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Abstract. The concept of submodularity finds wide applications in data
science, artificial intelligence, and machine learning, providing a boost to
the investigation of new ideas, innovative techniques, and creative algo-
rithms to solve different submodular optimization problems arising from
a diversity of applications. However pure submodular problems only rep-
resent a small portion of the problems we are facing in real life appli-
cations. To solve these optimization problems, an important research
method is to describe the characteristics of the non-submodular func-
tions. The non-submodular functions is a hot research topic in the study
of nonlinear combinatorial optimizations. In this paper, we combine and
generalize the curvature and the generic submodularity ratio to design
an approximation algorithm for two-stage non-submodular maximization
under a matroid constraint.

Keywords: Two-stage submodular maximization · Matroid
constraint · Curvature · Generic submodularity ratio

1 Introduction

Submodular function maximization has drawn much attention practical and the-
oretical interests [5,6,11,13]. For a given set V , the function f : 2V → R is said
to be submodular if f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) for ∀X,Y ⊆ V . A set
function f is called monotone if f(X) ≤ f(Y ) for all X ⊆ Y ⊆ V and it is said
to be normalized when f(∅) = 0. The well-known greedy algorithm presents a
constraint-factor approximation ratio 1−1/e for submodular maximization sub-
ject to a cardinality constraint [10]. The bounds can be improved if one make
further assumptions on submodular functions. For example, the curvature of a
submodular function f in [3] is defined as

kf = 1 − min
v∈V

f(V ) − f(V \{v})
f(v)

,
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and noting that the curvature is computable with a linear number of function
oracle calls, then the greedy algorithm obtains 1

kf
(1 − e−kf ) guarantee under a

cardinality constraint [3].
The greedy algorithm is a simple and effective technique to solve many opti-

mization problems. However, the ground set is often so large that the well-known
greedy algorithm is not enough efficient. One solution to the problem is to give
some training functions to reduce the ground set, and then Balkanski et al.
[1] gave the concept of the two-stage submodular maximization problem. For a
ground set V and a constant k, the objective is to obtain a set S ⊆ V of size at
most k and m subsets T1, T2, . . . , Tm in I(S) to maximize the following

1
m

m∑

i=1

max
T∈I(S)

fi(T ),

where fi : 2V → R+ is submodular for i = 1, . . . , m, and I(S) is a constraint set
over the reduced ground set S ⊆ V .

Related works have been conducted in the area of the two-stage submod-
ular maximization. For a cardinality constraint, that is I(S)= {T : |T | ≤ k}.
When k is enough large, Balkanski et al. [1] used the continuous optimization
method to design an approximation algorithm with approximation ratio, which
asymptotically approaches 1 − 1/e. When k is small, a local search algorithm
was obtained with approximation ratio close to 1/2 in [1]. In addition, Mitrovic
et al. [9] considered the two-stage submodular maximization with cardinality
constraint under streaming and distributed settings. For a matriod constraint,
Stan et al. [12] obtained a new local-search based algorithm with approximation
ratio 1 − 1/e2.

On the other hand, for many applications in practice, including experimen-
tal design and sparse Gaussian processes [8], the objective function is in general
not submodular. The results for submodular optimization problems are not no
longer maintained. To solve these optimization problems, an important research
method is to introduce some parameters to describe the characteristics of the
non-submodular functions, such as submodularity ratio, curvature, generic sub-
modularity ratio, and then design algorithms for the problems and analyze the
performances of the algorithms with these parameters. Given a ground set V
and a nondecreasing set function f : 2V → R, the generic submodularity ratio
of f is the largest scalar γ such that for any X ⊆ Y ⊆ V and any v ∈ V \ Y,
f(v|X) ≥ γf(v|Y ), which is a quantity characterizing how close a nonnegative
nondecreasing set function is to be submodular [4]. And, a function is called
γ-submodular if its generic submodularity ratio is γ. A natural curvature notion
can also be introduced for non-submodular functions. We recall that the cur-
vature of a non-negative set function [2] is the smallest scalar α such that for
∀ S, T ⊆ V, i ∈ S \ T ,

f(i|S \ {i} ∪ T ) ≥ (1 − α)f(i|S \ {i}).

Based on the above motivation, we discuss the two-stage γ-submodular maxi-
mization problem under a matriod constraint. Our main contribution is to design
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an approximation algorithm with constant approximation ratio with respect to
the curvature and the generic submodularity ratio. The rest of our paper is sum-
marized as below. In Sect. 2, we show some technical preliminaries, including
notations and relevant known results. In Sect. 3, we give an approximation algo-
rithms along with its analysis. And some concluding remarks are presented in
Sect. 4.

