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Abstract. Spectral clustering is one of the most relevant unsupervised
learning methods capable of classifying data without any a priori infor-
mation. At the heart of this method is the computation of the dominant
eigenvectors of an affinity matrix in order to work on a low-dimensional
data space in which the clustering is made. We propose in this paper a
study of the integration of the FEAST library to compute these eigenvec-
tors in our parallel spectral clustering method by domain decomposition.
We also show that this library allows to add a second level of parallelism
in addition to the domain decomposition level.
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1 Introduction

Many fields from Social Science to Medicine and Biology generate a large amount
of data to analyze. With the emergence of new technologies, expertise is not
always available and data annotation can not be provided. As such unsupervised
method are privileged [14]. In particular, spectral clustering is one of the most
relevant unsupervised learning methods capable of classifying data without any
a priori information on shape or locality [12]. This method consists in selecting
the dominant eigenvectors of a matrix called affinity matrix, in order to define
a low-dimensional data space in which the data are easily clustered. The most
computationally demanding step in this algorithm remains the extraction of
the dominant space from the full dense Gaussian affinity matrix. Some parallel
approaches can be considered to treat large amount of data. For example, the
strategies can be based on either low rank approximations of large matrices, such
as Nyström methods [3,13] or subdomain decomposition [5].

In this paper, we investigate the eigensolver library called FEAST that pro-
poses a new transformative numerical approach [9]. To take full advantage of this
library, we consider a sparsification of the affinity matrix that allows a second
level of parallelism on each subdomain.

The paper is organized as follows. In Sect. 2 we summarize the spectral clus-
tering. Then we present in Sect. 3, the FEAST library, a solver for the gen-
eralized eigenvalue problem in order to perform this search of the dominant
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eigenvectors. In Sect. 4, we include FEAST in spectral clustering by consid-
ering both full and sparsified gaussian affinity matrix. In Sect. 5, we present
how we incorporate FEAST routines in our parallel spectral clustering method.
As a proof of concept, we show in Sect. 6, through some experiments, the
good behavior of this approach by comparison with a classical approach using
LAPACK/SCALAPACK libraries. Finally, we conclude in Sect. 7.

2 Spectral Clustering

Algorithm 1 presents the different steps of spectral clustering by assuming that
the number k of targeted clusters is known. First, the spectral clustering consists
in building the affinity matrix based on the Gaussian affinity measure between
points of the data set S. After a normalization step, the k eigenvectors associated
to the k largest eigenvalues are extracted (step 3 ). So every data point xi is
plotted in a spectral embedding space of Rk and the clustering is made in this
space by applying K-means method. Finally, thanks to an equivalence relation,
the final partition of data set is defined from the clustering in the embedded
space.

Algorithm 1: Spectral Clustering Algorithm

Input : data set S = {xi}i=1..n ∈ R
p, number of clusters k, affinity parameter

σ

1 Form the affinity matrix A ∈ R
n×n defined by:

Aij =

⎧
⎨

⎩

exp

(

−‖xi−xj‖2

σ2

)

if i �= j,

0 otherwise,
(1)

2 Construct the normalized matrix: L = D−1/2AD−1/2 with Di,i =
∑n

j=1 Aij ;
3 Assemble the matrix X = [X1X2..Xk] ∈ R

n×k by stacking the eigenvectors
associated with the k largest eigenvalues of L ;

4 Form the matrix Y by normalizing each row in the n × k matrix X ;
5 Treat each row of Y as a point in R

k, and group them in k clusters via the
K-means method ;

6 Assign the original point xi to cluster j when row i of matrix Y belongs to
cluster j

There are several ways to compute, at step 3, the eigenvectors associated
with the k largest eigenvalues of L. In previous works [5], we used DSYEV routine
of the LAPACK library [1]. More recently, we replaced the LAPACK routines
with an implementation of the Subspace Iteration method [7].

We want to verify the opportunity to use the FEAST library to perform this
step. We present in the next section the basic principles of this library.
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3 FEAST Library

Introduced by Polizzi [9], FEAST is a solver for the generalized eigenvalue
problem Ax = λBx where A and B are two square matrices of size n [10].

FEAST belongs to the family of iterative solvers based on the integration
over a contour of the density matrix, which is a representation used in quantum
mechanics. The FEAST algorithm decribed in Algorithm 2 requires as input:

– an interval Iλ = [λmin, λmax] for the search for eigenvalues
– and M , the number of eigenvalues in this interval.

