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Preface

The 17th Annual Conference on Theory and Applications of Models of Computation
(TAMC2022) took place in Tianjin, China, during September 16–18, 2022. TAMC2022
provided an excellent venue for researchers in the area of computational theory, infor-
mation theory, and applications. The main themes of the conference were computability,
complexity, algorithms, information theory, and their extensions to machine learning
theory, and foundations of artificial intelligence.

The Program Committee received a total of 75 submissions, among which 33 were
accepted for presentation at the conference. Each contributed paper was subject to a
rigorous single-blind peer review process, with reviewers drawn from a large group of
members of the Program Committee. On average, each paper received 3 reviews.

We would like to express our sincere appreciation to everyone who made TAMC
2022 a success by volunteering their time and effort: the authors, the Program Com-
mittee members, and the reviewers. We thank Springer for accepting TAMC 2022 for
publication in this Lecture Notes in Computer Science (LNCS) proceedings volume.
Our special thanks also extend to the other chairs and Organizing Committee members
for their excellent work.

August 2022 Ding-Zhu Du
Donglei Du

Chenchen Wu
Dachuan Xu
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Maximization of k-Submodular Function
with a Matroid Constraint

Yunjing Sun, Yuezhu Liu, and Min Li(B)

School of Mathematics and Statistics, Shandong Normal University, Jinan 250014,
People’s Republic of China

liminemily@sdnu.edu.cn

Abstract. A k-submodular function is a promotion of a submodular function,
whose domain is composed of k disjoint subsets rather than a single subset. In
this paper, we give a deterministic algorithm for the non-monotone k-submodular
function maximization problem subject to a matroid constraint with approxima-
tion factor 1/3. Based on this result, we give a randomized 1/3-approximation
algorithm for the problem with faster running time, but the probability of suc-
cess is (1− ε). And we obtain that the complexity of deterministic algorithm and
random algorithm is O(N |D|(p+kq)) and O(|D|(p log N

ε1
+kq log N

ε2
) logN)

respectively, where D is the ground set of the matroid constraint with rank N , p
is times of oracle to calculate whether a set is an independent set in this matroid,
q is the times of oracle to calculate a value of the k-submodular function, and
ε, ε1, ε2 are positive parameters with ε = max{ε1, ε2}.

Keywords: k-submodular function · Matroid constraint · Deterministic
algorithm · Randomized algorithm

1 Introduction

The definition of k-submodular function is generalized from submodular case. For non-
monotone unconstrained k-submodular functions maximization, Ward and Živný give
a 1/(1 + a)-approximation algorithm, where a = max{1,√(k − 1)/4} [14]. Iwata et
al. [3] design a new randomized algorithm and get the approximation ratio of 1/2. Then,
Oshima [6] shows another improved randomized k2+1

2k2+1 -approximation algorithm for

k ≥ 3 and a random
√
17−3
2 -approximation algorithm for k = 3. For monotone uncon-

strained case, a k
2k−1 -approximation algorithm is proposed in [3]. There are also some

works about the monotone constrained cases. In order to maximize k-submodular func-
tion with the total size constraint, Ohsaka and Yoshida [5] propose a constant-factor
approximation algorithm, giving an approximation ratio of 1/2. In addition, they also
propose an almost linear-time algorithmby random sampling and get 1/2-approximation
algorithm with probability of (1 − δ). Meanwhile, they present a 1/3-approximation
algorithm for the individual size constraints. A knapsack constraint is also studied for the

Supported by Natural Science Foundation of Shandong Province (No. ZR2020MA029) of China.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al. (Eds.): TAMC 2022, LNCS 13571, pp. 1–10, 2022.
https://doi.org/10.1007/978-3-031-20350-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20350-3_1&domain=pdf
https://doi.org/10.1007/978-3-031-20350-3_1


2 Y. Sun et al.

constraint problems.With this kind of constraint, Tang et al. get a deterministic (12 − 1
2e )-

approximation algorithm [12]. Later, they make a further streaming research for cardi-
nality and knapsack constraints [11]. Recently, for monotone k-submodular function
maximization with a matroid constraint, Sakaue [10] gives a greedy algorithm that out-
puts an approximation ratio of 1/2. On this basis, Rafiey andYoshida [9] design a random
algorithm to reduce the complexity. Besides,Wang and Zhou [13] provide a newmethod
calledmultilinear extension for k-submodularmaximization problem.Qian et al. [8] also
propose a new way to maximize the given objective and minimize the size concurrently
by using a multiobjective evolutionary algorithm. A novel budgeted k-submodular max-
imization problem with streaming algorithms is researched in [7]. There are also some
works for k-submodular minimization [1,2].

The structure of this article is given as follows. We briefly introduce the relevant
knowledge and conclusions about k-submodular function and matroids in Sect. 2. In
Sect. 3, we design a deterministic algorithm with the complexity of O(N |D|(p + kq))
and prove the 1/3-approximation ratio for non-monotone k-submodular function max-
imization under a matroid constraint. Then, we design a random 1/3-approximation
algorithm with probability of (1 − ε), and get the complexity of O(|D|(p log N

ε1
+

kq log N
ε2
) logN) by this algorithm, where ε = max{ε1, ε2}.

2 Preliminaries

First of all, we will introduce the related content of k-submodular functions used in
this paper. Given a finite nonempty set D, 2D is the power set of D. A set function f :
2D → R defined on power set of D is called submodular if for all U, V ⊆ D,

f(U) + f(V ) ≥ f(U ∩ V ) + f(U ∪ V ).

We define the marginal value of e with respect to U as fU (e) = f(U ∪ {
e
}
) − f(U)

for all U ⊆ D and e /∈ U . Then we have the property of diminishing marginal gain of
a submodular function:

f(U ∪ {
e
}
) − f(U) ≥ f(V ∪ {

e
}
) − f(V ),

for any U ⊆ V and e ∈ D\V .
k-submodular function has k + 1 choices for the placement of elements, rather

than just two choices. Given a positive integer k ≥ 1 and a finite nonempty set D, let
(k + 1)D :=

{
(U1, . . . , Uk) | Ul ⊆ D,∀l ∈ {

1, 2, . . . , k
}
, Ul ∩ Un = ∅,∀l 
= n

}
. A

function f : (k + 1)D → R is called k-submodular, if for any u = (U1, . . . , Uk) and
v = (V1, . . . , Vk) ∈ (k + 1)D, we have

f(u) + f(v) ≥ f(u � v) + f(u � v),

where

u � v := (U1 ∩ V1, . . . , Uk ∩ Vk),

u � v :=
(

U1 ∪ V1\
( ⋃

l �=1

(Ul ∪ Vl)
)
, . . . , Uk ∪ Vk\

( ⋃

l �=k

(Ul ∪ Vl)
))

.



Maximization of k-Submodular Function with a Matroid Constraint 3

For any u = (U1, . . . , Uk) ∈ (k + 1)D, we denote the support of u by supp(u) =
∪k

l=1Ul and call the cardinality of supp(u) as the size of u. And for any element e ∈ D,
we denote

u(e) =

{
l, if e ∈ Ul,

0, if e /∈ supp(u).

A paritial ordering relation is defined as follows, for u = (U1, . . . , Uk) and v =
(V1, . . . , Vk) ∈ (k+1)D,u 
 v ifUl ⊆ Vl for all l ∈ [k], where [k] :=

{
1, 2, 3, . . . , k

}
.

Then a k-submodular function f is monotone if f(u) ≤ f(v) for any u 
 v. Then
u + l · Ie denotes the new vector generated by assigning 0 of vector u to l, where Ie

means a unit vector corresponding to the elements in |D| with 1 in the position of e. We
also denote

fu (e, l) = f(u+ l · Ie) − f(u)
= f(U1, . . . , Ul−1, Ul ∪ {

e
}
, Ul+1, . . . , Uk) − f(U1, . . . , Uk),

for u ∈ (k + 1)D, e /∈ supp(u), and l ∈ [k]. This is also known as a marginal gain of
putting e ∈ D to the l-th position of u. We can get that the monotonicity of f implies
that fu (e, l) ≥ 0 for any u = (U1, . . . , Uk), e /∈ supp(u) and l ∈ [k]. Moreover, the
orthant submodularity of k-submodular is given by

fu (e, l) ≥ fv (e, l),

for any u,v ∈ (k + 1)D satisfying u 
 v, e /∈ supp(v), and l ∈ [k]. The pairwise
monotonicity of a k-submodular is known as:

fu (e, l) + fu (e, n) ≥ 0,

for any element u in (k + 1)D, e not included in the support of u, and any different
positions l, n.

The following theorem indicates the relation among k-submodularity, orthant sub-
modularity and pairwise monotonicity.

Theorem 1 (Ward and Živný [14]). A function f : (k + 1)D → R is k-submodular if
and only if f is orthant submodular and pairwise monotone.

Now we introduce a special constraint, named matroid.

Definition 1 (Sakaue [10]). Assuming D is a finite set and F is a subset of its power
set, we call the system (D,F) a matroid if it satisfies the following conditions:

1. ∅ ∈ F ,
2. If A ⊆ B ∈ F then A ∈ F ,
3. If A,B ∈ F and |A| < |B|, there must be an element e ∈ B\A such that A∪{

e
} ∈

F .

Any element in F is called an independent set, and A ∈ F is named a maximal inde-
pendent set if for any B satisfying A � B, we have B /∈ F . In fact, the maximal
independent set is also called a basis. In this paper, B denotes the set of bases in F ,
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and every element in B has the same size known as the rank of this matroid, which is
denoted by N in our paper.

Given a matroid (D,F) and a k-submodular function f : (k+1)D → R, the maxi-
mization k-submodular problem with a matroid constraint (MkSM) can be represented
as follows.

max
u∈(k+1)D

f(u) subject to supp(u) ∈ F . (1)

If the objective function is non-monotone, we denote MkSM by nMkSM. Assume that
ū is a feasible solution to problem (1), ū is called a maximal solution if it has the
maximal support size among all the feasible solution with the same objective value, i.e.,

|supp(ū)| ∈ arg max
supp(v)∈F

{|supp(v)| : f(v) = f(ū)}.

In this paper, we pay attention to the non-monotone case, and we can show that the
size of its maximal solution can still reach N [10].

Lemma 1. For nMkSM, the size of any maximal optimal solution is still N .

Proof. Assume o is an optimal solution with maximal size to which elements can no
longer be added, satisfying |supp(o)| < N . Because f is pairwise monotone, by adding
an arbitrary element e not in supp(o) but satisfying {e} ∪ supp(o) ∈ F to any two
different positions l and n, we have nonnegative marginal returns, that is, fo(e, l) +
fo(e, n) ≥ 0. Therefore, at least one of fo(e, l) and fo(e, n) is nonnegative. Suppose
that fo(e, l) ≥ 0, then the value of o + l · Ie does not decease the one of o. This
contradicts that the size of o is maximal.

Lemma 2 (Sakaue [4]). Given a matroid (D,F), assume that A is an independent set
and B is a basis containing A, then for any element e ∈ D not in A such that A ∪ {e}
belongs to F , there should be an element e′ in B \ A satisfying that (B \ {e′})∪ {e} is
a basis too.

In this paper, |D| denotes the number of elements in D, p is the times of oracle to
calculate whether a set is an independent set in this matroid, and q is the times of oracle
to calculate a value of the k-submodular function.

3 Main Results for nMkSM

In this part, we mainly give our analysis to the nMkSM, and design two 1/3-
approximation algorithms for this case depending on deterministic and random tech-
niques.

3.1 A Deterministic Algorithm for nMkSM

Based on the greedy algorithm, a deterministic algorithm for nMkSM is shown in Algo-
rithm 1. According to Lemma 1, the final output of the algorithm must be a base, so the
algorithm needs to carry out N -step iteration, in which the elements in the iteration are
those elements that can form an independent set with the support of the current solution
(reflected in the third step of the algorithm). Finally, the greedy algorithm selects the
elements and positions in the constructed subset.
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Algorithm 1 A deterministic algorithm for nMkSM

Input: A non-monotone k-submodular function f : (k + 1)D → R+, a matroid (D, F) with
bases B and rank N ∈ Z+, and two probabilities of failure ε1, ε2.
Output: A vector t with supp(t) ∈ B.
1. t ← 0 and n ← 1.
2. while n ≤ N
3. Construct a set Dn(t) =

{
e ∈ D\supp(tn−1)|supp(tn−1) ∪ {e} ∈ F}

.
4. Let (e, l) be the element and position maximizing ft (e, l) for e ∈ Dn(t), l ∈ [k].
5. te ← l.
6. n ← n + 1.
7. end while
8. return t.

Theorem 2. For nMkSM, we can obtain a 1/3-approximation solution in complexity
of O(|D|N(p + kq)) by applying Algorithm 1.

Proof. In fact, the complexity is trivial and we mainly proof the performance guarantee.
At beginning, let us analyze the exchange of elements between the solution output by
Algorithm 1 and the optimal solution. First, taking any n ∈ [N ], let e(n), l(n) be the
element and position chosen by greedily in the n-th iteration in Algorithm 1 and let
m(n) ∈ [k] be any position other than the greedy one ln. We say t(0) = 0 and t = t(N),
which are the output of Algorithm 1. t(n) represents the algorithm solution after the
n-th iteration, i.e., t(n) = t(n−1)+ l(n) ·Ie(n) . We also use T (n) to denote the support of
t(n), i.e., T (n) = supp(t(n)). Let o be a maximal optimal solution. We will describe the
sequence o(n), for n = 0, . . . , N , among them, o(0) = o, o(N) = t. Here we denote
O(n) = supp(o(n)). In addition, we let Ln = O(n−1)\T (n−1).

Now, we explain how a series of vectors o(n), n = (1, . . . , N) are constructed,
which need to satisfy the following conditions:

t(n)

{
≺ o(n), if n = 1, 2, . . . , N − 1,

= o(n) if n = N.

and O(n) is an element of B for n = 1, 2, . . . , N . We use the following ways to
exchange elements for constructing the sequence:

o(n) =

{
e(n), if e(n) ∈ Ln,

any element in Ln, otherwise.

o(n−1/2) = o(n−1) − o(n−1)(o(n)) · Io(n) ,

o(n) = o(n−1/2) + l(n) · Ie(n) .

Thus, since e(n) and l(n) are chosen greedily in the n-th step of Algorithm 1, we get:

ft(n−1)(e(n), l(n)) ≥ ft(n−1)(o(n),o(n−1)(o(n))), (2)

ft(n−1)(e(n), l(n)) ≥ ft(n−1)(o(n),m(n)). (3)
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Since t(n−1) 
 o(n−1/2), we have:

ft(n−1)(o(n),o(n−1)(o(n))) ≥ fo(n−1/2)(o(n),o(n−1)(o(n))), (4)

ft(n−1)(e(n),m(n)) ≥ fo(n−1/2)(e(n),m(n)). (5)

And by the pairwise monotonicity of f and m(n) 
= l(n), we have

fo(n−1/2)(e(n), l(n)) + fo(n−1/2)(e(n),m(n)) ≥ 0. (6)

Next, we deduce the proof as follows.

f(t(n)) − f(t(n−1))
= ft(n−1)(e(n), l(n))
(2)

≥ ft(n−1)(o(n),o(n−1)(o(n)))
(4)

≥ fo(n−1/2)(o(n),o(n−1)(o(n)))
(6)

≥ fo(n−1/2)(o(n),o(n−1)(o(n))) − fo(n−1/2)(e(n), l(n)) − fo(n−1/2)(e(n),m(n))
(5)

≥ fo(n−1/2)(o(n),o(n−1)(o(n))) − fo(n−1/2)(e(n), l(n)) − ft(n−1)(e(n),m(n))
(3)

≥ fo(n−1/2)(o(n),o(n−1)(o(n))) − fo(n−1/2)(e(n), l(n)) − ft(n−1)(e(n), l(n))
= f(o(n−1)) − f(o(n−1/2)) − fo(n−1/2)(e(n), l(n)) − ft(n−1)(e(n), l(n)). (7)

By transposing the two sides of the inequality in (7), we have,

2ft(n−1)(e(n), l(n)) ≥ f(o(n−1)) − f(o(n−1/2)) − fo(n−1/2)(e(n), l(n))
= f(o(n−1)) − f(o(n−1/2)) − f(o(n)) + f(o(n−1/2))
= f(o(n−1)) − f(o(n)).

Thus,
2(f(t(n)) − f(t(n−1))) ≥ f(o(n−1)) − f(o(n)). (8)

By summing over both sides of (8), we get the following results:

f(o) − f(t) =
N∑

n=1

(f(o(n−1)) − f(o(n)))

≤ 2
N∑

n=1

(f(t(n)) − f(t(n−1)))

= 2f(t).

Finally, we draw the following conclusion:

f(t) ≥ 1/3f(o).

In the following subsection, we will design a random algorithm to improve the
complexity of the deterministic algorithm from O(N |D|(p+ kq)) to O(|D|(p log N

ε1
+

kq log N
ε2
) logN) with probability at least 1 − ε, where ε = max{ε1, ε2}.
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3.2 A Random Algorithm for nMkSM

In order to reduce the complexity of the deterministic algorithm for the non-monotone
case, we adopt the uniform random sampling, which is shown as Algorithm 2.

There are two major difference between the random algorithm and the determin-
istic algorithm. Firstly, we add random Qn in Step 3 to reduce the number of ele-
ments for constructing the independent sets, that is, the element is selected from
Qn\supp(tn−1) instead of D\supp(tn−1) when constructing the independent set
Dn(t), where Dn(t) =

{
e ∈ Qn\supp(tn−1)|supp(tn−1) ∪ {e} ∈ F}

. Secondly,
we use random set Rn in Step 5 to reduce the size of Dn(t). Under the condition that
the constructed independent set is non-empty, some elements in the independent set
are randomly selected to form the random set of Rn, instead of Dn(t) when it makes
greedy selection.

Algorithm 2 A random algorithm for nMkSM

Input: A non-monotone k-submodular function f : (k + 1)D → R+, a matroid (D, F) with
bases B and rank N ∈ Z+, and two failed probabilities ε1, ε2.
Output: A vector t with supp(t) ∈ B.
1. t ← 0 and n ← 1.
2. while n ≤ N
3. Qn ← a random subset uniformly picked from D, whose size is min{ |D|−n+1

N−n+1
log( N

ε1
),

|D|}.
4. Construct Dn(t) using the independence oracle.
5. Rn ← a random subset evenly selected from Dn(t) with size of min{ |Qn|−n+1

N−n+1
log( N

ε2
),

|Dn(t)|}.
6. (e, l) ← argmaxe∈Rn,l∈[k] ft (e, l).
7. t(e) ← l.
8. n ← n + 1.
9. end while
10. return t.

In Algorithm 2, we first append 0 to t and then go through a loop. Each loop takes
the following 6 steps from step 3 to step 8, for a total of N loops, and finally outputs a
vector t that belongs to B. Below we specifically analyze each cycle of six steps. The
first step (the step 3 in Algorithm 2) is to randomly select some elements to form Qn

from the set D, but the size of Qn is limited. The second step (the step 4 in Algorithm 2)
is to form the qualified e ∈ Qn into an independent set Dn(t). The third step (the
step 5 in Algorithm 2) is to randomly select the elements to form the Rn in Dn(t),
which greatly reduces the number of selected elements. The fourth step (the step 6 in
Algorithm 2) is to greedily select the elements and positions in Rn until they are found
which can make the k-submodular function produce the maximum gain. The selected
element is written as e and the selected position is recorded as l. Then we can obtain
the following result.
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Lemma 3. We can get Dn(t) 
= ∅ with the probability at least 1 − ε1. Likewise, with
probability at least 1 − ε2, we can also obtain Rn ∩ Ln 
= ∅ for every n ∈ [N ].

Proof. First, for n ∈ [N ], if |Qn|= |D|, there is obviously Dn(t) 
= ∅. That is,
Pr[Dn(t) = ∅] = 0. Otherwise we have

Pr[Dn(t) = ∅] = (Pr[{e} ∪ supp(t) /∈ F ])|Q
n|

= (1 − Pr[{e} ∪ supp(t) ∈ F ])|Q
n|

≤ (1 − N − (n − 1)
|Qn|−(n − 1)

)|Q
n|

≤ (1 − N − (n − 1)
|D|−(n − 1)

)|Q
n|

≤ e− N−n+1
|D|−n+1 |Qn|

= e− N−n+1
|D|−n+1 | |D|−n+1

N−n+1 log N
ε1

=
ε1
N

.

In the same way, for n ∈ [N ], if |Rn|= |Dn(t)|, obviously there is Rn ∩ Ln 
= ∅,
then Pr[Rn ∩ Ln = ∅] = 0. Otherwise we have

Pr[Rn ∩ Ln = ∅] = (1 − |Ln|
|Dn(t)| )

|Rn|

= (1 − N − (n − 1)
|Dn(t)| )|R

n|

≤ (1 − N − (n − 1)
|Qn|−(n − 1)

)|R
n|

≤ e− N−n+1
|Qn|−n+1 |Rn|

= e− N−n+1
|Qn|−n+1

|Qn|−n+1
N−n+1 log N

ε2

=
ε2
N

.

Taking any n ∈ [N ], we will construct a sequence of the optimal solution o(0) =
o,o(1), . . . ,o(N) = t. Denote the symbols e(n), l(n), t(n), T (n), O(n), Ln as the same
meanings as those in deterministic case (see the proof of Theorem 2). If Dn(t) or
Rn ∩ Ln is empty, we consider the algorithm failed. Suppose Dn(t) and Rn ∩ Ln is
non-empty, we have the following definitions.

o(n) =

{
e(n), if e(n) ∈ Rn ∩ Ln,

any element in Rn ∩ Ln, otherwise.

Finally, we let

o(n−1/2) = o(n−1) − o(n−1)(o(n)) · Io(n) ,

o(n) = o(n−1/2) + l(n) · Ie(n) .
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Based on the construction of the optimal solution above and just like the determin-
istic Algorithm 1, if the algorithm does not fail, we have o(N) = t(N) and can get

2(f(t(n)) − f(t(n−1))) ≥ f(o(n−1)) − f(o(n)), ∀n = 1, 2, . . . , N.

Thus,
3f(t) ≥ f(o).

In the following part, we will give the proof of Theorem 3 based on Lemma 3, which
shows that Algorithm 2 does not fail with high probability.

Theorem 3. For nMkSM, we can obtain a 1/3-approximation solution from Algo-
rithm 2 in complexity of O(|D|(p log N

ε1
+ kq log N

ε2
) logN) with the probability at

least 1 − ε, where ε = max{ε1, ε2}.
Proof. The number of times Algorithm 2 is at most

p

N∑

n=1

|Qn| + kq

N∑

n=1

|Rn| = p log
N

ε1

N∑

n=1

|D|−n + 1
N − n + 1

+ kq log
N

ε2

N∑

n=1

|Qn|−n + 1
N − n + 1

= p log
N

ε1

N∑

n=1

|D|−N + n

n
+ kq log

N

ε2

N∑

n=1

|Qn|−N + n

n

≤ p log
N

ε1

N∑

n=1

|D|
n

+ kq log
N

ε2

N∑

n=1

|D|
n

≤ |D|(p log N

ε1
logN + kq log

N

ε2
logN).
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Abstract. Utilizing approximation algorithm, there has been a large quantity of
work on optimization for submodular functions since the 1970s. As a variant, k-
submodular function appears in many fields to match with the developing back-
ground, in which the outputted sets changes from one to k. Because of the appli-
cation of submodularity, some concepts and parameters describing the closeness
to submodular function are generated, for example approximately submodular set
function and diminishing-return (DR) ratio. In our discussion, the k-dimension
set function with matroid constraint we will maximize may not have access to the
submodularity. However it is an approximately non-k-submodular set function
which contains DR ratio. By the greedy technique, we obtain the approximation
algorithms. When the value of the DR ratio is set one, some known results are
covered.

Keywords: k-submodular set function · Matroid · Greedy · Approximation
algorithm

1 Introduction

A non-negative set function h : 2G → R defined on subsets of a ground set G with
size n is called submodular if it possesses the following properties. One is that ∀S1 ⊆
S2 ⊆ G, h(S1) + h(S2) ≥ h(S1 ∪ S2) + h(S1 ∩ S2), ∀S1, S2 ⊆ G. There is also
an intuitive diminishing return property for submodularity h(u|S2) ≤ h(u|S1), ∀S1 ⊆
S2 ⊂ G, u ∈ G \ S2, where h(u|S) := h(S ∪ {u}) − h(S) indicates the marginal
gain of h with respect to any element u and any subset S ⊆ G. Submodular functions
appear in classic optimization problems such as the maximization of facility location,
weighted cut, and set cover etc. In recent modern subjects such as machine learning
and data mining, there are also some problems concerning the objective function with
diminishing return property for example monitor placement [1], dictionary selection
[2], sensor placement [3] and social networks [4].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al. (Eds.): TAMC 2022, LNCS 13571, pp. 11–20, 2022.
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Instead of selecting one set, several disjoint sets are required in recent practical
applications. Therefore, k-submodular set function is a natural generalization of 1-
dimension submodular set function. The special cases k = 1 and k = 2 are sub-
modular and bisubmodular functions respectively. There are some obvious examples,
such as influence maximization [5] and sensor placement [5]. According to the actual
application background, the maximization problems are discussed for k-submodular
set function with various constraints. For the maximization of nonnegative monotone
k-submodular function, Ohsaka and Yoshida [5] provide constant-factor algorithms, in
which there are two kinds of size constraints. For matroid constraint, Sakauc [6] pro-
poses a 1

2 -approximation algorithm with greedy technique. Tang et al. [7] obtain a
deterministic 1

2 − 1
2e under a knapsack constraint.

As submodularity for set function is widely used in practical settings, there are
many related parameters describing submodular functions, or concepts introducing the
proximity between set functions and submodular set functions, for example weak sub-
modular ratio, diminishing return ratio [8,9] and approximately submodular function
[10,11]. Therefore, the corresponding description can be extended to k-submodular set
function as well.

In many applying situations, there is no access to the submodular function to be
optimized. However, it prefers to some erroneous or noisy version. Therefore, approx-
imately submodular set function and submodular optimization under noise [12,13] are
discussed later. In these cases, the optimization for a non-negative monotone set func-
tion can be achieved, relating some non-negative monotone submodular classic set func-
tion. When the number of the selected subsets varies from one to k (k ≥ 2), maximizing
approximately submodular functions is studied, in which various conditions are given.
Horel and Singer [13] have shown an approximation algorithm for approximately k-
submodular functions. In the discussion of k-dimension set functions, Zheng et al. [10]
give two kinds of definitions. One is ε-approximately k-submodular function (ε-AS),
the other is ε-approximately diminishing return (ε-ADR). Utilizing greedy method, they
acquire approximation algorithms under the cardinality settings of total size and indi-
vidual size constraints. Recently, Matsuoka and Ohsaka [14] consider ε-approximately
k-submodular function (ε-AS) with matroid constraint.

In this work, we consider the approximation of maximization for non-k-submodular
monotone set function with noise. In the setting, a k-dimension set function with
matroid constraint is to be investigated, which is approximately non-k-submodular.
The greedy technique is adapted to deal with the maximization of set function with
matroid constraint. After the considerable analysis, we obtain the approximation ratios
of two kinds of situations for the set function we consider. One is the maximiza-
tion of ε-approximately α-weakly k-submodular (ε-A-α-WS) with matroid constraint,

the approximation ratio is α(1−ε)2

(1+ε)[(α+1)(1−ε)+2Bε] . The other is the maximization of ε-
approximately α-weakly diminishing return (ε-A-α-WDR), the approximation ratio is

(1−ε)α
1+ε+α−εα . When the parameter α for weakly k-submodular set function is set with 1,
our conclusions generalize some known results [14] correspondingly.

The outline of this article is as follows. Preliminaries are introduced in Sect. 2. In
Sect. 3, there are the greedy algorithms and the analysis for the ε-A-α-WS and ε-A-α-
WDR, resulting the approximation ratios. The concluding remarks are in Sect. 4.
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2 Preliminaries

The cardinality of ground set G is denoted with non-negative integer n, and [n] is iden-
tified with G for convenience. For any integer k ∈ N, [k] denotes set {1, 2, · · · , k}.
We set (k + 1)G := {s = (S1, S2, · · · , Sk) | Sl ⊆ G,∀l ∈ {1, 2, · · · , k}, Si ∩
Sj = ∅,∀i �= j}. A partial order 
 is defined on (k + 1)G, that is, for s =
(S1, S2, · · · , Sk), t = (T1, T2, · · · , Tk) ∈ (k +1)G, if s� t = t (i.e., Sl ⊆ Tl,∀l ∈ [k])
holds, then the partial order s 
 t is satisfied. Similar to the concept of marginal
benefit for one-dimension set function, there is the concept of marginal benefit for
multi-dimension set function as well. For set function h(s) defined on (k + 1)G,
�u,ih(s) = h(S1, S2, · · · , Si−1, Si ∪ {u}, Si+1, · · · , Sk) − f(S1, S2, · · · , Sk), for
s ∈ (k + 1)G, u /∈ ⋃

t∈[k] St and i ∈ [k]. This illustrates the marginal benefit
for multi-dimension set function h(s) when element u is added into the i-th set of
s. In this paper, we make a slight abuse of notion used by [5]. We associate each
s = (S1, S2, · · · , Sk) ∈ (k+1)G with s ∈ {0, 1, · · · , k}G by Si = {u ∈ G : s(u) = i}
for i ∈ [k]. For s ∈ (k + 1)G, we define supp(s) = {u ∈ G : s(u) �= 0}. Similarly, for
s ∈ (k + 1)G, i ∈ [k], suppi(s) = {u ∈ G : s(u) = i} is defined. Let 0 be a vector of k
empty sets, i.e., 0 = (S1 = ∅, · · · , Sk = ∅).
Definition 1 (k-submodular set function). Set function h : (k + 1)G → R is called
k-submodular if and only if, for any s = (S1, · · · , Sk), t = (T1, · · · , Tk), we have
h(s) + h(t) ≥ h(s � t) + h(s � t), where s � t := (S1 ∩ T1, · · · Sk ∩ Tk), s � t :=
(S1 ∪ T1 \ (

⋃

i�=1

Si ∪ Ti), · · · , Sk ∪ Tk \ (
⋃

i�=k

Si ∪ Ti)). When k = 1, k-submodularity

coincides with submodularity for one-dimension set function.

Definition 2 (monotone). A k-submodular set function h is monotone if and only if,
for any s, t ∈ (k + 1)G such that if s 
 t, h(s) ≤ h(t) holds.

Das and Kempe [2] introduce submodularity ratio firstly, which characterizes the
closeness with the submodularity for a set function. Correspondingly, there is the
definition of weakly submodular for set functions [8]. A nonnegative monotone set
function h : 2G −→ R is called a α-weakly submodular set function if h satis-
fies that

∑
u∈S2

h(u|S1) ≥ αh(S2 | S1), for all disjoint S1, S2 ⊆ G. For one-
dimension set function, there several equivalent definitions for submodularity. There-
fore, there are equivalent form for α-weakly submodular set function [9], which is
h(u|S1) ≥ αh(u|S2), for any S1 ⊆ S2 ⊂ G and u /∈ S2, α is the maximum value
in [0, 1] and is called diminishing-return (DR) ratio here. Thus, a generalized concept
of α-weakly k-submodular set function can be yielded obviously.

Definition 3 (α-weakly k-submodular set function). A nonnegative monotone k-
dimension set function h : (k + 1)G → R is called α-weakly k-submodular if there
exists the largest scalar α ∈ [0, 1], such that for s, t ∈ (k + 1)V satisfying s 
 t, u /∈
supp(t), ∀i ∈ [k], the following holds

h((u, i)|s) ≥ αh((u, i)|t),

where α is called the diminishing-return (DR) ratio.
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In the context of the actual problem such as the influence maximization or infor-
mation coverage problem, the query for submodular set function h may be not easy,
which needs at least exponential number of computations [4]. In the absence of par-
ticular strictness, a noisy version for submodular function f can be characterized [11]
as this. For ε > 0, H : 2G → R

+ is an ε-approximately set submodular function
if there is exists a submodular set function h : 2G → R

+ satisfying (1 − ε)h(S) ≤
H(S) ≤ (1 + ε)h(S) for all S ⊆ G [12]. When the dimension of the domain for
the set function varies from one to k, the corresponding noisy version of submodular
set functions appears, which is an ε-approximately k-submodular set function [10,11].
For k-submodular set function, Zheng et al. [10] give not only the discussion of ε-
approximately k-submodular (ε-AS) but also ε-approximating diminishing return (ε-
ADR).

Based on the definition of ε-approximately k-submodular [10] and α-weakly k-
submodular set function, we give the definition of ε-approximately α-weakly k-
submodular set function (ε-A-α-WS). According to ε-approximately diminishing return
[10] and α-weakly k-submodular set function, ε-approximately α-weakly diminishing
return (ε-A-α-WDR) is also proposed.

Definition 4 (ε-approximately α-weakly k-submodular (ε-A-α-WS)). A set function
H(s) : (k + 1)G → R

+ is defined ε-approximately α-weakly k-submodular for some
small ε > 0, if and only if there exists a monotone α-weakly k-submodular function h
such that for any s ∈ (k + 1)G, satisfying

(1 − ε)h(s) ≤ H(s) ≤ (1 + ε)h(s).

Definition 5 (ε-approximately α-weakly diminishing return (ε-A-α-WDR)). A set
functionH(s) : (k+1)G → R

+ is defined ε-approximately α-weakly diminishing return
for some small ε > 0, if and only if there exists a monotone α-weakly k-submodular
function h such that for any s ∈ (k + 1)G, u /∈ ∪l∈[k]Sl, u ∈ G and i ∈ [k], satisfying

(1 − ε) �u,i h(s) ≤ �u,iH(s) ≤ (1 + ε) �u,i h(s).

Definition 6 (matroid). Let M = (G,F) be a set system, in which G is a ground set
with cardinality n and F ⊆ 2G is a family of subsets. If F �= ∅, and the subsets in it
satisfy the following two conditions: (1) ∅ ∈ F; and (2) for any subset S1 ⊆ S2 ⊆ G,
if S2 ∈ F , then S1 ∈ F , then the set system M = (G,F) is called an independent
system. For an independent system M = (G,F), ∀ S1, S2 ∈ F , if |S1| < |S2|, there is
an element u ∈ S2 \ S1 such that S1 ∪ {u} ∈ F , then it is a matroid. The set family
of maximal elements of F is denoted with B, which is called the base family. From the
exchange property, every base in B is of the same size whose cardinality is called the
rank denoted with B in a matroid.

For the maximization of set function, there often exists constraints no matter the
function is submodular or non-submodualr. The usual constraints are cardinality con-
straint, knapsack constraint and matroid constraint. For k-dimension set function, there
are two kinds of cardinality constraints. One is total size constraint, the other is indi-
vidual constraint. A matroid constraint is a generalization of the total size constraint. A
solution x ∈ (k+1)G is a feasible solution if supp(x) ∈ F under the matroid constraint
with a matroid M = (G,F).
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3 Greedy Algorithm and Analysis

3.1 Greedy Algorithm

Algorithm 1 Greedy algorithm for ε-A-α-WS with matroid constraint

Input: a matroid (G, F), B is a base family, B ∈ Z
+ is the rank of the matroid and a monotone

ε-approximately α-weakly k-submodular H : (k + 1)G → R
+.

Output: a vector s(B) with |supp(s(B))| = B.

1. s(0) ←− 0
2. for j = 1, 2, · · · , B do
3. (u(j), i(j)) ←−argmax(u,i)∈([n]\supp(s(j−1)))×[k] �(u,i) H(x)

4. s(j) ←− (u(j), i(j)) + s(j−1)

5. return s(B)

Algorithm 2 Greedy algorithm for ε-A-α-WDR with matroid constraint

Input: a matroid (G, F), B is a base family, B ∈ Z
+ is the rank of the matroid and a monotone

ε-approximately α-weakly diminishing return H : (k + 1)G → R
+.

Output: a vector s(B) with |supp(s(B))| = B.

1. s(0) ←− 0
2. for j = 1, 2, · · · , B do
3. (u(j), i(j)) ←−argmax(u,i)∈([n]\supp(s(j−1)))×[k] �(u,i) H(x)

4. s(j) ←− (u(j), i(j)) + s(j−1)

5. return s(B)

In the analysis of the algorithm, we use Lemma 1 in [6], in which B is a base family
of a matroid (G,F) which is mentioned in Algorithm 1 and Algorithm 2.

Lemma 1. Let S1 ∈ F , S2 ∈ B with S1 � S2, and u /∈ S1 with S1 ∪ {u} ∈ F . Then
there exists u′ ∈ S2 \ S1 with (S2 \ {u′}) ∪ {u} ∈ B.

In order to give a better theoretical analysis of Algorithm 1 and Algorithm 2,
some symbols are introduced here. For each j ∈ [B], s(j) is the feasible solution
of each step with s(0) = 0. Then s(0), s(1), · · · , s(B) can be obtained. The goal of
the analysis for the algorithm is to analyze the relationship between the solution of
algorithm s(B) and an optimal solution denoted with o. We define o(0), o(1), · · · , o(B)

are vectors which are needed to updated in each step with o(0) = o. According to
the algorithms, (u(j), i(j)) is added into s(j−1) to yield s(j) for each j ∈ [B]. If
u(j) ∈supp(o(j−1)), then set o(j) = u(j). If u(j) /∈ supp(o(j−1)), there exists o(j)

satisfying (supp(o(j−1)) \ {o(j)}) ∪ {u(j)} ∈ B. This can be concluded by Lemma 1.
For each j ∈ [B], o(j− 1

2 ) can be constructed, which is a vector made from o(j−1) by
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putting the o(j)-th element to 0. Then o(j) can be made from o(j− 1
2 ) by putting u(j)-th

element to i(j). After the construction, we have s(B) = o(B), which is the solution of
Algorithm 1 and Algorithm 2. Moreover, we also can notice that s(j−1) 
 o(j− 1

2 ) holds.

Theorem 1. Assume that (G,F) be a matroid and H(x) : (k + 1)G → R
+ is an ε-

approximately α-weakly k-submodular set function. Algorithm 1 outputs solution s(B)

satisfying

H(s(B)) ≥ α(1 − ε)2

(1 + ε) [(α + 1)(1 − ε) + 2Bε]
H(o).

Proof. In Algorithm 1, (u(j), i(j)) is the pair greedily selected for each j ∈ [B], there-
fore it is the optimal pair in the step. So we have

�o(j),o(j−1)(o(j))H(s(j−1)) ≤ �u(j),i(j)H(s(j−1)).

According to the definition of ε-A-γ-WS, we have

(1 − ε)h(S(j−1)
1 , . . . , S

(j−1)

o(j−1)(o(j))
∪ {o(j)}, · · · , S

(j−1)
k )

≤ H(S(j−1)
1 , . . . , S

(j−1)

o(j−1)(o(j))
∪ {o(j)}, · · · , S

(j−1)
k )

≤ H(S(j−1)
1 , . . . , Si(j) ∪ {u(j)}, · · · , S

(j−1)
k )

≤ (1 + ε)h(s(j))

Then we have

h(S(j−1)
1 , . . . , S

(j−1)

o(j−1)(o(j))
∪ {o(j)}, · · · , S

(j−1)
k ) ≤ 1 + ε

1 − ε
h(s(j)).

So the following can be obtained

h(S
(j−1)
1 , . . . , S

(j−1)

o(j−1)(o(j))
∪ {o(j)}, · · · , S

(j−1)
k ) − h(s(j−1)) ≤ 1 + ε

1 − ε
h(s(j)) − h(s(j−1)).

By the definition of α-weakly k-submodular set function for h and s(j−1) 
 o(j− 1
2 ),

we have

h(o(j−1)) − h(o(j)) ≤ h(o(j−1)) − h(o(j− 1
2 ))

= �o(j),o(j−1)(o(j))h(o
(j− 1

2 ))

≤ 1
α

�o(j),o(j−1)(o(j)) h(s(j−1)).

Then we have

α
[
h(o(j−1)) − h(o(j))

]
≤ 1 + ε

1 − ε
h(s(j)) − h(s(j−1)).
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We can get the relationship between solutions of Algorithm 1 and the optimal solu-
tion

h(o) − h(s(B)) =
∑

j∈[B]

[
h(o(j−1)) − h(o(j))

]

≤ 1

α

∑

j∈[B]

[
1 + ε

1 − ε
h(s(j)) − h(s(j−1))

]

=
1

α

∑

j∈[B]

[
1 + ε

1 − ε
h(s(j)) − 1 + ε

1 − ε
h(s(j−1)) +

1 + ε

1 − ε
h(s(j−1)) − h(s(j−1))

]

=
1

α

⎡

⎣
∑

j∈[B]

1 + ε

1 − ε
(h(s(j)) − h(s(j−1))) +

∑

j∈[B]

2ε

1 − ε
h(s(j−1))

⎤

⎦

=
1

α

⎡

⎣1 + ε

1 − ε
(h(s(B)) − h(s(0))) +

∑

j∈[B]

2ε

1 − ε
h(s(j−1))

⎤

⎦

≤ 1 + ε

α(1 − ε)
h(s(B)) +

2Bε

α(1 − ε)
h(s(B)).

Therefore we have

h(o) ≤
[

1 +
1 − ε + 2Bε

α(1 − ε)

]

h(s(B))

=
(α + 1)(1 − ε) + 2Bε

α(1 − ε)
h(s(B)).

We obtain

h(s(B)) ≥ α(1 − ε)
(α + 1)(1 − ε) + 2Bε

h(o).

By the definition of ε-A-γ-WS, we have

(1 + ε)H(s(B)) ≥ α(1 − ε)2

(α + 1)(1 − ε) + 2Bε
H(o).

Therefore we have

H(s(B)) ≥ α(1 − ε)2

(1 + ε) [(α + 1)(1 − ε) + 2Bε]
H(o).

Theorem 2. Assume that (G,F) be a matroid and H(x) : (k + 1)V → R
+ is an

ε-approximately α-weakly diminishing return. Algorithm 2 outputs solution s(B) satis-
fying

H(s(B)) ≥ (1 − ε)α
1 + ε + α − εα

H(o).
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Proof. In the algorithm, for each j ∈ [B], (u(j), i(j)) is optimal pair selected. Then the
following can be yielded

�o(j),o(j−1)(o(j))H(s(j−1)) ≤ �u(j),i(j)H(s(j−1)).

By the definition of α-weakly diminishing return for h, the definition of ε-
approximately α-weakly diminishing return for H and s(j−1) 
 o(j− 1

2 ), we have

�o(j),o(j−1)(o(j))H(o(j− 1
2 )) ≤ (1 + ε) �o(j),o(j−1)(o(j)) h(o(j− 1

2 ))

≤ 1 + ε

α
�o(j),o(j−1)(o(j)) h(s(j−1)).

According to the introduction of o(j) and o(j− 1
2 ), the following can be concluded

that

H(o(j−1)) − H(o(j)) = �o(j),o(j−1)(o(j))H(o(j− 1
2 )) − �u(j),i(j)H(o(j− 1

2 )).

We can get the followings

H(o(j−1)) − H(o(j)) = �o(j),o(j−1)(o(j))H(o(j− 1
2 )) − �u(j),i(j)H(o(j− 1

2 ))

≤ �o(j),o(j−1)(o(j))H(o(j− 1
2 ))

≤ 1 + ε

α
�o(j),o(j−1)(o(j)) h(s(j−1))

≤ 1 + ε

α(1 − ε)
�o(j),o(j−1)(o(j)) H(s(j−1))

≤ 1 + ε

α(1 − ε)
�u(j),i(j) H(s(j−1))

=
1 + ε

α(1 − ε)

[
H(s(j)) − H(s(j−1))

]

Therefore, we have

H(o) − H(s(B)) =
∑

j∈[B]

[
H(o(j−1)) − H(o(j))

]

≤ 1 + ε

(1 − ε)α

∑

j∈[B]

[
H(s(j)) − H(s(j−1))

]

=
1 + ε

(1 − ε)α
H(s(B)).

After the arrangement, we have

H(o) ≤
[

1 +
1 + ε

(1 − ε)α

]

H(s(B)).
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Therefore we can compare the values for feasible solution and the optimal solution
concerning for the approximation algorithm

H(s(B)) ≥ (1 − ε)α
1 + ε + α − εα

H(o).

4 Discussion

In our work, we consider the approximation algorithm of maximization for non-k-
submodular monotone set function with noise. In the setting, a k-dimension set function
with matroid constraint is investigated, which is approximately non-k-submodular. The
greedy technique is adapted to deal with the maximization of the set function with
matroid constraint. After the considerable analysis, we obtain the approximation ratios
of two kinds of situations for the set function we consider. Our conclusions generalize
some known results correspondingly.

In the following works, we will discuss the topics on maximizing approximately
non-k-submodular monotone set function with knapsack constraint, which need to cre-
ate new analysis techniques.
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Abstract. In this paper, we study the scheduling problem recently
introduced by Wan and Qi [NRL’2010]. We are given a set of jobs to
be scheduled on a single machine, in which the cost of scheduling a job
depends on when it is scheduled. This model is also known as Time-of-
Use tariff. Each job is defined by its release time, its deadline and its
processing time. The goal is to schedule the maximum number of jobs
such that the total cost does not exceed a given budget. The problem is
NP-hard when jobs have arbitrary processing time. However, when jobs
have the same processing time, we show that the problem can be solved
in polynomial time via dynamic programming techniques. In addition, we
consider the case in which jobs have agreeable deadline, and we provide
a faster algorithm.

Keywords: Time-of-Use · Scheduling · Dynamic programming ·
Uniform processing time

1 Introduction

Time-of-Use is a model that charges the users according to their current usage.
Because the electricity production is limited, such a model has the incentive to
charge the users more during peak times. Eventually, users may insist to use
resources despite the price, but this may be due to the constraints of the tasks.
Thus, the usage of the resource will depend on whether the activity is important.
When a large number of users ask for a resource, it may lead to a crash of the
system. It is particularly the case in the electricity distribution.

Such a pricing model has plenty of applications involving a demand-response-
based model. No matter what the applications are, the aim is to avoid overload-
ing a service. Examples include hotel booking, air tickets booking, cargo trans-
portation, etc. Note that determining the pricing model is an individual research
area [6].

Most of the studies in the literature sum up the cost of scheduling jobs with
a performance metric (such as total completion time, lateness, etc.). Under this
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assumption, all the jobs need to be scheduled with the minimum cost. The user
is willing to pay a certain cost for having a reasonable schedule. Each user can
adjust their priority: if some activities are very important, the price for using
the resources becomes negligible. On the contrary, if the user cannot afford to
paying the scheduling cost during a specific period, then he is willing to wait
before being served. Thus, a trade-off between quality of service and total cost
needs to be determined. In this work, we consider a harder variant in which all
the jobs cannot be scheduled. There are mainly two reasons: the user is given
a budget (money) that he cannot exceed, or due to temporal constraints that
do not allow all the jobs to be completed before their deadline. Our goal is to
schedule as many jobs as possible while satisfying all the above constraints.

1.1 Related Works

Cost-Aware Scheduling Problem. This problem is referred to as the Time Slot
Cost in the literature. We are given a set of intervals with the corresponding
cost. The cost of scheduling a job is proportional to how long it is processed in
each interval. If a job is scheduled during x time units during an interval of cost
c, then its corresponding cost is x · c. It was first studied by Wan and Qi [15]
back in 2010. They investigated the Time-of-Use (TOU) cost with a traditional
scheduling performance measure such as total completion time and maximum
lateness. After showing that these problems are strongly NP-hard, they consid-
ered special cases on the structure of the TOU, allowing to get polynomial times
algorithms. Subsequently, Zhong and Liu [18] investigated the TOU scheduling
problem with the consideration of the makespan, while Kulkarni and Muna-
gala [10] studied dynamic variants of such problems in which jobs are released
over time and scheduling decisions have to be made online.

Concerning the total completion time with the ToU cost, Chen et al. [8] pre-
sented an optimal algorithm to determine the time slots to be used when the job
order is predetermined for the unweighted version. They additionally designed a
(4+ε)- approximation algorithm for the weighted version. Later, Zhao et al. [17]
pursued the work the total weighted completion time. They showed that when
the time slot cost decreases with certain patterns, the problem can be solved
in polynomial time. However, the problem becomes strongly NP-hard when the
time slot cost decreases arbitrarily. Wang [16] showed that when preemption of
jobs is allowed, the problem of minimizing the total TOU cost can be solved
via a greedy algorithm based on matroid theory. Chen and Zhang [7] estab-
lished the computational tractability of different variants of the problem. The
authors provided different polynomial-time and pseudo-polynomial-time algo-
rithms based on several assumptions about the structure of the time slot costs.
The most related to our work is by Penn and Raviv [14]: they studied the prob-
lem of maximizing the (weighted) number of jobs to be scheduled minus the
cost of scheduling these jobs under the TOU cost model. They proposed several
polynomial-time algorithms for different cases. However, their work focuses on
the case that all the jobs are released at the beginning. We extend their work
by introducing release time to the jobs.
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Maximizing the Number of Jobs. Such an objective function has been extensively
studied in the literature [5]. Moore [13] gave an optimal algorithm for solving jobs
with common release times. It was then extended by Lawler [12] to the case of
jobs with agreeable deadlines, i.e., jobs having a later release time implies having
a later deadline. When preemption of jobs is allowed (jobs can be interrupted and
resumed later), Lawler [11] was the first to give a polynomial-time algorithm, and
it has been further improved by Baptiste [1]. When jobs have the same processing
time, Baptiste [2] was the first to show that it can be solved in polynomial time.
Due to the high running time, it has been improved later on by Baptiste et
al. [4]. Other results on equal lengths of jobs can be found in [3].

1.2 Problem Definition

We are given a set of n jobs, where each job j is characterized by its release
time rj , its deadline dj , and its processing time pj . Jobs must be scheduled non-
preemptively on a single machine, i.e., once a job starts to be processed, it must
be completed before starting another one. In this paper, we focus on the case
where all jobs have the same processing time, i.e., pj = p ∀j.

The time horizon is divided into m ≥ 2 periods P = {P1, . . . , Pm}. Each
period Pi is defined by its interval [ai−1, ai) where ai−1 < ai. Moreover, each
period Pi is associated with a cost ci. A unit cost of ci is incurred if a period Pi

is used for processing a job by the machine.
The goal is to schedule as many jobs as possible while the total cost does

not exceed a given budget B. We refer this problem as throughput maximization.
Following the 3-field notation in [9], our problem can be denoted as 1|rj , dj , pj =
p, c(TOU) ≤ B|∑j Uj .

1.3 Our Contribution

Our main contribution is to show that when jobs have the same processing time,
the problem of maximizing the number of jobs under a budget constraint can be
solved in polynomial time. Specifically, we give the following results:

– when there is no restriction on the release times and the deadline of the jobs,
we give a dynamic programming algorithm whose running time is O(n6(n +
m)3).

– when jobs have agreeable deadlines, meaning that a later release time implies
a later deadline, we give a faster dynamic programming algorithm whose
running time is O(n3(n + m)2).

In Sect. 2, we give some definitions, as well as some properties that will be
used throughout the paper. Then in Sect. 3, we investigate the general case
while Sect. 4 focuses on the case that jobs have agreeable deadlines. Finally, we
conclude in Sect. 5.
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2 Preliminaries

On one hand, we observe that the target problem is as least as hard as the cost
minimization problem. Indeed, if we can solve our problem in polynomial time,
it implies that the cost minimization can be solved in polynomial time as well.
This is because we can perform a binary search on the budget B, and we aim
to find the smallest budget such that all the jobs are scheduled. On the other
hand, when jobs have arbitrary processing time, it has been shown that the cost
minimization problem is strongly NP-hard. This implies that it is also NP-hard
for the throughput maximization.

Before going through structural properties, we assume without loss of gen-
erality that there is a period from 0 to p whose cost is 0. We can modify the
instance by adding all the inputs by p, and it does not change the feasibility, nor
the optimality of the input, since no job can be scheduled during this interval.
This interval is referred to as dummy interval. Such a modification will be used
for the design of the proposed algorithm.

Next, we focus on the structural properties of the optimal solutions. Once
we get such properties, we can restrict our attention to such schedules, so that
the algorithms can compute them. In the following, we delimit the schedule into
small intervals. The definitions below give a first partition of the time horizon.

Definition 1. Let Ω = {rj | j = 1, . . . , n} ∪ {dj | j = 1, . . . , n} ∪ {ai | i =
1, . . . , m} be the set of time that is either a release time of a job, a deadline of
a job, or a time where the price changes.

Definition 2. Let Θ := {t + ip | i = −n, . . . , n and t ∈ Ω} be the set of time
that a job can start or complete.

Definition 3. A block of jobs in a schedule is a set of maximal consecutive jobs
without idle time. The length of such a block is a multiple of p.

The following proposition gives an observation on the structure of an optimal
schedule.

Proposition 1. There exists an optimal solution in which there is at least one
job starting or ending at a time in Ω in each block of jobs.

Proof. Let S be any of the optimal solutions. If S does not verify the solution, we
show how to transform the solution into another one that verifies the proposition
without increasing its cost. The main idea is to find a block of jobs that does not
verify the proposition and to change its execution without increasing its cost.

Let b be the first block of jobs in S that does not verify the proposition. Let
[bs, be) denote the interval of such a block of jobs. By definition, no job in this
block starts or ends in a time in Ω, and in particular, the first job does not start
at a time in Ω, and the last job does not end at a time in Ω, i.e., bs, be /∈ Ω.

We claim that the first time slot and the last time slot of the block of jobs
have the same cost. If it is not the case, suppose that the cost of the first time slot
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is more than the cost of the last time slot. Then, we can postpone the starting
time of the block of jobs by one time unit. This can be done because no job
in this block ends at a time in Ω. Thus the obtained solution has a lower cost
which is a contradiction with the fact that S is an optimal solution.

Fig. 1. Illustration of the 3 different cases of the modification. The gray job is the job
that starts or ends at a time in Ω.

The transformation is as follows. We aim to find the earliest starting time
for this block of jobs as soon as possible: we push the schedule to the left-hand
side until one of the following cases occurs (See Fig. 1 for an illustration):

– one of the jobs of the block starts at its release time, and it is not possible to
start earlier.

– the first job (resp. last job) of the block starts (resp. ends) at a time ai, i ∈
{1, . . . , m}.

– the first job of the block meets the last job of the previous block of jobs, then
these two blocks of jobs merge are considered as one block of jobs. Since the
previous block of jobs contains a job starting at a time in Ω, it means that
the new block does as well.

In all the above cases, the considered block of jobs verifies the claim of the
Proposition. We repeat such a transformation until all the blocks of jobs on the
schedule verify the Proposition. �
Proposition 2. There exists an optimal solution in which jobs start or end at
a time in Θ.

Proof. By combining Proposition 1 and Definition 2, the Proposition follows. �
Since preemption of jobs is not allowed, once we fix the starting time of a

job, we know exactly its cost. So, we define the cost of scheduling a job from t
to t + p as follows.

cost(t) =
m∑

z=1

cz |[az−1, az) ∩ [t, t + p)|

In the sequel, we only consider schedules verifying Proposition 2.
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Definition 4. A job instance is said agreeable if jobs have agreeable deadlines,
i.e., one has ri ≤ rj ⇔ di ≤ dj for any pair of jobs i, j.

In the remaining of the paper, we consider that the jobs are labeled in the
non-decreasing order of their deadlines, i.e., d1 ≤ d2 ≤ . . . ≤ dn.

3 General Instance

In order to design the dynamic programming, we need to define the partial
schedule that will be used to compose a larger schedule.

Definition 5. Let C(k, s, t, u) be the minimum cost of scheduling u jobs among
the k first jobs released within the interval [s, t), such that jobs are scheduled in
the interval [s + p, t).

Note that in the above definition, the interval [s, s + p) is reserved for a job.
No job is currently scheduled during this interval. However, jobs released during
this interval need to be considered in the schedule. The idea of the dynamic
programming algorithm is to determine when the job k is scheduled. By Propo-
sition 2, we know that there is a bounded number of starting times for jobs. So
we try all the possibilities of a job’s starting time. Once this is set, we can divide
the schedule into two sub-schedules and finally get a recursion. Finally, we get
the recursion with the following cases:

(a) job k is not scheduled;
(b) otherwise.

Dynamic Programming DP1. (See Fig. 2)

C(k, s, t, u) = min

⎧
⎪⎨

⎪⎩

C(k − 1, s, t, u) (a)

min0≤u′≤u−1
t′∈Θ

s≤rk≤t′≤t

{
C(k − 1, s, t′, u′)

+ C(k − 1, t′, t, u − u′ − 1)

}

(b)

The dynamic programming is initialized as follows.

C(0, s, t, 0) =
{

cost(s) if s + p ≤ t, s, t ∈ Θ
+∞ otherwise.

Theorem 1. The dynamic programming DP1 computes the optimal solution.

Proof. The objective function is to find the maximum value u such that the
total cost does not exceed the budget B. The objective function can be given as
follows:

arg max
u

{C(n, 0, t, u) ≤ B | t ∈ Θ, 1 ≤ u ≤ n}.

Recall that the interval [0, p) is a dummy interval whose cost is 0, and no job
can be scheduled inside such an interval.
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Fig. 2. Illustration of the decomposition of Dynamic Programming DP1.

The first case corresponds to the case when the job k is not scheduled, so
the cost of such a schedule exactly equals C(k − 1, s, t, u). We now focus on the
case that the job k is scheduled, and s ≤ rk ≤ t must hold.
Feasibility. Fix some arbitrary time s ≤ rk ≤ t′ ≤ t and a number of jobs
0 < u′ < u − 1. Consider a schedule S1 that realizes C(k − 1, s, t′, u′) and
another schedule S2 that realizes C(k − 1, t′, t, u − u′ − 1).

We build a schedule with S1 from s to t′, with S2 from t′ to t, and job k
scheduled within S2 during the interval [t′, t′ + p]. Recall that by definition of
C(k − 1, t′, t, u − u′ − 1), the machine has reserved the interval [t′, t′ + p] and
therefore does not execute any jobs. First, S1 and S2 select jobs from the subsets
{j | rj ∈ [s, t′), j ≤ k−1} and {j | rj ∈ [t′, t), j ≤ k−1} respectively. These two
sets are disjoint, and their union forms the set of jobs {j | rj ∈ [s, t), j ≤ k −1}.

If rk ∈ [s, t′), we obtain the set {j | rj ∈ [s, t), j ≤ k}. The above construction
thus is a feasible schedule that verifies the definition of C(k, s, t, u) whose cost
is at most C(k − 1, s, t′, u′) + C(k − 1, t′, t, u − u′ − 1).

Optimality. Let S be the schedule that realizes C(k, s, t, u) in which the starting
time of job k is maximal, i.e., t′ is maximal.

We split S into two sub-schedules S1 ⊆ S and S2 = S \ (S1 ∪ {k}). We claim
that each job j ∈ S1 starts and completes in [s, t′). Note that each job j must
have a release time within this interval, i.e., rj ∈ [s, t′).

We claim that the jobs in S2 are not available when job k starts (their release
time is strictly greater than the starting time of job k). This can be shown by
contradiction. Suppose that there is a job j ∈ S2 such that rj ≤ t′. It means
that such a job j was available when job k starts to be executed. However, by
definition of S1 and S2, the job j starts after the starting time of the job k.
Moreover, we know that j < k meaning that dj ≤ dk. Therefore, the execution
of jobs j and k can be swapped without any consequence on the cost and on the
feasibility. Thus, we get a contradiction with the fact that the starting time of
the job k is maximal.

So the restriction S1 of S to [s, t′) is a schedule that meets all constraints
related to C(k − 1, s, t′, u′). Hence its cost is greater than C(k − 1, s, t′, u′).
Similarly, the restriction S2 of S to [t′, t) is a schedule that meets all constraints
related to C(k − 1, t′, t, u − u′ − 1). To conclude the proof, note that the cost of
S is the sum of the costs of S1 and S2. �
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Theorem 2. The dynamic programming DP1 has a complexity time of
O(n3|Θ|3) = O(n6(n + m)3).

Proof. The table of the dynamic programming has size of O(n2|Θ|2). Each entry
of the table can be computed in time O(n|Θ|). Thus, the dynamic programming
runs in time O(n3|Θ|3) = O(n6(n + m)3). �

Corollary 1. When each job j is additionally associated with a weight wj, the
problem of minimizing the weighted number of late jobs can be solved in time
O(n4m2(n + m)3W 2) where W =

∑
j wj is the total weight of the jobs.

4 Agreeable Deadlines Jobs

This section is devoted to the case where jobs have agreeable deadline. Two jobs
i and j have agreeable deadlines meaning that if ri ≤ rj , then di ≤ dj , and vice
versa.

Proposition 3. There exists an optimal solution in which jobs are scheduled in
the Earliest Deadline First (edf) order.

Sketch of the Proof. This can be proved with an exchange argument. By con-
sidering two consecutive jobs in a solution, if they are not scheduled in the edf
order, then we can swap their execution. Let the indices i and j denote these
two jobs with i < j. If the job j is scheduled before job i, the exchange can be
done since we have di ≤ dj and ri ≤ rj , meaning that the job i can be scheduled
before job j without violating their release time or deadline.

Note that the exchange argument in Proposition 3 is only valid when jobs
have the same processing time. When jobs do not have the same processing
time, swapping the execution of two jobs may lead to a different cost. Chen and
Zhang [7] showed that for arbitrary processing time jobs, even when jobs have
common release times, and common deadlines, the problem is NP-hard via a
reduction from the Partition problem.

Definition 6. Let F (k, t, u) be the minimum cost of scheduling u jobs among
the k first jobs released before t, such that the last job is scheduled at time t − p.

As for the general case, we distinguish two cases:

(a) job k is not scheduled;
(b) job k is scheduled in the interval [t − p, t).

Dynamic Programming DP2. (See Fig. 3)

F (k, t, u) = min

{
F (k − 1, t, u), (a)
min t′∈Θ

t′≤t−p

{F (k − 1, t′, u − 1) + cost(t − p)} (b)

The initialization of the dynamic programming is presented as follows.
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Fig. 3. Illustration of the decomposition of Dynamic Programming DP2 for jobs with
agreeable deadlines

F (0, t, u) = min
{

0 if (t = 0 or t = p) and u = 0,
+∞ otherwise.

Recall that there is a dummy period in [0, p) whose cost is 0, so we can suppose
that this interval is used during the initialization.

Theorem 3. The dynamic programming DP2 computes an optimal solution.

Proof. The objective function is

arg max
u

{F (n, t, u) ≤ B | t ∈ Θ, 1 ≤ u ≤ n}.

Let S be the schedule that realizes F (k, t, u). If job k is not scheduled in S,
then its cost is exactly F (k − 1, t, u). In the remaining of the proof, we focus on
the case that job k is scheduled in S, and it is scheduled in [t − p, t).

Feasibility. We first discuss that the constructed solution is feasible. Fix a value
t′ ≤ t−p, and t′ ∈ Θ, and let S ′ be a schedule that realizes F (k−1, t′, u−1). We
construct a schedule from 0 to t−p with S ′, and with job k from t−p to p. Jobs
in S ′ are chosen from the k−1 first jobs. By adding job k, the schedule S chooses
from the k first jobs, which corresponds to the definition of F (k, t, u). Finally, we
test all the possible completion times of the sub-schedules less than t − p, so the
constructed solution, whose cost is no more than F (k − 1, t′, u− 1)+ cost(t− p),
is feasible.

Optimality. Let S ′ be the sub-schedule of S in the interval [0, t′) such that the
machine is idle in [t′, t−p). By Proposition 3, the jobs in S ′ should be completed
before job k starts, i.e., before t − p. Since the machine is idle in [t′, t − p), then
we know that there is a job scheduled in [t′ − p, t′). So the restriction S ′ to S is
a schedule that meets all constraints related to F (k − 1, t′, u− 1). Thus, the cost
of such a schedule is the sum of the cost of S ′ and the additional cost cost(t−p)
for scheduling job k. �

Theorem 4. The dynamic programming DP2 has a complexity time of
O(n3(n + m)2).
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Proof. The table of the dynamic programming has size of O(n2|Θ|). Each entry
of the table can be computed in time O(|Θ|). Thus, the dynamic programming
runs in time O(n2|Θ|2) = O(n3(n + m)2). �

Corollary 2. When each job j is additionally associated with a weight wj, the
problem of minimizing the weighted number of late jobs can be solved in time
O(n2(n + m)2W ) where W =

∑
j wj is the total weight of the jobs.

5 Conclusion

In this work, we showed that when jobs have the same processing time, max-
imizing the number of jobs that can be scheduled under a budget constraint
can be solved in polynomial time. The proposed algorithms can be extended
to the weighted variant and get pseudo-polynomial-time algorithms, from which
FPTASs can be derived. Whether the weighted version can be solved in polyno-
mial time is still unknown and would be of great interest for future work.
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Abstract. The online optimization has been extensively studied under
a variety of different settings. In this paper, we consider the online max-
imization problems with stochastic linear cumulative constraints, where
the objective functions are the sum of ρ-weakly DR-submodular func-
tions and concave functions. Inspired by the penalty function strategy,
we propose an algorithm of primal-dual type to solve this class of prob-
lems. Under mild conditions, we show that the algorithm achieves sub-
linear regret bounds and cumulative budget violation bounds with high
probability.

Keywords: Online maximization · Weakly DR-submodular ·
Concave · Sublinear

1 Introduction

In the era of big data, many pieces of information arrives at any time. In many
fields, such as artificial intelligence, machine learning, etc., firstly the learner
need to specify action with uncertain future information, and then get feedback
related to this action in hindsight. Based on the adding new experience, the
learner make next decision again. Repeatedly do it many rounds, this process
is just online optimization. Specifically, at each round t ∈ [T ], after deciding
the action xt from the known domain set X , the corresponding objective utility
function ft (and constraint function gt) can be revealed. The goal is to optimize
the overall utility, that is minimizing the ρ-regret:

ρ max
x∈X ⋂ Q

T∑

t=1

ft(x) −
T∑

t=1

ft(xt),

where Q represents certain accumulative limitation on the decision sequences

{xt}t∈[T ], i.e., {x :
T∑

t=1
gt(x) � 0}. See [1,2] for online optimization with con-

straints over the accumulated decisions. Generally speaking, the online opti-
mization is being studied from two aspects: convex and nonconvex.
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For the online convex optimization (OCO), 1-regret is considered. Without
long term constraints, OCO has been studied exhaustively (see references [3–
5]). If the objective functions and constraint functions are chosen adversely,
Mannor, Tsitsiklis, and Yu [6] show that: no matter which actions are chosen, the
regret can not be guaranteed sublinear in T while the overall budget violation is
sublinear too. Thus, in order to analyze useful results, some researchers propose
using a new weaker comparator in the regret, that is,

Q′ = {x :
i+W−1∑

t=i

gt(x) � 0,∀1 � i � T − W + 1},

see [7–9] for detailed performance results.
Consider the online nonconvex optimization in which the utility functions

are DR-submodular. Based on the Frank-Wolfe variant proposed in [10], Chen
[11] proposed the online Meta-Frank-Wolfe for maximizing unconstrained mono-
tone DR-submodular functions, more related results see [12–16]. For different
settings, deterministically or stochastically, fixedly or adversely, corresponding
results have been shown under DR-submodular framework, see [10,17–19].

Inspired by the work in [19] and [10], we consider the online neither convex nor
DR-submodular optimization problems with stochastic cumulative constraints,
where the objective function is the sum of weakly DR-submodular functions
and concave functions. An algorithm of primal-dual type is proposed, and the
sublinear performance is analyzed in probabilistic sense.

2 Preliminaries

Notations. Given m ∈ N, [m] denotes the index set {1, 2, · · · ,m}. For any
x, y ∈ Rn, x � y means that xi � yi,∀i ∈ [n]. The join(meet) operation ∨(∧)
operation between two vectors x, y ∈ Rn means that

(x ∨ y)i = max{xi, yi}((x ∧ y)i = min{xi, yi}), ∀i ∈ [n].

Given S ⊆ Rn, the function f : S → R is said to be monotone on S, if f(x) �
f(y), ∀x, y ∈ S with x � y. In addition, if S is closed and convex, PS denotes the
projection operator onto S. It’s well known that PS is single valued and firmly
nonexpansive. For a ∈ R, we use [a]+ to denote the projection of a onto R+,
i.e., [a]+ := PR+(a) = max{a, 0}.

Weakly DR-Submodular Ratio. Given S ⊆ Rn, let f : S → R be a differen-
tiable function on S. f is called DR-submodular on S, if ∀x, y ∈ S with x 	 y,
it has

∇f(x) � ∇f(y).

In addition, if f is monotone, set

ρ := inf
x�y

x,y∈S

inf
i∈[n]

∇if(x)
∇if(y)

.
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Obviously, 0 � ρ � 1 and ∇f(x) 	 ρ∇f(y), ∀x � y. And f is said to be ρ-weakly
DR-submodular (see [20]). For weakly DR-submodular and concave functions,
we show the following relation of inequality.

Lemma 1. Given X ⊆ Rn
+, f, θ : X → R are two monotone and differentiable

functions. Moreover, they are ρ-weakly DR-submodular and concave, respectively.
Set F = f + θ, then for any x, y ∈ X , it holds

〈∇F (x), y〉 � ρ(F (y) − F (x)).

Proof. According to the monotonicity of f , we obtain that

ρ(f(y) − f(x)) � ρ(f(y ∨ x) − f(x))
� 〈∇f(x), y ∨ x − x〉
= 〈∇f(x), y − y ∧ x〉
� 〈∇f(x), y〉,

where the second inequality comes from the following property of ρ-weakly DR-
submodular function f ,

ρ(f(y) − f(x)) � 〈∇f(x), y − x〉, ∀y 	 x or y � x.

It follows from the monotonicity and concavity of θ that

ρ(θ(y) − θ(x)) � ρ〈∇θ(x), y − x〉 � 〈∇θ(x), y〉.
Thus, we get the conclusion of the Lemma.

3 Problem Statement

The Considered Problem. In this article, we consider the following online
optimization problem with stochastic cumulative constraint,

max
T∑

t=1
Ft(xt)

s.t.
T∑

t=1
〈p, xt〉 � B,

xt ∈ X , ∀t ∈ [T ],

(1)

where X ⊆ Rn
+ is a nonempty, compact, and convex set, 0 ∈ X , Ft : X →

R+ (t ∈ [T ]) are normalized (i.e., Ft(0) = 0) utility functions, B > 0 is the
limited budget, and p 	 0. Specifically, in each round t ∈ [T ], based on the
information of experience, the operator firstly chooses an action xt ∈ X , then the
utility function Ft and the random constraint vector pt ∼ D(p, C) are revealed.
Here, the random vectors {pt}t∈[T ] are independent identically distributed, and
its mean p and covariance C are unknown. Throughout this paper, we make the
following additional assumptions on problem (1).
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Assumption 1. (A1) For each t ∈ [T ], Ft(·) = ft(·) + θt(·), where ft, θt :
X → R+ are both monotone and Lt smooth. Moreover, ft, θt are ρ-weakly DR-
submodular and concave, respectively.
(A2) The random vectors {pt}t∈[T ] are sampled over a nonnegative bounded set.

The above conditions imply the following facts.

Remark 1. (1) Set L := 2 max
t∈[T ]

Lt < ∞, then Ft(t ∈ [T ]) are all L smooth.

(2) The diameter of X is a finite number, that is,

d := max
x,y∈X

‖x − y‖ = max
x∈X

‖x‖ < ∞.

(3) Since X is bounded, Ft is Lipschitz on X . Together with Assumption 1 (A2),
we can take 0 < δ < ∞, such that for any t ∈ [T ], x, y ∈ X ,

Pr{‖pt‖ � δ} = 1, |Ft(x) − Ft(y)| � δ‖x − y‖.

(4) According to Assumption 1 (A2),

U := max
q∼D(p,C),x∈X

|〈q, x〉 − B

T
| � max{δd − B

T
,
B

T
} < ∞.

Performance Metric. After implementing an algorithm, we get a sequence of
actions {xt}t∈[T ]. In order to evaluate the quality of the algorithm, we introduce
two notations: (1 − 1

eρ )-regret and the long term constraint violation.

Definition 1. Chosen a sequence of actions {xt}t∈[T ].
(1) The (1 − 1

eρ )-regret is defined as:

RT := (1 − 1
eρ

) max
x∈X ∗

T∑

t=1

Ft(x) −
T∑

t=1

Ft(xt),

where X ∗ = {x ∈ X :
T∑

t=1
〈p, x〉 � B} = {x ∈ X : 〈p, x〉 � B

T }.
(2) The comulative constraint violation is defined as:

CT :=
T∑

t=1

〈p, xt〉 − B.

The regret measures the gap between the total reward of best fixed action mul-
tiplied by (1 − 1

eρ ) in hindsight and that of the algorithm, while the violation
describes how much the resource consumption incurred by the algorithm exceed-
ing the budget.
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4 Algorithm and Performance Analysis

In this section, we propose our online method of primal-dual type to solve prob-
lem (1) and analyze its performance.

Algorithm Online algorithm of primal-dual type.

Input: Constraint set X , time horizon T , positive integer K, stepsize α > 0,
penalty parameter β := δ2α, and nonnegative parameter sequence {ηt}t∈[T ].

Output: {xt}t∈[T ].
Initialize F0(x) = 0,∀x ∈ X , λ0 = p̃0 = 0, x

(k)
0 = v

(k)
0 = 0,∀k ∈ [K].

for t = 1 to T do
x
(1)
t = 0.

for k = 1 to K do

v
(k)
t = PX (v(k)

t−1 + α(∇Ft−1(x
(k)
t−1) − λt−1p̃t−1)), (2)

x
(k+1)
t = x

(k)
t +

1
K

v
(k)
t . (3)

end for
Set xt = x

(K+1)
t and act xt.

Observe the utility function Ft(·) = ft(·)+ θt(·) and the random constraint

vector sampled as pt. Set p̃t = 1
t

t∑
i=1

pi, and gt(·) = 〈p̃t, ·〉 − B
T , ht(·) = gt(·) − ηt.

Compute λt = 1
β [ht(xt)]+

end for

Remark 2. After executing the algorithm, all the utility functions {Ft = ft +
θt}t∈[T ] and random constraint vectors {pt}t∈[T ] are revealed. For convenience,
define Lt(·, ·) : Rn × R → R as

Lt(x, λ) = ft(x) + θt(x) +
β

2
λ2 − λht(x).

Then ∇xLt(x, λ) = ∇Ft(x) − λp̃t, and hence for fixed λ, Lt(x, λ) is L smooth
with respect to x variable. Observe that the iterative formula (2) is just

v
(k)
t = PX (v(k)

t−1 + α∇xLt−1(x
(k)
t−1, λt−1)). (4)

Taking x ∈ X , since PX is nonexpansive, we can deduce that, for each t ∈ [T ],

2α〈∇xLt(x
(k)
t , λt), x − v

(k)
t 〉

�‖v
(k)
t − x‖2 − ‖v(k)

t+1 − x‖2 + α2‖∇xLt(x
(k)
t , λt)‖2.
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Therefore

T∑

t=1

〈∇xLt(x
(k)
t , λt), x − v

(k)
t 〉

� 1
2α

‖v
(k)
1 − x‖2 +

α

2

T∑

t=1

‖∇xLt(x
(k)
t , λt)‖2

� d2

2α
+

α

2

T∑

t=1

(2δ2 + 2δ2λ2
t )

=
d2

2α
+ αTδ2 + αδ2

T∑

t=1

λ2
t . (5)

For simplicity, denote g(·) = 〈p, ·〉 − B
T in the following.

Lemma 2. Let {xt}t∈[T ] be the sequence generated by the proposed algorithm.
Then, for any x ∈ X , we have

(1 − 1
eρ

)
T∑

t=1

Ft(x) −
T∑

t=1

Ft(xt)

�
T∑

t=1

λtht(x) +
d2

2α
+ αδ2T +

Ld2

2K
T. (6)

Proof. Since Lt(·, λ) is L smooth, it follows from the Descent Lemma that, ∀x ∈
X , k ∈ [K],

Lt(x
(k+1)
t , λt)

� Lt(x
(k)
t , λt) + 〈∇xLt(x

(k)
t , λt), x

(k+1)
t − x

(k)
t 〉 − L

2
‖x

(k+1)
t − x

(k)
t ‖2

= Lt(x
(k)
t , λt) +

1
K

〈∇xLt(x
(k)
t , λt), v

(k)
t 〉 − L

2K2
‖v

(k)
t ‖2

= Lt(x
(k)
t , λt) +

1
K

〈∇Ft(x
(k)
t ), x〉 − 1

K
〈λtp̃t, x〉 − L

2K2
‖v

(k)
t ‖2

+
1
K

〈∇xLt(x
(k)
t , λt), v

(k)
t − x〉

� Lt(x
(k)
t , λt) +

ρ

K
(Ft(x) − Ft(x

(k)
t )) − 1

K
〈λtp̃t, x〉 − L

2K2
d2

+
1
K

〈∇xLt(x
(k)
t , λt), v

(k)
t − x〉,

where the first equality and last inequality comes from formula (3) and Lemma
1, respectively. Based on the definition of Lt and iterative formula (3), the above
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inequality can be reformulated as

Ft(x) − Ft(x
(k+1)
t ) � (1− ρ

K
)(Ft(x) − Ft(x

(k)
t )) +

1
K

(〈∇xLt(x
(k)
t , λt), x − v

(k)
t 〉

+ 〈λtp̃t, x − v
(k)
t 〉 +

L

2K
d2).

By recursive calculation, one can find that

Ft(x) − Ft(x
(K+1)
t )

� 1
K

·
K∑

k=1

(1 − ρ

K
)K−k(〈∇xLt(x

(k)
t , λt), x − v

(k)
t 〉 + 〈λtp̃t, x − v

(k)
t 〉 +

L

2K
d2)

+ (1 − ρ

K
)K(Ft(x) − Ft(x

(1)
t )).

Since (1− ρ
K )K � 1

eρ , summing the above inequality over t = 1, 2, · · · , T , we get
that

(1 − 1
eρ

)
T∑

t=1

Ft(x) −
T∑

t=1

Ft(xt)

� 1
K

T∑

t=1

K∑

k=1

(1 − ρ

K
)K−k(〈∇xLt(x

(k)
t , λt), x − v

(k)
t 〉

+ 〈λtp̃t, x − v
(k)
t 〉 +

L

2K
d2). (7)

By the updating rule of x
(k)
t and λt, we deduce that

1
K

T∑

t=1

K∑

k=1

〈λtp̃t, x − v
(k)
t 〉 =

T∑

t=1

〈λtp̃t, x − xt〉

=
T∑

t=1

λt[ht(x) − ht(xt)],

and αδ2λ2
t − λtht(xt) = 0. Thus, combining with formulas (5) and (7), we get

the conclusion.

Lemma 3. For fixed ε > 0, take ηt = U

√
2 ln 2T

ε

t ,∀t ∈ [T ]. For any x ∈ X ,
consider a sequence of events Et := {ht(x) � g(x)}, t ∈ [T ]. Then

(1) Pr(Et) � 1 − ε
T ,∀t ∈ [T ],

(2) Pr(
⋂

t∈[T ]

Et) � 1 − ε.
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Proof. (1) Note that E[〈pi, x〉 − B
T ] = g(x),∀i ∈ [T ] and

gt(x) = 〈p̃t, x〉 − B

T
=

1
t

t∑

i=1

(〈pi, x〉 − B

T
),

we conclude from Remark 1 (4) and Hoeffding’s inequality that

Pr{|gt(x) − g(x)| � ηt} � 2 exp(−2t2η2
t

4tU2
) =

ε

T
.

Thus,
Pr(Et) � Pr{|gt(x) − g(x)| � ηt} � 1 − ε

T
.

(2) It follows from the result of (1) that

Pr(
⋂

t∈[T ]

Et) = 1 − Pr(
⋃

t∈[T ]

Ec
t )

� 1 −
∑

t∈[T ]

Pr(Ec
t )

� 1 − ε.

Theorem 1. Given 0 < ε < 1, let {ηt}t∈[T ] be chosen as in Lemma 3. If α =√
2d

2δ
√

T
,K =

√
T , then

Pr{RT � (
√

2δ +
Ld

2
)d

√
T} � 1 − ε.

Proof. Take x∗ ∈ X ∗, then g(x∗) � 0. By Lemma 3 (2), we obtain that

Pr{
∑

t∈[T ]

λtht(x∗) � 0} � Pr(
⋂

t∈[T ]

{ht(x∗) � 0})

� Pr(
⋂

t∈[T ]

{ht(x∗) � g(x∗)})

� 1 − ε.

Hence, setting x = x∗ in formula (6), and substituting α =
√
2d

2δ
√

T
,K =

√
T

into it, we get the conclusion.

Lemma 4. There exists C > 0, such that the following holds: for any 0 < ε < 1,

Pr{
T∑

t=1

‖p − p̃t‖ � 2Cδ

√
(T + 1) ln

2nT

ε
} � 1 − ε.
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Proof. Since {pi}i∈[T ] are i.i.d. and drawn from bounded set, there exists C1 > 0,
such that ∀a ∈ R, i ∈ [T ],

Pr{‖pi − p‖ � a} � 2 exp(− a2

2C2
1δ2

).

Thus, by Corollary 7 in [21], there exists C2 > 0, such that ∀t ∈ [T ],

Pr{‖
∑

i∈[t]

(pi − p)‖ � C2

√√√√
∑

i∈[t]

(C2
1δ2) ln

2nT

ε
} � 1 − ε

T
,

that is

Pr{‖p̃t − p‖ � C1C2δ√
t

√
2nT

ε
} � 1 − ε

T
.

Set C := C1C2. Note that
∑

t∈[T ]

1√
t

� 2
√

T + 1, using the same technique as in

Lemma 3, we get the conclusion.

Theorem 2. Given 0 < ε < 1, let {ηt}t∈[T ], α,K take the same values as in
Theorem 1. Then the probability of the following event is at least 1 − ε,

CT � 2Cδd

√
(T + 1) ln

2nT

ε
+ 2U

√
2(T + 1) ln

2T

ε

+
√

2dδ2

2B
T

√
T +

√
2Lδd3

4B
T +

δ2d2

B
T.

Proof. According to the definition of CT , we have

CT =
T∑

t=1

〈p − p̃t, xt〉 +
T∑

t=1

ht(xt) +
T∑

t=1

ηt

� d

T∑

t=1

‖p − p̃t‖ + β

T∑

t=1

λt +
T∑

t=1

ηt. (8)

Noticing that ht(0) = −B
T − ηt, take x = 0 in formula (6), we obtain

−
T∑

t=1

Ft(xt) � −B

T

T∑

t=1

λt +
d2

2α
+ αδ2T +

Ld2

2K
T.

Substituting the specific parameter values into it, one can deduce that

β

T∑

t=1

λt �
√

2dδ2

2B
T

√
T +

√
2Lδd3

4B
T +

δ2d2

B
T.

Thus, pluging the above formula back into formula (8), we get the conclusion by
Lemma 4 and inequality

∑
t∈[T ]

1√
t

� 2
√

T + 1.
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5 Conclusion

In this paper, we consider online optimization problems with stochastic long-
term constraints, where the objective function is neither DR-submodular nor
concave. Taking gradient ascent method as a subroutine, an algorithm of primal-
dual type is proposed to solve it. We also analyze the performance of the proposed
algorithm.
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Abstract. Makaro is a logic puzzle with an objective to fill numbers
into a rectangular grid to satisfy certain conditions. In 2018, Bultel et al.
developed a physical zero-knowledge proof (ZKP) protocol for Makaro
using a deck of cards, which allows a prover to physically convince a
verifier that he/she knows a solution of the puzzle without revealing it.
However, their protocol requires several identical copies of some cards,
making it impractical as a deck of playing cards found in everyday life
typically consists of all different cards. In this paper, we propose a new
ZKP protocol for Makaro that can be implemented using a standard deck
(a deck consisting of all different cards). Our protocol also uses asymp-
totically less cards than the protocol of Bultel et al. Most importantly,
we develop a general method to encode a number with a sequence of
all different cards. This allows us to securely compute several numerical
functions using a standard deck, such as verifying that two given num-
bers are different and verifying that a number is the largest one among
the given numbers.

Keywords: Zero-knowledge proof · Card-based cryptography ·
Makaro · Puzzle

1 Introduction

Makaro is a logic puzzle created by Nikoli, a company that developed many
famous logic puzzles including Sudoku and Kakuro. A Makaro puzzle consists of a
rectangular grid of white and black cells. White cells are divided into polyominoes
called rooms, with some cells already containing a number, while each black cell
contain an arrow pointing to some direction. The objective of this puzzle is to
fill a number into each empty white cell according to the following rules [16].

1. Room condition: Each room must contain consecutive numbers starting from
1 to its size (the number of cells in the room).

2. Neighbor condition: Two (horizontally or vertically) adjacent cells in different
rooms must contain different numbers.

3. Arrow condition: Each arrow in a black cell must point to the only largest
number among the (up to) four numbers in the white cells adjacent to that
black cell. See Fig. 1.
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D.-Z. Du et al. (Eds.): TAMC 2022, LNCS 13571, pp. 43–54, 2022.
https://doi.org/10.1007/978-3-031-20350-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20350-3_5&domain=pdf
http://orcid.org/0000-0002-2820-1301
http://orcid.org/0000-0002-1149-7046
https://doi.org/10.1007/978-3-031-20350-3_5


44 S. Ruangwises and T. Itoh

1

3

2

⇑

⇓ ⇓

⇒

⇐

2 1 2 1

1 3 4 3 5

2 2 4

3 1 5 3

1 2 1 2

⇑

⇓ ⇓

⇒

⇐

Fig. 1. An example of a Makaro puzzle (left) and its solution (right)

Determining whether a given Makaro puzzle has a solution has been proved
to be NP-complete [7].

Suppose that Amber created a difficult Makaro puzzle and challenged her
friend Bennett to solve it. After a while, Bennett could not solve her puzzle and
began to doubt whether the puzzle has a solution. Amber needs to convince
him that her puzzle actually has a solution without revealing it to him. In this
situation, Amber needs a zero-knowledge proof (ZKP).

1.1 Zero-Knowledge Proof

The concept of a ZKP was first introduced by Goldwasser et al. [4]. A ZKP is an
interactive proof between P and V where both of them are given a computational
problem x, but only P knows a solution w of x. A ZKP with perfect completeness
and perfect soundness must satisfy the following three properties.

1. Perfect Completeness: If P knows w, then V always accepts.
2. Perfect Soundness: If P does not know w, then V always rejects.
3. Zero-knowledge: V learns nothing about w. Formally, there exists a proba-

bilistic polynomial time algorithm S (called a simulator) that does not know
w but has access to V , and the outputs of S follow the same probability
distribution as the ones from the actual protocol.

Many recent results have been focusing on constructing physical ZKPs using
objects found in everyday life such as a deck of cards and envelopes. These
physical protocols have benefits that they do not require computers and also
allow external observers to verify that the prover truthfully executes the protocol
(which is often a challenging task for digital protocols). They are also suitable for
teaching purpose and can be used to teach the concept of a ZKP to non-experts.

1.2 Related Work

Protocol of Bultel et al. In 2018, Bultel et al. [2] developed the first card-
based ZKP protocol for Makaro. Their protocol uses Θ(nk) cards, where n and
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k are the number of white cells and the size of the largest room, respectively.
However, it requires Θ(nk) identical copies of a specific card (and also Θ(n)
identical copies of another card).

As a deck of playing cards found in everyday life typically consists of all
different cards, Θ(nk) identical decks are actually required to implement this
protocol, making the protocol very impractical. Another option is to use a dif-
ferent kind of deck (e.g. cards from board games) that contains several identical
copies of some cards, but these decks are more difficult to find in everyday life.

Other Protocols. Besides Makaro, card-based ZKP protocols for many other
logic puzzles have also been developed: Sudoku [5,25], Akari [1], Takuzu [1,12],
Kakuro [1,13], KenKen [1], Norinori [3], Slitherlink [10], Juosan [12], Number-
link [22], Suguru [18], Ripple Effect [23], Nurikabe [17], Hitori [17], Bridges [24],
Masyu [10], Nonogram [19], Heyawake [17], and Shikaku [21]. All of these pro-
tocols, however, require a deck with repeated cards.

An open problem to develop ZKP protocols for logic puzzles using a standard
deck (a deck consisting of all different cards) was posed by Koyama et al. [9].
This problem was recently answered by Ruangwises [20], who developed a ZKP
protocol for Sudoku using a standard deck, the first standard deck protocol for
any kind of logic puzzle. However, the protocol in [20] was specifically designed to
tackle only the rules of Sudoku and cannot be applied to verify other numerical
functions or other logic puzzles, thus having limited utility.

Other than logic puzzles, card-based protocols have also been widely studied
in secure multi-party computation, a setting where multiple parties want to
jointly compute a function of their secret inputs without revealing them. Almost
all of existing protocols, however, also use a deck with repeated cards. The
only exceptions are [8,9,11,14,15] which proposed AND, XOR, copy, and Yao’s
millionaire protocols using a standard deck.

1.3 Our Contribution

Considering the drawback of the protocol of Bultel et al. [2], we aim to develop
a more practical ZKP protocol for Makaro that can be implemented using a
standard deck.1

In this paper, we propose a new ZKP protocol for Makaro with perfect com-
pleteness and soundness using a standard deck. It is also the second standard
deck protocol for any logic puzzle, after the one for Sudoku [20]. Remarkably,
our protocol uses asymptotically less cards than the protocol of Bultel et al.
(see Table 1). This is a noteworthy achievement as card-based protocols that use
a standard deck generally require more cards than their counterparts that use
a deck with repeated cards [26]. (In particular, the standard deck protocol for
Sudoku [20] also requires more cards than its counterpart [25].)

1 Although a “standard deck” of playing cards found in everyday life typically consists
of 52 different cards, in theory we study a general setting where the deck is arbitrarily
large, consisting of all different cards.
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Table 1. The number of required cards for each protocol for Makaro, where n and k
are the number of white cells and the size of the largest room, respectively

Protocol Standard Deck? #Cards

Bultel et al. [2] No Θ(nk)

Ours Yes Θ(n + k)

Most importantly, we develop a general method to encode a number with
a sequence of all different cards. This allows us to securely compute several
numerical functions using a standard deck, such as verifying that two given
numbers are different and verifying that a number is the largest one among the
given numbers.

2 Preliminaries

Let n be the number of white cells and k be the size of the largest room in the
Makaro grid.

We assume that all cards used in our protocols have different front sides and
identical back sides. For didactic purpose, cards are divided into sets. Cards in
the same set are denoted by the same letter with different indices, e.g. cards
a1, a2, a3, a4 are in the same set.

In an � × m matrix of cards, let Row i denote the i-th topmost row, and
Column j denote the j-th leftmost column.

2.1 Pile-Shifting Shuffle

Given an �×m matrix of cards, a pile-shifting shuffle [27] rearranges the columns
of the matrix by a random cyclic shift unknown to all parties. It can be imple-
mented in real world by putting the cards in each column into an envelope and
then taking turns to apply Hindu cuts (taking several envelopes from the bottom
and putting them on the top) to the pile of envelopes [28].

2.2 Pile-Scramble Shuffle

Given an �×m matrix of cards, a pile-scramble shuffle [6] rearranges the columns
of the matrix by a random permutation unknown to all parties. It can be imple-
mented in real world by putting the cards in each column into an envelope and
then jointly scrambling the envelopes together randomly.

3 Main Protocol

3.1 Cell Cards

We use a cell card to represent each white cell in the grid. Cells in the same
room are represented by cards in the same set. To avoid confusion, a cell card is
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always denoted by a Greek letter followed by an index equal to the number in
the cell it represents. We have cell cards in sets αi, βi, γi, ... and so on. See Fig. 2
for an example.2

2 ζ1 ζ2 1

1 ζ3 4 3 5

α2 2 γ4

α3 β1 γ5 γ3

α1 β2 γ1 γ2

⇑

⇓ ⇓

⇒

⇐

Fig. 2. A cell card representing each white cell in the solution of the puzzle in Fig. 1

At the beginning, P publicly places a face-down corresponding cell card on
each white cell already having a number. Then, P secretly places a face-down
corresponding cell card according to his/her solution on each empty white cell.

3.2 Verifying Room Condition

Consider a room R of size p in the Makaro grid containing cells represented by
cell cards α1, α2, ..., αp. This subprotocol allows P to show that the cell cards in
R consist of a permutation of α1, α2, ..., αp without revealing their order. It was
developed by Sasaki et al. [25].

Besides cell cards, we also use helping cards hi (i = 1, 2, ..., k) in our protocol.

? ? ... ?
α? α? α?

? ? ... ?

h1 h2 hp

Fig. 3. A 2 × p matrix constructed in Step 2

2 Assume that we have � cards with different numbers, e.g. cards with numbers
1, 2, ..., �. In the example in Fig. 2, we can, for instance, regard cards 1, 2, 3 on cells
with numbers 1, 2, 3 in the top-left room as α1, α2, α3, cards 4, 5 on cells with num-
bers 1, 2 in the top-center room as β1, β2, cards 6, 7, 8, 9, 10 on cells with numbers
1, 2, 3, 4, 5 in the top-right room as γ1, γ2, γ3, γ4, γ5, and so on.
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1. Take all cell cards in R in any specific order (e.g. from top to bottom, then
from left to right) and place them face-down in Row 1 of a matrix M .

2. Publicly place face-down helping cards h1, h2, ..., hp in Row 2 of M in this
order from left to right. M is now a 2 × p matrix (see Fig. 3).

3. Apply the pile-scramble shuffle to M .
4. Turn over all cards in Row 1 of M . If the sequence is a permutation of

α1, α2, ..., αp, proceed to the next step; otherwise, V rejects.
5. Turn over all face-up cards in M . Apply the pile-scramble shuffle to M again.
6. Turn over all cards in Row 2 of M . Arrange the columns of M such that the

cards in Row 2 are h1, h2, ..., hp in this order from left to right. Note that the
columns of M are now reverted to their original order.

7. Take the cards in Row 1 of M and place them back into room R in the same
order we take them in Step 1.

P applies this subprotocol for every room in the Makaro grid to verify the
room condition.

However, verifying the neighbor condition and arrow condition is more diffi-
cult and cannot be done by using cell cards alone. Therefore, we have to develop
a method to encode a number with a sequence of all different cards.

3.3 Encoding Sequences

In previous ZKP protocols for other logic puzzles [2,18,22–24], a number x (1 ≤
x ≤ m) is often encoded by a sequence Em(x) of m consecutive cards, with all
of them being ♣ s except the x-th leftmost card being a ♥ (e.g. E4(2) is ♣ ♥
♣ ♣ ). We will employ that idea to develop an encoding sequence for a number
x using all different cards.

Besides cell cards and helping cards, we also use encoding cards ai, bi, ci, di
(i = 1, 2, ..., 2k−1) in our protocol. (We need four sets of encoding cards because
we later have to compare up to four numbers at the same time during the arrow
condition verification.)

For a fixed integer m ≤ 2k − 1, define a sequence Ea
m(x) to be a sequence

of m consecutive cards, where the x-th leftmost card is a1, and the other m − 1
cards are a uniformly random permutation of a2, a3, ..., am unknown to V .

The role of the card a1 in Ea
m(x) is to mark the value of x, similarly to a ♥

in Em(x). Note that the order of a2, a3, ..., am must be unknown to V in order
for the protocol to be zero-knowledge, so each encoding sequence is for one-time
use only.

We also define sequences Eb
m(x), Ec

m(x), and Ed
m(x) analogously, using encod-

ing cards from sets bi, ci, and di, with cards b1, c1, and d1 as marking points,
respectively.

3.4 Conversion from Cell Cards to Encoding Sequences

This is the most crucial subprotocol in our protocol. Let w be any white cell
represented by a cell card αx. Suppose that w is located in a room R with size
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p. This subprotocol allows P to construct an encoding sequence Ea
m(x) for some

fixed m ≥ p without revealing the value x to V , while leaving all cell cards in R
unchanged.

? ? ... ? ? ? ... ?
α? α? α? αx α? α?

? ? ... ? ? ? ... ?

h1 h2 hi−1 hi hi+1 hp

? ? ... ? ? ? ... ?
a? a? a? a1 a? a?

Fig. 4. A 3 × k matrix M constructed in Step 5

1. Take all cell cards in R in any specific order (e.g. from top to bottom, then
from left to right) and place them face-down in Row 1 of a matrix M . Suppose
the card αx is located at Column i of M .

2. Publicly place face-down helping cards h1, h2, ..., hp in Row 2 of M in this
order from left to right.

3. Publicly place face-down encoding card a1 in Row 3 of M at Column i.
4. Secretly arrange face-down encoding cards a2, a3, ..., am in a uniformly ran-

dom permutation unknown to V . Refer to this sequence as S.
5. Take the p − 1 leftmost cards of S and place them in empty cells in Row 3

of M in this order from left to right. Leave the m − p rightmost cards of S
unchanged. M is now a complete 3 × p matrix (see Fig. 4).

6. Apply the pile-scramble shuffle to M .
7. Turn over all cards in Row 1 of M . Arrange the columns of M such that the

cards in Row 1 are α1, α2, ..., αp in this order from left to right.
8. Take all cards in Row 3 of M out of the matrix (M now becomes a 2 × p

matrix). Refer to the sequence taken from Row 3 of M as T . Append the
m − p rightmost cards of S left in Step 5 to the right of T . The appended
sequence is Ea

m(x) as desired.
9. Turn over all face-up cards in M . Apply the pile-scramble shuffle to M again.

10. Turn over all cards in Row 2 of M . Arrange the columns of M such that the
cards in Row 2 are h1, h2, ..., hp in this order from left to right. Note that the
columns of M are now reverted to their original order.

11. Take the cards in Row 1 of M and place them back into room R in the same
order we take them in Step 1.

3.5 Verifying Neighbor Condition

This subprotocol allows P to show that two adjacent cells represented by αx and
βy in different rooms contain different numbers. The idea of this subprotocol is



50 S. Ruangwises and T. Itoh

exactly the same as the one developed by Bultel et al. [2, §3.3 Step 2] to verify
the same condition, except that it uses encoding sequences Ea

m(x) and Eb
m(y)

instead of Em(x) and Em(y).
Let p and q be the sizes of rooms containing αx and βy, respectively, and

let m = max(p, q). Note that we have m ≤ k. First, P applies the conversion
protocol in Sect. 3.4 to construct sequences Ea

m(x) and Eb
m(y) from αx and βy,

respectively. Then, P performs the following steps.

1. Construct a 2×m matrix M by placing Ea
m(x) and Eb

m(y) in Row 1 and Row
2, respectively.

2. Apply the pile-scramble shuffle to M .
3. Turn over all cards in Row 1 of M . Suppose a1 is located at Column i.
4. Turn over a card in Row 2 of M at Column i. If it is not b1, proceed to the

next step; otherwise, V rejects.

P applies this subprotocol for every pair of adjacent cells that are in different
rooms in the Makaro grid to verify the neighbor condition.

3.6 Verifying Arrow Condition

Suppose the (up to) four cells adjacent to a black cell containing an arrow are
represented by αx, βy, γz, and δt, with an arrow pointing to αx.3 This subpro-
tocol allows P to show that a number in the cell represented by αx is the largest
one among all numbers in these cells. The idea of this subprotocol is exactly the
same as the one developed by Bultel et al. [2, §3.3 Step 3] to verify the same con-
dition, except that it uses encoding sequences Ea

2m−1(x), Eb
2m−1(y), Ec

2m−1(z),
and Ed

2m−1(t) instead of E2m−1(x), E2m−1(y), E2m−1(z), and E2m−1(t).
Let p, q, r, and s be the sizes of rooms containing αx, βy, γz, and δt,

respectively, and let m = max(p, q, r, s). Note that we have m ≤ k, and thus
2m − 1 ≤ 2k − 1. First, P applies the conversion protocol in Sect. 3.4 to con-
struct sequences Ea

2m−1(x), Eb
2m−1(y), Ec

2m−1(z), and Ed
2m−1(t) from αx, βy, γz,

and δt, respectively. Then, P performs the following steps.

1. Construct a 4×(2m−1) matrix M by placing Ea
2m−1(x), Eb

2m−1(y), Ec
2m−1(z),

and Ed
2m−1(t) in Rows 1, 2, 3, and 4, respectively.

2. Apply the pile-shifting shuffle to M .
3. Turn over all cards in Row 1 of M . Suppose a1 is located at Column i.
4. Turn over cards in Rows 2, 3, and 4 of M at Columns i, i + 1, ..., i + m − 1

(where the indices are taken modulo 2m − 1). If none of them is b1, c1, or d1,
proceed to the next step; otherwise, V rejects.

P applies this subprotocol for every arrow in the Makaro grid to verify the
arrow condition.

If the verification passes for all three conditions, then V accepts.

3 Some of the cells may be in the same room, but this does not affect the conversion
as we apply the conversion protocol to each cell card one by one.
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3.7 Complexity

Our protocol uses n cell cards, k helping cards, and 4(2k − 1) encoding cards,
resulting in the total of n+9k−4 = Θ(n+k) cards. In comparison, the protocol
of Bultel et al. [2] requires Θ(nk) cards.

4 Proof of Correctness and Security

We will prove the perfect completeness, perfect soundness, and zero-knowledge
properties of our protocol.

Lemma 1 (Perfect Completeness). If P knows a solution of the Makaro
puzzle, then V always accepts.

Proof. Suppose P knows a solution and places cards on the grid accordingly.
First, we will prove the correctness of the conversion protocol in Sect. 3.4.

From the way we construct the matrix M , in Step 5 the card a1 is in the same
column as αx, and the other p − 1 cards in Row 3 are uniformly distributed
among all (m−1)!

(m−p)! permutations of p−1 cards selected from a2, a3, ..., am. In Step
7, the card a1 is moved to Column x. Hence, the appended sequence in Step 8 has
a1 as the x-th leftmost card, and the other m−1 cards are uniformly distributed
among all (m−1)! permutations of a2, a3, ..., am (which remains unknown to V ).
Therefore, the appended sequence is indeed Ea

m(x).
Next, we will prove that the verification of all three conditions will pass.

– For the room condition verification in Sect. 3.2, the cards that are turned over
in Step 4 must be a permutation of α1, α2, ..., .αp, so the verification will pass.

– For the neighbor condition verification in Sect. 3.5, the cell cards are correctly
converted to sequences Ea

m(x) and Eb
m(y). Since x �= y, the cards a1 and b1

must be in different columns of M . Hence, the card that is turned over in
Step 4 cannot be b1, so the verification will pass.

– For the arrow condition verification in Sect. 3.6, the cell cards are correctly
converted to sequences Ea

2m−1(x), Eb
2m−1(y), Ec

2m−1(z), and Ed
2m−1(t). Since

x is the only largest number among the four numbers, in Step 3 each of the
cards b1, c1, and d1 must be in one of Columns i − 1, i − 2, ..., i − m + 1 of
M (where the indices are taken modulo 2m − 1). Hence, the cards that are
turned over in Step 4 cannot include b1, c1, or d1, so the verification will pass.

Therefore, V always accepts. �

Lemma 2 (Perfect Soundness). If P does not know a solution of the Makaro
puzzle, then V always rejects.

Proof. Suppose P does not know a solution. At least one of the three conditions
must be violated.
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– If the room condition is violated, consider the room condition verification in
Sect. 3.2 for a room that violates the condition. The cards that are turned
over in Step 4 cannot be a permutation of α1, α2, ..., .αp, so the verification
will fail.

– If the neighbor condition is violated, consider the neighbor condition verifi-
cation in Sect. 3.5 for a pair of adjacent cells that violates the condition. We
have x = y, so the cards a1 and b1 must be in the same column of M . Hence,
the card that is turned over in Step 4 must be b1, so the verification will fail.

– If the arrow condition is violated, consider the arrow condition verification in
Sect. 3.6 for an arrow that violates the condition. Suppose y ≥ x. In Step 3,
the card b1 must be in one of Columns i, i + 1, ..., i + m − 1 of M (where the
indices are taken modulo 2m − 1). Hence, the cards that are turned over in
Step 4 must include b1, so the verification will fail.

Therefore, V always rejects. �

Lemma 3 (Zero-Knowledge). During the verification, V learns nothing
about P ’s solution.

Proof. It is sufficient to show that all distributions of cards that are turned
face-up can be simulated by a simulator S that does not know P ’s solution.

– In the room condition verification in Sect. 3.2:
• In Step 4, the orders of face-up cards are uniformly distributed among all

p! permutations of α1, α2, ..., αp, so it can be simulated by S.
• In Step 6, the orders of face-up cards are uniformly distributed among all

p! permutations of h1, h2, ..., hp, so it can be simulated by S.
– In the conversion protocol in Sect. 3.4:

• In Step 7, the orders of face-up cards are uniformly distributed among all
p! permutations of α1, α2, ..., αp, so it can be simulated by S.

• In Step 10, the orders of face-up cards are uniformly distributed among
all p! permutations of h1, h2, ..., hp, so it can be simulated by S.

– In the neighbor condition verification in Sect. 3.5:
• In Step 3, the orders of face-up cards are uniformly distributed among all

m! permutations of a1, a2, ..., am, so it can be simulated by S.
• In Step 4, the face-up card has an equal probability to be one of

b2, b3..., bm, so it can be simulated by S.
– In the arrow condition verification in Sect. 3.6:

• In Step 3, the orders of face-up cards are uniformly distributed among all
(2m − 1)! permutations of a1, a2, ..., a2m−1, so it can be simulated by S.

• In Step 4, the orders of face-up cards in Row 2 are uniformly distributed
among all (2m−2)!

(m−2)! permutations of m cards selected from b2, b3, ..., b2m−1.
The same goes for face-up cards in Row 3 and Row 4, with m cards
selected from c2, c3, ..., c2m−1 and d2, d3, ..., d2m−1, respectively. So, it can
be simulated by S.

Therefore, we can conclude that V learns nothing about P ’s collusion. �
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5 Future Work

We developed a ZKP protocol for Makaro using a standard deck, which requires
asymptotically less cards than the existing protocol of Bultel et al. [2]. We also
developed a general method to encode a number with a sequence of all different
cards, which allows us to securely compute several numerical functions using a
standard deck. This method can be used to verify solutions of some other logic
puzzles including Suguru. Possible future work includes developing standard deck
protocols to verify solutions of other logic puzzles (e.g. Kakuro, Numberlink), or
to compute broader types of functions.
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Abstract. We study the imbalance problem on complete bipartite
graphs. The imbalance problem is a graph layout problem and is known
to be NP-complete. Graph layout problems find their applications in
the optimization of networks for parallel computer architectures, VLSI
circuit design, information retrieval, numerical analysis, computational
biology, graph theory, scheduling and archaeology [2]. In this paper, we
give characterizations for the optimal solutions of the imbalance prob-
lem on complete bipartite graphs. Using the characterizations, we can
solve the imbalance problem in time polylogarithmic in the number of
vertices, when given the cardinalities of the parts of the graph, and verify
whether a given solution is optimal in time linear in the number of ver-
tices on complete bipartite graphs. We also introduce a generalized form
of complete bipartite graphs on which the imbalance problem is solvable
in time quasilinear in the number of vertices by using the aforementioned
characterizations.

Keywords: Imbalance problem · Vertex layout · Complete bipartite
graph · Proper interval bipartite graph

1 Introduction

Graph layout problems are combinatorial optimization problems, where the goal
is to find an ordering on the vertices that optimizes an objective function. A
large number of problems from different domains can be formulated as graph
layout problems [2]. The imbalance problem is a graph layout problem that has
applications in 3-dimensional circuit design [7].

The imbalance problem was introduced by Biedl et al. [1]. Given an ordering
of the vertices of a graph G, the imbalance of a vertex v is the absolute difference
in the number of neighbors to the left of v and the number of neighbors to the
right of v. The imbalance of an ordering is the sum of the imbalances of the
vertices. An instance of the imbalance problem consists of a graph G and an
integer k. The problem asks whether there exists an ordering on the vertices of
G such that the imbalance of the ordering is at most k.

The imbalance problem is NP-complete for several graph classes, including
bipartite graphs with degree at most 6, weighted trees [1], general graphs with
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degree at most 4 [6], and split graphs [4]. The problem becomes polynomial time
solvable on superfragile graphs [4]. The problem is linear time solvable on proper
interval graphs [4], bipartite permutation graphs, and threshold graphs [3].

Gorzny showed that the minimum imbalance of a bipartite permutation
graph G = (V,E), which is a superclass of complete bipartite graphs and proper
interval bipartite graphs, can be computed in O(|V | + |E|) time [3]. We give
characterizations for the optimal solutions of the imbalance problem on complete
bipartite graphs. Using the characterizations, we show that the imbalance prob-
lem is solvable in O(log(|V |) · log(log(|V |))) time on complete bipartite graphs,
when given the cardinalities of the parts of the graph. Additionally, using the
characterizations, we can verify whether a given solution is optimal in O(|V |)
on complete bipartite graphs. We also introduce a generalized form of complete
bipartite graphs, which we call chained complete bipartite graphs, on which
the imbalance problem is solvable in O(c · log(|V |) · log(log(|V |))) time, where
c = O(|V |), by using the aforementioned characterizations. As chained complete
bipartite graphs are a subclass of proper interval bipartite graphs, the result of
Gorzny also applies to chained complete bipartite graphs.

2 Preliminaries

We only consider graphs that are finite, undirected, connected, and simple (i.e.
without multiple edges or loops). A graph G is denoted as G = (V,E), where V
denotes the set of vertices and E ⊆ V × V denotes the set of undirected edges.
For convenience, we abbreviate bipartite graph as bigraph.

For n ∈ N
+, let us define [n] = {1, 2, . . . , n}.

We define σS : S → [|S|] to be an ordering of S. For convenience, at times we
denote an ordering σS by (σ−1(1), σ−1(2), . . . , σ−1(|S|)), where, v = σ−1(σ(v))
for v ∈ S. We also say that v ∈ S is at position k in ordering σS if σS(v) = k.

Let S1, S2, . . . , Sn be a collection of disjoint sets. Let s ∈ Si, where 1 ≤ i ≤ n,
then the concatenation of orderings is defined as follows: σS1σS2 . . . σSn

(s) =
σSi

(s) +
∑

j∈[i−1]

|Sj |. Additionally, we use the product notation to denote the

concatenation over a set. That is,
∏

i∈[n]

σSi
= σS1σS2 . . . σSn

.

Given an ordering σS we say that v ∈ S occurs to the left of u ∈ S in
σS , if and only if σS(v) < σS(u). We denote this as v <σS

u. We define >σS

analogously.
Given an ordering σS we say that σS′

S , where S′ ⊆ S, is a subordering of σS

on S′ if σS′
S preserves the relative ordering of the elements in S′. That is σS′

S is
a subordering of σS if and only if ∀u,v∈S′∀⊕∈{<,>} u ⊕σS′

S
v ⇐⇒ u ⊕σS

v.

For a graph G = (V,E), the open neighborhood of a vertex v ∈ V , denoted
by N(v), is the set of vertices adjacent to v. We call the vertices in N(v) the
neighbors of vertex v. That is N(v) = {u ∈ V | {u, v} ∈ E}.

The imbalance of a vertex v ∈ V on the ordering σV in graph G = (V,E),
denoted by I(v, σV , G), is defined to be the absolute difference in the number



Characterization of the Imbalance Problem on Complete Bipartite Graphs 57

of neighbors of v occurring to the left of v and the number of neighbors of v
occurring to the right of v in σV . That is, I(v, σV , G) =

∣
∣|{u ∈ N(v) | u <σV

v}| − |{u ∈ N(v) | u >σV
v}|∣∣.

The imbalance of an ordering σV on graph G = (V,E), denoted by I(σV , G),
is defined to be sum over the imbalances of the vertices in V on the ordering σV

in graph G. That is I(σV , G) =
∑

v∈V

I(v, σV , G). If the ordering and/or graph

are clear from the context, we shall exclude them from the parameters of the
function I.

The imbalance of a graph G = (V,E), denoted by I(G), is defined to be the
minimum imbalance over all orderings σV . That is, I(G) = min

σV ∈S(V )
I(σV , G),

where S(V ) denotes the set of all orderings on V . We call an ordering σV whose
imbalance is equivalent to I(G) an (imbalance) optimal ordering. Given a graph
G and an integer k, the imbalance problem asks whether I(G) ≤ k is true or
false.

A bigraph G = (X,Y,E) is an interval bigraph, if there exists a set of inter-
vals on the real line, where for each vertex v ∈ X ∪ Y we have exactly one
corresponding interval such that the intervals corresponding to vertices x ∈ X
and y ∈ Y intersect if and only if there exists an edge in E connecting x and y.
We call such a set of intervals the interval representation IG of graph G. That
is, IG = {[lv, rv] | v ∈ X ∪ Y } such that ∀x∈X ∀y∈Y

(
[lx, rx] ∩ [ly, ry] �= ∅ ⇐⇒

{x, y} ∈ E
)
.

An interval bigraph G = (X,Y,E) is a proper interval bigraph, abbreviated
by PI-bigraph, if it has an interval representation IG such that none of the
intervals are properly contained in another. That is, there exists an interval
representation IG = {[lv, rv] | v ∈ X ∪ Y } of G such that ∀u,v∈X∪Y (u �= v ⇐⇒
[lu, ru] � [lv, rv]).

3 Imbalance on Complete Bipartite Graphs

Let G = (X,Y,E) be a complete bigraph. In this section we shall prove that the
minimum imbalance of G is |X| · |Y | + (|X| mod 2) · (|Y | mod 2).

Lemma 1. If G = (X,Y,E) is a complete bigraph, then there exists an ordering
σX∪Y such that I(σX∪Y ) = |X| · |Y | + (|X| mod 2) · (|Y | mod 2).

Proof. We shall construct an ordering on X∪Y that achieves the aforementioned
imbalance. For the construction of the ordering on X ∪Y we consider two cases,
either the cardinality of one part is even or none of the cardinalities of the parts
are even.

Case 1. (|X| mod 2 = 0) ∨ (|Y | mod 2 = 0).
W.l.o.g. assume that |Y | is even. Let Y1 and Y2 partition Y into two sets of equal
size. Consider ordering σX∪Y = σY1σXσY2 . In this ordering, the imbalance of
any vertex in X is zero and the imbalance of any vertex in Y is |X|. Thus the
imbalance of ordering σX∪Y is I(σX∪Y ) = |X| · |Y |.
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σY1σXσY2 =

Y1 X Y2

Fig. 1. Example of “sandwiched” ordering for G = K4,9.

