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Abstract. This paper presents the variation in natural frequencies of
Euler-Bernoulli microbeams when subjected to axial pretension. The
influence of size effects has been analysed using modified strain gradi-
ent theory (MSGT). The governing equation of motion has been derived
using extended Hamilton’s principle and variational calculus. The sixth
order non-local governing differential equation is solved by analytical pro-
cedure and numerical differential quadrature method (DQM). The three
end conditions of beams are considered: cantilever, simply supported, and
clamped-clamped beams. It is found that MSGT accurately models the
size effects compared to other theories. As the axial pretension increases
from 0.0001 to 1 N, the natural frequency values for the beam with differ-
ent boundary conditions increase. Subsequently, surface elasticity effects
have been analysed for a silicon and aluminium-based nanobeams with
the pretension of 0.0001 N for all boundary conditions. From the results
of surface elasticity modeling, it has been concluded that the natural
frequencies of the nanobeam get influenced either positive or negative
based on the value of surface elastic modulus. The difference in natural
frequency values with and without surface elasticity effects are approxi-
mately 5 and 2% for Si and Al nanobeams respectively. The methodology
presented in this work can further be validated for nanoscale devices in
which the higher-order strain gradient and surface elasticity effects sub-
jected to pretension dominate.

Keywords: Microbeam · Natural frequency · Modified strain gradient
theory · Differential qudrature method · Pretension · Material length
scale · Size effects · Surface elasticity

1 Introduction

Microstructures like beams, bars and membranes are used in micro-electro-
mechanical systems (MEMS). Generally, MEMS-based sensors or actuators con-
sist of a microbeam as the sensing element [1]. Due to rapid advancements in
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nanotechnology and fabrication methods, MEMS devices have various applica-
tions in the engineering, medical, and navigation sectors [2]. As many researchers
have reported in their work [3–6], microbeams are designed for some basic
requirements like natural frequencies of the beams and deflection. In the past,
researchers [7–9] have studied the mechanical behaviour of microbeams within
the context of classical continuum-based theories. These classical continuum-
based theories are just an approximation due to the absence of material length
scale parameters to capture the size effect phenomenon, which will influence
the performance of the microbeam at the microlevel. Initially, [10–15] have con-
ducted experiments to understand the influence of size effects on the mechanical
behaviour of the structures at a microlevel .

Hence, size-dependent higher-order continuum-based theories have been
developed to deal with the failure of the classical elasticity theory at small scales.
These higher-order continuum-based theories can capture the effects of strain
gradient (size effects) through material length scale parameters absent in clas-
sical continuum mechanics. Recently, Lam et al. [14] have proposed a modified
strain gradient theory (MSGT), in which higher-order stresses and moments of
couples are considered along with equilibrium equations. MSGT can be used
effectively to predict the static and dynamic responses of microbeams. Accord-
ing to MSGT, the total strain energy density function contains the symmetric
strain, dilatation, deviatoric stretch, and rotation gradient tensors. As a result,
MSGT has three material length scale parameters to capture dilatation , devia-
toric and rotation gradients of isotropic linear elastic materials, respectively and
two classical elastic constants(Lame’s constants).

Due to its superior characteristics of handling systems at the microlevel,
MSGT has received more attention in recent times. Based on MSGT, researchers
have done many developments in MEMS. Lu et al. [16] have used nonlocal elas-
ticity theory [17] to investigate the dynamic behaviour of axially prestressed
microbeams. Kong et al. [18] have formulated an analytical solution for static
and dynamic response of epoxy-based Euler-Bernoulli cantilever beam using
MSGT. Results have shown that MSGT predicts the higher natural frequency of
microbeam when compared to other theories like classical theory and modified
couple stress theory (MCST). Wang et al. [19] have found an analytical solu-
tion for static bending and free vibrations of the Timoshenko beam model for
simply supported end conditions using MSGT. Akgöz and Civalek [20] have per-
formed buckling analysis of axially loaded epoxy-based, simply-supported and
cantilever Euler-Bernoulli microbeams with the help of MSGT. Vatankhah and
Kahrobaiyan [21] have investigated vibrational characteristics of the clamped-
clamped resonator with attached mass, subjected to axial load, based on MSGT,
and results are compared with MCST and classical elasticity theory(CT). Sajal
et al. [1] have performed free vibration analysis of epoxy microbeams based
on MSGT using the differential quadrature method. Zhao et al. [22] have used
MSGT to develop a new Euler-Bernoulli beam model.

In addition to strain gradients, surface elasticity has other effects that affect
the dynamic response of the micro/nanostructure. Surface elasticity arises due to
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forming a surface layer with different mechanical properties than a bulk medium
[23]. There are mainly two reasons for the formation surface layer one is surface
relaxation [24], and the other is surface reconstruction [25]. Both surface residual
stresses and surface elasticity effects are considered to model the surface-related
effects in the nano/microstructures [26,27]. Earlier, Lagowski et al. [28] have
performed frequency analysis on the microcantilever beam and found that the
surface stress is the primary cause for the shift in the natural frequency of the
structure. Later Gurtin et al. [29] stated that the surface elasticity is the only
phenomenon that causes the shift in the natural frequencies of the structure
and is independent of surface stresses. Zhang et al. [30] have measured the shift
in resonant frequencies of micro/nanostructure to study surface related effects.
Gangele and Pandey [31] have performed frequency analysis using a multi-scale
finite element approach on silicon nanocomposites with surface effects. Recently,
Fu et al. [32] have used SGT and surface elasticity theory to perform dynamic
analysis on the Euler-Bernoullis nanobeam with size and surface-related effects.

