, an intuitive way is to apply high-
dimensional (e.g., 4D and 3D) CNNs. However, high-dimensional CNNs will
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bring a huge number of parameters and computational complexity. As an alter-
native, the spatial-angular alternating (SAA) convolution [26] is proposed to
utilize interleaved 2D convolutions on spatial and angular dimensions. How-
ever, as analyzed in [7], the spatial angular alternating convolutions still suffer
from inefficient feature flow. To this end, we introduce a structural consistency
enhancement (SCE) module by combining the spatial angular alternating con-
volutions and dense connections to regularize the intermediate LF image.

The structure of the FVRNet is depicted in Fig. 2 (c). In FVRNet, a shared-
weight convolution is first applied to extract the initial feature from the inter-
mediate SAIs, generating Finit ∈ R

α2UV ×C×H×W , where C is the number of
feature maps. Then Finit is fed into the structural consistency enhancement
module to explore the spatial-angular correlations. In the SCE module, the spa-
tial convolution is performed on each SAI-wise feature, F i

s ∈ R
C×H×W , i ∈

{1, 2, · · · , α2UV }. Then the output features are reshaped to stacks of angular
patches, i.e., Fa ∈ R

HW×C×αU×αV . The angular convolution is performed on
each angular feature, Fj

a ∈ R
C×αU×αV , j ∈ {1, 2, · · · ,HW}.

We apply dense connection in the SCE module to enhance the information
flow. Specifically, The output of the k-th (2 ≤ k ≤ 4) SAA convolution can be
formulated by

F (k)
SAA = Hk

SAA([F (1)
SAA, · · · ,F (k−1)

SAA ]), (2)

where [·] denote the concatenation operation, F (k)
SAA denotes the output feature

of the k-th SAA convolution, Hk
SAA denotes the k-th SAA convolution.

Specifically, we utilize four SAA convolutions in the SCE module. The output
feature of the SCE module is processed by two convolutional layers to output the
final results. Finally, a global residual connection in FVRNet is also performed.

2.3 Training Details

We utilize the L1 loss to minimize the distance between the ground truth and
the output of our method

L = ‖LSR − LGT‖1, (3)

where LSR is the angularly super-resolved LF image. The number of filters of the
convolutional layers in FVRNet is set to C = 32 (the last convolution has one
filter). We cropped the SAIs into patches of 64 × 64 for training. The batch size
was set to one, and the learning rate was initially set to 2e-4 which is reduced
by half after every 15 epochs. The training was stopped after 70 epochs. During
training, the data is augmented via random flipping and 90-degree rotation. We
implemented the network in PyTorch and utilized an NVIDIA RTX 2080 TI
GPU to train it. The ADAM algorithm is applied to optimize the network.
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Table 1. Quantitative comparisons (PSNR/SSIM) with the state-of-the-arts on real-
world datasets for 2 × 2 → 8 × 8 angular SR. The best results are highlighted in red.

Test sets Kalantari et al. [9] Wu et al. [21] Wu et al. [20] Yeung et al. [25] SAA-Net [22] Ours

30scenes 39.88/0.979 35.25/0.928 36.74/0.950 40.67/0.979 39.90/0.977 41.83 / 0.993

Occlusions 35.34/0.962 33.02/0.922 32.98/0.943 36.24/0.977 35.04/0.962 37.19 / 0.986

Reflective 34.99/0.940 33.64/0.927 34.38/0.941 35.72/0.945 35.36/0.945 36.27 / 0.970

Average 36.74/0.960 33.97/0.926 34.70/0.945 37.54/0.967 36.77 / 0.961 38.43 / 0.983

3 Experiments

The experiments are conducted on both real-world and synthetic LF scenes.
Specifically, we select 100 real-world scenes from Stanford Lytro Archive [3]
and Kalantari et al. [9] to train the model. We extract the central 8 × 8 SAIs
from the original 14 × 14 SAIs for training and testing. For synthetic scenes, we
select 20 scenes from HCInew dataset [6] to train the model. We compare our
methods with five state-of-the-art methods, i.e., Kalantari et al. [9], Yeung et
al. [25], Wu et al. [21], Wu et al. [20], and SAA-Net [22]. The Kalantari et al. [9],
Yeung et al. [25], and Wu et al. [20] are trained using the same training datasets
as ours. Since the training codes of Wu et al. [21] and SAA-Net [22] are not
available, we test their methods using their released models. The comparisons
are conducted on 2 × 2 → 8 × 8 task. Specifically, we sample the input sparse
2 × 2 views from the four corners of the ground-truth 8 × 8 views. To compute
the PSNR and SSIM scores of the angular SR results, only the Y channel of
synthesised views (e.g., 60 novel views for 2×2 → 8×8 angular SR) are utilized
for quantitative evaluation.