Case 2. (|X| mod 2 = 1) ∧ (|Y | mod 2 = 1).
Let ym ∈ Y be an element of Y . Let X1 and X2 partition X into two sets such
that ||X1|−|X2|| = 1 and let Y1 and Y2 partition Y \{ym} into two sets such that
|Y1| = |Y2|. Consider the ordering σX∪Y = σY1σX1σ{ym}σX2σY2 . The imbalance
of any vertex in X ∪ {ym} is 1 and the imbalance of any vertex in Y \ {ym} is
|X|. Thus the imbalance of the ordering σX∪Y is I(σX∪Y ) = |X| · |Y | + 1. �

σY1σX1σ{ym}σX2σY2 =

Y1 X1 {ym} X2 Y2

Fig. 2. Example of “pseudo-sandwich” ordering for G = K3,9.

Definition 1. Let G = (X,Y,E) be a complete bigraph and σX∪Y be an arbi-
trary ordering on X ∪Y . We define L(Y, σX∪Y ) ⊆ [|X|+ |Y |] to be the positions
of the elements of Y in σX∪Y . That is L(Y, σX∪Y ) = {σX∪Y (y) | y ∈ Y }. Let us
denote the elements in L(Y, σX∪Y ) as L(Y, σX∪Y ) = {lσX∪Y

1 , lσX∪Y
2 , . . . , lσX∪Y

|Y | }
such that lσX∪Y

1 < lσX∪Y
2 < · · · < lσX∪Y

|Y | . Additionally, we define lσX∪Y
0 = 0 and

lσX∪Y

|Y |+1 = |X|+ |Y |+1. We leave out the superscript in lσX∪Y
i , when the ordering

is clear from the context.
We define LσX∪Y

i to be the vertices of X between the positions li and li+1 in
ordering σX∪Y . Let Y = {y1, . . . , y|Y |} be an enumeration of the elements in Y
such that yi is at position li. We leave out the superscript in LσX∪Y

i , when the
ordering is clear from the context.

σX∪Y = x1 x2 y1 x3 y2 x4 x5 x6 y3 x7 x8 y4 x9 x10

σX∪Y (v) = 1 2 3 4 5 6 7 8 9 10 11 12 13 14

= = = =

l1 l2 l3 l4

L0 L1 L2 L3 L4

Fig. 3. Visualization of Definition 1 with an ordering σX∪Y .
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Definition 2. Let σX∪Y = σL0

|Y |∏

i=1

σ{yi}σLi
be an arbitrary ordering. Let us

define

shiftL(σX∪Y ) = σ{y
� |Y |

2 �
}σL0

⎛
⎜⎝

� |Y |
2 �−1∏
i=1

σ{yi}σLi

⎞
⎟⎠ σL

� |Y |
2 �

⎛
⎜⎝

|Y |∏

i=� |Y |
2 �+1

σ{yi}σLi

⎞
⎟⎠ ,

shiftR(σX∪Y ) = σL0

⎛
⎜⎝

� |Y |
2 �∏

i=1

σ{yi}σLi

⎞
⎟⎠ σL

� |Y |
2 �+1

⎛
⎜⎝

|Y |∏

i=� |Y |
2 �+2

σ{yi}σLi

⎞
⎟⎠ σ{y

� |Y |
2 �+1

}.

That is, shiftL moves vertex y� |Y |
2 � to the left most position and shiftR moves

vertex y	 |Y |
2 
+1

to the right most position.

σX∪Y = x1 x2 y1 x3 y2 x4 x5 x6 y3 x7 x8 y4 x9 x10

shiftL(σX∪Y ) = y2 x1 x2 y1 x3 x4 x5 x6 y3 x7 x8 y4 x9 x10

shiftR(σX∪Y ) = x1 x2 y1 x3 y2 x4 x5 x6 x7 x8 y4 x9 x10 y3

LσX∪Y
0 LσX∪Y

1 LσX∪Y
2 LσX∪Y

3 LσX∪Y
4

Fig. 4. Visualization of the shiftL and shiftR functions with an ordering σX∪Y on
the vertices of graph G = K10,4.

Lemma 2. Let σX∪Y be an arbitrary imbalance optimal ordering. Let σ′
X∪Y =

shiftL(σX∪Y ). We have that I(σX∪Y ) = I(σ′
X∪Y ).

Proof. We have that I(σX∪Y , y� |Y |
2 �)=

∣
∣
∣
∣
∣
∣

⎛

⎝
� |Y |

2 �−1∑

i=0

|LσX∪Y
i |

⎞

⎠−
⎛

⎝
|Y |∑

i=� |Y |
2 �

|LσX∪Y
i |

⎞

⎠

∣
∣
∣
∣
∣
∣

and I(σ′
X∪Y , y� |Y |

2 �) =
|Y |∑

i=0

|LσX∪Y
i | = |X|. For each 0 ≤ i ≤ � |Y |

2 � − 1, the

imbalance of all the vertices in LσX∪Y
i is smaller by 2 in σ′

X∪Y . The imbalance
of the remaining vertices remain the same.

Case 3.

⎛

⎝
� |Y |

2 �−1∑

i=0

|LσX∪Y
i |

⎞

⎠ >

⎛

⎝
|Y |∑

i=� |Y |
2 �

|LσX∪Y
i |

⎞

⎠.

We can express the imbalance of I(σ′
X∪Y ) as follows:

I(σ′
X∪Y ) = I(σX∪Y ) − 2 ·

⎛

⎝
� |Y |

2 �−1∑

i=0

|LσX∪Y
i |

⎞

⎠ − I(σX∪Y , y� |Y |
2 �)

+ I(σ′
X∪Y , y� |Y |

2 �)
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= I(σX∪Y ) − 2 ·
⎛

⎝
� |Y |

2 �−1∑

i=0

|LσX∪Y
i |

⎞

⎠ −
⎛

⎝
� |Y |

2 �−1∑

i=0

|LσX∪Y
i |

⎞

⎠

+

⎛

⎜
⎝

|Y |∑

i=� |Y |
2 �

|LσX∪Y
i |

⎞

⎟
⎠ +

|Y |∑

i=0

|LσX∪Y
i |

< I(σX∪Y ).

Since σX∪Y is imbalance optimal, it is not possible that I(σ′
X∪Y ) < I(σX∪Y ).

Thus this case cannot occur.

Case 4.

⎛

⎝
� |Y |

2 �−1∑

i=0

|LσX∪Y
i |

⎞

⎠ ≤
⎛

⎝
|Y |∑

i=� |Y |
2 �

|LσX∪Y
i |

⎞

⎠.

We can express the imbalance of I(σ′
X∪Y ) as follows:

I(σ′
X∪Y ) = I(σX∪Y ) − 2 ·

⎛

⎝
� |Y |

2 �−1∑

i=0

|LσX∪Y
i |

⎞

⎠ − I(σX∪Y , y� |Y |
2 �)

+ I(σ′
X∪Y , y� |Y |

2 �)

= I(σX∪Y ) − 2 ·
⎛

⎝
� |Y |

2 �−1∑

i=0

|LσX∪Y
i |

⎞

⎠ −

⎛

⎜
⎝

|Y |∑

i=� |Y |
2 �

|LσX∪Y
i |

⎞

⎟
⎠

+

⎛

⎝
� |Y |

2 �−1∑

i=0

|LσX∪Y
i |

⎞

⎠ +
|Y |∑

i=0

|Li|

= I(σX∪Y ).

�

Lemma 3. Let σX∪Y be an arbitrary imbalance optimal ordering. Let σ′
X∪Y =

shiftR(σX∪Y ). We have that I(σX∪Y ) = I(σ′
X∪Y ).

Proof. Analogous to Lemma 2. �

Remark 1. Let both |X| and |Y | be odd. Let σX∪Y be an arbitrary imbalance
optimal ordering. Let ym ∈ Y be the vertex at position l	 |Y |

2 
. We have that
I(σX∪Y , ym) = 1. Otherwise σX∪Y is not imbalance optimal. This can be shown
by a proof by contradiction using Lemma2 and Lemma 3.

Theorem 1. If G = (X,Y,E) is a complete bigraph, then the minimum imbal-
ance of G is |X| · |Y | + (|X| mod 2) · (|Y | mod 2).

Proof. Let σX∪Y be an arbitrary imbalance optimal ordering. Repeatedly apply
the functions shiftL and shiftR on σX∪Y , until we have the same ordering as
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constructed in Lemma 1. Let us denote the obtained ordering as σ′
X∪Y . Since

I(σX∪Y ) = I(σ′
X∪Y ) by Lemma 2 and Lemma 3, and I(σ′

X∪Y ) = |X| · |Y | + (|X|
mod 2)·(|Y | mod 2), we have that I(G) = |X|·|Y |+(|X| mod 2)·(|Y | mod 2).

�

Corollary 1. By Lemma 2, Lemma 3, and Remark 1, any ordering σX∪Y of a
complete bigraph G = (X,Y,E) is imbalance optimal if and only if σX∪Y has
the following 3 properties:

1.

⎛

⎝
� |Y |

2 �−1∑

i=0

|LσX∪Y
i |

⎞

⎠ ≤
⎛

⎝
|Y |∑

i=� |Y |
2 �

|LσX∪Y
i |

⎞

⎠

2.

⎛

⎝
	 |Y |

2 
∑

i=0

|LσX∪Y
i |

⎞

⎠ ≥
⎛

⎝
|Y |∑

i=	 |Y |
2 
+1

|LσX∪Y
i |

⎞

⎠

3. |X| and |Y | are odd ⇒ I(σX∪Y , ym) = 1, where ym ∈ Y is at position l	 |Y |
2 
.

The above properties allow us to verify whether any arbitrary ordering is imbal-
ance optimal in O(|X| + |Y |) time.

Corollary 2. Let G = (X,Y,E) be a complete bigraph and let |X| + |Y | = n.
Given |X| and |Y |, the minimum imbalance I(G) can be computed in O(log(n) ·
log(log(n))) time by using the formula of Theorem1. This follows from the fact
that the product of two k-bit integers can be computed in O(k · log(k)) time [5].

4 Imbalance on Chained Complete Bipartite Graphs

In this section we shall introduce the chained complete bigraph. We show that
the chained complete bigraph is a subclass of PI-bigraphs and how to use the
results of Sect. 3 to compute its minimum imbalance efficiently.

Definition 3. We define C to be a family of maximal subsets of the vertices
of graph G = (V,E) that induce a complete bigraph on G. Additionally, for all
edges e ∈ E there exists a vertex set Ci ∈ C such that both endpoints of e are
contained in Ci. That is, C ⊆ P(V ) such that:

(∀{u,v}∈E ∃Ci∈C {u, v} ⊆ Ci) ∧ (∀Ci∈C ∃j,k∈N G[Ci] = Kj,k) ∧
(∀Ci∈C ∀v∈V \Ci

∀j,k∈N G[Ci ∪ {v}] �= Kj,k),

where Ki,j denotes a complete bigraph. We call C the maximal complete bigraph
components, abbreviated by MCB-components, of G.

Definition 4. A graph G = (X,Y,E) is a chained complete bigraph, if G has
a MCB-component family C such that we can label C = {C1, . . . , Cn} such that
consecutive vertex sets Ci and Ci+1 share exactly one vertex and non-consecutive
vertex sets Ci and Cj share no vertices. Formally, (∀1≤i<n |Ci ∩ Ci+1| = 1) ∧
(∀1≤i<j<n j − i > 1 =⇒ Ci ∩ Cj = ∅). We call a vertex that is shared by two
consecutive vertex sets of C an overlapping vertex.
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For any chained complete bigraph G, with corresponding MCB-component
family C , we can create a corresponding PI-bigraph interval representation IG.
For each Ci ∈ C we create a staircase-shaped set of intervals with the overlapping
vertices at the top and bottom.

y1 y2 y3 y4 y5 y6

x1 x2 x3 x4 x5

C1 C2 C3

Fig. 5. Example chained complete
bigraph. The highlighted areas repre-
sent the sets in C .

x2

y2

y1

x1

y3

x3

y4

x5

x4

y6

y5

R

C1 C2 C3

Fig. 6. Interval representation of the
chained complete bigraph of Fig. 5.

Remark 2. By the definition of chained complete bigraph G = (X,Y,E) we have
∀v∈X∪Y 1 ≤ |{Ci ∈ C | v ∈ Ci}| ≤ 2.

Remark 3. By the definition of MCB-components C of a chained complete
bigraph ∀v∈X∪Y N(v) ⊆ ⋃

Cj∈{Ci∈C | v∈Ci}
Cj .

Let G = (X,Y,E) be a chained complete bigraph with corresponding MCB-
component family C = {C1, . . . , Cn}. Then we have that:

I(G) =
n∑

i=1

|Xi| · |Yi| + (|Xi| mod 2) · (|Yi| mod 2)

−
(

n−1∑

i=1

g(si, Ci) + g(si, Ci+1)

)

+

(
n−1∑

i=1

|g(si, Ci) − g(si, Ci+1)|
)

,

where Xi, Yi, si, and the function g are defined below. First, we introduce
additional definitions that are required to understand the proof.

Definition 5. Let G = (X,Y,E) be a chained complete bigraph with corre-
sponding MCB-component family C = {C1, . . . , Cn}. We shall use the notation
G[Ci] = (Xi, Yi, Ei) to denote the graph induced on Ci ∈ C .

Definition 6. Let G be a chained complete bigraph with corresponding MCB-
component family C = {C1, . . . , Cn}. We label the overlapping vertices of C as
si ∈ Ci ∩ Ci+1, where 1 ≤ i ≤ n − 1. By the definition of chained complete
bigraph, the overlapping vertex si is unique. We define S = {si | 1 ≤ i ≤ n− 1}.

Definition 7. We define g(si, Cj), where si ∈ S and Cj ∈ C , to be the number
of neighbors of si in Cj. Equivalently, g(si, Cj) is the number of vertices in Cj

that do not belong to the same part as si. That is, g(si, Cj) = |N(si) ∩ Cj | ={
|Xj | if si ∈ Y

|Yj | if si ∈ X
.
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s1

s2y1 y2 y3 y5 y6

x1 x3 x4 x5

C1 C2 C3

G[C1] = (X1, Y1, E1) = ({x1, s1}, {y1, y2}, X1 × Y1)

G[C2] = (X2, Y2, E2) = ({s1, x3}, {y3, s2}, X2 × Y2)

G[C3] = (X3, Y3, E3) = ({x4, x5}, {s2, y5, y6}, X3 × Y3)

g(s1, C1) = |Y1| = 2

g(s1, C2) = |Y2| = 2

g(s2, C2) = |X2| = 2

g(s2, C3) = X3 = 2

Fig. 7. Illustration of the additional definitions of Sect. 4.

4.1 Proof of the Upper Bound

Lemma 4. Let G = (X,Y,E) be a chained complete bigraph with corresponding
MCB-component family C = {C1, . . . , Cn}. Let Ci ∈ C such that |Xi| = 1 or
|Yi| = 1. W.l.o.g. assume that |Xi| = 1, then neither overlapping vertices si−1

nor si can be in Xi. Formally, ∀Ci∈C (|Xi| = 1 =⇒ si−1 /∈ Xi∧si /∈ Xi) ∧(|Yi| =
1 =⇒ si−1 /∈ Yi ∧ si /∈ Yi).

Proof. * Trivial proof by contradiction. (If not, then Ci is not maximal.) �

Lemma 5. Given a chained complete bigraph G = (X,Y,E) with corresponding
MCB-component family C = {C1, . . . , Cn}, we have that

I(G) ≤
n∑

i=1

|Xi| · |Yi| + (|Xi| mod 2) · (|Yi| mod 2)

−
(

n−1∑

i=1

g(si, Ci) + g(si, Ci+1)

)

+

(
n−1∑

i=1

|g(si, Ci) − g(si, Ci+1)|
)

.

Proof. * The lemma is proven by constructing an ordering σX∪Y whose imbal-
ance is equivalent to the above expression. The ordering σX∪Y is constructed
by creating a subordering for each Ci ∈ C separately and concatenating those
suborderings. The suborderings are created in a similar fashion as the orderings
in the proof of Lemma 1. �

4.2 Proof of the Lower Bound

Remark 4. The imbalance of v ∈ (X ∪ Y ) \ S is only influenced by the vertices
in Ci. That is, ∀Ci∈C ∀v∈Ci\S I(v, σX∪Y , G) = I(v, σCi

X∪Y , G[Ci]).

Remark 5. The imbalance of si is only influenced by the vertices in Ci ∪ Ci+1.
That is, ∀si∈S I(si, σX∪Y , G) = I(si, σ

Ci∪Ci+1
X∪Y , G[Ci ∪ Ci+1]).
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Lemma 6. Let G = (X,Y,E) be a chained complete bigraph with corresponding
MCB-component family C = {C1, . . . , Cn}. For any arbitrary ordering σX∪Y it
holds that

I(sn−1, σ
Cn−1∪Cn

X∪Y , G[Cn−1 ∪ Cn]) − I(sn−1, σ
Cn−1
X∪Y , G[Cn−1])

− I(sn−1, σ
Cn

X∪Y , G[Cn])
≥ |g(sn−1, Cn−1) − g(sn−1, Cn)| − g(sn−1, Cn−1) − g(sn−1, Cn).

Proof. The expression |g(sn−1, Cn−1) − g(sn−1, Cn)| − g(sn−1, Cn−1) −
g(sn−1, Cn) takes two possible values depending on the sign of g(sn−1, Cn−1) −
g(sn−1, Cn). Either the above expression is equivalent to −2 · g(sn−1, Cn) or
−2 · g(sn−1, Cn−1). To relate the expressions in the inequality, we shall denote
the number of neighbors of sn−1 to its left and to its right in Cn and Cn−1 in
ordering σX∪Y as:

l1 = |{v ∈ Cn−1 ∩ N(sn−1) | v <σX∪Y
sn−1}|;

l2 = |{v ∈ Cn ∩ N(sn−1) | v <σX∪Y
sn−1}|;

r1 = |{v ∈ Cn−1 ∩ N(sn−1) | v >σX∪Y
sn−1}|;

r2 = |{v ∈ Cn ∩ N(sn−1) | v >σX∪Y
sn−1}|.

Using the above definitions, we rewrite the expression on the left-hand side of
the inequality as follows:

I(sn−1, σ
Cn−1∪Cn

X∪Y , G[Cn−1 ∪ Cn]) − I(sn−1, σ
Cn−1
X∪Y , G[Cn−1])

− I(sn−1, σ
Cn

X∪Y , G[Cn])
= |l1 − r1 + l2 − r2| − |l1 − r1| − |l2 − r2|.

According to the signs of l1 − r1 and l2 − r2, consider the following cases:
(++) l1 − r1 ≥ 0 and l2 − r2 ≥ 0; (+−) l1 − r1 ≥ 0 and l2 − r2 < 0;
(−+) l1 − r1 < 0 and l2 − r2 ≥ 0; (−−) l1 − r1 < 0 and l2 − r2 < 0

For the cases (++) and (−−), we have that |l1−r1+l2−r2|−|l1−r1|−|l2−r2| = 0.
Thus, in the cases (++) and (−−), it holds that

|l1 − r1 + l2 − r2| − |l1 − r1| − |l2 − r2| = 0
≥ |g(sn−1, Cn−1) − g(sn−1, Cn)| − g(sn−1, Cn−1) − g(sn−1, Cn).

This follows from the fact that −2 · g(sn−1, Cn) ≤ 0 and −2 · g(sn−1, Cn−1) ≤ 0.
For the cases (+−) and (−+), we have that

|l1−r1+l2−r2|−|l1−r1|−|l2−r2| =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2(l2 − r2) if (+−) ∧ l1 − r1 + l2 − r2 ≥ 0
2(r2 − l2) if (−+) ∧ l1 − r1 + l2 − r2 < 0
2(r1 − l1) if (+−) ∧ l1 − r1 + l2 − r2 < 0
2(l1 − r1) if (−+) ∧ l1 − r1 + l2 − r2 ≥ 0

.

Observe that, by the definitions of l1, r1, l2, r2, and function g, we have
l1 + r1 = g(sn−1, Cn−1) and l2 + r2 = g(sn−1, Cn). Using the above remark and
case distinction, we derive that in the cases (+−) and (−+) it holds that



Characterization of the Imbalance Problem on Complete Bipartite Graphs 65

|l1 − r1 + l2 − r2| − |l1 − r1| − |l2 − r2|
≥ |g(sn−1, Cn−1) − g(sn−1, Cn)| − g(sn−1, Cn−1) − g(sn−1, Cn).

�

Lemma 7. Given a chained complete bigraph G = (X,Y,E) with corresponding
MCB-component family C = {C1, . . . , Cn}, we have that

I(G) ≥
n∑

i=1

|Xi| · |Yi| + (|Xi| mod 2) · (|Yi| mod 2)

−
(

n−1∑

i=1

g(si, Ci) + g(si, Ci+1)

)

+

(
n−1∑

i=1

|g(si, Ci) − g(si, Ci+1)|
)

.

Proof. ∗1We shall prove that the imbalance of any arbitrary ordering σX∪Y on
the vertex set X∪Y is bounded from below by the above expression by induction
on |C | = n.

• Base Case (n = 0 ∨ n = 1):
By the definition of MCB-components C , the graph G is an empty graph or
a complete bigraph. Thus, by Theorem1, the lemma holds for the base case.

• Induction step (n > 1):
Let G = (X,Y,E) be a chained complete bigraph with corresponding
MCB-component family C = {C1, . . . , Ck+1}. Let us define C \ Ck+1 =⋃

Ci∈C \{Ck+1}
Ci. We write the imbalance of σX∪Y as follows:

I(σX∪Y ) = I(σC \Ck+1
X∪Y , G[C \ Ck+1]) + I(σCk+1

X∪Y , G[Ck+1])

− I(sk, σCk

X∪Y , G[Ck]) − I(sk, σ
Ck+1
X∪Y , G[Ck+1])

+ I(sk, σ
Ck∪Ck+1
X∪Y , G[Ck ∪ Ck+1]) (1)

≥
(

k∑

i=1

|Xi| · |Yi| + (|Xi| mod 2) · (|Yi| mod 2)

)

−
(

k−1∑

i=1

g(si, Ci) + g(si, Ci+1)

)

+

(
k−1∑

i=1

|g(si, Ci) − g(si, Ci+1)|
)

+ |Xk+1| · |Yk+1| + (|Xk+1| mod 2) · (|Yk+1| mod 2)

− I(sk, σCk

X∪Y , G[Ck]) − I(sk, σ
Ck+1
X∪Y , G[Ck+1])

+ I(sk, σ
Ck∪Ck+1
X∪Y , G[Ck ∪ Ck+1]) (2)

≥
(

k+1∑

i=1

|Xi| · |Yi| + (|Xi| mod 2) · (|Yi| mod 2)

)

−
(

k−1∑

i=1

g(si, Ci) + g(si, Ci+1)

)

+

(
k−1∑

i=1

|g(si, Ci) − g(si, Ci+1)|
)

1 The proofs marked with an * are provided in detail in the full version of the paper.
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− g(sk, Ck+1) − g(sk, Ck) + |g(sk, Ck) − g(sk, Ck+1)| (3)

=

(
k+1∑

i=1

|Xi| · |Yi| + (|Xi| mod 2) · (|Yi| mod 2)

)

−
(

k∑

i=1

g(si, Ci) + g(si, Ci+1)

)

+

(
k∑

i=1

|g(si, Ci) − g(si, Ci+1)|
)

,

where Eq. (1) follows from Remark 4 and Remark 5, Eq. (2) follows from the
induction hypothesis, and Eq. (3) follows from Lemma 6. �

Theorem 2. Let G = (X,Y,E) be a chained complete bigraph with correspond-
ing MCB-component family C = {C1, . . . , Cn}. We have that

I(G) =
n∑

i=1

|Xi| · |Yi| + (|Xi| mod 2) · (|Yi| mod 2)

−
(

n−1∑

i=1

g(si, Ci) + g(si, Ci+1)

)

+

(
n−1∑

i=1

|g(si, Ci) − g(si, Ci+1)|
)

.

Proof. Follows from Lemma 5 and Lemma 7. �
Corollary 3. Let G = (X,Y,E) be a chained complete bigraph with correspond-
ing MCB-component family C = {C1, . . . , Cn} and let |X| + |Y | = m. Given
{|X1|, . . . , |Xn|}, {|Y1|, . . . , |Yn|}, and {s1 ∈ X, . . . , sn−1 ∈ X}, the imbalance of
G can be computed in O(n · log(m) · log(log(m))) time. By applying a similar
reasoning as in Theorem2, we verify the correctness of this corollary.
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Abstract. Partitioning a network into k pieces is a fundamental prob-
lem in network science. A simple measure of partitioning a network is
provided by the Max k-Uncut problem. Given an n-vertex undirected
graph G with nonnegative weights defined on edges, and a positive inte-
ger k, the Max k-Uncut problem asks to find a k-partition of the vertices
of G to maximize the total weight of edges that are not in the cut. This
problem is the complement of the classic Min k-Cut problem, and has
close relation to many combinatorial optimization problems, including
the famous Densest k-Subgraph problem. In this paper, we propose a
greedy approximation algorithm for the Max k-Uncut problem with per-
formance ratio 1 − 2(k−1)

n
. The algorithm is very simple, which consists

of only k−1 min cut computations. The algorithm has fast running time
O(kn2) and is hence implementable. The experimental results show that
the algorithm has excellent practical performance.

Keywords: Max k-Uncut · Network partitioning · Graph algorithm ·
Approximation algorithm · Combinatorial optimization

1 Introduction

In network science, partitioning a network into communities is a very fundamen-
tal problem, which receives much attention from the researchers coming from
different areas such as network science, computer science, operations research,
and artificial intelligence, etc. Intuitively, a community in a network is a set of
nodes which have close internal connections. The communities of a network can
be overlapping or non-overlapping. In this paper we focus on the non-overlapping
community structure of a network. This is equivalent to, in terms of graph theory,
the partitioning of vertices of a graph. The non-overlapping community struc-
ture is sometimes also called a flat clustering (of nodes in a network). We study
the Max k-Uncut problem, which aims to partition a graph into k pieces. The
problem is given in Definition 1.

Definition 1. The Max k-Uncut Problem, in terms of partition.
Instance: An n-vertex undirected graph G = (V,E), and an integer k > 0.
Goal: Find a partition P = {V1, V2, . . . , Vk} of V such that the number of

edges not cut is maximized.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al. (Eds.): TAMC 2022, LNCS 13571, pp. 67–78, 2022.
https://doi.org/10.1007/978-3-031-20350-3_7
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In Definition 1, the partition P = {V1, V2, . . . , Vk} is called a k-partition,
which partitions the vertices of G into k non-empty pieces. Given a partition P
and an edge e = (u, v), if the two endpoints u and v of e are in different pieces
of P, then we say that e is cut by P. Otherwise (that is, u and v are in the same
piece), e is not cut by P.

Whereas there are many heuristics and algorithms that are proposed to find
the community structure of a network, the Max k-Uncut problem still provides a
very simple measure for the community structure, that is, the number of uncut
edges resulted from the structure. More introduction about the methods of find-
ing community structure can be found in Sect. 1.1.

Now we introduce the second origin of the Max k-Uncut problem. It is well-
known that homophyly is a fundamental law governing the evolution of networks.
The homophyly law says that in a network nodes are likely to connect to nodes
with the same or similar attributes. This is just like a proverb which says that
“birds of a feather flock together”. Viewing attributes as colors, we can define
the happiness of edges as follows [33,36]. Given an edge e = (u, v), if u and
v has the same color, then we say that edge e is happy. Otherwise, edge e is
unhappy. In terms of homophyly, the Max k-Uncut problem can be defined as in
Definition 2 [35].

Definition 2. The Max k-Uncut Problem, in terms of homophyly.
Instance: An n-vertex undirected graph G = (V,E), and a color set C =

{1, 2, . . . , k}.
Goal: Color the vertices in G in k colors such that the number of happy edges

is maximized.

In practice there are many networks whose nodes may have attributes with
unknown values. For example, for a paper the area (or field) to which it belongs
is a natural attribute. However, in a paper citation network it is very common
that a paper is not marked with its area. The Max k-Uncut problem is useful to
recover the attribute values of nodes in a network when the attributes values are
unknown.

Given a colored graph G, if its vertices are colored in exactly k colors, then
we say that the coloring of V (G) is a k-coloring. It is easy to see that a k-
partition of V (G) and a k-coloring of V (G) are in fact equivalent. This means
that Definition 1 and Definition 2 are two equivalent definitions of Max k-Uncut.

The weighted Max k-Uncut problem can be easily defined as follows. Each
edge e has a nonnegative weight w(e), and the goal of the problem is to maximize
the total weight of happy edges.

The Max k-Uncut problem arose in the study of network science recently [35].
There are many methods so far to find communities in a network. Some of them
are heuristics, for example, the method based on edge betweenness [9,11,23], and
the label propagation method [27], etc. Some of them are to optimize an objective
function, for example, the modularity-based method [6,24,25], the hierarchical
clustering method [8], the structural entropy method [20,21], and the k-means
clustering method [2,16,22], etc.
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Although so many methods for finding communities have been proposed,
the problem of finding communities itself has not been well solved yet. This is
partially because there is no a rigorous mathematical definition for community
so far. Different application scenarios have their own communities. Perhaps it is
hard to give a general definition for community to fit all the application scenarios.

The Max k-Uncut problem still provide a simple measure for finding com-
munities in a network. The new measure of Max k-Uncut is just the number of
happy edges. It is a simple measure, especially in contrast with the complicated
measures such as, e.g., modularity [25] and structural entropy [20]. Methods
for finding communities that are similar to Max k-Uncut include the k-Means
problem [22], the k-Center problem [14], and the k-Median problem [15], etc.

Given a graph G = (V,E), we always use n to denote its vertex number, and
m its edge number. Given an optimization problem, we use OPT to denote the
optimum value of (the instance of) the problem.

1.1 Related Work

The Max k-Uncut problem was proposed by Zhang et al. [35], where a random-
ized (1− k

n )2-approximation algorithm and a greedy (1− 2(k−1)
n )-approximation

algorithm were given for the problem. [35] proved that if the Densest k-Subgraph
problem can be approximated within α, the Max k-Uncut problem can be approx-
imated within Ω(12α). The current best approximation ratio for Densest k-

Subgraph is O(n1/4−ε) [3]. Moreover, [35] proved that Max k-Uncut and the Dens-
est k-subgraph problem are actually equivalently in terms of approximability (up
to a constant factor 2). Very recently, Zhang et al. [34] achieved an expected
approximation ratio 1

2 (1 + (n−k
n )2) for Max k-Uncut using the LP-rounding plus

greed strategy.
Choudhurya et al. [7] proposed the capacited Max k-Uncut problem. Wu et

al. [31] studied the balanced Max 3-Uncut problem, in which an input graph is
partitioned into 3 equal-sized parts so that the total weight of happy edges is
maximized.

The algorithmic study of homophyly of networks started only recently [33,36]
and has attracted much attention from researchers [4,5,18,19,26]. The algorith-
mic aspects of homophyly include two interesting coloring problems, i.e., the
Maximum Happy Edges (MHE) problem and the Maximum Happy Vertices (MHV)
problem. Given a partially colored graph (namely, only part of vertices are col-
ored), the MHE problem asks to color all the uncolored vertices so that the
number of happy edges is maximized. Similarly, the MHV problem wants to
maximize the number of happy vertices, where a vertex is happy if the vertex
and its neighbours are all colored in the same color. It is easy to see that the
Max k-Uncut problem is closely related to MHE.

It is interesting that Max k-Uncut has rich connection to many problems in
combinatorial optimization. Max k-Uncut is just the complement of the classic
Min k-Cut problem [13]. The Min k-Cut problem asks for a k-partition such that
the total weight of cut edges is minimized. The current best approximation ratio
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of Min k-Cut is 2 [29]. Another closely related problem is Max k-Cut [10], which
asks to find a k-partition such that the total weight of cut edges is maximized.
When k = 2, Max k-Cut is just the famous Max Cut problem [12].

In literature, the “uncut” problems have also been studied extensively.
Besides Max k-Uncut, three examples are Min Uncut [1], Multiway Uncut [17,36],
and the complement of Min Bisection [32].

1.2 Our Results

Our main result is a new approximation algorithm for the Max k-Uncut problem,
which is called Algorithm MG (see Algorithm 2.1) in the paper. Algorithm MG
is very simple. It consists of only k − 1 min cut computations. The algorithm
repeatedly separates one of the current subgraphs into two subgraphs by comput-
ing the minimum cut of that graph, until k subgraphs are obtained. Algorithm
MG is a greedy algorithm since it always cuts the subgraph with the lightest
minimum cut value among all the current subgraphs. The time complexity of
Algorithm MG is O(kn2), implying that it is a practical algorithm.

We prove that the approximation ratio of Algorithm MG is 1 − 2(k−1)
n . It is

interesting that Algorithm MG has the same approximation ratio as the greedy
algorithm given by [35] (called Algorithm G in this paper). The quality of ratio
1 − 2(k−1)

n depends on the part number k and the vertex number n. When k is
small, the ratio is good. When k gets larger, the ratio becomes worse. Note that
when k ≤ n

4 + 1, the ratio is always ≥ 1
2 . In many applications such as finding

the community structure of a large scale network, the part number k is usually
much smaller than the vertex number n. So, it is expected that Algorithm MG
will behave well in these applications.

Algorithm G produces a k-partition by picking the first k − 1 vertices with
the smallest degrees. The k-partition of Algorithm G then consists of k − 1
singleton sets and one set of the remaining n − (k − 1) vertices. Note that this
is a special structure, that we call big-endian. Obviously, a big-endian partition
represents an extreme case among all possible partitions. It is difficult to imagine
that a partition of a complex network from real world (e.g., social network,
paper citation network) is big-endian. In contrast, the k-partition produced by
Algorithm MG is more natural. It is obtained by k − 1 min cuts, and hence not
big-endian in general.

Besides Algorithm MG, we also devise two more algorithms for the Max k-
Uncut problem, that is, Algorithm MAS and Algorithm BP. Algorithm MAS uses
the maximum adjacency search strategy to find a k-partition of a graph. The
maximum adjacency search is a common strategy to solve a class of optimization
problems. For example, it was used to solve the Minimum Cut problem [30] and
the Densest k-Subgraph problem [28]. Algorithm BP is like Algorithm MG, except
that in each iteration Algorithm BP always finds the subgraph which comes first
to cut, instead of finding the subgraph with the lightest minimum cut value (as
in Algorithm MG).

We test Algorithm MG, as well as other four algorithms (that is, Algorithms
MAS, BP, R and G) on randomly generated graphs. We use three graph gener-
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ating models to generate the test instances. These models are the G[n, p] model,
the configuration model, and the preferential attachment model. The experi-
mental results show that Algorithm MG demonstrates extremely well practical
performance, and is strictly better than the other four algorithms tested in the
paper.

2 The Greedy Cut Algorithm

2.1 The Algorithm

When k = 2, the Max 2-Uncut problem can be solved optimally by finding the
minimum cut of the graph. This suggests a very natural greedy algorithm for Max
2-Uncut when k > 2, given as Algorithm 2.1. Initially, the graph is partitioned
into two parts by computing a minimum cut. We want the total weight of happy
edges is as large as possible. So, in the next step, we just choose the smaller cut
from the two minimum cuts for the two parts to get a 3-partition for the original
graph G. The above process is repeated for k − 1 times to get a k-partition for
graph G.

Algorithm 2.1. Greedy Cut (Algorithm MG)
Input: A graph G = (V,E), and an integer k > 1.
Output: A k-partition of G.
1 P ← {V }.
2 for i ← 1 to k − 1 do
3 Compute a minimum cut of the induced graph G[S] for each part S ∈ P with

|S| ≥ 2.
4 Let Ŝ ∈ P be the part with the smallest minimum cut value in Step 3, and

(S′, S′′) be the minimum cut on graph G[Ŝ].
5 Remove Ŝ from P, then add S′ and S′′ to P.
6 end for
7 return P.

For the sake of simplicity, we call Algorithm 2.1 as Algorithm MG, where MG
means multiple greed.

As stated before Algorithm MG, we need only to deal with Max k-Uncut for
k ≥ 3. So, we have the following Assumption 1.

Assumption 1. For the Max k-Uncut problem, we may assume that k ≥ 3.
Furthermore, we may assume that n ≥ k + 1 since the case n = k is trivial for
Max k-Uncut.

2.2 Analysis

In this section we will prove that Algorithm MG is a (1− 2(k−1)
n )-approximation

algorithm for the Max k-Uncut problem.
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Let v be a vertex. We use wd(v) to denote the weighted degree of vertex v,
that is,

wd(v) = w(δ(v)),

where δ(v) is the set of all edges that attach to vertex v, and w(δ(v)) is the total
weight of these edges. One can easily see that if every edge has unit weight in the
graph, then wd(v) is just the common degree d(v). Without loss of generality,
we assume that the vertices of graph G are numbered as v1, v2, . . . , vn so that

wd(v1) ≤ wd(v2) ≤ · · · ≤ wd(vn). (1)

The for loop of Algorithm MG consists of k − 1 iterations. At the end of
the first iteration, the algorithm generates a 2-partition of graph G. When the
second iteration is finished, the algorithm generates a 3-partition. In general,
at the end of the (i − 1)-th iteration, the algorithm generates an i-partition of
graph G. Moreover, the generated parts in the execution process of Algorithm
MG can be organized in a tree, which is called a partition tree. Figure 1 shows an
imaginary partition tree at the end of the (i − 1)-th iteration of Algorithm MG.
Each node in the partition tree denotes a part S of the current partition. Let
the node corresponding to part S also denote the induced subgraph G[S]. So,
each node of the partition tree equivalently denotes a subgraph induced on that
part. The root of the tree denotes the original graph G. The i-partition found
at the end of the (i − 1)-th iteration just consists of the leaves of the partition
tree. Note that the partition tree is a regular binary tree, that is, each internal
node of the tree has just two children.

Fig. 1. An imaginary partition tree at the end of the (i − 1)-th iteration.

Let us consider the i-th iteration (1 ≤ i ≤ k − 1) of Algorithm MG. The
algorithm will compute a minimum cut for each part in the current partition P.
Consequently, i cuts are found in this iteration, as partition P contains i parts.
Let Ci = δ(S′, S′′) (see Step 4 of Algorithm MG) be the cut of the minimum value
among these i cuts, where δ(S′, S′′) denotes the set of all edges lying between
S′ and S′′ (that is, all edges with one endpoint in S′ and the other endpoint in
S′′). Our key observation is Lemma 1.
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Lemma 1. Let Ci and vi be defined as above. For each 1 ≤ i ≤ k − 1, we have

w(Ci) ≤ wd(vi).

Before giving the proof of Lemma1, let us see two specific cases to have a
warm-up preparation of the proof.

Lemma 1 obviously holds for the first iteration. When i = 1, C1 is the mini-
mum cut on graph G. As (v1, V \{v1}) is obviously a cut of G, its value, namely,
the weighted degree wd(v1) = w(δ(v1, V \ {v1}), must be an upper bound of
w(C1).

Then consider i = 2. At the beginning of the second iteration, partition P
contains two parts, S1 and S2 to say. Let G1 = G[S1] and G2 = G[S2] be the
corresponding induced subgraphs. For a graph G, let gc∗(G) denote the value of
the minimum (global) cut of G. If G contains only one vertex, then there is no
any cut for G and we define gc∗(G) = ∞ in this case.

First we consider the vertex v2. Suppose that v2 is in Gj2 for some j2 ∈
{1, 2}. We will consider two cases, that is, the case |V (Gj2)| ≥ 2 and the case
|V (Gj2)| = 1.

If |V (Gj2)| ≥ 2, we have

w(C2) ≤ gc∗(Gj2) ≤ wdGj2
(v2) ≤ wd(v2),

where wdGj2
(v2) denotes the weighted degree of v2 on graph Gj2 . The first

inequality stands since C2 is the cut with the minimum value among the two
minimum cuts for G1 and G2. The second inequality stands since (v2, V (Gj2) \
{v2}) is a global cut of Gj2 while gc∗(Gj2) is the value of the minimum (global)
cut of Gj2 , which is no more than the weighted degree of any vertex in G2. The
third inequality stands since Gj2 is a subgraph of G, and wd(v2) is just wdG(v2).

If |V (Gj2)| = 1 (i.e., Gj2 contains only one vertex, which is just v2), then
the minimum cut of G2 is not well-defined. Recall from Step 3 of Algorithm
MG that Algorithm G would not “cut” such a graph. In this case we have to
turn to consider the vertex v1. Since v2 is the only vertex in Gj2 , v1 must be
in Gj1 where {j1} = {1, 2} \ {j2}. We confirm that |V (Gj1)| must be ≥ 2, since
otherwise graph G contains only two vertices, which is absurd. So, we have

w(C2) ≤ gc∗(Gj1) ≤ wdGj1
(v1) ≤ wd(v1) ≤ wd(v2).

So far, we have proved that Lemma 1 holds for the second iteration.

Proof (Proof of Lemma 1). Let G1, G2, . . . , Gi be the subgraphs formed by the
partition P at the start of the i-th iteration of Algorithm MG.

First we consider vertex vi. Suppose vi is in Gji
for some 1 ≤ ji ≤ i. We

distinguish two cases: |V (Gji
)| ≥ 2 and |V (Gji

)| = 1.

Case 1: |V (Gji
)| ≥ 2. In this case, gc∗(Gji

) is well-defined and we have

w(Ci) ≤ gc∗(Gji
) ≤ wdGji

(vi) ≤ wd(vi),
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where the first inequality holds since Ci is the cut with the minimum value
among all the i minimum cuts, the second inequality holds since gc∗(Gji

) is the
value of the minimum (global) cut and (vi, V (Gji

) \ {vi}) is a global cut, and
the third inequality holds since Gji

is a subgraph of G.

Case 2: |V (Gji
)| = 1. In this case, gc∗(Gji

) is not defined. We have to consider
the vertex vi−1. Our plan is try to prove w(Ci) ≤ wd(vi−1). Since in turn we
have wd(vi−1) ≤ wd(vi), this will prove the lemma.

So, suppose that vi−1 is contained in some subgraph Gji−1 . We confirm that
Gji−1 must not be Gji

, since Gji
contains only one vertex and vi is in Gji

.
Similarly, the discussion on Gji−1 also falls into two cases depending on whether
Gji−1 is a graph with a single vertex. In the case where Gji−1 consists of more
than one vertices, we will have

w(Ci) ≤ gc∗(Gji−1) ≤ wdGji−1
(vi−1) ≤ wd(vi−1) ≤ wd(vi).

Otherwise, vi−1 is the only vertex in Gji−1 and we take vi−2 into considera-
tion. Suppose that vi−2 is in subgraph Gji−2 for some 1 ≤ ji−2 ≤ i. We confirm
that Gji−2 must be neither Gji−1 nor Gji

since Gji−1 contains the only vertex
vi−1 and Gji

contains the only vertex vi. The proof will recur and we claim that
the process must end at some subgraph with more than one vertices, say Gj�

.
By our notational convention, the vertex in graph Gj�

in consideration is v�. So,
at this point we will have

w(Ci) ≤ gc∗(G�) ≤ wdG�
(v�) ≤ wd(v�) ≤ · · · ≤ wd(vi−1) ≤ wd(vi),

following the lemma.
The only remaining thing is to prove the claim. The proof is by contradiction.

So, suppose that when considering the last possible vertex v1, we have that the
subgraph containing v1, which is Gj1 by our convention, still contains only one
vertex (i.e., v1 itself). So, in this case, we have enumerated i subgraphs. They are
Gji

containing vi only, Gji−1 containing vi−1 only, and so on, and Gj1 containing
v1 only. But if so, then all the i subgraphs contain i vertices in total, contradicting
the fact that the total vertices in all these i subgraphs should be n > i. Note
that we have i ≤ k − 1 ≤ n − 2. The proof is finished. �

Lemma 2. Algorithm MG can be implemented in O(k(n2 + log k)) time.

Proof. The implementation of Algorithm MG is lightly different to its descrip-
tion. We use a data structure, called minimum heap, to organize the partition P.
Each part S of P is a node of the heap, with the minimum cut value gc∗(G[S])
being the node’s key in the heap. This means that we only need to compute the
minimum cut of each part in P only once.

The top node in the heap is just the part in P with the minimum gc∗(·)
value. So, in each iteration of the algorithm, we remove the top node S from the
heap. Let (S′, S′′) be a minimum cut of G[S]. We then insert S′ and S′′ back
into the heap. Before doing this, we should have already computed gc∗(G[S′])
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and gc∗(G[S′′]). If a part of P is a singleton part (i.e., contains only one vertex),
its gc∗(·) is defined to be infinity.

Computing a minimum cut of a graph with n vertices takes O(n2) time using
Stoer and Wagner’s algorithm [30]. Each fundamental operation to the minimum
heap with k nodes takes O(log k) time. Algorithm MG has k − 1 iterations.
Therefore, the algorithm can be implemented in O(k(n2+log k)) time, or roughly
speaking, O(kn2) time. �

Theorem 1. Algorithm MG is a (1 − 2(k−1)
n )-approximation algorithm for the

Max k-Uncut problem.

Proof. Let Ci and vi be defined as in Sect. 2.2. By Lemma 1, the total weight of
all Ci’s (1 ≤ i ≤ k − 1) satisfies

k−1∑

i=1

w(Ci) ≤
k−1∑

i=1

wd(vi) ≤ k − 1
n

∑

v

wd(v) =
2(k − 1)

n

∑

e

w(e),

where the second inequality holds since v1, v2, . . . , vk−1 are the first k−1 vertices
with the lightest weighted degree (see (1)). Let SOL be the total weight of happy
edges found by Algorithm MG, and OPT be the optimum value of the Max k-
Uncut problem. So, we have

SOL =
∑

e

w(e) −
k−1∑

i=1

w(Ci) ≥
∑

e

w(e) − 2(k − 1)
n

∑

e

w(e)

=
(

1 − 2(k − 1)
n

) ∑

e∈E

w(e) ≥
(

1 − 2(k − 1)
n

)
OPT.

Finally, Lemma 2 says that Algorithm MG runs in polynomial time. The
theorem follows. �

3 Experiments

We test Algorithm MG on randomly generated instances. In this section we
show the experimental results. For the sake of comparisons, we propose two
more algorithms for Max k-Uncut besides Algorithm MG, namely, the maximum
adjacency search algorithm and the binary partition algorithm. We also intro-
duce two existing algorithms for Max k-Uncut. They are Algorithm R [35] and
Algorithm G [35]. These algorithm are used to be compared with Algorithm MG
in the experiments.

We test all the five algorithms on 12 data sets, with each data set contain-
ing 30,000 instances. The data sets are generated using three graph models,
namely, the G[n, p] model, the configuration model, and the preferential attach-
ment model.

The experimental results on 12 data sets show that Algorithm MG is over-
whelmingly better than the other four algorithms tested in the paper. This phe-
nomenon may have some theoretical reasons. First, note that Algorithm MAS,
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Algorithm R and Algorithm G all produce big-endian partitions as their solutions.
A big-endian partition is obviously a partition with a very special structure. It
may be an approximate solution with provable performance guarantee. However,
it is hard to imagine that every good solution to Max k-Uncut is big-endian. In
fact, one can easily give an instance of Max k-Uncut whose optimal solution is
not big-endian. In contrast, Algorithm MG outputs a more natural partition,
which is usually not big-endian.

Second, in the experiments, Algorithm MG and Algorithm BP behave better
than the other three algorithms. This shows that computing the minimum cuts
may be one of the right ways to attack the Max k-Uncut problem. Moreover,
Algorithm MG is still better than Algorithm BP according to the experimental
results. Algorithm MG is somewhat smart, since it always cuts on the weakest
part of the current subgraphs. In contrast, Algorithm BP is somewhat awkward.
It always cuts the subgraph in the forefront.

It is also interesting to note that Algorithm MG and Algorithm G have the
same approximation ratio 1 − 2(k−1)

n . However, their practical performances in
the experiments are contrasting distinctly. This is mainly because approximation
ratio analysis is a worst-case analysis. Obviously, it is hard to reflect the general
performance of an algorithm only by worst-case analysis. We may need more the-
ory to comprehensively evaluate an algorithm. Experiment is a complementary
means to reveal more details of an algorithm.

Due to space limitation, the four more tested algorithms (i.e., Algorithms
MAS, BP, R and G), the data sets, and the detailed experimental results will be
given in the full version of the paper.

4 Conclusions

The Max k-Uncut problem arises from the study of network science. This problem
is the complement of the classic Min k-Cut problem, and is strongly related to
the famous Densest k-Subgraph problem. We propose a combinatorial algorithm,
namely, Algorithm MG, for the Max k-Uncut problem with approximation ratio
1 − 2(k−1)

n . Algorithm MG is very simple in the sense that it consists of only
k − 1 min cut computations. The time complexity of Algorithm MG is O(kn2),
implying that it is a practical algorithm. The experimental results show that
Algorithm MG has high quality performance in the tested graph models, includ-
ing the G[n, p] model, the configuration model, and the preferential attachment
model.
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Abstract. The theory of numberings studies uniform computations for
families of mathematical objects. A large body of literature is devoted
to investigations of Rogers semilattices for computable families S, i.e.
uniformly enumerable families of computably enumerable subsets of the
set of natural numbers ω. Working within the framework of Formal Con-
cept Analysis, we introduce two approaches to classification of at most
countable families S ⊂ P (ω). Similarly to the classical theory of number-
ings, each of the approaches assigns to a family S its own concept lattice.
Our first approach captures the cardinality of a family S. We prove the
following: if S contains at least two elements, then the corresponding
concept lattice is a modular lattice of height 3 such that the number of
its atoms equals the cardinality of S. Our second approach provides a
much richer environment: we show that any countable complete lattice
can be obtained as the concept lattice induced by an appropriate fam-
ily S.

In addition, we employ the index sets technique, and consider the fol-
lowing isomorphism problem: given two computable families S and T ,
how hard is it to determine whether the corresponding concept lattices
are isomorphic? The isomorphism problem for the first approach is a
Π0

3 -complete set, and the isomorphism problem for the second approach
is Σ1

1 -hard.
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1 Introduction

The theory of numberings investigates uniform computational procedures for
families of mathematical objects. Let S be an at most countable family. A num-
bering ν of the family S is a surjective map from the set of natural numbers ω
onto S.

Numberings have emerged as an important methodological tool with the rise
of the modern formal notion of an algorithmic computation. Gödel [13] employed
an effective numbering of first-order formulae in the proof of his seminal incom-
pleteness theorems. Kleene [17] constructed the celebrated numbering of the
family of all partial recursive functions—this is a list {ϕe(x)}e∈ω enumerating
all unary partial recursive functions. The key property of the numbering is that
the binary function ψ(e, x) := ϕe(x) is also partial recursive. In the 1950s,s, the
foundations of the modern theory of numberings were developed by Kolmogorov
and Uspenskii [18,22] and, independently, by Rogers [20].

The reader is referred to the monograph [21] for the background on com-
putability theory. Since the 1960s,s, numberings for families of computably enu-
merable (c.e.) sets have been intensively studied by computability theorists.
Let S be a family of c.e. sets. A numbering ν of S is computable if the set
{(k, x) : k ∈ ω, x ∈ ν(k)} is computably enumerable. Informally, a computable
numbering provides a uniform algorithmic enumeration for the family S. A fam-
ily S is computable if it admits a computable numbering.

A measure of relative complexity for numberings is provided by the notion of
reducibility. A numbering ν is reducible to a numbering μ, denoted by ν ≤ μ, if
there is a total computable function f(x) such that ν(k) = μ(f(k)) for all k ∈ ω.
Informally, a reduction ν ≤ μ is realized by an algorithmic procedure, which,
given a ν-index of an object a ∈ S, outputs a μ-index of a.

Let S be a computable family of c.e. sets. In a standard recursion-theoretic
way, the reducibility ≤ induces an upper semilattice R(S)—this semilattice con-
tains the ≤-degrees of all computable numberings of S. The structure R(S) is
called the Rogers semilattice of the family S.

Rogers semilattices provide an important classification tool, which allows one
to compare algorithmic properties of different computable families. We should
note that in general, studying isomorphism types of Rogers semilattices is noto-
riously hard. We also note that there is a fruitful line of research, which studies
Rogers semilattices for generalized computable numberings—in particular, for
numberings in various recursion-theoretic hierarchies. We refer the reader, e.g.,
to [2,6–9,15] for the research on Rogers semilattices.

In this paper, we introduce two approaches to classification of families of sets
S and their numberings. These approaches are based on Formal Concept Anal-
ysis [24]. Similarly to the notion of Rogers semilattice, for an at most countable
family S, we define the lattices FCi(S), where i ∈ {1, 2}.

The paper is arranged as follows. Section 2 provides the necessary preliminar-
ies. In Sect. 3, we discuss the first approach, which works with concept lattices
FC1(S) (see Definition 3.1). For a family S, concepts Δ from FC1(S) have the
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following property: the extent of Δ is a subset of ω, and the intent of Δ is a
subfamily of S.

In Theorem 3.1, we obtain a complete description of all possible isomorphism
types of FC1(S). If S has only one element, then FC1(S) is a one-element lattice;
otherwise, FC1(S) is a modular lattice of height 3 with precisely κ atoms, where
κ is the cardinality of S. Working within the framework of index sets [5,14], Sub-
sect. 3.2 establishes algorithmic complexity of the following isomorphism prob-
lem: for two computable families S and T , when the corresponding lattices
FC1(S) and FC1(T ) are isomorphic? Theorem3.3 proves that the index set
associated with this problem is many-one complete in the class Π0

3 of the arith-
metical hierarchy.

Section 4 discusses our second approach, which works with concept lattices
FC2(S) (Definition 4.1). We show that every countable complete lattice can be
realized as FC2(S) for an appropriately chosen family S (Theorem 4.1). Further-
more, the real unit interval [0; 1] and the Boolean lattice P(ω) of all subsets of ω
can be realized as FC2(S) (Subsect. 4.1). Theorem 4.2 proves that any set from
the class Σ1

1 of the analytical hierarchy is many-one reducible to the index set,
which encodes the isomorphism problem for lattices FC2(S). Section 5 contains
further discussion.

2 Preliminaries

Following the usual conventions of computability theory, by ω we denote the set
of natural numbers. The set of all subsets of ω is denoted by P (ω). For a set X,
by card(X) we denote the cardinality of X. If R ⊆ A × B is a binary relation,
then we use notations:

πA(R) = {a ∈ A : ∃b[(a, b) ∈ R]}, πB(R) = {b ∈ B : ∃a[(a, b) ∈ R]}.

For a pair of natural numbers (k, �), by 〈k, �〉 we denote its standard Cantor
index, i.e.

〈k, �〉 =
(k + �)(k + � + 1)

2
+ k.

We assume that the reader is familiar with the basic notions of computability
theory and computable structure theory. We refer to the monographs [1,21] for
the background.

The preliminaries on Formal Concept Analysis follow the monograph [12].
Recall that a formal context K = (G,M, I) consists of the set of objects G,

the set of attributes M , and the incidence relation I ⊆ G × M . If K is a formal
context and A ⊆ G, then

αK(A) := {m ∈ M : (∀g ∈ A)[(g,m) ∈ I]}.

For B ⊆ M , set

βK(B) := {g ∈ G : (∀m ∈ B)[(g,m) ∈ I]}.
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If the triple K is clear from the discussion, then we omit the subscript K—e.g.,
we write α(A) in place of αK(A).

A formal concept of the context K is a pair (A,B) such that A ⊆ G, B ⊆ M ,
B = αK(A), and A = βK(B). For a formal concept Δ = (A,B), A is called the
extent of Δ, and B is the intent of Δ.

The ordering ≤ of the concepts of K is defined as follows:

(A0, B0) ≤ (A1, B1) ⇔ A0 ⊆ A1 ⇔ B0 ⊇ B1.

The Basic Theorem on Concept Lattices (see [12]) establishes the following:

1. The ordering ≤ on the set of all concepts of K induces a complete lattice.
This lattice is called the concept lattice of K, and we denote it by L(K).

2. Let L be a complete lattice. Consider the formal context KL = (L,L,≤L).
Then the lattice L(KL) is isomorphic to L. In addition, every concept of KL
is of the form

(â, ǎ) = ({b : b ≤L a}, {c : a ≤L c}) (1)

for some element a ∈ L.

3 The First Approach: Capturing the Cardinality
of a Family

Our first approach is based on the following definition:

Definition 3.1. Let S be an at most countable family, and let ν be a numbering
of the family S. Consider the relation

Iν := {(n, ν(n)) : n ∈ ω}.

By FC1(S) we denote the concept lattice of the formal context K = (ω,S, Iν).

It turns out that, informally speaking, the isomorphism type of the lattice
FC1(S) encodes only the cardinality of the family S. This is witnessed by the
following result.

For a natural number n ≥ 2, let Mn be a modular lattice of height 3 with
n atoms. By Mω we denote a modular lattice of height 3 with countably many
atoms.

Theorem 3.1. Let S be an at most countable, non-empty family. If S contains
only one element, then FC1(S) is a one-element lattice. Otherwise, FC1(S) is
isomorphic to Mcard(S).

Note that Theorem 3.1 justifies our choice of notations in Definition 3.1—we
will show that the isomorphism type of the structure FC1(S) does not depend
on the choice of a numbering ν. Informally speaking, the lattice FC1(S) is an
invariant, which provides some kind of characterization for all possible number-
ings of S.



Concept Lattices in the Theory of Numberings 83

The rest of the section is arranged as follows. Subsection 3.1 proves Theo-
rem 3.1. In Subsect. 3.2, we apply the technique of index sets (to be elaborated)
to answer the following question:

Problem A. How hard is it to determine whether for given computable families
S0 and S1, the lattices FC1(S0) and FC1(S1) are isomorphic?

3.1 Proof of Theorem 3.1

Let ν be an arbitrary numbering of the family S.
First, note the following. If the family S contains only one element m0, then

ν(k) = m0 for all k ∈ ω. This implies that the formal context (ω,S, Iν) has only
one concept (ω, {m0}). So, in what follows we assume that card(S) ≥ 2.

In order to prove the theorem, we obtain a more general algebraic fact:

Theorem 3.2. Let K = (G,N, I) be a formal context such that card(N) ≥ 2.
Let H be the least closed subset of G, i.e.

H = {x ∈ G : (∀y ∈ N)[(x, y) ∈ I]}.

(a) Suppose that the context K satisfies the following condition:
(�) There is a subset G1 of G such that:

* G1 ∩ H = ∅,
* I ⊆ (G1 ∪ H) × N , and
* the set I1 := I \ (H × N) is the graph of a surjective map from G1

onto N .
Then the concept lattice L(K) is isomorphic to Mcard(N).
(b) Furthermore, if the set N is finite and L(K) ∼= Mcard(N), then K satis-
fies (�).

Notice the following. One can apply item (a) of Theorem3.2 to our context
(ω,S, Iν): here we have H = ∅, G1 = ω, and I1 = Iν . Therefore, we immediately
obtain that the lattice FC1(S) is isomorphic to Mcard(S).

Remark 3.1. In general, one cannot omit the assumption of finiteness of N in
item (b) of Theorem 3.2. This is witnessed by the following context (G,N, I):
define G = N = ω and I = {(x, x + 1) : x ∈ ω}.

Proof (of Theorem 3.2). (a) Suppose that I1 is the graph of a surjective map ψ
from some G1 ⊆ G onto N .

Consider an arbitrary set A ⊆ G. The set A satisfies one of the following four
cases:

Case 1. Suppose that A ⊆ H. Then we have α(A) = N and β ◦ α(A) = H.
Case 2. Suppose that A �⊆ G1 ∪ H. Then by considering an element k ∈

A \ (G1 ∪ H), one can deduce that α(A) = ∅, and the β ◦ α-closure of A equals
G.
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Case 3. Suppose that A ⊆ G1 ∪ H, and there are k, � ∈ A ∩ G1 with ψ(k) �=
ψ(�). Then we have (k, ψ(k)) ∈ I and (k, b) �∈ I for all b �= ψ(k). Therefore,

α(A) = {y ∈ N : (∀x ∈ A)[(x, y) ∈ I]} = ∅ and β ◦ α(A) = G.

Case 4. Otherwise, A ⊆ G1 ∪ H, A ∩ G1 �= ∅, and for all k, � ∈ A ∩ G1, we
have ψ(k) = ψ(�). Fix an element k0 ∈ A ∩ G1. Then

α(A) = {ψ(k0)} and β ◦ α(A) = H ∪ {� ∈ G1 : ψ(�) = ψ(k0)}.

The described cases show that every βα-closed set A �∈ {H,G} has the form

Ab = H ∪ {� ∈ G1 : ψ(�) = b} for some b ∈ N.

Clearly, if b �= b′, then Ab and Ab′ are incomparable under ⊆. Hence, we deduce
that the concept lattice L(K) is isomorphic to Mcard(N).

(b) First, we obtain an auxiliary result on subdirect relations.

Definition 3.2. A binary relation R ⊆ A × B is subdirectly A-proper if
πA(R) = A, πB(R) = B, and there is no b ∈ B such that A × {b} ⊆ R.

In other words, a relation R is subdirectly A-proper if it satisfies the following
conditions:

(i) for every a ∈ A, there is b ∈ B such that (a, b) ∈ R;
(ii) for every b ∈ B, the set {a ∈ A : (a, b) ∈ R} is a non-empty proper subset

of A.

In particular, if card(B) ≥ 2, then for any surjective map f : A → B, its graph
Rf = {(a, f(a)) : a ∈ A} is a subdirectly A-proper relation.

Proposition 3.1. Let (A,B,R) be a formal context such that 2 ≤ card(B) < ω.
Suppose that the concept lattice L(A,B,R) is isomorphic to Mcard(B). Then there
is a subset A0 of A such that R ⊆ A0 × B and R is subdirectly A0-proper.

Proof. Let
A0 = {a ∈ A : (∃b ∈ B)((a, b) ∈ R)}.

It is easy to see that R ⊆ A0 × B and πA0(R) = A0. Moreover, one can check
that L(A0, B,R) ∼= L(A,B,R).

Since the lattice of the βα-closed subsets of A0 is isomorphic to Mn, where
n = card(B), there are βα-closed subsets Ai, 1 ≤ i ≤ n, of the set A0 such
that Ai �= Aj and Ai ∨ Aj = Ai ∨ Ak = A0 for all j �= i �= k. It means
α(Ai)∩α(Aj) = α(Ai)∩α(Ak). In addition, α(Ai) �= α(Aj) for all i �= j because
Ai and Aj are different closed subsets.

By definition, Ai ⊆ β({b}) for every b ∈ α(Ai) \ (α(Ai) ∩ α(Aj)). Assume
that Ai is a strict subset of β({b}) for each b ∈ α(Ai) \ (α(Ai) ∩ α(Aj)). This
means β({b}) = A0 for all b ∈ α(Ai) \ (α(Ai) ∩ α(Aj)). Thus,

β(α(Ai) \ (α(Ai) ∩ α(Aj))) =
⋂

{β({b}) : b ∈ α(Ai) \ (α(Ai) ∩ α(Aj))} = A0.
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Hence,

Ai = β(α(Ai)) = β((α(Ai) \ (α(Ai) ∩ α(Aj))) ∪ (α(Ai) ∩ α(Aj))) =

= β(α(Ai) \ (α(Ai) ∩ α(Aj))) ∩ β(α(Ai) ∩ α(Aj)) = A0.

This is impossible by the choice of Ai. Therefore, for every i ≤ n, there is an
element bi ∈ α(Ai) such that β({bi}) = Ai.

Note that β({bi}) �= β({bj}) for all i �= j. Since card(B) = n, we get B =
{bi : 1 ≤ i ≤ n}. Hence, πB(R) = B. Summarizing, we showed that πA0(R) = A0,
πB(R) = B, and β({bi}) = Ai � A0. That is, R is subdirectly A0-proper.
Proposition 3.1 is proved. �

Now consider the context K = (G,N, I) from item (b) of Theorem3.2. Let
n = card(N). We apply the proof of Proposition 3.1 to the context K, and obtain
that N = {bi : 1 ≤ i ≤ n} and Ai = β({bi}).

It is clear that Ai ∩ Aj = Ai ∩ Ak = H for all j �= i �= k. We put

G1 :=
( ⋃

{Ai : i ≤ n}
)

\ H.

It is not hard to check that I1 := I \ (H × N) is the graph of a map f : G1 → N
defined by f(a) = bi for any a ∈ Ai ∩ G1 and i ≤ n. Therefore, we deduce that
the context K satisfies the condition (�).

This concludes the proofs of Theorem 3.2 and Theorem 3.1. �

3.2 Classification via Index Sets

Index sets provide an important classification tool in the field of computable
structure theory. As an example of a recent application of index sets, we mention
the following: the paper [4] established that there is no reasonable syntactic
characterization of the algebraic structures with a polynomial-time presentation.
For a detailed discussion of index sets for computable structures, we refer to the
surveys [5,10].

Here we work with index sets in the setting of the theory of numberings.
Within this framework, the systematic investigations of index sets were initiated
by McLaughlin [19]. For the known results in this area, the reader is referred
to [23].

Recall that {ϕe}e∈ω is Kleene’s numbering of the family of all unary partial
computable functions. As usual, for e ∈ ω, We denotes the c.e. set dom(ϕe).

We consider the following effective listing. For i, k ∈ ω, let

θi(k) =

{
Wϕi(k), if ϕi(k) is defined,

∅, otherwise.

It is well-known that the list {θi}i∈ω enumerates all computable numberings of
all computable families. In addition, there exists a total computable function
h0(x, y) such that θi(k) = Wh0(i,k) for all i and k.
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For i ∈ ω, by Ti we denote the family of c.e. sets, which is indexed by the
numbering θi, i.e.:

Ti = {θi(k) : k ∈ ω}.

The described framework allows us to re-cast Problem A in a more formal
setting:

Problem A Revisited. Find the algorithmic complexity of the set

Iso1 := {(i, j) ∈ ω × ω : FC1(Ti) ∼= FC1(Tj)}.

The following theorem provides a solution to this problem—the set Iso1 finds
its exact place in the arithmetical hierarchy.

Theorem 3.3. The set Iso1 is Π0
3 -complete.

For reasons of space, the proof of Theorem 3.3 is given in AppendixA.

4 The Second Approach: Realizing All Countable
Complete Lattices

In this section, we work only with at most countable, non-empty families S ⊂
P (ω). Our second approach is based on the following definition:

Definition 4.1. Let ν be a numbering of a family S. Consider a binary relation

Qν = {(x, n) : n ∈ ω, x ∈ ν(n)} ⊆ ω × ω.

By FC2(S) we denote the concept lattice L(ω, ω,Qν).

The second approach provides a much richer environment. This is witnessed
by the following result:

Theorem 4.1.(a) Let S be a family of subsets of ω. The structure FC2(S) is
well-defined, i.e. the isomorphism type of the lattice FC2(S) does not depend
on the choice of a numbering ν.

(b) Let L be a countable complete lattice. Then there is a family SL such that
FC2(SL) ∼= L.

For reasons of space, the Proof of Theorem4.1 is given in AppendixB. In what
follows, we work within the framework of Subsect. 3.2, and find the complexity
of index set

Iso2 := {(i, j) ∈ ω × ω : FC2(Ti) ∼= FC2(Tj)}. (2)

After that, in Subsect. 4.1, we provide examples of computable families S with
uncountable lattices FC2(S).

First, we note the following observation. The proof of item (b) of Theorem4.1
is effective in the following sense: Given a computable partial order L = (ω;≤L),
which is a complete lattice, one can effectively produce a computable numbering

νL(n) := {k ∈ ω : k ≤L n} (3)
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such that the numbering νL indexes a family S2[L] of c.e. sets, and the lattice
FC2(S2[L]) is isomorphic to L.

This observation plays a key role in our next result. Informally speaking, this
result shows that in contrast to our first approach (see Theorem3.3), a similar
classification problem for the second approach is significantly harder: every set
from the level Σ1

1 of the analytical hierarchy is many-one reducible to the index
set Iso2 from (2).

Theorem 4.2. The set Iso2 is Σ1
1 -hard.

Proof. It is well-known that the isomorphism problem E(UG) for computable
undirected graphs is a Σ1

1 -complete set. The proof of this fact can be obtained,
e.g., by combining the proof sketch, given by Theorem 3.1 of [5], with the meth-
ods of Sect. 3.1 of [16]. As a by-product of the proof, one can easily get the
following useful fact.

Let X ⊆ ω be an arbitrary Σ1
1 set such that 0 ∈ X. Then there exists a

computable sequence (Gn)n∈ω of computable undirected graphs such that for
every n ∈ ω,

– dom(Gn) = ω, and for each i > 0, there is an edge between 0 and i in Gn.
– we have n ∈ X if and only if Gn

∼= G0.

We fix such a sequence (Gn)n∈ω. Given n ∈ ω, we build a computable partial
order An. Essentially, this construction is a simplified version of that provided
by Sect. 3.3 of [16].

– The domain dom(An) consists of the following parts:
• the ≤An

-least element ⊥ and the ≤An
-greatest element �;

• the set A = {ai : i ∈ ω};
• the set Dn = {di,j : i < j, and the graph Gn has edge between i and j}.

– If Gn has edge (i, j), where i < j, then we set ai <An
di,j and aj <An

di,j .

First, we show that the poset An is a complete lattice. It is sufficient to prove
that every non-empty set B ⊆ An \ {⊥,�} possesses supremum inside An. The
set B satisfies one of the following two cases:

Case 1. Assume that B ∩ Dn �= ∅. Choose an element di,j ∈ B ∩ Dn. If di,j

is an upper bound of the set B, then it is clear that supB = di,j . Otherwise, B
contains an element b, which is incomparable with di,j . The only element, which
is an upper bound for both di,j and b, is the top �. Hence, sup B = �.

Case 2. Assume that B ⊆ A. If card(B) ≥ 3, then choose pairwise different
ai, aj , ak from B. It is not hard to see that � is the only element, which bounds
all three elements ai, aj , ak. Thus, supB = �. Now suppose that B = {ai, aj},
where i < j. If Gn has edge (i, j), then supB = di,j ; otherwise, sup B = �. The
remaining subcase card(B) = 1 is trivial.

Second, we observe the following: if ψ is an automorphism of the poset An,
then ψ � A maps A onto A. This property is ensured by the following fact. Since



88 N. Bazhenov et al.

the vertex 0 is connected to every other vertex in the graph Gn, the set A is
definable inside An by the formula

ξ(x) = ∃y∃z[(x and y are incomparable)&x < z & y < z & z < �].

By employing this observation, in a way similar to Sect. 3.3 of [16], one can
prove that for all n and m, we have An

∼= Am if and only if Gn
∼= Gm. Therefore,

we deduce:

– If n ∈ X, then An
∼= A0, and the lattice FC2(S2[An]) is isomorphic to

FC2(S2[A0]) ∼= A0. Recall that these lattices are induced by Eq. (3).
– If n �∈ X, then An �∼= A0 and FC2(S2[An]) �∼= A0.

After that, a standard technical argument establishes that the set Iso2 is Σ1
1 -

hard. Theorem 4.2 is proved. �

4.1 Uncountable Lattices

We give two examples of computable families S, which induce uncountable lat-
tices FC2(S). Our first example is the family Scofin, which contains all cofinite
subsets of ω. It is well-known that Scofin admits a computable numbering. We
look at the lattice L := FC2(Scofin).

Consider a proper subset A ⊂ ω. For every x �∈ A, we have A ⊆ ω \ {x} ∈
Scofin. Thus,

A =
⋂

{d ∈ Scofin : A ⊆ d}.

Hence, the proof of Theorem 4.1 implies that every set A ⊆ ω is βα-closed.
Therefore, we deduce that L is isomorphic to the Boolean lattice P(ω), i.e. the
algebra of all subsets of ω.

Our second example produces a computable family Sunit such that the lattice
M := FC2(Sunit) is isomorphic to the real unit interval [0; 1].

Fix an algorithmic bijection ψ : [0; 1] ∩ Q → ω. We define a computable
numbering ν as follows. For n ∈ ω,

ν(n) = {ψ(q) : ψ−1(n) ≤Q q ≤Q 1}.

Let Sunit be the computable family indexed by ν.
Intuitively speaking, any βα-closed subset A ⊆ ω encodes a Dedekind cut.

More formally, let A be a non-empty βα-closed set. Then

A =
⋂

{d ∈ Sunit : A ⊆ d}.

Consider the set of rationals

X[A] := {q : q = inf ψ−1(d) for some d ∈ Sunit such that A ⊆ d}.

Then one can show that for closed sets A and B, we have A ⊆ B if and only if
supX[B] ≤R supX[A]. Moreover, one can show that the map F : A �→ supX[A]
is an anti-isomorphism from the poset of βα-closed sets onto the unit interval
[0; 1]. Therefore, we deduce that the lattice M is isomorphic to [0; 1].



Concept Lattices in the Theory of Numberings 89

In conclusion, we formulate the following open question:

Problem 4.1. Describe uncountable complete lattices that can be realized as
FC2(S) for some family S.

We introduce one more example, which is related to Problem 4.1. It is not
hard to see that the proof of Theorem4.1 shows that any lattice FC2(S) can be
isomorphically embedded (as a poset) into the Boolean lattice P(ω).

Kunen (see p. 85 of [3] and Corollary 42F of [11]) proved that MA + ¬CH
(i.e. Martin’s Axiom, together with the negation of the continuum hypothesis)
imply that any uncountable subset of P(ω) with no uncountable antichains must
contain both ascending and descending infinite sequences with respect to ⊆.

Therefore, MA + ¬CH imply that every uncountable successor ordinal α <
(2ℵ0)+ is a complete lattice, which is not isomorphic to any FC2(S).

5 Further Discussion

First, we note that Theorem 4.2 leaves the following question open:

Problem 5.1. Find the complexity of the index set Iso2. More formally, what
is the many-one degree of Iso2?

Recall that a computable family S can induce the lattice FC2(S) of cardinal-
ity continuum. Thus, intuitively speaking, in order to work towards a solution
of Problem 5.1, one needs to develop a better understanding of Problem4.1. In
particular, the following question seems to be interesting on its own:

Problem 5.2. Find an uncountable complete lattice L such that ZFC proves
that L is not isomorphic to any FC2(S). In particular, does ZFC prove that the
ordinal ω1 + 1 is not isomorphic to any FC2(S)?

A Proof of Theorem 3.3

First, we need to show that the set Iso1 is Π0
3 . By Theorem 3.1, the lattices

FC1(Ti) and FC1(Tj) are isomorphic if and only if the cardinalities of Ti and Tj

are the same. Semi-formally, this condition can be described as follows.
For every natural number n ≥ 2, the following two conditions are equivalent:

– The family Ti contains at least n different sets. This can be re-written as fol-
lows: There exist indices k1, k2, . . . , kn such that the sets θi(km) = Wh0(i,km),
1 ≤ m ≤ n, are pairwise different.

– The family Tj contains at least n different sets.

Since the set {(k, �) : Wk �= W�} is Σ0
2 (see, e.g., Corollary 4.1.8 in [21]), a

standard argument shows that our set Iso1 is Π0
3 .

Second, suppose that X ⊆ ω is an arbitrary Π0
3 set. We fix an index i0 such

that the family Ti0 is infinite. In order to show that the set Iso1 is Π0
3 -complete,

it is sufficient to build a uniform sequence of computable numberings {νn}n∈ω

with the following property: for every n ∈ ω,
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(†) n ∈ X if and only if the family Sn := {νn(k) : k ∈ ω} is infinite.

Note that Theorem 3.1 and the property (†) together ensure that n ∈ X if and
only if FC1(Sn) ∼= FC1(Ti0). After building νn, the rest of the proof is just a
standard technical argument.

Choose a computable ternary relation R(n, x, y) such that

n �∈ X ⇔ ∃x∃∞yR(n, x, y). (4)

Such a relation R can be recovered from, e.g., Theorem 4.3.11 in [21].
Fix a natural number n. For an index k ∈ ω, the construction of the c.e. set

νn(k) proceeds in stages.
At stage 0, we define νn(k)[0] := {〈k, �〉 : � ∈ ω}.
At a stage s + 1, for each k ≤ s, we proceed as follows. If the predicate

R(n, k, s) is true, then we enumerate all numbers m ≤ 〈k, s〉 into every set νn(�)
for � > k.

The construction is described. It is not hard to show that the obtained num-
berings νn are uniformly computable.

We verify that the numbering νn satisfies (†). First, assume that the number
n does not belong to X. By Eq. (4), we choose the least index k0 such that
∃∞sR(n, k0, s). Then at every stage s+1 > k0, if the condition R(n, k0, s) holds,
then each set νn(�), where � > k0, obtains more new elements. This implies that
for every � > k0, we have νn(�) = ω. Thus, the family Sn contains at most k0 +2
elements.

Now assume that n ∈ X. Let k be an arbitrary number. By Eq. (4), one can
choose a stage s0 such that

(∀i ≤ k)(∀s ≥ s0)¬R(n, i, s).

This implies the following: if i < k, then the element 〈k, s0〉 belongs to Ak \ Ai;
hence, Ak �= Ai. We deduce that the family Sn is infinite.

Therefore, the numberings νn satisfy (†). Theorem 3.3 is proved. �

B Proof of Theorem4.1

(a) Let ν be an arbitrary numbering of the family S. For a subset A ⊆ ω, we
have:

α(A) = {n : (∀x ∈ A)[(x, n) ∈ Qν ]} = {n : A ⊆ ν(n)};

β ◦ α(A) = {x : ∀n[A ⊆ ν(n) → x ∈ ν(n)]} =
⋂

{ν(n) : A ⊆ ν(n)} =

=
⋂

{d ∈ S : A ⊆ d}.

Therefore, the βα-closure of A does not depend on the choice of ν. Hence, it is
easy to show that the isomorphism type of FC2(S) also does not depend on ν.
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(b) Let L be a countable complete lattice. By the Basic Theorem on Concept
Lattices, for the formal context K = (L,L,≤L), the lattice L(K) is isomorphic
to L.

Fix a bijection ψ from L onto ω. We consider a countable family

SL = {{k ∈ ω : ψ−1(k) ≤L a} : a ∈ L}.

Using Eq. (1), it is not hard to show that the partial order (SL,⊆) is isomorphic
to the lattice L(K).

On the other hand, for an arbitrary set A ⊆ ω, we have:
⋂

{d ∈ SL : A ⊆ d} =
⋂{

{k : ψ−1(k) ≤L a} : a ∈ L,

a is an upper bound of ψ−1(A)
}

= {k : ψ−1(k) ≤L supL ψ−1(A)} ∈ SL.

Hence, the lattice FC2(SL) is isomorphic to (SL,⊆), which is, in turn, isomorphic
to L. Theorem 4.1 is proved. �
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Abstract. In this paper, we design an O(2O(
√
t log t)|V |O(1)) time subex-

ponential FPT algorithm for MinCkSCcon on an H-minor free-graph,
where t is an upper bound of solution size.

Keywords: Connected-k-subgraph cover · Connected version ·
Minor-free graph · FPT

1 Introduction

This paper studies the minimum connected-k-subgraph cover problem with con-
nectivity requirement (MinCkSCcon).

The MinCkSC problem was proposed because of a security consideration in
a wireless sensor network (WSN) [44]. Given a graph G = (V,E) and an integer
k, the goal of MinCkSC is to find a minimum vertex subset C such that each
connected component of G − C contains at most k − 1 vertices. The MinCkSC
problem, under the name of the minimum k-vertex separator problem (MinkVS),
was also studied for the sake of parallel computing [19,26].

If furthermore, it is required that the connected k-subgraph cover C induces
a connected subgraph, then the problem is denoted as MinCkSCcon. Considering
connectivity in this problem is because of information sharing issues in a WSN
[27]. In this paper, we study FPT algorithm for MinCkSCcon on H-minor-free
graphs, where |V (H)| is upper bounded by a constant.

1.1 Related Works

Note that there is a problem which is closely related with MinCkSC: the mini-
mum k-path vertex cover problem (MinVCPk). A vertex set C is called a VCPk
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set if every path on k vertices has at least one vertex in C. The MinVCPk

problem was first proposed by Novotný [30] also because of a consideration on
the security of WSNs. For k = 2, 3, MinCkSC and MinVCPk coincide. In par-
ticular, both MinC2SC and MinVCP2 are the classic minimum vertex cover
problem (MinVC) [3,20], which still receives a lot of attention in recent years
[4,8,10,23,31]. Since MinCkSC and MinVCPk and their connected variants are
all NP-hard for k ≥ 2, most researches with theoretical guarantees focus on
approximation algorithms and FPT algorithms. In the following, we distinguish
the weighted version and the cardinality version of these problems by whether
using “W” in their abbreviations.

Note that both MinWCkSC and MinWVCPk are special cases of the mini-
mum weight set cover problem (MinWSC) [29,44], so they admit k-approximation.
Improvement on the ratio needs deeper exploration of graph structures. Compared
with the extensive studies on the MinVCPk problem [7,8,21,32,39,40,43,45],
studies on MinCkSC are relatively less.

The terminologyMinWCkSCwas proposed byZhang et al. in [44], and a (k−1)-
approximation algorithm was designed on graphs with girth at least k. Recently,
Liu et al. [29] relaxed the girth requirement from k to 2k/3. For MinCkSC (the car-
dinality version), Lee [26] presented an O(log k)-approximation algorithm which
runs in time 2O(k3 log k)n2 log n+nO(1). For a more general class of problems called
H-free node-deletion problem which includes both MinVCPk and MinCkSC, Li et
al. [28] present a PTAS on disk graphs. Li et al. [27] were the first to study the
connected version of the problem, and provided a k-approximation algorithm for
MinCkSCcon.

Parameterized algorithms for MinVCPk mainly focus on small k. There
are a lot of works on MinVCP3 [12,22,36,42] (recall that MinVCP3 coin-
cides with MinC3SC). Currently, the best known running time of FPT algo-
rithms for MinVC and MinVCP3 in terms of solution size t are O∗(1.2738t)
[13] and O∗(1.713t) [33], respectively. For the connected version with k =
2, Cygan [14] presented an FPT algorithm for MinCVC with running time
O(2tnO(1)). Bai et al. [2] studied parameterized algorithm in terms of treewidth
ω, presenting a 3ωnO(1)-time algorithm for MinVCP3 and a 4ωnO(1)-time ran-
domized algorithm for MinCVCP3. Parameterized algorithms for MinVCPk with
k = 4, 5, 6, 7 are emerging recently [11,34,35,37], but works on general k are rare.
Note that MinVCPk and MinCkSC can be considered as special cases of a so-
called graph modification problem studied by Cai in [9], which has been shown to
have an O∗(kt) time FPT algorithm. To improve the time complexity, one has
to explore graph structures of these problems. As far as we know, there is no
study on parameterized algorithm for MinCkSCcon or MinCVCPk for general k.

1.2 Contribution

In this paper, we study MinCkSCcon for general constant k. The contributions
are summarized as follows.

We present an O(ω(2(k −1)ω)3ω)|V |-time algorithm for MinCkSCcon, where
ω is the treewidth of the graph. The algorithm is a dynamic programming, based
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on a nice tree-decomposition. Note that connectivity is a global feature. The
challenge of designing the algorithm lies in how to extend partial solutions step
by step, keeping enough information to guarantee global connectivity, while at
the same time limiting the table size of the dynamic programming. Based on the

above result, we prove that MinCkSCcon has an O(
√

t
O(

√
t)|V |)-time algorithm

on H-minor-free graphs, where t is an upper bound for the solution size.

2 Algorithm for MinCkSCcon in Terms of Treewidth

2.1 Basic Notations

Firstly, we introduce the definition of tree decomposition.

Definition 1 (Tree Decomposition). For a given graph G = (V,E), a pair
({Xi : i ∈ I}, T = (I, F )) is a tree decomposition, if the following conditions
hold:

(i)
⋃

i∈I Xi = V ,
(ii) every edge e ∈ E belongs to some G[Xi],
(iii) T is a tree on vertex set I and edge set F , such that Xi ∩ Xk ⊆ Xj for

any j lying on the path from i to k in T .

Each Xi is called a bag. The treewidth of G is defined as

ω(G) = min
all tree decomposition

({Xi:i∈I},T=(I,F ))

max
i∈I

({|Xi|} − 1
)
.

Our algorithm needs nice tree decomposition defined as follows. For clarity, we
use nodes to refer to vertices of T and use vertices to refer to vertices of G.

Definition 2 (Nice tree decomposition). For a graph G = (V,E), a tree
decomposition is nice if nodes in I can be partitioned into four types as follows:

(i) leaf node: a node in T without children;
(ii) introduce node: a node i which has exactly one child j such that Xj ⊆ Xi

and Xi\Xj = {v} for some vertex v ∈ V ;
(iii) forget node: a node i which has exactly one child j such that Xj =

Xi ∪ {v} for some vertex v ∈ V ;
(iv) join node: a node i which has exactly two children j, l such that Xi =

Xj = Xl.

Bodlaender proved in [6] that for any graph with treewidth ω, a tree decom-
position can be computed in time O(2Θ(ω3)|V |), and given a tree decomposition,
one can transform it into a nice tree decomposition in time O(|V | + |E|). Note
that each non-leaf bag is a separator of graph G [16].
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2.2 MinCkSCcon on Bounded Treewidth Graphs

In this section, we present a dynamic programming for the computation of
MinCkSCcon.

For a nice tree decomposition ({Xi : i ∈ I}, T ), a subtree of T rooted at i
which contains all descendants of i is denoted as Ti. The subgraph of G induced
by all vertices of those bags corresponding to those nodes of Ti is denoted as
Gi = G[

⋃

j∈V (Ti)

Xj ].

Status Variables: For each node i ∈ I, the dynamic programming will
record a set of optimal values with respect to all possible tokens of the form
(F, PF , PXi\F ), where F ⊆ Xi, PF is a partition of F , PXi\F consists of a parti-
tion of Xi\F , and each part of PXi\F is associated with an integer smaller than
k. Define status variable c(i, F, PF , PXi\F ) to be the cardinality of a minimum
vertex set C ⊆ V (Gi) which is compatible with token (F, PF , PXi\F ), where
compatible means

(i) C ∩ Xi = F ;
(ii) PF is the partition of F corresponding to those connected components

of Gi[C];
(iii) PXi\F consists of the partition of Xi\F corresponding to those connected

components of Gi − C which has non-empty intersection with Xi, and for each
part of the partition, the integer associated with this part is the cardinality of
the connected component of Gi − C containing this part.

We shall use PF (v) (resp. PXi\F (v)) to denote the part of PF (resp. PXi\F )
which contains vertex v, and use kD to denote the integer associated with a part
D of the partition of PXi\F .

Initial Condition: The dynamic programming starts computing from leaf
nodes. For a leaf node i ∈ I, if F is compatible with token set (F, PF , PXi\F ),
then c(i, F, PF , PXi\F ) = |F |, otherwise c(i, F, PF , PXi\F ) = ∞.

Transition Formula: We distinguish the transition formula into three cases
depending on the type of the internal node.

Introduce Node: Suppose i is an introduce node. Let j be the only child of i
and denote by v the unique vertex in Xi\Xj . A triple (F, PF , PXi\F ) is said to
be a valid token for node i if

(a(in)) every part of PXi\F has cardinality at most k − 1,
and exactly one of the following two conditions is satisfied:

(b(in)
1 ) if v ∈ F , then NG(v) ∩ F ⊆ PF (v);

(b(in)
2 ) if v 	∈ F , then NG(v) ∩ (Xi\F ) ⊆ PXi\F (v).

Superscript (in) indicates that the condition is for an introduce node. Condition
(a(in)) is necessary for C to be a feasible CkSCcon. The reason for condition
(b(in)1 ) is because if v ∈ F , then any neighbor of v in F must belong to the
connected component of Gi[C] containing v. Similar reason for condition (b(in)2 ).

Note that in the case of introduce node, Gj = Gi − v due to condition
(iii) in the definition of tree decomposition (Definition 1). For a valid token
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(F, PF , PXi\F ), we say that token (F ′, PF ′ , PXj\F ′) for node j is compatible with
(F, PF , PXi\F ) if one of the following two conditions are met:

(c(in)1 ) If v ∈ F , then F ′ = F\{v}, PF =
(
PF ′\{PF ′(u) : u ∈ F ′ ∩ NG(v)}) ∪

{D} where D =
(⋃

u∈F ′∩NG(v) PF ′(u)
)

∪ {v}, and PXj\F ′ = PXi\F .

(c(in)2 ) If v 	∈ F , then F ′ = F , PF = PF ′ , the parti-
tion of PXi\F is

(
PXj\F ′\{PXj\F ′(u) : u ∈ (Xj\F ′) ∩ NG(v)}) ∪ {D′},

where D′ =
(⋃

u∈(Xj\F ′)∩NG(v) PXj\F ′(u)
)

∪ {v}, and kD′ = 1 +
∑

D∈{PXj\F ′ (u) : u∈(Xj\F ′)∩NG(v)} kD must satisfy kD′ ≤ k − 1.

The transition formula for a valid token (F, PF , PXi\F ) of an introduce node
i is

c(i, F, PF , PXi\F ) = min
(F ′,P

F ′ ,PXj\F ′ ): token for node j

compatible with (F,PF ,PXi\F )

c(j, F ′, PF ′ , PXi\F ′) + 1v∈F ,

where 1v∈F = 1 if v ∈ F and 1v∈F = 0 if v 	∈ F .

Forget Node: Suppose i is a forget node, j is the only child of i, and v is the
only vertex in Xj\Xi. A triple (F, PF , PXi\F ) is said to be a valid token for node
i if

(a(for)) each part of PXi\F has at most k − 1 vertices,
and one of the following two conditions is satisfied:

(b(for)
1 ) all vertices in NG(v) ∩ F belong to a same part of PF , or

(b(for)
2 ) all vertices in NG(v) ∩ (Xi\F ) belong to a same part of PXi\F .

Superscript (for) indicates that the condition is for a forget node. Note that
different from the case for introduce node, in which exactly one condition of
(b(in)1 ) and (b(in)2 ) can occur, for the case of forget node, conditions (b(for)

1 ) and
(b(for)

2 ) can both occur.
For the case of forget node, Gi = Gj . For a valid token (F, PF , PXi\F ), we

say that a token (F ′, PF ′ , PXi\F ′) for node j is compatible with (F, PF , PXi\F )
if one of the following two conditions are met:

(c(for)1 ) All vertices of NG(v)∩F belong to a same part of PF , F ′ = F ∪{v},
PF =

(
PF ′\{PF ′(v)}) ∪ {PF ′(v)\{v}}, and PXi\F = PXj\F ′ .

(c(for)2 ) All vertices of NG(v) ∩ (Xi \ F ) belong to a same part of PXi\F ,
F ′ = F , PF ′ = PF , PXi\F =

(
PXj\F ′ \ {PXj\F ′(v)}) ∪ {PXj\F ′(v) \ {v}}, and

kPXj\F ′ (v) ≤ k − 1.
The transition formula for a valid token (F, PF , PXi\F ) of a forget node i is

c(i, F, PF , PXi\F ) = min
(F ′,P

F ′ ,PXj\F ′ ): token of node j

compatible with (F,PF ,PXi\F )

c(j, F ′, PF ′ , PXj\F ′).

Join Node: Suppose i ∈ I is a join node with two children j and l. A triple
(F, PF , PXi\F ) is a valid token if each part of PXi\F has at most k − 1 vertices.
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In this case, Xi = Xj = Xl and Gi = Gj ∪ Gl. Furthermore, by condition
(iii) of tree decomposition, it can be observed that

V (Gj) ∩ V (Gl) is exactly Xi. (1)

For a valid token (F, PF , PXi\F ) of node i, we say that a token (F ′, PF ′ , PXi\F ′)
of node j and a token (F ′′, PF ′′ , PXi\F ′′) of node l are compatible with
(F, PF , PXi\F ) if the following conditions are satisfied:

(c(join)) F = F ′ = F ′′;
(d(join)) Every part of PF ′ (as well as every part of PF ′′) is completely

contained in some part of PF . Furthermore, if there are a part D′ of PF ′ and a
part D′′ of PF ′′ which have non-empty intersection, then D′ and D′′ belong to
a same part of PF ;

(e(join)) Every part of PXj\F ′ (as well as every part of PXl\F ′′) is completely
contained in some part of PXi\F . If there is a part D′ of PXj\F ′ and a part D′′ of
PXl\F ′′ with D′∩D′′ 	= ∅, then D = D′∪D′′ is a part of PXi\F , and furthermore,
the integer associated with D satisfies kD = kD′ + kD′′ − |D′ ∩ D′′| ≤ k − 1.

The transition formula for a valid token (F, PF , PXi\F ) of a join node i is

c(i, F, PF , PXi\F )
= min

(F ′,P
F ′ ,PXj\F ′ ),

(F ′′,P
F ′′ ,PXt\F ′′ ):

tokens compatible with
(F,PF ,PXi\F )

{c(j, F ′, PF ′ , PXj\F ′) + c(l, F ′′, PF ′′ , PXt\F ′′) − |F |}.

In the above, we only give out transition formula for valid tokens. If
(F, PF , PXi\F ) is an invalid token for node i, or there are no tokens for his
child (or children) which are compatible with (F, PF , PXi\F ), then set

c(i, F, PF , PXi\F ) = ∞.

Theorem 1. Given a graph G = (V,E) with tree-width ω, starting from leaf
nodes of a nice tree decomposition of G, recursively use the above transition
formulas in a bottom-up manner, when the dynamic programming arrives at the
root node r, the minimum vertex set over all possible tokens (F, PF , PXr\F ) for
r is an optimal solution for the MinCkSCcon instance. The time complexity is
O((2Θ(ω3) + ω(2(k − 1)ω)3ω)|V |).

The detailed proof is put in the full version of this paper. As a corollary of
Theorem 1, we have the following result.

Corollary 1. The MinCkSCcon problem is polynomial time solvable on a graph
whose tree-width is bounded above by a constant.
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3 Sub-exponential FPT Algorithm for MinCkSCcon

on H-minor-free Graphs

In this section, we present an FPT algorithm for the following parameterized
version of the MinCkSCcon problem on an H-free graph G: For a fixed graph H,
given an H-free graph G and an integer t, is there a CkSCcon in G with size at
most t? If the answer is yes, then the algorithm is able to find out an optimal
solution in time f(t)p(n), where p(n) is a polynomial on the input size n, and
f(t) is a function depending on t and H (but is independent of n).

The algorithm makes use of the following result which was due to Demaine
and Hajiaghayi [15].

Lemma 1 ([15]). Any H-minor-free graph with tree-width at least ω has an
c(H)ω × c(H)ω grid as a minor, where c(H) is a parameter depending on H.

The next lemma gives a lower bound for the size of a CkSC in a grid.

Lemma 2. For a moderately large g (compared with k), any CkSC on a g × g
grid has size larger than g2/(2k).

Proof. Suppose C is a CkSC of a g × g grid. Note that each �√k
 × �√k
 grid
must contain a vertex of C. A g × g grid has at least � g

�√
k	� × � g

�√
k	� disjoint

�k
 × �k
 grids. When g is moderately large, � g

�√
k	� × � g

�√
k	� > g2

2k . Then the
lemma follows.

The FPT algorithm is embedded in the proof of the following theorem.

Theorem 2. Suppose H is a graph with a constant number of vertices and k
is a constant integer. The parameterized version of the MinCkSCcon problem on

an H-minor-free graph can be solved in time O(
√

t
O(

√
t)|V |).

Proof. As a consequence of Lemma 2, if the minimum CkSCcon of graph G has
at most g2/2k vertices, then G cannot have g × g grid as a minor. So, for the
parameterized version of the CkSCcon problem with parameter t, if the answer is
yes, then G is (

√
2kt×√

2kt)-grid minor free. By Lemma 1, the tree-width of G is
smaller than

√
2kt/c(H). Combining this with Theorem 1, we could find an opti-

mal solution in time O

((

2Θ((
√
2kt/c(H))3) +

√
2kt

c(H)

(
2(k − 1)

√
2kt

c(H)

)3
√

2kt
c(H)

)

|V |
)

.

On the other hand, if the computed treewidth is larger than
√

2kt/c(H), then
the answer to the instance must be no.

In particular, if |V (H)| has a constant upper bound, then c(H) is a constant.
Combining this with our assumption that k is a constant, Theorem 2 follows.



100 P. Liu et al.

4 Conclusion

In this paper, we presented a dynamic programming for MinCkSCcon the run-
ning time of which depends on the treewidth; and obtained an FPT algorithm
for MinCkSCcon on H-minor-free graphs. Our results hold for general constant
k. There are still some further questions about possibility of extending the work.
Can the time be improved via some other design techniques which have been
successfully used on the connected vertex cover problem? Is it possible to achieve
better results on some special minor free-graphs such as planar graph and out-
erplanar graphs?
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Abstract. Let G = (V, E) be a simple graph. A set C ⊆ V is called a
k-path vertex cover of G, if each k-path in G contains at least one vertex
from C. In the k-path vertex cover problem, we are given a graph G and
asked to find a k-path vertex cover of minimum cardinality. For k = 3, the
problem becomes the well-known 3-path vertex cover (3PVC) problem,
which has been widely studied, as per the literature. In this paper, we
focus on the 3PVC problem in planar bipartite (pipartite) graphs for
the most part. We first show that the 3PVC problem is NP-hard, even
in pipartite graphs in which the degree of all vertices is bounded by 4.
We then show that the 3PVC problem on this class of graphs admits
a linear time 1.5-approximation algorithm. Finally, we show that the
3PVC problem is APX-complete in bipartite graphs. The last result
is particularly interesting, since the vertex cover problem in bipartite
graphs is solvable in polynomial time.

1 Introduction

Given a simple undirected graph G = (V,E), the open neighborhood (resp. closed
neighborhood) of a vertex vi ∈ V is defined by N(vi) = {vj ∈ V | vivj ∈ E}
(resp. N [vi] = N(vi)∪{vi}). The degree of a vertex v in the graph G is defined as
dG(v) = |N(v)|, whereas the maximum degree of a graph is Δ(G) = max

v∈V
{dG(v)}.

A vertex cover C of G is a subset of V such that for each edge uv ∈ E, either
u ∈ C or v ∈ C. The (minimum) vertex cover problem asks to find a vertex
cover of minimum size in a given graph. One generalization of the vertex cover
problem is the k-path vertex cover problem. A k-path vertex cover Ck of G is a
subset of V such that each path in G having k vertices (path of order k) contains
at least one vertex from Ck. In other words, Ck is called a k-path vertex cover
(kPVC) of G, if there does not exist a path of order k in the induced subgraph
G′ = (V \ Ck, E

′), where an edge e ∈ E belongs to E′, if both its endpoints are
in V \ Ck. The (minimum) k-path vertex cover problem asks to find a vertex
subset of minimum size satisfying the k-path vertex cover property in a given
graph G. For k = 3, the k-path vertex cover problem is called the 3-path vertex
cover (3PVC) problem.
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In the 3PVC problem, we are given an undirected, unweighted graph G =
(V,E) and the goal is to find a minimum cardinality set V ′ ⊆ V , such that at least
one vertex from every two-edge path is in V ′. It is clear that the 3PVC problem
is a variant of the well-known vertex cover (VC) problem and a specialization
of the k-path vertex cover problem, discussed in [1]. The 3PVC problem finds
applications in several practical domains, including wireless networks and data
integrity [1,6]. Prior work has established the computational difficulty of this
problem in general graphs. Indeed, the 3PVC problem is known to be NP-hard
for planar graphs and bipartite graphs. This paper studies the 3PVC problem in
planar bipartite (pipartite) graphs, i.e., the intersection of the above-mentioned
graph classes.

The principal contributions of the paper are as follows:

1. A proof that the 3PVC problem is NP-complete in pipartite graphs, even
with Δ(G) ≤ 4 (Sect. 3).

2. The design and analysis of a linear time 1.5-approximation algorithm for the
3PVC problem in pipartite graphs, with Δ(G) ≤ 4 (Sect. 4).

3. A proof of APX-completeness for the 3PVC problem in bipartite graphs
(Sect. 5).

The rest of this paper is organized as follows: In Sect. 2, we discuss related
work in the literature. The computational complexity of the 3PVC problem
in pipartite graphs is detailed in Sect. 3. An approximation algorithm for this
problem on a selected class of pipartite graphs is discussed in Sect. 4. In Sect. 5,
we show that the 3PVC problem is APX-complete in bipartite graphs. Finally,
we conclude in Sect. 6 by summarizing our contributions and identifying avenues
for future research.

2 Related Work

In this section, we discuss the state-of-the-art results of the 3-path vertex cover
problem. The generalized version of the 3-path vertex cover (3PVC) problem
is the k-path vertex cover (kPVC) problem. Motivated by two problems, viz.,
(i) secure communication in wireless sensor networks [1,11] and (ii) controlling
traffic at street crossings [15], Brešar et al. [1] introduced the kPVC problem
in 2011. For k ≥ 2, Brešar et al. [1] proved that determining ψk(G) (minimum
cardinality of a kPVC) in a graph G is NP-hard. They proved that the problem
can be solved in linear time in trees. For k = 2, the problem is known as the
vertex cover (VC) problem in the literature. The VC problem is known to be NP-
hard, in general [8]. Brešar et al. [1] proved the existence of an r-approximation
algorithm for the VC problem from an r-approximation algorithm of the kPVC
problem. Note that a k-approximation algorithm for the kPVC problem is trivial
[1]. The authors also presented several estimations and exact values to provide
the upper bound for ψk(G). They proved ψ3(G) ≤ (2 · n + m)/6 for any graph
G with n vertices and m edges. For outerplanar graphs of order n, they proved
ψ3(G) ≤ n

2 . In [13], Tu and Yang proved that the 3PVC problem is NP-hard
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in cubic planar graphs with girth 3. They also proposed a linear time 1.57-
approximation algorithm for the 3PVC problem in cubic graphs. Whether a
polynomial-time c-approximation algorithm exists for the kPVC problem for
k ≥ 2 [1,7] is an open problem.

For the 3PVC problem, many constant factor approximation results are
known. Kardoš et al. [7] proposed a polynomial-time randomized approxima-
tion algorithm with an expected approximation ratio of 23

11 . In [14,15], Tu and
Zhou proposed several approximation algorithms for the weighted kPVC problem
(each vertex has a weight). The two techniques they used were the primal-dual
method and graph layering. Zhang et al. [16] considered the kPVC problem in
d-regular graphs and proposed several approximation results. The 3PVC prob-
lem in planar graphs admits an EPTAS [12], which means that the problem is
not APX-hard in pipartite graphs unless P = NP.

3 Computational Complexity

In this section, we reduce the vertex cover (VC) problem in planar graphs to
the 3-path vertex cover (3PVC) problem in pipartite graphs via a linear time
algorithm. Note that the VC problem in planar graphs with maximum degree
three is known to be NP-hard [10].

The decision versions of both the problems are defined below.

The vertex cover problem in planar graphs (Vc-Pla)
Given a planar graph G having maximum degree three and a positive integer
k, does G has a VC of size at most k?

The 3PVC problem in pipartite graphs (3Pvc-Pb)
Given a pipartite graph G and a positive integer k, does there exist a 3PVC
of size at most k?

Construction: The construction from a given instance of a planar graph G to
an instance of a pipartite graph G′ takes place in three steps.
Step 1: For each vertex vi in G, create a corresponding vertex ui in G′.
Step 2: For each vertex ui in G′, create a support vertex u′

i and put an edge
between ui and u′

i.
Step 3: For each edge vivj ∈ E in the graph G, take the corresponding vertices
ui and uj in G′ and put three vertices uij , u′

ij , and u′′
ij between them. Now, add

four edges in the order uiuij , uiju
′
ij , u′

iju
′′
ij , and u′′

ijuj (see the three vertices
and four edges added between u1 and u2 in Fig. 1 (b), corresponding to the edge
v1v2 of Fig. 1 (a)).

Lemma 1. For a given instance of a planar graph G = (V,E) (Δ(G) ≤ 3), an
instance of a pipartite graph G′ = (V1, V2, E

′) (Δ(G′) ≤ 4) can be constructed
in linear time using the above construction.

Proof. Observe that, for each vertex vi in G, there is a corresponding vertex ui

and a support vertex u′
i in G′ (for example, see the vertices u1 and u′

1 in Fig. 1
(b) corresponding to the vertex v1 in Fig. 1 (a)).
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Fig. 1. Construction of a planar bipartite graph G′ from a planar graph G.

Again for each edge vivj ∈ E in G, there are three vertices added in the
corresponding edge uiuj in G′, i.e., uij , u

′
ij , and u′′

ij (for example, see the three
vertices added between u1 and u2 in Fig. 1 (b)). Observe that the extra vertices
added in the graph G′ do not affect the graph’s planarity, and the odd cycles
of the graph (if any) become even. Moreover, the degree of each vertex in the
graph G′ is at most four. Thus, G′ is a planar bipartite graph with Δ(G′) ≤ 4.
If the total number of vertices and edges in graph G is n and m, respectively,
then the number of vertices and edges in graph G′ is |V ′| = 2 · n + 3 · m and
|E′| = n + 4 · m. In a planar graph G = (V,E), |E| ≤ 3 · |V | − 6. So, |V ′| < 11 · n
and |E′| < 13 · n. Hence G′ can be constructed in linear time. �

Now, we prove that 3Pvc-Pb is NP-hard. For the hardness proof, we show a
linear time reduction from Vc-Pla to 3Pvc-Pb. Let G = (V,E) be an instance
of Vc-Pla. Construct an instance G′ = (V1, V2, E

′) of 3Pvc-Pb as discussed in
Lemma 1. We prove the following claims to establish the NP-hardness result
for the 3Pvc-Pb.

Claim 1. For each edge vivj ∈ E in graph G, there exist three vertices uij , u
′
ij,

and u′′
ij in graph G′. Out of these three vertices, one must be present in any

3-path vertex cover of graph G′.

Proof. The proof of the claim follows directly from the definition of the 3-path
vertex cover. As the three vertices uij , u

′
ij , and u′′

ij form a path of order three,
any 3-path vertex cover of the graph G′ must contain at least one vertex out of
these three vertices. �

Claim 2. For an edge vivj ∈ E in G, if the corresponding vertices ui and uj of the
edge in G′ are not in a 3-path vertex cover set D, then either at least two vertices
from the set {uij , u

′
ij , u

′′
ij} or both the support vertices u′

i and u′
j are in D.
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Proof. Assume that none of the vertices from the set {u′
i, ui, uj , u

′
j} are in D.

Moreover, there exists exactly one vertex from the set {uij , u
′
ij , u

′′
ij} in D and D

is a 3-path vertex cover in the graph G′. If uij ∈ D, then there are two paths of
order three containing no vertices from D. The two paths are u′

j − uj − u′′
ij and

uj −u′′
ij −u′

ij . It contradicts the fact that D is a 3-path vertex cover. If u′
ij ∈ D,

then u′
i − ui − uij and u′

j − uj − u′′
ij create two paths of order three, containing

no vertices from D. It also contradicts the fact that D is a 3-path vertex cover.
In the case that only u′′

ij ∈ D, similar combinatorial arguments can be given
to obtain a contradiction. Consider the case when neither of ui and uj belongs
to D. Furthermore, we assume that D contains exactly one vertex from the set
{uij , u

′
ij , u

′′
ij}. In this case, D must contain both the support vertices u′

i and u′
j

along with u′
ij in D to satisfy the condition of the 3-path vertex cover.

Therefore, it is proved that if both ui and uj are not in D, then either (i) at
least two vertices from the set {uij , u

′
ij , u

′′
ij} are in D or (ii) both the support

vertices u′
i and u′

j must be in D. This proves the claim. �
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Fig. 2. A 3PVC solution for G′ constructed from a VC solution in G.

Now, we prove that 3Pvc-Pb is NP-hard by proving the following lemma.

Lemma 2. G has a vertex cover C with |C| ≤ k, if and only if G′ has a 3-path
vertex cover D with |D| ≤ k + m.

Proof. Let C ⊆ V be a vertex cover in the graph G = (V,E) having cardinality
at most k. For each vi ∈ C, take the corresponding vertices of vi as ui in the
graph G′ = (V ′, E′). Update D = D ∪ {ui}. After adding all the corresponding
vertices of C in D, |D| ≤ k. As C is a vertex cover in G, for each edge vivj ∈ E,
either vi or vj must be in C (the tie can be broken by arbitrarily choosing one
vertex if both the vertices are in C). Without loss of generality, assume that
vi ∈ C. Take the corresponding vertex ui in the graph G′. Now, add the 4th
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vertex encountered in the path ui � uj in D (for example, see the path u1 � u2

in Fig. 2 (b) corresponding to the edge v1v2 in Fig. 2 (a). As v1 ∈ C, the 4th

vertex u′′
12 in the path u1 � u2 is chosen in D). Repeat the process for each edge

in G and add one vertex to D. So, after completion of this step, the number of
vertices added in D is m (number of edges present in G). Now, observe that D
is a 3-path vertex cover in G′ as each path of order three contains at least one
vertex from D and |D| ≤ k + m.

Conversely, let D ⊆ V ′ be a 3-path vertex cover of size at most k + m. We
argue that G has a vertex cover C of size at most k. Consider each vertex ui ∈ D
in G′. Take its corresponding vertex vi in C. Clearly |C| ≤ k (follows from Claim
1). If C is a vertex cover in G, then the proof completes. If C is not a vertex
cover in G, then there must exist an edge vivj ∈ E in G, such that vi, vj �∈ C.
Take the corresponding vertices of vi and vj as ui and uj , respectively, in G′. As
vi, vj �∈ C, the corresponding vertices ui, uj �∈ D. That means D contains either
at least two vertices from the set {uij , u

′
ij , u

′′
ij} or both the support vertices u′

i

and u′
j (follows from Claim 2). If both the support vertices u′

i and u′
j belong to

D, then update D = D ∪ {ui, uj} \ {u′
i, u

′
j}. If the above condition fails, then

there must exist two vertices from the set {uij , u
′
ij , u′′

ij} in D. Now, update
D = D ∪ {ui} \ {uij}, if uij ∈ D, else update D = D ∪ {uj} \ {u′′

ij}.
Update C and repeat the process till every edge in G has one of its end vertex

in C. Due to Claim 1, C is a vertex cover having |C| ≤ k. Therefore, 3Pvc-Pb
is NP-hard. �
Theorem 1. 3Pvc-Pb is NP-complete

Proof. For a given set D ⊆ V in a pipartite graph G = (V,E) and a positive
integer k, one can verify whether D is a 3PVC of size at most k. This can be
done in linear time by checking whether there exists a path of order 3 in the
subgraph induced by V \ D. Hence, the problem 3Pvc-Pb is in NP. As per
Lemma 2, 3Pvc-Pb is NP-hard. Therefore, 3Pvc-Pb is NP-complete.

4 Approximation Algorithm

In this section, we design a 1.5-approximation algorithm for the 3PVC problem
in pipartite graphs having maximum degree four. The proposed algorithm is
a greedy algorithm, which runs in linear time. Note that, for the 3PVC prob-
lem, there exists a 1.57-approximation algorithm in cubic graphs [13] and a
2-approximation algorithm in general graphs [14,15]. Let ψ3(G) denote the car-
dinality of a minimum 3-path vertex cover set in G. Observe that if a graph G
is a path or a cycle, then the following lemma for ψ3(G) is valid.

Lemma 3. Let Pn denote a simple path on n vertices and Cn denote a cycle on
n vertices, then ψ3(Pn) = �n

3 	 ≤ n
3 and ψ3(Cn) = 
n

3 � ≤ n+2
3 .

Proof. Consider a simple path Pn on n vertices. For i = 1, 2, · · · , n
3 , select every

3 · ith vertex from the path Pn in a set D. Observe that D is a 3PVC for the path
Pn and |D| ≤ n

3 . In the case of a cycle Cn, a similar combinatorial argument can
be given to prove that ψ3(Cn) ≤ n+2

3 . �



3-path Vertex Cover Problem in Pipartite Graphs 109

Now, we discuss the algorithm to get a 3PVC set D in a pipartite graph
G = (V,E), where V = V1 ∪ V2. The algorithm sequentially checks for all the
vertices of G. When it encounters a vertex v ∈ V having degree three, it checks
for the neighbors of v. Let λ denote the number of vertices in N(v) having
degree at least three. If λ < 2, then the algorithm adds v in D and updates G by
removing v from G. If λ ≥ 2, then the algorithm computes the optimal solution
(say D′) in the subgraph induced by N [v], and the neighbors of N(v). Let V ′

be the set containing the vertices in N [v] and the neighbors of N(v). As the
input graph G is a pipartite graph with Δ(G) ≤ 4, there does not exist an edge
between any pair of vertices in N(v) and |V ′| ≤ 13. Now, the algorithm updates
D = D ∪ D′ and removes the vertices selected in D′ from G.

When the algorithm encounters a vertex v ∈ V having degree four, it cal-
culates the value of λ in N(v). If λ < 3, then the algorithm adds v in D and
updates G by removing v from G. If λ ≥ 3, then the algorithm computes the
optimal solution (say D′) in the subgraph induced by N [v], and the neighbors
of N(v). Let V ′ be the set containing the vertices in N [v] and the neighbors of
N(v). Observe that, |V ′| ≤ 17. Now, the algorithm updates D = D ∪ D′ and
removes the vertices selected in D′ from G.

The algorithm continues the above procedure for each vertex in G. At last,
when the graph contains only paths and cycles, it optimally computes the solu-
tion and adds it to D.

The above steps are summarized in Algorithm 1.

Lemma 4. The set D, returned by Algorithm1, is a 3PVC for the given pipar-
tite graph G.