Hence, from the above literature, it is found that there is a need to under-
stand the dynamic response of microbeams with axial pretension by consider-
ing size and surface elasticity effects. This work presents a dynamic analysis of
microbeams with pretension based on MSGT for different end conditions. The
sixth order non-local governing differential equation is solved through the ana-
lytical procedure and then numerically using the differential quadrature method
(DQM). Numerical examples are presented for the three(cantilevered, simply
supported, and calmped-clamped) boundary conditions. We show that these
two solution methods converge well. The method we developed here can model
micro and nanostructures’ size and surface elasticity effects.

This paper first presents the general formulation of MSGT and surface-
related effects, using Hamilton’s principle for the Euler-Bernoulli beam with can-
tilever, clamped-clamped and simply-supported boundary conditions at varying
pretension. Subsequently, we described the analytical and DQM based numerical
method and discussed their performance at different pretension.

2 Mathematical Formulation

This section described the modified strain gradient theory (MSGT) and applied
it to obtain the governing differential equation.

2.1 Modified Strain Gradient Theory

According to the modified strain gradient theory (MSGT), in addition to the
classical strain tensor (εij),deviatoric stretch gradient tensor (η̃ijk), dilatation
tensor (γi), and symmetric rotation gradient tensor (χS

ij) are introduced. There-
fore MSGT uses three-length scale parameters to consider the size effects.
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For a linear isotropic elastic material with V as volume element and occupy-
ing region Ω, the total strain energy is defined as [14]

Ut =
∫

Ω

(
σijεij + piγi + τ̃ijkη̃ijk + mS

ijχ
S
ij

)
dV, (1)

where, εij , γi, χS
ij and η̃ijk are defined as

εij =
1
2

(∂iuj + ∂jui) , (2)

γi = ∂iεnn, (3)

χS
ij =

1
2

(eipq∂pεqj + ejpq∂pεqi) , (4)

η̃ijk =
1
3

(∂iεjk + ∂jεki + ∂kεij) − 1
15

δij (∂kεmm + 2∂mεmk)

− 1
15

[δjk (∂iεmm + 2∂mεmi) + δki (∂jεmm + 2∂mεmj)] , (5)

where ∂i is the differential operator, uj , εnn, δij and eijk are the displacement
vector, dilation strain tensor, Kronecket delta, and permutation tensor respec-
tively. Here, subscripts (i, j, k) are summed over 1–3.

The work-conjugates of the strain gradients γi,χS
ij , and η̃ijk are defined

by the higher-order stresses pi, mS
ij , and τ̃ijk respectively. Therefore the stress

measures are related to the strains given by the following relationships

σij = kδijεnn + 2με′
ij , (6)

pi = 2μl20γi, (7)

τ̃ijk = 2μl21η̃ijk, (8)

mS
ij = 2μl22χ

S
ij , (9)

where, k represents the bulk modulus and μ is shear modulus of the material.
ε′
ij is given by εij − 1

3εnnδij and known as deviatoric strain, εij is the strain
tensor. l0, l1 and l2 are the three material length scale parameters related to the
material’s dilation, deviatoric and symmetric gradients, respectively.

2.2 Surface Elasticity

When the characteristic dimensions of the beam are in the order of micro or
nanometer range, surface related effects often play an essential role in the design
of MEMS/NEMS structures; this is due to an increase in the ratio between the
surface area to volume of the structure. Due to surface effects, the layer on the
structure’s bulk will have different mechanical properties than the bulk medium.
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Classical theory is just an approximation where the surface effects are not consid-
ered to perform frequency analysis. Hence classical theory would require proper
corrections which can capture the small scale and surface-related effects. The
drawback of the classical elasticity theory can be overcome by adequately incor-
porating the surface elasticity effects to determine its impact on the mechanical
properties of micro/nanostructures.

From the basic assumption involved in the design of micro/nanostructure
is that “Structure = Bulk + Surface” [23], the effective elastic modulus of
micro/nanobeam as [31,33]

E∗ = E

[
1 + 6

h0

h
+ 2

h0

b

]
, (10)

here, h0 = Cs

E is a material length parameter to capture the surface related effects
at micro/nano level and Cs is the surface elastic modulus (Nm−1). Equation (10)
will be used in governing equation of motion to perform frequency analysis of
micro/nanobeam by considering the surface elasticity effects.

2.3 Governing Equation of Motion

Let us consider a prismatic beam as shown in Fig. 1 of length L, having cross
sectional area A, and the axial load N0. The area of cross-section is specified by
the x (longitudinal) and y (lateral) axes. The load q is applied in the transverse
direction, i.e., the z axis.

