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Abstract. Soft robots are made of compliant materials that perform
their tasks by deriving motion from elastic deformations. They are used
in various applications, e.g., for handling fragile objects, navigating sen-
sitive/complex environments, etc., and are typically actuated by Pneu-
matic/hydraulic loads. Though demands for soft robots are continuously
increasing in various engineering sectors, due to the lack of systematic
approaches, they are primarily designed manually. This paper presents
a systematic density-based topology optimization approach to design-
ing soft robots while considering the design-dependent behavior of the
actuating loads. We use the Darcy law with the conceptualized drainage
term to model the design-dependent nature of the applied pressure loads.
The standard finite element is employed to evaluate the consistent nodal
loads from the obtained pressure field. The robust topology optimization
formulation is used with the multi-criteria objective. The success of the
presented approach is demonstrated by designing a member/soft robot
of the pneumatic networks (PneuNets). The optimized member is com-
bined in several series to get different PneuNets. Their CAD models are
generated, and they are studied with high-pressure loads in a commer-
cial software. Depending upon the number of members in the PneuNets,
different output motions are noted.

Keywords: Soft robots · Topology optimization · Design-dependent
loads · Compliant mechanisms

1 Introduction

Soft robots are constituted by compliant materials and have monolithic
lightweight designs [1]. Such robots are actuated primarily by pneu-
matic/hydraulic (fluidic pressure) loads and use motion obtained from elastic
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deformation to perform their tasks. Nowadays, they are being used in a wide
range of applications, e.g., to handle fragile objects, fruits, and vegetables, in
sensitive and unstructured environments for navigation, etc. In addition, they
provide high power-to-weight ratios and help achieve complex motions [1]. There-
fore, interest in designing them for different applications is constantly growing.
The pneumatically/hydraulically (pressure loads, air/water) actuated soft robots
are sought the most and are used relatively more. In general, soft robots are
designed manually using heuristic methods because of the lack of systematic
approaches. Heuristic methods greatly depend upon the designers’ knowledge
and experience and may require many resources/iterations. Therefore, the goal
of this paper is to present a systematic approach using topology optimization
for designing pressure-driven soft robots. Figure 1 displays a schematic diagram
of a soft robot with a bellow-shaped pressure loading chamber. When pneu-
matic/hydraulic loads inflate the chamber, it is desired that the output point P
moves in a bending motion, as shown by the red curved arrow.

Fig. 1. A schematic diagram for a soft robot.

Topology optimization (TO) provides an optimized material distribution for a
design problem by extremizing the desired objective under the given physical and
geometrical constraints. In a typical TO setting, the design domain is described
by finite elements (FEs, cf.[2]), and each element is assigned a design variable ρ ∈
[0, 1]. ρ = 0 and ρ = 1 indicate an element’s void and solid states, respectively.
The applied loads/actuating forces depending upon the applications soft robots
are designed for, can be either design-dependent, e.g., fluidic pressure load [3], or
constant. A design-dependent load changes its location, magnitude, and direction
as TO advances and thus, poses several distinctive challenges [3].
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Hiller and Lipson [4] used the evolutionary topology optimization approach to
design soft robots. Chen et al. [5] developed a soft cable-driven gripper using the
level-set topology optimization method. Zhang et al. [6] developed a soft pneu-
matic gripper by maximizing the output displacement. Pressure loads always act
normal to the boundaries of the design domain, which alter with TO iterations.
Therefore, including design-dependent behavior within the optimization formu-
lation is essential for fluid pressure loads, which is not considered in Refs. [4–6].
In addition, Refs. [7,8] mentioned that compliant mechanisms (CMs) optimized
using TO suffer from point (single-node) connections, and thus, they either
become challenging to realize or require post-processing. Further, the perfor-
mance of the post-processed designs may not be the same as that of their numer-
ical counterparts. Herein, we use the robust formulation presented in [9] to cir-
cumvent this issue, considering the design-dependent characteristics of pressure
loads for designing soft robots. Readers can refer to Refs. [10–13] and references
therein for designing various CMs for different applications using TO.

Hammer and Olhoff [14] were the first to consider the design-dependent
nature of the pressure loads in TO while designing structures. Chen et al. [15]
used a fictitious thermal model to design pressure-actuated compliant mecha-
nisms. Sigmund and Clausen [16] presented the mixed-finite element-based app-
roach. Panganiban et al. [17] employed a non-confirming FE method in their
approach for pressure-actuated CMs. The solid isotropic material with penaliza-
tion (SIMP) and moving isosurface threshold schemes are used by Vasista and
Tong [18]. de Souza and Silva [19] used the method presented in Ref. [16] with
a projection filter. Kumar et al. [3] presented a novel approach using the Darcy
law for pressure field modeling. The method uses the standard FE method and
works fine for designing 3D CMs [20]. Thus, we adopt the method to model
the pressure load. The prime goal herein is to design a member (soft robot) of
the pneumatic network (PneuNets, cf. [21]) to achieve the specified motion. The
optimized member is further connected in several series to get different output
motions with high-pressure loads.

