
Analyzing the 3-path Vertex Cover
Problem in Planar Bipartite Graphs

Sangram K. Jena and K. Subramani(B)

LDCSEE, West Virginia University, Morgantown, WV, USA
{sangramkishor.jena,k.subramani}@mail.wvu.edu

Abstract. Let G = (V, E) be a simple graph. A set C ⊆ V is called a
k-path vertex cover of G, if each k-path in G contains at least one vertex
from C. In the k-path vertex cover problem, we are given a graph G and
asked to find a k-path vertex cover of minimum cardinality. For k = 3, the
problem becomes the well-known 3-path vertex cover (3PVC) problem,
which has been widely studied, as per the literature. In this paper, we
focus on the 3PVC problem in planar bipartite (pipartite) graphs for
the most part. We first show that the 3PVC problem is NP-hard, even
in pipartite graphs in which the degree of all vertices is bounded by 4.
We then show that the 3PVC problem on this class of graphs admits
a linear time 1.5-approximation algorithm. Finally, we show that the
3PVC problem is APX-complete in bipartite graphs. The last result
is particularly interesting, since the vertex cover problem in bipartite
graphs is solvable in polynomial time.

1 Introduction

Given a simple undirected graph G = (V,E), the open neighborhood (resp. closed
neighborhood) of a vertex vi ∈ V is defined by N(vi) = {vj ∈ V | vivj ∈ E}
(resp. N [vi] = N(vi)∪{vi}). The degree of a vertex v in the graph G is defined as
dG(v) = |N(v)|, whereas the maximum degree of a graph is Δ(G) = max

v∈V
{dG(v)}.

A vertex cover C of G is a subset of V such that for each edge uv ∈ E, either
u ∈ C or v ∈ C. The (minimum) vertex cover problem asks to find a vertex
cover of minimum size in a given graph. One generalization of the vertex cover
problem is the k-path vertex cover problem. A k-path vertex cover Ck of G is a
subset of V such that each path in G having k vertices (path of order k) contains
at least one vertex from Ck. In other words, Ck is called a k-path vertex cover
(kPVC) of G, if there does not exist a path of order k in the induced subgraph
G′ = (V \ Ck, E

′), where an edge e ∈ E belongs to E′, if both its endpoints are
in V \ Ck. The (minimum) k-path vertex cover problem asks to find a vertex
subset of minimum size satisfying the k-path vertex cover property in a given
graph G. For k = 3, the k-path vertex cover problem is called the 3-path vertex
cover (3PVC) problem.
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In the 3PVC problem, we are given an undirected, unweighted graph G =
(V,E) and the goal is to find a minimum cardinality set V ′ ⊆ V , such that at least
one vertex from every two-edge path is in V ′. It is clear that the 3PVC problem
is a variant of the well-known vertex cover (VC) problem and a specialization
of the k-path vertex cover problem, discussed in [1]. The 3PVC problem finds
applications in several practical domains, including wireless networks and data
integrity [1,6]. Prior work has established the computational difficulty of this
problem in general graphs. Indeed, the 3PVC problem is known to be NP-hard
for planar graphs and bipartite graphs. This paper studies the 3PVC problem in
planar bipartite (pipartite) graphs, i.e., the intersection of the above-mentioned
graph classes.

The principal contributions of the paper are as follows:

1. A proof that the 3PVC problem is NP-complete in pipartite graphs, even
with Δ(G) ≤ 4 (Sect. 3).

2. The design and analysis of a linear time 1.5-approximation algorithm for the
3PVC problem in pipartite graphs, with Δ(G) ≤ 4 (Sect. 4).

3. A proof of APX-completeness for the 3PVC problem in bipartite graphs
(Sect. 5).

The rest of this paper is organized as follows: In Sect. 2, we discuss related
work in the literature. The computational complexity of the 3PVC problem
in pipartite graphs is detailed in Sect. 3. An approximation algorithm for this
problem on a selected class of pipartite graphs is discussed in Sect. 4. In Sect. 5,
we show that the 3PVC problem is APX-complete in bipartite graphs. Finally,
we conclude in Sect. 6 by summarizing our contributions and identifying avenues
for future research.