Let the displacements in the x, y, and z directions are represented by u, v, w
respectively. The displacement field for the beam from the Euler-Bernoulli beam
model is defined as

u = −z
∂w(x)

∂x
, v = 0, w = w(x). (11)

The non-local governing differential equation of motion and the corresponding
boundary conditions are derived using extended Hamilton’s and variational prin-
ciple.

δ

⎡
⎣

t2∫

t1

(T − Ut + Wext) dt

⎤
⎦ = 0, (12)

here, δ indicates the first variation, T , Ut and Wext are kinetic energy, strain
energy and work done by the external forces respectively.

The governing differential equation the motion (GDE) of the microbeam by
MSGT is found as

P
∂4w

∂x4
− Q

∂6w

∂x6
− N0

∂2w

∂x2
+ ρA

∂2w

∂t2
+ q(x) = 0, (13)
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and the corresponding boundary conditions are
[(

V − Pw(3) + Qw(5) − N0w
′
)

δw
]L

0
= 0, (14)

[(
M + Pw(2) − Qw(4)

)
δw′

]L

0
= 0, (15)

[(
Mh + Qw(3)

)
δw′′

]L

0
= 0. (16)

Fig. 1. Beam configuration when subjected to flexural and axial loads

Here, P and Q are,

P = EI + 2μAl20 +
8
15

μAl21 + μAl22, Q = I

(
2μl20 +

4
5
μl21

)
. (17)

When the two material length scale parameters, l0 = l1 = 0, the sixth order
non-local GDE (Eq. 13) is reduces to MCST. Hence, the equation of motion
based on MCST is obtained as

(
EI + μAl22

) ∂4w

∂x4
− N0

∂2w

∂x2
+ ρA

∂2w

∂t2
+ q = 0, (18)

and the boundary conditions are
[(

V − (
EI + μAl22

)
w(3) − N0w

′
)

δw
]L

0
= 0, (19)

[(
M +

(
EI + μAl22

)
w(2)

)
δw′

]L

0
= 0. (20)

If all the three material length scale parameters are assumed to zero, then the
GDE (Eq. 13) is reduced to classical elasticity theory.

3 Solution Procedure

This section will discuss the analytical procedure and implementation of the
DQM numerical method to solve the governing differential equation.
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3.1 Analytical Solution

Now, we discuss the solution of the GDE (Eq. 13). The transverse load (q(x) = 0)
is assumed to zero. Hence, the governing differential equation becomes

P
∂4w

∂x4
− Q

∂6w

∂x6
− N0

∂2w

∂x2
+ m

∂2w

∂t2
= 0, (21)

where, m = ρA.
Let us consider the solution to the above equation as

w(x, t) = w̃(x)eiωt. (22)

Substituting Eq. (22) into the Eq. (21), we get

Pw̃(4)(x) − Qw̃(6)(x) − N0w̃
(2)(x) − mω2w̃ = 0. (23)

Equation (23) has the solution of the form

w̃(x) =
6∑

i=1

Cie
λix. (24)

The exponents, λi(i = 1, 2, . . . , 6) are complex in nature and Ci are the constants
of integration and found by using the boundary conditions.

Pλ4 − Qλ6 − N0λ
2 − mω2 = 0, (25)

The auxiliary equation (25) has six roots (λi) which are complex in nature and
can be found as,
let α′ = −36N0PQ − 108mω2Q2 + 8P 3 and

α1 =

(
α′ + 12

√
3
√

4N3
0Q − N2

0P 2 + 18N0PQmω2 + 27m2ω4Q2 − 4mω2P 3K

) 1
3

,

λ1 =
−1√
6Qα1

(
α2
1 − 12N0Q + 4P 2 + 2Pα1

) 1
2 ,

λ2 =
1√

6Qα1

(
α2
1 − 12N0Q + 4P 2 + 2Pα1

) 1
2 ,

λ3 =
−1

2
√

3Qα1

(
−α2

1 + 12N0Q − 4P 2 + 4Pα1 − I
√

3α2
1 − 12I

√
3N0Q + 4I

√
3P 2

) 1
2

,

λ4 =
1

2
√

3Qα1

(
−α2

1 + 12N0Q − 4P 2 + 4Pα1 − I
√

3α2
1 − 12I

√
3N0Q + 4I

√
3P 2

) 1
2

,

λ5 =
−1

2
√

3Qα1

(
−α2

1 + 12N0Q − 4P 2 + 4Pα1 + I
√

3α2
1 + 12I

√
3N0Q − 4I

√
3P 2

) 1
2

,

λ6 =
1

2
√

3Qα1

(
−α2

1 + 12N0Q − 4P 2 + 4Pα1 + I
√

3α2
1 + 12I

√
3N0Q − 4I

√
3P 2

) 1
2

.

Here, I represents the complex nature of the roots.

