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Abstract. In this paper a one-dimensional model of magnetic suspension in the
case of a variable magnetic field is considered. Analytical expressions for the
averaged over a period of an external current source for the suspension equilibrium
position are obtained. It is shown that the magnetic stiffness of the suspension has
a sign-variable character in the general case. An expression for the averaged value
of the magnetic stiffness is obtained and it is shown that this value is always
positive.
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1 Introduction

Magnetic contactless suspension is a device that works on the principle of magnetic
levitation [1, 2]. As a result, the moving part of the suspension becomes mechanically
contactless, which leads to reduce the deterioration of the structural units due to the
absence of mechanical friction, loss of mechanical energy, etc.

Magnetic levitation [3] of micro- and nano-suspensions [4, 5] is based on the law of
electromagnetic induction [6]. The moving part of this device loses mechanical contact
with the stationary part of the structure and gain a sufficiently large (theoretically infinite)
sensitivity [7], which allows to use it as a sensor that registers the smallest deviations of
motion relative to the initial equilibrium position of the device [7]. To demonstrate how
the device works, let’s assume that the suspension works as an acceleration sensor. In
the simplest case, the accelerometer can be described by a transfer function of a linear
oscillator [7]:

Y (p)

A(p)
= 1

p2 + μ
mp + c

m

, (1)

where Y (p) is the mapping of the motion of the levitating part of the suspension, A(p) is
the effective transport acceleration, p is the Laplace transform variable, m is the inertial
mass, μ is the viscous friction coefficient of the environment, c is the rigidity of the
suspension.
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The static sensitivity of the accelerometer is written as [7]

Y (p)

A(p)
= m

c
. (2)

As the suspension stiffness c → 0 decreases, the sensitivity of the accelerometer,
defined by Eq. (2), increases indefinitely and becomes infinite [7]. The transfer function
(1) in this case will take the following form

Y (p)

A(p)
= 1

p
(
p + μ

m

) . (3)

It is noted in works [7, 8] that the integration of acceleration takes place in the
absence of the stiffness parameter c. Thus, with the technological possibility of exclud-
ing the mechanical stiffness from the model, it is possible to obtain a device with infinite
(very large) sensitivity and, consequently, the perspective of measuring arbitrarily small
external accelerations. To exclude stiffness, a combination of magnetic and electric sus-
pension is usually used to evaluate the total stiffness of the system to zero for certain
parameters of the electric and magnetic parts of the structure. This approach is consid-
ered in work [7] when designing an electromagnetic suspension in the case of a disk-like
mass, considering only the axial motions of the levitating mass. In works [8, 9] the
dynamic equations of the levitating mass with additional consideration of angular dis-
placements due to the appearance of magnetic moments are obtained. In works [10]
general conditions for the stable motion of a levitating mass were considered.

The main purpose of this work is an analytical study of the magnetic part of the
electromagnetic suspension and obtaining conditions for finding the equilibrium posi-
tion and stability of vibrations of a levitating object near its equilibrium. The magnetic
stiffness of themagnetic suspension is also evaluated. It is shown that in this formulation,
it has a harmonic character, which should be considered when adjusting the electrical
part of the system to eliminate the magnetic stiffness of the system.

2 Mathematical Model

A contactless magnetic suspension (see Fig. 1) in the simplest case is a system consisting
of two basic elements - an inductor coil, to which an alternating current is applied,
and a proof levitating mass (PM) made of a conductive material. Due to the law of
electromagnetic induction, currents are induced in the PM when current flows in the
coil, and an electromagnetic force arises between the parts of the structure. Due to this
effect, it is possible to use the PM, for example, as a stand or support for engineering
and other structures.

The energy of the magnetic fieldW of the coil of radius rc and thickness tc powered
by alternating current ı1 and the disc-shaped proof mass (PM) of the thickness tpm, radius
rpm with induced eddy current ı2 is

W = 1

2
L1ı

2
1 + M12(y)ı1ı2 + 1

2
L2ı

2
2 , (4)
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Fig. 1. Scheme of magnetic suspension

where L1 and L2 are the self-inductance of coil and PM, respectively [9].