2 Related Work

In this section, we discuss the state-of-the-art results of the 3-path vertex cover
problem. The generalized version of the 3-path vertex cover (3PVC) problem
is the k-path vertex cover (kPVC) problem. Motivated by two problems, viz.,
(i) secure communication in wireless sensor networks [1,11] and (ii) controlling
traffic at street crossings [15], Brešar et al. [1] introduced the kPVC problem
in 2011. For k ≥ 2, Brešar et al. [1] proved that determining ψk(G) (minimum
cardinality of a kPVC) in a graph G is NP-hard. They proved that the problem
can be solved in linear time in trees. For k = 2, the problem is known as the
vertex cover (VC) problem in the literature. The VC problem is known to be NP-
hard, in general [8]. Brešar et al. [1] proved the existence of an r-approximation
algorithm for the VC problem from an r-approximation algorithm of the kPVC
problem. Note that a k-approximation algorithm for the kPVC problem is trivial
[1]. The authors also presented several estimations and exact values to provide
the upper bound for ψk(G). They proved ψ3(G) ≤ (2 · n + m)/6 for any graph
G with n vertices and m edges. For outerplanar graphs of order n, they proved
ψ3(G) ≤ n

2 . In [13], Tu and Yang proved that the 3PVC problem is NP-hard
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in cubic planar graphs with girth 3. They also proposed a linear time 1.57-
approximation algorithm for the 3PVC problem in cubic graphs. Whether a
polynomial-time c-approximation algorithm exists for the kPVC problem for
k ≥ 2 [1,7] is an open problem.

For the 3PVC problem, many constant factor approximation results are
known. Kardoš et al. [7] proposed a polynomial-time randomized approxima-
tion algorithm with an expected approximation ratio of 23

11 . In [14,15], Tu and
Zhou proposed several approximation algorithms for the weighted kPVC problem
(each vertex has a weight). The two techniques they used were the primal-dual
method and graph layering. Zhang et al. [16] considered the kPVC problem in
d-regular graphs and proposed several approximation results. The 3PVC prob-
lem in planar graphs admits an EPTAS [12], which means that the problem is
not APX-hard in pipartite graphs unless P = NP.

3 Computational Complexity

In this section, we reduce the vertex cover (VC) problem in planar graphs to
the 3-path vertex cover (3PVC) problem in pipartite graphs via a linear time
algorithm. Note that the VC problem in planar graphs with maximum degree
three is known to be NP-hard [10].

The decision versions of both the problems are defined below.

The vertex cover problem in planar graphs (Vc-Pla)
Given a planar graph G having maximum degree three and a positive integer
k, does G has a VC of size at most k?

The 3PVC problem in pipartite graphs (3Pvc-Pb)
Given a pipartite graph G and a positive integer k, does there exist a 3PVC
of size at most k?

Construction: The construction from a given instance of a planar graph G to
an instance of a pipartite graph G′ takes place in three steps.
Step 1: For each vertex vi in G, create a corresponding vertex ui in G′.
Step 2: For each vertex ui in G′, create a support vertex u′

i and put an edge
between ui and u′

i.
Step 3: For each edge vivj ∈ E in the graph G, take the corresponding vertices
ui and uj in G′ and put three vertices uij , u′

ij , and u′′
ij between them. Now, add

four edges in the order uiuij , uiju
′
ij , u′

iju
′′
ij , and u′′

ijuj (see the three vertices
and four edges added between u1 and u2 in Fig. 1 (b), corresponding to the edge
v1v2 of Fig. 1 (a)).

Lemma 1. For a given instance of a planar graph G = (V,E) (Δ(G) ≤ 3), an
instance of a pipartite graph G′ = (V1, V2, E

′) (Δ(G′) ≤ 4) can be constructed
in linear time using the above construction.

Proof. Observe that, for each vertex vi in G, there is a corresponding vertex ui

and a support vertex u′
i in G′ (for example, see the vertices u1 and u′

1 in Fig. 1
(b) corresponding to the vertex v1 in Fig. 1 (a)).
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Fig. 1. Construction of a planar bipartite graph G′ from a planar graph G.