Now, we discuss the application of the above described analytical procedure
to find the natural frequencies of the microbeam for different boundary condi-
tions.
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Simply Supported Beam Let us consider the case of simply supported beam
with length L, the classical boundary conditions in terms of displacement and
moments are

w̃(0) = w̃(L) = 0, (26)

M(0) = M(L) = 0, (27)

and the non-classical boundary conditions are

w̃(4)(0) = w̃(4)(L) = 0. (28)

By substituting the Eq. (24) into the above equations, we get the matrix form
of the equation as

[B(ω)]{C} = {0}. (29)

In the Eq. (29), {C} = {Ci}T , i = 1, 2, . . . , 6 and the matrix [B(ω)] is found as

B1i = 1, B2i = eλiL, B3i = λ2
i , B4i = λ2

i e
λiL

B5i = λ4
i , B6i = λ4

i e
λiL, (30)

where λi = λi(ω) are the six roots of the Eq. (31) and i = 1, 2, . . . , 6.
In order to get the non-zero trivial solution of the Eq. (29), the following condi-
tion has to be satisfied,

det[B(ω)] = 0. (31)

The above Eq. (31) is called the ”frequency equation”. The analytical solution of
the above system gives all the microbeam natural frequencies that can be found
using a complex arithmetic procedure [1].

Clamped-Clamped Beam Let us consider a clamped-clamped beam with
length L, having fixed at both the ends, the classical boundary conditions in
terms of displacement and slope are

w̃(0) = w̃(L) = 0, (32)

w̃′(0) = w̃′(L) = 0, (33)

and the non-classic boundary conditions are

w̃(4)(0) = w̃(4)(L) = 0. (34)

By substituting the Eq. (24) into the above equations, we get the matrix form
of the equation as

[B(ω)]{C} = {0}. (35)

In the Eq. (35), {C} = {Ci}T , i = 1, 2, . . . , 6 and the matrix [B(ω)] is found as

B1i = 1, B2i = eλiL, B3i = λi, B4i = λie
λiL

B5i = λ4
i , B6i = λ4

i e
λiL. (36)

By following the procedure mentioned above, we can find the natural frequencies
of the clamped-clamped beam with axial pretension.
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Cantilever Beam Consider a cantilever microbeam with length L, one end is
clamped and other end is free to move, the classical boundary conditions are

w̃(0) = w̃′(0) = 0, (37)

Qw̃(5)(L) − Pw̃(3)(L) + N0w̃
′(L) = 0, P w̃′′(L) − Qw̃(4)(L) = 0, (38)

and the non-classical boundary conditions are

w̃′′(0) = w̃(3)(0) = 0. (39)

By substituting the Eq. (24) into the above equations, we get the matrix form
of the equation as

[B(ω)]{C} = {0}. (40)

In the Eq. (40), {C} = {Ci}T , i = 1, 2, . . . , 6 and the matrix [B(ω)] is found as

B1i = 1, B2i = λi, B3i = λ2
i , B4i = λ3

i e
λiL

B5i =
(
λ5

i Q − λ3
i P + N0λi

)
eλiL, B6i =

(
λ2

i P − λ4
i Q

)
eλiL. (41)

Following the procedure mentioned earlier, we can find the natural frequencies
of the cantilevered microbeam subjected to axial pretension.

Now, we discuss the theoretical framework and implementation of the differ-
ential quadrature method (DQM) to solve the sixth order governing differential
equation of motion.

3.2 Differential Quadrature Method (DQM)

The differential quadrature method(DQM) was proposed by Bellman et al. [34].
The DQM is a numerical method that approximates a function’s derivative at
a point by taking the sum of weighted functional values at other grid points in
the discretized domain. The first derivative of the function f(x) is expressed as
[35]

fx(xi) =
df

dx
|xi

=
N∑

j=1

aij · f(xj), (42)

where f(xj) is the functional value at the jth sampling point, aij are the weight-
ing coefficients and Ns is the number of grid points in the domain. It reduces
the differential equations into a set of algebraic equations.
The Chebyshev-Gauss-Lobatto distribution will discretise the domain into Ns

sampling points.

Xi =
1
2

[
1 − cos

(
i − 1

Ns − 1
π

)]
, (43)

The weighting coefficients are defined as

a
(1)
ii = −

Ns∑
j=1,j �=i

a
(1)
ij , i = j, (44)
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a
(1)
ij =

L(1)(xi)
(xi − xj)L(1)(xj)

, i �= j, (45)

here, L(1)(xi) is the Lagrange interpolating polynomials’ first derivative, and it
is written as

L(1)(xi) =
Ns∏

k=1,k �=i

(xi − xk) , (46)

The higher order weighted coefficient matrices can be obtained using

a
(n)
ii = −

Ns∑
j=1,j �=i

a
(n)
ij , i = j, n = 2, 3, . . . , Ns − 1. (47)

a
(n)
ij = n

(
a
(n−1)
ij a

(1)
ij − a

(n−1)
ij

xi − xj

)
, i �= j, n = 2, 3, . . . , Ns − 1, (48)

here, note that the subscripts i, j are repeated indices from 1 to Ns.
Hence, from the DQM, the differential equation of motion Eq. (13), can be
written as [41]

P

Ns∑
n=1

a(4)
mnw̃n −Q

Ns∑
n=1

a(6)
mnw̃n −N0

Ns∑
n=1

a(2)
mnw̃n −ρAω2w̃n = 0, m = 1, 2, . . . , Ns.