Proof. The algorithm sequentially checks for all the vertices of G. For each vertex
v ∈ V encountered with a degree three, the algorithm checks for its neighbors.
If less than two neighbors have degree at least three, the algorithm adds the
vertex v in D and removes v from G. If there are at least two neighbors of v
having degree at least three, then the algorithm finds the optimal solution for
the subgraph induced by N [v] and neighbors of N(v). Then, it adds the optimal
solution obtained from this induced subgraph in D and removes the vertices of
the optimal solution from G. When the algorithm encounters a vertex v ∈ V of
degree four, it checks for its neighbors. If less than three vertices in N(v) have
degree at least three, it adds the vertex v in D and removes v from G. Otherwise,
it finds the optimal solution in the subgraph induced by N [v] and neighbors of
N(v). Then, it adds the optimal solution obtained from this induced subgraph
in D and removes the vertices of the optimal solution from G. The algorithm
repeats the process in the updated graph G′ until only paths and/or cycles
remain in G′. Note that the set D′ is the minimum 3-path vertex cover of G′

(follows from Lemma 3). Thus, D = D ∪D′ returned by Algorithm1 is a 3-path
vertex cover for the given pipartite graph G. �

Lemma 5. Algorithm1 runs in time linear in the number of vertices of the input
graph, in the worst case.
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Algorithm 1. 3Pvc-Pb
Require: A pipartite graph G = (V, E) of maximum degree 4.
Ensure: A 3PVC set D of G.
1: D ← ∅, G′ ← G, and V ′ ← V .
2: for every v ∈ V ′ do
3: if dG′(v) = 3 then
4: Let λ denote the number of vertices in N(v) having a degree of at least 3.
5: if λ ≤ 1 then
6: D ← D ∪ {v}.
7: G′ ← G′ \ {v}, V ′ ← V ′ \ {v}.
8: else
9: Let G′′ = (V ′′, E′′) be a graph, where V ′′ consists of N [v] and the

neighbors of N(v).
10: Find a minimum 3PVC set D′ in G′′.
11: Update D ← D ∪ D′.
12: G′ ← G′ \ D′, V ′ ← V ′ \ D′.

13: else
14: if dG′(v) = 4 then
15: Let λ denote the number of vertices in N(v) having degree at least 3.
16: if λ ≤ 2 then
17: D ← D ∪ {v}.
18: G′ ← G′ \ {v}, V ′ ← V ′ \ {v}.
19: else
20: Let G′′ = (V ′′, E′′) be a graph, where V ′′ consists of N [v] and the

neighbors of N(v).
21: Find a minimum 3PVC set D′ in G′′.
22: Update D ← D ∪ D′.
23: G′ ← G′ \ D′, V ′ ← V ′ \ D′.

24: Find a minimum 3-path vertex cover set D′ of G′. � follows from Lemma 3
25: Update D ← D ∪ D′.
26: return D.

Proof. Observe that Algorithm 1 checks all the vertices sequentially in step 2.
If the number of vertices in the input graph G is n, then this step will take
O(n) time. For each vertex v ∈ V with dG(v) ≥ 3, the algorithm computes
λ, the number of vertices in N(v) having degree at least three. Based on λ, the
algorithm computes the solution for the subgraph induced by N [v] and neighbors
of N(v). These steps of the algorithm take constant time. Again, Algorithm1
finds a 3-path vertex cover in the updated graph G′ in step 24. This step can
be computed in O(n) time as G′ consists of only paths and cycles. All the other
steps of the algorithm take constant time. Hence, the worst-case time taken by
Algorithm 1 is O(n). �

Lemma 6. Let D be a 3PVC set returned by Algorithm1 and OPT be a 3PVC
set of minimum size for the given pipartite graph G, then |D| ≤ 3

2 · |OPT |.
Proof. Observe that Algorithm 1 evaluates a 3-path vertex cover of minimum
size for the cycles and paths (see step 24 of the algorithm). So, for proving the
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approximation factor, we consider the vertices with degree at least three taken
in D and prove that |D|

|OPT | ≤ 3
2 .

Consider each vertex v ∈ D of degree at least three. If v ∈ OPT , then the
algorithm achieves the best-case scenario by including v in D. Without loss of
generality, assume that v �∈ OPT . If dG(v) = 3, the algorithm considers two
cases to add v in D.

v

u

(a)

v

u

(b)

Fig. 3. Instance of a degree 3 vertex having exactly one neighbor with degree at least 3.

The first case, considered by the algorithm, is when there exists at most one
vertex u ∈ N(v) such that dG(u) ≥ 3 (see steps 5–7 in Algorithm 1). As v �∈
OPT , at least two vertices from N(v) must be in OPT to make the OPT a 3PVC
in G (for example, see Fig. 3 (a)). If the algorithm chooses two vertices from N(v)
along with v in D, then the approximation factor is 3

2 . If the algorithm chooses
all the three vertices of N(v), then either OPT contains N(v) or u �∈ OPT . In
the former case, the approximation factor is 4

3 < 3
2 . Note that the two vertices

(say x and y) in N(v)\{u} has degree at most two. The algorithm selects v in D
and removes v from G. Now, the degree of the two vertices x and y is one, and
still, the algorithm includes them in D, which means both the vertices x and y
are in OPT .

In the latter case, as both u, v �∈ OPT , N(u) must be in OPT (for example,
see Fig. 3 (b)). For the worst-case scenario, assume that N(u) ⊆ D. In that case,
dG(u) = 4. If dG(u) = 3, then after removing the vertex v from G, makes the
degree of u as two. The algorithm computes the optimal solution for all the
degree one and two vertices at last. There is no way the algorithm selects N [u]
optimally. If the degree of the vertices of N(u) is at least three and selected by the
algorithm earlier, then after removing N(u), the degree of u becomes 0 (cannot
be in D). So, the only way the algorithm includes N [u] in D, if dG(u) = 4.

Now, we argue the approximation factor of the algorithm by considering both
the vertices u (dG(u) = 4) and v (dG(v) = 3). Observe that OPT contains at
least five vertices from N(u) and N(v) (see Fig. 3 (b)), whereas D contains at
most seven vertices, including both u and v. So, the approximation factor is
7
5 < 3

2 .
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Fig. 4. Instance of a degree 3 vertex with at least two neighbors of degree at least 3.

For dG(v) = 3, the second case considered by the algorithm is when there
exist at least two vertices w, u ∈ N(v) such that dG(w) ≥ 3 and dG(u) ≥ 3 (see
steps 9–12 in Algorithm 1). In the second case, the algorithm finds an optimal
solution for the subgraph induced by N [v] and neighbors of N(v). As v �∈ OPT ,
at least two vertices from N(v) must be in OPT . If the algorithm computes
three vertices in D from the induced subgraph, then the approximation factor
is 3

2 .
Consider the case that the algorithm chooses all the four vertices of N [v] in

D, i.e., N [v] ⊆ D. Assume that OPT consists of two vertices from N(v), i.e.,
there exists a vertex w ∈ N(v), such that w �∈ OPT (for example, see Fig. 4 (a)).
As both v and w are not in OPT , there must be the case that N(w) ⊆ OPT
(for example, see Fig. 4 (b)). As the algorithm chooses w in D, dG(w) ≥ 3.
Otherwise, the algorithm would not choose w in D as already v ∈ D, and the
algorithm computes the optimal solution in the subgraph induced by N [v] and
neighbors of N(v). Now, we argue the approximation factor of the algorithm by
considering both the vertices v (dG(v) = 3) and w. Observe that OPT contains
at least two vertices from N(v) and N(w), whereas D contains N [v] and N(w).
If dG(w) = 3, the approximation factor is 6

4 . If dG(w) = 4, the approximation
factor is 7

5 (for example, see Fig. 4 (c)). So, for dG(v) = 3, the approximation
factor is at most 3

2 . Observe that, for each vertex v ∈ D with dG(v) = 4, the
algorithm considers two cases to include v in D. Out of these two cases, the first
case deals with the scenario when at most two vertices in N(v) have a degree
of at least three. The second case deals with the scenario when at least three
vertices in N(v) have a degree of at least three. The rest of the proof follows
the similar combinatorial arguments given for the degree three vertices above.
Thus, for each possible case, the approximation factor is at most 3

2 . Therefore,
the solution D, returned by the algorithm, is 3

2 · |OPT |, i.e., |D| ≤ 3
2 · |OPT |. �

Theorem 2. Algorithm1 is a 3
2 -approximation algorithm for the 3-path vertex

cover problem in pipartite graph G with maximum degree four. The algorithm
runs in O(n) time.
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Proof. Follows from Lemma 4, Lemma 5, and Lemma 6. �

5 Approximation Complexity

In this section, we show that the 3-path vertex cover (3PVC) problem is APX-
complete in bipartite graphs by exhibiting an L-reduction [4] from the vertex
cover problem in cubic graphs (Vc-Cg) to the 3PVC problem in bipartite graphs
(3Pvc-Bp). Note that Vc-Cg is known to be APX-complete [4].

Lemma 7 [3]. If G = (V,E) is a cubic graph and Copt is a minimum vertex
cover in G, then |Copt| ≥ |V |

2 .

Construction: Let cubic graph G = (V,E) denote an instance of Vc-Cg. We
construct an instance of 3Pvc-Bp (bipartite graph G′ = (V1, V2, E

′)) as follows:
Replace each edge uv ∈ E of G by a path u � v of five vertices in G′,

where the end vertices of the path are u and v (see Fig. 5). We call these three
vertices added in the path u � v other than u and v as added vertices. We also
call the end vertices u and v as node vertices. For each vertex vi ∈ V in the
graph G, add a support vertex, say v′′

i and an edge vv′′
i in the graph G′ (for

example, see the edges uu′′ and vv′′ in Fig. 5). Note that the construction is
similar to the NP-hardness proof construction of Sect. 3 (see Fig. 1). From this
construction, it follows that |V ′| = 2 · |V | + 3 · |E| = 2 · |V | + 3·|V |

2 · 3 < 7 · |V |
and |E′| = 4 · |E| + |V | = 4 · 3·|V |

2 + |V | = 7 · |V |.

u

u
u y v

v

v

Fig. 5. Gadget for an edge of the graph G.

To prove that 3Pvc-Bp is APX-complete, we first prove that 3Pvc-Bp
is APX-hard. The APX-hardness is proved by reducing the Vc-Cg to the
3Pvc-Bp via an L-reduction. Let G = (V,E) be an instance of Vc-Cg. Con-
struct the instance G′ = (V ′, E′) of 3Pvc-Bp as discussed above.

Lemma 8. 3Pvc-Bp is APX-hard.

Proof. Let C ⊆ V be a vertex cover (VC) in the graph G = (V,E). We construct
a 3-path vertex cover D for the graph G′ = (V ′, E′) from C as follows:

For each vertex vi ∈ C in G, take the corresponding vertex vi in D from G′.
As C is a VC in G, for each edge uv ∈ E in G, at least one of the end vertices
of the edge uv must be in C. If u ∈ C, then include the added vertex v′ from G′

in D; otherwise, include the added vertex u′ in D.
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Now, we prove that D is a 3PVC in G′. Observe that, for each edge-gadget
corresponding to each edge uv in G, D contains either the vertices u and v′, if
u ∈ C or v and u′. So, from every edge-gadget, the vertices selected in D forbid
a 3-path with no vertices in D. Further, if one of the vertices among u and v is
not in D, then its two adjacent vertices from the other two edge-gadgets must
be in D. Therefore, the subgraph induced by the vertices V ′ \ D does not have
a path of order three. Thus, D is a 3PVC for the graph G′.

Let the number of vertices in the graph G be n, i.e., |V | = n. As G is a cubic
graph, |E| = 3·n

2 . There is precisely one added vertex taken in D from each edge-
gadget along with the vertices in C. Therefore, |D| = |C| + |E| = |C| + 3·n

2 . Let
Copt be a minimum vertex cover for G, then by Lemma 7, |Copt| ≥ n

2 . Let Dopt be
a minimum 3PVC for G′, then |Dopt| ≤ |Copt|+3· n2 ≤ |Copt|+3·|Copt| ≤ 4·|Copt|.

Conversely, let D be a 3-path vertex cover in G′. If D contains any of the
support vertices, we delete the support vertex and add its neighbor (node vertex)
in D if the neighbor is not in D. We construct a vertex cover C from the 3-path
vertex cover D as follows:

For each node vertices vi ∈ D in G′, take its corresponding vertex from G in
C. If C is a VC in G, then the proof is complete. If C is not a VC in G, then
there exists an edge uv ∈ E in G, for which neither of the end vertices is in
C. Observe that, in the corresponding edge-gadget of the edge uv, D does not
contain the node vertices and the support vertices (otherwise, one of the vertices
u or v must be in C). That means D contains the added vertices u′ (otherwise,
u′′ −u−u′ form a 3-path) and v′ (otherwise, v′′ −v−v′ form a 3-path) to satisfy
the 3PVC condition. We remove the vertex u′ from D and add u in D. Repeat
the process until getting a VC in the graph G.

Observe that |C| ≤ |D|− |E| ≤ |D|−3 · n
2 (as from each edge-gadget, at least

one vertex out of three added vertices must be in D). Let D be any 3PVC of G′

and C be a corresponding VC for G, and Dopt, Copt be the minimum 3PVC for
G′ and corresponding minimum VC for G, respectively.
Then |D| − |Dopt| ≥ |C| + 3 · n

2 − |Copt| − 3 · n
2 .

|D| − |Dopt| ≥ |C| − |Copt|.
This gives an L-reduction from Vc-Cg to 3Pvc-Bp with α = 4 and β = 1. �

Note that 3Pvc-Bp is in APX [9]. As per Lemma 8, 3Pvc-Bp is APX-
hard. Therefore, 3Pvc-Bp is APX-complete.

6 Conclusion

In this paper, we studied the 3-path vertex cover problem in different graph
classes. We provided a linear time NP-completeness proof for the problem in
planar bipartite graphs. With respect to approximation algorithms, we proposed
a 1.5-approximation algorithm for the 3PVC problem in linear time. We proved
that the 3PVC problem is APX-complete in bipartite graphs.

From our perspective, the following open problems are worth pursuing:
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1. An exact exponential algorithm [5] for the 3PVC problem in pipartite graphs
- Note that such algorithms exist for general graphs, but we hope to exploit
the pipartite structure to obtain more efficient algorithms.

2. Unit disk graphs [2] - It is well-known that the 3PVC problem is NP-hard in
unit disk graphs. We plan to investigate non-trivial approximation algorithms
for the same.
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Abstract. The purpose of Profit Maximization (PM) problem in social
advertising is gaining profit generated by adopters as much as possi-
ble by launching some initial adopters as information sources to trig-
ger the spread of promotion information. Many related studies mainly
focus on pure network, single product and one-dimension diffusion model.
Inspired by real advertising activities in social networks, we propose
the Dual-Attribute Compete (DAC) model where the information about
competitive entities can spread simultaneously. Moreover, it not only
captures attributes of both potential consumers and products but also
reflects the relationship between them. Under DAC model, we study the
Competition-based Generalized Self-profit Maximization (CGSM) prob-
lem aiming to select at most k individuals to form an optimal seed set as
the source of information diffusion, so as to maximize the profit obtained
by marketers. Considering that the objective function of CGSM problem
is generally nonsubmodualr, we design R-CGSM algorithm. Based on
martingale analysis and the concept of shapley value, it uses sandwich
method to get a pretty good solution of CGSM problem. We evaluate
our proposed algorithm by conducting experiments on one synthetic data
set and three real world data sets. Results of experiments validate the
effectiveness and accuracy of R-CGSM algorithm.

Keywords: Profit maximization · Nonsubmodularity · Competitive
social advertising · Dual-Attribute networks

1 Introduction

Due to the rapid development and expansion of social media sites and plat-
forms, numerous work, such as [2,8,18–21], focus on several extensions of classi-
cal Influence Maximization (IM) problem proposed in [12]. For example, Profit
Maximization (PM) problem proposed in [19,20] changes the objective function
from influence spread to profit spread. [3,4] pay attention to the similar problem
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with nonsubmodular objective function. The main difference between them is
that the former confines the number of seed nodes while the latter underlines
the influence of nodes’ similarity on their interaction. Considering that many
algorithms designed for IM problem requires the objective function to be sub-
modular, they are not suitable for nonsubmodular PM problem. [5,6,9–11,15,22]
provide new methods to solve nonsubmodular optimization problem. Except for
changing objective function, some extensions of IM problem are proposed under
novel diffusion models. In order to capture the full spectrum of entity interactions
from competition to complementarity, [14] proposes Com-IC model and studies
IM problem under this model. Multi-Feature diffusion model is firstly proposed
in [7]. Then, Multi-attribute Independent Cascade Model and Multi-attribute
based Influence Maximization Problem are studied in [17] while budgeted profit
maximization under multiple features propagation of one product is proposed in
[1].

Inspired by competitive advertising, we propose Dual-Attribute Compete
(DAC) model in this paper. It not only reflects the relationship between poten-
tial consumers and promotional products but also considers the influence of
their attributes. Then we formulate the Competition-based Generalized Self-
profit Maximization (CGSM) problem whose objective function is not submod-
ualr in general. Based on sandwich method, a three-phase algorithm, R-CGSM
algorithm, making full of reverse reachable set with shapely value is designed in
this paper. Its efficiency is evaluated by the results of a series of experiments
conducted on both synthetic and real data sets of social network.

The remainder of this paper is organized as follows: Sect. 2 introduces Dual-
Attribute Compete model and formulates CGSM problem. The detail of R-
CGSM algorithm is given in Sect. 3. Section 4 shows the experimental results,
and we conclude in Sect. 5.

2 Problem Formulation

2.1 Dual-Attribute Compete Model and Diffusion Dynamics

We abstract a Dual-Attribute network as G = (V,E,W,C,M,L,Ω, ω) where V ,
E, W , C, M , L, Ω and ω represent users, social ties, initial influence probability,
non-overlapping community structure, users’ emotion tendency, users’ labels, the
relationship between users and products’ features and the weight of products’
features, respectively. What should be emphasized is that community structure
C = {C1, C2, . . . } satisfies V =

⋃|C|
i=1 Ci and Ci ∩ Cj = ∅ for i, j = 1, 2, . . . , |C|.

Now, we introduce the meaning of M,L,Ω, ω. For each node v ∈ V representing
user of social networks, Mv = 0 means node v is impartial and objective; Mv ∈
[−1, 0) if node v dislikes the promoted products or the company which launches
this product, otherwise Mv ∈ (0, 1]. The binary-valued matrix L shows whether
associations between nodes and labels exist or not. Given l labels, Lv,i = 1 if
node v holds label i for i = 1, 2, . . . , l, otherwise Lv,i = 0. These two kinds of
information actually reveal user’s attributes. For promoted products, sale-points
can be regarded as their features. If node v is not interested in a sale-point
remarked as i, the information about this feature can not persuade v to buy
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the product. We set Ωv,i = 0 to reflect this case. Therefore, given o features of
promoted products, Ωv,i = 0 or 1 for v ∈ V, i ∈ {1, 2, . . . , o}. At the same time,∑o

i=1 ωi = 1 because ω is the weight of product’s’feature. Then, we recall the
definition of influence probability proposed in [4].

Definition 1. ([4]) The influence probability between adjacent nodes u and v in
an attribute network is defined as Pu,v = a · Peu,v + (1 − a) · Piu,v where weight
parameter a ∈ [0, 1], Pe and Pi are two kinds of influence strength which are
based on initial influence probability W and calculated from the perspective of
emotion tendency and social interactions.

Inspired by the MF-model studied in [7] and Com-IC model proposed in
[14], we define DAC model as follows. There are at least two entities involved in
DAC model, and we focus on a special case where only two entities, A and B, are
considered. Let φA(v) ∈ (0, 1] represent the modified profit with respect to entity
A generated by A-adopter v. G′ = ∪o

i=1G
i and Gi = (V i, Ei) is a sub-graph of

G. Each node v ∈ V satisfying Ωv,i = 1 is remarked as vi ∈ V i and Ei ⊆ E. For
(ui, vi) ∈ Ei, i = 1, . . . , o, pui,vi = Pu,v represents the probability with which
user ui successfully spreads the information about feature i to user vi. Only
the information about feature i spread on Gi and the process is independent to
others. Now, we consider the information dissemination on Gi. We use v instead
of vi and set qi(v) = q(v) = {qA|∅(v), qA|B(v), qB|∅(v), qB|A(v)}. All the nodes
initially stay in the joint state of (Ai-idle, Bi-idle). For node v that does not
accept Bi, it transforms from Ai-idle to Ai-accepted with probability qA|∅(v). If
v is Bi-accepted and informed of Ai, it becomes Ai-accepted with probability
qA|B(v). The meaning of qB|∅(v) and qB|A(v) are similar. We use the assumption
that 0 ≤ qA|B(v) < qA|∅(v) = 1 and 0 ≤ qB|A(v) < qB|∅(v) = 1 for v ∈ V to
reflect the competition between A and B. After all dissemination terminates, we
check the adoption of node v. For v ∈ V , we define r(v,Ai) = 1 if node v is
Ai-accepted, otherwise r(v,Ai) = 0. Each node v randomly picks an activation
thresholds θA(v) ∈ [0, 1]. And if node v satisfying

∑o
i=1 ωir(v,Ai) ≥ θA(v), node

v adopts A. The activation condition of v with respect to B is similar. Because
of qA|B(v) > 0 and qB|A(v) > 0, node v may accept both Ai and Bi.

Now, we consider the DAC model as a information diffusion model. Let
SA, SB ⊂ V be two seed sets. At time t = 0, for i = 1, 2, . . . , o, each node
belongs to SA ∩ V i accepts Ai while Bi is accepted by SB ∩ V i. At each time
step t ≥ 1, for a node ui becoming Ai-accepted at time t−1 and one of its neigh-
bor vi, information about Ai has only one chance to successfully spread from ui

to vi with probability Pu,v. If node vi stays in the joint state of (Ai-idle, Bi-idle)
and is informed about both Ai and Bi at the same time step, tie-breaking rule
is used to decide its state. The tie-breaking rule consists of two phases: generate
a random permutation π of vi’s in-neighbors who point to vi with live edges
and accept Ai or Bi; test vi with each such in-neighbor and its accepted item
following the order of π. If there is an in-neighbor ui accepting both Ai and
Bi, then test both of them following their order of acceptation by ui. When the
diffusion of all features are terminated, each node’s adoption is fixed.
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2.2 Problem Statements

Given that DAC model highlights the independent cascade diffusion of features,
we underline some assumptions as follows before formulating Competition-based
Generalized Self-profit Maximization problem.

– There exists no node satisfying Ωv,i = 0 for every i ∈ {1, 2, . . . , o}, that is,
each node v ∈ V is interested in or can accept at least one feature.

– If node v does not adopt A, it can not generate profit with respect to A
regardless of its adoption about B. What’s more, if v adopts both A and B,
it still has chance to spread information to its neighbors whereas the profit
with respect to A generated by v does not be considered when the total profit
is calculated.

Definition 2 (CGSM problem). Given G = (V,E,W,C,M,L,Ω, ω), con-
stant k, two competitive entities A and B, parameter set q(v) and profit φA(v)
for each node v ∈ V , coefficient a ∈ [0, 1] and probability distribution PB(r) over
B = {SB|SB ⊂ V, |SB | = r} which collects all possible B seed sets, Competition-
based Generalized Self-profit Maximization problem aims to find a A-seed set
S∗

A ⊂ V such that the expected profit generated by A-adopters is maximized
under DAC model, i.e.

S∗
A ∈ arg maxSA⊆V,|SA|≤kΦA(SA, SB), (1)

where ΦA(SA, SB) =
∑

SB∈B

Pr[SB]
o∑

i=1

∑

gi

Pr[gi] · ωi

∑

v∈Igi,SB (SA)

φA(v) and

Igi,SB(SA) is the set of nodes in the realization gi with SB of subgraph Gi

which can receive the information spread from SA and become (Ai-accepted,
Bi-idle/rejected).

We propose the following theorem.

Theorem 1. CGSM problem is NP-hard and computing the accurate value of
ΦA(SA, SB) for two fixed seed sets SA and SB is #-P hard. Additionally, even
though SB is fixed, ΦA(SA, SB) is not submodular with respect to SA in general.

3 The Algorithm

To address CGSM problem, we propose R-CGSM algorithm which consists of
three phases.

3.1 Model Influence Probability

Taking initial influence probability, community structure and nodes’ attributes
into consideration, this phase recalculates the influence probability between
nodes by Algorithm 1, where Wu,v is related to (u, v) ∈ E and Wu is a vector
recording the initial influence probability between u and each of its neighbors.
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Algorithm 1. Model Influence Probability (G = (V,E,W,C,M,L), a)
1: Initialize P , Pe, Pi, IS, TS, LS as zero matrix.
2: for (u, v) ∈ E do
3: if M(u) · M(v) > 0 then
4: Peu,v = 1 − |M(u)| − |M(v)||.
5: else
6: Peu,v = ||M(u)| − |M(v)||.
7: ISu,v =

Wu,v−minu,v∈V Wu,v

maxu,v∈V Wu,v−minu,v∈V Wu,v
.

8: if u and v are in the same community then
9: TSu,v = σ(W T

u · Wv) and LSu,v = σ(LT
u · Lv) where σ(x) = (1 + e−x)−1.

10: Piu,v =
(
1 + e6−4(ISu,v+TSu,v+LSu,v)

)−1

.

11: Pu,v = a · Peu,v + (1 − a) · Piu,v.

12: Return P

3.2 Find Candidate Solutions

Given that the objective function of CGSM problem is nonsubmodular, it firstly
produces approximate solutions for ΦA,u and ΦA,l representing the upper and
lower bounds of CGSM problem’s objective function ΦA. Then, it finds a solution
of ΦA based on the concept of shapley value.

We have emphasized some assumptions in Sect. 2.2. Now, ΦA,u and ΦA,l are
obtained by changing them. The former can be acquired by assuming profit with
respect to A generated by node v adopting both A and B does not be ignored.
And the lower bound function ΦA,l is obtained under another assumption that
the information spread terminates at an adopter of both A and B. Take a further
step of Theorem 11 in [14], we can draw a conclusion that these two functions
are submodular. Therefore, we can obtain solutions of ΦA,l and ΦA,u by Revised-
IMM algorithm.

Now, we briefly introduce the framework of Revised-IMM algorithm. Given
G = (V,E) and SB sampled according to PB(r), randomly select vi with prob-
ability φA(v)·ωi

φA(V ) . Generate a realization gi of Gi by removing each (u, v) ∈ Ei

with probability 1−pu,v and get a reverse reachable set RM of vi. Revised-IMM
algorithm generates enough Multi-Sampling RM and puts them into RP until
a certain stopping condition is satisfied. Then, it uses greedy method to obtain
SA,l (SA,u) which is a solution of bound function ΦA,l (ΦA,u). What should
be highlighted is that Revised-IMM algorithm has two different procedures to
generate RM when focusing on ΦA,l and ΦA,u.

As for objective function, the fundamental idea to solve it is based on shapley
value, a well-known concept from cooperative game theory. As shown in [16],
it may outperform greedy method in the terms of the solution quality when
objective function is not submodular. Because computing shapley value of nodes
exactly is difficult, we use some sampling techniques to find its estimator. The
goal of Algorithm 2 is computing the marginal contribution that each node makes
to the diffusion process. The test mentioned in Line 10 is based on tie-breaking
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rule introduced in Sect. 2.1. Algorithm 3 generates a rank list by sorting nodes in
non-increasing order according to their shapley value. And the result obtained by
Algorithm 3 lays a sound foundation for Algorithm 4. After initializing seed set
SA as an empty set, Algorithm 4 tests each node in the order given by Algorithm
3 and selects some nodes which are not adjacent to selected nodes. If every node

Algorithm 2. Compute Marginal Gain (G = (V,E), P,Ω, ω, PB(r), q, φA)
1: Initialize SA,temp as an empty set and MG as a n-tuple zero vector. Create two

empty queues Acan and Bcan.
2: Sample SB according to the probability distribution PB(r) and mark each node v

in SB as Bi-accepted if Ωv,i = 1 for i = 1, 2, . . . , o.
3: for j = 1 to |V | do
4: Put the first j nodes in Aπ into SA,temp.
5: for every subgraph Gi do
6: for every v ∈ SA,temp ∩ V i do
7: Put v into Acan and mark v as Ai-accepted.

8: while Acan is not empty do
9: for every out-neighbor w of nodes in Acan do

10: Test w and denote its joint state with respect to both A and B.
11: if w is Ai-accepted then
12: Put w into Acan.

13: Calculate the total profit based on the first j nodes in Aπ. And take the dif-
ference between it and the total profit based on the first j − 1 nodes in Aπ as the
marginal gain of the j-th node in Aπ.

14: Update MC according to each node’s marginal gain.
15: Return MC

Algorithm 3. Construct Rank List(G = (V,E), P,Ω, ω, PB(r), q, φA)
1: Denote the number of repetitions and a randomly sampled set of permutations as

mc and Π, then initialize RL as an empty list.
2: For i = 1, 2, . . . , o, construct subgraph Gi.
3: for all node v ∈ V do
4: Initialize each node’s shapley value to 0.

5: for all Aπ ∈ Π do
6: for all nodes in Aπ do
7: Initialize nodes’ temporal shapley value to 0 and MG to a zero matrix.
8: for k = 1 to mc do
9: MG′ = Compute Marginal Gain (G = (V, E), P, Ω, ω, PB(r), q, φA).

10: MG = MG + MG′.
11: Update nodes’ temporal shapley value as average of elements of MG.

12: Update nodes’ shapley value as average value of their temporal shapley value.

13: Sort the nodes in non-increasing order by their shapley value to obtain RL.
14: Return RL
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has already been selected as seed or is adjacent to at least one seed node, we
reconsider nodes in V \SA and put one node whose shapley value is highest into
the seed set.

Algorithm 4. Select nodes (RL, n, k)
1: Initialize SA as an empty set and Scan as an empty list.
2: for i = 1 to n do
3: Denote the i-th element of RL as v.
4: if v /∈ SA and v is not adjacent to any node in SA then
5: Put v into SA.
6: if |SA| ≥ k then
7: Break.
8: else
9: Append v to Scan.

10: if |SA| < k then
11: for j = 1 to k − |SA| do
12: Put the j-th element of Scan into SA.

13: Return SA

3.3 Sandwich Approximation

Algorithm 5. R-CGSM
1: P = Model influence probability (G = (V, E, W, C, M, L), a).
2: Initialize SA,Φ, SA,Φu and SA,Φl as empty sets.
3: RL = Construct Rank List (G = (V, E), P, Ω, ω, PB(r), q, φA).
4: SA,Φ = Select nodes (RL, n = |V |, k).
5: SA,Φu = Reversed IMM (ΦA,u) and SA,Φl = Reversed IMM (ΦA,l).
6: S∗

A = arg maxSA∈{SA,Φ,SA,Φu ,SA,Φl
} ΦA(SA, SB).

7: Return S∗
A

Algorithm 5 firstly finds solution SA,Φ, SA,Φl
and SA,Φu

for ΦA(SA, SB), ΦA,l

and ΦA,u. Then, it selects the final optimal approximation solution S∗
A among

SA,Φ, SA,Φu
and SA,Φl

such that ΦA(SA, SB) reaches its maximum with S∗
A.

Theorem 2. S∗
A returned by R-CGSM algorithm satisfies

ΦA(S∗
A, SB) ≥ max

{
ΦA(SA,Φu

, SB)
ΦA,u(SA,Φu

, SB)
,
ΦA,l(SAo , SB)
ΦA(SAo , SB)

}

· (1 − 1/e) · ΦA(So
A, SB),

where So
A is the optimal solution maximizing ΦA(SA, SB).
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4 Experiment

A synthetic graph and three real-world social networks are used in our experi-
ments. And the algorithms are implemented in Python.

– Synthetic: This is a relatively small acyclic directed graph randomly generated
with 2708 nodes and 5278 edges.

– PFH(Petster-Friendships-Hamster data set in [13]): This network contains
12534 social relationships between 1858 users, abstracted from the website
hamsterster.com.

– PHH(Petster-Hamster-Household data set in [13]): 921 nodes and 4032 edges
are included in PHH data set, where nodes represent individuals and edges
represent friendship between individuals.

– MI (Moreno-Innovation data set in [13]): This directed network captures inno-
vation spread among 246 physicians. A node represents a physician and an
edge between two physicians shows their friendship or cooperation.

(a) r = 5, a = 0.5 (b) r = 5, l = 20

Fig. 1. influence of l, a on Synthetic.

Firstly, we conduct some experiments on Synthetic to study the influence of
two parameters, l and a. Each element in W is chosen from {0.1, 0.01, 0.001} and
the community structure is the result of Louvain Algorithm. Results are shown
in Fig. 1. When a few seed nodes are needed, the difference of profit generated in
different cases are not big. Although profit under the condition l = 10 is always
smallest, the gap of profit with l = 20 and l = 30 is not pretty large. In real social
advertising, more details usually mean higher cost when collecting data. So we
set l = 20 for following experiments. The second one illustrates that the profit
changes with weight a, which suggests marketers to pay attention to not only
social interaction but also emotion tendency of potential adopters or purchasers
in social networks.

Then, we concentrate on the influence of r. When calculating the profit gen-
erated by A-adopters on Synthetic, PHH and MI data set, Fig. 2 reflects the
influence of the number of seed picked by its competitive entity B. We can draw
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(a) Synthetic (b) PHH (c) MI

Fig. 2. influence of r

a conclusion that less initial adopter hired by B will lead to more profit for A.
Such a result is consistent with our common knowledge about competition.

Now, we study the influence of other parameters on Mi data set. After con-
fining the number of seed nodes for B, we explore the influence of o. As is shown
in Fig. 3 (a), more information about feature of entities leads to smaller value of
objective function. The reason may be that getting more information about two
competitors can make potential consumer more likely to accept both of them.
They are unsure of which one is better to choose. As a result, the expected profit
decreases. If we relax the assumption such that the state of potential shopper
with respect to B does not impact the calculation of profit related to A, such
conclusion may change. Other figures in Fig. 3 show the influence of the choice

Fig. 3. influence of o, W and C on MI
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of W and C. We respectively conduct experiments under three assumptions: (b)
W is randomly generated while |C| = |V |; (c) |C| = |V | and each element in
W satisfies wu,v = 1

d(v) where d(v) is the in-degree of node v; (d) both W and
C are randomly generated while |C| < |V |. Different choices result in different
value of objective function despite the fact it always increases with k. Without
special introduction, we conduct further experiments with the third setting.

(a) Synthetic (b) PFH

(c) PHH (d) MI

Fig. 4. comparison of algorithms.

Last but not least, we compare R-CGSM with other two algorithms. One is
Random algorithm which randomly selects seed nodes for A. The other is Degree
algorithm sorting all the nodes according to their degree and picks the top-20
nodes as seeds. Figure 4 illustrates the expected profit generated by all the A-
adopter on these three algorithms. The performance of algorithms is compared
in four different data sets while k varies from 1 to 20. As is shown, R-CGSM
outperforms other two algorithms.

5 Conclusion

In this paper, we propose Competition-based Generalized Self-profit Maximiza-
tion problem in Dual-Attribute networks. Because the objective function of
CGSM problem is generally nonsubmodular, we design R-CGSM to address
it. R-CGSM algorithm is a three-phase algorithm and combines the concept
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of shapley value and the method of sampling. Finally, a series of experiments
are conducted on both artificial and real-world networks to evaluate the effec-
tiveness of our proposed algorithm. The simulation results show the superiority
of R-CGSM algorithm.
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Abstract. A cluster is a set of points, with a predefined similarity mea-
sure. In this paper, we study the problem of computing the largest pos-
sible convex hulls, measured by length and by area, of the points that
are selected from a set of convex-hull disjoint clusters, one per cluster.
We show that the largest convex hulls for convex-hull disjoint clusters
of constant size, measured by length or area, can be computed in O(n4)
time, where n is the sum of cardinalities of all clusters. Our solution of
either considered problem is doubly founded on a structure of clusters,
whose all points are in convex position. The restricted problem for the
set of clusters, whose points are in convex position, can be reduced to a
sequence of subproblems of computing the single-source shortest-paths
in a weighted graph. Not only our results significantly improve upon the
known time bound O(n9), but also our algorithms can be used to improve
the known results on the problems of computing largest convex hulls for
disjoint line segments or squares.

1 Introduction

Imprecision on input data has been studied for a couple of decades in compu-
tational geometry, because coordinates of the input points obtained from the
real world may have some error interval [5]. An imprecise point is usually given
by a polygonal region, in which the exact point lies [7]. Various methods for
handling imprecise points have been proposed, when some computation is done,
for example to find the convex hull [5], the Voronoi diagram [1], or a traveling
sales route [4].

Löffler and van Kreveld [7] have given a systematic study of convex hulls
for imprecise points. Assume that an imprecise point is represented by a convex
region (e.g., a line segment or a disk), which contains the exact point. The convex
hull for convex regions is defined as that of the points, which are selected from
regions, one per region. Then, it is a natural requirement to compute the largest
and/or smallest possible convex hulls, measured by length and by area. Most
variants of this problem are NP-hard, except for few special cases in which the
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input is a set of squares or parallel line segments [7]. Recently, Dı́az-Báñez et
al. [3] gave an important result that all four variants of the problem can be
solved in polynomial-time, provided that convex regions are pairwise disjoint.
However, the time complexities of their algorithms may be as high as O(n9) [3].

Observe that the vertices of convex regions play an important role in many
computations concerning imprecise points. In most cases, the computation of
largest and smallest possible convex hulls for imprecise points needs only the
vertices defining the regions; otherwise, most considered problems are NP-hard
[3,7]. For example, the known polynomial-time algorithms for computing the
convex hulls for a set of disjoint convex regions, presented by Löffler and van
Kreveld [7] and Dı́az-Báñez et al. [3], rely on the fact that any considered problem
has an optimum solution in which all vertices of the reported convex hull belong
to the set of vertices of given regions. Also, it is clear that representing an
imprecise point with the vertices of its corresponding region makes the considered
problems be simpler, and it is suitable in real applications.

From the above discussion, the concept of clusters can be used to represent
imprecise points. A cluster is a set of points, with a predefined similarity measure;
the exact point is assumed to be one of points in the cluster. In this paper, we
study the problems of computing the largest possible convex hulls, measured by
length and by area, of the points that are selected from a set of constant size,
convex-hull disjoint clusters, one per cluster.

1.1 Our Results

In this paper, we focus on the computation of convex hulls for a set S of constant
size, convex-hull disjoint clusters, or simply, disjoint clusters of constant size. We
will refer to MaxPCH and MaxACH as the problems of finding the convex hulls
for S, which are of maximum perimeter and maximum area, respectively.

A solution to either considered problem is feasible if it is the convex hull of
points selected from clusters, one per cluster. A solution is optimum, denoted by
OPT , if its corresponding measure is maximum.

Let P be the set of points of all clusters, and denote by CH(P ) the convex
hull of all points of P . The first result for our algorithms is the following.

Lemma 1. OPT is identical to CH(P ), or there exists a cluster C such that at
least two points of C are on CH(P ) and exactly one point of C belongs to OPT .

Proof. Omitted in this extended abstract. �
A set of points is said to be in convex position if all points form the vertices

of a convex polygon. An important observation made in this paper is that any
restricted problem for a set of clusters, whose all points are in convex position,
can be reduced to a number of the subproblems of computing the single-source
shortest-paths in a weighted graph. For a set of arbitrarily given point clusters,
the points on CH(P ) also help divide the considered problem into subproblems,
which deal with point clusters in convex position.
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We will first present the O(n4) time algorithms for MaxPCH and MaxACH
for a set of disjoint clusters of size two. (A cluster of size two can be considered as
the discrete representation of a line segment.) Both algorithms can be generalized
to a set of disjoint clusters of constant size, with the same time bound. Not only
our results significantly improve upon the known time bound O(n9), but also the
obtained solutions are unified and simple. Moreover, our algorithms can be used
to improve the known results on the largest convex hull problem for disjoint line
segments or suqares. A summary of our new results on MaxPCH and MaxACH,
and some of their variants is given in Table 1.

Table 1. Summary of new and previous results on MaxPCH and MaxACH, and some
of their variants.

Problem Model Restrictions New results Previous ones

MaxPCH, MaxACH Clusters Disjoint, constant size O(n4) (Th. 4) O(n9) [3]

MaxACH Line segments Disjoint, convex position O(n2) (Th. 1) O(n3) [7]

MaxACH Squares Non-overlapping O(n4) (Th. 4) O(n5) [6]

MaxPCH Squares Non-overlapping O(n4) (Th. 4) O(n10) [7]

2 Algorithms for a Set of Disjoint Clusters of Size Two

Denote by S a set of disjoint clusters of size two, and OPT a largest convex hull
for S, measured by perimeter or area. We use {a, b} or {a′, b′} to represent the
points of a cluster. For points p and q in the plane, denote by pq the line segment
jointing p and q, and |pq| the length of pq. Denote by |R| and ‖R‖ the perimeter
length and area of a region R, respectively. If R′ is a convex chain, we also use
|R′| and ‖R′‖ to represent the perimeter length of R′ and area of the region
bounded by R′ and the segment connecting two endpoints of R′, respectively.

In the following, we present our algorithm for the problem MaxPCH for a set
of n disjoint clusters of size two, and then modify it slightly for MaxACH.

2.1 An Overview

Assume below that some clusters have both points a and b on CH(P ); otherwise,
CH(P ) is just the solution OPT (Lemma 1). Consider first the situation in
which that there exists a cluster such that one of its points, denoted by s, is
on CH(P ), and the other is in the interior of CH(P ). From the definition of
MaxPCH, point s is on OPT . Let t be the (identical) copy of point s. Take s
and t as two points on CH(P ). Then, the problem MaxPCH is reduced to that
of finding the maximum-perimeter convex hull of s and the selected points, one
per other cluster. Let U ← CH(P ). Denote by MPCH(U, s, t) the restricted
problem MaxPCH, in which s (resp. t) is called the source (resp. target) point.
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The other situation is that if a point a of any cluster is on CH(P ), point b is on
CH(P ), too. Let us fix a cluster C = {a, b}. By letting s, t ← a and U ← CH(P−
{b}), we face with a problem MPCH(U, s, t) of finding the maximum-perimeter
convex hull of s and the selected points, one per other cluster. Also, by letting
s, t ← b and U ← CH(P − {a}), we have the other problem MPCH(U, s, t).
Clearly, OPT is the largest of their solutions.

Let us focus on the optimum solution to MPCH(U, s, t). If a cluster has
only one of its points, say, p on chain U , then p appears in OPT . Such clusters
can be easily dealt with, because OPT can be obtained from the solutions of
MPCH(U1, s, p) and MPCH(U2, p, t), where U1 is the portion of U between s
and p, and U2 is the portion of U between p and t.

From the above discussion, we will consider only the clusters, whose points
a and b are on U . Denote by T the set of clusters, whose points a and b are
both on U . Consider a clockwise scan of points on U , starting from s. Suppose
that for each cluster {a, b} in T , point a is encountered before b. From the
cluster disjointness, we define an order of the clusters in T as that of their
points a on chain U . Assume that the number of elements in T is m, i.e., T =
{{a1, b1}, . . . , {am, bm}}. For ease of presentation, we will use Ti to denote the
first i elements of T , 1 ≤ i ≤ m. Clearly, in addition to U , s and t, set T is also
an input of MPCH(U, s, t).

Our method is to first solve the simplest variant of MPCH(U, s, t), in which
the points of all clusters are in convex position, and for each cluster in T , two
points ai and bi, 1 ≤ i ≤ m − 1, are not adjacent on U , except for am and bm.
See Fig. 1 for an example, where the endpoints of a dotted segment represent a
cluster of two points. Particularly, we call it an atomic problem MPCH(U, s, t).
A linear time solution to the atomic problem is given. Next, we present an O(n2)
time algorithm for a variant of MPCH(U, s, t), in which the points of all clusters
are in convex position. Finally, our solution is generalized to a set of arbitrarily
given clusters.

2.2 Optimum Solution of an Atomic Problem

Denote by C an optimum solution of the atomic problem MPCH(U, s, t). For
ease of presentation, C is also called an atomic chain. A dynamic programming
algorithm can be given. If m = 1, then C is determined by the larger of (|sa|+|at|)
and (|sb|+ |bt|). Assume that m > 1. Since either am or bm appears in C, we can
consider two restricted solutions A and B, which contain am and bm respectively.
The solution for Tm (i.e., |C|) is then the larger of |A| and |B|. For the atomic
subproblem with respect to set Tm−1, let A′ and B′ be two restricted solutions
such that A′ and B′ contain am−1 and bm−1, respectively (Fig. 1(a)). Denote by
CH(am ∪A′) (resp. CH(am ∪B′)) the convex hull of point am and all points of
A′ (resp. B′). The larger of |CH({am} ∪ A′)| and |CH({am} ∪ B′)| is then |A|,
and the larger of |CH({bm} ∪ A′)| and |CH({bm} ∪ B′)| is |B|. In this way, C
can be eventually computed.
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A′

am

bm

am−1

bm−1

s, t

U

(a) (b)

B′

am

bm

am−1

bm−1

s, t

U

CH(B′ ∪ am)CH(A′ ∪ am)

Fig. 1. An instance of the atomic problem MPCH(U, s, t).

Since all given points are in convex position, the operation of computing a
convex hull, say, CH({am} ∪ A′), can be performed in constant time. This is
because am is connected to two endpoints of a segment of A′, which has am−1

as one of its endpoints. Hence, C as well as |C| can be found in linear time.
For the largest convex hull measured by area, if m = 1, then C is the triangle

of larger area, between �s,a,t and �s,b,t. (In the case that s is identical to t, the
induction base is m = 2.) At every step of our dynamic programming algorithm,
it also takes a constant time to find the triangle of larger area, between two
considered triangles. Again, C as well as ‖C‖ can be found in linear time.

Lemma 2. The atomic variant of MaxPCH or MaxACH for a set of disjoint
clusters of size two can be solved in O(n) time, provided that CH(P ) is given.

2.3 Solving MPCH(U, s, t) for Point Clusters in Convex Position

Let I be the (largest) set of clusters such that for any two consecutive clusters
in I, say, {a, b} and {a′, b′}, points b and a′ are adjacent on U . Suppose that
I has k clusters, say, C1, C2, . . . , Ck, indexed in the order in which the clusters
appear on U (Fig. 2). For a cluster Ci = {a, b}, 1 ≤ i ≤ k, denote by Ji the set
of clusters, whose points are on the portion of U between a and b, including Ci

itself. Let J0 (resp. Jk+1) be the set consisting of one cluster {s, s} (resp. {t, t}).
Denote by |Ji| the number of clusters in Ji. Let {alast, blast} (resp.

{afirts, bfirst}) be the last (resp. first) cluster of Ji, 1 ≤ i ≤ k. An atomic
chain on Ji can be then defined as the optimum chain (in perimeter length or
area) consisting of |Ji| points, one per cluster.

Lemma 3. Any optimum solution OPT of MPCH(U, s, t) can be decomposed
into a sequence of atomic chains, in which the connection between two consec-
utive chains consists of the line segments connecting point alast ∈ Ji or b ∈ Ji
with point a ∈ Ji+1 or blast ∈ Ji+1, 1 ≤ i ≤ k. Moreover, point s (resp. t) is
connected by a line segment to a ∈ J1 or blast ∈ J1 (resp. b ∈ Jk or alast ∈ Jk).

Proof. Omitted in this extended abstract. �
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To solve the problem MPCH(U, s, t) for a set of point clusters in convex
position, we will introduce a data structure Gi for each Ji, called the atomic
chain diagram of Ji. The diagram Gi records all possible atomic chains defined
on Ji, and a conjugation relation from Ji−1 to Ji. Hence, k + 1 atomic chain
diagrams will be constructed. Finally, the Dijkstra paradigm is applied to atomic
chain diagrams, so as to find OPT .

Atomic Chain Diagrams. From the (omitted) proof of Lemma 3, point s ∈
J0 may be connected by a line segment to point a ∈ J1 or point blast ∈ J1.
Also, point b ∈ J1 or point alast ∈ J1 may be connected to a point of J2. To
represent those connections correctly, we add copy of {alast, blast}, denoted by
{alast2, blast2}, to J1. See Figs. 2(a)-(b).

The first atomic chain diagram G1 is constructed as follows. First, s and
all points a, b ∈ J1 (including alast2, blast2 ∈ J1) are added to set V (G1) as
nodes s, a and b, respectively. Next, we add to E(G1) (i) the arcs from point
afirst ∈ J1 to alast ∈ J1 and all points b ∈ J1, excluding blast2 ∈ J1, and the
arcs from blast2 ∈ J1 and all points a ∈ J1, excluding afirst, alast ∈ J1, to point
bfirst ∈ J1. See Fig. 2(a). Clearly, the number of arcs of type (i) is 2|J1|. Also,
we add to E(G1) (ii) the arcs from s to blast2 and all points a ∈ J1, excluding
alast ∈ J1. See Fig. 2(b). The size of E(G1) is thus O(|J1|).

s, t

U

C1

C2

C3 s, t

alast

blast

C1

C3

C2

U

(a) (b)
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blast blast2

alast2

blast2

alast2

afirst

bfirst

s, t

U

C1

C2

C3 s, t

alast ∈ J1

C1

C3

C2

U

(c) (d)

alast

blast blast2 ∈ J2

alast2 ∈ J2

blast2

alast2

afirst

bfirst

G1 G1

G2 G2

afirst ∈ J2

bfirst ∈ J2

Fig. 2. Illustration of constructing the diagram Gi.

In G1, an arc (p, q) of type (i) represents an atomic problem MPCH(U ′, p, q)
defined on J1, where U ′ represents the portion of U from p to q. Notice that
the atomic chain between alast ∈ J1 (resp. blast ∈ J1) and bfirst ∈ J1 is given
as the one between alast2 (resp. blast2) and bfirst. Thus, the arcs of type (i)
represent all possible atomic chains on J1. The arcs of type (ii) represent the
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connection from s to the starting points of atomic chains on J1. Also, (s, alast2)
and (s, blast2) represent the connections between s and alast and between s and
blast, respectively. See Fig. 2(b). Therefore, all arcs of type (ii) together give a
conjugation relation from s to atomic chains on J1. We call s the source node,
and alast ∈ J1 and all points b ∈ J1 the target nodes, in G1. Since alast2 (resp.
blast2) is a copy of alast (resp. blast), any path from s to a target node v in G1

consists of an arc from s to a node u, and an atomic chain between u and v.
The following diagram Gi, 2 ≤ i ≤ k + 1, is constructed one by one. Again,

add a copy of {alast, blast}, denoted by {alast2, blast2}, to Ji. Then, s, alast ∈ Ji−1,
all points b ∈ Ji−1 and all points a, b ∈ Ji are added to set V (Gi) as nodes. For
the last diagram Gk+1, the target node t is also added to V (Gk+1). Analogously,
we add to E(Gi) (i) the arcs from point afirst ∈ Ji to alast ∈ Ji and all points
b ∈ Ji, excluding blast ∈ Ji, and the arcs from blast2 ∈ Ji and all points a ∈ Ji,
excluding afirst, alast ∈ Ji, to point bfirst ∈ Ji. See Fig. 2(c). Also, add to E(Gi)
(ii) the arcs from alast ∈ Ji−1 and every point b ∈ Ji−1 to blast2 ∈ Ji and all
points a in Ji, excluding alast ∈ Ji. Finally, add to E(Gi) (iii) the arcs from s to
alast ∈ Ji−1 and all points b ∈ Ji−1, excluding blast2 ∈ Ji−1. See Fig. 2(d) for an
instance of E(G2). Any sx-path in Gi thus consists of three arcs, one per type,
in the order of (iii), (ii) and (i), except that no arcs of type (i) exist in Gk+1.

The Algorithm. We briefly review the Dijkstra paradigm [2]. Let G(V,E) be
an directed graph such that each arc of E has a non-negative weight. The length
of a path in G is the sum of the weights of its constituent arcs. The shortest
path from node u ∈ V to node v ∈ V is then defined as any path from u to
v with the minimum length among all possible paths, provided there exists a
path from u to v. The so-called single-source shortest-paths problem, which can
be solved using the Dijkstra’s algorithm [2], asks to find a shortest path from a
given source node s ∈ V to each node x ∈ V , s �= x.

In our application, all points are on chain U . To meet the requirement of
finding a longest path from s to x, it suffices to define the weight of an sx-path
W as (|Us,x| − |W |), where Us,x denotes the portion of U from s to x clockwise,
and |W | is the sum of Euclidean distances between the nodes of all arcs in W .

Let us now assign a weight with each arc of E(G1). The weight of an arc
(x, y) of type (ii) is simply defined as |Ux,y| − |xy|. Since an arc (p, q) of type
(i) defines an atomic subproblem on J1, its weight is defined as the difference
between |Up,q| and the perimeter length, which is obtained by solving the atomic
problem defined by p and q on J1. Denote by GW1 the weighted diagram of G1.
From Lemma 3 as well as the definition of GW1, the longest path from s to a
target w ∈ J1 corresponds to the minimum weight path from s to w in GW1.

For all other weighted diagrams GWi, 2 ≤ i ≤ k+1, the arcs of types (i) and
(ii) can be defined analogously. The weights of arcs of type (iii) in GWi represent
the optimum sub-solutions from s to alast ∈ Ji−1 and all points b ∈ Ji−1, in which
the cluster input is limited to J1 ∪ J2 ∪ · · · ∪ Ji−1. After GWi−1 is constructed,
the weights of arcs of type (iii) in GWi can be all computed and then assigned.
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A path from the source node s to a target node x ∈ Ji in diagram GWi,
2 ≤ i ≤ k + 1, is said to be folded in the sense that the first arc of type (iii) in
the sx-path represents a (folded) path in GWi−1. Any sx-path in GW1 is not
folded, as it does not have any arc of type (iii).

Lemma 4. Any optimum solution of MPCH(U, s, t) can be represented as a
folded st-path in GWk+1. Also, a folded st-path in GWk+1 corresponds to a
feasible solution of MPCH(U, s, t).

Proof. Omitted in this extended abstract. �

Lemma 5. Any diagram GWi, 1 ≤ i ≤ k + 1, is acyclic.

Proof. For any arc (p, q) in GWi, p is strictly prior to q on U . Moreover, s and
t are two different nodes in GWk+1. Hence, the lemma follows. �

Lemma 6. The weighted diagrams GW1, GW2, . . . , GWk+1 can be all con-
structed in O(n2) time and O(n2) space.

Proof. Omitted in this extended abstract. �
By now, we can give the first result of this paper.

Theorem 1. Suppose that all given points are in convex position. The largest
convex hull for a set of disjoint clusters of size two, measured by perimeter or
area, can be computed in O(n2) time.

Proof. Omitted in this extended abstract. �
Remark A. The problem MaxACH for a set of non-intersecting line seg-

ments, whose endpoints are in convex position, has been studied; it is known
that there exits an optimum solution in which all vertices of the reported con-
vex hull are the vertices of segments [7]. Theorem 1 can be thus applied to it,
improving upon the previously known O(n3) time bound [7, Theorem 3].

2.4 Solving MPCH(U, s, t) for Arbitrarily Given Points

In this section, the points of all clusters in S are arbitrarily given. Again, let T be
the set of clusters, whose points a and b are on U . Our solution is given according
to whether the clusters of T form a single or multiple atomic subproblems on U .

The Clusters of T Form a Single Atomic Subproblem. Assume that T
has m clusters C1, C2, . . . , Cm such that for each cluster in T , its points ai and
bi, 1 ≤ i ≤ m−1, are not adjacent on U with respect to the clusters of T , except
for am and bm. Also, we use Ti to denote the first i elements of T , 1 ≤ i ≤ m.

Denote by D an optimum solution of MPCH(U, s, t). Again, MPCH(U, s, t)
can be solved by a dynamic programming algorithm. Assume that m ≥ 1. Since
either am or bm has to appear in D (Lemma 1), we can consider two restricted,
optimal solutions A and B such that A (resp. B) contains am (resp. bm) and
one point, per other cluster (of T ). The larger of |A| and |B| is then |D|.
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Consider now the subproblem with input Tm−1. Let A′ and B′ be two optimal
solutions to the subproblem with input Tm−1 such that A′ and B′ contain am−1

and bm−1, respectively. See Fig. 3(a). In order to obtain the solution, say, A, we
first compute two convex hulls CH({am}∪A′) and CH({am}∪B′). Here, a new
difficulty is that some point clusters of S, which do not belong to Tm or T , may
wholly be outside of the region bounded by CH({am} ∪A′) or CH({am} ∪B′).

Let A1 be the optimal solution, which is computed from CH({am} ∪ A′).
So, A1 is a candidate of A. Assume that some clusters in S are wholly outside
of CH({am} ∪ A′); otherwise, CH({am} ∪ A′) gives A1. Let bi be the maximal
point b, which belongs to T and appears in A′. By definition, segment am−1am
and the portion of A′ from bi to am−1 belong to A1 (Fig. 3(b)). The rest task is
how to compute the convex chain of A1 from am to bi.

(a) (b)

U U

(c) (d)

U U

Fig. 3. Illustrating the computation of D.

Let S1(am) be the (non-empty) set of points, which lie in the interior of the
region bounded by segment ambi and the portion of U from am to bi clockwise.
Let us add am and bi to S1(am), and then compute the convex hull CH(S1(am)).
Denote by U ′ be the obtained (convex) chain, excluding segment ambi. The
subproblem MPCH(U ′, am, bi), whose input is the set of clusters having at least
one point on U ′, can be solved using the algorithm presented in Sect. 2.3. The
solution of MPCH(U ′, am, bi), called the augmented segment connecting am and
bi, together with the portion of A′ from bj to am and segment am−1am then gives
A1, see Fig. 3(b). It thus takes O(|S1(am)|2) time to compute A1 (Theorem 1).

Consider now how to compute CH({bm} ∪ A′), which produces a candidate
B1 of B. Again, the portion of A′ from bi to am−1 belongs to B1. In this case,
two convex chains of B1, one from am−1 to bm and the other from bm to bi, are
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needed to compute. This work is similar to the computation of the convex chain
of A1 from am to bi. See Figs. 3(c)-(d). It thus takes O(n2) time to compute B1.
By symmetry, both CH({am} ∪ B′) and CH({bm} ∪ B′) can be computed in
O(n2) time. The larger of A1 and A2 (which is computed from CH({am} ∪B′))
is then A, and the larger of B1 and B2 (computed from CH({bm} ∪ B′)) gives
B. In this way, D can be eventually obtained. We call the found solution D, the
augmented atomic chain from s to t.

Computing A and B from A′ and B′ takes O(n2) time. Since the computation
of A′ and B′ can be recursively done, the totally spent time is O(n3).

Lemma 7. Suppose that S is a set of disjoint clusters of size two and the clus-
ters of S on U form a single atomic subproblem. Then, the largest convex hull
for S, measured by perimeter or area, can be computed in O(n3) time

The Clusters of T Form Multiple Atomic Subproblems As in Sect. 2.3,
let I be the (largest) set of k clusters such that for any two consecutive clusters
in I, say, {a, b} and {a′, b′}, points b and a′ are adjacent on U . Also, for a cluster
Ci = {a, b} in I (1 ≤ i ≤ k), denote by Ji the set of clusters, whose points are
on the portion of U from a to b, including Ci itself. Let J0 (resp. Jk+1) be the
set consisting of only one cluster {s, s} (resp. {t, t}).

Again, we first construct an atomic chain diagram Gi, for each i =
1, 2, . . . , k + 1. The diagram Gi records all possible atomic chains on Ji and
a conjugation relation from Ji−1 to Ji. Since the points of clusters are arbitrar-
ily given, we construct a new weighted diagram of Gi, denoted by GAi. For an
arc (x, y) of type (i), x, y ∈ Ji, its augmented atomic chain from x to y can be
computed using the algorithm of Sect. 2.4.1. The weight of that arc in GAi is
assigned with the difference in length between the portion of U from x to y and
the found chain or solution from x to y.

For an arc (u, v) of type (ii), there may be also some clusters of S, which do
not belong to T and are contained in the convex region bounded by uv and the
portion of U from u to v. Let us compute the convex hull of u, v and all points
of those clusters. Again, it suffices to consider the clusters, whose point a or b,
or both a and b are on the found hull. From Theorem 1, the augmented segment
connecting u and v can be computed in O(n2) time. The weight of arc (u, v) is
then assigned with the difference in length between the portion of U and the
found chain, from u to v. This gives the weights of all arcs of type (ii).

Finally, the weight of an arc of type (iii) in GWi (1 ≤ i ≤ k + 1) represents
an optimum solution from s to a point x ∈ Ji−1, in which the input is limited
to the clusters contained in the region bounded by segment sx and the portion
of U from s to x. As in the previous sections, it can be assigned analogously.

Lemma 8. The weighted diagrams GA1, GA2, . . . , GAk+1 can be all constructed
in O(n4) time.

Proof. Omitted in this extended abstract. �
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Theorem 2. The largest convex hull for a set of disjoint clusters of size two,
measured by perimeter or area, can be computed in O(n4) time.

Proof. Omitted in this extended abstract. �

3 Extension

In this section, We modify our algorithms to present O(n4) time solutions of the
problems MaxPCH and MaxACH, for a set of disjoint clusters of constant size.
We will focus on MaxPCH, as MaxACH can be dealt with analogously.

Let c be the bounded size of all clusters. Denote by S the set of disjoint
clusters, and P the set of all given points. As in Sect. 2, we focus only on the
clusters, which have at least two points on CH(P ). Let us fix a cluster, say, C.
Let C1, C2 . . . , Cm be the sequence of clusters appearing on CH(P ), indexed by
their first points on CH(P ) clockwise, starting from some point of C.

Suppose first that all given points are in convex position, and the largest
point of Ci, 1 ≤ i ≤ m − 1, is not adjacent to the smallest one of Ci+1 on
CH(P ). Denote by C an optimum solution to this atomic version of MaxPCH.
By considering every point of C as s, we can define at most c atomic problems
MPCH(U, s, t), where point t is an identical copy of s, and U is the convex hull
(chain) of s and points of {C1∪· · ·∪Cm}. The largest among at most c solutions
then gives C. Since every cluster is of constant size, as discussed in Sect. 2, the
solution C can be found in linear time.

Next, consider the situation in which all points of given clusters are in convex
position. Again, by considering every point of a cluster as s, we can define at
most c problems MaxPCH. (In the following, the cluster containing s needn’t
considered.) Let I be the set of clusters such that for any two consecutive clusters
C and C ′ in I, the largest point of C is adjacent to the smallest one of C ′ on U .
Suppose that I has k clusters, say, C ′

1, C
′
2, . . . , C

′
k. For a cluster C ′

i, 1 ≤ i ≤ k,
denote by Ji the set of clusters (including C ′

i itself), which have at least two
points on the portion of U between the smallest and largest points of C ′

i.
Assume that Ji (1 ≤ i ≤ k) has mi clusters Ci,1(= C ′

i), Ci,2, . . . , Ci,mi
, which

are ordered by their first points on chain U . For each cluster Ci,h, 1 ≤ h ≤ mi−1,
its points are further classified into two groups Gi,h1 and Gi,h2 such that all
points u of Gi,h1 are before any point of Ci,h+1 and all points v of Gi,h2 are
after any point of Ci,h+1 on U . Also, let Gi,mi1

be the set consisting of only
the smallest point of Ci,mi

, and Gi,mi2
the set consisting of all other points of

Ci,mi
. Points u (∈ Gi,h1) and v (∈ Gi,h2), 1 ≤ h ≤ mi, then play the same role

as points a and b respectively in the case of clusters of size two. Clearly, the
number of atomic chains defined on Ji is no more than c|Ji|.

The diagram Gi, 1 ≤ i ≤ k + 1, can be constructed as follows. All points of
Ji on chain U are added to the set V (Gi) as nodes. Note that the (unique) node
u ∈ Gi,mi1

has its copy ulast2 and all nodes v ∈ Gi,mi2
have their copies vlast2

in V (Gi). Also, s is added to all sets V (Gi), and t is added to V (Gk+1). Since
u ∈ Gi,h1 and v ∈ Gi,h2) play the same role as a and b respectively in the case
of clusters of size two, all arcs of three types are constructed analogously.
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As in Sect. 2.3, the weighted diagrams GW1, GW2, . . . , GWk+1 can be con-
structed, too. Again, the following result holds.

Lemma 9. For any starting point s of the fixed cluster, the optimum solution of
MPCH(U, s, t) can be represented as a folded st-path in GWk+1. Also, a folded
st-path in GWk+1 corresponds to a feasible solution of MPCH(U, s, t).

Theorem 3. Suppose that all given points are in convex position. The largest
convex hull for a set of disjoint clusters of constant size, measured by perimeter
or area, can be computed in O(n2) time.

Proof. For a starting point s, by an analogous to the proof of Theorem 1, the
optimum solution of MPCH(U, s, t) can found in O(n2) time. Since the number
of possible starting points s is no more than c, the theorem follows. �

For a set of clusters with arbitrarily given points, the similar argument can
be given. Hence, the main result of this paper can be obtained.

Theorem 4. The largest convex hulls for n disjoint clusters of bounded size,
measured by perimeter or area, can be computed in O(n4) time.

Remark B. The problems MaxACH and MaxPCH, for a set of non-
overlapping squares, have an optimum solution in which all vertices of the
reported convex hull are the vertices of squares [7]. Our O(n4) time algorithm
works for both MaxACH and MaxPCH for a set of disjoint clusters of size four,
improving upon the known time bounds O(n5) [6] and O(n10) [7, Theorem 11],
respectively.
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Abstract. We consider the two-stage submodular maximization prob-
lem which has been studied extensively in machine learning. In this
problem, we are given a ground set V of n articles and m cate-
gories, and the goal is to select a subset S ⊆ V of articles that
best represents the different categories to maximize the total similarity
F (S) =

∑m
j=1 maxT∈I(S) fj(T ), where each fj is a nonnegative mono-

tone submodular functions measuring the similarity of each article in cat-
egory j. We consider the case where S satisfies the knapsack constraint

and I(S) is a k-matroid constraint and present a 1
2(k+1)

(
1 − e−(k+1)

)
-

approximation algorithm for this problem. We also extend the k-matroid
constraint to k-exchange system constraint and give corresponding
approximation ratio.

Keywords: Submodular function · Knapsack constraint · Matroid

1 Introduction

The problem we are interested in is related to the Combinatorial Representation
Problem (CRP). In CRP, we are given a ground set V of n articles and a set N of
m categories, and nonnegative monotone submodular functions fj : 2V → R≥0

used to measure the similarity of each article in category j. The goal is to select
a subset S ⊆ V of articles that best represents the different categories. This
problem can be formulated as the following two-stage submodular maximization
problem according to [1]:

max
S∈C1

F (S) = max
S∈C1

1
m

∑

j∈V

max
T∈C2(S)

fj(T ), (1.1)
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where C1 ⊆ V and C2 ⊆ S are two constraint sets and fj is a non-negative
monotone submodular function. For example, C1 may be a cardinality constraint
and C2 may be a matroid constraint [1,14,16]. To the best of our knowledge, there
are no previous results on C1 being a knapsack constraint which can be seen as
an extension of the cardinality constraint and C2 is a k-matroid constraint or
a k-exchange system. Our problem is related to the Social Welfare Problem
(SWP)which has been widely studied in economics. In SWP, they are given a
set V of n items and a set B of m bidders. Each bidder i has a value function
Vi : 2V → R≥0. The goal is to allocate items to bidders by partitioning V into
m sets V1, . . . , Vm to maximize the objective

∑m
i=1 Vi(Si), where Si is the set of

items received by bidder i. While in Social Welfare Problem, the element can
only be allocated to a bidder, in our problem, the element can be allocated to
some categories.

This problem involves two-stage optimization: (1) the second stage (inner
problem) maximizes a monotonic submodular function subject to some con-
straints, resulting in the optimal objective value being a function of S; and
(2) the first stage maximizes this resulted objective subject to some other con-
straints.

Evidently, the difficulty in solving this two-stage submodular maximization
problem (1.1) depends on both the types of objective functions fj and the con-
straints C1 and C2.

In this paper, we assume that C1 is a knapsack constraint and C2 = I(S)
is the family of the common independent sets of k matroid Mj = (S, Ij(S))
over the same ground set S ⊆ V ; namely I(S) = ∩k

j=1Ij(S). Our contribution
is to present a 1

2(k+1)

(
1 − e−(k+1)

)
-approximation algorithm for this problem.

Considering the k-exchange system constraint, we also give some similar results.
The rest of the paper is organized as follows. In Sect. 3 we introduce some

definitions and properties of submodular function and matroid. In Sect. 4, 5, we
present the algorithms and analysis of Problem (1.1). Finally, we offer concluding
remarks in Sect. 6.

2 Related Work

The combinatorial representation problem can be seen as a two-stage submodu-
lar maximization problem [1,14,16]. The authors in [1,14,16] consider the prob-
lem of submodular maximization where the objective function f satisfies the
uniform distribution. In [1], they gave two algorithms based on the techniques
of continuous optimization and local search. However, both run times are very
expensive. Recently, the authors in [16] use a simple greedy algorithm to improve
the approximation ratio from 1

2

(
1 − e−1

)
to 1

2

(
1 − e−2

)
. The authors in [14]

develop the first streaming and distributed algorithms for this problem. In addi-
tion, authors in [18] extend the matroid constraint to k-matroids constraint.

The submodular social welfare problem has been widely studied in both
offline and online settings. For the offline version, [4,8] presents a (1 − e−1)-
approximation algorithm via the multilinear extension and [10] proves that this
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ratio is the best possible unless P=NP. For the online version, where the items
arrive in a random order, [6,7] give a �/(2� − 1)-approximation algorithm, while
[11] offers a 0.5052-competitive ratio by a simple greedy algorithm. The latter
algorithm can be seen as the first (1/2 + Ω(1))-competitive algorithm for this
online setting. Recently, [2] delivers a simpler analysis and improves the com-
petitive ratio to 0.5096. Another online setting is to assume the items arrive in
an adversarial way [5,9].

3 Preliminaries

Given a ground set V = {1, . . . , n} and a family of subsets I of V , a matroid
M = (V, I) satisfies the following properties

(1) If A ⊆ B ∈ I, then A ∈ I;
(2) If A,B ∈ I and |A| ≤ |B|, then there exists an element u ∈ B\A for which

A + u ∈ I.

A partition matroid has an independent set I = {I : ∀j; |I ∩Pj | ≤ rj}, where
P = P1 ∪ P2 ∪ · · · ∪ Pm is a disjoint union, and r1, r2, . . . , rm ∈ Z+.

We will need the following matroid property from [13] later.

Property 1. Let Mj = (V, Ij) be a matroid for every j ∈ {1, . . . , k}. For any
two independent sets A,B ∈ Ij, there exists a mapping πj : B \A → A\B ∪{∅}
such that

(1) (A \ πj(b)) ∪ b ∈ Ij for all b ∈ B \ A;
(2)

∣∣π−1
j (a)

∣∣ ≤ 1 for all a ∈ A \ B;
(3) let Ab = {π1(b), . . . , πk(b)}, then (A \ Ab) ∪ b ∈ ∩k

j=1Ij for all b ∈ B \ A.

Next, we introduce two equivalent definitions and properties of submodular
function.

Definition 1. A function f : 2V → R+ is submodular if for every X,Y ⊆ V,

f(X) + (Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ).

Definition 2. A function f : 2V → R+ is submodular if for every X ⊆ Y ⊆
V, a ∈ V \ Y,

f(X ∪ {a}) − f(X) ≥ f(Y ∪ {a}) − f(Y ).

Property 2. For any submodular function f : 2V → R+ and X,Y ⊆ V , we have
∑

u∈X

f(Y ∪ {u}) − f(Y ) ≥ f(X ∪ Y ) − f(Y ).

The next property is from [17].
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Property 3. Consider a monotone submodular function f : 2V → R+. Let
X,Y ⊆ V , and {Ti}�

i=1 be a collection of subsets of Y \X such that each element
of Y \ X appears in at most k of the subsets. Then

�∑

i=1

[f(Y ) − f(Y \ Ti)] ≤ k[f(Y ) − f(Y ∩ X)].

We recall that a pair (S, I) is called an independence system, if for I1 ⊆
I2 ⊆ S and I2 ∈ I, then I1 ∈ I. A more generalized P -exchange system can be
formally redefined as follows.

Definition 3. The independence system (S, I) is called k-exchange system, if
for ∀X,Y ∈ I, A = {Ab ⊆ X \ Y : b ∈ Y \ X} satisfies the follwing three
conditions:

(1) for ∀b ∈ Y \ X, |Ab| ≤ k;
(2) for ∀a ∈ X \ Y , it is contained in at most k sets in A,
(3) for Y ′ ⊆ Y , X − ∪b∈Y ′Ab + Y ′ ∈ I.

In addition, for any A,B ∈ I, we say B is an extension of A if A ⊆ B. There
is a more generalized P -extendible system restated as below.

Definition 4. An independence system (S, I) is a P -extendible system if for
every independent set A ∈ I, any extension B of A and an element x /∈ A
obeying A + x ∈ I, there must exist a subset Y ⊆ B \ A with |Y | ≤ P such that
B + x − Y ∈ I. Specially, if B = A or x ∈ B, then we can take Y = ∅.

4 Two-Stage Submodular Maximization Subject
to Knapsack and K-Matroid Constraints

We consider Problem (1.1) by offering an approximation algorithm along with
its analysis in Sects. 5.1 and 5.2, respectively.

4.1 The Algorithm

Denote the gain of adding element x to the set A as follows:

Δf
j (x,A) = fj({x} ∪ A) − fj(A).

Denote the gain of removing a set Y ⊆ A and replacing it with x as follows:

∇f
j (x, Y,A) = fj({x} ∪ A \ Y ) − fj(A).

The set of elements in A can replace x which will not violate the k-matroid
constraint, is defined as

I(x,A) = {Y ⊆ A : A ∪ {x} \ Y ∈ I}



144 Z. Liu et al.

. Define the replacement gain of x as follow:

∇f
j (x,A) =

{
Δf

j (x,A), if A ∪ {x} ∈ I,

max{0,maxY ∈I(x,A) ∇f
j (x, Y,A)}, otherwise.

Let Repf
j (x,A) be the set that is replaced by x:

Repf
j (x,A) =

{
∅, if A ∪ {x} ∈ I,

arg maxY ∈I(x,A) ∇f
j (x, Y,A), otherwise.

The algorithm starts with an empty set S = ∅, and chooses an element with
the largest ratio of marginal gain over cost in every round. Property 1 guarantees
the correctness of the our algorithm.

Algorithm 1 Replacement Modified Greedy
1: U ← V, SF ← ∅, S ← ∅, TF

j ← ∅, Tj ← ∅ (∀1 ≤ j ≤ m)
2: while U �= ∅ do

3: k ← arg maxe∈U

∑m
j=1 ∇f

j (e,Tj)

ce
4: U ← U \ {k}
5: if

∑
u∈S cu + ck ≤ B then

6: S ← S ∪ {k}
7: for all 1 ≤ j ≤ m do
8: if ∇f

j (k, Tj) > 0 then

9: Tj ← Tj ∪ {k} \ Repfj (k, Tj)
10: end if
11: end for
12: end if
13: end while
14: u∗ ← arg maxu∈V,cu≤B

∑m
j=1 fj(u

∗)
15: if

∑m
j=1 fj(Tj) >

∑m
j=1 fj(u

∗) then

16: SF ← S, TF
1 ← T1, T

F
2 ← T2, · · · , TF

m ← Tm

17: else
18: SF ← u∗, TF

1 ← u∗, TF
2 ← u∗, · · · , TF

m ← u∗

19: end if

4.2 The Analysis

Define S∗ as the optimal solution of problem (1.1):

S∗ = arg max
c(S)≤B

m∑

j=1

1
m

max
T∈I(S)

fj(T ).
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Denote S∗
j as the optimal solution of fj :

S∗
j = arg max

T∈I(S∗)
fj(T ).

Based on Algorithm 1, we introduce the following notations.

• S is the solution obtained by the greedy heuristic;
• vi is the ith unit added to S (i = 1, . . . , |S|);
• Si is the set of function F (S) obtained by greedy algorithm after adding vi

(i.e., Si = ∪i
k=1{vk}, for i = 1, . . . , |S|, with S0 = ∅, S|S| = S); and

• T i
j is the set which is chosen by fj(T ) after adding vi to the set S.

We first establish the following two lemmas to bound the increment in each
iteration.

Lemma 1. For i = 1, 2, . . . , |S| + 1, we have

∑

e∈S∗

m∑

j=1

∇f
j (e, T i−1

j ) ≤ B

cvi

m∑

j=1

∇f
j (vi, T

i−1
j ).

Proof. From Line 3 of Algorithm 1, we have
∑m

j=1 ∇f
j (e, T i−1

j )
ce

≤
∑m

j=1 ∇f
j (vi, T

i−1
j )

cvi

,∀e ∈ S∗.

Thus,

∑

e∈S∗

m∑

j=1

∇f
j (e, T i−1

j ) ≤
m∑

j=1

∇f
j (vi, T

i−1
j )

∑
e∈S∗ ce

cvi

≤ B

cvi

m∑

j=1

∇f
j (vi, T

i−1
j ).

Where the last inequality follows from
∑

e∈S∗ ≤ B. �

Lemma 2. For i = 1, 2, . . . , |S| + 1, we have

B

cvi

m∑

j=1

∇f
j (vi, T

i−1
j ) ≥

m∑

j=1

(
fj(S∗

j ) − (k + 1)fj(T i−1
j )

)
.

Proof. The proof is in the appendix. �

For convenience, we denote Xi−1 :=
m∑

j=1

fj(T i−1
j ) and X∗ :=

m∑
j=1

fj(S∗
j ). So

the left item
m∑

j=1

∇f
j (vi, T

i−1
j ) in the inequality of Lemma 2 can be written as

B
cvi

(Xi −Xi−1), and the right item
m∑

j=1

(
fj(S∗

j ) − (k + 1)fj(T i−1
j )

)
can be written

as X∗ − (k + 1)Xi−1, and Lemma 2 can be written as

Xi − Xi−1 ≥ cvi

B
(X∗ − (k + 1)Xi−1). (4.1)
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Lemma 3. ∀i = 1, 2, . . . , |S| + 1, if we assume X∗ ≥ (k + 1)Xi, then we have

(k + 1)cvi
≤ B, ∀i = 1, 2, . . . , |S| + 1

Proof. The proof is in the appendix. �

According to the Lemma 3, we have the following result.

Lemma 4. ∀i = 1, 2, . . . , |S| + 1, if we assume X∗ ≥ (k + 1)Xi, then we have

X|S|+1 ≥ 1
k + 1

(
1 − e−(k+1)

)
X∗,

Proof. The proof is in the appendix. �

Theorem 1. Algorithm 1 returns a set SF such that

F (SF ) ≥ 1
2(k + 1)

(
1 − e−(k+1)

)
F (S∗).

Proof. We consider two cases.

Case 1: There exists a t such that X∗ ≤ (k + 1)Xt. Then

F (SF ) ≥ F (Xt) ≥ 1
k + 1

F (S∗)

≥ 1
2(k + 1)

(
1 − e−(k+1)

)
F (S∗).

where the first inequality follows from Xt ⊆ SF .
Case 2: ∀i = 1, 2, . . . , |S| + 1, we have X∗ ≥ (k + 1)Xi.

According to the Lemma 4, we have

X|S|+1 ≥ 1
k + 1

(
1 − e−(k+1)

)
X∗,

From Algorithm 1, we also have

X|S|+1 − X|S| ≤
m∑

j=1

(
fj(T

|S|
j ∪ {v|S|+1}) − fj(T

|S|
j )

)

≤
m∑

j=1

(
fj({v|S|+1}) − fj(∅)

)

=
m∑

j=1

(
fj({v|S|+1})

)

≤
m∑

j=1

fj({u∗}),

where the first inequality is due to Line 9 of Algorithm 1 and the second
inequality follows from the submodularity of fj .
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Hence,

m∑

j=1

fj({u∗}) + X|S| ≥ X|S|+1 ≥ 1
k + 1

(
1 − e−(k+1)

)
X∗,

implying that

max

⎧
⎨

⎩

m∑

j=1

fj({u∗}),X|S|

⎫
⎬

⎭ ≥ 1
2(k + 1)

(
1 − e−(k+1)

)
X∗.

�

5 Two-Stage Submodular Maximization Subject
to Knapsack and k-exchange System Constraints

In this section, we consider Problem (1.1) under knapsack and k-exchange system
constraints by offering an approximation algorithm along with its analysis in
Sects. 5.1 and 5.2, respectively.

5.1 The Algorithm

The set of elements in A can replace x which will not violate the k-exchange
system constraint, is defined as

Ĩ(x,A) = {Y ⊆ A : A ∪ {x} \ Y ∈ I}.

Define the replacement gain of x as follow:

∇̃f
j (x,A) =

{
Δf

j (x,A), if A ∪ {x} ∈ I,

max{0,maxY ∈I(x,A) ∇f
j (x, Y,A)}, otherwise.

Let R̃ep
f

j (x,A) be the set that is replaced by x:

R̃ep
f

j (x,A) =

{
∅, if A ∪ {x} ∈ I,

arg maxY ∈I(x,A) ∇f
j (x, Y,A), otherwise.

The algorithm starts with an empty set S = ∅, and chooses an element with
the largest ratio of marginal gain over cost in every round. Property 1 guarantees
the correctness of the our algorithm.
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Algorithm 2 Replacement Modified Greedy
1: U ← V, SF ← ∅, S ← ∅, TF

j ← ∅, Tj ← ∅ (∀1 ≤ j ≤ m)
2: while U �= ∅ do

3: k ← arg maxe∈U

∑m
j=1 ∇̃f

j (e,Tj)

ce
4: U ← U \ {k}
5: if

∑
u∈S cu + ck ≤ B then

6: S ← S ∪ {k}
7: for all 1 ≤ j ≤ m do
8: if ∇̃f

j (k, Tj) > 0 then

9: Tj ← Tj ∪ {k} \ R̃ep
f

j (k, Tj)
10: end if
11: end for
12: end if
13: end while
14: u∗ ← arg maxu∈V,cu≤B

∑m
j=1 fj(u

∗)
15: if

∑m
j=1 fj(Tj) >

∑m
j=1 fj(u

∗) then

16: SF ← S, TF
1 ← T1, T

F
2 ← T2, · · · , TF

m ← Tm

17: else
18: SF ← u∗, TF

1 ← u∗, TF
2 ← u∗, · · · , TF

m ← u∗

19: end if

5.2 The Analysis

We first establish the following two lemmas to bound the increment in each
iteration.

Lemma 5. For i = 1, 2, . . . , |S| + 1, we have

∑

e∈S∗

m∑

j=1

∇̃f
j (e, T i−1

j ) ≤ B

cvi

m∑

j=1

∇̃f
j (vi, T

i−1
j ).

Proof. From Line 3 of Algorithm 1, we have
∑m

j=1 ∇̃f
j (e, T i−1

j )
ce

≤
∑m

j=1 ∇̃f
j (vi, T

i−1
j )

cvi

,∀e ∈ S∗.

Thus,

∑

e∈S∗

m∑

j=1

∇̃f
j (e, T i−1

j ) ≤
m∑

j=1

∇̃f
j (vi, T

i−1
j )

∑
e∈S∗ ce

cvi

≤ B

cvi

m∑

j=1

∇̃f
j (vi, T

i−1
j ).

Where the last inequality follows from
∑

e∈S∗ ≤ B. �

Lemma 6. For i = 1, 2, . . . , |S| + 1, we have

B

cvi

m∑

j=1

∇̃f
j (vi, T

i−1
j ) ≥

m∑

j=1

(
fj(S∗

j ) − (k + 1)fj(T i−1
j )

)
.
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Proof. The proof is in the appendix. �

For convenience, the Lemma 2 can be written as

Xi − Xi−1 ≥ cvi

B
(X∗ − (k + 1)Xi−1). (5.1)

According to the above Lemmas, we have the following result.

Theorem 2. Algorithm 2 returns a set SF such that

F (SF ) ≥ 1
2(k + 1)

(
1 − e−(k+1)

)
F (S∗).

Proof. The proof is in the appendix. �

6 Conclusion

In this paper, we consider a two-stage submodular maximization problem and
give the first constant approximation algorithm under the knapsack constraint
and k-matroid constraint. An interesting future problem is to design an efficient
algorithm under the online and distributed setting.
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A Appendix

The first is the proof of Lemma 2.

Proof. Lemma 1 implies that

∑

e∈S∗

m∑

j=1

∇f
j (e, T i−1

j ) ≤ B

cvi

m∑

j=1

∇f
j (vi, T

i−1
j ).
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From Property 1, there exist mappings πt : S∗
j \ T i−1

j → T i−1
j \ S∗

j ∪ {∅} (t ∈
{1, 2, . . . , k}) such that (T i−1

j \Ae)∪{e} ∈ ∩k
t=1It, where Ae = {π1(e), . . . , πk(e)}.

Therefore,
∑

e∈S∗

m∑

j=1

∇f
j (e, T i−1

j )

=

m∑

j=1

∑

e∈S∗
∇f

j (e, T i−1
j )

≥
m∑

j=1

∑

e∈S∗
j \T i−1

j

∇f
j (e, T i−1

j )

≥
m∑

j=1

∑

e∈S∗
j \T i−1

j

(
fj({e} ∪ T i−1

j \ Ae) − fj(T
i−1
j )

)

=
m∑

j=1

∑

e∈S∗
j \T i−1

j

(
fj({e} ∪ T i−1

j \ Ae) − fj({e} ∪ T i−1
j ) + fj({e} ∪ T i−1

j ) − fj(T
i−1
j )

)

=
m∑

j=1

∑

e∈S∗
j \T i−1

j

[
Δf

j (e, T i−1
j ) −

(
fj({e} ∪ T i−1

j ) − fj({e} ∪ T i−1
j \ Ae)

)]

where the first inequality follows because ∇f
j (e, T i−1

j ) ≥ 0 and S∗
j \ T i−1

j ⊆ S∗,
and the second is due to Property 1 and the definition of ∇f

j (e, T i−1
j ).

Denote Ar
e = {π1(e), . . . , πr(e)}, for r = 1, . . . , k and A0

e = ∅, Ak
e = Ae. We

have

fj({e} ∪ T i−1
j ) − fj({e} ∪ T i−1

j \ Ae)

= fj({e} ∪ T i−1
j ) − fj({e} ∪ T i−1

j \ {π1(e), . . . , πk(e)})

=
k∑

r=1

(
fj({e} ∪ T i−1

j \ Ar−1
e ) − fj({e} ∪ T i−1

j \ Ar
e)

)

≤
k∑

r=1

(
fj(T i−1

j \ Ar−1
e ) − fj(T i−1

j \ Ar
e)

)

= fj(T i−1
j ) − fj(T i−1

j \ Ae)

= Δf
j (Ae, T

i−1
j \ Ae),

where the inequality is from the submodularity of fj .
So we have
∑

e∈S∗

m∑

j=1

∇f
j (e, T i−1

j ) ≥
m∑

j=1

∑

e∈S∗
j \T i−1

j

(
Δf

j (e, T i−1
j ) − Δf

j (Ae, T
i−1
j \ Ae)

)
.

Property 2 implies that
∑

e∈S∗
j \T i−1

j

Δf
j (e, T i−1

j ) =
∑

e∈S∗
j \T i−1

j

(
fj(e ∪ T i−1

j ) − fj(T
i−1
j )

)
≥ fj(S

∗
j ∪ T i−1

j ) − fj(T
i−1
j ).
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Property 3 implies that
∑

e∈S∗
j \T i−1

j

Δf
j (Ae, T

i−1
j \ Ae) =

∑

e∈S∗
j \T i−1

j

(
fj(T i−1

j ) − fj(T i−1
j \ Ae)

)

≤ k
(
fj(T i−1

j ) − fj(T i−1
j ∩ S∗

j )
)

≤ kfj(T i−1
j ).

Together, we have

∑

e∈S∗

m∑

j=1

∇f
j (e, T i−1

j ) ≥
m∑

j=1

(
fj(S∗

j ∪ T i−1
j ) − (k + 1)fj(T i−1

j )
)

≥
m∑

j=1

(
fj(S∗

j ) − (k + 1)fj(T i−1
j )

)
.

�
The next is the proof of Lemma 3.

Proof. Suppose for contradiction that there exists j ≤ |S| + 1 such that (k +
1)cvi

> B, then

Xj ≥ cvi

B
(X∗ − (k + 1)Xj−1) + Xj−1

>
1

k + 1
(X∗ − (k + 1)Xj−1) + Xj−1

=
1

k + 1
X∗,

which contradicts the assumption. �
The next is the proof of Lemma 4.

Proof. Rearranging the inequality (5.1), we obtain
1

k+1X∗ − Xi

1
k+1X∗ − Xi−1

≤ 1 − (k + 1)cvi

B
.

Therefore,

1
k + 1

X∗ − X|S|+1 ≤
|S|+1∏

i=1

(
1 − (k + 1)cvi

B

)
1

k + 1
X∗

≤
|S|+1∏

i=1

e− (k+1)cvi
B

1
k + 1

X∗

= e−
∑|S|+1

i=1 (k+1)cvi
B

1
k + 1

X∗

≤ e− (k+1)B
B

1
k + 1

X∗

= e−(k+1) 1
k + 1

X∗,
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which is equivalent to

X|S|+1 ≥ 1
k + 1

(
1 − e−(k+1)

)
X∗,

where the second inequality above holds because 1 − x ≤ e−x and the third
inequality is due to

∑|S|+1
i=1 cvi

> B. �
The first is the proof of Lemma 5.

Proof. Lemma 1 implies that

∑

e∈S∗

m∑

j=1

∇̃f
j (e, T i−1

j ) ≤ B

cvi

m∑

j=1

∇̃f
j (vi, T

i−1
j ).

From Definition 3, we have
∑

e∈S∗

m∑

j=1

∇̃f
j (e, T i−1

j )

=

m∑

j=1

∑

e∈S∗
∇̃f

j (e, T i−1
j )

≥
m∑

j=1

∑

e∈S∗
j \T i−1

j

∇̃f
j (e, T i−1

j )

≥
m∑

j=1

∑

e∈S∗
j \T i−1

j

(
fj({e} ∪ T i−1

j \ Ae) − fj(T
i−1
j )

)

=
m∑

j=1

∑

e∈S∗
j \T i−1

j

(
fj({e} ∪ T i−1

j \ Ae) − fj({e} ∪ T i−1
j ) + fj({e} ∪ T i−1

j ) − fj(T
i−1
j )

)

=
m∑

j=1

∑

e∈S∗
j \T i−1

j

[
Δf

j (e, T i−1
j ) −

(
fj({e} ∪ T i−1

j ) − fj({e} ∪ T i−1
j \ Ae)

)]

where the first inequality follows because ∇̃f
j (e, T i−1

j ) ≥ 0 and S∗
j \ T i−1

j ⊆ S∗,
and the second is due to Definition 3 and the definition of ∇̃f

j (e, T i−1
j ).

Denote Ar
e = {π1(e), . . . , πr(e)}, for r = 1, . . . , k and A0

e = ∅, Ak
e = Ae. We

have

fj({e} ∪ T i−1
j ) − fj({e} ∪ T i−1

j \ Ae)

= fj({e} ∪ T i−1
j ) − fj({e} ∪ T i−1

j \ {π1(e), . . . , πk(e)})

=
k∑

r=1

(
fj({e} ∪ T i−1

j \ Ar−1
e ) − fj({e} ∪ T i−1

j \ Ar
e)

)

≤
k∑

r=1

(
fj(T i−1

j \ Ar−1
e ) − fj(T i−1

j \ Ar
e)

)

= fj(T i−1
j ) − fj(T i−1

j \ Ae)

= Δf
j (Ae, T

i−1
j \ Ae),



Two-Stage Submodular Maximization 153

where the inequality is from the submodularity of fj .
So we have

∑

e∈S∗

m∑

j=1

∇f
j (e, T i−1

j ) ≥
m∑

j=1

∑

e∈S∗
j \T i−1

j

(
Δf

j (e, T i−1
j ) − Δf

j (Ae, T
i−1
j \ Ae)

)
.

Property 2 implies that
∑

e∈S∗
j \T i−1

j

Δf
j (e, T i−1

j ) =
∑

e∈S∗
j \T i−1

j

(
fj(e ∪ T i−1

j ) − fj(T
i−1
j )

)
≥ fj(S

∗
j ∪ T i−1

j ) − fj(T
i−1
j ).

Property 3 implies that
∑

e∈S∗
j \T i−1

j

Δf
j (Ae, T

i−1
j \ Ae) =

∑

e∈S∗
j \T i−1

j

(
fj(T i−1

j ) − fj(T i−1
j \ Ae)

)

≤ k
(
fj(T i−1

j ) − fj(T i−1
j ∩ S∗

j )
)

≤ kfj(T i−1
j ).

Together, we have

∑

e∈S∗

m∑

j=1

∇̃f
j (e, T i−1

j ) ≥
m∑

j=1

(
fj(S∗

j ∪ T i−1
j ) − (k + 1)fj(T i−1

j )
)

≥
m∑

j=1

(
fj(S∗

j ) − (k + 1)fj(T i−1
j )

)
.

�

The next is the proof of Theorem 2.

Proof. The proof is the same as Theorem 1. �
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Abstract. When we expand the simple structure (Z,succ) with one
unary predicate U , its CSP (Constraint Satisfaction Problem) may vary
in complexity. We find some sufficient conditions for its tractability, prove
bounds on its complexity, and then generalize our results to more com-
plicated structures. We also give a Karp-equivalent characterization of
CSP(Z, succ, U)’s.

1 Introduction

In 1990, Hell and Nešetřil [17] showed that, fixing a finite undirected graph H,
the decision problem “ for finite input G, is there a map f : V (G) → V (H), s.t.
∀x, y

(
(x, y) ∈ E(G) =⇒ (f(x), f(y)) ∈ E(H)

)
?” is in P if H is bipartite, NP-

complete otherwise. Such adjacency-preserving maps are graph homomorphisms,
and the problem is called H-coloring. The definition of homomorphisms natu-
rally generalize to arbitrary relational structures by asserting each relation is
unilaterally preserved by the map between domains. This gives rise to:

Problem 1 (CSP(H)).
Parameter (Fixed) : H := (D;RD

1 , . . . , RD
k ) a relational structure, with

the symbol tuple (R1, . . . , Rk) its signature.
Input: a finite (R1, . . . , Rk)-structure G.
Output: does G homomorphically map to H?

Such problems are called the constraint satisfaction problems (CSP’s); we also
use CSP(H) to denote the set of inputs that answers “Yes”. Correspondingly, the
Search-CSP’s admit the same description, except on the “Yes” instances they
output a homomorphism h : G → H.

Seeing the Hell-Nešetřil’s H-coloring dichotomy theorem, one naturally won-
ders if similar dichotomy exists for all finite relational structures. A dividing line
was conjectured by Feder and Vardi [16]. Classification of many subclasses of
finite domain CSP’s (e.g. [1,13,15]) were studied over the years, but the conjec-
ture remained open until independently proved by Bulatov and Zhuk ([14,23,24])
in 2017. A good reference for equivalent characterizations of the finite CSP divid-
ing line can be found in [3].

For infinite domain CSP’s, dichotomy has been established for many classes
of “nice” structures; for example, fixing an infinite structure (A, τ), the class

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al. (Eds.): TAMC 2022, LNCS 13571, pp. 155–175, 2022.
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{A′ := (A, τ ′) : RA′
is first order definable in A for each R ∈ τ ′} is called first

order reducts of A; that is, all relational structures with the same domain A and
whose finitely many relations are respectively definable in terms of A. Dichotomy
has been established for, e.g., the first order reducts of the Rado graph [11],
of unary structures [22], of (Q, <) [5], and of countable (ultra)homogeneous
graphs [10]. These structures are “nice” in that their first order theory has (up
to isomorphism) a unique countable model, a property called ω-categoricity.
Another line of work focuses on dichotomizing the “ numeric domains”, such as
first order reducts of (Z, succ) [8], more generally of (Z, <) [9], and of (Z,+, 1)
containing 1 [7]. A long standing open problem is to characterize first order
reducts of (Z,≤,+). For thorough introduction to these topics, see [3,6].

So why do we care about characterizing CSP(Z, succ := {(x, y) : y =
x + 1}, U) , a specific type of CSP’s? On one hand, an efficient greedy algo-
rithm solves CSP(Z, succ) (Sect. 2); on the other hand, with an infinite U ⊆ Z,
CSP(Z, succ, U,0) can be hard : take U to be the halting set, for example, then
the reduction n �→ the direct (n + 1)-path 0 . . . n witnesses the undecidability of
CSP(Z, succ, U,0), and likewise for U a harder set say in Π3 � Σ2. One natu-
rally wonders how wild CSP(Z, succ, U)’s could be, (Z, succ, U) being virtually
“sandwiched” between (Z, succ) and (Z, succ, U,0) for each U ⊆ Z.

Moreover, (Z, succ) and (Z, succ, U,0) are both non-ω-categorical: the for-
mer has 2-types {(x, x + k)}k<ω, while the latter is rigid. This indicates that
non-ω-categoricity, a model-theoretic “wildness” bears no overall impact on
the tractability of the structure’s CSP. Hence {(Z, succ, U)}U⊆Z affords another
entry point for classification of the CSP’s of non-ω-categorical structures.

As mentioned above, recent work ( [8,9]; see also [6]) established that for
a structure A over Z with finite relational signature, if each relation is first-
order definable in (Z, <) without parameters, then CSP(A) is either in P or
NP-complete. A dichotomy has also been established when the relations defin-
able from unary structures [22]. (Z, succ, U) however is in neither case: succ is
not first order definable from unary structures and the only 0-definable unar-
ies in (Z, <) are ∅ and Z. Therefore we prove a class of “nicely gapped” unary
expansions of (Z, succ) has efficient CSP (Sect. 3,Theorem 1), and proceed to
characterize all CSP(Z, succ, U) by gaps in U (Sect. 4, Theorem 2). In particular,
some CSP(Z, succ, U) might be candidates for relatively natural NP-intermediate
problems (Sect. 4, Corollary 1 and discussion).

The characterizations in Sections (3)(4), understandably, highly relies on the
arithmetic nature of (Z, succ), so it is natural to ask if they could be generalized
to unary expansions of undirected graphs over Z, i.e. the (Z, E, U)’s with E
just an irreflexive, symmetric binary relation. We record some progress in this
direction in Sect. 5, and give some lower bound of CSP complexity (up to direct
limits) assuming reasonable structural properties in the underlying digraph. In
Sect. 6 we discuss some possible future directions.
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2 Preliminaries

Definition of constraint satisfaction problems and homomorphisms are intro-
duced in Sect. 1. In e.g. Section 5, we adopt the alternative formulation:

Problem 2 (CSP(D,S), alternative formulation).
Parameters (Fixed): A structure A = (A, τA) with τ a finite relational

signature.
Input: a first order sentence ψ :≡ ∃x1 . . . xrR(x1, . . . , xr), where

R(x1, . . . , xr) is a finite conjunction of =’s and atomics in τ .
Output: does A � ψ?

A walk through the definitions should convince one that these two for-
mulations are equivalent up to the transformation ψ :≡ ∃x1, . . . , xrR1(x) ∧
. . . Rj(x) �→ the structure G on vertices {x1, . . . , xr} with each RG

• (• ∈ [1, j])
as positively prescribed in ψ,1 and vice versa. First order sentences (resp. for-
mulae) in the form of inputs to Problem 2 are pp-sentence (resp. pp-formulae).
For A = (A, τA), a relation R ⊆ Ar is pp-definable (resp. fo-definable) without
parameters in A if there exists a pp(resp. first order) τ -formula ψ(x1, . . . , xr) s.t.
(a1, . . . , ar) ∈ R ⇐⇒ A � ψ(a1, . . . , ar).

We use ≤p
m (resp. ≤p

T ) to denote the polynomial-time many-one, or Karp
(resp. polynomial-time Turing, or Cook) reductions; ≡p

m (resp. ≤p
T ) denotes

the corresponding equivalence. The following is well known:

Fact 1 (e.g. [3]). Let relational structures A := (A, τA),A′ := (A, ζA
′
) be such

that for each R ∈ τ , RA is pp-definable in A′. Then CSP(A) ≤p
m CSP(A′).

When describing structures (A, τA), we drop the superscript if A is clear
from context. E.g., A = (Z, succ) is technically (Z, succA := {(x, y) : y = x+1}).
Likewise for U ⊆ Z, A := (Z, succ, U) means the unary relation on in A is
interpreted as UA := U .

Both CSP(Z, succ) and SEARCH-CSP(Z, succ) can be solved by the same
efficient greedy algorithm that, for each connected component Dc of the input
D, starts by assigning an arbitrary vertex a ∈ Dc to 0 and then assigns each of a’s
neighbor to −1 (if (∗, a) ∈ succD) or 1 (if (a, ∗) ∈ succD), then recurses on those
neighbors. We refer to this algorithm as the CSP(Z, succ) decider / searcher.

Let A be a τ -structure; Aut(A) (resp. End(A)) denotes its group of auto-
morphisms (resp. monoid of endomorphisms). A is ω-categorical if its first order
theory Th(A) (namely all sentences satisfied by A) is ω-categorical, i.e. A′ �
Th(A) ∧ |A′| = ℵ0 =⇒ A′ ∼= A. Another well known fact used in Sect. 5:

Fact 2 (e.g. [19], equivalent characterization of ω-categoricity). Let τ be
a countable signature, T a complete τ -theory which has infinite models. Then
the following are equivalent:

1 That is, for the j-ary relation Rj , each (y1, · · · , yj) ∈ {x1, · · · , xr}j is in RG
j ⇐⇒

Rj(y1, · · · , yj) is a conjunct appearing in ψ.
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1. All countable models of T are isomorphic;
2. Let A � T , then Aut(A) has finitely many orbits in its action (a1, . . . , an) �→

(ga1, . . . , gan) on An, for any n ≥ 1.

3 A Sufficient Condition for Efficiency of CSP(Z, succ, U)

We do not believe there is a many-one or Turing reduction from U to
CSP(Z, succ, U); intuitively, without a 0 (or any constant for that matter) to
“anchor the origin”, End(Z, succ) = Aut(Z, succ) ∼= Z and only the gap pat-
terns in U decide whether a particular translation of {succ}-homomorphism
makes a {succ, U}-homomorphism. In Sect. 4 we shall formalize this intuition ;
here, we give some nice conditions on the gaps to guarantee the tractability of
CSP(Z, succ, U). First, things are nice if U is periodical:

Observation 1. Let U = aZ + b for some a, b ∈ Z. Then CSP(Z, succ, U) ∈ P.

Proof. By a slight modification to the SEARCH-CSP(Z, succ) solver. Namely,
for each component of input D, if it has some v ∈ UD, initiate the SEARCH-
CSP(Z, succ) solver by assigning h(v) := b. Correctness follows from the fact
that Aut(Z, succ, U) ∼= {ak : k ∈ Z}. For full details, see Appendix C.1. ��

CSP(Z, succ, U) also behaves tamely, with its hardness upper-bounded by U ,
if the gaps in U are eventually large. Let us generalize this observation.

Definition 1. Let U = {u(i)}i<ω ⊆ Z. U is eventually largely gapped (ELG) if
∃c > 0, s.t. ∀n > c, ∀n′ ∈ ω � {n}, |u(n) − u(n′)| > n.

Example 1. Let f(x) ∈ Z[x] with deg(f(x)) ≥ 2, e.g. 6x3 + 4x + 7. One may
verify that Uf := {f(x) : x < ω} is ELG. 2

Example 2. Likewise for any differentiable g(x) : R → R, if g(ω) ⊆ Z with
superpolynomial growth rate and some more mild assumptions, we have Ug :=
{g(x) : x < ω} is ELG. E.g. g(x) = −x · 2x.3

Definition 2. Let U = {u(i)}i<ω ⊆ Z. U has small representation (SR) if there
exists a p(x) ∈ N[x] s.t. |〈u(i)〉| ∼ O(p(i)) for each i < ω.4 we say U is ELG-SR
if U is ELG and has SR.

Example 3. In Examples 1 and 2, both Uf and Ug have SR, and are hence
ELG-SR. Note |〈−2n〉| ∼ O(n).
2 As x → ∞, f is eventually monotonic, and the formal derivative |f ′(x)| ∼ Ω(x),

and when |f ′(x)| ∼ Θ(x) the absolute value of coefficient of x-term is at least 2.
For c >> 0 we have |f(x) − f(x∗)| ≥ max{|f(x) − f(x − 1)|, |f(x) − f(x + 1)|} > x
whenever c < x ∈ ω, x∗ ∈ ω � {x}. So indeed Uf is ELG.

3 The two more mild assumptions are (1) g is eventually monotonic and (2) |g′(x)| ∼
ω(|x|). Indeed, for x >> 0 we have |g(x)−g(x−1)|

1
≥ |g′(x − 1)| ∼ ω(x − 1) so LHS

> x eventually, and similarly, |g(x + 1) − g(x)| > x eventually.
4 Conventionally, 〈•〉 is the binary representation of an integer and | • | is the length.
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Proposition 1. Let U = {u(i)}i<ω be ELG-SR. Then CSP(Z, succ, U) ≤p
T U .

Proof. For each connected component Dc of the input D = (D, succD, UD),
reject if the CSP(Z, succ)-solver rejects on Dc; otherwise the solver finds a succ-
homomorphism h : (Dc, succD ∩ D2

c ) → (Z, succ). Thanks to ELG, one needs
to shift h at most |Dc| times to decide if any translation makes h a (succ, U)-
homomorphism. SR ensures the absence of exponential blowup in this algorithm.
For full details, see Appendix A.1 . ��
Corollary 1. If U is ELG-SR, CSP(Z, succ, U) is in P.

Proof. Proposition 1 puts CSP(Z, succ, U) ∈ PU ; furthermore each U -oracle call
above further reduces to linearly many comparisons of two polynomial-sized
numbers, generating polynomial overhead. For details, see Appendix A.1 . ��

Proposition 1 generalizes to expansion of (Z, succ) by finitely many unaries.
As a caveat, one needs to handle the “cross-set” gaps and work with the “ least
upper bound” of the finite collection of unaries in terms of hardness.

Definition 3. Let k ≥ 1. A collection U :=
{
U1 = {u(i, 1)}i<ω, . . . , Uk =

{u(i, k)}i<ω ⊆ Z
}

is eventually mutually largely gapped (EMLG) if

1. Each Uj (j ∈ [k]) is ELG, and
2. For each (j, l) ∈ (

k
2

)
, ∃cj,l > 0, s.t.

– ∀nj > cj,l, ∀nl < ω, |u(nj , j) − u(nl, l)| > nj, and
– ∀nl > cj,l, ∀nj < ω, |u(nl, l) − u(nj , j)| > nl.

Say U is EMLG-SR if it is EMLG and each Uj (j ∈ [k]) has SR.

Example 4. For differentiable functions f1, f2 ∈ R
R each as described in Exam-

ple 2, if they have opposite signs when restricted to ω, {Uf1 , Uf2} is EMLG; in
particular e.g. for f1(x) = x3, f2(x) = −2x, {Uf1 , Uf2} is EMLG-SR.

Notation 1. Let U1, . . . , Uk ⊆ Z. We denote by lim−→j∈[k]
Uj the following set:

lim−→
j∈[k]

Uj := {n = mk + (r mod k) : r ∈ [1, k],m ∈ Ur} (1)

Note that lim−→j∈[k]
Uj is just encoding Uj ’s into one set s.t. each Uj reduces

to it, and it is the “easiest” such set in the sense of Karp reductions.5 Now
we generalize Proposition 1 and Corollary 1 below. Both proofs resemble and
generalize the single-unary case, whose details are put in Appendix A.2.

Theorem 1. Let {Uj}j∈[k] be EMLG-SR. Then CSP(Z, succ, (Uj)j) ≤p
T

lim−→j
Uj.

Corollary 2. If {Uj}j is EMLG-SR, Then CSP(Z, succ, U1, · · · , Uk) ∈ P.

5 Appendix C.2.
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4 Bounds and Characterization of CSP(Z, succ, U)

4.1 “Lower Bounding” CSP(Z, succ, U)

Let U ⊆ Z be arbitrary. Recall CSP(Z, succ, U) ≤p
m CSP(Z, succ, U,0) as the

upper bound. It would be nice if the converse held, but we believe it is unlikely
due to similar “anchoring” issues (See e.g. Section 3 and infra). However,

Proposition 2. CSP(Z, succ, U,0) ≤p
T lim−→

{
U, CSP(Z, succ, U)

}
.

Proof. Test the non-0 components of the input by CSP(Z, succ, U)-oracle calls.
For the 0-component, find if a {succ,0}-homomorphism h exists, and make
O(|D|)-calls to the U -oracle to find if h is a {succ, U,0}-homomorphism. For
details, see Appendix A.3. ��

Hence, up to taking direct limit with U , CSP(Z, succ, U) is “lower bounded”
by CSP(Z, succ, U,0) in the ≤p

T -order. The following is a notable corollary with
proof in Appendix A.3.

Corollary 3. If U ∈ P, or U ≤p
T CSP(Z, succ, U), then CSP(Z, succ, U) ≡p

T

CSP(Z, succ, U,0).

4.2 Karp-Equivalent Characterizations of CSP(Z, succ, U)

Recall (e.g. Sect. 3) that intuitively, for any U ⊆ Z its gap patterns determine
the members of CSP(Z, succ, U), and conversely one may recover the gap patters
of U from CSP(Z, succ, U). Our characterization below formalizes this intuition.

Definition 4. Let U ⊆ Z with |U | ≥ 2. Define Gap(U) :=

{
(n, S1, S2) ∈ (

ω�{0, 1})×2

(
n
2

)
× [−n, n]S1

∣∣∣ ∃t ∈ Un, (∀(i < j) ∈ S1)(t(j)−t(i) = S2(i, j))
}

Informally Gap(U) is the collection of gap patterns realized by some U -tuple.
Note, though, that having S1 ⊆ (

n
2

)
is crucial: we need to include the cases where

only some distances between the n vertices are specified. This corresponds to the
fact that homomorphisms only remember adjacencies but not non-adjacenties,
and affords the following equivalence:

Theorem 2. Let U ⊆ Z with |U | ≥ 2. Then Gap(U) ≡p
m CSP(Z, succ, U).

Proof. On a Gap(U)-instance (n, S1, S2), construct D as follows: start with D =
UD = {1, · · · , n}, then add paths of length S2(i, j) between vertices i, j for each
(i < j) ∈ S1. Conversely, on a CSP(Z, succ, U)-instance D = (D, succD, UD),
first let the subgraph D′ collect each D-component that intersects with UD at
more than 1 vertices; let n := |D′ ∩ UD|, and let (S1, S2) keep track of the
positive finite distances of each UD-pair that lies on the same component of D′.
For full details, See Appendix A.4. ��
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We close the section with an interesting question:

Question 1. Let V ⊆ ω be infinite. Is there a UV ⊆ Z s.t. V ≤T Gap(UV )?

That is, we would like for any infinite set V of naturals, there exists a set UV

whose “gap patterns” decide V -membership. Assuming that, an immediate corol-
lary would be the unboundedness of computational complexity of Gap(U) and
CSP(Z, succ, U)’s in general. If, in addition, ≤T in Question 1 could be refined to
≡p

m, then Ladner’s theorem [20] and a recent construction [3,4] would imply the
existence of NP-intermediate CSP’s and CoNP-intermediate CSP’s respectively of
the form CSP(Z, succ, U).

We summarize our results in Fig. 2, Appendix B.1.

5 From (Z, succ, U) to (Z, E, U)

Now we generalize our results in Sections (3)(4) into arbitrary partially-1-colored
digraphs on Z, i.e. structures of the form (Z, E, U) with E ⊆ Z

2, U ⊆ Z. With
due care, results here can be further generalized: see remark in Appendix C.7.

As a motivating example, fix any d ≥ 1 and consider the relation
Diffd(x, y) ⇐⇒ y = x + d. Note that Diffd is pp-definable in (Z, succ). The
digraph (Z,Diffd) consists of d pairwise isomorphic components, each isomor-
phic to (Z, succ), therefore CSP(Z, succ) = CSP(Z,Diffd)∈ P. Moreover, just as
fixing one vertex fixes a homomorphism – if any exists – to (Z, succ), for finite
connected {Diffd,0}-structure D we have

D ∈ CSP(Z,Diffd,0) ⇐⇒ |HomDiffd,0(D, (Z,Diffd,0))| = 1 (2)

Further expanding the structure by U ⊆ Z, we no longer have
CSP(Z, succ, U) = CSP(Z,Diffd, U): the gaps are not preserved by the homo-
morphic equivalence between base structures. However by an argument similar
to Sect. 3 Proposition 2, one may obtain:

Observation 2. Let U ⊂ Z. Then CSP(Z,Diffd, U,0) ≤p
T lim−→

{
U,

CSP(Z,Diffd, U)
}
.

Details and more discussions on generalizing results in Sect. 3 to (Z,Diffd, U)
can be found in Appendix C.3.

Now consider any partially-1-colored digraph A := (Z, E, U). We are inter-
ested in generalizing Sect. 3 results to complexity lower bounds of CSP(A).

Definition 5. Let U ⊆ Z, E ⊆ Z
2, and A := (Z, EA := E,UA := U). Consider

its reductA↓ := (Z, E). Let 0 be a constant.6 We say A↓ is

1. pointed homomorphically rigid (PHR) if if for any finite, connected {E,0}-
structure D,

D ∈ CSP(A↓,0) ⇐⇒ |Hom{E,0}
(
D, (A↓,0)

)| = 1 (3)

6 Any interpretation of 0 works; without loss of generality we pick 0(A,0) = 0 ∈ Z.
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2. freely translational (FT) if AutE(A↓) contains all translations fz : x �→ x + z
(z ∈ Z).

Theorem 3. Let A := (Z, E, U) be such that A↓ is PHR and FT. Then,7

CSP(A,0) ≤p
T lim−→

{
U,CSP(A),SEARCH-CSP(A↓)

}
(4)

Proof. Similar to Proposition 2. Decompose input D = (Z, ED, UD,0D) into
connected components. For components Db avoiding 0D, call the CSP(A) oracle.

For D0 � 0D, find an {E}-homomorphism h : D0 → (A↓) if it exists, by
calling SEARCH-CSP(A↓) . By FT, s : x �→ x − h(0D) is an E-endomorphism,
hence s ◦ h is an “pointed” E-homomorphism where 0D �→ 0 = 0A, i.e. an
{E,0}-homomorphism. By PHR, s◦h is the unique {E,0}-homomorphism D0 →
(A↓,0). Now to check if s◦h is further an {E,0, U}-homomorphism, simply test
if s ◦ h(u) ∈ U = UA for each u ∈ UD ∩ D0.8 ��

Theorem 3 says that when the underlying digraph A↓ = (Z, E) has nice
algebraic properties (PHR-FT), one obtains a generalized lowerbound of CSP(A)
“up to direct limit” given by CSP of the pointed structure (A,0). This also has
some structural implications:

Proposition 3. For (A↓,0) = (Z, E,0), let A↓
0 denote its central component,

i.e. the pointed component of the underlying digraph containing 0.

