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Abstract. This paper presents an analytical approach for computing
the natural frequencies of planar compliant mechanisms consisting of
any number of beam segments. The approach is based on the Euler-
Bernoulli Beam theory and the transfer matrix method (TMM), which
means there is no need for a global dynamics equation, but instead low-
order matrices are used which result in high computational efficiency.
Each beam segment is elastic, thin, has a different rectangular cross-
section or a different orientation and is treated as an Euler-Bernoulli
beam. The approach in principle does not differentiate between the flex-
ure hinges, and the more rigid beam sections, both are treated as beams.
The difference in stiffness solely results from the changes in the cross
sections and length. A finite element analysis (FEA), as often used in
practical applications, has been carried out for various geometries to
serve as state-of-the-art reference models to which the results obtained
by the presented analytical method could be compared. Various test
specimens (TS) consisting of concentrated and distributed compliance
in various degrees of complexity were produced and measured in free-
and forced vibration testing. The results from experiments and the FEA
compared to those of the proposed method are in very good correlation
with an average deviation of 1.42%. Furthermore, the analytical method
is implemented into a readily accessible computer-based calculation tool
which allows to calculate the natural frequencies efficiently and to easily
vary different parameters.

Keywords: Compliant mechanism · Vibration frequency · Transfer
matrix method · Bernoulli beams · Free vibration · Forced vibration

1 Introduction

Compliant mechanisms gain their mobility partially or exclusively from the com-
pliance of its flexible members rather than from traditional joints. Nowadays this
compliance is no longer seen as just a disadvantage but is used in a targeted man-
ner in many areas of application. While lots of progress has been made in the
static analysis of such systems in recent years, their dynamic behaviour has been
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. K. Pandey et al. (Eds.): MAMM 2022, 126, pp. 1–18, 2023.
https://doi.org/10.1007/978-3-031-20353-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20353-4_1&domain=pdf
http://orcid.org/0000-0002-6363-6319
http://orcid.org/0000-0003-4219-9006
https://doi.org/10.1007/978-3-031-20353-4_1


2 V. Platl et al.

subject to little research to date. Dynamic analysis is indispensable especially
for systems that are exposed to high dynamic processes.

So far, pseudo-rigid-body models (PRBM), FEA and beam models are the
most common approaches for calculating the natural frequencies of compliant
mechanisms. For example, Lyon et al. [10] and Yu et al. [14] used PRBM to
predict the first modal response of compliant mechanisms. Liu and Yan [9] used
a modified PRBM approach by considering also the nonlinear effects and Vedant
and Allison [12] propose a general pseudo-rigid body dynamic model for n-links.
A hybrid compliant mechanism with a flexible central chain and a cantilever is
examined through a PRBM by Zheng et al. [16].

As for the FEA Li et al. [8] and Wang et al. [13] both propose an approach
based on it for the dynamic analysis of compliant mechanisms.
Concerning the classical Euler-Bernoulli beam theory, an approach is proposed
for example by Vaz and de Lima Junior [3], where multi-stepped beams with
changing cross sections, material properties or different boundary conditions
were considered.

A different approach to obtain the vibration frequencies for uniform or non-
uniform beams is the transfer-matrix-method (TMM). It is commonly used, for
instance by Boiangiu et al. [2] to calculate the natural frequencies and observe
the relation between them and the geometric parameters for multi-step beams.
Khiem et al. [5,6] as well as Attar [1] use this method for crack detection and
investigation of damaged beams. Obradovic et al. [11] represents an analytical
treatise, where the TMM is used on rigid bodies in conjunction with elastic beam
sections and Hu et al. [4] propose a new closed-form dynamic model for describ-
ing the vibration characteristics of actual compliant mechanisms with serial and
parallel configuration by using the TMM.
Despite extensive research, the authors are not aware of any widely applicable
analytical method or standalone tool for the calculation of the natural frequen-
cies for compliant mechanisms.
Therefore, the purpose of this paper is the development of an analytical method
(Sect. 2) and its implementation into a time efficient, intuitively operable tool
(Sect. 3) for determining the transverse vibration of planar compliant mecha-
nisms with minimum input data. This will enable the analysis of the dynamic
behaviour of compliant mechanisms from the design phase to its application.
Thus, the natural frequencies can easily be taken into account which can safe a
lot time and money. The method is validated through several experiments and
FEA (Sect. 4), the results are presented and discussed (Sects. 5 and 6) and finally
conclusions are drawn (Sect. 7).