(49)
Various approaches are proposed to apply the boundary conditions for solving
the Eq. (49). In DQM method, the vibrational problems are solved with the
SBCGE (Substitution of Boundary Conditions into Governing Equations) tech-
nique [36] and δ-technique [37], used for clamped-clamped end simply-supported
and conditions. The complete details of DQM, implementation of boundary con-
ditions, and solution method are available in the literature [1].

4 Results and Discussion

This section discusses the implementation of MSGT for the different sets of
beams and compares both analytical and numerical DQM results. For the fre-
quency analysis, we considered epoxy-based microbeam with strain gradient
effects.

4.1 Strain Gradient Effects

Now we discuss the influence of the strain gradient effects on the microbeams at
varying axial pretension. To study the effect of pretension, the following proper-
ties are considered for the numerical purpose, the beam properties are taken as
that of epoxy [14], and the material properties are, Young’s Modulus (E) = 1.44
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Table 1. Set of Epoxy microbeams with different geometries

Sets 1 2 3 4 5 6 7 8 9 10

Thickness, h (µm) 10 20 30 40 50 60 70 100 150 200

Width, b = 2h (µm) 20 40 60 80 100 120 140 200 300 400

Length, L = 20h (µm) 200 400 600 800 1000 1200 1400 2000 3000 4000

GPa, Poisson’s ratio (ν) = 0.38 and density (ρ) = 1000 kg/m3 [18] and corre-
sponding geometrical information has provided in Table 1. From MSGT mate-
rial length scales for epoxy micro beam are considered as l0 = l1 = l2 = l =
17.6 × 10−6 µm.

Table 2 shows the three fundamental modal frequencies of the simply-
supported (SS) microbeam with a thickness of 20µm using the analytical
method, differential quadrature method (DQM). The obtained results are com-
pared with Zhao et al. [38] and matched with each other. Hence, MSGT can be
effectively used to model and design micro/nanobeams with axial pretension.

Table 2. Comparison of the first three natural frequencies of simply supported beam
(h = 20µm) with axial pretension

Axial force ω1 (MHz) ω2 (MHz) ω3 (MHz)

Zhao et al. [38] N0 = 1 8.902774 18.519468 29.50064

Analytical 8.896462 18.613040 29.853069

DQM 8.914291 18.610294 29.788022

Zhao et al. [38] N0 = 0.01 1.708429 6.13419 13.53744

Analytical 1.772355 6.402038 14.148805

DQM 1.767054 6.403434 14.153800

Zhao et al. [38] N0 = 0.0001 1.46974 5.88052 13.28097

Analytical 1.535676 6.159607 13.906361

DQM 1.536444 6.159937 13.908860

Simply-Supported Microbeam Figures 2, 3 and 4 show the first three natu-
ral frequencies for the simply supported (SS) microbeam, subjected to different
axial loads (N0 = 1, 0.01, 0.0001N). The analytical method and the numerical
technique (DQM) give closer results in the case of the simply supported beam,
with the error being less than 0.2%. One important observation found is that
when the thickness of the microbeam is reduced from 200μm to 10μm, there was
an appreciable difference in different theories, and strain gradients effects have
prevailed. The natural frequencies found in the different theories are separated
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by reducing the axial force. With the reduction in the axial force, the natu-
ral frequencies decrease, and the size effects are turned up. The MSGT gives a
higher value of natural frequencies than the MCST and classical theory because
the formulation of MSGT considers the extra equilibrium equations, thereby
accounting for the additional length scale effects. The present results show the
same trend, with MSGT giving higher values of natural frequencies than MCST
and classical theory. The effect of material length scale parameters reduces as
the beam’s size increases, and all the theories’ results converge.

Clamped-Clamped Microbeam In Figs. 5, 6 and 7, the first three fundamen-
tal natural frequency values of the clamped-clamped beams with three different
axial loads (N0 = 1, 0.01, 0.0001N) are compared. The MSGT gives high values
of natural frequencies, and the classical theory gives lower frequency values. In
this case, both analytical and differential quadrature methods give closer values
with an error less than 2%. The same trend is observed here; with the reduction
in the axial force, the microbeam becomes softened. Hence, the natural frequen-
cies decrease, and the size effects are turned up. The effect of material length
scale parameters reduces as the beam’s size increases, and the results from all
the theories converge. The clamped-clamped beam is slightly stiffer for the same
geometrical configuration as the SS beam. Hence, the first three natural frequen-
cies of the clamped-clamped beam are higher than the SS beam for the same
axial pretension. Hence, the results show that thin beams need to be modeled
accurately by considering strain gradients at low pretension values.

Cantilever Microbeam Figures 8, 9 and 10 show the first three natural fre-
quencies of the cantilever beam obtained from MSGT, MCST and classical
theories. The natural frequencies obtained from MSGT are higher than those
obtained from MCST and classical theory. The analytical and DQ methods give
closer results, with the error being less than 9.71%. In the case of the cantilever
beam, the error is slightly higher than the SS beam and FF beams due to the
application of boundary conditions in the differential quadrature method. As we
are applying the boundary conditions at a distance of δ away from the bound-
aries, this gives a slight variation in natural frequencies [1]. The difference in
natural frequency from different theories increases by reducing the axial preten-
sion value. For lower values of pretension, MSGT is capable enough to capture
size effects quite accurately compared to other theories. As the thickness of the
beam increases, all the theories converge well, and size effects are reduced. A
cantilever microbeam has lower natural frequencies than a simply supported
and clamped-clamped beam for the same geometrical configuration.