2 Preliminaries

Firstly, we recall the following known concepts and results for submodular func-
tions, supmodular functions and modulars function.

Definition 1. For a given set V , the function f : 2V → R is called submodular
if f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) for ∀X,Y ⊆ V .

An equivalent definition is that the function f : 2V → R is said to be
submodular if f(e|S) ≥ f(e|T ) for S ⊆ T ⊂ V and v ∈ V \ S, where
f(e|S) = f(e ∪ S) − f(S).

Definition 2. For a given set V , the function f : 2V → R is called modular if
f(X) + f(Y ) ≤ f(X ∩ Y ) + f(X ∪ Y ) for ∀X,Y ⊆ V .

Furthermore, we define the concept of modular functions.

Definition 3. For a given set V , the function f : 2V → R is called modular if
f(X) + f(Y ) = f(X ∩ Y ) + f(X ∪ Y ) for ∀X,Y ⊆ V .

Next, we formally restate the two-stage submodular maximization problem.
For a ground set V , and m nonnegative, monotone and normalized γ-submodular
functions f1, . . . , fm, which are drawn from some unknown distribution, our aim
is to select a set S ⊆ V of size at most k and m subsets T1, . . . , Tm in I(S) to
maximize the following

1
m

m∑

i=1

max
T∈I(S)

fi(T ), (2.1)

where I(S) is a constraint set over S ⊆ V . In our paper, the set I(S) corresponds
to a matriod constraint.

Definition 4. For a given set S and I ∈ 2S, a matroid M = (S, I) satisfies
three properties: (1) ∅ ∈ I; (2) if P ⊆ Q ∈ I, then P ∈ I; (3) if P,Q ∈ I and
|P | ≤ |Q|, then P + q ∈ I, where q ∈ Q\P .

The mapping below is a very useful tool to study the matriod constraint,
which is shown in [7].

Proposition 1. Let Mi = (S, Ii) be a matroid for i ∈ {1, . . . , p}. For ∀X,Y ∈
Ii, there is a mapping πi : Y \X → X\Y ∪{∅}, which satisfies the three properties
(1) (X \ πi(y)) ∪ y ∈ Ii for ∀y ∈ Y \ X; (2) |π−1

i (x)| ≤ 1 for ∀x ∈ X \ Y ; (3) let
Xy = {π1(y), . . . , πp(y)}, then (X \ Xy) ∪ y ∈ ∩p

i=1Ii for ∀y ∈ Y \ X.
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Now, we turn to give a nice result for γ-submodular functions in [4].

Proposition 2. Let f be a γ-submodular function. Then for ∀S ⊆ T ,

f(T ) ≤ f(S) +
1
γ

∑

v∈T\S

f(v|S).

To maximize the above objective function, we discuss the following

�i(T ) = (1 − α)
∑

v∈T

fi(v),

gi(T ) = fi(T ) − �i(T ).

where the function �i(T ) is modular, and the function gi(T ) is a monotone and
normalized γ-submodular function, this is because that the function fi(T ) is
monotone and normalized.

Problem (2.1) turns into the following problem: obtain a set S ⊆ V of size
at most k and m subsets T1, T2, . . . , Tm in I(S) to maximize the following

1
m

m∑

i=1

max
T∈I(S)

(gi(T ) + �i(T )).

For notational convenience, we use the following notations. In terms of the
function gi, define the marginal gain of adding an element x to the set T j

i as

Δg
i (x, T j

i ) = gi({x} ∪ T j
i ) − gi(T

j
i ).

Similarly, the gain of replacing y with x in terms of the set T j
i is represented

by

∇g
i (x, y, T j

i ) = gi({x} ∪ T j
i \ {y}) − gi(T

j
i ).

Furthermore, for the functions gi and �i, we define

Δi(x, T j
i ) =

(
1 −

γ + 1
γ

k

)k−j

Δg
i (x, T j

i ) +
(

1 − 1
k

)k−j

�i(x),

∇i(x, y, T j
i ) =

(
1 −

γ + 1
γ

k

)k−j

∇g
i (x, y, T j

i ) +
(

1 − 1
k

)k−j

(�i(x) − �i(y)).