The remainder of the paper is structured as follows. Section 2 summarizes
pressure load modeling using the Darcy law in brief. TO formulation is provided
in Sect. 3. Section 4 presents an optimized design for a member of the PneuNet
soft robot. The optimized design is extracted, and its CAD model is made. The
different networks are generated from the CAD model and further analyzed with
higher pressure loads in commercial software to achieve complex motions. Lastly,
the conclusions are drawn in Sect. 5.

2 Pressure Load Modeling

In this section, we present the pressure load modeling using the Darcy law in
brief herein for completeness. One can refer to [3] for a detailed description.

As TO advances, the material states of the associated FEs evolve. We already
have known boundaries with input pressure and zero pressure load at the initial
stage of TO, i.e., a pressure difference across the domain. Therefore, using the
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Darcy low to determine the pressure field while assuming elements as porous is
natural. Given Darcy law, the flux q is determined as

q = −κ

μ
∇p = −K(ρ̄)∇p, (1)

where ∇p is the pressure gradient. κ and μ represent the permeability of the
medium and the fluid viscosity, respectively. ρ̄ indicates the physical design vari-
able. K(ρ̄) is called the flow coefficient. For element e, the flow coefficient is
defined as [3]

K(ρ̄e) = Kv (1 − (1 − ε)H(ρ̄e, βκ, ηκ)) , (2)

where H(ρ̄e, βκ, ηκ) = tanh (βκηκ)+tanh (βκ(ρ̄e−ηκ))
tanh (βκηκ)+tanh (βκ(1−ηκ))

, and ε = Ks

Kv
is called flow con-

trast [20]. Ks and Kv are the flow coefficient of solid and void phases of element e
respectively. {ηκ, βκ} are termed flow parameters which define respectively the
step position and slope of K(ρ̄e). To get the meaningful pressure distribution in
a TO setting, drainage, Qdrain, is conceptualized [3,20]. The balanced equation
of Eq. 1 with the drainage can be determined as [3]:

∇ · q − Qdrain = 0. (3)

where Qdrain = −D(ρ̄e)(p − pext) with D(ρ̄e) = DsH(ρ̄e, βd, ηd). {ηd, βd} are
the drainage parameters. In view of the fundamentals of the finite element for-
mulations, Eq. 3 transpires to [3]

Ap = 0, (4)

in case both external pressure load and surface flux are set equal to zero, which
is the case herein considered. A and p are the global flow matrix and pressure
vector, respectively. Equation 4 gives the pressure field distribution within the
design domain as TO advances. We find the consistent nodal loads from the
pressure field distribution as [3]:

F = −Tp (5)

where F is the global force vector, and T is the transformation matrix [3]. To
summarize, with TO iterations, Eqs. 4 and 5 are used to determine the pressure
field and corresponding nodal force vector.

3 Topology Optimization Formulation

We use the robust formulation [9], i.e., the eroded, intermediate, and dilated
descriptions of the design field, to find the optimized designs for the soft robots.
The worst objective of the eroded, intermediate, and dilated designs is minimized
with the given volume fraction. Mathematically, the optimization formulation
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can be written as [22]

min
ρ

: max :
(
f0(ρ̄d), f0(ρ̄i), f0(ρ̄e)

)

Subjected to :
λ1

m : Ampm|m=d,i,e = 0,
λ2

m : Kmum = Fm = −Tmpm

λ3
m : Kmvm = Fd

μ : V (ρ̄d(ρ)) − V ∗
d ≤ 0

0 ≤ ρ ≤ 1
Data: V ∗

d ,Δη, rfill, Pin,Fd

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (6)

where f0 is a multi-criteria objective, which is defined by −sMSE
SE [23]. MSE

indicates the mutual strain energy, and SE represents the strain energy. MSE =
v�Ku and SE = 1

2u
�Ku. s is a consistent scale factor. As per [9], the volume

fraction is applied using the dilated field and is updated with TO iterations. u
and v are the global displacement vectors obtained in response to the actual and
dummy forces, respectively. K is the global stiffness matrix. ρ̄ is the physical
design vector. ρ̄j of element j is determined as [9]:

ρ̄j(ρ̃j , β, η) =
tanh (βη) + tanh (β(ρ̃j − η))
tanh (βη) + tanh (β(1 − η))

, (7)

where η ∈ [0, 1] defines the threshold, and β ∈ [0, ∞) controls the steepness of
the projection function. Generally, β is increased from 1 to a large finite value
using a continuation scheme. ρ̃j , the filtered design variable of element j, is
defined as [24]:

