
Temporal Knowledge Graph Embedding
for Link Prediction

Yi Zhang1, Zhi Deng2, Dan Meng3, Liang Zhou1, Mengfei Li1, Qijie Liu1,
and Chao Kong1(B)

1 School of Computer and Information,Anhui Polytechnic University, Wuhu, China
zhangyi@ahpu.edu.cn, lzhou@ahpu.edu.cn, lmf@stu.ahpu.edu.cn,

lqj@stu.ahpu.edu.cn, kongchao@ahpu.edu.cn
2 School of Computer Science, Northwestern Polytechnical University, Xi’an, China

dengcai@mail.nwpu.edu.cn
3 OPPO Research Institute, Shenzhen, China

mengdan@oppo.com

Abstract. Link prediction aims to infer the behavior of the network evo-
lution process by predicting missed or future relationships based on cur-
rently observed connections. It has become an attractive area of research
since it allows us to understand how networks will evolve. Early studies
cast the link prediction task as an entity identifying problem on graphs
and adopt vertex representation strategies to perform predictive analy-
sis. Although these methods are effective to some extent, they overlook
the special properties of network evolution.

In this paper, we propose a new method named TKGE, short for
Temporal Knowledge Graph Embedding, to learn the evolutional repre-
sentations of temporal knowledge graph for link prediction task. Specif-
ically, we employ the self-attention mechanism to incorporate the static
structural information and dynamic temporal information by aggregating
the context from related entities. By introducing the position embedding
characterizing the dynamic information of temporal knowledge graph,
TKGE can generate the evolutional embedding of entities and relations
for downstream applications, such as link prediction, recommender sys-
tem, and so on. We conduct experiments on several real datasets. Both
quantitative results and qualitative analysis verify the effectiveness and
rationality of our TKGE method.

Keywords: Temporal knowledge graph · Representation learning ·
Self-attention · Link prediction

1 Introduction

The knowledge graph (KG), also known as the semantic network, represents
the network of real-world entities and illustrates the relations between them. It

Y. Zhang, Z. Deng and D. Meng—These authors contribute equally to this work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
X. Zhao et al. (Eds.): WISA 2022, LNCS 13579, pp. 3–14, 2022.
https://doi.org/10.1007/978-3-031-20309-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20309-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-20309-1_1

4 Y. Zhang et al.

has been widely used in various applications, such as language representation
learning, question answering, recommender systems, and so on.

To date, existing KGs are usually constructed by machine learning algorithms
automatically, but there are many hidden relations that have not been observed,
so they are often incomplete. In view of this situation, the link prediction task
in KG aims to predict the missing entities or relations, which is also called
knowledge inference [1] and knowledge completion [2]. The real-world KGs are
usually dynamic, in which more new entities and new types of relations are
observed in the KGs over time. We call such KGs with dynamic changes over
time as temporal knowledge graphs (TKGs). Figure 1 shows an example of a
temporal knowledge graph that evolves over time from the year 1998 to 2013.
As can be seen from the observed TKG facts in Fig. 1, Tencent was founded
by Pony Ma in 1998 and had multiple relations with other entities from 2010
to 2013, resulting in the semantics of the entity of Tencent shifts over time.
Hence, modeling temporal information in KGs is crucial to understanding how
the knowledge evolves over time. In this paper, we study the problem of learning
TKG embedding for link prediction.

Fig. 1. An example of the evolution of temporal knowledge graph.

However, the TKG embedding for link prediction is often a challenging task
due to the following reasons: (1) it is arduous to simulate the strong time depen-
dency in TKG; (2) there are some potential factors that affect the network
evolution.