4.2 Strain Gradient with Surface Elasticity

This section discusses the effect of strain gradients and surface elasticity effects
in Silicon and Aluminium-based nanobeams using MSGT theory. The first three
natural frequencies of the nanobeam with a pretension of 0.0001N have been
computed for different boundary conditions using the analytical method.
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Fig. 2. Comparison of the first three natural frequencies ((a), (b) and (c)) of SSB with
axial load N0 = 1 N
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Fig. 3. Comparison of the first three natural frequencies ((a), (b) and (c)) of SSB with
axial load N0 = 0.01 N
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Fig. 4. Comparison of the first three natural frequencies ((a), (b) and (c)) of SSB with
axial load N0 = 0.0001 N
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Fig. 5. Comparison of the first three natural frequencies ((a), (b) and (c)) of clamped-
clamped beam with axial load N0 = 1 N
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Fig. 6. Comparison of the first three natural frequencies ((a), (b) and (c)) of clamped-
clamped beam with axial load N0 = 0.01 N
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Fig. 7. Comparison of the first three natural frequencies ((a), (b) and (c)) of clamped-
clamped beam with axial load N0 = 0.0001 N
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Fig. 8. Comparison of the first three natural frequencies ((a), (b) and (c)) of Cantilever
beam with axial load N0 = 1 N

Table 3. Set of nanobeams with different geometries (From Fu et al. [32])

Sets 1 2 3 4 5 6 7 8 9 10

Thickness, h (nm) 1 2 3 4 5 6 7 8 9 10

Width, b = h (nm) 1 2 3 4 5 6 7 8 8 10

Length, L = 10h (nm) 10 20 30 40 50 60 70 80 90 100

Table 4. Mechanical properties of Si and Al-based nanobeams

E(Gpa) ν ρ (kg/m3) CS (Nm−1) l0 = l1 = l2(µm) h0 = CS/E (nm)

Silicon [32] 107 0.33 2330 −11.5 0.2961 [32] −0.1074

Aluminum [39] 70 0.30 2700 5.1882 0.3500 [40] 0.0741

Silicon Nanobeam For frequency analysis on silicon-based nanobeam with dif-
ferent configurations, Table 3 and the corresponding mechanical properties are
presented in Table 4. The analytical method computed the first three natural
frequencies for different end conditions using MSGT with and without consider-
ing the surface elasticity effects with axial pretension of 0.0001N. Figures 11, 12
and 13 show the first fundamental three natural frequencies for SSB, clamped-
clamped and cantilever beam respectively. In Silicon nanobeams, surface-related
effects negatively influence natural frequencies because of Silicon’s negative sur-
face elastic modulus (CS), making the structure soften. Considering surface elas-
ticity effects, the maximum difference in natural frequencies is approximately 5%.
Hence, the effect of surface elasticity will have an appreciable influence on the
frequency response of the nanobeams.

Aluminum Nanobeam Subsequently, we also performed frequency analysis
on Aluminum based nanobeam with considering the surface elasticity effects
and the corresponding geometrical configurations and mechanical properties are
shown in Tables 3 and 4, respectively. The first three natural frequencies have
been computed for different end conditions using analytical method of MSGT



206 S. K. Jujjuvarapu et al.

0 50 100 150 200
Thickness ( m)

0

0.2

0.4

0.6

0.8

1

Fi
rs

t N
at

ur
al

 fr
eq

ue
nc

y(
M

H
z) MSGT(Analytical)

MSGT(DQM)
MCST
CT

0 50 100 150 200
Thickness ( m)

0

1

2

3

4

5

Se
co

nd
 N

at
ur

al
 fr

eq
ue

nc
y(

M
H

z)

MSGT(Analytical)
MSGT(DQM)
MCST
CT

0 50 100 150 200
Thickness ( m)

0

4

8

12

Th
ird

 N
at

ur
al

 fr
eq

ue
nc

y(
M

H
z) MSGT(Analytical)

MSGT(DQM)
MCST
CT

(a) (b) (c)

Fig. 9. Comparison of the first three natural frequencies ((a), (b) and (c)) of Cantilever
beam with axial load N0 = 0.01 N
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Fig. 10. Comparison of the first three natural frequencies ((a), (b) and (c)) of Can-
tilever beam with axial load N0 = 0.0001 N
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Fig. 11. Comparison of the first three natural frequencies ((a), (b) and (c)) of Silicon
SSB including surface elasticity effects and subjected to axial load of N0 = 0.0001
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Fig. 12. Comparison of the first three natural frequencies ((a), (b) and (c)) of Silicon
clamped-clamped beam including surface elasticity effects and subjected to axial load
of N0 = 0.0001
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Fig. 13. Comparison of the first three natural frequencies ((a), (b) and (c)) of Silicon
cantilever beam including surface elasticity effects and subjected to axial load of N0 =
0.0001