2 Analytical Method

2.1 Differential Equations of Motion

Different forms of the following compliant mechanism, as shown in Fig. 1, are
evaluated in this paper, consisting of n beam segments and joints.
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Fig. 1. Compliant mechanism consisting of n beam and joint segments

The partial differential equations of motion of an elastic Euler-Bernoulli beam
can be expressed as

transversal k4
i

∂2wi(x, t)
∂t2

+ p2i
∂4wi(x, t)

∂x4 = 0, i = 1, . . . , n (1a)

axial k4
i

∂2ui(x, t)
∂t2

− p2i
∂2ui(x, t)

∂x2 = 0, i = 1, . . . , n (1b)

with the relations k4
i = ρiAi

EiIx(i)ω2 p2i = ρi

Ei
ω2. (1c)

The following notations are used: Ei-Young modulus, Ix(i)-second moment of
area, ρi-density, Ai-area surface, ω-frequency, αi-angle between xi and xi−1 in a
positive sense, wi(x, t)-transversal displacement and ui(x, t)-axial displacement
of the ith beam segment at axial coordinate x and time t, xi-coordinate axis
of the beam segments. The considered compliant mechanisms are monolithic
structures; therefore, all segments are from the same material and have the same
Young modulus and density. Later in this paper the Lagrange’s and Newton’s
notations are used for differentiation.

Applying Bernoulli’s commonly used method of separation of variables and
using the approach W (x) = eλx, the general solutions for the transversal W (x)
and axial displacement U(x) are

Wi(xi) = C1i cos(kixi) + C2i sin(kixi) + C3i cosh(kixi) + C4i sinh(kixi), (2)
Ui(xi) = C5i cos(pixi) + C6i sin(pixi), (3)

with i = 1, . . . , n

in which C1i − C6i are unknown constants.
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2.2 Boundary Conditions

In order to solve these differential equations (2) and (3), boundary conditions
are used. The boundary conditions at the beginning describe the slopes and
displacement at xi = 0 and i = 1, and at the end at xi = Li and i = n.

Table 1. Boundary conditions, beginning and end

2.3 Continuity Conditions

The continuity conditions describe the relations of force and deformation quan-
tities at the junction of two beam segments, see Fig. 2.

+-

Ni

Qi

Mi

yi i
i+1

xi

Fig. 2. Connecting point of two adjacent beams with internal forces and moments
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All internal forces must occur in collinear pairs, according to Newton’s Third
Law, and must be equal in magnitude and opposite in direction. Taking further
into account the following relations

N = U ′EA, −Q = W ′′′EIz, M = W ′′EIz, (5)

we obtain the continuity conditions regarding the internal forces and moments
at the connecting point:

N : U ′
i(Li)Ai = U ′

i+1(0)Ai+1 cos αi + W ′′′
i+1(0)Iz,i+1 sin αi,

Q : −W ′′′
i (Li)Iz,i = U ′

i+1Ai+1 sin αi − W ′′′
i+1(0)Iz,i+1 cos αi,

M : W ′′
i (Li)Iz,i = W ′′

i+1(0)Iz,i+1.

(6)

Slopes as well as axial and transversal displacements at the connecting point
must be continuous, which leads to the following continuity conditions:

Ui(Li) = Ui+1(0) cos αi − Wi+1(0) sin αi,

−Wi(Li) = Ui+1 sin αi + Wi+1(0) cos αi,

W ′
i (Li) = W ′

i+1(0).
(7)

2.4 Matrix Form

To describe the motion of a compliant mechanism Eqs. (1a)–(7) can be written
in a simple yet ineffective matrix form as follows.

⎛
⎜⎜⎜⎝

x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

...
...