In this paper, we propose an approach, called TKGE, to learn the evolutional
embeddings of entities and relations in TKG. We formulate the link prediction
task as a conditional probability problem covering entity prediction and rela-
tion prediction. For the provided approach, we would like to address the two
challenges highlighted earlier. Specifically, we utilize self-attention mechanism
to model TKG from both static structural information and dynamic evolutions
of the graph to simulate the complex time dependency better. We employ the
multi-head self-attention to model the TKG from many aspects. With multi-
head self-attention, TKGE can perform very efficiently but still generate accu-
rate evolutional embeddings. Extensive results on the six datasets have shown
the effectiveness and rationality of the proposed model.

Temporal Knowledge Graph Embedding for Link Prediction 5

2 Related Work

The link prediction task on TKG aims to predict missing quadruples. It
is further divided into two subtasks: entity prediction and relation prediction.
Traditional research on KG link prediction tasks mainly focuses on static KGs,
that is, facts do not change with time, and less research on TKGs. However, the
time sequence information in the TKG is very helpful to capture the dynamic
trend of facts, and the interactive data in the real world is not invariable.

In general, TKG link predictions are categorized in two settings: interpolation
and extrapolation. Given a TKG with the time interval [t0, tn], interpolation aims
to predict missing facts at timestamp t such that t0 ≤ t ≤ tn and extrapolation,
which aims to predict new facts at timestamp t such that t ≥ tn. For inter-
polation, DE-SimplE [3] draws inspiration from diachronic word embeddings,
developing a diachronic embedding function to generate a hidden representation
for the entity at any given time. However, it is hard to help supplement the KG
on future timestamps.

For extrapolation, existing methods are achieved through various techniques
such as temporal point process framework [4,5], CNN-based methods [6] and
deep recurrent models [7,8]. Mei et al., propose N-SM-MPP [4] model for link
prediction using the Hawkes process to capture the dynamic temporal informa-
tion. In addition, DyRep [5] considers representation learning as a latent medi-
ation process. However, these two methods are more suitable for model TKG in
continuous time. For the multi-relational, directed graph structure of each KG,
REGCN [6] utilize GCN, which it’s quite a powerful model for graph-structured
data to characterize structural dependencies. Jin et al., develop an autoregressive
framework [7], called RE-NET, utilizing recurrent event encoder and neighbor-
hood aggregator to model the information of dynamic temporal and concurrent
events in the same timestamp. Despite the effectiveness of the methods men-
tioned above, these methods have limitations to some degree, because they do
not consider the special properties of TKG that is there exist some potential
factors that affect the network evolution.

3 Problem Formulation

We first give notations used in this paper and then formalize the TKG rep-
resentation learning problem to be addressed.
Notations. A TKG is defined as a sequence of static KGs with timestamps,
G = {G1, · · · , Gn} where n represents the number of timestamps. Each KG Gt

is a multi-relational, directed graph which contains all the facts that co-occur
at timestamp t and we define it as Gt = {V,R, Et} where V denotes the set
of entities, R denotes the set of relations, and Et denotes the set of facts at
timestamp t. Any fact in Et can be represented as a quadruple (subject entity,
relation, object entity, timestamp) and is denoted by (s, r, o, t), where s, o ∈ V
and r ∈ R.
Problem Definition. The TKG representation learning task aims to learn
latent representations ho,t ∈ R

F ′
and rt ∈ R

F ′
for each node o ∈ V and relation

6 Y. Zhang et al.

r ∈ R at time t = {1, 2, ..., n}, such that ho,t preserves both the graph structures
and dynamic temporal information. Formally, the problem can be defined as:
Input: A sequence of static KGs with timestamps, G = {G1, · · · , Gn}, entity
embedding matrices Ht and relation embedding matrices Rt.
Output: A map function f : V ∪R → R

F ′
, which maps each entity and relation

in G to a F ′-dimensional embedding vector.