Again for each edge vivj ∈ E in G, there are three vertices added in the
corresponding edge uiuj in G′, i.e., uij , u

′
ij , and u′′

ij (for example, see the three
vertices added between u1 and u2 in Fig. 1 (b)). Observe that the extra vertices
added in the graph G′ do not affect the graph’s planarity, and the odd cycles
of the graph (if any) become even. Moreover, the degree of each vertex in the
graph G′ is at most four. Thus, G′ is a planar bipartite graph with Δ(G′) ≤ 4.
If the total number of vertices and edges in graph G is n and m, respectively,
then the number of vertices and edges in graph G′ is |V ′| = 2 · n + 3 · m and
|E′| = n + 4 · m. In a planar graph G = (V,E), |E| ≤ 3 · |V | − 6. So, |V ′| < 11 · n
and |E′| < 13 · n. Hence G′ can be constructed in linear time. �

Now, we prove that 3Pvc-Pb is NP-hard. For the hardness proof, we show a
linear time reduction from Vc-Pla to 3Pvc-Pb. Let G = (V,E) be an instance
of Vc-Pla. Construct an instance G′ = (V1, V2, E

′) of 3Pvc-Pb as discussed in
Lemma 1. We prove the following claims to establish the NP-hardness result
for the 3Pvc-Pb.

Claim 1. For each edge vivj ∈ E in graph G, there exist three vertices uij , u
′
ij,

and u′′
ij in graph G′. Out of these three vertices, one must be present in any

3-path vertex cover of graph G′.

Proof. The proof of the claim follows directly from the definition of the 3-path
vertex cover. As the three vertices uij , u

′
ij , and u′′

ij form a path of order three,
any 3-path vertex cover of the graph G′ must contain at least one vertex out of
these three vertices. �

Claim 2. For an edge vivj ∈ E in G, if the corresponding vertices ui and uj of the
edge in G′ are not in a 3-path vertex cover set D, then either at least two vertices
from the set {uij , u

′
ij , u

′′
ij} or both the support vertices u′

i and u′
j are in D.
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Proof. Assume that none of the vertices from the set {u′
i, ui, uj , u

′
j} are in D.

Moreover, there exists exactly one vertex from the set {uij , u
′
ij , u

′′
ij} in D and D

is a 3-path vertex cover in the graph G′. If uij ∈ D, then there are two paths of
order three containing no vertices from D. The two paths are u′

j − uj − u′′
ij and

uj −u′′
ij −u′

ij . It contradicts the fact that D is a 3-path vertex cover. If u′
ij ∈ D,

then u′
i − ui − uij and u′

j − uj − u′′
ij create two paths of order three, containing

no vertices from D. It also contradicts the fact that D is a 3-path vertex cover.
In the case that only u′′

ij ∈ D, similar combinatorial arguments can be given
to obtain a contradiction. Consider the case when neither of ui and uj belongs
to D. Furthermore, we assume that D contains exactly one vertex from the set
{uij , u

′
ij , u

′′
ij}. In this case, D must contain both the support vertices u′

i and u′
j

along with u′
ij in D to satisfy the condition of the 3-path vertex cover.

Therefore, it is proved that if both ui and uj are not in D, then either (i) at
least two vertices from the set {uij , u

′
ij , u

′′
ij} are in D or (ii) both the support

vertices u′
i and u′

j must be in D. This proves the claim. �
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Fig. 2. A 3PVC solution for G′ constructed from a VC solution in G.

Now, we prove that 3Pvc-Pb is NP-hard by proving the following lemma.

Lemma 2. G has a vertex cover C with |C| ≤ k, if and only if G′ has a 3-path
vertex cover D with |D| ≤ k + m.