By supplying Iλ and M to FEAST, it first calculates the integral

U =
1
2πi

∮

C
(zB − A)−1BY dz

where Y ∈ C
n×M is made up of M random vectors and C is a curve in the

complex plane enclosing the interval Iλ.
The calculation of this integral is carried out by using a numerical integration

scheme (Gaussian quadrature for example), i.e. by using the approximation

U ≈ 1
2πi

m∑
i=1

wk(zkB − A)−1BY

where {zk}k=1..m are points of the curve C. For each integration node zk, a linear
system (zkB−A)Uk = BY of size n and with M right-hand sides must be solved.

The result of the integration is used in the Rayleigh-Ritz method, which
results in a dense and small eigenvalue problem, whose size is of the order of the
number of eigenvalues in the search interval M .
Algorithm 2: FEAST algorithm for solving the generalized eigenvalue
problem Ax = λBx

Input : Iλ = [λmin, λmax] : the search interval
M : the number of eigenvalues in the search interval

Output: M0 ≤ M eigenpairs

1 Compute U = 1
2πi

∮
C
(zB − A)−1BY dz where Y ∈ C

n×M consists of M

random vectors and C is a curve in the complex plane encompassing the
interval Iλ ;

2 Compute Rayleigh quotients: AU = UHAU and BU = UHBU ;
3 Solve the generalized eigenvalue problem of size M : AUW = BUWΛ ;
4 Compute the approximate Ritz pairs: Λ,X = U.W ;
5 If convergence is not achieved, go back to the first step with Y = X
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Regarding parallelism, the FEAST library can exploit three levels:

• L1: Search intervals can be processed separately without overlap;
• L2: The linear systems associated with the quadrature nodes in the complex

contour can be solved independently;
• L3: Each linear system with several second members can be solved in parallel.

4 Spectral Clustering with FEAST

In this section, FEAST is included in spectral clustering by considering both full
and sparsified gaussian affinity matrix.

4.1 A First Approach Considering the Dense Affinity Matrix

In the framework of spectral classification, we look for the k largest eigenvalues
of the normalized affinity matrix L (step 3 of Algorithm 1).

L is a real, dense and symmetric matrix. So according to the FEAST manual,
the routine to use in this case is dfeast_syev. We also need to provide the search
interval Iλ = [λmin, λmax] and M the number of eigenvalues in this interval.

As L is a stochastic matrix, we have λmax = 1. In order to determine λmin

and M , one can use a stochastic estimation of the eigenvalues inside the search
contour by setting the flag fpm(14) = 2 according to Algorithm 3:

Algorithm 3: Method to compute λmin and M

1 λmax = 1;
2 λmin = value close to 1;
3 loop
4 Stochastic estimation of M on [λmin, λmax] (by making a first call to

the routine dfeast_syev with the option flag fpm(14)=2);
5 if M < k then
6 λmin = λmin - step;
7 else
8 exit;
9 end

10 end

After having determined λmin and M , we make a second call to
dfeast_syev, to compute the eigenpairs.

To test this approach on some clustering benchmark [11], we select 4 data
sets available in our toolbox and we choose to solve the problem with only 1 sub-
domain in order focus on the eigenvalue problem. Two data sets are respectively
plotted in Fig. 1(a) and Fig. 3(a).

The benchmark results obtained using L2-level parallelism with 4 processors
are summarized in Table 1.



Parallel Spectral Clustering with FEAST Library 131

(a) sphere2a data set (b) Chequerboard  5x3 data
set

Fig. 1. Examples of clustering benchmark

Table 1. FEAST execution time obtained on dense matrices with 4 processors

Data set Size (n) Dimension (p) Number of clusters (k) Time (t)

Toy 640 2 2 0.39 s
Target 650 2 4 0.75 s
Sphere2 1905 3 2 8.19 s
Sphere2a 3560 3 2 55.31 s

From these first tests, we can remark that estimating M and λmin takes a
long time and it is difficult to choose a good step. Moreover, The performance
in terms of execution time is not satisfactory for processing large data. Fur-
ther investigations should be led to identify the most computational steps in
this FEAST implementation on spectral clustering. But considering a full dense
affinity matrix may strongly impact the execution time. So, in the following, we
consider the sparsification of the Gaussian affinity matrix.

4.2 A Second Approach with the Sparsification of the Affinity
Matrix

Spectral classification is an expensive algorithm, especially for large data, as it
requires computing eigenpairs of a dense matrix of size n × n. To overcome this
limitation and memory consumption, sparsification with a threshold can be used.

Indeed, the affinity matrix can be interpreted as a weighted adjacency graph.
Thus, the thresholding will control the width of the neighbourhood, and will
therefore cancel the edges that connect data points that are very far from each
other as shown in Fig. 2. Thus, this reinforces the affinity between points in the
same cluster and the separability between clusters [6].
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(a) Without thresholding (b) With thresholding

Fig. 2. Thresholding of the weighted adjacency graph

The sparsification of the matrix L is obtained by a threshold proportional to
the Gaussian affinity parameter σ (see Algorithm 1):

threshold = α × σ.

