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Abstract. Smart sensor systems are a key factor to ensure sustainable
compute by enabling machine learning algorithms to be executed at the
data source. This is particularly helpful when working with moving parts
or in remote areas, where no tethered deployment is possible. However,
including computations directly at the measurement device places an
increased load on the power budget. Therefore, we introduce the Hier-
archical Machine Learning framework “HiMLEdge” which enables highly
specialized models that are tuned using an energy-aware multi-criteria
optimization. We evaluate our framework with prognostic health man-
agement in a three-part feasibility study: First, we apply an exhaus-
tive search to find hierarchical taxonomies, which we benchmark against
hand-tuned flat classifiers. This test shows a decrease in power consump-
tion of up to 47.63% for the hierarchical approach. Second, the search
strategy is improved with Reinforcement Learning. As a novel contribu-
tion, we include real measurements in the reward function, instead of
using a surrogate metric. This inclusion leads to a different optimal pol-
icy in comparison to the literature, which shows the error that may be
introduced by an approximation. Third, we conduct tests on the system
level, including communication and system-off power draw. In this sce-
nario, the optimized hierarchical model can perform four times as many
readings per hour as a flat classifier while achieving the same five years
of battery life with similar accuracy. In turn, this also means that the
battery life can be increased by the same amount if the readings per hour
are kept constant.

Keywords: Edge AI · Energy efficiency · Hierarchical machine
learning

1 Introduction

The advancement of artificial intelligence (AI) might be one of the biggest impact
factors when it comes to achieving the United Nations’ Sustainable Development
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Goals (SDGs) [17]. Monitoring and managing natural disasters or explainable
AI for health care [5], there are many possible applications for machine learning
(ML) or AI to accelerate progress on the SDGs.
Previously, the dominant data processing method followed a centralized archi-
tecture, in which sensor data is transferred to cloud resources and processed
remotely. However, this approach has the downside of a high energy consump-
tion overhead due to the excessive communication of unfiltered sensor data. Par-
ticularly, considering that many applications include an event or anomaly detec-
tion, there is a waste of energy due to avoidable data transmissions. In recent
years, the widespread adoption of machine learning in edge computing under
the term “tinyML” enabled intelligent applications on resource-constrained IoT
devices. Thereby, the on-device execution of machine learning models is becom-
ing a considerable alternative to the centralized approach of data processing [12].
Nonetheless, a key requirement of such wireless systems is energy efficiency, a
mandatory factor to ensure long-lasting battery life of months or even years
for tiny embedded sensor systems. Achieving this goal is a challenge demanding
highly efficient ML-Models, which are optimized with respect to energy consump-
tion and accuracy. In current studies, hierarchical machine learning (HIML) has
been explored as method to save energy. In its simplest form, it is already present
in everyday devices like, e.g., keyword spotting based natural language process-
ing pipeline. However, scaling this idea to multiple hierarchy levels and applying
it to arbitrary problems is challenging.

Hence, we introduce our framework HiMLEdge that makes use of automati-
cally optimized HiML models, which represent the decision task as a classification
hierarchy. This allows for lazily triggered computations that only consume the
energy needed. We see this technology as an enabling factor for many appli-
cations that are currently not practically solvable. Especially in remote areas
with no connection to direct power (e.g., undeveloped areas, rain forests, or the
sea), on device computing can be very beneficial [13]. Increasing the battery life
or duty cycle of such system is therefore the ultimate goal and enables more
TinyML devices to achieve progress on the SDGs.

1.1 Synopsis

This paper discusses the impact of HiML for energy efficient inference with the
help of the newly introduced framework HiMLEdge. To do so, Sect. 2 introduces
the works related to the topic. Next, Sect. 3 describes the structure, background,
and general functionalities of HiMLEdge, which we test in a feasibility study in
Sect. 4. We structure the study in four steps. First, we describe the measurement
setup. Second, we conduct an initial experiment on optimization with an exhaus-
tive search strategy, which we improve with reinforcement learning as a third
step. Fourth, we take a system-wide view of energy consumption with HiML,
including communication and leakage power. Finally, we conclude our findings
and discuss possible future directions in Sect. 5.
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Fig. 1. Description of hierarchical taxonomies in a general example and applied to
the CWRU dataset. For the applied case the labels no fault (K0), Inner Race fault
(IR07-IR21), Outer Race fault (OR07-OR21) and Ball fault (B07-B21) are shown as
leafs.