1. If A↓ is PHR, then EndE,0(A↓
0) = {1}. The converse is false.

2. If A↓ is FT, then A↓
0 has infinite domain.

3. If A↓ is PHR-FT, then (A↓,0) is not ω-categorical, unless E = ∅.9

Proof. 1. Assume for contradiction that EndE,0(A↓
0) �= {1}, so there exists

σ ∈ EndE,0(A↓
0) and a �= b ∈ A↓

0 s.t. σ(a) = b. Note that a �= 0 for σ
preserves 0. By connectedness, there exists a finite signed path 0 . . . a ⊆ A↓

0.
Take D := A↓

0[{0, . . . , a}] , which is again connected thanks to that signed
path. Let h1 : D ↪→ A↓

0 the embedding. Now, h2 := σ ◦h1 ∈ HomE,0(D,A↓
0)

with b = h2(a) �= h1(a) = a, contradicting PHR. Falsity of the converse is
given by a counter-example in Appendix C.4.

7 Note: when E = succ, we have SEARCH-CSP(Z, E) ≤p
T CSP(Z, E) ∈ P, so Theo-

rem 3 gives back Proposition 2. In general we do not know if the Search to Decision
reduction works for infinite structures.

8 Note that the runtime of this SEARCH-CSP accounts for the time to write down
the h(x)’s for each x ∈ D. Later when we compute the shift a−h(0D), the overhead
is dominated by the runtime of the SEARCH-CSP. The total overhead of computing
s ◦ h is therefore at most that of running O(|D|) times of the SEARCH-CSP cost.

9 Some remark: first, Proposition 3(3) implies (A,0)) is also not ω-categorical. Also,
if E = ∅ then (A,0) is indeed ω-categorical. We use the following equivalent charac-
terization: a structure A is ω-categorical iff Some countable model of T realizes only
finitely many complete n-types for each n < ω. For any n ≥ 1, a complete n-type
(x1, . . . , xn) only needs to make a decision for each xi as to whether xi ∈ U , and
whether xi = 0. Thus there are finitely many complete n-types for any n. Likewise
(A↓,0) is ω-categorical for having even fewer n-types.
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2. Assume E �= ∅ and assume for the sake of contradiction that |A↓
0| < ℵ0.

(a) If |A↓
0| = 1, take (a1, a2) ∈ E. Note that a1, a2 �= 0 since A↓ is isolated.

The translation σ : x �→ x − a1 fails to be an {E}-endomorphism, as
(σ(a1), σ(a2)) /∈ EA↓

. This contradicts FT.
(b) Otherwise ℵ0 > |A↓

0| ≥ 2. Let b ∈ A↓
0�{0} be of maximal absolute value

in A↓
0. As A↓ has FT and endomorphisms preserve connectedness, by

repeatedly applying the translation x �→ x + b we obtain that {kb}k<ω ⊂
A↓

0, contradicting ℵ0 > |A↓
0|.

3. We have EndE,0(A↓
0) = {1} and |A↓

0| = ℵ0. Now AutE,0(A↓,0) ⊆
AutE,0(A↓

0) ⊆ EndE,0(A↓
0) = {1}, so (A↓,0) = (Z, E,0) is rigid, and

AutE,0(A↓,0) on Z has infinitely many orbits. (A,0) being an expansion
of (A↓,0) is also rigid.

Proposition 3 (2) implies that, when |A↓
0| < ℵ0, we need a different condition

to guarantee a generalized lowerbound similar to Sect. 3.

Definition 6. Let A = (Z, E, U) so (A↓,0) = (Z, E,0) with A↓
0 its the central

component. Say A↓ has Transitive Endomorphism-action on Hom sets (TEH)
if for any finite, connected E-structure D, EndE(A↓[A↓

0]) acts transitively on
HomE(D,A↓[A↓

0]) by post-composition.

Note that A↓[A↓
0] is the substructure of A↓ induced on A↓

0’s central component.

Proposition 4. If |A↓
0| < ℵ0 and A↓ has TEH, then:

CSP(A,0) ≤p
T lim−→

{
U,CSP(A),CSP(A↓[A↓

0])
}

(5)

Changing CSP(A↓[A↓
0]) to SEARCH-CSP(A↓[A↓

0]) would be correct and
tighter, but we use the following fact to get the current more succinct form :

Fact 3 (e.g. Exercise in [2]). Let A be a finite relational structure. Then
SEARCH-CSP(A) ≤p

T CSP(A).

Proof of Fact 3 is an exercise; proof of Proposition 4 is similar to Theorem 3,
letting TEH play the role of FT. Details of both are included in Appendix A.5.

Corollary 4. Let U ∈ P.

1. If A↓ = (Z, E) is PHR-FT and if SEARCH-CSP(A↓) ≤p
T CSP(A↓), OR

2. If |A↓
0| < ℵ0 , A↓ has TEH, and if CSP(A↓[A↓

0]) ≤p
T CSP(A↓),

then CSP(A,0) ≡p
T CSP(A).

For verification of Corollary 4, see Appendix C.6. We summarize our main
results in Fig. 3, Appendix B.2.
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6 Future Directions

In Sects. 3 and 4, we studied how properties of U impacts the complexity of
CSP(Z, succ, U). In particular, Sect. 3 identified some properties for U to guar-
antee a relatively tame behavior of CSP(Z, succ, U), while Sect. 4 character-
ized CSP(Z, succ, U) by gaps in U . Some questions that initially motivated our
research in that direction remains open:

Problem 3. What are the equivalent conditions for CSP(Z, succ, U) to be
tractable? Are there U ’s such that CSP(Z, succ, U) is NP-intermediate or coNP-
intermediate, assuming P�=NP? In particular, is the answer to Question 1 yes
and can ≤T there be refined to ≡p

m?

In Sect. 5 we generalized our lowerbound results to arbitrary (Z, E, U) where
the underlying digraph has nice properties. Some next steps may include:

1. Study if with reasonable properties on E, the lim−→() in the quasi-lowerbound
could be removed.

2. Refine the characterization of complexity of CSP(Z, E, U) by properties on
E and U . Some discussion on one specific direction of such refinement is
attached in Appendix C.8.

Acknowledgement. Partially supported by NSF grant DMS-1855789. We thank the
reviewers for their time and enlightening comments. The third author thanks the first
two authors for their great advice.

A Proof Details of Interesting Claims

A.1 Details of Section 3, Proposition 1 and Corollary 1

First, we show the details of the proof that if U = {u(i)}i<ω is ELG-SR, then
CSP(Z, succ, U) ≤p

T U . On D = (D, succD, UD), for each component De:

1. If De∩UD = ∅, run CSP(Z, succ) decider on (De, succD∩D2
e); if |De∩UD| = 1,

run the CSP(Z, succ) algorithm beginning with assigning the unique de ∈
De ∩ UD to an arbitrary b ∈ U .
Correctness follows from the observation that, in these cases we are still free
to translate a succ-homomorphism as long as one exists.

2. Now |De∩UD| ≥ 2. Since U is ELG, by definition there exists c ∈ ω witnessing
it, i.e. gaps in U are large after index c. Pick arbitrary de ∈ De ∩ UD. Run
the following:
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while i ≤ max{c, |De|} do
run CSP(Z, succ) solver on De initiated by sending de to u(i)
if CSP(Z, succ) rejects then

reject
else

//CSP(Z, succ) found h ∈ Hom(De, (Z, succ)) with
h(de) = u(i)
for d′

e ∈ De ∩ UD do
Test if h(d′

e) ∈ U , reject if not
end
accept for De

end
end

Algorithm 1: The reduction CSP(Z, succ, U) ≤p
T U .

And D is accepted if and only if each De is accepted. To see efficiency: since
U has SR, |〈u(i)〉| is polynomial in i, and i is linear in |De| ≤ |D|. If a {succ}-
homomorphism h is found, we have polynomially many calls to the U -oracle;
note that each h(d′

e) ∈ [u(i) − n, u(i) + n], so it remains polynomial size. The
whole algorithm is therefore poly-calls to U with poly-overhead.
To see correctness, first observe the following fact: in a connected compo-

nent of size n, for any vertices x �= y the longest “signed path” (vertices
x0 := x, x1, . . . , xk := y s.t. for each i, either (xi, xi+1) ∈ E or (xi+1, xi) ∈ E)
has at most n − 1 edges, and the signed length (computed by adding 1 if
(xi, xi+1) ∈ E and subtracting 1 if (xi+1, xi) ∈ E).10 is at most n− 1. When-
ever the component homomorphically maps to (Z, succ) via some h, the signed
length of any signed path must be h(y) − h(x).
Now for any i > max{c, |De|}, |u(i) − ∗| > i > |De| for any ∗ ∈ U � {u(i)},
and with |De ∩ UD| ≥ 2, this gap is too big for there to exist a homomor-
phism sending de to u(i). In other words, De ∈ CSP(Z, succ, U) ⇐⇒ ∃h ∈
Homsucc(De, (Z, succ, U)) s.t. h(de) ∈ {u(i)}i≤max{|De|,c}, which is what the
algorithm checks.
As for the corollary claiming efficiency, note that the above has reduced
CSP(Z, succ, U) to O(|D|)-many tests of whether each h(d′

e) ∈ U . But this
can be done by asking “is h(d′

e) = u(j)?” for each j ∈ [0,max{c, |De|} + 1]”.
Both h(d′

e) and each u(j) are of size polynomial in |D|, thanks to SR and the
connectedness of De.

A.2 Details of Section 3, Theorem 1 and Corollary 2

Proof (Section 3, Theorem 1). Again, thanks to EMLG one needs to shift a succ-
homomorphism, if found, at most linearly many times, and SR bars exponential
blow-ups.
10 Note: if for some i both (xi, xi+1) and (xi+1, xi) are in E then the graph cannot

homomorphically map to (Z, succ); if between x, y there exist two different signed
paths with different signed lengths, the graph is also not in CSP(Z, succ).
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Upon input D = (D, succD, UD
1 , . . . , UD

k ), for each component De:

1. If |De ∩ (
⋃

j UD
j )| ≤ 1, like in Proposition 1 the gaps within and across Uj ’s

make no impact on existence of homomorphisms. One just needs to run the
CSP(Z, succ) decider / searcher starting with assinging de to an arbitrary
b ∈ Uj , where UD

j is the unique unary intersecting De with de the unique
intersection.

2. Otherwise, let c := max of the ≤ k +
(
k
2

)
constants witnessing EMLG. Then

for any (j, l) ∈ k2, any n > max{c, |De|}, any n′ ∈
{

N if l �= j
N � {n} o.w.

we have |u(n, j) − u(n′, l)| > n > |De|. It follows that one needs at most
O(|De|) ∼ O(|D|) iterations, for n ∈ [0,max(c, |De|)].
Fix arbitrary de ∈ De ∩ (

⋃
j UD

j ) before iterating. Within each iteration, run
CSP(Z, succ) assigning de to some u(n, y) where de ∈ De ∩UD

y , n is the itera-
tion number (n ≤ max(c, |De|)). Since Uy has SR, u(n, y) has size polynomial
in n, and n is linear in |D|. If a succ-homomophism h is found, verify whether
h(d′

e) ∈ Uy′ for each d′
e ∈ De ∩ UD

y′ . Via Uy′ ≤p
m (hence ≤p

T ) lim−→j
Uj , the

decision of Uy′ -membership of h(d′
e) reduces to calls to the lim−→j

Uj-oracle.
Note each h(d′

e) ∈ [u(n, y) − |De|, u(n, y) + |De|], so the reduction is of time
polynomial w.r.t. |D|. ��

Proof (Section 3,Corollary 2). As in Corollary 1, for each h(d′
e), ask if h(d′

e) =
u(s, t) for each t ∈ [1, k] involved, s ∈ [0,max{c, |De|} + 1]. By SR and connect-
edness, both h(d′

e) and each u(s, t) have size polynomial in |D|. ��

A.3 Details of Section 4, Proposition 2 and Corollary 3

Proof (Section 4, Proposition 2). Upon each input D = (D, succD, UD,0D), let
D0 := the unique component containing 0D. Call CSP(Z, succ, U)-oracle on
D � D0 and echo if rejects.

Call CSP(Z, succ)-solver on (D0, succD ∩ D2
0) initiated by sending 0D to 0,

and echo if rejects; otherwise, the unique succ-homomorphism h : (D0, succD ∩
D2

0) → (Z, succ) that satisfies h(0D) = 0 has been found, and one just needs
to verify if for each d we have h(d) ∈ U by calling the U -oracle. Note each
h(d) ∈ [0 − |D0|, 0 + |D0|] so input size remains polynomial in |D0| ≤ |D|.

The only oracles we called above are the U -oracles and CSP(Z, succ, U)-
oracles, both of which Karp (hence Cook) reduces to the lim−→-oracle on RHS.

Proof (Section 4,Corollary 3). If U ∈ P, calls to the U -oracle counts as poly-
nomial time overhead; if U ≤p

T CSP(Z, succ, U), note the direct limit can be

computed as
{

χU (n−1
2 ) if n = 2k + 1

χCSP(Z,succ,U)(n
2 ) o.w. , where χS(•) is the membership

function of set S, and χU can be computed by computing χCSP(Z,succ,U) now at
polynomial cost.
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A.4 Details of Section 4, Theorem 2

Proof. Before going into the full details, we illustrate the reductions with the
following example (Fig. 1):

3, 3
2

)
, (1, 3, 1)

)

3, 3
2

)
, (1, 3, 2)

)

1

2

3

((1, 3), 1) ((1, 3), 2)

1 2 3 4 5©

6

© ©

7
( n© ∈ U )

Fig. 1. Example of Theorem 2 Reduction

1. ≤p
m: upon (n, S1, S2), construct D := {1, . . . , n}, succD = ∅, UD := D. Then

for each (i < j) ∈ S1:

(a) If S2(i, j) > 0, add intermediate vertices and edges i =
(
(i, j), 0

) succD−→
(
(i, j), 1

) succD−→ · · · succD−→ (
(i, j), S2(i, j)

)
= j.

(b) If S2(i, j) < 0, add intermediate vertices and edges i =
(
(i, j), 0

) succD←−
(
(i, j), 1

) succD←− · · · succD←− (
(i, j), |S2(i, j)|

)
= j.

(c) if S2(i, j) = 0, collapse vertices i ∼ j (so now the “vertex classes” [i] =
[j]).

Now D =
{

[1], . . . , [n]
}

∪
{(

(i, j),m
)}

S2(i,j) �=0,m∈[1,|S2(i,j)|−1]
and UD =

{
[1], . . . , [n]

}
. Note |D| ≤ n + n × (

n
2

)
, and as S1 is part of the tuple, |D|

is polynomial in |〈(n, S1, S2)〉|, so (n, S1, S2) �→ D = (D, succD, UD) is a
polynomial-time construction. Further,
(a) If (n, S1, S2) ∈ Gap(U) witnessed by t ∈ Un, let h : D → Z, [j] �→ t(j)

(j ∈ [1, n]) and extend naturally to the intermediates, i.e.
(
(i, j),m

) �→
t(i)+ sign(S2(i, j)) × m. The map puts D ∈ CSP(Z, succ, U).

(b) If D ∈ CSP(Z, succ, U) by h, then
(
t(i) = h([i])

)
i∈[1,n]

witnesses
(n, S1, S2) ∈ Gap(U).

2. p
m ≥: Observe that s1 :=

(
3,

(
3
2

)
,
(

1︸︷︷︸
(1,2)

, 3︸︷︷︸
(1,3)

, 1︸︷︷︸
(2,3)

))
/∈ Gap(U) due to

triangle-inequality, and taking arbitrary u1 �= u2 ∈ U (not UD), s2 :=(
2,

{
(1, 2)

}
,
(
u2 − u1

)) ∈ Gap(U). s1, s2 are input-independent.

Now let D = (D, succD, UD). We want to produce a short tuple sD =
(n, S1, S2) in time polynomial in |D|. We present an algorithm for that.
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(a) Run CSP(Z, succ) decider/searcher on D, and halt setting sD := s1

if reject was returned; else, we obtain an h ∈ Homsucc

(
(D, succD),

(Z, succ)
)

from the run.
(b) Throw away the components De with |De ∩ UD| ≤ 1, keeping D′ :=∐

e:|De∩UD|≥2 De. If D′ = ∅, halt setting sD := s2.
(c) Let n := |UD ∩ D′|; now n ∈ [2, |D′|]. Enumerate elements in UD ∩ D′ as

v1, . . . , vn; let S1 := {(i < j) : vi, vj are from the same component }. Let
S2(i, j) := h(vj) − h(vi) with h from Step 2a. Let sD := 〈(n, S1, S2)〉.

sD has size polynomial in |D| and the algorithm is efficient. Correctness:
(a) Assume D ∈ CSP(Z, succ, U) witnessed by h′, then sD �= s1 for h′ ∈

Homsucc

(
(D, succD), (Z, succ)

)
and the CSP(Z, succ)-decider should’ve

caught a homomorphism.
– If D′ �= ∅: for each vi �= vj from the same component in D′, h′(vj) −

h′(vi) = h(vj)−h(vi). Therefore setting ti = h′(vi) for each i ∈ [1, n],
we get a witness for (n, S1, S2) ∈ Gap(U).

– If D′ = ∅, we exited with an s2 ∈ Gap(U).
(b) Assume sD ∈ Gap(U), then again sD �= s1.

– If sD = s2 then the h from Step 2a translates componentwise and
then patches to a {succ, U}-homomorphism.

– otherwise there exists t ∈ Un with t(j) − t(i) = S2(i, j) (∀(i < j) ∈
S1). Each component in D′ contains a vie ∈ UD ∩ D′; shift h �De

s.t. h(vie) = t(ie). Now for each vje �= vie ∈ De ∩ UD, h(vje) =
h(vie) + S2(ie, je) = t(je) ∈ U . Do so for each component of D′.
Lastly for each component in D � D′, shift h if need be. ��

A.5 Details of Section 5, Fact 3 and Proposition 4

We first prove the folklore / exercise in Sect. 5, Fact 3, conceptually by mimicing
the Search to Decision reduction for SAT. As in graphs, a core B ⊂ind A is a
minimal image of endomorphisms, i.e. there exists no σ ∈ End(A) s.t. σ(A) � B.
For finite A’s, cores always exist and are unique up to isomorphism [3]. are
isomorphic,11 so hereinafter we talk about “the” core of A.

Let B be the core of A, then inclusion B ↪→ A and the definitional endo-
morphism A → B shows homomorphic equivalence of A and B, so it suffices to
show SEARCH-CSP(A) ≤p

T CSP(B).12

To make the description less cumbersome let’s define POINTED-CSP: fix
arbitrary b ∈ B. POINTED-CSP(B, b) takes a pair (D, d) with D a finite τ -
structure, d ∈ D, and returns 1 iff there exists h ∈ Homτ (D,B) s.t. h(d) = b.

Claim: POINTED-CSP(B, b) ≤p
m (hence ≤p

T ) CSP(B).
11 (e.g. [18] for proof of isomorphism of cores in the special case of graphs) Let

B1,B2 ⊂ind A be cores, witnessed by e1 : A → B1, e2 : A → B2, two surjec-
tive homomorphisms (otherwise B∗ is not a core). Then e1|B2 is also surjective, for
otherwise (e1|B2) ◦ e2 gives an induced substructure of B1 which is an endomorphic
image. Dually e2|B1 is surjective. Therefore |B1| = |B2|, e1|B2 and e2|B1 are bijective
homomorphisms, and we have the isomorphism.

12 Note: A is input-independent, hence core(A) = B.
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Proof (Proof of Claim). Upon a POINTED-CSP(B, b) input (D, d), let D̃ :=
D ∪ B

b ∼ d
.13. This is a polynomial time construction since |B| ∼ O(1). I claim

(D, d) ∈ POINTED-CSP(B, b) ⇐⇒ D̃ ∈ CSP(B).

1. =⇒ : let h : (D, d) → (B, b) be a basepoint-preserving homomorphism. Then

h̃ : D̃ → B, h(x) :=
{

h(x), if x ∈ D
x, o.w. is a homomorphism.

2. ⇐= : let h : D̃ → B be a homomorphism. Then h|B : B → B is an
endomorphism of the finite core B. Since an endomorphism of a core is an
automorphism,14 there exists σ ∈ Aut(B) = End(B) s.t. σ◦(h|B) = 1B. Now
σ ◦ (h|D) is a homomorphism D → B sending d to σ(h([d])) = σ(h([b])) = b,
which is the desired witness.

Analogously if we define a m-POINTED-CSP(B, b1, . . . , bm) it also
Karp-reduces to CSP(B), the reduction being (D, d1, . . . , dm) � D̃ :=

D ∪ B

{di ∼ bi}i∈[1,m]
.15

An algorithm that calls the CSP(B)-oracle to solve SEARCH-CSP(A) there-
fore goes as:

if D /∈ CSP(B) then

Reject

for i ∈ [1, |D|] do
for j ∈ [1, |B|] do

if (D, d1, . . . , di) ∈ POINTED-CSP(B, h(d1), . . . , h(di−1), bj) then

Set h(di) := bj
break //break inner iteration, go to next i

end
reject

end

Algorithm 2: Querying CSP(B)-oracle to solve SEARCH-CSP(A)

Algorithm 2 finds a full homomorphism D → B ⇐⇒ D ∈ CSP(B) =
CSP(A) so it solves SEARCH-CSP(A); furthermore it calls the CSP(B)-oracle
O(nk) times. =⇒ is by definition, and to see ⇐= , note that the existence

13 That is, take a copy of D and a copy of B, glue b and d.
14 e : B → B must be surjective, so bijective. As Ime ⊆ind B, the bijectivity says

Ime = B. In particular this says e preserves the number of solutions for each Ri,
i.e. there cannot be (a1, . . . , ari) /∈ RB

i s.t. (e(a1), . . . , e(ari)) ∈ RB
i . It follows that

e preserves the relations bidirectionally, hence an automorphism.
15 Note e.g. when m = 2 in the ⇐= direction has σ ◦ h|D sending [di] to [bi] for both

i as each bi ∈ B.
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of an h : D → B means for each i ∈ [1, |D|] there exists some j ∈ [1, |B|] s.t.
h(di) = bj , i.e. the existence of an accepting path.16 ��

Next,

Proof (Proposition 4).
As before, decompose D = (D,ED, UD,0D) into connected components and

let the CSP(A) handle the non central components.
For the central component, call SEARCH-CSP( A↓[A↓

0]) oracle, which
thanks to |A↓

0| < ℵ0 and Fact 3 Cook reduces to CSP(A↓[A↓
0]). If

we found an h ∈ HomE((D,ED),A↓[A↓
0]), by the assumption, all h′ ∈

HomE((D,ED),A↓[A↓
0]) is of the form σh for different σ’s in EndE(A↓[A↓

0]).
Note that |A↓

0| < ℵ0 =⇒ |EndE(A↓[A↓
0])| ≤ |A↓

0||A↓
0| < ℵ0 and

|EndE(A↓[A↓
0])| is input-independent. Each σi ∈ |EndE(A↓[A↓

0])| is a finite
domain function, whose encoding is also input-independent. For each of the
O(1)-many σi ∈ |EndE(A↓[A↓

0])|, compute σih (Since σi is input-independent
and A↓

0 is constant-sized, time and space cost is dominated by computing h,
which is again dominated by the oracle call to CSP(A↓[A↓

0])); then check if σih
preserves 0D in O(1) time and if σih preserves the unary by calling the U -oracle.
��

B Diagrams Summarizing Main Results

B.1 For Section 4

U

CSP(A)

≤
p T

when

A := (Z, succ, U)

ELG-SR

≤p
m
,

CSP(A,0)

≤exp
m

CSP(A,0)

” ≤ p
T ”

up
to

lim{U, •}

≡p
m

Gap(U)

Fig. 2. Bounds and Equivalences of CSP(Z, succ, U)

16 The algorithm also has the benefit that whenever a homomorphism is found,
the solution tuple (h(d1), . . . , h(d|D|)) = (bs,1, . . . , bs,|D|) is the minimal element
in the dictionary order by indices in the target. That is, for any other solution
(b′

s,1, . . . , b
′
s,|D|) ∈ B|D| = (b1 ≺ · · · ≺ b|B|)

|D|, (bs,1, . . . , bs,|D|) � (b′
s,1, . . . , b

′
s,|D|).
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B.2 For Section 5

A := (Z, E, U)

CSP(A,0) CSP(A,0)

CSP(A)

≤p
m

” ≤ p
T ”

(**)

(**): up to lim {U, SEARCH-CSP(A ), •}

with conditions (e.g. (PHR + FT))

Note: A 0 0

OR
(**): up to lim {U, CSP(A [A0]), •}

with conditions (e.g. TEH)

Note: A 0 < 0

Fig. 3. Results for A := (Z, E, U),A↓ := (Z, E). Recall A↓
0 is the 0-component of

(A↓,0) , and A↓
0 its domain.

C Detailed Verification of Miscellaneous Claims

C.1 Full Details of Section 3, Observation 1

We give more details on the polynomial-time algorithm. Modify the greedy
algorithm that determines if an input G ∈ CSP(Z, succ). For each component
De ⊆ D = (D, succD, UD), if De ∩UD = ∅, run the CSP(Z, succ) decider on De;
otherwise pick an arbitrary de ∈ UD ∩ De, then run the greedy CSP(Z, succ)
algorithm on De initiated by mapping de to b. When the algorithm accepts, it
yields a {succ}-homorphism he : (D, succD) → (Z, succ); accepts on this compo-
nent only if he(d′

e) ∈ U for each d′
e ∈ UD ∩ De. Accept D only if all components

accept.
If the algorithm above accepts, obviously each he is a {succ, U}-

homomorphism; conversely if D ∈ CSP(Z, succ, U), so is each component De.
Hence there exists some homomorphism he sending de to some x ∈ b + aZ. Now
Aut(Z, succ, U) ∼= Z composes of translations by ak (k ∈ Z), so there exists
h′

e ∈ Homsucc,U (De, (Z, succ, U)) sending de to b, which is the one affording
acceptance of De.

C.2 Section 3 Equation 1 Gives the L.U.B. in Karp-Order

To see that lim−→j
Uj defined as above is indeed the least upper bound, observe that

each Ur ≤p
m lim−→j

Uj via m �→ mk + (r mod k), and if Q ⊆ Z is s.t. Ur ≤p
m Q

via fr for each r ∈ [k], then lim−→j
Uj ≤p

m Q via x �→ fr(
x−(x mod k)

k ) where

r =
{

x mod k if k � x
k o.w.
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C.3 More Discussion on Diffd

Proof (details of Section 5, Observation 2).

1. For each component De s.t. 0D /∈ De, call the CSP(Z, succ, U)-oracle, which
reduces to the lim−→

{
U, CSP(Z,Diffd, U)

}
-oracle.

2. For the unique component D0 � 0D, run the greedy, efficient SEARCH-
CSP(Z,Diffd) algorithm to decide if there is a (unique) {Diffd,0}-
homomorphism h. Reject if none found.
Having found h, for each u ∈ UD ∩ D0, call U -oracle on h(u). Note that
h(u) ∈ [−|D|, |D|] and the oracle call once again reduces to calling lim−→

{
U,

CSP(Z,Diffd, U)
}
.

Other interesting properties of CSP(Z,Diffd, U) may be said. For example:

1. One may define eventually (mutually) d-largely gapped
(
E(M)LGd

)
analo-

gously to Definitions 1, 3, changing “|u(n, ∗) − u(n′, ∗)| > n” into “|u(n, ∗) −
u(n′, ∗)| > dn”. Keeping the definition of SR (2) unchanged, we have
CSP(Z,Diffd, U) ≤p

T U when ELGd-SR, and CSP(Z,Diffd,U) ≤p
T lim−→U when

EMLGd-SR.
2. Note that Aut(Z,Diffd) ∼= Sd × (dZ)d ∼= Sd × Z

d as groups: indeed, an auto-
morphism permutes the components and then shifts on each component by a
distance in dZ.

C.4 Figure 4 Disproves Converse of Proposition 3(1)

We show that the converse of Proposition 3(1) is not true; in fact, even(
EndE,0(A↓

0) = {1})+ FT �=⇒ PHR.17 We claim that Fig. 4 below has(
EndE,0(A↓

0) = {1})+ FT but no PHR: D embeds in (A↓,0) in 2 ways.

0© = 0A 2 4 6

. . .. . .

−2−4−6

−5 −3 −1 1 3 5

A , 0 := (Z, E, 0) D : 0 = 0D 1as above,

Fig. 4. Counter example A↓

We verify that Fig. 4 has
(
EndE,0(A↓

0) = {1})+ FT yet no PHR. With-
out naming the constant, each vertex has in-degree 2 and out-degree 2, so any

17 If the implication were true, for Theorem 3 we would have algebraic conditions
without reference of “all finite connected τ -structures”, which would be considerably
cleaner.
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translation is an {E}-endomorphism — in fact even an automorphism, yield-
ing FT. Furthermore, after naming 0A := 0, its predecessors and successors
are fixed: let σ ∈ EndE,0(A↓,0). σ(2), σ(1) ∈ {2, 1} yet if σ(2) = 1, neither
σ(1) = 1 nor σ(1) = 2 would give EA(σ(1), σ(2)). It follows that σ(2) = 2.
Likewise, σ(±1) = ±1 and σ(−2) = −2. For |n| ≥ 3, σ(n) = n follows from
induction. The fact that vertices further away are fixed follow from induction,
so EndE,0(A↓

0) = EndE,0(A↓, 0) = {1}. On the other hand, D := 0D = 0 → 1
embeds into both 0 → 1 ⊂ A and 0 → 2 ⊂ A.

Remark 1. One might also want to note that a claim stronger than Prop. 3(1),
that PHR =⇒ EndE,0((A↓,0)) = {1}, is also false. Consider A↓ := (Z;E,0 :=
0) with edges defined as

· · · − 8 → −7 → −6 → −5 − 4 ← −3 − 2 ← −1 0 → 1 → 2 → 3 → 4 → . . .

Any connected finite {E,0}-structure must homomorphically map to the non-
negative, so a {E,0}-homomorphism exists iff D is loopless, directed acyclic, and
each vertex has a non-negative signed distance from 0D (i.e. never “a → 0D”).
Each {E,0}-homomorphism from such D’s should it exist, must be unique, map-
ping each vertex to its distance from 0D. However End{E,0}((A↓,0)) contains
swapping −4 ← −3 with −2 ← −1.

C.5 Definition of Connectedness in General Case (Re. Comments
at Beginning of Section 5)

One may even have freedoms on the arities of the non unaries {Ej}j . In these
cases, call x, y ∈ Z “connected” if

1. (Base) there exists some j ∈ [1, k] s.t. (. . . , x, . . . , y, . . . ) or
(. . . , y, . . . , x, . . . ) ∈ ED

j . OR
2. ∃z s.t. x, z are connected and z, y are connected.

Call D′ ⊂ind D a connected component of D if for any x �= y ∈ D′, x and y are
connected; and ∀x ∈ D′, ∀z /∈ D′, x, z are not connected. (This happens if and
only if the Gaifman graph of D′ is a connected component of the Gaifman graph
of D.) Vacuously, an isolated vertex (an x ∈ D that does not appear in any ED

j

with arity ≥ 2) is a connected component.
A {Ej , c}j∈[1,k]-structure D is connected if D itself is a connected component;

equivalently, D is not the disjoint union of two or more connected components.
A notable property relevant to later discussion: when a finite,

connected {Ej}j∈[k]-structure D has (ED
j = ∅)j∈[k] then |Hom{Ej}j∈[k],c(D, (Z,

(EA
j )j , cA))| = 1 for free, because D = {cD} in this case: cD is its own connected

component and D is connected.

C.6 Verification of Corollary 4

Proof. With assumption set 1, by U ∈ P and CSP(A↓) ≤p
m CSP(A), all other

terms in the direct limit are reduced to CSP(A). Likewise for assumption set 2.
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C.7 Remark on Further Generalizing Sect. 5

1. The converses of Proposition 2-type reductions, i.e. (Z, E, U) ≤p
m (Z, E, U,0),

always hold by the identity reduction (as pp-sentence).18

2. All arguments in Theorem 3 to Proposition 4 generalize to (Z,E,U), i.e.
with finitely many binaries and finitely many unaries; 0 may be changed to
c for any c ∈ Z. In these general cases we need a careful definition of con-
nected components , and the arguments would be longer, but still completely
analogous. For the ease of presentation, we assume our current presentation.

C.8 More Discussion on Future Directions

Section 1, we believe these are solid first steps towards characterizing the CSP of
non-ω-categorical binary structures. In fact, one meaningful subclass of non-ω-
categorical structures where (Z, succ, U) lives is those that are mutually algebraic
(e.g. [12,21]) ones, which also include all A = (Z, E, U)’s where the underlying
A↓ has (universally) bounded degree. Hence one may ask:

Problem 4. Let A↓ = (Z, E) be of degree d ≥ 2, i.e. degA↓(v) ≤ d for any
v ∈ Z.

1. Is CSP(A↓) either in P or in NPC? If not, are there meaningful dividing lines
for tractability at least?

2. Can we fully characterize the complexity of CSP(Z, E, U) (U ⊆ Z) now that
we further restricted the underlying E by degree?

Some facts to bear in mind: that in general it is not true that the CSP of
infinite digraphs have a P-NPC dichotomy [3,4].19 On the other hand, for any
d ≥ 2 the disjoint union of all (isomorphic types of) finite undirected graph of
degree ≤ 2 has the same CSP as Kd+1, by e.g. Brook’s theorem.
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Abstract. Circle graphs are intersection graphs of chords of a circle. In
this paper, we present a new algorithm for the circle graph isomorphism
problem running in time O((n + m)α(n + m)) where n is the number
of vertices, m is the number of edges and α is the inverse Ackermann
function. Our algorithm is based on the minimal split decomposition
[Cunnigham, 1982] and uses the state-of-art circle graph recognition algo-
rithm [Gioan, Paul, Tedder, Corneil, 2014] in the same running time. It
improves the running time O(nm) of the previous algorithm [Hsu, 1995]
based on a similar approach.

Keywords: Circle graphs · Graph isomorphism problem · Graph
canonization · Split decomposition

1 Introduction

For graphs G and H, a bijection π : V (G) → V (H) is called an isomorphism if
uv ∈ E(G) ⇐⇒ π(u)π(v) ∈ E(H). Testing isomorphism of graphs in polyno-
mial time is a major open problem in theoretical computer science.

For a graph G, a circle representation R of a graph G is a collection of
sets

{
〈v〉 : v ∈ V (G)

}
such that each 〈v〉 is a chord of some fixed circle, and

〈u〉 ∩ 〈v〉 	= ∅ if and only if uv ∈ E(G). Observe that R is determined by the
circular word giving the clockwise order of endpoints of the chords in which
uv ∈ E(G) if and only if their endpoints alternate as uvuv in this word. A graph
is called a circle graph if and only if it has a circle representation; see Fig. 1.

Circle graphs, introduced by Even and Itai [9], are related to Gauss words [11],
matroid representations [4,10], and rank-width [18]. The complexity of recognition
of circle graphs was a long-standing open problem, resolved in mid-1980s [3,12,
17]. Currently, the fastest recognition algorithm [13] runs in almost linear time. In
this paper, we use this recognition algorithm as a subroutine and solve the graph
isomorphism problem of circle graphs in the same running time.
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Theorem 1. The graph isomorphism problem of circle graphs and the canon-
ization problem of circle graphs can be solved in time O((n + m) · α(n + m)),
where n is the number of vertices, m is the number of edges, and α is the inverse
Ackermann function. Further, if circle representations are given as a part of the
input, the running time improves to O(n + m).

Two circle representation are isomorphic if by relabeling the endpoints we
get identical circular orderings. In Sect. 4, we show that isomorphism of circle
representations can be tested in time O(n). When circle graphs G and H have
isomorphic circle representations RG and RH , clearly G ∼= H. But in general,
the converse does not hold since a circle graph may have many non-isomorphic
circle representations.

The main tool is the split decomposition which is a recursive process decom-
posing a graph into several indecomposable graphs called prime graphs. Each
split decomposition can be described by a split tree whose nodes are the prime
graphs on which the decomposition terminates. The key property is that the
initial graph is a circle graph if and only if all prime graphs are circle graphs.
Further, each prime circle graph has a unique representation up to reversal, so
isomorphism for them can be tested in O(n), using the approach described in
Sect. 4.

It might be tempting to reduce the isomorphism problem of circle graphs
to the isomorphism problem of split trees. Unfortunately, a graph may posses
many different split decompositions corresponding to non-isomorphic split trees.
The seminal paper of Cunnigham [5, Theorem 3] shows that for every connected
graph, there exists a minimal split decomposition; this result was also proven
in [6, Theorem 11]. The split tree associated to the minimal split decomposition
is then also unique and it follows that the isomorphism problem of circle graphs
reduces to the isomorphism problem of minimal split trees.

This approach was used by Hsu [15] to solve the graph isomorphism prob-
lem of circle graphs in time O(nm). He actually concentrates on circular-arc
graphs, which are intersection graphs of circular arcs, and builds a decomposi-
tion technique which generalizes minimal split decomposition. The main results
are recognition and graph isomorphism algorithms for circular-arc graphs run-
ning in O(nm). Unfortunately, a mistake in this general decomposition technique
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Fig. 1. A circle graph and one of its circle representations corresponding to the circular
word 10, 2, 1, 7, 8, 10, 9, 5, 6, 8, 7, 3, 4, 6, 5, 1, 2, 4, 3, 9.
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A
A B

B A
A

mA

GA

B
B

mB

GB

Fig. 2. On the left, a split in G between A and B. On the right, application of this
split produces graphs GA and GB with newly created marker vertices denoted by big
white circles.

was pointed out by [7]. This mistake does not affect the graph isomorphism algo-
rithm for circle graphs. Moreover, as pointed out in [7, page 180], the complexity
of Hsu’s algorithm improves to O((n + m) · α(n + m)) if the fastest recognition
algorithm of circle graphs [13] is employed. In [7, page 180], it is stated: “If chord
models are given as an input, then the running time of the isomorphism test can
be reduced to O(n + m) using techniques similar to those used in [16] and in
our paper”. This paper addresses this remark.

A well-known subclass of circle graphs are proper circular-arc graphs, which
are intersection graphs of circular arcs such that no arc is properly contained in
another one. The methods used in the linear-time algorithm testing isomorphism
of proper circular-arc graphs, given in [16], are similar to the case of prime circle
graphs (see Sect. 4). In particular, co-bipartite circular-arc graphs have unique
representations and, in this case, the problem can be reduced to finding minimal
circular string.

2 Minimal Split Decomposition and Split Trees

In this section, we describe several known properties of split decompositions and
split trees. We assume that all graphs are connected, otherwise split decompo-
sition is applied independently on each component.

Splits. For a graph G, a split is a partition (A,B,A′, B′) of V (G) such that:

– For every a ∈ A and b ∈ B, we have ab ∈ E(G).
– There are no edges between A′ and B ∪ B′, and between B′ and A ∪ A′.
– Both sides have at least two vertices: |A ∪ A′| ≥ 2 and |B ∪ B′| ≥ 2.

See Fig. 2 on the left. In other words, the cut between A and B is the complete
bipartite graph. A split in a graph can be found in polynomial time [20]. Graphs
containing no splits are called prime graphs. Since the sets A and B already
uniquely determine the split, we call it the split between A and B.

We can apply a split between A and B to divide the graph G into two graphs
GA and GB defined as follows. The graph GA is created from G[A∪A′] together
with a new marker vertex mA adjacent exactly to the vertices in A. The graph
GB is defined analogously for B, B′ and mB . See Fig. 2 on the right.
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Split Decomposition and Split Trees. A split decomposition D of G is a
sequence of splits defined as follows. At the beginning, we start with the graph
G. In the k-th step, we have graphs G1, . . . , Gk and we apply a split on some
Gi, dividing it into two graphs G′

i and G′′
i . The next step then applies to one of

the graphs G1, . . . , Gi−1, G
′
i, G

′′
i , Gi+1, . . . , Gk, and so on.

A split decomposition can be captured by a graph-labeled tree T . The vertices
of T are called nodes to distinguish them from the vertices of G and from the
added marker vertices, and nodes correspond to subsets of these vertices. To
simplify the definition of graph isomorphism of graph-labeled trees, we give a
slightly different formal definition in which T is not necessarily a tree.

Definition 1. A graph-labeled tree T is a graph (V,E) with E = EN ∪̇ET where
EN are called the normal edges and ET are called the tree edges. A node is a
connected component of (V,EN ). There are no tree edges between the vertices
of one node and no vertex is incident to two tree edges. The incidence graph of
nodes must form a tree. The size of T is |V | + |E|.

A graph-labeled tree T might not be a tree, but the underlying structure of tree
edges forms a tree of nodes. The vertices of T incident to tree edges are called
marker vertices.

A split decomposition D of G is represented by the following graph-labeled
tree T called the split tree T of D (or a split tree T of G). Initially, T consists
of a single node equal to G. At each step, D applies a split on one node N of
T . This node is replaced by two new nodes NA and NB while the tree edges
incident to N are preserved in NA and NB and the marker vertices mA and mB

are further adjacent by a newly formed tree edge. Figure 3 shows an example. It
can be observed that the total size of every split tree is O(n+m) where n is the
number of vertices and m is the number of edges of the original graph.

From a split tree T , the original graph G can be reconstructed by joining
neighboring nodes. For a tree edge mAmB , we remove mA and mB while adding
all edges uv for u ∈ N(mA) and v ∈ N(mB).

Recognition of Circle Graphs. A split decomposition can be applied to
recognize circle graphs. The key is the following observation.

Lemma 1. A graph is a circle graph if and only if both GA and GB are circle
graphs.

The proof is illustrated in Fig. 4, which can be easily formalized; see for
example [21]. A prime circle graph has a unique circle representation up to
reversal [8] which can be constructed in polynomial time [13].

Minimal Split Decomposition. A graph is called degenerate if it is the com-
plete graph Kn or the star Sn. Suppose that we have a split decomposition D
ending on prime graphs. Its split tree is not uniquely determined, for instance
degenerate graphs have many different split trees. Cunnignham [5] resolved this
issue by terminating the split decomposition not only on prime graphs, but also
on the degenerate graphs.
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G = T0 T1 T2

T3 T4

T5 T6

T = T7 TG

the minimal
split tree of G

Fig. 3. An example of a split tree T of a split decomposition D terminating with high-
lighted prime and degenerate graphs (see the definition below). The split decomposition
D is not minimal: the gray and purple stars can be joined in T to form the minimal
split tree TG in the box. (Color figure online)
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mA

A

A
RA

mB

B B

RB

A

B

A

B

R

Fig. 4. On the left, circle representations RA and RB of graphs GA and GB . They are
combined into a circle representation R of G.

Cunnignham [5] introduced the notion of a minimal split decomposition. A
split decomposition is minimal if the corresponding split tree has all nodes as
prime and degenerate graphs, and joining any two neighboring nodes creates a
non-degenerate graph.

Theorem 2 (Cunningham [5], Theorem 3). For a connected graph G, the
split tree of a minimal split decomposition terminating on prime and degenerate
graphs is uniquely determined.

The split tree of a minimal split decomposition of G is called the minimal split
tree of G and it is denoted TG.

It was stated in [14, Theorem 2.17] that a split decomposition is minimal if
the corresponding split tree has no two neighboring nodes such that

– either both are complete,
– or both are stars and the tree edge joining these stars is incident to exactly

one of their central vertices.

The reason is that such neighboring nodes can be joined into a complete node
or a star node, respectively. Therefore, the minimal split tree can be constructed
from an arbitrary split tree by joining neighboring complete graphs and stars.
For instance, the split tree T in Fig. 3 is not minimal since the purple and gray
stars can be joined, creating the minimal split tree TG.

Cunnignham’s definition of a minimal split decomposition is with respect
to inclusion. Since the minimal split decomposition is uniquely determined, it
is equivalently the split decomposition terminating on prime and degenerate
graphs using the least number of splits.

Computation of Minimal Split Trees. The minimal split tree can be com-
puted in time O(n+m) using the algorithm of [8]. For the purpose of this paper,
we use the following slower algorithm since it also computes the unique circle
representations of encountered prime circle graphs:

Theorem 3 (Gioan et al. [13,14]). The minimal split tree TG of a circle
graph G can be computed in time O((n + m) · α(n + m)) where n is the number
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of vertices, m is the number of edges, and α is the inverse Ackermann function.
Further, the algorithm also computes the unique circle representation of each
prime circle node of TG.

Graph isomorphism via Minimal Split Decompositions. Let T and T ′ be
two graph-labeled trees. An isomorphism π : T → T ′ is an isomorphism which
maps normal edges to normal edges and tree edges to tree edges. Notice that π
maps nodes of T to isomorphic nodes of T ′ while preserving tree edges.

We use minimal split trees to test graph isomorphism of circle graphs (for a
proof see the Appendix):

Lemma 2. Two connected graphs G and H are isomorphic if and only if the
minimal split trees TG and TH are isomorphic.

Proof. Let T ′
G and T ′

H be any split trees of G and H, respectively, and π : T ′
G →

T ′
H be an isomorphism. We want to show that G ∼= H. Choose an arbitrary tree

edge e = mAmB in T ′
G, we know that π(e) = π(mA)π(mB) is a tree edge in T ′

H .
We join T ′

G over e and T ′
H over π(e). We get that the restriction π|T ′

G\{mA,mB}
is an isomorphism of the constructed graph-labeled trees. By repeating this pro-
cess, we get single nodes isomorphic graph-labeled trees which are G and H
respectively. So G ∼= H.

For the other implication, suppose that π : G → H is an isomorphism. Let
DG be a minimal split decomposition, constructing the minimal split tree TG.
We use π to construct a split decomposition DH and a split tree TH of H such
that TG

∼= TH . Before any splits, the trees T 0
G

∼= G and T 0
H

∼= H are isomorphic.
Suppose that T k

G
∼= T k

H and DG then uses a split between A and B in some
node N . Then DH will use the split between π(A) and π(B), and since π is
an isomorphism, it is a valid split in π(N). We construct T k+1

G by splitting
N into two nodes NA and NB and adding marker vertices mA and mB , and
similarly for T k+1

H with marker vertices mπ(A) and mπ(B). We extend π to an
isomorphism from T k+1

G to T k+1
H by setting π(mA) = mπ(A) and π(mB) = mπ(B).

Therefore, the resulting split trees TG and TH are isomorphic. By Theorem 2,
the minimal split tree of H is uniquely determined, so it has to be isomorphic
to the constructed TH . ��

3 Canonization of Graph-Labeled Trees

In the rest of the paper, we work with colored graphs and isomorphisms are
required to be color-preserving. Colors are represented as non-negative integers.

Definition of Canonization. Let G be a colored graph with n vertices with
colors in the range 0, . . . , n−1 and m edges. An encoding ε(G) of G is a sequence
of non-negative integers. The encoding ε(G) is linear if it contains at most
O(n+m) integers, each in range 0, . . . , n−1. We denote the class of all encodings
by E . For a class of graphs C, a linear canonization is some function γ : C → E
such that γ(G) is a linear encoding of G and for G,H ∈ C, we have G ∼= H if
and only if γ(G) = γ(H).
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Fast Lexicographic Sorting. Since we want to sort these encodings lexico-
graphically, we frequently use the following well-known algorithm:

Lemma 3 (Aho, Hopcroft, and Ullman [1], Algorithm 3.2, p. 80). It
is possible to lexicographically sort sequences of numbers 0, . . . , t − 1 of arbitrary
lengths in time O(� + t) where � is the total length of these sequences.

It is easy to modify the above algorithm to get the same running time when all
numbers belong to {0, 1, 2, . . . , t + 1, s, s + 1, . . . , s + t − 1}.

Canonization Algorithm. In the rest of this section, we are going to describe
the following meta-algorithm.

Lemma 4. Let C be a class of graphs and T be a class of graph-labeled trees
whose nodes belong to C. Suppose that we can compute a linear-space canoniza-
tion γ of colored graphs in C in time f(n+m) where n is the number of vertices,
m is the number of edges, and f is convex. Then we can compute a linear-space
canonization γ̃ of graph-labeled trees from T in time O(n + m + f(n + m)).

Let T ∈ T be a graph-labeled tree. Recall that every tree has either a central
vertex or a central edge. We may assume that T is rooted at the central node:
If a tree edge is central, we insert another node having a single vertex. Also,
we orient all tree edges towards the root. For a node N , we denote by T [N ]
the graph-labeled subtree induced by N and all descendants of N . Initially, we
color all marker vertices by the color 0 and all other vertices by the color 1.
Throughout the algorithm, only marker vertices change colors.

The k-th layer in T is formed by all nodes of the distance k from the root.
Notice that every isomorphism from T to T ′ maps, for every k, the k-th layer
of T to the k-th layer of T ′. Also, every node N aside the root is incident to
exactly one out-going tree edge whose incident marker vertex outside N is called
the parent marker vertex of N .

The algorithm starts from the bottom layer of T and process the layers
towards the root. When a node N is processed, we assign a color c to N . This
color c corresponds to a certain linear encoding γ′(N) which is created by modify-
ing γ(N). Further, we store the mapping ε from colors to these linear encodings,
so ε(c) = γ′(N). The assigned colors have the property that two nodes N and
N ′ have the same assigned color if and only if the rooted graph-labeled subtrees
induced by N and all the nodes below and by N ′ and all the nodes below, respec-
tively, are isomorphic. We remove the node N from T and assign its color to the
parent marker vertex of N . Also notice that when a non-root node is processed,
all marker vertices except for one have colors different from 0, and for the root
node, all marker vertices have colors different from 0.

Let N1, . . . , Nk be the nodes of the currently processed layer such that each
vertex in these nodes has one color from {0, 1, . . . , t + 1, s, s + 1, . . . , s + t − 1}.
For each node Ni, we want to use the canonization subroutine to compute the
linear encoding γ(Ni). But the assumptions require that for � vertices in Ni,
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all colors are in range 0, . . . , � − 1, but we might have s � �. We can avoid
this by renumbering the colors since at most � different colors are used on Ni.
Suppose that exactly ci different colors are used in Ni, and we define the injective
mapping ϕNi

: {0, 1, . . . , ci − 1} → {0, 1, . . . , t + 1, s, s + 1, . . . , s + t − 1} such
that the smallest used color is ϕNi

(0), the second smallest is ϕNi
(1), and so on

till ϕNi
(ci − 1). The renumbering of colors on Ni is given by the inverse ϕ−1

Ni
.

After renumbering, the algorithm runs the canonization subroutine to com-
pute the linear encodings γ(N1), . . . , γ(Nk). We create the modified linear encod-
ing γ′(Ni) by pre-pending γ(Ni) with the sequence ci, ϕNi

(0), ϕNi
(1), . . . ,

ϕNi
(ci − 1) where ci is the number of different colors used in Ni. The algo-

rithm lexicographically sorts these modified encodings γ′(N1), . . . , γ′(Nk) using
Lemma 3. Next, we assign the color s+t to the nodes having the smallest encod-
ings, the color s + t + 1 to the nodes having the second smallest encodings, and
so on. For every node Ni, we remove it and set the color of the parent marker
vertex of Ni to the color assigned to Ni.

Suppose that the root node N has the color c assigned, so throughout the
algorithm, we have used the colors 0, . . . , c. The computed linear encoding of T
is an encoded concatenation of ε(2), ε(3), . . . , ε(c).

Lemma 4 follows from the next two lemmas.

Lemma 5. The described algorithm produces a correct linear canonization γ̃ of
graph-labeled trees in T , i.e., for T, T ′ ∈ T , we have T ∼= T ′ if and only if
γ̃(T ) = γ̃(T ′).

Proof. Let π : T → T ′ be an isomorphism. We prove by induction from the
bottom layer to the root that γ′(N) = γ′(π(N)). Suppose that we are processing
the �-th layer of T and T ′ and all previously used colors have the same assigned
encodings in T and T ′. For every node N of the �-th layer of T , then π(N) belongs
to the �-th layer of T ′. We argue that π also preserves the colors of N . Since
π is an isomorphism of graph-labeled trees, it maps marker vertices to marker
vertices and non-marker vertices to non-marker vertices. Let N1, . . . , Nk be the
children of N . By the induction hypothesis, we have γ′(Ni) = γ′(π(Ni)), so the
same colors are assigned to Ni and π(Ni). Therefore, π preserves the colors of
N , and this property still holds after renumbering the colors by ϕ−1

N = ϕ−1
π(N).

Therefore, we have γ(N) = γ(π(N)) and thus γ′(N) = γ′(π(N)). Thus, the
lexicographic sorting of the nodes in the �-th layer of T and of T ′ is the same, so
N and π(N) have the same color assigned. Finally, the encodings ε(2), . . . , ε(c)
are the same in T and T ′, so γ̃(T ) = γ̃(T ′).

For the other implication, we show that a graph-labeled tree T ′ isomorphic
to T can be reconstructed from γ̃(T ). We construct the root node N from ε(c).
Since γ is a canonization of C, we obtain N by applying γ−1. Next, we invert the
recoloring by applying ϕ(N) on the colors of N . Next, we consider each marker
vertex in N . If it has some color ci, we use ε(ci) to construct a child node N ′

of N exactly as before. We proceed in this way till all nodes are expanded and
only the colors 0 and 1 remain. It is easy to prove by induction that T ∼= T ′

since each ε(ci) uniquely determines the corresponding subtree in T . ��
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Lemma 6. The described algorithm runs in time O(n + m + f(n + m)).

Proof. When we run the canonization subroutine on a node having n′ vertices
and m′ edges, it has all colors in range 0, . . . , n′ −1, so we can compute its linear
encoding in time f(n′ + m′). Since f is convex and the canonization subrou-
tine runs on each node exactly once, the total time spend by this subroutine is
bounded by f(n + m).

The total count of used colors is clearly bounded by n and each layer uses
different colors except for 0 and 1. Consider a layer with nodes N1, . . . , Nk having
� vertices and �′ edges in total. All these nodes use at most � different colors.
Therefore, the modified encodings γ′(N1), . . . , γ′(Nk) consisting of integers from
{0, 1, 2, . . . , � + 1, s, s + 1, . . . , s + � − 1}, for some value s, and are of the total
length O(� + �′). Therefore, lexicographic sorting of these modified encodings
can be done in time O(� + �′), and this sorting takes total time O(n + m) for all
layers of T . The total running time of the algorithm is O(n + m + f(n + m)). ��

4 Canonization of Prime and Degenerate Circle Graphs

Let C be the class of colored prime and degenerate circle graphs. Recall that all
nodes of minimal split trees of connected circle graphs belong to C. To apply the
meta-algorithm of Lemma 4, we need to show that the linear canonization γ of
C can be computed in time O(n + m) where n is the number of vertices and m
is the number of edges.

Linear Canonizations of Degenerate Graphs. For a colored complete graph
G = Kn, we sort its colors using bucket sort in time O(n), so the vertices
have the colors c1 ≤ c2 ≤ · · · ≤ cn. The computed linear canonization γ(G) is
0, c1, c2, . . . , cn.

For a star G = Sn, we sort the colors of leaves using bucket sort in time
O(n), so they have the colors c1 ≤ c2 ≤ · · · ≤ cn, while the center has the color
c0. The computed linear canonization γ(G) is 1, c0, c1, c2, . . . , cn.

Linear Encodings of Colored Cycles. As a subroutine, we need to find
a canonical form of a colored cycle. To do this, it suffices to find the lexico-
graphically minimal rotation of a circular string. This can be done using O(n)
comparisons over some alphabet Σ [2,19].

Linear Canonizations of Circle Representations. Let G be an arbitrary
colored circle graph on n vertices together with an arbitrary circle representation
R. The standard way to describe R is to arbitrarily order the vertices 1, . . . , n and
to give a circular word ω consisting of 2n integers from 1, . . . , n, each appearing
exactly twice, in such a way that the occurrences of i and j alternate (i.e., appear
as ijij) if and only if ij ∈ E(G). This circular word describes the ordering of
the endpoints of the chords in, say, the clockwise direction.
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Let G and H be two colored circle graphs on n vertices labeled 1, . . . , n
with circle representations RG and RH represented by ωG = ω1

G, . . . , ω2n
G and

ωH = ω1
H , . . . , ω2n

H . We say that RG
∼= RH if and only if there exists a bijection

π : {1, . . . , n} → {1, . . . , n} such that

– the vertices i in G and π(i) in H have identical colors, and
– the circular words ωH and π(ω1

G), . . . , π(ω2n
G ) are identical.

Notice that when RG
∼= RH , necessarily G ∼= H, but in general the converse is

not true. We want to construct a linear canonization γ such that RG
∼= RH if

and only if γ(RG) = γ(RH).
To this end, we consider a different encoding of the representation which is

invariant on rotation. For each of 2n endpoints e1, . . . , e2n, we store two numbers:

– The color ci ∈ {0, . . . , n − 1} of the vertex of the chord corresponding to ei.
– The number of endpoints gi in the clockwise direction between ei and the

other endpoint corresponding to the same chord. We have gi ∈ {0, · · · , 2n−2}
and when the ei and ej correspond one chord, then gi + gj = 2n − 2.

To distinguish ci from gi, we increase all ci by 2n−1, so ci ∈ {2n−1, · · · , 3n−2}.
Then we may consider the circular word λG = g1, c1, g2, c2, . . . , g2n, c2n of length
4n.

Lemma 7. Let G and H be two colored circle graphs with representations RG

and RH . We have RG
∼= RH if and only if the circular words λG and λH are

identical.

Proof. If RG
∼= RH , there exists an index k ∈ {0, . . . , 2n − 1} such that

rotating the representation RG by k endpoints produces RH . When λG =
g1, c1, . . . , g2n, c2n and λH = g′

1, c
′
1, . . . , g

′
2n, c′

2n, it cyclically holds that gi = g′
i+k

and ci = c′
i+k. So the circular words λG and λH are identical.

For the other implication, observe that the circle representation RG and the
circle graph G can be reconstructed from λG. If λG and λH are identical, we
reconstruct isomorphic representations RG and RH . ��

Lemma 8. We can compute the linear encoding γ of colored circle representa-
tions in time O(n).

Proof. For a representation RG, we can clearly compute λG in time O(n). Next,
we apply to λG a cycle canonization algorithm [2,19] which computes γ(RG) in
time O(n). ��

Linear Canonization of Prime Circle Graphs. Let G be a prime circle
graph. It has at most two different representations RG and R′

G where one is the
reversal of the other. Using Lemma 8, we compute their linear encodings λG and
λ′

G. As the linear encoding γ(G), we chose the lexicographically smallest of λG

and λ′
G, prepended with the value 2. Clearly, colored prime circle graphs G and

H are isomorphic if and only if γ(G) = γ(H).
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By putting the results of this section together, we get the following:

Lemma 9. We can compute linear canonization of colored prime circle graphs
and degenerate graphs in time O(n).

5 Proof of Theorem 1

In this section, we combine the presented results to show that a linear canon-
ization γ of circle graphs can be computed in time O((n + m) · α(n + m)). This
algorithm clearly implies Theorem 1 since circle graphs G and H are isomorphic
if and only if γ(G) = γ(H).

Suppose that G is a connected circle graph. We apply the algorithm of Theo-
rem 3 to compute the minimal split decomposition TG of G and the unique circle
representation for each prime circle graph (up to reversal). We halt if some circle
representations does not exist since G is not a circle graph. The total running
time of preprocessing is O((n+m)·α(n+m)), and the remainder of the algorithm
runs in time O(n + m), so this step is the bottleneck. Next, we use Lemmas 9
and 4 to compute a linear canonization γ(TG) and we put γ(G) = γ(TG).

Suppose that the circle graph G is disconnected, and let G1, . . . , Gk be its
connected components. We compute their linear encodings γ(G1), . . . , γ(Gk),
lexicographically sort them in time O(n + m) using Lemma 3, and output them
in γ(G) sorted as a sequence. The total running time is O((n + m) · α(n + m)).

When the input also gives a circle representation R, we can avoid using
Theorem 3. Instead, we compute a split decomposition and the corresponding
split tree in time O(n+m) using [8]. We can easily modify this split tree into the
minimal split tree by joining neighboring complete vertices and stars as discussed
in Sect. 2. For each prime node N , we obtain its unique circle representation by
restricting R to the vertices of N . Since the avoided algorithm of Theorem 3 was
the bottleneck, we get the total running time O(n + m).
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Abstract. In this paper, we study the Exact Subset MultiCover
problem (or ESM), which can be seen as an extension of the well-
known Set Cover problem. Let (U , f) be a multiset built from set
U= {e1, e2, . . . , em} and function f : U → N

∗. ESM is defined as fol-
lows: given (U , f) and a collection S = {S1, S2, . . . , Sn} of n subsets of
U , is it possible to find a multiset (S ′, g) with S ′ = {S′

1, S
′
2, . . . , S

′
n} and

g : S ′ → N, such that (i) S′
i ⊆ Si for every 1 ≤ i ≤ n, and (ii) each ele-

ment of U appears as many times in (U , f) as in (S ′, g) ? We study this
problem under an algorithmic viewpoint and provide diverse complex-
ity results such as polynomial cases, NP-hardness proofs and FPT algo-
rithms. We also study two variants of ESM: (i) Exclusive Exact Sub-
set MultiCover (EESM), which asks that each element of U appears
in exactly one subset S′

i of S ′; (ii) Maximum Exclusive Exact Subset
MultiCover (Max-EESM), an optimisation version of EESM, which
asks that a maximum number of elements of U appear in exactly one
subset S′

i of S ′. For both variants, we provide several complexity results;
in particular we present a 2-approximation algorithm for Max-EESM,
that we prove to be tight.

1 Introduction

The Set Cover problem [6] is a well-known optimization problem consisting
in covering a set U = {e1, e2, . . . , em} of elements (called the universe) using a
minimum number of subsets of that universe (called covering sets), taken from
a collection S = {S1, S2, . . . , Sn}. The Set Cover problem can be generalized
in many ways. For instance, in the Weighted Set Cover, a cost is assigned
to each covering set, and the goal is to cover U while minimizing the total cost.
Another variant, called Set MultiCover [4], adds a non-negative demand for
each element in U and requires that each of these elements have to be covered at
least as much as requested – in that case, each of the covering sets can be used
several times. The latter problem can be further extended to the case where the
Sis are covering multisets instead of sets: the problem is then called Multiset
MultiCover [4]. When the number of times a covering set (resp. multiset)
can be chosen is limited, we are in presence of the (Multi)set MultiCover
with Multiplicity Constraints [4]. It is also possible to limit the capacity
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of each covering set. For example, if the covering set S1 = {e1, e2, e3} is assigned
a capacity of 1, it can only cover one of its three elements; however, it can be
used several times, e.g. one copy of S1 can cover e1, while a second copy can
cover e3; in that case, the associated cost is twice the weight of S1. The latter
problem is called the Capacitated Set Cover problem [1].

In this paper, we introduce and study yet another variant of the Set Cover
problem that we call the Exact Subset MultiCover problem (ESM). This
problem has biological motivations, that will be briefly explained later. Before
that, we formally define ESM, illustrate it on an example, and discuss how it
relates to and differs from the above mentioned problems.

Exact Subset MultiCover (ESM)
Instance : A multiset (U ,f) of m elements with U = {e1, e2, . . . , em} and
f : U → N

∗. A collection S = {S1, S2, . . . , Sn} of n subsets of U .
Question : Does there exist a multiset (S ′, g) where S ′ = {S′

1, S
′
2, . . . , S

′
n}

is such that S′
i ⊆ Si ∀ 1 ≤ i ≤ n, and g : S ′ → N is such that

∑
i∈Ej

g(S′
i) =

f(ej) ∀ 1 ≤ j ≤ m with Ej = {1 ≤ i ≤ n | ej ∈ S′
i} ?

We call covering sets (resp. covering subsets) the elements of S (resp. S ′).
For an element ej ∈ U , Ej is the set of indices of the covering subsets containing
ej . We say that ej is exactly covered if, in the multiset (S ′, g), the sum of the
multiplicities of the covering subsets that contain ej is equal to f(ej). We say
that ej is covered t ≥ 1 times (or simply covered) by a covering subset S′

i if ej

belong to S′
j and g(S′

j) = t. Note that in any solution of ESM, all elements of
U must be exactly covered.

An example is provided in Fig. 1, with U = {e1, e2, . . . , e6} (thus m = 6)
and the multiplicities in U are respectively 3, 10, 4, 6, 8, 3 (e.g. f(e2) = 10); S =
{S1, S2, S3, S4} (thus n = 4) with S1 = {e1, e2, e4, e5}, S2 = {e2, e3, e5, e6},
S3 = {e1, e2, e3, e4} and S4 = {e2, e3, e4, e6}.

As can be seen in Fig. 1(right), ((U , f),S) is a Yes-instance for ESM. First,
for each 1 ≤ i ≤ 4, we have S′

i ⊆ Si. Then, by function g (rightmost column),
we have that each element ej ∈ U , 1 ≤ j ≤ 6, is exactly covered. For example,
e2 belongs to S′

1, S′
3 and S′

4 (E2 = {1, 3, 4}), and function g applied to these
covering subsets respectively returns 3, 4 and 3, for a total of 10 = f(e2).

ESM has similarities to the Set MultiCover problem, but differs from it
in two ways: first, in ESM each element ej must be exactly covered while an
element must be covered at least a certain number of times in Set MultiCover.
Second, in ESM, a covering set Si is allowed to only cover a subset of its elements
(called the covering subset S′

i). In that sense, ESM has the same flavor as the
Capacitated Set Cover problem; however, it differs from it, as in ESM, the
size of each covering subset is not constrained. Moreover, when a given covering
set Si is used several times in ESM, the same covering subset S′

i must be used
every time, a constraint that is not present in Capacitated Set Cover.

The ESM problem is motivated by proteomics, and more precisely by the
protein inference problem. The goal is to infer the protein sequences that are
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Collection S
Universe U

e1 e2 e3 e4 e5 e6

S1 • • • •
S2 • • • •
S3 • • • •
S4 • • • •

f 3 10 4 6 8 3

S
Universe U

e1 e2 e3 e4 e5 e6 g

S1 • • • 3

S2 • 8

S3 • • 4

S4 • • • 3

f 3 10 4 6 8 3

Fig. 1. (Left) An instance ((U , f), S) of ESM, where dots in bold show which elements
belong to which covering sets, and where the multiplicity function f of each element
in U is provided in the bottom row. (Right) This instance is a Yes-instance for ESM,
and a solution is provided. The last column corresponds to the multiplicity function g
of the covering subsets S′

is in the multiset (S ′, g).

present in a biological sample, using the information provided by mass spectrom-
etry (MS/MS). In a nutshell, each protein is cut in smaller pieces called peptides,
before entering the mass spectrometer. The mass spectrometer then outputs a
series of spectra, each ideally representing a peptide. Once a spectrum is associ-
ated to a peptide (through some dedicated algorithm), we obtain a multiset of
peptides corresponding to the initial sample, and the aim is to decide which set
of proteins (provided from a databank) corresponds with the peptides at hand
(see e.g. [3], or Chap. 16 of [5], for a detailed description). In our setting, each
element of U represents a peptide, f is the multiplicity function of each peptide,
while S is the set of proteins of the databank. The ESM problem then consists in
inferring the proteins from S that are present in the sample, together with their
abundance, given the information provided by the multiset (U ,f) of peptides.

We will also consider a constrained version of ESM, in which we ask that
each element ej belongs to exactly one covering subset S′

kj
(in which case we

say that S′
kj

exactly covers ej). We call this version Exclusive Exact Subset

MultiCover (EESM).

Exclusive Exact Subset MultiCover
Instance : A multiset (U ,f) of m elements with U = {e1, e2, . . . , em} and
f : U → N

∗. A collection S = {S1, S2, . . . , Sn} of n subsets of U .
Question : Does there exist a multiset (S ′, g) where S ′ = {S′

1, S
′
2, . . . , S

′
n}

such that S′
i ⊆ Si ∀ 1 ≤ i ≤ n and Ej = {kj} ∀ 1 ≤ j ≤ m, and g : S ′ → N

such that g(S′
kj

) = f(ej)∀ 1 ≤ kj ≤ n ?

Note that EESM is a variant of ESM with additional constraints on the
solution, hence, any Yes-instance for EESM is also a Yes-instance for ESM,
and any No-instance for ESM is also a No-instance for EESM.
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Table 1. Complexity results for ESM, EESM and Max-EESM. Parameters m and n
respectively denote the number of covering sets in S and the number of elements in U .

Problem Complexity FPT Approximability

ESM NP-hard (Thms 1 and 2) wrt m ; wrt n (Props 2 and 3) n/a

EESM NP-hard (Thm 4) wrt m ; wrt n (Prop. 6) n/a

Max-EESM NP-hard (from EESM) wrt m ratio 2 (Thm 5)

In the following, it will be convenient to partition the different multiplicities
in (U , f) into groups, where each element having the same multiplicity belongs to
the same group. For example, if U = {e1, e2, e3} and the multiplicities given by f
are resp. 5, 7 and 5, then, we have two groups: {e1, e3} and {e2}. We call ng the
total number of groups for a given multiset (U , f). It can be seen that, for any
Yes-instance for EESM, in any solution, a covering subset S′

i can only contain
elements belonging to the same group. If not, this means that some S′

i covers
g(S′

i) times two elements having different multiplicities by f , which implies that
at least one of these two elements is not exactly covered, a contradiction. As an
illustration, the instance depicted in Fig. 1 is a No-instance for EESM, simply
because there are 5 groups and only 4 covering sets in S.

In this paper, we also consider a third problem that we call Maximum
Exclusive Exact Subset MultiCover (Max-EESM), which can be seen
as the maximization version of EESM: the goal is to find a maximum cardinal-
ity subset U ′ of U such that ((U ′, f),S) is a Yes-instance for EESM.

Maximum Exclusive Exact Subset MultiCover
Instance : A multiset (U ,f) of m elements with U = {e1, e2, . . . , em} and
f : U → N

∗. A collection S = {S1, S2, . . . , Sn} of n subsets of U .
Solution : A multiset (S ′, g) where S ′ = {S′

1, S
′
2, . . . , S

′
n} is such that

S′
i ⊆ Si ∀ 1 ≤ i ≤ n and Ej = {kj} ∀ 1 ≤ j ≤ m, and g : S ′ → N.

Measure : |U ′| where U ′ = {ej ∈ U | g(S′
kj

) = f(ej)}.

We refer to Fig. 1 for an illustration: Max-EESM will return a subset U ′ of
U with |U ′| = 4. In other words, it is necessary to remove 2 elements from U to
satisfy EESM: indeed, (i) group {e1, e6} with multiplicity 3 needs to be exactly
covered by two different covering subsets, as no covering set simultaneously con-
tains e1 and e6, and (ii) there are 5 groups and 4 covering sets in S. Moreover,
((U ′, f),S) with U ′ = {e1, e2, e3, e4} is a Yes-instance for EESM (simply take
S′

i to exactly cover ei for 1 ≤ i ≤ 4).
The present paper aims at studying ESM, EESM and Max-EESM from

an algorithmic viewpoint (see resp. Sects. 2, 3 and 4). Most of our results are
summarized in Table 1. Due to space constraints, some of the proofs are omitted.
They will be available in the journal version of this paper.
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2 The Exact Subset MultiCover Problem

In this section, we focus on the ESM problem. We study its computational com-
plexity, first depending on the number ng of groups in the instance, which allows
us to draw the tractability border based on that value (Proposition 1 and Theo-
rem 1); then, depending on the contents of S (Theorem 2). We then prove that
ESM is fixed-parameterized tractable with respect to m = |U| (Proposition 2)
and with respect to n = |S| (Proposition 3).

Proposition 1. ESM is in P when ng = 1 (i.e., when f is a constant function).

Theorem 1. ESM is NP-hard even if (i) every covering set Si is of cardinality
at most 3; (ii) every element of U is present in at most 3 covering sets; and
(iii) the number ng of groups is equal to 2.

Proof. The proof is by reduction from 3-SAT-3, a constrained variant of SAT
in which every clause contains at most 3 literals, and every variable appears at
most 3 times in the formula. It has been shown that 3-SAT-3 is NP-hard [7].

Take any instance Φ = C1∧C2∧. . .∧Cm of 3-SAT-3, where each clause Cj of
Φ, 1 ≤ j ≤ m, is built from boolean variables taken from X = {x1, x2, . . . , xn}.
The instance of ESM we build from Φ is as follows: first, the set U is the union
of two sets Ucl and Uneg. More precisely, Ucl = {e1, e2, . . . , em}, i.e. Ucl contains
as many elements as there are clauses in Φ. Moreover, f(ei) = 1 ∀ei ∈ Ucl. The
second set Uneg contains elements of the form ei,j , for all i, j such that clause Cj

contains the negative literal xi. For all elements ei,j from Uneg, we set f(ei,j) = 3.
Now, the collection S is also the union of two sets, namely Svar ∪ Sneg. The

first set, Svar = {S1, S2, . . . , Sn} contains as many covering sets as there are
variables in X. The second set, Sneg, contains covering sets denoted Si,j , for all
i and j such that clause Cj contains the negative literal xi (if an element ei,j

belongs to Uneg, then a covering set Si,j belongs to Sneg). It now remains to
describe the contents of each covering set Si and Si,j : for any 1 ≤ j ≤ m, if
clause Cj contains the positive literal xi (resp. the negative literal xi), then ej

belongs to Si (resp. to Si,j). Moreover, if clause Cj contains the negative literal
xi, then ei,j belongs to both Si and Si,j – see Fig. 2 for an illustration.

The ESM instance we have built satisfies the constraints listed in the state-
ment of Theorem 1. First, each element belongs to at most 3 covering sets of S:
each element ej appears in at most 3 covering sets, since ej represents a clause
Cj , which is of size at most 3, while each element ei,j appears in exactly two
covering sets, namely Si and Si,j . Second, any of the covering sets we build con-
tains at most 3 elements: a covering set Si contains one element per occurrence
of variable xi in Φ (thus at most 3 by definition of 3-SAT-3), while a covering
set Si,j contains exactly 2 elements by construction. Finally, by construction,
each element appears 1 time or 3 times in the multiset (U , f), thus ng = 2.

We now show that Φ is a Yes-instance for 3-SAT-3 iff ((U , f),S) is a Yes-
instance for ESM.

(⇒) Let Φ be a Yes-instance of 3-SAT-3; thus every clause in Φ is satisfied.
For each variable xi ∈ X, if xi = True, then we set S′

i = Si ∩Ucl with g(S′
i) = 1.
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Collection S
Universe U

e1 e2 e3 e4 e5,2 e2,3 e4,4

S1 • •
S2 • •
S3 • • •
S4 • •
S5 • •
S5,2 • •
S2,3 • •
S4,4 • •

f 1 1 1 1 3 3 3

Fig. 2. Illustration of our reduction from 3-SAT-3, with Φ = (x1 ∨x2 ∨x3)∧ (x1 ∨x4 ∨
x5)∧(x2∨x3∨x5)∧(x3∨x4), n = 5 and m = 4. Clause C2 = (x1∨x4∨x5) corresponds
to element e2 (with f(e2) = 1). Element e2 is present in covering sets S1 and S4 since
C2 contains the two positive literals x1 and x4. Clause C2 contains one negative literal,
x5, hence the existence of element e5,2 in covering set S5,2 (with f(e5,2) = 3).

If, on the contrary, xi = False, then we set S′
i = Si ∩ Uneg with g(S′

i) = 3. In
case an element ej from Ucl is simultaneously present in several distinct S′

is, we
remove ej from all S′

is containing it except one chosen arbitrarily (the covering
subsets S′

is from which ej has been removed remain subsets of Si). Now, if for
some j, ej is not present in any S′

i, this means there exists an i′ such that (i) ej is
in Si′,j , and (ii) xi′ = True, since Cj is satisfied. In that case, we set S′

i′,j = {ej}
and g(S′

i′,j) = 1. Finally, if, for some i and j, ei,j is not present in Si, we set
S′

i,j = {ei,j} and g(S′
i,j) = 3. Having done that, we have exactly covered every

element from U . It just remains to show that we introduced no inconsistency on
the way. First, for a fixed i, g(S′

i) cannot be equal to 1 and 3 at the same time,
by construction. It thus remains to show that a given g(S′

i,j) cannot be equal to
1 and 3 at the same time. For this, recall that ei,j ∈ S′

i,j (and g(S′
i,j) = 3) only

when ei,j /∈ S′
i, i.e. when xi is present in Cj with xi = True. On the other hand,

as mentioned above, ej ∈ S′
i,j (and g(S′

i,j) = 1) only when xi = False. Hence,
no inconsistency occurs, and our construction is thus a Yes-instance for ESM.

(⇐) Suppose the constructed instance ((U , f),S) of ESM is a Yes-instance.
For each covering set Si in Svar, if f(S′

i) ≤ 1 or if S′
i = ∅, then we set xi to

True. Otherwise (i.e. if S′
i contains only and at least one element of Uneg and if

f(S′
i) ≥ 2), we set xi to False. Note first that an element ej from Ucl cannot be

simultaneously covered by several distinct covering subsets in S ′, since f(ej) = 1.
Let us now show that the above described assignment satisfies the formula Φ from
the initial 3-SAT-3 problem. Consider an element ej : if it is covered by a subset
S′

i, this is necessarily with g(S′
i) = 1, thus xi = True, which satisfies Cj since Cj

contains literal xi by construction. Suppose now ej is covered by a subset S′
i,j ,

thus with g(S′
i,j) = 1. Then, we know that ei,j is either covered one time by S′

i,j

(if ei,j ∈ S′
i,j), or not covered by it (if ei,j /∈ S′

i,j). In any case, this proves that
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ei,j must belong to S′
i with g(S′

i) ∈ {2, 3}, since ei,j is only present in Si,j and
Si. Hence, we conclude that xi = False (since g(S′

i) ≥ 2, ei,j ∈ S′
i and S′

i cannot
contain any element from Ucl because g(S′

i) ≥ 2), which satisfies Cj since the
existence of ei,j implies the presence of literal xi in Cj .

Corollary 1. Unless ETH fails, there exists a δ > 0 such that ESM cannot be
solved in O(2δ·max(n,m)).

Theorem 2. ESM is NP-hard, even if every covering set Si is of cardinality 2.

Proof. The proof is by reduction from the NP-hard Partition problem [2,6]:
given a multiset Q = {q1, q2, . . . , qn} of positive integers such that C =

∑n
i=1 qi is

even, is it possible to partition Q in two subsets Q1 and Q2 such that
∑

qi∈Q1
=

∑
qi∈Q2

= C
2 ? Let Q = {q1, q2 . . . , qn} be any instance of Partition. We

construct an instance of ESM as follows: first, let U = {e1, e2, . . . , en, en+1} with
f(ei) = qi for every 1 ≤ i ≤ n, and f(en+1) = C

2 ; let also S = {S1, S2 . . . Sn}
where Si = {ei, en+1}, 1 ≤ i ≤ n. Clearly, in this instance of ESM, every
covering set Si contains exactly two elements. We now show that Q is a Yes-
instance for Partition iff ((U , f),S) is a Yes-instance for ESM.

(⇒) Suppose Q is a Yes-instance for Partition. Thus, there exists a par-
tition {Q1,Q2} of Q such that

∑
qi∈Q1

=
∑

qi∈Q2
= C

2 . For each qi ∈ Q1, we
let S′

i = {ei, en+1} and g(S′
i) = qi. For each qi ∈ Q2, we let S′

i = {ei} and
g(S′

i) = qi. We can see that each element ei, 1 ≤ i ≤ n, is exactly covered by
S′

i, whereas en+1 is covered by some covering subsets of S ′, namely those whose
indices correspond to the indices of the qis that are in Q1. Since

∑
qi∈Q1

qi = C
2 ,

en+1 is altogether exactly covered. Thus the solution we provide is valid, and
((U , f),S) is a Yes-instance for ESM.
(⇐) Suppose ((U , f),S) is a Yes-instance for ESM. Hence, every element is
exactly covered, and in particular elements {e1, e2, . . . , en}. Since each ei, 1 ≤
i ≤ n, appears only in Si, each S′

i contains ei with g(S′
i) = qi. This implies that

some covering subsets of S ′ collectively exactly cover en+1. Since g(S′
i) = qi for

all 1 ≤ i ≤ n, we conclude that C
2 is the sum of the g(S′

i′)s for which S′
i′ contains

en+1. Hence, a solution for Partition can be inferred from the observed solution
of ESM: if a covering subset S′

i contains en+1, assign qi to Q1, otherwise assign qi

to Q2. We have that {Q1,Q2} is a partition of Q. Moreover, the above argument
shows that

∑
qi∈Q1

qi = C
2 , and thus

∑
qi∈Q2

qi = C
2 as well.

The two following results show that ESM is FPT with respect to m, the size
of the universe U ; and FPT with respect to n, the size of the collection S.

Proposition 2. ESM is FPT with respect to parameter m = |U|.
Proof. First, given that no two covering sets of S are identical, and given that all
covering sets of S are built from U , we have that |S| ≤ 2|U|, i.e. n ≤ 2m. Then,
consider the following algorithm : (i) generate all possible S ′ = {S′

1, S
′
2, . . . , S

′
n}

such that S′
i ⊆ Si ∀1 ≤ i ≤ n; then, for each generated S ′, (ii) solve the resulting

problem (see below). Note that it may not be necessary to generate all possible
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S ′, as the algorithm stops when one solution is found. In the worst case, the
size of S ′ is O(2m) given that |S ′| = |S|. Moreover, for each covering subset S′

i,
we have S′

i ∈ P(Si) where P(Si) is the power set of Si. Since |Si| ≤ m, then,
|P(Si)| ≤ 2m, and the number of possibilities in (i) does not exceed 2m2m .

Given any S ′, solving the resulting problem as mentioned in (ii) above con-
sists in finding the multiplicity function g. This problem can be modeled as
a system of linear equations where the variables are the g(S′

i)s, 1 ≤ i ≤ n.
For example, if e1 belongs to S′

1, S
′
3 and S′

4, we create the following equation:
f(e1) = g(S′

1) + g(S′
3) + g(S′

4). The number of variables (resp. constraints) of
such a system is at most 2m (resp. m). This system is solvable in a time that only
depends on the number of variables and equations. Thus the total complexity of
our algorithm depends only on m, which proves the result.

Proposition 3. ESM is FPT with respect to parameter n = |S|.

3 The Exclusive Exact Subset MultiCover Problem

In this section, we focus on the EESM problem, in which every element of U must
be exactly covered by a single covering subset of S ′. We start with two positive
results, before discussing NP-hardness and fixed-parameterized tractability.

Proposition 4. EESM is in P (i) when ng = 1; (ii) when ng = |U| (i.e., each
element e of U has distinct multiplicity); and (iii) when ng = |S|.
Theorem 3. EESM is in P when every element of U belongs to at most two
covering sets of S.
Proof. First note that we can always assume that each element belongs to exactly
two covering sets of S. Indeed, when an element ej belongs to exactly one cov-
ering set Si, then necessarily, in any Yes-instance, the chosen S′

i must exactly
cover ej , and thus the initial instance can be reduced, by removing Si and each
element e ∈ Si such that f(e) = f(ej).

The proof is by equivalence with 2-SAT, which is know to be in P. Given
any EESM instance ((U , f),S) such that every element belongs to two covering
sets, we construct an instance Φ of 2-SAT on a set X of variables defined as
follows: for each covering set Si ∈ S and for each element ej ∈ Si, add the
boolean variable xi,j to X. Now we show how to build a 2-SAT formula Φ using
variables from X. We build two categories of clauses. The first one, which we call
assignment clauses, is as follows: for each element ej (thus present in two covering
sets, say Si1 and Si2), we create the two following clauses: C1

j = (xi1,j ∨ xi2,j)
and C2

j = (xi1,j ∨ xi2,j). Note that the conjunction of C1
j and C2

j is equivalent
to the XOR expression (xi1,j ⊕ xi2,j): this encodes the fact that every element
ej must be exactly covered by only one covering subset (either S′

i1
or S′

i2
). The

second category, which we call consistency clauses, will encode the fact that a
given covering subset S′

i cannot simultaneously contains two elements ej1 and
ej2 such that f(ej1) �= f(ej2). Thus, for each covering set Si, and for each pair of
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elements ej1 , ej2 ∈ Si such that f(ej1) �= f(ej2), we create the following clause:
(xi,j1 ∨ xi,j2). Finally, the 2-SAT formula Φ we construct is the conjunction of
all assignment clauses and consistency clauses.

It can be seen that ((U , f),S) is a Yes-instance for EESM iff Φ is a Yes-
instance for 2-SAT. Indeed, suppose ((U , f),S) is a Yes-instance for EESM and
observe a given solution: for each element ej exactly covered by (resp. not in)
S′

i, set xi,j to True (resp. to False). In that case, all assignment clauses are sat-
isfied, as any element is exactly covered by one covering subset in S ′. Moreover,
consistency clauses are also satisfied, since no two elements with distinct multi-
plicities in (U , f) can belong to the same covering subset in a solution to EESM.
Now, suppose Φ is a Yes-instance for 2-SAT and observe a given solution: if
xi,j = True, then, covering subset S′

i exactly covers element ej (with ej ∈ S′
i

and g(S′
i) = f(ej)), otherwise, it does not contain it (ej /∈ S′

i). This leads to a
positive solution for EESM since assignment clauses ensure that each element
is exactly covered by exactly one subset, while consistency clauses ensure that a
covering subset does not contain elements having different multiplicities.

Although we provided in Proposition 4 and Theorem 3 classes of instances for
which EESM is in P, as shown in the following theorem, the problem becomes
NP-hard, even if the input instance is constrained. Note that Theorems 3 and 4
collectively draw the border between tractable and intractable instances, when
considering parameter “number of covering sets to which an element belongs”.

Theorem 4. EESM is NP-hard even if (i) every covering set Si is of cardinality
at most 3; (ii) every element of U is present in at most 3 covering sets of S; and
(iii) the number ng of groups is equal to 2.

Proof. The proof is adapted from proof of Theorem 1, and will only be briefly
described here. As in proof of Theorem 1, we reduce from 3-SAT-3, and the
reduction is very similar, the only difference being that f(ej) and f(ei,j) do not
need to be exactly 1 and 3, but just need to be different.

The forward direction is the same as in proof of Theorem 1, since the con-
structed solution for ESM appears to be a solution for EESM as well. The
reverse direction is based on the same arguments, but appears to be simpler,
due to the specificity of EESM, namely, a covering subset of S ′ cannot contain
two elements with different multiplicities.

Because the above theorem is proved similarly as in Theorem 1, the same
result as Corollary 1 also applies to EESM.

Corollary 2. Unless ETH fails, there exists a δ > 0 such that EESM cannot be
solved O(2δ·max(n,m)).

Since EESM is NP-hard, it is natural to ask for the existence of moderate
exponential-time algorithms. We start with the following proposition – recall
that n = |S| is the number of covering sets, and ng is the number of groups.

Proposition 5. EESM is in XP parameterized by � = n − ng.
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It can also be easily seen that EESM is FPT in m = |U|. Indeed, since S
does not contain twice the same subsets of U , we have |S| ≤ 2m. Hence, only
the values provided by f do not depend on m. However, by definition of EESM,
these values cannot be split, and thus, only the presence/absence of an element
in the covering subsets of S ′ needs to be inferred. Hence, a solution for EESM
can be computed with a time complexity that only depends on m, and thus,
EESM is FPT in m. We also have the following result.

Proposition 6. EESM is FPT with respect to parameter n = |S|.
Proof. We propose an algorithm performing a search in a bounded tree T of
arity at most n and of height at most n. The way the algorithm works is the
following: at each step, consider a so far uncovered element e, and guess, among
the remaining covering subsets S′

is for which Si contains e, which one exactly
covers e. Moreover, when a covering subset S′

i is assumed to exactly cover e, we
enforce all elements in the same group as e which also belong to Si to be also
exactly covered by S′

i. Then, we remove all exactly covered elements, as well as
Si, from the instance. The algorithm stops when an uncovered element cannot
be exactly covered, or when all elements have been exactly covered. In the latter
case, we have a Yes-instance whose solution can be computed by backtracking.
The fact that the former case always corresponds to a No-instance derives from
the following claim: any (positive) solution to EESM can be modified into a
solution found by our algorithm. Indeed, if a solution Sol to EESM is not found
by our algorithm, then necessarily, in Sol, there exists a group in which two
elements, say e1 and e2, are exactly covered by two different covering subsets,
say S′

1 and S′
2. Moreover, e1 and e2 are both present either in S′

1, or in S′
2, or

both (otherwise our algorithm would have “tried” the configuration proposed
by Sol). Consequently, we can modify Sol so that both e1 and e2 are exactly
covered by the same covering subset. It suffices to iterate this argument to prove
the above claim, and this also proves that our algorithm is correct.

Now, since each new node in T corresponds to a new instance in which at
least one covering set of S has been discarded, T is of height at most n. Moreover,
the number of guesses at each step, and thus the arity of T , also never exceeds n.
Altogether, the size of T is thus in O(nn). Given that the time needed to create a
new node in T is in O(m), the overall complexity of our algorithm is in O(mnn),
and the result follows.

4 The Max-EESM Problem

Clearly, Max-EESM is NP-hard under the same conditions as EESM (see The-
orem 4), since deciding whether U ′ = U is equivalent to solving EESM. Also,
Max-EESM is FPT parameterized by m = |U|, for the same reasons as the ones
developed in Sect. 3, since all computations depend only on m. We now show
in Theorem 5 that a 2-approximation algorithm A exists for Max-EESM, and
prove in Proposition 7 that the ratio 2 obtained by A is asymptotically tight.
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Theorem 5. Max-EESM is 2-approximable.

Proof. The algorithm A we propose is greedy, and works as follows: at each itera-
tion, choose among the remaining covering sets in S the one, say Si, that contains
the most elements of the same group, that we name ek1 , ek2 , . . . , ekj

. Hence, all
these elements have the same multiplicity, say q. Set S′

i = {ek1 , ek2 , . . . , ekj
},

g(S′
i) = q, remove Si as well as ek1 , ek2 , . . . , ekj

from the instance and iterate.
Algorithm A stops when all elements have been exactly covered, or when no ele-
ment can be further exactly covered. For simplicity, we assume that the number
of iterations of A is exactly n, e.g. by allowing “empty” iterations during which
a covering set Si is selected with S′

i = ∅. We now introduce some notations: let
Sol∗i (resp. Soli) the set of elements that is exactly covered by S′

i in an optimal
solution (resp. by A), and by x∗

i (resp. xi) the cardinality of Sol∗i (resp. Soli).
For any 1 ≤ i < i′ ≤ n, we denote by Δi′

i = Soli ∩ Sol∗i′ the set of elements that
are exactly covered both by covering subset S′

i (by A) and by covering subset
S′

i′ (in an optimal solution); we also let δi′
i = |Δi′

i |. Finally, for any 1 ≤ i ≤ n,
we denote by Δi = Soli ∩ (

⋃n
i′=i+1 Sol∗i′) =

⋃n
i′=i+1 Δi′

i the set of elements that
are exactly covered both by covering subset S′

i by A and any covering subset S′
i′

with i′ > i in an optimal solution. We finally let δi = |Δi|.
Let N∗ be the number of exactly covered elements in an optimal solution to

Max-EESM, and NA the number of exactly covered elements by A. Clearly,
N∗ =

∑n
i=1 x∗

i and NA =
∑n

i=1 xi. Our goal is to show that NA ≥ N∗
2 , or

otherwise stated 2
∑n

i=1 xi − ∑n
i=1 x∗

i ≥ 0 (1). First note that for any i′ �= i′′,
we know that Sol∗i′ ∩ Sol∗i′′ = ∅, since in EESM, an element can only belong to
a single covering subset of S ′. Thus, for any i and i′ �= i′′ with min(i′, i′′) > i,
we have Δi′

i ∩ Δi′′
i = ∅, and consequently, for any 1 ≤ i ≤ n, |⋃n

i′=i+1 Δi′
i | =

∑n
i′=i+1 δi′

i , which in turn gives: δi =
∑n

i′=i+1 δi′
i ∀ 1 ≤ i ≤ n (2). Coming back

to inequality (1), it is equivalent to: 2
∑n

i=1 xi −
∑n

i=1 x∗
i +(

∑n
i=1 δi −

∑n
i=1 δi) ≥

0 (3) which, by equality (2), can also be rewritten as: 2
∑n

i=1 xi − ∑n
i=1 x∗

i +
(
∑n

i=1

∑n
i′=i+1 δi′

i − ∑n
i=1 δi) ≥ 0 (4). The left side of the above inequality can

be written as I1 + I2, where I1 =
∑n

i=1 xi − ∑n
i=1 δi and I2 =

∑n
i=1 xi +

∑n
i=1

∑n
i′=i+1 δi′

i −∑n
i=1 x∗

i . Our goal is thus to show that I1 +I2 ≥ 0. For this,
we will separately show that I1 ≥ 0 and I2 ≥ 0, which will allow us to conclude.
First, it can be easily seen that I1 ≥ 0, by noticing that xi ≥ δi for any 1 ≤ i ≤ n.
Indeed, by definition, for any 1 ≤ i ≤ n, δi = |Soli ∩ (

⋃n
i′=i+1 Sol∗i′)|, and thus

δi ≤ |Soli|. It suffices to recall that xi = |Soli| by definition to conclude.
Now let us show that I2 ≥ 0. Recall that, at any iteration 1 ≤ i ≤ n, algorithm
A chooses a covering subset S′

i to exactly cover all elements belonging to the
most represented group. Thus, we conclude that Soli contains at least as many
elements as Sol∗i , minus those which may have already been exactly covered
by a covering subset S′

i′ , i′ < i, in a previous iteration of A. Hence, |Soli| ≥
|Sol∗i /

⋃i−1
i′=1 Soli′ | ∀ 1 ≤ i ≤ n (5). Since for any two sets A and B, we have

|A/B| = |A| − |A ∩ B|, we know that |Sol∗i /
⋃i−1

i′=1 Soli′ | = |Sol∗i | − |Sol∗i ∩
⋃i−1

i′=1 Soli′ |. Since xi = |Soli| and x∗
i = |Sol∗i |, from (5) we have: xi ≥ x∗

i −|Sol∗i ∩
⋃i−1

i′=1 Soli′ | ∀ 1 ≤ i ≤ n (6). Given that |Sol∗i ∩ ⋃i−1
i′=1 Soli′ | = |⋃i−1

i′=1(Sol∗i ∩
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Soli′)|, we can rewrite (6) as follows: xi ≥ x∗
i − |⋃i−1

i′=1(Sol∗i ∩ Soli′)| ∀ 1 ≤
i ≤ n (7). Recall that, by definition,

⋃i−1
i′=1(Sol∗i ∩ Soli′) =

⋃i−1
i′=1 Δi

i′ . We also
know that all Δi

i′ are pairwise disjoint, again by definition; and since δi
i′ = |Δi

i′ |,
inequality (7) becomes: xi ≥ x∗

i − ∑i−1
i′=1 δi

i′ (8). This inequality is true for any
1 ≤ i ≤ n. Thus, if we sum it for every 1 ≤ i ≤ n, we obtain:

∑n
i=1 xi ≥

∑n
i=1 x∗

i − ∑n
i=1

∑i−1
i′=1 δi

i′ , which we can rewrite:
∑n

i=1 xi +
∑n

i=1

∑i−1
i′=1 δi

i′ −∑n
i=1 x∗

i ≥ 0 (9). We are now ready to conclude, as it can be seen that the left
term of (9) is exactly I2. For this, it suffices to note that

∑n
i=1

∑i−1
i′=1 δi

i′ in (9)
can also be expressed as follows:

∑n
i=1

∑n
j=i+1 δj

i . Altogether, this proves I2 ≥ 0.
Since we proved I1 ≥ 0, we have I1 + I2 ≥ 0, which shows that NA ≥ N∗

2 .

Proposition 7. The approximation ratio 2 for A is tight.

5 Conclusion

In this paper, we have introduced the ESM problem and two of its variants,
initially motivated by protein inference in mass spectrometry. For these prob-
lems, we have provided several algorithmic results, including computational com-
plexity, parameterized complexity and approximation. Several questions remain
open, for instance the following: is ESM strongly NP-hard? What is the com-
plexity of ESM when each multiplicity in U is unique? Can the 2-approximation
ratio of Max-EESM be improved, and which inapproximability ratio exists?
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Abstract. A Zero-Knowledge Proof (ZKP) protocol allows a partici-
pant to prove the knowledge of some secret without revealing any infor-
mation about it. While such protocols are typically executed by comput-
ers, there exists a line of research proposing physical instances of ZKP
protocols. Up to now, many card-based ZKP protocols for pen-and-pencil
puzzles, like Sudoku, have been designed. Those games, mostly edited by
Nikoli, have simple rules, yet designing them in card-based ZKP proto-
cols is non-trivial. This is partly due to the fact that the solution should
not be leaked during the protocol. In this work, we propose a card-based
protocol for Usowan, a Nikoli game. In Usowan, for each room of a puz-
zle instance, there is exactly one piece of false information. The goal of
the game is to detect this wrong data amongst the correct data and also
to satisfy the other rules. Designing a card-based ZKP protocol to deal
with the property of detecting a liar has never been done. In some sense,
we propose a physical ZKP for hiding of a liar.

Keywords: Zero-knowledge proof · Pencil puzzle · Card-based
cryptography · Usowan

1 Introduction

Usowan [1] is a pencil puzzle played with a rectangular grid composed of num-
bered cells and white cells delimited by regions (thick edges). The goal is to fill
(in black) some cells:

1. The numbered cells must remain white.
2. The white cells form a connected shape.
3. The black cells cannot connect vertically or horizontally.
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4. A numbered cell has the corresponding number of black cells around it (ver-
tically or horizontally). However, each region has exactly one liar i.e., the
number of black cells is not equal to the numbered cell.1

We depict in Fig. 1 an initial Usowan grid with its solution.

1 3
1

30
41

1 1

1 3
1

30
41

1 1

Fig. 1. Initial Usowan grid and its solution taken from [1].

Suppose that someone has found a solution for a given Usowan instance. Is
it possible to design a protocol to convince anyone that he/she has the solution
without revealing it? The answer can be found in the field of cryptography.
Indeed, a Zero-Knowledge Proof (ZKP) is a process where one party can prove
the knowledge of information without revealing it. A simple application to ZKP
can be related to password authentication for a website; only the person with
this password can access to sensitive data but it is preferable to never reveal the
password.

More formally, a ZKP protocol is between two parties: a prover P who knows
a solution s to a problem and a verifier V who wants to be sure that P is
indeed in possession of the solution. However, no information about s should
leak during the protocol (except the information recoverable without the help of
the protocol). The protocol must guarantee three security properties:

Completeness: if P knows s then V is convinced when the protocol ends.
Soundness: if P does not have the solution, then V will detect it during the

protocol.
Zero-knowledge: V learns nothing about s.

Usually, ZKP protocols are executed by computers. We restrict ourselves
by using only physical cards and envelopes. In this paper, we present a physical
ZKP protocol for Usowan. While the hardness of the resolution for the underlying
problem (here filling an Usowan grid) is not crucial for a physical protocol, a
usual ZKP protocol needs to be based on a NP-complete problem (otherwise
the verifier could compute the secret in polynomial time). Hopefully, the NP-
completeness of Usowan has been proved in [13]. This result ensures that there
exists a ZKP protocol.

1 A numbered cell whose number is four (or more) is automatically a liar. Indeed, if
there are four black cells around a numbered cell, then the numbered cell cannot be
connected to other white cells.
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Contributions. We construct a physical ZKP protocol for Usowan, giving the first
application to detecting if a puzzle has flaws (i.e., the liar rule) while ensuring
that the prover has the solution. It is the first physical ZKP protocol to prove
that some information is incorrect among correct information. For this, we only
use cards and envelopes. Moreover, we propose a trick that uses the rules of a
Usowan grid in order to prove that exactly one piece of information is wrong in
each room. For this, we use several sub-protocols to verify the rules and propose
a completely novel ZKP protocol.

Related Work. Goldwasser et al. [10] proved that any NP-complete problem
has its corresponding interactive ZKP protocol. Yet the generic approach has
tremendous overhead leading to an impractical result. Works on implementing
cryptographic protocols using physical objects are numerous, such as in [21]; or
in [8] where a physical secure auction protocol was proposed. Other implemen-
tations have been studied using cards in [4,15], polarising plates [37], polygon
cards [38], a standard deck of playing cards [18], using a PEZ dispenser [2,3],
using a dial lock [19], using a 15 puzzle [20], or using a tamper-evident seals [23–
25]. ZKP’s for several other puzzles have been studied such as Sudoku [30,36],
Akari [5], Takuzu [5,16], Kakuro [5,17], KenKen [5], Makaro [6,35], Norinori [9],
Nonogram [7,29], Slitherlink [15], Suguru [28], Nurikabe [27], Ripple Effect [32],
Numberlink [31], Bridges [33], and Cryptarithmetic [12].

Outline. In Sect. 2, we explain how to encode a grid with some cards in order
to be able to construct our ZKP protocol. We also recall the existing card-based
simple protocols of the literature that we use in our construction. In Sect. 3, we
present our ZKP protocol for Usowan. We give in App. D the security proofs of
our protocol.

Overview of Our Protocol. Before detailing our protocol and exisiting sub-
protocols involved, we present an intuition of our construction (see Fig. 2). We
represent a colored cell by placing colored cards on the cell. In the connectivity
phase, P and V construct a connected figure according to P ’s solution without
V knowing the exact shape. Thus, V is convinced that the resulting face-down
cards satisfy the rule 2 (and the rule 1 can be easily verified by just revealing
face-down cards on numbered cells). Then, in the verification phase, V checks
the two remaining rules. The rule 3 forces two adjacent cells to be composed of
at least one white cell; this rule is verified by computing a disjunction of each
possible pair. For verifying the rule 4, P and V compute the number of blacks
around a given numbered cell. The result is represented as a sequence of face-
down cards where the value is given by a position in the sequence. By revealing
the card of position equal to the number written on the cell, V checks if the sum
is equal or not (without knowing the exact value if different) to the numbered
cell.
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Setup:
P and V prepare the grid.

Connectivity:
P constructs a shape according to the solution.
V P
V reveals the colors of numbered cells (rule 1 checked).

V
V v
rule 3: each pair of adjacent cells is checked using a disjunction (white= 1 and black= 0).
rule 4: sum the numbers of the neighbours around numbered cells.

Fig. 2. Overview of our protocol

2 Preliminaries

We explain the notations and sub-protocols used in our construction; some of
them are detailed in appendix while the general idea is given below. We first
introduce the general framework of card-based protocols.

Cards and Encoding. The cards consist of clubs ♣ and hearts ♥ whose backs
are identical ? . We encode three colors {black,white, red} with the order of
two cards as follows:

♣ ♥ → black, ♥ ♣ → white, ♥ ♥ → red. (1)

We call a pair of face-down cards ? ? corresponding to a color according
to the above encoding rule a commitment to the respective color. We also use
the terms, a black commitment, a white commitment, and a red commitment.
We sometimes regard black and white commitments as bit values, based on the
following encoding:

♣ ♥ → 0, ♥ ♣ → 1. (2)

For a bit x ∈ {0, 1}, if a pair of face-down cards satisfies the encoding (2), we
say that it is a commitment to x, denoted by ? ?

︸ ︷︷ ︸

x

.

We also define two other encodings [34]:

– ♣-scheme: for x ∈ Z/pZ, there are p cards composed of p − 1 ♥s and one ♣
at position (x+ 1) from the left. For example, 2 is represented as ♥ ♥ ♣ ♥
in Z/4Z.

– ♥-scheme: same encoding as above but the ♥ and ♣ are reversed. For
instance, 2 is represented as ♣ ♣ ♥ ♣ in Z/4Z.

2.1 Pile-shifting Shuffle [26,38]

This shuffling action means to shuffle piles of cards cyclically. More for-
mally, given m piles, each of which consists of the same number of face-down
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cards, denoted by (p1,p2, . . . ,pm), applying a pile-shifting shuffle (denoted by
〈·‖ · · · ‖·〉) results in (ps+1,ps+2, . . . ,ps+m):

〈

?
︸︷︷︸

p1

∥

∥

∥

∥

∥

?
︸︷︷︸

p2

∥

∥

∥

∥

∥

· · ·
∥

∥

∥

∥

∥

?
︸︷︷︸

pm

〉

→ ?
︸︷︷︸

?
︸︷︷︸

· · · ?
︸︷︷︸

ps+1 ps+2 ps+m

,

where s is uniformly and randomly chosen from Z/mZ. We can simply imple-
ment this shuffling action using physical cases that can store a pile of cards, such
as boxes and envelopes. A player (or players) cyclically shuffles them manually
until everyone (i.e., P and V ) loses track of the offset.

2.2 Mizuki–Sone Copy Protocol [22]

The following protocol is used for copying commitments. We need it as a commit-
ment can be used for several destructive2 computations (here an addition). Given
a commitment to a ∈ {0, 1} along with four cards ♣ ♥ ♣ ♥ , the Mizuki–Sone
copy protocol [22] outputs two commitments to a. We specifically describe the
protocol in Appendix A.

? ?
︸ ︷︷ ︸

a

♣ ♥ ♣ ♥ → ? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

a

.

2.3 Input-preserving Five-Card Trick [16]

This sub-protocol is used during the verification phase (see Sect. 3.3) for the
lonely black rule (rule 3). Given two commitments to a, b ∈ {0, 1} based on the
encoding rule (2), this sub-protocol [4,16] reveals only the value of a ∨ b as well
as restores commitments to a and b:

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

→ a ∨ b & ? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

.

The original sub-protocol [4,16] was designed for AND (a∧ b), but we adjust it
to compute OR (a ∨ b). We give the detailed description in Appendix B.

2.4 How to Form a White Polyomino [27]

We introduce the idea of the generic method of [27] to perform the connectivity
of colored cells without revealing any information about the resulting cells. We
leave in Appendix C the details of the protocol.

First, all commitments on a grid of size p × q are black, and P chooses
a commitment to turn it white (without V knowing which cell); we use the

2 This means that commitments used in the computation cannot be placed back with
its initial value. A non-destructive protocol is called input-preserving (see Sect. 2.3).
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chosen-pile described in Appendix C.1 for this. Then P chooses a commitment
next to the previous commitment to either turn it white or leave it black; V is
ensured that both commitments are neighbours (i.e., two adjacent cells) using
a sub-protocol described in Appendix C.2. This step is repeated pq − 1 times
to ensure that V does not know the number of white cells at the end of the
protocol. Finally, each time a white commitment is created, V only knows that
it is adjacent to another white commitment; thus V is convinced that the figure
composed of white commitments is connected without knowing the number of
cells.

2.5 Sum in Z[34]

We give an overview of the protocol described in [34] for adding elements in
Z/2Z with result in Z. This protocol is needed for the liar rule 4.

Given commitments to xi ∈ Z/2Z for i ∈ {1, . . . , n} along with one ♣ and
one ♥ , the protocol produces their sum S =

∑n
i=1 xi in Z/(n + 1)Z encoded in

the ♥-scheme without revealing xi. The computation is performed inductively;
when starting by the two first commitments to x1 and x2, they are transformed
into x1 − r and x2 + r encoded in the ♥-scheme and ♣-scheme, respectively, for
uniformly random value r ∈ Z/3Z. Then x2+r is revealed (no information about
x2 is revealed because r is random), and x1 − r is shifted by x2 + r positions
to encode (x1 − r) + (x2 + r) = x1 + x2. Note that this result is in Z/(p + 1)Z
(or simply Z because the result is less than or equal to p) for elements x1, x2 in
Z/pZ.

Let us describe the protocol. First, notice that black cells are assumed to be
equal to 1 and white cells are equal to 0 (see Eqs. (1) and (2)). Two commitments
to x1 and x2 (either 0 or 1) will be changed to x1 + x2:

? ?
︸ ︷︷ ︸

x1

? ?
︸ ︷︷ ︸

x2

♣ ♥ → ? ? ?
︸ ︷︷ ︸

x1+x2

.

1. Swap the two cards of the commitment to x1 and add a ♣ face down to the
right. Those three cards represent x1 in the ♥-scheme in Z/3Z:

−→←−
? ?
︸ ︷︷ ︸

x1

?
♣

→ ? ? ?
︸ ︷︷ ︸

x1

.

2. Add a ♥ on the right of the commitment to x2. Those three cards represent
x2 in the ♣-scheme in Z/3Z: ? ?

︸ ︷︷ ︸

x2

?
♥

→ ? ? ?
︸ ︷︷ ︸

x2

.

3. Obtain three cards representing x1 + r and those representing x2 − r for a
uniformly random value r ∈ Z/3Z as follows.
(a) Place in reverse order the three cards obtained in Step 2 below the three

cards obtained in Step 1:
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? ? ?
︸ ︷︷ ︸

x1

? ? ?
︸ ︷︷ ︸

x2

→

? ? ?
︸ ︷︷ ︸

x1

? ? ?
︸ ︷︷ ︸

2−x2

(b) Apply a pile shifting shuffle as follows:

〈

?
?

∥

∥

∥

∥

?
?

∥

∥

∥

∥

?
?

〉

→

? ? ?
︸ ︷︷ ︸

x1+r

? ? ?
︸ ︷︷ ︸

2−x2+r

For a uniformly random value r ∈ Z/3Z, we obtain three cards repre-
senting x1 + r and those representing 2 − x2 + r.

(c) Reverse the order of the three cards representing 2 − x2 + r to obtain
those representing x2 − r: ? ? ?

︸ ︷︷ ︸

x1+r

? ? ?
︸ ︷︷ ︸

x2−r

.

4. Reveal the three cards representing x2 − r, and shift to the right the three
cards representing x1+r to obtain those representing x1+x2 in the ♥-scheme;
apply the same routine for the remaining elements to compute the final sum.

Notice that we described the protocol for a result in Z/3Z but it is easily
adaptable for a result in, let say, Z/qZ. Indeed, during the first step, we add a
single ♣ to the first commitment and a single ♥ to the second; thus for a sum
that could be equal to q−1, we add q−2 ♣ s to the first commitment and q−2
♥ s to the second.

3 ZKP Protocol for Usowan

We present a card-based ZKP protocol for Usowan. Consider an Usowan instance
composed as a rectangular grid of size p × q.

3.1 Setup Phase

The verifier V and prover P place black commitments on each cell of the p × q
grid (also on the numbered cells) and place red commitments (“dummy” com-
mitments) on the left of the frst column and below the last row so that we have
(p + 1)(q + 1) commitments.
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3.2 Connectivity Phase

We apply the sub-protocol introduced in Sect. 2.4 to form a white connected
figure. After this phase, V is convinced that the white commitments are con-
nected (rule 2). Moreover, V reveals the commitments corresponding to num-
bered cells to check that they are indeed white (rule 1). Notice that revealing
directly those commitments does reveal information about the solution (i.e., V
learns that those cells are white), but this information is already known inde-
pendently of the protocol.

3.3 Verification Phases

There are two rules to check: black commitments cannot touch horizontally nor
vertically (rule 3) and each numbered cell has the corresponding number of black
cells around it except for one liar in each region (rule 4).

Lonely Black. For each pair of adjacent commitments, V applies the five-card
trick introduced in Sect. 2.3 to the two commitments to compute their disjunc-
tion. We consider here that a white commitment is equal to 1 while a black
commitment is equal to 0 (see the encoding (2)). Hence, if the output is 1 then
it means that at least one commitment is white so V continues, otherwise V
aborts (because the only case of output 0 is when there are two black commit-
ments).

Liar. V needs to check that each numbered cell has the corresponding number
of black cells around it except for exactly one liar in each region. We cannot
simply check the number of black cells because it leaks information. Instead, we
compute the sum of black cells in Z/5Z introduced in Sect. 2.5 for all numbered
cells in a region. However, we do not directly reveal the result but just the (x−1)-
st card of the output sequence. This ensures that the sum is equal or not to x
instead of giving the actual sum.

It remains one sub-protocol to use because the addition is destructive; thus,
we need to copy commitments sharing a numbered cell. The copy protocol is
described in Sect. 2.2. We can now formally describe the liar verification. For
every region, apply the following steps:

1. For each cell that shares k > 1 numbered cells, apply the copy protocol
(introduced in Sect. 2.2) k − 1 times.

2. For each numbered cell, compute the addition of its four neighbors3. Recall
that the result is encoded as the ♥-scheme (see Sect. 2); thus, the result of
the sum has a ♥ in its corresponding position (and all other cards are ♣s).

3. For each sequence obtained in the previous step, pick the card in the position
that corresponds to the number written on the numbered cell. The result
must be kept secret (i.e., keep the cards face-down).

3 For a numbered cell in the edge of the board, compute the addition of its three or
two neighbors.
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Example:
b

a 3 c

d

−→ a + b + c + d = ?
0

?
1

?
2

?
3
↑

?
4

4. Shuffle and reveal all the cards previously chosen. If exactly one club is
revealed, then continue (i.e., there is exactly one liar); otherwise aborts.

4 Conclusion

We propose a physical ZKP protocol for Usowan, which has an interesting rule:
some information on the initial grid are incorrect. For verifying such constraints
without revealing knowledge about the solution, we construct a protocol based
on computing the sum [34]. With this trick we are able to prove that we can hide
exactly one liar in each room. The next step will be to see how we can propose a
cryptographic ZKP protocol to prove that someone is lying. This is clearly not
easy and might require complex and modern cryptographic primitives while we
are able to do it only with cards and envelopes in real life.
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A Mizuki–Sone Copy Protocol [22]

The protocol proceeds as follows.4

1. Turn over all face-up cards and put the commitment to a above the four
additional cards as follows:

? ?
︸ ︷︷ ︸

a

♣ ♥ ♥ ♣ →
? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

0

? ?
︸ ︷︷ ︸

1

.

Note that black-to-red represents 0, and red-to-black represents 1 according
to Eq. (2).

4 This description is a compact version of the original one [22]. Here, we use a pile-
shifting shuffle in step 2 instead of using a random bisection cut invented in [22].
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2. Apply a pile-shifting shuffle as follows:
〈

?
? ?

∥

∥

∥

∥

?
? ?

〉

→ ?
? ?