. . .
...

xm,1 xm,2 · · · xm,n

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

C11
· · ·
C61
C12
· · ·
C6n

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0
0

· · ·
· · ·
0

⎞
⎟⎟⎟⎟⎠

(8)

TC = 0 (9)

where m = n. The second index of the vector C indicates the corresponding
segment and the first index, ranging from 1–6, symbolises the coefficient. The
square matrix T grows in correlation to the number of segments of the mecha-
nism. The first 3 rows are the initial conditions for the first beam and the last 3
rows for the ending conditions of the last beam, see (5) in Table 1. In between are
6 rows each for the continuity conditions (6) and (7) of the individual connecting
points. For each additional segment six new rows and columns are added to the
matrix.



6 V. Platl et al.

In order to find the natural frequency of the mechanism under considera-
tion the non-trivial solutions of its system (8) are calculated. To do this, the
determinant of the matrix T is calculated as a function of the frequency ω. The
values for ω, for which the determinant is equal to zero, are the natural frequen-
cies of the mechanism. The determinant calculation of such huge matrices soon
exceeds the computing capacity of common computers, which makes this app-
roach unsuitable and impractical for the calculation of compliant mechanisms
with already more than three segments.

2.5 Transfer Matrices

To be able to perform the calculation faster and for compliant mechanisms with
an arbitrary number of beams and joints, each segment must be considered
individually—individual matrices and sets of equations must be derived and then
put in relation to each other. Instead of one big matrix for the whole mechanism,
the boundary and continuity conditions for each beam and connection point are
set up individually and then multiplied together. This always results in one single
matrix T with the size 3×3, regardless of the number of segments within the
mechanism. The matrix multiplication and the calculation of the determinant of
the 3×3 matrix can be done with high computational efficiency.

First Beam Analysing for instance the motion of the mechanism in Fig. 1,
the starting point is the clamped beam 1. Respectively using the boundary
conditions (4a) combined with Eqs. (2) and (3), a set of equations is formed
and can be written in matrix form as follows:

C11 + C31 = 0, C21 + C41 = 0, C51 = 0, (10)⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0

−1 0 0
0 −1 0
0 0 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎝

C11
C21
C61

⎞
⎠ , =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11
C21
C31
C41
C51
C61

⎞
⎟⎟⎟⎟⎟⎟⎠

(11)

(6×3)·(3×1) =(6×1)

T0C0 = C1. (12)

T0 for pinned and free boundary conditions are obtained in the same way. The
matrices Ti are called transfer matrices and the vectors Ci coefficient vectors.

Last Beam Moving on to the end of the last beam of the mechanism, which
is free, Eqs. (2) and (3) are combined with the boundary condition (4f). This
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results in the following set of equations and can also be written in matrix form:

−C1nk2
nc(knln) − C2nk2

n s(knln) + C3nk2
nch(knln) + C4nk2

nsh(knln) = 0,

C1nk3
n s(knln) − C2nk3

nc(knln) + C3nk3
nsh(knln) + C4nk3

nch(knln) = 0,

−C5npns(pnln) + C6npnc(pnln) = 0.

(13)

Instead of sin and sinh it is s and sh; instead of cos and cosh it is c and ch.
The set of equations for clamped and pinned boundary conditions are obtained
in the same way. These equations, describing the end of the last beam, can also
be written in matrix form, such as

TnCn = 0.

(3×6)·(6×1) =(3×1)
(14)

Connecting Point This leaves the evaluation of the two connecting points
within the mechanism. Equations (6), (7) and (2), (3) lead to a set of equations,
with k is a substitute for kili and p for pili, which can be written in matrix form
as demonstrated in (15)–(17).

TiL =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −Aipis(p) Aipic(p)
−Iik

3
i s(k) Iik

3
i c(k) −Iik

3
i sh(k) −Iik

3
i ch(k) 0 0

−Iik
2
i c(k) −Iik

2
i s(k) Iik

2
i ch(k) Iik

2
i sh(k) 0 0

−kis(k) kic(k) kish(k) kich(k) 0 0
c(k) s(k) ch(k) sh(k) 0 0

0 0 0 0 c(p) s(p)

⎞
⎟⎟⎟⎟⎟⎟⎠

(15)

TiR =⎛
⎜⎜⎜⎜⎜⎜⎝

0 −Ii+1k3
i+1s(αi) 0 Ii+1k3

i+1s(αi) 0 Ai+1pi+1c(αi)
0 +Ii+1k3

i+1c(αi) 0 −Ii+1k3
i+1c(αi) 0 Ai+1pi+1s(αi)