4 Methodology

In this section, we first introduce our proposed method, TKGE, which con-
sists of two components. The structural self-attention module is used to capture
the static structural information of the KG at each timestamp t and the tem-
poral self-attention module is used to capture the evolution of the dynamic KG
over time. The overall framework of the model is shown in Fig. 2. First, the struc-
tural self-attention module uses self-attention [9,10] to aggregate the local static
structural information of each entity in each timestamp t generating structural
embeddings for entities. Then, by introducing position embedding, temporal
self-attention module can capture the evolution of KG in different timestamps.
Finally, based on the representations of the entities and relations learned above,
we can use various scoring functions to perform prediction tasks in future times-
tamps. It is worth mentioning that, intuitively, some latent facts in the real
world can affect the evolution of graphics. This is evident in the case of citation
networks, papers of different research fields may expand their citation papers at
significantly varying rates. Since we introduce multi-head self-attention mecha-
nism [11,12] in the structural self-attention module and temporal self-attention
module, which can not only characteristic the evolution of the KG from different
aspects but also reduce the deviation of prediction and improve the stability of
the model.

4.1 Structural Self-attention

To capture the static structural information in the KG at each timestamp
t, this component is designed to realize the mapping from a series of TKGs
G = {G1, · · · , Gn} to a series of entity embedding matrices {H1, · · · ,Ht}. The
initial entity embedding matrix is obtained by random initialization.

Specifically, the structural self-attention mechanism calculates the structural
representation of the entity by learning the importance of the relevant entity to
the target entity and assigning different weights to each relevant entity: ho,t =
σ(1

co

∑
αs,oW

s(hs,t + rt)), where hs,t and rt are the embeddings of entity s
and relation r at timestamp t, respectively. co is the in-degree of the object
entity o. σ(·) is a nonlinear activation function. In particular, hs,t+rt represents
the translation attribute between the entity and the relation in the triplet. The
calculation formula of the specific weight αs,o is as follows:

es,o = σ(As,o · αT [W shot||W shs,t]),∀(s, r, o) ∈ Et, (1)

Temporal Knowledge Graph Embedding for Link Prediction 7

Fig. 2. The overall architecture of the TKGE model.

αs,o =
exp(es,o)∑

(s,r),∃(s,r,o)∈Et

, (2)

where As,o represents the weight matrix of the link between the subject entity
and the object entity at the current timestamp t. In this paper, the number
of edge occurrences is used as the weight. α ∈ R

2D and W s ∈ R
F×Ddenote

the weight vector and the parameter matrices, respectively. || is the concatena-
tion operation and σ(·) denotes the non-linear activation function. Significantly,
this module is composed of multiple stacked structural self-attention layers. By
stacking multiple layers, our method can further consider the high-order relation
between entities to generate the final structural embedding of the entity at each
timestamp.

4.2 Temporal Self-attention

To capture the dynamic temporal information in TKG, we first utilize
position embedding {p1, · · · ,p�},pt ∈ R

F to describe the dynamic temporal
sequence information of each static KG. Then, temporal self-attention mod-
ule takes a series of embeddings for a particular entity o at different times-
tamps calculated by ho,t + pt as input and returns a sequence of temporal
entity embeddings at different timestamps. Meanwhile, this component utilize
GRU to realize the mapping from a series of TKGs G = {G1, · · · , Gn} to a

8 Y. Zhang et al.

series of relation embedding matrices {R1, · · · ,Rn}. The initial relation embed-
ding matrix is obtained by random initialization. Specifically, the input and
the output for each entity o is denoted by {xo,t1 , · · · ,xo,tn},xo,t ∈ R

D′
and

{ho,t1 , · · · ,ho,tn},ho,t ∈ R
F ′

. Where n, D′ and F ′ denote the number of times-
tamps and the dimension of the input and the output vector. In practice, we
compute the input and the output embeddings for entity o at different times-
tamps, packed together into a matrix Xo ∈ R

T×D′
and Ho ∈ R

T×F ′
. Specif-

ically, the output embedding of the entity is mainly calculated according to
Ho = βo(XoWv), where βo ∈ R

T×T is the weight matrix of attention. This cal-
culation first converts the queries, keys, and values to different spaces through
the learned matrix Wq ∈ R