2 Related Works

Hierarchical classification has already been applied in several application scenar-
ios [11,18], often with the motivation to improve the quality of the classification
results rather than to reduce energy consumption. However, previous work has
shown that hierarchical classification can also be used as a partitioning method
to increase the energy efficiency of a ML-model by using cascaded processing [7],
modularizing its classification taxonomy [2] or by distributing its subcomponents
and workload across multiple edge devices [15].

While the algorithm selection problem (ASP) for a non-hierarchical (flat)
classifier is already a research field on its own [4], it becomes a more complex
task when switching to a multi-model approach. The authors in [1] solve the
ASP for hierarchical taxonomies with reinforcement learning by interpreting the
selection of each classifier in the hierarchy as actions. The agent then collects a
reward based on accuracy and theoretical computational complexity. Building
up on this idea, we include energy measurements during the search to verify
Adams et al. surrogate energy metric.

In contrast to previous works we also include the feature extraction in the
search space to only compute necessary features at every step in the hierar-
chy. HiMLEdge allows us to streamline the process of training, optimizing and
deploying HIML models towards embedded devices.

3 The HiMLEdge Framework

The HiMLEdge framework makes use of hierarchical machine learning to find
an energy efficient pipeline. Based on a class hierarchy, the classification task
is partitioned into a class taxonomy of decisions. The class taxonomy can be
represented as a directed acyclic graph (DAG) or similarly a poset (N,≺), where
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Fig. 2. Visualization of the HiMLEdge-Framework.

N is a finite set of nodes and a partial order ≺ over N that is asymmetric, anti-
reflexive and transitive. This structure can be simplified to a tree known from a
classical hierarchy scheme, e.g., as shown in Fig. 1a, where levels or even single
nodes can be represented by a unique classifier instance consisting of a feature
extraction and a model solving stage. We will denote such hierarchical classifiers
by Hierarchical Model (HiM) in the following.

Contrarily, a flat classification approach is represented by a single complex
multilabel classifier, responsible for classifying all labels. The authors in [14]
introduce an abstract description of such hierarchical structures, describing mul-
tiple approaches of which we use the local classifier per parent node variant to
build a HiM for energy-efficient execution. In this approach, each parent node
inside the HiM is modularised and can be represented by a different classifier
instance to achieve the highest degree of flexibility. The modularity of hier-
archical models has the advantages that (i) similarly to a divide-and-conquer
algorithm, a complex multilabel classification problem is partitioned into sim-
pler sub-problems that can be solved more efficiently; (ii) for each node we can
select the best suitable and problem-specific classification algorithm; (iii) the
node-wise modularization makes it possible to optimize individual parts of a
hierarchical model, to adapt them more efficiently to changes and to scale the
model to a distributed system architecture. This enables the combination of a
broad variety of target platforms starting from specialized custom circuits such as
neuromorphic hardware, embedded microcontrollers, or multi device networks.
The HiMLEdge framework1 as shown in Fig. 2 is able to handle the complete
process of generating, training, selecting and transpiling to C-code of a HiM for
an embedded platform. In the optimization process, the framework generates a
HiM in a JSON-like representation out of a possible permutation of given fea-
ture and classifier sets for a specific class taxonomy. Any HiM formulated in this
representation can then be read in, trained and evaluated by the framework,
building the basis for the optimization process. Training and testing of a HiM is
made possible with a DAG based recursive algorithm, following the taxonomy
from top to bottom. Each node is modeled to have access to its own classi-
fier as well as feature extraction and holds references to its following node(s).
In that way, each node can call the train/predict function of the next node(s)

1 https://github.com/Fraunhofer-IIS/HiMLEdge.

https://github.com/Fraunhofer-IIS/HiMLEdge
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or terminate the recursion if a leaf node has been reached. For the ASP the
user can choose an optimization strategy, which is able to include direct feed-
back of the energy consumption with real measurements of the HiM model in
question, or use an approximation for the energy consumption to find an HiM
without measurement hardware. Currently, the framework is able to utilize an
exhaustive search approach or a reinforcement learning based optimization like
shown in [1], but will be extended with further techniques like e.g. Evolutionary
Algorithms [3] in the future.