Proof. Let C ⊆ V be a vertex cover in the graph G = (V,E) having cardinality
at most k. For each vi ∈ C, take the corresponding vertices of vi as ui in the
graph G′ = (V ′, E′). Update D = D ∪ {ui}. After adding all the corresponding
vertices of C in D, |D| ≤ k. As C is a vertex cover in G, for each edge vivj ∈ E,
either vi or vj must be in C (the tie can be broken by arbitrarily choosing one
vertex if both the vertices are in C). Without loss of generality, assume that
vi ∈ C. Take the corresponding vertex ui in the graph G′. Now, add the 4th
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vertex encountered in the path ui � uj in D (for example, see the path u1 � u2

in Fig. 2 (b) corresponding to the edge v1v2 in Fig. 2 (a). As v1 ∈ C, the 4th

vertex u′′
12 in the path u1 � u2 is chosen in D). Repeat the process for each edge

in G and add one vertex to D. So, after completion of this step, the number of
vertices added in D is m (number of edges present in G). Now, observe that D
is a 3-path vertex cover in G′ as each path of order three contains at least one
vertex from D and |D| ≤ k + m.

Conversely, let D ⊆ V ′ be a 3-path vertex cover of size at most k + m. We
argue that G has a vertex cover C of size at most k. Consider each vertex ui ∈ D
in G′. Take its corresponding vertex vi in C. Clearly |C| ≤ k (follows from Claim
1). If C is a vertex cover in G, then the proof completes. If C is not a vertex
cover in G, then there must exist an edge vivj ∈ E in G, such that vi, vj �∈ C.
Take the corresponding vertices of vi and vj as ui and uj , respectively, in G′. As
vi, vj �∈ C, the corresponding vertices ui, uj �∈ D. That means D contains either
at least two vertices from the set {uij , u

′
ij , u

′′
ij} or both the support vertices u′

i

and u′
j (follows from Claim 2). If both the support vertices u′

i and u′
j belong to

D, then update D = D ∪ {ui, uj} \ {u′
i, u

′
j}. If the above condition fails, then

there must exist two vertices from the set {uij , u
′
ij , u′′

ij} in D. Now, update
D = D ∪ {ui} \ {uij}, if uij ∈ D, else update D = D ∪ {uj} \ {u′′

ij}.
Update C and repeat the process till every edge in G has one of its end vertex

in C. Due to Claim 1, C is a vertex cover having |C| ≤ k. Therefore, 3Pvc-Pb
is NP-hard. �
Theorem 1. 3Pvc-Pb is NP-complete

Proof. For a given set D ⊆ V in a pipartite graph G = (V,E) and a positive
integer k, one can verify whether D is a 3PVC of size at most k. This can be
done in linear time by checking whether there exists a path of order 3 in the
subgraph induced by V \ D. Hence, the problem 3Pvc-Pb is in NP. As per
Lemma 2, 3Pvc-Pb is NP-hard. Therefore, 3Pvc-Pb is NP-complete.

4 Approximation Algorithm

In this section, we design a 1.5-approximation algorithm for the 3PVC problem
in pipartite graphs having maximum degree four. The proposed algorithm is
a greedy algorithm, which runs in linear time. Note that, for the 3PVC prob-
lem, there exists a 1.57-approximation algorithm in cubic graphs [13] and a
2-approximation algorithm in general graphs [14,15]. Let ψ3(G) denote the car-
dinality of a minimum 3-path vertex cover set in G. Observe that if a graph G
is a path or a cycle, then the following lemma for ψ3(G) is valid.

Lemma 3. Let Pn denote a simple path on n vertices and Cn denote a cycle on
n vertices, then ψ3(Pn) = �n

3 	 ≤ n
3 and ψ3(Cn) = 
n

3 � ≤ n+2
3 .

Proof. Consider a simple path Pn on n vertices. For i = 1, 2, · · · , n
3 , select every

3 · ith vertex from the path Pn in a set D. Observe that D is a 3PVC for the path
Pn and |D| ≤ n

3 . In the case of a cycle Cn, a similar combinatorial argument can
be given to prove that ψ3(Cn) ≤ n+2

3 . �
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Now, we discuss the algorithm to get a 3PVC set D in a pipartite graph
G = (V,E), where V = V1 ∪ V2. The algorithm sequentially checks for all the
vertices of G. When it encounters a vertex v ∈ V having degree three, it checks
for the neighbors of v. Let λ denote the number of vertices in N(v) having
degree at least three. If λ < 2, then the algorithm adds v in D and updates G by
removing v from G. If λ ≥ 2, then the algorithm computes the optimal solution
(say D′) in the subgraph induced by N [v], and the neighbors of N(v). Let V ′

be the set containing the vertices in N [v] and the neighbors of N(v). As the
input graph G is a pipartite graph with Δ(G) ≤ 4, there does not exist an edge
between any pair of vertices in N(v) and |V ′| ≤ 13. Now, the algorithm updates
D = D ∪ D′ and removes the vertices selected in D′ from G.