D′×F ′
,Wk ∈ R

D′×F ′
,Wv ∈ R

D′×F ′
, and then uses

the scaled dot-product attention mechanism to calculate the attention score and
weight:

eijo = (
((XoWq)(XoWk)�)ij√

F ′ + Mij). (3)

Bij
o =

exp(eijo)
∑n

k=1 exp(eiko)
, (4)

where M ∈ R
T×T , is the mask matrix, which is used to encode autoregressive

attributes, that is, to use information from a few previous timestamps to describe
the information at a later timestamp. If i ≤ j, Mij = 0, otherwise Mij = −∞.

Intuitively, the relation embedding contains the information of the entity
in the corresponding fact, so the relation’s embedding at timestamp t will be
affected by the entity information related to the relation r at timestamp t and
its own information at timestamp t − 1, where the related entities is denoted
by Er,t = {i|(i, r, o, t)or(s, r, i, t) ∈ Et}. Inspired by [6], by applying the average
pooling operation in the embedding matrix of the entities related to the relation
r at timestamp t − 1, Ht−1,Er,t

, the calculation formula of relation embedding
is: r′

t = [pooling(Ht−1,Er,t
)||r], where r is the embedding vector of the relation

r. Especially, when there is no relation at timestamp t, r′
t = 0. Then, according

to the relation embedding matrix R′ and Rt−1 at timestamp t − 1, this paper
utilizes GRU to obtain the updated relationship matrix.

After obtaining the evolutional embeddings of entities and relations, we per-
form link prediction problems in a probabilistic way. Considering the good results
shown by GCN in KG link prediction, we choose ConvTransE [13] as the decoder.
Therefore, the specific calculation formula of the entity conditional probability
vector is as follows:

p(o|s, r,Ht,Rt) = σ(HtConvTransE(st, rt)), (5)

where σ(·) denotes the sigmoid function. Similarly, we can get the relational
conditional probability vector according to the following formula:

p(r|s, o,Ht,Rt) = σ(RtConvTransE(st,ot)), (6)

where st, rt and ot are the corresponding elements in the entity and relation
embedding matrices Ht and Rt, respectively.

Temporal Knowledge Graph Embedding for Link Prediction 9

4.3 Parameter Learning

This paper takes the entity and relation prediction task as a multi-
classification problem, where each category corresponds to an entity or relation,
and yo

t+1 ∈ R
|V | or yr

t+1 ∈ R
|R| is used to represent the label vectors of the entity

or relation prediction task under the t + 1 timestamp. If a value is 1 indicates
the corresponding fact happens. The corresponding loss functions are as follows:

Lo =
n−1∑

t=0

∑

(s,r,o,t+1)∈Et+1

|V |−1∑

i=0

yo
t+1,i log pi(o|s, r,Ht,Rt), (7)

Lr =
n−1∑

t=0

∑

(s,r,o,t+1)∈Et+1

|R|−1∑

i=0

yr
t+1,i log pi(r|s, o,Ht,Rt), (8)

where n represents the number of timestamps in the training set, yo
t+1,i and

yr
t+1,i is the value of the i-th element of yo

t+1 and yr
t+1 respectively.

4.4 Discussion

To verify the efficiency of our algorithm, this section analyzes the time com-
plexity of the model. First, the self-attention mechanism mainly includes three
steps: similarity calculation, softmax, and weighted summation. After the anal-
ysis, the time complexity of this part is O(n2d), where n is the maximum length
of the sequence, and d is the dimension of embedding. In addition, we use GRU
component to calculate relation embedding, where the time complexity of pool-
ing operation is O(|R|D), where D is the maximum number of related entities
with relation r at timestamp t, and R is the number of elements in the relation
set. Therefore, the total time complexity is O(n2d + |R|D).