3.1 Optimization Problem

We use a local classifier per parent node approach, because each classifier and
feature extraction in every node of the HiM can be chosen independently. Let
C = {c1, ..., cj} and F = {F1, ..., Fk} be finite sets of classifier and feature labels,
respectively. The ASP can be described by the optimization problem to maximize
the reward function

R(P̂C,F ) = λA(P̂C,F ) +
1
λ

Ê(P̂C,F ), (1)

where P̂C,F is a finite set indexed by N that contains for each node n ∈ N a
possibly optimal classifier-feature pair (Ĉn, F̂n), which combines a single clas-
sifier Ĉn ∈ C with a set of feature labels F̂n ∈ P(F). The reward consists of
a weighted sum of the accuracy A and the approximated energy consumption
score Ê, which may be replaced by a real measurement. The weighting factor λ
is a hyperparameter that can be used to shift the optimization towards energy
consumption or classification performance. In our tests, λ = 2 showed a good
trade-off between both criteria. A smaller value led to trivial classifiers and an
increased λ to inefficient models. This is because for more extreme values of λ
the optimization solely focuses on either accuracy or energy consumption. The
optimization procedure picks from a configuration set

W = {(c0, f0), (c1, f1), . . . (cN , fN )}, (2)

where each cn ∈ P(C) \ ∅ and fn ⊆ P(F).

3.2 Reinforcement Learning

As an alternative approach to the exhaustive search, we also test Reinforcement
Learning (RL) to solve the ASP for a HiM. RL is a machine learning method
that aims to learn the optimal sequence of actions called policy required to reach
a specific goal. It consists of an environment, and an agent that exists in cer-
tain states. The agent is the main actor, that interacts with the environment
by performing actions. The agent gets the feedback from the environment as a
reward and a new state. The agent’s goal is to maximize its reward over time. In
[1], the authors propose a RL method for the ASP of hierarchical classification
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Algorithm 1: Reinforcement Learning Algorithm for Hierarchical Classi-
fication
Input : ε, α, γ, λ, X, Y
Output: The optimal policy π*

1 Initialize Q-table, for episode = 0...Episodes do
2 for i = 0...I do
3 Select Xk and Yk for hierarchy level k
4 Select testing instance xi, yi

5 Build training set: Xk \ xi, Yi \ yn

6 Select an action type a ∈ A
7 Train classifier of type a using training set
8 Predict label for xi using trained classifier
9 Move to next state s′ based on the prediction

10 Update Q(s,a)
11 if s′ is a leaf node then
12 Break;
13 else
14 Return to line 3;
15 end
16 for s ∈ S do
17 π*(s) = argmax

a
Q(s,a)

18 end
19 end
20 end

problems. We extend this method by testing it on an embedded device and per-
forming real-life measurements. In this context, the set of states are considered
to be the different levels in the hierarchy. The set of actions are the different
classification algorithms. In every episode, the agent selects a classifier type and
trains it, then conducts inference on a random test instance of the dataset. Based
on the generated prediction, the agent moves to the new state in the next level
and collects a reward. An episode is complete when the agent reaches a terminal
state. The reward function is similarly defined as in Eq. 1, with Ê(P̂C,F ) being
replaced by the measurement

R(P̂C,F ) = λA(P̂C,F ) − (1 − λ)Ê(P̂C,F ).