−Ii+1k2
i+1 0 Ii+1k2

i+1 0 0 0
0 ki+1 0 ki+1 0 0

c(αi) 0 c(αi) 0 s(αi) 0
−s(αi) 0 −s(αi) 0 c(αi) 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(16)

TiLCi = TiRCi+1

T−1
iR TiLCi = T−1

iR TiRCi+1

Which can be written as TiCi = Ci+1. (17)
(6×6)(6×1) =(6×1)
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2.6 Equation of the Natural Frequencies

Inserting Eqs. (11), (14) and (17) into one another leads to the following equation

TnTn−1 · · · Ti+1TiT0C0 = 0 (18)
⇒ TC0 = 0. (19)
det(T) = 0. (20)

The natural frequencies of the mechanism correspond to the values for ω for
which det(T)=0.

2.7 First Verification of the Analytical Approach

In order to prove the presented analytical method a numerical verification is
carried out through FEA. For this purpose eleven mechanisms with different
dimensions and angles are examined, such as the mechanism in Fig. 3. It con-
sists of three beams with the angles α1,2 = π

6 and dimensions 5×5×50 mm3,
1 × 1×10 mm3 and 5 × 5×40 mm3. The material of the mechanisms is structural
steel with a density of ρ=7850 kg

m3 and Young’s modulus E=200,000 MPa.

Table 2. Natural frequencies of Fig. 3; results and deviation (dev.)

Natural Mathematica ANSYS Dev.
frequency [Hz] [Hz] [%]
1 84.4221 84.294 0.15
2 755.874 750.35 0.73
3 2439.97 2396.3 1.79
4 7742.07 7517.4 2.90
5 12737.9 12212 4.13

The Program Wolfram Mathematica 9 is used to calculate the natural frequencies
with the given Eqs. (18)–(20) and the numerical analysis is carried out as a modal
analysis with FEA-models using ANSYS Workbench 2019 R3.

As one can see in Table 2 the deviations of the first five natural frequencies of
the mechanism shown in Fig. 3 between the analytical and numerical calculation
are in a range of less than 4%. Similar deviations are obtained for the other
calculated mechanisms.

3 Design of the Calculation Tool

The derived analytical method can be easily implemented into a calculation tool,
due to the pre defined boundary conditions and the consistent calculation of the
matrices.
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3

Fig. 3. Exemplary mechanism, beginning clamped, end free

3.1 Programming Language Python

For programming the graphical user interface the programming language Python
was chosen with its library Tkinter. It is a universal, usually interpreted, higher
programming language, which can be run platform independent. One of the
great advantages of Python is the extreme variety of freely available standard
libraries, which allow the language’s range of functions to be extended at will.
The majority of the libraries are also platform independent, so that even larger
Python programs run on Unix, Windows, macOS and other platforms without
any changes.

The Python program is split into several files, for example the language-
dependent terms, standard values, colours of the controls etc., making it easy to
make changes to the standard configuration of the program.

3.2 Design of the Graphical User Interface for the Calculation Tool

The concept behind the structure of the user interface is a large drawing area for
the two-dimensional graphical representation of the current beam configuration
on the right-hand side, with all operating tools of the program on the left-hand
side, see Fig. 4.
The two-dimensional drawing of the beams shows the width, length and angle
of each beam segment. Furthermore, a graphic representation of the respec-
tive boundary conditions at the start and end is implemented. On the left side
of the program the parameters are added. The Young’s-Modulus and density
are defined for the whole mechanisms, whereas the geometric parameters for
the beam segments are assigned individually. The program supports entering
the angle in both degrees and radians, which can be selected via an associated
checkbox. The selection of the beam segment can be changed using a drop-
down menu or by clicking the respective segment with the mouse. Changes to
the width, length or angle of a segment are shown in real time on the drawing
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Fig. 4. Screenshot of the calculation tool LeViTho

area. Furthermore, checkboxes for the display of the coordinate system for the
first segment as well as a short explanation of the dimensions and numbering
of each beam segment are featured. In the lower section of the input area the
user can input the frequency range, in which the calculation function will search
for the natural frequencies. Below the input fields there is a button to start the
calculation and another one to cancel the calculation.