5 Experiments

To evaluate the entity and relation embeddings learned by TKGE, we employ
them to address the link prediction problem in TKG. Link prediction in TKG
can be regarded as a classification task, which is mainly divided into entity
prediction and relation prediction. Through experiments, we aim to answer the
following research questions:
RQ1: How does TKGE perform compared with state-of-the-art temporal knowl-
edge graph embedding methods?
RQ2: Is the construction of structural and temporal self-attention component
helpful to learn more desirable representations for temporal knowledge graph?
RQ3: How do the key hyper-parameters affect the performance of TKGE?
In what follows, we first introduce the experimental settings, and then answer
the above research question in turn.

10 Y. Zhang et al.

Table 1. Descriptive statistics of datasets.

Name |V | |R| |εtrain| |εvalid| |εtest| Time interval

ICEWS18 23,033 256 373,018 45,995 49545 24 h

ICEWS14 6,869 230 74,845 8,514 7,371 24 h

ICEWS05-15 10,094 251 368,868 46,302 46,159 24 h

WIKI 12,554 24 539,286 67,538 67,538 1 year

YAGO 10,623 10 161,540 19,523 20,026 1 year

GDELT 7691 240 1,734,399 238,765 305,241 15 mins

5.1 Experimental Settings

Dataset. We utilize six commonly used TKGs datasets: ICEWS18, ICEWS14,
ICEWS05-15, WIKI, YAGO, and GDELT. The first three datasets come from
the data captured and processed by the Integrated Crisis Early Warning System
(ICEW). The data in the GDELT comes from various international news reports,
such as the New York Times, Washington Post, etc. The statistics of the datasets
are summarized in Table 1.
Evaluation Protocols. To evaluate the performance of link prediction task, we
performed the same processing on the dataset as RE-GCN. For the ICEWS14
and ICEWS05-15 datasets, we randomly select 80% of the instances as the train-
ing set, 10% of the instances as the validation set, and the remaining 10% as
the test set. The details of the dataset division are shown in Table 1. Based on
previous research, this paper selects two evaluation indicators commonly used
in link prediction, namely Mean Reciprocal Ranks (MRR) and Hits@K.
Baselines. We compare TKGE with two types of baselines: TKG link prediction
models under the interpolation setting and TKG link prediction models under
the extrapolation setting. For interpolation, we select HyTE [14], TTransE [15]
and TA-DistMult [16] as comparison method. Similarly, for extrapolation, we
select RGCRN [17], CyGNet [18], RE-NET [7] and RE-GCN [6] as comparison
method. Especially, RGCRN is an extended model of GCRN, which originally
for the homogeneous graphs. Specifically, RE-NET replace GCN with R-GCN.
Parameter Settings. We implement our method TKGE in TensorFlow and
carry it out on Tesla V100. The training epoch is limited to 200. We adopt the
Adam optimizer for parameter learning with a learning rate of 10−3. For all
models, we set the dimension of embedding as 200 and the batch size as 256 for
a fair comparison.

5.2 Performance Comparison (RQ1)

Entity Prediction. In this task, the results of all the comparison methods are
presented in Table 2. Firstly, the TKGE is superior to TKG link prediction mod-
els under the interpolation setting, such as HyTE, TTransE, and TA-DistMult,
because TKGE additionally captures the static structural information of the

Temporal Knowledge Graph Embedding for Link Prediction 11

Table 2. Entity prediction performance on different datasets.