with and without considering surface elasticity effects when they are subjected
to axial loading of 0.0001N. Figures 14, 15, and 16 show the first three fun-
damental natural frequencies of Aluminium-based SSB, clamped-clamped and
cantilever beam respectively. From Figs. 14, 15 and 16, the natural frequencies
corresponding to surface elasticity effects are higher than those without surface
elasticity effects. In the case of Aluminum nanobeam, surface-related effects pos-
itively influence natural frequencies because of positive surface elastic modulus
(CS), making the structure stiffer. The natural frequency values with surface
elasticity are approximately 2% higher than those without surface effects. When
the dimensions increase further, the difference in frequencies is reduced. This
difference is small because the choice of geometrical configuration (length, width
and thickness) greatly influences the structure’s frequency response. The sur-
face elasticity effects in Silicon and Aluminum nanobeams become significant at
lower thickness and length of the beam. These effects are accurately captured by
introducing an effective elastic modulus [31]. Hence, the effect of surface elastic-
ity on the structure’s natural frequency can’t be neglected to have the optimum
design of nanobeams.



208 S. K. Jujjuvarapu et al.

0 2 4 6 8 10
Thickness (nm)

9

10

11

12

13

Fi
rs

tN
at

ur
al

fre
qu

en
cy

(M
H

z)

MSGT(Without surface elasticity)
MSGT(With surface elasticity)

0 2 4 6 8 10
Thickness (nm)

10

11

12

13

15

Se
co

nd
 N

at
ur

al
 fr

eq
ue

nc
y(

M
H

z) MSGT(Without surface elasticity)
MSGT(With surface elasticity)

0 2 4 6 8 10
Thickness (nm)

10

11

12

13

14

15

Th
ird

 N
at

ur
al

 fr
eq

ue
nc

y(
M

H
z)

MSGT(Without surface elasticity)
MSGT(With surface elasticity)

(a) (b) (c)

Fig. 14. Comparison of the first three natural frequencies ((a), (b) and (c)) of Al SSB
including surface elasticity effects and subjected to axial load of N0 = 0.0001 N
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Fig. 15. Comparison of the first three natural frequencies ((a), (b) and (c)) of Al
clamped-clamped beam including surface elasticity effects and subjected to axial load
of N0 = 0.0001 N
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Fig. 16. Comparison of the first three natural frequencies ((a), (b) and (c)) of Al
cantilever beam including surface elasticity effects and subjected to axial load of N0 =
0.0001 N
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Further, from the above discussion, we can state that the surface elasticity
effects will affect the system’s frequency response at the nanolevel either pos-
itively or negatively, depending upon the surface elastic modulus of the beam
[30]. Therefore it is critical to consider surface elasticity effects in addition to
strain gradients while modeling the systems at the micro/nano level.

5 Conclusions

This work presented the frequency analysis of epoxy-based microbeams with
axial pretension using modified strain gradient theory. Theoretical formula-
tion and corresponding governing equation of motion has been derived by
using extended Hamilton’s principle. Three end conditions are considered (SSB,
Clamped-Clamped, and Cantilever). The governing sixth order differential equa-
tion has been solved using the standard analytical method and numerical dif-
ferential quadrature technique. The first three natural frequencies are found
for different beam configurations by varying the axial pretension. The obtained
results are validated with existing literature and showed good agreement. The
results show that MSGT can capture size effects accurately compared to other
theories like MCST and classical theory. As we increase the axial pretension from
0.0001N to 1N, the microbeam’s stiffness increases, increasing natural frequency
for all end conditions. The results have shown that the frequency response of the
micro/nanostructure is affected by size effects when the characteristic dimen-
sions are in the orders of material length scales. Subsequently, surface elasticity
effects have been analysed for Silicon and Aluminium-based nanobeams with
the pretension of 0.0001 N for different boundary conditions. Results of surface
elasticity modeling have shown that the frequency response of the nanobeam is
either positive or negative depending on the value of the material length scale,
h0. The maximum difference in natural frequencies is 5% and 2% for Silicon
and Aluminum based nanobeams, respectively. Hence, the present methodol-
ogy can effectively model the strain gradients and surface elasticity effects in
micro/nanostructures.

Acknowledgments. The first author would like to acknowledge the fellowship pro-
vided by the Ministry of Education, Government of India.

Appendix

In this section, we derived the governing equation of motion and the correspond-
ing boundary conditions using extended Hamilton’s principle.