Invalid entries are checked before the actual calculation is started and cor-
responding error messages are displayed in the result text field. During the cal-
culation, all the solutions found in the given frequency range are displayed in
the results text field, while the progress bar below shows the current calculation
progress in percent as well as a rough estimate of the remaining calculation time
in seconds.

Finally, the program offers the possibility to export the entered parameters
(Young’s-Modulus, density, boundary conditions, geometry of each beam seg-
ment, frequency range) as well as the corresponding natural frequencies resulting
from the calculation in form of a .csv file.

4 Validation and Verification

To create an assortment of reference models on which the proposed analytical
method can be assessed various Test Specimens (TS) are designed and manufac-
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tured. The tests for the validation are carried out as free and forced vibration
tests. The verification is then done by FEA and the parameters used can be
found in the appendix Table 7.

4.1 Test Specimen Design
The TS are plane symmetric in respect to the XY-plane and the XZ-plane.
For compliance with the TMM the TS have a rectangular cross section, though
for mechanical and manufacturing reasons the corners of the flexure hinges are
filleted, characterized as corner-filleted notch hinges, see Fig. 5.

x

y

z

w

l
l

1

r
h

L

H

l2=l1

Fig. 5. Visual representation of test specimens parameters, see Table 3

The specimens have a constant width in the Z-direction, so they are biased to
oscillate around this axis. The dimensions of the four TS are specified in Table 3.
All values are within ± 0.020 the nominal value if not stated differently. Due to
the immense influence of the notch height of the flexure hinge, the actual height
was measured and later used for the calculations with LeViTho and for the FEA.

Table 3. Geometric dimensions of TS: L-length of whole mechanism, l-length of com-
pliant segment, w-width, H-height, h-height compliant segment, r-radius

TS L [mm] l [mm] w [mm] H [mm] h [mm] hmeasured [mm] r [mm]
1 140 8 8 8+0.004

−0.082 0.8+0.004
−0.082 0.777 0.5

2 140 30 8 8+0.002
−0.084 0.8+0.002

−0.084 0.753 0.5
3 100 8 8 8+0.010

−0.035 0.5+0.010
−0.035 0.460 0.5

4 100 20 8 8+0.013
−0.065 0.5+0.013

−0.065 0.444 0.5

Compliant mechanisms can be categorized to have concentrated or distributed
compliance. Specimens with a dimensionless ratio of L

l ≥ 10 are defined to have
Concentrated Compliance (CC), specimens with a ratio of L

l < 10 are defined
to have Distributed Compliance (DC) [15]. Thus, TS 1 and 3 feature CC, TS 2
and 4 DC.
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4.2 Material Choice and Manufacturing

To guarantee the longevity and avoid deterioration of the TS a cold work tool
steel, 100MnCrW4 (DIN EN ISO 4957; 1.2510) was picked. To avoid creeping of
the TS during the cutting process due to releasing internal stresses the material
was annealed twice by the supplier. The Youngs-Modulus was specified by the
supplier as E= 193 000 MPa, the density is measured to be 7776 kg

m3 . The TS
were cut on a Wire Erosion Discharge Machine (WEDM) Charmilles Robofill
240 with a single rough cut (vc= 3 mm

min ).

4.3 Free Vibration Testing

The test setup for measuring the first natural frequency can be seen in Fig. 6.
The TS are treated as cantilever beams. The fixed end is clamped with a set of
wedges in a force-fitting manner in a clamping device. The XY-Plane is oriented
parallel to the ground to avoid interaction with gravity.

55 mm

Test sample

Clamping device

Triangulation displacement sensor

X

z
y

Laser beam

Fig. 6. Free vibration test setup with a triangulation displacement sensor

Every TS is deflected to a specified value and then released to start the oscil-
lation. The procedure is repeated six times for every test set up, the Standard
Deviation (SD) is deducted. The amplitudes are recorded over time by the laser
triangulation displacement sensor (LTD) Micro Epsilon optoNCDT 1420-100, its
parameters can be found in the appendix, see Table 6. The Fast Fourier Trans-
formation (FFT) is applied to the raw data, which shows the amplitudes and
corresponding frequencies.