Here we use a different weighting method, where λ is between 0 and 1 to keep
comparability with [1]. The complete process of training the RL-Agent to select
a classifier for each node can be seen in Algorithm 1. As shown in the litera-
ture, we apply the Monte-Carlo on-policy strategy, where the Q-table is updated
after every episode. X and Y are the sets of data samples and their correspond-
ing labels, respectively. The parameter ε balances exploitation and exploration
in RL algorithms. The learning rate is denoted with α, and γ is the reduction
factor. We implement an interface to handle communication from the host to
the embedded device. The interface is able to obtain direct feedback from a
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source measurement unit (SMU) about energy consumption and current infer-
ence results from the micro controller. First, the host conducts the action selec-
tion and the classifier training. It then sends the trained classifier’s parameters
and a test instance to the embedded device that uses the sent parameters to
perform inference. Simultaneously, the embedded device triggers a measurement
of the energy consumption while inference is performed. Lastly, the Host receives
the prediction from the embedded device and the energy consumption from the
SMU. This information is used to update its Q-table and continues to perform
a new episode with a new test instance. After several episodes the agent learns
an optimal policy, which is a sequence of classifier types for every level in the
hierarchy.

4 Feasibility Study

To show the real-world benefits of applying automated HiML, we conduct a fea-
sibility study using the HiMLEdge framework with three experiments. We start
by applying an exhaustive search algorithm, followed by reproducing the rein-
forcement learning based algorithm selection introduced by [1]. As a third step
we conduct tests on a system level view of energy consumption by simulating an
application scenario including communication, data retrieval and classification.

4.1 Dataset

For evaluation we chose condition monitoring as a target application, which is
part of the SDG Goal 9 working towards sustainable industrialization. There-
fore, we are using the well-studied CWRU-Bearing dataset [9], which was
recorded using a 2HP motor connected to a dynamometer via a torque trans-
ducer/encoder. This also gives us the opportunity to see the applicability of
a different dataset to hierachical machine learning in comparison to [1]. The
bearings used in this test are supporting the motor shaft and have been artifi-
cially damaged at different locations with fault depths ranging from 0.007” to
0.021”. The vibration data included in the dataset was collected using single-axis
accelerometers with a sampling rate of 12 kS/s (fan-end). The data is separated
into windows of 512 samples, with a split of 60% training, 20% validation, and
20% test data.

4.2 Measurement Setup

All classifiers used by the HiMLEdge framework are trained with the Scikit-
Learn module in python. Before any data is evaluated, the input features are
scaled to have zero mean and unit variance. For the features in the frequency
space, a Fast fourier transform is used with an FFT size equal to the number
of samples in a window. To describe the classifier and feature selection steps
we will use the following abbreviations: DT = Decision Tree, LR = Logistic
Regression, SVM = Support Vector Machine, RF = Random Forest, MLP =
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Fig. 3. Possible tuple choices for each note during exhaustive search (left) and search
results with energy consumption (right).

Mulit-Layer-Perceptron, KNN = k-Nearest Neighbours, PTP = Peak-To-Peak,
RMS = Root Mean Square, FC = Frequency Centroid, RVF=Root Variance
Frequency, Fmax= Maximum Frequency, and MF = Mean Frequency. The cal-
culation of the statistical features in both time and frequency domain can be
found in [8]. The hyperparameters of each classifier are tuned by a grid search
based approach on a validation set. After training, the selected classifiers are
ported to plain C using the micromlgen2 module and compiled using gcc with
optimization (-O3) enabled. The ported classifiers are tested on an Arduino Nano
33 BLE Sense by using a subset of windows from the test-set. The energy con-
sumption is measured with a source measurement unit (PXIe-4145). To reduce
the influence of background systems and sensors, we first measure the base power
consumption of the microcontroller during idle. This base power is subtracted
from the power consumption measured during inference, resulting in the energy
consumption in Joule per inference.

4.3 Exhaustive Search

In the first experiment, we use an exhaustive search algorithm to obtain a com-
plete overview of the search space. In this way, we are able to construct a knowl-
edge base, which can later be used to form heuristics for future search algorithms.
We separate the classification task in three levels: Anomaly detection (i = 0),
fault classification (i = 1) and severity detection (i = 1, 2, 3) (cf. Figure 1b). Due
to the large search space we chose to approximate the energy consumption with
the mean latency per inference τ measured on the host PC, which is normalized
with respect to the highest measured latency during the search.