Consider a prismatic beam of length L, having cross sectional area A, is sub-
jected to the distributed load q(x) and the axial load N0 as shown in Fig. 1. The
cross-section is specified by the x (longitudinal) and y (lateral) axes. The load q
is applied in the transverse direction, i.e., the z axis.
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Let u, v, w are the displacements in the x, y, and z directions, respectively.
From the Euler-Bernoulli theory, the displacements can be written as :

u = −z
∂w(x)

∂x
, v = 0, w = w(x). (50)

On substitution of the above expression in the Eqs. (2) and (3),

εxx = −z
∂2w

∂x2
, γx = −z

∂3w

∂x3
, γy = 0, γz = −∂2w

∂x2
, (51)

and from the Eqs. (4) and (5) we get

χS
xy = χS

yx = −1
2

∂2w

∂x2
(52)

η̃111 = −2
5

(
z
∂3w

∂x3

)
, η̃113 = − 4

15

(
∂2w

∂x2

)
, η̃122 =

1
5

(
z
∂3w

∂x3

)

η̃133 =
1
5

(
z
∂3w

∂x3

)
, η̃212 =

1
5

(
z
∂3w

∂x3

)
, η̃221 =

1
5

(
z
∂3w

∂x3

)

η̃223 =
1
15

(
∂2w

∂x2

)
, η̃232 =

1
15

(
∂2w

∂x2

)
, η̃311 = − 4

15

(
∂2w

∂x2

)
(53)

η̃313 =
1
5

(
z
∂3w

∂x3

)
, η̃322 =

1
15

(
∂2w

∂x2

)
, η̃331 =

1
5

(
z
∂3w

∂x3

)

η̃333 =
1
5

(
z
∂3w

∂x3

)
, η̃131 = − 4

15

(
∂2w

∂x2

)

On substitution of Eqs. (51)–(53) in Eq. (1) and after simplification, we get
the following equation for the total strain energy Ut of linear isotropic elastic
material is found as,

Ut =
1
2

L∫

0

[
P · (w′′)2 + Q ·

(
w(3)

)2
]

dx, (54)

where, w is the transverse deflection, w′′ = ∂2w
∂x2 , w(3) = ∂3w

∂x3 and P , Q are
defined as,

P = EI + 2μAl20 +
8
15

μAl21 + μAl22, Q = I

(
2μl20 +

4
5
μl21

)
. (55)

and A is the area of cross section and I is the moment of inertia of the
beam. μ is the shear modulus of the material(Lame’s constant) and is given
by μ = E

2(1+ν) . The first variation of integral of the kind H =
∫ L

0
F

(
w′′, w(3)

)
dx
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can be defined as,

δH =

L∫

0

[
d2

dx2

(
∂F

∂w′′

)
− d3

dx3

(
∂F

∂w(3)

)]
δwdx

+
[[

− d

dx

(
∂F

∂w′′

)
+

d2

dx2

(
∂F

∂w(3)

)]
δw

]L

0

(56)

+
[[(

∂F

∂w′′

)
− d

dx

(
∂F

∂w(3)

)]
δw′

]L

0

+
[

∂F

∂w(3)
δw′′

]L

0

.

In the present method ,consider H = Ut of Eq. (54) and the Lagrangian function
F is defined by,

F =
1
2

[
P · (w′′)2 + Q ·

(
w(3)

)2
]

. (57)

With the use of above relations one can write the first variation (Eqn.(56)) of
the total strain energy as,

δUt =

L∫

0

[
Pw(4) − Qw(6)

]
δwdx +

[
−Pw(3) + Qw(5)

]
δw|L0

+
[
Pw′′ − Qw(4)

]
δw′|L0 + Qw(3)δw′′|L0 , (58)

where, w′ = ∂w
∂x , w(3) = ∂3w

∂x3 , w(4) = ∂4w
∂x4 , w(5) = ∂5w

∂x5 , & w(6) = ∂6w
∂x6 .

The variational kinetic energy and the work due to external forces can be
written as :

δT =

⎡
⎣

L∫

0

ρA
∂2w

∂t2

⎤
⎦ δwdx, (59)

δWext =

L∫

0

(
q + N0

∂2w

∂x2

)
δwdx + [V δw]L0 + [Mδw′]L0 +

[
Mhδw′′]L

0
. (60)

Substituting the Eqs. (58)–(60), into the extended Hamilton’s principle
Eq. (12), we get the following governing differential equation (GDE) the motion
of the beam by modified strain gradient theory (MSGT) as,

P
∂4w

∂x4
− Q

∂6w

∂x6
− N0

∂2w

∂x2
+ ρA

∂2w

∂t2
+ q(x) = 0, (61)

and the corresponding boundary conditions which satisfy the equations are,

[(
V − Pw(3) + Qw(5) − N0w

′
)

δw
]L

0
= 0, (62)
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[(
M + Pw(2) − Qw(4)

)
δw′

]L

0
= 0, (63)

[(
Mh + Qw(3)

)
δw′′

]L

0
= 0. (64)

When the two material length scale parameters, i.e., related with dilatation
gradient and deviatoric stretch gradient becomes zero (l0 = l1 = 0) then the
governing differential equation reduces to that of modified couple stress theory
(MCST). Hence, the governing differential equation of motion based on MCST
is, (

EI + μAl22
) ∂4w

∂x4
− N0

∂2w

∂x2
+ ρA

∂2w

∂t2
+ q = 0 (65)

and the boundary conditions become
[(

V − (
EI + μAl22

)
w(3) − N0w

′
)

δw
]L

0
= 0, (66)

[(
M +

(
EI + μAl22

)
w(2)

)
δw′

]L

0
= 0. (67)

When all the three material length scale parameters re assumed to zero (l0 =
l1 = l2 = 0), then the governing differential equation of motion is reduces to
that of classical elasticity theory.
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