4.4 Dynamic Vibration Testing

To recover the second natural frequency the TS are additionally examined with a
Laser-Doppler-Scanning-Vibrometer. The TS are clamped in a cantilever manner
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to the shaker and are agitated along a band of frequencies while the Vibrometer
scans the respond on the surface of the TS. The system is set to a sampling
rate of 5.12 kHz at a sweep resolution of 625 mHz. The shaker is set to sweep a
frequency band from 1 Hz to 1.6 kHz in a time frame of 4 seconds. Once again, the
first natural frequencies are really evident. The frequency of the second planar
eigenmode is found for the 2nd and 4th test specimen (DC), see Fig. 7. The 1st
and 3rd specimen (CC) showed no clear frequency respond for the second planar
eigenmode.

Fig. 7. First (left) and second (right) planar normal mode of test specimen 4, excitation
through Vibrometer

4.5 Verification Through Finite Element Analysis

To verify the results obtained by the TMM, the models of the test specimen are
analysed with the commercial software SolidWorks with the simulation add-on.
The first 5 normal modes are calculated, those corresponding with the transversal
vibration on the XY-plane, see Fig. 8, are used as comparative values for the
evaluation.

Fig. 8. 1st (left) and 2nd (right) planar natural frequency of TS 4 in FEM

5 Results

The prismatic TS were examined by free vibration testing. The first natural
frequency is found by processing the signal from the LTD sensor with FFT.
The elastic behaviour of the flexure hinge results in a well-defined peak in the
amplitude spectrum, as shown for TS1 in Fig. 9, corresponding to the frequency
of the first mode shape of the investigated specimen. The first natural frequency
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Fig. 9. Frequency spectrum of TS1

is very evident for all specimens, the second natural frequency around the Z-
direction (the 3rd or 4th spatial natural frequency) though is very small and not
clearly distinguishable from the background noise.

The oscillation of the test specimen is subject to losses which results is the
decay of the amplitudes over time. Energy dissipation occurs externally due to air
resistance and internally due to internal friction resulting in a dampened system.
From the decay of the amplitudes the logarithmic decrement δ is calculated, as
shown in (21).

δ = 1
i
ln

(
x(t)

x(t + iT )

)
(21)

i is an integer defining the number of consecutive positive peaks occurring within
a decrement of 10 dB, x(t) is the amplitude peak value at time t, T is the period
duration. From the logarithmic decrement the damping ratio ξ is found in (22).

ξ =
(

δ√
4π2 + δ2

)
(22)

The damping ratio as well as the logarithmic decrement for the results of the
first natural frequencies of the free vibration tests are listed in the appendix, see
Table 5.

To reveal the second natural frequency of the prismatic TS a modal-analysis
is carried out with a Vibrometer. The second mode shape for the specimens with
DC is identified as well as the related natural frequency. The first two planar
natural frequencies are also calculated for all four TS with the LeViTho tool and
through FEA.

The results for free and forced vibration tests as well as the FEA and their
respective deviations to LeViTho are listed in Table 4.
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Table 4. Comparison of results of free and forced vibration test (V.T.) and FEA to
LeViTho results; N.F.-natural frequency, Δ-devitation to LeViTho

Test specimen 1 2 3 4
LeViTho 1st N.F. [Hz] 57.09 28.13 43.52 25.93

2nd N.F. [Hz] 981.37 407.54 1160.42 401.39
Free V.T. 1st N.F. [Hz] 58.09 27.89 43.81 24.27

Δ [%] 1.74 −0.85 0.66 −6.39
Forced V.T. 1st N.F. [Hz] 54.69 27.50 43.13 24.38

Δ [%] −4.21 −2.23 −0.90 −5.97
2nd N.F. [Hz] – 391.30 – 390.60
Δ [%] – −3.98 – −2.69

FEA 1st N.F. [Hz] 56.97 28.20 44.33 26.16
Δ [%] −0.21 0.27 1.87 0.88
2nd N.F. [Hz] 967.63 403.40 1151.2 400.22
Δ [%] −1.40 −1.02 −0.79 −0.29

6 Discussion

As can be seen in Table 4 and is visualized in Fig. 10, the results from the exper-
iments and the finite element analysis compared to the results obtained with the
proposed analytical method implemented in the programm LeViTho are mostly
in very good correlation with an average deviation of 1.42%.