?
? ? .

3. Reveal the two above cards and obtain two commitments to a as follows (note
that negating a commitment is easy).
(a) If they are ♣ ♥ , then the four bottom cards are ? ?

︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

a

.

(b) If they are ♥ ♣ , then the four bottom cards are ? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

a

.

B Input-preserving Five-Card Trick [16]

The sub-protocol proceeds as follows.

1. Add helping cards and swap the two cards of the commitment to a so that
we have the negation b, as follows:

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

→ ? ?
︸ ︷︷ ︸

a

♥ ? ?
︸ ︷︷ ︸

b

♥ ♣ ♣ ♣ ♣ .

2. Rearrange the sequence of cards and turn over the face-up cards as:

? ? ♥ ? ? ♥ ♣ ♣ ♣ ♣ → ? ? ♥ ? ?
♥ ♣ ♣ ♣ ♣ → ? ? ♥ ? ?

? ? ? ? ? .

3. Regarding cards in the same column as a pile, apply a pile-shifting shuffle to
the sequence:

〈

?
?

∥

∥

∥

∥

?
?

∥

∥

∥

∥

?
?

∥

∥

∥

∥

?
?

∥

∥

∥

∥

?
?

〉

→ ? ? ? ? ?
? ? ? ? ? .

4. Reveal all the cards in the above row.
(a) If the resulting sequence is ♣ ♣ ♥ ♥ ♥ (up to cyclic shifts), then a∨b =

0.
(b) If it is ♥ ♣ ♥ ♣ ♥ (up to cyclic shifts), then a ∨ b = 1.

5. After turning over all the face-up cards, apply a pile-shifting shuffle.
6. Reveal all the cards in the bottom row; then, the revealed cards should include

exactly one ♥ .
7. Shift the sequence of piles so that the leftmost card is the revealed ♥ and

swap the two cards of the commitment to b to restore commitments to a and
b.
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C How to Form a White Polyomino

Before explaining the protocol, we need to describe two crucial sub-protocols
first, namely the chosen pile protocol and the 4-neighbour protocol.

C.1 Chosen Pile Protocol [9]

This protocol allows P to choose a pile of cards without V knowing which one
it is. Some operations can be done on this pile while all the commitments are
replaced in their initial order.

This protocol is an extended version of the “chosen pile cut” proposed in [14].
Given m piles (p1,p2, . . . ,pm) with 2m additional cards, the chosen pile protocol
enables a prover P to choose the i-th pile pi (without revealing the index i)
and revert the sequence of m piles to their original order after applying other
operations to pi.

1. Using m − 1 ♣ s and one ♥ , P places m face-down cards (denoted by row
2 ) below the given piles such that only the i-th card is ♥ . We further put m
cards (denoted by row 3 ) below the cards such that only the first card is ♥ :

?
︸︷︷︸

p1

?
︸︷︷︸

p2

. . . ?
︸︷︷︸

pi−1

?
︸︷︷︸

pi

?
︸︷︷︸

pi+1

. . . ?
︸︷︷︸

pm

?
♣

?
♣

. . . ?
♣

?
♥

?
♣

. . . ?
♣

← row 2

?
♥

?
♣

. . . ?
♣

?
♣

?
♣

. . . ?
♣

← row 3

2. Considering the cards in the same column as a pile, apply a pile-shifting
shuffle to the sequence of piles.

3. Reveal all the cards in row 2. Then, exactly one ♥ appears, and the pile
above the revealed ♥ is the i-th pile (thus P can obtain pi). After this step
is invoked, other operations are applied to the chosen pile. Then, the chosen
pile is placed back to the i-th position in the sequence.

4. Remove the revealed cards, i.e., the cards in row 2. (Note, therefore, that we
do not use the card ♥ revealed in Step 3.) Then, apply a pile-shifting shuffle.

5. Reveal all the cards in row 3. Then, one ♥ appears, and the pile above the
revealed ♥ is p1. Therefore, by shifting the sequence of piles (such that p1

becomes the leftmost pile in the sequence), we can obtain a sequence of piles
whose order is the same as the original one without revealing any information
about the order of the input sequence.

C.2 Sub-protocol: 4-Neighbour Protocol [27]

Given pq commitments placed on a p × q grid, a prover P has a commitment
in mind, which we call a target commitment. The prover P wants to reveal the
target commitment and another one that lies next to the target commitment
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(without revealing their exact positions). Here, a verifier V should be convinced
that the second commitment is a neighbour of the first one (without knowing
which one) as well as V should be able to confirm the colours of both the com-
mitments. To handle the case where the target commitment is at the edge of
the grid, we place commitments to red (as “dummy” commitments) in the left
of the first column and the below of the last row to prevent P from choosing
a commitment that is not a neighbour. Thus, the size of the expanded grid is
(p + 1) × (q + 1).5

This sub-protocol proceeds as follows.

1. P and V pick the (p + 1)(q + 1) commitments on the grid from left-to-right
and top-to-bottom to make a sequence of commitments:

? ? ? ? ? ? ? ? · · · ? ? .

2. P uses the chosen pile protocol (Sect. 2) to reveal the target commitment.
3. P and V pick all the four neighbours of the target commitment. Since a pile-

shifting shuffle is a cyclic reordering, the distance between commitments are
kept (up to a given modulo). That is, for a target commitment (not at the
edge), the possible four neighbours are at distance one for the left or right
one, and p+ 1 for the bottom or top one. Therefore, P and V can determine
the positions of all the four neighbours.

4. Among these four neighbours, P chooses one commitment using the chosen
pile protocol and reveals it.

5. P and V end the second and first chosen pile protocols.

C.3 Full Protocol

Assume that there is a grid having p × q cells. Without loss of generality, P
wants to arrange white commitments on the grid such that they form a white-
polyomino while V is convinced that the placement of commitments is surely a
white-polyomino. The method is as follows.

1. P and V place a commitment to black (i.e., ♣ ♥ ) on every cell and com-
mitments to red as mentioned in Sect. 2.4 so that they have (p + 1)(q + 1)
commitments on the board.

2. P uses the chosen pile protocol to choose one black commitment that P wants
to change.
(a) V swaps the two cards constituting the chosen commitment so that it

becomes a white commitment (recall the encoding (1)).

5 Here, we do not place dummy commitments in the row above the first one and in the
column right to the last one because in the expanded grid of size (p + 1)(q + 1) the
row above the first one can be regarded as the last row, i.e., dummy commitments.
Thus, we do not need dummy commitments placed in the row above the first one,
which also holds for the column right to the last one.
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(b) P and V end the chosen pile protocol to return the commitments to their
original positions.

3. P and V repeat the following steps exactly pq − 1 times.
(a) P chooses one white commitment as a target and one black commitment

among its neighbours using the 4-neighbour protocol; the neighbour is
chosen such that P wants to make it white.

(b) V reveals the target commitment. If it corresponds to white, then V
continues; otherwise V aborts.

(c) V reveals the neighbour commitment (chosen by P ). If it corresponds to
black, then P makes the neighbour white or keep it black (depending on
P ’s choice) by executing the following steps; otherwise V aborts.
i. If P wants to change the commitment, P places face-down club-to-

heart pair below it; otherwise, P places a heart-to-club pair:

? ? → ?
?
♣

?
?
♥

or ?
?
♥

?
?
♣

.

ii. Regarding cards in the same column as a pile, V applies a pile-shifting
shuffle to the sequence of piles:

〈

?
?

∥

∥

∥

∥

?
?

〉

→ ? ?
? ? .

iii. V reveals the two cards in the second row. If the revealed right card
is ♥ , then V swaps the two cards in the first row; otherwise V does
nothing.

(d) P and V end the 4-neighbour protocol.
4. P and V remove all the red commitments (i.e., dummy commitments) so that

we have pq commitments on the board.

After this process, V is convinced that all the white commitments represent a
white-polyomino. Therefore, this method allows a prover P to make a solution
that only P has in mind, guaranteed to satisfy the connectivity constraint.

If the number of white cells in the final polyomino, say k, is public to a verifier
V , it is sufficient that in Step 3, P and V repeat k− 1 times and in Step 3c, and
hence, V simply swaps the two cards constituting the neighbour commitment to
make it white (without P ’s choice).

D Security Proofs

Our protocol needs to verify three security properties given as theorems. Note
that the sub-protocols used from the literature have been proven secure i.e.,
they are correct, complete, sound and zero-knowledge.

Theorem 1. (Completeness). If P knows the solution of an Usowan grid,
then P can convince V .
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Proof. P convinces V in the sense that the protocol does not abort which means
that all the rules are satisfied. The protocol can be split into two phases: (1) the
connectivity phase and (2) the verification phase.
(1) Since P knows the solution, the white cells are connected and hence P can
always choose a black commitment at step 2 to swap it to white.
(2) For the lonely black verification, there is no configuration of two black cells
that are touching horizontally nor vertically hence for every pair of adjacent
cells, there is always at least one white cell.
For the liar verification, there is exactly (in each region) one numbered cell sur-
rounded by a different number of black cells. Suppose, without lost of generality,
that the liar cell is equal to i in a given region (the same result could be applied
for each other region). When the sum of the four neighbours is done, the card at
position (from left) i + 1 is ♣ otherwise the numbered card is not a liar. Thus
when revealing the cards at the last step, there is always a ♣ card.

Theorem 2. (Soundness). If P does not provide a solution of the p×q Usowan
grid, P is not able to convince V .

Proof. Suppose that P does not provide a solution. If the white cells are not
connected, then P cannot choose a neighbor commitment that P wants to change
at step 3c. If there are two black commitments touching (or more), then the
five-card trick will output 0; hence, V will abort. Finally, if there is not one liar
exactly in a given region, then the last step of the verification will reveal either
no ♣ or at least two ♣ s; hence, V will abort.

Theorem 3. (Zero-knowledge). V learns nothing about P ’s solution of the
given grid G.

Proof. We use the same proof technique as in [11], namely the description of
an efficient simulator that simulates the interaction between an honest prover
and a cheating verifier. The goal is to produce an indistinguishable interaction
from the verifier’s view (with the prover). Notice that the simulator does not
have the solution but it can swap cards during shuffles. Informally, the verifier
cannot distinguish between the distributions of two protocols, one that is run
with the actual solution and one with random commitments. The simulator acts
as follows.

– The simulator constructs a random connected white polyomino.
– During the lonely black verification, the simulator replaces the cards in the

five-card trick introduced in Sect. 2.3 with ♥ ♣ ♥ ♣ ♥ . While the latter
sequence is randomly shifted, this ensure that the protocol continues.

– During the liar verification, the simulator simply replaces, in the last step,
the cards to have exactly one ♣ and the rest as ♥ s. This ensure that there is
exactly one liar in a given region, meaning that the protocol does not abort.

The simulated and real proofs are indistinguishable and hence V learns noth-
ing from the connectivity and verification phases. Finally, we conclude that the
protocol is zero-knowledge.
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Abstract. Alternating direction method of multipliers (ADMM)
receives much attention in the field of optimization and computer sci-
ence, etc. The generalized ADMM (G-ADMM) proposed by Eckstein
and Bertsekas incorporates an acceleration factor and is more efficient
than the original ADMM. However, G-ADMM is not applicable in some
models where the objective function value (or its gradient) is computa-
tionally costly or even impossible to compute. In this paper, we consider
the two-block separable convex optimization problem with linear con-
straints, where only noisy estimations of the gradient of the objective
function are accessible. Under this setting, we propose a stochastic lin-
earized generalized ADMM (called SLG-ADMM) where two subproblems
are approximated by some linearization strategies. By properly choosing
algorithm parameters, we show, for objective function value gap and con-
straint violation, the worst-case O

(
1/

√
k
)

and O (ln k/k) convergence
rates in expectation measured by the iteration complexity for general
convex and strongly convex problems respectively (k represents the iter-
ation counter). For the latter case, we also obtain the convergence of the
ergodic iterates generated by the proposed SLG-ADMM.

Keywords: Alternating direction method of multipliers (ADMM) ·
Iteration complexity · Stochastic approximation

1 Introduction

We consider the following two-block separable convex optimization problem with
linear equality constraints:

min {θ1 (x) + θ2 (y) |Ax + By = b, x ∈ X , y ∈ Y} , (1)
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where A ∈ R
n×n1 , B ∈ R

n×n2 , b ∈ R
n,X ⊆ R

n1 , and Y ⊆ R
n2 are closed convex

sets, and θ2 : Rn2 → R ∪ {+∞} is a convex function (not necessarily smooth).
θ1 : Rn1 → R is a convex function and is smooth on an open set containing X ,
but has its specific structure; in particular, we assume that there is a stochastic
first-order oracle (SFO) for θ1, which returns a stochastic gradient G (x, ξ) at
x, where ξ is a random variable whose distribution is supported on Ξ ⊆ R

d,
satisfying

a) E [G (x, ξ)] = ∇θ1 (x) , and

b) E
[
‖G (x, ξ) − ∇θ1 (x)‖2

]
≤ σ2,

where σ > 0 is some constant. In addition, we make the following assump-
tions throughout the paper: (i) The solution set of (1) is assumed to be
nonempty. (ii) the gradient of θ1 is L-Lipschitz continuous for some L > 0,
i.e., ‖∇θ1 (x) − ∇θ2 (y)‖ ≤ L ‖x − y‖ for any x, y ∈ X . (iii) y-subproblem has
a minimizer at each iteration. As a linearly constrained convex optimization
problem, though the model (1) is special, it is rich enough to characterize many
optimization problems arising from various application fields, such as machine
learning, image processing, and signal processing. In these fields, a typical sce-
nario is where one of the functions represents some data fidelity term, and the
other is a regularization term.

Without considering the specific structure, a classical method for solv-
ing problem (1) is the alternating direction method of multipliers (ADMM).
ADMM was originally proposed by Glowinski and Marrocco [1], and Gabay and
Mercier [2], which is a Gauss-Seidel implementation of augmented Lagrangian
method [3] or an application of Douglas-Rachford splitting method on the dual
problem of (1) [4]. For both convex and non-convex problems, there are extensive
studies on the theoretical properties of ADMM. In particular, for convex opti-
mization problems, theoretical results on convergence behavior are abundant,
whether global convergence, sublinear convergence rate, or linear convergence
rate, see e.g., [4–10]. Recently, ADMM has been studied on nonconvex models
satisfying the KL inequality or other similar properties, see e.g., [11–14]. How-
ever, when the objective function value (or its gradient) in (1) is computationally
costly or even impossible to compute, we can only access some noisy informa-
tion and deterministic ADMM does not work. Such a setting is exactly what
the stochastic programming (SP) model considers. In SP, the objective func-
tion is often in the form of expectation. In this case, getting the full function
value or gradient information is impractical. To tackle this problem, Robbins
and Monro originally introduced the stochastic approximation (SA) approach in
1951 [15]. Since then, SA has gone through many developments; for more detail,
readers are referred to a series of works by Nemirovski, Ghadimi, and Lan,
etc., see e.g., [16–20]. As for solving problem (1), motivated by the SA, some
stochastic ADMM type algorithms have been proposed recently, see e.g., [21–
25]. The basic idea in these works is to linearize the function and use stochastic
(sub)gradient by SA in the subproblem. In this paper, we will inherit this idea
for handling the function θ1 in (1) and propose a stochastic linearized general-
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ized ADMM, denoted SLG-ADMM, which incorporates an acceleration factor
into the subproblem and the update on the dual variables. It should be empha-
sized that although we treat θ1 using similar ideas as in the previous literature,
we shall obtain some new results. The proposed SLG-ADMM is based on the
well-known generalized ADMM (G-ADMM for short). The G-ADMM was orig-
inally proposed by Eckstein and Bertsekas from the perspective of the proximal
point algorithm to accelerate the original ADMM. Convergence properties of
G-ADMM have been developed in some literature [4,26], but theoretical anal-
ysis of it under the setting of problem (1) is not available and we will bridge
the gap between them. To achieve this, we develop the complexity analysis of
SLG-ADMM for the general convex and strongly convex problems. For general
convex problems, we will establish the worst-case O

(
1/

√
k
)

convergence rate of
objective function value gap and constraint violation (not their sum) in expecta-
tion for SLG-ADMM with the choices of constant step size and diminishing step
size (k represents the iteration counter, similarly hereinafter). For strongly con-
vex problems, the worst-case convergence rate of SLG-ADMM can be improved
to O (ln k/k). In addition, the convergence of ergodic iterates of SLG-ADMM
would be established in the strongly convex case.

The rest of this paper is organized as follows. We present the iterative scheme
of SLG-ADMM and summarize some preliminaries which will be used in the
theoretical analysis in Sect. 2. In Sect. 3, we derive the worst-case convergence
rate for the SLG-ADMM for the general convex and strong convex problems.
Finally, we make some conclusions in Sect. 4.

2 Stochastic Linearized Generalized ADMM

In this section, we first present the iterative scheme of SLG-ADMM for solving
(1), and then we introduce some preliminaries that will be frequently used in
the complexity analysis.

We give some remarks on this algorithm. Algorithm 1 is a ADMM type algo-
rithm, which alternates through one x-subproblem, one y-subproblem, and an
update on the dual variables (multipliers). The algorithm is stochastic since at
each iteration SFO is called to obtain a stochastic gradient G

(
xk, ξ

)
which

is an unbiased estimation of ∇θ1
(
xk

)
and is bounded relative to ∇θ1

(
xk

)
in

expectation. The algorithm is linearized because of the following two aspects: (i)
The term G

(
xk, ξ

)T (
x − xk

)
in the x-subproblem of SLG-ADMM is a stochas-

tic version of linearization of θ1
(
xk

)
. (ii) x-subproblem and y-subproblem are

added proximal terms 1
2ηk

∥∥x − xk
∥∥2

G1,k
and 1

2

∥∥y − yk
∥∥2

G2,k
respectively, where

{G1,k} and {G2,k} are two sequences of symmetric and positive definite matrices
that can be change with iteration; with the choice of G2,k ≡ τIn2 − βBT B, τ >
β

∥∥BT B
∥∥, the quadratic term in the y-subproblem is linearized. The same fact

applies to the x-subproblem. Furthermore, SLG-ADMM incorporates an acceler-
ation factor α; generally, the case with α ∈ (1, 2) could lead to better numerical
results than the special case with α = 1. When α = 1, G1,k ≡ In1 , and the
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term 1
2

∥∥y − yk
∥∥2

G2,k
vanishes, SLG-ADMM reduces to the algorithm appeared

in earlier literatures [21,25].

Algorithm 1: Stochastic Linearized Generalized ADMM (SLG-ADMM)

Initialize x0 ∈ X , y0 ∈ Y, λ0, α ∈ (0, 2), a positive sequence {ηk} and two
sequences of symmetric and positive definite matrices: {G1,k} and {G2,k}.
for k = 0, 1, . . .

Call the SFO to obtain G
(
xk, ξ

)
.

xk+1 = argmin
x∈X

{
G

(
xk, ξ

)T (
x − xk

) − xT AT λk +
β

2

∥∥Ax + Byk − b
∥∥2

+
1
2ηk

∥∥x − xk
∥∥2

G1,k

}

yk+1 = argmin
y∈Y

{
θ2 (y) − yT BT λk +

β

2

∥∥αAxk+1 + (1 − α)
(
b − Byk

)

+By − b‖2 + 1
2

∥∥y − yk
∥∥2

G2,k

}

λk+1 = λk − β
(
αAxk+1 + (1 − α)

(
b − Byk

)
+ Byk+1 − b

)

end

Solving (1) is equivalent to solving the following variational inequality prob-
lem: Finding w∗ = (x∗, y∗, λ∗)1 ∈ Ω := X × Y × R

n such that

θ (u) − θ (u∗) + (w − w∗)T F (w∗) ≥ 0,∀w ∈ Ω,

where

u =
(

x
y

)
, w =

⎛
⎝

x
y
λ

⎞
⎠ , F (w) =

⎛
⎝

−AT λ
−BT λ

Ax + By − b

⎞
⎠ , and θ (u) = θ1 (x) + θ2 (y) .

The variables with superscript or subscript such as uk, wk, ūk, w̄k are denoted
similarly. In addition, we define two auxiliary sequences for the convergence
analysis. More specifically, for the sequence

{
wk

}
generated by the SLG-ADMM,

let

w̃k =

⎛
⎝

x̃k

ỹk

λ̃k

⎞
⎠ =

⎛
⎝

xk+1

yk+1

λk − β
(
Axk+1 + Byk − b

)

⎞
⎠ and ũk =

(
x̃k

ỹk

)
. (2)

Based on the above notations and the update scheme of λk in SLG-ADMM, we
have

λk+1 − λ̃k = (1 − α)
(
λk − λ̃k

)
+ βB

(
yk − ỹk

)
(3)

1 We sometimes use (x, y, λ) to denote
(
xT , yT , λT

)T .
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and
λk − λk+1 = α

(
λk − λ̃k

)
+ βB

(
ỹk − yk

)
. (4)

Then we get
wk − wk+1 = M

(
wk − w̃k

)
, (5)

where M is defined as ⎛
⎝

In1 0 0
0 In2 0
0 −βB αIn

⎞
⎠ . (6)

For notational simplicity, we define two sequences of matrices that will be used
later: for k = 0, 1, . . .

Hk =

⎛
⎝

1
ηk

G1,k 0 0

0 β
α

BT B + G2,k
1−α

α
BT

0 1−α
α

B 1
βα

In

⎞
⎠ , Qk =

⎛
⎝

1
ηk

G1,k 0 0

0 βBT B + G2,k (1 − α)BT

0 −B 1
β
In

⎞
⎠ .

(7)
Obviously, for any k, the matrices M,Hk, and Qk satisfy Qk = HkM .

At the end of this section, we recall a lemma, which will be used in Sect. 3.

Lemma 1. Suppose function f is convex and its gradient is L-Lipschitz contin-
uous, then for any x, y, z we have

(x − y)T ∇f (z) ≤ f (x) − f (y) +
L

2
‖y − z‖2.

In addition, if f is μ-strongly convex, then for any x, y, z we have

(x − y)T ∇f (z) ≤ f (x) − f (y) +
L

2
‖y − z‖2 − μ

2
‖x − z‖2.

Proof. See the appendix. ��

3 Complexity Analysis of SLG-ADMM

In this section, we will establish the worst-case convergence rate of SLG-ADMM.
Due to space constraints, proofs are placed in the appendix. For the ease of
presentation, we introduce some notations. Denote δk = G

(
xk, ξ

)−∇θ1
(
xk

)
. By

the assumptions on SFO, we immediately get E
[
δk

]
= 0 and E

[∥∥δk
∥∥2

]
≤ σ2.

For two matrices A and B, the ordering relation A � B means A−B is positive
semidefinite. Im denotes the m×m identity matrix. For a vector x, ‖x‖ denotes
its Euclidean norm; for a matrix X, ‖X‖ denotes its spectral norm.

3.1 A Worst-Case O
(
1/

√
k
)
Convergence Rate

This subsection considers that the function θ1 is convex. First, we prove some
lemmas. The next lemma gives a key inequality for the sequence

{
w̃k

}
.
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Lemma 2. Let the sequence
{
wk

}
be generated by the SLG-ADMM and the

associated
{
w̃k

}
be defined in (2). Then we have

θ (u) − θ
(
ũk

)
+

(
w − w̃k

)T
F

(
w̃k

) ≥(
w − w̃k

)T
Qk

(
wk − w̃k

) − (
x − x̃k

)T
δk

− L

2

∥∥xk − x̃k
∥∥2

,∀w ∈ Ω,

(8)
where Qk is defined in (7).

Next, we need to further explore the terms on the right hand side of (8).

Lemma 3. Let the sequence
{
wk

}
be generated by the SLG-ADMM and the

associated
{
w̃k

}
be defined in (2). Then for any w ∈ X × Y × R

n, we have

(
w − w̃k

)T
Qk

(
wk − w̃k

)

=
1
2

(∥∥w − wk+1
∥∥2

Hk
− ∥∥w − wk

∥∥2

Hk

)
+

1
2ηk

∥∥xk − x̃k
∥∥2

G1,k
+

1
2

∥∥yk − ỹk
∥∥2

G2,k

− α − 2
2β

∥∥∥λk − λ̃k
∥∥∥
2

.

Now, we are ready to establish the first main result for SLG-ADMM.

Theorem 1. Let the sequence
{
wk

}
be generated by the SLG-ADMM, the asso-

ciated
{
w̃k

}
be defined in (2), and

w̄k =
1

k + 1

k∑
t=0

w̃t.

Let {αk} be any positive sequence and assume that the ordering relation 1
ηk

G1,k �(
1

αk
+ L

)
In1 for any k holds. Then we have

θ (ūk) − θ (u) + (w̄k − w)T F (w)

≤ 1
2 (k + 1)

k∑
t=0

(∥∥wt − w
∥∥2

Ht
− ∥∥wt+1 − w

∥∥2

Ht

)
+

1
k + 1

k∑
t=0

(
x − xt

)T
δt

+
1

k + 1

k∑
t=0

αt

2

∥∥δt
∥∥2

.

(9)

In SLG-ADMM, appropriate choices of G1,k, G2,k can make the subprob-
lems easier solved. For x-subproblem, if we choose G1,k = τIn1 − ηkβAT A, τ >

ηkβ
∥∥AT A

∥∥, then the quadratic term β
2 ‖Ax‖2 can be eliminated and the resulting

solution of this subproblem reduces to a stochastic gradient step. Similarly, with
some choice of G2,k, the y-subproblem reduces to estimating the resolvent of ∂θ2.
In the following corollaries, we choose G1,k = τIn1 − ηkβAT A, τ > ηkβ

∥∥AT A
∥∥

and G2,k ≡ G2. Some specific convergence results will be obtained by properly
choosing {ηt} and {αt} from Theorem 1.
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Corollary 1. Let the sequence
{
wk

}
be generated by the SLG-ADMM, the asso-

ciated
{
w̃k

}
be defined in (2), and

w̄N =
1

N + 1

N∑
t=0

w̃t

for some pre-selected integer N . Choosing αk ≡ 1√
N

and ηk ≡ 1√
N+M

,

where M is a constant satisfying the ordering relation τ
(√

N + M
)

In1 �(√
N + L

)
In1 + βAT A, then we have

E [‖Ax̄N + BȳN − b‖]

≤ 1
2(N + 1)

(
M

∥∥x0 − x∗∥∥2

G1,0
+

∥∥y0 − y∗∥∥2
β
α BT B+G2

+
2

βα

(∥∥λ0 − λ∗∥∥2
+ 1

))

+
1

2
√

N

(
σ2 +

∥∥x0 − x∗∥∥2

G1,0

)
+

1 − α

(N + 1)α
(
λ0 − λ∗)T

B
(
y0 − y∗) ,

and
E [θ (ūN ) − θ (u∗)]

≤ ‖λ∗‖ + 1
2(N + 1)

(
M

∥∥x0 − x∗∥∥2

G1,0
+

∥∥y0 − y∗∥∥2
β
α BT B+G2

+
2

βα

(∥∥λ0 − λ∗∥∥2
+ 1

))

+
‖λ∗‖ + 1
2
√

N

(
σ2 +

∥∥x0 − x∗∥∥2

G1,0

)
+

(1 − α) (‖λ∗‖ + 1)
(N + 1)α

(
λ0 − λ∗)T

B
(
y0 − y∗) .

This corollary shows that by choosing a constant step size, the SLG-ADMM
achieves both E [‖Ax̄N + BȳN − b‖] ≤ ε and E [θ (ūN ) − θ (u∗)] ≤ ε in O (

1/ε2
)

number of iterations. Thus, a worst-case O
(
1/

√
k
)

convergence rate for the
SLG-ADMM with the choice of constant size is established. It is worth noting
that

E [θ (ūN ) − θ (u∗) + ‖Ax̄N + BȳN − b‖] ≤ O
(
1/

√
N

)

is shown in [21]. In fact, this bound is not strong enough to ensure the
expected objective function value gap or constraint violation tend to zero.
Afterwards, in [25], the authors establish bounds for E [‖Ax̄N + BȳN − b‖] and
E [θ (ūN ) − θ (u∗)] respectively using a lemma in [19], but their result is based on
the expectation of ergodic iterates over all random histoty, which is impractical.
Moreover, if θ1 is a function of the finite sum form and G

(
xk, ξ

)
is replaced

by ∇θ1
(
xk

)
, the last two terms in the right hand side of (9) would vanish.

This observation indicates a worst-case O (1/k) convergence rate of determinis-
tic ADMM.

Corollary 2. Let the sequence
{
wk

}
be generated by the SLG-ADMM, the asso-

ciated
{
w̃k

}
be defined in (2), and

w̄k =
1

k + 1

k∑
t=0

w̃t.
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Choosing αk ≡ 1√
k
and ηk ≡ 1√

k+M
, where M is a constant satisfying the order-

ing relation τ
(√

k + M
)

In1 �
(√

k + L
)

In1 + βAT A for any k, and assuming
∥∥wk − w∗∥∥2

G1,k
≤ R2 for any k, then we have

E [‖Ax̄k + Bȳk − b‖]

≤ 1
2(k + 1)

(∥∥y0 − y∗∥∥2
β
α BT B+G2

+
2

βα

(∥∥λ0 − λ∗∥∥2
+ 1

)
+ MR2

)

+
1

2
√

k

(
2σ2 + R2

)
+

1 − α

(k + 1)α
(
λ0 − λ∗)T

B
(
y0 − y∗) ,

and

E [θ (ūk) − θ (u∗)]

≤‖λ∗‖ + 1
2(k + 1)

(∥∥y0 − y∗∥∥2
β
α BT B+G2

+
2

βα

(∥∥λ0 − λ∗∥∥2
+ 1

)
+ MR2

)

+
‖λ∗‖ + 1
2
√

k

(
2σ2 + R2

)
+

(1 − α) (‖λ∗‖ + 1)
(k + 1)α

(
λ0 − λ∗)T

B
(
y0 − y∗) .

This corollary shows that a worst-case O
(
1/

√
k
)

convergence rate for the
SLG-ADMM with the choice of diminishing size is established. One difference
is that we require the distance between iterates generated by SLG-ADMM and
the solution of (1) to be bounded, a condition that is satisfied in many cases.

3.2 A Worst-Case O (ln k/k) Convergence Rate Under Strong
Convexity

In this section, we assume that θ1 is μ-strongly convex. With the strong con-
vexity, we can obtain not only the objective function value gap and constraint
violation converge to zero in expectation, but also the convergence of ergodic
iterates of SLG-ADMM. The main result is presented in the next two theo-
rems. Moreover, we choose G1,k = τ (1 + ηk) In1 − ηkβAT A, τ > β

∥∥AT A
∥∥ and

G2,k ≡ G2.

Theorem 2. Let the sequence
{
wk

}
be generated by the SLG-ADMM, the asso-

ciated
{
w̃k

}
be defined in (2), and

w̄k =
1

k + 1

k∑
t=0

w̃t.

Choosing αk ≡ 1
μ(k+1) and ηk ≡ τ

μ(k+1)+M , where M is a constant satisfying
the ordering relation (τ + M) In1 � LIn1 + βAT A for any k, and assuming θ1
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is μ-strongly convex , then we have

E [‖Ax̄k + Bȳk − b‖]

≤ 1

2(k + 1)

(∥∥x0 − x∗∥∥2

(τ+M)In1−βAT A
+

∥∥y0 − y∗∥∥2
β
α

BT B+G2

+
2

βα

(∥∥λ0 − λ∗∥∥2
+ 1

))
+

σ2

2μ(k + 1)
(1 + ln(k + 1)) +

1 − α

(k + 1)α

(
λ0 − λ∗)T

B
(
y0 − y∗)

,

(10)
and

E [θ (ūk) − θ (u∗)]

≤‖λ∗‖ + 1

2(k + 1)

(∥∥x0 − x∗∥∥2

(τ+M)In1−βAT A
+

∥∥y0 − y∗∥∥2
β
α

BT B+G2
+

2

βα

(∥∥λ0 − λ∗∥∥2
+ 1

))

+
σ2 (‖λ∗‖ + 1)

2μ(k + 1)
(1 + ln(k + 1)) +

(1 − α) (‖λ∗‖ + 1)

(k + 1)α

(
λ0 − λ∗)T

B
(
y0 − y∗)

.

(11)

This theorem implies that under the assumption that θ1 is strongly con-
vex, the worst-case convergence rate for the SLG-ADMM can be improved to
O (ln k/k) with the choice of diminishing size.

Theorem 3. Let the sequence
{
wk

}
be generated by the SLG-ADMM, the asso-

ciated
{
w̃k

}
be defined in (2), and

w̄k =
1

k + 1

k∑
t=0

w̃t.

Choosing αk ≡ 1
μ(k+1) and ηk ≡ τ

μ(k+1)+M , where M is a constant satisfying
the ordering relation (τ + M) In1 � LIn1 + βAT A for any k, and assuming θ1
is μ-strongly convex, B is of full column rank, and βα (k + 1) � 1 for some k,
then we have

E

[
‖x̄k − x∗‖2 + ‖ȳk − y∗‖2

]

≤
(
2
μ
+

4‖A‖2
μs

)
(E [θ (ūk) − θ (u∗)] + ‖λ∗‖E [‖Ax̄k + Bȳk − b‖])

+
2
s
E

[
‖Ax̄k + Bȳk − b‖2

]
,

where s denotes the minimum eigenvalue of BT B, the bounds for
E [‖Ax̄k + Bȳk − b‖] and E [θ (ūk) − θ (u∗)] are the same as in (10) and (11)
respectively, and

E
[‖Ax̄k + Bȳk − b‖2]

≤ βα

2(βα(k + 1) − 1)

(
M

∥∥x0 − x∗∥∥2

G1,0
+

∥∥y0 − y∗∥∥2
β
α

BT B+G2
+

2

βα

∥∥λ0 − λ∗∥∥2
)

+
βα(k + 1)

2
√

k(βα(k + 1) − 1)

(
σ2 +

∥∥x0 − x∗∥∥2

G1,0

)
+

β (1 − α)

βα(k + 1) − 1

(
λ0 − λ∗)T

B
(
y0 − y∗)

.
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This theorem shows the convergence of ergodic iterates of SLG-ADMM,
which is not covered in some earlier literatures [21,25]. Futhermore, if θ2 is also
strongly convex, the assumption that B is of full column rank can be removed.

4 Conclusion

In this paper, we propose a stochastic variant of generalized ADMM and establish
its worst-case O

(
1/

√
k
)

and O (ln k/k) convergence rates for general convex
and strongly convex problems respectively. This result subsumes and improves
some existing results established in earlier literature for stochastic ADMM type
algorithms. As a by-product, the worst-case convergence rate of the deterministic
ADMM algorithm can also be obtained.

Appendix

Proof of Lemma 1

Proof. Since the gradient of f is L-Lipschitz continuous, then for any y, z we
have

f (y) ≤ f (z) + (y − z)T ∇f (z) +
L

2
‖y − z‖2.

Also, due to the convexity of f , we have for any x, z

f (x) ≥ f (z) + (x − z)T ∇f (z) .

Adding the above two inequalities, we get the conclusion. If f is μ-strongly
convex, then for any x, z

f (x) ≥ f (z) + (x − z)T ∇f (z) +
μ

2
‖x − z‖2.

Then combine this inequality with

f (y) ≤ f (z) + (y − z)T ∇f (z) +
L

2
‖y − z‖2,

and the proof is completed. ��

Proof of Lemma 2

Proof. The optimality condition of the x-subproblem in SLG-ADMM is

(
x − xk+1

)T
(

G
(
xk, ξ

)
− AT λk + βAT

(
Axk+1 + Byk − b

)
+

1

ηk
G1,k

(
xk+1 − xk

))

≥ 0, ∀x ∈ X .

(12)
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Using x̃k and λ̃k defined in (2) and notation of δk, (12) can be rewritten as

(
x − x̃k

)T
(

∇θ1
(
xk

)
+ δk − AT λ̃k +

1
ηk

G1,k

(
x̃k − xk

)) ≥ 0,∀x ∈ X . (13)

In lemma 1, letting y = x̃k, z = xk, and f = θ1, we get

(
x − x̃k

)T ∇θ1
(
xk

) ≤ θ1 (x) − θ1
(
x̃k

)
+

L

2

∥∥xk − x̃k
∥∥2

. (14)

Combining (13) and (14), we obtain

θ1 (x) − θ1
(
x̃k

)
+

(
x − x̃k

)T
(
−AT λ̃k

)

≥ 1
ηk

(
x − x̃k

)T
G1,k

(
xk − x̃k

) − (
x − x̃k

)T
δk − L

2

∥∥xk − x̃k
∥∥2

.
(15)

Similarly, the optimality condition of y-subproblem is

θ2 (y) − θ2
(
ỹk

)
+

(
y − ỹk

)T (−BT λk+1 + G2,k

(
ỹk − yk

)) ≥ 0,∀y ∈ Y. (16)

Substituting (3) into (16), we obtain that

θ2 (y) − θ2
(
ỹk

)
+

(
y − ỹk

)T (
−BT λ̃k

)

≥ (1 − α)
(
y − ỹk

)T
BT

(
λk − λ̃k

)
+

(
y − ỹk

)T (
βBT B + G2,k

) (
yk − ỹk

)
, ∀y ∈ Y.

(17)
At the same time,

λ̃k = λk − β
(
Axk+1 + Byk+1 − b

)
+ βB

(
yk+1 − yk

)

= λk − β
(
Ax̃k + Bỹk − b

)
+ βB

(
ỹk − yk

)
.

That is
(
λ − λ̃k

)T (
Ax̃k + Bỹk − b

)
=

1

β

(
λ − λ̃k

)T (
λk − λ̃k

)
+

(
λ − λ̃k

)T
B

(
ỹk − yk

)
. (18)

Combining (15), (17), and (18), we get

θ (u) − θ
(
ũk

)
+

⎛
⎝

x − x̃k

y − ỹk

λ − λ̃k

⎞
⎠

T ⎛
⎝

−AT λ̃k

−BT λ̃k

Ax̃k + Bỹk − b

⎞
⎠

≥ 1
ηk

(
x − x̃k

)T
G1,k

(
xk − x̃k

) − (
x − x̃k

)T
δk − L

2

∥∥xk − x̃k
∥∥2

+ (1 − α)
(
y − ỹk

)T
BT

(
λk − λ̃k

)
+

(
y − ỹk

)T (
βBT B + G2,k

) (
yk − ỹk

)

+
1
β

(
λ − λ̃k

)T (
λk − λ̃k

)
+

(
λ − λ̃k

)T

B
(
ỹk − yk

)
,∀w ∈ Ω.

(19)
Finally, by the definition of F and Qk, we come to the conclusion. ��
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Proof of Lemma 3

Proof. Using Qk = HkM and wk − wk+1 = M
(
wk − w̃k

)
in (5), we have

(
w − w̃k

)T
Qk

(
wk − w̃k

)
=

(
w − w̃k

)T
HkM

(
wk − w̃k

)

=
(
w − w̃k

)T
Hk

(
wk − wk+1

)
.

(20)

Now applying the identity: for the vectors a, b, c, d and a matrix H with appro-
priate dimension,

(a − b)T H (c − d) =
1
2

(
‖a − d‖2H − ‖a − c‖2H

)
+

1
2

(
‖c − b‖2H − ‖d − b‖2H

)
.

In this identity, letting a = w, b = w̃k, c = wk, d = w̃k, and H = Qk, we have
(
w − w̃k

)T
Hk

(
wk − wk+1

)
=
1
2

(∥∥w − wk+1
∥∥2

Hk
− ∥∥w − wk

∥∥2

Hk

)

+
1
2

(∥∥wk − w̃k
∥∥2

Hk
− ∥∥wk+1 − w̃k

∥∥2

Hk

)
.

Next we simplify the term
∥∥wk − w̃k

∥∥2

Hk
− ∥∥wk+1 − w̃k

∥∥2

Hk
.

∥∥wk − w̃k
∥∥2

Hk
− ∥∥wk+1 − w̃k

∥∥2

Hk

=
∥∥wk − w̃k

∥∥2

Hk
− ∥∥wk+1 − wk + wk − w̃k

∥∥2

Hk

=
∥∥wk − w̃k

∥∥2

Hk
− ∥∥(In1+n2+n − M)

(
wk − w̃k

)∥∥2

Hk

=
(
wk − w̃k

)T
(
Hk − (In1+n2+n − M)T Hk (In1+n2+n − M)

) (
wk − w̃k

)

=
(
wk − w̃k

)T (
HkM + MT Hk − MT HkM

) (
wk − w̃k

)

=
(
wk − w̃k

)T ((
2In1+n2+n − MT

)
Qk

) (
wk − w̃k

)
,

where the second equality uses wk − wk+1 = M
(
wk − w̃k

)
in (5), and the last

equality holds since the transpose of MT Hk is HkM and hence
(
wk − w̃k

)T
HkM

(
wk − w̃k

)
=

(
wk − w̃k

)T
MT Hk

(
wk − w̃k

)

=
(
wk − w̃k

)T
Qk

(
wk − w̃k

)
.

The remaining task is to prove
(
wk − w̃k

)T ((
2In1+n2+n − MT

)
Qk

) (
wk − w̃k

)

=
1
ηk

∥∥xk − x̃k
∥∥2

G1,k
+

∥∥yk − ỹk
∥∥2

G2,k
− α − 2

β

∥∥∥λk − λ̃k
∥∥∥
2

.
(21)

By simple algebraic operation,

(
2In1+n2+n − MT

)
Qk =

⎛
⎝

1
ηk

G1,k 0 0
0 G2,k (2 − α)BT

0 (α − 2)B 2−α
β In

⎞
⎠ .

With this result, (21) holds and the proof is completed. ��
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Proof of Theorem 1

Proof. Combining lemma 2 and lemma 3, we get

θ
(
ũt

) − θ (u) +
(
w̃t − w

)T
F

(
w̃t

)

≤1

2

(∥∥wt − w
∥∥2

Ht
− ∥∥wt+1 − w

∥∥2

Ht

)
− 1

2ηt

∥∥xt − x̃t
∥∥2

G1,t
− 1

2

∥∥yt − ỹt
∥∥2

G2,t

+
α − 2

2β

∥∥∥λt − λ̃t
∥∥∥2

+
(
x − x̃t

)T
δt +

L

2

∥∥xt − x̃t
∥∥2

=
1

2

(∥∥wt − w
∥∥2

Ht
− ∥∥wt+1 − w

∥∥2

Ht

)
+

(
x − xt

)T
δt +

(
xt − x̃t

)T
δt

+
1

2

(
xt − x̃t

)T
(

LIn1 − 1

ηt
G1,t

) (
xt − x̃t

) − 1

2

∥∥yt − ỹt
∥∥2

G2,t
+

α − 2

2β

∥∥∥λt − λ̃t
∥∥∥2

≤1

2

(∥∥wt − w
∥∥2

Ht
− ∥∥wt+1 − w

∥∥2

Ht

)
+

(
x − xt

)T
δt +

αt

2

∥∥δt
∥∥2

+
1

2

(
xt − x̃t

)T
((

1

αt
+ L

)
In1 − 1

ηt
G1,t

) (
xt − x̃t

)

≤1

2

(∥∥wt − w
∥∥2

Ht
− ∥∥wt+1 − w

∥∥2

Ht

)
+

(
x − xt

)T
δt +

αt

2

∥∥δt
∥∥2

,

(22)

where the second inequality holds owing to the Young’s inequality and α ∈ (0, 2).
Meanwhile,

1
k + 1

k∑
t=0

θ
(
ũt

) − θ (u) +
(
w̃t − w

)T
F

(
w̃t

)

=
1

k + 1

k∑
t=0

θ
(
ũt

) − θ (u) +
(
w̃t − w

)T
F (w)

≥ θ (ūk) − θ (u) + (w̄k − w)T F (w) ,

(23)

where the equality holds since for any w1 and w2,

(w1 − w2)
T (F (w1) − F (w2)) = 0,

and the inequality follows from the convexity of θ. Now summing both sides of
(22) from 0 to k and then taking the average, and using (23), the assertion of
this theorem follows directly. ��

Proof of Corollary 1

Proof. In (9), let w = (x∗, y∗, λ), and k = N , where λ = λ∗ + e and e is a
vector satisfying −eT (Ax̄N + BȳN − b) = ‖Ax̄N + BȳN − b‖. Obviously, ‖e‖ =
1. Then the left hand side of (9) is

θ (ūN ) − θ (u∗) − (λ∗)T (Ax̄N + BȳN − b) + ‖Ax̄N + BȳN − b‖ . (24)
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Such a result is attributed to

(w̄N − w)T F (w)

=(x̄N − x∗)T
(−AT λ

)
+ (ȳN − y∗)T

(−BT λ
)
+

(
λ̄N − λ

)T (Ax∗ + By∗ − b)

=λT (Ax∗ + By∗ − b) − (
λT (Ax̄N + BȳN − b)

)

= − (λ∗)T (Ax̄N + BȳN − b) + ‖Ax̄N + BȳN − b‖ ,

where the first equality follows from the definition of F , and the second and
last equalities hold due to Ax∗ + By∗ − b = 0 and the choice of λ. On the other
hand, substituting w = w̄N into the variational inequality associated with (1),
we get

θ (ūN ) − θ (u∗) − (λ∗)T (Ax̄N + BȳN − b) ≥ 0. (25)

Combining (24) and (25), we obtain that the left hand side of (9) is no less than
‖Ax̄N + BȳN − b‖ when letting w = (x∗, y∗, λ) and k = N . Hence,

E [‖Ax̄N + BȳN − b‖]

≤ 1
2(N + 1)

N∑
t=0

(∥∥wt − w∗∥∥2

Ht
− ∥∥wt+1 − w∗∥∥2

Ht

)
+

1
N + 1

N∑
t=0

ξt

2
σ2

≤ 1
2(N + 1)

(
M

∥∥x0 − x∗∥∥2

G1,0
+

∥∥y0 − y∗∥∥2
β
α BT B+G2

+
2

βα

(∥∥λ0 − λ∗∥∥2
+ 1

))

+
1

2
√

N

(
σ2 +

∥∥x0 − x∗∥∥2

G1,0

)
+

1 − α

(N + 1)α
(
λ0 − λ∗)T

B
(
y0 − y∗) .

(26)
where in the first inequality we use E

[
δk

]
= 0 and E

[∥∥δk
∥∥2

]
≤ σ2. The first

part of this corollary is proved. Next we prove the second part. Substituting
w = w̄N into the variational inequality associated with (1), we get

θ (ūN ) − θ (u∗) + (w̄N − w∗)T F (w∗)

=θ (ūN ) − θ (u∗) − (λ∗)T (Ax̄N + BȳN − b)
≥θ (ūN ) − θ (u∗) − ‖λ∗‖ ‖Ax̄N + BȳN − b‖ ,

i.e.,

θ (ūN ) − θ (u∗) ≤ θ (ūN ) − θ (u∗) + (w̄N − w∗)T F (w∗) + ‖λ∗‖ ‖Ax̄N + BȳN − b‖ .

(27)
Taking expectation on both sides of (27) to complete the proof. ��
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Proof of Corollary 2

Proof. The proof of this corollary is almost similar to the corollary 1, except for
estimating E [‖Ax̄k + Bȳk − b‖].

E [‖Ax̄k + Bȳk − b‖]

≤ 1
2(k + 1)

k∑
t=0

(∥∥wt − w∗∥∥2

Ht
− ∥∥wt+1 − w∗∥∥2

Ht

)
+

1
k + 1

k∑
t=0

αt

2
σ2

≤ 1
2(k + 1)

(
1
η0

∥∥w0 − w∗∥∥2

G1,0
+

k−1∑
i=0

(
1

ηi+1
− 1

ηi

)
E

∥∥wi+1 − w∗∥∥2

G1,i

− 1
ηk

E
∥∥wk+1 − w∗∥∥2

G1,k
+

∥∥y0 − y∗∥∥2
β
α BT B+G2

+
2

βα

(∥∥λ0 − λ∗∥∥2
+ 1

))

+
1

k + 1

k∑
t=0

1
2
√

t
σ2 +

(1 − α) (‖λ∗‖ + 1)
(k + 1)α

(
λ0 − λ∗)T

B
(
y0 − y∗)

≤ 1
2(k + 1)

(
R2

η0
+

k−1∑
i=0

(
1

ηi+1
− 1

ηi

)
R2 +

2
βα

(∥∥λ0 − λ∗∥∥2
+ 1

)

+
∥∥y0 − y∗∥∥2

β
α BT B+G2

)
+

1√
k

σ2 +
(1 − α) (‖λ∗‖ + 1)

(k + 1)α
(
λ0 − λ∗)T

B
(
y0 − y∗)

≤ 1
2(k + 1)

(∥∥y0 − y∗∥∥2
β
α BT B+G2

+
2

βα

(∥∥λ0 − λ∗∥∥2
+ 1

)
+ MR2

)

+
1

2
√

k

(
2σ2 + R2

)
+

(1 − α) (‖λ∗‖ + 1)
(k + 1)α

(
λ0 − λ∗)T

B
(
y0 − y∗) .

Proof of Theorem 2

Proof. First, similar to the proof of lemma 2, using the μ-strong convexity of f ,
we conclude that for any w ∈ Ω

θ (u) − θ
(
ũk

)
+

(
w − w̃k

)T
F

(
w̃k

)

≥(
w − w̃k

)T
Qk

(
wk − w̃k

) − (
x − x̃k

)T
δk − L

2

∥∥xk − x̃k
∥∥2

+
μ

2

∥∥x − xk
∥∥2

,

(28)
where Qk is defined in (7). Then using the result in lemma 3,

(
w − w̃k

)T
Qk

(
wk − w̃k

)

=
1
2

(∥∥w − wk+1
∥∥2

Hk
− ∥∥w − wk

∥∥2

Hk

)
+

1
2ηk

∥∥xk − x̃k
∥∥2

G1,k
+

1
2

∥∥yk − ỹk
∥∥2

G2

− α − 2
2β

∥∥∥λk − λ̃k
∥∥∥
2

.

(29)
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Combining (28) and (29), we get

θ
(
ũt

) − θ (u) +
(
w̃t − w

)T
F

(
w̃t

)

≤1
2

(∥∥wt − w
∥∥2

Ht
− ∥∥wt+1 − w

∥∥2

Ht
− μ

∥∥xt − x
∥∥2

)
+

(
x − xt

)T
δt +

αt

2

∥∥δt
∥∥2

.

(30)
Now using (23) and (30), we have

θ (ūk) − θ(u) + (w̄k − w)T F (w)

≤ 1

k + 1

k∑
t=0

θ
(
ũt

) − θ(u) +
(
w̃t − w

)T
F

(
w̃t

)

≤ 1

2(k + 1)

k∑
t=0

(
1

ηt

∥∥xt − x
∥∥2

G1,t
− 1

ηt

∥∥xt+1 − x
∥∥2

G1,t
− μ

∥∥xt − x
∥∥2

)
+

1

k + 1

k∑
t=0

αt

2

∥∥δt
∥∥2

+
1

2(k + 1)

(∥∥y0 − y
∥∥2

β
α

BT B+G2
+

1

βα

∥∥λ0 − λ
∥∥2

)
+

1

k + 1

k∑
t=0

(
x − xt

)T
δt

+
1 − α

(k + 1)α

(
λ0 − λ

)T
B

(
y0 − y

)

≤ 1

2(k + 1)

k∑
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(
(μt + M)

∥∥xt − x
∥∥2 − (μ(t + 1) + M)

∥∥xt+1 − x
∥∥2

)

+
1

2(k + 1)

(∥∥y0 − y
∥∥2

β
α

BT B+G2
+

1

βα

∥∥λ0 − λ
∥∥2

+
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∥∥2

τIn
− βAT A

)

+
1

k + 1

k∑
t=0

(
x − xt

)T
δt +

1

k + 1

k∑
t=0

αt

2

∥∥δt
∥∥2

+
1 − α

(k + 1)α

(
λ0 − λ

)T
B

(
y0 − y

)

≤ 1

2(k + 1)

(∥∥x0 − x
∥∥2

(τ+M)In−βAT A
+

∥∥y0 − y
∥∥2

β
α

BT B+G2
+

1

βα

∥∥λ0 − λ
∥∥2

)

+
1

k + 1

k∑
t=0

(
x − xt

)T
δt +

1

k + 1

k∑
t=0

α

2

∥∥δt
∥∥2

+
1 − α

(k + 1)α

(
λ0 − λ

)T
B

(
y0 − y

)
.

(31)
Finally, taking expectation on both sides of (29) and following the proof for

getting (26) and (27), we obtain

E [‖Ax̄k + Bȳk − b‖]

≤ 1

2(k + 1)

(∥∥x0 − x∗∥∥2

(τ+M)In1−βAT A
+

∥∥y0 − y∗∥∥2
β
α

BT B+G2
+

2

βα

(∥∥λ0 − λ∗∥∥2
+ 1

))

+
σ2

2μ(k + 1)
(1 + ln(k + 1)) +

1 − α

(k + 1)α

(
λ0 − λ∗)T

B
(
y0 − y∗)

and

θ (ūk) − θ (u∗) ≤ θ (ūk) − θ (u∗) + (w̄k − w∗)T F (w∗) + ‖λ∗‖ ‖Ax̄k + ȳk − b‖ .

Therefore, this theorem is proved. ��

Proof of Theorem 3

Proof. Since (x∗, y∗, λ∗) is a solution of (1), we have

AT λ∗ = ∇θ1 (x∗) and BT λ∗ ∈ ∂θ2 (y∗) .
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Hence, since θ1 is strongly convex and θ2 is convex, we have

θ1 (x̄k) ≥ θ1 (x∗) + (λ∗)T (Ax̄k − Ax∗) +
μ

2
‖x̄k − x∗‖2 (32)

and
θ2 (ȳk) ≥ θ2 (y∗) + (λ∗)T (Bȳk − By∗) . (33)

Adding up (32) and (33), we get

θ (ūk) ≥ θ (u∗) + (λ∗)T (Ax̄k + Bȳk − b) +
μ

2
‖x̄k − x∗‖2.

Taking expectation gives

‖x̄k − x∗‖2 ≤ 2
μ

(
θ (ūk) − θ (u∗) − (λ∗)T (Ax̄k + Bȳk − b)

)

≤ 2
μ
(θ (ūk) − θ (u∗) + ‖λ∗‖ ‖Ax̄k + Bȳk − b‖) .

(34)

On the other hand,

‖Ax̄k + Bȳk − b‖ =‖A (x̄k − x∗) + B (ȳk − y∗)‖
≥ ‖B (ȳk − y∗)‖ − ‖A‖ ‖x̄k − x∗‖ ,

this implies ‖B (ȳk − y∗)‖2 ≤ 2‖A‖2‖x̄k − x∗‖2 +2‖Ax̄k + Bȳk − b‖2 and hence

‖ȳk − y∗‖2 ≤ 2‖A‖2
s

‖x̄k − x∗‖2 + 2
s
‖Ax̄k + Bȳk − b‖2. (35)

Adding (34) and (35), and taking expectation imply

E

[
‖x̄k − x∗‖2 + ‖ȳk − y∗‖2

]
≤

(
2
μ
+

4‖A‖2
μs

)
(E [θ (ūk) − θ (u∗)]

+ ‖λ∗‖E [‖Ax̄k + Bȳk − b‖]) + 2
s
E

[
‖Ax̄k + Bȳk − b‖2

]
.

(36)

The remaining task is to estimate E

[
‖Ax̄k + Bȳk − b‖2

]
.

In (9), let w = (x∗, y∗, λ), where λ = λ∗ + e, and e is a vector satisfying
−eT (Ax̄k + Bȳk − b) = ‖Ax̄k + Bȳk − b‖2. Then, similar to the proof idea of
getting (26), we get

E

[
‖Ax̄k + Bȳk − b‖2

]

≤ 1
2(k + 1)

(
M

∥∥x0 − x∗∥∥2

G1,0
+
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β
α BT B+G2

+
2

βα

∥∥λ0 − λ∗∥∥2
)

+
1

2
√

k

(
σ2 +

∥∥x0 − x∗∥∥2

G1,0

)
+

1
βα(k + 1)

E

[
‖Ax̄k + Bȳk − b‖2

]

+
1 − α

(k + 1)α
(
λ0 − λ∗)T

B
(
y0 − y∗)

(37)

Arranging this inequality, we obtain the desired bound and the proof is com-
pleted. ��
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Abstract. In this paper, we consider differential approximability of the
traveling salesman problem (TSP). The differential approximation ratio
was proposed by Demange and Paschos in 1996 as an approximation cri-
terion that is invariant under affine transformation of the objective func-
tion. We show that TSP is 3/4-differential approximable, which improves
the currently best known bound 3/4−O(1/n) due to Escoffier and Mon-
not in 2008, where n denotes the number of vertices in the given graph.

Keywords: Approximation algorithms · Differential approximation ·
Traveling salesman problem

1 Introduction

The traveling salesman problem (TSP) is to find a shortest Hamiltonian cycle
in a given complete graph with edge lengths, where a cycle is called Hamilto-
nian (also called a tour) if it visits every vertex exactly once. TSP is one of
the most fundamental NP-hard optimization problems in operations research
and computer science, and has been intensively studied from both practical and
theoretical viewpoints [8,22,24,26]. It has a number of applications such as plan-
ning, logistics, and the manufacture of microchips [6,12]. Because of its impor-
tance, many heuristics and exact algorithms have been proposed [5,14,16,17].
From the viewpoint of computational complexity, TSP is NP-hard, even in the
Euclidean case, implying NP-hardness of the metric case. It is known that met-
ric TSP is approximable with factor (3/2 − ε) for some ε > 10−36 [15], and
inapproximable with factor at most 117/116, unless P = NP [7]. Euclidean TSP
admits a polynomial-time approximation scheme (PTAS), if the dimension of
the Euclidean space is bounded by a constant [2,18]. We note that the approx-
imation factors (i.e., ratios) above are widely used to analyze approximation
algorithms.

Let Π be an optimization problem, and let I be an instance of Π. We denote
by opt(I) the value of an optimal solution to I. For an approximation algorithm
A for Π, we denote by apxA(I) the value of the approximate solution computed
by A for the instance I. Let

rA(I) = apxA(I)/opt(I),
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al. (Eds.): TAMC 2022, LNCS 13571, pp. 237–248, 2022.
https://doi.org/10.1007/978-3-031-20350-3_19
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and define the standard approximation ratio of A by supI∈Π rA(I), where we
assume that Π is a minimization problem. Although the standard approximation
ratio is well-studied and an important concept in algorithm theory, it is not
invariant under affine transformation of the objective function. Namely, if the
objective function f(x) is replaced by a + bf(x) for some constant a and b,
which might depend on the instance I, the standard ratio is not preserved. For
example, the vertex cover problem and the independent set problem have affinely
dependent objective functions. However they have different characteristics in
the standard approximation ratio. The vertex cover problem is 2-approximable
[23], while the independent set problem is inapproximable within O(n1−ε) for
any ε > 0, unless P = NP [10], where n denotes the number of vertices in a
given graph. In order to remedy to this phenomenon, Demange and Paschos [9]
proposed the differential approximation ratio defined by infI∈Π ρA(I), where

ρA(I) =
wor(I) − apxA(I)
wor(I) − opt(I)

and wor(I) denotes the value of a worst solution to I. Note that for any instance
I of Π

apxA(I) = ρA(I)opt(I) + (1 − ρA(I))wor(I).

Thus we have 0 ≤ ρA(I) ≤ 1 and the larger ρA(I) implies the better approx-
imation for the instance I. This means that differential approximation ratio
makes use of not only the optimal value but also the worst value. Moreover,
by definition, the differential approximation ratio remains invariant under affine
transformation of the objective function. Ausiello and Paschos [4] also mention
that differential approximability creates the complexity classes corresponding to
the ones for standard approximability. For these reasons, differential approxi-
mation has recently attracted much attention in approximation algorithm and a
number of optimization problems have been studied from the viewpoint of differ-
ential approximation; see e.g., [3,4]. It is known [20] that TSP, metric TSP, max
TSP, and max metric TSP are affinely equivalent, i.e., their objective functions
are transferred to each other by affine transformations, where max TSP is the
problem to find a longest Hamiltonian cycle and max metric TSP is max TSP, in
which the input weighted graph satisfies the metric condition. Therefore, these
problems have identical differential approximation ratio.

Hassin and Khuller [13] first studied differential approximability of TSP,
and showed that it is 2/3-differential approximable. Escoffier and Monnot [11]
improved it to 3/4−O(1/n), where n denotes the number of vertices of the given
graph. Monnot et al. [19,21] showed that TSP is 3/4-differential approximable
if each edge length is restricted to one or two.

In this paper, we show that TSP is 3/4-differential approximable, which
improves the currently best known results [11,19,21]. Our algorithm is based on
an idea by Escoffier and Monnot [11] for the case in which a given graph G has
an even number of vertices and a triangle (i.e., cycle with 3 edges) is contained
in a minimum weighted 2-factor of G. Their algorithm first computes minimum
weighted 1- and 2-factors of a given graph, modifies them to four path covers
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Pi (for i = 1, . . . , 4), and then extends each path cover Pi to a tour by adding
edge set Fi to it in such a way that at least one of the four tours guarantees 3/4-
differential approximation ratio. The definitions of factor and path cover can be
found in Sect. 2. We generalize their idea to the graphs with an even number of
vertices. Note that

⋃
i=1,...,4 Fi in their algorithm always forms a tour, while in

general it does not. We show that there exists a way to construct path covers such
that the length of

⋃
i=1,...,4 Fi is at most the worst tour length. Our algorithm

for odd case is much more involved. For each path with three edges, we first
construct a 2-factor and two path covers of a given graph that has the minimum
length among all these that completely and partially contain the path, modify
them to eight path covers, and then extend each path cover to a tour, in such a
way that at least one of the eight tours guarantees 3/4-differential approximation
ratio.

The rest of the paper is organized as follows. In Sect. 2, we define basic
concepts of graphs and discuss some properties on 2-matchings, which will be
used in the subsequent sections. In Sects. 3 and 4, we provide approximation
algorithms for TSP in which a given graph G has even and odd numbers of
vertices, respectively.

Due to space constraints, most of the proofs are omitted in this paper, which
can be found in [1].

2 Definitions and Basic Properties

Let G = (V,E) be an undirected graph, where n and m denote the number
of vertices and edges in G, respectively. In this paper, we assume that a given
graph G of TSP is complete, i.e., m =

(
n
2

)
, and it has an edge length function

� : E → R+, where R+ denotes the set of nonnegative reals. For a set F ⊆ E,
let V (F ) denotes the set of vertices with incident edges in F , i.e., V (F ) = {v ∈
V | ∃(v, w) ∈ F}. A set F ⊆ E is called spanning if V (F ) = V , and acyclic if F
contains no cycle. For a positive integer k, a set F ⊆ E is called a k-matching
(resp., k-factor) if each vertex has at most (resp., exactly) k incident edges in F .
Here 1-matching is simply called a matching. Note that an acyclic 2-matching
F corresponds to a family of vertex-disjoint paths denoted by P(F ) ⊆ 2F . A
2-matching is called a path cover if it is spanning and acyclic. For a set F ⊆
E, V1(F ) and V2(F ) respectively denote the sets of vertices with one and two
incident edges in F . For a set F ⊆ E and a vertex v ∈ V , let δF (v) = {e ∈ F |
e is incident to v}.

Let us now define valid pairs of spanning 2-matchings.

Definition 1. A pair of spanning 2-matchings (S, T ) is called valid if it satisfies
the following three conditions:

(i) T is acyclic (i.e., a path cover).
(ii) δS(v) = δT (v) for any v ∈ V2(S) ∩ V2(T ). (1)
(iii) V (C) �= V (P ) for any cycle C ⊆ S and any path P ∈ P(T ). (2)
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The following lemma plays a crucial role in our approximation algorithms.

Lemma 2. Let (S, T ) be a valid pair of spanning 2-matchings. If S contains a
cycle C, then C \ T contains such two edges e1 and e2 that Si = S \ {ei} and
Ti = T ∪ {ei} for i = 1, 2 satisfy the following two conditions:

(i) (Si, Ti) is a valid pair of spanning 2-matchings for i = 1, 2. (3)
(ii) P(T ) contains a path P such that P ∪ {e1} and P ∪ {e2} are both paths. (4)

Note that (S1, T1) and (S2, T2) in Lemma 2 satisfy

V1(Si) ∪ V1(Ti) = V1(S) ∪ V1(T )
and V1(Si) ∩ V1(Ti) = V1(S) ∩ V1(T ) for i = 1, 2,

(5)

Si ∪ Ti = S ∪ T and Si ∩ Ti = S ∩ T for i = 1, 2, (6)

where (6) immediately implies

�(Si) + �(Ti) = �(S) + �(T ) for i = 1, 2, (7)

where �(F ) =
∑

e∈F �(e) for any set F ⊆ E.
Figure 1 shows a valid pair of spanning 2-matchings and two edges ec and ed

in C \ T that satisfy the two conditions of Lemma 2.

S

ea

eb

ecedC

T

Fig. 1. A valid pair (S, T ) of spanning 2-matchings.

3 Approximation for Even Instances

In this section, we consider the case in which a given graph has an even number
of vertices. As explained in the introduction, 3/4-differential approximability
is known for this case [11]. However their algorithm consists of two different
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Procedure. FourPathCovers(S, T )
/*(S, T ) is a valid pair of spanning 2-matchings such that S has a cycle. The
procedure returns 4 path covers S1, S2, T1, and T2 that satisfies (5), (6), and
(9).*/

if S has exactly one cycle then
Take two edges e1 and e2 as in Lemma 2.
return S1 = S \ {e1}, T1 = T ∪ {e1}, S2 = S \ {e2}, and T2 = T ∪ {e2}

else /* S has at least two cycles. */
Take an edge e1 in Lemma 2.
return FourPathCovers(S \ {e1}, T ∪ {e1})

end if

subroutines in this case. In this section we propose a unified algorithm, which
can further be extended to the odd case. Our algorithm first constructs four path
covers from minimum weighted 1- and 2-factors of a given graph G, and then
extends each path cover to a tour in such a way that at least one of the tours
guarantees 3/4-differential approximation ratio.

Let us first describe procedure FourPathCovers. Let (S, T ) be a valid pair of
spanning 2-matchings of (G, �) such that S is a 2-factor. The procedure computes
from (S, T ) four path covers S1, S2, T1, and T2 that satisfies (5), (6), V1(Si) and
V1(Ti) form a partition of V1(T ) for i = 1, 2, i.e.,

V1(Si) ∪ V1(Ti) = V1(T ) and V1(Si) ∩ V1(Ti) = ∅ for i = 1, 2, (8)

and

there exist e1, e2 ∈ E and P ∈ P(T1 ∩ T2) such that
T1 \ T2 = {e1}, T2 \ T1 = {e2}, P ∪ {e1} ∈ P(T1), and P ∪ {e2} ∈ P(T2).

(9)

Lemma 3. For a graph G = (V,E), let (S, T ) be a valid pair of spanning 2-
matchings such that S has a cycle. Then Procedure FourPathCovers returns
four path covers S1, S2, T1, and T2 that satisfy (5), (6), and (9). Furthermore,
if S is a 2-factor of G, then the four path covers satisfy (8).

Let S and T be 2- and 1- factors of G, respectively. Then V1(T ) = V and (S, T )
is a valid pair of spanning 2-matchings. Note that our algorithm explained later
makes use of minimum weighted 2-factor S and 1-factor T of (G, �) that can
be computed from (G, �) in polynomial time [25]. We assume that S is not a
tour of G, i.e., S contains at least two cycles, since otherwise, S itself is an
optimal tour. Let S1, S2, T1, and T2 be path covers returned by Procedure
FourPathCovers(S, T ).
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Let us then show how to construct edge sets A1, A2, B1, and B2, such that

(i) Si ∪ Ai is a tour (for i = 1, 2), (10)
(ii) Ti ∪ Bi is a tour (for i = 1, 2), and (11)
(iii) �(A1) + �(A2) + �(B1) + �(B2) ≤ wor(G, �), (12)

where wor(G, �) denotes the length of a longest tour of (G, �).
Let e1 = (p1, p2) and e2 = (p3, p4) be edges in Lemma 3. Since e1 and e2

are chosen from a cycle C and satisfy (9), we can assume that p1 �= p3, p4 and
p4 �= p1, p2, where p2 = p3 might hold. We note that P(S1) \ P(S2) consists
of a (p1, p2)-path P1 = C \ {e1}, and P(S2) \ P(S1) consists of a (p3, p4)-path
P2 = C \ {e2}.

Let us first construct A1 and A2. Let Qi (i = 1, . . . , k) denote vertex-disjoint
(xi, yi)-paths such that {Q1, . . . , Qk} = P(S1) ∩ P(S2) and x1 and y1 satisfy

�(p2, x1) + �(p3, y1) ≤ �(p2, y1) + �(p3, x1). (13)

Define A1 and A2 by

A1 = {(p2, x1)} ∪ {(yi, xi+1) | i = 1, . . . , k − 1} ∪ {(yk, p1)}
A2 = {(p3, y1)} ∪ {(xi, yi+1) | i = 1, . . . , k − 1} ∪ {(xk, p4)}.

(14)

Then we have the following lemma.

Lemma 4. Two sets A1 and A2 defined in (14) satisfy (10),

(i) V (Ai) = V1(Si) for i = 1, 2, and
(ii) A1 ∩ A2 = ∅ and A1 ∪ A2 consists of

1. a (p1, p4)-path if p2 = p3,
2. vertex-disjoint (p1, p3)- and (p2, p4)-paths if p2 �= p3 and k is odd,
3. vertex-disjoint (p1, p2)- and (p3, p4)-paths if p2 �= p3 and k is even.

Proof. Note that P(S1) = {Q1, . . . , Qk} ∪ {P1} and P(S2) = {Q1, . . . , Qk} ∪
{P2}. Thus it follows from the definitions of A1 and A2. ��

Let us next construct B1 and B2. Let Oi (i = 1, . . . , d) denote vertex-
disjoint (zi, wi)-paths such that {O1, . . . , Od} = P(T1) ∩ P(T2). Note that
P(T1) ∩ P(T2) = ∅ (i.e., d = 0) might hold. We separately consider the fol-
lowing four cases, where we recall that p1, p2, p3, and p4 are vertices such that
e1 = (p1, p2) and e2 = (p3, p4) satisfy Lemma 3.

1. p2 = p3, p1 �= p4, and P(T1 ∩ T2) contains a (p1, p4)-path.
2. p2 = p3, p1 �= p4, and P(T1 ∩ T2) contain no (p1, p4)-path.
3. p2 �= p3, p1 �= p4, and P(T1 ∩ T2) contains (p1, p4)- and (p2, p3)-paths.
4. p2 �= p3, p1 �= p4, and P(T1∩T2) contains a (p2, p3)-path and no (p1, p4)-path.
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Case 1: Let R1 denotes a (p1, p4)-path in P(T1 ∩ T2), and for some vertex q2,
let R2 denotes a (p2, q2)-path in P(T1 ∩ T2). Note that such an R2 exists since
T1 \ {e1} = T2 \ {e2}. Then, we have

P(T1) = {O1, . . . , Od} ∪ {R1 ∪ {e1} ∪ R2}
P(T2) = {O1, . . . , Od} ∪ {R1 ∪ {e2} ∪ R2},

where R1 ∪{e1}∪R2 and R1 ∪{e2}∪R2 are (p4, q2)- and (p1, q2)-paths, respec-
tively. Define B1 and B2 by

B1 =

{
{(q2, p4)} if d = 0
{(q2, z1)} ∪ {(wi, zi+1) | i = 1, . . . , d − 1} ∪ {(wd, p4)} if d ≥ 1

B2 =

{
{(q2, p1)} if d = 0
{(q2, w1)} ∪ {(zi, wi+1) | i = 1, . . . , d − 1} ∪ {(zd, p1)} if d ≥ 1.

(15)

By definition, two edge sets B1 and B2 satisfy (11) and the following two state-
ments.

(i) V (Bi) = V1(Ti) for i = 1, 2. (16)
(ii) B1 ∩ B2 = ∅ and B1 ∪ B2 is a (p1, p4)-path. (17)

Similarly to Case 1, we also construct B1 and B2 for the other cases. These
B1 and B2 satisfy the following lemma.

Lemma 5. Let B1 and B2 be two edge sets defined as above. Then they satisfy
(11), (16), B1 ∩ B2 = ∅. Moreover, B1 ∪ B2 consists of

1. a (p1, p4)-path if p2 = p3,
2. vertex-disjoint (p1, p2)- and (p3, p4)-paths if p2 �= p3 and |P(T1)| is odd,
3. vertex-disjoint (p1, p3)- and (p2, p4)-paths if p2 �= p3 and |P(T1)| is even.

Furthermore, Ai and Bi (i = 1, 2) satisfy the following properties.

Lemma 6. Let A1, A2, B1, and B2 be defined as above. Then they are all
pairwise disjoint, and C = A1∪A2∪B1∪B2 is a 2-factor, consisting of either one
or two cycles. Furthermore, there exists a tour H of G such that �(H) ≥ �(C).

We are now ready to describe our conclusion on the approximation algorithm.

Theorem 7. For a complete graph G = (V,E) with an even number of vertices
and an edge length function � : E → R+, Algorithm TourEven computes a
3/4-differential approximate tour of (G, �) in polynomial time.

Proof. We show that Algorithm TourEven outputs a 3/4-differential approxi-
mate tour Tapx in polynomial time. If a minimum weighted 2-factor S of (G, �)
computed in the algorithm is a tour, then clearly Tapx = S is an optimal tour.
On the other hand, if S is not a tour, then we have

4�(Tapx) ≤ �(S1 ∪ A1) + �(S2 ∪ A2) + �(T1 ∪ B1) + �(T2 ∪ B2)
= 2(�(S) + �(T )) + �(A1 ∪ A2 ∪ B1 ∪ B2)
≤ 3opt(G, �) + wor(G, �),
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Algorithm. TourEven
Input: A complete graph G = (V, E) with even |V |, and an edge length function

� : E → R+.
Output: A tour Tapx in G.

Compute minimum weighted 2-factor S and 1-factor T of (G, �).
if S is a tour then

Tapx := S.
else

S1, T1, S2, T2 := FourPathCovers(S, T ).

Compute edge sets A1 and A2 defined in (14).

Compute edge sets B1 and B2, which satisfy conditions of Lemma 5.

T := {S1 ∪ A1, S2 ∪ A2, T1 ∪ B1, T2 ∪ B2}.

Tapx := argmin
T∈T

�(T ).

end if
Output Tapx and halt.

where the first equality follows from Lemmas 4, 5, and 6, and the last inequality
follows from Lemma 6, and �(S) ≤ opt(G, �), and 2�(T ) ≤ opt(G, �). Thus Tapx

is a 3/4-differential approximate tour. Note that minimum weighted 1- and 2-
factors can be computed in polynomial time, and Ai and Bi (i = 1, 2) can be
computed in polynomial time. Thus Algorithm TourEven is polynomial, which
completes the proof. ��

4 Approximation for Odd Instances

In this section, we construct an approximation algorithm for TSP with an odd
number of vertices. Our algorithm is much more involved than that in the even
case. It first guesses a path P with three edges in an optimal tour, constructs
eight path covers based on P , and extend each path cover to a tour in such a
way that at least one of the eight tours guarantees 3/4-differential approximation
ratio.

More precisely, for each path P with three edges, say, P = {(v1, v2), (v2, v3),
(v3, v4)} with all vi’s distinct, let S be a minimum weighted 2-factor among those
containing P , let T be a minimum weighted path cover among those satisfying
(v1, v2), (v2, v3) ∈ T and V1(T ) = V \ {v2}, and let T ′ be a minimum weighted
path cover among those satisfying (v2, v3), (v3, v4) ∈ T ′ and V1(T ′) = V \ {v3}.
Assume that S is not a tour, i.e., it contains at least two cycles, since otherwise, is
optimal, and hence ensures 3/4-differential approximability if some optimal tour
contains P . We note that (S, T ) and (S, T ′) are both valid pairs of spanning 2-
matchings. We apply Procedure FourPathCovers to them, but not arbitrarily.
Let us specify two cycles C∗ and C∗∗ in S such that P ⊆ C∗ and P ∩ C∗∗ = ∅.
We define two vertices v0 and v5 in V (C∗) such that v0 �= v2, v5 �= v3, and
(v0, v1), (v4, v5) ∈ C∗. By definition v0 = v4 and v5 = v1 hold if |C∗| = 4.
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Furthermore, we define two edges f and f ′ in C∗∗ that satisfy the properties in
the next lemma.

Due to the space constraints, we omit the proofs of lemmas and constructions
of tours from the results of Procedure FourPathCovers.

Lemma 8. Let C∗∗, T and T ′ be defined as above. Then there exist two edges
f ∈ C∗∗ \ T and f ′ ∈ C∗∗ \ T ′ such that

(i) they have a common endpoint q, and
(ii) T ∪ {f} and T ′ ∪ {f ′} are path covers.

We note that f and f ′ in Lemma 8 might be identical, and (ii) in Lemma 8
implies that two pairs (S \ {f}, T ∪ {f}) and (S \ {f ′}, T ′ ∪ {f ′}) are valid.

Our algorithm uses Procedure FourPathCovers for (S, T ) defined as above
in such a way that edge e1 = f is chosen in the first round and two edges
e1 = (v3, v4) and e2 = (v0, v1) are chosen in the last round. Similarly, our
algorithm uses Procedure FourPathCovers for (S, T ′) defined as above in such
a way that edge e1 = f ′ is chosen in the first round and two edges e1 = (v1, v2)
and e2 = (v4, v5) are chosen in the last round. Let S1, T1, S2, and T2 be four
path covers obtained by Procedure FourPathCovers(S, T ), and let S′

1, T ′
1, S′

2,
and T ′

2 be four path covers returned by Procedure FourPathCovers(S, T ′).

Lemma 9. Let S, T , Si, and Ti (i = 1, 2) be defined as above. Then S1, S2, T1,
and T2 are path covers such that

(i) Si ∪ Ti = S ∪ T and Si ∩ Ti = S ∩ T for i = 1, 2, (18)
(ii) V1(Si) and V1(Ti) is a partition of V \ {v2} for i = 1, 2, (19)
(iii) T1 \ T2 = {(v3, v4)}, T2 \ T1 = {(v0, v1)},

and {(v1, v2), (v2, v3)} ∈ P(T1 ∩ T2), and (20)
(iv) q ∈ V1(S1) ∩ V1(S2), (21)

where vi ∈ V (C∗) (i = 0, . . . , 4) are defined as above and q is a common endpoint
of f and f ′ in Lemma 8.

Similarly, we have the following lemma.

Lemma 10. Let S, T ′, S′
i, and T ′

i (i = 1, 2) be defined as above. Then S′
1, S′

2,
T ′
1, and T ′

2 are path covers such that

(i) S′
i ∪ T ′

i = S ∪ T ′ and S′
i ∩ T ′

i = S ∩ T ′ for i = 1, 2, (22)
(ii) V1(S′

i) and V1(T ′
i ) is a partition of V \ {v3} for i = 1, 2, (23)

(iii) T ′
1 \ T ′

2 = {(v1, v2)}, T ′
2 \ T ′

1 = {(v4, v5)},

and {(v2, v3), (v3, v4)} ∈ P(T ′
1 ∩ T ′

2), and (24)
(iv) q ∈ V1(S′

1) ∩ V1(S′
2), (25)

where vi ∈ V (C∗) (i = 1, . . . , 5) are defined as above and q is a common endpoint
of f and f ′ in Lemma 8.
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Let us then show how to construct edge sets Ai, Bi, A′
i, and B′

i (for i = 1, 2),
such that

(i) Si ∪ Ai is a tour (for i = 1, 2), (26)
(ii) Ti ∪ Bi is a tour (for i = 1, 2), (27)
(iii) S′

i ∪ A′
i is a tour (for i = 1, 2), (28)

(iv) T ′
i ∪ B′

i is a tour (for i = 1, 2), and (29)

(v)
∑

i=1,2

(�(Ai) + �(Bi) + �(A′
i) + �(B′

i)) ≤ 2wor(G, �) − 2�(v2, v3), (30)

where wor(G, �) denotes the length of a longest tour of (G, �).
We are now ready to describe our approximation algorithm, called TourOdd.

Algorithm. TourOdd
Input: A complete graph G = (V, E) with odd |V |, and an edge length function

� : E → R+.
Output: A tour Tapx in G.

if n < 17 then
Compute an optimal tour Topt of (G, �) by exhaustive search.
Output Topt and halt.

else
T := ∅.
for each path P = {(v1, v2), (v2, v3), (v3, v4)} of length 3 in G do

Compute a minimum weighted 2-factor S among those containing P .

Compute a minimum weighted path cover T among those satisfying
(v1, v2), (v2, v3) ∈ T and V1(T ) = V \ {v2}.

Compute a minimum weighted path cover T ′ among those satisfying
(v2, v3), (v3, v4) ∈ T ′ and V1(T

′) = V \ {v3}.

if S is a tour then
T := T ∪ {S}.

else
S1, T1, S2, T2 := FourPathCovers(S, T ).

S′
1, T

′
1, S

′
2, T

′
2 := FourPathCovers(S, T ′).

Compute edge sets A1, A2, B1, B2, A′
1, A′

2, B′
1, and B′

2,
which satisfy (26), (27), (28), (29), and (30).

T := T ∪ {S1 ∪ A1, S2 ∪ A2, T1 ∪ B1, T2 ∪ B2}
∪{S′

1 ∪ A′
1, S

′
2 ∪ A′

2, T ′
1 ∪ B′

1, T
′
2 ∪ B′

2}.

end if
end for
Tapx := argmin

T∈T
�(T ).

Output Tapx and halt.
end if
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Before analyzing the output of Algorithm TourOdd, let us evaluate �(S),
�(T ) and �(T ′).

Lemma 11. For a path P = {(v1, v2), (v2, v3), (v3, v4)}, let S, T and T ′ be
defined as above. If there exists an optimal tour that contains P , then

2�(S) + �(T ) + �(T ′) ≤ 3opt(G, �) + �(v2, v3).

Let us describe our main result.

Theorem 12. For a complete graph G = (V,E) with an odd number of vertices
and an edge length function � : E → R+, Algorithm TourOdd computes a 3/4-
differential approximate tour of (G, �) in polynomial time.
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Abstract. The Restricted Subset Feedback Vertex Set prob-
lem (R-SFVS) takes a graph G = (V,E), a terminal set T ⊆ V , and
an integer k as the input. The task is to determine whether there exists
a subset S ⊆ V \ T of at most k vertices, after deleting which no ter-
minal in T is contained in a cycle in the remaining graph. R-SFVS is
NP-complete even when the input graph is restricted to chordal graphs.
In this paper, we show that R-SFVS in chordal graphs can be solved
in time O(1.1550|V |), significantly improving all the previous results. As
a by-product, we prove that the Maximum Independent Set prob-
lem parameterized by the edge clique cover number is fixed-parameter
tractable. Furthermore, by using a simple reduction from R-SFVS to
Vertex Cover, we obtain a 1.2738k|V |O(1)-time parameterized algo-
rithm and an O(k2)-kernel for R-SFVS in chordal graphs.

Keywords: Subset feedback vertex set · Chordal graphs · Exact
exponential algorithms · Parameterized algorithms

1 Introduction

The Feedback Vertex Set problem (FVS), to delete at most k vertices from
an n-vertex graph such that the remaining graph has no cycle, is one of the
most extensively studied problems. The Subset Feedback Vertex Set prob-
lem (SFVS), firstly introduced by Even et al. [7], has also become a classic
NP-complete problem. In this problem, we are further given a vertex subset T of
the graph called terminal set, and we are asked to delete at most k vertices from
the graph such that no terminal in T is contained in a cycle in the remaining
graph. According to whether the terminal vertices in T can be deleted or not,
there are two versions of SFVS: the restricted version, called R-SFVS, where
terminal vertices in T are not allowed to be deleted, and the unrestricted ver-
sion, simply denoted by SFVS, where any vertex in the graph can be deleted.
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FVS, SFVS, R-SFVS are closely related to several other important problems.
For example, R-SFVS with |T | = 1 generalizes the classical Node Multiway
Cut problem [9].

The first non-trivial exact algorithm for SFVS dates back to the enumeration
algorithm of Fomin et al. in 2014 [9]. They showed that the weighted version
of SFVS can be solved in time O(1.8638n). This suggests that the algorithm
can also solve R-SFVS in the same time. Iwata et al. [17,18] gave a single-
exponential parameterized algorithm for SFVS running in time 4knO(1), which
implies that this problem can be solved in O(1.75n) using the techniques by
Fomin et al. [8]. Recently, Hols and Kratsch showed that SFVS has a randomized
polynomial kernelization with O(k9) vertices [14]. In comparison, FVS can be
solved in time 3.460knO(1) [16], which indicates that FVS can be solved in time
O(1.711n) [8]. Besides, FVS admits a quadratic kernel [15,24], whereas whether
there is a polynomial kernel for SFVS is still unknown.

FVS and SFVS have also been studied in several graph classes, such as
chordal graphs and split graphs. Chordal graphs are the graphs without con-
taining induced cycles of length four or larger, and split graphs are a subclass
of the chordal graphs whose vertex set can be partitioned into a clique and an
independent set. Both R-SFVS and SFVS remain NP-complete even in split
graphs [9], while FVS in chordal graphs are polynomial-time solvable [28]. The
best-known algorithm for the weighted version of SFVS in chordal graphs runs
in time O(1.6708n) [12]. Later, Chitnis et al. [3] gave an algorithm for SFVS
in chordal graphs running in time O(1.6181n). Since SFVS in chordal graphs
is a special case of 3-Hitting Set, we know that it can be solved in time
O(1.5182n) [8] and 2.076knO(1) [25]. Very recently, Philip et al. [21] broke the
bounds for 3-Hitting Set by giving an O(1.5n)-time exact algorithm and a
2knO(1)-time parameterized algorithm for SFVS in chordal graphs. They also
gave a quadratic kernel for SFVS in split graphs. Since most above algorithms
are enumeration algorithms and branching-and-searching algorithms, they can
be easily extended to deal with the restricted version R-SFVS. In this paper, we
will focus on R-SFVS in chordal graphs and try to make further improvements
on this problem.

The main technical contributions of this paper are two-fold. Firstly, we
present a parameter-preserved polynomial-time reduction from Vertex Cover
to R-SFVS in chordal graphs. This reduction directly derives an O(1.1996n−|T |)-
time algorithm and an O∗(1.2738k)-time1 algorithm for R-SFVS in chordal
graphs by using the previous results for Vertex Cover [2,4,20,27]. Based on
this reduction, we also obtain a kernel for O(k2) vertices for R-SFVS. Second,
we further improve the running time bound of the exact algorithms by using
more techniques. Specifically, we prove that Maximum Independent Set can
be solved in time O∗(2τ ) given an edge clique cover of size τ . With the help of
this algorithm, we show that R-SFVS in chordal graphs can be solved in time
O∗(2|T |). By doing a tradeoff between the two algorithms with running time

1 The O∗(·) notation hides all polynomial factors, i.e., f(n) = O∗(g(n)) means f(n) =
g(n)nO(1).
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bounds O(1.1996n−|T |) and O∗(2|T |), finally, we demonstrate that R-SFVS in
chordal graphs can be solved in time O(1.1550n). Due to page limitations, the
proofs of some lemmas and theorems marked with ‘�’ may be omitted. The full
proofs can be found in the full version of this paper.

2 Preliminaries

2.1 Graphs

We work with an undirected graph G = (V,E) without parallel edges, where
|V | = n and |E| = m. Let X ⊆ V be a subset of vertices. The neighbor set of
X is denoted by N(X) := {v ∈ V \ X : ∃x ∈ X s.t. (v, x) ∈ E}, and the closed
neighbor set of X is N [X] := N(X) ∪ X. The subgraph of G induced by X is
denoted by G[X]. The subgraph obtained from G by removing X together with
edges incident on any vertex in X is denoted by G−X. For ease of notation, we
may denote a singleton set { v } by v. The degree of a vertex v in G is defined as
deg(v) := |N(v)|. An edge e is a bridge if it is not contained in any cycle of G. A
separator of a graph is a vertex set such that the deletion of it will increase the
number of connected components of the graph. The shorthand [r] is expressed
as the set { 1, 2, . . . , r } for r ∈ N

+.
For an undirected graph G = (V,E), a subset Q ⊆ V of vertices of the graph

G is a clique if every pair of distinct vertices in Q is connected by a unique edge.
A vertex v is simplicial in G if N [v] is a clique [5]. A maximal clique in G is a
simplicial clique if it contains a simplicial vertex.

An edge clique cover of a graph G is a set of cliques that covers all the edges in
G. The edge clique cover number, a.k.a. the intersection number, is the smallest
number of such cliques covering all edges in the graph.

2.2 Chordal Graphs and Split Graphs

A chord of a cycle is an edge between two non-consecutive vertices of the cycle.
A graph G is chordal if every cycle of length at least 4 has a chord. The following
properties of chordal graphs will be used in the paper. For a chordal graph G,
the following facts hold [5]:

1. Every induced subgraph of G is chordal.
2. Every minimal separator of G is a clique.

For a connected chordal graph G, let QG be the set of all maximal cliques in
G. A clique graph of G is an edge-weighted undirected graph (QG, EG, σ) with
σ : EG → N satisfying that an edge Q1Q2 ∈ EG if Q1 ∩Q2 is a minimal separator
and σ(Q1Q2) := |Q1 ∩ Q2|. A clique tree TG of G is a maximum spanning tree
of the clique graph of G and the following facts hold [1,11,26]:

1. Each leaf node of a clique tree TG is a simplicial clique in G.
2. For each edge Q1Q2 in TG, Q1 ∩ Q2 separates the graph G.
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Whether a graph G is chordal or not can be checked in time O(n + m) [22].
If G is chordal, the number of maximal cliques in G is at most n [10], and all of
the maximal cliques can be listed in time O(n + m) [11]. These properties will
be used in our algorithm.

A graph is a split graph if its vertex set can be partitioned into two parts,
one of which induces a clique and the other of which induces an independent
set [23]. Such a partition, is called a split partition. Every split graph is chordal,
and whether a graph G is a split graph or not can also be easily checked in
O(n + m) time by the definition.

2.3 Subset Feedback Vertex Set in Chordal Graphs

Given a terminal set T ⊆ V of the graph G. A cycle in G is a T -cycle if it
contains a terminal in T . A graph is a T -forest if there is no T -cycle. A subset
feedback vertex set of a graph with a terminal set T is a subset of V \ T whose
deletion makes the remaining graph a T -forest. In this paper, we mainly study
R-SFVS when the input is restricted to chordal graphs. The problem is formally
defined as follows.

R-SFVS in Chordal Graphs
Input: A chordal graph G = (V,E), a terminal set T ⊆ V , and an integer
k.
Output: Determine whether there is a subset feedback vertex set S ⊆
V \ T of size at most k vertices.

When the input graph is restricted to split graphs, we call the problem R-
SFVS in Split Graphs.

A T -triangle is a T -cycle of length three. The following lemma states that
we can change the subset feedback vertex set problem to the problem of finding
a subset of vertices hitting all T -triangles instead of all T -cycles.

Lemma 1 ([21]). Let G be a chordal graph and T ⊆ V be the terminal set. A
vertex set S ⊆ V is a subset feedback vertex set of G if and only if G−S contains
no T -triangles.

2.4 A Technique for Algorithm Design

Our fast algorithm for R-SFVS in Chordal Graphs adopts the following
framework, which makes the tradeoff between two known parameterized algo-
rithms. Notably, this framework can be used to design algorithms for more prob-
lems.

Lemma 2. (�) Let P be a problem, and n, � be two parameters of the input
instance of P such that n ≥ �. If P can be solved in time O∗(α�) and O∗(βn−�)
respectively for some constants α, β > 1, then the problem P can be solved in
time O∗(2γn), where γ = log α log β

log αβ .
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We will use Lemma 2 to design a fast exact algorithm for R-SFVS in
Chordal Graphs. In particular, we design two parameterized algorithms with
the parameter being n−|T | and n in Sects. 3 and 4, respectively. Then we obtain
an exact algorithm for it by doing a tradeoff between these two parameterized
algorithms with Lemma 2.

3 Reductions Between R-SFVS IN CHORDAL GRAPHS

and VERTEX COVER

In this section, we show some relations between R-SFVS in Chordal Graphs
and Vertex Cover problem. By using known results for Vertex Cover,
we may quickly get some results for R-SFVS in Chordal Graphs. Vertex
Cover is one of Karp’s 21 NP-complete problems [19]. In Vertex Cover, we
are given a graph G = (V,E) and a positive integer k, and the object is to
determine whether there exists a set S ⊆ V of size at most k such that G − S is
an independent set. We have the following reduction.

Lemma 3. (�) Any instance I = (G = (V,E), T, k) of R-SFVS in Chordal
Graphs can be polynomially reduced to an instance I ′ = (G′ = (V ′, E′), k′)
of Vertex Cover such that I is a YES-instance if and only if I ′ is a YES-
instance, where |V ′| ≤ |V | − |T | and k′ ≤ k.

Since Vertex Cover can be solved in time O∗(1.2738k) [2] and in time
O∗ (1.19951n) [27], respectively, we derive the following corollary.

Corollary 1. R-SFVS in Chordal Graphs can be solved in time
O∗(1.2738k) and O∗ (

1.19951n−|T |), respectively.

The second result in Corollary 1, together with Lemma 2, will be used to
obtain a fast exact algorithm for R-SFVS in Chordal Graphs later.

We have given a reduction from R-SFVS in Chordal Graphs to Vertex
Cover in Corollary 1. There is also a simple reduction from Vertex Cover
to R-SFVS in Split Graphs introduced by Fomin et al. [9]. Here we slightly
refine the instance size of R-SFVS in Split Graphs in the reduction.

Lemma 4. (�) Any instance I = (G = (V,E), k) of Vertex Cover can be
polynomially reduced to an instance I ′ = (G′ = (V ′, E′), T ′, k′) of R-SFVS in
Split Graphs such that I is a YES-instance if and only if I ′ is a YES-instance,
where |V ′| ≤ |V | + |V |2/4, |E′| ≤ 3|E| and k′ ≤ k.

Recall that split graphs belong to chordal graphs. The two reductions in
Lemmas 3 and 4 preserve the parameter k, which shows the equivalence between
Vertex Cover and R-SFVS in Chordal Graphs (or R-SFVS in Split
Graphs) in parameterized complexity with parameter k.

Corollary 2. R-SFVS in Chordal Graphs (or R-SFVS in Split Graphs)
can be solved in f(k)nO(1) time if and only if Vertex Cover can be solved in
f(k)nO(1) time.
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The two reductions in Lemmas 3 and 4 can also be used to obtain kernels
for R-SFVS in Chordal Graphs and R-SFVS in Split Graphs.

Theorem 1. R-SFVS in Chordal Graphs and R-SFVS in Split Graphs
admit a kernel with at most k2 + 2k vertices and 6k2 edges.

Proof. Let I = (G = (V,E), T, k) be an instance of R-SFVS in Chordal
Graphs or R-SFVS in Split Graphs. First, we reduce I to an equivalent
instance I0 = (G0 = (V0, E0), k0) of Vertex Cover by Lemma 3. It holds
that k0 ≤ k. Second, we apply known kernelization algorithms for Vertex
Cover [4,20] on I0 to get a 2k-kernel: I1 = (G1 = (V1, E1), k1) satisfying that
k1 ≤ k0 ≤ k, and |V1| ≤ 2k1. Third, we apply the reduction in Lemma 4 to
transfer I1 to an equivalent instance I2 = (G2 = (V2, E2), T2, k2) of R-SFVS
in Split Graphs, which is the desired. We have that k2 ≤ k1 ≤ k0 ≤ k,
|V2| ≤ |V1| + |V1|2/4 ≤ 2k1 + (2k1)2/4 ≤ k2 + 2k, and |E2| ≤ 3|E1| ≤ 3|V1|2/2 ≤
3(2k1)2/2 ≤ 6k2.

Therefore, we get a kernel with the claimed size bound. 
�

Generally speaking, a kernel for R-SFVS in Chordal Graphs does not
imply the kernel of the same size for R-SFVS in Split Graphs, and the oppo-
site is also not true.

4 A Fast Exact Algorithm for R-SFVS IN

CHORDAL GRAPHS

Our idea is to use Lemma 2 to design a fast exact algorithm for R-SFVS in
Chordal Graphs. We already have an O∗ (

1.19951n−|T |)-time algorithm for
R-SFVS in Chordal Graphs. Next, we are going to design an O∗(2|T |)-time
algorithm for this problem. This part is more technically involved.

Our algorithm needs to solve the maximum independent set problem based
on a given edge clique cover of the input graph. We first introduce this algorithm.

4.1 Max Independent Set Based on Edge Clique Cover

We now give an algorithm finding a maximum independent set.

Lemma 5. Given an edge clique cover C of a graph G = (V,E), a maximum
independent set of G can be computed in time O∗(2|C|).

Proof. Suppose that C = {Q1, Q2, . . . , Qτ} is an edge clique cover of G of size τ .
We define a vertex-label function σ : v �→ (σ1(v), σ2(v), . . . , στ (v)) satisfying

σi(v) =

{
0, v ∈ Qi

1, v 
∈ Qi.
(1)
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For a subset V ′ ⊆ V , we also define

σ(V ′) :=
∑

v∈V ′
σ(v) =

(
∑

v∈V ′
σ1(v),

∑

v∈V ′
σ2(v), . . . ,

∑

v∈V ′
στ (v)

)

. (2)

For two vectors x = (x1, x2, . . . , xτ ) and y = (y1, y2, . . . , yτ ), we write x ≤ y if
it holds that xi ≤ yi for each i ∈ [τ ]. We will also write a � b to denote that
a ≤ b does not hold. We use 0 (resp., 1) to denote the all-zeros vector (resp.,
all-ones vector).

Let v and u be a pair of vertices in the graph G. If there is an edge between
them, then this edge should be in at least one clique in C since C is an edge
clique cover. Thus the two vertices v and u should appear in at least one of the
same clique in C. It holds that σi({ v, u }) ≥ 2 for at least one i ∈ [τ ]. On the flip
hand, if there is an index i ∈ [τ ] such that σi({ v, u }) ≥ 2, then v and u are in
the same clique Qi and thus there is an edge between v and u. Then we conclude
that a vertex subset V ′ ⊆ V is an independent set if and only if σ(V ′) ≤ 1.

Next, we change our maximum independent set problem to the problem of
finding a maximum set V ′ ⊆ V such that σ(V ′) ≤ 1.

We use a dynamic programming algorithm to solve this problem. Fix an order
of vertices V = { v1, v2, . . . , vn }. Let V0 := ∅ and Vj := Vj−1 ∪ { vj } for each
j ∈ [n]. Let X be the set of vectors x such that the dimension of x is τ and
x ≤ 1. We know that X contains 2τ elements.

For each i ∈ [n] and each x ∈ X , we use f [x, i] to denote the size of the
maximum set V ′ ⊆ Vi such that σ(V ′) = x, and using the following recurrence
relation to compute it: f [0, 0] = 0 and f [x 
= 0, 0] = ∞, and for every i ≥ 1,

f [x, i] =

{
max { f [x − σ(vi), i − 1] + 1, f [x, i − 1] } , if σ(vi) ≤ x

f [x, i − 1], if σ(vi) � x.
(3)

Based on the bottom-up method, we compute f [x, i] by using (3) when
f [x′, i′] has been computed for all x′ ∈ X and all i′ < i. For each fixed x
and i, it takes only constant time to compute f and store the result. There are
n + 1 possible values for i and 2τ candidates for x. So it takes O(n2τ ) time.

After computing f [x, i], we can solve our problem directly since the maximum
size of V ′ ⊆ V such that σ(V ′) ≤ 1 is maxx∈X f [x, n]. 
�

Finding an edge clique cover of size τ can be solved in time O∗(22
τ

) [13].
Hence, Lemma 5 also yields the following tractable result. Note that Maximum
Independent Set parameterized by the solution size k is W[1]-complete [6].

Corollary 3. Maximum Independent Set parameterized by the edge clique
cover number is fixed-parameter tractable.
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4.2 Some Reduction Rules

We are ready to introduce our algorithm for R-SFVS in Chordal Graphs,
which will contain three parts. In the first part, we introduce some reduction
rules to simplify the input graph. In the second part, we solve a special case of
the problem with some restrictions on the input graph (including the class of split
graphs). In the last part, we solve the problem in general chordal graphs through
a dividing procedure. Now, we present our reduction rules. When introducing one
reduction rule, we assume that all previous reduction rules can not be applied
to the current instance.

Reduction Rule 1. If there is a triangle in G with three vertices being termi-
nals from T , report the instance as a NO-instance directly.

Reduction Rule 2. If there is a triangle in G with exactly two vertices being
terminals from T , delete the third vertex of the triangle and decrease k by 1.

Recall that a bridge is an edge not contained in any cycle. The remaining
graph is still chordal after removing a bridge from a chordal graph. Since a bridge
is not contained in any cycle, we have Reduction Rule 3.

Reduction Rule 3. Remove all bridges in the graph.

Reduction Rule 4. Remove all vertices not contained in any T -triangle.

Reduction Rule 5. If there is a simplicial non-terminal v adjacent to exactly
one terminal t ∈ T , then delete all vertices in N(v) \ { t } from the graph and
decrease k by |N(v)| − 1.

Lemma 6. (�) An instance (G,T, k) of R-SFVS in Chordal Graphs is
a YES-instance if and only if the instance (G′, T, k′) after applying Reduction
Rule 5 is a YES-instance.

Definition 1 (Reduced Instances). An instance of R-SFVS in Chordal
Graphs is called reduced, if none of Reduction Rules 1 to 5 can be applied to
it.

Lemma 7. (�) For any input instance of R-SFVS in Chordal Graphs, we
can iteratively apply Reduction Rules 1 to 5 to transfer it to a reduced instance
in time O(n3).

Lemma 8. (�) A reduced instance (G = (V,E), T, k) of R-SFVS in Chordal
Graphs holds the following properties:

(a) N [T ] = V ;
(b) each clique in the graph contains at most one terminal;
(c) each simplicial clique contains only one simplicial vertex that is a terminal.
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4.3 A Special Case

In this subsection, we design an O∗(2|T |)-time algorithm for a special R-SFVS in
Chordal Graphs where each terminal is contained in only one maximal clique
of the input graph. Note that a vertex is contained in exactly one maximal clique
if and only if the vertex is simplicial. We denote the algorithm by SubALG, and
it will be used as a sub-algorithm in our algorithm for R-SFVS in Chordal
Graphs.

The main idea of SubALG is as follows. We first apply the reduction rules to
get a reduced instance (G = (V,E), T, k). Notably, if the original graph satisfies
that each terminal is in exactly one maximal clique, this property still holds for
the reduced graph (obtained by deleting some vertices and bridges). Next, we
solve the reduced instance by using Lemma 5.

According to the reduction in Lemma 3, we construct a graph G′ = (V ′, E′)
based on the reduced instance (G,T, k) such that G has a subset feedback vertex
set of size k if and only if graph G′ has an independent set of size |V \ T | − k.
Recall that the vertex set V ′ = {v′ : v ∈ V \T}. Besides, an edge u′v′ ∈ E′ if and
only if there is an edge uv ∈ E together with a terminal forming a T -triangle.
The following lemma shows the relation between G and G′.

Lemma 9. (�) Let (G,T, k) be a reduced instance. There is an edge clique
cover C of G′ with size |C| = |T |. In addition, I ′ is an independent set of G′ if
and only if V \(T ∪I) is a subset feedback vertex set of G, where I = {v : v′ ∈ I ′}.

By Lemma 9, to find a minimum subset feedback vertex set of G, we only need
to find a maximum independent set in G′. We apply the algorithm in Lemma 5
on the graph G′ with the edge clique cover C to find a maximum independent
set I of G′ in O∗(2|C|) time, where |C| = |T |. Thus, we get a minimum subset
feedback vertex set V \ (T ∪ I) of G by adopting the algorithm SubALG.

Lemma 10. For the special case of R-SFVS in Chordal Graphs where each
terminal is in exactly one maximal clique of the input graph, algorithm SubALG

solves the problem in O∗(2|T |) time.

Lemma 10 can also be directed used to solve R-SFVS in Split Graphs
within the same running time bound.

Corollary 4. (�) R-SFVS in Split Graphs can be solved in O∗(2|T |) time.

4.4 Subset Feedback Vertex Set in Chordal Graphs

For general chordal graphs, we can also solve the problem by using Lemma 5,
exactly as what we do in algorithm SubALG, in O∗(2|C|) time. Similar to Lemma 9,
|C| is equal to the number of the maximal cliques containing terminals in G.
However, for general chordal graphs, it is possible that |C| > |T | since a terminal
may be contained in more than one maximal clique in the graph. To get our
expected running time bound O∗(2|T |), we need to deal with the case where
some terminal is contained in several maximal cliques.
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In our algorithm, we also first apply reduction rules on the input instance
to get a reduced instance (G,T, k). From now on, we assume that the graph is
reduced. Then we construct a clique tree TG of G with the set of maximal cliques
QG in linear time by using the algorithm in [11]. A terminal in T is called an
inter terminal if it belongs to at least two different cliques in QG. A maximal
clique in QG is called an inter clique if it contains an inter terminal. An inter
clique Q ∈ QG is called a dividing clique if after deleting Q from the clique tree
TG, there is at least one connected component containing no inter cliques in TG.
Such connected component is called a good branch (with respect to Q).

After computing the clique tree, the algorithm checks whether there is an
inter clique. If there is no inter clique, we can directly solve the instance in
O∗(2|T |) time by Lemma 10; otherwise, we employ a divide-and-conquer tech-
nique to resolve it. We will split the graph at a dividing clique and ensure that
a part of the graph can be solved by using Lemma 10.

Now, we assume that there exist some inter cliques. Then the dividing cliques
also exist. Let Q be a dividing clique and BQ ⊆ V be the union of vertices in all
maximal cliques in a good branch w.r.t Q. Assume that Q = { t, v1, v2, . . . , vl },
where t is the unique terminal in Q and vi (i ∈ [l]) are other vertices. We let
X0 := BQ \ Q and Xi := X0 ∪ { vi } for i ∈ [l]. Note that G[Xi] for each i ∈ [l]
is an induced subgraph of G such that each terminal is in at most one maximal
clique. We know that the T ∩ Xi = T ∩ X0 for every index i ∈ [l]. Thus, we
can find a minimum subset feedback vertex of G[Xi] with terminal set T ∩ Xi

in O∗(2|T∩X0|) time by Lemma 10. We also use si to denote the size of the
minimum subset feedback vertex of G[Xi] with terminal set T ∩ X0.

Following structural properties are essential for our algorithm’s correctness.

Lemma 11. (�) For each i ∈ [l], it holds that s0 ≤ si ≤ s0 + 1.

Lemma 12. (�) If si = s0+1 holds for some index i, then there is a minimum
subset feedback vertex set of G containing vertex vi.

Lemma 13. (�) If si = s0 holds for each i ∈ [l], then for any minimum subset
feedback vertex set S of G, it holds that |S ∩ X0| = s0.

Lemma 14. (�) If si = s0 holds for each i ∈ [l], then I = (G,T, k) is a
YES-instance if and only if I0 = (G − X0, T \ X0, k − s0) is a YES-instance.
Furthermore, if S′ is a subset feedback vertex set of I0 with size k − s0, then
S = S′ ∪ S′′ is a subset feedback vertex set of I with size k, where S′′ is a
minimum subset feedback vertex set of G[(X0 ∪Q)\ (S′ ∪{ t })] with the terminal
set X0 ∩ T .

Based on Lemmas 12 and 14, our algorithm will deal with dividing cliques
in the following way. Let Q be a dividing clique in G.

Dividing Procedure: The algorithm will iteratively check whether si > s0
for i ∈ [l] by SubALG. If yes, remove vi from the graph and decrease k by 1
according to Lemma 12. When si = s0 holds for each non-terminal vertex vi in
Q, we remove X0 and decrease k by s0 according to Lemma 14.
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Theorem 2. R-SFVS in Chordal Graphs can be solved in time O∗(2|T |).

Proof. The algorithm first computes a clique tree of the graph and checks
whether there is an inter clique. If there is no inter clique, then the instance
satisfies the condition in Lemma 10, and we employ the algorithm SubALG to
resolve the instance in O∗(2|T |) time. If there exists an inter clique, there is a
dividing clique Q, and then we execute the dividing procedure. To do this, we
need to compute the minimum subset feedback vertex set Si of G[Xi] for each
i ∈ [l]. Each sub-instance satisfies the condition in Lemma 10, and then each
of them can be computed in O∗(2|T∩X0|) by SubALG. So the dividing procedure
takes 2|T∩X0|nc time to transfer an instance with |T | terminals to an instance
with |T \ X0| terminals, where c is a constant large enough. Let R(|T |) denote
the running time of our algorithm on instances with |T | terminals. It follows the
recurrence relation

R(|T |) ≤ 2|T∩X0|nc + R(|T | − |T ∩ X0|), (4)

which yields the total running time R(|T |) = O∗(2|T |). 
�

Based on Lemma 2, Corollary 1, and Theorem 2, we get the following result.
Let α = 2 and β = 1.19951 in Lemma 2. Then 2γ = 2log α log β/ log αβ < 1.1550.

Theorem 3. R-SFVS in Chordal Graphs can be solved in time O(1.1550n).

5 Conclusion

According to whether the terminals are allowed to be deleted or not, we can
define unrestricted and restricted versions SFVS and R-SFVS. Both of them
remain NP-hard in split graphs. There are certain relations between them. In gen-
eral graphs, it is easy to reduce one of them to the other one, even preserving the
solution size. However, when the input graphs are restricted to chordal graphs, we
do not find a parameter-preserved reduction from SFVS in Chordal Graphs
to R-SFVS in Chordal Graphs. Intuitively, SFVS in Chordal Graphs is
a special case of 3-Hitting Set, whereas R-SFVS in Chordal Graphs is a
special case of 2-Hitting Set (i.e., Vertex Cover). It also implies that SFVS
in Chordal Graphs might be harder than R-SFVS in Chordal Graphs.
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Abstract. In this paper, we consider the B-prize-collecting multicut
problem in trees. In this problem, we are given a tree T = (V, E), a
set of k source-sink pairs P = {(s1, t1), (s2, t2), . . . , (sk, tk)} and a profit
bound B. Every edge e ∈ E has a cost ce, and every source-sink pair
(sj , tj) ∈ P has a profit pj and a penalty πj . This problem is to find
a multicut M ⊆ E such that the total cost, which consists of the total
cost of the edges in M and the total penalty of the pairs still connected
after removing M , is minimized and the total profit of the disconnected
pairs by removing M is at least B. Based on the primal-dual scheme, we
present an ( 8

3
+ ε)-approximation algorithm by carefully increasing the

penalty, where ε is any fixed positive number.

Keywords: Multicut problem in trees · B-prize-collecting ·
Approximation algorithm · Primal-dual scheme

1 Introduction

The minimum multicut problem in trees is a special case of the minimum mul-
ticut problem proposed by [9], which has been found in many applications [17].
Given a tree T = (V,E) and a set of k source-sink pairs P = {(s1, t1), (s2, t2), . . . ,
(sk, tk)}, each edge e has a nonnegative cost ce. The minimum multicut problem
in trees is to find a multicut M ⊆ E such that all pairs in P are disconnected
by removing M from T and the total cost of the edges is minimized. Garg et al.
[4] presented a 2-approximation algorithm based on the primal-dual technique.
Then Levin and Segev [11] presented a 2-approximation algorithm based on the
linear programming rounding. Recently, Guo and Niedermeier [6] and Galby et
al. [3] proved that this problem is fixed-parameter tractable, respectively.

In many cases, disconnecting all pairs may not be a good strategy. To guaran-
tee the number of disconnected pairs, Levin and Segev [11] considered the partial
multicut problem in trees, which is a generalization of the minimum multicut
problem in trees. In this problem, instead of the requirement that all pairs must

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al. (Eds.): TAMC 2022, LNCS 13571, pp. 262–271, 2022.
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be disconnected, only l(≤ k) pairs must be disconnected. Levin and Segev [11]
presented an (83 + ε)-approximation algorithm based on the Lagrangian relax-
ation technique for any fixed ε > 0. Then, Könemann et al. [10] presented a
unified approach for partial covering problems, which is a generalization of the
partial multicut problem in trees, and the approximation factor of this approach
for the partial multicut problem in trees is (83 + ε).

Sometimes we need to pay the penalty for the pairs still connected after remov-
ing the multicut. Levin and Segev [11] considered the prize-collecting multicut
problem in trees, which is another generalization of theminimummulticut problem
in trees. In this problem, the pair can be connected by removing the multicut, how-
ever, we need to pay a penalty. This problem is to find a multicut M ⊆ E such that
the total cost of the edges in M plus the total penalty of the pairs still connected
after removing M is minimized. Segev [11] presented a 2-approximation algorithm
based on a primal-dual scheme. Liu and Li [14] presented a 3-approximation algo-
rithm for the prize-collecting multicut problem with submodular penalties, where
the penalty is determined by a submodular function.

Combining the partial problem and the prize-collecting problem, the k-prize-
collecting problems are considered and have gradually become a research hotspot
in the field of theoretical computers. Hou et al. [8] considered the k-prize-collecting
multicut problem in trees. This problem is to find a multicut M ⊆ E such that at
least k pairs in P are disconnected by removing M and the total cost of edges in M
plus the total penalty of the pairs still connected after removing M is minimized.
They presented a (4 + ε)-approximation algorithm based on the primal-dual and
Lagrangian relaxation techniques, where ε is any fixed positive number. Liu et al.
[16] considered the k-prize-collecting minimum vertex cover problem, which is a
special case of the k-prize-collecting multicut problem in trees, and presented a 2-
approximation algorithm. Han et al. [7] considered the k-prize-collecting Steiner
tree problem, and presented a 5-approximation algorithm. Liu et al. [15] considered
the k-prize-collecting power cover problem, and presented a 3α-approximation
algorithm, where α is the attenuation factor. Then, Liu et al. [13] presented a 5·2α-
approximation algorithm for this problem on the plane.