The σ value (and so the threshold) can be heuristically defined to build
an automatic sparsified matrix. To do so, we start by considering an uniform
distribution of n points in this enclosing p-th dimensional box. This uniform
distribution is reached when dividing the box in n smaller boxes all of the same
size, each with a volume of order Dp

max/n where Dmax is the maximum of the
distance between two data point xi and xj , ∀i, j ∈ {1, .., n}. The corresponding
edge size is defined by Dmax/n

1
p . The thresholding will be function of this factor

which represents a reference distance for any kind of distribution of data S [8].

For sparse matrices, FEAST offers interfaces to obtain the eigenvectors asso-
ciated with the largest k eigenvalues without specifying [λmin, λmax].

(a) Clustering result (b) Sparse affinity matrix (α = 7)

Fig. 3. Spectral Clustering with sparsification on the Target data set (n = 650 and
k = 4)



Parallel Spectral Clustering with FEAST Library 133

Table 2. FEAST execution time obtained on sparse matrices with 4 processors

Data set Size (n) Dimension (p) Number of clusters (k) α Time (t)

Target 650 2 4 7 0.5 s
Sphere2 1905 3 2 3 0.2 s
Sphere2a 3560 3 2 3 0.5 s
Cross 5120 2 5 3 10.6 s
Chequerboard2 5000 2 25 3 11.3 s

The results given in Table 2 are obtained using L2-level parallelism with 4
processors. Compared to the first approach (see Table 1), we save a lot of memory
and execution time while having a correct classification. So this approach that
considers sparse version of the affinity matrix, provides promising results and
should be preferred.

5 Strategies of Parallelization

To parallelize the spectral clustering, we first use a domain decomposition strat-
egy and recently implemented a new strategy to exploit more parallelism.

5.1 Domain Decomposition Principle

Our first strategy is based on domain decomposition with overlaps. Lets consider
a data set S = {xi}i=1..n ∈ R

p. This data set is included in a domain. We divide
the domain in q sub-domains, thus defining q sub-sets that can have a different
amount of data. By assigning a sub-domain to a processor, it applies indepen-
dently the clustering algorithm on the corresponding sub-set and provides a local
partition.

This grouping step is dedicated to link the local partitions from the sub-
domains thanks to the overlap and the following transitive relation:

∀xi1 , xi2 , xi3 ∈ S,

if xi1 , xi2 ∈ C1 and xi2 , xi3 ∈ C2

then C1 ∪ C2 = P and xi1 , xi2 , xi3 ∈ P (2)

where C1 and C2 are two distinct clusters and P is a larger cluster which includes
both C1 and C2. By applying this transitive relation (2) on the overlap, the con-
nection between sub-sets of data is established and provides a global partition.

We can implement this algorithm using a Master-Slave paradigm as summa-
rized in Algorithms 4 and 5.
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Algorithm 4: Parallel Algorithm: Master
1: Pre-processing step

1.1 read the global data and the parameters
1.2 compute the uniform distance δ
1.3 compute the overlapping bandwidth α
1.4 split the data into q sub-sets

2: Send δ and the data sub-sets to the slaves
3: Perform the Clustering Algorithm on its sub-set
4: Receive the local partitions and the number of clusters from each slave
5: Grouping Step

5.1 Gather the local partitions in a global partition with the transitive
relation (2)
5.2 Output a partition of the whole data set S and the final number
of clusters k

Algorithm 5: Parallel Algorithm: Slave
1: Receive δ and its data sub-set from the Master
2: Perform the Clustering Algorithm on its sub-set
3: Send its local partition and its number of clusters to the Master

5.2 A Second Level of Parallelism

The decomposition of the domain in different sub-domains with overlaps consists
of a first level of parallelism.

We can also consider that each clustering problem on each sub-domain can be
solved using a parallel method. This allows us to use a large number of processors
without splitting the domain into many sub-domains, which can be penalizing
in some situations.

We have the possibility to use this second level of parallelism with the spectral
clustering method. We can use SCALAPACK [2] and its routine PDSYEV in order
to compute all the eigenvectors of the matrix L.

We have a group of leading processors that will handle the first level of
parallelism. Then, for each sub-domain, there is a pool of processors, includ-
ing the leading processor of the sub-domain, that perform the computation via
SCALAPACK.

This organization is illustrated in the Fig. 4 for 4 sub-domains. M1,M2,M3

and M4 are the leading processors.
Or we also can exploit the different levels of parallelism in FEAST. On

each sub-domain, we call FEAST using L2-level parallelism with the dedi-
cated pool of processors. We present in the next section the comparison between
LAPACK/SCALAPACK and FEAST.
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Fig. 4. Two-level Parallelism

6 Numerical Results: Proof of Concept

As proof of concept, we first performed some calculations with small data sets
to compare FEAST to LAPACK/SCALAPACK. Then we give first results
on larger data sets.