Ê(P̂C,F ) = (1 − τ(P̂C,F )
τmax

). (3)

2 https://github.com/eloquentarduino/micromlgen.

https://github.com/eloquentarduino/micromlgen


HiMLEdge - Energy-Aware Optimization for Hierarchical Machine Learning 23

The two best performing HiMs are transpiled (source-to-source compiled) to
plain C and deployed to the embedded device. As baseline models, two flat
classifiers (SVM and RF) are compared to the optimized HiMs in terms of energy
consumption and accuracy. For the hierarchy in Fig. 1b, we let the optimization
pick out of the sets shown in Fig. 3a, which use the following configuration W =
{(c0, f0), (c1, f1), . . . , (c4, f4)} with

c0 = {DT, LR},

f0 = {{PTP}, {RMS, Kurtosis, Crest}},

c1 = {DT, SVM, RF, MLP, KNN},

f1 = {{Skew}, {FC, RVF, RMS, Fmax}},

c2 = c3 = c4 = {DT, RF, KNN},

f2 = f3 = f4 = {∅, {Root, Impulse, Peak, MF},

leading to a total of 12964 permutations.
The results shows improvements in energy consumption for both HiMs over

the baseline (cf. Figure 3b). A significantly influencing factor for the hierarchical
model is the fault-detection, which is presumably responsible for most of the
computations in the model. This is because of the inclusion of an FFT in the
feature extraction process and the more complicated classification task. There-
fore, we will continue comparing the hierarchical model with a RF at its core
with the RF baseline and the SVM core with the SVM baseline.

Comparing the RF-based models, a decrease in both mean energy consump-
tion and latency of 24.96% can be achieved using the hierarchical approach while
obtaining a slight increase in accuracy of 0.1%. This improvement is most likely
connected to the distribution of the dataset, where 25% of the cases are non-
faulty. Here, the use of a DT with only time-domain features is enough for the
decision to stop the computation. The additional overhead introduced by the
hierarchical structure might be compensated by the severity detection, where
in the case of the found model for some fault classes no additional features are
needed.

When comparing the two SVM-based approaches, the gap between the flat
classifier and the hierarchical model increases further with a decrease of 47.63%
in energy consumption, but with a slightly worse accuracy of 97.6% (SVM-
baseline 98.4%). This increase in energy efficiency for the hierarchical model can
be explained with the complexity of a SVM, which in the worst case can be
O(n3) [10]. With the higher number of input features as well as possible classes,
the cubic complexity becomes a problem in this scenario. The decrease in accu-
racy can be explained by error propagation through the model. If a classification
error is made in any node, it is forwarded through the complete hierarchy and
therefore influences the final decision.
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(a) Energy consumption and accuracy (b) Optimal policies

Fig. 4. Influence of λ on energy consumption, Accuracy and model selection.

4.4 Reinforcement Learning

To test the capabilities of the RL-based selection approach, we narrow down
the search space to stay comparable to [1] by only optimizing the classifiers.
For all nodes (n ∈ {0, 1, . . . , 4}) the agent can pick out of the set cn =
{DT, RF, MLP, SVM}. Logistic regression and KNN classifiers were left out
in this experiment, as they did not show adequate results during the exhaustive
search. Additionally, the RFs have been limited to a maximum of ten estimators
due to higher memory constraints introduced by the runtime in the background.
The same feature sets found in Sect. 4.3 are used.