In the real world, pairs may have different priorities which can be described
as profits, and Gao et al. [5] consider the B-prize-collecting set cover problem,
where each element has a profit and the objective is to find a minimum sub-
collection such that the total profit of the covered element is at least B and
the total cost of the subcollection plus the total penalty of the uncovered ele-
ments is minimized. They presented a (2f + ε)-approximation algorithm, where
f is the maximum frequency of an element, ε is any fixed positive number. In
this paper, we consider the B-prize-collecting multicut problem in trees, which
is a special case of the B-prize-collecting set cover problem, and present an
(83 + ε)-approximation algorithm by carefully increasing the penalty based on
the primal-dual scheme, where ε is any fixed positive number.

The rest of the paper is organized as follows. In the second part, we for-
mally introduce the B-prize-collecting multicut problem in trees. In the third
section, we present the approximation algorithm for the B-prize-collecting mul-
ticut problem in trees. Finally, we give a brief conclusion.
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2 Preliminaries

We are given a tree T = (V,E), a set of k source-sink pairs P = {(s1, t1), (s2, t2),
. . . , (sk, tk)} and a profit bound B, where V = {v1, v2, . . . , vn}, E = {e1, e2, . . . ,
en−1}, sj , tj ∈ V for any j ∈ {1, 2, . . . , k}. We assume that

∑

j:(sj ,tj)∈P
pj ≥ B.

Every edge e in E has a nonnegative cost ce, and every source-sink pair (sj , tj)
in P has a nonnegative profit pj and a nonnegative penalty πj . The B-prize-
collecting multicut problem in trees (B-PCMT) is to find a multicut M ⊆ E
and a set R ⊆ P of the pairs still connected after removing M such that the
total cost, which consists of the cost of the edges in M and the penalty cost of
the pairs in R, is minimized and the disconnected profit of the pairs by removing
M is at least B, i.e.,

∑
j:(sj ,tj)∈P\R pj ≥ B.

When pj = 1 for any (sj , tj) ∈ P, the B-prize-collecting multicut problem
is exactly the k-prize-collecting multicut problem in trees [8]. When pj = 1 and
πj = 0 for any (sj , tj) ∈ P, the B-prize-collecting multicut problem is exactly
the partial multicut problem in trees [11]. When B = 0, the B-prize-collecting
multicut problem is exactly the prize-collecting multicut problem in trees [11].
When B =

∑
j:(sj ,tj)∈P pj , the B-prize-collecting multicut problem is exactly

the multicut problem in trees [4].
Let (M∗, R∗) be an optimal solution for the B-PCMT, and its objective

value is OPT , where R∗ is the set of the pairs still connected after removing
M∗. Inspired by the preprocessing step in [11], given a parameter ε > 0, we can
assume that any edge e ∈ E satisfies

ce ≤ ε · OPT. (1)

3 The Increasing Penalty Algorithm

The B-PCMT is a generalization of the prize-collecting multicut problem in trees
(PCMT), and there is a 2-approximation algorithm [11], denoted as Algorithm
A, to solve the PCMT. We cannot directly implement Algorithm A to solve the
B-PCMT, since its output solution cannot ensure that the disconnected profit is
at least B. The reason is that it is better to pay the penalty with some pairs than
to make it disconnected by removing some edges. Based on this observation, by
carefully increasing the penalty of the pairs, we construct an auxiliary instance
of the PCMT. Using Algorithm A to solve this auxiliary instance, we can obtain
a feasible solution of the instance of the B-PCMT.

We are given an instance T for B-PCMT, in which V is the vertex set, E is
the edge set and P is a source-sink pair set, where every edge e has a cost ce and
every pair (sj , tj) has a profit pj and a penalty πj . Given a parameter λ ≥ 0, we
construct an auxiliary penalty πλ, where

πλ,j = λ · pj + πj ,∀(sj , tj) ∈ P.
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Then, for any λ ≥ 0 and instance T , the auxiliary instance Tλ of the PCMT
consists of the vertex set V , the edge set E and the source-sink pair set P, where
every edge e has a cost ce and every pair (sj , tj) has a penalty πλ,j .

Based on the proof of Theorem 3 in [11], we have the following lemma.

Lemma 1. [11] For any instance Tλ of the PCMT, let (Mλ, Rλ) be the output
solution generated by Algorithm A, and we have

∑

e:e∈Mλ

ce + 2
∑

j:(sj ,tj)∈Rλ

πλ,j ≤ 2 · OPTλ,

where OPTλ is the optimal value of instance Tλ.

Then, we introduce a method for finding a feasible solution for instance T by
Algorithm A and carefully increasing the penalty, and the algorithm consists of
three steps. For convenience, for any λ ≥ 0 and (Mλ, Rλ) generated by Algorithm
A, let

Pλ =
∑

j:(sj ,tj)∈P\Rλ

pj

be the disconnected profit of the pairs by removing Mλ.
(1). Using a binary search over the interval [0, 1

minj pj

∑
e:e∈E ce + 1] and

Algorithm A, we can find λ1 and λ2 satisfying λ1 ≥ λ2, λ1 − λ2 ≤ εcmin
PP

, and
Pλ1 ≥ B ≥ Pλ2 , where cmin = mine:e∈E ce,

PP =
∑

j:(sj ,tj)∈P
pj .

In particular, if P0 ≥ P , Pλ1 = B or Pλ2 = B, then P0, Pλ1 or Pλ2 is output
and the algorithm stops.

(2). We construct an additional feasible solution (Ma, Ra), where Ma is con-
structed by augmenting Mλ2 with a carefully chosen subset M ′

λ1
⊆ Mλ1 , and Ra

is the set of the pairs still connected after removing Ma.
(3). The minimum solution between (Mλ1 , Rλ1) and (Ma, Ra) is output, and

the algorithm stops. We define w(M,R) to denote the objective value of (M,R);
i.e.,

w(M,R) =
∑

e:e∈M

ce +
∑

j:(sj ,tj)∈R

πj .

Then, we illustrate the method for constructing M ′
λ1

. First, each pair
(sj , tj) ∈ (U \ Rλ1) ∩ Rλ2 is assigned to an arbitrary set in Mλ1 \ Mλ2 that
contains it, and ϕ(e) denotes the total profit of the disconnected pairs assigned
by removing e. Then, the edges are sorted with ϕ(e) > 0 in Mλ1 \Mλ2 in nonde-
creasing order of cei

ϕ(ei)
. Finally, let M ′

λ1
= {e1, . . . , eq}, where q is the minimal

index for which
∑q

i=1 ϕ(ei) ≥ B − Pλ2 .

Lemma 2.
∑

e∈M ′
λ1

ce ≤ B−Pλ2
Pλ1−Pλ2

∑
e:e∈Mλ1\Mλ2

ce + ε · OPT .
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Proof. Let k =
∣∣{e ∈ Mλ1 \ Mλ2 |ϕ(e) > 0}∣∣; then, ce1

ϕ(e1)
≤ ce2

ϕ(e2)
≤ · · · ≤ cek

ϕ(ek)

and
∑q−1

i=1 cei∑q−1
i=1 ϕ(ei)

≤
∑k

i′=1 cei∑k
i′=1 ϕ(ei′ )

; i.e.,

q−1∑

i=1

cei
≤

∑q−1
i=1 ϕ(ei)∑k
i′=1 ϕ(ei′)

k∑

i′=1

cei
<

B − Pλ2

Pλ1 − Pλ2

·
∑

e:e∈Mλ1\Mλ2

ce,

where the second inequality follows from
∑q−1

i=1 ϕ(ei) < B − Pλ2 and
{e1, . . . , ek} ⊆ Mλ1 \ Mλ2 .

By inequality (1), the cost of each edge in E is at most ε · OPT ; i.e.,

q∑

i=1

cei
=

q−1∑

i=1

cei
+ ceq

≤ B − Pλ2

Pλ1 − Pλ2

∑

e:e∈Mλ1\Mλ2

ce + ε · OPT.

�	
We propose the detailed primal-dual algorithm, which is shown in Algorithm

1.

Lemma 3. For any λ ≥ 0, let (Mλ, Rλ) be the output solution generated by
Algorithm A on instance Tλ, and we have

∑

e:e∈Mλ

ce +
∑

j:(sj ,tj)∈Rλ

πj ≤ 2 · OPT + 2λ · (Pλ − B),

where OPT is the optimal value of the B-PCMT on instance T and Pλ =∑
j:(sj ,tj)∈P\Rλ

pj is the disconnected profit of the pairs by removing Mλ.

Proof. Let (M∗, R∗) be an optimal solution of the B-PCMT on instance T ; then,
for any λ ≥ 0, (M∗, R∗) is also a feasible solution of Tλ, and

OPTλ ≤
∑

e:e∈M∗
ce +

∑

j:(sj ,tj)∈R∗
(λ · pj + πj)

= OPT + λ ·
∑

j:(sj ,tj)∈R∗
pj

≤ OPT + λ · (PP − B), (2)

where OPTλ is the optimal value of the PCMT on instance Tλ and PP =∑
j:(sj ,tj)∈P pj , and the second inequality follows from

∑
j:(sj ,tj)∈P\R∗ pj ≥ B.
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Algorithm 1: Increasing penalty algorithm
Input: An instance T of B-PCMT.
Output: A feasible solution (M, R).

1 Set λ1 := 1
minj pj

∑
e:e∈E ce and λ2 := 0.

2 Construct the instance Tλ1 and Tλ2 of the PCMT, and let (Mλ1 , Rλ1) and
(Mλ2 , Rλ2) be the output solutions generated by Algorithm A on instance Tλ1

and Tλ2 , respectively.
3 If

∑
j:(sj ,tj)∈P\Rλ1

pj = B, let (M, R) := (Mλ1 , Rλ1) and go to 16; If
∑

j:(sj ,tj)∈P\Rλ2
pj ≥ B, let (M, R) := (Mλ2 , Rλ2) and go to 16.

4 while λ1 − λ2 ≤ εcmin
PP

do

5 Set λ′ = λ1+λ2
2

and construct the instance Tλ′ of the PCMT. Let (Mλ′ , Rλ′)
be the output solution generated by Algorithm A on instance Tλ′ .

6 if
∑

j:(sj ,tj)∈P\Rλ′ pj = B then

7 Let (M, R) := (Mλ′ , Rλ′) and go to 16;

8 else if
∑

j:(sj ,tj)∈P\Rλ′ pj > B then

9 Set λ1 := λ′

10 else if
∑

j:(sj ,tj)∈P\Rλ′ pj < B then

11 Set λ2 := λ′.

12 Construct function ϕ : Mλ1 \ Mλ2 → R≥0 as above, and sort the edges in

Mλ1 \ Mλ2 such that
ce1

ϕ(e1)
≤ ce2

ϕ(e2)
≤ · · · . Set M ′

λ1 := ∅ and i := 1.

13 while
∑

e:e∈M′
λ1

ϕ(e) ≥ B − ∑
e:e∈M′

λ2
ϕ(e) do

14 set M ′
λ1 := M ′

λ1 ∪ {ei} and i := i + 1.

15 Let Ma := M ′
λ1 ∪ Mλ2 and Ra be a set of the pairs still connected after

removing Ma. Let (M, R) := argmin{w(Mλ1 , Rλ1), w(Ma, Ra)}.
16 Output (M, R).

Let (Mλ, Rλ) be the output solution generated by Algorithm A on instance
Tλ and

∑

e:e∈Mλ

ce +
∑

j:(sj ,tj)∈Rλ

πj

=
∑

e:e∈Mλ

ce +
∑

j:(sj ,tj)∈Rλ

(λ · pj + πj) −
∑

j:(sj ,tj)∈Rλ

λ · pj

≤ 2 · OPTλ −
∑

j:(sj ,tj)∈Rλ

(λ · pj + πj) −
∑

j:(sj ,tj)∈Rλ

λ · pj

≤ 2 · OPTλ − 2λ · (PP − Pλ)
≤ 2OPT + 2λ · (Pλ − B),

where the first inequality follows from Lemma 1, the second inequality follows
from πj ≥ 0 for any (sj , tj) ∈ P, and the last inequality follows from inequal-
ity (2). �	
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Theorem 1. Let w(M,R) be the objective value of (M,R) for the B-PCMT
on instance T ; then, w(M,R) ≤ (83 + 5ε) · OPT , where (M,R) is generated by
Algorithm 1.

Proof. If
∑

j:(sj ,tj)∈U\R0
pj ≥ B, then (M0, R0) is a feasible solution for the

B-PCMT on instance T and (M,R) = (M0, R0). Thus,

w(M,R) = w(M0, R0) ≤ 2OPT + 2 · 0(P0 − B) = 2 · OPT,

where the inequality follows from Lemma 3.
If Pλ1 = B, (Mλ1 , Rλ1) is a feasible solution for the B-PCMT on instance T ,

and (M,R) = (Mλ1 , Rλ1). This means that

w(M,R) = w(Mλ1 , Rλ1) ≤ 2OPTλ1 − 2λ1 · (Pλ1 − B) = 2 · OPT,

where the first inequality follows from Lemma 3.
If Pλ2 = B; similarly, w(M,R) ≤ 2 · OPT .
Then, we consider the case with

Pλ1 > B, and Pλ2 < B.

Let α = B−Pλ2
Pλ1−Pλ2

, and we have

α · w(Mλ1 , Rλ1) + (1 − α) · w(Mλ2 , Rλ2)
≤ 2α(OPT + λ1(Pλ1 − B)) + 2(1 − α)(OPT + λ2(Pλ2 − B))

≤ 2OPT + 2α(λ2 +
εcmin

PP
)(Pλ1 − B) + 2(1 − α)λ2(Pλ2 − B)

= 2OPT + 2λ2(α(Pλ1 − B) + (1 − α)(Pλ2 − B)) + 2αεcmin
Pλ1 − B

PP
≤ 2OPT + 2εcmin ≤ 2(1 + ε) · OPT, (3)

where PP =
∑

j:(sj ,tj)∈P pj ; the first inequality follows from Lemma 3; the second
inequality follows from λ1 −λ2 ≤ εcmin

PP
and α ∈ (0, 1) by Pλ1 > B; and the third

inequality follows from α(Pλ1 − B) + (1 − α)(Pλ2 − B) = 0 by α = B−Pλ2
Pλ1−Pλ2

,
α ∈ (0, 1) and PP ≥ Pλ1 − B.

This implies that the objective value of (Mλ1 , Rλ1) is

w(Mλ1 , Rλ1) ≤ 2(1 + ε) · OPT − (1 − α) · w(Mλ2 , Rλ2)
α

.

Case. 1. α · w(Mλ2 ,Rλ2 )

OPT ≥ 2
3 . It is not hard to obtain that

0 ≤ w(Mλ2 , Rλ2)
OPT

≤ 2.
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This means that

w(Mλ1 , Rλ1) ≤ 2(1 + ε) · OPT − (1 − α) · w(Mλ2 , Rλ2)
α

≤ 2(1 + ε) · OPT − (1 − α) · 2
3α · OPT

α

= (−2
3

· (
1
α

)2 + (
8
3

+ 2ε) · (
1
α

)) · OPT

≤ (
8
3

+ 5ε) · OPT,

where the second inequality follows from α · w(Mλ2 ,Rλ2 )

OPT ≥ 2
3 and the last inequal-

ity follows from 1
α ∈ [1,+∞) and the fact that function f(x) = − 2

3 ·x2+(83+2ε)·x
satisfies 8

3 + 4ε ≥ f(2 + 3
2ε) ≥ f(x′) for any x′ ∈ [1,+∞).

Case. 2. α · w(Mλ2 ,Rλ2 )

OPT < 2
3 ; i.e.,

α · w(Mλ2 , Rλ2) <
2
3

· OPT .

Since Ma = M ′
λ1

∪ Mλ2 , we have Ra ⊆ Rλ2 , and the objective value of
(Ma, Ra) is

w(Ma, Ra) =
∑

e:e∈Mλ2

ce +
∑

e:e∈M ′
λ1

ce +
∑

j:(sj ,tj)∈Ra

πj

≤ w(Mλ2 , Rλ2) +
B − Pλ2

Pλ1 − Pλ2

∑

e:e∈Mλ1\Mλ2

ce + ε · OPT

≤ (1 − α) · w(Mλ2 , Rλ2) + α · w(Mλ2 , Rλ2)
+α · w(Mλ1 , Rλ1) + ε · OPT

≤ 2 · (1 + ε) · OPT + α · w(Mλ2 , Rλ2) + ε · OPT

< 2 · (1 + ε) · OPT +
2
3
OPT + ε · OPT

= (
8
3

+ 3ε) · OPT,

where the first inequality follows from Ra ⊆ Rλ2 and πj ≥ 0 for any (sj , tj) ∈ P,
the second inequality follows from Lemma 2, the third inequality follows from
inequality (3), and the last inequality follows from α · w(Mλ2 , Rλ2) < 2

3 · OPT .
Therefore, the theorem holds. �	

4 Conclusions and Future Work

We introduce the B-prize-collecting multicut problem in trees, which is a gen-
eralization of the minimum multicut problem in trees [4], the partial multicut
problem in trees [11], the prize-collecting multicut problem in trees [11], and
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the k-prize-collecting multicut problem in trees [8]. Based on the primal-dual
scheme, we present an ( 83 + ε)-approximation algorithm by carefully increasing
the penalty, where ε is any fixed positive number.

Recently, problems with submodular penalties have gradually become a
research hotspot in the field of theoretical computers and combinatorial opti-
mization, and the submodular penalty version of this problem is worth consid-
ering, in which the penalty is determined by a submodular function.
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Abstract. The concept of submodularity finds wide applications in data
science, artificial intelligence, and machine learning, providing a boost to
the investigation of new ideas, innovative techniques, and creative algo-
rithms to solve different submodular optimization problems arising from
a diversity of applications. However pure submodular problems only rep-
resent a small portion of the problems we are facing in real life appli-
cations. To solve these optimization problems, an important research
method is to describe the characteristics of the non-submodular func-
tions. The non-submodular functions is a hot research topic in the study
of nonlinear combinatorial optimizations. In this paper, we combine and
generalize the curvature and the generic submodularity ratio to design
an approximation algorithm for two-stage non-submodular maximization
under a matroid constraint.

Keywords: Two-stage submodular maximization · Matroid
constraint · Curvature · Generic submodularity ratio

1 Introduction

Submodular function maximization has drawn much attention practical and the-
oretical interests [5,6,11,13]. For a given set V , the function f : 2V → R is said
to be submodular if f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) for ∀X,Y ⊆ V . A set
function f is called monotone if f(X) ≤ f(Y ) for all X ⊆ Y ⊆ V and it is said
to be normalized when f(∅) = 0. The well-known greedy algorithm presents a
constraint-factor approximation ratio 1−1/e for submodular maximization sub-
ject to a cardinality constraint [10]. The bounds can be improved if one make
further assumptions on submodular functions. For example, the curvature of a
submodular function f in [3] is defined as

kf = 1 − min
v∈V

f(V ) − f(V \{v})
f(v)

,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al. (Eds.): TAMC 2022, LNCS 13571, pp. 272–280, 2022.
https://doi.org/10.1007/978-3-031-20350-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20350-3_22&domain=pdf
https://doi.org/10.1007/978-3-031-20350-3_22
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and noting that the curvature is computable with a linear number of function
oracle calls, then the greedy algorithm obtains 1

kf
(1 − e−kf ) guarantee under a

cardinality constraint [3].
The greedy algorithm is a simple and effective technique to solve many opti-

mization problems. However, the ground set is often so large that the well-known
greedy algorithm is not enough efficient. One solution to the problem is to give
some training functions to reduce the ground set, and then Balkanski et al.
[1] gave the concept of the two-stage submodular maximization problem. For a
ground set V and a constant k, the objective is to obtain a set S ⊆ V of size at
most k and m subsets T1, T2, . . . , Tm in I(S) to maximize the following

1
m

m∑

i=1

max
T∈I(S)

fi(T ),

where fi : 2V → R+ is submodular for i = 1, . . . , m, and I(S) is a constraint set
over the reduced ground set S ⊆ V .

Related works have been conducted in the area of the two-stage submod-
ular maximization. For a cardinality constraint, that is I(S)= {T : |T | ≤ k}.
When k is enough large, Balkanski et al. [1] used the continuous optimization
method to design an approximation algorithm with approximation ratio, which
asymptotically approaches 1 − 1/e. When k is small, a local search algorithm
was obtained with approximation ratio close to 1/2 in [1]. In addition, Mitrovic
et al. [9] considered the two-stage submodular maximization with cardinality
constraint under streaming and distributed settings. For a matriod constraint,
Stan et al. [12] obtained a new local-search based algorithm with approximation
ratio 1 − 1/e2.

On the other hand, for many applications in practice, including experimen-
tal design and sparse Gaussian processes [8], the objective function is in general
not submodular. The results for submodular optimization problems are not no
longer maintained. To solve these optimization problems, an important research
method is to introduce some parameters to describe the characteristics of the
non-submodular functions, such as submodularity ratio, curvature, generic sub-
modularity ratio, and then design algorithms for the problems and analyze the
performances of the algorithms with these parameters. Given a ground set V
and a nondecreasing set function f : 2V → R, the generic submodularity ratio
of f is the largest scalar γ such that for any X ⊆ Y ⊆ V and any v ∈ V \ Y,
f(v|X) ≥ γf(v|Y ), which is a quantity characterizing how close a nonnegative
nondecreasing set function is to be submodular [4]. And, a function is called
γ-submodular if its generic submodularity ratio is γ. A natural curvature notion
can also be introduced for non-submodular functions. We recall that the cur-
vature of a non-negative set function [2] is the smallest scalar α such that for
∀ S, T ⊆ V, i ∈ S \ T ,

f(i|S \ {i} ∪ T ) ≥ (1 − α)f(i|S \ {i}).

Based on the above motivation, we discuss the two-stage γ-submodular maxi-
mization problem under a matriod constraint. Our main contribution is to design
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an approximation algorithm with constant approximation ratio with respect to
the curvature and the generic submodularity ratio. The rest of our paper is sum-
marized as below. In Sect. 2, we show some technical preliminaries, including
notations and relevant known results. In Sect. 3, we give an approximation algo-
rithms along with its analysis. And some concluding remarks are presented in
Sect. 4.

2 Preliminaries

Firstly, we recall the following known concepts and results for submodular func-
tions, supmodular functions and modulars function.

Definition 1. For a given set V , the function f : 2V → R is called submodular
if f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) for ∀X,Y ⊆ V .

An equivalent definition is that the function f : 2V → R is said to be
submodular if f(e|S) ≥ f(e|T ) for S ⊆ T ⊂ V and v ∈ V \ S, where
f(e|S) = f(e ∪ S) − f(S).

Definition 2. For a given set V , the function f : 2V → R is called modular if
f(X) + f(Y ) ≤ f(X ∩ Y ) + f(X ∪ Y ) for ∀X,Y ⊆ V .

Furthermore, we define the concept of modular functions.

Definition 3. For a given set V , the function f : 2V → R is called modular if
f(X) + f(Y ) = f(X ∩ Y ) + f(X ∪ Y ) for ∀X,Y ⊆ V .

Next, we formally restate the two-stage submodular maximization problem.
For a ground set V , and m nonnegative, monotone and normalized γ-submodular
functions f1, . . . , fm, which are drawn from some unknown distribution, our aim
is to select a set S ⊆ V of size at most k and m subsets T1, . . . , Tm in I(S) to
maximize the following

1
m

m∑

i=1

max
T∈I(S)

fi(T ), (2.1)

where I(S) is a constraint set over S ⊆ V . In our paper, the set I(S) corresponds
to a matriod constraint.

Definition 4. For a given set S and I ∈ 2S, a matroid M = (S, I) satisfies
three properties: (1) ∅ ∈ I; (2) if P ⊆ Q ∈ I, then P ∈ I; (3) if P,Q ∈ I and
|P | ≤ |Q|, then P + q ∈ I, where q ∈ Q\P .

The mapping below is a very useful tool to study the matriod constraint,
which is shown in [7].

Proposition 1. Let Mi = (S, Ii) be a matroid for i ∈ {1, . . . , p}. For ∀X,Y ∈
Ii, there is a mapping πi : Y \X → X\Y ∪{∅}, which satisfies the three properties
(1) (X \ πi(y)) ∪ y ∈ Ii for ∀y ∈ Y \ X; (2) |π−1

i (x)| ≤ 1 for ∀x ∈ X \ Y ; (3) let
Xy = {π1(y), . . . , πp(y)}, then (X \ Xy) ∪ y ∈ ∩p

i=1Ii for ∀y ∈ Y \ X.
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Now, we turn to give a nice result for γ-submodular functions in [4].

Proposition 2. Let f be a γ-submodular function. Then for ∀S ⊆ T ,

f(T ) ≤ f(S) +
1
γ

∑

v∈T\S

f(v|S).

To maximize the above objective function, we discuss the following

�i(T ) = (1 − α)
∑

v∈T

fi(v),

gi(T ) = fi(T ) − �i(T ).

where the function �i(T ) is modular, and the function gi(T ) is a monotone and
normalized γ-submodular function, this is because that the function fi(T ) is
monotone and normalized.

Problem (2.1) turns into the following problem: obtain a set S ⊆ V of size
at most k and m subsets T1, T2, . . . , Tm in I(S) to maximize the following

1
m

m∑

i=1

max
T∈I(S)

(gi(T ) + �i(T )).

For notational convenience, we use the following notations. In terms of the
function gi, define the marginal gain of adding an element x to the set T j

i as

Δg
i (x, T j

i ) = gi({x} ∪ T j
i ) − gi(T

j
i ).

Similarly, the gain of replacing y with x in terms of the set T j
i is represented

by

∇g
i (x, y, T j

i ) = gi({x} ∪ T j
i \ {y}) − gi(T

j
i ).

Furthermore, for the functions gi and �i, we define

Δi(x, T j
i ) =

(
1 −

γ + 1
γ

k

)k−j

Δg
i (x, T j

i ) +
(

1 − 1
k

)k−j

�i(x),

∇i(x, y, T j
i ) =

(
1 −

γ + 1
γ

k

)k−j

∇g
i (x, y, T j

i ) +
(

1 − 1
k

)k−j

(�i(x) − �i(y)).

The set of elements in T j
i can replace x, which will not violate the matroid

constraint, is defined as

I(x, T j
i ) = {y ∈ T j

i : T j
i ∪ {x} \ {y} ∈ I(S)}.
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Based on the notations of Δi(x, T j
i ) and ∇i(x, y, T j

i ), we denote the replace-
ment gain of x in terms of T j

i by

∇i(x, T j
i ) =

{
Δi(x, T j

i ) if T j
i ∪ {x} ∈ I(S),

max{0,maxy∈I(x,T j
i ) ∇i(x, y, T j

i )} otherwise.

In addition, we define

Repi(x, T j
i ) =

{
∅ ifT j

i ∪ {x} ∈ I(S),
arg maxy∈I(x,T j

i ) ∇i(x, y, T j
i ) otherwise.

3 Problem (2.1) Under a Matroid Constraint

In this section, we discuss Problem (2.1) under I(S) is a matroid constraint.
A replacement greedy algorithm is shown in Sect. 3.1, and then we analyze its
approximation ratio in Sect. 3.2.

3.1 Algorithm

Our replacement greedy algorithm starts with S0 = ∅, and runs in k rounds.
In each round, a new element can be added into the current solution if it does
not violate the matroid constraints or can be replaced with some element in the
current set while increasing the value of the objective function.

Algorithm 1.
1: S0 ← ∅, T 0

i ← ∅(∀1 ≤ i ≤ m)
2: for 1 ≤ j ≤ k do
3: t∗ ← arg maxt∈V

∑m
i=1 ∇i(t, T

j−1
i )

4: Sj ← Sj−1 ∪ {t∗}
5: for 1 ≤ i ≤ m do
6: if ∇i(t

∗, T j−1
i ) > 0 then

7: T j
i ← T j−1

i ∪ {t∗} \ Repi(t
∗, T j−1

i )
8: else
9: T j

i ← T j−1
i

10: end if
11: end for
12: end for
13: Return sets Sk and T k

1 , T
k
2 , · · · , T k

m

3.2 Theoretical Analysis

We analyze the performance guarantee of Algorithm 1, which depends on the
distorted objective function as follows.

Φj(Sj) =
m∑

i=1

⎛

⎝
(

1 −
γ + 1

γ

k

)k−j

gi(T
j
i ) +

(
1 − 1

k

)k−j

�i(T
j
i )

⎞

⎠ .
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Lemma 1. In each iteration of Algorithm1,

Φj(S
j) − Φj−1(S

j−1)

=
m∑

i=1

⎛

⎝∇i(t
j , T j−1

i ) +
γ + 1

γ

k

(
1 −

γ + 1
γ

k

)k−j

gi(T
j−1
i ) +

1

k

(
1 − 1

k

)k−j

�i(T
j−1
i )

)
.

For the second term on the right side in Lemma1, we give the lower bound
in the following.

Lemma 2. If the element tj ∈ V is added into the current set Sj−1, then

m∑

i=1

∇i

(
tj , T j−1

i

)
≥ 1

k

m∑

i=1

∑

t∈T ∗
i \T j−1

i

∇i(t, T
j−1
i ),

where S∗ = arg max
S⊆V,|S|≤k

m∑
i=1

max
T∈I(S)

fi(T ), T ∗
i = arg maxA∈I(S∗) fi(A).

The following lemma is crucial to analyze the approximation ratio of
Algorithm 1.

Lemma 3. For j = 1, 2, . . . , k, we have

m∑

i=1

∇i(tj , T
j−1
i )

≥ 1
k

(
1 −

γ + 1
γ

k

)k−j m∑

i=1

(
γ(1 − α)gi(T ∗

i ) − (γ +
1
γ

)gi(T
j−1
i )

)

+
1
k

(
1 − 1

k

)k−j m∑

i=1

(
�i(T ∗

i ) − �i(T
j−1
i )

)
.

Combining Lemma 1 and Lemma 3, the following theorem is proved as below.

Theorem 1. Algorithm1 returns a set Sk of size k such that

m∑

i=1

(
gi(T k

i ) + �i(T k
i )

) ≥ γ

γ + 1
γ

(
1 − e−(γ+ 1

γ )
) m∑

i=1

gi(T ∗
i ) +

(
1 − e−1

) m∑

i=1

�i(T ∗
i ).

Proof. By the definition of the function Φ, it is obtained that

Φ0(S0) = 0,

Φk(Sk) =
m∑

i=1

⎛

⎝
(

1 −
γ + 1

γ

k

)k−k

gi(T k
i ) +

(
1 − 1

k

)k−k

�i(T k
i )

⎞

⎠

=
m∑

i=1

(
gi(T k

i ) + �i(T k
i )

)
.
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Using Lemmas 1 and Lemma 3, we have

Φj(S
j) − Φj−1(S

j−1)

=

m∑

i=1

⎛

⎝∇i(t
j , T j−1

i ) +
γ + 1

γ

k

(
1 −

γ + 1
γ

k

)k−j

gi(T
j−1
i ) +

1

k

(
1 − 1

k

)k−j

�i(T
j−1
i )

)
.

Finally,
m∑

i=1

(
gi(T k

i ) + �i(T k
i )

)

=
k∑

j=1

(Φj(Sj) − Φj−1(Sj−1))

≥
k∑

j=1

⎛

⎝γ

k

(
1 −

γ + 1
γ

k

)k−j m∑

i=1

gi(T ∗
i ) +

1
k

(
1 − 1

k

)k−j m∑

i=1

�i(T ∗
i )

⎞

⎠

≥ γ

γ + 1
γ

(
1 − e−(γ+ 1

γ )
) m∑

i=1

gi(T ∗
i ) +

(
1 − e−1

) m∑

i=1

�i(T ∗
i ).

The curvature is an very useful assumption to obtain the following result.

Theorem 2. There exists an algorithm returning a set Sk of size k such that

F (Sk) ≥
(

γ

γ + 1
γ

(1 − (1 − α)γ) (1 − e−(γ+ 1
γ )) + (1 − α)γ(1 − e−1)

)
OPT.

where F (Sk) =
m∑

i=1

max
T∈I(Sk)

(fi(T k
i )) and OPT is the optimal solution.

Proof. It follows from the definition of �i(T ) and Proposition 2 that

�i(T ) = (1 − α)
∑

v∈T

fi(v) ≥ (1 − α)γfi(T ).

Furthermore,
m∑

i=1

fi(T
k
i ) =

m∑

i=1

(
gi(T

k
i ) + �i(T

k
i )

)

≥ γ

γ + 1
γ

(
1 − e

−(γ+ 1
γ

)
) m∑

i=1

gi(T
∗
i ) +

(
1 − e

−1
) m∑

i=1

�i(T
∗
i )

=

⎛

⎝ γ

γ + 1
γ

(1 − e
−(γ+ 1

γ
)
)

⎞

⎠
m∑

i=1

(fi(T
∗
i ) − �i(T

∗
i )) + (1 − e

−1
)

m∑

i=1

�i(T
∗
i )

=

⎛

⎝ γ

γ + 1
γ

(1 − e
−(γ+ 1

γ
)
)

⎞

⎠
m∑

i=1

fi(T
∗
i ) +

⎛

⎝(1 − e
−1

) −
⎛

⎝ γ

γ + 1
γ

(1 − e
−(γ+ 1

γ
)
)

⎞

⎠

⎞

⎠
m∑

i=1

�i(T
∗
i )

≥
⎛

⎝ γ

γ + 1
γ

(1 − e
−(γ+ 1

γ
)
)

⎞

⎠
m∑

i=1

fi(T
∗
i ) + (1 − α)γ

⎛

⎝(1 − e
−1

) −
⎛

⎝ γ

γ + 1
γ

(1 − e
−(γ+ 1

γ
)
)

⎞

⎠

⎞

⎠
m∑

i=1

fi(T
∗
i )

≥
⎛

⎝ γ

γ + 1
γ

(1 − (1 − α)γ) (1 − e
−(γ+ 1

γ
)
) + (1 − α)γ(1 − e

−1
)

⎞

⎠
m∑

i=1

fi(T
∗
i ).



Two-Stage Non-submodular Maximization 279

Finally, we obtain that

F (Sk) ≥
(

γ

γ + 1
γ

(1 − (1 − α)γ) (1 − e−(γ+ 1
γ )) + (1 − α)γ(1 − e−1)

)
OPT.

4 Conclusion

The objective functions for many applications in practice are in general not sub-
modular. To solve these optimization problems, an important research method
is to introduce some parameters to describe the characteristics of the non-
submodular functions, such as submodularity ratio, curvature, supermodular
degree, etc., and then design algorithms for the problems and analyze the per-
formances of the algorithms with these parameters. On the other hand, it is
well known that submodular maximization problem can be solved by greedy
algorithms, To avoid this limitation of the regular greedy algorithm, we propose
combining the distorted objective function and the greedy algorithms, which has
the potential to be applicable to other optimization problems.
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Abstract. In total domination, given a graph G = (V, E), we seek a
minimum-size set of nodes S ⊆ V , such that every node in V \ S has
at least one neighbor in S and every node in S also has at least one
neighbor in S. We define the fault-tolerant version of total domination,
where we extend the requirement for nodes in V \ S. Any node in V \ S
must have at least m neighbors in S. Let Δ denote the maximum degree
in G. We prove a first 1+ ln(Δ+m−1) approximation for fault-tolerant
total domination. To prove our result, we develop a general submodular
function approximation framework we believe is of independent interest.

Keywords: Fault-tolerant · Total domination · Dominating set ·
Approximation algorithms · Submodular function

1 Introduction

Domination is a classic graph-theoretic notion which has historically attracted
much attention [6,7] in terms of combinatorial bounds, algorithmic complexity,
and definition variants. In an undirected graph, a subset of its nodes is called a
dominating set if every node of the graph is either a member of the subset or
adjacent to at least one node in the subset. A connected dominating set is a subset
of nodes such that its induced subgraph is connected and it is a dominating set.

A variant between (standard) domination and connected domination is total
domination. A dominating set is called total if its induced subgraph does not
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include any isolated nodes. That is, both nodes outside and inside the set must
be adjacent to at least one node in the set. In other words, every node must
have at least one neighbor within the set. Total domination was introduced by
Cockayne, Dawes, and Hedetniemi, in [2], as a natural variant of domination,
and has been extensively studied since. A survey of results is provided in [8].

In this paper, we introduce fault-tolerant total domination. Still, every node
in the graph needs to be adjacent to at least one member of the set. Nonetheless,
for all nodes which are not members of the set, we require they are adjacent to
at least m nodes in it, where m is part of the input. Herein, we develop a general
submodular function approximation framework. We apply it to obtain a first
logarithmic approximation for finding a fault-tolerant total dominating set of
minimum size in general graphs. Fault-tolerance guarantees continued service in
case of node failures, as serviced nodes are multiply covered. Example modern
applications may be found in wireless (sensor) networking [9].

Related Work. The complexity of dominating set problems has been studied a
lot in literature and approximation algorithms have been found. The Minimum
Dominating Set (DS), Minimum Total Dominating Set (TDS) and Minimum
Connected Dominating Set (CDS) problems are all NP-hard and there is no
polynomial time algorithm with approximation ratio (1−ε) ln |V |, for any ε > 0,
unless NP ⊆ DTIME

(|V |O(log log |V |)) [1].
A set S is a fault-tolerant dominating set if every node in V \S has at least m

neighbors in S. In [4], a greedy algorithm with a submodular function is used to
approximate fault-tolerant DS. Instead of a typical finite sums approach, like the
one we use in this paper, the author employs an estimation formula to achieve
a 1 + ln(Δ + m) guarantee.

A relevant variant, with the same approximation hardness as DS, is k-tuple
domination, where S is a k-tuple dominating set if every node in V \ S has at
least k neighbors in S and every node in S has at least k − 1 neighbors in S.
The problem is introduced in [10], where they apply a reduction to Minimum
k-Cover, a budget variant of Set Cover, to obtain a 1 + ln(Δ + 1) guarantee.

A greedy approach for TDS in [14] yields a 1.5 + ln(Δ − 0.5) approximation
by using as potential function the sum of a submodular and a non-submodular
part. Later, in Sect. 4.1, we further discuss this result in comparison to the
methodology we follow in this paper. A better result is given for TDS in [1]: They
reduce the problem to Set Cover and give an H(Δ) − 0.5 approximation, where
H is the harmonic function. Note it holds ln(n) + 1

2n + γ > H(n) > ln(n) + γ,
where γ = 0.5772156649 is the Euler constant.

Similarly to TDS, in [1], they prove a 2 + H(Δ) approximation for CDS.
A better approximation for CDS is given in [11]. They use a greedy algorithm
with a non-submodular function and prove a 2 + ln(Δ) approximation. The
best approximation for CDS is given in [3], where they present a (1 + ε)(1 +
ln(Δ−1)) guarantee. For fault-tolerant CDS, in [12], they give a 2H(Δ+m−1)
approximation algorithm. Later, in [13] they improve this result to 2 + ln(Δ +
m−2). To achieve that, they use the same potential function as in [11], ensuring
the connectivity, and add an additional function to count the extra neighbors.
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Our Results. We develop a general framework to approximate any minimization
problem able to be expressed by a submodular potential function. In Theorem1,
we give a logarithmic approximation as a function of the max and min differences
when inserting a new element into a set we greedily construct. As a warm up,
we apply the framework to (standard) total domination to obtain a 1 + ln(Δ)
approximation, in Theorem2. We then arrive to fault-tolerant total domination
and obtain a first 1 + ln(Δ + m − 1) approximation in Theorem3.

Outline. In Sect. 2, we define preliminary notions. In Sect. 3, we describe the
general framework for submodular functions. In Sect. 4, we present our result for
fault-tolerant total domination. In Sect. 5, we make concluding remarks.

2 Preliminaries

A graph is a pair of sets V,E with the property
[
e ∈ E ⇐⇒ (∃v, u ∈ V ) e =

{v, u}] and is denoted by G = (V,E). The elements of V are called nodes and
the elements of E are called edges. We assume all graphs considered in this paper
are simple and connected. A node v has as neighbor a node u if there exists an
edge between them ({v, u} ∈ E). The open neighborhood of node v is the set of
all its neighbors and is denoted by N(v). Let the maximum degree of the graph
be denoted by Δ = max

v∈V
|N(v)|. The open neighborhood of v in the subset of

nodes C ⊆ V is denoted by NC(v) = N(v) ∩ C. For a singleton set {x}, we
simplify the notation from N{x}(v) to Nx(v).

Let U denote a universe of elements. The set of all subsets of U is denoted by
2U . A function f : 2U → R is called monotone increasing if for any A ⊆ B ⊆ U
it holds f(A) ≤ f(B). Let Δxf(A) = f(A ∪ {x}) − f(A). A function f : 2U → R

is submodular if for any A ⊆ B ⊆ U , x ∈ U , it holds Δxf(B) ≤ Δxf(A).
A set S ⊆ V is a dominating set of G if every node in V \ S has at least one

neighbor in S. S is a fault-tolerant dominating set if every node in V \ S has at
least m neighbors in S. S is a total dominating set if S is a dominating set and
every node in S has at least one neighbor in S. Equivalently, every node in V
has at least one neighbor in S. S is a fault-tolerant total dominating set if it is
fault-tolerant dominating and every node in S has at least one neighbor in S.

In this paper, we examine the following optimization problems.

Definition 1 (Minimum Total Dominating Set). Given a graph G = (V,E)
find a total dominating set S ⊆ V of minimum cardinality.

Definition 2 (Minimum Fault-Tolerant Total Dominating Set). Given a
graph G = (V,E), find a fault-tolerant total dominating set S ⊆ V of minimum
cardinality.

3 General Greedy Submodular Approximation

In this section, we present a general greedy approximation algorithm which can
be applied to minimization problems described by a submodular and monotone
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increasing function. Intuitively, the algorithm constructs a subset by iteratively
picking the element whose insertion maximizes the function at that point. The
algorithm is general in the sense that it works for any given set of seeds, that is,
elements required to be in the final solution.

Let U be a finite set (universe) of elements and X ⊆ U be a seed set given
as input. For our purposes, a problem with universe U and seed set X may be
defined as a function QX : 2U → {0, 1}, such that for any S ∈ 2U , it holds
QX(S) = 1 if and only if the set X ∪ S is a feasible solution to the problem. Let
QX = {S ⊆ U : QX(S) = 1}. Assume there is a submodular monotone increasing
function f : 2U → R with the property, for any C ⊆ U where X ∩C = ∅, it holds
f(X ∪ C) = max

U ′⊆U
f(U ′) if and only if C ∈ QX . Let S∗ be a member of QX with

minimum cardinality, where X ∩ S∗ = ∅. In Algorithm 1, we introduce Greedy
Constructor to return a solution approximating the size of S∗.

Algorithm 1: Greedy Constructor
Input: Universe U , Seed Set X
Output: S ∈ QX

1 S ← ∅
2 while

(∃u ∈ U \ (X ∪ S)
)

Δuf(X ∪ S) > 0 do
3 x ← argmaxu∈U\(X∪S)Δuf(X ∪ S)
4 S ← S ∪ {x}
5 end while
6 Return S

To begin with the analysis of Greedy Constructor, we first define what is a
Greedy Maximum Differential Set, which will be returned by the algorithm.

Definition 3 (Greedy Maximum Differential Set). Let U ⊆ N, a seed set
X ⊆ U and f : 2U → R. Let S ⊆ U and a total order of the elements in S, namely
s1, s2, . . .. Let Si = {s1, s2, ..., si} ⊆ S, where S0 = ∅. A set S ⊆ U is called a
Greedy Maximum Differential Set of f generated by X if there is a total order of
the elements of S such that for each si it holds Δsi

f(X ∪Si−1) ≥ Δuf(X ∪Si−1)
for all u ∈ U .

Definition 4. The set of all Greedy Maximum Differential Sets of f generated
by X is denoted by Df (X). In case X = ∅, it is simplified the notation to Df .

Let f be a submodular and monotone increasing function and S ∈ Df (X).
By submodularity of f , we denote Δmax := max

si∈S
Δsi

f(X ∪ Si−1) = Δs1f(X)

and Δmin := min
si∈S

Δsi
f(X ∪ Si−1) = Δs|S|f(X ∪ S|S|−1) as the maximum and

minimum differences, respectively, when inserting a new element into S. Since f
is monotone increasing, we denote fmax := max

C⊆U
f(C) = f(U). In the following

key lemma, we bound the size of a greedy maximum differential set S to be a
logarithmic approximation of the size of an optimal solution achieving fmax.
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Lemma 1. Let U be a finite set, f : 2U → R submodular and monotone increas-
ing function and X ⊆ U . Let S ⊆ U with the properties:

– S ∈ Df (X)
– f(X ∪ S) = fmax

– Δmin > 0.

For every set C ⊆ U with X ∩ C = ∅ and f(X ∪ C) = fmax, it holds

|S| ≤
(

1 + ln
(

Δmax

Δmin

))

· |C|

Proof. Let S = {s1, s2, ..., s|S|} ∈ Df (X) such that f(X∪S) = fmax and Δmin >
0. Let C = {c1, c2, ..., c|C|} ⊆ U with f(X ∪ C) = fmax, where c1, c2, ..., c|C| is
an arbitrary order of the elements of C. Let Si = {s1, s2, ..., si}, and Ci =
{c1, c2, ..., ci}, where S0 = C0 = ∅.

Since f(X ∪C) = fmax and f is monotone increasing, we get f(X ∪Si ∪C) =
fmax for any set Si. It follows,

fmax − f(X ∪ Si−1) = f(X ∪ Si−1 ∪ C) − f(X ∪ Si−1)
= f(X ∪ Si−1 ∪ C|C|) − f(X ∪ Si−1 ∪ C0)
= f(X ∪ Si−1 ∪ C|C|)

− f(X ∪ Si−1 ∪ C|C|−1) + f(X ∪ Si−1 ∪ C|C|−1)
...

− f(X ∪ Si−1 ∪ C1) + f(X ∪ Si−1 ∪ C1)
− f(X ∪ Si−1 ∪ C0)

=
∑

j=1,...,|C|
f(X ∪ Si−1 ∪ Cj) − f(X ∪ Si−1 ∪ Cj−1)

=
∑

j=1,...,|C|
Δcj

f(X ∪ Si−1 ∪ Cj−1)

since by definition C|C| = C, C0 = ∅.
Since f is submodular, for any cj , it follows Δcj

f(X ∪ Si−1 ∪ Cj−1) ≤
Δcj

f(X ∪ Si−1). Let cj′ ∈ C be the element maximizing Δcj
f(X ∪ Si−1). Then,

∑

j=1,...,|C|
Δcj

f(X ∪ Si−1) ≤ |C| · Δcj′ f(X ∪ Si−1)

≤ |C| · Δsi
f(X ∪ Si−1)

where Δcj′ f(X ∪ Si−1) ≤ Δsi
f(X ∪ Si−1), since S ∈ Df (Definition 3).
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Overall, we have

fmax − f(X ∪ Si−1) ≤ |C| · Δsi
f(X ∪ Si−1)

fmax − f(X ∪ Si−1)
|C| ≤ f(X ∪ Si) − f(X ∪ Si−1) (1)

−f(X ∪ Si) ≤ −f(X ∪ Si−1) − fmax − f(X ∪ Si−1)
|C|

fmax − f(X ∪ Si) ≤ fmax − f(X ∪ Si−1) − fmax − f(X ∪ Si−1)
|C|

Let ai = fmax − f(X ∪ Si) for any i. Then, by induction it follows

ai ≤ ai−1 − ai−1

|C| = ai−1

(
1 − 1

|C|
)

≤ · · · ≤ a0

(
1 − 1

|C|
)i

≤ a0 · e− i
|C|

since for any x ∈ R it holds (1 + x) ≤ ex.

Proposition 1. Let δ > 0. For every k ∈ {0, ..., |S|}, if ak ≤ δ · |C|, then
|S| ≤ δ·|C|

Δmin
+ k. Also, if ak < δ · |C|, then |S| < δ·|C|

Δmin
+ k.

We continue the proof the lemma. For some δ > 0, we distinguish two cases.
If a0 ≤ δ · |C|, then by Proposition 1 it holds |S| ≤ δ·|C|

Δmin
(case I).

If a0 > δ · |C|, then since ai is monotonically decreasing, by definition there
exists i0 such that

ai0+1 < δ · |C| ≤ ai0 .

We first upper bound i0 based on the right inequality. Recall that ai0 ≤ a0 ·e− i0
|C| .

δ · |C| ≤ a0 · e− i0
|C|

e
i0

|C| ≤ a0

δ · |C|
i0
|C| ≤ ln

(
a0

δ · |C|
)

= ln
(

1
δ

)
+ ln

(
a0

|C|
)

i0 ≤
(

ln
(

a0

|C|
)

− ln(δ)

)

· |C| ≤(1)

(

ln
(
Δs1f(X ∪ S0)

)
− ln(δ)

)

· |C|

i0 ≤
(

ln
(
Δs1f(X)

)
− ln(δ)

)

· |C|

i0 ≤
(

ln
(
Δmax

)
− ln(δ)

)

· |C| (2)

To complete the proof, we now upper bound S based on left inequality. Since
ai0+1 < δ · |C|, by Proposition 1, it follows |S| < δ·|C|

Δmin
+ i0 + 1 (case II).
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Note that it suffices to examine case II, since it contains case I. It follows:

|S| <
δ · |C|
Δmin

+ i0 + 1 ≤ δ·|C|
Δmin +

(
ln

(
Δmax

) − ln(δ)
)

· |C| + 1

|S| <

(
δ

Δmin
− ln(δ) + ln

(
Δmax

)
)

· |C| + 1

Now we find a value of δ which minimizes the upper bound of S. Let g(δ) =
δ

Δmin
− ln(δ) + ln(Δmax). The function g is minimized when δ = Δmin because:

g′(δ) =
1

Δmin
− 1

δ
and g′(δ) = 0 ⇐⇒ δ = Δmin

Recall |S| < δ·|C|
Δmin

+ i0 + 1. Since we choose δ = Δmin, it follows |S| <
|C| + i0 + 1, and so:

|S| ≤ |C|+i0 ≤(2) |C|+
(

ln(Δmax)− ln(Δmin)

)

· |C| ≤
(

1+ln
(

Δmax

Δmin

))

· |C|.

Lemma 2. Let S be the set returned by Algorithm1. It holds f(X ∪S) = fmax.

Proof. Let f(X ∪ S) < fmax. We distinguish two cases:
case 1: Let X ∪S = U . Then f(X ∪S) = f(U) = fmax and it is a contradiction.
case 2: Let X∪S ⊂ U and U c = U \(X∪S). By definition of Algorithm1, it holds
Δsf(X ∪S) = 0 for every s ∈ U c, otherwise, the while loop of Algorithm 1 would
not stop and so X ∪S = U . Since f is submodular and monotone increasing, for
every S′ ⊃ X ∪ S and s′ ∈ U \ S′ it holds Δs′f(S′) ≤ Δs′f(X ∪ S) = 0 and so
Δs′f(S′) = 0. We have f(U) − f(X ∪ S) = 0 because:

f(U) − f(X ∪ S) = f(X ∪ S ∪
|Uc|⋃

i=1

{s′
i}) − f(X ∪ S)

= f(X ∪ S ∪
|Uc|⋃

i=1

{s′
i}) − f(X ∪ S ∪

|Uc|−1⋃

i=1

{s′
i})

+ f(X ∪ S ∪
|Uc|−1⋃

i=1

{s′
i}) − f(X ∪ S ∪

|Uc|−2⋃

i=1

{s′
i})

...
+ f(X ∪ S ∪ {s′

1, s
′
2}) − f(X ∪ S ∪ {s′

1})
+ f(X ∪ S ∪ {s′

1}) − f(X ∪ S)

=
|Uc|∑

j=1

Δs′
|Uc|+1−j

f(X ∪ S ∪
|Uc|−j⋃

i=1

{s′
i}) = 0

Thus, f(X ∪ S) = f(U) = fmax, a contradiction.
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Theorem 1. Algorithm1 returns a
(
1+ ln

(
Δmax

Δmin

))
-approximation to the min-

imum size set in QX .

4 Fault-Tolerant Total Domination

In this section, we present an application of the general approximation framework
given in Sect. 3. We show how to apply the framework (with an empty seed set)
to obtain a first logarithmic approximation for fault-tolerant total domination.
As a warm up, we first consider the case of (standard) total domination.

4.1 Total Domination

Recall that given a graph G = (V,E), a subset of nodes S ⊆ V is a total
dominating set if every node outside of S, that is v ∈ V \ S, has at least one
neighbor in S and S has no isolated nodes. Equivalently, every node in V has
a neighbor in S. We define a submodular and monotone increasing function f
such that any subset of V achieving fmax is a total dominating set.

Definition 5. Let G = (V,E) be a graph. We define f : 2V → R as follows

f(A) =
∑

v∈V

δA(v)

where

δA(v) =
{

1, |NA(v)| > 0
0, otherwise.

Intuitively, f(A) is the number of nodes having at least one neighbor in A.

Definition 6. For G = (V,E) and any A ⊆ V , let K(A) = {v ∈ V : δA(v) = 1}
be the set of nodes that have at least one neighbor in A.

Lemma 3. Let G = (V,E) be a graph, A ⊆ V and x ∈ V \ A. Then:

f(A ∪ {x}) = f(A) + |NV \K(A)(x)|
Proof. By definition of K and δ, for every v ∈ K(A) it holds δA∪{x}(v) = δA(v) =
1 and for every v /∈ K(A) it holds δA∪{x}(v) = δA(v) + |Nx(v)| = |Nx(v)|. We
have f(A ∪ {x}) =

∑
v∈V δA∪{x}(v), which we show

∑

v∈V

δA∪{x}(v) =
∑

v∈K(A)

δA∪{x}(v) +
∑

v/∈K(A)

δA∪{x}(v)

∑

v∈K(A)

δA(v) +
∑

v/∈K(A)

(
δA(v) + |Nx(v)|)

∑

v∈K(A)

δA(v) +
∑

v/∈K(A)

δA(v) +
∑

v/∈K(A)

|Nx(v)|

=
∑

v∈V

δA(v) +
∑

v/∈K(A)

|Nx(v)| = f(A) + |NV \K(A)(x)|.
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Lemma 4. Function f (Definition 5) is submodular and monotone increasing.

Proof. First, we show f is monotone increasing. For every A,B such that A ⊆
B ⊆ V and for every v ∈ V , by applying definitions, it holds NA(v) ⊆ NB(v),
which implies δA(v) ≤ δB(v) and so f(A) ≤ f(B).

Second, we show f is submodular. For every A,B such that A ⊆ B ⊆ V
and for every x ∈ V \ B, by definition of K, it holds K(A) ⊆ K(B) ⇒ V \
K(B) ⊆ V \ K(A) and so |NV \K(B)(x)| ≤ |NV \K(A)(x)|, which implies f(B) +
|NV \K(B)(x)| − f(B) ≤ f(A) + |NV \K(A)(x)| − f(A). By Lemma 3, it holds
f(A ∪ {x}) = f(A) + |NV \K(A)(x)| and f(B ∪ {x}) = f(B) + |NV \K(B)(x)| and
so f(B ∪ {x}) − f(B) ≤ f(A ∪ {x}) − f(A).

Lemma 5. Let G = (V,E) be a graph. A set S ⊆ V is a total dominating set if
and only if f(S) = fmax.

Proof. Note fmax = f(V ) = |V | since for all v ∈ V it holds |NV (v)| > 0 and so
δV (v) = 1.

Let S ⊆ V be a total dominating set. Since S is total dominating set, then
δS(v) = 1 for all v ∈ V . So, we get f(S) =

∑
v∈V δS(v) = |V | = fmax.

Consider the case S ⊆ V is not a total dominating set and f(S) = fmax = |V |.
Then, there exists w ∈ V such that NS(w) = 0 ⇒ δS(w) = 0. So, f(S) =∑

v∈V δS(v) =
∑

v∈V \{w} δS(v) < |V | = fmax, a contradiction.

Theorem 2. Algorithm 1, where X = ∅, U = V , returns a
(
1 + ln

(
Δ

))
-

approximation for Minimum Total Dominating Set.

Discussion. Let us briefly comment on why the analysis performed in [14] falls
short of our approximation guarantee. Below, let f be our potential function
(Definition 5), f ′ be the potential function defined in [14] and T ∗ = {y1, · · · y|T ∗|}
be the minimum total dominating set for a given input. In [14], f ′ comprises two
parts f ′(T ) = i(T ) + w(T ), where i(T ) denotes the number of nodes in T which
are not adjacent to T , that is, the number of isolated nodes within T , and w(T )
is the number of nodes outside T which are not adjacent to T . While they prove
w is submodular, they do not prove the same for i. To overcome this obstacle,
they observe Δyj

i(Ti−1 ∪ T ∗
j−1) ≤ Δyj

i(Ti−1) + mj , where mj = 1 if yj is not
adjacent to T ∗

j−1 and mj = 0 otherwise. Then, it follows ai ≤ ai−1 − ai−1
|T ∗| + m

|T ∗| ,

where m =
∑|V |

j=1 mj . Since T ∗ is a total dominating set, they observe m ≤ |T ∗|
2 ,

which leads to ai ≤ ai−1 − ai−1
|T ∗| + 1

2 . Instead, in our analysis, we prove f is
submodular and as a result we arrive to the inequality ai ≤ ai−1 − ai−1

|T ∗| . Overall,
we improve from 1.5 + ln(Δ − 0.5) to 1 + ln(Δ).

4.2 Fault-Tolerant Total Domination

In this subsection, we generalize to the fault-tolerant case of total domination.
Recall that given a graph G = (V,E), a subset of nodes S ⊆ V is a fault-tolerant
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total dominating set if every node outside of S, that is, v ∈ V \ S, has at least
m neighbors in S and S has no isolated nodes. We define a submodular and
monotone increasing function f such that any subset of V achieving fmax is a
fault-tolerant total dominating set.

Definition 7. Let G = (V,E) be a graph. We define f : 2V → R as follows:

f(A) =
∑

v∈V

mA(v)

where:

mA(v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m,
[
v �∈ A ∧ |NA(v)| ≥ m

] ∨ [
v ∈ A ∧ |NA(v)| > 0

]
(a)

m − 1, v ∈ A ∧ |NA(v)| = 0 (b)

|NA(v)|, otherwise. (c)

Intuitively, mA(v) is the potential of node v toward satisfying the problem
definition. When v fully meets the definition requirements for total domination,
it is assigned a value of m (case a). If v �∈ A and has m′ < m neighbors in A,
then we assign it a value of m′ (case c). If v ∈ A, then it meets the definition
when it has at least one neighbor in A. In case it does not have a neighbor in
A, we artificially assign it a value of m − 1 (case b). The value will increase to
m only when there appears a neighbor of v in A.

Definition 8. For G = (V,E) and A ⊆ V , let K(A) = {v ∈ V : mA(v) = m}
be the set of nodes that have at least one neighbor in A, if the node is in A, or
have at least m neighbors in A, if the node is in V \ A.

Lemma 6. Let G = (V,E), A ⊆ V and x ∈ V \ A. Then:

f(A ∪ {x}) = f(A) + |NV \K(A)(x)| + tA(x)

where

tA(x) =

⎧
⎨

⎩

0, x ∈ K(A)
m − |NA(x)|, x /∈ K(A) ∧ |NA(x)| > 0
m − 1, x /∈ K(A) ∧ |NA(x)| = 0

Before proceeding to the proof, we provide some intuition on the definition
of tA(x). Overall, it holds tA(x) = mA∪{x}(x) − mA(x), that is, tA(x) captures
the increase in the potential of x attributed to the insertion of x into A.

Proof (Proof of Lemma 6). We first compute an expression for the value of
mA∪{x}(v) for any v ∈ V , where v �= x. If v ∈ K(A), then it holds mA∪{x}(v) =
mA(v) = m. Otherwise, if v �∈ K(A), let us show mA∪{x}(v) = mA(v)+ |Nx(v)|.
– If v ∈ A, then |NA(v)| = 0 by definition of K(A), so we are in case (b) of

Definition 7 and mA(v) = m − 1. Since v ∈ A, it also holds v ∈ A ∪ {x}.
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• If (v, x) ∈ E, then |NA∪{x}(v)| > 0, and by case (a) of Definition 7, it
follows mA∪{x}(v) = m = m − 1 + 1 = mA(v) + |Nx(v)|.

• If (v, x) �∈ E, then |NA∪{x}(v)| = |NA(v)| + |Nx(v)| = 0 + 0 = 0, so
mA∪{x}(v) = m − 1 = m − 1 + 0 = mA(v) + |Nx(v)|.

– If v �∈ A, then v �∈ A ∪ {x}. We are in case (c) of Definition 7, so it holds
mA(v) = |NA(v)|. Since v �∈ A∪{x}, we compute mA∪{x}(v) = |NA∪{x}(v)| =∑

u∈A∪{x} |Nu(v)| =
∑

u∈A |Nu(v)|+ |Nx(v)| = |NA(v)|+ |Nx(v)| = mA(v)+
|Nx(v)|.
For the new node x, it holds mA∪{x}(x) = mA(x) + tA(x), since

– If x ∈ K(A), then mA∪{x}(x) = mA(x) = m.
– If x /∈ K(A) and |NA(x)| > 0, then mA∪{x}(x) = m = |NA(x)| + m −

|NA(x)| = mA(x) + m − |NA(x)|.
– If x /∈ K(A) and |NA(x)| = 0, then mA∪{x}(x) = m − 1 = 0 + m − 1 =

mA(x) + m − 1.

We now compute the value of f(A ∪ {x})

f(A ∪ {x}) =
∑

v∈V

mA∪{x}(v) =

∑

v∈K(A)
v �=x

mA∪{x}(v) +
∑

v /∈K(A)
v �=x

mA∪{x}(v) + mA∪{x}(x) =

∑

v∈K(A)
v �=x

mA(v) +
∑

v /∈K(A)
v �=x

(
mA(v) + |Nx(v)|) + mA(x) + mA∪{x}(x) − mA(x) =

∑

v∈K(A)
v �=x

mA(v) +
∑

v /∈K(A)
v �=x

mA(v) + mA(x) +
∑

v /∈K(A)
v �=x

|Nx(v)| + tA(x) =

∑

v∈V

mA(v) +
∑

v/∈K(A)

|Nx(v)| + tA(x) = f(A) + |NV \K(A)(x)| + tA(x).

Lemma 7. Function f is submodular and monotone increasing.

Lemma 8. Let G = (V,E) be a graph. A set S ⊆ V is a fault-tolerant total
dominating set if and only if f(S) = fmax.

Proof. We get fmax = f(V ) = m|V |, since, for all v ∈ V , it holds |NV (v)| > 0
and so mV (v) = m.

Let S ⊆ V be a fault-tolerant total dominating set. Then, mV (v) = m for all
v ∈ V . So, f(S) =

∑
v∈V mS(v) = m|V | = fmax.

Assume S ⊆ V is not a fault-tolerant total dominating set and f(S) = fmax =
m|V |. Then, there exists v′ ∈ V \S such that |NS(v′)| < m or there exists s′ ∈ S
such that |NS(s′)| = 0. So, there exists w ∈ V such that mS(w) < m since
|NS(v′)| < m ⇒ mS(v′) < m and |NS(s′)| = 0 ⇒ mS(s′) = m − 1 < m and
f(S) =

∑
v∈V \{w} mS(v) + mS(w) < m(|V | − 1) + m = fmax, a contradiction.

Theorem 3. Algorithm1, where X = ∅, U = V , returns a
(
1+ln

(
Δ+m−1

))
-

approximation for Minimum Fault-Tolerant Total Dominating Set.
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5 Conclusions

We develop a general framework to greedily approximate a family of prob-
lems captured by a submodular potential function. We prove a first logarithmic
approximation for Fault-Tolerant Total Domination by applying the framework.
With minimal work, our proofs can be shown to stand for any seed set choice.
In the future, we plan to apply the framework to problems involving seed sets,
e.g., in biology inspired applications like disease pathway problems [5] or other.
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Abstract. This paper is concerned with the parallel complexity of
the constraint-required read-once refutation (CROR) problem in Unit
Two Variable Per Inequality (UTVPI) constraint systems. Recall that a
UTVPI constraint is a linear inequality of the form: ai ·xi + aj ·xj ≤ bk,
where ai, aj ∈ {0, 1,−1} and bk ∈ Z. A conjunction of such constraints
is called a UTVPI constraint system (UCS) and can be represented in
matrix form as: A · x ≤ b. UTVPI constraints are used in many domains
including operations research and program verification. A refutation is
a proof of infeasibility. A read-once refutation (ROR) is a refutation in
which each constraint is used at most once. We focus on a variant of
the ROR problem in which we specify which constraints a refutation is
required to use. This variant is known as the CROR problem. In this
paper, we provide NC reductions between the CROR problem in UCSs
and the decision version of the minimum weight perfect matching prob-
lem.

1 Introduction

This paper examines a problem associated with linearly infeasible systems of
Unit Two Variable Per Inequality (UTVPI) constraints. A linear relationship of
the form: ai ·xi +aj ·xj ≤ bk is called a UTVPI constraint, if ai, aj ∈ {0, 1,−1}.
A conjunction of such constraints is called a UCS. Observe that a UCS is a
specialized linear program (LP) and thus can be represented in matrix form as:
U : A · x ≤ b. This means that if U has no linear (rational) solutions, then
there exists a non-negative vector y, such that y · A = 0, y · b < 0. This follows
directly from Farkas’ Lemma [6]. The vector y serves as a refutation of the
feasibility of U in that it “proves” that U has no linear solutions. A read-once
refutation (ROR) is a refutation that uses each constraint at most once. Thus,
a refutation y is read-once, if each element yi of y belongs to the set {0, 1}.

Of the various forms of linear refutation, read-once refutations can be con-
sidered to be the simplest. Observe that a read-once refutation of a system U
corresponds to a subset of the constraints of U, which when summed together
causes contradiction. This is in contrast to more general forms of refutation
where the number of times each constraint is used is important. Additionally,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al. (Eds.): TAMC 2022, LNCS 13571, pp. 293–304, 2022.
https://doi.org/10.1007/978-3-031-20350-3_24
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since coefficients are unnecessary for read-once refutations, read-once refutations
are more compact than more general forms of refutation. This makes read-once
refutations a highly desirable proof of infeasibility.

Unfortunately, read-once refutation is an incomplete proof system, since
there exist infeasible LPs that do not have such a refutation. In fact, this is also
the case for UCSs [18]. Consequently, the problem of checking if an arbitrary
UCS has a read-once refutation is interesting.

The primary focus of this paper is a variant of the ROR problem in which
we are given a set of constraints that the refutation is required to use. This vari-
ant is known as the constraint-required read-once refutation (CROR) problem.
This makes the problem different from, and possibly harder than, the unre-
stricted ROR problem. We provide NC reductions between the CROR prob-
lem in UCSs and the decision version of the minimum weight perfect matching
(MWPMD) problem. These reductions prove that the CROR problem in UCSs
is NC-equivalent to the MWPMD problem.

The rest of the paper is organized as follows: Sect. 2 formally describes
the problems under consideration. The motivation for our work and related
approaches in the literature are described in Sect. 3. In Sect. 4, we provide NC
reductions between CROR and MWPMD. We conclude in Sect. 5 by summariz-
ing our contributions and identifying avenues for future research.

2 Statement of Problems

In this section, we formally describe the problems under consideration and define
the terms that will be used throughout the paper.

An linear program (LP) is a conjunction of linear inequalities and can be
written in the form: A · x ≤ b.

Throughout this paper, we use n to denote the number of variables in an LP
and m to denote the number of constraints.

We now define several types of constraints referred to throughout this paper.

Definition 1. A constraint of the form ai · xi ≤ bk is called an absolute con-
straint if ai ∈ {1,−1} and bk ∈ Z.

Definition 2. A constraint of the form ai ·xi +aj ·xj ≤ bk is called a difference
constraint, if ai, aj ∈ {1,−1}, ai = −aj, and bk ∈ Z.

A conjunction of difference constraints is called a difference constraint system
(DCS).

Definition 3. A constraint of the form ai ·xi +aj ·xj ≤ bk is called a Unit Two
Variable per Inequality (UTVPI) constraint, if ai, aj ∈ {0, 1,−1}, ai and aj are
not both 0, and bk ∈ Z.

A conjunction of UTVPI constraints is called a UTVPI constraint system
(UCS).
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In the above definitions, bk is called the defining constant of the constraint.
Note that in this paper, we require bk to be integral. Additionally, the terms xi

and −xi are called literals.

Example 1. x1 ≤ 5 is an absolute constraint, x1 − x2 ≤ 4 is a difference con-
straint, and x1 + x2 ≤ 4 is a UTVPI constraint.

Note that both absolute constraints and difference constraints are UTVPI
constraints.

In this paper, we examine refutations that establish linear infeasibility. In
LPs, we are interested in refutations that use the following inference rule:

∑n
i=1 ai · xi ≤ b1

∑n
i=1 a

′
i · xi ≤ b2∑n

i=1(ai + a′
i) · xi ≤ b1 + b2

(1)

Rule (1) is called the addition (ADD) rule and corresponds to the summation
of constraints. The ADD rule plays a role in the refutations of LPs that is similar
to the role played by resolution in the refutations of CNF formulas. Observe that
any assignment that satisfies the hypotheses of Rule (1) must also satisfy the
consequent. Thus, Rule (1) is a sound inference rule.

Additionally, the completeness of the ADD rule was established by Farkas
[6], in a lemma that is famously known as Farkas’ Lemma for systems of linear
inequalities [17]. Thus, if the input LP is unsatisfiable, then repeated applications
of Rule (1) to the constraints of the LP will result in a contradiction of the form:
0 ≤ −b, where b > 0.

For systems of UTVPI constraints, Rule (1) can be restricted as follows:

ai · xi + aj · xj ≤ bk1 −aj · xj + al · xl ≤ bk2

ai · xi + al · xl ≤ bk1 + bk2

(2)

We refer to Rule (2) as the transitive inference rule. Although it is a restricted
version of the ADD rule, it remains both sound and complete for the purposes
of proving the linear infeasibility of UCSs [12].

2.1 The Constraint-Required Read-Once Refutation (CROR)
Problem

We now define what it means for a refutation to be read-once.

Definition 4. A refutation is said to be read-once, if each constraint is used at
most once in the derivation of a contradiction.

This restriction applies to both constraints in the original system as well as
those derived from previous inferences. However, a derived constraint can be
reused if it can be rederived using a different set of input constraints. Note that
not every UCS has a read-once refutation.
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Example 2. Consider the UCS defined by System (3).

l1 : x1 + x2 ≤ −2 l2 : −x1 + x4 ≤ 1
l3 : −x1 − x4 ≤ 1 l4 : −x2 + x3 ≤ 0
l5 : −x2 − x3 ≤ 0

(3)

Observe that l1 is the only constraint in System (3) with a negative defining
constant. Thus, l1 must be included in any refutation of System (3).

Any refutation of System (3) must derive a constraint of the form 0 ≤ b where
b < 0. Thus, all variables in l1 must be eliminated by using other constraints. To
eliminate x1 from l1, we must include either l2 or l3 in the refutation. However, if
only one of these constraints is included, then the variable x4 is not eliminated.
Thus, both l2 and l3 must be in the refutation.

Similarly, to eliminate x2 from l1, we must include both l4 and l5. If both
constraints are not used, then the variable x3 is not eliminated.

Thus, any refutation of System (3) must include all five constraints in the sys-
tem. However, the sum of these five constraints is the constraint l6 : −x1−x2 ≤
0. This is obviously not a contradiction. The only way to derive a contradiction
is to include the constraint l1 a second time. Thus, System (3) does not have a
read-once refutation.

However, every infeasible UCS has a refutation in which each constraint is
used at most twice [19].

We study a variant of ROR known as the CROR problem.

Definition 5. The Constraint-required ROR (CROR) problem in UCSs:
Given a UCS U and a set of constraints S ⊆ U, does U have a read-once
refutation that uses all of the constraints in S?

2.2 The Minimum Weight Perfect Matching (MWPM) Problem

We briefly discuss the Minimum Weight Perfect Matching (MWPM) problem on
undirected graphs. Let G = 〈V,E, c〉 be an undirected graph, with vertex set
V, edge set E and edge cost function c. A matching is any collection of vertex-
disjoint edges. A perfect matching is a matching in which each vertex v ∈ V is
matched. Without loss of generality, we assume that |V | is even, since G cannot
have a perfect matching, otherwise.

Definition 6. The MWPMD problem: Given a weighted, undirected graph G,
and integer L, does G have a perfect matching with weight at most L?

In this paper, we relate the parallel complexity of the CROR problem in
UCSs to the parallel complexity of the MWPMD problem.
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2.3 Complexity Classes

We now define the complexity classes used in this paper. First, we define the
complexity class NC [15].

Definition 7. A problem belongs to the class NC, if it can be solved in polylog-
arithmic parallel time using a polynomial number of processors.

If we relax the requirements to allow for the use of a quasi-polynomial number
of processors, we end up with the class Quasi-NC [21].

Definition 8. A problem belongs to the class Quasi-NC (QNC), if it can be
solved in polylogarithmic parallel time using a quasi-polynomial number of pro-
cessors.

Note that quasi-polynomial refers to functions in 2O(logc n), for some constant
c > 0.

The classes RNC and Quasi-RNC respectively generalize the above
classes [14].

Definition 9. A problem belongs to the class RNC, if there exists an algo-
rithm that runs in polylogarithmic parallel time using a polynomial number of
processors such that:

1. On yes instances of the problem, the algorithm returns true with probability
at least 1

2 .
2. On no instances of the problem, the algorithm always returns false.

Definition 10. A problem belongs to the class Quasi-RNC (QRNC), if there
exists an algorithm that runs in polylogarithmic parallel time using a quasi-
polynomial number of processors such that:

1. On yes instances of the problem, the algorithm returns true with probability
at least 1

2 .
2. On no instances of the problem, the algorithm always returns false.

For randomized algorithms, the concept of a pseudo deterministic algorithm
has been defined [9].

Definition 11. A randomized algorithm is pseudo-deterministic, if on a
given instance S, it returns the same solution with high probability.

For parallel algorithms, we have different ways to measure efficiency. These
are known as work-optimality and work-efficiency [10].

Definition 12. A parallel algorithm is work-optimal, if the total work done
by the algorithm is within a constant factor of the work done by the best known
sequential algorithm for the same problem.

Definition 13. A parallel algorithm is work-efficient, if the total work done
by the algorithm is within a logarithmic factor of the work done by the best known
sequential algorithm for the same problem.
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3 Motivation and Related Work

UTVPI constraints occur in a number of problem domains including but not
limited to program verification, abstract interpretation, real-time scheduling,
and operations research [12]. For systems of UTVPI constraints, the problem
of checking for read-once refutations seems to be more difficult than that of
checking for linear or even integer feasibility. Previous results have established
that the problems of checking for linear feasibility [19] and integer feasibility
[20] of a UCS can both be solved in O(m · n) time. However, checking for the
existence of read-once refutations takes O((m + n)2 · log(m + n)) time [18]. It
is very important to note that this paper considers a different problem in that
the read-once refutation is required to include a particular set of constraints.
Thus, this problem is a generalization of the problem considered in [18].

In [12], the problem of checking the linear feasibility of a UCS was reduced to
the problem of checking the linear feasibility of a DCS. Note that this problem
is equivalent to the problem of finding shortest paths in a directed graph [3] and
thus belongs to the class NC [13].

The MWPMD problem is one of the classical problems in combinatorial
optimization [11]. Over the years, there has been a steady stream of papers
documenting improvements in algorithms for this problem [4,5,8]. While the
MWPMD problem is in P, it is unknown if the MWPMD problem is in NC. Sev-
eral papers have studied both this problem and its unweighted variant from the
perspective of parallel algorithms. In [7], it was shown that the problem of check-
ing if an unweighted bipartite graph has a perfect matching is in QNC. Addition-
ally, it was shown in [9] that this problem can be solved pseudo-deterministically
by an RNC algorithm. However, this same problem was shown to be in NC
for planar graphs [1]. These results were then extended to the minimum weight
perfect matching problem [2,16]. [2] also shows that the problem of finding a
minimum weight perfect matching is equivalent to the MWPMD problem under
NC reductions.

In this paper, we demonstrate the equivalence between the CROR problem
in UCSs and the MWPMD problem from the perspective of efficient parallel
computation. General matching problems have been extensively studied from a
perspective of parallel complexity. However, it remains unknown if the MWPMD

problem belongs to the complexity class NC [2].

4 The CROR Problem in UTVPI Constraints

In this section, we show that the CROR problem in UTVPI constraints is NC-
equivalent to the MWPMD problem.

First, we reduce the CROR problem to the MWPMD problem. This is done
using a modified version of the reduction used in [18]. For the sake of complete-
ness, we now describe that reduction.

Given a UCS U : A · x ≤ b, we construct the undirected graph G = 〈V,E, c〉
as follows:
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1. For each variable xi in U, add the vertices x+
i , x′

i
+, x−

i , and x′
i
− to V.

Additionally, add the edges x−
i

0− x+
i and x′

i
− 0− x′

i
+ to E.

2. Add the vertices x+
0 and x−

0 to V. Additionally, add the edge x−
0

0− x+
0 to E.

3. For each constraint lk of U, add the vertices lk and l′k to V and the edge

lk
0− l′k to E. Additionally:

(a) If lk is xi + xj ≤ bk, add the edges x+
i

bk
2− lk, x′

i
+

bk
2− lk, x+

j

bk
2− l′k, and

x′
j
+

bk
2− l′k to E.

(b) If lk is xi − xj ≤ bk, add the edges x+
i

bk
2− lk, x′

i
+

bk
2− lk, x−

j

bk
2− l′k, and

x′
j
−

bk
2− l′k to E.

(c) If lk is −xi + xj ≤ bk, add the edges x−
i

bk
2− lk, x′

i
−

bk
2− lk, x+

j

bk
2− l′k, and

x′
j
+

bk
2− l′k to E.

(d) If lk is −xi − xj ≤ bk, add the edges x−
i

bk
2− lk, x′

i
−

bk
2− lk, x−

j

bk
2− l′k, and

x′
j
−

bk
2− l′k to E.

(e) If lk is xi ≤ bk, add the edges x+
i

bk
2− lk, x′

i
+

bk
2− lk, x+

0

bk
2− l′k, and x−

0

bk
2− l′k

to E.

(f) If lk is −xi ≤ bk, add the edges x−
i

bk
2− lk, x′

i
−

bk
2− lk, x+

0

bk
2− l′k, and x−

0

bk
2− l′k

to E.

Observe that if U has m constraints over n variables, then G has (4 · n+ 2 ·
m + 2) vertices and (2 · n + 5 · m + 1) edges. In other words, G has O(m + n)
vertices and O(m + n) edges.

As discussed in [18], G has a negative weight perfect matching, if and only
if, U has a read-once refutation.

We now modify the above reduction to NC-reduce the CROR problem in
UCSs to the MWPMD problem.

Let U be a UCS and let G be the corresponding undirected graph. If S is a
set of constraints in U, let G′

S be the graph constructed by removing the edge

lr
0− l′r from G for each constraint lr ∈ S.
It is important to note that despite the similarities to the reduction in [18],

this reduction reduces a different problem to the MWMPD problem.
We now establish the correctness of our reduction.

Theorem 1. Let U be a UCS and let S be a set of constraints in U. U has a
read-once refutation that uses all of the constraints in S, if and only if, G′

S has
a negative weight perfect matching.
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Proof. First, assume that U has a read-once refutation R that uses all of the
constraints in S. Since R is a read-once refutation of U, the corresponding undi-
rected graph G has a negative weight perfect matching M [18].

From [18], for each constraint lk in U, the perfect matching M uses the edge

lk
0− l′k, if and only if, R does not use the constraint lk. Let lr be a constraint in

S. Since R uses the constraint lr, the edge lr
0− l′r is not in M . Note that this is

true for each constraint in S. Thus, M is a negative weight perfect matching of
the graph G′

S .
Now assume that G′

S has a negative weight perfect matching M . Note that
M is also a negative weight perfect matching of G. Thus, U has a read-once
refutation R [18].

For each constraint lk in U, the perfect matching M uses the edge lk
0− l′k, if

and only if, R does not use the constraint lk. Let lr be a constraint in S. Since

M is a perfect matching of G′
S , M does not use the edge lr

0− l′r. Thus, R uses
the constraint lr as desired. ��

We now show that the graph G′
S can be constructed efficiently in parallel.

Theorem 2. Given a UCS U with m constraints over n variables and a set S
of constraints in U, the corresponding graph G′

S can be constructed in constant
time using O(m + n) processors.

Proof. The construction of G′
S can be performed in parallel as follows:

1. For each i = 1 . . . n, the ith processor creates the vertices and edges corre-
sponding to the variable xi. These are the vertices and edges specified in step
(1) of the construction of G. All of these edges are also in G′

S . Note that, in
this step, each processor creates four vertices and two edges. Additionally, no
two processors are required to access the same memory locations. Thus, this
step can be performed in constant time in the CREW PRAM model.

2. For each j = 1 . . .m, the jth processor creates the vertices and edges corre-
sponding to the constraint lj . These are the vertices and edges specified in
step (3) of the construction of G. If lj 	∈ S, then all of these edges are also

in G′
S . If lj ∈ S, then the edge lj

0− l′j is not in G′
S . Note that, in this step,

each processor creates two vertices and four or five edges. Additionally, no
two processors are required to access the same memory locations. Thus, this
step can be performed in constant time in the CREW PRAM model.

From this, it is easy to see that the reduction described above from the CROR
problem in UCSs to the MWPMD problem is an NC reduction. ��

Note that this reduction works regardless of the size of S. Thus, the CROR
problem can be NC-reduced to the MWPMD problem even when |S| ∈ O(m).

Now we need to show that this reduction can be performed in the oppo-
site direction. That is, we want to design an NC reduction from the MWPMD

problem to the CROR problem in UCSs.
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Let G be an undirected graph with n vertices and m edges, and let L be
an arbitrary integer. From G and L, we construct a UCS U as follows. 1. For

each vertex xi in G, create the variable xi. 2. For each edge xi

bk− xj in G,
create the constraint −xi − xj ≤ bk. 3. Let −C be the smallest weight of any
edge in G. If all edge weights are positive, then let C = 0. Additionally, let
W = max{m · C + L + 1, 1}. 4. Create the constraint x1 ≤ (n − 1) · W − L − 1.
5. For each variable xi, i = 2, . . . , n, create the constraint xi ≤ −W .

Example 3. Consider the undirected graph G and corresponding UCS U, when
L = 4, in Fig. 1.

x1

x2

x3

x4

x5

x6

−1 2

1

0

2

2

−x1 − x2 ≤ −1 −x1 − x4 ≤ 1
−x2 − x3 ≤ 0 −x3 − x6 ≤ 2
−x4 − x5 ≤ 2 −x5 − x6 ≤ 2

x1 ≤ 50 x2 ≤ −11
x3 ≤ −11 x4 ≤ −11
x5 11 x6 11

Fig. 1. Undirected Graph and corresponding UCS

Note that U has a read-once refutation R that uses the constraint x1 ≤ 50.
R consists of the constraints −x1−x4 ≤ 1, −x2−x3 ≤ 0, −x5−x6 ≤ 2, x1 ≤ 50,
and x2 ≤ −11 through x6 ≤ −11. Observe that G has a perfect matching of

weight at most 4. This matching consists of the edges x1

1− x4, x2

0− x3, and

x5

2− x6.

We now show that G has a perfect matching of weight at most L, if and only
if, U has a read-once refutation that uses the constraint x1 ≤ (n−1) ·W −L−1.

Theorem 3. Let G be an undirected graph and let L be an arbitrary integer.
G has a perfect matching of weight at most L, if and only if, the corresponding
UCS U (constructed as per the discussion above) has a read-once refutation that
uses the constraint x1 ≤ (n − 1) · W − L − 1.

Proof. Let M be a perfect matching in G with cost cM ≤ L. From M , we can

construct a read-once refutation R of U as follows: 1. For each edge xi

bk− xj in M ,
add the constraint −xi−xj ≤ bk to R. 2. Add x1 ≤ (n−1)·W −L−1, x2 ≤ −W ,
. . ., xn ≤ −W to R. Note that summing the constraints x1 ≤ (n−1) ·W −L−1,
x2 ≤ −W , . . ., xn ≤ −W results in the constraint

∑n
i=1 xi ≤ −L − 1.

Since M is a perfect matching, every vertex in G is used by exactly one
edge in M . Thus, each variable in U is used by exactly one constraint of the
form −xi − xj ≤ bk in R. Summing, these constraints results in the constraint
−∑n

i=1 xi ≤ cM . Summing this result with the constraint
∑n

i=1 xi ≤ −L − 1
results in the constraint 0 ≤ cM − L − 1. Since cM ≤ L, this constraint is a
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contradiction. Thus, R is a refutation of U. Since R uses each constraint at
most once, R is a read-once refutation as desired.

Now assume that U has a read-once refutation R that uses the constraint
x1 ≤ (n− 1) ·W −L− 1. Any summation of the constraints in U corresponding
to the edges in G results in a constraint with a defining constant H where
H ≥ −C · m since there are m such constraints and the defining constant of
each constraint is at least −C. If R uses f constraints of the form xi ≤ −W ,
then summing the constraints in R would result in a constraint of the form
0 ≤ (n − 1 − f) · W − L − 1 + H, where H ≥ −C · m.

Since R is a read-once refutation, (n− 1− f) ·W −L− 1+H < 0. Note that
W ≥ C ·m+L+1 ≥ L+1−H. Thus, (n−1−f) ·W −L−1+H ≥ (n−2−f) ·W .
Since, (n − 1 − f) · W − L − 1 + H < 0 and W ≥ 1, (n − 2 − f) < 0. It follows
that f ≥ n− 1. Consequently, R must use all constraints of the form xi ≤ −W .
Summing these constraints, together with the constraint x1 ≤ (n−1) ·W −L−1
results in the constraint

∑n
i=1 xi ≤ −L − 1.

Since summing the constraints in R results in a contradiction of the form
0 ≤ b where b < 0, the remaining constraints in R must sum together to produce
a constraint of the form −∑n

i=1 xi ≤ cM where cM ≤ L. By construction of U,
each −xi term must come from a constraint of the form −xi−xj ≤ bk. Thus, the
non-absolute constraints in R have the following properties: 1. Each variable xi

is used by exactly one constraint in R of the form −xi −xj ≤ bk. 2. The defining
constants of these constraints sum to the value cM ≤ L.

Thus, the edges corresponding to these constraints form a perfect matching
in G with weight at most L. ��

We now show that this is an NC reduction.

Theorem 4. Given an undirected graph G with n vertices and m edges the
corresponding UCS U can be constructed in O(log n) time using O(m + n) pro-
cessors.

Proof. The construction can be performed in parallel as follows:

1. Find C. Note that this can be done in O(log n) time using O(n) processors
using a divide and conquer parallel search procedure.

2. For each j = 1 . . .m, the jth processor creates the constraint corresponding
to the jth edge in G. This is the constraint specified in step (2) of the con-
struction of U. Note that no two processors are required to access the same
memory locations. Thus, this step can be performed in constant time in the
CREW PRAM model.

3. For each i = 2 . . . n, the ith processor creates the constraint xi ≤ −W . Mean-
while, the first processor creates the constraint x1 ≤ (n−1) ·W −L−1. Note
that, in this step, no two processors are required to access the same memory
locations. Thus, this step can be performed in constant time in the CREW
PRAM model.

From this, it is easy to see that the reduction from the MWPMD problem to
the CROR problem in UCSs can be accomplished by an NC reduction. ��
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Note that there is only one constraint that is required to be used by the
read-once refutation of U. Thus, the MWPMD problem can be NC-reduced to
the CROR problem in UCSs even when |S| = 1.

5 Conclusion

In this paper, we investigated the applicability of parallelization to the prob-
lem of finding CRORs in systems of UTVPI constraints. As mentioned previ-
ously, UTVPI constraints are an important class of linear constraints that find
applications in a number of domains and hence short certificates of infeasibility
(read-once refutations) are particularly useful.

In previous work [18], the ROR problem was reduced to the MWPMD prob-
lem. We extended these results to a more restrictive form of refutation. Addition-
ally, we were able to NC-reduce the MWPMD problem to the CROR problem in
UTVPI constraints. Together, these reductions prove that the CROR problem
in UCSs is NC-equivalent to the MWPMD problem. All of these reductions are
designed using the CREW PRAM model of parallel computation.

From the perspective of future research, the following avenues appear promis-
ing:

1. In this paper, we related the parallel complexity of the CROR problem to the
parallel complexity of the MWPMD problem. However, we did not provide
parallel algorithms for the ROR problem. Future research can focus on finding
a parallel algorithm for the ROR problem in UCSs.

2. It is known that the minimum weight perfect matching problem for planar
graphs belongs to the class NC. Can this result be extended to provide an
NC algorithm for a restricted form of UTVPI constraint systems?

3. The problem of checking the linear feasibility of a UCS can be solved by
an NC algorithm for shortest paths. Can a similar result be obtained for
checking the integer feasibility of a UCS? It is important to note that for
integer feasibility, we need to use an additional inference rule.
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Abstract. The densest subgraph problem (DSG) aiming at finding an
induced subgraph such that the average edge-weights of the subgraph is
maximized, is a well-studied problem. However, when the input graph is
a hypergraph, the existing notion of DSG fails to capture the fact that
a hyperedge partially belonging to an induced sub-hypergraph is also a
part of the sub-hypergraph. To resolve the issue, we suggest a function
fe : Z≥0 → R≥0 to represent the partial edge-weight of a hyperedge
e in the input hypergraph H = (V, E , f) and formulate a generalized

densest sub-hypergraph problem (GDSH) as maxS⊆V

∑
e∈E fe(|e∩S|)

|S| . We
demonstrate that, when all the edge-weight functions are non-decreasing
convex, GDSH can be solved in polynomial-time by the linear program-
based algorithm, the network flow-based algorithm and the greedy 1

r
-

approximation algorithm where r is the rank of the input hypergraph.
Finally, we investigate the computational tractability of GDSH where
some edge-weight functions are non-convex.

Keywords: Densest subgraph problem · Hypergraph · Convex
function

1 Introduction

The densest subgraph problem (DSG) is a well-known problem in research com-
munities of operations research, combinatorial optimization, data mining and so
on. Given an edge-weighted graph G = (V, E , w) with a vertex set V , an edge
set E and an edge-weight function w : E → R≥0, DSG asks us to maximize the
density of the subgraph induced by a vertex set S ⊆ V , i.e., maxS⊆V

∑
e∈E w(e)

|S| .
Applications of DSG range from web community detection [6,8], network motif
clustering [3,18] to information recommendation [17]. For solving DSG, there
exists a network flow-based exact algorithm by Goldberg [5,9], a linear program-
based algorithm by Charikar [4] and a linear-time 1

2 -approximation algorithm in
[1,13].
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On the other hand, hypergraph is attracting increasing attentions in recent
years. The hypergraph is a generalization of the normal graph in which a hyper-
edge consists of arbitrary positive number of vertices. An edge-weighted hyper-
graph is defined as H = (V, E , w) where V is a vertex set, E is a hyperedge set,
and w : E → R≥0 is an edge-weight function assigning each hyperedge a positive
weight. The densest subgraph problem in an edge-weighted hypergraph, i.e. the
densest sub-hypergraph problem (DSH), is known to be formulated as follows.

Problem 1 (DSH as in [11,18]). Given a hypergraph H = (V, E , w), DSH asks
for a sub-hypergraph induced by S ⊆ V such that the average edge-weight of
the sub-hypergraph i.e.,

∑
e⊆S w(e)

|S| , is maximized.

As far as we know, DSH was initially appeared as a generalization of the
densest r-clique problem (DrC) in [18]. Given a graph G = (V, E), DrC asks
for a subset of vertices S such that the average number of r-cliques (a clique
of size r) induced by S is maximized. Clearly, DrC can be reduced to DSH
by building a r-uniform hypergraph in which each hyperedge represents a r-
clique. For DrC, a polynomial exact algorithm and a 1

r -approximation algorithm
were introduced in [18], and a sampling algorithm was given in [16]. In [11], Hu
et al. finally remove the assumption that the input hypergraph is r-uniform
and formalize DSH as Problem 1. They demonstrated that the linear program,
network flow and approximation algorithms for DSH. Recently, a much faster
(1 − ε) approximation algorithm based on max flow is given in [5] for DSH.

In this paper, we study a more generalized version of the densest sub-
hypergraph problem rather than continue working with the existing model. We
observed that in Problem 1, a hyperedge e is counted as a part of sub-hypergraph
induced by S only when e is a subset of S. However, in some graph applications
like [15], if a hyperedge e intersects with S, i.e., e �⊂ S and e∩S �= ∅, e is partially
belong to the sub-hypergraph induced by S. Therefore, the fact that the weight
of a sub-hypergraph induced by S should contain a partial weight of the hyper-
edge that intersects with S is not captured by the definition of DSH. In order
to fix this issue, we introduce an edge-weight function fe : {0, ..., |e|} → R≥0

for each hyperedge e in the input hypergraph, and then define the following
generalized densest sub-hypergraph problem (GDSH).

Problem 2 (GDSH in this paper). Given an edge-weighted hypergraph H =
(V, E , f) with vertex set V and hypergedge set E , fe : {0, ..., |e|} → R≥0 being
an edge-weight function for each e ∈ E , GDSH asks for a set of vertices S ⊆ V

such that i.e.,
∑

e∈E fe(|e∩S|)
|S| , is maximized.

It is clear that GDSH generalizes the DSH problem. For example, if H =
(V, E , w) is the input hypergraph for DSH, we can build a hypegraph H′ =
(V, E , f ′) such that f ′

e(i) = 0 when i < |e| and f ′
e(|e|) = w(e). Then, it is

clear that the solution of GDSH with input graph H′ is the same as DSH with
input graph H. In this sense, GDSH also generalizes existing densest subgraph
problems like DSG and DrCP.
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Since convex functions are ubiquitous in many applications, in the remaining
of the paper, we investigate GDSH with focus on cases where all edge-weight
functions are non-decreasing convex. It is clear that all the above problems like
DSG, DrC and DSH are special cases of GDSH with non-decreasing convex
edge-weight functions. We will use n to denote the vertex number |V |, m to
denote the edge number |E|, p to denote

∑
e∈E |e| and r to denote the rank

maxe∈E |e| of the input hypergraph H = (V, E , f). Note that p =
∑

v∈V degH(v)
where degH(v) is the degree of vertex v ∈ V . We also use Ψ =

∑
e∈E fe(|e|)

to denote the whole edge-weight of the hypergraph. Our main contributions for
GDSH when all edge-weight functions are non-decreasing convex functions are
summarized as follows.

– A linear program whose optimal value is equal to the maximum
density of GDSH. The linear program has O(mr!) inequalities but efficient
oracles exist for separation. We show that an optimal solution of GDSH can
be easily obtained by solving the linear program.

– A network flow-based algorithm which runs in O(mincut(p, pr) log Ψ)
time, mincut(N,M) representing the time of solving minimum s, t-
cut in directed flow network with N vertices and M arcs. We also
show the technique to obtain a O(mincut(p, pr) log(ε−1 log(rm))) time (1−ε)
approximation algorithm which removes the log Ψ factor.

– A greedy 1
r approximation algorithm with much faster running time

O(pr log n). With a little relaxation of the greedy strategy, the greedy approx-
imation algorithm can also run in logarithmic iterations under the parallel
computing settings.

It is worth mentioning that the above three algorithms extend the linear
program algorithm, network flow algorithm and greedy algorithm, respectively,
in [4,11]. However, the extension is not trivial as. We only assume the non-
decreasing and convexity properties of the edge-weight function in this work,
contrary to the existing work that edge-weight functions are uniform and specif-
ically given.

For completeness, we lastly study the computational tractability of GDSH
when some edge-weight functions are non-convex. It turns out that when all
edge-weight functions are non-decreasing concave, GDSH can be simply solved
by selecting a (densest) vertex, when some edge-weight function are concave,
GDSH is shown to be NP-hard by reduction from the max-cut problem.

2 Properties of Edge-Weight Functions

Given H = (V, E , f), the edge weight function fe is defined on discrete domain
0, ..., |e|. We first assume that fe has non-decreasing properties for any e ∈ E .

Property 1 (Non-decreasing). fe(i) ≤ fe(i + 1),∀i ∈ {0, ..., |e| − 1}
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This property is a clearly natural in practice. Without loss of generality, we
assume that fe(0) = 0. If fe(0) �= 0, we can use f ′

e(i) = fe(i) − fe(0) to replace
fe without changing the optimal solution of GDSH.

Aside from the non-decreasing property, we also discuss the convexity and
concavity properties. As we know, convexity and concavity are common proper-
ties for many functions. They play important roles in characterizing the hardness
of underlying optimization problems.

Property 2 (Convexity).

fe(i) − fe(i − 1) ≤ fe(i + 1) − fe(i),∀i ∈ {1, ..., |e| − 1}.

Property 3 (Concavity).

fe(i) − fe(i − 1) ≥ fe(i + 1) − fe(i),∀i ∈ {1, ..., |e| − 1}.

Given an S ⊆ V , we use F (S) =
∑

e∈E fe(|e ∩ S|) to represent the weight
of sub-hypergraph induced by S. Clearly, if ∀e ∈ E , fe is non-decreasing con-
vex (concave), then F (S) is a monotone supermodular (submodular) function in
finite set V (because submodularity and supermodularity are closed under non-
negative linear combination). Let us recall the definitions of supermodularity and
submodularity as bellow.

Property 4 (Supmodularity).

F (S ∪ {v}) − F (S) ≤ F (T ∪ {v}) − F (T ),∀S ⊆ T ⊂ 2V and ∀v ∈ S, v /∈ T

Property 5 (Submodularity).

F (S ∪ {v}) − F (S) ≥ F (T ∪ {v}) − F (T ),∀S ⊆ T ⊂ 2V and ∀v ∈ S, v /∈ T

Lastly, we assume that fe(i) is computed in constant time for any i ∈
{0, ..., |e|}. Thus, for any set S ⊆ V , fe(|e ∩ S|) is computed in time
O(min{|e|, |S|}) and F (S) is computed in time O(p).

3 GDSH with Convex Edge-Weight Functions

In this section, we investigate algorithms for solving GDSH when every edge-
weight function is non-decreasing convex. Specifically, we show a linear program,
a parametric network flow-based algorithm, and a fast greedy approximation in
Sects. 3.1, 3.2 and 3.3, respectively.

3.1 A Linear Program Approach

For a hyperedge e ∈ E , let Pe be the set of all permutations of e. Given a
permutation π ∈ Pe, π(i) = v means that the ith vertex of permutation π is
v and v ∈ e. Then, the linear program for GDSH, i.e., LP-GDSH, is given as
follows.
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maximize
∑

e∈E
ye (LP-GDSH)

s.t.
|e|∑

i=1

(fe(i) − fe(i − 1))xπ(i) ≥ ye ∀e ∈ E ,∀π ∈ Pe (1)

∑

v∈V

xv ≤ 1 (2)

xv ≥ 0, ye ≥ 0 ∀v ∈ V, e ∈ E
Lemma 1. Let x be a feasible solution of LP-GDSH. Then, for any e ∈ E, we
have minπ∈Pe

(
∑|e|

i=1(fe(i)−fe(i−1))xπ(i)) =
∑|e|

i=1(fe(i)−fe(i−1))xπ∗(i) where
π∗ ∈ Pe is a permutation that xπ∗(1) ≥ xπ∗(2) ≥ ... ≥ xπ∗(|e|).

For compactness, we leave the proof of this lemma, as well as all the other missing
proofs in the paper, to the appendix.

Theorem 1. The following statements hold for LP-GDSH.

1. For any S ⊆ V , there is a feasible solution (x,y) of LP-GDSH such that
∑

e∈E ye = F (S)
|S| .

2. Let γ∗ be the optimal objective value of LP-GDSH. Then, there is a vertex
set S ⊆ V such that γ∗ ≤ F (S)

|S| .

Therefore, the optimal solution of LP-GDSH is equal to the maximum density
of GDSH.

Proof (sketch). For the first statement, we can build a solution (x,y) such that
xv = 1

|S| if v ∈ S and xv = 0 otherwise, and ye = fe(|e∩S|)
|S| for any e ∈ E . Then,

we show that this solution satisfies the statement. For the second statement, let
us denote (x∗,y∗) as an optimal solution of LP-GDSH and Sr = {v : x∗

v ≥ r}.
We can show that there exists a r ∈ [0, 1] such that γ∗ ≤ F (Sr)

|Sr| . This last
conclusion that the optimal value of LP-GDSH is equal to the maximum value
of GDSH can be finally obtained by combining the two statements.

By the proof of Theorem 1, we can obtain the optimal solution to GDSH
from the optimal LP solution (x∗,y∗) by simply solving maxr∈[0,1]

F (Sr)
|Sr| . The

number of inequalities in LP-GDSH is O(mr!), but this linear program can be
still solved in polynomial time because Inequality 1 can be efficiently separated
by Lemma 1.

Remark. It is clear that LP-GDSH generalizes Charikar’s linear program [4]
for DSG and Hu’s linear program [11] for DSH (Problem 1). A very recent work
in [5] showed that the linear program technique can be also used for solving
the densest supermodular subset problem which maximizes a supermodular set
function of S over |S|. Our GDSH can be a special case of this problem as F (S)
is supermodular if fe is convex. It is also interested to see that our LP-GDSH
can be reduced to their linear program by summarizing Inequality 1 over all
e ∈ E .
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3.2 A Network Flow Algorithm

In this section, we introduce a parametric network flow-based approach algo-
rithm, GDSH-Flow, for solving GDSH when fe is non-decreasing convex. GDSH-
Flow is a standard binary search algorithm which finds the optimal density
within range [lb, ub]. Initially, lb = 0 and ub = Ψ . GDSH-Flow testifies if there
is a sub-hypergraph of density λ = lb+ub

2 by computing minS⊆V (γ|S| − F (S)).
If minS⊆V (γ|S| − F (S)) ≤ 0, there exists a sub-hypergraph of density λ, then
we set lb as λ. Otherwise, it indicates that λ is larger than the optimal, we then
decrease ub to λ. In order to compute minS⊆V (γ|S| − F (S)) for any λ, we make
use of the minimum cut from a directed network flow G = (U,A, λ) where U and
A are vertex set and arc set, respectively.

Algorithm 1: Exact network flow algorithm for GDSH.
1 GDSH-Flow(H)
2 begin
3 lb ← 0,ub ← Ψ
4 while ub > lb do
5 λ ← lb+ub

2

6 Build directed flow network G = (U, A, λ)
7 if the cost of min-cut (X, Y ) in G is larger than Ψ then
8 ub ← λ

9 else
10 lb ← λ

11 build directed flow network G = (U, A, lb)
12 compute minimum cut (X, Y ) from G
13 return X ∩ V

To illustrate how to build G = (U,A, λ), we need to first assume that for
any e ∈ E , fe(i) returns integers for i = 0, ..., |e|. This restriction does not
impose any loss of generality because we can always obtain integer values by
simultaneously scaling the edge-weight functions with an enough large value M
which is a multiple of 10. Then, G is built by the following steps.

– Build a source s, a sink t in G, and make a copy of every vertex of V in G.
– For a vertex v ∈ U \ {s, t}, add an arc (v, t) with capacity λ to G.
– For a hyperedge e in H, assume e = {v0, ..., v|e|−1}. Then, add |e| vertices

ue
0, ..., u

e
|e|−1 to G. Also, add the following arcs to G.

• For each i = 0, ..., |e| − 1, add an arc (s, ue
i ) with capacity (|e| − i)αe

i .
• For each i = 0, ..., |e| − 1, j = 0, ..., |e| − 1, add an arc (ue

i , vj) with capac-
ity αe

i that

αe
i =

{
fe(1) − fe(0) if i = 0,
fe(i + 1) + fe(i − 1) − 2fe(i) if 0 < i < |e|.
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…
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…
…

Fig. 1. An example of directed network G.

An illustrative example of G is shown in Fig. 1. Clearly, αe
i ≥ 0 for any integer

0 ≤ i < |e| because fe is non-decreasing convex. We have the following statement
for G.

Lemma 2. Let (X,Y ) be a minimum s, t-cut in network G = (U,A, λ) such
that s ∈ X and t ∈ Y . Denote S = X ∩ V . Then, the cost of (X,Y ) is equal to
Ψ + λ|S| − F (S).

Proof. First, by the definition of ae
i , we have,

j∑

i=0

αe
i = fe(1) − fe(0) +

i=j∑

i=1

((fe(i + 1) − fe(i)) − (fe(i) − fe(i − 1)))

= fe(j + 1) − fe(j)

for any integer j < |e|.
Second, in network G, (X,Y ) is a minimum s, t-cut, S = X ∩ V and an edge

e = {v0, ..., v|e|−1}. Then, if |S ∩ e| > i, then ue
i ∈ X, otherwise, (X,Y ) is not a

minimum s, t-cut. In contrary, if |S ∩ e| < i, then ue
i ∈ Y . If |S ∩ e| = i, ue

i can
be either in X or Y without changing the cost of cut (X,Y ).

Let us denote se = |e ∩ S| for simplicity. With the above observations, we
finally get the cost of cut (X,Y ) as

∑

e∈E
((|e| − se)

se−1∑

i=0

ae
i +

|e|−1∑

i=se

(|e| − i)ae
i ) + λ|S|

=
∑

e∈E
(

se∑

i=0

ae
i + ... +

|e|−1∑

i=0

ae
i ) + λ|S|

=
∑

e∈E
(fe(se + 1)− fe(se) + ... + fe(|e|)− fe(|e| − 1)) + λ|S|

=
∑

e∈E
(fe(|e|)− fe(se)) + λ|S|

=
∑

e∈E
fe(|e|)− F (S) + λ|S|

,which ends the proof.
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For a given λ ≥ 0, Lemma 2 indicates that the cost of minimum s, t-cut
(X,Y ) is Ψ +minS⊆V (λ|S|−F (S)). Thus, we can decide whether there exits an
S ⊆ V such that λ|S|−F (S) < 0 by checking whether the cost of minimum s, t-
cut of G is smaller than Ψ . Therefore, the correctness of Alg. 1 is straightforward
due to Lemma 2.

Theorem 2. If ∀e ∈ E in H = (V, E , f), fe is a non-decreasing convex function,
then Alg. 1 solves GDSH in O(mincut(p, pr) log Ψ) time where mincut(N,M) is
the time of finding minimum s, t-cut from a directed flow graph with N vertices
and M edges.

For any parameter λ, the number of vertices and edges in G = (U,A, λ) is
n+p+2 and n+p+pr, respectively. Therefore, the running time of this flow based
algorithm is O(mincut(p, pr) log Ψ). For example, if we use the minimum s, t-cut
algorithm in [10], which has running time O(NM log N2

M ) and space O(M), the

flow based algorithm runs in time O(npr log( (n+p)2

n+p+pr ) log Ψ) and space O(pr).

Remark. Readers who are familiar with submodular optimization can real-
ize that hλ(S) is monotone submodular when fe is non-decreasing convex for
any e ∈ E . Therefore minS⊆V hλ(S) can be also solved via Submodular Func-
tion Minimization algorithms. The best-known submodular function minimiza-
tion algorithm runs in time O(N3(log2 N)EO + N4 polylog(N)) where N is the
number of elements and EO is the maximum time of evaluating the submod-
ular function [14]. In our case, N = n and EO = O(p), the overall time is
O((n3p log2 n + n4 polylog(n)) log Ψ) which is not as efficient as our the network
flow based approach.

Further Removing the logΨ Factor. Inspired by the technique in [12], we
can obtain an algorithm with time polynomial to the size of input graph and ε−1

by a little modification of GDSH-Flow. The algorithm, as shown in Algorithm 3
in the appendix, is named GDSH-Flow-ε, which is (1 − ε) approximation.

Theorem 3. If ∀e ∈ E in H = (V, E , f), fe is a non-decreasing convex func-
tion, then GDSH-Flow-ε is a (1− ε) approximation algorithm with running time
O(mincut(p, pr) log(ε−1 log(rm))) for DHSP.

3.3 A Fast 1
r
-approximation Algorithm

We further introduce GDSH-Approx in Algorithm 2 to approximate GDSH when
all the edge-weight functions are non-decreasing convex. By a little sacrifice on
the accuracy, GDSH-Approx is much faster than the above approaches.

GDSH-Approx maintains a subset of vertices S. In each of the consequent
iterations, GDSH-Approx identifies v, a vertex by which is removed from S,
the decrease to the total edge-weight of the sub-hypergraph induced by S is
minimized. The algorithm starts with S = V and stops when S becomes empty.
Of all the sets S during the iterations, the one maximizing F (S)

|S| is returned.
To shown the approximate ratio of GDSH-Approx, we first need the following
observation.
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Algorithm 2: Find the densest hyper-subgraph approximately.
1 GDSH-Approx(H)
2 begin
3 S ← V , S′ ← V
4 for S �= ∅ do
5 Find v ∈ argminv∈S(F (S) − F (S \ {v}))
6 S ← S \ {v}
7 if F (S)

|S| > F (S′)
|S′| then

8 S′ ← S

9 return S′

Lemma 3. Given any S ⊆ V in hypergraph H = (V, E , f), F (S) ≥
1
r

∑
u∈S(F (S) − F (S \ {u})).

Then, we have the following result for GDSH-Approx.

Theorem 4. If ∀e ∈ E in H = (V, E , f), fe is a non-decreasing convex function,
GDSH-Approx is a 1

r -approximate algorithm.

Proof. Assume S∗ ⊆ V is a set of density λ∗ in H. Due to the optimality of S∗,
for any v ∈ S∗,

λ∗ =
F (S∗)
|S∗| ≥ F (S∗ \ {v}))

|S∗| − 1
=

F (S∗) − (F (S∗) − F (S∗ \ {v})))
|S∗| − 1

.

with simple elementary transformations of the above inequality, we have F (S∗)−
F (S∗ \ {v}) ≥ λ∗.

Now, let us consider the iteration of GDSH-Approx before the first vertex of
S∗, say v, is removed. Call the current set of this iteration S′. So, S∗ ⊆ S′. We
have

∀u ∈ S′, F (S′) − F (S′ \ {u}) ≥ F (S′) − F (S′ \ {v})
≥ F (S∗) − F (S∗ \ {v}) ≥ λ∗

where the first inequality follows from greedy strategy in the algorithm and the
second inequality follows from the supermodularity of F (S) (since all edge-weight
functions are convex). Now, combining Lemma 3, we conclude that

F (S′) ≥ 1

r

∑

u∈S′
(F (S′) − F (S′ \ {u})) ≥

∑

u∈S′

λ∗

r
=

|S′|λ∗

r

Therefore, F (S′)
|S′| ≥ λ∗

r . Since the algorithm returns a set of maximum density
of all the iterations, the approximation ratio follows.

The number of iterations of Algorithm 2 is n, the time to evaluate F (S) is
O(p) in each iteration. Therefore, the running time of a simple implementation
of this algorithm can be O(n2p). Using a minimum-heap to [7] to maintain the
vertices in S, we can reduce the time to O(pr log n).
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Further Reducing the Number of Iterations. Currently, the number of
iterations of GDSH-Approx is clearly Θ(n). Motivated by the work in [2], we
provide a method of revising Algorithm 2 such that the number of iterations
reduces to the logarithmic scale. The new approximation algorithm is called
GDSH-Para which is described in Algorithm 4 in the appendix. GDSH-Para
would be very efficient in processing large hypergraphs in the parallel processing
system because it only have a small number of dependable iterations.

Theorem 5. If ∀e ∈ E in H = (V, E , f), fe is a non-decreasing convex function,
then GDSH-Para is a 1

r(1+ε) -approximation with O(log1+ε n) iterations.

Like GDSH-Approx, the space consumption of GDSH-Para is O(n) if the
minimum-heap data structure is used.

4 Non-convex Edge-Weight Functions

In this section, we investigate GDSH when some of the edge-weight functions
are not non-decreasing convex.

Theorem 6. If ∀e ∈ E in H = (V, E , f), fe is a non-decreasing
concave function, the solution of GDSH-Approx is {v} where v =
argmaxu∈V

∑
e∈E:u∈e fe(1).

Proof. If for every e ∈ E , fe is non-decreasing concave, then F (S) is a monotone
submodular function. Besides, F (∅) = 0 because fe(0) = 0. We first claim that,
for any unit vertex set S that |S| = 1, S ⊆ T ⊆ V , F (S) ≥ F (T )

|T | holds. To verify
the claim, let us assume S = {v1} and T = {v1, ..., vp} without loss of generality,
where p ≥ 1 is the size of T . By submodularity, we have

F (T ) − F ({v1, ..., vp−1}) ≤ F (S) − F (∅)
F ({v1, ..., vp−1}) − F ({v1, ..., vp−2}) ≤ F (S) − F (∅)
. . .
F ({v1}) − F (∅) ≤ F (S) − F (∅)

By adding up the above inequalities, we obtain F (T ) − F (∅) ≤ p(F (S) − F (∅)).
As F (∅) = 0,we have F (S) ≥ F (T )

p = F (T )
|T |

Now, it is not hard to see that the optimal solution to GDSH is a set with
one vertex v = argmaxu∈V

∑
e∈E:u∈e fe(1).

On the other hand, if there are some edge-weight function fe that is (non-
monotonic) concave in H = (V, E , f), then we have the following NP-hardness
result.

Theorem 7. Given a hypergraph H = (V, E , f), if for some e ∈ E fe is concave
and for other e ∈ E, fe is non-decreasing convex, then GDSH is NP-hard.
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5 Conclusion

It is known that the (edge-weighted) densest sub-hypergraph problem is impor-
tant in many data-mining applications. In this paper, we studied this problem
with respect to different properties of the edge weight functions and formal-
ized the Generalized Densest Sub-Hypergraph problem (GDSH). We show that
GDSH with non-decreasing convex edge-weight functions can be solved efficiently
by a linear program-based approach, a network flow-based approach and a fast
greedy approximation algorithm. We also investigated GDSH for some other
cases where edge-weight function are not always non-decreasing convex.

In the future, it would be interesting to extend the study from multiple
dimensions. First, one could consider more properties about the edge weight
functions like submodularity, or, one could also investigate faster algorithms
when the edge-weight functions are identical. Besides, the GDSH problem under
some constraints wold be another interesting topic. For example, the problem of
finding densest subgraph with at least k vertices is NP-hard, but 2-approximated
was given in [13]. So, it could be possible to investigate the GDSH with different
size constraint.