6.1 Clustering Benchmark

In the following, n is the size of the data, p is the dimension of the problem (2D
or 3D), and nb_sd is the number of sub-domains. The Table 3 summarizes the
time to solve the eigenvalue problem and the total time.

The number of processors in a pool is 1 or 2. With 1 processor, we use
LAPACK or FEAST with no parallelization to solve a problem on a sub-
domain. With 2 processors, we use SCALAPACK and FEAST with L2-level
parallelism.

The following measure was used to quantify the performance of FEAST:

efficiency % =
time with 1 processor

2 × time with 2 processors
× 100

We see that for all these problems, the results with FEAST using one proces-
sor per subdomain or two (i.e. not using, or using the second level of parallelism)
are better than those with LAPACK and SCALAPACK. The times for the two
problems of size n close to 10000 (time for the resolution of the problem and the
total time) are better by a factor 10. We also note, that even for small problems,
we benefit from the second level of parallelism, which is not the case with the
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Table 3. Results on clustering benchmark

3spheres (n = 4361, p = 3 and nb_sd = 8)
Solver LAPACK SCALAPACK FEAST

Size of the pool 1 2 1 2 Efficiency %
Eigenvalue problem time 3.16 s 3.90 s 1.00 s 0.81 s 61.72%
Total time 3.35 s 4.10 s 1.11 s 0.91 s 60.98%

3spheresa (n = 9700, p = 3 et nb_sd = 8)
Solver LAPACK SCALAPACK FEAST

Size of the pool 1 2 1 2 Efficiency %
Eigenvalue problem time 34.68 s 46.45 s 3.42 s 3.10 s 55.16%
Total time 35.68 s 47.44 s 4.71 s 4.39 s 53.64%

sphere2b (n = 10717, p = 3 et nb_sd = 8)
Solver LAPACK SCALAPACK FEAST

Size of the pool 1 2 1 2 Efficiency %
Eigenvalue problem time 37.5 s 50.30 s 3.23 s 2.72 s 59.37%
Total time 38.52 s 51.27 s 3.55 s 3.05 s 58.19%

LAPACK/SCALAPACK implementation. We show in previous works that for
the latter approach, it is only interesting to use SCALAPACK for much larger
problems. The efficiency are between 50% and 60% which is promising for small
problems.

6.2 Tests on Larger Data Sets

In order to test the different approaches with larger problems and in particular to
observe how the speed-up behaves, we consider the Chequerboard_5 × 3 data
sets plotted in Fig. 1(b). We can change the density of the points of each dark
square, in order to increase the number of points of the problem and form, for
this experiment, five data sets with {10, 143; 42, 527; 94, 208; 197, 568; 258, 458}
points. We divide our domain into 16 sub-domains.

Table 4. Total execution time with LAPACK/SCALAPACK and FEAST on Che-
querboard_5 × 3_XX data sets

Solver Nb of points Nb of points / subdomain FEAST

Data set Pool’s size
- - 1 2 Efficiency %

Chequerboard_5x3_21 10,143 833 0.59 s 0.55 s 53.63%
Chequerboard_5x3_42 42,527 3,354 6.19 s 4.97 s 62.27%
Chequerboard_5x3_63 94,208 7,360 37.39 s 25.17 s 74.27%
Chequerboard_5x3_84 197,568 14,705 178.97 s 124.42 s 71.92%
Chequerboard_5x3_105 258,428 24,556 451.22 s 330.20 s 68.32%
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With the three biggest problems, the speed-up is close to 70% which confirms
the interest of using the second level of parallelism.

We have not indicated in this table the time of the LAPACK/SCALAPACK
versions but they are always much slower than FEAST. For example, for the
problem of size 258, 428, it takes more than two hours to get the result.

7 Conclusion

In this paper, we have shown that the use of FEAST to compute the eigenvectors
in the spectral clustering method is advantageous compared to its implementa-
tion with the eigenpair computation routines of LAPACK.

This advantage remains when we consider the parallel spectral clustering with
domain decomposition and allows a second level of parallelism by activating the
L2-level parallelism of FEAST.

This L2-level parallelism of FEAST, when we are able to sparsify the affinity
matrix, allows, with consequent problem sizes, to obtain speed-ups close to 70%
compared to FEAST with no parallelism.

In the future, we plan to validate our approach on real data (images, social
science, medicine and biology data) on supercomputers. Also, because we sparsify
the affinity matrix, it would be interesting to compare FEAST with the routines
of the ARPACK library [4] which are designed to handle sparse matrices.
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