L1 = μ0rcw
2
(
ln
8rc
tc

− 2

)
,L2 = μ0rpm

(
ln
16rpm
tpm

− 2

)
, (5)

where w is the number of turns of coil, M12(y) is the mutual inductance, μ0 is the
magnetic permeability of free space, (.) = d

dt , t is the time, y is the distance between
coil and PM.

In general case, the mutual inductance M12(y) is a complex non-analytic function.
This represents the main difficulty for analytical investigation of the magnetic suspen-
sion model [7]. However, it is possible to consider some features of the micro-machine
suspension device, which allow the application of the mutual inductance approximation
formula [11]. These simplifications consist in the assumption that the linear dimensions
of the coil and PM are much larger than the height of the levitation equilibrium position
y0. It is also assumed that the induced eddy current i2 is distributed along the levitated
control mass such that a contour corresponding to the maximum eddy current density
can be identified [7].

The eddy current contour is geometrically defined as a circle having the same diame-
ter as the referencemass [7]. Due to the above features of the device, the force interaction
in the vertical direction is reduced to the interaction between the eddy current and the
levitating coil current [12]. In the case of considering PM and the induced current as
circles, the mutual inductance between the PM and the eddy current can be described
by the Maxwell formula [11] as follows:

M12(κ) = μ0
√
rcrpm

[(
2

κ
− κ

)
K(κ) − 2

κ
E(κ)

]
, κ2(y) = 4rcrpm

(rc + rm)2 + y2
, (6)

where K(κ) and E(κ) are complete eliptic integrals of the first and second kind, κ(y) is
the elliptic modulus.
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In deriving the equations of dynamics of PM, we consider the dynamics of its center
of gravity. From this assumptions potential � and kinetic T energies of the PM are:

� = m̃gy,T = 1

2
m̃ẏ2, (7)

where m̃ is the mass of the PM, g is the gravity acceleration.
The dissipation function of the system � can be written as follow:

� = 1

2
R2ı

2
2 + 1

2
μẏ2, (8)

whereR2 is PM’s electrical resistance,μ is the coefficient ofmechanical friction between
PM and external gas environment.

We assume that the current ı1 generated in the coil by the current generator has the
following form

ı1 = ıa sinωt, (9)

where ıa and ω are the amplitude and the high frequency of the current ı1, correspond-
ingly.

We use the Lagrange-Maxwell equations to write equation of motion of the upper
ring. The displacement y and the current ı2 are taken as generalized coordinates:

d

dt

∂W

∂ı2
+ ∂�

∂ı2
= 0,

d

dt

∂T

∂ ẏ
+ ∂(� − T )

∂y
+ d�

dẏ
= 0. (10)

Substituting Eqs. (5)–(9) into Eq. (10), we obtain

L2 ı̇2 + dM12(y)

dy
ẏıa sinωt + M12(y)ıaω cosωt + R2i2 = 0,

m̃ÿ + μẏ − dM12(y)

dy
ı2ıa sinωt + m̃g = 0. (11)

We introduce the nondimensional quantities as [13]

ξ = y

2rc
, a = rpm

rc
, β = μ0rc

L1
, γ = tc

tpm
, j1 = ı1

ıa
j2 = ı2

ıa
, r = R2

L1ω
,

m12 = M12

L1
, l = L2

L1
, τ = ωt, ε = g

2ω2rc
, α = L1ı2a

2m̃grc
,λ = μ

m̃ω
. (12)

and rewrite Eq. (11) in nondimensional form as

lj′2 + rj2 = −dm12(ξ)

dξ
ξ′sinτ − m12(ξ)cosτ,

ξ′′ + λξ ′ = ε

(
α
dm12(ξ)

dξ
j2sinτ − 1

)
. (13)
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where the prime indicates the derivative with respect to τ. The small nondimensional

quantity εα = L1i2a
4r2cω

2 defines the ratio between magnetic and electrical energies.

For further study of the system (13) we find its equilibrium position (j2, ξ) =
(j20, ξ0), where j20 = j20(τ); ξ0 is the constant.