A Missing Proof of Lemma 1

Proof. We justify the equation by contradiction. Assume that π′ ∈ Pe is a min-
imum permutation, i.e.,

∑|e|
i=1(fe(i) − fe(i − 1))xπ′(i) = minπ∈Pe

∑|e|
i=1(fe(i) −

fe(i−1))xπ(i)), but there exists i, j that 1 ≤ i < j ≤ |e|, xπ′(i) < xπ′(j). As fe is a
non-decreasing convex function, we have 0 ≤ fe(i)−fe(i−1) ≤ fe(j)−fe(j −1).
Then, we have (fe(i) − fe(i − 1))xπ′(j) + (fe(j) − fe(j − 1))xπ′(i) < (fe(i) −
fe(i − 1))xπ′(i) + (fe(j) − fe(j − 1))xπ′(j). In other words, we can decrease
∑|e|

i=1(fe(i) − fe(i − 1))xπ′(i) by exchanging π′(i) and π′(j), which contradicts
the assumption that π′ is the minimum permutation.

B Detailed Proof of Theorem 1

Proof. Proof of the first statement. For any S ⊆ V , we construct a x such
that xv = 1

|S| if v ∈ S and xv = 0 otherwise. Clearly, x satisfies Inequality 2.

We also construct y with ye = fe(|e∩S|)
|S| for any e ∈ E . Then

∑
e∈E ye is equal

to F (S)
|S| . Now, let use verify that this (x,y) satisfies Inequality 1. By Lemma 1,

the left-hand side of Inequality 1 is at least
∑|e|

i=1(fe(i) − fe(i − 1))xπ∗(i) where
π∗ ∈ Pe satisfies π∗(i) > π∗(i + 1) for 1 ≤ i ≤ n − 1. Therefore,
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|e|∑

i=1

(fe(i) − fe(i − 1))xπ(i)

≥
|e|∑

i=1

(fe(i) − fe(i − 1))xπ∗(i)

=
|e∩S|∑

i=1

(fe(i) − fe(i − 1))
1

|S|

=
fe(|e ∩ S|)

|S|
= ye.

Hence, the first statement holds.

Proof of the Second Statement. Let (x∗,y∗) be an optimal solution of LP-
GDSH. Define Sr = {v : x∗

v ≥ r}. We claim that there exists r ∈ [0, 1] such that
F (Sr)
|Sr| ≥ γ∗. Assume that there is no such r. Then we have F (Sr) < γ∗|Sr| for

any r ∈ [0, 1]. That is to say,
∫ ∞
0

F (Sr)dr < γ∗ ∫ ∞
0

|Sr|dr.
On the other hand, we have

γ∗
∫ 1

0

|Sr|dr = γ∗ ∑

v∈V

x∗
v

and
∫ 1

0

F (Sr)dr =
∑

e∈E

∫ 1

0

fe(|e ∩ S|)dr

=
∑

e∈E
(

|e|∑

i=1

(fe(i) − fe(i − 1))x∗
π∗(i)))

=
∑

e∈E
y∗

e .

Note that the last equation is from the fact that y∗
e is equal to the minimum of

∑|e|
i=1(fe(i) − fe(i − 1))x∗

π(i) for any permutation π ∈ Pe.
Hence, we have

∑
e∈E y∗

e < γ∗ ∑
v∈V x∗

v by assumption. However, this con-
tradicts the condition that γ∗ is optimal value. Therefore, we conclude that we
can definitely find a r ∈ [0, 1] such that F (Sr)

|Sr| ≥ γ∗.

C Missing Proof of Lemma 3

Proof. For any hyperedge e, it is clear that if vertex u ∈ e ∩ S, fe(|e ∩ S|) −
fe(|e∩(S \{u})|) ≤ f(|e∩S|) and if u /∈ e∩S, fe(|e∩S|)−fe(|e∩(S \{u})|) = 0.
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Hence, the following inequality holds.
∑

u∈S (fe(|e ∩ S|) − fe(|e ∩ (S \ {u})|)) ≤ |S ∩ e|fe(|e ∩ S|) ≤ rfe(|e ∩ S|)

By summarizing the above inequalities for all e ∈ E , we have
∑

u∈S

(F (S) − F (S \ {u}) ≤ rF (S)

which completes the proof.

D Missing Proof to Theorem 3

Proof. The approximation ratio is clearly guaranteed by the stop condition of
the algorithm. We mainly show that the number of while iterations is bounded
by log(ε−1 log(rm)). The crux is that ub

lb is shrunk by a square root after every
iteration. Let i ∈ 1, ..., i∗ denote the iteration number of the algorithm, i∗ is the
last iteration number. In the ith iteration, let lbi and ubi be the lower and upper
bound respectively.

First, it is clear that ub1

lb1 = |em|Ψ
fem (|em|) ≤ rm. Then, we have

ubi+1

lbi+1
≤ max

(
ubi

λi
,
λi

lbi

)

= max

(
ubi

√
lbi ∗ ubi

,

√
lbi ∗ ubi

lbi

)

=

√
ubi

lbi

Hence, we have ubi+1

lbi+1 ≤ (ub1

lb1 )
1
2i . On the other hand, we have ubi∗

lbi∗ ≤ 1
1−ε .

Therefore, i∗ ∈ O(log( log(rm)

log( 1
1−ε )

)). As limε→0
ε

log( 1
1−ε )

= 1, we have i∗ ∈
O(log(ε−1 log(rm))). Therefore, the the overall running time of is bounded by
O(mincut(p, np) log(ε−1 log(rm))).

E Missing Proof of Theorem 5

Proof. By proof of Theorem 4, for any vertex v in a optimal solution S∗, F (S∗)−
F (S∗ \ {v}) ≥ λ∗ where λ∗ is the maximum density. Let us consider the pass
before a first vertex v from S∗ is removed in the algorithm. Denote the set as
S′. Similar to the proof of Theorem 4, we still have F (S′) − F (S′ \ {v}) ≥
F (S∗) − F (S∗ \ {v}) ≥ λ∗ due to the supermodularity of F and the optimality
of S∗. Then,

F (S′)
|S′| ≥ F (S′) − F (S′ \ {v})

r(1 + ε)
≥ λ∗

r(1 + ε)
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where the first inequality is a direct result of the strategy in Line 5 in the
algorithm. Hence, we obtain the approximation ratio.

We now estimate the maximum number of iterations. At each iteration, for
the current set S,

F (S) ≥
∑

u∈S

F (S) − F (S \ {u})
r

=
∑

u∈Δ

F (S) − F (S \ {u})
r

+
∑

u∈S\Δ

F (S) − F (S \ {u})
r

> r(1 + ε)
F (S)
|S| · |S \ Δ|

r

where the first inequality follows from Lemma 3, the second follows from the
fact that any u ∈ S \ Δ satisfies F (S) − F (S \ {u}) > r(1 + ε)F (S)

|S| . Thus,
|S \ Δ| < 1

1+ε |S|, indicating that the size of S decreases by a factor at least 1
1+ε

during each iteration. Therefore, the algorithm stops in O(log1+ε n) iterations.

F Missing Proof of Theorem 7

Proof. We reduce the well-known NP-hard problem, max-cut, to GDSH that
edge-weight functions contain both convex and concave functions.

Given an unweighted graph H = (V, E) where n = |V |, the max-cut problem
asks to find T ⊆ V such that cutH(T ) = |{e ∈ E : |e∩T | = 1}| is maximized. To
show the reduction, we build an edge-weighted hypergraph H∗ = (V ∗, E∗, f∗)
which includes both concave and convex edge-weight functions.

– Make two disjoint copies of H of the same vertex and (hyper)edge sets. Denote
the two copies as H′ = (V ′, E ′, f ′) and H′′ = (V ′′, E ′′, f ′′). For each hyperedge
e in both H′ and H′′, set fe(i) = 1 if i = 1 and fe(i) = 0 for all i �= 1.

– For vertex v ∈ V , insert a hyperedge ev = {v′, v′′} where v′ and v′′ are the two
copies of v in H′ and H′′, respectively. For each hyperedge ev, set fev

(i) = n2

if i = 1 and fev
(i) = 0 for all i �= 1. Denote the set of these hyperedges as

E ′′′.
– Add a hyperedge en = V ′ ∪ V ′′ and assign the edge-weight function

fen
(i) =

{
0, if 0 ≤ i < n
n2(i − n + 1), if n ≤ i ≤ 2n.

to hyperedge en.
In summary, H∗ includes a set of 2n vertices and four sets of hyperedges,

E ′, E ′′, E ′′′ and {en}. The edge-weights functions of hyperedges in E ′, E ′′, E ′′′

are concave but fen
is convex. Given H∗, GDSH is to find a set S ⊆ V ∗ such

that F (S)
|S| = cutH′ (S)+cutH′′ (S)+n2|{e∈E′′′:|e∩S|=1}|+fen (|S|)

|S| is maximized. (To be
precise, cutH′(S) and cutH′′(S) are the abbreviations of cutH′(S ∩ V ′) and
cutH′′(S ∩ V ′′), respectively.)
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Suppose that S∗ is an optimal solution of GDSH in H∗. We first demonstrate
that the size of S∗ is equal to n. Assume |S∗| < n.

F (S∗)
|S∗| =

cutH′(S∗) + cutH′′(S∗) + n2|{e ∈ E ′′′ : |e ∩ S∗| = 1}| + 0

|S∗|

≤ cutH′(S∗) + cutH′′(S∗) + n2 S∗|
|S∗|

≤ cutH′(S∗) + cutH′′(S∗)
|S∗| + n2

<
n · |S∗|

|S∗| + n2

= n + n2

On the other hand, if |S∗| = n, F (S∗)
|S∗| = n2 + n + cutH′ (S∗)+cutH′′ (S∗)

n which is
not smaller than n + n2. Hence, |S∗| ≥ n .

Now suppose |S∗| > n. Then,

F (S∗)
|S∗| =

cutH′(S∗) + cutH′′(S∗) + n2|{e ∈ E ′′′ : |e ∩ S∗| = 1}| + n2(|S∗| − n + 1)

|S∗|

≤ cutH′(S∗) + cutH′′(S∗) + n2(2n − |S∗|) + n2(|S∗| − n + 1)

|S∗|

<
n|S∗|
|S∗| +

n2(n + 1)

|S∗|
≤ n + n2

Clearly, the density when |S∗| > n is still smaller than the density when |S∗| =
n. Therefore, the size of optimal solution S∗ is n.

Now, we show that for any vertex u ∈ V , the two copies u′, u′′ ∈ V ∗ satisfy
either u′ ∈ S∗ and u′′ /∈ S∗ or u′ /∈ S∗ and u′′ ∈ S∗. Suppose that u′ and u′′

are both in S∗. Then for hyperedge e = {u′, u′′}, fe(|S∗ ∩ e|) = 0. By removing
u′(or u′′) from S∗, we can get a larger density for set S∗, which contradicts the
fact that S∗ is optimal. If we assume neither u′ nor u′′ in S∗, we can also find a
contradiction by adding u′(or u′′) to S∗. Thus, either u′ or u′′ is in S∗ but not
both.

With the above two properties of the optimal solution S∗, we can state that
the optimal solution F (S∗)

|S∗| = n2 + n + 2maxS⊆V cutH(S)

n . Therefore, the max-cut
problem can be reduced to GDSH where the input graph includes both convex
and concave edge-weight functions.
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G The Network Flow Algorithm, GDSH-Flow-ε

Algorithm 3: (1 − ε) approximation algorithm for GDSH.

1 GDSH-Flow-ε(H)
2 begin
3 Let em = argmaxe∈Efe(|e|)
4 lb ← fem (|em|)

|em| ,ub ← Ψ
1

5 while lb < (1 − ε)ub do
6 λ ← √

lb ∗ ub
7 Build directed flow network G = (U,A, λ)
8 if the cost of min-cut (X,Y ) in G is larger than

∑
e∈E fe(|e|) then

9 ub ← λ

10 else
11 lb ← λ

12 build directed flow network G = (U,A, lb)
13 compute minimum cut (X,Y ) from G
14 return X ∩ V

H The Approximate Parallel Algorithm, GDSH-Para

Algorithm 4: A parallel algorithm to find the densest sub-hypergraph.
1 GDSH-Para(H)
2 begin
3 S ← V , S′ ← V
4 for S �= ∅ do
5 Δ ← {v ∈ S : F (S) − F (S \ {v}) ≤ r(1 + ε)F (S)

|S| }
6 S ← S \ Δ

7 if F (S)
|S| > F (S′)

|S′| then
8 S′ ← S

9 return S′
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Abstract. Fair division of resources is a fundamental problem in many
disciplines, including computer science, economy, operations research,
etc. In the context of fair allocation of indivisible goods, it is well-known
that an allocation satisfying the maximum Nash Social Welfare (Max-
NSW) is envy-free up to one good (EF1). In this paper, we further con-
sider the relation between a Max-NSW allocation and two well-adopted
fairness properties, i.e., envy-free up to any good (EFX) and pairwise
maximin share (PMMS). In particular, we show that a Max-NSW allo-
cation is both EFX and PMMS when agents have identical valuation
function. Of independent interests, we also provide an algorithm for com-
puting a PMMS allocation for identical variant. Moreover, we show that
a 4

5
-PMMS allocation always exists and can be computed in polyno-

mial time when agents have additive valuations and agree on the ordinal
ranking of the goods (although they may disagree on the specific cardinal
values).

Keywords: Fair division · Maximum Nash Social Welfare · Pairwise
maximin share

1 Introduction

Fair division is an active field of work at the interface of computer science and
mathematical economics. It has widespread applications in areas like vaccine
distribution, kidney matching, property inheritance, government auctions, and
so on. It is motivated by the realization that envy-freeness and other classic
fairness notions are too demanding for the discrete setting. Alongside fairness,
the efficiency of an allocation is also a desirable property. Two common measures
of efficiency are that of Pareto Optimality (PO) and Nash Social Welfare [17].
In economics, Pareto Optimality is usually considered to measure the efficiency
of allocation, which means no other allocation can make some agents strictly
better off without making any agent strictly worse off. Mamoru and Kenjiro [17]
propose the concept of Nash Social Welfare, which represents the multiplicative
form of all agents’ valuations w.r.t. their assigned bundles. Motivated, in part,
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by such domains, a significant body of work in recent years has been directed
towards notions of efficiency and fairness [8,11,12,14–16].

The Nash Social Welfare is well-studied for divisible goods [21]. Eisenberg
and Gale [13] show that the maximum Nash Social Welfare allocation can be
computed in polynomial time by using the convex program. It is worth point-
ing out that the problem of maximizing Nash Social Welfare remains APX-hard
even for additive valuations [19], i.e., there are no polynomial-time approxima-
tion schemes (PTAS) unless P = NP . Thus, it is natural to consider how to
approximate the maximum Nash Social Welfare in polynomial time. Barman
et al. [3] introduce the concept of Fisher market equilibrium and they design an
algorithm with the approximate ratio of 1.45 and show that the output of the
algorithm could achieve Pareto Optimality.

Note that there always exists a maximum Nash Social Welfare allocation,
even though it is hard to find. It is interesting to investigate which kind of fair-
ness can be achieved when an allocation reaches the maximum Nash Social
Welfare. Previous studies prove that the allocation satisfying the maximum
Nash Social Welfare can reach πn-Maximin Share (MMS) (where πn is a value
that decreases as the number n of agents increases) and 0.618-pairwise Maximin
Share (PMMS) [9]. An interesting family of fairness criteria has been developed
around the notion of maximin shares which is proposed Budish [7]. MMS and
PMMS mentioned above are important measurements of fairness. MMS means
that everyone should at least get the value of the goods that maximizes the
worst allocation of the share while PMMS considers fairness between any pair
of agents. An MMS allocation may not always exist [23], but it may be approx-
imated for some variants, e.g., if the valuations are additive, an allocation can
guarantee to assign each agent a bundle with a value at least (3

4 + 1
12n ) times

her maximin share [4,6].
Envy-free (EF) is another criteria of fair division, which states that when

resources are distributed among agents, every agent values her own share at
least as much as she values the share of any other agent. Since an envy-free
allocation cannot always be guaranteed while dividing indivisible goods, various
relaxations have been studied. Envy-free up to one good (EF1) is proposed by
Lipton et al. [20]. It is known that the maximum Nash Social Welfare allocation
is also an EF1 allocation [9]. Another well-known fairness notion, envy-free up
to any good (EFX), is introduced by Caragiannis et al. [9], which is weaker than
EF but stronger than EF1. They prove that a PMMS allocation implies an EFX
allocation if all agents have positive values for all goods. A good approximation of
any one of EF1, EFX, MMS, and PMMS does not necessarily imply particularly
strong guarantees for any of the others [1]. Most importantly, it is an open
problem to resolve whether PMMS and EFX allocations always exist, even for
three and four agents with additive valuation functions, respectively [10]. A
reasonable approach is to focus on approximate versions of these relaxations.
Georgios et al. [2] propose an efficient algorithm for an EFX allocation with the
approximation ratio of 0.618 and they improve the bound to 0.717 by a modified
algorithm for computing an approximation PMMS allocation. Indeed, PMMS
allocations are not known to exist except in a few special cases [5,20], such as
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the PMMS allocation can be computed in polynomial time under binary additive
valuations [20] and some goods are allowed to unallocated [5]. In addition, the
currently best-known ratio for approximate PMMS allocation is close to 0.781
in general cases [18].

In this paper, we focus on the existence and approximation of the PMMS
allocation. We investigate the properties of the maximum Nash Social Welfare
allocation with the PMMS allocation and find an efficient algorithm to compute
a 4

5 -PMMS allocation for the identical ranking variant which means that agents
have additive valuations and agree on the ordinal ranking of the goods.

The remainder of this paper is structured as follows. Section 2 presents the
model of fair division and some classical fairness concepts. Section 3 analyzes the
relationship between the maximum Nash Social Welfare and other fairness con-
cepts, and proves that any maximum Nash Social Welfare allocation is also PMMS
allocation for any identical variant. Besides, we propose an algorithm to find a
PMMS allocation for identical variant. Section 4 shows an algorithm to compute a
4
5 -PMMS allocation for the identical ranking variant. Section 5 gives the conclud-
ing remark and some possible future research for the fair division problem.

2 Preliminaries

Let M = {g1, . . . , gm} denotes the set of goods and N = {1, 2, ..., n} denotes the
set of agents. Throughout this paper, we assume the goods are indivisible, i.e.,
each good must be entirely allocated to one agent.

We consider such an allocation X = {X1, . . . , Xn} which is a partition of
goods set M , where Xi ⊆ M is the bundle of goods assigned to agent i and
Xi ∩ Xj = ∅ for any 0 ≤ i < j ≤ n. Each agent i ∈ N has a valuation function
vi(·) : 2M → R≥0 that measures the utility of each agent on different subsets of
goods. In this paper, we assume that the valuation function vi(·) of each agent
is additive, i.e., vi(Xi) =

∑
g∈Xi

vi({g}) for any subset (or bundle) Xi of M .
For simplicity, we write vi(g) instead of vi ({g}) for good g ∈ M . Let us now
recall some well-known notions of fairness for allocations. This gives rise to the
following definition.

Definition 1 (Maximin Share (MMS)).
Given n agents and a subset S ⊆ M of goods, the n-maximin share of agent i
with respect to S is:

μi(n, S) = max
X∈∏

n(S)
min

Xj∈X
vi(Xj),

where
∏

n(S) means reallocating M into n subsets {X1, . . . , Xn},which satisfies
∪n

i=1Xi = S and ∀i, j ∈ N,Xi ∩ Xj = ∅. When S = M , this quantity is just
called the maximin share of agent i.

An allocation X is an α-maximin share allocation if

∀i ∈ N, vi(Xi) ≥ α · μi(n,M).

Let MMSi = maxX∈∏
n(M) minXj∈X vi(Xj).
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Definition 2 (Pairwise Maximin Share (PMMS)). An allocation X is an
α-pairwise maximin share allocation if for any pair of agents i, j ∈ N ,

vi(Xi) ≥ α · μi(2,Xi ∪ Xj).

Let PMMSi = maxj∈N\{i} μi(2,Xi ∪ Xj).

Definition 3 (PO). An allocation X is Pareto Optimal (PO) if there exist no
allocation X ′ such that vi(X ′

i) ≥ vi(Xi) for all i ∈ N and vj(X ′
j) > vj(Xj) for

some j ∈ N .

Definition 4 (Max-NSW). An allocation X∗ = {X∗
1 ,X∗

2 , ...,X∗
n} is a maxi-

mum Nash Social Welfare (Max-NSW) allocation if it maximizes the Nash Social
Welfare, i.e., ∏

i∈N

vi(X∗
i ) ≥

∏

i∈N

vi(Xi)

for any other allocation X = {X1,X2, ...,Xn}, where X∗
i ∩X∗

j = ∅ and Xi∩Xj =
∅ for any distinct i, j ∈ [n].

Definition 5 (Envy-freeness and Its Relaxations). For any α ∈ [0, 1], an
allocation X= (Xi)i∈N is:

– α-approximate envy-free (α-EF) if

∀ i, j ∈ N, vi(Xi) ≥ α · vi(Xj).

Note that a 1-EF allocation is an EF allocation.
– α-approximate envy-free up to one good (α-EF1) if

∀ i, j ∈ N,∃ g ∈ Xj , vi(Xi) ≥ α · vi(Xj \ g).

Note that a 1-EF1 allocation is an EF1 allocation.
– α-approximate envy-free up to any good (α-EFX) if

∀ i, j ∈ N,∀ g ∈ Xj , vi(Xi) ≥ α · vi(Xj \ g).

Note that a 1-EFX allocation is an EFX allocation.

Roughly speaking, MMS allocation focuses on the fairness among all agents,
while PMMS allocations pay more attention to the fairness between pairs of
agents. MMS and PMMS are both important concepts to evaluate the fairness
and they are related in some particular cases [1]. However, they do not imply
each other [9]. To have a clear understanding, the following example gives the
MMS allocation, PMMS allocation and EFX allocation for a given set of goods
respectively and shows the differences among these three kinds of allocations.
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Table 1. Illustration on MMS, PMMS and EFX.

g1 g2 g3 g4 g5 g6 g7

v1 1 2 2 3 3 6 4

v2 5 4 9 4 3 0 6

v3 0 0 1 1 9 12 2

Example 1. Assume that there are 3 agents and 7 goods. The valuations of agents
are shown in Table 1.

Consider the allocation X with X1 = {g1, g2, g4, g5, g7}, X2 = {g3} and
X3 = {g6}. We can find that X is a MMS allocation, but is not a PMMS
allocation or EFX allocation since v2(X2) = 9 < PMMS2 = 15 and v2(X2) =
9 < v2(X1 \ g2) = 18.

Consider another allocation X′ with X ′
1 = {g1, g6}, X ′

2 = {g2, g3, g4} and
X ′

3 = {g5, g7}. The allocation X′ is a MMS allocation and PMMS allocation,
but is not an EFX allocation since v3(X ′

3) = 11 < v3(X ′
1 \ g1) = 12.

Consider another allocation X′′ with X ′′
1 = {g6}, X ′′

2 = {g1, g2, g7} and X ′′
3 =

{g3, g4, g5}. The allocation X′′ is a PMMS allocation and an EFX allocation, but
is not a MMS allocation since v1(X ′′

1 ) = 6 < MMS1 = 7.

In this paper, we consider PMMS allocations for the following variants.

– Identical : For any gj ∈ M , each agent has the same valuation. Without loss
of generality, we may use v(gj) to denote the value of good gj for all agents;

– Identical Ranking : Agents have additive valuations and agree on the ordinal
ranking of the goods.

3 The PMMS Allocation for Identical Variant

Existing works indicate that Max-NSW allocation can also reach 0.618-PMMS
and 0.618-EFX [9]. The bound of PMMS is proved to be tight, while whether
the bound of EFX is best possible is still open. In this section, we show that
PMMS and EFX can be achieved if all agents’ valuation functions are identical.

Theorem 1. A Max-NSW allocation X∗ is PMMS and EFX if the valuation
functions are identical.

Proof. We prove this theorem by contradiction. If a Max-NSW allocation X∗ is
not PMMS, there must exist two agents i and j, such that

v(X∗
i ) < max

B∈Π2(S)
min {v(B1), v(B2)}.

Reallocate the set S = X∗
i ∪ X∗

j , which allocates to agents i and j, into B1 and
B2, where B1 = arg maxB∈Π2(S) min {v(B1), v(B2)} and B2 = S \ B1.
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Construct a new allocation X ′ such that X ′
i = B1, X ′

j = B2 and X ′
k = X∗

k

for all k �= i, j. We have

v(X
′
i) = max

B∈Π2(S)
min {v(B1), v(B2)} ≤ v(X∗

i ) + v(X∗
j )

2
.

Since v(X∗
i ) + v(X∗

j ) = v(X ′
i) + v(X ′

j),

v(X∗
j ) − v(X ′

j) = v(X ′
i) − v(X∗

i ) ≤ v(X∗
j ) − v(X∗

i )
2

. (1)

Therefore,

v(X ′
i) · v(X ′

j)
= (v(X∗

i ) + v(X ′
i) − v(X∗

i )) · (v(X∗
j ) − (v(X ′

i) − v(X∗
i )))

= v(X∗
i ) · v(X∗

j ) + (v(X ′
i) − v(X∗

i )) · (v(X∗
j ) − v(X ′

i))
> v(X∗

i ) · v(X∗
j ).

The last inequality strictly holds since (i) v(X ′
i) > v(X∗

i ) by the assumption
that X∗ is not PMMS and (ii) v(X∗

j ) − v(X ′
i) ≥ v(X ′

i) − v(X∗
i ) > 0 according

to Inequality (1).
Since vk(X ′

k) = vk(X∗
k) for all k �= i, j, it follows that

∏

�∈N

v(X
′
�) >

∏

�∈N

v(X∗
� )

which contradicts the statement that X∗ is Max-NSW.
Now we know that a Max-NSW allocation X∗ is PMMS if the valuation

functions are identical. Combined with the fact that PMMS allocation implies
EFX allocation when v(g) > 0 for all g ∈ M [9], Theorem 1 is correct. �

Note that PMMS implies EFX, but EFX does not imply PMMS [9]. Accord-
ing to the following example, we can see that PMMS is stronger than EFX even
when the valuation functions are identical. Thus, computing PMMS allocation
could not use Algorithm 6.1 [22] to find EFX allocation for identical variants.

Example 2. Assume there are two agents 1, 2 and 5 goods. The agents have
identical valuation functions, as shown in Table 2.

Table 2. Illustration on identical valuation function.

g1 g2 g3 g4 g5 g6

v 8 4 3 3 2 2

Consider the allocation X that is computed by Algorithm 6.1 [22] with
X1 = {g1, g5}, X2 = {g2, g3, g4, g6}. It can be seen that X is an EFX allocation,
but is not a PMMS allocation since
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Algorithm 1: PMMS-cycle Elimination
1 Input: Sets of agents N , set of goods M , any complete allocation

X = {X1, X2, . . . , Xn};
2 Output: a complete allocation X′;
3 Construct the PMMS Graph GX;
4 while GX contains a cycle C: c1 → c2 → ... → cr → c1 do
5 for k = 1 to r − 1 do
6 X ′

ck ← Xck+1 ;

7 X ′
cr ← Xc1 ;

8 Update GX;

return X′;

v1(X1) = 10 < PMMS1 = max
B∈∏

2(X1∪X2)
min {v1(B1), v1(B2)} = 11.

Consider another allocation X′ with X ′
1 = {g1, g3} and X ′

2 = {g2, g4, g5, g6}.
It can be verified that X′ satisfies both PMMS and EFX.

According to the above analysis, a PMMS allocation exists in the identical
variant, but there is no good method to find it. In the following part of this
section, we introduce an interesting structure, PMMS Graph. With the help of
such a structure, a novel algorithm is proposed to obtain the PMMS allocation
for the identical variant.

PMMS Graph GX = (VX, EX) is a directed graph and defined for an alloca-
tion X. Each vertex v ∈ VX corresponds to an agent i ∈ N . There is a directed
edge (i, j) ∈ EX if and only if

vi(Xi) < max
j∈N\{i}

μi(2,Xi ∪ Xj).

Note that the right part is PMMSi. If ∃ k ∈ N \ {i, j} such that

μi(2,Xi ∪ Xk) = PMMSi,

and vi(Xi) < PMMSi, we may choose either (i, j) or (i, k) to be an edge.
An allocation is complete if every good g ∈ M is assigned to some agent in

N .
In Algorithm 1, we construct the PMMS Graph for any complete allocation

X firstly, and then if there exists a cycle in the Graph, we exchange only the
entire bundle of agents, not goods. Besides, Algorithm 1 can be implemented in
polynomial time.

Lemma 1. The PMMS Graph is acyclic after running Algorithm 1.
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Algorithm 2: Finding a PMMS allocation for identical variant
1 Input: Sets of agents N , set of goods M , any complete allocation

X = {X1, X2, . . . , Xn};
2 Output: a Complete PMMS allocation X′;
3 Construct the PMMS Graph GX;
4 while there is a vertex j with in-degree > 0 in GX and v(Xi) is maximized

among all such js do
5 Choose the vertex i such that (i, j) ∈ EX and v(Xi) is minimized among all

such is;
6 S2 ← arg maxB∈∏

2 Xi∪Xj
min {v(B1), v(B2)};

7 S1 ← (Xi ∪ Xj) \ S2;
8 X′ ← X;
9 X ′

i ← S2;
10 X ′

j ← S1;
11 Update GX according to the current allocation;

Return X′;

Proof. Assuming that there is a cycle C = {c1, c2, . . . , cr} in GX, consider the
cycle c1 → c2 → ... → cr → c1. Cycle C can be eliminated by reallocating bun-
dles. Precisely speaking, if X = {X1, . . . , Xn}, we can obtain X′ = {X ′

1, . . . , X
′
n}

by reallocating the goods as follows: X ′
i = Xi for all i /∈ {c1, c2, ..., cr}, and

X ′
c1 = Xc2 ,X

′
c2 = Xc3 , . . . , X

′
cr = Xc1 .

After each round, the valuations of all agents in cycle C are strictly increased.
Note that X′ uses the same bundles of goods as X, they are only assigned to
different agents. Thus, each vertex will be updated in at most n rounds and
finally, the PMMS Graph after running Algorithm 1 is acyclic. �

For any allocation, we can construct a PMMS Graph accordingly. If a PMMS
Graph is in corresponding to the identical variant, from the definition of PMMS
Graph, there is no directed path with a length longer than 1.

To find the PMMS allocation in identical variant, we start from any allo-
cation. At each step, the goods allocated to the most envied agent, say i, and
the agent who envies i most will be reallocated to balance their valuations as
much as possible. Roughly speaking, each loop in Algorithm 1 monotonously
decreases the envyness of the allocation. Such processing can be implemented in
the PMMS Graph.

Corollary 1. When the valuations are identical, a PMMS allocation can be
achieved via Algorithm 2.

Proof. In each step, the update will strictly decrease a higher valuation or strictly
increase a lower valuation. Since the valuations among all agents are not infinity,
the algorithm must be terminated and leads to an empty PMMS Graph with no
edge. �
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Algorithm 3: Find an EFX allocation for identical rankings
1 Input: Sets of agents N , set of goods M ;
2 Output: An allocation X;
3 Order the goods in decending order of value, i.e.,
4 v(g1) ≥ v(g2) ≥ · · · ≥ v(gm) > 0;
5 Set X ← (∅, ∅, · · · , ∅);
6 Construct the envy graph GX;
7 for � = 1 to m do
8 while there is no node of in-degree 0 in GX do � EliminateEnvyCycles
9 Find a cycle C: c1 → c2 → ... → cr → c1 in GX;

10 for k = 1 to r − 1 do
11 X ′

ck ← Xck+1 ;

12 X ′
cr ← Xc1 ;

13 Update GX;

14 Set j ∈ N be a node of in-degree 0; � ties are broken lexicographically
15 Xj ← Xj ∪ {g�};
16 Update GX;

Return X;

Note that the PMMS allocation for identical variant can be reduced from
the 2-partition problem when the number of agents is 2, so computing PMMS
allocation is NP-hard.

4 A 4
5
-PMMS Allocation for Identical Ranking

We analyze Algorithm 6.1 that is provided for computing the EFX allocation
in identical ranking variant [22]. We also prove that it guarantees a 4

5 -PMMS
allocation. Algorithm 3 is rewritten on the basis of Algorithm 6.1.

In order to modify the envy-cycle-elimination algorithm (Algorithm 3) of
Lipton et al. [20]. We first need to introduce the notion of an envy graph. Envy
Graph GX = (VX, EX) is a directed graph and defined for an allocation X.
Each vertex v ∈ VX corresponds to an agent i ∈ N . There is a directed edge
(i, j) ∈ EX if and only if

vi(Xi) < vi(Xj).

Our algorithm (Algorithm 3) allocates the goods one by one in descending
order of their value. In each iteration, a good is assigned to the agent who is not
envied. If there is no agent, we do the envy-cycle-elimination algorithm to break
the envy cycle until such an agent is found.

Theorem 2. For additive valuations with identical rankings, Algorithm 3 ter-
minates with a 4

5 -PMMS allocation in O(mn3) + O(m log m) time.

Proof. Let X� be the allocation maintained by Algorithm 3 at the end of the �th

iteration. It suffices to show that for each � ∈ [m], if X� is a 4
5 -PMMS allocation,

then so is X�+1.
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We first argue that at all times, any pair of agents i, j satisfies EFX property
according to Theorem 6.2 [22]. It means that ∀i, j ∈ N, vi(X�

i ) ≥ vi(X�
j \ g�)

at each round �, where g� is the good most recently added to what is currently
Xj .

Recall that Algorithm 3 assigns the good g� to agent j in the �th iteration, i.e.,
thus X�

j = X�−1
j ∪{g�}. At the same time, the allocation of any other i ∈ N \{j}

is unchanged before the EliminateEnvyCycles operation. Therefore, in order to
establish that X� is a 4

5 -PMMS allocation, we only need to consider agent j and
show that vi(X�

i ) ≥ 4
5 · μi(2,X�

i ∪ X�
j ) for all i ∈ N \ {j}.

Since Algorithm 3 processes the goods in decreasing order of value, the good
g� is the least valued good in X�

j . Due to agent j gets the good at the end of
the �th iteration, agent j will be satisfied 4

5 -PMMS property. Firstly, we need to
analyze for all i ∈ N \ {j} satisfies 4

5 -PMMS property.
We analyze two cases, |X�

i | = 1 and |X�
i | ≥ 2, separately.

Case 1. |X�
i | = 1.

In this case, agent i has one good only. At the same time, vi(X�
i ) ≥

vi(X�−1
j ) = vi(X�

j ) − vi(g�) is satisfied according to the agent selection rule
of Algorithm 3. Thus, agent i must satisfy PMMS property.

Case 2. |X�
i | ≥ 2.

Due to |X�
i | ≥ 2, we have vi(X�

i ) ≥ 2 · vi(g�) obviously. We can find that the
following inequality is satisfied.

vi(X�
i ) =

4
5

· vi(X�
i ) +

1
5

· vi(X�
i )

≥ 4
5

· vi(X�
i ) +

2
5

· vi(g�) =
4
5

· (vi(X�
i ) +

1
2

· vi(g�))

=
4
5

· vi(X�
i ) + vi(X�

i ) + vi(g�)
2

≥ 4
5

· vi(X�
i ) + vi(X�

j )
2

≥ 4
5

· μi(2,X�
i ∪ X�

j )

Here, the inequality holds by |X�
i | ≥ 2 and EFX property.

Then we proof that the agent j who gets the good in �th iteration will satisfies
4
5 -PMMS property. When some other agent k ∈ N \ {j} gets the last good g′

before �th iteration, agent j satisfy

vj(X�
j ) = vj(X�−1

j ) + vj(g�) ≥ 4
5

· vj(X�
k) + vj(X�−1

j )
2

+ vj(g�)

>
4
5

· vj(X�
k) + vj(X�−1

j ) + vj(g�)
2

≥ 4
5

· μj(2,X�
k ∪ X�

j ).

Combining the proof above, Algorithm 3 terminates with a 4
5 -PMMS allo-

cation. Finally, we show that Algorithm 3 terminates in O(mn3) + O(m log m)
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time. Our algorithm involves a single sorting step and at most O(n3) Elimina-
teEnvyCycles operation for each good, thus it requires O(mn3) + O(m log m)
time overall. �

5 Concluding Remarks

We study the relationship between the maximum Nash Social Welfare and fair-
ness concepts. It is shown that a maximum Nash Social Welfare allocation is
always PMMS and EFX if the valuation functions of agents are identical. More-
over, we established the universal existence of pairwise maximin share allocations
for identical variants. PMMS graph is introduced to help us find the PMMS allo-
cation for the identical variant. This structure might give us a hint to find the
PMMS allocation if some properties are satisfied. Additionally, we proved the
efficient computability of approximation PMMS allocations.

Fair allocation is fundamental and some basic concepts have been well stud-
ied during these years. However, some important issues are still not clear. E.g.,
whether EFX allocation exist when the number of agents is greater than 3?
Whether PMMS allocation always exists? Establishing the existence of complete
PMMS allocations under general valuations would also be interesting. Further-
more, is it possible to find an approximately PMMS allocation which approxi-
mation ratio of more than 0.781 for general variant?
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Abstract. Finite-state dimension (Dai, Lathrop, Lutz, and Mayordomo
(2004)) quantifies the information rate in an infinite sequence as mea-
sured by finite-state automata. In this paper, we define a relative version
of finite-state dimension. The finite-state relative dimension dimY

FS(X)
of a sequence X relative to Y is the finite-state dimension of X measured
using the class of finite-state gamblers with an oracle access to Y . We
show its mathematically robustness by equivalently characterizing this
notion using the relative block entropy rate of X conditioned on Y .

We derive inequalities relating the dimension of a sequence to the
relative dimension of its subsequences along any arithmetic progression
(A.P.). These enable us to obtain a strengthening of Wall’s Theorem on
the normality of A.P. subsequences of a normal number, in terms of rela-
tive dimension. In contrast to the original theorem, this stronger version
has an exact converse yielding a new characterization of normality.

We also obtain finite-state analogues of van Lambalgen’s theorem on
the symmetry of relative normality.

Keywords: Finite-state relative dimension · Wall’s theorem on the
normality of AP subsequences · van Lambalgen’s theorem

1 Introduction

Finite-state dimension, introduced by Dai, Lathrop, Lutz and Mayordomo [7]
measures the information density in a sequence as measured by finite-state bet-
ting algorithms called finite-state s-gales. Every sequence drawn from a finite
alphabet has a well-defined finite-state dimension between 0 and 1. We can view
dimension 1 sequences as being “finite-state random”, and dimension 0 sequences
as being easily predictable using finite-state s-gales. This notion was shown to be
mathematically robust, having several equivalent characterizations - using finite-
state gamblers [7], block entropy rates, and finite-state compressibility ratios [3].
Due to this equivalence with finite-state compressibility, a result due to Schnorr
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and Stimm [12] implies that a sequence is Borel normal if and only if it has
finite-state dimension 1, establishing connections to metric number theory and
probability.

In this work, we introduce a notion of the relative finite-state dimension of
a sequence X with respect to any arbitrary sequence Y . Intuitively, this is the
information density in X as viewed by a finite-state machine which has “ora-
cle” access to bits from Y . We show that this leads to a meaningful notion of
relative finite-state dimension based on finite-state s-gales with oracle access.
We provide an equivalent characterization of this notion using conditional block
entropy rates, generalizing the insight in the work of Bourke, Hitchcock and
Vindochandran [3]. This demonstrates the mathematical robustness of our defi-
nition. Our notion is a finite-state analogue of conditional entropy, in a similar
manner as mutual dimension introduced by Case and Lutz [4] is an analogue of
mutual information.

We use our notion of relative finite-state dimension to derive a stronger ver-
sion of Wall’s theorem on subsequences along arithmetic progressions (A.P.) of
normal sequences. While Wall’s theorem states that A.P. subsequences of any
normal sequence X must be normal, we show that in addition, such an A.P.
subsequence must also be relatively normal with respect to all other A.P. sub-
sequences of X with the same common difference. This version has a precise
converse, unlike Wall’s original theorem. This yields a new characterization of
normality in terms of its A.P. subsequences.

We finally study the symmetry of relative finite-state randomness, showing
that X is finite-state relatively random to Y if and only if the converse holds.
This can be viewed as a finite-state version of van Lambalgen’s theorem [10]
establishing that relative Martin-Löf randomness is symmetric. Since van Lam-
balgen’s theorem analgoues fail to hold for other randomness notions [1,5,8,16],
this shows that finite-state randomness is a rare setting where symmetry of rela-
tive randomness does hold. We show, further that this result does not generalize
to arbitrary finite-state dimensions.

As a consequence of this analogue of van Lambalgen’s theorem, we establish
that finite-state independence, introduced by Becher, Carton and Heiber [2],
implies relative finite-state normality. The converse direction remains open.

2 Preliminaries

We consider a finite alphabet Σ. The set of finite strings from Σ is denoted as
Σ∗ and the set of infinite sequences, by Σ∞. For any finite string x, we denote
its length by |x|. We use the notation x[i : j], where 0 ≤ i < j < |x|, to denote
the substring of x from position i to j, both ends inclusive. The character at
position n is denoted by x[n]. We use the notation x[: n] to denote x[0 : n]. We
use similar notations for infinite sequences. For � ∈ N, Σ<� denotes the set of
strings of length less than �. Logarithms in this work have base 2. For any n ∈ N,
[n] denotes the set {0, 1, . . . , n − 1}. Given infinite sequences Y0, Y1, . . . Yn−1, we
define the product sequence Y0 × Y1 × Y2 × . . . Yn−1 to be the infinite sequence
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whose ith digit is (Y0[i], Y1[i], Y2[i], . . . Yn−1[i]). And, we define the interleaved
sequence Y0 ⊕ Y1 ⊕ Y2 ⊕ . . . Yn−1 to be the sequence in Σ∞ whose ith bit is
equal to Yi mod n[�i/n�]. For any natural number n > 0, Bij(n) denotes the set
of permutations on [n].

3 Finite-State Relative Dimension

Finite-state dimension, introduced by Dai, Lathrop, Lutz and Mayordomo [7],
characterizes the information density of an infinite sequence as perceived by a
finite-state automata. In this work, we introduce the idea of finite-state relative
dimension of an infinite sequence X with respect to another an infinite sequence
Y . We can interpret this notion as the finite-state asymptotic information density
of X relative to Y.

We formulate finite-state relative dimension using an extension of the finite-
state gambler (see [7]) which we call as finite state relative gambler. In contrast
to the classic finite-state gambler, the finite-state relative gambler betting on an
infinite sequence X is given access to the characters of another infinite sequence
Y . The gambler may utilize the information obtained from the characters of Y
while betting on X. To preserve the finite nature of the model, the gambler is
allowed access to only a finite window of characters of Y. This finite window
shifts forward in Y, in a sliding manner as the gambler processes X.

We assume that X and Y are elements from Σ∞
1 and Σ∞

2 respectively.

Definition 1. A finite-state relative gambler (FSRG) with window length k is a
5-tuple G = (Q, δ, β, q0, c0) where:

∗ Q is a nonempty, finite set of states,
∗ δ : Q × Σk

2 × Σ1 → Q is the transition function,
∗ β : Q × Σk

2 × Σ1 → Q ∩ [0, 1] is the betting function,
such that ∀q ∈ Q, y ∈ Σk

2 ,
∑

x∈Σ1
β(q, y, x) = 1,

∗ q0 ∈ Q is the initial state,
∗ c0 is the initial capital, generally set to 1.

Let a FSRG G be in state q ∈ Q. After reading the oracle word y ∈ Σk
2 ,

the gambler places the bet β(q, y, x) on the next character x ∈ Σ1 of X. After
processing x, the input pointer to X as well as Y move forward by a single
position. G enters the state δ(q, y, x).

Analogous to [7], we define the concept of an s-gale induced by a FSRG and
the corresponding success sets.

Definition 2. (s-gale induced by a FSRG) Let G = (Q, δ, β, q0, c0) be a FSRG
with window length k. For an s ∈ [0,∞), the s-gale of G with oracle access to Y

is the function d
(s)
G,Y : Σ∗

1 → [0,∞) defined by d
(s)
G,Y (λ) = c0 and for every w ∈ Σ∗

and x ∈ Σ, by

d
(s)
G,Y (wx) = |Σ1|s × β(q, Y [|w| : |w| + k − 1], x) × d

(s)
G,Y (w).

We call an s-gale induced by a finite-state relative gambler as a finite-state rel-
ative s-gale.
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When the automata is in state q, after reading the oracle word y ∈ Σk
2 and the

next character x ∈ Σ1, the s-gale function gets multiplied by a factor of |Σ1|s ×
β(q, y, x). As remarked in [7], this corresponds to “betting under inflation”, since
the expected value after any bet is less than that before the bet.

Definition 3. (Success set of a finite-state relative s-gale) We say that the
finite-state relative s-gale d

(s)
G,Y succeeds on a sequence X ∈ Σ∞

1 if

lim supn→∞ d
(s)
G,Y (X[: n]) = ∞. The success set of d

(s)
G,Y is

S∞[d(s)
G,Y ] = {X ∈ Σ∞

1

∣
∣ d

(s)
G,Y succeeds on X }.

For any X ∈ Σ∞
1 and Y ∈ Σ∞

2 , GY (X) is the set of all s ∈ [0,∞) such that
there is a finite-state relative s-gale d

(s)
G,Y for which X ∈ S∞[d(s)

G,Y ].

Definition 4. (Finite-state relative dimension) The finite-state relative dimen-
sion of a sequence X ∈ Σ∞

1 with respect to a sequence Y ∈ Σ∞
2 is

dimY
FS(X) = inf GY (X).

4 Relative Block Entropy Rates and Finite-State Relative
Dimension

Bourke, Hitchcock and Vinodchandran [3] characterize finite-state dimension
using disjoint block entropy rates. We formulate the notion of relative disjoint
block entropy rates, extending the definitions in [3]. We characterize finite-state
relative dimension using relative block entropy rates.

4.1 Relative Block Entropy Rates

Let n, � ∈ N, where n divides l. Given a string Y ∈ Σn
2 and y ∈ Σ�

2, let

N(y, Y ) = |{0 ≤ i ≤ n/� | Y [i� : (i + 1)� − 1] = y}|

be the number of times y occurs in � length blocks of Y . The disjoint block
frequency of y in Y is defined as

P (y, Y ) =
�

n
N(y, Y ).

Given X ∈ Σn
1 and Y ∈ Σn

2 and x ∈ Σ�
1 and y ∈ Σ�

2, let

N(x,X; y, Y ) =
∣
∣
∣
{

0 ≤ i ≤ n

�
| X[i� : (i + 1)� − 1] = x ∧

Y [i� : (i + 1)� − 1] = y
}∣

∣
∣.
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This is the number of times x and y occur concurrently in the � length blocks of
X and Y respectively. Then the disjoint block frequency of x in X relative to y
in Y is defined as

P (x,X | y, Y ) =
N(x,X; y, Y )

N(y, Y )

It is easy to see that for any y ∈ Σ�
2,

∑
x∈Σ�

1
P (x,X|y, Y ) = 1. For two strings

X ∈ Σn
1 and Y ∈ Σn

2 , the �-length block entropy of X relative to Y is defined
as:

H�(X|Y ) =
1

� log(|Σ1|)
∑

y∈Σ�
2

P (y, Y )
∑

x∈Σ�
1

−P (x,X | y, Y ) log(P (x,X | y, Y )).

Definition 5. For X ∈ Σ∞
1 and Y ∈ Σ∞

2 , the block entropy rate of X relative
to Y is defined as:

H(X|Y ) = inf
�∈N

lim inf
k→∞

H�(X[: k�] | Y [: k�])

.

4.2 Upper Bounding Dimension Using Entropy

For two sequences X ∈ Σ∞
1 and Y ∈ Σ∞

2 , let H(X|Y ) = s for some s ∈ [0, 1].
We go on to prove that dimY

FS(X) ≤ s, by constructing a finite-state relative
s′ gale (for any s′ > s) that succeeds on X relative to Y. We design a gambler
that places bets on strings of some length �, at which block entropy dips below
the needed threshold. The bets are placed corresponding to the frequencies of
appearance of these strings.

These frequencies need not always converge to a particular value, over the
number of blocks considered. To overcome this, we pull out a subsequence for
which the frequencies converge, simultaneously maintaining some desirable prop-
erties.

Lemma 1. For every X ∈ Σ∞
1 and Y ∈ Σ∞

2 with H(X|Y ) = s, ∀s′ > s, there
exists a block length � ∈ N, and a function P(x, y) : Σ�

1 × Σ�
2 → Q ∩ [0, 1] such

that
∑

x,y P(x, y) = 1 and for infinitely many k ∈ N,

− 1
� log(|Σ1|)

∑

y∈Σ�
2

P (y, Y [: k�])
∑

x∈Σ�
1

P (x,X[: k�] | y, Y [: k�]) logP(x|y) < (s′−d)

for some 0 < d < s′, where P(x|y) = P(x,y)∑
x P(x,y) .

In Lemma 2, we construct a finite gambler G� that effectively places the bet
P(x|y) on the string x when string provided by the oracle is y. It is shown that
an s′ gale corresponding to G� succeeds in the required setting.

Lemma 2. For every X ∈ Σ∞
1 and Y ∈ Σ∞

2 , dimY
FS(X) ≤ H(X|Y ).
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4.3 Upper Bounding Entropy Using Dimension

For two sequences X ∈ Σ∞
1 and Y ∈ Σ∞

2 , let dimY
FS(X) = s for some s ∈ [0, 1].

This happens when an s-gale d
(s)
G,Y corresponding to a finite-state gambler G

succeeds on X, when given an oracle access to Y. For a block length L ∈ N, we
construct a stretched automaton GL, to keep track of the state encountered after
every run of input of length L on G. Using this, we show that for any sufficiently
large block length L, HL(X|Y ) ≤ s + c/L, where c is a constant which does not
depend on L. Therefore for any block length L, we get,

lim sup
L→∞

HL(X|Y ) ≤ dimY
FS(X). (1)

And hence we obtain the following lemma.

Lemma 3. For every X ∈ Σ∞
1 and Y ∈ Σ∞

2 , we have H(X|Y ) ≤ dimY
FS(X).

Lemma 2 established that infL HL(X|Y ) ≥ dimY
FS(X) which implies that

lim inf
L→∞

HL(X|Y ) ≥ dimY
FS(X). (2)

Theorem 1.
dimY

FS(X) = lim
�

lim inf
k→∞

H�(X|Y ).

Proof. This follows immediately from (1) and (2).

4.4 Multiple Oracles

Consider the case when the relative automaton has access to more than one
oracle sequences, say Y1 · · · Yn, where each Yi ∈ Σ∞. The finite-state relative
dimension in this scenario is defined using the case in which there is only one
oracle Y ∈ (Σn)∞, such that Y = Y1 × Y2 · · · × Yn.

Definition 6. (Finite-state relative dimension with multiple oracles) The finite-
state relative dimension of a sequence X with respect to a sequences Y1 · · · Yn is
defined as dimY1···Yn

FS (X) = dimY
FS(X).

For a string X strings Y1, · · · Yn ∈ {0, 1}n, the �-length block entropy of X
relative to Y1, · · · Yn ∈ {0, 1}n is defined as:

Definition 7. (Relative block entropy rates with multiple oracles) The rel-
ative block entropy rate of X with respect to Y1, . . . , Yn is defined by
H�(X|Y1 · · · Yn) = H�(X|Y ).

The proofs relating to Theorem 1 can also be stated in terms of the case where
there are multiple oracle sequences involved.

Theorem 2. dimY1···Yn

FS (X) = lim� lim inf
k→∞

H�(X|Y1 · · · Yn).
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The following are some basic properties of finite-state relative dimension.

Lemma 4. Let X and Y be arbitrary strings in Σ∞. Then the following hold.

1. dimY
FS(X) ≤ dimFS(X).

2. dimX
FS(X) = 0.

3. dim0∞
FS(X) = dimFS(X).

5 Finite-State Relative Dimensions of AP Subsequences

In this section, we study the finite-state dimensions of AP subsequences using the
information theoretic characterization of finite-state relative dimension devel-
oped in Theorem 1. We derive a collection of inequalities which demonstrate
the relationships between the dimension of a sequence and the dimensions of its
AP subsequences. The main results in the following sections are derived as the
consequences of these inequalities. At the end of this section, we show that these
bounds are necessarily inequalities, by providing examples. These examples also
show that the bounds are tight.

Given a sequence X ∈ Σ∞, d ∈ N and any i ∈ {0, 1, 2, . . . d − 1} let Ad,i

denote the ith AP subsequence of X with common difference d. That is,

Ad,i = X[i] X[i + d] X[i + 2d] X[i + 3d] . . . .

Using the chain rule of Shannon entropy [6], we obtain our first inequality which
gives a lower bound for the finite-state dimension of X in terms of the finite-state
relative dimensions of the its AP subsequences.

Lemma 5. For any X ∈ Σ∞, d ∈ N and σ ∈ Bij(d),

dimFS(X) ≥ 1
d

(

dimFS(Ad,σ(0)) +
d−1∑

i=1

dimAd,σ(0),Ad,σ(1),...Ad,σ(i−1)

FS (Ad,σ(i))

)

Using inequalities from real analysis, and by selecting σ to be the identity
mapping, we can show the following corollary.

Corollary 1. Consider any X ∈ Σ∞ and d ∈ N. If for some r ∈ [0, 1],
dimFS(Ad,0) ≥ r and for every i,

dimAd,0,Ad,1,...Ad,i−1
FS (Ad,i) ≥ r.

Then, dimFS(X) ≥ r.

It follows from Theorem 4 in Sect. 6 that when X is a normal sequence, the
bound in Lemma 5 is tight. To conclude this section, we show that inequality in
Lemma 5 cannot be replaced with an equality in general. We state the following
lemma for the case when d = 2 and σ is the identity mapping from {0, 1} to
itself, for the sake of simplicity. Using ideas from [11], we obtain the following
lemma which generalizes to arbitrary d and σ in a straightforward manner.

Lemma 6. There exists an X ∈ Σ∞ such that,

dimFS(X) >
1
2

(
dimFS(A2,0) + dimA2,0

FS (A2,1)
)
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6 A Stronger Wall’s Theorem on AP Subsequences
with a Perfect Converse

D.D.Wall in [14] proved that a number x = 0.x[0]x[1]x[2]x[3] . . . is normal if and
only if for every d ≥ 1 and a ≥ 0, 0.x[a]x[a+2d]x[a+3d]x[a+4d] . . . is a normal
number. We state the equivalent theorem in Σ∞ below.

Theorem 3. [14] If X ∈ Σ∞ is a normal sequence then for every d ≥ 1 and
a ≥ 0, X[a] X[a + d] X[a + 2d] X[a + 3d] X[a + 4d] . . . is a normal sequence.

We remark that it is enough to consider a ∈ {0, 1, 2, . . . d − 1} since replacing a
with a mod d only prepends finitely many characters to the subsequence (and
therefore has no effect on the normality or the finite-state dimension of the subse-
quence). If d = 1, then the converse direction is trivial since the AP subsequence
with a = 0 and d = 1 is the sequence X itself. Therefore, the converse direction
is interesting only when d takes values strictly greater than 1. Hence, the new
converse question is the following: If for every d ≥ 2 and a ∈ {0, 1, 2, . . . d − 1},
X[a] X[a + d] X[a + 2d] X[a + 3d] X[a + 4d] . . . is a normal sequence then is X
a normal sequence?.

This question is shown to be false. Vandehey [13] gave the following coun-
terexample: fix any normal sequence X = X[0]X[1]X[2]X[3] . . . and consider
the doubled sequence, X[0]X[0]X[1]X[1]X[2]X[2]X[3]X[3] . . . . It is straightfor-
ward to verify that every AP subsequence of the doubled sequence with d ≥ 2 is
normal, but the doubled sequence is itself non-normal.

Weiss [15], Kamae [9] and Vandehey [13] showed that expanding the set of
subsequences along which normality is investigated can yield interesting answers
in the converse direction. Weiss and Kamae [9,15] showed that a number is
normal if and only normality is preserved along every deterministic subsequence
with positive asymptotic lower density. In a recent work, Vandehey [13] proved
a nearly sharp converse to the Wall’s theorem. Vandehey considers collections
of subsequences such that for any ε, the collection contains a subsequence with
asymptotic lower density greater than 1 − ε. Theorem 1.3 in [13] shows that
preservation of normality along all subsequences in such a collection implies the
normality of the original number. Theorem 1.4 from the same paper shows that
this converse to the Wall’s theorem is close to being sharp.

In this section we show that the inequalities established in Sect. 5 yields
a stronger forward direction for Wall’s theorem (Theorem 3). We show that
if sequence X is normal, then for any d ≥ 2 and a ∈ {0, 1, 2, . . . d − 1}, the
AP subsequences X[a] X[a + d] X[a + 2d] X[a + 3d] X[a + 4d] . . . is relatively
normal with respect to every other AP subsequence with the same common
difference d. The results in Sect. 5 also yields a perfect converse to the stronger
forward direction. i.e., we show that if every AP subsequence of X with d ≥ 2
is relatively normal with respect to every other AP subsequence with the same
common difference d, then X is a normal sequence.

For proving the forward direction we require the following lemma.
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Lemma 7. For any X ∈ Σ∞, d ∈ N and j ∈ {0, 1, 2, . . . d − 1},

dimFS(Ad,j) ≥ dim{Ad,k|k �=j}
FS (Ad,j) ≥ d

(

dimFS(X) − d − 1
d

)

.

Now, we give an immediate corollary of Lemma 7 which is useful in the later
sections.

Corollary 2. Let X ∈ Σ∞, d ∈ N and j ∈ {0, 1, 2, . . . d − 1}. If for some ε > 0,

dimFS(X) ≥ d − 1
d

+ ε,

then for every j, dimFS(Ad,j) ≥ dim{Ad,k|k �=j}
FS (Ad,j) ≥ dε.

The following is the restatement of Theorem 3 in terms of finite-state dimen-
sion which easily follows from the entropy characterization of finite-state dimen-
sion from [3].

Theorem (Restatement of Theorem 3). A sequence X ∈ Σ∞ is such that
dimFS(X) = 1 if and only if for every a ∈ {0, 1, 2, . . . d − 1} and d ≥ 2,
dimFS(Ad,a) = 1.

As a consequence of Corollary 2, by setting ε = 1/d, we obtain the stronger
forward direction of Theorem 3.

Lemma 8. Let X ∈ Σ∞ be any normal sequence. Then, for every d ≥ 2 and
a ∈ {0, 1, 2, . . . d − 1}, dimFS(Ad,a) = dim{Ad,k|k �=a}

FS (Ad,a) = 1.

The above statement strengthens the forward direction of Theorem 3 because it
claims that if a sequence is normal then each of its AP subsequences are normal
and are also relatively normal with respect to the other AP subsequences having
the same common difference.

The conclusion in Lemma 8 is strong enough that using our lower bound
inequality (Lemma 5), we get a perfect converse to Lemma 8.

Lemma 9. Let X ∈ Σ∞. If for every d ≥ 2 and a ∈ {0, 1, 2, . . . d − 1},
dim{Ad,k|k �=a}

FS (Ad,a) = 1, then dimFS(X) = 1.

Lemma 9 follows using the fact that dimAd,0,Ad,1,...Ad,a−1
FS (Ad,a) ≥

dim{Ad,k|k �=a}
FS (Ad,a) and Corollary 1 when r = 1.
Combining Lemma 8 and 9, we get the following stronger Wall’s theorem

with a perfect converse.

Theorem 4. A sequence X ∈ Σ∞ is normal (equivalently dimFS(X) = 1) if
and only if for every d ≥ 2 and a ∈ {0, 1, 2, . . . d − 1}, dim{Ad,k|k �=a}

FS (Ad,a) = 1.

In other words, we have shown that a sequence X ∈ Σ∞ is normal if and only if
for every d ≥ 2, the AP subsequences of X with common difference d are normal
and are also relatively normal with respect to the other AP subsequences with
the same common difference d.
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7 van Lambalgen’s Theorem for Finite-State Dimension

van Lambalgen, in his thesis, [10] showed that relative Martin-Löf randomness
is symmetric.

Theorem 5. [10] Let A,B ∈ Σ∞. A is Martin-Löf random and B is Martin-Löf
random relative to A if and only if A ⊕ B is Martin-Löf random.

This symmetry fails in other randomness settings like Schnorr randomness,
computable randomness and resource-bounded randomness [1,5,8,16]. In this
section, we show that relative normality is symmetric, thus establishing an ana-
logue of van Lambalgen’s theorem for normality. But, for finite-state dimensions
less than 1, both directions of the theorem fails to hold in general. We show
that for the class of regular sequences, the forward direction of van Lambalgen’s
Theorem is true.

Utilizing the results we established in Sects. 5 and 6, we first show that an
analogue of van Lambalgen’s theorem holds for normality, i.e. the case when
finite-state dimensions are 1.

Theorem 6. Let A, B ∈ Σ∞. A is normal and B is normal relative to A if and
only if A ⊕ B is normal.

Proof. A and B are two A.P. subsequences of A ⊕ B with common difference 1.
By Corollary 1 it follows that dimFS(A ⊕ B) = 1, i.e., A ⊕ B is normal.

Conversely, suppose that A⊕B is normal, i.e. dimFS(A⊕B) = 1. By Lemma
8, dimA

FS(B) = 1 and dimB
FS(A) = 1. Since dimFS(A) ≥ dimB

FS(A) by Lemma
7, it follows that dimFS(A) = 1.

Thus relative normality is symmetric. We may conjecture that this generalizes
in the following ideal form.

Ideal Claim. Let A, B ∈ Σ∞. Then for any r ∈ [0, 1], dimFS(A) = r and
dimA

FS(B) = r if and only if dimFS(A ⊕ B) = r.
Both the forward and converse directions in the above claim are false for

general sequences. However, we conclude by showing that if A and B are “regular
sequences”, then the forward direction of the ideal claim holds. This is analogous
to the failure of the converse direction of van Lambalgen’s theorem in certain
notions of randomness.

Setting A and B to be the two AP subsequences (with d = 2) of X from
Lemma 6, it readily follows that the forward direction in the above claim is false
for general A and B. Now let A be 0∞ and B be any normal number. Now, A⊕B
is the diluted sequence [7] with dimension equal to 1/2. But, dimFS(A) = 0 and
it follows from Lemma 4 that dimA

FS(B) = 1. Therefore the converse direction
of the claim is also false for general sequences. It is easy to verify from the
construction in the proof of Lemma 6 that sequences A and B given in the
counterexample for the forward direction are both non-regular sequences. This
leads to the question whether the forward direction in the ideal claim is true for
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A and B that are regular sequences. We answer this question in the affirmative
as a consequence of the following lemma.

Lemma 10. Let A,B ∈ Σ∞. If A is a regular sequence, then,

dimFS(A ⊕ B) =
1
2

(
dimFS(A) + dimA

FS(B)
)

.

Now we prove the forward direction of the ideal claim for regular sequences.

Lemma 11. Let A,B ∈ Σ∞ such that A is a regular sequence and let r ∈ [0, 1].
If dimFS(A) = r and dimA

FS(B) = r then, dimFS(A ⊕ B) = r.

The converse of the ideal claim is however false even for A and B that are
both regular sequences. Let A be 0∞ and B be any normal number. Both of these
sequences are regular sequences. However, as we noted above, dimFS(A ⊕ B) =
1/2, but dimFS(A) = 0 and dimA

FS(B) = 1.

8 Relation to Finite-State Independence

Becher, Carton and Heiber [2] define finite-state independence between two
strings. They use a joint compression model composing of a one-to-one finite-
state transducer with auxiliary input. Two strings X and Y are said to be
finite-state independent when one does not help to compress the other in this
model. However, due to the presence of ε-transitions, the input tape of X and Y
need not be read in tandem. Our model is more restrictive, hence more pairs of
sequences are relatively finite-state random in our model. This is a consequence
of the theorems in the previous section.

Lemma 12. There are sequences X and Y that are not finite-state independent
but X and Y are relatively normal, and X ⊕ Y is normal.

Proof. By Theorem 4.3 in [2], there exists two normal strings X and Y such
that X ⊕ Y is normal but X and Y are not finite-state independent. Since
dimFS(X ⊕ Y ) = 1, by Theorem 6, we have dimX(Y ) = 1.

The converse question, i.e. whether finite-state independence implies relative
randomness, remains open.
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Abstract. The Minimum Dominating Set (MDS) and Minimum Con-
nected Dominating set (MCDS) problems are well-studied problems in
the distributed computing communities due to their numerous applica-
tions across the field. We study these problems in axis-parallel unit square
and unit disk graphs. We exploit the underlying geometric structures of
these graph classes and present constant round distributed algorithms in
the LOCAL communication model. Our results are distributed constant
factor approximation algorithms for the MCDS problem in unit square
graphs that run in 18 rounds and in unit disk graphs that run in 44
rounds. The message complexity is linear for both the algorithms.

Keywords: Minimum dominating set · Minimum connected
dominating set · Distributed algorithms · Axis-parallel unit square
graphs · Unit disk graphs · Approximation algorithms

1 Introduction

The dominating set problem is a well-studied problem in combinatorial optimiza-
tion. This problem has numerous real-life applications in facility location, wire-
less networking problems, and many more. For an undirected graph G = (V,E),
a subset S ⊆ V is called a dominating set of G, if for any vertex v ∈ V , either
v ∈ S or there exists a node u ∈ S and (u, v) ∈ E. The minimum dominating set
(MDS) problem seeks to find a dominating set in G of minimum size. A connected
dominating set in G is a dominating set whose induced graph is connected. The
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minimum connected dominating set (MCDS) problem seeks a connected domi-
nating set of minimum size. Both the MDS and the MCDS problems are known
to be NP-complete.

In a geometric setting, we are given a set O of objects in the Euclidean plane.
The objective of the MDS problem is to find a minimum size subset O′ ⊆ O such
that for any object o ∈ O, either o ∈ O′ or there exists at least one object o′ ∈ O′

such that o and o′ intersect. Similarly, we define the MCDS problem where
the objects in O′ form a connected component. We now define the geometric
intersection graph GO of the set O. For each object o ∈ O, take a vertex vo ∈ GO.
There is an edge in GO between two vertices vo1 and vo2 if and only if the two
objects o1, o2 ∈ O intersect. For our convenience, we use nodes and objects
interchangeably when it is clear from the context to represent an object and its
corresponding node in the intersection graph of the objects. In all algorithms in
this paper, we assume that each vertex knows its position.

In many real-life applications, the underlying graphs have geometric struc-
ture. For example, in a wireless sensor network, sensor nodes are deployed over
an unknown region for data collection. Every sensor node has a communication
range rc and a node can communicate with all the nodes which are inside its
communication range. Thus, every sensor node can be represented by a disk of
radius rc/2. For any two sensor nodes which are less than rc distance to each
other, the corresponding disks intersect and the nodes can communicate to each
other. Hence, the underlying communication graph can be represented by a geo-
metric graph, where each vertex is a disk and there is an edge between two
vertices if the corresponding disks intersect.

In a distributed setting, the MCDS problem is well-studied. It is used as back-
bone in ad-hoc and sensor networks [6,7]. Connected dominating sets are used for
routing, broadcasting and other network management functions in a network [6].
In this paper we provide distributed algorithms for the MDS and MCDS prob-
lems on axis-parallel unit squares graphs, and unit disk graphs. Our algorithms
run in constant rounds. Further we show that these algorithms produce constant
factor approximations using no more than linear number of messages.

We consider the well-known LOCAL communication model [16]. Communi-
cation proceeds in synchronous rounds and all nodes start simultaneously.1 In
any round, a node can send an arbitrary size message to all of its neighbors and
can perform any local computations. The number of such synchronous rounds
required till an algorithm ends is the time complexity of the algorithm. The same
model is considered in the work by Jallu et.al. [11]. Regarding communication,
when a node broadcasts, we consider it as a single message sent by the node,
similar to the model considered in [11]. The total number of messages sent by
all the nodes during the algorithm is the message complexity of the algorithm.

1.1 Previous Work

The MDS problem is NP-hard for simple geometric objects such as axis-parallel
unit squares and unit disks [5]. The MCDS problem is NP-hard for unit disk

1 In an asynchronous network, simulating LOCAL model using time stamps is possible.
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graphs [12]. In the sequential setting, constant factor approximation algorithms
for the MDS and MCDS problems are given in [2,13]. For unit disk graphs,
PTASes exist for the MDS [10] and MCDS problems [4]. It is straightforward
that simple greedy algorithms can be designed for the MDS problem for unit
square and disk graphs.

There is a series of study of the connected dominating set problem in the dis-
tributed settings [3,8,14,17–19]. There are some algorithms for the MCDS prob-
lem in unit disk graphs that give low constant approximation algorithms (factor
8), however, their time complexity is linear and message complexity is O(n log n),
where n is the number of nodes in the graph [3,17]. Alzoubi et al. [1], Cheng
et al. [3], and Gao et al. [9] proposed constant factor approximation algorithms
for the MCDS problem in unit disk graphs and both time and message com-
plexity of the algorithms are linear. Jallu et al. [11] provided an algorithm with
(104opt + 52) approximation for the MCDS problem in unit disk graphs that
takes O(Δ) time and O(n) messages, where Δ is the maximum degree of a node
in the graph and n is the number of nodes. Authors also dealt with the interfer-
ence issue while broadcasting by scheduling conflict-free time slots for the nodes
to broadcast. Mohanty et al. [15] provided ((4.8 + log 5)opt + 52) approximation
for the MCDS problem in unit disk graphs in O(D) rounds which is very high
considering D is the diameter of the graph.

1.2 Our Contributions

• Axis-parallel unit square graphs
– We present a 18 rounds distributed approximation algorithm for the

MCDS problem in axis-parallel unit square graphs. Next, we show that
this algorithm is a 72 factor approximation algorithm for the MCDS prob-
lem in axis-parallel unit square graphs. The message complexity is linear
in the number of nodes. (Sect. 2)

• Unit disk graphs
– We present a 44 rounds distributed approximation algorithm for the

MCDS problem in the unit disk graphs. We further show that this algo-
rithm is a 441 factor approximation algorithm for the MCDS problem in
unit disk graph. The message complexity is linear. (Sect. 3)

2 Unit Square Graphs

In this section, we present a constant round distributed algorithm for finding a
connected dominating set in an axis-parallel unit square intersection graph. Let
S be a given set of axis-parallel unit squares. Each square in S is identified by
the coordinates of its lower-left corner which we refer to as its id. Consider the
vertical lines (i.e., lines parallel to the y-axis) at each integer point on the x-axis.
Similarly, consider the horizontal lines (i.e., lines parallel to the x-axis) at each
integer point on the y-axis. These lines form a unit grid R on the xy-plane (refer
to Fig. 1). Each grid point can be identified by its coordinate (i, j) where vertical
line at integer i and horizontal line at integer j intersects.



Distributed Connected Dominating Sets in Unit Square and Disk Graphs 349

A point (x, y) is said to be covered by a square s ∈ S with lower left corner
(p, q) if p ≤ x < p+1 and q ≤ y < q+1. As per the above definition, each square
s ∈ S covers exactly one grid point. Let Sij ∈ S be the set of squares that cover
the grid point (i, j). Let CL be the resulting minimum connected dominating set
returned by the algorithm that is empty at the beginning of the algorithm. The
intuitive idea behind the algorithm is demonstrated in Fig. 1.

2.1 The Algorithm

The proposed algorithm runs for 18 rounds that proceed in three phases. The
first phase involves the initial two rounds. A set of nodes in Sij selects themselves
in the dominating set in this phase. The next two phases, each of which takes 8
rounds are designated to select few more nodes to ensure the connectivity.

We introduce some notations use in the algorithm. For any node v, N(v) is
the set of neighbors of v, including v. Let N ′(v) ⊆ N(v) be the set of neighbors
of v, including v, that contains the same integer grid point as v. For any non-
empty subset T of S, ymin(T ) is the node w in T such that the y-coordinate of
w is minimum among all the nodes in T . In case of tie, the node w is chosen as
the node with minimum x coordinate among all the nodes which are involved in
the tie. For any non-empty subset T of V , ymax(T ) is the node w in T such that
the y-coordinate of w is maximum among all the nodes in T . In case of tie, the
node w is chosen as the node with maximum x coordinate among all the nodes
which are involved in the tie. Similarly, we define xmin(T ) and xmax(T ).

Phase 1: Each node v broadcasts its id and thus learns N(v) in the first
round. In round 2, the node v computes the functions xmin(N ′(v)), ymin(N ′(v)),
xmax(N ′(v)), ymax(N ′(v)) after learning N(v) and computing N ′(v) from N(v).
The node v selects itself in CL if v itself is one of the nodes xmin(N ′(v)),
ymin(N ′(v)), xmax(N ′(v)), ymax(N ′(v)).

Phase 2: All the nodes in Sij , where both i, j are odd, participate in this phase.

– Each node v in Sij that has at least one neighbor in S(i+1)(j+1) broadcasts its
id in round 1 of this phase. In round 2, the node v learns the set N(i + 1, j +
1)(v) ⊆ Sij containing the set of all neighbors which has at least one neighbor
in S(i+1)(j+1). If v ∈ N(i + 1, j + 1)(v) and xmin(N(i + 1, j + 1)(v)) = id(v),
then v selects itself in CL and broadcasts its id.

– Each node v in Sij that has at least one neighbor in S(i+1)(j−1) broadcasts its
id in round 3 of this phase. In round 4, the node v learns the set N(i + 1, j −
1)(v) ⊆ Sij containing the set of all neighbors which has at least one neighbor
in S(i+1)(j−1). If v ∈ N(i + 1, j − 1)(v) and xmin(N(i + 1, j − 1)(v)) = id(v),
then v select itself in CL and broadcasts its id.

– Each node v in Sij that has at least one neighbor in S(i−1)(j−1) broadcasts its
id in round 5 of this phase. In round 6, the node v learns the set N(i − 1, j −
1)(v) ⊆ Sij containing the set of all neighbors which has at least one neighbor
in S(i−1)(j−1). If v ∈ N(i − 1, j − 1)(v) and xmin(N(i − 1, j − 1)(v)) = id(v),
then v select itself in CL and broadcasts its id.
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– Each node v in Sij that has at least one neighbor in S(i−1)(j+1) broadcasts its
id in round 7 of this phase. In round 8, the node v learns the set N(i − 1, j +
1)(v) ⊆ Sij containing the set of all neighbors which has at least one neighbor
in S(i−1)(j+1). If v ∈ N(i − 1, j + 1)(v) and xmin(N(i − 1, j + 1)(v)) = id(v),
then v select itself in CL and broadcasts its id.

Fig. 1. Grid points {(i, j)|i, j odd}, {(i, j)|i odd, j even}, {(i, j)|i even, j odd}, and
{(i, j)|i, j even} are colored with red, green, black, and blue, respectively. In phase
1, the selected node corresponding to any grid point (e.g., red) becomes connected to
the selected nodes corresponding to its two horizontal and vertical neighboring grid
points (e.g., two green and two black) if there is a direct connection. In phase 2, nodes
corresponding to red grid points make connection with nodes corresponding to blue
grid points that is interpreted by the red arrows. In Phase 3, nodes corresponding to
green grid points make connection with nodes corresponding to black grid points, that
is represented by the green arrows. (Color figure online)

Phase 3: In this phase only the nodes in Sij for i even and j odd, participate.

– Each node v in Sij which received a message in the second round of Phase
2 from a node in S(i−1)(j−1) broadcasts its id in round 1 of this phase. In
round 2, the node v learns the set S′′ ⊆ Sij containing the set of all neighbors
which has received a message in the 2nd round of phase 2 from a node in
S(i−1)(j−1). If v ∈ S′′ and xmin(S′′) = id(v), then v select itself in CL.

– Each node v in Sij which received a message in the fourth round of Phase
2 from a node in S(i−1)(j+1) broadcasts its id in round 3 of this phase. In
round 4, the node v learns the set S′′ ⊆ Sij containing the set of all neighbors
which has received a message in the fourth round of phase 2 from a node in
S(i−1)(j+1). If v ∈ S′′ and xmin(S′′) = id(v), then v select itself in CL.

– Each node v in Sij which received a message in the sixth round of Phase
2 from a node in S(i+1)(j+1) broadcasts its id in round 5 of this phase. In
round 6, the node v learns the set S′′ ⊆ Sij containing the set of all neighbors
which has received a message in the sixth round of phase 2 from a node in
S(i+1)(j+1). If v ∈ S′′ and xmin(S′′) = id(v), then v select itself in CL.
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– Each node v in Sij which received a message in the eighth round of Phase
2 from a node in S(i+1)(j−1) broadcasts its id in round 7 of this phase. In
round 8, the node v learns the set S′′ ⊆ Sij containing the set of all neighbors
which has received a message in the eighth round of phase 2 from a node in
S(i+1)(j−1). If v ∈ S′′ and xmin(S′′) = id(v), then v select itself in CL.

A pictorial description of the algorithm is given in Fig. 1. The following the-
orems give the correctness and the approximation factor of the algorithm.

Theorem 1. The nodes in CL form a connected dominating set.

Theorem 2. The proposed algorithm returns a 72-approximation connected dom-
inating set in 18 rounds using O(n) messages where n is the number of nodes.

3 Unit Disk Graphs

In this section, we propose a distributed constant rounds algorithm to find con-
nected dominating set for connected networks modeled as unit disk graphs (udg)
where each unit disk is of radius 1 and identified by its center where the center
is interpreted as the node corresponding to that unit disk. In these networks, a
node u is connected to all the nodes at distance at most 1 from it.

3.1 High Level Idea

Before going to the details of the algorithm for finding a minimal connected
dominating set of G, we give a high level idea of the algorithm.

First, we divide the plane into squares of side lengths 1√
2
. This can be done

by considering vertical and horizontal lines with 1√
2

distance apart over the
entire region. Among the horizontal lines, one is along the x-axis and among
the vertical lines, one is along the y-axis. For any two integers p, q, the square
whose bottom left corner point is (p/

√
2, q/

√
2), is called (p, q)-th square and

is denoted by Rp,q. A node u is said to be in the square Rp,q if it is inside the
square or on the left or bottom boundary including the bottom left corner point.
It can be noted here that by doing local computation, each node can learn in
which square it belongs as the node knows its coordinates.

Intuitively, if one node is selected from each of the squares, then the set of
selected nodes form a dominating set. This is because the side-length of any
square is 1√

2
and hence, the length of its diagonal is 1. Therefore, any two

nodes from a single square must be neighbors. As our objective is to find a
connected dominating set, some additional nodes need to be selected. We select
these additional nodes locally by identifying some squares as head squares and
a set of squares around each head square as the family of that head square. The
head squares are defined in a recursive way as follows. Refer to Fig. 2.

– The square R1,1 is a head square.
– The squares Rp,q+3, Rp+3,q, Rp−3,q, and Rp,q−3 are head squares if and only

if Rp,q is a head square.
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For any square Ri,j , we define the family F(Ri,j) of Ri,j as the set of squares
{Rx,y: (|x − i| ≤ 2 and |y − j| ≤ 1) or (|x − i| ≤ 1 and |y − j| ≤ 2)}. Note
that |F(Ri,j)| = 21 (See Fig. 3a). Observe that, any square Ri,j can be part of at
most three families of different head squares (refer Fig. 2). Let C(Ri,j)={(p, q) :
Ri,j ∈ F(Rp,q), where Rp,q is a head square}.

It can be observed that for any node u ∈ Ri,j , each node in N(u) belongs to
some square in F(Ri,j). This is because the distance between u and any point
outside F(Ri,j) is more than 1 (See Fig. 3b).

Fig. 2. We show a part of the Euclidean plane divided with vertical and horizontal
lines. Each of the 9 head squares present in this part are shown using different colors
along with a mark inside; e.g., Rp,q is a head square colored in green with a star in the
middle. The family of Rp,q is highlighted in green. Squares in each family are marked
with the same shape of that family. Multiple smaller size shapes within a square implies
that the square belongs to family of the corresponding multiple head squares. Observe
that a head square does not belong to the family of any other head square. (Color
figure online)

Our algorithm initially selects one node from each non-empty square. By
selecting additional nodes from the family of each head square, we find a local
connected dominating set for each family. We show that this local connections
are enough to construct a connected dominating set for the underlying network.

3.2 The Algorithm

The algorithm is executed in 44 rounds. In the second round, at most one node
from each square is selected as a member of the dominating set. The next 42
rounds are dedicated for selecting a set of additional nodes for connectivity. Every
node v maintains a variable dom(v) that is initially set to zero. The details of
the algorithm is as follows.

1. In round 1, a node v ∈ Ri,j for some i, j transmits a message < M, (x, y) >
to all its neighbors where the coordinates of v are (x, y).
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(a) (b)

Fig. 3. (a) Family of the square Rx,y: Any unit disk whose center belongs to Rx,y, can
not have intersection with any unit disk whose center does not belong to any of these
21 squares. We can see the unit disks centering in Rx,y lie entirely within this family.
(b) Nodes selected in the family of head square Rp,q in round 2 are marked in large
orange circles. The edges and additional nodes are obtained by replacing the edges of
the spanning tree by the corresponding special paths. As an example, there was an
edge u′w′ in the spanning tree which is replaced by the special path w′ −v′ −u′. (Color
figure online)

2. Let Z1(v) be the set of nodes from which v received a message in round 1.
Let Z ′(v) ⊆ Z1(v) be the set of nodes that belongs to Ri,j . If v is the smallest
id node among Z ′(v) then it sets dom(v) = 1 in round 2.

3. In each round �, for 3 ≤ � ≤ 43, the node v transmits a message <
M, dom(v), Z�−2(v) > to all its neighbors. Then it computes Z�−1(v) as
∪u∈Z1(v)Z�−2(u).

4. For each (p, q) ∈ C(Ri,j), let S(p, q) be the set of nodes u in Z42(v) such that
u ∈ F(p, q) and the node u set dom(u) = 1 in round 2. The node v constructs
a graph G(p, q) = (V (p, q), E(p, q)) as follows:

– For each node u ∈ S(p, q), take a vertex u(p, q) in V (p, q).
– Let P(u,w) be the set of paths of length at most 3 in G between the nodes

u ∈ S(p, q) and w ∈ S(p, q) whose internal nodes are in Ri,j ∪Ri′,j′ , where
u ∈ Ri,j and w ∈ Ri′,j′ . A path P ∈ P(u,w) between those two nodes u
and w is said to be the special path if the length of P is dist(u,w) and it is
lexicographically shortest from the node with smaller id (between u and
w) to the node with larger id (between u and w). For any two vertices
u(p, q), w(p, q) ∈ V (p, q), add an edge between u(p, q), w(p, q) in E(p, q)
if and only if P(u,w) is nonempty.

The node v computes a spanning tree T (p, q) using some deterministic algo-
rithm corresponding to each connected component C(p, q) of G(p, q). For each
edge (u(p, q), w(p, q)) in T (p, q), v replaces this edge by the special path join-
ing u and w in G2 (see Fig. 3b). If v is a vertex that lies on the special path,
it sets dom(v) = 1.

The connected dominating set returned by the algorithm is the set of nodes U
such that for each u ∈ U , dom(u) = 1. We prove the correctness of the proposed
algorithm and the analyze its approximation factor in the next subsection.
2 Note that (u(p, q), w(p, q)) ∈ T (p, q) implies (u(p, q), w(p, q)) ∈ E(p, q). This implies
P(u,w) is non empty and the special path joining u and w in G exists.



354 B. Gorain et al.

3.3 Analysis

Let U= {v : dom(v) = 1}. The following lemmas will help to prove that U is a
connected dominating set of G.

Lemma 1. The set U is a dominating set of G.

Proof. Consider a node u ∈ G. If u ∈ U , then we are done. Suppose that u �∈ U .
Let Ri,j be the square such that u ∈ Ri,j . In round 2 of the algorithm, one node
u′ from Ri,j sets dom(u′) = 1. Since the sides of the square Ri,j are of length 1√

2
,

any two nodes in Ri,j are at most one distance apart and hence u′ is a neighbor
of u. This proves the lemma. �	

Lemma 2. Let Rp,q be a head square and u, u′ be two nodes in F(Rp,q). If
u and u′ are connected in the subgraph induced by the nodes in F(Rp,q), then
dist(u, u′) ≤ 41.

Proof. We prove this statement by contradiction. Suppose that there exists two
nodes w,w′ ∈ F(Rp,q) such that the shortest path between w and w′ is at least
42 in the graph induced by the nodes in F(Rp,q), i.e., the shortest path from w
and w′ contains 43 nodes including w and w′ from F(Rp,q). Since there are 21
squares in F(Rp,q), by the Pigeonhole principle, there must exist 3 nodes in this
path that lie in the same square. This leads to a contradiction as the diagonal of
each square is 1 and hence any 3 nodes in the same square must form a cycle. �	

Lemma 3. For any two nodes u, v ∈ G, if u and v are neighbors, then there
exists some head square Rp,q such that u ∈ F(Rp,q) and v ∈ F(Rp,q).

Proof. We first assume that u ∈ Rp,q, where Rp,q is a head square. This case is
trivial, since dist(u, v) ≤ 1, therefore, v ∈ F(Rp,q). Hence, u and v belongs to
the same head square.

Next, suppose that u is in some square in F(Rp,q) \ {Rp,q}, where Rp,q is a
head square. Define a set Tp,q, where Tp,q = {Rx,y: (|x−p| ≤ 1 and |y−q| ≤ 1)}.
So, Tp,q ⊂ F(Rp,q). Depending on in which square u belongs, we categorize
all possibilities in 4 cases. The first 3 cases consider that u belongs to different
squares of Tp,q, whereas, the fourth case considers that u belongs to F(Rp,q)\Tp,q.

– Case 1 [u ∈ Rp−1,q ]: Partition the set F(Rp−1,q) into two disjoint sets A
and B, where A = F(Rp−1,q) \ F(Rp,q) and B = F(Rp−1,q) ∩ F(Rp,q). If the
node v is in some square in B, then both u and v belong to some squares
of the family of head square F(Rp,q). Suppose that v is in some square Rx,y

of the set A. Since Rx,y ∈ F(Rp−1,q) and Rx,y �∈ F(Rp,q), therefore, A =
{Rp−3,q, Rp−3,q+1, Rp−3,q−1, Rp−2,q+2, Rp−2,q−2}. For each possible values of
x, y such that Rx,y ∈ A, |p − 3 − x| ≤ 1 and |q − y| ≤ 2 holds. Hence, as per
the definition of the family of a square, each of the squares in A belongs to
F(Rp−3,q). So the squares in A and Rp−1,q belong to the family of the head
square Rp−3,q (See Fig. 4).
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Fig. 4. Case 1 of Lemma 3: The square Rp−1,q is part of family of 2 head squares
Rp,q, and Rp−3,q. The family of Rp−1,q is bounded by red outline. The squares in the
set A are marked by yellow half-circles along with the yellow head square Rp−3,q. The
node u and any neighbor of u in A shares the common head square Rp−3,q. The squares
in B are marked by green half-circles along with the green head square Rp,q. The node
u and any neighbor of u in B shares the common head square Rp,q. (Color figure online)

– Case 2 [u ∈ Rp−1,q+1]: Partition the set F(Rp−1,q+1) into three disjoint
sets A, B, and C, where A = F(Rp−1,q+1)∩F(Rp,q), B = (F(Rp−1,q+1)\A)∩
F(Rp,q+3), and C = (F(Rp−1,q+1) \ (A ∪ B)) ∪ F(Rp−3,q). If the node v is in
some square Rx,y of A, then both Rx,y and Rp−1,q+1 are in the family of the
head square Rp,q. If Rx,y is in B, then both Rx,y and Rp−1,q+1 are in the
family of the head square Rp,q+3. If Rx,y is in C, both Rx,y and Rp−1,q+1 are
in the family of the head square Rp−3,q.

– Case 3 [u ∈ Rx,y , where Rx,y ∈ Tp,q \ {Rp−1,q , Rp−1,q+1}]: The squares
Rp+1,q, Rp,q+1, and Rp,q−1 ∈ Tp,q are symmetrical neighboring squares of
Rp,q w.r.t. Rp−1,q. Hence similar arguments of case 1 can be used to prove
the statement of the lemma for these squares. Similarly, Rp−1,q−1, Rp+1,q+1

and Rp+1,q−1 are symmetrical neighboring squares of Rp,q w.r.t. Rp−1,q+1.
Hence similar arguments of case 1 can be used to prove the statement of the
lemma for these squares.

– Case 4 [u ∈ Rx,y , where Rx,y ∈ F(Rp,q) \ Tp,q ]: The following subcases
exhaust all possibilities (referring the structure of F(Rp,q).

• u ∈ Rx,y such that x = p − 2: These squares belong to Tp−3,q.
• u ∈ Rx,y such that x = p + 2: These squares belong to Tp+3,q.
• u ∈ Rx,y such that y = q +2: These squares belong to Tp,q+3 or Tp−3,q+3.
• u ∈ Rx,y such that y = q −2: These squares belong to Tp,q−3 or Tp−3,q−3.

Hence the proof of the lemma will hold as it holds for the squares in Tp,q for
any arbitrary head square Rp,q. �	

Theorem 3. The graph induced by the nodes in U is connected.

Proof. It is sufficient to prove that there exists a path between two nodes u and
v in U such that the path contains only nodes in U .
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Since the graph G is connected, there exists a path P between u and v in
G. Let P = (u =)v0 − v1 − . . . − vt(= v). Let u belong to a square in F(Rp,q)
and let vj be the first node in the path P such that vj belongs to a square in
F(Rp,q) and vj+1 does not belong to any square of F(Rp,q). Let vj ∈ Ra,b and
vj+1 ∈ Rx,y. A node uj ∈ Ra,b and uj+1 ∈ Rx,y have set dom = 1 in round
2 of the algorithm. Since vj and vj+1 are neighbors, by Lemma 3, Ra,b and
Rx,y belongs to F(Rp′,q′), for some head square Rp′,q′ . Since dist(uj , uj+1) is
at most 3 in G and one such distance 3 path is uj − vj − vj+1 − uj+1 where
vj , vj+1 ∈ Ra,b ∪ Rx,y. Therefore, in the graph G(p′, q′), they are connected by
at least one edge (Step 4 of the algorithm) and hence, they are in the same
connected component C of G(p′, q′). By Lemma 2, any two nodes in the same
connected component of G(p′, q′) are at most 41 distance apart in G. Therefore,
in Step 4 of the algorithm, all the nodes of C compute the same graph G(p′, q′)
and hence, compute the same spanning tree. Therefore, the nodes uj and uj+1

are connected by a path consisting of nodes in U . Also, since u and uj are in
the same connected component of G(p, q), there exists a path between u and uj

consisting of nodes in U . This proves that there exists a path between u and
uj+1 consisting of nodes in U .

Using the above argument recursively, we can show that there exists a path
between uj+1 to v consisting of nodes in U . Hence the theorem follows. �	

Theorem 4. The proposed algorithm returns a 441-approximation connected
dominating set in 44 rounds using O(n) messages where n is the number of
nodes.

Proof. Let u be a node selected in an optimal connected dominating set of G.
Further, let u ∈ Rx,y. Note that u alone may dominate all the nodes belong to
the squares in F(Rx,y). We show that according to our algorithm, at most 441
nodes are selected from F(Rx,y).
Claim: From any square Ra,b at most 21 nodes are selected in U by the end of
our algorithm.
To prove the above claim consider the family F(Ra,b). Let v ∈ Ra,b be the node
that set dom(v) = 1 in round 2. Let S be the set of nodes selected in U from the
remaining 20 squares of F(Ra,b) in round 2. Since one node per square is added
in U in round 2, |S| ≤ 20. Therefore, there is at most 20 special paths present
between v and the nodes in S. In round 44 of our algorithm, one additional node
from Ra,b corresponding to each of these 20 special paths may be added in U .
Hence, in total, U contains at most 21 nodes from Ra,b.

As there are 21 squares in F(Rx,y), using the above claim we can say, our
algorithm may choose at most 21 × 21 = 441 nodes from F(Rx,y). As u ∈ Rx,y

is already selected in the optimal solution, we conclude our theorem.
It is clear from the algorithm that it runs for no more than 44 rounds. Each

node broadcasts only constant number of times and hence the message complex-
ity becomes O(n). �	
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4 Conclusion

We study the minimum dominating set and minimum connected dominated set
problems in a distributed setting on axis-parallel unit square graphs and unit
disk graphs. We provide constant rounds distributed algorithms using linear
number of messages for these classes of graphs and show that these algorithms
are constant factor approximation algorithms. Similar problems on geometric
intersection graphs where the nodes have weights would be an interesting direc-
tion for further study.

References

1. Alzoubi, K.M., Wan, P., Frieder, O.: Message-optimal connected dominating sets
in mobile ad hoc networks. In: MobiHoc, pp. 157–164 (2002)

2. Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-factor approxi-
mation for minimum-weight (connected) dominating sets in unit disk graphs. In:
APPROX-RANDOM, vol. 4110, pp. 3–14 (2006)

3. Cheng, X., Ding, M., Du, D.H., Jia, X.: Virtual backbone construction in multihop
ad hoc wireless networks. Wirel. Commun. Mob. Comput. 6, 183–190 (2006)

4. Cheng, X., Huang, X., Li, D., Wu, W., Du, D.: A polynomial-time approximation
scheme for the minimum-connected dominating set in ad hoc wireless networks.
Networks 42(4), 202–208 (2003)

5. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discret. Math. 86(1–
3), 165–177 (1990)

6. Das, B., Bharghavan, V.: Routing in ad-hoc networks using minimum connected
dominating sets. In: ICC, pp. 376–380 (1997)

7. Das, B., Sivakumar, R., Bharghavan, V.: Routing in ad hoc networks using a spine.
In: ICCCN, pp. 34–41 (1997)

8. Funke, S., Kesselman, A., Meyer, U., Segal, M.: A simple improved distributed
algorithm for minimum CDS in unit disk graphs. ACM Trans. Sens. Networks
2(3), 444–453 (2006)

9. Gao, B., Yang, Y., Ma, H.: A new distributed approximation algorithm for con-
structing minimum connected dominating set in wireless ad hoc networks. Int. J.
Commun. Syst. 18(8), 743–762 (2005)

10. III, H.B.H., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E.: NC-approximation schemes for NP- and PSPACE-hard problems
for geometric graphs. J. Algorithms 26(2), 238–274 (1998)

11. Jallu, R.K., Prasad, P.R., Das, G.K.: Distributed construction of connected dom-
inating set in unit disk graphs. J. Parallel Distrib. Comput. 104, 159–166 (2017)

12. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343
(1982)

13. Marathe, M.V., Breu, H., III, H.B.H., Ravi, S.S., Rosenkrantz, D.J.: Simple heuris-
tics for unit disk graphs. Networks 25(2), 59–68 (1995)

14. Min, M., Du, H., Jia, X., Huang, C.X., Huang, S.C., Wu, W.: Improving construc-
tion for connected dominating set with steiner tree in wireless sensor networks. J.
Glob. Optim. 35(1), 111–119 (2006)

15. Mohanty, J.P., Mandal, C.A., Reade, C.: Distributed construction of minimum
connected dominating set in wireless sensor network using two-hop information.
Comput. Netw. 123, 137–152 (2017)



358 B. Gorain et al.

16. Peleg, D.: Distributed computing: a locality-sensitive approach. Soc. Industr. Appl.
Math. (2000)

17. Wan, P., Alzoubi, K.M., Frieder, O.: Distributed construction of connected domi-
nating set in wireless ad hoc networks. In: INFOCOM, pp. 1597–1604 (2002)

18. Wu, J., Li, H.: On calculating connected dominating set for efficient routing in ad
hoc wireless networks. In: DIAL-M, pp. 7–14 (1999)

19. Wu, W., Du, H., Jia, X., Li, Y., Huang, S.C.: Minimum connected dominating sets
and maximal independent sets in unit disk graphs. Theor. Comput. Sci. 352(1–3),
1–7 (2006)



An Inventory System Optimization
for Solving Joint Pricing and Ordering
Problem with Trapezoidal Demand
and Partial Backlogged Shortages

in a Limited Sales Period

Chunming Xu1(B), Mingfei Bai2, Qiyue Wang2, and Yiwei Wang2

1 Institute of Operations Research and Systems Engineering, College of Science,
Tianjin University of Technology, Tianjin 300384, People’s Republic of China

chunmingxu@tjut.edu.cn
2 School of Electrical and Electronic Engineering, Tianjin University of Technology,

Tianjin 300384, People’s Republic of China

Abstract. This study investigates a joint pricing and ordering model
with deteriorating items and partial backlogged shortages under trape-
zoidal demand. The optimization model aiming at maximizing profit
performance of inventory system is subject to a limited sales period and
an allowable price range, simultaneously. The existence and uniqueness
of the optimal solution to the model is further given by applying dif-
ferential calculus. The easy-to-use line search algorithm is designed to
determine the optimal replenishment strategies including ordering quan-
tity, the maximum inventory level, selling price, and shortage time point.
Finally, numerical examples are presented to demonstrate the proposed
model.

Keywords: Inventory · Trapezoidal demand · Pricing · Deteriorating
items · Partial backlogged shortages

1 Introduction

With the further advancement of economic globalization, inventory control of
goods has been paid more and more attention. However, too much inventory of
goods will lead to a large amount of waste and occupation of capital, affecting
the core competitiveness of enterprises. Therefore, it is of great practical value
to study how to manage and control the inventory of goods, rationally.

In the traditional inventory problem with the time-varying demand, the
demand for goods in the market is usually considered to decrease or increase
over time. However, with the development of the times, the speed of product
renewal is getting faster and faster, some electronic products such as clothing
and electronics take only a few months from appearance to elimination in the
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market. Therefore, the demand for products during sales period may not be a
single rise or fall. Esipecially, the demand for seasonal or fashionable products
initially increases over time as potential consumers are attracted by style and
quality, then tends to stabilize as the type of product is accepted by the mar-
ket, and finally decreases over time. It was found by Micheal, Rochford, and
Wotruba (2003). Subsequently, Cheng and Wang (2009) investigated an inven-
tory model for deteriorating items with trapezoidal type demand rate. After-
wards, Lin (2013) and Glock and Grosse (2015) pointed that most products
basically follow this trapezoidal demand feature in their life cycle. In recent
years, the trapezoidal time-varying inventory models have been widely studied
(Cheng, Zhang, and Wang, 2011; Lin, 2013; Shah, Shah, and Patel, 2013; Singh,
Vaish, and Singh, 2010; Uthayakumar and Rameswari, 2012; Xu, Zhao, Min, and
Hao, 2021).

Another important aspect is the consideration of the shortage of goods. In
the early study, the out of stock status was not considered and replenishment
would occur immediately when the goods were sold out, which could be seen
in the literature (Dye, Chang, and Teng, 2006; Teng, Chern, and Yang, 1997;
Yang, Teng, and Chern, 2001). However, this is obviously not an optimal inven-
tory replenishment policy. Researchers gradually realize that due to the increase
of inventory cost and the impact of commodity deterioration, which will lead
to large occupation of operating costs in the inventory system. In later studies,
out of stock states have been described as an integral part of a cycle (Abad,
2008; Dye, 2007; Zhou, Lau, and Yang, 2003). However, in the state of short-
age, either the customer is presumed to be completely lost or the customer is
expected to wait in most literature. Obviously, there are imperfections in both
of considerations. In fact, during the period of shortage, customers will wait for
some time. The length of this period is related to the customer’s loyalty to the
product, the urgency of customer demand, whether the product can be replaced,
and so on. Therefore, the backlogging rate during shortage period depends on
the waiting time for the next replenishment. Dye (2007) developed an inven-
tory model with a time-varying backlogging rate. Recently, most of the studies
have centered on this backlogging rate (Ghosh, Khanra, Chaudhuri, 2011; Khan,
Shaikh, Panda, Konstantaras, and Taleizadeh, 2019; Lashgari, Taleizadeh, and
Sadjadi, 2018; Salehi, Taleizadeh, and Tavakkoli-Moghaddam, 2016; Taleizadeh,
2018; Taleizadeh, Khanbaglo, and Eduardo, 2016; Xu, Bisi, and Dada, 2017).

However, existing studies often assumed that the customer demand is char-
acterized as a function of time, stock level or selling price, separately (Khan,
Shaikh, Panda, Konstantaras, and Taleizadeh, 2019; Xu, Zhao, Min, and Hao,
2021; Dye, Chang, and Teng, 2006; Lashgari, Taleizadeh, and Sadjadi, 2018). In
the actual retail operation, the time and the selling price ought to be investi-
gated jointly. The reason behind this observation is that the demand is closely
related to the market stage of the product and the selling price, namely, the cus-
tomer demand may vary with the time, and meanwhile it may also vary when
the selling price decreases or increases. As a result, we will study a new inventory
system for solving joint pricing and ordering problem with trapezoidal demand
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under a fixed replenishment period. We generalize the metamorphism function
to apply to more complex cases. Shortages are allowed and unsatisfied demands
are assumed to be partially backlogged during the stock-out period.

The rest of this paper is organized as follows. In Sect. 2, the assumptions and
notations used throughout this study are introduced. In Sect. 3, the mathemat-
ical model to maximize the total revenue is developed. Besides, we discuss the
optimal solution to the model and verify its existence and uniqueness. Section 4
gives a simple algorithm to find the optimal inventory replenishment strategy.
In Sect. 5, numerical examples are given to illustrate the proposed model. In
Sect. 6, some conclusions are summarized and future directions are given.

2 Model Description

Consider a continuous review retail system, where the retailer sells products
kept in the system to the end customer in a finite inventory planning horizon.
The retail replenishment for products is instantaneous and the lead time is zero.
When products from the upstream manufacturer enter the retail system, they are
exhausted because of the deterioration and customer demand until the inventory
level is zero. Retail system allows shortages. The retailer is able to forecast
customer demand and determine the initial ordering quantity according to the
demand and shortages. Once shortages happen, backlogged demand is satsified
at the end of the inventory cycle.

The assumptions are used throughout the paper.
1. The replenishment rate is infinite and the lead time is zero.
2. Shortages are allowed. The fraction of backlogging rate is described as

β (t) = e−δt, where δ > 0, t is the waiting time in the time of stock-out. The
backlogging rate function has already been widely used in the literature (Abad,
1996).

3. Demand is related to time and price, so the demand function can be
described as D (t) · D (p). Among them,

D (t) =

⎧
⎨

⎩

a1 + b1t, 0 ≤ t ≤ μ1;
D0, μ1 ≤ t ≤ μ2;
a2 − b2t, μ2 ≤ t ≤ T ≤ a2

b2
,

where μ1 is the time point when demand grows linearly to constant demand, and
μ2 is the point at which the demand goes from constant to linearly decreasing
(see, Fig. 1.), and D (p) is a function of selling price p.

4. It is necessary to make some assumptions based on the actual situation,
D(p) satisfies that D(p)′′ ≥ 0 and 2D′ (p)+pD′′ (p) < 0 (Khan et al. (2019) and
Maihami (2012)).

5. Before the inventory system starts, the deterioration of transporting goods
and the logistics cost from the manufacturer to the system are ignored.

6. To keep up with the real situation, the interval of p is denoted as p ∈
[pmin, pmax].
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Fig. 1. Trapezoidal time-varying demand description

The following notations including model paremetres and domain parameters
are listed.

Ii(t) is the inventory level for case i, i = 1, 2, 3, 4; T is the fixed length of the
replenishment cycle time; θ(t) is the nonnegative function of the deterioration
rate; t1 is the length of time that an inventory shortage did not occur (decision
variable); t∗1 is the optimal point that an inventory shortage did not occur; A0 is
the fixed ordering cost each order; p is the selling price each unit (decision vari-
able); pmin is the lower bound of the allowable price; pmax is the upper bound
of the allowable price; p∗ is the optimal selling price each unit; C is the constant
purchasing cost each unit; C1 is the cost of per deteriorated item; C2 is the
inventory holding cost each unit each unit of time; C3 is the shortage cost each
unit each unit of time; C4 is the cost of sales each unit lost; Si is the maximum
inventory level for case i, where i = 1, 2, 3; S∗ is the optimal maximum inventory
level; Qi is the order quantity level for case i, where i = 1, 2, 3; Q∗ is the opti-
mal order quantity. ATPi (p, t1) is the total profit each unit time of this inven-
tory system for case Di, where D1 = {(t1, p) |0 ≤ t1 ≤ μ1, pmin ≤ p ≤ pmax },
D2 = {(t1, p) |μ1 ≤ t1 ≤ μ2, pmin ≤ p ≤ pmax }, and
D3 = {(t1, p) |μ2 ≤ t1 ≤ T, pmin ≤ p ≤ pmax }; ATP (p, t1) (objective func-
tion) is the total profit each unit time of this inventory system for case D (fea-

sible region), where D =
3⋃

i=1

Di; ATP ∗ is the maximum value of ATP (p, t1),

that is ATP ∗ = ATP (p∗, t∗1).

3 Model and Model Analysis

Based on the assumptions and notations mentioned above, the initial replenish-
ment occurs at time t = 0. During the time interval [0, t1], the inventory level
becomes lower due to demand and deterioration. Inventory levels will fall to zero
when t = t1. During the time interval [t1.T ], the demand is partially backlogged
and the sales losses occurred. The backordered items will be replenished at t = T .
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So the behavior of the inventory system at any time t can be described by the
differential equations as follows.

dI (t)
dt

=
{−θ (t) I (t) − D (t)D (p) , 0 ≤ t ≤ t1;

−D (t) D (p) e−δ(T−t), t1 ≤ t ≤ T .
(1)

Considering possible values of μ1, μ2, t1, p, and T , three different inventroy cases
are explored as follows.

3.1 Case with D1

In this case, inventory depletion occurs in [0, t1] due to both the demand
(a1 + b1t) d(p) and the deterioration θ (t); In [t1, T ], there is no deteriorating
phenomenon in the system, the inventory depletion happens due to both the
demand and the partial backlogging. Hence, I(t) during [0, T ] can be described
by ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

dI1(t)
dt = −θ (t) I1 (t) − (a1 + b1t) D (p) , 0 ≤ t ≤ t1;

dI2(t)
dt = − (a1 + b1t) D (p) e−δ(T−t), t1 ≤ t ≤ μ1;

dI3(t)
dt = −D0D (p) e−δ(T−t), μ1 ≤ t ≤ μ2;

dI4(t)
dt = − (a2 − b2t) D (p) e−δ(T−t), μ2 ≤ t ≤ T .

(2)

Solving Eq.(2) with the boundary conditions I (t1) = 0, I (t1) = 0, I
(
μ−
1

)
=

I
(
μ+
1

)
, and I

(
μ−
2

)
= I

(
μ+
2

)
, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

I1 (t) = −D (p) e− ∫ t
0 θ(x)dx

∫ t
t1

(a1 + b1x) e
∫ x
0 θ(y)dydx, 0 ≤ t ≤ t1;

I2 (t) = − D(p)
δ2

e−δT
[
eδt (a1δ + b1δt − b1) − eδt1 (a1δ + b1δt1 − b1)

]
, t1 ≤ t ≤ μ1;

I3 (t) = − D0D(p)
δ e−δT

(
eδt − eδμ1

)
+ I2 (μ1) , μ1 ≤ t ≤ μ2;

I4 (t) = − D(p)
δ2

e−δT
[
eδt (a2δ − b2δt + b2) − eδμ2 (a2δ − b2δμ2 + b2)

]
+ I3 (μ2) , μ2 ≤ t ≤ T .

(3)
From Eq.(3), the maximum inventory level can be calculated as

S1 = I1 (0) = D (p)
∫ t1

0

(a1 + b1x) e
∫ x
0 θ(y)dydx, (4)

and the order quantity is
Q1 = S1 − I4 (T ) . (5)

To sum up, from Eqs.(2), (3), (4), and (5), the related cost and total revenue in
[0, T ] can be calculated as

(a) The ordering cost A0;
(b) The cost of deteriorated item DT1 = C1

[
S1 − ∫ t1

0
(a1 + b1t) D (p) dt

]
;

(c) The inventory holding cost HT1 = C2

∫ t1
0

I1 (t) dt;
(d) The cost of shortage due to backlog: BT1 = −C3[

∫ μ1

t1
I2 (t) dt +

∫ μ2

μ1
I3 (t) dt +

∫ T

μ2
I4 (t) dt];
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(e) The opportunity cost caused by the lost sales OT1 = C4D (p) {∫ μ1

t1

(a1 + b1t)
[
1 − e−δ(T−t)

]
dt +

∫ μ2

μ1
D0

[
1 − e−δ(T−t)

]
dt +

∫ T

μ2
(a2 − b2t)

[
1 − e−δ(T−t)

]
dt};

(f) The purchase cost ET1 = CQ1;
(g) The sales revenue F1 = p

[∫ t1
0

D (p) (a1 + b1t) dt − I4 (T )
]
.

Therefore, the total profit per unit time (denoted by ATP1 (p, t1)) is given
by

ATP1 (p, t1) =
1

T
(F1 −HT1 −BT1 −OT1 −DT1 − ET1 −A0)

=
1

T

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p

[∫ t1

0
D (p) (a1 + b1t) dt− I4 (T )

]

︸ ︷︷ ︸

the total sales revenue

− C1

[

S1 −
∫ t1

0
(a1 + b1t)D (p) dt

]

︸ ︷︷ ︸

the cost of deteriorated item

− C2

∫ t1

0
I1 (t) dt

︸ ︷︷ ︸

the holding cost

+C3

[∫ μ1

t1

I2 (t) dt+

∫ μ2

μ1

I3 (t) dt+

∫ T

μ2

I4 (t) dt

]

︸ ︷︷ ︸

the cost of shortage

− C4D (p)

[∫ μ1

t1

(a1 + b1t)
[
1− e−δ(T−t)

]
dt +

∫ μ2

μ1

D0

[
1− e−δ(T−t)

]
dt

︸ ︷︷ ︸

the opportunity cost due to lost sales

+

∫ T

μ2

(a2 − b2t)
[
1− e−δ(T−t)

]
dt

]

− A0
︸︷︷︸

the ordering cost

⎫
⎪⎪⎬

⎪⎪⎭

.

(6)

3.2 The Other Two Cases

Similar to case with D1, the total average profits for cases with D2 and D3 are
obtained, respectively, by

ATP2 (t1, p) =
1

T

{

p

[∫ μ1

0
D (p) (a1 + b1t) dt +

∫ t1

μ1

D (p)D0dt − I4 (T )

]

− C2

[∫ μ1

0
I1 (t) dt +

∫ t1

μ1

I2 (t) dt

]

+ C3

[∫ μ2

t1

I3 (t) dt +

∫ T

μ2

I4 (t) dt

]

− C4D (p)

{∫ μ2

t1

D0

[
1 − e

−δ(T−t)
]

dt +

∫ T

μ2

(a2 − b2t)
[
1 − e

−δ(T−t)
]

dt

}

− C1

[

S2 −
∫ μ1

0
(a1 + b1t)D (p) dt −

∫ t1

μ1

D0D (p) dt

]

− C [S − I4 (T )] − A0

}

.

(7)
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and

ATP3 (t1, p) =
1

T

{

p

[∫ μ1

0
D (p) (a1 + b1t) dt +

∫ μ2

μ1

D (p)D0dt +

∫ t1

μ2

D (p) (a2 − b2t) dt − I4 (T )

]

− C2

[∫ μ1

0
I1 (t) dt +

∫ μ2

μ1

I2 (t) dt +

∫ t1

μ2

I3 (t) dt

]

+ C3

[∫ T

t1

I4 (t) dt

]

− C4D (p)

{∫ T

t1

(a2 − b2t)
[
1 − e

−δ(T−t)
]

dt

}

− C1

[

S3 −
∫ μ1

0
(a1 + b1t)D (p) dt

−
∫ μ2

μ1

D0D (p) dt −
∫ t1

μ2

(a2 − b2t)D (p) dt

]

−C [S − I4 (T )] − A0} .

(8)
The formulations of the other two cases are analogous and omitted here.
Based on the above discussion, the total profit each unit time of this inventory

system in the region of D is

ATP (t1, p) =

⎧
⎨

⎩

ATP1 (t1, p) , (t1, p) ∈ D1;
ATP2 (t1, p) , (t1, p) ∈ D2;
ATP3 (t1, p) , (t1, p) ∈ D3,

(9)

where ATP1 (t1, p), ATP2 (t1, p), and ATP3 (t1, p) are obtained by Eqs.(6), (7)
and (8), respectively. Then, the nonlinear programming model for this system
can be formulated as below:

M : max ATP (t1, p)
s.t. (t1, p) ∈ D. (10)

To obtain the optimal solution to the model M, we have the following theorems.

Theorem 1. In the model M, the first-order necessary criteria for maximizing
the objective function AP (t1, p) is equivalent to the criteria that f (t1, p) = 0
and g (t1, p) = 0, where f (t1, p) and g (t1, p) can be provided by

f (t1, p) =p
[
1− e−δ(T−t1)

]
− C1

[
e
∫ t1
0 θ(y)dy − 1

]
− C2

[∫ t1

0
e−

∫ t
0 θ(x)dxe

∫ t1
0 θ(y)dydt

]

+ C3

[∫ T

t1

e−δ(T−t1)dt

]

+ C4

[
1− e−δ(T−t)

]
− C

[
e
∫ t1
0 θ(y)dy − e−δ(T−t1)

]

(11)

and
g (t1, p) = D′ (p) K (t1) + [D (p) + pD′ (p)] M (t1) . (12)

Theorem 1 implies that the first-order necessary condition for the model opti-
mality depends not only on the unit purchasing cost and the costs incurred
by storage, shortages and lost sales, but also on the trapezoidal time and the
price. Next, we will explore the solutions to Eqs.(11) and (12). From Eq.(11),
let F (t1) = f (t1, p) for any given p. The following theorem can be obtained.

Theorem 2. F (t1) is a monotonically decreasing function in t1 ∈ [0, T ], and
there exists a unique time point t1 satisfying f (t1, p) = 0.
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Theorem 2 indicates that t1 is determined uniquely as a function of p. So, the
function relationship between them can be described as t1 = t1(p). Substituting
t1 = t1(p) into Eq.(12) and letting G (p) = g (t1(p), p), the following results are
obtained.