The set of elements in T j
i can replace x, which will not violate the matroid

constraint, is defined as

I(x, T j
i ) = {y ∈ T j

i : T j
i ∪ {x} \ {y} ∈ I(S)}.
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Based on the notations of Δi(x, T j
i ) and ∇i(x, y, T j

i ), we denote the replace-
ment gain of x in terms of T j

i by

∇i(x, T j
i ) =

{
Δi(x, T j

i ) if T j
i ∪ {x} ∈ I(S),

max{0,maxy∈I(x,T j
i ) ∇i(x, y, T j

i )} otherwise.

In addition, we define

Repi(x, T j
i ) =

{
∅ ifT j

i ∪ {x} ∈ I(S),
arg maxy∈I(x,T j

i ) ∇i(x, y, T j
i ) otherwise.

3 Problem (2.1) Under a Matroid Constraint

In this section, we discuss Problem (2.1) under I(S) is a matroid constraint.
A replacement greedy algorithm is shown in Sect. 3.1, and then we analyze its
approximation ratio in Sect. 3.2.

3.1 Algorithm

Our replacement greedy algorithm starts with S0 = ∅, and runs in k rounds.
In each round, a new element can be added into the current solution if it does
not violate the matroid constraints or can be replaced with some element in the
current set while increasing the value of the objective function.

Algorithm 1.
1: S0 ← ∅, T 0

i ← ∅(∀1 ≤ i ≤ m)
2: for 1 ≤ j ≤ k do
3: t∗ ← arg maxt∈V

∑m
i=1 ∇i(t, T

j−1
i )

4: Sj ← Sj−1 ∪ {t∗}
5: for 1 ≤ i ≤ m do
6: if ∇i(t

∗, T j−1
i ) > 0 then

7: T j
i ← T j−1

i ∪ {t∗} \ Repi(t
∗, T j−1

i )
8: else
9: T j

i ← T j−1
i

10: end if
11: end for
12: end for
13: Return sets Sk and T k

1 , T
k
2 , · · · , T k

m

3.2 Theoretical Analysis

We analyze the performance guarantee of Algorithm 1, which depends on the
distorted objective function as follows.

Φj(Sj) =
m∑

i=1

⎛

⎝
(

1 −
γ + 1

γ

k

)k−j

gi(T
j
i ) +

(
1 − 1

k

)k−j

�i(T
j
i )

⎞

⎠ .
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Lemma 1. In each iteration of Algorithm1,

Φj(S
j) − Φj−1(S

j−1)

=
m∑

i=1

⎛

⎝∇i(t
j , T j−1

i ) +
γ + 1

γ

k

(
1 −

γ + 1
γ

k

)k−j

gi(T
j−1
i ) +

1

k

(
1 − 1

k

)k−j

�i(T
j−1
i )

)
.

For the second term on the right side in Lemma1, we give the lower bound
in the following.

Lemma 2. If the element tj ∈ V is added into the current set Sj−1, then

m∑

i=1

∇i

(
tj , T j−1

i

)
≥ 1

k

m∑

i=1

∑

t∈T ∗
i \T j−1

i

∇i(t, T
j−1
i ),

where S∗ = arg max
S⊆V,|S|≤k

m∑
i=1

max
T∈I(S)

fi(T ), T ∗
i = arg maxA∈I(S∗) fi(A).

The following lemma is crucial to analyze the approximation ratio of
Algorithm 1.

Lemma 3. For j = 1, 2, . . . , k, we have

m∑

i=1

∇i(tj , T
j−1
i )

≥ 1
k

(
1 −

γ + 1
γ

k

)k−j m∑

i=1

(
γ(1 − α)gi(T ∗

i ) − (γ +
1
γ

)gi(T
j−1
i )

)

+
1
k

(
1 − 1

k

)k−j m∑

i=1

(
�i(T ∗

i ) − �i(T
j−1
i )

)
.

Combining Lemma 1 and Lemma 3, the following theorem is proved as below.

Theorem 1. Algorithm1 returns a set Sk of size k such that

m∑

i=1

(
gi(T k

i ) + �i(T k
i )

) ≥ γ

γ + 1
γ

(
1 − e−(γ+ 1

γ )
) m∑

i=1

gi(T ∗
i ) +

(
1 − e−1

) m∑

i=1

�i(T ∗
i ).