Model ICEWS18 ICEWS14 ICEWS05-15

MRR H@3 H@10 MRR H@3 H@10 MRR H@3 H@10

HyTE 7.48% 7.34% 16.04% 16.79% 24.85% 43.96% 16.05% 20.16% 34.73%

TTransE 8.46% 8.98% 22.35% 12.84% 15.75% 33.62% 16.52% 20.76% 39.27%

TA-DistMult 16.45% 18.12% 32.52% 26.23% 29.75% 45.25% 27.55% 31.46% 47.33%

RGCRN 23.49% 26.67% 41.97% 33.35% 36.65% 51.52% 35.94% 40.03% 54.62%

CyGNet 24.99% 28.57% 43.55% 34.62% 38.85% 53.12% 35.42% 40.23% 54.43%

RE-NET 26.18% 29.82% 44.39% 35.74% 40.15% 54.85% 36.85% 41.86% 57.63%

RE-GCN 27.50% 31.18% 46.56% 37.72% 42.51% 58.82% 38.22% 43.12% 59.95%

TKGE 28.84% 32.46% 48.74% 39.73% 44.91% 62.79% 39.63% 44.33% 62.33%

Model WIKI YAGO GDELT

MRR H@3 H@10 MRR H@3 H@10 MRR H@3 H@10

HyTE 25.48% 29.14% 37.74% 14.49% 39.85% 46.96% 6.65% 7.51% 19.03%

TTransE 20.46% 23.98% 33.05% 26.14% 36.25% 47.62% 5.42% 4.86% 15.27%

TA-DistMult 26.45% 31.37% 38.88% 44.89% 50.71% 61.21% 10.45% 10.46% 21.67%

RGCRN 28.67% 31.47% 38.59% 43.74% 48.54% 59.65% 18.64% 19.79% 32.43%

CyGNet 30.89% 33.87% 41.25% 46.62% 52.55% 61.12% 18.12% 19.13% 31.43%

RE-NET 30.88% 33.82% 41.39% 46.74% 52.75% 61.85% 19.85% 20.86% 33.83%

RE-GCN 39.83% 44.38% 53.85% 52.32% 65.61% 75.82% 19.22% 20.46% 33.28%

TKGE 43.94% 49.67% 60.06% 57.95% 71.96% 82.71% 19.77% 20.58% 32.67%

KG at each timestamp t and the temporal evolution information of the TKG.
This improvement demonstrates that the accuracy of evolutional embedding gen-
erated from TKGE has significantly improved. Secondly, the temporal models
for the extrapolation setting, such as CyGNet, RE-NET, and RE-GCN, have
good performance. The result verifies the effect of the repetitive patterns and
the direct neighbors on the entity prediction task. Among them, the RE-GCN
is the most efficient method. Compared with CyGNet and RE-NET, RE-GCN
considers the static structure information in each timestamp t and the dynamic
temporal information over time and can obtain satisfactory evolutional repre-
sentations. Thirdly, our proposed method TKGE performs very well on most
datasets. It is noteworthy that compared with other datasets, the experiments
result in GDELT are not as superior as others. After further analysis, the reason
for this phenomenon may be that there are many abstract entities that don’t
specify concrete entities (e.g., teacher and school). Specifically, with the time
interval increasing, the performance gap between the last two rows in the Table
2 is becoming larger. For WIKI and YAGO, because the long time interval deter-
mines the data at each timestamp t having more static structural information,
it is helpful to improve the performance of the entity prediction task. Since the
TKGE method simultaneously models the static structural and dynamic tem-
poral information, it is efficient for link prediction tasks in TKG.

RelationPrediction. Due to the space limitation, we only compare TKGE with
some typical TKG methods and show the performance on MRR. Specifically, we

12 Y. Zhang et al.

Table 3. Relation prediction performance on different datasets.

Model ICEWS18 ICEWS14 ICEWS05-15 WIKI YAGO GDELT

RGCRN 37.16% 38.07% 38.29% 88.89% 90.11% 18.57%

RE-GCN 39.49% 39.74% 38.55% 95.62% 95.15% 19.12%

TKGE 41.52% 41.43% 38.74% 97.92% 97.26% 19.71%

Table 4. TKGE with and without structural self-attention or temporal self-attention.