ρ̃j =
∑Ne

k=1 vkρkw(xk)
∑Ne

k=1 vkw(xk)
(8)

where Ne indicates the total number of elements used to parameter-
ize the design domain, and vk is the volume of neighboring element k.
w(xk) = max

(
0, 1 − d

rfill

)
, is the weight function, wherein d = ||xj − xk|| is

a Euclidean distance between centroids xj and xk of elements j and k, respec-
tively. One finds the derivative of ρ̄j (Eq. 7) with respect to ρ̃j as:

∂ρ̄j

∂ρ̃j
= β

1 − tanh(β(ρ̃j − η))2

tanh (βη) + tanh (β(1 − η))
. (9)

Likewise, the derivative of ρ̃j (Eq. 8) with respect to ρk can be evaluated as

∂ρ̃j

∂ρk
=

vkw(xk)
∑Ne

i=1 viw(xi)
. (10)

Finally, using the chain rule one can find the derivative a function f with respect
to ρk as

∂f

∂ρk
=

Ne∑

j=1

∂f

∂ρ̄j

∂ρ̄j

∂ρ̃j

∂ρ̃j

∂ρk
, (11)
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We use the modified SIMP material scheme [25] for finding Young’s modulus
of element j as

Ej = E0 + (ρ̄j)χ(E1 − E0), ρ̄j ∈ [0, 1] (12)

where χ is the SIMP parameter. E0 and E1 are Youngs’ moduli of the void and
solid states of an FE, respectively. E0

E1
= 1e−6 is set in this paper.

The Method of Moving Asymptotes (MMA, cf. [26]), a gradient-based opti-
mizer, is used to solve the optimization problem (Eq. 6). Thus, we need the
sensitivities of the objective and constraint with respect to the design variables,
which are determined using the adjoint-variable method. Complete detail on
sensitivity analysis can be found in [3,22].

4 Numerical Results and Discussions

In this section, a member of PneuNets (Fig. 1(B) of [21]) is designed using
the presented method. Different PneuNets are constructed using the optimized
design to achieve complex motions with high-pressure loads, which we analyze
in a commercial software.

The design domain is displayed in Fig. 2. Lx = 0.1 m and Ly =0.15 m indicate
respectively the dimension in x− and y−directions. The out-of-plane thickness
is set to 0.001 m. The input pressure load of 1 bar is applied at the center of
the domain, as shown in Fig. 2. Edges of the domain experience zero pressure
load. Half the length of the left edge is fixed (Fig. 2). Workpiece of stiffness kss

= 1 × 104Nm−1 is used. The domain is parameterized using quadrilateral FEs
herein. Nex×Ney = 100×150 bi-linear quadrilateral FEs are used to describe the
design domain, where FEs in x− and y−directions are represented via Nex and
Ney, respectively. Each element is assigned a design variable that is considered
constant within the element. The external move limit for the MMA optimizer
is set to 0.1. The maximum number of the MMA iterations is fixed to 400.
The filter radius rfill = 6.0 × min

(
Lx

Nex
,

Ly

Ney

)
is set. A void region of dimension

Lx

2 × Ly

10 exists within the domain, as displayed in Fig. 2. We consider the plane
stress and small deformation finite element formulation assumptions. The SIMP
parameter χ = 3 is taken.

The permitted volume fraction is taken to 0.20. The robust parameter Δη =
0.15 is set. β (Eq. 7) is varied from 1 to 128, which is doubled at each 50 MMA
iterations, and once it reaches its maximum value of 128, it remains so for the
rest of the optimization iterations. The dilated volume is updated every 25 MMA
iterations. The higher β helps achieve a solution close to 0–1 that is measured
herein using the discreteness scale Mnd defined in [25] as

Mnd =
∑Ne

e=1 4(ρ̄e)(1 − ρ̄e)
Ne

, (13)

For the mechanism, it is expected that as it is inflated with pressure load, the bot-
tom right corner of it should move down, i.e., motion in the negative y−direction



Towards Topology Optimization of Pressure-Driven Soft Robots 25

Fig. 2. Design domain of a pressure-driven soft robot. Lx = 0.1 m and Ly = 0.15 m are
set, where Lx and Ly represent dimensions in x− and y−directions, respectively. The
input pressure load of 1 bar is applied using a circular chamber of radius Lx

4
, as shown

in the figure. The desired output motion is indicated by a green arrow. kss indicates the
work-piece stiffness. A predefined void region of dimension Lx

2
× Ly

10
is shown within

the domain.

is sought (Fig. 2). The flow contrast ε = 1× 10−7 is used. Young’s modulus of
material E1 = 100 MPa, and Poisson’s ration ν = 0.40 are set. The flow param-
eters {ηκ, βκ} = {0.20, 10} and the drainage parameters {ηd, βd} = {0.30, 10}
are taken.