Proof. By the definition of the function Φ, it is obtained that

Φ0(S0) = 0,

Φk(Sk) =
m∑

i=1

⎛

⎝
(

1 −
γ + 1

γ

k

)k−k

gi(T k
i ) +

(
1 − 1

k

)k−k

�i(T k
i )

⎞

⎠

=
m∑

i=1

(
gi(T k

i ) + �i(T k
i )

)
.
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Using Lemmas 1 and Lemma 3, we have

Φj(S
j) − Φj−1(S

j−1)

=

m∑

i=1

⎛

⎝∇i(t
j , T j−1

i ) +
γ + 1

γ

k

(
1 −

γ + 1
γ

k

)k−j

gi(T
j−1
i ) +

1

k

(
1 − 1

k

)k−j

�i(T
j−1
i )

)
.

Finally,
m∑

i=1

(
gi(T k

i ) + �i(T k
i )

)

=
k∑

j=1

(Φj(Sj) − Φj−1(Sj−1))

≥
k∑

j=1

⎛

⎝γ

k

(
1 −

γ + 1
γ

k

)k−j m∑

i=1

gi(T ∗
i ) +

1
k

(
1 − 1

k

)k−j m∑

i=1

�i(T ∗
i )

⎞

⎠

≥ γ

γ + 1
γ

(
1 − e−(γ+ 1

γ )
) m∑

i=1

gi(T ∗
i ) +

(
1 − e−1

) m∑

i=1

�i(T ∗
i ).

The curvature is an very useful assumption to obtain the following result.

Theorem 2. There exists an algorithm returning a set Sk of size k such that

F (Sk) ≥
(

γ

γ + 1
γ

(1 − (1 − α)γ) (1 − e−(γ+ 1
γ )) + (1 − α)γ(1 − e−1)

)
OPT.

where F (Sk) =
m∑

i=1

max
T∈I(Sk)

(fi(T k
i )) and OPT is the optimal solution.

Proof. It follows from the definition of �i(T ) and Proposition 2 that

�i(T ) = (1 − α)
∑

v∈T

fi(v) ≥ (1 − α)γfi(T ).

Furthermore,
m∑

i=1

fi(T
k
i ) =

m∑

i=1

(
gi(T

k
i ) + �i(T

k
i )

)

≥ γ

γ + 1
γ

(
1 − e

−(γ+ 1
γ

)
) m∑

i=1

gi(T
∗
i ) +

(
1 − e

−1
) m∑

i=1

�i(T
∗
i )

=

⎛

⎝ γ

γ + 1
γ

(1 − e
−(γ+ 1

γ
)
)

⎞

⎠
m∑

i=1

(fi(T
∗
i ) − �i(T

∗
i )) + (1 − e

−1
)

m∑

i=1

�i(T
∗
i )

=

⎛

⎝ γ

γ + 1
γ

(1 − e
−(γ+ 1

γ
)
)

⎞

⎠
m∑

i=1

fi(T
∗
i ) +

⎛

⎝(1 − e
−1

) −
⎛

⎝ γ

γ + 1
γ

(1 − e
−(γ+ 1

γ
)
)

⎞

⎠

⎞

⎠
m∑

i=1

�i(T
∗
i )

≥
⎛

⎝ γ

γ + 1
γ

(1 − e
−(γ+ 1

γ
)
)

⎞

⎠
m∑

i=1

fi(T
∗
i ) + (1 − α)γ

⎛

⎝(1 − e
−1

) −
⎛

⎝ γ

γ + 1
γ

(1 − e
−(γ+ 1

γ
)
)

⎞

⎠

⎞

⎠
m∑

i=1

fi(T
∗
i )

≥
⎛

⎝ γ

γ + 1
γ

(1 − (1 − α)γ) (1 − e
−(γ+ 1

γ
)
) + (1 − α)γ(1 − e

−1
)

⎞

⎠
m∑

i=1

fi(T
∗
i ).
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Finally, we obtain that

F (Sk) ≥
(

γ

γ + 1
γ

(1 − (1 − α)γ) (1 − e−(γ+ 1
γ )) + (1 − α)γ(1 − e−1)

)
OPT.

4 Conclusion

The objective functions for many applications in practice are in general not sub-
modular. To solve these optimization problems, an important research method
is to introduce some parameters to describe the characteristics of the non-
submodular functions, such as submodularity ratio, curvature, supermodular
degree, etc., and then design algorithms for the problems and analyze the per-
formances of the algorithms with these parameters. On the other hand, it is
well known that submodular maximization problem can be solved by greedy
algorithms, To avoid this limitation of the regular greedy algorithm, we propose
combining the distorted objective function and the greedy algorithms, which has
the potential to be applicable to other optimization problems.
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