When the algorithm encounters a vertex v ∈ V having degree four, it cal-
culates the value of λ in N(v). If λ < 3, then the algorithm adds v in D and
updates G by removing v from G. If λ ≥ 3, then the algorithm computes the
optimal solution (say D′) in the subgraph induced by N [v], and the neighbors
of N(v). Let V ′ be the set containing the vertices in N [v] and the neighbors of
N(v). Observe that, |V ′| ≤ 17. Now, the algorithm updates D = D ∪ D′ and
removes the vertices selected in D′ from G.

The algorithm continues the above procedure for each vertex in G. At last,
when the graph contains only paths and cycles, it optimally computes the solu-
tion and adds it to D.

The above steps are summarized in Algorithm 1.

Lemma 4. The set D, returned by Algorithm1, is a 3PVC for the given pipar-
tite graph G.

Proof. The algorithm sequentially checks for all the vertices of G. For each vertex
v ∈ V encountered with a degree three, the algorithm checks for its neighbors.
If less than two neighbors have degree at least three, the algorithm adds the
vertex v in D and removes v from G. If there are at least two neighbors of v
having degree at least three, then the algorithm finds the optimal solution for
the subgraph induced by N [v] and neighbors of N(v). Then, it adds the optimal
solution obtained from this induced subgraph in D and removes the vertices of
the optimal solution from G. When the algorithm encounters a vertex v ∈ V of
degree four, it checks for its neighbors. If less than three vertices in N(v) have
degree at least three, it adds the vertex v in D and removes v from G. Otherwise,
it finds the optimal solution in the subgraph induced by N [v] and neighbors of
N(v). Then, it adds the optimal solution obtained from this induced subgraph
in D and removes the vertices of the optimal solution from G. The algorithm
repeats the process in the updated graph G′ until only paths and/or cycles
remain in G′. Note that the set D′ is the minimum 3-path vertex cover of G′

(follows from Lemma 3). Thus, D = D ∪D′ returned by Algorithm1 is a 3-path
vertex cover for the given pipartite graph G. �

Lemma 5. Algorithm1 runs in time linear in the number of vertices of the input
graph, in the worst case.
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Algorithm 1. 3Pvc-Pb
Require: A pipartite graph G = (V, E) of maximum degree 4.
Ensure: A 3PVC set D of G.
1: D ← ∅, G′ ← G, and V ′ ← V .
2: for every v ∈ V ′ do
3: if dG′(v) = 3 then
4: Let λ denote the number of vertices in N(v) having a degree of at least 3.
5: if λ ≤ 1 then
6: D ← D ∪ {v}.
7: G′ ← G′ \ {v}, V ′ ← V ′ \ {v}.
8: else
9: Let G′′ = (V ′′, E′′) be a graph, where V ′′ consists of N [v] and the

neighbors of N(v).
10: Find a minimum 3PVC set D′ in G′′.
11: Update D ← D ∪ D′.
12: G′ ← G′ \ D′, V ′ ← V ′ \ D′.

13: else
14: if dG′(v) = 4 then
15: Let λ denote the number of vertices in N(v) having degree at least 3.
16: if λ ≤ 2 then
17: D ← D ∪ {v}.
18: G′ ← G′ \ {v}, V ′ ← V ′ \ {v}.
19: else
20: Let G′′ = (V ′′, E′′) be a graph, where V ′′ consists of N [v] and the

neighbors of N(v).
21: Find a minimum 3PVC set D′ in G′′.
22: Update D ← D ∪ D′.
23: G′ ← G′ \ D′, V ′ ← V ′ \ D′.