The optimized eroded, intermediate, and dilated designs with respective opti-
mum pressure fields are displayed in Fig. 3. The optimized PneuNet design gets
an arbitrary-shaped chamber to contain the fluidic pressure load in the optimized
designs (Fig. 3), and that is expected to enhance the performance of pneumatic
networks. On the other hand, when PneuNets are designed by the heuristic
method, they typically have regular-shaped pressure chambers [21].

The eroded, intermediate, and dilated optimized mechanisms have identical
topologies. The intermediate design is taken for the blueprint/fabrication. The
eroded designs contain relatively thinner members, whereas the dilated designs
are thicker. As per the value of Mnd, the optimized designs are very close to 0–1,
i.e., black-white designs are obtained.

A member of PneuNet soft robot is designed with Pin = 1 bar while consider-
ing small deformation finite element assumptions in Fig. 3. However, soft robots
typically experience finite deformation while performing their tasks. Including
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Fig. 3. Optimized design of a member of the PneuNet. Filter radius rfill = 6.0h is

employed. h = min
(

Lx
Nex

,
Ly

Ney

)
. (a) Eroded design, (b) Intermediate design, and (c)

Dilated design.

Fig. 4. (a) The optimized PneuNet intermediate design, (b) The CAD model, (c)
The deformed and undeformed profiles. Red and blue colors indicate maximum and
minimum deformation locations. The chamber is pressurized by a 100 bar load.

nonlinear mechanics formulation within the proposed design approach poses sev-
eral other challenges, as mentioned in [22], and is out of the scope of the cur-
rent study. However, we extract the optimized intermediate design using the
technique mentioned in [22] (Fig. 3b) and study its behavior with high-pressure
loads using a neo-Hookean material model in a commercial software. In addi-
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Fig. 5. (a) The optimized PneuNet design with two inflating members, (b) The CAD
model, (c) The deformed and undeformed profiles. Each chamber is pressurized by a
100 bar load.

tion, we also form different PneuNets from the optimized design displayed in
Fig. 3b and demonstrate their output deformation profiles. In [27] also a single
member is optimized first and combined to get a pneumatic network. They use
polygonal/hexagonal [2] FEs to represent the design domain.

The intermediate optimized design of the soft robot is analyzed in ABAQUS
with Pin = 100 bar. The optimized design (Fig. 4a), its CAD model (Fig. 4b), and
deformed-undeformed profiles superimposed on each other (Fig. 4c) are shown
in Fig. 4. One can note that we get bending motion for the output node with
high-pressure loading, which is expected.

Next, we combine two (Fig. 5a) and four (Fig. 6a) members of the optimized
design to get different PneuNets (Fig. 5b and Fig. 6b). The pressure chambers
of the designs are inflated using a 100 bar pressure load. The superimposed
deformed and undeformed profiles for these robots are displayed in Fig. 5c and
Fig. 6c, respectively. As the number of members increases in the network, the
final robot deforms relatively more and provides bending motion. With more
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Fig. 6. (a) The optimized PneuNet design with four inflating members, (b) The CAD
model, (c) The deformed and undeformed profiles. Each chamber is pressurized by a
100 bar load.

pneumatic members and high-pressure loads, the branches may interact and
come in contact, i.e., situations for self-contact may occur [28,29] and thus, pose
another set of challenges for designing such robots using TO. It can be noted
that the pressurized chambers become close to circular shapes in their deformed
profiles (Figs. 4c, 5c, and 6c); this is due because the pressure load acts normal
to the surface. In addition, as the number of PneuNet members increases, one
gets the complex output motions from the PneuNets, as depicted in Figs. 4c, 5c,
and 6c.

5 Closure

This paper presents a density-based topology optimization approach to design-
ing soft robots while considering the design-dependent nature of the actuat-
ing (fluidic pneumatic) loads. The robust formulation is employed to subdue
point/single-node connections. To model the design-dependent character of the
pressure load, we use the Darcy law with a conceptualized drainage term per [3].
The consistent nodal loads are determined from the obtained pressure field using
the standard finite element method.
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The proposed approach is demonstrated by designing a PneuNet soft robot.
A min-max optimization problem is solved wherein the objective is determined
using the multi-criteria formulation. The Method of Moving Asymptotes is used
to solve the optimization problem. The optimized PneuNet gives the desired
motion and has an arbitrary-shaped pneumatic chamber. The optimized design
is combined to form numerous PneuNets, which provide different movements
with high-pressure loads. Typically, soft robots experience finite deformation
during their performance. Thus, it is necessary to include nonlinear finite element
modeling within the optimization formulation, which forms the future direction
for this research.
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