3 Equilibrium

WE assume the condition under which the PM reaches an average value ξ0 = y0
2rc

(y0 is
the dimensional average equilibrium point) over the period of change in coil current ı1.
In other words, due to the harmonicity of the excitation current ı1, the magnetic force
acting on the PM is also harmonic, which leads to a steady-state oscillatory process
of the PM relative to some average value ξ0. When the magnetic force changes, the
equilibrium point changes, which corresponds to the equilibrium of the gravity force
and the Ampere force also acting on the PM in the considered formulation. Moreover,
in the general case, a variable magnetic field forms a variable magnetic stiffness, as will
be shown later.

j′20 + rj20 = −m12(ξ0)

2
eiτ + c.c,

iα

2

dm12(ξ0)

dξ
j20e

iτ + 1

2
+ c.c = 0, (14)

where c.c is the complex conjugate value of equation [14].
Solving first equation in (14), we obtain the steady-state soultion for the current j20

as

j20 = im12(ξ0)

2
√
r2 + l2

ei(τ+φ) + c.c, (15)

where cosφ = l√
l2+r2

, sin φ = r√
l2+r2

, i2 = −1.

Substituting Eq. (15) in the second equation in (14), we integrate the current j20
within τ ∈ [0,π] and obtain the expression for the average equilibrium ξ0.

m12(ξ0)
dm12(ξ0)

dξ
= −2

(
r2 + l2

)

αl
, (16)

Figures 2 and 3 show the dependence of the value of the equilibrium position ξ0 on
the physical parameters of the system.

Figures 2 and 3 show that with increasing parameter α (which corresponds to increas-
ing current ıa the value ξ0 increases, which is associated with an increase in electromag-
netic force of the ring and, therefore, Ampere force. When the parameter r increases
(which corresponds to a decrease in frequency ω), the equilibrium position ξ0 takes
smaller values, which is caused by an increase in reactance.

After finding the condition on the integral position of the suspension equilibrium,
it is interesting to estimate the magnetic stiffness for its subsequent compensation by
including an electric field, which is studied in the papers [7].
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Fig. 2. Dependence of the integral position of the frame equilibrium ξ0 on the parameter α with
(r = 500μ; 2m; 4m; 5m)

Fig. 3. Dependence of the integral equilibrium position ξ0 on the parameter r
(α = 8.7; 11.7; 14.6; 17.5; 20.4)

4 Magnetic Spring Constant of the Suspension

Let us study the behavior of the PM near to the equilibrium point ξ0. It is assumed that
the linear displacement of the PM ξ is small in comparison with ξ0, hence the following
inequality

ξ

ξ0
� 1, (17)
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Because of (17), the function of the mutual inductance m12(ξ) can be extended by a
Taylor series at the point ξ0 in the form can be written as follow

m12(ξ) = m12(ξ0) + m′
12(ξ0)(ξ − ξ0) + m′′

12(ξ0)(ξ − ξ0)
2, (18)

Substituting (18) into the last equation of set (10) and considering (16) the differential
equation of the linear displacement of the PMnear to the equilibrium point can bewritten
as

ξ′′ + λξ ′ + cmξ = Fξ, (19)

where Fξ is generalized force acting on the PM, cm is the spring constant of the magnetic
suspension

cm = εα

l

(
m′
12(ξ0)

)2cosφ cos2φsinτ sin(τ + φ). (20)

Equation (20) show that the magnetic stiffness has a periodic character and, in the
general case, is sign-variable, which means an oscillatory mode of PM levitation near
the integral equilibrium position. For a more detailed study of the dependence of the
stiffness cm on the system parameter, consider the average value of the stiffness cm =
1
π

∫ π

0 cm(τ)dτ

cm = αεl
(
l2 − r2

)

2
(
r2 + l2

)2
(
m′
12(ξ0)

)2
. (21)

The Eq. (21) shows that the average value of themagnetic stiffness is always positive.
The only possible problem is related to the sign-variability of the initial stiffness (20),
which should be considered in the modes of operation associated with the compensation
of magnetic stiffness by adding electrodes to the system and creating a negative electric
stiffness, which is done, for example, in the paper [7].

5 Conclusion

In this paper, a magnetic suspension consisting of an inductance coil and a levitating
disk was considered. When the coil is energized by alternating current, it is shown that
in this case the character of the equilibrium position has an alternating harmonic form.
If the equilibrium position comes to the same point during the coil current period, an
estimate of the integral mean value of this quantity was given. An expression for the
magnetic stiffness of the suspension is obtained and it is shown that it also has a periodic
form, which should be considered in the construction of devices of this type.
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