24: Find a minimum 3-path vertex cover set D′ of G′. � follows from Lemma 3
25: Update D ← D ∪ D′.
26: return D.

Proof. Observe that Algorithm 1 checks all the vertices sequentially in step 2.
If the number of vertices in the input graph G is n, then this step will take
O(n) time. For each vertex v ∈ V with dG(v) ≥ 3, the algorithm computes
λ, the number of vertices in N(v) having degree at least three. Based on λ, the
algorithm computes the solution for the subgraph induced by N [v] and neighbors
of N(v). These steps of the algorithm take constant time. Again, Algorithm1
finds a 3-path vertex cover in the updated graph G′ in step 24. This step can
be computed in O(n) time as G′ consists of only paths and cycles. All the other
steps of the algorithm take constant time. Hence, the worst-case time taken by
Algorithm 1 is O(n). �

Lemma 6. Let D be a 3PVC set returned by Algorithm1 and OPT be a 3PVC
set of minimum size for the given pipartite graph G, then |D| ≤ 3

2 · |OPT |.
Proof. Observe that Algorithm 1 evaluates a 3-path vertex cover of minimum
size for the cycles and paths (see step 24 of the algorithm). So, for proving the
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approximation factor, we consider the vertices with degree at least three taken
in D and prove that |D|

|OPT | ≤ 3
2 .

Consider each vertex v ∈ D of degree at least three. If v ∈ OPT , then the
algorithm achieves the best-case scenario by including v in D. Without loss of
generality, assume that v �∈ OPT . If dG(v) = 3, the algorithm considers two
cases to add v in D.

v

u

(a)

v

u

(b)

Fig. 3. Instance of a degree 3 vertex having exactly one neighbor with degree at least 3.

The first case, considered by the algorithm, is when there exists at most one
vertex u ∈ N(v) such that dG(u) ≥ 3 (see steps 5–7 in Algorithm 1). As v �∈
OPT , at least two vertices from N(v) must be in OPT to make the OPT a 3PVC
in G (for example, see Fig. 3 (a)). If the algorithm chooses two vertices from N(v)
along with v in D, then the approximation factor is 3

2 . If the algorithm chooses
all the three vertices of N(v), then either OPT contains N(v) or u �∈ OPT . In
the former case, the approximation factor is 4

3 < 3
2 . Note that the two vertices

(say x and y) in N(v)\{u} has degree at most two. The algorithm selects v in D
and removes v from G. Now, the degree of the two vertices x and y is one, and
still, the algorithm includes them in D, which means both the vertices x and y
are in OPT .

In the latter case, as both u, v �∈ OPT , N(u) must be in OPT (for example,
see Fig. 3 (b)). For the worst-case scenario, assume that N(u) ⊆ D. In that case,
dG(u) = 4. If dG(u) = 3, then after removing the vertex v from G, makes the
degree of u as two. The algorithm computes the optimal solution for all the
degree one and two vertices at last. There is no way the algorithm selects N [u]
optimally. If the degree of the vertices of N(u) is at least three and selected by the
algorithm earlier, then after removing N(u), the degree of u becomes 0 (cannot
be in D). So, the only way the algorithm includes N [u] in D, if dG(u) = 4.

Now, we argue the approximation factor of the algorithm by considering both
the vertices u (dG(u) = 4) and v (dG(v) = 3). Observe that OPT contains at
least five vertices from N(u) and N(v) (see Fig. 3 (b)), whereas D contains at
most seven vertices, including both u and v. So, the approximation factor is
7
5 < 3

2 .
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v
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Fig. 4. Instance of a degree 3 vertex with at least two neighbors of degree at least 3.