The experimental results from TS 4 show comparably large deviations for
the first natural frequency. As mentioned, the TS were cut via WEDM process,
though they were only rough cut. This may have led to many imperfections in
the surface and dimensional inaccuracy which leads to larger deviations between
the experiment and the calculation with the ideal geometry (LeViTho). Another
factor which would influence the natural frequency of the TS could be stress
within the material, due to manufacturing processes.

Furthermore, the properties of the rim zone that was altered by the cut might
have influenced the results to a certain degree, as stated by [7]. The dimensional
inaccuracies were compensated in the calculations as good as possible by measur-
ing the deviation from the nominal value, see Table 3. The calculations depend on
the geometrical dimensions as well as the physical quantities of Young’s-Modulus
and the density. The density was calculated from the theoretical volume of the
TS and their measured weight. The Young’s-Modulus was taken as indicated by
the supplier, but it was not independently measured.

Additionally, the different orientation of the TS during the two testing setups
may influence the measured natural frequency. In the free vibration test run the
vibration axis was oriented in line with the gravitational vector. This was not
possible in the forced vibration test run due to the setup of the Vibrometer, the
specimen were therefore oriented perpendicular. The somewhat larger deviations
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Fig. 10. Comparison of results of free and forced vibration testing, LeViTho and FEA:
1st N.F.-first natural frequency, 2nd N.F.-second natural frequency, free V.T.-free
vibration test, forced V.T.-forced vibration test

in the forced V.T. might be attributable to the acting gravity. The damping ratio
was calculated for the free vibration, it is small enough to be neglected comparing
to other influence factors. Furthermore, neither LeViTho nor the FEA take into
consideration the filleted corners of the TS.

7 Conclusion and Outlook

This paper shows that the proposed analytical approach can be legitimately
applied to compliant mechanisms for calculating their natural frequencies. Sev-
eral single flexure hinges with CC and DC were designed, manufactured and
tested. The frequency values obtained by this method are in very good corre-
lation to the measured frequencies and to the results from the FEA. With the
development of LeViTho a handy tool with practical application was created. It
might be used in the design stage of compliant machines to prevent harmonic
reactions or it could be applied to troubleshoot when existing machines show
signs of harmonic interaction. The big advantage beside the reasonably precise
calculations, is the fast and intuitive handling of the software, which compared
to the FEA has the potential to save a good amount of time. As observed in
the testing phase, compliant mechanisms are very sensible to manufacturing
tolerances, in this case LeViTho can be used to simulate the consequences deriv-
ing from manufacturing variations. The current state of the analytical method
implemented in LeViTho is that it is only applicable for planar continuous sys-
tems, even though the calculation of merged systems, i.e. the segments can have
different material properties, is possible with few modifications. In the future,
further investigations will be carried out to calculate spatial systems, systems
with branching points and possibly flexure hinges.
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8 Appendix

Table 5. Free vibration test results; N.F.-natural frequency, SD-standard deviation,
δ-logarithmic decrement, ξ-damping ratio

TS 1st N.F. [Hz] SD [Hz] δ SDδ ξ SDξ

1 58.09 0.054 1.84E−02 2.44E−04 2.92E−03 3.89E−05
2 27.89 0.029 6.30E−03 5.87E−05 1.00E−03 9.35E−06
3 43.81 0.049 1.47E−02 1.24E−03 2.34E−03 1.97E−04
4 24.27 0.010 5.86E−03 4.16E−04 9.32E−04 6.62E−05

Table 6. Sensor parameters Micro Epsilon optoNCDT 1420-100

Parameter Value Unit
Measuring range 100 mm
Sampling rate 4 kHz
Linearity < ±0.08 %
Repeatability 4 µm

Table 7. FEA parameters

Parameter Value Unit
Solver FFEPlus
Mesh elements 4 Jacobi points
Max. element size 1 mm
Max. aspect ratio 4.38
Jacobi mesh quality 1–1.213
Mesh size at flexure 0.162 mm
Mesh size ratio at flexure 1.9
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