With feedback from measurements the experiment resulted in the optimal
policy {DT, MLP, RF, MLP, RF }, which differs compared to the policy found
when using adams et al.’s approximation ({DT, RF, DT, DT, DT }). During
testing we explored that even though an MLP had a much higher complex-
ity measure in comparison to a RF, the measurement resulted only in a slight
increase in energy consumption. Because of the higher accuracy of the MLP, the
agent probably decided to lean towards picking the MLP over the RF. Addition-
ally, the training process converged after only a few hours of training on a single
desktop PC, while the exhaustive search was run in the course of multiple days.
This shows the importance of a suitable algorithm selection techniques that does
not only save energy for the inference, but also needs less power during optimiza-
tion and training. Without a proper approach, the ASP becomes unsolvable for
hierarchical classification with an exhaustive search in increasing search spaces
and the positive impact on sustainability becomes questionable.

Influence of Trade-off Parameter λ. The model selection process is highly
influenced by the trade-off parameter λ, which shifts the selection from maximum
energy awareness (λ = 0) to maximum accuracy (λ = 1). While both Adams et
al.’s surrogate metric and our framework behave as expected with an increase in
energy consumption and accuracy for rising values of λ (cf. Figure 4a), the two
approaches differ at the point this increase starts. Our approach reaches near
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Fig. 5. Dataset dependency for different ratios between faulty and normal cases (left)
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peak accuracy much earlier (λ = 0.2) than Adams et al.’s approach, but the
energy draw only reaches a modest value of 18.28 µJ/Inference. This behavior
is also reflected in the classifier choice of both approaches shown in Fig. 4b. The
optimal policies for fault detection (N1) seem to be highly correlated with the
energy consumption. This verifies the assumption made in Sect. 4.3 that the fault
classification is most influential for the energy consumption of the complete HiM.
In general, our approach seems to favor an MLP outside of extreme values for λ,
while the agent collecting the reward from a surrogate metric sticks to tree-based
algorithms (RF, DT) most of the time. This difference can be explained with a
not optimal approximation of the energy for an MLP. While in theory, the MLP
should be much more computational intensive in comparison to e.g. RF, the
regular matrix computations used in a Neural Network are easier to optimize for
a compiler. This leads to only a modest increase in energy consumption, but with
the benefit of a much more precise model. Additionally, the Cortex M4 can utilize
DSP functionalities for the optimal execution of matrix operations. Therefore,
the search process should not only include theoretical compute complexity, but
also measurements or hardware-aware surrogate models.

Dataset Dependency. Due to the nature of hierarchical classification, the
energy consumption is inherently dataset dependent. This is especially the case
if the hierarchy includes a lightweight anomaly detection like in our case. Here,
the ratio between faulty and non faulty events

α =
#FaultyEvents

#NormalEvents
=

αf

αn
,

has the highest impact on the energy needed. As discussed before, with λ set
to 0.5, our approach needs more energy compared to Adams et al.’s approach.
However, it benefits from a higher classification performance. While this view
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is true for the standard dataset distribution (α ≈ 4), in the field α is usually
much smaller. In this case, both approaches converge to the same mean energy
consumption

E =
αnEN0 + αfEf

αn + αf
=

αnEN0 + ααnEf

αn + ααn
=

EN0 + αEf

1 + α
=

α→0
EN0

if the energy draw of the anomaly detection EN0 is equal for both approaches
(same policy for N0 cf. Figure 4b). For α nearing zero, the mean energy consump-
tion of the remaining nodes (N1-N4) Ef becomes negligible, which can also be
observed in Fig. 5a.

In general, this shows that the applicability of HiML for energy efficiency
is highly dataset-dependent. If a problem can be solved by a classifier that can
be partitioned into multiple stages with increasing degrees of complexity, and
if the low-complexity nodes are executed more often, the hierarchical approach
works well. However, in scenarios where complex computations are needed at
every point in time, a HiM might even consume more energy due to the added
overhead.

In conclusion, the tests conducted with RL show not only the dataset depen-
dency and the influence of λ on the selection process. They also highlight the
importance of an applicable search strategy. The exhaustive search discussed in
Sect. 4.3 took multiple days on a cluster of CPUs to find a solution, while the RL
agent was trained in hours on a single machine including measurement feedback.
This training time decreases further with Adams et al.’s surrogate metric. In gen-
eral, a combination of heuristics, search strategy, and hardware-aware surrogate
models should be used to build a precise AutoML tool for HiML.