Model ICEWS18 ICEWS14 ICEWS05-15 WIKI YAGO GDELT

TKGE 28.84% 39.73% 39.63% 43.94% 57.95% 19.77%

TKGE-NS 27.63% 38.22% 36.98% 39.81% 54.72% 19.02%

TKGE-NT 27.23% 37.57% 34.45% 39.59% 53.08% 18.87%

select the RGCRN and RE-GCN, because we can use them for relation prediction
tasks directly. As illustrated in Table 3, we can observe that the performance of the
proposed model TKGE is always better than other baselines in all the datasets.
The superiority of the TKGE demonstrates that our designed structural and tem-
poral self-attention module can generate more accurate evolutional entity and rela-
tion representations. Compare with the entity prediction task, the performance
gap on the relation prediction task is smaller. This is probably because the number
of relations was limited, making relation prediction tasks easier than entity predic-
tion tasks. For example, due to the number of relation on WIKI and YAGO being
24 and 10, the experiment results on both dataset is superior to other datasets.

5.3 Utility of Structural and Temporal Self-attention (RQ2)

To demonstrate the effectiveness of our designed structural and temporal self-
attention module we compare TKGE with its variants TKGE-NS and TKGE-
NT. Two variants represent the model removing the structural self-attention
module and the model removing temporal self-attention modules, respectively.
As shown in Table 4, we can see that the performance of TKGE-NS and TKGE-
NT are lower than TKGE in all datasets. This result verifies the validity of the
structural and temporal self-attention module.

5.4 Hyper-Parameter Studies (RQ3)

Due to the space limitation, we only analyze the effect of the number of heads
h in multi-head structural and temporal self-attention, since this number plays
a crucial role to model TKG. Specifically, except for the measured parameters,
we keep other parameters fixed for fairness. We analyze entity prediction tasks
on datasets ICEWS14 and YAGO individually. As illustrated in Table 5, we find
that multi-head self-attention can improve the performance of TKGE effectively.

Temporal Knowledge Graph Embedding for Link Prediction 13

Table 5. Impact of hyper-parameter h on entity prediction.

Dataset h = 1 h = 2 h = 4 h = 8 h = 16

ICEWS14 38.03% 38.17% 38.29% 39.73% 38.65%

YAGO 56.24% 56.49% 57.74% 57.95% 57.23%

In addition, with the parameter h increasing, the performance of entity predic-
tion tasks will increase firstly then reduce after the locally optimal value. In
this paper, the best number of attention heads is 8. In general, the multi-head
self-attention which can model TKG from many angles is an effective method
for entity prediction tasks.

6 Conclusions

We have presented TKGE, a novel approach for embedding TKG. It jointly
models both the static structural and temporal information in learning evolu-
tional representations for entities and relations. Extensive experiments on six
real-world datasets demonstrate the effectiveness and rationality of our TKGE
method. In this work, we have regarded TKG as a series of static KG snapshots,
thus we only explore the discrete-time approach. Since discrete-time approach
characterizes temporal information in relatively coarse levels, the learned embed-
dings may lose some information between snapshots. To address this issue, we
plan to extend our TKGE method to explore continuous-time approaches [19–21]
to integrate more fine-grained temporal information.

Acknowledgment. This work was supported in part by the National Natural
Science Foundation of China Youth Fund (No. 61902001), the Open Project of
Shanghai Big Data Management System Engineering Research Center (No. 40500-
21203-542500/021), the Industry Collaborative Innovation Fund of Anhui Polytechnic
University-Jiujiang District (No. 2021cyxtb4), and the Science Research Project of
Anhui Polytechnic University (No. Xjky072019C02, No. Xjky2020120). We would also
thank the anonymous reviewers for their detailed comments, which have helped us to
improve the quality of this work. All opinions, findings, conclusions and recommenda-
tions in this paper are those of the authors and do not necessarily reflect the views of
the funding agencies.