3.1 Comparison on Real-world Scenes

We used three test sets which contains 70 real-world LF scenes are utilized for
performance comparison, namely 30scenes [9], Occlusions [3], and Reflective [3].

Table 1 lists the PSNR and SSIM scores for each test set and the average
results for the three test sets. From Table 1, it can be observed that our method
consistently outperforms other state-of-the-art methods. Compared with Kalan-
tari et al. [9], our method achieves an average gain of 1.69 dB. This is because
their method incorporates estimated disparities to warp novel views from input
views. However, the warping operation is difficult to handle challenging cases,
such as occluded regions and non-Lambertian surfaces. The results of Wu et
al. [21] and Wu et al. [20] are inferior to others. The reason is that their methods
work on one-direction EPIs, which can not fully exploit the spatial correlations
in the SAIs. Our method outperforms Yeung et al. [25] by 1.16 dB on 30scenes
test set. Compared with SAA-Net [22], our method achieves 1.66 dB and 0.022
gain in terms of average PSNR and SSIM.

Figure 3 presents the visual comparison results of two scenes. It can be
observed that our method produces fine-grained details in the synthesized views.
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Table 2. Quantitative comparisons (PSNR/SSIM) with the state-of-the-arts on syn-
thetic datasets for 2 × 2 → 8 × 8 angular SR. The best results are highlighted in
red.

Test sets Kalantari et al. [9] Wu et al. [21] Wu et al. [20] Yeung et al. [25] SAA-Net [22] Ours

HCInew 32.37/0.905 28.82/0.773 27.85/0.793 32.07/0.895 30.54/0.862 32.87/0.951

HCIold 38.22/0.944 34.79/0.874 36.03/0.902 37.44/0.927 38.40/0.918 39.89/0.964

Average 35.30 / 0.925 31.81 / 0.824 31.94 / 0.848 34.76/0.911 34.47/0.890 36.38/0.957

The EPI-based method, Wu et al. [21], Wu et al. [20], SAA-Net [22] are prone to
producing ghosting artifacts. Kalantari et al. [9] struggles to recover the bound-
ary of the rock in scene Rock. The results of Yeung et al. [25] suffer from ringing
artifacts. We also provide the EPIs recovered by each method for comparison.
We can observe that Wu et al. [21] and Wu et al. [20] can not recover the linear
patterns in EPIs. The EPIs reconstructed by Yeung et al. [25] and SAA-Net [22]
also have artifacts. By contrast, our method recovers fewer artifacts and more
linear structures. This demonstrates that our method is a strong baseline for
high-quality LF angular SR.

Fig. 3. Visual comparison on real-world scenes for 2 × 2 → 8 × 8 angular SR. We
selected patches (highlighted using green and red boxes) in SAI that locates at the
angular position of (5, 5). The EPIs are cut along the blue line. (Color figure online)

3.2 Comparison on Synthetic Scenes

For synthetic scenes, we select four scenes from HCInew and five scenes from
HCIold dataset for comparison. Table 2 lists the quantitative comparison results
with the state-of-the-art methods in terms of PSNR and SSIM. From Table 2,
we can observe that our method achieves the best performance. Specifically, our
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method outperforms Yeung et al. [25] by 2.45 dB on HCIold dataset. Compared
with Kalantari et al. [9], our method achieves an average gain of 1.08 dB. Com-
pared with Wu et al. [21] and Wu et al. [20], Ours achieves more than 4 dB on
average. Compared with SAA-Net [22], Ours also achieves an average gain of
1.91 dB.

Figure 4 presents the visual comparisons. It can also be observed that our
method produces the most fine-grained details. For scene Herbs, the bowls (high-
lighted in green box) reconstructed by other methods are over smooth. For scene
StillLife, the tablecloth recovered by Kalantari et al. [9], Yeung et al. [25], and
SAA-Net [22] have severe artifacts. The results of Wu et al. [21] and Wu et al. [20]
are also blurry. By contrast, our method recovers more fine-granular textures.