For dG(v) = 3, the second case considered by the algorithm is when there
exist at least two vertices w, u ∈ N(v) such that dG(w) ≥ 3 and dG(u) ≥ 3 (see
steps 9–12 in Algorithm 1). In the second case, the algorithm finds an optimal
solution for the subgraph induced by N [v] and neighbors of N(v). As v �∈ OPT ,
at least two vertices from N(v) must be in OPT . If the algorithm computes
three vertices in D from the induced subgraph, then the approximation factor
is 3

2 .
Consider the case that the algorithm chooses all the four vertices of N [v] in

D, i.e., N [v] ⊆ D. Assume that OPT consists of two vertices from N(v), i.e.,
there exists a vertex w ∈ N(v), such that w �∈ OPT (for example, see Fig. 4 (a)).
As both v and w are not in OPT , there must be the case that N(w) ⊆ OPT
(for example, see Fig. 4 (b)). As the algorithm chooses w in D, dG(w) ≥ 3.
Otherwise, the algorithm would not choose w in D as already v ∈ D, and the
algorithm computes the optimal solution in the subgraph induced by N [v] and
neighbors of N(v). Now, we argue the approximation factor of the algorithm by
considering both the vertices v (dG(v) = 3) and w. Observe that OPT contains
at least two vertices from N(v) and N(w), whereas D contains N [v] and N(w).
If dG(w) = 3, the approximation factor is 6

4 . If dG(w) = 4, the approximation
factor is 7

5 (for example, see Fig. 4 (c)). So, for dG(v) = 3, the approximation
factor is at most 3

2 . Observe that, for each vertex v ∈ D with dG(v) = 4, the
algorithm considers two cases to include v in D. Out of these two cases, the first
case deals with the scenario when at most two vertices in N(v) have a degree
of at least three. The second case deals with the scenario when at least three
vertices in N(v) have a degree of at least three. The rest of the proof follows
the similar combinatorial arguments given for the degree three vertices above.
Thus, for each possible case, the approximation factor is at most 3

2 . Therefore,
the solution D, returned by the algorithm, is 3

2 · |OPT |, i.e., |D| ≤ 3
2 · |OPT |. �

Theorem 2. Algorithm1 is a 3
2 -approximation algorithm for the 3-path vertex

cover problem in pipartite graph G with maximum degree four. The algorithm
runs in O(n) time.
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Proof. Follows from Lemma 4, Lemma 5, and Lemma 6. �

5 Approximation Complexity

In this section, we show that the 3-path vertex cover (3PVC) problem is APX-
complete in bipartite graphs by exhibiting an L-reduction [4] from the vertex
cover problem in cubic graphs (Vc-Cg) to the 3PVC problem in bipartite graphs
(3Pvc-Bp). Note that Vc-Cg is known to be APX-complete [4].

Lemma 7 [3]. If G = (V,E) is a cubic graph and Copt is a minimum vertex
cover in G, then |Copt| ≥ |V |

2 .

Construction: Let cubic graph G = (V,E) denote an instance of Vc-Cg. We
construct an instance of 3Pvc-Bp (bipartite graph G′ = (V1, V2, E

′)) as follows:
Replace each edge uv ∈ E of G by a path u � v of five vertices in G′,

where the end vertices of the path are u and v (see Fig. 5). We call these three
vertices added in the path u � v other than u and v as added vertices. We also
call the end vertices u and v as node vertices. For each vertex vi ∈ V in the
graph G, add a support vertex, say v′′

i and an edge vv′′
i in the graph G′ (for

example, see the edges uu′′ and vv′′ in Fig. 5). Note that the construction is
similar to the NP-hardness proof construction of Sect. 3 (see Fig. 1). From this
construction, it follows that |V ′| = 2 · |V | + 3 · |E| = 2 · |V | + 3·|V |

2 · 3 < 7 · |V |
and |E′| = 4 · |E| + |V | = 4 · 3·|V |

2 + |V | = 7 · |V |.

u

u
u y v

v

v

Fig. 5. Gadget for an edge of the graph G.

To prove that 3Pvc-Bp is APX-complete, we first prove that 3Pvc-Bp
is APX-hard. The APX-hardness is proved by reducing the Vc-Cg to the
3Pvc-Bp via an L-reduction. Let G = (V,E) be an instance of Vc-Cg. Con-
struct the instance G′ = (V ′, E′) of 3Pvc-Bp as discussed above.

Lemma 8. 3Pvc-Bp is APX-hard.