References

1. Cheng, K., Yang, Z., Zhang, M., Sun, Y.: Uniker: a unified framework for combining
embedding and definite horn rule reasoning for knowledge graph inference. In:
EMNLP, pp. 9753–9771 (2021)

2. Che, F., Zhang, D., Tao, J., Niu, M., Zhao, B.: Parame: regarding neural network
parameters as relation embeddings for knowledge graph completion. In: AAAI, pp.
2774–2781 (2020)

14 Y. Zhang et al.

3. Goel, R., Kazemi, S.M., Brubaker, M., Poupart, P.: Diachronic embedding for
temporal knowledge graph completion. In: AAAI, pp. 3988–3995 (2020)

4. Mei, H., Eisner, J.: The neural hawkes process: a neurally self-modulating multi-
variate point process. In: NIPS, pp. 6754–6764 (2017)

5. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: Dyrep: learning representations
over dynamic graphs. In: International Conference on Learning Representations
(2019)

6. Li, Z., et al.: Temporal knowledge graph reasoning based on evolutional represen-
tation learning. In: SIGIR, pp. 408–417 (2021)

7. Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure
inferenceover temporal knowledge graphs. In: EMNLP, pp. 6669–6683 (2020)

8. Kong, C., Chen, B., Li, S., Chen, Y., Chen, J., Zhang, L.: GNE: generic heteroge-
neous information network embedding. In: WISA, pp. 120–127 (2020)

9. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)
10. Cheng, S., Xie, M., Ma, Z., Li, S., Gu, S., Yang, F.: Spatio-temporal self-attention

weighted VLAD neural network for action recognition. IEICE 104-D, pp. 220–224
(2021)

11. Liu, J., Chen, S., Wang, B., Zhang, J., Li, N., Xu, T.: Attention as relation: learning
supervised multi-head self-attention for relation extraction. In: IJCAI, pp. 3787–
3793 (2020)

12. Xu, Y., Huang, H., Feng, C., Hu, Y.: A supervised multi-head self-attention net-
work for nested named entity recognition. In: AAAI, pp. 14185–14193 (2021)

13. Shang, C., Tang, Y., Huang, J., Bi, J., He, X., Zhou, B.: End-to-end structure-aware
convolutional networks for knowledge base completion. In: AAAI, pp. 3060–3067
(2019)

14. Dasgupta, S.S., Ray, S.N., Talukdar, P.P.: Hyte: hyperplane-based temporally
aware knowledge graph embedding. In: EMNLP, pp. 2001–2011 (2018)

15. Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: WWW,
pp. 1771–1776. ACM (2018)

16. Garćıa-Durán, A., Dumancic, S., Niepert, M.: Learning sequence encoders for tem-
poral knowledge graph completion. In: EMNLP, pp. 4816–4821 (2018)

17. Schlichtkrull, M.S., Kipf, T.N., an Rianne van den Berg, P.B., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: ESWC, vol.
10843, pp. 593–607 (2018)

18. Zhu, C., Chen, M., Fan, C., Cheng, G., Zhang, Y.: Learning from history: modeling
temporal knowledge graphs with sequential copy-generation networks. In: AAAI,
pp. 4732–4740 (2021)

19. Garg, K., Panagou, D.: Fixed-time stable gradient flows: applications to
continuous-time optimization. IEEE Trans. Autom. Control. 66(5), 2002–2015
(2021)

20. Chien, J., Chen, Y.: Continuous-time attention for sequential learning. In: AAAI,
pp. 7116–7124 (2021)

21. Zhang, L., Zhao, L., Qin, S., Pfoser, D., Ling, C.: TG-GAN: continuous-time tem-
poral graph deep generative models with time-validity constraints. In: WWW, pp.
2104–2116 (2021)

	Temporal Knowledge Graph Embedding for Link Prediction
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Methodology
	4.1 Structural Self-attention
	4.2 Temporal Self-attention
	4.3 Parameter Learning
	4.4 Discussion

	5 Experiments
	5.1 Experimental Settings
	5.2 Performance Comparison (RQ1)
	5.3 Utility of Structural and Temporal Self-attention (RQ2)
	5.4 Hyper-Parameter Studies (RQ3)

	6 Conclusions
	References