Theorem 3. If d′(p)[α (t1) + pγ (t1)] + d(p)γ (t1) < 0 holds, then G (p) is a
monotonically decreasing function in p ∈ (pmin, pmax), where α (t1) and γ (t1)
can be provided by

α (t1) = − e
∫ t1
0 θ(y)dy

[

C + C2

∫ t1

0

e− ∫ t
0 θ(x)dxdt + C1

]

+ e−δ(T−t1) [C + C3 (T − t1) − c4] + C1 + C4

(13)

and
γ (t1) = 1 − e−δ(T−t1). (14)

From Theorem 3, we have the following results.

Theorem 4. (1)If G (pmax) � 0, the optimal solution is (t∗1, p
∗), where p∗ =

pmax, and t∗1 is the solution of f (t1, p) = 0;
(2)If G (pmin) � 0, the optimal solution is (t∗1, p

∗), where p∗ = pmin, and t∗1
is the solution of f (t1, p) = 0;

(3)If G (pmin) > 0 and G (pmax) < 0, the optimal solution is (t∗1, p
∗), where

(t∗1, p
∗) is the solution of equations f (t1, p) = 0 and g (t1, p) = 0.

Specially, we will list the optimal solution to the model M. From Theorem 4,
we have

Theorem 5. In the model M, let (t∗1, p
∗) be the optimal solution that maximizes

ATP (t1, p) in the region D, we have
(1) If (t∗1, p

∗) ∈ D1, then ATP (t∗1, p
∗) = ATP1(t∗1, p

∗);
(2) If (t∗1, p

∗) ∈ D2, then ATP (t∗1, p
∗) = ATP2(t∗1, p

∗);
(3) If (t∗1, p

∗) ∈ D3, then ATP (t∗1, p
∗) = ATP3(t∗1, p

∗).

Integrate the findings of Theorem 1 to Theorem 5, a solving algorithm is
formulated.

4 Algorithm

Step 1. Input all the parameters.
Step 2. Plug p = pmin in Eq.(10) to get t̃1, where t̃1 is the solution of
f (t1, pmin) = 0.
Step 3. Plug p = pmax in Eq.(10) to get t̂1, where t̂1 is the solution of
f (t1, pmax) = 0.
Step 4. Judge the signs of G(pmin) = G(t̃1, pmin) and G(pmax) = G(t̂1, pmax).

If G(pmin) ≤ 0, then t∗1 = t̃1, p
∗ = pmin, jump to step 6;

If G(pmax) ≥ 0, then t∗1 = t̂1, p
∗ = pmax, jump to step 6;

If G(pmin) > 0 and G(pmax) < 0, jump to step 5.
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Step 5. Eqs.(10) and (12) are solved by Newton-Raphson method.
Step 6. Determine the region of (t∗1, p

∗).
If (t∗1, p

∗) ∈ D1, then ATP (t∗1, p
∗) = ATP1(t∗1, p

∗);
If (t∗1, p

∗) ∈ D2,then ATP (t∗1, p
∗) = ATP2(t∗1, p

∗);
If (t∗1, p

∗) ∈ D3, then ATP (t∗1, p
∗) = ATP3(t∗1, p

∗).
Then get S∗, Q∗, ATP ∗.

5 Numerical Examples

In order to further verify the model in this paper, the following three numerical
examples are given. To be specific, Example 1 shows that the optimal solution
of the model exists within the feasible region D. Examples 2 and 3 imply that
the optimal solution for the model occurs at the boundary point of the feasible
region D.

5.1 Example 1

This example is based on the following data: A0 = $200/unit, C = $20/unit,
C1 = $3/unit, C2 = $10/unit/week, C3 = $5/unit/week, C4 = $25/unit, β (t) =
e−0.1t, a1 = 100, a2 = 170, b1 = 5, b2 = 5, D0 = 130, μ1 = 6 weeks, μ2 = 8 weeks,
T = 12 weeks, θ (t) = 0.05t, a = 200, b = 1.5. Set pmin = 85 and pmax = 95,
then G (pmax) = −13296.6366 < 0, G (pmin) = 20432.6806 > 0, using Newton-
Raphson method, we have t∗1 = 4.2097 weeks and p∗ = $91.0764. Then (t∗1, p

∗) ∈
D1, thus ATP (t∗1, p

∗) = ATP1(t∗1, p
∗) = $256225.28, S∗ = 34741.64 units, and

Q∗ = 78016.73 units.

5.2 Example 2

This example is based on the following data: A0 = $200/unit, C = $20/unit,
C1 = $3/unit, C2 = $10/unit/week, C3 = $5/unit/week, C4 = $25/unit, β (t) =
e−0.1t, a1 = 100, a2 = 170, b1 = 5, b2 = 5, D0 = 130, μ1 = 6 weeks, μ2 = 10
weeks, T = 12 weeks, θ (t) = 0.05t, a = 200, b = 1.5. p∗ = $91.0764. Initialize
pmin = 80 and pmax = 85, G(pmax) > 0, p∗ = pmax = $84.7, t∗1 = t̂1 = 4.1069
weeks, so ATP ∗ = $250520.65, S∗ = 38588.99 units, and Q∗ = 88807.34 units.

5.3 Example 3

This example is based on the following data: A0 = $200/unit, C = $20/unit,
C1 = $3/per, C2 = $10/unit/week, C3 = $5/unit/week, C4 = $25/unit, β (t) =
e−0.1t, a1 = 100, a2 = 170, b1 = 5, b2 = 5, D0 = 130, μ1 = 6 weeks, μ2 = 8
weeks, T = 12 weeks, θ (t) = 0.05t, a = 200, b = 1.5. Set pmin = 95 and
pmax = 105. Then G(pmin) < 0, p∗ = pmin = $95, t∗1 = t̃1 = 4.2901 weeks, so
ATP ∗ = $252373.39, S∗ = 31297.26 units, and Q∗ = 68973.47 units.
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6 Conclusion

In this paper, considering customer demand depends on both trapezoidal time
and price, we investigate an inventory model for deteriorating items in a fixed
order cycle. Shortages are allowed and partial backlogging rate is a decreasing
function of the customers waiting time during the shortage period. The existence
and uniqueness of the optimal solution for the model are discussed, and an easy-
to-operate algorithm is provided to research the optimal price, shortage time
point, the maximum inventory level, and initial ordering quantity. Numerical
examples are used to verify the correctness of the theoretical results.

There still exist some limitations in our research, an inventory model with
multiple inventory cycle for the variable holding cost will be intresting. More-
over, some epochal inventory features such as variable inventory cycle, stochastic
demand setting, shopping experience, low carbon regulation, will also be incor-
porated in this research.

Acknowledgements. This study was supported by Research Program of Tianjin
Municipal Education Commission (No. 2017KJ242).
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Abstract. In this paper, we aim to establish a concrete representation,
as a family of sets, for every algebraic L-domain. We generalize the notion
of a topped algebraic intersection structure to a locally algebraic inter-
section structure. Just as topped algebraic intersection structures are
concrete representations of algebraic lattices, locally algebraic intersec-
tion structures are concrete representations of algebraic L-domains. This
result extends the classic Stone’s representation theorem for Boolean
algebras to the case of algebraic L-domains. In addition, it will be seen
that many well-known representations of algebraic L-domains can be
analyzed with the framework of locally algebraic intersection structures.

Keywords: Stone’s representation theorem · Domain theory ·
Algebraic L-domain · Topped algebraic intersection structure

1 Introduction

The development of re-framing algebraic structures and order structures within
the theory of sets can be traced back to Stone’s representation theorem for
Boolean algebras [13] and Birkhoff’s representation theorem for finite distribu-
tive lattices [2]. Their results show that every Boolean algebra or finite distribu-
tive lattice can be represented as a family of sets. So far, many scholars have
pointed out that various structures such as groups, rings, lattices and semilat-
tices can be understood much better via the theory of sets.

Algebraic L-domains introduced by A. Jung [9], as good candidates for deno-
tational semantics of programming languages, have been widely applied in theo-
retical computer science, especially in Domain theory. The category of algebraic
L-domains with Scott continuous function is cartesian closed, as same as that of
algebraic lattices with Scott continuous functions. Algebraic lattices are a proper
subclass of algebraic L-domains, which have an elementary set-theoretic repre-
sentation as topped algebraic intersection structures. An algebraic intersection
structure L on a set X is a non-empty family of subsets of X which satisfies (a):⋂

i∈I Ai ∈ L for every non-empty family {Ai}i∈I in L, and (b):
⋃

i∈I Ai ∈ L for
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every directed family {Ai}i∈I in L. If L also satisfies (c): X ∈ L, then it is called
a topped algebraic intersection structure. Moreover, algebraic intersection struc-
tures can be used to characterize Scott domains, another important subclass of
algebraic L-domains.

The main purpose of this paper is to provide a set-theoretic representation of
algebraic L-domains. An algebraic domain L is called an algebraic L-domain if it
satisfies the local property that for every x ∈ L, the principal ideal ↓x is an alge-
braic lattice. Motivated by this observation and the set-theoretic representation
of algebraic lattices, we define a locally algebraic intersection structure for every
algebraic L-domain. The notion of a locally algebraic intersection structure gen-
eralizes that of algebraic intersection structure by simply changing Condition (a),
within which the local property of an algebraic L-domain can be easily charac-
terized. In Sect. 3, we show that every algebraic L-domain can be rewritten as
a locally algebraic intersection structure. This enables us to perform algebraic
L-domain in a pure set-theoretic form.

We realize that there are at least four different representations for algebraic
L-domains, ranging from Chen and Jung’s disjunctive propositional logics [4],
over Wu et al’s algebraic L-information systems [16] and algebraic L-closure
spaces [17], to Guo et al’s LCF-contexts [8]. In Sect. 4, we give a brief review
about these representations. Although we illustrate that an algebraic L-domain
consisting of a family of sets with set inclusion may not be a locally algebraic
intersection structure, all of the above four representations of algebraic domains
are proven to be locally algebraic intersection structures. So these known repre-
sentations for algebraic L-domains have a unified set-theoretic form.

2 Preliminary

We first recall some order and domain theoretical terminology that will be used
in this paper, most of them come from [5,7].

Let (P,≤) be a poset and A ⊆ P . We denote by ↓A the down set {x ∈ P |
(∃a ∈ A)x ≤ a}. If A is a singleton {x}, then we just write ↓x. The supremum
of A, if it exists, is the least element of the set of all upper bounds of A in P .
We denoted it by

∨
A. The infimum

∧
A of A is defined dually. We denote x∧ y

in place of
∧{x, y} when it exists. The poset P is said to be a complete lattice

if every subset of it has an infimum. If x ∧ y exists for all x, y ∈ P , then P is
called a semilattice. A non-empty subset D of P is said to be directed if for every
x, y ∈ D, there is some z ∈ D such that x ≤ z and y ≤ z.

A poset is said to be a dcpo if every directed subset of it has a supremum.
Let P be a dcpo. An element k ∈ P is said to be compact, if whenever D is
directed with k ≤ ∨

D, then k ≤ d for some d ∈ D. We denote by K(P ) the set
of all compact elements of P . If every element in P is a directed supremum of
compact elements, then P is called an algebraic domain.

Definition 1. ( [9]) An algebraic domain D is said to be an algebraic L-domain
if for every element x of D, the principal ideal ↓x = {y ∈ D | y ≤ x} is a
complete lattice.
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3 Representation Theorem of L-domains

In this section, we give a concrete set-theoretic representation for every algebraic
L-domain.

Definition 2. A non-empty family C of subsets of a set X is said to be a locally
algebraic intersection structure if

(L1) for every directed family {Ai ∈ C | i ∈ I}, the directed union
⋃

i∈I Ai ∈ C,
(L2) for every C ∈ C and non-empty family {Aj ∈ C | Aj ⊆ C, j ∈ J}, the

intersection
⋂

j∈J Aj ∈ C.
Clearly, every algebraic intersection structure, especially every topped alge-

braic intersection structure, is a locally algebraic intersection structure.

{a, b, c, e}{a, b, c, d}

{a, c}{a, b}

a

Fig. 1. The poset (C,⊆) in Example 1

Example 1. Let X = {a, b, c, d, e} and C = {{a}, {a, b}, {a, c}, {a, b, c, d},
{a, b, c, e}}. Then C is a locally algebraic intersection structure on the set X.
However, C is not an algebraic intersection structure. In addition, the poset (C,⊆)
is defined as in Fig. 1.

Remark 1. Let C be a locally algebraic intersection structure on a set X.

(1) By Condition (L1), C ordered by set inclusion forms a dcpo, in which the
supremum of every directed family is given by set union.

(2) For every B ∈ C and every subset A of B, the family {C ∈ C | A ⊆ C ⊆ B}
is non-empty. Define

ΓB(A) =
⋂

{C ∈ C | A ⊆ C ⊆ B}. (3.1)

Then ΓB(A) ∈ C, by Condition (L2). Moreover, it is easy to see that
ΓB(A) = A whenever A ∈ C.
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Proposition 1. Let C be a locally algebraic intersection structure on a set X
and M a finite subset of X.

(1) If B ∈ C and M ⊆ B, then M ⊆ ΓB(M) ⊆ B.
(2) If B1, B2 ∈ C and M ⊆ B1 ⊆ B2, then ΓB1(M) = ΓB2(M).
(3) If B,B1, B2 ∈ C, M ⊆ B ⊆ B1 and M ⊆ B ⊆ B2, then ΓB1(M) = ΓB2(M).

Proof. (1) It is straightforward by Eq. (3.1).
(2) Suppose that B1, B2 ∈ C and M ⊆ B1 ⊆ B2. Then it is easy to see that

⋂
{C ∈ C | M ⊆ C ⊆ B1} =

⋂
{C ∈ C | M ⊆ C ⊆ B2}.

Thus by Eq. (3.1), we have ΓB1(M) = ΓB2(M).
(3) Suppose that B,B1, B2 ∈ C. If M ⊆ B ⊆ B1 and M ⊆ B ⊆ B2, then

ΓB(M) = ΓB1(M) and ΓB(M) = ΓB2(M), using part (2) twice. Therefore,
ΓB1(M) = ΓB2(M).

Lemma 1. Let C be a locally algebraic intersection structure on a set X.

(1) For every C ∈ C, the family

D = {ΓC(M) | M is a finite subset of C} (3.2)

is directed under set inclusion and C =
⋃ D.

(2) For the dcpo (C,⊆),

K(C) = {ΓC(M) | C ∈ C and M is a finite subset of C}. (3.3)

Proof. (1) The family D is non-empty since ∅ is a finite set of C and ΓC(∅) ∈ D.
Let ΓC(M1),ΓC(M2) ∈ D, where M1,M2 are finite subsets of C. Then M1 ∪M2

is a finite subset of C and ΓC(M1 ∪ M2) ∈ D. By Eq. (3.1), it is clear that
ΓC(M1) ⊆ ΓC(M1 ∪ M2) and ΓC(M2) ⊆ ΓC(M1 ∪ M2). This shows that the
family D is directed.

By part (1) of Proposition 1, ΓC(M) ⊆ C for every finite subset M ⊆ C.
Thus,

⋃ D ⊆ C. Conversely, for every x ∈ C, we have

x ∈ {x} ⊆ ΓC({x}) ⊆
⋃

D,

which implies that C ⊆ ⋃ D.
(2) Suppose that C ∈ C and M is a finite subset of C. If ΓC(M) ⊆ ⋃ D for

some directed subfamily of C, then M ⊆ ΓC(M) ⊆ C and M ⊆ ΓC(M) ⊆ ⋃ D.
Thus Γ⋃ D(M) = ΓC(M), by part (3) of Proposition 1. Because D is directed
and M is a finite subset of

⋃ D, there is some D0 ∈ D such that M ⊆ D0. Hence
Γ⋃ D(M) ⊆ Γ⋃ D(D0). But Γ⋃ D(D0) = D0, since D0 ∈ C. So Γ⋃ D(M) ⊆ D0,
which indicates that ΓC(M) is a compact element in (C,⊆).

Conversely, suppose that C is a compact element in (C,⊆). By part (1), we
have

C =
⋃

{ΓC(M) | M is a finite subset of C}
and the family {ΓC(M) | M is a finite subset of C} is directed. Invoke the com-
pactness of C in C to find a finite set M0 ⊆ C such that C ⊆ ΓC(M0). Thus,
C = ΓC(M0), since the reverse inclusion holds from part (1) of Proposition 1.
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Theorem 1. Let C be a locally algebraic intersection structure on a set X. Then
the dcpo (C,⊆) is an algebraic L-domain.

Proof. By Lemma 1, the dcpo (C,⊆) is an algebraic domain in which the compact
elements are of the form ΓC(M), where C ∈ C and M is a finite subset of C. So
it suffices to show that the family

↓B = {C ∈ C | C ⊆ B}

with set inclusion is a complete lattice for every B ∈ C.
Condition (L2) implies that the family ↓B is closed under non-empty inter-

sections, and B ∈ ↓B guarantees that ↓B is closed under the empty intersection.
Then ↓B is a complete lattice in which the infimum of every subfamily is given
by set intersection.

The converse of Theorem 1 does not holds.

Example 2. Let X = N ∪ {−1}, where N is the set of natural numbers. Set

A0 = {0}, A1 = {0, 1}, A2 = {0, 1, 2}, · · · , An = {0, 1, 2, · · · , n}, · · ·

and set
C = {Ai | i ∈ N} ∪ {X}.

Then it is readily to see that (C,⊆) is an algebraic L-domain. However, C is not
a locally algebraic intersection structure, since the union of the directed family
{A0, A1, A2, · · · , An, · · · } is equal to N, which is not an element of C.

Theorem 2 (Representation Theorem). Let (L,≤) be an algebraic L-
domain. Then there is a locally algebraic intersection structure that is order-
isomorphic to L.

Proof. For every a ∈ L, define

Da = {k ∈ K(L) | k ≤ a}. (3.4)

We first show that the family

CL = {Da | a ∈ L} (3.5)

ordered by set inclusion is order-isomorphic to (L,≤).
Define a function f : L → CL by

f(a) = Da. (3.6)

Obviously, f is well-defined and surjective. Suppose that Da ⊆ Db, where a, b ∈
L. Because (L,≤) is an algebraic L-domain, we have a =

∨
Da for every a ∈ L.

Thus
a =

∨
Da ≤

∨
Db = b.
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Conversely, suppose that a ≤ b ∈ L. Then it is clear that Da ⊆ Db by Eq. (3.4).
Therefore, the function f : L → CL is an order-isomorphism.

We next show that CL is a locally algebraic intersection structure.
Let {Dai

∈ CL | i ∈ I} be a directed subfamily of CL. As we have seen
that the function f : L → CL defined by Eq. (3.6) is an order-isomorphism, the
indexing set {ai ∈ L | i ∈ I} is a directed subset of L. Take a =

∨
i∈I ai. Then

we have

k ∈ Da ⇔ k ∈ K(L) and k ≤ a =
∨

i∈Iai

⇔ k ≤ ai for some i ∈ I

⇔ k ∈
⋃

i∈IDai
.

This implies that
⋃

i∈IDai
is equal to Da and hence is an element of CL.

Let Da ∈ CL, where a ∈ L. Suppose that {Daj
∈ CL | j ∈ J} is a subfamily

of CL such that Daj
⊆ Da for every j ∈ J . Then {aj | j ∈ J} is a subset

of L and aj ≤ a for every j ∈ J . Since (L,≤) is an algebraic L-domain, the
set ↓a = {x ∈ L | x ≤ a} is a complete lattice in the induced ordering. This
implies that the set {aj | j ∈ J} has an infimum in ↓a, say a0. We claim that⋂

j∈JDaj
= Da0 . Indeed,

k ∈
⋂

j∈JDaj
⇔ k ∈ K(L) and k ∈ Daj

for all j ∈ J

⇔ k ∈ K(L) and k ≤ aj for all j ∈ J

⇔ k ∈ K(L) and k ≤ a0

⇔ k ∈ Da0 .

So the intersection
⋂

j∈JDaj
belongs to CL.

4 Further Representations

In this section, we give an overview of representations of algebraic L-domains,
relating locally algebraic intersection structures with some well-known for-
malisms from logic, information systems, closure spaces and Formal Concept
Analysis.

4.1 Logical Algebras

The most conspicuous of characterizing domains as logical theory includes the
work of such scholars as Abramsky, Zhang, Chen and Jung [1,4,18]. In [4], Chen
and Jung built a framework of disjunctive propositional logic and showed how
to use its Lindenbaum algebras to represent algebraic L-domains.

Definition 3. ( [4]) Let (L,∧, 0L, 1L) be a semilattice with least element 0L and
greatest element 1L.
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(1) x, y ∈ L are said to be disjoint if x ∧ y = 0L.
(2) A subset A of L is said to be disjoint if x∧y = 0L for every distinct elements

x, y in A.
(3) The semilattice is said to be a D-semilattice if every disjoint subset A ⊆ L

has a supremum
∨̇

A, where, we use
∨̇

A to denote the supremum of a disjoint
set A.

(4) The semilattice is called a dD-semilattice if it is a D-semilattice such that

x ∧ (
∨̇

A) =
∨̇

a∈A
(x ∧ a)

for each element x ∈ L and disjoint subset A of L.

Definition 4. ( [4]) Let L be a dD-semilattice.

(1) An element a ∈ L is called coprime if, for every disjoint subset A of L,
a ≤ ∨̇

A implies a ≤ x for some x ∈ A. The set of coprime elements is
denoted by Cp(L).

(2) The dD-semilattice is said to be coprime generated if for each x ∈ L, there
is a unique disjoint subset A ⊆ Cp(L) such that x =

∨̇
A.

Definition 5. ( [4]) Let L be a coprime generated dD-semilattice. A disjunctive
completely prime filter F is a proper subset of L that satisfies the following
conditions:

(pt1) if x ∈ F and x ≤ y ∈ L, then y ∈ F ;
(pt2) if x, y ∈ F , then x ∧ y ∈ F ;
(pt3) if

∨̇
A ∈ F for some disjoint subset A of L, then there is some a ∈ A such

that a ∈ F .

The family of disjunctive completely prime filters is denoted by pt(L).

Theorem 3. ( [3,4]) If L is a coprime generated dD-semilattice, then pt(L) is
an algebraic L-domain. Moreover, every algebraic L-domain can be generated in
this way up to isomorphism.

In [4], Chen and Jung built a logical system which is logical complete with
respect to dD-semilattices. Theorem 3 therefore provides a logical characteri-
zation for algebraic L-domains. In their programme, the family of disjunctive
completely prime filters for a coprime generated dD-semilattice plays a central
role. Now we show that the family of disjunctive completely prime filters is a
locally algebraic intersection structure.

Theorem 4. Let L be a coprime generated dD-semilattice. Then pt(L) is a
locally algebraic intersection structure.

Proof. Let {Fi | i ∈ I} be a directed family of pt(L). We show that the union⋃
i∈I Fi is also an element of pt(L) by checking the conditions for a disjunctive

completely prime filter. We illustrate this for Condition pt(3), since the others
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are similar. Suppose that
∨̇

A ∈ ⋃
i∈I Fi for some disjoint subset A of L. Then

there exists some i0 ∈ I such that
∨̇

A ∈ Fi0 . Using Condition pt(3) for the
disjunctive completely prime filter Fi0 , it follows that a ∈ Fi0 ⊆ ⋃

i∈I Fi for
some a ∈ A.

Let {Fj | j ∈ J} be a non-empty subfamily of pt(L) in which every element
is contained in another disjunctive completely prime filter G. Set

F =
⋂

{Fj | j ∈ J}.

It is clear that F satisfies Conditions pt(1) and pt(2). For Condition pt(3),
suppose that

∨̇
A ∈ F for some disjoint subset A of L. Then

∨̇
A ∈ Fj for every

j ∈ J , and hence
∨̇

A ∈ G. This implies that there exists some a ∈ A such that
a ∈ G. We claim that a ∈ Fj for all j ∈ J . Indeed, fixing j ∈ J ,

∨̇
A ∈ Fj implies

that there is some aj ∈ A such that aj ∈ Fj , since Fj is a disjunctive completely
prime filter. If aj �= a, then aj ∧ a = 0L. Because both a and aj in G, it follows
by Condition pt(2) that 0L ∈ G. Thus G = L, a contradiction.

4.2 Information Systems

In [10], D. Scott introduced information systems as a concrete representation for
Scott domains which turns out to be of remarkable significance for understand-
ing the relationship between program logic and denotational semantics. Since
then, many similar information systems have been presented to capture other
domains [12,14,15].

Definition 6. [11] Let A be a set, Con a family of finite subsets of A and 
 a
binary relation from Con to A. Then (A,Con,
) is called an algebraic informa-
tion system if the following conditions hold for every M,N ∈ Con:

(I1) a ∈ A ⇒ {a} ∈ Con,
(I2) M 
 a ⇒ M ∪ {a} ∈ Con,
(I3) N ⊆ M and N 
 a ⇒ M 
 a,
(I4) (M 
 N,N 
 a) ⇒ M 
 a,
(I5) M 
 N ⇒ (∃M1 ∈ Con)M 
 M1 
 M1 
 N ,
(I6) (∀F � A)M 
 F ⇒ (∃N ∈ Con)(M 
 N,F ⊆ N),

where F � A means that F is a finite subset of A and M 
 F means that M 
 b
for all b ∈ F .

In an algebraic information system (A,Con,
), we define

X = {a ∈ A | (∃M ∈ Con)(M ⊆ X,M 
 a)} (4.1)

for every X ⊆ A.

Definition 7. [16] Let (A,Con,
) be an algebraic information system, a non-
empty subset S ⊆ A is called a state if it satisfies the following conditions:
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(S1) S ⊆ S,
(S2) (∀F � S)(∃M ∈ Con)(M ⊆ S,M 
 F ).

As usual, we use |A| to denote the family of all states of an algebraic information
system (A,Con,
).

Definition 8. [16] An algebraic information system (A,Con,
) is said to be an
algebraic L-information system if, for every M ∈ Con and F � M , there is
N ∈ Con such that

(IL1) F ⊆ N and N ⊆ M
(IL2) for every M1 ∈ Con, F ⊆ M1 ⊆ M can always implies that N ⊆ M1.

We call N an M -sup of F and denote the set of all M -sup of F by Σ(M,F ).

Lemma 2. [16] Let S be a state of an algebraic L-information system (A,Con,

), M1,M2 ∈ Con and F � A. If M1,M2 ⊆ S and F ⊆ M1 ∩ M2, then N1 = N2

for all N1 ∈ Σ(M1, F ) and N2 ∈ Σ(M2, F ).

In [11, Proposition 32], Spreen et al. established a representation of algebraic
domains in terms of algebraic information systems; and in [16, Theorems 3.1 and
3.3], Wu et al. provided a representation of continuous L-domains. As a direct
consequence of these results, we have:

Corollary 1. If (A,Con,
) is an algebraic L-information system, then |A|
ordered by set inclusion forms an algebraic L-domain. Moreover, every algebraic
L-domain can be generated in this way up to isomorphism.

The following theorem tells us that this representation essentially defines a
locally algebraic intersection structure.

Theorem 5. Let (A,Con,
) be an algebraic L-information system. Then |A| is
a locally algebraic intersection structure.

Proof. Suppose that the family {Si ∈ |A| | i ∈ I} is directed. For every a ∈⋃
i∈I Si, by Equation (4.1), there is M ∈ Con such that M � ⋃

i∈I Si and
M 
 a. Since {Si ∈ |A| | i ∈ I} is directed, M � Si0 for some i0 ∈ I. Thus
a ∈ Si0 ⊆ Si0 ⊆ ⋃

i∈I Si. This implies that
⋃

i∈I Si satisfies Condition (S1). To
show that

⋃
i∈I Si belongs to |A|, it suffices to check that

⋃
i∈I Si also satisfies

Condition (S2). For every F � ⋃
i∈I Si, there is some i1 ∈ I such that F � Si1 .

Using Condition (S2) for the state Si1 , it follows that M ⊆ Si1 and M 
 F for
some M ∈ Con. We thus find M ∈ Con that satisfies M ⊆ ⋃

i∈I Si and M 
 F .
Condition (S2) follows.

Suppose that S ∈ |A| and the family {Sj ∈ |A| | Sj ⊆ S, j ∈ J} is non-
empty. We show that

⋂
j∈J Sj ∈ |A| by checking that

⋂
j∈J Sj is non-empty and

satisfies Conditions (S1) and (S2).
Note that Sj is non-empty for every j ∈ J . Take aj ∈ Sj . Then {aj} ∈ Con

and ∅ � {aj} ⊆ Sj ⊆ Sj . By Definition 8, there is some N ∈ Σ({aj}, ∅) such
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that N ⊆ {aj}. Thus N ⊆ {aj} ⊆ Sj ⊆ Sj . This implies that N ⊆ ⋂
j∈J Sj , by

Lemma 2. So
⋂

j∈J Sj is non-empty.
If a ∈ ⋂

j∈J Sj , then there is some M ∈ Con such that M 
 a and M ⊆
⋂

j∈J Sj ⊆ Sj for every j ∈ J . Thus a ∈ Sj ⊆ Sj for every j ∈ J , and hence
a ∈ ⋂

j∈J Sj . Condition (S1) follows. For Condition (S2), let F � ⋂
j∈J Sj .

Then F � Sj for every j ∈ J . Using Condition (S2) for F � Sj , there is some
Mj ∈ Con such that Mj ⊆ Sj and Mj 
 F for every j ∈ J . By Lemma 2, Nj

are coincide for all Nj ∈ Σ(Mj , F ) and all j ∈ J . Note that Nj ⊆ Sj ⊆ Sj . It
follows that Nj ⊆ ⋂

j∈J Sj . Since Nj 
 F , there are M1, N1 ∈ Con such that
Nj 
 M1 
 M1 
 N1 and F ⊆ N1 by Conditions (I6) and (I5). Therefore,
M1 ∈ Con, M1 ⊆ ⋂

j∈J Sj and M1 
 F .

4.3 Closure Spaces

Closure space is a useful interdisciplinary tool to restructure lattices. A classi-
cal result is that closure spaces generate exactly all of complete lattices, which
becomes an inspiring source for many mathematicians. The idea of representing
other order structures by a closure space would be traced back to Birkhoff’s
representation theorem for finite distributive lattices [2]. Recently, Wu et al.
[17] generalized the notion of a closure space to an algebraic L-closure space
and developed the representation theory of finite distributive lattices to that of
algebraic L-domains.

Definition 9. ( [5]) Let X be a set. A closure operator on X is a function γ
on P(X) that satisfies: for every A,B ⊆ X,

(1) A ⊆ γ(A),
(2) A ⊆ B ⇒ γ(A) ⊆ γ(B),
(3) γ(A) = γ(γ(A)).

The set of all fixed-points of γ is denoted as Xγ and the pair (X,Xγ) is called a
closure space.

Definition 10. ( [5]) A closure space (X,Xγ) is said to be algebraic if for A ⊆
X,

γ(A) =
⋃

{γ(F ) | F � A}. (4.2)

Definition 11. ([17]) Let (X,Xγ) be an algebraic closure space. An element
C ∈ Xγ is said to be Finset-bounded if for every F � C, there is a ∈ C such that
F ⊆ γ(a) ⊆ C.

We use S(Xγ) to denote the family of all FinSet-bounded subsets of (X,Xγ).

Definition 12. ( [17]) An algebraic closure space (X,Xγ) is said to be an alge-
braic L-closure space if for every x ∈ X and F ⊆ γ(x), there is y ∈ γ(x) such
that
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(LC1) F ⊆ γ(y);
(LC2) z ∈ γ(x) and F ⊆ γ(z) implies that γ(y) ⊆ γ(z).

Theorem 6. ( [17]) If (X,Xγ) is an algebraic L-closure space, then S(Xγ)
ordered by set inclusion forms an algebraic L-domain. Moreover, every algebraic
L-domain can be generated in this way up to isomorphism.

The above theorem demonstrates the capability of closure spaces in repre-
senting algebraic L-domains. In fact, the family of all FinSet-bounded subsets of
an algebraic L-closure space is a locally algebraic intersection structure.

Theorem 7. Let (X,Xγ) be an algebraic L-closure space. Then S(Xγ) is a
locally algebraic intersection.

Proof. The proof is similar to that of Theorem 5.

4.4 Formal Concept Analysis

Formal Concept Analysis was introduced by R. Wille in the 1980 s as a mathe-
matical theory for the formalization of conceptual thinking [6]. A fundamental
application of Formal Concept Analysis is to restructure lattice theory, which
needs the notion of a formal context.

A formal context is a triple (Po, Pa,�P ), in which �P is a binary relation from
the set Po to the set Pa. In this case, two operators can be defined as follows:

α : P(Po) → P(Pa), A �→ {n ∈ Pa | ∀m ∈ A,m � n}, (4.3)

ω : P(Pa) → P(Po), B �→ {m ∈ Po | ∀n ∈ B,m � n}. (4.4)

Definition 13. ( [8]) Let (Po, Pa,�P ) be a formal context and F a non-empty
family of non-empty finite subset of Po. Then (Po, Pa,�P ,F) is said to be a
consistent F-augmented context if, for every X ∈ F , there is a directed family of
{Xi ∈ F | i ∈ I} such that ω ◦ α(X) =

⋃
i∈I Xi.

For every A ⊆ Po, we denote by 〈A〉 the set
⋃{ω ◦ α(X) | X ∈ F ,X � A}.

Definition 14. ( [8]) A consistent F-augmented context (Po, Pa,�P ,F) is said
to be an LCF-context if, for every X ∈ F and F � ω ◦ α(X), there is Z ∈ F
such that

(CF1) 〈F 〉 ⊆ ω ◦ α(Z) ⊆ ω ◦ α(X);
(CF2) Y ∈ F and 〈F 〉 ⊆ ω ◦α(Y ) ⊆ ω ◦α(X) implies that ω ◦α(Z) ⊆ ω ◦α(Y ).

Definition 15. ( [8]) Let (Po, Pa,�P ,F) be an LCF-contexts. A subset E of Po

is said to be an F-approximable extent if E = 〈E〉 and the set {〈F 〉 | F ∈ F , F �
E} is directed.

We denote by C(P ) the family of all F-approximable extents of (Po, Pa,�P ,F).
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Theorem 8. ( [8]) If (Po, Pa,�P ,F) is an LCF-context, then C(P ) ordered by
set inclusion forms an algebraic L-domain. Moreover, every algebraic L-domain
can be generated in this way up to isomorphism.

Theorem 8 restructures algebraic L-domains in terms of Formal Concept
Analysis. This method can also be included into the framework of a locally
algebraic intersection structure.

By a similar process of the proof for Theorem 5, we can show that:

Theorem 9. Let (Po, Pa,�P ,F) be an LCF-context. Then C(P ) is a locally alge-
braic intersection structure.
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Abstract. Recently, it has been shown that binary expansion of a num-
ber in a unit interval is Martin-Löf random if and only if its continued
fraction is Martin-Löf random. In contrast, we show that if the continued
fraction expansion of a number in a unit interval is Martin-Löf random
then it is continued fraction normal, however, the converse need not be
true. We also study a notion of Kolmogorov complexity for continued
fraction.

Keywords: Martin-löf random · Continued fraction normal ·
Kolmogorov complexity

1 Introduction

Kolmogorov complexity concerns itself with the definition of randomness of finite
and infinite objects [7], usually strings and sequences drawn from some finite
alphabet. Recently, Nandakumar and Vishnoi [9] have studied the randomness
of individual continued fractions, establishing relations between Martin-Löf ran-
domness, computable randomness and the continued fraction expansion. They
show that these randomness notions are invariant with respect to whether the
underlying real is represented using the base-b expansion, for any b ≥ 2, or the
continued fraction expansion.

On the other hand, in certain restricted notions of randomness, these notions
may not coincide, like that of normality. The notion of a normal sequence, first
defined by Borel [3], requires that in base-b sequence, every finite block w of digits
occurs with asymptotic frequency b−|w|. To generalize this notion to normal
continued fractions, an appropriate probability to consider is the Gauss measure
(see [4,5]) - we require that every finite string of positive integers occur with
asymptotic frequency equal to the Gauss measure of the cylinder determined by
that string. It is known that the set of reals in [0, 1] which are continued fraction
normal, has Gauss measure 1. It is known in [11,13] that continued fraction
normality and base-b normality do not coincide.

It is shown in Nandakumar, Vishnoi [9] that every Martin-Löf random con-
tinued fraction and computably random continued fraction is disjunctive - every
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finite block of integers appears in the continued fraction expansion. They pose
an open question whether every computable continued fraction is random. Using
technical estimates from the work of Becher and Yuhjtman [2], we show in the
present work that every Martin-Löf random continued fraction is also normal,
thus partially answering the open question.

We also generalize the Kolmogorov inequality for infinte-prefix free set which
was proved in Lemma 4.3 in [10]. Apart from that we also prove that the gauss
measure of any set S is upper bounded by 1/k where there exist a supermartin-
gale d such that d(w) > k for all w ∈ S.

We also define and investigate properties of a version of Kolmogorov com-
plexity of finite continued fractions, initiating the study of individual, “random”
finite continued fractions. We define the Kolmogorov complexity of the finite
continued fraction as the Kolmogorov complexity of the encoded binary string
representing it, which can be uniquely decoded back to the continued fraction.

2 Preliminaries

Let N denote the set of all positive natural numbers, Q denote the set of rational
numbers in unit interval, N∗ represent the set of finite length string of natural
numbers and N∞ that of infinite sequences of natural numbers. If a string u ∈ N

∗

is a prefix of some other sequence X ∈ N∞ then we represent it by u � X. λ
represents the empty string. For any string w ∈ N

∗, |w| represents the number
of digits in the string. ∑∗ represents the set of finite length binary strings.

Let a1, a2, · · · ∈ N. We identify the sequence [a1, a2, a3 . . . ] with the continued
fraction expansion of the real in the unit interval given by

1

a1 +
1

a2 +
1

a3 +
1
. . .

. (1)

Similarly, let [a1, . . . , an] denote the finite continued fraction

1

a1 +
1

. . . +
1
an

. (2)

When unambiguous, we denote by the sequence s ∈ N
∞, the continued fraction

[s1, s2, . . . ] and by the string r ∈ N
∗ the continued fraction [r1, . . . , rn], where

n is the number of integers in r. It is well-known that the continued fraction
expansion of any real x in the unit interval is unique, and that the expansion is
infinite if and only if x is irrational. (see, for example, [6]).
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The cylinder set(Cs) of any string s ∈ N
∗ is the set of all x ∈ (0, 1) whose

continued fraction starts from s.
We work in the probability space (N∞,B(N∞), γ) where B(N∞) is the Borel

sigma algebra generated by the cylinders and γ is the Gauss measure defined as
1

ln 2

∫
A

1
1+x dx for every A ∈ B(N∞). The Lebesgue measure for any A ∈ B(N∞)

is defined as
∫

A
x dx. We define the left shift transformation T : (0, 1) \ Q −→

(0, 1)\Q by T (x) = (1/x)−�1/x� which acts as left shift on the continued fraction
expansion like T ([a1, a2, a3 . . . ]) = [a2, a3 . . . ]. In the same way, we define the
left shift transformation T ′ :∑∗−→∑∗ which acts as T ′(b1.b2 . . . ) = b2.b3, . . . for
binary strings. For w ∈∑∗, we denote μ(Cw) by μ(w) and analogously for v ∈ N

∗

and γ.

3 Definitions

Definition 1. A number X ∈ (0, 1) \ Q is said to be continued fraction normal
if for all strings s ∈ N∗

lim
n→∞

#{T iX ∈ Cs : 0 ≤ i < n}
n

= γ(Cs).

In other words, an infinite continued fraction is said to be a continued fraction
normal if the asymptotic frequency of all finite length string of natural numbers
is equal to the Gauss measure of its cylinder set. Note that occurrences of w ∈ N

∗

within a continued fraction may partially overlap with another occurrence of w.
We can also define this using the frequency of disjoint occurrences of finite strings
of integers [8].

Definition 2. A continued fraction martingale is a function d : N∗ −→ [0,∞)
such that d(λ) < ∞, and, for every w ∈ N

∗,

d(w) =
∑

i∈N

d(wi)γ(wi|w).

We say that d : N
∗ → [0,∞) is a continued fraction supermartingale if

d(λ) < ∞, and the equality above is replaced with a ≥. A supermartingale or a
martingale d succeeds on an infinite sequence X, if lim supn→∞ d(X(1 . . . n)) =
∞

In other words, continued fraction martingale represents the fair betting
strategy which ensures that the expected value after the outcome is equal to
the capital in hand before the trial. We can view d(w) as the “capital in hand”
if w appears as an outcome. The expected value is taken with respect to the
Gauss measure.

Definition 3. A function d : N∗ −→ [0,∞) is called computably enumerable
(alternatively, lower semicomputable) if there exists a total computable function
d̂ : N∗ × N −→ Q ∩ [0,∞) such that the following two conditions hold.
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– Monotonicity : For all w ∈ N
∗ and for all n ∈ N, we have d̂(w, n) ≤

d̂(w, n + 1) ≤ d(w).
– Convergence : For all w ∈ N

∗, limn→∞ d̂(w, n) = d(w).

Definition 4. A sequence X ∈ N
∞ is said to be Martin-Löf random if no lower

semicomputable supermartingale succeeds on X.

In other words, an infinite sequence of continued fraction is said to be Martin-Löf
random if no betting strategy can win infinite amount of money on the sequence
with finite amount of capital in hand.

4 Useful Lemmas

Lemma 1. Let E ⊆ N
∗ be a nonempty, computably enumerable set of finite

continued fractions, with γ(E) ≤ c, where 0 < c < 1. Then there is a computably
enumerable continued fraction martingale d : N∗ → [0,∞) such that for every
w ∈ E, we have d(w) ≥ 1

c .

Proof. Define d : N∗ → [0,∞) by

d(w) =
1
c
γ(E|w).

We have d(λ) ≤ 1. It is easy to verify that
∑

i∈N

d(wi)γ(wi) =
1
c

∑

i∈N

γ(E|wi)γ(wi)

=
1
c

∑

i∈N

γ(E ∩ wi)

=
1
c
γ

(

E ∩
[

⋃

i∈N

wi

])

=
1
c
γ(E ∩ w)

= d(w)γ(w).

Thus d is a martingale. Since E is computably enumerable, there is a Turing
machine M : N∗ × N → R such that for every w ∈ N

∗, M(w, n) monotonically
converges from below to γ(E|w). Hence d is lower semicomputable.

Let w ∈ E. Then

d(w) =
1
c
γ(E|w) =

1
c
γ(E ∩ w)/γ(w) =

1
c
.

Lemma 2. (Corollary of Lemma 6 in [2]) Let b be a block of m-positive integers
b1, b2 . . . bm . Then for every positive real δ and for every positive integer k,

μ

{

x ∈ Cλ :

∣
∣
∣
∣
∣
1
k

k−1∑

i=0

I[b1,...bm](T ix) − γ(Cb)

∣
∣
∣
∣
∣
> δ

}

≤ 6Me− δ2k
2M
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where M = M(δ,m) =
⌈
m − log(δ2/2 log 2)

⌉
.

Lemma 3. (Lemma 2 in [9] ) For any subinterval B of unit interval we have
1

2 ln 2μ(B) ≤ γ(B) ≤ 1
ln 2μ(B)

Lemma 4. (Lemma 3.1 in [10]) For any continued fraction 〈a1, a2 . . . an〉,

μ(a1, a2 . . . an) ≤ 1
2n

5 Martin-Löf Randomness and Normality

Theorem 1. If X is Martin-Löf random continued fraction then X is continued
fraction normal.

Proof. We will prove the contrapositive of the above statement. Let’s assume X
be non-normal continued fraction. Then there are two cases:

– There exist a block b = b1, b2, . . . bm such that

lim sup
n→∞

#{T iX ∈ Cb : 0 ≤ i ≤ n − 1}
n

> γ(b)

or

– There exists a block b = b1, b2, . . . bm such that

lim inf
n→∞

#{T iX ∈ Cb : 0 ≤ i ≤ n − 1}
n

< γ(b).

Now, by the definition of the limit supremum and limit infimum, there exist
infinitely many prefixes of X such that the frequency of the block b in X deviates
from γ(b). The frequency of block b in a k-length string K where K ≥ m is
defined as

#{T iK ∈ Cb : 0 ≤ i ≤ (k − m)}
(k − m + 1)

Otherwise the frequency of block b in k-length string is 0 if m > k. Now,
let us consider a set of sets, E = {E1, E2, . . . } where each Ek contains all k -
length continued fractions such that the frequency of b deviates from γ(b) in
each of the continued fraction. Now from Lemma 2, it can be established that
μ(Ek) ≤ C.e−k and from Lemma 3, γ(Ek) ≤ Ce−k

ln 2 = C ′e−k.
Now let us consider a computably enumerable sequence of martingales

{d1, d2 . . . } on X defined by,

dk(λ) = 1

dk(w) =
1

C ′e−k
γ(Ek|w), w 
= λ, |w| ≤ k

dk(wi) = dk(w), |w| > k.
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From Lemma 1, dk(w) ≥ 1
γ(Ek)

, where w � X and w ∈ Ek. Since, we are
evenly betting in the martingale definition, it follows that lim

n→∞ dk(X[1 . . . n]) =

dk(w).
Now, consider the martingale d on X, which is a combination of {d1, d2 . . . }

such that each martingale dk bets on X as defined above with the condition that
dk(λ) = 1

2k , as the initial capital can only be finite.
Thus, for w � X and w ∈ Ek,

lim
n→∞ dk(X[1 . . . n]) =

dk(w)
2k

=
1

C ′e−k2k
> 1

for large enough k. As there are infinite number of prefixes of X for which the
frequency of b deviates from γ(b), there are infinitely many of set Ek

′s which
contain the prefixes of X. Thus there are infinite number of martingales dk

′s
which make a capital greater than 1 which implies that,

∑

k∈N

lim
n→∞ dk(X[1 . . . n]) = ∞.

Thus, we have proved that there exist a martingale d which succeeds on X which
establishes the result. ��

However, the concept of a Martin-Löf random continued fraction is strictly
stronger than that of a normal continued fraction. In the following result, we
construct a sequence which is normal, but not Martin-Löf random.

Theorem 2. There is a continued fraction X which is normal, but not Martin-
Löf random.

Proof. We construct an X which is continued fraction normal such that a com-
putably enumerable martingale succeeds on it.

Consider the sequence X ∈ N
∞ defined below.

X :

〈
1
2

〉

.

〈
1
3

〉

.

〈
2
3

〉

.

〈
1
4

〉

.

〈
2
4

〉

.

〈
3
4

〉

. . .

where
〈

p
q

〉
denotes the continued fraction expansion of rational number p

q . This
is the sequence of continued fractions of the rationals enumerated in the follow-
ing order: For each fixed denominator, we enumerate the numerators of proper
fractions in increasing order. Then, we concatenate such rational sequences in
the increasing order of denominators.

Adler et al. [1] has shown that the sequence X is continued fraction normal.
Note that the continued fraction expansion of the rational number (p/q) can

be computed by running euclidean GCD algorithm on numerator and denomi-
nator which takes O(logmin(p, q)) time which is O(log(p)) in case of X. Given
nth rational, (n+1)th rational of the sequence X can also be computed in O(1)
time.
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Now, we define the function d as:

d(λ) = 1

d(wi) =
d(w)

γ(wi|w)
,

d(wj) = 0

where i is the computed digit and j 
= i.
Now, ∑

i∈N

d(wi).γ(wi) = d(wi)γ(wi) = d(w)γ(w)

which shows that d is a martingale.
Let us assume X = a1, a2, a3 . . . where ai ∈ N. Now from the above martin-

gale,

d(a1, a2 . . . an) =
1

γ(a1, a2 . . . an)

From Lemma3 and 4 we get,

d(a1, a2 . . . an) =
1

γ(a1, a2 . . . an)
≥ 2 ln 2

μ(a1 . . . an)
≥ 2 ln 2.2n

which turns out to be lim supn→∞ d(a1, a2 . . . an) = ∞ implying computably
enumerable martingale d succeeds on X.

So, we have shown that there exist a sequence which is continued fraction
normal but not Martin-Löf random.

6 Kolmogorov Inequality

Lemma 5. (Lemma 4.3 in [10]) Let d : N∗ → [0,∞) be a supermartingale and
T ⊆ N

∗ be a finite prefix-free set. Then,

∑

w∈T

d(w)γ(w) ≤ 1

Lemma 6. Let d : N∗ → [0,∞) be a supermartingale and T ⊆ N
∗ be an infinite

prefix-free set. Then,
∑

w∈T

d(w)γ(w) ≤ 1

Proof. Let n ∈ N be arbitrary. Let dn : N∗ → [0,∞) be “finite-depth version” of
d defined for w ∈ N

∗ and b ∈ N by :

dn(wb) =

{
d(w), if |wb| ≤ n

0 otherwise
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Then, it can be easily verified that dn is a supermartingale. Now define the set
Sn = S ∩ N

n. Then, Sn is a finite prefix-free set. We have,

∑

w∈S

dn(w)γ(w) =
∑

w∈Sn

dn(w)γ(w)

=
∑

w∈Sn

d(w)γ(w)

≤ 1

where the last inequality is followed by Lemma 5 applied to d and the finite
prefix-set Sn. Since, n is arbitrary and since dn(w) is non-decreasing in n for all
w, we have

∑

w∈S

d(w)γ(w) ≤ sup
n

∑

w∈Sn

dn(w)γ(w) ≤ 1

as required.

Theorem 3. Let d : N∗ → [0,∞) be a supermartingale and S ⊆ N
∗ be a prefix-

free set. Then for all k ∈ R, we have

∑

w∈Sd(w)>k

γ(w) ≤ 1
k

Proof. From Lemma 6 we know that,

∑

w∈S

d(w)γ(w) ≤ 1

Further,

∑

w∈S

d(w)γ(w) =
∑

w∈S
d(w)≤k

d(w)γ(w) +
∑

w∈S
d(w)>k

d(w)γ(w)

≥
∑

w∈S
d(w)>k

d(w)γ(w)

> k
∑

w∈S
d(w)>k

d(w)γ(w)

Thus,
k

∑

w∈Sd(w)>k

γ(w) ≤ 1

as required.
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7 A Notion of Kolmogorov Complexity for Continued
Fractions

Let us assume that E is some encoding which encodes the finite continued fraction
into binary string such that it can be uniquely decoded back to the continued
fraction. We define the Kolmogorov complexity of any finite continued fraction
[a1, a2 . . . an] as C(E [a1, a2 . . . an]).

Let us fix an encoding for representing the continued fraction as binary
strings. Let us define a function bin(a) which returns the binary expansion of
natural number a. X represents some continued fraction, X[i] denotes ith digit
of X and x represents the binary string.

Set Flag = 1
Encoding (X):

if X = NULL then
return 10

end

if Flag = 1 then
Flag = 0
return BD(bin(X[1])).Encoding(T (X))

end

if Flag = 0 then
return 01.BD(bin(X[1])).Encoding(T (X))

end

end
BD (x):

if x = NULL then
return λ

end
if x[1] = 1 then

return (11.BD(T ′(x)))
end
if x[1] = 0 then

return (00.BD(T ′(x)))
end

end
Algorithm 1: Encoding of continued fraction to binary string.

The given encoding doubles the bit of binary expansion of each continued
fraction digit, with 01 as separator and 10 as terminator.
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Lemma 7. (Theorem 2(c) in [12]) For every partial computable function f ,
there exists a constant k such that

C(f(x)) ≤ C(x) + k

Theorem 4. There exist a constant k such that for all binary strings x1 and x2

representing some finite continued fraction X in prefix-free encoding E1 and E2,
∣
∣
∣C(x1) − C(x2)

∣
∣
∣ ≤ k

Proof. Let (E1,D1) and (E2,D2) be the Turing machines which encodes, decodes
the continued fraction to binary string and vice-versa for encoding E1 and E2.
Let us assume x1 and x2 be binary string representing some finite continued
fraction X in prefix-free encoding E1 and E2

Now, consider a function f as:

f : ∑∗−→ ∑∗

f(x) = E2(D1(x))

Since, function f is defined only for those binary strings which are valid encodings
in E1, it turns out that f is partial computable function. As, f(x1) = x2, from
Lemma 7 we get there exist a constant k1,

C(x2) ≤ C(x1) + k1 (3)

for all x1, x2 representing some continued fractions in encoding E1 and E2.
Now we prove the other side of the inequality. Similarly, consider a function

g as :
g : ∑∗−→ ∑∗

g(x) = E1(D2(x))

Again, function g is defined only for those binary strings which are valid encod-
ings in E2, it turns out that g is partial computable function. As, f(x2) = x1,
from Lemma 7 we get there exist a constant k2,

C(x1) ≤ C(x2) + k2 (4)

for all x1, x2 representing some continued fractions in encoding E1 and E2.
From, (3) and (4) we get,

∣
∣
∣C(x1) − C(x2)

∣
∣
∣ ≤ max(k1, k2) = k
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Abstract. In this work, we investigate the problem that maximizes a
weakly k-submodular function under the matroid constraint. Different
from traditional submodular function maximization, there are k disjoint
subsets in k-submodular function optimization, instead of a single set in
the submodular maximization. For the weakly k-submodular maximiza-
tion problem, we provide a greedy algorithm whose approximation ratio
is α/(1 + α), where parameter 0 < α ≤ 1 is the orthant submodular-
ity ratio. Then we extend to cardinality constraint which maintains the
same performance ratio.

Keywords: Weak function · Matroid constraint · Cardinality
constraint · k-submodular · Approximation algorithms

1 Introduction

Submodular optimization occupies great importance in combinatorial optimiza-
tion, as well as in many applications and real life. The k-submodular optimiza-
tion is a natural extension of submodular optimization, which integrates multiple
research directions such as machine learning, graph theory, combinatorial opti-
mization and game theory, etc. It is an important embodiment of promoting
the development for cross-disciplines. The problem k-submodular maximization
makes great contribution in multi-sensor placement, multi-topic influence maxi-
mization propagation, multi-type subset selection, and other forms of web page
recommendation [5,7,8,10].

Instead of a single subset, k-submodular function aims to find k disjoint
subsets to express submodularity or orthant submodularity. For k-submodular
maximization, function f is traditional submodular when k takes 1, and bisub-
modular when k takes 2. For bisubmodular function, Singh et al. [9] proposed an
approximation algorithm for maximization model. For the problem maximizing
a k-submodular function without any constraints, Ward and Živný [12] firstly
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designed an algorithm which gets a 1/(1 +
√

k/2) ratio. When function f is
monotone, Iwata et al. [2] proposed a k/(2k−1)-approximation algorithm; when
function f is nonmonotone, they provided a random approximation algorithm,
whose ratio is 1/2. Oshima [6] improved the ratio to (k2+1)/(2k2+1) by utilizing
randomized technique for the same case. Iwata et al. [2] gave an algorithm whose
ratio is better than (k+1)/2k under exponential queries. Soma [10] showed there
does not exist 1/2-regret and k/(2k−1)-regret algorithms for nonmonotone case
and monotone case respectively under online model.

Depending on different application scenarios, there are a variety of constraints
for k-submodular maximization, including matroid, cardinality, and knapsack.
For cardinality constraints, there are total cardinality constraint and individual
cardinality constraint respectively. For total size case, Yoshida [5] showed an
approximation algorithm by greedy technique whose performance guarantee is
1/2; and for individual size case, the approximation ratio is 1/3. For matroid
constraint, Sakaue [8] showed an approximation algorithm which obtains the
same performance as Yoshida [5]. For knapsack constraint, Tang et al. [11] got
an algorithm taking an approximation ratio of (1/2 − 1/2e). Qian et al. [7] also
showed 1/2 performance guarantee for the total size case in polynomial time by
means of the multi-objective evolutionary technique.

There are still many objective functions that are not strictly k-submodular [3,
4,14]. Zheng et al. [14] designed an approximation algorithm for ε-approximately
k-submodular maximization under individual size case, and the performance
guarantee is (1− ε)/(3+ ε). Nguyen and Thai [4] showed an approximation algo-
rithm with respect to the function structure for ε-approximately k-submodular
maximization. Matsuoka and Ohsaka [3] provided two approximation algorithms
for maximizing a γ-weakly k-submodular function under the constraints of
matroid and individual cardinality respectively, and the performance ratios are
both (1 + 1/γ)−2.

In this paper, we research the problem that maximizes a weakly k-
submodular function with matroid constraint. Utilizing greedy technique, we
design an approximation algorithm for the optimization model, whose approx-
imation ratio is α/(1 + α), where parameter 0 < α ≤ 1. Next we extend to a
special case, i.e., cardinality constraint, which maintains the same approximation
ratio.

The rest of this work consists of four parts. In Sect. 2, we introduce some
definitions and notations including weakly k-submodular function. In Sect. 3,
we provide an algorithm for weakly k-submodular maximization problem under
matroid constraint. In Sect. 4, we show a special algorithm for maximizing a
weakly k-submodular function subject to cardinality constraint. We remark a
conclusion in Sect. 5.

2 Preliminaries

In this work, we investigate the problem that maximizes a set function f satis-
fying weakly k-submodularity with a matroid constraint, which can be formu-
lated as:
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max f(P )
s.t. P = {P1 ∪ P2 ∪ · · · ∪ Pk} ∈ I,

where I contains all independent sets of matroid M = (V, I), and function
f : (k + 1)V → R+ maintains weakly k-submodularity over k disjoint subsets of
the ground set V = {v1, v2, . . . , vn}. Next we will introduce some preliminaries
about the model in detail.

Firstly, we give the definition of submodular function. For the ground set
V = {v1, v2, . . . , vn} and its traditional subset family 2V , set function g : 2V → R

is submodular if g satisfies that g(W1) + g(W2) ≥ g(W1 ∪ W2) + g(W1 ∩ W2),
for any subsets W1,W2 ⊆ V . In submodular maximization problem, we usually
require the set function g : 2V → R satisfies monotonicity and normalization,
as well as non-negativity. Here we propose some relevant introductions about
monotonicity, normalization and non-negativity for function g.

– monotonicity: for subsets P1, P2 ⊆ V , if P1 ⊆ P2, then g(P1) ≤ g(P2).
– normalization: for the empty set ∅, g(∅) = 0.
– non-negativity: for any subset P ⊆ V , g(P ) ≥ 0.

Different from the traditional submodular function, Huber and Kolmogorov
[1] provided a definition of k-submodular function. For k-submodular functions,
they maintain submodularity over k disjoint sets rather than a single set. In
this case, denote (k + 1)V := {(P1, P2, . . . , Pk)|Pi ⊆ V (i = 1, 2, . . . , k), Pi ∩
Pj = ∅ (i 
= j)}. For the sake of expression convenience, we denote vector
p = {(P1, P2, . . . , Pk)}. The detailed description for k-submodular function can
be found as follows.

Definition 1 (k-submodular function). Set function f : (k + 1)V → R is
k-submodular if it satisfies f(p) + f(q) ≥ f(p � q) + f(p � q), where p =
(P1, P2, . . . , Pk), q = (Q1, Q2, . . . , Qk),

p � q := (P1 ∩ Q1, P2 ∩ Q2, . . . , Pi ∩ Qi, . . . , Pk ∩ Qk),

p � q :=

⎛

⎝P1 ∪ Q1 \ (
⋃

i�=1

Pi ∪ Qi), . . . , Pk ∪ Qk \ (
⋃

i�=k

Pi ∪ Qi)

⎞

⎠ ,

for the sets in feasible region

(k + 1)V := {(Q1, Q2, . . . , Qk) : Qi ⊆ V (i = 1, 2, . . . , k), Qi ∩ Qj = ∅ (i 
= j)}.

For the k-submodular maximization problem, let [k] := {1, 2, . . . , k}. For two
vectors p = (P1, P2, . . . , Pk), q = (Q1, Q2, . . . , Qk) in (k + 1)V , let “
” be a
partial order such that p 
 q if for any i ∈ [k], there is Pi ⊆ Qi. For partial
order vectors p = (P1, P2, . . . , Pk), q = (Q1, Q2, . . . , Qk), p 
 q, if there is some
i ∈ [k], such that Pi ⊂ Qi, we call it a strongly partial order, i.e., p ≺ q.
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As for k-submodular function, we denote

f(v, i|p) := f(P1, P2, . . . , Pi ∪ {v}, . . . , Pk) − f(P1, P2, . . . , Pi, . . . , Pk)

be the marginal gain while we add element v to the i-th subset of vector p
for p ∈ (k + 1)V , v /∈ ∪l∈[k]Pl, i = 1, 2, . . . , k. We call k-submodular func-
tion f is monotone if f(v, i|p) ≥ 0 for all vectors p ∈ (k + 1)V , v /∈ ∪l∈[k]Pl

and i = 1, 2, . . . , k. Motivated by the work of Ward and Živný [13], we pro-
pose an introduction for weakly k-submodular function, which can be found in
Definition 2.

Definition 2 (Weakly k-submodular function). Function f : (k+1)V → R

is weakly k-submodular if f(v, i|p) ≥ α ·f(v, i|q), for any vectors p, q in (k+1)V

with p 
 q, v /∈ ∪l∈[k]Ql and i = 1, 2, . . . , k, 0 < α ≤ 1.

When α = 1, function f satisfies orthant submodularity proposed by Ward
and Živný [13]. In this work, we call function f weakly k-orthant submodular
as weakly k-submodular function for short. For vector p in (k + 1)V , we define
Pi = {v ∈ V |p(v) = i} for i = 1, 2, . . . , k, and supp(p) := {v ∈ V |p(v) 
= 0}.
The cardinality of vector p can be regarded as |supp(p)|. Denote 0 be the zero
vector in (k + 1)V , and assume function f is normalized, i.e., f(0) equals to 0.
If f(0) is not 0, we reset f(p) := f(p) − f(0) for any vector p in (k + 1)V .

In real life applications, there are a variety of constraint scenarios, such as car-
dinality constraints, knapsack constraints, matroid constraints, box constraints,
and so on. A cardinality constraint requires that the cardinality of a selected sub-
set is limited to a certain number. In knapsack constraints, every element has a
weight and the total weight of the chosen subset is limited to a certain condition.
Matroid is defined based on independent systems. The specific definition is as
follows.

Definition 3 (Independent system). For the ground set V = {v1, v2, . . . , vn}
and a subset family I in V , M = (V, I) is an independent system such that

– ∅ ∈ I.
– if Q1 ⊆ Q2 ∈ I, then Q1 ∈ I.

If a subset P ∈ I, P is independent. Based on the definition of independent
system, independent system M = (V, I) is a matroid if for any subsets P1, P2 ∈ I
and the cardinality of P1 is less than that in P2, then there exists element
v ∈ P2 \ P1 such that P1 ∪ {v} is independent. For the matroid M = (V, I), if
independent set P has the maximal size, i.e., P is a maximal independent set,
we call P is a base of the matroid M. Let B be the subset family containing all
bases and the cardinality of a base is B. All the bases have the same cardinality
observably.

We assume there exist two oracles OE , OI for function evaluation and inde-
pendent sets examination respectively. The number of oracle queries express the
time complexity.
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3 Maximizing a Weakly k-submodular Function
with Matroid Constraint

In this section, we design a greedy algorithm for maximizing a weakly k-
submodular function (k-SM for short) with matroid constraint. We choose an
appropriate pair (v, i) which takes the maximal marginal gain to the current
vector iteratively if it satisfies the matroid constraint. The detailed description
is as follows.

Algorithm 1. A greedy algorithm for weakly k-SM under matroid
Input: a weakly k-submodular function f : (k + 1)V → R+, a matroid M = (V, I),

and two oracles OE , OI for function evaluation and independence identify respec-
tively.

Output: a vector v satisfying supp(v) is a base.

Step 0. Initially set v = 0, R := V .
Step 1. Select element v ∈ R such that supp(v)∪{v} ∈ I and

(v, i) := arg max
v∈R,i∈[k]

f(v, v(i)|v),

update v := v ∪ (v, i),
remove elements v′ from R such that supp(v)∪{v′} /∈ I.

Step 2. Repeat Step 1 until there is no elements v in R satisfying the conditions of
Step 1, output v.

By the monotonicity of function f , we know the support set of output vector
v is a base, i.e., supp(v) ∈ B. The detailed proof can be found in [8].

Lemma 4 (Sakaue [8]). The support set of any maximal optimal solution is a
base for the optimization model.

According to the properties of bases and independent sets in matroid M =
(V, I), the following lemma holds. Sakaue [8] provided a detailed proof for the
lemma. It is recommended to the interested readers.

Lemma 5 (Sakaue [8]). Assume P is an independent set and Q is a base in
matroid M = (V, I), P ⊂ Q. We get that, for any element p ∈ V \ P such that
P ∪ {p} ∈ I, there is element q ∈ Q \ P satisfying Q \ {q} ∪ {p} is a base.

Theorem 6. For the optimization model under matroid constraint, Algorithm
1 outputs a vector v such that f(v) ≥ α

1+αf(v∗), where v∗ is a maximal optimal
solution and parameter α ∈ (0, 1]. The time complexity is O(Bn(OI + kOE)).

From Algorithm 1, we know there are totally B iterations. Among the itera-
tions, we assume vj is the output vector after j-th iteration, j = 1, 2, · · · , B
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and v∗ is a maximal optimal solution for the optimization model. For the
purpose of completing the proof of Theorem 6, we define a vector sequence
v∗
0 ,v∗

1 ,v∗
2 , · · · ,v∗

B for the optimal solution v∗ as those in the works of [2,5,13].
Denote (vj , i(j)) be the pair selected by Algorithm 1 at the j-th iteration,

Vj := supp(vj), j = 1, 2, · · · , B. For a maximal optimal solution v∗, we con-
struct a vector sequence v∗

0 = v∗,v∗
1 ,v∗

2 , · · · ,v∗
B = v satisfying the following

properties, where V ∗
j := supp(v∗

j ) for j = 1, 2, · · · , B.

(i) vj ≺ v∗
j if j = 0, 1, 2, · · · , B − 1, and vj ≺ v∗

j = v, if j = B;

(ii) V ∗
j ∈ B for j = 0, 1, 2, · · · , B.

We construct the vector sequence inductively. Firstly, we note that v0 = 0, and
v∗
0 = v∗ satisfy (i) and (ii). Next we show how to get v∗

j from v∗
j−1, given the

assumption vj−1 ≺ v∗
j−1 and V ∗

j−1 ∈ B. As vj−1 ≺ v∗
j−1, we know Vj−1 ⊂ V ∗

j−1

and element vj is selected to satisfy Vj−1 ∪{vj} ∈ I. According to Lemma 5, we
have there is element v′ ∈ V ∗

j−1 \ Vj−1 such that V ∗
j−1 \ {v′} ∪ {vj} is a base. We

let v∗
j = v′ and denote v∗

j−1/2 be an immediate vector obtained by setting 0 to
the v∗

j -th element in subset V ∗
j−1. Denote v∗

j be the vector returned by setting
i(j) to the vj-th element from v∗

j−1/2. Then the vector v∗
j is constructed such

that V ∗
j = {V ∗

j−1 \ {v∗
j }} ∪ {vj} ∈ B.

Moreover, since the immediate vector v∗
j−1/2 satisfies vj−1 
 v∗

j−1/2, we
obtain the properties for v∗

j as follows:

vj ≺ v∗
j if j = 1, 2, · · · , B − 1, and vj ≺ v∗

j = v, if j = B,

where the strict partial order of the inclusion can be verified by the relation
|Vj | = j < B = |V ∗

j | for j = 1, 2, · · · , B − 1. Therefore, utilizing the above
discussion process iteratively for j = 1, 2, · · · , B, we acquire the vector sequence
v∗
0 ,v∗

1 ,v∗
2 , · · · ,v∗

B meet the conditions (i) and (ii). In the following work, we
turn to the analysis of Algorithm 1.

Proof. Based on the properties of vector sequence v∗
0 ,v∗

1 ,v∗
2 , · · · ,v∗

B constructed
above, we know Vj−1 ⊂ V ∗

j−1 and v∗
j ∈ V ∗

j−1 \ Vj−1, as well as Vj−1 ∪ {v∗
j } ⊆

V ∗
j−1 ∈ B, for j = 1, 2, · · · , B. According to the down-closed property of matroid

M = (V, I), we acquire Vj−1 ∪ {v∗
j } ∈ I for j = 1, 2, · · · , B.

Given the element selection rule in Algorithm 1, for the chosen pair (vj , i(j)),
we obtain

f(vj , i(j)|vj−1) ≥ f(v∗
j ,v∗

j−1(v∗
j )|vj−1). (1)

Furthermore, based on the definitions of weakly orthant submodularity and the
inequality vj−1 ≺ v∗

j−1/2, there is

f(v∗
j ,v∗

j−1(v∗
j )|vj−1) ≥ α · f(v∗

j ,v∗
j−1(v∗

j )|v∗
j−1/2), α ∈ (0, 1]. (2)
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Combining Inequality (1) and (2) with monotonicity of function f , we obtain

f(vj) − f(vj−1) = f(vj , i(j)|vj−1)
≥ f(v∗

j ,v∗
j−1(v∗

j )|vj−1)
≥ α · f(v∗

j ,v∗
j−1(v∗

j )|v∗
j−1/2)

≥ α · f(v∗
j ,v∗

j−1(v∗
j )|v∗

j−1/2) − α · f(vj , i(j)|v∗
j−1/2)

= α · (f(v∗
j ,v∗

j−1(v∗
j )|v∗

j−1/2) − f(vj , i(j)|v∗
j−1/2))

= α · (f(v∗
j−1) − f(v∗

j )).

Rearranging above inequalities, we have

f(v∗
j−1) − f(v∗

j ) ≤ 1
α

· (f(vj) − f(vj−1)). (3)

Based on Inequality (3), we get

f(v∗) − f(v) =
B∑

j=1

(f(v∗
j−1) − f(v∗

j ))

≤ 1
α

·
B∑

j=1

(f(vj) − f(vj−1))

=
1
α

· (f(v) − f(0))

=
1
α

· f(v).

Therefore, there is f(v) ≥ α
1+αf(v∗) for the output vector v in Algorithm 1.

Next, we express the analysis for the time complexity in Algorithm 1. In the
j-th iteration, we need to scan R elements to examine the independence and call
for k · R evaluation oracle OE to select the maximal pair (vj , i(j)). There are
totally B iterations. Thus the complexity in Algorithm 1 is O(B ·n ·(OI +kOE)).

�

4 Maximizing a Weakly k-submodular Function
with Cardinality Constraint

In this part, we study a special case of matroid constraint, i.e., cardinality con-
straint. More specifically, we investigate the problem that maximizes the weakly
k-submodular function f : (k + 1)V → R+ such that the cardinality of supp(v)
is no more than a positive integer C. For this problem, we provide Algorithm 2
to find a vector v.

By analyzing Algorithm 2, we acquire Theorem 7, whose main proof idea
is similar to that in Theorem 6 based on the fact size constraint is a uniform
matroid constraint.
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Algorithm 2. A greedy algorithm for weakly k-SM under cardinality
Input: a weakly k-submodular function f : (k + 1)V → R+, a cardinality constraint

C, and an evaluation oracle OE .
Output: a vector v satisfying |supp(v)| ≤ C.

Step 0. Initially set v = 0, R := V .
Step 1. Select element v ∈ R such that |supp(v)| < C and

(v, i) := arg max
v∈R,i∈[k]

f(v, v(i)|v),

update v := v ∪ (v, i), R := R \ {v}.
Step 2. Repeat Step 1 until there is no elements v in R satisfying the conditions of

Step 1, output v.

Theorem 7. For the optimization model with cardinality constraint, Algorithm
2 outputs a vector v satisfying f(v) ≥ α

1+αf(v∗), where v∗ is a maximal optimal
solution and parameter α ∈ (0, 1]. The complexity is O(C · n · kOE).

5 Conclusions

In this work, we investigate the problem that maximizes a function meeting
weakly k-submodularity subject to matroid constraint. By means of greedy tech-
nique, we provide an approximation algorithm, whose performance guarantee is
α/(1 + α), where α ∈ (0, 1] is the ratio to characterize orthant submodularity.
Next we extend to a special case, i.e., cardinality constraint, which maintains
the same approximation ratio. In future work, we will further study weakly k-
submodular maximization under streaming and online model.
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Abstract. This paper considers the diversity-bounded center problems,
where we are given a set of points, each of which was colored in one of
the ω colors, along with integers k and li, ui for color i, the goal is to
select a k-sized center set so as to minimize the maximum distance of a
point to its nearest center, and at the same time, meet the requirements
that the amount of selected centers with color i must be within [li, ui]
for each i. The diversity-bounded clustering with one-side upper bound
and lower bound requirement was considered in (Jones et al., 2020) and
(Thejaswi et al., 2021), respectively. We combine the difficulties of them
and propose the diversity-bounded center problems from both sides, and
as the main contribution, we present 3-approximation algorithms for the
red-blue as well as the multi-colored version, the complexity of which for
the latter problem is parameterized by ω.

Keywords: Fair clustering · Diversity-bounded center ·
Approximation algorithm · Parameterized approximation

1 Introduction

In the classical k-center problem, we are given a set of points V in a metric
space, along with an integer k. The goal is to find a k-sized subset O ⊆ V so as to
minimize the maximum distance from a point in V to its nearest center in O. The
k-center problem is no doubt one of the most well-studied NP-hard problems in
the combinatorial optimization literature. It is known that the classical k-center
problem is even NP-hard to approximate the optimal value within a factor of
2 − ε, but however, a 2-approximation algorithm can be easily obtained via a
simple greedy algorithm [7]. The greedy scheme starts with an arbitrary point

L. Han—Supported by the National Natural Science Foundation of China (No.
12001523). Shuilian Liu and Yicheng Xu are supported by the Fundamental Research
Project of Shenzhen City (No. JCYJ20210324102012033). Yong Zhang is supported by
the National Natural Science Foundation of China (No. 12071460).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D.-Z. Du et al. (Eds.): TAMC 2022, LNCS 13571, pp. 402–413, 2022.
https://doi.org/10.1007/978-3-031-20350-3_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20350-3_33&domain=pdf
https://doi.org/10.1007/978-3-031-20350-3_33


Approximation Algorithms for Diversity-Bounded Center Problems 403

and iteratively select the farthest point from the current selected center set as
the next center until it reaches the cardinality factor k.

In the diversity-bounded multi-colored center (DB-MC-Center) problem,
given are a set of points V in a metric space along with an integer k, where
each point is labeled with one of the ω colors. In order to guarantee the fairness
of a clustering scheme, we request that the number of selected centers should be
no more than k, and satisfy given upper and lower bound constraints for each
color. The DB-MC-Center problem we consider is inspired by the recent trend
of fairness investigation in clustering, which was first introduced by Chierichetti
et al. [5]. A fair clustering, according to their definition, is a clustering where
every demographic group is approximately proportionally represented within
each cluster. Without confusion, we denote the diversity-bounded red-blue center
(DB-RB-Center) problem as the two-color case (w.l.o.g. we assume red and blue)
of the DB-MC-Center problem.

To the best of our knowledge, the DB-MC-Center problem described above
is new in the fair clustering literature, but several related models or special cases
were considered in previous work. Kleindessner et al. [12] studied the spectral
clustering with fairness constraints, where the fairness is defined as the preven-
tion of over presentation. They restrict an upper bound of selected centers in
every color for each cluster, which in the uniform case is essentially the upper
bound version of the DB-MC-Center problem, which we call the multi-colored
center (MC-Center) problem in this paper. As the main contribution, they pre-
sented a (3 ·2ω−1 −1)-approximation algorithm running in O(nkω2 +kω4) time.
Chen et al. [4] considered a generalization of the MC-Center problem called the
matroid median problem, and gave a 3-approximation algorithm. Jones et al.
[11] designed a 3-approximation algorithm and improved the time complexity of
[4] to O(nk) via a maximum matching embedding technique. Note that a natural
lower bound for this problem is 2−ε. We denote the red-blue center (RB-Center)
problem as the two-colored case of the MC-Center problem.

The k-median problem is another well-known clustering problem. In the k-
median problem, given are a set of points V in a metric space and an integer k.
The objective is to find a k-sized subset such that the sum of distances between
a point to its nearest center is minimized. Charikar et al. [3] gave the first con-
stant approximation algorithm based on the filtering technique proposed in [14].
Using dependent-rounding, Byrka et al. [2] presented the currently best 2.675-
approximation algorithm. The notion of diversity bounds had also be proposed
in the k-median problem, but only one side bound requirement was considered.
We refer to [6,8,13,15,17] for the upper bound version and [16] for the lower
bound version.

Many other fairness measures have been proposed and investigated. For
example, Bandyapadhyay et al. [1] considered a so-called colorful k-center clus-
tering model from the clients’ perspective, which requests for each color a cover-
age constraint. That means, any feasible clustering scheme should cover at least
ri points in color i for the fairness purpose. Based on a beautiful sparse linear
programming technique, they presented a pseudo approximation algorithm for
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the general metric space which violates the cardinality constraint, but can be
refined to a true approximation with constant performance guarantee when the
given point set is located in the plane. This result was improved to an efficient
3-approximation algorithm (2-approximation for a well separated special case)
by Jia et al. [10] that either opens more than k centers or only works when
the input points are in the plane. They built an interesting connection between
the fair k-center with the well-known subset sum to illustrate the impossibility
of achieving a good approximation through linear programming technique and
overcome this by giving a nearly tight approximation guarantee. Very recently,
Han et al. [9] considers the individually fair k-center with outliers, which provides
the possibility of combination of different fairness measures in clustering.

As our main contribution, we study two diversity-bounded center problems,
i.e., the DB-RB-Center problem and the DB-MC-Center problem. For the DB-
RB-Center problem, we propose a 3-approximation algorithm. Inspiring by the
work of [16], the main idea of our algorithm is based on guessing the numbers of
selected red and blue centers in an optimal solution of the given DB-RB-Center
instance. After the guessing process, we only need to deal with an RB-Center
instance. It is worth mentioning that the algorithms in [4,11] can directly be used
to solve the RB-Center instance. For the sake of completeness, we give a simple
approximation algorithm for the RB-Center problem. Our algorithm could be
viewed as a reinterpretation of the algorithm in [4]. The main difference between
these two algorithms is that our algorithm considers to construct and solve an
matching problem in stead of a matroid intersection problem. For the DB-MC-
Center problem, we extend the algorithm for its two-colored case, and give it a
fixed parameterized tractable approximation algorithm with an approximation
ratio of 3.

The remainder of this paper is structured as follows. We propose the approx-
imation algorithms for the DB-RB-Center and DB-MC-Center problems in
Sects. 2 and 3, respectively. Section 4 gives some discussions.

2 The Diversity-Bounded Red-Blue Center Problem

In this section, we propose a constant approximation algorithm for the DB-RB-
Center problem. We first give the problem description of the DB-RB-Center
problem in Subsect. 2.1. Then, we give an approximation algorithm for the RB-
Center problem in Subsect. 2.2, which is used as a very important subroutine in
our main algorithm for the DB-RB-Center problem. Finally, in Subsect. 2.3, the
main algorithm is provided.

2.1 Problem Description of the DB-RB-Center Problem

In a DB-RB-Center instance IDR, we are given an integer k and a point set
V , being composed by two disjoint point sets Vr and Vb. Each point in set Vr

(resp. Vb) is called a red (resp., blue) point. Integral lower bounds lr and lb, and
integral upper bounds ur and ub are also given. Each pair of points (i, j), where
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i, j ∈ V , is associated a distance dij . Assume that these distances are non-
negative, symmetric, and satisfy the triangle inequality. The goal is to select
some points O ⊆ V as centers, assign each point i ∈ V to some selected center
σ(i) ∈ O, such that

– lr ≤ |O ∩ Vr| ≤ ur, and lb ≤ |O ∩ Vb| ≤ ub,
– |O ∩ V | = |O ∩ Vr| + |O ∩ Vb| ≤ k,
– the maximum distance of dσ(i)i of a point i in V is minimized.

To ensure the DB-RB-Center problem has feasible solutions, we assume that
lr + lb ≤ k for any instance. Let (O, σ) denote a solution of a DB-RB-Center
instance, in which O is the set of selected centers and σ : V → O is a mapping
from each point to its assigned center. For a solution (O, σ), denote by C(O, σ)
the maximum distance of a point in V to its assigned center in O, i.e.,

C(O, σ) = max
i∈V

dσ(i)i.

Denote by (O∗
DR, σ∗

DR) an optimal solution of a DB-RB-Center instance, and
denote by OPTDR its objective value. Therefore,

OPTDR = C(O∗
DR, σ∗

DR) = max
i∈V

dσ∗
DR(i)i.

2.2 Algorithm for the RB-Center Problem

If lr = 0, lb = 0, and k = ur + ub, the DB-RB-Center problem simplifies to the
RB-Center problem. We still use (O, σ) to denote a solution of an RB-Center
instance, and use C(O, σ) to denote its objective value. Denote by (O∗

R, σ∗
R) an

optimal solution of an RB-Center instance, and denote by OPTR its objective
value. Therefore,

OPTR = C(O∗
R, σ∗

R) = max
i∈V

dσ∗
R(i)i.

Now, we present an approximation algorithm for the RB-Center problem
involving the optimal objective value OPTR. We could suppose that OPTR is
known, by running the algorithm on each distance between a pair of points
and taking the solution with the minimum objective value. The main algorithm
consists of two essential phases. The first phase defines a partition of the point
set V , and the second phase selects suitable centers.

Phase 1: Define a Partition
For each point i ∈ V , let P (i) and N(i) be all the points within a distance
of OPTR and 2OPTR from i, respectively. Phase 1 arbitrarily chooses a point
i ∈ V at the beginning, and then continues to find points that are not too close
to all the already chosen points until no such points can be found. All the chosen
points help to form a partition of V . The formal description of Phase 1 is given
in Algorithm 1.
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Algorithm 1. Algorithm for Defining a Partition of V

Input: The point set V and distances {dij}i,j∈V of an RB-Center instance IR.
Output: A partition of the point set V .
1 Initially, set C := ∅ and U := V . For each point i ∈ V , set P (i) := {j ∈ V : dij ≤

OPTR}, and set N(i) := {j ∈ V : dij ≤ 2OPTR}.
2 While U �= ∅ do

Arbitrarily choose a point i ∈ U . Update C := C ∪ {i} and U := U \ N(i).
3 Define a partition of V as {{P (i)}i∈C , V \ ⋃

i∈C P (i)}, and output the partition.

Note that Algorithm 1 does give a real partition of the point set V , since for
any two distinct points i, j ∈ C, we always have that P (i) ∩ P (j) = ∅. If there
is a point q belongs to both P (i) and P (j), then dij ≤ diq + dqj ≤ 2OPTR,
contradicting the fact that the distance between i and j must be greater than
2OPTR.

Phase 2: Select Centers
Phase 2 selects a set of centers O ⊆ V for the RB-Center instance. Based on the
partition obtained from Algorithm1, Phase 2 first constructs a bipartite graph,
and then finds its maximum matching, which implies the set of selected centers.
The formal description of Phase 2 is given in Algorithm2.

Towards better understanding, Fig. 1 provides an illustration of Phase 2.
It can be seen that the set of centers O is a feasible center set for the given

RB-Center instance, since all the chosen edges in the maximum matching cannot
incident to more than ur (resp., ub) shrunken points contracted from Vr (resp.,
Vb).

The Main Algorithm
Combining Algorithms 1 and 2 yields the main algorithm for the RB-Center
problem, which is presented in Algorithm 3.

The following theorem gives the approximation ratio of Algorithm 3 for the
RB-Center problem.

Theorem 1. Algorithm 3 is a 3-approximation algorithm for the RB-Center
problem.

Proof. Recall that Phase 2 ensures that the solution (O, σ) obtained from
Algorithm 3 is a feasible solution. With the following claim, we can prove the
approximation ratio of Algorithm 3.

Claim . The number of edges of a maximum matching of the bipartite graph
G = (V1, V2, E

′) is exactly |C|.
The claim implies that each P (i), where i ∈ C, contains a point being selected

as a center in O′ (⊆ O). For any point i ∈ V , denote by ide the point in C
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Algorithm 2. Algorithm for Selecting Centers
Input: The point sets Vr and Vb, upper bounds ur and ub of an RB-Center instance

IR, and the partition {{P (i)}i∈C , V \ ⋃
i∈C P (i)} obtained from Algorithm 1.

Output: A set of the centers O ⊆ V .
1 Contract the point sets Vr and Vb to shrunken points named ir and ib, respectively.

Copy the points ir for ur times and ib for ub times. Let V1 be all the shrunken
points constructed in this step.

2 Contract each point set in the partition {{P (i)}i∈C , V \ ⋃
i∈C P (i)} to a shrunken

point. Let V2 be all the shrunken points constructed in this step, and let iex be the
shrunken point corresponding to V \ ⋃

i∈C P (i).
3 For a shrunken point i ∈ V1 ∪ V2, let V (i) be all the points being contracted to i.

For a pair of shrunken points (i1, i2), where i1 ∈ V1 and i2 ∈ V2 \ {iex}, if there
exists a point i ∈ V belongs to both V (i1) and V (i2), construct an edge between
i1 and i2, and mark this edge with a label of i. Let E be all the constructed edges.

4 For a pair of shrunken points (i1, i2), where i1 ∈ V1 and i2 ∈ V2, if there are
multiple edges in E between them, arbitrarily choose one of the edges and delete
all the others to obtain an edge set E′. For each deleted edge, attach its label to
the edge that caused it to be deleted.

5 Define a bipartite graph as G = (V1, V2, E
′), and find its maximum matching. For

each edge of the matching, choose exactly one label of the edge. Let O′ be the set of
points corresponding to these chosen labels. If |O′ ∩Vr| ≤ ur (resp., |O′ ∩Vb| ≤ ub),
select some points in Vr \ O′ (resp., Vb \ O′) to be centers so that the number of
red (resp., blue) centers is exactly ur (resp., ub). Add all the additionally selected
centers into O′ to obtain O, and output O.

Fig. 1. An illustration of Algorithm 2.
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Algorithm 3. Main Algorithm for the RB-Center problem
Input: An RB-Center instance IR with inputs of V , Vr, Vb, ur, ub and {dij}i,j∈V .
Output: A solution (O, σ) of the RB-Center instance.
1 Run Algorithm 1 to obtain a partition of V .
2 Based on the partition, run Algorithm 2 to obtain the set of selected centers O.
3 For each i ∈ V , set σ(i) := arg mino∈O doi.
4 Output (O, σ).

caused i to be removed from the set U in Step 2 of Algorithm 1. We have that
didei ≤ 2OPTR. Note that ide belongs to C and is within a distance of OPTR

from some selected center i′ in O′. Therefore,

di′i ≤ di′ide + didei ≤ 3OPTR,

implying that the distance from any point i ∈ V to its nearest selected center in
O is no more than 3OPTR. This completes the proof.

Proof of the Claim. We could demonstrate that there exists a matching that
has exactly |C| edges. For each i ∈ C, recall that σ∗

R(i) is its assigned center in
the optimal solution (O∗

R, σ∗
R). Note that for any two distinct points i, j ∈ C,

we have that P (i) ∩ P (j) = ∅. Define C∗ := {σ∗
R(i)}i∈C . It it is clear that each

point i∗ ∈ C∗ corresponding to a distinct shrunken point contracted from the
partition {{P (i)}i∈C , V \⋃

i∈C P (i)} obtained from Algorithm 1. Since C∗ ⊆ O∗,
we must have that |C∗ ∩ Vr| ≤ ur and |C∗ ∩ Vb| ≤ ub. Therefore, there must
exist a matching in the bipartite graph G = (V1, V2, E

′), which has exactly |C∗|
(i.e., |C|) edges and marked with all the points in C∗. �	

2.3 Algorithm for the DB-RB-Center Problem

In this subsection, we propose a constant approximation algorithm for the DB-
RB-Center problem. The main idea of the algorithm based on guessing how
many centers in Vr and Vb are selected in an optimal solution. So that solving
the DB-RB-Center problem can be reduced to solving the RB-Center problem.
The algorithm for the DB-RB-Center problem is provided in Algorithm 4.

The following theorem gives the approximation ratio of Algorithm 4 for the
DB-RB-Center problem.

Theorem 2. Algorithm 4 is a 3-approximation algorithm for the DB-RB-
Center problem.

Proof. For a DB-RB-Center instance, if we know how many centers in Vr and
Vb are selected in its optimal solution, to solve the DB-RB-Center instance is
to solve an RB-Center instance. In the case of ur + ub ≤ k, an optimal solution
would selected ur red centers and ub blue centers. In the case of lr + lb = k, an
optimal solution would selected lr red centers and lb blue centers. In the case
of lr + lb < k < ur + ub, we could enumerate all the feasible possibilities of the
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Algorithm 4. Algorithm for the DB-RB-Center problem
Input: A DB-RB-Center instance IDR with inputs of V , Vr, Vb, ur, ub, lr, lb, k, and

{dij}i,j∈V .
Output: A solution (O, σ) of the DB-RB-Center instance.
1 If ur + ub ≤ k then

Construct an RB-Center instance with inputs of V , Vr, Vb, ur, ub and
{dij}i,j∈V . Run Algorithm 3 to solve this RB-Center instance and obtain a
solution (O, σ). Output (O, σ).

2 If lr + lb = k then
Construct an RB-Center instance with inputs of V , Vr, Vb, u′

r, u′
b and

{dij}i,j∈V , where u′
r = lr and u′

b = lb. Run Algorithm 3 to solve this RB-
Center instance and obtain a solution (O, σ). Output (O, σ).

3 If lr + lb < k < ur + ub then
Define RB := {(r, b) : lr ≤ r ≤ ur, lb ≤ b ≤ ub, r + b ≤ k, r ∈ Z, b ∈ Z}. For
each (r, b) in RB, construct an RB-Center instance with inputs of V , Vr, Vb,
u′

r, u′
b and {dij}i,j∈V , where u′

r = r and u′
b = b. Run Algorithm 3 to solve all

the constructed RB-Center instances and find a solution (O, σ) with minimum
objective value. Output (O, σ).

number of selected red and blue centers in an optimal solution, and construct
the corresponding RB-Center instances. It can be seen that there are at most
O(k2) such instances. Therefore, Algorithm 4 is a polynomial time algorithm
with the same approximation ratio as Algorithm 3. �	

3 The Diversity-Bounded Multi-colored Center Problem

In this section, we extend Algorithm 4 to solve the DB-MC-Center problem, in
which the given point set V could be composed by multiple disjoint point sets.

3.1 Problem Description of the DB-MC-Center Problem

In a DB-MC-Center instance IDM, we are given an integer k and a point set
V , being composed by several disjoint point sets V1, V2, ..., Vω. Each point set
Vt, where t ∈ {1, 2, ..., ω}, is associated with an integral lower bound lt and an
integral upper bound ut. Each pair of points (i, j), where i, j ∈ V , is associated
a distance dij . Assume that these distances are non-negative, symmetric, and
satisfy the triangle inequality. The goal is to select some points O ⊆ V as centers,
assign each point i ∈ V to some selected center σ(i) ∈ O, such that

– lt ≤ |O ∩ Vt| ≤ ut for any t ∈ {1, 2, ..., ω},

– |O ∩ V | =
ω∑

t=1
|O ∩ Vt| ≤ k,

– the maximum distance of dσ(i)i of a point i in V is minimized.
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To ensure the DB-MC-Center problem has feasible solutions, we assume that∑ω
t=1 lt ≤ k for any instance. We still use (O, σ) to denote a solution of a DB-

MC-Center instance, and use C(O, σ) to denote its objective value. Denote by
(O∗

DM, σ∗
DM) an optimal solution of a DB-MC-Center instance, and denote by

OPTDM its objective value. Therefore,

OPTDM = C(O∗
DM, σ∗

DM) = max
i∈V

dσ∗
DM(i)i.

3.2 Algorithm for the MC-Center Problem

If lt = 0 for any t ∈ {1, 2, ..., ω} and k =
∑ω

t=1 ut, the DB-MC-Center problem
simplifies to the MC-Center problem. We still use (O, σ) to denote a solution of
an MC-Center instance, and use C(O, σ) to denote its objective value. Denote by
(O∗

M, σ∗
M) an optimal solution of an MC-Center instance, and denote by OPTM

its objective value. Therefore,

OPTM = C(O∗
M, σ∗

M) = max
i∈V

dσ∗
M(i)i.

We could also suppose that OPTM is known, since it must be equal to some
distance between a pair of points in V . The algorithm for the RB-Center problem
can be adapted to an algorithm for the MC-Center problem, which also consists
of two phases. The first phase aims to define a partition of the point set V and
is exactly same as Algorithm 1 except that we use OPTM instead of OPTR. The
second phase is slightly different from Algorithm 2 and is given in Algorithm 5.

Algorithm 5. Algorithm for Selecting Centers
Input: The point sets {Vt}t∈{1,2,...,ω}, upper bounds {ut}t∈{1,2,...,ω} of an MC-

Center instance IM, and the partition {{P (i)}i∈C , V \ ⋃
i∈C P (i)} obtained from

Algorithm 1.
Output: A set of the centers O ⊆ V .
1 For each t ∈ {1, 2, ..., ω}, contract each point set Vt to a shrunken point named it.

Copy each point it for ut times. Let V1 be all the shrunken points constructed in
this step.

2 Same as Step 2 in Algorithm 2.
3 Same as Step 3 in Algorithm 2
4 Same as Step 4 in Algorithm 2.
5 Define a bipartite graph as G = (V1, V2, E

′), and find its maximum matching.
For each edge of the matching, choose exactly one label of the edge. Let O′ be
the set of points corresponding to these chosen labels. If |O′ ∩ Vt| ≤ ut for some
t ∈ {1, 2, ..., ω}, select some points in Vt \ O′ to be centers so that the number
of centers in Vt is exactly ut. Add all the additionally selected centers into O′ to
obtain O, and output O.

Combining Algorithms 1 and 5 yields the algorithm for the MC-Center prob-
lem, which is presented in Algorithm 6. The following theorem gives the approx-
imation ratio of Algorithm 6 for the MC-Center problem.
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Algorithm 6. Main Algorithm for the MC-Center problem
Input: An MC-Center instance IM with inputs of V , {Vt}t∈{1,2,...,ω}, {ut}t∈{1,2,...,ω},

and {dij}i,j∈V .
Output: A solution (O, σ) of the RB-Center instance.
1 Run Algorithm 1 to obtain a partition of V .
2 Based on the partition, run Algorithm 5 to obtain the set of selected centers O.
3 For each i ∈ V , set σ(i) := arg mino∈O doi.
4 Output (O, σ).

Theorem 3. Algorithm 6 is a 3-approximation algorithm for the MC-Center
problem.

Since the proof of this theorem is similar to the one for Theorem 1, we omit the
proof here.

3.3 Algorithm for the DB-MC-Center Problem

The algorithm for the DB-MC-Center problem is given in Algorithm 7.

Algorithm 7. Algorithm for the DB-MC-Center problem
Input: A DB-MC-Center instance IDR with inputs of V , {Vt}t∈{1,2,...,ω},

{ut}t∈{1,2,...,ω}, {lt}t∈{1,2,...,ω}, k, and {dij}i,j∈V .
Output: A solution (O, σ) of the DB-MB-Center instance.
1 If

∑ω
t=1 ut ≤ k then

Construct an MC-Center instance with inputs of V , {Vt}t∈{1,2,...,ω},
{ut}t∈{1,2,...,ω}, and {dij}i,j∈V . Run Algorithm 6 to solve this MC-Center
instance and obtain a solution (O, σ). Output (O, σ).

2 If
∑ω

t=1 lt = k then
Construct an MC-Center instance with inputs of V , {Vt}t∈{1,2,...,ω},
{u′

t}t∈{1,2,...,ω}, and {dij}i,j∈V , where u′
t = lt for each t ∈ {1, 2, ..., ω}. Run

Algorithm 6 to solve this MC-Center instance and obtain a solution (O, σ).
Output (O, σ).

3 If
∑ω

t=1 lt < k <
∑ω

t=1 ut then
Define MC := {(r1, r2, ..., rω) : lt ≤ rt ≤ ut for any t ∈ {1, 2, ..., ω},

∑ω
t=1 rt ≤

k, rt ∈ Z for any t ∈ {1, 2, ..., ω}}. For each (r1, r2, ..., rω) in MC, construct
an MC-Center instance with inputs of V , {Vt}t∈{1,2,...,ω}, {u′

t}t∈{1,2,...,ω}, and
{dij}i,j∈V , where u′

t = rt for any t ∈ {1, 2, ..., ω}. Run Algorithm 6 to solve all
the constructed MC-Center instances and find a solution (O, σ) with minimum
objective value. Output (O, σ).

The following theorem gives the main result of Algorithm 7.

Theorem 4. Algorithm 7 is a fixed parameterized tractable approximation algo-
rithm for the DB-MC-Center problem with an approximation ratio of 3.
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Proof. For a DB-MC-Center instance, if we know how many centers in each point
set Vt, where t ∈ {1, 2, ..., ω}, is selected in its optimal solution, to solve the DB-
MC-Center instance is to solve an MC-Center instance. In the case of

∑ω
t=1 ut ≤

k, an optimal solution would selected ur centers for each Vt. In the case of∑ω
t=1 lt = k, an optimal solution would selected lr centers for each Vt. In the case

of
∑ω

t=1 lt < k <
∑ω

t=1 ut, we could enumerate all the feasible possibilities of the
number of selected centers of each color in an optimal solution, and construct
the corresponding MC-Center instances. It can be seen that there is at most
O(k|ω|) such instances. Therefore, Algorithm 7 is a fixed parameterized tractable
approximation algorithm with the same approximation ratio as Algorithm 6.

4 Discussions

In the future, what we are most interested in is how to extend our algorithms
to solve other clustering problems considering diversity bounds from both sides.
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17. Xu, Y., Möhring, R.H., Xu, D., Zhang, Y., Zou, Y.: A constant FPT approximation
algorithm for hard-capacitated k-means. Optim. Eng. 21(3), 709–722 (2020)



Author Index

Amano, Yuki 237

Bai, Mingfei 359
Bai, Tian 249
Bazhenov, Nikolay 79
Benoist, Emile 189

Chang, Hong 272
Chau, Vincent 21
Chen, Rong 128

Dai, Sijia 322
Du, Donglei 140
Du, Liman 116

Feng, Junkai 32
Fertin, Guillaume 189
Fu, Chenchen 21

Gao, Guichen 322
Gao, Suixiang 116
Gasarch, William 155
Ge, Steven 55
Gorain, Barun 346
Guo, Tiande 218
Guo, Xinru 322

Han, Congying 218
Han, Lu 402
Hu, Jia 218
Hu, Shan 305
Huang, Xiaohui 93

Itoh, Toshiya 43, 55

Jean, Géraldine 189
Jena, Sangram K. 103
Jiang, Yanjun 11
Jin, Jing 140

Kalisz, Vít 176
Klavík, Pavel 176

Lafourcade, Pascal 201
Lamprou, Ioannis 281

Laskowski, Michael 155
Li, Min 1
Li, Ping 272
Li, Weidong 262
Liu, Pengcheng 93
Liu, Shuilian 402
Liu, Xiaofei 262
Liu, Yuezhu 1
Liu, Zhicheng 140, 272
Lyu, Yan 21

Makino, Kazuhisa 237
Miao, Cuixia 370
Miyahara, Daiki 201
Mizuki, Takaaki 201
Mondal, Kaushik 346
Mustafa, Manat 79

Nandakumar, Satyadev 334
Nurakunov, Anvar 79

Pandit, Supantha 346
Pulari, Subin 334

Ran, Yingli 93
Robert, Léo 201
Ruangwises, Suthee 43

S, Akhil 334
Sheng, Zimo 305
Sigalas, Ioannis 281
Subramani, K. 103, 293
Sun, Yunjing 1

Tan, Xuehou 128

Vaxevanakis, Ioannis 281
Vishnoi, Prateek 382

Wang, Longchun 370
Wang, Qiyue 359
Wang, Yijing 11, 393
Wang, Yiwei 359
Wojciechowski, Piotr 293
Wu, Weiwei 21



416 Author Index

Xiao, Mingyu 249
Xu, Chunming 359
Xu, Yicheng 402

Yan, Binghao 67
Yang, Ruiqi 11, 32
Yang, Wenguo 116
Ye, Weina 11

Zeman, Peter 176
Zhang, Dongmei 393
Zhang, Peng 67

Zhang, Xiaoyan 140, 272
Zhang, Yapu 32, 393
Zhang, Yizheng 21
Zhang, Yong 322, 402
Zhang, Zhao 93
Zhang, Zhenning 32, 393
Zhao, Xueyang 67
Zhao, Yuhan 370
Zhou, Yi 305
Zhu, Shaopeng 155
Zissimopoulos, Vassilis 281
Zou, Juan 370


	 Preface
	 Organization
	 Contents
	Maximization of k-Submodular Function with a Matroid Constraint
	1 Introduction
	2 Preliminaries
	3 Main Results for nMkSM
	3.1 A Deterministic Algorithm for nMkSM
	3.2 A Random Algorithm for nMkSM

	References

	Maximizing Approximately Non-k-Submodular Monotone Set Function with Matroid Constraint
	1 Introduction
	2 Preliminaries
	3 Greedy Algorithm and Analysis
	3.1 Greedy Algorithm

	4 Discussion
	References

	Time-of-Use Scheduling Problem with Equal-Length Jobs
	1 Introduction
	1.1 Related Works
	1.2 Problem Definition
	1.3 Our Contribution

	2 Preliminaries
	3 General Instance
	4 Agreeable Deadlines Jobs
	5 Conclusion
	References

	Online Weakly DR-Submodular Optimization with Stochastic Long-Term Constraints*-12pt
	1 Introduction
	2 Preliminaries
	3 Problem Statement
	4 Algorithm and Performance Analysis
	5 Conclusion
	References

	Physical ZKP for Makaro Using a Standard Deck of Cards
	1 Introduction
	1.1 Zero-Knowledge Proof
	1.2 Related Work
	1.3 Our Contribution

	2 Preliminaries
	2.1 Pile-Shifting Shuffle
	2.2 Pile-Scramble Shuffle

	3 Main Protocol
	3.1 Cell Cards
	3.2 Verifying Room Condition
	3.3 Encoding Sequences
	3.4 Conversion from Cell Cards to Encoding Sequences
	3.5 Verifying Neighbor Condition
	3.6 Verifying Arrow Condition
	3.7 Complexity

	4 Proof of Correctness and Security
	5 Future Work
	References

	Characterization of the Imbalance Problem on Complete Bipartite Graphs
	1 Introduction
	2 Preliminaries
	3 Imbalance on Complete Bipartite Graphs
	4 Imbalance on Chained Complete Bipartite Graphs
	4.1 Proof of the Upper Bound
	4.2 Proof of the Lower Bound

	References

	New Algorithms for a Simple Measure of Network Partitioning
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 The Greedy Cut Algorithm
	2.1 The Algorithm
	2.2 Analysis

	3 Experiments
	4 Conclusions
	References

	On Two Types of Concept Lattices in the Theory of Numberings
	1 Introduction
	2 Preliminaries
	3 The First Approach: Capturing the Cardinality of a Family
	3.1 Proof of Theorem 3.1
	3.2 Classification via Index Sets

	4 The Second Approach: Realizing All Countable Complete Lattices
	4.1 Uncountable Lattices

	5 Further Discussion
	A  Proof of Theorem 3.3
	B  Proof of Theorem4.1
	References

	Computing Connected-k-Subgraph Cover with Connectivity Requirement
	1 Introduction
	1.1 Related Works
	1.2 Contribution

	2 Algorithm for MinCkSCcon in Terms of Treewidth
	2.1 Basic Notations
	2.2 MinCkSCcon on Bounded Treewidth Graphs

	3 Sub-exponential FPT Algorithm for MinCkSCcon on H-minor-free Graphs
	4 Conclusion
	References

	Analyzing the 3-path Vertex Cover Problem in Planar Bipartite Graphs
	1 Introduction
	2 Related Work
	3 Computational Complexity
	4 Approximation Algorithm
	5 Approximation Complexity
	6 Conclusion
	References

	Competition-Based Generalized Self-profit Maximization in Dual-Attribute Networks
	1 Introduction
	2 Problem Formulation
	2.1 Dual-Attribute Compete Model and Diffusion Dynamics
	2.2 Problem Statements

	3 The Algorithm
	3.1 Model Influence Probability
	3.2 Find Candidate Solutions
	3.3 Sandwich Approximation

	4 Experiment
	5 Conclusion
	References

	Largest Convex Hulls for Constant Size, Convex-Hull Disjoint Clusters
	1 Introduction
	1.1 Our Results

	2 Algorithms for a Set of Disjoint Clusters of Size Two
	2.1 An Overview
	2.2 Optimum Solution of an Atomic Problem
	2.3 Solving MPCH(U, s, t) for Point Clusters in Convex Position
	2.4 Solving MPCH(U, s, t) for Arbitrarily Given Points

	3 Extension
	References

	Two-Stage Submodular Maximization Under Knapsack and Matroid Constraints
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Two-Stage Submodular Maximization Subject to Knapsack and K-Matroid Constraints
	4.1 The Algorithm
	4.2 The Analysis

	5 Two-Stage Submodular Maximization Subject to Knapsack and k-exchange System Constraints
	5.1 The Algorithm
	5.2 The Analysis

	6 Conclusion
	A Appendix
	References

	(Z,succ,U), (Z,E,U), and Their CSP's
	1 Introduction
	2 Preliminaries
	3 A Sufficient Condition for Efficiency of CSP(Z,succ,U)
	4 Bounds and Characterization of CSP(Z,succ,U)
	4.1 ``Lower Bounding'' CSP(Z,succ,U)
	4.2 Karp-Equivalent Characterizations of CSP(Z,succ,U)

	5 From (Z,succ,U) to (Z,E,U)
	6 Future Directions
	A Proof Details of Interesting Claims
	A.1 Details of Section3, Proposition 1 and Corollary 1
	A.2 Details of Section3, Theorem 1 and Corollary 2
	A.3 Details of Section4, Proposition 2 and Corollary 3
	A.4 Details of Section4, Theorem 2
	A.5 Details of Section5, Fact 3 and Proposition 4

	B Diagrams Summarizing Main Results
	B.1 For Section4
	B.2 For Section5

	C Detailed Verification of Miscellaneous Claims
	C.1 Full Details of Section3, Observation 1
	C.2 Section3 Equation1 Gives the L.U.B. in Karp-Order
	C.3 More Discussion on Diffd
	C.4 Figure4 Disproves Converse of Proposition3([struct1]1)
	C.5 Definition of Connectedness in General Case (Re. Comments at Beginning of Section5)
	C.6 Verification of Corollary 4
	C.7 Remark on Further Generalizing Sect.5
	C.8 More Discussion on Future Directions

	References

	Circle Graph Isomorphism in Almost Linear Time
	1 Introduction
	2 Minimal Split Decomposition and Split Trees
	3 Canonization of Graph-Labeled Trees
	4 Canonization of Prime and Degenerate Circle Graphs
	5 Proof of Theorem 1
	References

	The Exact Subset MultiCover Problem
	1 Introduction
	2 The Exact Subset MultiCover Problem
	3 The Exclusive Exact Subset MultiCover Problem
	4 The Max-EESM Problem
	5 Conclusion
	References

	Hide a Liar: Card-Based ZKP Protocol for Usowan
	1 Introduction
	2 Preliminaries
	2.1 Pile-shifting Shuffle ch17ShinagawaIEICE2017,ch17NishimuraIEICE18
	2.2 Mizuki–Sone Copy Protocol ch17MizukiFAW09
	2.3 Input-preserving Five-Card Trick ch17MiyaharaFUN2020
	2.4 How to Form a White Polyomino ch17RobertNGCO2022
	2.5 Sum in Zch17RuangwisesTCS2021

	3 ZKP Protocol for Usowan
	3.1 Setup Phase
	3.2 Connectivity Phase
	3.3 Verification Phases

	4 Conclusion
	A  Mizuki–Sone Copy Protocol ch17MizukiFAW09
	B  Input-preserving Five-Card Trick ch17MiyaharaFUN2020
	C  How to Form a White Polyomino
	C.1  Chosen Pile Protocol ch17DumasCOCOON2019
	C.2  Sub-protocol: 4-Neighbour Protocol ch17RobertNGCO2022
	C.3  Full Protocol

	D  Security Proofs
	References

	Complexity Analysis of a Stochastic Variant of Generalized Alternating Direction Method of Multipliers
	1 Introduction
	2 Stochastic Linearized Generalized ADMM
	3 Complexity Analysis of SLG-ADMM
	3.1 A Worst-Case O(1/k) Convergence Rate
	3.2 A Worst-Case O(lnk/k) Convergence Rate Under Strong Convexity

	4 Conclusion
	References

	A 3/4 Differential Approximation Algorithm for Traveling Salesman Problem
	1 Introduction
	2 Definitions and Basic Properties
	3 Approximation for Even Instances
	4 Approximation for Odd Instances
	References

	Exact and Parameterized Algorithms for Restricted Subset Feedback Vertex Set in Chordal Graphs
	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 Chordal Graphs and Split Graphs
	2.3 Subset Feedback Vertex Set in Chordal Graphs
	2.4 A Technique for Algorithm Design

	3 Reductions Between R-SFVS in Chordal Graphs and Vertex Cover
	4 A Fast Exact Algorithm for R-SFVS in Chordal Graphs
	4.1 Max Independent Set Based on Edge Clique Cover
	4.2 Some Reduction Rules
	4.3 A Special Case
	4.4 Subset Feedback Vertex Set in Chordal Graphs

	5 Conclusion
	References

	An Approximation Algorithm for the B-prize-collecting Multicut Problem in Trees
	1 Introduction
	2 Preliminaries
	3 The Increasing Penalty Algorithm
	4 Conclusions and Future Work
	References

	Two-Stage Non-submodular Maximization
	1 Introduction
	2 Preliminaries
	3 Problem (2.1) Under a Matroid Constraint
	3.1 Algorithm
	3.2 Theoretical Analysis

	4 Conclusion
	References

	Fault-Tolerant Total Domination via Submodular Function Approximation
	1 Introduction
	2 Preliminaries
	3 General Greedy Submodular Approximation
	4 Fault-Tolerant Total Domination
	4.1 Total Domination
	4.2 Fault-Tolerant Total Domination

	5 Conclusions
	References

	On the Parallel Complexity of Constrained Read-Once Refutations in UTVPI Constraint Systems
	1 Introduction
	2 Statement of Problems
	2.1 The Constraint-Required Read-Once Refutation (CROR) Problem
	2.2 The Minimum Weight Perfect Matching (MWPM) Problem
	2.3 Complexity Classes

	3 Motivation and Related Work
	4 The CROR Problem in UTVPI Constraints
	5 Conclusion
	References

	Extracting Densest Sub-hypergraph with Convex Edge-Weight Functions
	1 Introduction
	2 Properties of Edge-Weight Functions
	3 GDSH with Convex Edge-Weight Functions
	3.1 A Linear Program Approach
	3.2 A Network Flow Algorithm
	3.3 A Fast 1r-approximation Algorithm

	4 Non-convex Edge-Weight Functions
	5 Conclusion
	A Missing Proof of Lemma 1
	B Detailed Proof of Theorem 1
	C Missing Proof of Lemma 3
	D Missing Proof to Theorem 3
	E Missing Proof of Theorem 5
	F Missing Proof of Theorem 7
	G The Network Flow Algorithm, GDSH-Flow-
	H The Approximate Parallel Algorithm, GDSH-Para
	References

	Exact and Approximation Algorithms for PMMS Under Identical Constraints
	1 Introduction
	2 Preliminaries
	3 The PMMS Allocation for Identical Variant
	4 A 45-PMMS Allocation for Identical Ranking
	5 Concluding Remarks
	References

	Finite-State Relative Dimension, Dimensions of AP Subsequences and a Finite-State van Lambalgen's Theorem
	1 Introduction
	2 Preliminaries
	3 Finite-State Relative Dimension
	4 Relative Block Entropy Rates and Finite-State Relative Dimension
	4.1 Relative Block Entropy Rates
	4.2 Upper Bounding Dimension Using Entropy
	4.3 Upper Bounding Entropy Using Dimension
	4.4 Multiple Oracles

	5 Finite-State Relative Dimensions of AP Subsequences
	6 A Stronger Wall's Theorem on AP Subsequences with a Perfect Converse
	7 van Lambalgen's Theorem for Finite-State Dimension
	8 Relation to Finite-State Independence
	References

	Distributed Connected Dominating Sets in Unit Square and Disk Graphs
	1 Introduction
	1.1 Previous Work
	1.2 Our Contributions

	2 Unit Square Graphs
	2.1 The Algorithm

	3 Unit Disk Graphs
	3.1 High Level Idea
	3.2 The Algorithm
	3.3 Analysis

	4 Conclusion
	References

	An Inventory System Optimization for Solving Joint Pricing and Ordering Problem with Trapezoidal Demand and Partial Backlogged Shortages in a Limited Sales Period
	1 Introduction
	2 Model Description
	3 Model and Model Analysis
	3.1 Case with D1
	3.2 The Other Two Cases

	4 Algorithm
	5 Numerical Examples
	5.1 Example 1
	5.2 Example 2
	5.3 Example 3

	6 Conclusion
	References

	A Set-Theoretic Representation of Algebraic L-domains
	1 Introduction
	2 Preliminary
	3 Representation Theorem of L-domains
	4 Further Representations
	4.1 Logical Algebras
	4.2 Information Systems
	4.3 Closure Spaces
	4.4 Formal Concept Analysis

	References

	Normality, Randomness and Kolmogorov Complexity of Continued Fractions
	1 Introduction
	2 Preliminaries
	3 Definitions
	4 Useful Lemmas
	5 Martin-Löf Randomness and Normality
	6 Kolmogorov Inequality
	7 A Notion of Kolmogorov Complexity for Continued Fractions
	References

	Weakly k-submodular Maximization Under Matroid Constraint
	1 Introduction
	2 Preliminaries
	3 Maximizing a Weakly k-submodular Function with Matroid Constraint
	4 Maximizing a Weakly k-submodular Function with Cardinality Constraint
	5 Conclusions
	References

	Approximation Algorithms for Diversity-Bounded Center Problems
	1 Introduction
	2 The Diversity-Bounded Red-Blue Center Problem
	2.1 Problem Description of the DB-RB-Center Problem
	2.2 Algorithm for the RB-Center Problem
	2.3 Algorithm for the DB-RB-Center Problem

	3 The Diversity-Bounded Multi-colored Center Problem
	3.1 Problem Description of the DB-MC-Center Problem
	3.2 Algorithm for the MC-Center Problem
	3.3 Algorithm for the DB-MC-Center Problem

	4 Discussions
	References

	Author Index