4.5 System Level Energy Consumption

As a last test we want to evaluate a system view to get insight in the power
consumption in an application scenario. Before, we always focused on optimizing
the energy consumption of the machine learning pipeline isolated from the total
power draw of other components and communication. Therefore, in the following
we will calculate a system level energy score per hour

Esys = T [αEf + (1 − α)EN0] + Eoff , (4)

where T denotes the readings per hour and Eoff the system-off power con-
sumption per hour. To simulate a real-life application scenario, we changed the
dataset distribution to αf = 1 and αn = 20. Thus, a fault only occurs in 5% of
the measurements. With this setting, we compare three cases: A flat classifier
(RF), the best performing HiM from Sect. 4.3 and sending data only. In the case
of classification, the result is sent via BLE if a fault has been detected, while
in the sending data case the complete window holding 512 values is always sent
to the host. The power-off energy is taken from the datasheet of the NRF58240
(71.28mJ/h). The goal of this test is to find the maximum possible duty cycle T
to achieve 5 years of battery life with a single CR2477 coin cell battery holding
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1000mAh (10800 J @ 3V) of charge in the respective scenarios and thereby see
the impact on energy consumption of hierarchical classification in an application
scenario.

It is clearly visible in Fig. 5b that the automatically found HiM is able to
achieve the best duty cycle and perform 3.95 times more classifications per hour
in comparison to the flat model, coming very close to real-time monitoring of
the machine in question. Additionally, the gap between the two classification
scenarios and the wireless sending mode shows that filtering and classifying the
sensor data should always be the preferred method if applicable. Considering
that in other more extreme cases BLE might not be available due to its low
range, different communication methods might draw even more energy. There-
fore, an efficient filtering method should be especially useful in remote areas.
Additionally, when looking at this test from a battery-life point of view, the
more efficient algorithms could also be used to increase battery life, or decrease
the battery capacity instead of applying a higher duty cycle. This perspective
helps to improve sustainability in an industry 4.0 scenario and to enable further,
new applications.

5 Conclusion

With the HiMLEdge framework, we were able to evaluate 12,964 hierarchical
model architectures to find the best performing one w.r.t. accuracy and energy
usage. The optimized HiMs achieve a reduction in energy consumption of up to
47.63% over the baseline in the standard distribution of the CWRU dataset (25%
no-faults). These improvements are mainly linked to (i) the anomaly-detection
as the first stage of evaluation and (ii) the modularized selection of features and
classifiers. We explored RL as a selection method for HiMs, showing the poten-
tial behind more efficient optimization algorithms. We have demonstrated that
the viability of an energy approximation measure needs to be validated before
applying it to the optimization process. In our case, the unrealistic approxi-
mation lead to a different optimal policy in comparison to the optimal policy
obtained by including real energy measurements. The system-level view on hier-
archical classification exhibits the strength of efficient processing at the edge.
It lead to a near real time execution of the monitoring while using only a coin
cell battery for five years of run time. In a more realistic dataset distribution
(95% no-fault), the HiM was able to perform 3.95 more readings per hour than
a flat classifier. On the flip side this advantage in energy efficiency could also be
transferred to longer battery life.

However, there are additional points that need to be investigated in future
works. Further optimization techniques should be explored, e.g., evolutionary
algorithms [3]. Even though RL showed promising results, it is unclear how it
would handle an increased search space. The optimization process might also be
positively influenced by a surrogate model that precisely estimates the energy
consumption of a pipeline [6]. Additionally, further modularization of features
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could improve the energy consumption by, e.g., utilizing a Multirate Filter-
bank [16] to decompose the input signals. Furthermore, the hierarchy is con-
structed with expert knowledge, so an automatic approach to learn hierarchical
structures should be investigated as an alternative. Currently it is unclear how
beneficial the approach would be in other scenarios. Even though we were able
to show that in the case of condition monitoring, HiML can be very beneficial,
other application areas might not benefit as much. Therefore, a study comparing
the impact of HiML on energy efficiency in a broad range of contexts should be
conducted in future work.
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