Proof. Let C ⊆ V be a vertex cover (VC) in the graph G = (V,E). We construct
a 3-path vertex cover D for the graph G′ = (V ′, E′) from C as follows:

For each vertex vi ∈ C in G, take the corresponding vertex vi in D from G′.
As C is a VC in G, for each edge uv ∈ E in G, at least one of the end vertices
of the edge uv must be in C. If u ∈ C, then include the added vertex v′ from G′

in D; otherwise, include the added vertex u′ in D.
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Now, we prove that D is a 3PVC in G′. Observe that, for each edge-gadget
corresponding to each edge uv in G, D contains either the vertices u and v′, if
u ∈ C or v and u′. So, from every edge-gadget, the vertices selected in D forbid
a 3-path with no vertices in D. Further, if one of the vertices among u and v is
not in D, then its two adjacent vertices from the other two edge-gadgets must
be in D. Therefore, the subgraph induced by the vertices V ′ \ D does not have
a path of order three. Thus, D is a 3PVC for the graph G′.

Let the number of vertices in the graph G be n, i.e., |V | = n. As G is a cubic
graph, |E| = 3·n

2 . There is precisely one added vertex taken in D from each edge-
gadget along with the vertices in C. Therefore, |D| = |C| + |E| = |C| + 3·n

2 . Let
Copt be a minimum vertex cover for G, then by Lemma 7, |Copt| ≥ n

2 . Let Dopt be
a minimum 3PVC for G′, then |Dopt| ≤ |Copt|+3· n2 ≤ |Copt|+3·|Copt| ≤ 4·|Copt|.

Conversely, let D be a 3-path vertex cover in G′. If D contains any of the
support vertices, we delete the support vertex and add its neighbor (node vertex)
in D if the neighbor is not in D. We construct a vertex cover C from the 3-path
vertex cover D as follows:

For each node vertices vi ∈ D in G′, take its corresponding vertex from G in
C. If C is a VC in G, then the proof is complete. If C is not a VC in G, then
there exists an edge uv ∈ E in G, for which neither of the end vertices is in
C. Observe that, in the corresponding edge-gadget of the edge uv, D does not
contain the node vertices and the support vertices (otherwise, one of the vertices
u or v must be in C). That means D contains the added vertices u′ (otherwise,
u′′ −u−u′ form a 3-path) and v′ (otherwise, v′′ −v−v′ form a 3-path) to satisfy
the 3PVC condition. We remove the vertex u′ from D and add u in D. Repeat
the process until getting a VC in the graph G.

Observe that |C| ≤ |D|− |E| ≤ |D|−3 · n
2 (as from each edge-gadget, at least

one vertex out of three added vertices must be in D). Let D be any 3PVC of G′

and C be a corresponding VC for G, and Dopt, Copt be the minimum 3PVC for
G′ and corresponding minimum VC for G, respectively.
Then |D| − |Dopt| ≥ |C| + 3 · n

2 − |Copt| − 3 · n
2 .

|D| − |Dopt| ≥ |C| − |Copt|.
This gives an L-reduction from Vc-Cg to 3Pvc-Bp with α = 4 and β = 1. �

Note that 3Pvc-Bp is in APX [9]. As per Lemma 8, 3Pvc-Bp is APX-
hard. Therefore, 3Pvc-Bp is APX-complete.

6 Conclusion

In this paper, we studied the 3-path vertex cover problem in different graph
classes. We provided a linear time NP-completeness proof for the problem in
planar bipartite graphs. With respect to approximation algorithms, we proposed
a 1.5-approximation algorithm for the 3PVC problem in linear time. We proved
that the 3PVC problem is APX-complete in bipartite graphs.

From our perspective, the following open problems are worth pursuing:
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1. An exact exponential algorithm [5] for the 3PVC problem in pipartite graphs
- Note that such algorithms exist for general graphs, but we hope to exploit
the pipartite structure to obtain more efficient algorithms.

2. Unit disk graphs [2] - It is well-known that the 3PVC problem is NP-hard in
unit disk graphs. We plan to investigate non-trivial approximation algorithms
for the same.
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