Fig. 4. Visual comparison on synthetic scenes for 2 × 2 → 8 × 8 angular SR. We
selected patches (highlighted using green and red boxes) in SAI that locates at the
angular position of (5, 5). The EPIs are cut along the blue line. (Color figure online)

3.3 Ablation Study

In this subsection, We perform ablation studies to demonstrate the effectiveness
of the proposed methods. Specifically, we take advantage of the multi-scale corre-
lations in the sparsely-sampled input, and we propose the SCE module to refine
the coarse-grained synthesized views. To this end, we design several variants to
verify the effectiveness of the introduced strategy or module. The experiments
are conducted on 2×2 → 8×8 task. The models are trained using the real-world
100 scenes, and tested on the 30scenes, Occlusions, and Reflective test sets.

The Effectiveness of Multi-scale Modeling. To verify the effectiveness
of multi-scale modeling, we design a variant by replacing the down-sampling
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Table 3. Ablation results on real-world datasets. The best results are highlighted in
red.

Variants 30Scenes Occlusions Reflective

w/o Multi-scale Modeling 41.54/0.9921 36.72/0.9842 36.20/0.9713

w/o CSE 41.54/0.9917 36.85/0.9845 36.07/0.9714

w/o Dense Connection 41.67/0.9922 37.04/0.9852 36.16/0.9699

w 2SAAConv 41.68/0.9922 36.92/0.9848 36.14/0.9713

w 3SAAConv 41.72/0.9923 37.02/0.9852 36.18/0.9704

Ours 41.83/0.9925 37.19/0.9857 36.27/0.9704

convolutions with normal convolutions and removing the PixelShuffle layers in
CVSNet.

Table 3 lists the quantitative results of the ablation study. It can be observed
that w/o Multi-scale Modeling suffers from a decrease of 0.29 dB on 30scenes
test set, and 0.47 dB on Occlusion test set. This is because the down-sampling
operations in CVSNet can help enlarge the receptive field and explore the multi-
scale correlations in the SAIs, which are beneficial for the view synthesis.

The Effectiveness of CSE. In the FVRNet, we introduced CSE module to
refine the intermediate results. We then conduct several experiments to show the
influence of CSE module. We first directly remove the CSE module in FVRNet.
In Table 3, we can observe that the results of w/o CSE are decreased by 0.29 dB
on 30scenes, which demonstrates the effectiveness of proposed CSE module. We
then remove the dense connections in CSE module and only four SAA convolu-
tions are maintained. We can observe that w/o Dense Connection, the results
suffer from a decrease of 0.16 dB on 30scenes. This is because the dense con-
nections can help enhance the feature flow. We also conduct the experiments by
utilizing a different number of SAA convolutions in CSE module. From Table. 3,
we can observe that the results of w 2SAAConv and w 3SAAConv are inferior to
Ours (w 4SAAConv) by 0.15 dB and 0.11 dB on 30scenes test set, respectively.

3.4 Depth Estimation

Since one of the most valuable information of the reconstructed LF image is the
geometry information of the real-world scene, we further apply our method to
depth estimation task to verify the ability to reveal the geometric structures. We
utilize SPO [30] to predict the scene depth estimation from the reconstructed
densely-sampled LF image. We also compare the visual quality of estimated
depth maps with Wu et al. [20] and SAA-Net [22]. The ground-truth depth
map is estimated from the ground-truth densely-sampled LF image. Figure 5
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presents the visual results. We can observe that our method achieves promising
depth prediction, such as the boundary of leaves in scene occlusion 2 eslf and
the rock in scene Rock.

Fig. 5. Visual comparison of depth estimation.

4 Conclusion

In this paper, we propose a coarse-to-fine network for LF angular SR, which
aims to reconstruct densely-sampled LF images from sparsely-sampled ones.
We introduce two sub-networks, i.e., a CVSNet to synthesize novel views, and
an FVRNet to refine the coarse views. Specifically, CVSNet contains a UNet
architecture to extract the multi-scale correspondence in the sparse views and
generate coarse novel views. In FVRNet, we propose a structural consistency
enhancement module to refine the coarse views and help preserve the parallax
structure of LF image. The experiments are conducted on both real-world and
synthetic datasets, and the experimental results demonstrate that our method
achieves state-of-the-art performance. We further apply our method to the depth
estimation task, and the visual results show our promising ability to predict the
geometric information from scenes. Our method also has limitations, e.g., the
visual reconstruction quality still has obvious distance from the ground-truth
images in some challenging regions, such as the tablecloth in scene StillLife
(Fig. 4). In future work, we will explore more effective strategies to improve the
visual quality.
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